

RECEIVED

2:56 pm, Aug 31, 2009

Alameda County Environmental Health Peninsula Office Park 4 2655 Campus Drive, Suite 100 San Mateo, California 94403

phone 650.372.3500 www.equityoffice.com

August 26, 2009

Jerry Wickham Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Second In Situ Chemical Oxidation Pilot Treatment Report, 700 Independent Road, Oakland, California, Fuel Leak Case No. RO0002900

Dear Mr. Wickham,

Enclosed is a report titled Second In Situ Chemical Oxidation Pilot Treatment Report, 700 Independent Road, Oakland, California. The report was prepared by Kleinfelder Inc. on behalf of Equity Office Properties – Industrial Portfolio, LLC. This report documents subsurface treatment activities including injection of chemical oxidants to breakdown of petroleum hydrocarbons in soil and groundwater and sampling and analysis to assess the effectiveness of in situ treatment at the site. Injection of chemical oxidants was performed between May 27 and June 4, 2009 and follow-up sampling for effectiveness assessment was performed on June 29 and 30, 2009. This report was prepared and is being submitted to Alameda Health Care Services Agency, Environmental Health Services pursuant to your request in a letter to Mr. James Soutter dated April 24, 2009.

I declare, under penalty of perjury, that the information and / or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely, EOP – Industrial Portfolio, LLC.

James Soutter Director – Engineering

Enclosure: Second In Situ Chemical Oxidation Treatment Report, 700 Independent Road, Oakland, California

SECOND IN SITU CHEMICAL OXIDATION TREATMENT REPORT 700 INDEPENDENT ROAD OAKLAND, CALIFORNIA

August 26, 2009

Copyright 2009 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

A Report Prepared for:

Mr. James Soutter EOP – Industrial Portfolio, LLC 2655 Campus Drive, Suite 100 San Mateo, CA 94403

SECOND IN SITU CHEMICAL OXIDATION TREATMENT REPORT 700 INDEPENDENT ROAD OAKLAND, CALIFORNIA

Kleinfelder Job No: 54504/9

for: Sophia Drućan

Environmental Project Manager

ball hal

Charles Almestad, P.G., C.H.G. Principal Professional

KLEINFELDER WEST, INC. 1970 Broadway, Suite 710

Oakland, California 94612 (510) 628-9000

August 26, 2009

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	SITE DESCRIPTION AND BACKGROUND	
	UST REMOVAL AND PREVIOUS ENVIRONMENTAL SITE INVESTIGATION SUMMARY	ON
3.0	ISCO TREATMENT OBJECTIVE	7
4.0	ISOTEC'S ISCO PROCESS	8
	AQUEOUS CONTACT	
4.2	MASS PHASE CHANGES	9
5.0	SECOND ISCO TREATMENT ACTIVITIES	11
5.1		
	5.1.1 Underground Utility Surveying	
	5.1.2 Permitting	
	5.1.3 Health and Safety	
5.2		
	5.2.1 Injection Point Installation5.2.2 ISCO Treatment Reagent Preparation and Injection	
	5.2.2 ISCO Treatment Reagent Preparation and Injection	
	5.2.4 Soil and Groundwater Monitoring	
	5.2.6 Equipment Decontamination	
	5.2.7 Waste Characterization, Handling, and Disposal	
	SECOND ISCO TREATMENT RESULTS AND DISCUSSIONS	
6.1		
	6.1.1 Soil Analytical Results 6.1.2 Groundwater Field Monitoring Results	
	6.1.3 Groundwater Analytical Results	
6.2		
0		
-	CONCLUSIONS AND RECOMMENDATIONS	
	CONCLUSIONS	
7.2	RECOMMENDATIONS	32
8.0	LIMITATIONS	34
9.0	REFERENCES	36

TABLES

- Table 1ISCO Reagent Injection Volumes
- Table 2Second ISCO Treatement Sampling Schedule and Analyses
- Table 3Total Petroleum Hydrocarbons and Volatile Organics in Soil
- Table 4Total Petroleum Hydrocarbons, Volatile Organics and Total Disolved
Solids in Groundwater

PLATES

- Plate 1 Site Vicinity Map
- Plate 2 Site Plan
- Plate 3 Soil Boring and Monitoring Well Locations
- Plate 4 Second ISCO Treatment Area, ISCO Injection Locations and Soil Boring Sampling Locations

APPENDICES

- Appendix A Alameda County Public Works Agency Drilling Permit
- Appendix B Health and Safety Plan
- Appendix C Field Notes and Boring Logs
- Appendix D ISOTEC's In-Situ Chemical Oxidation Remediation Report
- Appendix E Laboratory Analytical Reports and Chain-of-Custody Forms

1.0 INTRODUCTION

Kleinfelder has prepared this report on behalf of Equity Office Properties – Industrial Portfolio, L.L.C. (EOP) to document the activities and results related to the second *in situ* chemical oxidation (ISCO) treatment conducted at the former EOP property located at 700 Independent Road in Oakland, Alameda County, California (the site, Plate 1). Plate 2 presents a site plan for the site. Alameda County Health Care Services Agency (ACHCSA) is the lead agency providing regulatory oversight for the site and has assigned the site fuel leak case number RO0002900. The second ISCO treatment activities were performed as approved by ACHCSA in a letter to Mr. James Soutter of EOP dated April 24, 2009, in order to continue site clean up and remediate petroleum hydrocarbons in soil and groundwater at the site.

The ISCO pilot test activities were performed by Kleinfelder for EOP in general accordance with Kleinfelder's *Pilot Test Work Plan* dated August 6, 2008 (Kleinfelder 2008c) and *Proposal for Full Scale (Second) ISCO Treatment* dated May 12, 2009.

This report summarizes the activities performed during the second ISCO treatment of petroleum hydrocarbons impacted soil and groundwater at the site; and presents the results and comparative analysis of pre- and post-treatment petroleum hydrocarbon concentrations and physical parameters in soil and groundwater at the site. This report is organized as follows:

- Site Description and Background (Section 2.0),
- ISCO Treatemnt Objective (Section 3.0),
- In-Situ Oxidative Technologies, Inc.'s (ISOTEC) ISCO Process (Section 4.0),
- Second ISCO Treatment Activities (Section 5.0),
- Second ISCO Treatment Results and Discussions (Section 6.0),
- Conclusions and Recommendations (Section 7.0),
- Limitations (Section 8.0), and
- References (Section 9.0).

2.0 SITE DESCRIPTION AND BACKGROUND

2.1 SITE DESCRIPTION

The 700 Independent Road property is located in an industrial area of Oakland, California. The property is approximately five-acres in size and is located about 1,000 feet north of the McAfee Stadium (Plate 1). On the property, there are a one-story warehouse building, a parking lot and a railroad spur. Attached to the north side of the warehouse building there is a concrete block building that is about 900 square feet in size (Plate 2). The facility has been used as a warehouse since the 1950's. Previous subsurface investigations indicate that near surface soils at the site are predominantly clay and silty clay in texture, and that groundwater is generally first encountered at about 8 feet to 10 feet below ground surface (bgs).

2.2 UST REMOVAL AND PREVIOUS ENVIRONMENTAL SITE INVESTIGATION SUMMARY

A prospective purchaser of the 700 Independent Road property discovered the presence of petroleum hydrocarbons in soil and groundwater near the loading dock on the subject property in 2004. As a follow up to this discovery, Kleinfelder searched regulatory agency records and found no records indicating the presence of a UST on the property. Kleinfelder then performed a geophysical survey and identified the presence of a UST and associated piping in the vicinity of the loading dock and concrete block building. On August 17, 2005, Kleinfelder removed and disposed of one 1,100-gallon UST, under permit with the City of Oakland. The tank was in poor condition, with several holes, and the soil underneath the tank was visibly impacted with petroleum hydrocarbons. Kleinfelder collected confirmation samples from the bottom of the excavation. Backfilling and compaction was performed on September 15 and 16, 2005. A site plan, indicating the approximate location of the former UST, exploratory borings, and monitoring wells locations are presented in Plate 3.

The top of the UST was encountered at about four feet bgs. A product pipeline was observed in the excavation about a foot below the top of the excavation. The product line from the tank had previously been traced using surface geophysical methods under

the block building to an exterior corner between the block building and the main warehouse building. At this location a pedestal was observed where a fuel dispenser is believed to have existed. A vent line was observed on the side of the warehouse building, extending through the overhang of the warehouse roof. The product and vent lines were left in place when the tank excavation was backfilled. The depth of the product and vent pipelines below the floor of the block building is not known. No excavation activities other than those required to sample shallow soil were performed in the vicinity of the dispenser during UST removal work. Analytical results from the confirmation samples collected below the UST indicated the presence of total petroleum hydrocarbons as gasoline (TPHg) at concentrations as high as 877 milligrams per kilogram (mg/kg) and total petroleum hydrocarbons as diesel (TPHd) as high as 5,090 mg/kg. Kleinfelder summarized the tank removal work and analytical results in a report titled *Underground Storage Tank Removal Report* dated November 1, 2005 (Kleinfelder 2005). The report was submitted to the City of Oakland Fire Department.

Given the concentrations of petroleum hydrocarbons present, the Fire Department referred the site to ACHCSA for regulatory oversight. On February 24, 2006 the ACHCSA sent a letter requesting that EOP delineate the extent of the contamination associated with the recently removed UST. On July 24 and 25 and August 10, 2006 Kleinfelder performed the requested investigation, which consisted of collecting soil and groundwater samples from 13 soil boring locations (K-1 through K-13, Plate 3) advanced in the vicinity of the former UST location. Eleven of the borings were advanced to depths ranging from 16-feet to 24-feet bgs, and two borings were advanced to a depth of 32 feet bgs. Groundwater was first encountered at depths ranging from about 5.5 to 19 feet bgs.

Kleinfelder summarized the results of the investigation in the Site Field Investigation Report, dated September 27, 2006, which was submitted to the ACHCSA (Kleinfelder 2006a). In brief, benzene, toluene, ethylbenzene, and xylenes (BTEX) in soil were reported at concentrations up to 3,000 micrograms per kilogram (μ g/kg), 2,400 μ g/kg, 17,000 μ g/kg, and 33,000 μ g/kg, respectively. TPHg was detected as high as 810 milligrams per kilogram (mg/kg). In groundwater, BTEX was reported as high as 13,800 micrograms per liter (μ g/L), 929 μ g/L, 2,810 μ g/L, and 3,140 μ g/L, respectively. TPHg and TPHd were reported at concentrations up to 42 milligrams per liter (mg/L) and 4.19 mg/L respectively.

In a letter to EOP dated October 6, 2006 the ACHCSA requested that EOP further assess the horizontal extent of petroleum hydrocarbon impacts to the subsurface. The request included the collection of soil and groundwater samples in the southeast direction of the former UST location, installation of three monitoring wells, assessment of the presence of petroleum hydrocarbons in soil vapor, a well survey, and an assessment of potential preferential pathways. In response, Kleinfelder prepared a work plan titled *Work Plan for Further Site Investigation* that was submitted to ACHCSA on December 12, 2006 (Kleinfelder 2006b).

The work plan was approved by the ACHCSA in a letter dated December 26, 2006. Between March 4 and March 7, 2007, Kleinfelder collected soil-vapor samples from five sample locations in the warehouse building, advanced and collected soil and groundwater samples for chemical analysis from seven soil boring locations (K-14 through K-20), and installed three monitoring wells. The results of the investigation are summarized in the May 11, 2007 *Further Site Investigation Report* (Kleinfelder 2007a).

The soil-vapor investigation did not indicate the presence of organic volatiles, including TPHg, at concentrations above regulatory environmental thresholds. The soil and groundwater investigation identified two water bearing zones (seven to 11 feet bgs and 18 to 24 feet bgs) impacted with petroleum hydrocarbons. The 18 to 24 foot bgs zone is characterized by thicker, more permeable and more laterally continuous sediments than the shallower zone. Three monitoring were wells installed to target water quality in the 18 to 24 foot depth water bearing zone.

In soil, the highest TPHg, TPHd, and BTEX concentrations were reported at approximately 19 feet bgs in the samples collected from borings MW-1 and K-19. In MW-1, advanced approximately 65 feet east of the UST, TPHg, TPHd, and BTEX concentrations were reported at 1,200,000 μ g/Kg, 588,000 μ g/Kg, 63,000 μ g/Kg, 250,000 μ g/Kg, 310,000 μ g/Kg, and 1,200,000 μ g/Kg, respectively. In K-19, advanced adjacent to the former UST location, TPHg, TPHd, and BTEX concentrations were reported at 1,900,000- μ g/Kg, 200,000- μ g/Kg, 11,000- μ g/Kg, 26,000- μ g/Kg, 33,000- μ g/Kg, and 170,000- μ g/Kg, respectively.

In groundwater, the highest TPHg, TPHd, and BTEX concentrations were reported in the samples collected from borings MW-2 and K-19, both in close proximity to the former UST. In MW-2, TPHg, TPHd, and BTEX concentrations were reported at 38,000 μ g/L, 940 μ g/L, 11,600 μ g/L, 274 μ g/L, 588 μ g/L, and 2,880 μ g/L, respectively. In K-19, TPHg, TPHd, and BTEX concentrations were reported at 33,100 μ g/L, 370 μ g/L, 5,170 μ g/L, 235 μ g/L, 1,010 μ g/L, and 955 μ g/L, respectively. In addition, significantly high levels of contamination were reported in the groundwater sample collected from K-17, where TPHg, TPHd, and BTEX concentrations were reported at 24,000- μ g/L, 530- μ g/L, 2,780- μ g/L, 150- μ g/L, 774- μ g/L, and 563- μ g/L, respectively. Together, the groundwater samples chemical results suggest that the 18 to 24 foot bgs groundwater bearing zone is a more significant preferential pathway for contaminant migration.

Well survey data and water level measurements made on April 13, 2007 indicate groundwater flow to the south; however, some of the highest petroleum hydrocarbon concentrations were reported to the east of the former UST (MW-1), as opposed to the south (K-17), suggesting that groundwater flow patterns may be variable.

On June 13, 2007, after reviewing the May 11, 2007 *Further Site Investigation Report*, the ACHCSA requested that the extent of petroleum hydrocarbons east of the recently installed monitoring well MW-1 be assessed and that quarterly groundwater monitoring be implemented at the site.

Kleinfelder prepared a *Site Investigation Work Plan* dated September 26, 2007 describing the objectives, tasks, methods and schedule for performing the investigations requested by the ACHCSA in the June 13, 2007 letter (Kleinfelder 2007b). In the ACHCSA's letter approving the work plan, two additional soil borings and one monitoring well were requested. These additional borings and well were incorporated into the scope of work. The work performed and results of the additional investigation are described in a report prepared by Kleinfelder titled *Additional Site-Characterization Report* dated March 31, 2008 (Kleinfelder 2008b).

On May 13, 2008, after reviewing the March 31, 2008 *Additional Site-Characterization Report*, the ACHCSA in a letter to Mr. James Soutter of EOP concurred that the extent of petroleum contamination has been defined and concluded that no further

investigation is required at this time. In addition, the ACHCSA requested that a pilot test work plan be prepared to initiate site cleanup.

On August 6, 2008 Kleinfelder produced a *Pilot Test Work Plan*, which laid out the general methods for the pilot test study (Kleinfelder, 2008c). On September 10, 2008, after reviewing the *Pilot Test Work Plan*, the ACHCSA in a letter to Mr. James Soutter of EOP concluded that the proposed pilot test implementation is generally acceptable; however ACHCSA requested that additional monitoring be performed to evaluate the effectiveness of ISCO.

Between December 9 and 12, 2008 Kleinfelder implemented *Pilot Test Work Plan,* injecting 4,446 gallons of ISCO reagent at 13 locations. Soil and groundwater sampling was performed pre- and post-ISCO treatment event in order to evaluate effectiveness. The work performed and results of the pilot test are described in a report prepared by Kleinfelder titled *In Situ Chemical Oxidation Pilot Test Report* dated March 18, 2009 (Kleinfelder 2009b). Based on the success of the ISCO pilot test, Kleinfelder recommended conducting a second ISCO treatment.

On April 24, 2009, after reviewing the March 18, 2009 *In Situ Chemical Oxidation Pilot Test Report*, the ACHCSA in a letter to Mr. James Soutter of EOP concurred with the recommendation to conduct a second ISCO treatment. Therefore, between May 27 and June 4, 2009 Kleinfelder implemented the second ISCO treatment. Soil and groundwater sampling was performed pre- and post second ISCO treatment in order to evaluate effectiveness. This report describes the work performed and results of the second ISCO treatment event.

3.0 ISCO TREATMENT OBJECTIVE

The objective of the ISCO remediation program using ISOTEC's modified Fenton's based oxidation process was to reduce the soil and groundwater chemicals of concern (COCs [e.g., benzene and total petroleum hydrocarbons]) concentrations to below specific project goals.

The ISCO was implemented at locations where the concentrations of COCs exceed their respective and most recent Environmental Screening Levels (ESLs) developed by the San Francisco Bay Region Regional Water Quality Control Board (RWQCB). The most recent ESLs are summarized in the Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final dated November 2007 and revised May 2008 (RWQCB 2007, revised May 2008). Based on these ESLs Plate 4 presents the ISCO pilot test treatment area.

The ESLs used in this report were obtained from Table B from the RWQCB ESL document (for shallow, less than 3 meters deep soils, commercial/industrial land use) and Table D (for greater than 3 meters bgs soils, commercial/industrial land use). These tables were developed assuming that groundwater is not a current or potential source of drinking water. For this report, these tables were used because the concentration of dissolved solids in the groundwater at the site is significantly greater than 3,000 milligrams per liter as documented in Kleinfelder's *First Quarter 2009 Groundwater Monitoring Report* (Kleinfelder 2009a) for the site, making the groundwater unsuitable as a drinking water resource per RWQCB Resolution 89-39, "Sources of Drinking Water".

4.0 ISOTEC'S ISCO PROCESS

In-Situ Oxidative Technologies, Inc. (ISOTEC) was selected to provide chemical oxidants and perform ISCO injections at the site. ISOTEC's ISCO process destroys organic contamination in situ using Fenton's reagent-based oxidation chemistry. It is characterized by the combination of soluble iron with low concentrations of hydrogen peroxide to produce hydroxyl radicals (OH•), which are injected into contaminated aquifers or vadose zones. The hydroxyl radicals attack the carbon double bonds of hydrocarbon molecules. The summary equation for Fenton's chemistry is shown below.

$Fe^{+2} + H_2O_2 \Rightarrow Fe^{+3} + OH^- + OH^-$

Where H_2O_2 is hydrogen peroxide, Fe^{+2} is ferrous iron, Fe^{+3} is ferric iron, OH• is hydroxyl free radical and OH⁻ is hydroxide ion.

Iron is used to catalyze the reaction. Maintaining iron in solution is important for the process to be successful in an *in situ* application. To eliminate the necessity of performing the reaction under low pH conditions, as is the case with traditional Fenton's chemistry, complexed iron is used in *in situ* applications via ISOTEC's process. The hydrogen peroxide and dissolved iron solutions are injected through a site-specific delivery system providing sufficient distribution to selectively treat the area of concern. Reaction time is very fast, with oxidation capacity of the reagent being used up in a matter of a few days. Hydrogen peroxide breaks down into water and oxygen and the iron catalyst is oxidized and precipitates out of solution.

Fenton-based oxidation processes have been shown to effectively treat a wide range of contaminants including hard-to-treat compounds such as chlorinated solvents, petroleum hydrocarbons, gasoline additives including BTEX, and pesticides.

The stoichiometric relationship between benzene oxidation and hydrogen peroxide consumption can be predicted from the oxidative reaction:

$C_6H_6 + 15H_2O_2 = 6CO_2 + 18H_2O$

Where C_6H_6 is benzene, H_2O_2 is hydrogen peroxide, CO_2 is carbon dioxide, and H_2O^+ is water. Hydrogen peroxide not consumed in the above reaction will continue to oxidize

the groundwater contaminants and will naturally degrade along with the contaminant to oxygen and water (ISOTEC 2009, Attachment D).

4.1 AQUEOUS CONTACT

The overwhelming portion of the oxidation process occurs in the aqueous phase. Contaminant dissolved in water contacts oxidant dissolved in water and the oxidation reactions occur. This is, for all practical purposes, an instantaneous process. The same is not true for contaminant mass that is present adsorbed to soil or found as liquid phase hydrocarbon (LPH). These two phases must be moved into the aqueous (dissolved) phase in order to be treated in a practical manner (ISOTEC 2009, Attachment D).

4.2 MASS PHASE CHANGES

Modified Fenton's with neutral pH catalyst actively transfers mass into the dissolved phase thereby greatly disrupting the mass equilibrium between the phases. The hydroxyl radical oxidizes contamination in the dissolved phase while the superoxide radical desorbs mass from the adsorbed phase by interfering with the electrical (molecular) forces that cause molecules of solvent to "stick" to grains of soil and organic carbon. In addition to these chemical processes, the reaction produces oxygen gas. As the peroxide decomposes it generates oxygen. This gas is produced within the individual pore spaces where the two reagents are mixed. As the gas bubbles are generated and then migrate vertically up through soil pores, a physical action occurs that mixes groundwater, disturbs soil "fines" (increasing turbidity) and dislodges residual non-aqueous phase liquid (NAPL). Mass is transferred from the adsorbed and NAPL phases into the dissolved phase through this physical agitation. Mass is also transferred from the NAPL phase to the adsorbed phase as the NAPL is mixed within the pore space and contacts more soil surface area.

These chemical and physical processes upset the phase equilibrium and can be observed as temporary increases in dissolved and sorbed concentrations, especially early in the treatment program when the total mass is still at levels near the original mass. However, given that such a small percentage of the total mass exists in the dissolved phase, even an order of magnitude increase in the dissolved phase mass is

still only a fraction of the total mass. As the total mass decreases with multiple injections, the post-injection increases in dissolved concentrations also decrease. Post injection dissolved concentrations will remain elevated and out of equilibrium with the total mass even as the total mass approaches minimal levels. Only time will allow the dissolved mass and total mass to reequilibrate through dilution, dispersion, readsorption and degradation. This time period varies depending on specific site conditions but has been observed to take from months up to quarters.

For the modified Fenton's process, this means that the oxidant is injected and treatment occurs almost instantly. The oxidant is consumed and the treatment process is complete within several days if not hours. The modified Fenton's process actively transfers mass from the adsorbed phase into the aqueous phase where oxidation can occur. This process allows for significant mass destruction in a short period of time (ISOTEC 2009, Attachment D).

5.0 SECOND ISCO TREATMENT ACTIVITIES

Based on the success of the ISCO pilot test, Kleinfelder recommended conducting a second ISCO treatment and the ACHCSA in a letter to Mr. James Soutter of EOP dated April 24, 2009 concurred with the Kleinfelder's recommendation. This section describes the activities related to the second ISCO treatment implementation.

5.1 PRE-ISCO ACTIVITIES

This section describes the activities that were conducted in order to prepare for the ISCO reagent injection, including surveying for underground utilities, obtaining a subsurface drilling permit, coordinating inspection activities with a regulatory inspector, as required, and updating the existing site-specific health and safety plan (HASP).

5.1.1 Underground Utility Surveying

Kleinfelder marked the proposed injection areas with marking paint prior to initiation of drilling activities. Underground Service Alert (USA) was notified shortly after the borings were marked, more than 48 hours prior to initiation of the drilling activities. The USA ticket number for the May and June 2009 drilling and the injection events was 0147159. In addition, Cruz Brothers, a private utility surveying company, was contracted to survey the injection areas for subsurface utilities. Kleinfelder personnel provided oversight for private utility locating activities.

5.1.2 Permitting

Kleinfelder submitted a permit application and paid associated permit fees to the Alameda County Public Works Agency (ACPWA) for drilling activities at the site. The drilling was performed in accordance with State and County requirements. A copy of the permit is included in Appendix A. Mr. John Souldice, an ACPWA inspector, was occasionally onsite to observe the ISCO reagent injection and borehole grouting activities.

5.1.3 Health and Safety

The existing site-specific HASP was amended to provide guidelines for worker and public safety during the planned ISCO treatment implementation. A copy of the HASP is included in Appendix B.

5.2 ISCO ACTIVITIES

This section describes the ISCO activities that were conducted at the site. These activities include injection point installation, preparation and injection of ISCO reagent, injection point abandonment, soil and groundwater monitoring, equipment decontamination, and waste characterization, handling and disposal.

5.2.1 Injection Point Installation

The ISCO reagents were injected at 30 injection locations (2I-01 through 2I-30) between May 27 and June 4, 2009. Plate 4 presents the ISCO injection points locations. ISOTEC utilized direct-push technology (DPT) to introduce reagents into the subsurface at the site. The drilling was performed by Resonant Sonic Inc. (RSI) in accordance with State and County requirements. Kleinfelder oversaw and documented drilling and injection activities, monitored field activities during the injection, and provided technical guidance to the contractor

In order to minimize the ISCO reagent surfacing during the injections, modifications were made to the spacing of the injection locations and reagent injection volumes of the second ISCO treatment, when compared to the ISCO pilot test. The spacing of the injection locations was reduced by half when compared to the ISCO pilot test spacing. Specifically, the temporary injection points were spaced approximately 12.5 feet apart and advanced to a depth of either approximately 17 to 20 feet bgs or 25 to 28 feet bgs. The depth adjustment was to make up for an approximate 3 foot raise in grade surface resulting from either the foundation of the building, the loading dock located adjacent to the building, or a slope leading to an elevated portion of the west side of the treatment area. ISOTEC injected reagents at each point through injection screens positioned from approximately 9 to 17 feet bgs or 12 to 20 feet bgs for the upper screen, and 17 to 25 feet bgs or 20 to 28 feet bgs for the lower screen. This method of selective vertical injection was designed to deliver reagent across the entire vertical extent of the target

saturated treatment interval. A direct-push injection schematic is included in Appendix D.

5.2.2 ISCO Treatment Reagent Preparation and Injection

In situ chemical injection technology was applied at the site using a proprietary modified Fenton's reagent, supplied by ISOTEC. The modified Fenton's technology involves a catalyzed chemical oxidation reaction with hydrogen peroxide (H_2O_2) as the oxidant. The methodology is described in the *Pilot Test Work Plan* (Kleinfelder, 2008c). The use of a modified Fenton's reagent was selected because of its general effectiveness in the remediation of petroleum hydrocarbon contamination and the relatively low changes in groundwater temperature and pH as compared to a standard Fenton's reagent.

ISOTEC technicians prepared stabilized 12% hydrogen peroxide (H_2O_2) from 25% hydrogen peroxide. The 25% hydrogen peroxide was delivered to the site and stored onsite in Department of Transportation (DOT) approved 55-gallon drums. To mix hydrogen peroxide, a 300-gallon polyethylene tank was filled with onsite water and dry stabilizer to a predetermined volume. The 25% hydrogen peroxide was then transferred with a drum pump into the 300-gallon polyethylene tank to the desired concentration. The technicians wore proper personal protective equipment and used appropriate safety procedures during the transfer. Iron (Fe) catalyst was also mixed in 300-gallon polyethylene tanks using onsite water, dry ISOTEC chemicals, and an electric mixing motor with attached mixing blade.

The injections were accomplished using air-operated diaphragm pumps, flow meters, polyvinyl chloride (PVC) flexible tubing and steel wellhead assemblies. The wellheads, with pressure gauges and relief valves, were attached to the direct-push injection rods. The wellhead assemblies were attached with PVC tubing to an air-operated diaphragm pump and from the pump to either the peroxide, catalyst or water tanks with PVC tubing. The peroxide, catalyst and water were injected through the PVC tubing using the pump. An injection method schematic is included in Appendix D.

In general, the injection process was similar for each injection screen. First, water was injected, followed by chelated Fe catalyst, a water flush, 12% stabilized hydrogen peroxide, and a final water flush. Kleinfelder's *In Situ Chemical Oxidation Pilot Test*

Report dated March 18, 2009 proposed injection of 35 to 75 gallons of reagent (Fe catalyst and hydrogen peroxide) at each screening depth for each injection location (Kleinfelder 2009b). Actual reagent volume at each screening depth for each injection location varied between 0 and 160 gallons, as it was depending on site conditions, including soil saturation and observed surfacing of the treatment reagent. Volumes of reagent injected for each location and screening interval are presented in Table 1.

Thirty locations (2I-01 through 2I-30) were used across the ISCO treatment area during the second ISCO treatment event. At each location, ISOTEC attempted to inject into two separate screens targeting the intervals from approximately 9 to 17 feet bgs or 12 to 20 feet bgs for the upper screen and 17 to 25 feet bgs or 20 to 28 feet bgs for the lower screen. At 11 locations (2I-15, 2I-16, 2I-21 and 2I-23 through 2I-30) the upper and lower screens were installed at 12-20 feet bgs and 20-28 feet bgs, respectively. This adjustment was to make up for an approximate 3 foot raise in grade surface resulting from either the foundation of the building, the loading dock located adjacent to the building, or a slope leading to an elevated portion of the west side of the treatment area.

A total of 60 injection screens (30 upper screens and 30 lower screens) were used to deliver reagent into the subsurface across the treatment area. Total volumes of reagent injected are as follows:

Upper screen (30 injection screens)

 12 % H₂O₂ reagent 	– 641 gallons
Fe catalyst	– 912 gallons
 Total ISCO reagent 	– 1,553 gallons

Lower screen (30 injection screens)

•	12% H ₂ O ₂ reagent	– 1,078 gallons
•	Fe catalyst	– 1,299 gallons
•	Total ISCO reagent	– 2,377 gallons

A total of 3,930 of ISCO reagent (1,719 gallons of 12 % H_2O_2 reagent and 2,211 gallons of Fe catalyst) was injected through 60 injection screens or 30 injection locations during the second ISCO treatment event.

To date, a total of 8,376 gallons of ISCO reagent was injected through 86 injection screens or 43 injection locations over the course of two injection events, the pilot test (first ISCO treatment) and the second ISCO treatment events.

5.2.3 Injection Point Abandonment

The temporary injection locations were abandoned by the DPT subcontractor, RSI, by plugging the holes to water level with 3/8 inch bentonite chips and then pressure grouting the remaining of the hole to surface with Portland grout in a pressurized vessel. Specifically, bentonite chips were slowly poured into the temporary injection hole until the chips were above the water level which was roughly 5 feet or less. Portland cement was then mixed in a bucket with a drill and poured into a vessel. The vessel then was attached to the rod by a steel well head with reinforced PVC tubing. The Portland cement was poured into the bottom of the hole through the rod while the direct-push rod was slowly being retracted to surface. Finally, asphalt patch or cement was then added to patch the remaining hole to match the surrounding area. A total of 60 temporary injection locations were abandoned during the second ISCO treatment event at the site between May 27 and June 4, 2009.

5.2.4 Soil and Groundwater Monitoring

Soil sampling was performed at the site before and one month after the second ISCO treatment event. Groundwater sampling was performed at the site monitoring wells MW-1 through MW-3 before and MW-1 through MW-5 one month after the second ISCO treatment event. The groundwater sampling event one month after the second ISCO treatment event was performed in conjunction with the second quarter 2009 monitoring event. Physical and chemical parameters monitoring in groundwater was conducted at the site monitoring wells MW-1, MW-2 and MW-3 before, during (at beginning and at end of each injection event day), and one month post second ISCO treatment event.

5.2.4.1 Soil Sampling Activities

Soil sampling activities were performed before and one month after the second ISCO treatment event on May 26, 2009 and June 29, 2009, respectively. Plates 3 and 4 present the soil boring sampling locations. Table 2 presents the sampling schedule and

analyses. The field notes related to the soil sampling activities are included in Appendix C.

The drilling was performed by Fisch Drilling in accordance with State and County requirements at six boring locations using a truck-mounted direct-push (Geoprobe 6600) drill rig. Soil borings were advanced to depths of 24 feet bgs. The direct push rig advanced four-foot long steel tubes using a hydraulic cylinder (and a vibratory hammer when necessary). The steel tubes have an inside diameter of approximately two inches and interchangeable acrylic liners, to allow for a continuous sample through the entire depth of the borehole.

During each sampling event, soil samples were collected from three soil boring locations (2PS-1/2PS-1A, 2PS-2/2PS-2A and 2PS-3/2PS-3A). Specifically, on May 26, 2009, two soil samples were collected from boring location 2PS-1 (one at 10 feet bgs and one at 20 feet bgs), four soil samples were collected from boring location 2PS-2 (7, 11, 15 and 20 feet bgs), and two soil samples were collected from boring location 2PS-3 (one at 10 feet bgs and one at 21 feet bgs). On June 29, 2009, two soil samples were collected from boring location 2PS-3 (one at 10 feet bgs and one at 21 feet bgs). On June 29, 2009, two soil samples were collected from boring location 2PS-3 (one at 10 feet bgs and one at 21 feet bgs). And two soil samples were collected from boring location 2PS-1A (one at 10 feet bgs and one at 20 feet bgs), four soil samples were collected at separate depths from boring location 2PS-2A (7, 11, 15, and 20 feet bgs), and two soil samples were collected at separate depths from boring location 2PS-3A (10 and 21bgs). Boring locations to be compared (2PS-1 vs. 2PS-1A, 2PS-2 vs. 2PS-2A, and 2PS-3 vs. 2PS-3A) were located within one foot of each other.

A Kleinfelder representative observed the sampling activities, and prepared a log of the soils encountered in each boring. The soil borings were logged in the field using the Unified Soil Classification System. The soil boring logs are included in Appendix C. Soil samples were retained in acrylic liners and inspected for indications of staining and/or odors. The soil samples were screened in the field using a photoionization detector (PID) to measure volatile organic compounds. In the event that signs of impacted soils were observed (i.e., visual staining, odor, elevated PID readings, etc.), samples from the impacted soil interval were collected. A total of 16 soil samples were collected for chemical analyses at approximately 7 through 21 feet bgs during the two soil sampling events. The soil samples were analyzed following analytical methods:

- TPHd using U.S. Environmental Protection Agency (USEPA) Method 8015M following silica gel cleanup;
- TPHg using USEPA Method 8015M; and
- BTEX using USEPA Method 8021B.

The soil samples were labeled and transferred on ice to Torrent Laboratories, Inc., a state-certified analytical laboratory, under chain-of-custody protocol for analyses. Soil sampling equipment was decontaminated between sample intervals and locations, as described below. The soil sampling analyses and results are presented in Table 3. The laboratory analytical reports and chain-of-custody documents are included in Appendix E. The soil samples results are discussed in Section 6.

5.2.4.2 Groundwater Monitoring Activities

Groundwater samples were collected from monitoring wells MW-1 through MW-3 before and MW-1 through MW-5 one month after the second ISCO treatment event. The one month after groundwater sampling event was performed in conjunction with the second quarter 2009 monitoring event. Table 2 presents the sampling schedule and analyses. The field notes related to the groundwater monitoring activities are included in Appendix C.

Groundwater physical and chemical parameters monitoring was conducted at the site monitoring wells MW-1, MW-2 and MW-3 before, during (at beginning and at end of each injection event day), and one month post ISCO injection pilot test. Using downhole field equipment, the well groundwater from monitoring wells MW-1, MW-2 and MW-3 was monitored in the field for the following parameters:

- pH;
- Dissolved oxygen (DO);
- Oxidation-reduction potential (ORP);
- Temperature;
- Conductivity; and
- Turbidity.

The groundwater field parameters are included in Appendix C. The groundwater samples results are discussed in Section 6.

Groundwater monitoring wells were sampled in accordance with quarterly sampling protocols using a clean disposable bailer or dedicated polyethylene tubing; a groundwater sample was retrieved from each monitoring well, and decanted into clean laboratory-supplied containers. The monitoring well groundwater samples were analyzed using the following analytical methods:

- TPHd using USEPA Method 8015B following silica gel cleanup;
- TPHg using USEPA Method 8260B;
- BTEX using USEPA Method 8260B; and
- Volatile organic compounds (VOCs) using USEPA Method 8260B (May 2009 samples only).

The groundwater samples were labeled and transferred on ice to Torrent Laboratories, Inc., a state-certified analytical laboratory, under chain-of-custody protocol for analysis. The groundwater sampling analyses and results are presented in Table 4. The laboratory analytical reports and chain-of-custody documents are included in Appendix E. The groundwater samples results are discussed in Section 6.

5.2.6 Equipment Decontamination

Drilling and sampling equipment was properly decontaminated prior to use and between each location. The down-hole drilling equipment was decontaminated by steam cleaning at a designated wash pad or within a portable containment unit. Sampling equipment was decontaminated by washing the equipment with a soap and water solution, and two rinses, tap water followed by deionized water. Disposable equipment was discarded after each use.

5.2.7 Waste Characterization, Handling, and Disposal

Investigative derived waste (IDW) that was generated during the ISCO treatment and monitoring events included soil cuttings, equipment decontamination fluids, and used personal protective equipment. Soil cutting and decontamination rinse water were collected and stored on site in Department of Transportation (DOT) approved 55-gallon steel drums with covers, which were labeled to identify the IDW source location, date collected, and generator's name. All used personal protective equipment (PPE) was placed in the soil cuttings drums. The containers storing the generated wastes were temporarily stored at a centralized location pending waste characterization for offsite disposal. An adhesive label was affixed to each container noting the following: container number, waste type, location that the IDW was generated, and date of waste generation. Seventeen drums of IDW were generated during the ISCO treatment and monitoring events. Following receipt of analytical data from the laboratory, the waste will be profiled, disposal options identified, and the waste transported and disposed of at a permitted facility under the required disposal manifest.

6.0 SECOND ISCO TREATMENT RESULTS AND DISCUSSIONS

6.1 SUMMARY OF SOIL AND GROUNDWATER MONITORING RESULTS

6.1.1 Soil Analytical Results

A summary of the soil sampling analyses and results are presented in Table 3. The laboratory analytical reports and chain-of-custody documents are included in Appendix E. Boring locations to be compared (2PS-1 vs. 2PS-1A, 2PS-2 vs. 2PS-2A, and 2PS-3 vs. 2PS-3A), pre and post second ISCO treatment, were located within one foot of each other. The following is a summary of the soil results at the site.

TPHg, TPHd and BTEX were below the laboratory reporting limits in the shallow and deep soil samples 2PS-1-10 and 2PS-1-20 (pre second ISCO treatment), and 2PS-1A-10 and 2PS-1A-20 (post second ISCO treatment).

TPHg, TPHd and BTEX were below the laboratory reporting limits or, if detected, below their respective ESLs in the shallow and deep soil samples 2PS-3-10 and 2PS-3-21 (pre second ISCO treatment), and 2PS-3A-10 and 2PS-3A-21 (post second ISCO treatment).

TPHg was detected at a concentration of 1,200 milligrams per kilogram (mg/kg) in the shallow soil sample of 2PS-2-7 (pre second ISCO treatment) and at a concentration of 190 mg/kg in the shallow soil sample of 2PS-2A-7 (post second ISCO treatment). This represents a TPHg reduction by 84% when comparing the post ISCO to pre ISCO results. The post ISCO TPHg result was above the TPHg ESL of 180 mg/kg for shallow, less than 3 meters bgs soils, for commercial/industrial land use.

TPHg was detected at a concentration of 53 mg/kg in the deep soil sample of 2PS-2-11 (pre second ISCO treatment) and at a concentration of 750 mg/kg in the deep soil sample of 2PS-2A-11 (post second ISCO treatment). This increase could be associated with an isolated pocket of TPHg contamination located at the post second ISCO treatment soil boring location. The post ISCO TPHg result was above the TPHg ESL of 180 mg/kg for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

TPHg was detected at a concentration of 1,700 mg/kg in the deep soil sample of 2PS-2-15 (pre second ISCO treatment) and at a concentration of 180 mg/kg in the deep soil sample of 2PS-2A-15 (post second ISCO treatment). This represents a TPHg decrease by 89% when comparing the post ISCO to pre ISCO results. The post ISCO TPHg result was at the TPHg ESL of 180 mg/kg for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

TPHg was detected at a concentration of 3,000 mg/kg in the deep soil sample of 2PS-2-20 (pre second ISCO treatment) and at a concentration of 250 mg/kg in the deep soil sample of 2PS-2A-20 (post second ISCO treatment). This represents a TPHg decrease by 92% when comparing the post ISCO to pre ISCO results. The post ISCO TPHg result was above the TPHg ESL of 180 mg/kg for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

Detected concentrations of TPHd were below their respective ESLs of 180 mg/kg in the shallow and deep soil samples 2PS-2-7 and 2PS-2-11 (pre second ISCO treatment) and 2PS-2A-7 and 2PS-2A-11 (post second ISCO treatment).

TPHd was detected at a concentration of 51.7 mg/kg in the deep soil sample of 2PS-2-15 (pre second ISCO treatment) and at a concentration of 264 mg/kg in the deep soil sample of 2PS-2A-15 (post second ISCO treatment). This increase could be associated with an isolated pocket of TPHd contamination located at the post second ISCO treatment soil boring location. The post ISCO TPHd result was above the TPHd ESL of 180 mg/kg for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

TPHd was detected at a concentration of 206 mg/kg in the deep soil sample of 2PS-2-20 (pre second ISCO treatment) and at a concentration of 11.7 mg/kg in the deep soil sample of 2PS-2A-20 (post second ISCO treatment). This represents a TPHd decrease by 94% when comparing the post ISCO to pre ISCO results. The post ISCO TPHg result was below the TPHd ESL of 180 mg/kg for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

Benzene was detected at a concentration of 3.1 mg/kg in the shallow soil sample of 2PS-2-7 (pre second ISCO treatment) and at a concentration of 3 mg/kg in the shallow

soil sample of 2PS-2A-7 (post second ISCO treatment). The post ISCO benzene result was above the benzene ESL of 0.27 mg/kg for shallow, less than 3 meters bgs soils, for commercial/industrial land use.

Benzene concentrations of 0.88, 3.6, and 12 mg/kg were detected in the deep soil samples of 2PS-2-11, 2PS-2-15, and 2PS-2-20 (pre second ISCO treatment), respectively, and were below the laboratory reporting limits in the deep soil sample of 2PS-2A-11, 2PS-2A-15, and 2PS-2A-20 (post second ISCO treatment).

Concentrations of ethylbenzene, toluene, and total xylenes decreased in the shallow sample of 2PS-2A-7 (post second ISCO treatment) when compared to 2PS-2-7 (pre second ISCO treatment) by greater than 88%, 57% and 75%, respectively.

Concentrations of ethylbenzene and toluene in either 2PS-2-11 (pre second ISCO treatment) or 2PS-2A-11 (post second ISCO treatment) soil samples were below the laboratory reporting limits or, if detected, below their respective ESLs, for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

Total xylenes was detected at a concentration of 0.31 mg/kg in the deep soil sample of 2PS-2-11 (pre second ISCO treatment) and at a concentration of 12 mg/kg in the deep soil sample of 2PS-2A-11 (post second ISCO treatment). This increase could be associated with an isolated pocket of total xylenes contamination located at the post second ISCO treatment soil boring location. The post ISCO total xylenes result of 12 was above the total xylenes ESL of 11 mg/kg for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

Concentrations of ethylbenzene, and total xylenes decreased in the deep sample of 2PS-2A-15 (post second ISCO treatment) when compared to 2PS-2-15 (pre second ISCO treatment). Toluene was not reported in either 2PS-2-15 or 2PS-2A-15 soil samples. The post ISCO treatment BTEX results were below the laboratory reporting limits or, if detected, below their respective ESLs for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

Concentrations of benzene, ethylbenzene, and toluene decreased in the deep sample of 2PS-2A-20 (post second ISCO treatment) when compared to 2PS-2-20 (pre second

ISCO treatment) to below their respective ESLs for deep, greater than 3 meters bgs soils, for commercial/industrial land use. The post ISCO treatment total xylenes result of 44 mg/kg was above the total xylenes ESL of 11 mg/kg for deep, greater than 3 meters bgs soils, for commercial/industrial land use.

6.1.2 Groundwater Field Monitoring Results

The groundwater field parameters and field notes related to the groundwater monitoring activities are included in Appendix C.

Review of the second ISCO treatment event field monitoring data indicated that the temperature increased when comparing most of the end of the day with the beginning of the day readings; however, temperature did not rise significantly and no large changes occurred overall during the second ISCO treatment event. Temperature ranged between 17.43 and 18.79 degrees Celsius in monitoring well MW-1, between 16.87 and 18.11 degrees Celsius in monitoring well MW-2, and between 21.25 and 23.84 degrees Celsius in monitoring well MW-3.

Review of the second ISCO treatment event field monitoring data indicated that relatively no changes occurred in groundwater pH. pH ranged between 6.30 and 6.98 in monitoring wells MW-1, MW-2, and MW-3, with the of one pH reading of 3.02 on one occasion the end of the day in MW-3. It is suspected that the anomalous pH reading was an error. The pH for the desired reaction is near neutral; however, reactions will continue to take place between pH 3 and pH 12.

The dissolved oxygen (DO) concentration in groundwater generally increased during and post ISCO injection when compared with the pre ISCO treatment concentration. The DO concentration usually reflects the site's organic contaminant load (the lower the DO, the greater the contaminant concentrations). One month post ISCO injections, the DO concentrations remained elevated in monitoring wells MW-1, MW-2, and MW-3. DO concentrations ranged between 5.69 and 19.99 mg/L in monitoring wells MW-1, MW-2, and MW-3.

Review of the second ISCO treatment event field monitoring data indicated that on most occasions ORP values decreased during and post ISCO injection. The ORP in

monitoring well MW-2 was negative at the beginning of the second ISCO treatment event, and ORP decreased in this well during the first two days of the event. The decrease in ORP can be attributed to the increased oxidant demand as reduced metals, minerals, natural organic material, and general chemical oxygen demand interact and utilize the injected oxidants. As the natural soil and groundwater oxidant demand is overcome with increased oxidant loading, the ORP increased and became positive. ORP ranged between -138 to 172 millivolts (mV) in monitoring wells MW-1, MW-2, and MW-3 pre second ISCO treatment event and between 64 to 233 mV in monitoring wells MW-1, MW-2, and MW-3 post second ISCO treatment event.

The conductivity of groundwater increased following injections. This increase reflects the oxidant dispersion during the injections. One month post ISCO injections, the conductivity values returned to near pre-injection levels, although still elevated, in MW-1, MW-2, and MW-3. Conductivity ranged from 3.70 to 33.3 millisiemens per centimeter (mS/cm) in monitoring wells MW-1, MW-2, and MW-3, with the of one reading of 0.0 on one occasion the end of the day in MW-3. It is suspected that the anomalous conductivity reading was an error.

Generally turbidity increased during and post ISCO injections. Turbidity ranged from 19.3 to 999 nephelometric turbidity unit (NTU) in monitoring wells MW-1, MW-2, and MW-3.

6.1.3 Groundwater Analytical Results

A summary of the current and historical groundwater sampling from monitoring wells at the site, including the chemicals of concern (COCs) (i.e., benzene and total petroleum hydrocarbons) and TDS in groundwater at the site, is presented in Tables 4. The field notes related to the groundwater monitoring activities are included in Appendix C. The laboratory analytical reports and chain-of-custody documents are included in Appendix E.

6.1.3.1 Chemicals of Concern in Groundwater

The following section presents a summary of the groundwater COC results, including percentage reduction, in monitoring wells MW-1, MW-2, and MW-3 at the site. Table 4 presets the COCs in groundwater at the site.

MW-1

TPHg in groundwater monitoring well MW-1 was detected at a concentration of 2,900 μ g/L during the December 2008 sampling event (baseline), at a concentration of 3,300 μ g/L during the January 2009 sampling event, at a concentration of 7,770 μ g/L during the March 2009 sampling event, at a concentration of 2,900 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 870 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 70% when comparing the post second ISCO treatment event to the baseline results. The TPHg concentrations initially increased (January and March 2009) due to desorption, then finally decreased due to destruction. Currently, the post second ISCO treatment event TPHg concentration is above its ESL of 210 μ g/L.

Benzene in groundwater monitoring well MW-1 was detected at a concentration of 295 μ g/L during the December 2008 sampling event (baseline), at a concentration of 380 μ g/L during the January 2009 sampling event, at a concentration of 488 μ g/L during the March 2009 sampling event, at a concentration of 340 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 99 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 64% when comparing the post second ISCO treatment event to the baseline results. The benzene concentrations initially increased (January and March 2009) due to desorption, then finally decreased due to destruction. Currently, the post second ISCO treatment event benzene concentration is above its ESL of 46 μ g/L.

Ethylbenzene in groundwater monitoring well MW-1 was detected at a concentration of 137 μ g/L during the December 2008 sampling event (baseline), at a concentration of 91 μ g/L during the January 2009 sampling event, at a concentration of 235 μ g/L during the March 2009 sampling event, at a concentration of 79 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 33 μ g/L

during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 76% when comparing the post second ISCO treatment event to the baseline results. The ethylbenzene concentrations initially increased (March 2009) due to desorption, then finally decreased due to destruction. Currently, the post second ISCO treatment event ethylbenzene concentration is below its ESL of $43 \mu g/L$.

Toluene in groundwater monitoring well MW-1 was detected at a concentration of 27.1 μ g/L during the December 2008 sampling event (baseline), at a concentration of 84 μ g/L during the January 2009 sampling event, at a concentration of 144 μ g/L during the March 2009 sampling event, at a concentration of 50 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 15 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 45% when comparing the post second ISCO treatment event to the baseline results. The toluene concentrations initially increased (March 2009) due to desorption, then finally decreased due to destruction. Currently, the post second ISCO treatment event toluene concentration is below its ESL of 130 μ g/L.

Total xylenes in groundwater monitoring well MW-1 was detected at a concentration of 218 μ g/L during the December 2008 sampling event (baseline), at a concentration of 174 μ g/L during the January 2009 sampling event, at a concentration of 455 μ g/L during the March 2009 sampling event, at a concentration of 62 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 34 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 84% when comparing the post second ISCO treatment event to the baseline results. The total xylenes concentrations initially increased (March 2009) due to desorption, then finally decreased due to destruction. Currently, the post second ISCO treatment event total xylenes concentration is below its ESL of 100 μ g/L.

TPHd in groundwater monitoring well MW-1 was detected at a concentration of 484 μ g/L during the December 2008 sampling event (baseline), at a concentration of 264 μ g/L during the January 2009 sampling event, at a concentration of 504 μ g/L during the March 2009 sampling event, and at a concentration of 152 μ g/L during the May 2009 sampling event (pre second ISCO treatment event). TPHd was below the laboratory reporting limits during the June 2009 sampling event (one month post second ISCO

treatment event). This represents a decrease of greater than 79% when comparing the post second ISCO treatment event to the baseline results. TPHd concentrations initially increased (March 2009) due to desorption, then finally decreased due to destruction. Currently, the post second ISCO treatment event TPHd concentration is below its ESL of 210 μ g/L.

Other VOCs analyzed for during the May and June 2009 sampling events in groundwater monitoring well MW-1 were below the laboratory reporting limits or, if detected, below their respective ESLs, if established.

MW-2

TPHg in groundwater monitoring well MW-2 was detected at a concentration of 53,000 μ g/L during the December 2008 sampling event (baseline), at a concentration of 35,000 μ g/L during the January 2009 sampling event, at a concentration of 40,000 μ g/L during the March 2009 sampling event, at a concentration of 31,000 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 20,000 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents a decrease of 62% when comparing the post second ISCO treatment event to the baseline results. The TPHg concentrations initially decreased (January 2009), then increased (March 2009) due to desorption, then finally decreased due to destruction. Currently, the post second ISCO treatment event TPHg concentration is above its ESL of 210 μ g/L.

Benzene in groundwater monitoring well MW-2 was detected at a concentration of 20,500 μ g/L during the December 2008 sampling event (baseline), at a concentration of 15,300 μ g/L during the January 2009 sampling event, at a concentration of 10,300 μ g/L during the March 2009 sampling event, at a concentration of 10,000 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 7,300 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 64% when comparing the post second ISCO treatment event to the baseline results. The benzene concentrations continued to decrease since December 2008 sampling event (baseline). Currently, the post second ISCO treatment event benzene concentration is above its ESL of 46 μ g/L.

Ethylbenzene in groundwater monitoring well MW-2 was detected at a concentration of 1,240 μ g/L during the December 2008 sampling event (baseline), at a concentration of 1,030 μ g/L during the January 2009 sampling event, at a concentration of 1,050 μ g/L during the March 2009 sampling event, at a concentration of 1,100 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 400 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 68% when comparing the post second ISCO treatment event to the baseline results. The ethylbenzene concentrations continued to decrease since December 2008 sampling event (baseline). Currently, the post second ISCO treatment event ethylbenzene concentration is above its ESL of 43 μ g/L.

Toluene in groundwater monitoring well MW-2 was below the laboratory reporting limit during December 2008 sampling event (baseline) and during the June 2009 sampling event (one month post second ISCO treatment event), and at a concentration of 92 μ g/L during the May 2009 sampling event (pre second ISCO treatment event). When detected, the toluene concentration in MW-2 was below its ESL of 130 μ g/L.

Total xylenes in groundwater monitoring well MW-2 was detected at a concentration of 1,180 μ g/L during the December 2008 sampling event (baseline), at a concentration of 1,050 μ g/L during the January 2009 sampling event, at a concentration of 980 μ g/L during the March 2009 sampling event, at a concentration of 730 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 330 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents an decrease of 72% when comparing the post second ISCO treatment to the baseline results. The total xylenes concentrations continued to decrease since December 2008 sampling event (baseline). Currently, the post second ISCO treatment event total xylenes concentration is above its ESL of 100 μ g/L.

TPHd in groundwater monitoring well MW-2 was detected at a concentration of 965 μ g/L during the December 2008 sampling event (baseline), at a concentration of 2,500 μ g/L during the January 2009 sampling event, at a concentration of 862 μ g/L during the March 2009 sampling event, at a concentration of 2,670 μ g/L during the May 2009 sampling event (pre second ISCO treatment event), and at a concentration of 675 μ g/L during the June 2009 sampling event (one month post second ISCO treatment event). This represents a decrease of 30% when comparing the post second ISCO treatment

event to the baseline results. TPHd concentrations fluctuated (January, March and May 2009) due to desorption, then finally decreased due to destruction. The current concentration is about 82% lower than the peak concentration of TPHd (3,770 μ g/L) in December 2007. Currently, the post second ISCO treatment event TPHd concentration is above its ESL of 210 μ g/L.

Other VOCs analyzed for during the May and June 2009 sampling events in groundwater monitoring well MW-2 were below the laboratory reporting limits or, if detected, below their respective ESLs, if established.

MW-3

TPHd, TPHg, BTEX and other VOCs analyzed for were below the laboratory reporting limits in groundwater monitoring well MW-3 during December 2008 sampling event (baseline), during the May 2009 sampling event (pre second ISCO treatment event), and during the June 2009 sampling event (one month post second ISCO treatment event).

6.2 DISCUSSION OF OTHER ISCO DESIGN PARAMETERS

A total of 60 injection screens (30 upper screens and 30 lower screens) were used to deliver reagent into the subsurface across the treatment area. A total of 34 injection screens (15 upper and 19 lower) received the target reagent quantities; 75 gallons of reagent (oxidizer and catalyst) at each screening depth for each injection location. The remaining 26 injection screens did not receive the target reagent volumes due to surfacing during injection activities at 24 screens or proximity to prior surfacing. Of the 24 screens that surfaced, 12 surfaced at one distinct point near injection location 2I-08. The screens that experienced surfacing received between 0 and 75 gallons of reagent. Pressures at the wellheads of the 60 injection screens ranged from 0 to 75 psi and the injection rates ranged from 2.4 to 3.1 gpm during injection activities. A total of 3,930 gallons of ISCO reagent (1,719 gallons of 12 % H_2O_2 reagent and 2,211 gallons of Fe catalyst) was injected through 60 injection screens during the second injection event.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

The objective of the ISCO remediation program using ISOTEC's modified Fenton's based oxidation process was to reduce the soil and groundwater concentrations to below specific project goals.

The effectiveness of the ISCO can be evaluated by:

- Reduction in contaminant concentrations (benzene and TPHg, the cleanup drivers) in treatment area saturated soils and/or
- Changes in dissolved phase contaminant concentrations within treatment area monitoring wells.

As explained in the Mass Phase Changes section (Section 4.2), the ISCO process liberates contaminant mass within the adsorbed phase (saturated soil) and transfers this mass to the dissolved phase for oxidation. This phenomenon is clearly illustrated by comparing the baseline and post second ISCO treatment saturated soil and groundwater results.

Benzene and TPHg concentrations were reduced in saturated soil. Based on the adsorbed phase concentration reductions, the selected ISCO treatment process was effective at removing through desorption contaminant mass from the soil. The soil samples collected and analyzed currently meet the project goals, except at one soil sampling location (2PS-2/2PS-2A) where concentrations detected post second ISCO treatment still exceed the ESL values for the COCs due to possible isolated pockets of residual COCs.

Reductions in the dissolved phase concentrations are dependent on the amount of mass in the adsorbed phase. As evident by the large reduction in saturated soil contamination concentrations, a significant adsorbed mass was transferred into the dissolved phase during the ISCO treatment. As a result, a small portion of that mass

may remain untreated in the dissolved phase following the second ISCO treatment event.

Dissolved phase concentrations were observed to both increase and decrease in monitoring well MW-1 and MW-2. Dissolved concentration fluctuations are a good indication that the selected ISCO treatment process is working. Review of the dissolved phase concentrations further indicates that the selected ISCO treatment process has been successful in reducing dissolved contaminant concentrations in the treatment area monitoring wells. Overall, the dissolved phase concentration of benzene was reduced by approximately 64% as shown by groundwater monitoring results in wells MW-1 and MW-2. The dissolved phase concentration of TPHg was reduced by approximately 62% to 70% as shown by groundwater monitoring results in wells MW-2.

Consistent and permanent reductions in dissolved concentrations will only occur following complete adsorbed contaminant mass removal and a period of equilibration. Equilibration allows dissolved concentrations to reduce naturally over time due to readsorption, dispersion, dilution, and degradation until final dissolved concentration is reached.

This phenomenon appears to be supported when comparing the pre-first ISCO treatment (baseline) TPHg dissolved concentrations to the post ISCO treatments concentrations at MW-2 (Table 4). Specifically, the dissolved TPHg concentration at MW-2 was reduced from a baseline concentration of 53,000 μ g/L to 35,000 μ g/L following the first injection event. After two months with no injection activities, the dissolved TPHg concentration at MW-2 increased to 40,000 μ g/L. However, after allowing the groundwater to continue to equilibrate for an additional two months without any injection activities, the dissolved TPHg concentration further decreased to 20,000 μ g/L after the second ISCO treatment event. The TPHg concentration is further expected to decrease.

The selected ISCO treatment process was very effective at reducing contaminant mass after two applications. This suggests that the quantity of reagent injected and the reagent concentrations were sufficient to achieve significant mass reduction; and that the reagent distribution radius generated by the injection flow rates and pressures were sufficient to distribute reagent across the treatment area.

7.2 RECOMMENDATIONS

As indicated in the report titled "Recommendations to Improve the Cleanup Process for California's Leaking Underground Fuel Tanks (LUFTs)" issued by the Lawrence Livermore National Laboratory (LLNL) in October 1995 (LLNL 1995), bioremediation of petroleum is an important factor in stabilizing plumes and may be the only remedial activity necessary in the absence of free product. The LLNL report also found that petroleum plumes tend to stabilize close to the source, generally occur in shallow groundwater and rarely impact drinking water wells in the state. Based on LLNL report, the RWQCB's issued in 1996 an Interim Guidance Document (RWQCB 1996) which provides supplemental instructions to the San Francisco Bay Area Agencies Overseeing UST Cleanup. The RWQCB's Interim Guidance Document summarizes strategies for closing low risk soil only cases, and closing and/or managing low risk groundwater impact cases utilizing natural/passive bioremediation as the preferred remedial alternative. Base on the RWQCB's Interim Guidance Document, San Francisco Bay Area Agencies overseeing UST cleanup could close low risk groundwater impact cases if:

- 1. The leak has been stopped and ongoing sources have been removed or remediated;
- 2. The site has been adequately characterized;
- 3. Groundwater sampling has been performed for a minimum of four consecutive quarters to monitor the variation and seasonal trend of groundwater quality and demonstrate the stability of a relatively low concentration plume. The dissolved plume is not migrating;
- 4. No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted;
- 5. The site presents no significant risk to human health;
- 6. The site presents no significant risk to the environment.

Therefore, Kleinfelder recommends that the site is deemed appropriate for regulatory closure or No Further Action (NFA) as a low risk groundwater case based on the following facts:

- The primary sources (USTs) for the groundwater impacts were removed from the site in 2005 (Kleinfelder 2005).
- Some secondary sources (impacted soil) were removed during the UST removal. Furthermore, given the effectiveness of ISCO treatment at the site as demonstrated during the two ISCO treatment events, the COC mass removal has achieved, nearly achieved or will continue to achieve objectives.
- As discussed in previous environmental reports for the site by Kleinfelder, the pre ISCO treatment horizontal extent of the hydrocarbon plume was limited to a distance about 100 feet or less from the former UST and the plume is stable with no evidence of offsite migration (Kleinfelder 2006a, 2007a, 2008b).
- Quarterly groundwater monitoring performed at the site for four consecutive quarters since March 2007 has demonstrated that the COCs have naturally attenuated and have reached, nearly reached or will continue to reach the site objectives (ESLs). Groundwater COC concentrations will continue to decrease over time as equilibration allows dissolved COC concentrations to reduce naturally due to readsorption, dispersion, dilution and degradation. In addition, the natural attenuation processes would be reinstated as equilibrium post ISCO treatments is attained and should be adequate to reduce any residual mass of petroleum hydrocarbons in the future.
- No sensitive receptors have been found in the immediate vicinity of the site nor have any been impacted (Kleinfelder 2007a).
- The groundwater has been found to be brackish and not suitable for drinking water by RWQCB policy (Kleinfelder 2008a).
- Drinking water at the site and neighboring property is obtained from the East Bay Municipal Utility District (EBMUD).
- No significant vapor intrusion has been detected nor is significant vapor intrusion likely to be occurring given the low permeability of the clays present in the subsurface (Kleinfelder 2007a).
- Potential receptors were not identified down gradient of the site.

For the reasons stated above, Kleinfelder recommends NFA at the site, as a low risk groundwater case, and requests regulatory case closure.

8.0 LIMITATIONS

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in Alameda County, under similar conditions and at the date the services are provided. Our conclusions, opinions and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. It should be recognized that remediation is a trial and enhancement process where future activities are directed based on performance monitoring of previous steps. Regulations and professional standards applicable to Kleinfelder's services are continually evolving. Techniques are, by necessity, often new and relatively untried. Different professionals may reasonably adopt different approaches to similar problems. As such, our services are intended to provide EOP with a source of professional advice, opinions and recommendations based on a limited number of field observations and tests, collected and performed in accordance with the generally accepted practice that exists at the time, and may depend on, and be qualified by, information gathered previously by others and provided to Kleinfelder by EOP. Kleinfelder makes no other representation, guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that EOP has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. EOP is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. EOP is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

This report may be used only by EOP and the registered design professional in responsible charge and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than two (2) years from the date of the report. Non-commercial, educational, and scientific use of this report by regulatory agencies is regarded as a "fair use" and not a violation of copyright. Regulatory agencies may make additional copies of this document for internal use. Copies may also be made available to the public as required by law. Any reprint must acknowledge the copyright and indicate that permission to reprint has been received. Non-compliance with any of these requirements by the client or anyone else, unless specifically agreed to in advance by Kleinfelder in writing, will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party, and client agrees to defend, indemnify, and hold harmless Kleinfelder from any claim or liability associated with such unauthorized use or non-compliance.

9.0 REFERENCES

- Alameda County Health Care Services Agency. 2008a. Letter to Mr. James Soutter, Fuel Leak Case No. RO0002900 and Geotracker Global ID T0600165110, SPK Industrial Property, 700 Independent Road, Oakland, California 94621. May 13.
- ——. 2008b. Letter to Mr. James Soutter, Fuel Leak Case No. RO0002900 and Geotracker Global ID T0600165110, SPK Industrial Property, 700 Independent Road, Oakland, California 94621. September 10.

ACHCSA. See Alameda County Health Care Services Agency

In-Situ Oxidative Technologies, Inc. 2009. In-Situ Chemical Oxidation Remediation Program Report. January.

ISOTEC See In-Situ Oxidative Technologies, Inc.

- Kleinfelder. 2005. *Underground Storage Tank Report*, 700 Independent Road, Oakland, California. November 1.
- ——. 2006a. Site Field Investigation Report, 700 Independent Road, Oakland, California. September 27.

——. 2006b. *Work Plan for Further Site Investigation*, 700 Independent Road, Oakland, California. December 12.

- ——. 2007a. *Further Site Investigation Report*, 700 Independent Road, Oakland, California. May 11.
- ——. 2007b. *Site Investigation Work Plan*, 700 Independent Road, Oakland, California. September 26.

 2008a. Fourth Quarter 2007 Groundwater Monitoring Report, 700 Independent Road, Oakland, California. January 29.

- ——. 2008b. Additional Site-Characterization Report, 700 Independent Road, Oakland, California. March 31.
- ——. 2008c. *Pilot Test Work Plan*, 700 Independent Road, Oakland, California. August 6.
- ——. 2009a. *First Quarter 2009 Groundwater Monitoring Report*, 700 Independent Road, Oakland, California. April 20.

——. 2009b. In Situ *Chemical Oxidation Pilot Test Report*, 700 Independent Road, Oakland, California. March 18.

- Lawrence Livermore National Laboratory. 1995. Recommendations To Improve the Cleanup Process for California's Leaking Underground Fuel Tanks. October 16.
- LLNL. See Lawrence Livermore National Laboratory.
- RWQCB. See San Francisco Bay Region Regional Water Quality Control Board
- San Francisco Bay Region Regional Water Quality Control Board. 1996. Interim Guidance Document, Subject: Regional Board Supplemental Instructions to State Water Board December 8, 1995. January 5.
- 2007 [2008]. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Tables B and D. Revised May 2008.
 (<u>http://www.swrcb.ca.gov/rwqcb2/RBSL/esl1107/esl.pdf</u>)

TABLES

Table 1 ISCO Reagent Injection Volumes 200 Independent Read, Oakland, Calif.

EOP - 700 Independent Road, Oakland, California

		Injection Int	•	Injection Volume (gal)						
Injection ID	Date	Upper Screen	Lower Screen		Upper Screen Lower Scr					
				12% H ₂ O ₂	Fe Catalyst	Total Reagent	12 % H ₂ O ₂	Fe Catalyst	Total Reagent	
			Pilot Test E	Event (First I	SCO Treatme	ent Event)				
11-01	12/11/2008	9-17	17-25	0	50	50	0	50	50	
11-02	12/10/2008	9-17	17-25	10	100	110	100	100	200	
11-03	12/12/2008	9-17	17-25	18	0	18	15	50	65	
11-04	12/9/2008	9-17	17-25	45	150	195	15	150	165	
11-05	12/11/2008	12-20	20-28	185	100	285	85	80	165	
11-06	12/10/2008	9-17	17-25	25	150	175	105	150	255	
11-07	12/12/2008	9-17	17-25	95	50	145	100	100	200	
11-08	12/9/2008	9-17	17-25	150	150	300	150	150	300	
11-09	12/11/2008	9-17	17-25	100	100	200	100	100	200	
11-10	12/10/2008	9-17	17-25	100	100	200	100	100	200	
11-11	12/9/2008	9-17	17-25	150	150	300	150	150	300	
11-12	12/11/2008	9-17	17-25	50	50	100	95	100	195	
11-13	12/12/2008	9-17	17-25	3	0	3	20	50	70	
Total				931	1,150	2,081	1,035	1,330	2,365	
Total Reagen	nt Volume Inje	ected - Pilot	lest Event (g	al)					4,446	
<u>u</u>				,					,	
				cond ISCO T	reatment Eve	nt				
2I-01	5/29/2009	9-17	17-25	8	35	43	40	40	80	
21-02	5/27/2009	9-17	17-25	35	35	70	40	40	80	
21-03	5/28/2009	9-17	17-25	0	3	3	40	40	80	
21-03	5/29/2009	9-17	17-25	0	10	10				
21-04	6/3/2009	9-17	17-25	10	35	45	40	40	80	
21-05	6/2/2009	9-17	17-25	0	15	15	20	40	60	

Table 1 ISCO Reagent Injection Volumes 28. 700 Independent Read, Oakland, Calif.

EOP - 700 Independent Road, Oakland, California

		Injection Int	erval (feet Is)	Injection Volume (gal)						
Injection ID	Date	Upper Screen	Lower Screen		Upper Screer	ower Screen				
				12% H ₂ O ₂	Fe Catalyst	Total Reagent	12 % H ₂ O ₂	Fe Catalyst	Total Reagent	
			Second IS	CO Treatmer	nt Event (cont	tinuation)				
21-06	5/27/2009	9-17	17-25	25	35	60	25	40	65	
21-07	5/29/2009	9-17	17-25	0	20	20	30	40	70	
21-08	6/4/2009	9-17	17-25	5	0	5	14	40	54	
21-09	5/27/2009	9-17	17-25	0	35	35	0	40	40	
21-09	5/28/2009	9-17	17-25	20	35	55	22	40	62	
2I-10	5/29/2009	12-20	20-28	35	35	70	40	40	80	
2I-11	6/2/2009	9-17	17-25	35	35	70	40	40	80	
2I-12	5/28/2009	9-17	17-25	35	35	70	40	40	80	
2I-13	6/2/2009	9-17	17-25	30	35	65	26	40	66	
2I-14	6/3/2009	9-17	17-25	0	0	0	80	80	160	
2I-15	6/2/2009	12-20	20-28	35	35	70	40	40	80	
2I-16	5/28/2009	12-20	20-28	35	35	70	40	40	80	
2I-17	5/29/2009	9-17	17-25	35	35	70	40	40	80	
2I-18	6/3/2009	9-17	17-25	0	35	35	26	40	66	
2I-19	6/4/2009	9-17	17-25	0	0	0	10	12	22	
21-20	5/27/2009	9-17	17-25	35	35	70	40	40	80	
2I-21	5/28/2009	12-20	20-28	35	35	70	40	40	80	
21-22	6/2/2009	12-20	20-28	35	35	70	15	40	55	
21-23	5/29/2009	12-20	20-28	35	35	70	5	40	45	
21-24	6/4/2009	12-20	20-28	35	35	70	50	80	130	
21-25	6/3/2009	12-20	20-28	35	35	70	40	40	80	
21-26	5/28/2009	12-20	20-28	0	35	35	35	40	75	
21-27	6/2/2009	12-20	20-28	35	35	70	40	40	80	
21-28	5/29/2009	12-20	20-28	35	35	70	40	40	80	
21-29	6/3/2009	12-20	20-28	0	24	24	40	40	80	

Table 1 ISCO Reagent Injection Volumes 200 Independent Read, Opkland, Oplif

EOP - 700 Independent Road, Oakland, California

		Injection Int bg	•			Injection V	olume (gal)			
Injection ID	Date	Upper Screen	Lower Screen	l	Upper Screen	l		Lower Screen		
				12% H ₂ O ₂	Fe Catalyst	Total Reagent	12 % H ₂ O ₂	Fe Catalyst	Total Reagent	
			Second IS	CO Treatmen	nt Event (cont	inuation)				
21-30	6/3/2009	12-20	20-28	18	35	53	40	40	80	
21-30	6/4/2009	12-20	20-28				40	7	47	
Total				641	912	1,553	1,078	1,299	2,377	
Total Reagen	nt Volume Inje	ected - Secor	nd ISCO Trea	tment Event	(gal)				3,930	
	Project Summary ⁽¹⁾									
Total				1,572	2,062	3,634	2,113	2,629	4,742	
Total Reager	Total Reagent Volume Injected at the Site (gal) 8,376									

Notes/Acronyms:

--- not injected

bgs below ground surface

gal gallons

H₂O₂ Hydrogen Peroxide

Fe Iron

¹ Includes the cummulative injection volumes for all ISCO injection events to date (pilot test event and second ISCO treatment event)

Table 2
Second ISCO Treatment Sampling Schedule and Analyses
EOP - 700 Independent Road, Oakland, California

Analyte	Method	Scheduled Sampling	2PS-1/2PS-1A (approximately 10 and 20 feet bgs)	2PS-2/2PS-2A (approximately 5, 10, 15, 20 feet bgs)	2PS-2/2PS-2A (approximately 10 and 20 feet bgs)	MW-1	MW-2	MW-3
pH, DO, ORP, temperature,	field	prior second ISCO treatment				1	1	1
conductivity, turbidity	measurement	Injection day 1 (start of day)				1	1	1
		Injection day 1 (end of day)				1	1	1
		Injection day 2 (start of day)				1	1	1
		Injection day 2 (end of day)				1	1	1
		Injection day 3 (start of day)				1	1	1
		Injection day 3 (end of day)				1	1	1
		Injection day 4 (start of day)				1	1	1
		Injection day 4 (end of day)				1	1	1
		Injection day 5 (start of day)				1	1	1
		Injection day 5 (end of day)				1	1	1
		Injection day 6 (start of day)				1	1	1
		Injection day 6 (end of day)				1	1	1
		one month post second ISCO treatment				1	1	1
TPHd	EPA 8015M	prior second ISCO treatment	2	4	2	1	1	1
		one month post second ISCO treatment	2	4	2	1	1	1
TPHg	EPA 8021B	prior second ISCO treatment	2	4	2	1	1	1
		one month post injection	2	4	2	1	1	1
BTEX	EPA 8015M	prior second ISCO treatment	2	4	2	1	1	1
		one month post second ISCO treatment	2	4	2	1	1	1

Notes:

PS - point of sampling

MW- monitoring well

DO - dissolved oxygen

ORP - oxidation-reduction potential

TDS - total dissolved solids

TOC - total organic carbon

BTEX - benzene, toluene, ethylbenzene, and xylenes

TPHd - total petroleum hydrocarbons as diesel

TPHg - total petroleum hydrocarbons as gasoline

bgs - below ground surface

Table 3 Total Petroleum Hydrocarbons and Volatile Organics in Soil EOP - 700 Independent Road, Oakland, California

				Pilot Test Event (First ISCO Treatment Event)								
Sample Location	ES	SL		PS-1/PS-1A PS-2/PS-2A								
Sample ID	Commercial/	Commercial/ Commercial/		PS-1A-10	PS-1-20	PS-1A-20	PS-2-16	PS-2A-10	PS-2-19	PS-2A-20		
	Industrial	Industrial	(Shallow Soil)*	(Shallow Soil)*	(Deep Soil)**	(Deep Soil)**	(Deep Soil)**	(Shallow Soil)*	(Deep Soil)**	(Deep Soil)**		
Date Sampled	(Shallow Soil)*	(Deep Soil)**	12/1/2008	1/12/2009	12/1/2008	1/12/2009	12/1/2008	1/12/2009	12/1/2008	1/12/2009		
TPHd	180	180	<2.00	<2.00	<2.00	<2.00	78.1 a	16.1 b	143 a	<2.00		
TPHg	180	180	330 a	<0.100	<0.100	0.120 a	1,500	260 bc	430	10 b		
Benzene	0.27	2	<1	<0.001	<0.001	<0.001	16	2.2	2.5	0.16		
Ethylbenzene	4.7	4.7	<1	<0.001	<0.001	<0.001	46	4.5	5.6	0.64		
Toluene	9.3	9.3	<1	<0.001	<0.001	<0.001	<10	<1	1.0	<0.050		
Xylenes, total	11	11	<1.5	<0.0015	<0.0015	<0.0015	40	4.1	9.4	0.80		

										Second ISCO T	reatment Event							
Sample Location	E	SL		2PS-1/2	2PS-1A					2PS-2/	2PS-2A				2PS-3/2PS-3A			
Sample ID	Commercial/	Commercial/	2PS-1-10	2PS-1A-10	2PS-1-20	2PS-1A-20	2PS-2-7	2PS-2A-7	2PS-2-11	2PS-2A-11	2PS-2-15	2PS-2A-15	2PS-2-20	2PS-2A-20	2PS-3-10	2PS-3A-10	2PS-3-21	2PS-3A-21
	Industrial		(Shallow Soil)*	(Shallow Soil)*	(Deep Soil)**	(Deep Soil)**	(Shallow Soil)*	(Shallow Soil)*	(Deep Soil)**	(Deep Soil)**	(Deep Soil)**	(Deep Soil)**	(Deep Soil)**	(Deep Soil)**	(Shallow Soil)*	(Shallow Soil)*	(Deep Soil)**	(Deep Soil)**
Date Sampled	(Shallow Soil)*	(Deep Soil)**	5/26/2009	6/29/2009	5/26/2009	6/29/2009	5/26/2009	6/29/2009	5/26/2009	6/29/2009	5/26/2009	6/29/2009	5/26/2009	6/29/2009	5/26/2009	6/29/2009	5/26/2009	6/29/2009
TPHd	180	180	<2.0	<2.0	<2.0	<2.0	23.7d	15.2d	9.16d	129d	51.7d	264d	206d	11.7d	<2.0	3.45d	5.49d	18.7d
TPHg	180	180	<0.1	<0.1	<0.1	<0.1	1,200ab	190ab	53ab	750ab	1,700ab	180ab	3,000ab	250ab	8.2ab	37ab	64ab	170ab
Benzene	0.27	2	<0.01	<0.01	<0.01	<0.01	3.1	3	0.88	<1	3.6	<1	12	<1	0.16	<1	<1	<1
Ethylbenzene	4.7	4.7	<0.01	<0.01	<0.01	<0.01	8.6	<1	0.75	<1	7.4	<1	45	<1	0.094	<1	1.5	<1
Toluene	9.3	9.3	<0.01	<0.01	<0.01	<0.01	2.8	1.2	<0.050	<1	<1	<1	54	5.9	<0.05	<1	<1	2.6
Xylenes, total	11	11	<0.015	<0.015	<0.015	<0.015	19	4.7	0.31	12	8.8	3.1	180	44	<0.075	<1.5	2.1	8.4

Notes:

All results in milligrams per kilogram (mg/kg). Values in bold exceed corresponding ESLs.

a - Sample chromatogram does not resemble gasoline standard pattern.

b - Although TPH as Gasoline are present, reported value is significantly elevated due to the presence of heavy end hydrocarbons within C5-C12 quantitation range for Gasoline

(possibly aged gasoline or carry over from fuel heavier than gasoline)

c - Estimated value

d - Sample chromatogram does not resemble typical diesel pattern (possibly fuel lighter than diesel). Lighter end hydrocarbons and hydrocarbon peaks within the diesel range quantified as diesel.

NE - Not established

NA - Not analyzed

* ESL - Environmental Screening Levels from San Francisco Regional Water Quality Control Board, Interim Final - November 2007 (revised May 2008). Lowest level reported from: Table B. Environmental Screening Levels. Shallow Soils (less or equal to 3 meters below ground surface). Groundwater IS NOT a current or potential drinking water source.

** ESL - Environmental Screening Levels from San Francisco Regional Water Quality Control Board, Interim Final - November 2007 (revised May 2008). Lowest level reported from:

Table D. Environmental Screening Levels. Deep Soils (greater than 3 meters below ground surface). Groundwater IS NOT a current or potential drinking water source. Acronyms:

TPHd - Total Petroleum Hydrocarbons as diesel

TPHg - Total Petroleum Hydrocarbons as gasoline

KLEINFELDER

KLEINFELDER

Table 4 Total Petroleum Hydrocarbons, Volatile Organics and Total Dissolved Solids In Groundwater EOP - 700 Independent Road, Oakland, California

Sample	Location Date Sam	ped Ipho	TPHS	Bente	ne	ostene (sec)	hoostanet	DEI Benterte	pythemene Isopr	opynous ne (dr)	nalene Propy	persene (m)	ie time	hybertene th	2.4 h	.3.57) .85. total	Alter Duy effet	wr ^{tefl} _{bes} one ^t optet Comments
<u>~~~</u>	3/19/2007	390a	3,300	400	NA NA	<1.1	60.2	NA	NA	NA	NA NA	205	NA	NA	351	<1.1	NA NA	Comments
	9/10/2007	390a 315a	3,300 1,700b	162 145	0.9	<0.500	72.2	11.6	2.42	7.69	20.8	205 56.1	94.6	17.1	197	<1.1	NA	4
	12/17/2007	186a	1,510b	204	2.41	<0.500	78.6	9.96	1.69	4.35	19	15.1	67	6.12	56.7	<0.500	14,000,000	4
	3/28/2008	<100	12,000	1,020	NA	NA	161	NA	NA	NA NA	NA	19.1	NA	NA	60.0	<1.10	NA	1 !
	6/11/2008	235a	4,700	721	<4.40	<4.40	160	18.9	NA	<52.8	<4.40	84.8	132	11.0	126	1.7	NA	1
MW-1	12/1&2/2008	484f	2,900	295	<4.40	<4.40	137	36.7	NA	298	88.4	27.1	501	35.1	218	12	14,000,000	baseline - pre first ISCO treatment
	1/12/2009	264f	3,300	380	NA	NA	91	NA	NA	NA	NA	84	NA	NA	174	NA	14,000,000	1 month post first ISCO treatment
	3/12/2009	504	7,700	488	NA	NA	235	NA	NA	NA	NA	144	NA	NA	455	<4.40	NA	
	5/19/2009	152f	2,900	340	4.6	<4.4	79	19	<4.4	9.7	30	50	100	<4.4	62	<4.4	NA	pre second ISCO treatment
	6/30/2009	<100	870	99	NA	NA	33	NA	NA	NA	NA	15	NA	NA	34	NA	NA	1 month post second ISCO treatment
	3/19/2007	940a	38,000	11,600	NA	226	588	NA	NA	NA	NA	274	NA	NA	2,880	<13.2	NA	4
	9/10/2007	1690a	52,100b	15,800	<22.0	611	1,120	69.1	<22.0	231	143	552	1,270	650	5,420	<22.0	NA 17 000 000	4
	12/17/2007 3/28/2008	3,770a 300c	30,900b	13,300	<22.0	568 NA	1,350	73	<22.0 NA	227	118 NA	172	1,230 NA	352 NA	2,330	<22.0 <22.0	17,000,000	4
	3/28/2008 6/11/2008	300c 1,030a	47,000 31,000	12,600 19,700	NA <44.0	NA 542	619 1,090	NA <88.0	NA	NA <528	NA <44.0	67.3 81.0	NA 154	NA 731	1,040 1,410	<22.0	NA NA	-
MW-2	12/1&2/2008	965f	53.000	20,500	<44.0	468	1,090	<88.0	NA	196	125	<44.0	1,200	66.9	1,180	<44.0		baseline - pre first ISCO treatment
14144-2	1/12/2009	2,500f	35,000	15,300	NA	NA	1,030	NA	NA	NA	NA	62.5	1,200 NA	NA	1,050	NA		1 month post first ISCO treatment
	3/12/2009	862	40.000	10,300	NA	NA	1,050	NA	NA	NA	NA	91.5	NA	NA	980	<44.0	NA	i monar post mat 1000 a caanent
	3/12/2009 Dup	NA	42,000	10,900	NA	NA	1,030	NA	NA	NA	NA	95.9	NA	NA	995	<44.0	NA	1
	5/19/2009	2,670f	31,000	10,000	<88	180	1,100	<88	<44	130	120	92	750	110	730	<44	NA	pre second ISCO treatment
	6/30/2009	675f	20,000	7,300	NA	NA	400	NA	NA	NA	NA	<44	NA	NA	330	NA	NA	1 month post second ISCO treatment
	6/30/2009 Dup	624f	20,000	7,600	NA	NA	370	NA	NA	NA	NA	<44	NA	NA	300	NA	NA	
	3/19/2007	<100	<50	<0.500	NA	< 0.500	<0.500	NA	NA	NA	NA	<0.500	NA	NA	<1.5	<0.500	NA	
	9/10/2007	<100	<50	<0.500	<0.500	< 0.500	<0.500	<1.0	<0.500	< 0.500	<0.500	<0.500	<0.500	< 0.500	<1.5	<0.500	NA]
	12/17/2007	<100	<50	<0.500	<0.500	< 0.500	<0.500	<1.0	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<1.5	<0.500	8,600,000	_
	3/28/2008	<100	<50	< 0.500	NA	NA	<0.500	NA	NA	NA	NA	<0.500	NA	NA	<1.50	<0.500	NA	4
MW-3	6/11/2008	<100	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.00	NA	<6.00	< 0.50	< 0.50	< 0.50	< 0.50	<1.50	< 0.50	NA	
	12/1&2/2008 1/12/2009	<100 <100	<50 <50	<0.50	< 0.50	<0.50	< 0.50	<1.00 NA	NA NA	<1.00	<0.50 NA	< 0.50	<0.50 NA	<0.50 NA	<1.50	< 0.50		baseline - pre first ISCO treatment
	3/12/2009	<100	<50	<0.50 <0.500	NA NA	NA NA	<0.50 <0.500	NA	NA	NA NA	NA	<0.50	NA	NA	<1.50 <1.50	NA <0.500	8,800,000 NA	1 month post first ISCO treatment
	5/19/2009	<100	<50	<0.50	<0.50	<0.50	< 0.500	<1.0	<0.50	<1.0	<0.50	< 0.50	<0.50	<0.50	<1.50	< 0.50	NA	pre second ISCO treatment
	6/30/2009	<100	<50	<0.50	NA	NA	< 0.50	NA	NA	NA	_0.00 NA	<0.50	<0.00 NA	NA	<1.5	NA	NA	1 month post second ISCO treatment
	1/31/2008	< 100	56.0e	< 0.500	NA	NA	< 0.500	NA	NA	NA	NA	< 0.500	NA	NA	<1.50	< 0.500	NA	
	3/28/2008	<100	61d	< 0.500	NA	NA	<0.500	NA	NA	NA	NA	< 0.500	NA	NA	<1.50	< 0.500	NA	1
MW-4	6/11/2008	<100	<50	<0.50	<0.50	< 0.50	<0.50	<1.00	NA	<6.00	<0.50	< 0.50	< 0.50	< 0.50	<1.50	< 0.50	NA]
141.44-44	12/1&2/2008	<100	<50	<0.50	<0.50	<0.50	<0.50	<1.00	NA	<1.00	<0.50	<0.50	<0.50	<0.50	<1.50	< 0.50	NA]
	3/12/2009	<100	<50	<0.500	NA	NA	<0.500	NA	NA	NA	NA	<0.500	NA	NA	<1.50	<0.500	NA	1
	6/29/2009	<100	<50	<0.50	NA	NA	<0.50	NA	NA	NA	NA	<0.50	NA	NA	<1.5	NA	NA	<u> </u>
	1/31/2008	544f	55.0e	< 0.500	NA	NA	<0.500	NA	NA	NA	NA	<0.500	NA	NA	< 1.50	<0.500	NA	4
1	3/28/2008	<100	57d	< 0.500	NA	NA	<0.500	NA	NA	NA	NA	<0.500	NA	NA	<1.50	<0.500	NA	4
MW-5	6/11/2008	<100	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.00	NA	<6.00	< 0.50	< 0.50	< 0.50	< 0.50	<1.50	< 0.50	NA	4
	12/1&2/2008	<100	<50	<0.50	< 0.50	<0.50	< 0.50	<1.00	NA	<1.00	< 0.50	< 0.50	<0.50	< 0.50	<1.50	< 0.50	NA NA	4
	3/12/2009 6/30/2009	<100 <100	<50 <50	<0.500 <0.50	NA NA	NA NA	<0.500 <0.50	NA	NA NA	NA NA	NA NA	<0.500	NA	NA	<1.50 <1.5	<0.500 NA	NA	4
ESL*	0/30/2009	210	<50 210	<0.50 46	NA	NA 200	<0.50 43	NA NE	NA NE	NA 24	NA	<0.50	NA	NA NE	<1.5	1,800	NA NE	ł
EƏL		210	210	40	INE	200	43	INE	INE	24	INE	130	INE	INE	100	1,800	INE	<u>I</u>

Notes:

All results in micrograms per liter (ug/l). Values in bold exceed corresponding ESLs.

a - Sample chromatogram does not resemble typical diesel pattern (possibly fuel lighter than diesel). Lighter end hydrocarbons and hydrocarbon peaks within the diesel range quantified as diesel.

b - Although TPH as gasoline is present, result is elevated due to the presence of non-target compounds within the gasoline quantitative range.

c - Although TPH as Gasoline constituents are present, results are elevated due to the presence of non-target compounds within range of C5-C12 quantified as Gasoline.

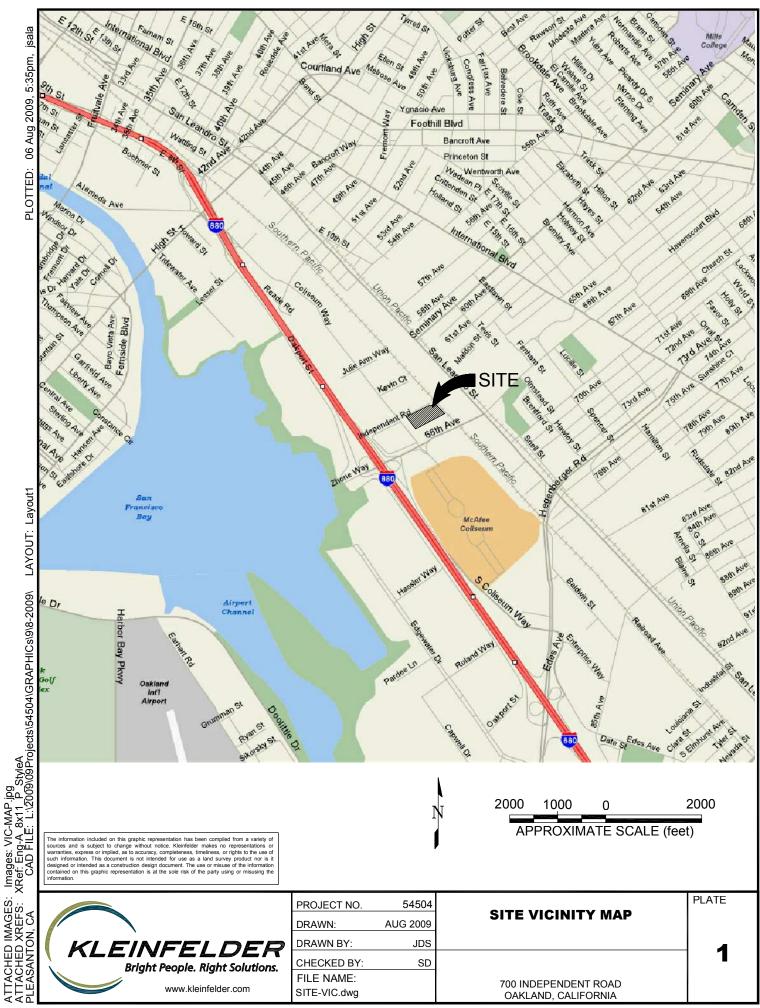
d - Does not match typical gasoline pattern. TPH value contains only non-target compounds within gasoline quantitative range.

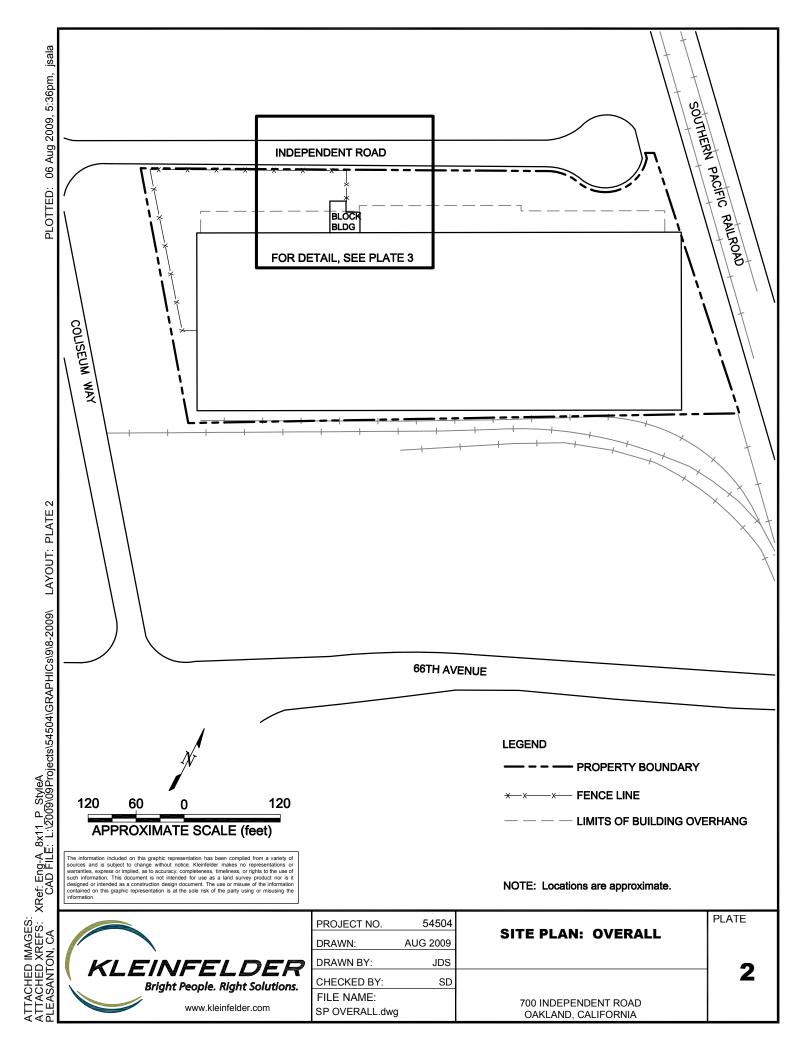
e - Does not match typical gasoline pattern. Reported values are the result of presence of non-gasoline compounds within the gasoline quantitation range.

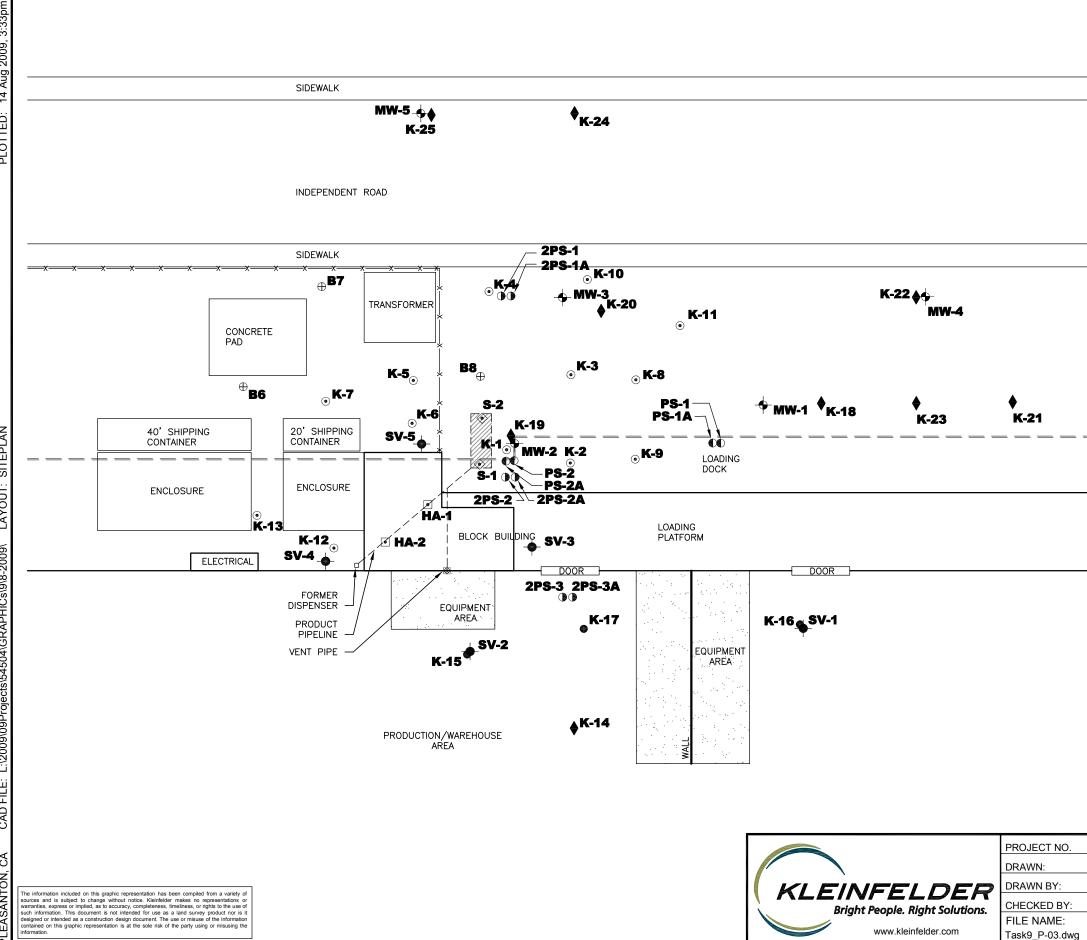
f - Sample chromatogram does not resemble typical diesel pattern. Hydrocarbons within the diesel range quantitated as diesel.

NE - Not established

NA - Not analyzed

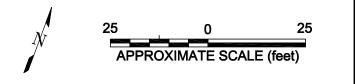

ESL - Environmental Screening Levels from San Francisco Regional Water Quality Control Board, Interim Final - November 2007 (revised May 2008). Lowest level reported from: Table B. Environmental Screening Levels. Groundwater IS NOT a current or potential drinking water source.


Acronyms:


TPHd - Total Petroleum Hydrocarbons as diesel

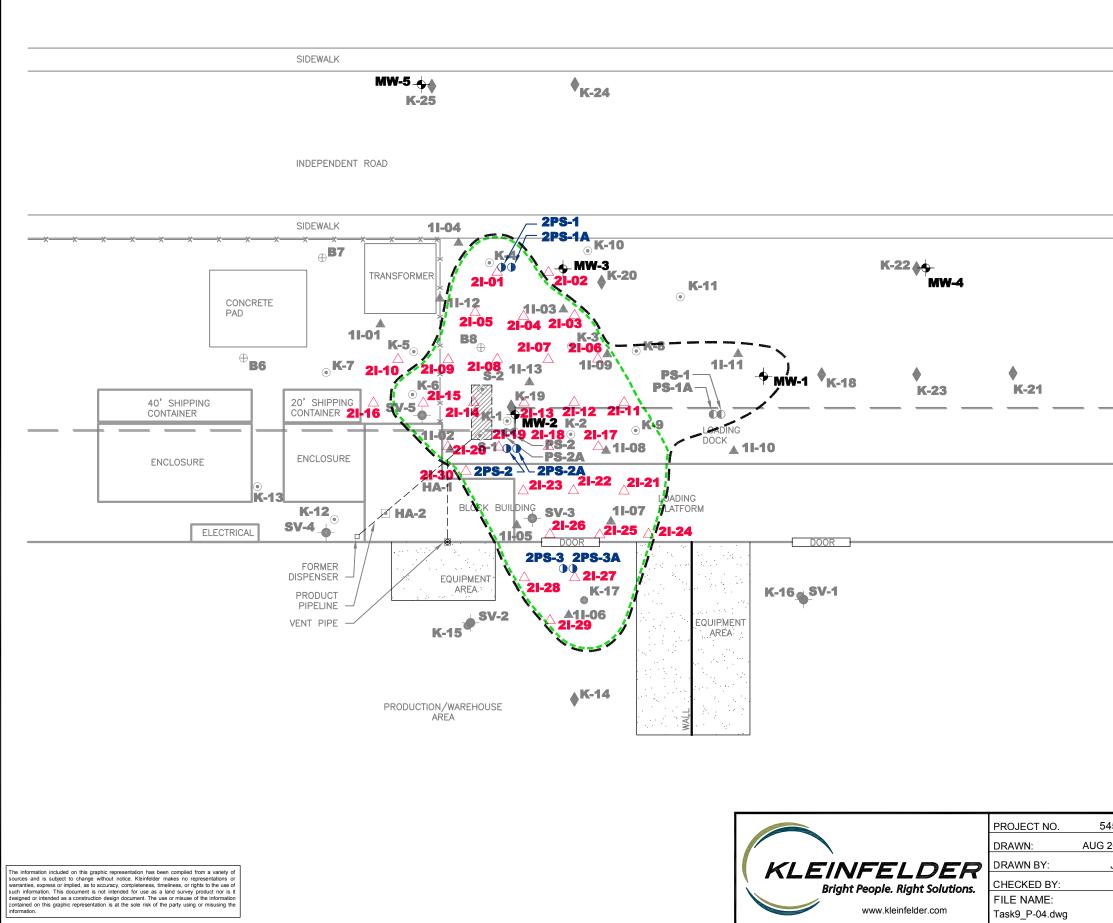
TPHg - Total Petroleum Hydrocarbons as gasoline

PLATES

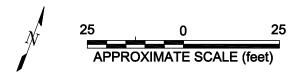

Aug 4 C

Z 5 Ś 2009 XRef: Eng-B 11x17 L StyleA.dwg CAD FILE: T:\2009\09Projects\54504\GRAPHICs\9\ IMAGES: XREFS: TACHED I

LEGEND


- = --- ROOF OVERHANG * FENCE ---- PRODUCT PIPELINE FORMER UNDERGROUND STORAGE TANK MONITORING WELL \bullet (Kleinfelder, March 2007) SOIL VAPOR BORING -(Kleinfelder, March 2007) SOIL BORING \bullet (Kleinfelder, May and June 2009) SOIL BORING \mathbf{O} (Kleinfelder, December 2008 and January 2009) SOIL BORING depth 38-45 ft • (Kleinfelder, March 2007 and February 2008) SOIL BORING depth 24-32 ft ٩ (Kleinfelder, March 2007) SOIL BORING ۲ (Kleinfelder, 2006) SOIL BORING \oplus (Golder Associates, August 2004)
 - ٠ HAND AUGER
 - **UST CONFIRMATION SOIL** \diamond SAMPLE

NOTE: Golder boring B8 located in the field. Locations of Golder borings B6 and B7 are approximate.


54504		PLATE
AUG 2009	SOIL BORING AND MONITORING WELL LOCATIONS	
JDS		2
SD		3
	700 INDEPENDENT ROAD OAKLAND, CALIFORNIA	

LEGEND

	ROOF OVERHANG
x _xx	FENCE
	PRODUCT PIPELINE
	FORMER UNDERGROUND STORAGE TANK
+	MONITORING WELL (Kleinfelder, March 2007)
	SOIL VAPOR BORING (Kleinfelder, March 2007)
١	SOIL BORING (Kleinfelder, May and June 2009)
٢	SOIL BORING (Kleinfelder, December 2008 and January 2009)
•	SOIL BORING depth 38-45 ft (Kleinfelder, March 2007 and February 2008)
۲	SOIL BORING depth 24-32 ft (Kleinfelder, March 2007)
۲	SOIL BORING (Kleinfelder, 2006)
\oplus	SOIL BORING (Golder Associates, August 2004)
٠	HAND AUGER
$\langle \bullet \rangle$	UST CONFIRMATION SOIL SAMPLE
	IN SITU CHEMICAL OXIDATION (ISCO) INJECTION LOCATION (December 2008)
\bigtriangleup	ISCO INJECTION LOCATION (May and June 2009)
	APPROXIMATE LIMIT OF THE FIRST ISCO (PILOT TEST) TREATMENT AREA
	APPROXIMATE LIMIT OF THE SECOND ISCO TREATMENT AREA
NOTES: Loca	tions are approximate.

504	SECOND ISCO	PLATE
2009	TREATMENT AREA, ISCO INJECTION LOCATIONS AND	
JDS	SOIL BORING SAMPLING LOCATIONS	
SD		4
	700 INDEPENDENT ROAD OAKLAND, CALIFORNIA	

APPENDIX A

ALAMEDA COUNTY PUBLIC WORKS AGENCY DRILLING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

Applicant:

Client:

Contact:

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 05/19/2009 By jamesy

Permit Numbers: W2009-0417 Permits Valid from 05/26/2009 to 07/02/2009 City of Project Site:Oakland Application Id: 1242672016937 Site Location: 700 Independent Road **Project Start Date:** 05/26/2009 Completion Date:07/02/2009 Assigned Inspector: Contact John Shouldice at (510) 670-5424 or johns@acpwa.org Kleinfelder - Sophia Drugan Phone: 925-484-1700 x4539 4670 Willow Road, Suite 100, Pleasanton, CA 94588 Francis J. Meyard, (Manager) 700 Independent **Property Owner:** Phone: 415-331-3838 Road, LP 104 Caledonia Street, Suite C, Sausalito, CA 94965 Equity Office Properties -Industrial Portfolio LLC Phone: 650-372-3553 2655 Campus Drive, Suite 100, San Mateo, CA 94403 Sophia Drugan Phone: 925-484-1700 x4539 Cell: 925-766-5623

	Total Due:	\$230.00
Receipt Number: WR2009-0183		\$230.00 PAID IN FULL
Payer Name : Kleinfelder Pleasanton	Falu by. IVIC	FAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 66 Boreholes Driller: Fisch Drilling - Lic #: 683865 - Method: DP

Work Total: \$230.00

Specifications								
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth			
Number			Boreholes					
W2009-	05/19/2009	08/24/2009	66	3.00 in.	25.00 ft			
0417								

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Alameda County Public Works Agency - Water Resources Well Permit

6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application **after** a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (<u>www.acgov.org/pwa/wells/index.shtml</u>) for links to additional forms.

APPENDIX B

HEALTH AND SAFETY PLAN

SITE-SPECIFIC HEALTH AND SAFETY PLAN

Project No. <u>54503/9</u>	Date	May 11, 2009
Client Equity Office Propert	ies Address	2655 Campus Drive, Suite 100
Industrial Portfolio, L	.L.C.	San Mateo, CA 94403
Site Contact James Soutter F	P.E. Site Pho	ne No. (650) 372-3553
Job Location 700 Independe	nt Road, Oakland, Califo	rnia
Work Objectives Advance th	nree soil borings to 25 fee	et and sample soil using direct push
(DPT) drill rig. Then sixty inj	ection points (at 30 locat	ions) will also be advanced to a
maximum 25 feet below grou	nd surface using a direct	-push drill rig across the treatment
area. The boreholes will then	be chemically treated usi	ing the direct push injection points
to deliver the in situ chemical	oxidation (ISCO) reager	nt into the subsurface. Finally three
additional soils borings will b	e advanced to 25 feet and	d sampled.
-		-
Key Individuals:	Project Manager Charl	es Almestad
Site Health and Safety	Nathan Berner	
Prepared by William Uchiya	<u>ma/Sophia Drugan</u> Revie	ewer/Approver Charles Almestad

Hospital/Clinic Alameda County Medical Center – Highland Hospital

Phone No. (510) 437-4140

Address: <u>1411 E. 31st Street</u>, Oakland, CA

Paramedic. <u>911</u> Fire Dept. <u>911</u> Police Dept. <u>911</u>

Emergency/Contingency Plans: Stop work and evaluate situation and stabilize victim(s). Notify health and safety officer and site project manager. Apply first aid and/or seek medical aid as necessary. Move injured personnel only if injuries permit. If necessary call Ambulance and/or Medical Personnel to transport injured to hospital. Refer to attached maps for location of nearest medical facility site. Health and Safety Officer to notify Client and appropriate personnel of situation.

15 Minute Eyewash required Fire Extinguisher required First Aid Kit required

Site Control Measures: Do not allow unauthorized personnel into the work area. Install barricade tape to define the work zone as necessary.

Personal Decontamination Procedures: Disposable gloves will be utilized for soil and water sampling, and when in contact with the ISCO reagent. Skin that comes in contact with soil, groundwater, or reagent will be washed immediately with soap and water. Safety glasses with side shields should be worn during sampling and while the chemical injections are taking place to protect eyes. Hands and face shall be thoroughly washed prior to eating, drinking, smoking, or other hand to mouth contact and prior to leaving the site.

CHEMICAL HAZARDS

The primary chemicals of concern at the site are petroleum hydrocarbons acute/chronic health effect associated with petroleum hydrocarbons and other chemicals are listed in the table below.

Chemical Name	PEL	Expected Concentration	Health Hazards
Fuel Hydrocarbons	300 ppm	Soil: low-level, if	Acute: Headache, nausea,
(i.e. gasoline);		any	dizziness, skin/eye irritation,
TPH-gasoline		Groundwater:	blurred vision, abdominal pains,
		10,000 ppb	vertigo, diarrhea, convulsions
			<u>Chronic</u> : n/a
Total Petroleum	n/a	Soil: low-level, if	Acute: Skin, eye, and respiratory
Hydrocarbons		any	irritation; headache, dizziness
(Diesel and other		Groundwater:	<u>Chronic:</u> n/a
petroleum		10,000 ppb	
hydrocarbons):			
TPH-diesel			
Benzene	1 ppm	Soil: low-level, if	Acute: Irritation eyes, skin, nose,
		any	respiratory system; dizziness;
		Groundwater: 1,000	headache, nausea, staggered gait;
		ppb	anorexia, lassitude (weakness,
			exhaustion); dermatitis
			Chronic: Potential carcinogen
Toluene	200 ppm	Soil: low-level, if	Acute: Irritation eyes, nose;
		any	lassitude (weakness, exhaustion),
		Groundwater: 1,000	confusion, euphoria, dizziness,
		ppb	headache; dilated pupils,
			lacrimation (discharge of tears)
			Chronic: anxiety, muscle fatigue,
			insomnia; paresthesia; dermatitis;
			liver, kidney damage
Ethylbenzene	100 ppm	Soil: low-level, if	Acute: Irritation eyes, skin,
		any	mucous membrane; headache;
		Groundwater: 1,000	dermatitis; narcosis, coma
		ppb	<u>Chronic:</u> n/a

Xylenes	100 ppm	Soil: low-level, if	Acute: Irritation eyes, skin, nose,
		any	throat; dizziness, excitement,
		Groundwater: 1,000	drowsiness, incoordination,
		ppb	staggering gait; corneal
			vacuolization; anorexia, nausea,
			vomiting, abdominal pain;
			dermatitis
			<u>Chronic:</u> n/a

Notes: $\mu g/m^3 =$ Micrograms per cubic meter of air.

mg/kg = milligrams per kilogram, approximately equivalent to parts per million (ppm) n/a = Not Applicable

Respiratory Protection

The principal routes of potential exposure are inhalation and ingestion during field activities. However, at this time, Level D personal protective equipment without respiratory protection is anticipated. Kleinfelder site activities are not expected to generate significant quantities of dust. If site conditions are different or change, the need for respiratory protection will be reevaluated.

PHYSICAL HAZARDS

Physical hazards during sampling and during the chemical injections consist of accidents that can occur during handling of sharp tools and injuries resulting form trips and falls working around powered equipment. In general, these types of accidents will be minimized by the use of proper safety equipment (hard hat, safety glasses, and steel-toed boots), good communication among all on-site personnel, and being alert to potential hazards such as pinch points and splash hazards. Safety hazards associated with this site requiring specific precautions are summarized below.

PHYSICAL HAZARDS

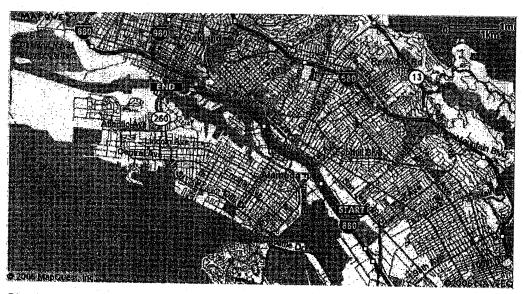
X	Heat	<u>X</u> Slip, Trip, Fall	X	Excavations/Trench
X	Cold	Electrical Hazards	X	Moving Equipment
X	Wet	<u>X</u> Underground Hazards		Confined Space
X	Noise	X Overhead Hazards		
X	Other	Drill Rig		

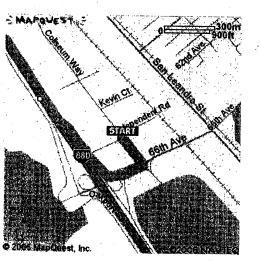
PERSONAL PROTECTIVE EQUIPMENT

R =	$Required \qquad A =$	As Ne	reded
R	Hard Hat	R	Safety Eye gear: glasses w/ side protection
R	Safety Boots	A	Respirator (Type): Full-face Half-face
R	Orange Vest		Filter Type: Organic vapor <u>A</u> Acid gas <u>HEPA</u>
A	Hearing Protection	R	Gloves (Type): Neoprene PVC NitrileA
A	Tyvek Coveralls	R	Other Mobile phone
	5 Minute Escape Re	espirat	tor

AIR MONITORING REQUIREMENTS

In general, if air monitoring readings in workers' breathing zone exceed 5 ppm for 60 seconds or longer, upgrade to Level C (respirator, etc.) or vacate the immediate area.


 Organic Vapor Analyzer (FID)	<u> </u>	PID with lamp of 10.6 eV, (in PPM)
 Oxygen Meter		Detector Tube (specify)
 Combustible Gas Meter		Passive Dosimeter
 H ₂ S Meter		Air Sampling Pump
 W. B. G. T.		Filter Media


ONSITE SAFETY MEETING ATTENDEES

Signature	Name (Printed)/Title	Date

Directio	ons	Distance
Total I	Est. Time: 8 minutes Total Est. Distance: 5.39 miles	
START	1: Start out going SOUTHWEST on INDEPENDENT RD toward COLISEUM WAY.	<0.1 miles
\diamond	2: Turn LEFT onto COLISEUM WAY.	0.1 miles
	3: Turn RIGHT onto 66TH AVE.	<0.1 miles
(STATE)	4: Merge onto I-880 N toward DOWNTOWN OAKLAND.	4.3 miles
EXIT	5: Take the OAK STREET exit toward LAKESIDE DR.	0.1 miles
	6: Turn LEFT onto OAK ST.	0.2 miles
	7: Turn RIGHT onto EMBARCADERO W.	0.3 miles
Емр	8: End at 3 Webster St Oakland, CA 94607-3720, US	. In mu

Start: 700 Independent Rd Oakland, CA 94621-3726, US

End: 3 Webster St Oakland, CA 94607-3720, US

APPENDIX C

FIELD NOTES AND BORING LOGS

1º N	
KLEINFEL	DER
Bright People. Ri	

5/19/2009

MONITORING WELL SAMPLING LOG

Well No.: MW-1

Sheet 1 of 1

Project:	700 Independent Road
Project No.:	54504
Weather	

Date:

Completed by: Nathan Berner

Date: 5/19/2009

	Purging Eqpt:		Bailer Di	sposable Bailer] Bladder P		Sub	mersible Pump	Peristaltic		
NOL	Sampling Eqp	t 🗌 i	Bailer Di	sposable Bailer	Ē	Bladder P	<u> </u>		mersible Pump	Peristaltic		Other Other
DECONTAMINATION	Test Equipment Meter No. Calibration Date/Time		The second	Water Level SOLINST		Water Quality Meter Horiba U-22XD						
ECO	Decontaminat Methods	ion		Wash		Ri	nse 1		Rinse			D : 0
EQUIPMENT & C	TSP Alconox Other		DI Tap			DI Tap	Stead	m	DI [] Tap [] Other [] Steam] Hot		
QUIP	Volume (gal)			N/A							Ott	ner 🛄 Cool
m	Source Decon. Notes											
	Purge Volume (CV)	TD	– DTW	х	Facto	r :	=	1 CV	3 C)	/	· · · · · · · · · · · · · · · · · · ·
	2" Well Diameter 4" <u>25.18</u> – <u>4.68</u> X 6"				х.	0.175 0.663 = 1.469		3.69 11.07		7gallon(s)		
	Well Security	✓ Good	- Fair	Poor	Wei	I Integrity	✓ Good	dГ	Fair Poor	Locked?	√ Yes	No
2 -		None	Free 🗌 Floa	ating 🗌 Shee	n [] Film			Thickness (ft)	Odor?		
5	Purge Record Reference:		Top of C	asing	• [Other						
GE RE	Time	Temp (°C)	рН ±0.2	Conductiv	vity (r ±3%	nS/cm)	DO (mg/		ORP (mEV)	Turbidity (N	ΓU)	DTW (ft)
R N N	1315	17.69	7.39		5.07		±10% or ±0	12	obs -254	obs 8.3		
[1325	17.59	7.3		.07		0.6		-269	5.2		
	1340	17.61	7.28	6	.04		0.52		-264	3.3		
	1355	17.62	7.25	6	.05		0.48		-270	0.0		
		*. *	- 									
	-			-								
	Sample No.	Time		Continued on re			_					
8	MW-1	1400	Quantitiy	Volume		Туре	Preserv	•	Filtration	Analys	is	Lab

			the second	.,,,,	 i nu auvn	Analysis	Lab
ō I	MW-1	1400					
<u> </u>							
						and the second	
LE LOG							
5							1
SAMP					 		1
5			:				:
76 I					 		
~			-				
		a second second of the second s			 		
			1				
	Other Oherset						
	Other Observation	00S:					
· . :							
0			-			· · · · · · · · · · · · · · · · · · ·	· · ·
SC							
		-					· · · · · · · · · · · · · · · · · · ·
MISC							
				· · · · · · · · · · · · · · · · · · ·			
					 · · · · · · · · · · · · · · · · · · ·		
IW		· · · · · · · · · · · · · · · · · · ·	✓ Yes	No NA	 Well Locked?		

5/19/2009

700 Independent Road

54504

MONITORING WELL SAMPLING LOG

Well No.: MW-2

Sheet 1 of 1

Project:
Project No.:
Weather

Date:

Completed by: Nathan Berner

Date: 5/19/2009

	1									
7	Purging Eqpt:	Ba	ailer 🔄 Dispo	osable Bailer	Bladder Pu	ump 🗌 Sut	mersible Pump	Peristaltic	: Pump	Other
lol	Sampling Eqpt	Ba	ailer 🗌 Dispo	osable Bailer	Bladder Pu	ump 🗌 Sut	mersible Pump	Peristaltic	: Pump	Other
NA ⁻	Test Equipment	t	Wate	er Level	Water Q	uality Meter				
MM	Meter No.		SO	LINST		a U-22XD	-	· · · · · · · · · · · · · · · · · · ·		
E	Calibration Date/									
& DECONTAMINATION	Decontaminatio Methods	n	14	I-ah			D	~		
D	TSP		<u> </u>	Vash		nse 1	Rins			inse 3
				Steam		Steam		Steam		Steam
JEN	Other		Tap Other	Hot Cool	Tap		Tap [Other [Hot Cool		
EQUIPMENT									U Othe	r [_] Cool
ğ	Volume (gal) Source			N/A		and a subscription of a subscription of a subscription of a subscription of a				
	Decon. Notes									
	· · · · · · · · · · · · · · · · · · ·				Y Fasta		: 			
	Purge Volume (C	.v)	TD	– DTW	X Facto	r =	1 CV	3 C'	V	
		2"			0.175	5				
	Well Diameter	4" 6"	18.79	- 4.55	X 0.663		2.55	7.65	igal	lon(s)
		Ð			1.469	}				-
	Well Security	Good	Fair P	Poor	Well Integrity	Good	Fair Poo	or Locked?	✓ Yes	No
	Product?		Free 🗌 Floati	ing 🗌 Sheer	n 🗌 Film		Thickness (ft)	Odor?		
CRD	Purge Record									
ECORD			Free Floati		n 🗌 Film					
ERECORD	Purge Record	lone 🗍 F Temp (°C)	✓ Top of Cas	sing		 DO (mg/L)				 DTW (ft)
RGE RECORD	Purge Record Reference:	lone 🗌 F	✓ Top of Cas	sing Conductiv	Other_		Thickness (ft)	Odor?		
PURGE RECORD	Purge Record Reference:	lone 🗍 F Temp (°C)	✓ Top of Cas	sing Conductiv	/ity (mS/cm)	DO (mg/L)	Thickness (ft) ORP (mEV)	Odor? Turbidity (N		· · · · · · · · · · · · · · · · · · ·
PURGE RECORD	Purge Record Reference: Time	lone F Femp (°C) obs	Top of Cas pH ±0.2	sing Conductiv ±	/ity (mS/cm)	DO (mg/L) ±10% or ±0/2	Thickness (ft) ORP (mEV) obs	Odor? Turbidity (N		
PURGERECORD	Purge Record Reference: Time 1420	Temp (°C) 0bs 17.59	✓ Top of Cas pH ±0.2 7.25	sing Conductiv 1 4 4	/ity (mS/cm) 13%	DO (mg/L) ±10% or ±0.2 2.57	Thickness (ft) ORP (mEV) obs -169	Odor? Turbidity (N obs 4.7		
PURGE RECORD	Purge Record Reference: Time 1420 1428	Temp (°C) obs 17.59 17.47	✓ Top of Cas pH ±0.2 7.25 7.11	sing Conductiv ± 4 4 4	Other	DO (mg/L) ±10% or ±0.2 2.57 2.96	ORP (mEV) obs -169 -217	Odor? Turbidity (N obs 4.7 3.2		
PURGE RECORD	Purge Record Reference: Time 1420 1428 1437	Temp (°C) obs 17.59 17.47 17.48	✓ Top of Cas pH ±0.2 7.25 7.11 7.02	sing Conductiv ± 4 4 4	Other	DO (mg/L) ±10% or ±0.2 2.57 2.96 4.22	ORP (mEV) obs -169 -217 -220	Odor? Turbidity (N obs 4.7 3.2 0		
PURGE RECORD	Purge Record Reference: Time 1420 1428 1437	Temp (°C) obs 17.59 17.47 17.48	✓ Top of Cas pH ±0.2 7.25 7.11 7.02	sing Conductiv ± 4 4 4	Other	DO (mg/L) ±10% or ±0.2 2.57 2.96 4.22	ORP (mEV) obs -169 -217 -220	Odor? Turbidity (N obs 4.7 3.2 0		
PURGERECORD	Purge Record Reference: Time 1420 1428 1437	Temp (°C) obs 17.59 17.47 17.48	✓ Top of Cas pH ±0.2 7.25 7.11 7.02	sing Conductiv ± 4 4 4	Other	DO (mg/L) ±10% or ±0.2 2.57 2.96 4.22	ORP (mEV) obs -169 -217 -220	Odor? Turbidity (N obs 4.7 3.2 0		
PURGERECORD	Purge Record Reference: Time 1420 1428 1437	Temp (°C) obs 17.59 17.47 17.48	✓ Top of Cas pH ±0.2 7.25 7.11 7.02	sing Conductiv ± 4 4 4	Other	DO (mg/L) ±10% or ±0.2 2.57 2.96 4.22	ORP (mEV) obs -169 -217 -220	Odor? Turbidity (N obs 4.7 3.2 0		
PURGERECORD	Purge Record Reference: Time 1420 1428 1437	Temp (°C) obs 17.59 17.47 17.48	 ✓ Top of Cas pH ±0.2 7.25 7.11 7.02 7.01 	sing Conductiv 4 4 4 4 4	Other	DO (mg/L) ±10% or ±0.2 2.57 2.96 4.22	ORP (mEV) obs -169 -217 -220	Odor? Turbidity (N obs 4.7 3.2 0		
PURGERECORD	Purge Record Reference: Time 1420 1428 1437 1446	Temp (°C) obs 17.59 17.47 17.48 17.48	✓ Top of Cas pH 402 7.25 7.11 7.02 7.01	sing Conductiv 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	DO (mg/L) \$10% of \$0.2 2.57 2.96 4.22 4.53	Thickness (ft) ORP (mEV) obs -169 -217 -220 -222	Odor? Turbidity (N obs 4.7 3.2 0 0		DTW (ft)
	Purge Record Reference: Time 1420 1428 1437 1446 	Temp (°C) obs 17.59 17.47 17.48 17.48 17.48	 ✓ Top of Cas pH ±0.2 7.25 7.11 7.02 7.01 	sing Conductiv 4 4 4 4 4	Other	DO (mg/L) ±10% or ±0.2 2.57 2.96 4.22	ORP (mEV) obs -169 -217 -220	Odor? Turbidity (N obs 4.7 3.2 0		
	Purge Record Reference: Time 1420 1428 1437 1446	Temp (°C) obs 17.59 17.47 17.48 17.48	✓ Top of Cas pH 402 7.25 7.11 7.02 7.01	sing Conductiv 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	DO (mg/L) \$10% of \$0.2 2.57 2.96 4.22 4.53	Thickness (ft) ORP (mEV) obs -169 -217 -220 -222	Odor? Turbidity (N obs 4.7 3.2 0 0		DTW (ft)
AMPLE LOG PURGE RECORD	Purge Record Reference: Time 1420 1428 1437 1446 	Temp (°C) obs 17.59 17.47 17.48 17.48 17.48	✓ Top of Cas pH 402 7.25 7.11 7.02 7.01	sing Conductiv 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	DO (mg/L) \$10% of \$0.2 2.57 2.96 4.22 4.53	Thickness (ft) ORP (mEV) obs -169 -217 -220 -222	Odor? Turbidity (N obs 4.7 3.2 0 0		DTW (ft)

- 73	Final Check:	VOAs free of bubbles?	✓ Yes	No	🗌 NA		Well Locked?	🗸 Yes	🗌 No	
MIS	·									·
o										
	Other Observa	tions:								
			!			1				
u)										

5/19/2009

700 Independent Road

54504

MONITORING WELL SAMPLING LOG

Well No.: MW-3

Sheet 1 of 1

Project No.: Weather

Date:

Project:

Completed by: Nathan Berner

Date: 5/19/2009

	Purging Eqpt:	E	Bailer Disp	osable Bailer	Π	Bladder Pu	mp Su	Ibmersible Pump	✓ Peristalti	c Pumo	Other
NO	Sampling Eqp	t 🗌 B		osable Bailer		Bladder Pu		Ibmersible Pump	Peristalti		Other
TAMINAT	Tesť Equipme	 nt	Wa	ter Level			ality Meter				
W	Meter No.		SC	DLINST		the second in the second range of the second	U-22XD				
	Calibration Dat										
DECON	Decontaminat	ion									
	Methods TSP			Nash			se 1		se 2	65557	linse 3
ର୍ଷ -				Steam			Steam	∐ DI	Steam	DI	Steam
Å,	Other		Tap	Hot		U Tap	Hot		Hot	Птар	Hot
EQUIPMENT	Volume (gal)							Other		Othe	er 🗌 Cool
ğ	Source			N/A				-		<u> </u>	
	Decon. Notes								-		
	Purge Volume ((C)/)	TD			.					
	ruige volume ((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	– DTW	X	Factor		1 CV	3 C	V	
		2*				0.175					
	Well Diameter	4" 6"	23.05		х	0.663	=	3.12	9.36	<u> </u>	llon(s)
		U				1.469					
	Well Security	Good		Poor	Well	Integrity	✓ Good	Fair Po	or Locked?	🗹 Yes	No
		None	Free 🗌 Float	ing Sheer	<u>ı</u>	Film		Thickness (ft)	Odor?		
PURGE RECORD	Purge Record		<u></u>		r			,			
EC	Reference:		✓ Top of Ca	sing	L	Other					
ы К	Time	Temp (°C)		Conduct	17 20 COL 10 COL	S/m)	DO (mg/L)		Turbidity (N	TU)	DTW (ft)
IRG		obs	±0.2		3%		±10% or ±0.2	obs	obs		
PC	1202	19.54	7.44	2	.34		0.69	116	12		
	1213	19.48	7.54	2	2.5		0.58	43	3.5		
	1220	19.75	7.12	3.	.82		0.49	-27	0		
	1232	19.75	7.17	3.	.82		0.49	-32	0		
			·\$				· · · · · · · · · · · · · · · · · · ·				www Water first and also consider the a subscription of the star
				ontinued on re	verce	•			······	:	
	Sample No.	Time	Quantitiy	Volume			Drogon	Ciltar-4			
00	MW-3	1240	wanney	VOUINE		Туре	Preserv.	Filtration	Analys	5 I S	Lab
E LOG											

JPL						
AN						
Ś						
	<u> </u>			 : 		
	Other Observations:	•				
0 B						
WIS						
	Final Check: VO/	As free of bubbles?	🗹 Yes 🗌	A Well Locked?	✓ Yes No	NA

Revised June 2008

700 Independent Road

54504

MONITORING WELL SAMPLING LOG

Well No.: MW-1

Sheet 1 of

1

Project No.: Weather

Date:

Project:

Completed by: Nathan Berner

Date: 6/30/2009

Purging Eqpt: Bailer Other Disposable Bailer Bladder Pump Submersible Pump Peristaltic Pump EQUIPMENT & DECONTAMINATION Sampling Eqpt Bailer Disposable Bailer Bladder Pump Submersible Pump Peristaltic Pump Other **Test Equipment** Water Level Water Quality Meter Meter No. SOLINST Horiba U-22XD Calibration Date/Time Decontamination Methods Wash Rinse 1 Rinse 2 Rinse 3 TSP]DI Steam DI Steam D Steam DI Steam Alconox Tap Hot Tap Hot Tap Hot Tap Hot Other Other 🚺 Cool Other Cool Other Cool Other Cool N/A Volume (gal) Source Decon. Notes Purge Volume (CV) TD DTW х Factor = 1 CV 3 CV 2" 0.175 4" Well Diameter 25.5 4.86 Х 0.663 3.72 11.16 = gallon(s) 6" 1.469 Well Security Good Fair Poor Well Integrity Locked? Good Fair Poor Yes No Product? None Free Floating Sheen Film Thickness (ft) Odor? YES Purge Record PURGE RECORD Reference: ✓ Top of Casing Other Temp (°C) Time pН Conductivity (S/m) DO (mg/L) ORP (mEV) Turbidity (NTU) DTW (ft) ±0.2 obs ±3% ±10% or ±0.2 obs obs 1348 18.74 7.4 18.5 10.15 -50.3 26.2 1400 17.59 8.36 17.9 10.8 11.4 7.17 1412 17.31 8.45 17.6 10.92 17.9 8.36 Continued on reverse Sample No. Time Quantitiy Volume Туре Preserv. Filtration Analysis Lab SAMPLE LOG **MW-1** 1424 Other Observations: MISC

Well Locked?

✓ Yes

No

Final Check: VOAs free of bubbles?

NA

No

✓ Yes

700 Independent Road

54504

MONITORING WELL SAMPLING LOG

Well No.: MW-2

Sheet 1 of 1

Project No.:
Weather

Date:

Project:

Completed by: Nathan Berner

Date: 6/30/2009

	Purging Eqpt:	Ba	ailer 🗌 Disp	osable Bailer] Bladder Pun	np S	ubmersible Pump	Peristaltic	: Pump	Other
NO	Sampling Eqpt	Ba	ailer Disp	osable Bailer] Bladder Pun		ubmersible Pump	Peristaltic		Other
NAT	Test Equipment	1	Wa	ter Level		Water Qua	ality Meter				
MM	Meter No.		SC	DLINST		Horiba (
Ê	Calibration Date/		<u>.</u>	**************************************							
DECONTAMINATION	Decontaminatio Methods	n	: : \	Wash		Rins	se 1	Rinse	e 2	R	inse 3
8 D	TSP		ΠDI	Steam			Steam		Steam		Steam
Ę	Alconox			Hot			Hot		Hot		Hot
M	Other		Other	8		Other		Other	Cool		8
EQUIPMENT	Volume (gal)			N/A							
Ш Ш	Source										
	Decon. Notes	1									
	Purge Volume (C	V)	TD	– DTW	х	Factor		1 CV	3 C'	V	
		2"			/	0.175					
	Well Diameter	4" 6"	18.95		_ X	0.663 1.469	=	2.54	7.62	gal	lon(s)
						1.409					
	Well Security	✓ Good	Fair	Poor	Wel	I Integrity	Good	Fair Poo	r Locked?	✓ Yes	No
		· ~					[-] 0004		LOGACO.	U les	
	Product?			ing Chao	- L]		Thickness (ft)	Odor2		
٥		lone 🗌 F	Free Float	ting Shee	n [] Film		_ Thickness (ft)	Odor?		
CORD	Product? \checkmark N Purge Record Reference:		Free Float		<u>n</u>] Film		_ Thickness (ft)	Odor?		
ERECORD	Purge Record Reference:					Other	DO (mg/L)	_ Thickness (ft)	· ·	TU)	DTW (ft)
RGE RECORD	Purge Record Reference:		✓ Top of Ca	nsing Conduc		Other	DO (mg/L) ±10% or ±0.2) ORP (mEV)	Odor? Turbidity (N	TU)	DTW (ft)
PURGE RECORD	Purge Record Reference: Time	Temp (°C)	✓ Top of Ca pH	ising Conduc	tivity	Other	CONTRACTOR AND A DESCRIPTION OF A DESCRI) ORP (mEV)	Turbidity (N	TU)	DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500	Temp (°C) obs	Top of Ca pH	rsing Conduc	tivity ±3%	Other	±10% or ±0.2) ORP (mEV) 2 obs	Turbidity (N	TU)	 DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500 1510	Temp (°C) obs 16.99	✓ Top of Ca pH ±0.2 5.6	ising Conduc	tivity ≇3% 8.17	Other	±10% or ±0.2 9.34) ORP (mEV) 2 obs 143.6	Turbidity (N obs 867	TU)	DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500 1510	Temp (°C) olis 16.99 16.96	 ✓ Top of Ca pH ±0.2 5.6 5.55 	ising Conduc	±3% 8.17 8.17	Other	±10% or ±0.2 9.34 8.78) ORP (mEV) 2 obs 143.6 152.2	Turbidity (N obs 867 120.7	TU)	 DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500 1510	Temp (°C) olis 16.99 16.96	 ✓ Top of Ca pH ±0.2 5.6 5.55 	ising Conduc	±3% 8.17 8.17	Other	±10% or ±0.2 9.34 8.78) ORP (mEV) 2 obs 143.6 152.2	Turbidity (N obs 867 120.7	TU)	DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500 1510	Temp (°C) olis 16.99 16.96	 ✓ Top of Ca pH ±0.2 5.6 5.55 	ising Conduc	±3% 8.17 8.17	Other	±10% or ±0.2 9.34 8.78) ORP (mEV) 2 obs 143.6 152.2	Turbidity (N obs 867 120.7	TU)	DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500 1510	Temp (°C) olis 16.99 16.96	 ✓ Top of Ca pH ±0.2 5.6 5.55 	ising Conduc	±3% 8.17 8.17	Other	±10% or ±0.2 9.34 8.78) ORP (mEV) 2 obs 143.6 152.2	Turbidity (N obs 867 120.7	TU)	DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500 1510	Temp (°C) olis 16.99 16.96	 ✓ Top of Ca pH ±0.2 5.6 5.55 	ising Conduc	±3% 8.17 8.17	Other	±10% or ±0.2 9.34 8.78) ORP (mEV) 2 obs 143.6 152.2	Turbidity (N obs 867 120.7	TU)	DTW (ft)
PURGE RECORD	Purge Record Reference: Time 1500 1510	Temp (°C) olis 16.99 16.96	✓ Top of Ca pH ±0.2 5.6 5.55 5.59	ising Conduc	2tivity £3% 8.17 8.17 8.69	Other	±10% or ±0.2 9.34 8.78) ORP (mEV) 2 obs 143.6 152.2	Turbidity (N obs 867 120.7	TU)	DTW (ft)
	Purge Record Reference: Time 1500 1510	Temp (°C) olis 16.99 16.96	✓ Top of Ca pH ±0.2 5.6 5.55 5.59	Ising	2tivity £3% 8.17 8.17 8.69	Other (S/m)	±10% or ±0.4 9.34 8.78 8.82) ORP (mEV) 2 005 143.6 152.2 159	Turbidity (N obs 867 120.7 96.7		
	Purge Record Reference: Time 1500 1510 1520	Temp (°C) ous 16.99 16.96 16.95	✓ Top of Ca pH r0.2 5.6 5.55 5.59	Ising Conduc 1 1 1 1 1 1 1 2 20ntinued on re	2tivity £3% 8.17 8.17 8.69	Other	±10% or ±0.2 9.34 8.78) ORP (mEV) 2 005 143.6 152.2 159	Turbidity (N obs 867 120.7		DTW (ft)
	Purge Record Reference: Time 1500 1510 1520 Sample No.	Temp (°C) ous 16.99 16.96 16.95	✓ Top of Ca pH r0.2 5.6 5.55 5.59	Ising Conduc 1 1 1 1 1 1 1 2 20ntinued on re	2tivity £3% 8.17 8.17 8.69	Other (S/m)	±10% or ±0.4 9.34 8.78 8.82) ORP (mEV) 2 005 143.6 152.2 159	Turbidity (N obs 867 120.7 96.7		
AMPLE LOG	Purge Record Reference: Time 1500 1510 1520 Sample No. MW-2	Temp (°C) ous 16.99 16.95 16.95 16.95 Time 1530	✓ Top of Ca pH r0.2 5.6 5.55 5.59	Ising Conduc 1 1 1 1 1 1 1 2 20ntinued on re	2tivity £3% 8.17 8.17 8.69	Other (S/m)	±10% or ±0.4 9.34 8.78 8.82) ORP (mEV) 2 005 143.6 152.2 159	Turbidity (N obs 867 120.7 96.7		

 Other Observations:
 opaque, tan to brown color, has an odor like the injected ferrous iron catalyst

 Final Check:
 VOAs free of bubbles?

MW-2 log 063009

Revised June 2008

700 Independent Road

Bailer

] Bailer

 \square

54504

MONITORING WELL SAMPLING LOG

Well No.: MW-3

Sheet 1 of 1

Other

Other

Steam

Hot

] Cool

Project:
Project No.:
Weather

Purging Eqpt:

Sampling Eqpt

Test Equipment Meter No.

TSP

Other

Alconox

Calibration Date/Time Decontamination Methods

Date:

PMENT & DECONTAMINATION

Completed by: Nathan Berner

Date: 6/30/2009

Disposable Bailer [Bladder Pump Subr	nersible Pump 🗹 Peristaltio	: Pump Ot
] Disposable Bailer [Bladder Pump	nersible Pump 🗹 Peristaltic	: Pump Ot
Water Level SOLINST	Water Quality Meter Horiba U-22XD		
Wash	Rinse 1	Rinse 2	Rinse 3
DI Steam Tap Hot Other Cool	DI Steam Tap Hot Other Cool	DI Steam Tap Hot Other Cool	DI [] Tap [] Other []
N/A			

EQU	Volume (gal)		:	N/A		-				
ш	Source		-							
	Decon. Notes		-							
	Purge Volume (C	:V)	TD	- DT\	N X	Factor	=	1 CV	3 CV	
		2"				0.175				
	Well Diameter	4" 6"	21.6	: <u>5.97</u>	X	0.663	=	2.81	8.43	_gallon(s)
			,				***		<u> </u>	
	Well Security	Good	Fair	Poor	Well	Integrity	⊡ Good [Fair Poor	Locked?	s 🗌 No
2	Product?	lone 🗌 l	Free 🗌 Floa	ting 🔲 S	heen 🗌	Film		Thickness (ft)	Odor?	
RD	Purge Record									
RECO	Reference:		Top of Ca	asing	[Other				
	Time	Temp (°C)		Cor	ductivity (DO (mg/L)	ORP (mEV)	Turbidity (NTU)	DTW (ft)
PURGE		obs	±0.2		±3%		±10% or ±0.2	obs	obs	
3	1125	22.34	6.94		84.12		0.81	12.8	90.7	
	1135	21.86	6.87		83.5		0.55	16.4	31.3	
	1145	21.56	6.89		82.99		0.51	21.7	16.9	1 1
		1						-	<u>, 19</u>	
						i				
			- 			•		-		1

Continued on reverse

	Sample No.	Time	Quantitiy	Volume	Ту	pe	Preserv.	Filtration	An	alysis	1	Lab
0 0	MW-3	1155			1			:				
Ц Ш												
											······································	
AMP			1					-				
õ												
		1		·		1						
	Other Observati	ions:										
SO												
Σ												
	Final Check:	VOAs free o	of bubbles?	✓ Yes	No			Well Locked?	✓ Yes	No	NA NA	

6/29/2009

MONITORING WELL SAMPLING LOG

Well No.: MW-4

Sheet <u>1</u> of <u>1</u>

Project:	700 Independent Road
Project No.:	54504
Weather	

Date:

Completed by: Nathan Berner

Date: 6/29/2009

Purging Eqpt	: 🗌 Ba	ailer 🗌 Dispo	sable Bailer		Bladder Pur	np Sut	omersible Pump	✓ Peristaltic	Pump	Other	
Sampling Eq	ot 🛛 Ba	ailer 🗌 Dispo	sable Bailer		Bladder Pur		omersible Pump	Peristaltic		Other	
Y Test Equipme	ent	Wate	r Level		Water Quality Meter						
Meter No.		SOL	INST		Horiba U-22XD						
Calibration Dat	te/Time	1					;				
Content of the second s	tion	w.	ash		Rinse 1 Rinse			se 2	e 2 Rinse 3		
a TSP	1	DI	Steam		DI	Steam	DI	Steam		Steam	
		Тар	Hot		Пар	Hot	Тар	Hot		Hot	
Dither		Other	Cool		Other	Cool	Other	Cool	Othe		
Alconox Alconox Conter Volume (gal) Source		N	I/A								
		· · · · · · · · · · · · · · · · · · ·									
Decon. Notes		······									
Purge Volume	(CV)	TD -	– DTW	X	Factor	=	1 CV	3 CV			
Well Diameter	2* 4"	24.5		x	0.175 0.663	. =	3.44	10.32	gal	lon(s)	
	6"				1.469			1			
Well Security	Good	Fair P	oor	Well	Integrity	✓ Good	Fair Poo	or Locked?	√ Yes	No	
Product?	None	- ree 🗌 Floatir	ng 🗌 Shee	nП	Film		Thickness (ft)	Odor?	- Contraction of the second second second		
Purge Record											
Reference:		✓ Top of Casi	ing		Other				```		
Reference: Time 1040	Temp (°C) obs	рН ±0.2	Conduc	tivity (3 ±3%	S/m)	DO (mg/L) ±10% or ±0.2	ORP (mEV)	Turbidity (NT obs	Ū)	DTW (ft)	
1040	18.79	6.73	2	3.87		0.33	-149.9	6.58			
1050	18.78	6.78	2	5.49		0.29	-185	5.38			
1100	18.78	6.64	2	6.19		0.28	-194.2	4.72			
· · · · · · · · · · · · · · · · · · ·								-			
	· ·				• .						
									· · · · · · · · · · · · · · · ·		
			ntinued on r	everse	•						
Sample No.	Time	Quantitiy	Volume	;	Гуре	Preserv.	Filtration	Analysi	·····	Lah	
901 MW-4	1110							Anaiysi		Lab	
ц П											
<u>z</u>		· · · · · · · · · · · · · · · · · · ·									
NA											
				†							
Other Observa	ations:						<u> </u>				

MW-4 log 062909

VOAs free of bubbles?

Yes

🗌 No

-

Well Locked?

[√] Yes

No No

Final Check:

MISC

700 Independent Road

54504

MONITORING WELL SAMPLING LOG

Well No.: MW-5

.

Sheet 1 of 1

Project:
Project No.:
Weather

Date:

Completed by: Nathan Berner

Date: 6/30/2009

	Purging Eqpt:		Bailer	D	isposable Bailer	· [] Bladder Pu	imp [Sub	mersible Pump	Peristaltic	: Pump	Other
& DECONTAMINATION	Sampling Eqpt		Bailer	D	isposable Bailer		Bladder Pu		Sub	mersible Pump	Peristaltic		Other
LAN	Test Equipment			N	/ater Level		Water Qu	Jality M	eter	:	······	-	
AMI	Meter No.				SOLINST		And a summariant state and the summariant states and the summariant st	Horiba U-22XD					
Ę	Calibration Date/Time)											
00	Decontamination Methods				Wash	Rinse 1			Dise	•	Direct 0		
ä	TSP									Rinse		Rinse 3	
				Taj	_		DI Tap		eam		_ Steam _ Hot		= 1
MEN	Other						Other	-		Other			ther Cool
EQUIPMENT	Volume (gal)	•			N/A			<u> </u>					
Щ С	Source												
	Decon. Notes			**************************************									
	Purge Volume (CV)			TD	– DTW	х	Factor	-	=	1 CV	3 C'	V	1
		~~										-	
	Well Diameter	2" 4"	27.	60	- 5.62	x	0.175 0.663		_	2.07	14.0		
	Wen Didificiel	- - 6"	_21.	<u>03</u>		_ ^	1.469		=	3.97	11.9	٩	gallon(s)
	Well Security	Goo	d 🗌 F	air [Poor	We	II Integrity	VG	bood	Fair Poor	Locked?	✓ Yes	No
	Product? None	<u>гоос</u> Г	Free		bating She					Thickness (ft)	Odor?	U les	
0	Purge Record		Irree			en L				mickness (ii)			
RECORD	Reference:		गि	op of	Casing		Other _						
REC	Time Ten	n /º(00/					
Ш С	Time Ten	np (°(obs		рН ±0.2	Condu	211VII) 23%	/ (S/m)	DO (r ±10% d		ORP (mEV)	Turbidity (N obs	10)	DTW (ft)
PURGE	1000 19.2		1	6.99		52.48		0.4		-122.6	21.8		
д.	1011 19.2			6.97		52.62		0.3		-122.2	43.7		
	1022 19.2			6.99		52.71	······	0.3					
	1022 13.2			5.55		52.71		0	00	-124	17.1		
		- <u></u>											
										:	ι		
		<u></u>			Continued on	rever	se			· · · · · · · · · · · · · · · · · · ·			
Ø		ime		antitiy	Volume		Туре	Pres	erv.	Filtration	Analys	sis	Lab
LOG	MW-5	103	34							· · · · · · · · · · · · · · · · · · ·			
SAMPLE										· 			
AMF													
Ś													
					:							•	<u>i</u>
	Other Observations:		-								· · · · · · · · · · · · · · · · · · ·		
0													
MISC													
A													
	Final Check: VO/	As fre	e of bub	bles?	✓ Yes					Well Locked?	√Yes [No	
	MW-5 log 063009							`		· · · · · · · · · · · · · · · · · · ·			Revised June 2008

		1	1	UNIFIED SC	DIL C	LASS	IFICATIO	N S	YS	TĘ	Μ	
MAJO	R DIVISIONS	LTR	ID	DESCRIPTION		MAJ	OR DIVISIONS	LTR		ID	DESCRIPTIC	NC
		GW		Well-graded gravels or gravel with san little or no fines.	ınd,			ML			Inorganic silts and very fine sands, silts with slight plasticity.	rock flour or clayey
	GRAVEL AND GRAVELLY	GP	0000	Poorly-graded gravels or gravel with s little or no fines.	sand,		SILTS AND CLAYS	CL			Inorganic lean clays of low to media clays, sandy clays, silty clays.	um plasticity, gravell
		GM	000	Silty gravels, silty gravel with sand mit	ixture.	FINE	OLATS	OL			Organic silts and organic silt-clays	of low plasticity.
COARSE GRAINED		GC	9 6 6 10 9 6 19 9 6 19	Clayey gravels, clayey gravel with sar	nd mixture.	GRAINED		мн			Inorganic elastic silts, micaceous c or silty soils.	or diatomaceous
SOILS		sw		Well-graded sands or gravelly sands, no fines.	little or		SILTS AND	СН			Inorganic fat clays (high plasticity)	
	SAND AND	SP		Poorly-graded sands or gravelly sand or no fines.	ls, little		CLAYS	он			Organic clays of medium high to h	ich plasticity
	SANDY	SM		Silty sand.								
		SC		Clayey sand.	HIGHLY C		RGANIC SOILS	Pt	<u>// //</u>	<u>'/</u> `	Peat and other highly organic soils	5.
		-		Direct Push Sample				Blar	nk ca	asi	ng	
				Discrete Soil Sample, 1.12 in. I.D.	er,			Scre	ene	əd	casing	
				alifornia Sampler, ., 2 in. I.D.			Cement grout			out		
		Calif	ornia S	Sampler, 3.0 in. dia.				Ben	toni	te		
		Shel	by Tub	e 3.0 inch O.D.				Sand pack or gravel pack				
								S	harp	o C	contact (observed)	
OVA	Organi	c Vap	oor An	alyzer				_ In	ferr	ed	Contact (contact n	ot observ
PID				ors (parts per million) oto-ionization device				Gradational Contract (observed)				
	Tatalo				n)			Water level observed in boring Stabilized water level				
FID				ors (parts per million) me-ionization device			Ţ					
NA	Not Ap	plicat	ole		NFWE No free water encounter				vater encountered			
Notes:				e number of blows a 140- 8 inch penetration.	pound	hammer f	alling 30 inche	es requ	iired	to c	Irive a sampler through	
	No warrant	y is pro	ovided a	a on the logs represent a is to the continuity of soil date of drilling only.	ipproxir strata l	mate boun between b	daries only. 1 orings. Logs	The act represe	tual t ent th	ran ne s	sition may be gradual. soil section observed at	
	laboratory t	tests.	Qualitat	f cohesive soils are based ive soil plasticity is noted ation of soils.								
					BC	RING	LOG LE	GEN	D			PLATE
				DER Int Solutions.								
		1				ENDENT ROAD	ND				C -1	

PROJECT NO.

54504-5A

700 INDEPENDENT ROAD OAKLAND, CALIFORNIA

Date	e Complete	ed <u>: 5/26/0</u>	9			Drilling method: Fisch Drilling	
Log	ged By:	N. Ber	ner			Direct Push	
Tota	al Depth:	25.0 ft				Hammer Wt: <u>None</u> Notes:	
Depth (feet)	Sample Number	Sample Type Blows/Foot	Recovery (%)	OVA (ppm) PID	USCS	Description	Remarks
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2PS-1-10		60 0 100	0.0 101 150 71.2 2.6 0.0		ASPHALT CONCRETE - approximately 4-inches thick AGGREGATE BASEROCK - approximately 6-inches thick SANDY CLAY (CL) - brown, moist, medium stiff, medium plasticity NO RECOVERY SILTY CLAY (CL) - dark brown, moist, medium stiff, medium plasticity, odor, discoloration - no odor	
14 - 15 - 16 - 17 - 18 - 19 - 20- 21 -	2PS-1-20	×	100	0.0		SANDY CLAY (CL) - moist, medium stiff, medium plasticity SAND (SP) - brown, wet, medium dense, coarse grained sand	
22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 -						SILTY CLAY (CL) - brown, medium stiff, medium plasticity Boring terminated at approx. 25 feet below ground surface. Backfilled with neat cement grout.	
50							
	(ELDE		EOP - INDEPENDENT ROAD 700 INDEPENDENT ROAD	PLATE C-1

OAKLAND, CALIFORNIA

L:\2009\09PROJECTS\54504\54504-9.GPJ

PROJECT NO.

54504-5A

8/26/2009 2:20:06 PM

Date Comp	leted:	5/26/09					Drilling method:	Fisch Drilling	
Logged By	_	N. Berne	er					Direct Push	
Total Deptl		25.0 ft					Hammer Wt: Notes:	None	
Depth (feet) Sample Numher	Sample Type	Blows/Foot	Recovery (%)	OVA (ppm) PID	USCS		Desc	ription	Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 X		100	0.0 0.0 7.6 432 810 797 1027 72.3 1071 648 124 14.7 1327 1498 1423 1365 1208 1320 120 78.3 24.6		SILTY CLAY SAND (SC) - e odor, discolo - strong SANDY CLAY discoloration - strong odor, - with gravel SANDY CLAY plasticity, odd SANDY CLAY plasticity, odd CLAYEY SAN plasticity, odd SANDY CLAY plasticity, odd	pNCRETE - approx (CL) - brown, moist gray, moist, dense r (CL) - dark brown discolor (CL) - brown, mo (CL) - stiff, media (CL) - dark brown or ID (SC) - brown, mo or (CL) - brown, mo or	imately 4-inches thick t, stiff, medium plasticity , coarse grained sand, n, stiff, medium plasticity, ist, stiff, medium m plasticity, discolor, n, moist, stiff, medium ioist, stiff, medium ttling color, stiff, medium feet below ground surface.	Remarks

	LOG OF BORING NO. 2PS-2	PLATE	M
KLEINFELDER Bright People. Right Solutions.	EOP - INDEPENDENT ROAD 700 INDEPENDENT ROAD	C-2	009 2:20:07
PROJECT NO. 54504-5A	OAKLAND, CALIFORNIA		8/26/2

L:\2009\09PROJECTS\54504\54504-9.GPJ

l

Date	e Complete	ed:	5/26/09					Drilling method:	Fisch Drilling		
Log	ged By:		N. Berner	r					Direct Push		
Tota	al Depth:		25.0 ft					Hammer Wt: . Notes:	None		
1018	a Depui.							10183.			
eet)		Sample Type	oot	Recovery (%)	(m						
Depth (feet)	Sample Number	mple	Blows/Foot	covei	OVA (ppm) PID	USCS					
De	Sa Nu	Sa	BIG		NO 11	S			ription	F	Remarks
1 -				80		$\frac{2}{2}$			mately 2-inches thick	-	
2 -					0		thick		SC)- yellow, mottling,		
3 -					0	\square	moist, dense, c	oarse grained sa	and, pebble size gravel,		
4 -				100	0.0						
5 —											
6 -					0	$\langle \rangle \rangle$					
7 -					0		SANDY CLAY (CL) - gray, moist	, medium stiff, medium	-	
8 -				80	14.1		plasticity, odor - approximately 2	2-inches thick of	concrete		
9 -	2PS-3-10	\bowtie			352.1		- approximately 4 SILTY CLAY (CI		baserock	-	
10					98.7		plasticity, odor,	discoloration	,,		
11 -					52						
12 - 13 -				100							
13					330						
15 -					100						
16 -					60						
17 -					268						
18 -					255						
19 -					270						
20	2PS-3-20	\boxtimes			560						
21 -	2PS-3-21	\boxtimes			1032						
22 -					200						
23 -					100		SAND (SP) - bro	wn, moist, loose	e, coarse grained sand	1	
24 -											
25 -							Boring terminate Backfilled with ne	d at approx. 25 f	eet below ground surface.	1	
26 - 27 -								sat coment groui			
27 -											
28 29 -											
30											
							LC	G OF BO	RING NO. 2PS-3		PLATE
	(ĸ	LEIN	JF	ELDE	R					
	1				e. Right Solu			P - INDEPENDE			C-3
PROJ	IECT NO.		5450	4-5A							J -J

8/26/2009 2:20:07 PM

Dat	e Complete	ed <u>: 6/</u>	29/09					Drilling method:			
Log	iged By:	_ N .	. Berne	r					Direct Push		
	al Depth:	25	5.0 ft					Hammer Wt: . Notes:	None		
			5.0 M					Notes			
set)		Type	oot	(%)	(E						
Depth (feet)	Sample Number	Sample Type	Blows/Foot	Recovery (%)	OVA (ppm) PID	USCS					
De	Sai Nui	Sai	Blo		NO DIG	SU			iption		Remarks
1 ·	_			100		•		CONCRETE - approxi GRAVEL (SW)	mately 4-inches thick	-	
2 ·											
3 -							SILTY CLA plasticity	Y (CL) - gray, moist, I	medium stiff, medium		
					19		soft				
4 ·				100	75	211	CLAYEY G	RAVEL (GW) - coarse			
5 -					90		SILTY CLA	Y (CL) - gray, soft, high	gh plasticity, wood		
6 ·											
7 -	-										
8 -	-			100	1587						
9 -	2PS-1A-10				1742						
10	2F3-1A-10				0						
11 ·	-				0						
12 -	-			100	0		SILTY CLA	Y (CL) - brown, moist	, stiff, high plasticity	-	
13 -	_				0			-			
14 ·	-						with gravel,	fine			
15 -	-				0						
16 ·	-			100	0						
17 -	-				0		CLAYEY S	AND (SP) - brown, mo	ottling, loose		
18 ·	-				Ũ						
19 -	-				0			hrown wat loopo	action are included	_	
20	-			100	0		5AND (5P)	- brown, wet, loose, o	coarse grained sand		$\overline{\Delta}$
21 -	-			100	0					_	
22 -	_				0		SANDY CL plasticity,	.AY (CL) - light brown mottling	moist, stiff, high		
23 -					0						
23 24 ·					0						
24 25 -					0						
23 - 26 ·							Boring term Backfilled w	ninated at approx. 25 f vith neat cement grout	eet below ground surface.		
								section group			
27 ·											
28 -											
29 -	-										
30—	1	<u> </u>				<u> </u>				1	
										•	
	/							LOG OF BO	RING NO. 2PS-1	Α	PLATE
	(KL			ELDI						
			Brigh	nt Peopl	e. Right Soli	utions.		EOP - INDEPENDE			C-4
PRO	JECT NO.		5450)4-5A				700 INDEPENDENT OAKLAND, CALIFO			C-4

L:\2009\09PROJECTS\54504\54504-9.GPJ

700 INDEPENDENT ROAD OAKLAND, CALIFORNIA

Date	e Complete	ed <u>:</u> (6/29/09					Drilling method:	Fisch Drilling		
Log	ged By:		N. Berne	r					Direct Push		
			25.0 ft					Hammer Wt:	None		
l Ota	al Depth:	<u>'</u>	23.0 11					Notes:			
eet)		Sample Type	oot	Recovery (%)	(m						
Depth (feet)	Sample Number	nple	Blows/Foot	cover	OVA (ppm) PID	S					
Dep	Sar Nur	Sar	Blo		DID	NSCS		Desci			Remarks
1 -				75		0 0 0 0 0			mately 6-inches thick oximately 4-inches thick,	-	
2 -					0	000	tan, fine g	rained sand, coarse g	ravel		
					0						
3 -					0	0.0	SILTY CLA	Y (CL) - gray, moist,	soft, high plasticity	-	
				75	84			, (, g.c.),, .			
5 -					357						
6 - 7 -	2PS-2A-7				9999		- moist. soft	, strong odor			
							,	,			
8 -				100							
9 - 10					9999						
	2PS-2A-11	\ge			9999						
11 -					1371						
12 -				100	9999						
13 -					9999						
14 -	2PS-2A-15	\ge			9999						
15 -	2. 0 2.1 10	\square									
16 - 17 -				100	5827		CLAYEY Sa strong odd	AND (SP) - brown, mo or	bist, loose, discolor,		
18 -					9999		SAND (SW odor) - brown, wet, loose,	coarse grained sand,		$\overline{\Delta}$
19 -					9999		CLAYEY S			_	
20				100			CLATET 5				
21 -		\square			9999						
22 -					2150		SANDY CI	AY (CL) - brown, stiff	medium plasticity	4	
23 -					8365		discolor, s	trong odor	modum plasticity,		
24 -					2285						
25 —							Boring torm	inated at approx 25 f	eat below ground surface	4	
26 -							Backfilled w	vith neat cement grout	eet below ground surface.		
27 -											
28 -											
29 -											
30											
1								LOG OF BO	RING NO. 2PS-2	2A	PLATE .
	ſ	Ľ				-0					C-5
		~			e. Right Solu			EOP - INDEPENDE	NT ROAD		
	`							700 INDEPENDENT	ROAD		C-5
PROJ	IECT NO.		5450)4-5A				OAKLAND, CALIFO	RNIA		J

L:\2009\09PROJECTS\54504\54504-9.GPJ

Date Completed: 6/29/09			Drilling method: Fisch Drilling	
Logged By: N. Berne	r		Direct Push	
			Hammer Wt: None	
Total Depth: 25.0 ft		1 1	Notes:	
Depth (feet) Sample Number Sample Type Blows/Foot	Recovery (%) OVA (ppm) PID	N N N N N N N N N N N N N N N N N N N	Description	Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80 0 80 0 80 12 120 175 100 175 120 280 100 1064 973 2100 2410 723 100 2410 723 4130 107 39 397 207 1069 3450 100 3450 9990 9999	AGGREGA thick CLAYEY SA grained sau SANDY CLA low plastici SILTY CLA discolor, oc - approximat - stiff - strong odo - brown, stiff SAND (SP) very strong Boring termi	tely 4-inches thick of concrete r f, discoloration, odor - brown, moist, loose, coarse grained sand,	
28 - 29 - 30 -				
\frown			LOG OF BORING NO. 2PS-	3A PLATE
	IFELDE t People. Right Solu 4-5A	TR tions.	EOP - INDEPENDENT ROAD 700 INDEPENDENT ROAD OAKLAND, CALIFORNIA	C-6

L:\2009\09PROJECTS\54504\54504-9.GPJ

8/26/2009 2:20:07 PM

APPENDIX D

ISOTEC'S IN-SITU CHEMICAL OXIDATION REMEDIATION REPORT

IN-SITU CHEMICAL OXIDATION REMEDIATION PROGRAM REPORT

SITE:

700 INDEPENDENT ROAD Oakland, California

JULY 2009

PREPARED FOR

KLEINFELDER 1970 BROADWAY, SUITE 710 OAKLAND, CALIFORNIA 94612

PROJECT # 900949

PREPARED BY:

IN-SITU OXIDATIVE TECHNOLOGIES, INC. 6452 Fig Street, Suite C Arvada, Colorado 80004

WWW.INSITUOXIDATION.COM

TABLE OF CONTENTS

Section

Title

Page

1.0	INTRODUCTION	
	1.1 PROJECT BACKGROUND AND SITE CONDITIONS	
	1.2 ISCO REMEDIATION PROGRAM OBJECTIVES	
2.0	THE ISOTEC PROCESS	
	2.1 Aqueous Contact	
	2.2 MASS PHASE CHANGES	
3.0	ISCO REMEDIATION PROGRAM	
	3.1 ISCO REMEDIATION PROGRAM FIELD METHODS	
	3.2 FIRST INJECTION EVENT FIELD ACTIVITIES	
	3.2.1 FIELD MONITORING DATA	
	3.3 SECOND INJECTION EVENT FIELD ACTIVITIES	
	3.4 FIELD ACTIVITIES SUMMARY	
4.0	ISCO REMEDIATION PROGRAM ANALYTICAL RESULTS	
	4.1 Soil	
	4.1.1 TOTAL PETROLEUM HYDROCARBONS AS GASOLINE	
	4.1.2 BENZENE	
	4.2 GROUNDWATER	
	4.2.1 TOTAL PETROLEUM HYDROCARBONS AS GASOLINE	
	4.2.2 BENZENE	
5.0	CONCLUSIONS	
	5.1 EFFECTIVENESS OF THE ISOTEC PROCESS	
	5.2 Recommendations	

LIST OF FIGURES

FIGURE 1	
FIGURE 2	DIRECT-PUSH INJECTION SCREEN SCHEMATIC
FIGURE 3	Injection Location Map

LIST OF TABLES

TABLE 1	
TABLE 2	First Event Field Monitoring Data
TABLE 3	
TABLE 4	
TABLE 5	BENZENE SOIL CONCENTRATIONS WITH PERCENT REDUCTIONS
TABLE 6	TPH-G GROUNDWATER CONCENTRATIONS WITH PERCENT REDUCTIONS
TABLE 7	BENZENE GROUNDWATER CONCENTRATIONS WITH PERCENT REDUCTIONS

1.0 INTRODUCTION

In-Situ Oxidative Technologies, Inc. (ISOTEC) was retained by Kleinfelder to conduct an in-situ chemical oxidation (ISCO) remediation program using modified Fenton's Reagent (ISOTEC Process) on saturated soil and groundwater contamination at a warehouse located at 700 Independent Road (the Site), in Oakland, California.

This ISCO Remediation Program Report contains details of ISOTEC's field activities associated with the injection of ISOTEC reagents. Reagents were injected in order to treat benzene, toluene, ethylbenzene, xylenes and total petroleum hydrocarbons as gasoline (TPH-g) through the use of in-situ chemical oxidation. The field activities conducted by ISOTEC to date occurred during two injection events conducted from December 9th through 12th, 2008 and May 27th through June 4th, 2009.

1.1 PROJECT BACKGROUND AND SITE CONDITIONS

According to information provided by Kleinfelder, petroleum hydrocarbons impacted soil and groundwater are present at the Site. Maximum saturated soil concentrations at the Site prior to initiating the ISCO remediation program were reported at 16 milligrams per kilogram (mg/kg) for benzene and 1,500 mg/kg for TPH-g. Maximum dissolved phase concentrations at the Site prior to injection activities were reported at 20,500 micrograms per liter (μ g/L) for benzene and 53,000 μ g/L for TPH-g.

The treatment area at the Site is located northwest of the Site building and covers approximately 5,500 square feet encompassing monitoring wells MW-1, MW-2, and MW-3 (**Figure 1**). The depth to groundwater at the Site is approximately 4 to 5 feet below ground surface (bgs). The subsurface soils are described as predominantly interbedded sand, silt, clay, and gravel. The target treatment interval for the saturated zone is from approximately 9 feet bgs to a depth of approximately 25 feet bgs.

1.2 ISCO REMEDIATION PROGRAM OBJECTIVES

According to Kleinfelder, the objective of the ISCO remediation program is to reduce the soil and groundwater concentrations to below the San Francisco Water Quality Control Board environmental screening levels (ESLs) for commercial/industrial properties. The ESLs for groundwater are 5,000 μ g/L for TPH-g and 540 μ g/L for benzene. The saturated soil ESLs for TPH-g are 450 mg/kg in the shallow soils (8 to 11 feet bgs) and 4,200 mg/kg in the deep soils (18 to 25 feet bgs). The saturated soil ESLs for benzene are 0.26 mg/kg in the shallow soils and 11 mg/kg in the deep soils.

To achieve these specific goals, ISOTEC estimated that three separate injection applications, and one possible "hot spot" event, would be required to reduce the COCs to the Kleinfelder project goals.

2.0 THE ISOTEC PROCESS

The ISOTEC process is an in-situ remedial technology that destroys organic contamination using Fenton's reagent-based oxidation chemistry. Fenton's chemistry was first documented by H.J.H. Fenton in 1894. It is characterized by the combination of soluble iron with low concentrations of hydrogen peroxide to produce hydroxyl radicals (OH[•]). These hydroxyl radicals are very powerful and short-lived oxidizers. Similar to the reaction of other oxidizers, the hydroxyl radicals attack the carbon double bonds of the chlorinated hydrocarbon molecule. Under certain conditions reductive species can also be formed by Fenton's chemistry. This gives Fenton's reagent two separate pathways to attack a wide range of contaminants. The summary equation for Fenton's chemistry is shown below.

$Fe^{+2} + H_2O_2 \rightarrow Fe^{+3} + OH^- + OH^-$

Where H_2O_2 is hydrogen peroxide, Fe^{+2} is ferrous iron, Fe^{+3} is ferric iron, OH^{\bullet} is hydroxyl free radical and OH^{-} is hydroxide ion.

Iron is used to catalyze the reaction. Maintaining iron in solution is important for the process to be successful in an in-situ application. To eliminate the necessity of performing the reaction under low pH conditions, as is the case with traditional Fenton's chemistry, complexed iron is used in in-situ applications via the ISOTEC process. The hydrogen peroxide and dissolved iron solutions are injected through a site-specific delivery system providing sufficient distribution to selectively treat the area of concern. Reaction time is very fast, with oxidation capacity of the reagent being used up in a matter of a few days. Hydrogen peroxide breaks down into water and oxygen and the iron catalyst is oxidized and precipitates out of solution. It is important to note that the concentration of hydrogen peroxide will be relatively dilute, generally less than 17%, which eliminates the potential for significant exothermic reactions that are associated with higher concentrations of hydrogen peroxide. Experience with this process using low hydrogen peroxide concentrations.

Fenton-based oxidation processes have been shown to effectively treat a wide range of contaminants including hard-to-treat compounds such as chlorinated solvents, petroleum hydrocarbons, gasoline additives including benzene, toluene, ethylbenzene and xylene (BTEX), and pesticides. Hydroxyl radicals and reductive species generated by the Fenton-based reagent will treat nearly all contaminants with carbon/carbon double bonds (i.e., dichloroethene and tetrachloroethene) and single bonded contaminants with extractable hydrogen (i.e., trichloroethane).

The ISOTEC process consists of injecting stabilized hydrogen peroxide and complexed iron catalysts into contaminated aquifers or vadose zones. As compared to conventional Fenton's Reagent, which requires acidic conditions ($pH \le 3$), the ISOTEC process is effective at neutral (pH = 7) conditions. This is an important consideration in full-scale application since acidifying an aquifer is typically impractical. ISOTEC's oxidation

method utilizes a site-specific delivery system(s) designed to treat organic contaminants within an area of concern. ISOTEC oxidants and catalysts generate hydroxyl radicals, which react with the organic contaminants within the subsurface producing innocuous by-products such as carbon dioxide and water (and chloride ions if chlorinated compounds are being treated).

2.1 AQUEOUS CONTACT

The overwhelming portion of the oxidation process occurs in the aqueous phase. Contaminant dissolved in water contacts oxidant dissolved in water and the oxidation reactions occur. This is, for all practical purposes, an instantaneous process. The same is not true for contaminant mass that is present adsorbed to soil or found as liquid phase hydrocarbon (LPH). These two phases must be moved into the aqueous phase in order to be treated in a practical manner.

2.2 MASS PHASE CHANGES

Modified Fenton's with neutral pH catalyst actively transfers mass into the dissolved phase thereby greatly disrupting the mass equilibrium between the phases. The hydroxyl radical oxidizes contamination in the dissolved phase while the superoxide radical desorbs mass from the adsorbed phase by interfering with the electrical (molecular) forces that cause molecules of solvent to "stick" to grains of soil and organic carbon. In addition to these chemical processes, the reaction produces oxygen gas. As the peroxide decomposes it generates oxygen. This gas is produced within the individual pore spaces where the two reagents are mixed. As the gas bubbles are generated and then migrate vertically up through soil pores, a physical action occurs that mixes groundwater, disturbs soil "fines" (increasing turbidity) and dislodges residual non-aqueous phase liquid (NAPL). Mass is transferred from the adsorbed and NAPL phases into the dissolved phase through this physical agitation. Mass is also transferred from the NAPL phase to the adsorbed phase as the NAPL is mixed within the pore space and contacts more soil surface area.

These chemical and physical processes upset the phase equilibrium and can be observed as temporary increases in dissolved and sorbed concentrations, especially early in the treatment program when the total mass is still at levels near the original mass. However, given that such a small percentage of the total mass exists in the dissolved phase, even an order of magnitude increase in the dissolved phase mass is still only a fraction of the total mass. As the total mass decreases with multiple injections, the post-injection increases in dissolved concentrations also decrease. Post injection dissolved concentrations will remain elevated and out of equilibrium with the total mass even as the total mass approaches minimal levels. Only time will allow the dissolved mass and total mass to reequilibrate through dilution, dispersion, re-adsorption and degradation. This time period varies depending on specific site conditions but has been observed to take from months up to quarters. For the modified Fenton's process, this means that the oxidant is injected and treatment occurs almost instantly. The oxidant is consumed and the treatment process is complete within several days if not hours. The modified Fenton's process actively transfers mass from the adsorbed and NAPL phases into the aqueous phase where oxidation can occur. This process allows for significant mass destruction in a short period of time.

3.0 ISCO REMEDIATION PROGRAM

The treatment area for this remediation program is located at 700 Independent Road in Oakland, California and is bounded by Independent Road to the north and an operational warehouse and distribution facility to the south (**Figure 1**). The treatment area covers approximately 5,500 square feet and encompasses groundwater monitoring wells MW-1, MW-2 and MW-3. The northern half of the treatment area occupies two recessed loading bays used to load and unload commercial trucks and is located immediately adjacent to the warehouse loading platform. The southern half of the treatment area includes the warehouse loading platform and areas inside of the warehouse building and is situated at a surface elevation that is approximately three feet higher than the northern half of the treatment area.

The ISCO remediation program consisted of injecting ISOTEC's patented neutral pH catalyst and stabilized 12% hydrogen peroxide into the subsurface at the Site. ISOTEC injected reagents at the Site during two separate injection events conducted from December 9th through 12th, 2008 and from May 27th through June 4th, 2009.

During the first injection event in December 2008, ISOTEC introduced reagents into the subsurface at 13 injection locations within the 5,500 square-foot treatment area at the Site. The number and spacing of the locations was based upon an anticipated 12.5-foot reagent distribution radius. Specifically, the injection locations were spaced approximately 25 feet apart in a grid-like patter across the treatment area. Reagents were injected through temporary injection screens installed by a DPT subcontractor. At each of the 13 first event injection locations, an upper interval injection screen and a lower interval injection screen were installed. Upper interval screens located in the northern half of the treatment area were deployed from approximately 9 to 17 feet bgs and from 12 to 20 feet in the elevated southern half of the treatment area. Lower interval screens located in the northern half of the treatment area were deployed from approximately 17 to 25 feet bgs and from 20 to 28 feet in the elevated southern half of the treatment area. This method of selective vertical injection was designed to deliver reagent across the entire vertical extent of the target treatment interval. A direct-push injection screen schematic is shown in Figure 2. ISOTEC installed and injected reagents into 26 temporary injection screens at 13 locations during the first event.

A second injection event was completed in May 2009. During this injection event, ISOTEC introduced reagents into the subsurface at 30 injection locations within the 5,500 square-foot treatment area at the Site. The increased number of injection locations compared to the first event was due to a reduction in injection location spacing. Specifically, the spacing of the second event locations was reduced from 25 feet during the first injection event to 12.5 feet during the second event. Additionally, ISOTEC reduced the reagent volume per location in an attempt to reduce the frequency and intensity of reagent surfacing. It is important to note, however, that the overall target reagent volume for the 5,500 square-foot treatment area was the same for the second event as for the first event. The target treatment interval for the second injection event

did not change. Upper interval screens located in the northern half of the treatment area were deployed from approximately 9 to 17 feet bgs and from 12 to 20 feet in the elevated southern half of the treatment area. Lower interval screens located in the northern half of the treatment area were deployed from approximately 17 to 25 feet bgs and from 20 to 28 feet in the elevated southern half of the treatment area. ISOTEC installed and injected reagents into 60 temporary injection screens at 30 locations during the first event.

3.1 ISCO REMEDIATION PROGRAM FIELD METHODS

ISOTEC technicians prepared stabilized 12% hydrogen peroxide from 35% hydrogen peroxide during the first event and from 25% hydrogen peroxide during the second event. The 25% and 35% hydrogen peroxide was delivered to the Site and stored on-site in Department of Transportation (DOT) approved 55-gallon drums. To mix peroxide, a 300-gallon polyethylene tank was filled with on-site water and dry stabilizer to a predetermined volume. The 25% and 35% hydrogen peroxide was then transferred with a drum pump into the 300-gallon polyethylene tank to the desired concentration. The technicians wore proper personal protective equipment and used appropriate safety procedures during the transfer. Iron catalyst was also mixed in 300-gallon polyethylene tanks using on-site water, dry ISOTEC chemicals, and an electric mixing motor with attached mixing blade.

The injections were accomplished using air-operated diaphragm pumps, flow meters, polyvinyl chloride (PVC) flexible tubing and steel wellhead assemblies. The wellheads, with pressure gauges and relief valves, were attached to the direct-push injection rods. The wellhead assemblies were attached with PVC tubing to an air-operated diaphragm pump and from the pump to either the peroxide, catalyst or water tanks with PVC tubing. The peroxide, catalyst and water were injected through the PVC tubing using the pump. In general, the injection process was similar for each injection screen. First, water was injected, followed by chelated iron catalyst (catalyst), a water flush, 12% stabilized hydrogen peroxide (oxidizer), and a final water flush.

During the first injection event, the temporary injection locations were abandoned by the DPT subcontractor, Resonant Sonic Inc. (RSI), by plugging the holes to water level with 3/8" bentonite chips and then pressure grouting the remainder of the hole to surface level with Portland grout in a pressurized vessel. Specifically, bentonite chips were slowly poured into the temporary injection hole until the chips were above the water level which was roughly 5 feet or less. Portland cement was then mixed in a bucket with a drill and poured into a vessel. The vessel then was pressurized up to 80 pounds per square-inch (psi) with compressed air and attached to the rod by a steel well head with reinforced PVC tubing. The Portland cement was then pumped to the bottom of the hole through the rod while the direct-push rod was slowly being retracted to surface. Finally asphalt patch or cement was then added to patch the remaining hole to match the surrounding area. A total of 26 temporary injection locations were abandoned during the first injection event at the Site from December 9th through 12th, 2008.

July 2009

During the second injection event hole abandonment procedures were similar with the exception that the Portland cement was poured into the holes, rather than pumped. A total of 60 temporary injection locations were abandoned during the second injection event at the Site from May 27th through June 4th, 2009.

3.2 FIRST INJECTION EVENT FIELD ACTIVITIES

The first injection of ISOTEC's Fenton-based reagent was conducted at the Site on December 9^{th} through 12^{th} , 2008. The injected reagent volumes and injection pressures and rates for the injection event are discussed below and presented in **Table 1**. The injection event locations are shown in **Figure 3**.

A total of 13 locations (1I-1 through 1I-13) were used across the ISCO treatment area during the first injection event. At each location, ISOTEC attempted to inject into two separate screens targeting the intervals from 9 to 17 feet bgs (1I-1U through 1I-13U) and from 17 to 25 feet bgs (1I-1L through 1I-13L). The "U" designates an upper screen. The "L" designates a lower injection screen. At locations 1I-5 and 1I-7, the upper and lower screens were installed at 12-20 feet bgs and 20-28 feet bgs, respectively. This adjustment was to make up for an approximate 3 foot raise in grade surface resulting from either the foundation of the building, the loading dock located adjacent to the building, or a slope leading to an elevated portion of the west side of the treatment area.

A total of 26 injection screens (13 upper screens and 13 lower screens) were used to deliver reagent into the subsurface across the treatment area. Surfacing occurred during injections into 12 of the 26 screens. However, ISOTEC was able to inject a minimum of 150 gallons of reagent into 15 of the 26 screens (**Table 1**). The remaining screens received between 3 and 145 gallons of reagent. Pressures at the wellheads of the 26 injection screens ranged from 0 to 45 psi and the injection rates ranged from 0.8 to 3.6 gallons per minute (gpm) during injection activities.

ISOTEC injected a total of 4,423 gallons of reagent through 26 injection screens during the first injection event.

3.2.1 Field Monitoring data

Field monitoring was conducted by ISOTEC at the Site monitoring wells MW-1, MW-2 and MW-3 during the injection event. Groundwater measurements for hydrogen peroxide and iron were obtained from these monitoring wells prior to initiating activities (baseline) and at the completion of each day. Hydrogen peroxide and iron were measured in the field using colorimetric test kits. First event field monitoring data is presented in **Table 2**.

Review of the first event field monitoring data indicated that relatively no changes occurred in groundwater concentrations of hydrogen peroxide and iron in monitoring wells MW-1, MW-2 and MW-3. The hydrogen peroxide ranged from 0.0 mg/L to 0.3 mg/L and the iron levels ranged from 0.0 mg/L to 0.8 mg/L.

3.3 SECOND INJECTION EVENT FIELD ACTIVITIES

The second injection of ISOTEC's Fenton-based reagent was conducted at the Site from May 27^{th} through June 4^{th} , 2009. The injected reagent volumes and injection pressures and rates for the injection event are discussed below and presented in **Table 3**. The injection event locations are shown in **Figure 3**.

ISOTEC injected reagent at 30 locations (2I-1 through 2I-30) across the ISCO treatment area during the second injection event. At each location, ISOTEC attempted to inject into two separate screens, targeting the intervals from 9 to 17 feet bgs (2I-1U through 2I-30U) and from 17 to 25 feet bgs (2I-1L through 2I-30L). The "U" designates an upper injection screen. The "L" designates a lower injection screen. At 11 locations (2I-15, 2I-16, 2I-21 and 2I-23 through 2I-30) the upper and lower screens were installed at 12-20 feet bgs and 20-28 feet bgs, respectively. This adjustment was to make up for an approximate 3 foot raise in grade surface resulting from either the foundation of the building, the loading dock located adjacent to the building, or a slope leading to an elevated portion of the west side of the treatment area.

A total of 60 injection screens (30 upper screens and 30 lower screens) were used to deliver reagent into the subsurface across the treatment area. A total of 34 injection screens (15 upper and 19 lower) received the target reagent quantities; 35 gallons of oxidizer and 35 gallons of catalyst for upper screens and 40 gallons of oxidizer and 40 gallons of catalyst for lower screens. The remaining 26 injection screens did not receive the target reagent volumes due to surfacing during injection activities at 24 screens or proximity to prior surfacing. Of the 24 screens that surfaced, 12 surfaced at one distinct point near injection location 2I-8. The screens that experienced surfacing received between 0 and 75 gallons of reagent. Pressures at the wellheads of the 60 injection screens ranged from 0 to 75 psi and the injection rates ranged from 2.4 to 3.1 gpm during injection activities.

ISOTEC injected a total of 3,930 gallons of reagent through 60 injection screens during the second injection event.

3.4 FIELD ACTIVITIES SUMMARY

The remediation program to date has consisted of injecting ISOTEC reagents into the subsurface using direct-push injection screens at multiple locations across the treatment area at the Site over two injection events to treat the saturated soil and groundwater.

A total of 8,353 gallons of ISOTEC reagents were injected into the subsurface through 86 direct-push injection screens over the course of the two injection events.

4.0 ISCO REMEDIATION PROGRAM ANALYTICAL RESULTS

Kleinfelder collected soil and groundwater samples at specific intervals during the remediation program.

Soil samples were collected prior to initiation of injection activities (baseline), following the first injection event (post-first), prior to initiating the second injection event (post-first four months), and following the second injection event (post-second).

Groundwater samples were collected prior to initiation of injection activities (baseline), following the first injection event (post-first), two months following the first injection event (post-first two months), prior to initiating the second injection event (post-first four months), and following the second injection event (post-second).

The soil and groundwater samples were analyzed for petroleum hydrocarbons. The primary COCs are TPH-g and benzene. The soil and groundwater analytical data are presented in **Section 4.1** and **Section 4.2**, respectively.

4.1 SOIL

Kleinfelder collected baseline and post-first soil samples from treatment area location PS-1 and PS-2. Post-first four months and post-second soil samples were collected from boring locations 2PS-1, 2PS-2 and 2PS-3. Boring location PS-1 is located approximately 65 feet south-southeast of 2PS-1.

The baseline and post-first soil sampling activities consisted of Kleinfelder collecting four soil samples using DPT at sample locations PS-1 and PS-2 (**Figure 1**). Specifically, two baseline soil samples were collected at boring location PS-1 (one at 8 feet bgs and one at 20 feet bgs) and at boring location PS-2 (one at 16 feet bgs and one at 19 feet bgs). Following the first event, two soil samples were collected immediately adjacent to boring locations PS-1 and PS-2, and are designated PS-1A and PS-2A. Post-first soil samples were collected from PS-1A at 10 feet bgs and 20 feet bgs, and at PS-2A from 10 feet bgs and 20 feet bgs.

The post-first four months and post-second soil sampling activities consisted of Kleinfelder collecting eight soil samples using DPT at sample locations 2PS-1, 2PS-2 and 2PS-3 (**Figure 1**). Specifically, two soil samples were collected from boring locations 2PS-1 (one at 10 feet bgs and one at 20 feet bgs) and 2PS-3 (one at 10 feet bgs and one at 21 feet bgs) and four soil samples were collected at separate depths from sample location 2PS-2 (7, 11, 15 and 20 feet bgs). Post-second soil samples were collected from the same locations and depths intervals as post-first four months. Boring location 2PS-1/1A and PS-1/1A are located approximately 65 feet apart.

The soil sample collection dates and analytical data with percentage reduction calculations for TPH-g and benzene are included in **Table 4** and **Table 5**, respectively.

In the subsequent section, when discussing analytical data, ISOTEC will refer to a soil sample collected from an individual location by the soil location name.

It important to note that the samples collected from PS-1 are not included in the subsequent benzene discussion (Section 4.2.2) because the baseline benzene concentrations were below method detection limits (MDLs). Additionally, the samples collected from 2PS-1 are not included in the subsequent sections because the baseline TPH-g and benzene concentrations were below MDLs.

4.1.1 Total Petroleum Hydrocarbons As Gasoline

The average baseline TPH-g concentration of the samples collected at PS-1 in the 8 to 10 foot bgs interval and at PS-2 in the 15 to 16 foot bgs and 19 to 20 foot bgs intervals was 753 mg/kg. The maximum TPH-g concentration was observed in PS-2 in the 15 to 16 foot bgs interval at 1,500 mg/kg.

Following the first injection event, the average TPH-g concentration was 90 mg/kg, a reduction of 88% compared to baseline. The most significant concentration reduction was observed at PS-2 in the 10 to 16 foot bgs interval, which was reduced from a baseline concentration of 1,500 mg/kg to a post-first concentration of 260 mg/kg, a reduction of 83%.

Prior to initiating the second injection event (post-first four months), the average TPH-g concentration of the four samples collected at 2PS-2 and the two samples collected at 3PS-3 was 965 mg/kg. The TPH-g concentrations in soil ranged from 8.2 mg/kg at 2PS-3 in the 10 foot bgs interval to 3,000 mg/kg at 2PS-2 in the 19 to 20 foot bgs interval.

Following the second injection event, the average TPH-g concentration at 2PS-2 and 2PS-3 was 277 mg/kg, a 71% reduction when compared to post-first four months. The most significant concentration reduction was observed at 2PS-2 in the 19 to 20 foot bgs interval, which was reduced from a post-first four months concentration of 3,000 mg/kg to a post-second concentration of 250 mg/kg, a reduction of 92%.

4.1.2 Benzene

The average baseline benzene concentration of the samples collected at PS-2 in the 15 to 16 foot bgs interval and 19 to 20 foot bgs intervals was 9.3 mg/kg. The maximum benzene concentration was observed in PS-2 in the 15 to 16 foot bgs interval at 16 mg/kg.

Following the first injection event, the average benzene concentration was 1.2 mg/kg, a reduction of 87% compared to baseline.

Prior to initiating the second injection event (post-first four months), the average benzene concentration of the four samples collected at 2PS-2 and the two samples collected at 3PS-3 was 3.3 mg/kg. The benzene concentrations in soil ranged from not-detected at the MDL at 2PS-3 in the 20 foot bgs interval to 12 mg/kg at 2PS-2 in the 19 to 20 foot bgs interval.

Following the second injection event, benzene was not reported above the MDL.

4.2 GROUNDWATER

Kleinfelder collected baseline, post-first, two months post-first, four months post-first and post-second groundwater samples from treatment area wells MW-1, MW-2 and MW-3.

The groundwater sample collection dates and analytical data with percentage reduction calculations for TPH-g and benzene are included in **Table 6** and **Table 7**, respectively.

In the subsequent section, when discussing analytical data, ISOTEC will refer to a groundwater sample collected from an individual well by the well name. Additionally, monitoring well MW-3 is not included in the subsequent discussion because the baseline and post-injection benzene and TPH-g concentrations were below the detection limit.

4.2.1 Total Petroleum Hydrocarbons As Gasoline

The average baseline TPH-g concentration in MW-1 and MW-2 was 27,950 μ g/L. The baseline TPH-g concentrations ranged from 2,900 μ g/L in MW-1 to 53,000 μ g/L in MW-2.

Following the first injection event, the average TPH-g concentration in wells MW-1 and MW-2 was 19,150 μ g/L, a reduction of 31% compared to baseline. The post-first TPH-g concentrations ranged from 3,300 μ g/L in MW-1 to 35,000 μ g/L in MW-2. The most significant reduction was observed in MW-2, which was reduced from a baseline concentration of 53,000 μ g/L to 35,000 μ g/L, a 34% reduction.

Two months following the first event, the average TPH-g concentration in wells MW-1 and MW-2 was 24,850 μ g/L, a reduction of 11% compared to baseline. The post-first two months TPH-g concentrations ranged from 7,700 μ g/L in MW-1 to 42,000 μ g/L in MW-2. The most significant reduction was observed in MW-2, which was reduced from a baseline concentration of 53,000 μ g/L to 42,000 μ g/L, a 21% reduction.

Four months following the first event (prior to the second event), the average TPH-g concentration in wells MW-1 and MW-2 was 16,950 μ g/L, a reduction of 39% compared to baseline. The post-first four months TPH-g concentrations ranged from 2,900 μ g/L in MW-1 to 31,000 μ g/L in MW-2. The most significant reduction was observed in MW-2, which was reduced from a baseline concentration of 53,000 μ g/L to 31,000 μ g/L, a 42% reduction.

Following the second injection event, the average TPH-g concentration in wells MW-1 and MW-2 was 10,435 μ g/L, a reduction of 63% compared to baseline. The post-second TPH-g concentrations ranged from 870 μ g/L in MW-1 to 20,000 μ g/L in MW-2. Significant reductions compared to baseline were observed in both MW-1 (70% reduction) and MW-2 (62% reduction).

4.2.2 Benzene

The average baseline benzene concentration in MW-1 and MW-2 was 10,398 μ g/L. The baseline benzene concentration ranged from 295 μ g/L in MW-1 to 20,500 μ g/L in MW-2.

Following the first injection event, the average benzene concentration in wells MW-1 and MW-2 was 7,840 μ g/L, a reduction of 25% compared to baseline. The post-first benzene concentrations ranged from 380 μ g/L in MW-1 to 15,300 μ g/L in MW-2. The most significant reduction was observed in MW-2, which was reduced from a baseline concentration of 20,500 μ g/L to 15,300 μ g/L, a 25% reduction.

Two months following the first event, the average benzene concentration in wells MW-1 and MW-2 was 5,694 μ g/L, a reduction of 45% compared to baseline. The post-first two months benzene concentrations ranged from 488 μ g/L in MW-1 to 10,900 μ g/L in MW-2. The most significant reduction was observed in MW-2, which was reduced from a baseline concentration of 20,500 μ g/L to 10,900 μ g/L, a 47% reduction.

Four months following the first event (prior to the second event), the average benzene concentration in wells MW-1 and MW-2 was $5,170 \ \mu g/L$, a reduction of 50% compared to baseline. The post-first four months benzene concentrations ranged from 340 $\mu g/L$ in MW-1 to 10,000 $\mu g/L$ in MW-2.

Following the second injection event, the average benzene concentration in wells MW-1 and MW-2 was 3,700 μ g/L, a reduction of 64% compared to baseline. The post-second benzene concentrations ranged from 99 μ g/L in MW-1 to 7,300 μ g/L in MW-2. Significant reductions compared to baseline were observed in both MW-1 (66% reduction) and MW-2 (64% reduction).

5.0 CONCLUSIONS

According to Kleinfelder, the objective of the ISCO remediation program is to reduce the soil and groundwater concentrations to below the San Francisco Water Quality Control Board ESLs for commercial/industrial properties. The ESLs for groundwater are 5,000 μ g/L for TPH-g and 540 μ g/L for benzene. The ESLs for TPH-g in soil are 450 mg/kg in the shallow saturated soils (8 to 11 feet bgs) and 4,200 mg/kg in the deep saturated soils (18 to 25 feet bgs). The ESLs for benzene are 0.26 mg/kg in the shallow saturated soils and 11 mg/kg in the deep saturated soils.

To achieve these specific goals, ISOTEC estimated that three separate injection applications, and one possible "hot spot" event, would be required to reduce the COCs to the Kleinfelder project goals.

5.1 EFFECTIVENESS OF THE ISOTEC PROCESS

The effectiveness of the ISOTEC process can be evaluated by:

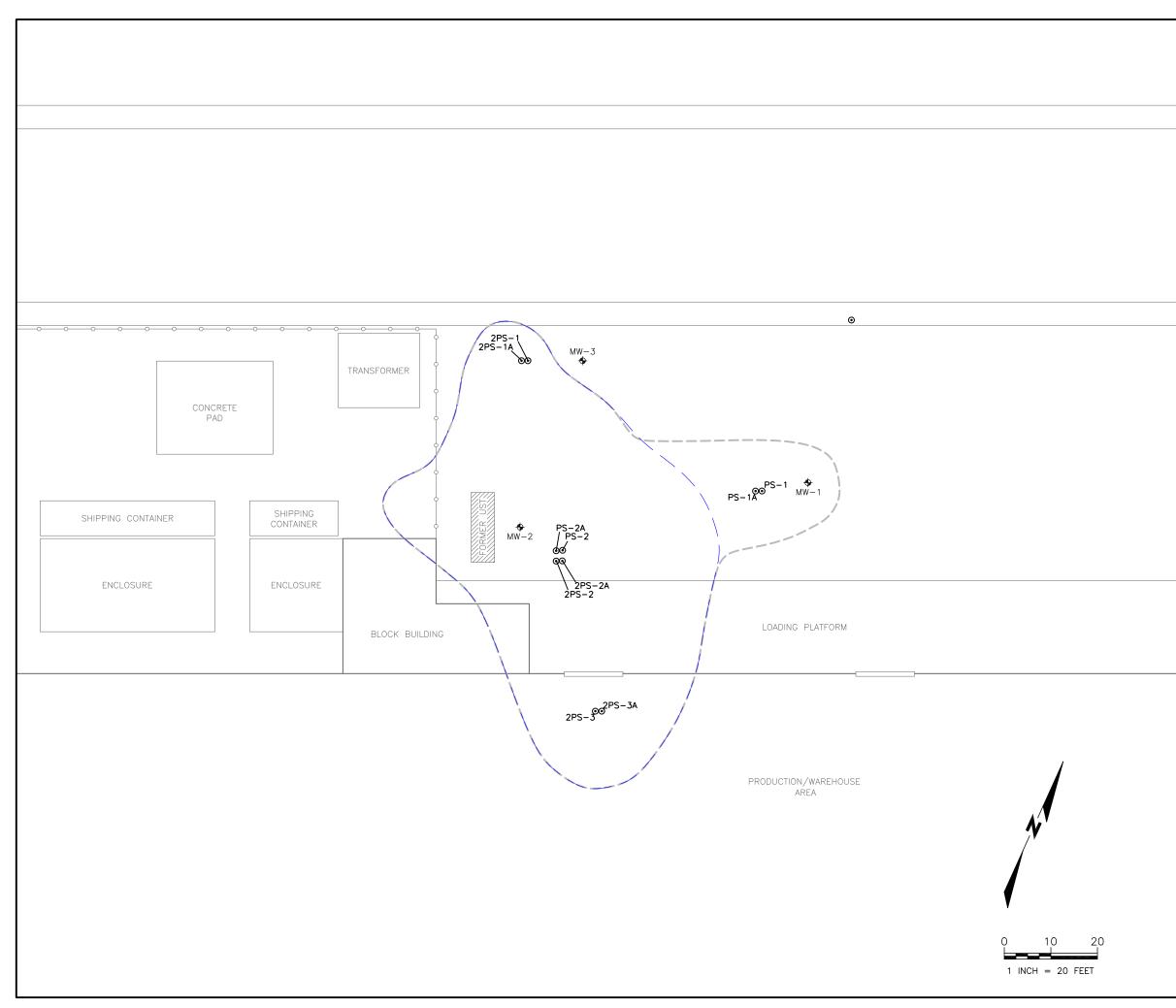
- Reduction in contaminant concentrations in treatment area saturated soils and/or
- Changes in dissolved phase contaminant concentrations within treatment area monitoring wells.

As explained in the Mass Phase Changes section (Section 2.2), the ISOTEC process liberates contaminant mass within the adsorbed phase (saturated soil) and transfers this mass to the dissolved phase for oxidation. This phenomenon is clearly illustrated by comparing the baseline and post-first saturated soil and groundwater results. The maximum benzene concentration in saturated soils was reduced from a baseline concentration of 16 mg/kg to a non-detectable post-second concentration, a 99.9% reduction. The maximum TPH-g concentration in saturated soils was reduced from a baseline concentration of 753 mg/kg to a post-second concentration 277 mg/kg, a 63% reduction. Based on these adsorbed phase concentration reductions, the ISOTEC process was effective at removing contaminant mass from the adsorbed phase during the first and second injection events of the ISCO remediation program. All of the post-second soil samples collected and analyzed for benzene and TPH-g currently meet the Kleinfelder project goals, with the exception of the TPH-g concentration of 750 mg/kg at sample location 2PS-2 at the 10 to 11 foot bgs interval.

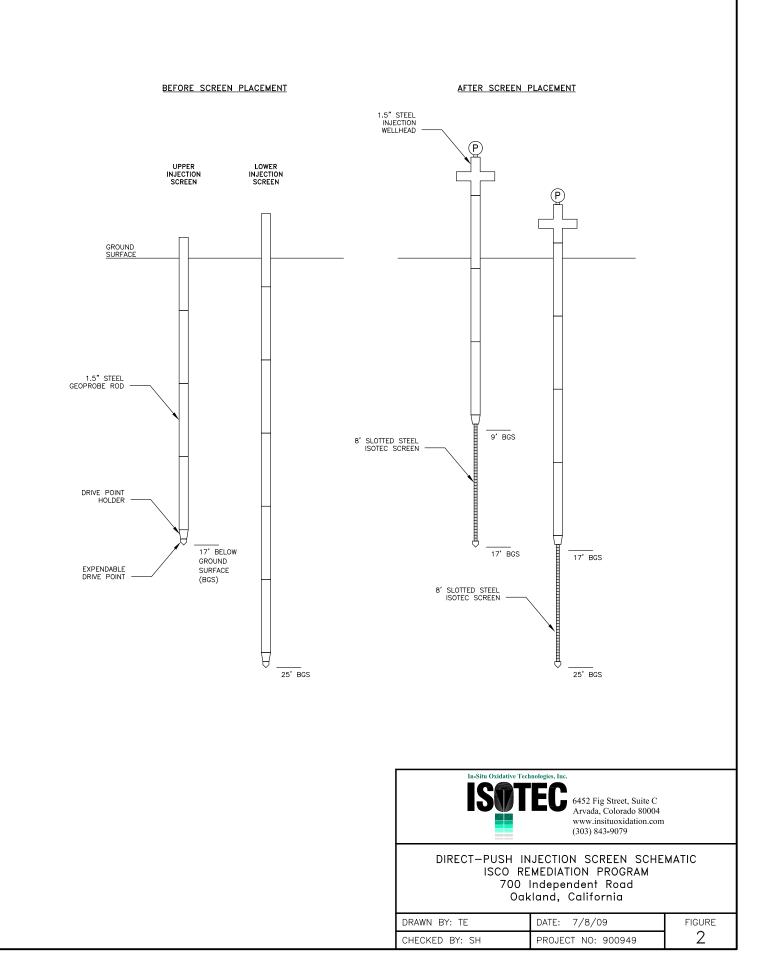
Review of the dissolved phase concentrations further indicates that the ISOTEC process has been successful in reducing dissolved contaminant concentrations in the treatment area monitoring wells. Specifically, the average groundwater TPH-g concentration in the treatment area monitoring wells (MW-1 and MW-2) was reduced from a baseline concentration of 27,950 μ g/L to a post-second concentration of 10,435 μ g/L, a 63% reduction from baseline. The average groundwater benzene concentration in MW-1 and MW-2 was reduced from a baseline concentration of 10,398 μ g/L to a post-second concentration of 3,700 μ g/L, a 64% reduction from baseline. The most significant TPH-g and benzene concentration reduction were observed in MW-2, which were reduced from

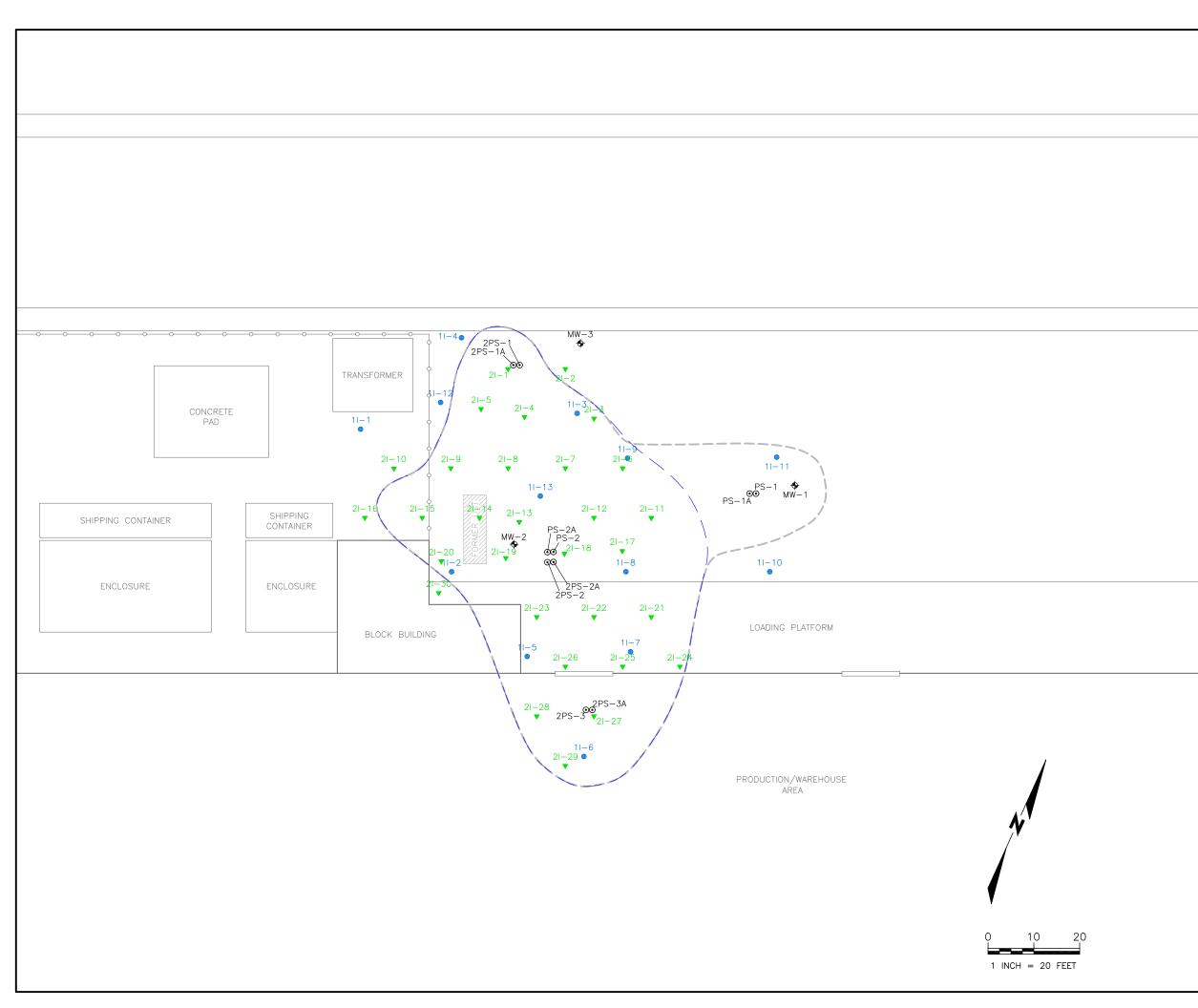
a baseline concentration of 53,000 μ g/L and 20,500 μ g/L, respectively, to post-second concentrations of 20,000 μ g/L (62% reduction) and 7,300 μ g/L (64% reduction), respectively.

As discussed in **Section 2.2**, that post injection dissolved concentrations will fluctuate and will remain out of equilibrium with the total mass even as the total mass approaches minimal levels. Consistent and permanent reductions in dissolved concentrations will only occur following complete adsorbed contaminant mass removal and a period of equilibration. Equilibration allows dissolved concentrations to reduce naturally over time due to re-adsorption, dispersion, dilution and degradation until the final dissolved concentration is reached. This time period varies depending on specific site conditions but has been observed to take from months up to quarters.


This phenomenon appears to be supported when comparing the post-first TPH-g dissolved concentrations to the post-first two months and post-first four months concentrations at MW-2 (**Table 6**). Specifically, the dissolved TPH-g concentration at MW-2 was reduced from a baseline concentration of 53,000 μ g/L to 35,000 μ g/L following the first injection event. After two months with no injection activities, the dissolved TPH-g concentration at MW-2 increased to 42,000 μ g/L. However, after allowing the groundwater to continue to equilibrate for an additional two months without any injection activities, the dissolved TPH-g concentration at MW-2 reduced to 31,000 μ g/L, which represents a 26% reduction from the post-second two month concentration of 42,000 μ g/L.

The ISOTEC process was very effective at reducing contaminant mass after two injection applications. This suggests that the quantity of reagent injected and the reagent concentrations were sufficient to achieve significant mass reduction; and that the reagent distribution radius generated by the injection flow rates and pressures were sufficient to distribute reagent across the treatment area.


5.2 **Recommendations**


ISOTEC recommends several quarters of groundwater monitoring to allow the monitoring wells that exhibit elevated contaminant concentrations to equilibrate. A decision regarding the need for an additional injection event should not be made until at least three quarters of additional groundwater sampling are completed.

FIGURES

 ISCO Treatment Area (First Event) ISCO Treatment Area (Second Event) Groundwater Monitoring Well Soil Boring – ISCO Remediation Program 	— — ISCO Treatment Area (Second Event) � Groundwater Monitoring Well	-0	Fence			
━ ━ ISCO Treatment Area (Second Event) ♦ Groundwater Monitoring Well	 ISCO Treatment Area (Second Event) Groundwater Monitoring Well Soil Boring – ISCO Remediation Program 		ISCO Trea	tment Ar	ea (First Eve	ent)
Groundwater Monitoring Well	 Groundwater Monitoring Well Soil Boring – ISCO Remediation Program 					
	 Soil Boring – ISCO Remediation Program 	♠				,
 Soil Boring – ISCO Remediation Program 	Instructivative Technologies. Jac. Specific Specif					5
	6452 Fig Street, Suite C Arvada, Colorado 80004 www.insituoxidation.com					
	6452 Fig Street, Suite C Arvada, Colorado 80004 www.insituoxidation.com					
SITE MAP ISCO REMEDIATION PROGRAM 700 Independent Road Oakland, California		RAWN BY: KH				FIGUR
ISCO REMEDIATION PROGRAM 700 Independent Road Oakland, California	I I	WWIN DI: KH		DAIL: 3/	10/09	

LEGEND

- ---- ISCO Treatment Area (First Event)
- — ISCO Treatment Area (Second Event)
- 🔶 Groundwater Monitoring Well
- Soil Boring ISCO Remediation Program
- First Event Injection Location (December 2008) 0
- Second Event Injection Location (May 2009) .

www.insituoxidation.com (303) 843-9079

INJECTION LOCATION MAP ISCO REMEDIATION PROGRAM 700 Independent Road Oakland, California

DRAWN BY: KH	DATE: 5/18/09	FIGURE
CHECKED BY: SH	PROJECT NO: 900949	3

TABLES

Table 1 FIRST EVENT INJECTION LOG

700 Independent Road Oakland, California

			ISOTEC REAGENT		FIELD OBSERVATIONS			
Injection	Injection	Injection Interval	12% H2O2	Catalyst	Total	Flow Rate	Pressure	Notes (surfacing, refusal, pressure or flow rate
Date	Point	(feet bgs)	(gallons)	(gallons)	(gallons)	(gpm)	(psi)	changes, etc.)
12/9/08	1I-4U	9-17	45	150	195	2.0-3.5	5-15	Surfaced 3 feet south of 1I-3
	1I-4L	17-25	15	150	165	1.5-3.5	5-20	Surfaced 3 feet south of 1I-3
	1I-11L	17-25	150	150	300	1.5-3.5	20-35	
	1I-8U	9-17	150	150	300	1.6-3.6	0-25	
	1I-11U	9-17	150	150	300	1.5-3.6	0-20	
	1I-8L	17-25	150	150	300	1.5-3.6	0-45	
12/10/08	1I-10U	9-17	100	100	200	0.9-3.6	0-30	
	1I-2L	17-25	100	100	200	1.5-3.5	15-35	
	1I-10L	17-25	100	100	200	1.6-3.4	0-25	
	1I-2U	9-17	10	100	110	1.6-3.6	0-20	Surfaced 9 feet west of 1I-2U
	1I-6U	9-17	25	150	175	1.4-3.6	10-20	Surfaced 16 feet south of 1I-6U
	1I-6L	17-25	105	150	255	2.0-3.5	15-35	Surfaced 16 feet south of 1I-6L
12/11/08	1I-1L	17-25	0	50	50	3.5	5-35	Surfaced 9 feet west of 1I-2U
	1I-1U	9-17	0	50	50	3.5	10-30	Surfaced 9 feet west of 1I-2U
	1I-9U	9-17	100	100	200	1.5-3.5	0-30	
	1I-9L	17-25	100	100	200	1.4-3.5	20-35	
	1I-12L	17-25	95	100	195	0.8-3.0	5-15	Surfaced 5 feet southeast of 1I-12L
	1I-12U	9-17	50	50	100	1.5-3.0	5-15	
	1I-5U	12-20	100	100	200	1.3-3.0	10-25	
	1I-5L	20-28	50	80	130	1.5-3.1	5-45	Surfaced up prior boring B8
12/12/08	1I-7L	20-28	100	100	200	1.5-3.0	5-45	
	1I-3L	17-25	15	50	65	1.5-3.4	0-45	
	1I-7U	12-20	95	50	145	1.5-3.0	10-30	
	1I-13L	17-25	20	50	70	1.8-3.2	10-45	Surfaced 5 feet southeast of 1I-13L
	1I-13U	9-17	3	0	3	1.0-1.5	0-5	Surfaced 9 feet west of 1I-2U

Table 1 FIRST EVENT INJECTION LOG

700 Independent Road Oakland, California

		ISOTEC REAGENT			ENT	FIELD OBSERVATIONS					
Injection Date	Injection Point	Injection Interval (feet bgs)	12% H2O2 (gallons)	Catalyst (gallons)	Total (gallons)	Flow Rate (gpm)	Pressure (psi)	Notes (surfacing, refusal, pressure or flow rate changes, etc.)			
	1I-3U	9-17	18	0	18	0.9-1.4	30-35				
	1I-5L	20-28	35	0	35	1.1	10-15				
	1I-5U	12-20	85	0	85	0.9-1.4	30-35				
FIRST	FIRST EVENT REAGENT TOTAL			2,480	4,446						

NOTES

bgs = below ground surface

gpm = gallons per minute

psi = pounds per square inch

H2O2 = hydrogen peroxide

TABLE 2FIRST EVENT MONITORING DATA

700 Independent Road Oakland, CA 94621

			FIELD OBSERVATIONS										
Monitoring Well	Sample Date	Sample Time	lron (mg/l)	Hydrogen Peroxide (mg/l)	Notes								
MW-1	Baseline 12/09/2008	8:17	0.0	0.0									
	12/9/2008		0.8	0.0	Water level 1.5' from top of well								
	12/10/2008	15:22	0.0	0.0									
	12/11/2008	16:36	0.0	0.0									
	12/12/2008	15:25	0.0	0.0									
MW-2	Baseline 12/09/2008	8:08	1.0	0.0									
	12/9/2008		NS	NS									
	12/10/2008	7:33	0.0	0.0									
	12/10/2008	15:27	0.0	0.3									
	12/11/2008	16:46	0.2	0.2									
	12/12/2008	15:35	0.1	0.3									
MW-3	Baseline 12/09/2008	8:21	0.0	0.0									
	12/9/2008		NS	NS									
	12/10/2008	7:50	0.2	0.0									
	12/10/2008	15:18	0.0	0.0									
	12/11/2008	16:41	0.0	0.0									
	12/12/2008	16:36	0.0	0.0									

NOTES

NS: Not sampled (monitoring well under pressure)

Table 3 SECOND EVENT INJECTION LOG

700 Independent Road Oakland, California

			ISO	TEC REAG	ENT		FIE	LD OBSERVATIONS
Injection	Injection	Injection Interval	12% H ₂ O ₂	Catalyst	Total	Flow Rate	Pressure	Notes (surfacing, refusal, pressure or flow rate
Date	Point	(feet bgs)	(gallons)	(gallons)	(gallons)	(gpm)	(psi)	changes, etc.)
5/27/09	2I-2U	9-17	35	35	70	2.5-3.0	35-60	
	2I-2L	17-25	40	40	80	2.5-3.0	15-35	
	2I-6U	9-17	25	35	60	2.5-3.0	5-20	
	2I-6L	17-25	25	40	65	2.4-3.0	20-40	
	2I-9U	9-17	0	35	35	3.0	0-15	
	2I-9L	17-25	0	40	40	3.0	25-55	
	2I-20U	9-17	35	35	70	2.5-3.1	10-30	Surfaced 30 feet northeast near 2I-8
	2I-20L	17-25	40	40	80	2.5-3.0	20-40	
5/28/09	2I-3U	9-17	0	3	3	3.0	10-20	Surfaced at 2I-3L
	2I-3L	17-25	40	40	80	2.5-3.0	15-35	
	2I-9U	9-17	20	35	55	2.5-3.0	0-5	Surfaced 18 feet east near 2I-8
	2I-9L	17-25	22	40	62	2.5-3.0	15-30	Surfaced 18 feet east near 2I-8
	2I-12U	9-17	35	35	70	2.5-3.0	0-10	
	2I-12L	17-25	40	40	80	2.5-3.0	5-25	
	2I-16U	12-20	35	35	70	2.5-3.0	10-25	
	2I-16L	20-28	40	40	80	2.5-3.0	20-40	
	2I-21U	12-20	35	35	70	2.5-3.0	10-20	
	2I-21L	20-28	40	40	80	2.5-3.0	20-35	
	2I-26U	12-20	0	35	35	3.0	0-5	Surfaced 50 feet north near 2I-8
	2I-26L	20-28	35	40	75	2.4-3.0	30-75	Surfaced 50 feet north near 2I-8
5/29/09	2I-1U	9-17	8	35	43	2.5-3.0	5-20	Surfaced 20 feet south of 2I-1U
	2I-1L	17-25	40	40	80	2.5-3.0	10-45	
	2I-3U	9-17	0	10	10	3.0	0-10	Surfaced 5 feet south of 2I-3U
	2I-7U	9-17	0	20	20	3.0	10-15	Surfaced 8 feet north of 2I-7U

Table 3 SECOND EVENT INJECTION LOG

700 Independent Road Oakland, California

			ISO	TEC REAG	ENT		FIE	LD OBSERVATIONS
Injection Date	Injection Point	Injection Interval (feet bgs)	12% H₂O₂ (gallons)	Catalyst (gallons)	Total (gallons)	Flow Rate (gpm)	Pressure (psi)	Notes (surfacing, refusal, pressure or flow rate changes, etc.)
	2I-7L	17-25	30	40	70	2.5-3.0	5-30	Surfaced 30 feet north of 2I-7L
	2I-10U	12-20	35	35	70	2.5-3.0	0-10	
	2I-10L	20-28	40	40	80	2.5-3.0	15-30	
	2I-17U	9-17	35	35	70	2.5-3.0	5-15	
	2I-17L	17-25	40	40	80	2.5-3.0	15-40	
	2I-23U	12-20	35	35	70	2.5-3.0	10-20	
	2I-23L	20-28	5	40	45	2.5-3.0	20-40	Surfaced 35 feet north near 2I-8
	2I-28U	12-20	35	35	70	2.5-3.0	5-10	
	2I-28L	20-28	40	40	80	2.5-3.0	5-45	
6/2/09	2I-5U	9-17	0	15	15	3.0	5-25	Surfaced at 2I-8
	2I-5L	17-25	20	40	60	2.5-3.0	15-45	Surfaced 3 feet east of 2I-5L
	2I-11U	9-17	35	35	70	2.5-3.0	5-15	
	2I-11L	17-25	40	40	80	2.5-3.0	20-40	
	2I-13U	9-17	30	35	65	2.5-3.0	15-25	Surfaced 20 feet north near 2I-8
	2I-13L	17-25	26	40	66	2.5-3.0	15-30	Surfaced 20 feet north near 2I-8
	2I-15U	12-20	35	35	70	2.5-3.0	0-15	
	2I-15L	20-28	40	40	80	2.5-3.0	15-35	
	2I-22U	12-20	35	35	70	2.5-3.0	5-15	Surfaced 18 feet south of 2I-22U
	2I-22L	20-28	15	40	55	2.5-3.0	20-40	Surfaced at 2I-22L
	2I-27U	12-20	35	35	70	2.5-3.0	0-10	
	2I-27L	20-28	40	40	80	2.5-3.0	30-60	
6/3/09	2I-4U	9-17	10	35	45	2.5-3.0	5-20	Surfaced near 2I-8
	2I-4L	17-25	40	40	80	2.5-3.0	20-40	
	2I-14U	9-17	0	0	0	3.0	0-10	Surfaced near 2I-8

Table 3 SECOND EVENT INJECTION LOG

700 Independent Road Oakland, California

				TEC REAG	ENT		FIE	LD OBSERVATIONS
Injection Date	Injection Point	Injection Interval (feet bgs)	12% H ₂ O ₂ (gallons)	Catalyst (gallons)	Total (gallons)	Flow Rate (gpm)	Pressure (psi)	Notes (surfacing, refusal, pressure or flow rate changes, etc.)
	2I-14L	17-25	80	80	160	2.5-3.0	0-35	
	2I-18U	9-17	0	35	35	3.0	0-10	Surfaced 30 feet north of 2I-18U
	2I-18L	17-25	26	40	66	2.5-3.0	25-50	
	2I-25U	12-20	35	35	70	2.5-3.0	0-10	
	2I-25L	20-28	40	40	80	2.5-3.0	15-40	
	2I-29U	12-20	0	24	24	3.0	15-20	
	2I-29L	20-28	40	40	80	2.5-3.0	20-40	
	2I-30U	12-20	18	35	53	2.5-3.0	5-20	Surfaced 3 feet northwest of 2I-30U
	2I-30L	20-28	40	40	80	2.5-3.0	20-40	
6/4/09	2I-8U	9-17	5	0	5	2.5	0-5	Surfaced 1 feet north of 2I-8U
	2I-8L	17-25	14	40	54	2.0-3.0	15-45	
	2I-19U	9-17	0	0	0	3.0	5-10	Surfaced 6 feet east of 2I-19U
	2I-19L	17-25	10	12	22	2.0-3.0	5-45	Surfaced 6 feet east of 2I-19L
	2I-24U	12-20	35	35	70	2.5-3.0	0-10	
	2I-24L	20-28	50	80	130	2.5-3.0	15-35	
	2I-30L	20-28	40	7	47	2.5-3.0	5-10	
SECON	D EVENT R TOTAL	EAGENT	1,719	2,211	3,930			

NOTES

bgs = below ground surface

gpm = gallons per minute

psi = pounds per square inch

H2O2 = hydrogen peroxide

Table 4TPH-G CONCENTRATIONSIN TARGET TREATMENT INTERVAL SATURATED SOIL

700 Independent Road Oakland, California

Soil Boring	Sample Depth (feet bgs)			t Injection _J /kg)	Four M	Post-First Injection - Four Months (mg/kg)		Post-Second Injection (mg/kg)			
		12/1/2008	1/12/2009	vs Baseline	5/26/2009	vs Baseline	6/29/2009	vs Baseline	vs 5/26/09		
PS-1	8-10	330	<0.1	99.98%	NC	-	NC	-	-		
PS-1	20	<0.1	0.12	-140%	NC	-	NC	-	-		
2PS-1	10	NC	NC	-	<0.1	-	<0.1	-	0%		
253-1	20	NC	NC	-	<0.1	-	<0.1	-	0%		
PS-2	10-11	NC	260	-	53	-	750	-	-1315%		
and	15-16	1,500	NC	-	1,700	-13%	180	88%	89%		
2PS-2	19-20	430	10	98%	3,000	-598%	250	42%	92%		
2PS-3	10	NC	NC	-	8.2	-	37	-	-351%		
240-3	20	NC	NC	-	64	-	170	-	-166%		
Ave	rage	753	90	88%	965	-28%	277	63%	71%		

NOTES

bgs = below ground surface

mg/kg = milligrams per kilogram

TPH-G = Total petroleum hydrocarbons - gasoline

<0.1 = Analyte not detected above indicated method detection limit

NC = Not Collected (Soil sample not collected during the sampling event).

Concentrations in **bold** exceed San Francisco Regional Water Quality Control Board Environmental Screening Levels

ISCO remediation program target treatment interval is 9 to 25 feet bgs

Table 5BENZENE CONCENTRATIONSIN TARGET TREATMENT INTERVAL SATURATED SOIL

700 Independent Road Oakland, California

Soil Boring	Sample Depth (feet bgs)	Baseline (mg/kg)	Post-First Injection (mg/kg)		Four N	Post-First Injection - Four Months (mg/kg)		Post-Second Injection (mg/kg)			
		12/1/2008	1/12/2009	vs Baseline	5/26/2009	vs Baseline	6/29/2009	vs Baseline	vs 5/26/09		
PS-1	8-10	<0.01	<0.01	0%	NC	-	NC	-	-		
	20	<0.01	<0.01	0%	NC	-	NC	-	-		
2PS-1	10	NC	NC	-	<0.01	-	<0.01	-	0%		
253-1	20	NC	NC	-	<0.01	-	<0.01	-	0%		
PS-2	10-11	NC	2.2	-	0.88	-	<0.01	-	99.4%		
and	15-16	16	NC	-	3.6	78%	<0.01	99.97%	99.9%		
2PS-2	19-20	2.5	0.16	94%	12	-380%	<0.01	99.8%	99.96%		
2PS-3	10	NC	NC	-	0.16	-	<0.01	-	96.9%		
223-3	20	NC	NC	-	<0.01	-	<0.01	-	0%		
Ave	erage	9.3	1.2	87%	3.3	64%	<0.01	99.9%	99.8%		

NOTES

bgs = below ground surface

mg/kg = milligrams per kilogram

<0.01 = Analyte not detected above indicated method detection limit

NC = Not Collected (Soil sample not collected during the sampling event).

Concentrations in **bold** exceed San Francisco Regional Water Quality Control Board Environmental Screening Levels

ISCO remediation program target treatment interval is 9 to 25 feet bgs

Table 6 TPH-G CONCENTRATIONS IN GROUNDWATER WITH PERCENTAGE REDUCTIONS

700 Independent Road Oakland, California

Monitoring Well	Baseline (µg/L)	Post-First Injection (µg/L)		Two M	Post-First Injection - Two Months (µg/L)		Post-First Injection - Four Months (µg/L)		Post-Second Injection (µg/L)	
	12/1/2008	1/12/2009	vs Baseline	3/12/2009	vs Baseline	5/19/2009	vs Baseline	6/30/2009	vs Baseline	
MW-1	2,900	3,300	-14%	7,700	-166%	2,900	0%	870	70%	
MW-2	53,000	35,000	34%	42,000	21%	31,000	42%	20,000	62%	
MW-3	<50	<50	0%	<50	0%	<50	0%	<50	0%	
Average	27,950	19,150	31%	24,850	11%	16,950	39%	10,435	63%	

NOTES

 μ g/L = micrograms per liter

TPH-G = Total petroleum hydrocarbons - gasoline

<10 = Analyte not detected above indicated method detection limit

NS = Monitoring well not sampled during the sampling event

Concentrations in **bold** exceed San Francisco Regional Water Quality Control Board Environmental Screening Levels

Average derived from groundwater concentrations in wells MW-1 and MW-2

Table 7BENZENE CONCENTRATIONS IN GROUNDWATERWITH PERCENTAGE REDUCTIONS

700 Independent Road Oakland, California

Monitoring Well	Baseline (µg/L)		Post-First Injection (µg/L)		Post-First Injection - Two Months (µg/L)		Injection - Months ŋ/L)	Post-Second Injection (µg/L)	
	12/1/2008	1/12/2009	vs Baseline	3/12/2009	vs Baseline	5/19/2009	vs Baseline	6/30/2009	vs Baseline
MW-1	295	380	-29%	488	-65%	340	-15%	99	66%
MW-2	20,500	15,300	25%	10,900	47%	10,000	51%	7,300	64%
MW-3	<0.5	<0.5	0%	<0.5	0%	<0.5	0%	<0.5	0%
Average	10,398	7,840	25%	5,694	45%	5,170	50%	3,700	64%

NOTES

 μ g/L = micrograms per liter

<0.5 = Analyte not detected above indicated method detection limit

NS = Monitoring well not sampled during the sampling event

Concentrations in **bold** exceed San Francisco Regional Water Quality Control Board Environmental Screening Levels

Average derived from groundwater concentrations in wells MW-1 and MW-2

APPENDIX E

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

May 28, 2009

Sophia Drugan Kleinfelder 4670 Willow Road, Suite 100 Pleasanton, CA 94588

TEL: (925) 484-1700 FAX

RE: 700 Independent Road, Oakland

Order No.: 0905122

Dear Sophia Drugan:

Torrent Laboratory, Inc. received 3 samples on 5/19/2009 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

tor <u>5 Thelog</u> Date

Laboratory Director

483 Sinclair Frontage Road * Milpitas, CA * Phone: (408) 2635258 * Fax: (408) 263-8293 Visit us ar www.torrentlab.com email: analysis@torrentlab.com

Report Prepaired For: Sophia Drugan

Kleinfelder

Date Received:	

Date Reported:

5/19/2009 5/28/2009

	Summa	ary Report				
//W-1	VOLATILES by GC/MS			Lab	ID:	0905122-001A
Parameter	Preped	Analyzed	Result	<u>RL</u>	<u>Unit</u>	
1,2,4-Trimethylbenzene	5/21/2009	5/21/2009	100	4.4	µg/L	
Benzene	5/21/2009	5/21/2009	340	4.4	µg/L	
Ethylbenzene	5/21/2009	5/21/2009	79	4.4	µg/L	
Isopropylbenzene	5/21/2009	5/21/2009	19	8.8	µg/L	
m,p-Xylene	5/21/2009	5/21/2009	46	8.8	µg/L	
Naphthalene	5/21/2009	5/21/2009	9.7	8.8	µg/L	
n-Propylbenzene	5/21/2009	5/21/2009	30	4.4	µg/L	
o-Xylene	5/21/2009	5/21/2009	15	8.8	µg/L	
sec-Butylbenzene	5/21/2009	5/21/2009	4.6	4.4	µg/L	
Toluene	5/21/2009	5/21/2009	50	4.4	µg/L	
Xylenes, Total	5/21/2009	5/21/2009	62	13	µg/L	
IW-1	Gasoline by GC/MS			Lab	ID:	0905122-001
Parameter	Preped	Analyzed	Result	<u>RL</u>	<u>Unit</u>	
TPH (Gasoline)	5/21/2009	5/21/2009	2900	440	µg/L	
IW-1	Diesel Water by 8015			Lab	ID:	0905122-001
Parameter	Preped	Analyzed	<u>Result</u>	<u>RL</u>	<u>Unit</u>	
TPH (Diesel)	5/20/2009	5/21/2009	0.15	0.10	mg/L	
IW-2	VOLATILES by GC/MS			Lab	ID:	0905122-0024
Parameter	Preped	Analyzed	<u>Result</u>	<u>RL</u>	<u>Unit</u>	
1,2,4-Trimethylbenzene	5/21/2009	5/21/2009	750	44	µg/L	
1,2-Dichloroethane (EDC)	5/21/2009	5/21/2009	180	44	µg/L	
1,3,5-Trimethylbenzene	5/21/2009	5/21/2009	110	44	µg/L	
Benzene	5/21/2009	5/21/2009	10000	44	µg/L	
Ethylbenzene	5/21/2009	5/21/2009	1100	44	µg/L	
m,p-Xylene	5/21/2009	5/21/2009	680	88	µg/L	
Naphthalene	5/21/2009	5/21/2009	130	88	µg/L	
n-Propylbenzene	5/21/2009	5/21/2009	120	44	µg/L	
Toluene	5/21/2009	5/21/2009	92	44	µg/L	
Xylenes, Total	5/21/2009	5/21/2009	730	130	µg/L	

483 Sinclair Frontage Road * Milpitas, CA * Phone: (408) 2635258 * Fax: (408) 263-8293 Visit us ar www.torrentlab.com email: analysis@torrentlab.com

Report Prepaired For:	Sophia Drugan Kleinfelder				Received: Reported:	5/19/2009 5/28/2009
		Summa	ry Report			
MW-2		Gasoline by GC/MS			Lab ID:	0905122-002A
Parameter		Preped	Analyzed	<u>Result</u>	<u>RL</u> U	nit
TPH (Gasoline)		5/21/2009	5/21/2009	31000	4400 µ	g/L
MW-2		Diesel Water by 8015			Lab ID:	0905122-002A
Parameter		Preped	Analyzed	<u>Result</u>	<u>RL</u> U	nit
TPH (Diesel)		5/20/2009	5/27/2009	2.7	0.20 m	ıg/L

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel)	SW8015B	5/21/2009	0.1	1	0.10	0.152x	mg/L	R19671
Surr: Pentacosane	SW8015B	5/21/2009	0	1	57.9-125	79.0	%REC	R19671

Note: x- Sample chromatogram does not resemble typical diesel pattern (possibly fuel lighter than diesel). Hydrocarbons within the diesel range quantitated as diesel.

Date Received: 5/19/2009 **Date Reported:** 5/28/2009

Lab Sample ID: 0905122-001 Date Prepared: 5/20/2009

Client Sample ID:	MW-1
Sample Location:	700 Independent Road, Oakland
Sample Matrix:	GROUNDWATER
Date/Time Sampled	5/19/2009 2:00:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	5/21/2009	1	8.8	8.8	ND	µg/L	R19608
1,1,1-Trichloroethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
1,1,2,2-Tetrachloroethane	SW8260B	5/21/2009	1	8.8	8.8	ND	µg/L	R19608
1,1,2-Trichloroethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
1,1-Dichloroethene	SW8260B	5/21/2009	1	8.8	8.8	ND	µg/L	R19608
1,1-Dichloropropene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
1,2,3-Trichlorobenzene	SW8260B	5/21/2009	1	8.8	8.8	ND	µg/L	R19608
1,2,3-Trichloropropane	SW8260B	5/21/2009	1	8.8	8.8	ND	µg/L	R19608
1,2,4-Trichlorobenzene	SW8260B	5/21/2009	1	8.8	8.8	ND	µg/L	R19608
1,2,4-Trimethylbenzene	SW8260B	5/21/2009	0.5	8.8	4.4	100	μg/L	R19608
1,2-Dibromo-3-chloropropane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
1,2-Dibromoethane (EDB)	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
1,2-Dichlorobenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
1,2-Dichloroethane (EDC)	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
1,2-Dichloropropane	SW8260B	5/21/2009	1	8.8	8.8	ND	μg/L	R19608
1,3,5-Trimethylbenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
1,3-Dichlorobenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
1,3-Dichloropropene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
1.4-Dichlorobenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
2,2-Dichloropropane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
2-Chloroethyl vinyl ether	SW8260B	5/21/2009	6	8.8	53	ND	µg/L	R19608
2-Chlorotoluene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
4-Chlorotoluene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
4-Isopropyltoluene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Acetone	SW8260B	5/21/2009	10	8.8	88	ND	μg/L	R19608
Benzene	SW8260B	5/21/2009	0.5	8.8	4.4	340	μg/L	R19608
Bromobenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Bromochloromethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Bromodichloromethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Bromoform	SW8260B	5/21/2009	1	8.8	8.8	ND	μg/L	R19608
Bromomethane	SW8260B	5/21/2009	1	8.8	8.8	ND	μg/L	R19608
Carbon tetrachloride	SW8260B	5/21/2009	1	8.8	8.8	ND	μg/L	R19608
Chlorobenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Chloroform	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Chloromethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND		R19608
cis-1,2-Dichloroethene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L μg/L	R19608
cis-1,3-Dichloropropene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Dibromochloromethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Dibromomethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Dichlorodifluoromethane	SW8260B	5/21/2009	0.5 0.5	8.8	4.4 4.4	ND		R19608
Diisopropyl ether (DIPE)	SW8260B SW8260B	5/21/2009	0.5 0.5	8.8	4.4 4.4	ND	µg/L	R19608
	SW8260B SW8260B				4.4 4.4		µg/L	R19608
Ethyl tert-butyl ether (ETBE)		5/21/2009	0.5	8.8		ND 70	µg/L	
Ethylbenzene	SW8260B	5/21/2009	0.5	8.8	4.4	79	µg/L	R19608

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 2 of 10

Date Received: 5/19/2009 **Date Reported:** 5/28/2009

Lab Sample ID: 0905122-001 Date Prepared: 5/20/2009

Client Sample ID:	MW-1
Sample Location:	700 Independent Road, Oakland
Sample Matrix:	GROUNDWATER
Date/Time Sampled	5/19/2009 2:00:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Freon-113	SW8260B	5/21/2009	1	8.8	8.8	ND	µg/L	R19608
Hexachlorobutadiene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
Isopropylbenzene	SW8260B	5/21/2009	1	8.8	8.8	19	μg/L	R19608
Methyl tert-butyl ether (MTBE)	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
Methylene chloride	SW8260B	5/21/2009	5	8.8	44	ND	μg/L	R19608
Naphthalene	SW8260B	5/21/2009	1	8.8	8.8	9.7	µg/L	R19608
n-Butylbenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	μg/L	R19608
n-Propylbenzene	SW8260B	5/21/2009	0.5	8.8	4.4	30	µg/L	R19608
sec-Butylbenzene	SW8260B	5/21/2009	0.5	8.8	4.4	4.6	µg/L	R19608
Styrene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
t-Butyl alcohol (t-Butanol)	SW8260B	5/21/2009	5	8.8	44	ND	µg/L	R19608
tert-Amyl methyl ether (TAME)	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
tert-Butylbenzene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
Tetrachloroethene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
Toluene	SW8260B	5/21/2009	0.5	8.8	4.4	50	µg/L	R19608
trans-1,2-Dichloroethene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
trans-1,3-Dichloropropene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
Trichloroethene	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
Trichlorofluoromethane	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
Vinyl chloride	SW8260B	5/21/2009	0.5	8.8	4.4	ND	µg/L	R19608
Xylenes, Total	SW8260B	5/21/2009	1.5	8.8	13	62	µg/L	R19608
Surr: Dibromofluoromethane	SW8260B	5/21/2009	0	8.8	61.2-131	90.8	%REC	R19608
Surr: 4-Bromofluorobenzene	SW8260B	5/21/2009	0	8.8	64.1-120	83.6	%REC	R19608
Surr: Toluene-d8	SW8260B	5/21/2009	0	8.8	75.1-127	103	%REC	R19608
TPH (Gasoline)	SW8260B(TPH)	5/21/2009	50	8.8	440	2900	µg/L	G19608
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	5/21/2009	0	8.8	58.4-133	123	%REC	G19608

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Client Sample ID:	MW-2
Sample Location:	700 Independent Road, Oakland
Sample Matrix:	GROUNDWATER
Date/Time Sampled	5/19/2009 2:50:00 PM

Lab Sample ID: 0905122-002 **Date Prepared:** 5/20/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel)	SW8015B	5/27/2009	0.1	2	0.20	2.67x	mg/L	R19671
Surr: Pentacosane	SW8015B	5/27/2009	0	2	57.9-125	82.0	%REC	R19671

Note: x- Sample chromatogram does not resemble typical diesel pattern (possibly fuel lighter than diesel). Hydrocarbons within the diesel range quantitated as diesel.

Date Received: 5/19/2009 **Date Reported:** 5/28/2009

Lab Sample ID: 0905122-002 Date Prepared: 5/20/2009

Client Sample ID:	MW-2
Sample Location:	700 Independent Road, Oakland
Sample Matrix:	GROUNDWATER
Date/Time Sampled	5/19/2009 2:50:00 PM

1,1,2-Tetrachlorosethane SW8260B 6/21/2009 1 88 88 ND µg/L R1960B 1,1,1-Tichlorosethane SW8260B 6/21/2009 1 88 44 ND µg/L R1960B 1,1,2-Tichlorosethane SW8260B 5/21/2009 1 88 84 ND µg/L R1960B 1,1,2-Tichlorosethane SW8260B 5/21/2009 1 88 84 ND µg/L R1960B 1,1-Dichlorosethane SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1,2.3-Tirichlorobenzene SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1.2.4-Tirnettylbenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.2.0-Dirorosethane (EDE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.2.0-Dirorosethane (EDC) SW8260B 5/21/2009 0.5 88	Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,2-2-Tetrachloroethane SW8208 5/21/2009 1 88 84 ND µgL R19608 1,1-Dichloroethane SW8208 5/21/2009 0.5 88 44 ND µgL R19608 1,1-Dichloroethane SW8208 5/21/2009 0.5 88 44 ND µgL R19608 1,2-3-Trichloroptopane SW8208 5/21/2009 1 88 88 ND µgL R19608 1,2-4-Trichloroptopane SW8208 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichoroch-chloroptopane SW8208 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichorochane (EDC) SW8208 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichoroptopane SW8208 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichoroptopane SW8208 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichoroptopane SW8208 5/21/2009	1,1,1,2-Tetrachloroethane	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
1,1.2-Trichloroethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,1-Dichloroppene SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1,2.3-Trichloropopane SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1,2.4-Trichloropopane SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1,2.4-Trinethylbenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2.0-binoro-shoropopane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Obinoro-shoropopane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Obinoro-shoropopane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichloropopane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichloropopane SW8260B	1,1,1-Trichloroethane	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
1,1-Dicklorophnene SW82608 5/21/2009 1 88 84 ND µgL R19608 1,1-Dicklorophopene SW82608 5/21/2009 1 88 88 ND µgL R19608 1,2,3-Tricklorophopane SW82608 5/21/2009 1 88 88 ND µgL R19608 1,2,4-Tricklorophopane SW82608 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichorochane (EDB) SW82608 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichorophopane SW82608 5/21/2009 0.5 88 44 ND µgL R19608 1,2-Dichorophopane SW82608 5/21/2009 0.5 88 44 ND µgL R19608 1,3-Dichlorophopane SW82608 5/21/2009 0.5 88 44 ND µgL R19608 1,3-Dichlorophopane SW82608 5/21/2009 0.5 88 44 ND µgL R19608 2,-Dicholophophopane SW82608 5/21/2009 <td>1,1,2,2-Tetrachloroethane</td> <td>SW8260B</td> <td>5/21/2009</td> <td>1</td> <td>88</td> <td>88</td> <td>ND</td> <td>µg/L</td> <td>R19608</td>	1,1,2,2-Tetrachloroethane	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
1;1-Dichlorobanzene SW8260B 5/21/2009 1. 88 44 ND µg/L R1960B 1,2,3-Trichloroporpane SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1,2,4-Trichlorobenzene SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1,2,4-Trichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichloropropane SW8260B	1,1,2-Trichloroethane	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
1,2,3-Trichloropropane SW8200B 5/21/2009 1 88 88 ND µg/L R1960B 1,2,3-Trichloropropane SW8200B 5/21/2009 1 88 88 ND µg/L R1960B 1,2,4-Trichloropropane SW8200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dibromo-3-chloropropane SW8200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dibromo-3-chloropropane SW8200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichloroberzene SW8200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichloroberzene SW8200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichloroberzene SW8200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichloroberzene SW8200B 5/21/2009 0.5 88 44 ND µg/L R1960B 2-Dichloropropane SW8260B<	1,1-Dichloroethene	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
1.2.3-Trichloropropane SW8260B 5/21/2009 1 88 88 ND µg/L R19608 1.2.4-Trindtybherzne SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2.0-Dirobro-s-chloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2.0-Dirobro-s-chloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2.0-Dirobro-s-zne SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2.0-Dirobro-s-zne SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3.5-Trintertyber-zene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3.0-Dirohorop-zene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2.2-Dirohorop-zene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2.2-Dirohorop-zene SW	1,1-Dichloropropene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
1,2,4-Trichlorobenzene SW8260B 5/21/2009 1 88 88 ND µg/L R1960B 1,2,4-Triinethylbenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Ditromos-sholropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1,3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 2,-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 2,-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 2,-Dichloropropane SW8260B	1,2,3-Trichlorobenzene	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
1.2.4-Trimethylbenzene SW8260B 5/21/2009 0.5 88 44 750 µg/L R19608 1.2-Ditormos-schloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2-Ditornosthane (EDE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2-Dichlorosthane (EDC) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2-Dichlorosthane (EDC) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichloropropene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2Dichloropropene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2Dichloropropane SW82	1,2,3-Trichloropropane	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
1.2.4-Trimethylbenzene SW2200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.2-Ditromosthane (EDB) SW2200B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.2-Ditromosthane (EDC) SW220B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.2-Dichloroptane SW220B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.2-Dichloroptane SW220B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.3-Dichloroptane SW220B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.3-Dichloroptane SW220B 5/21/2009 0.5 88 44 ND µg/L R1960B 2.2-Dichloroptopene SW220B 5/21/2009 0.5 88 44 ND µg/L R1960B 2.2-Dichloroptyl wig/ter SW220B 5/21/2009 0.5 88 44 ND µg/L R1960B 2Chloroethyl wig/ter SW220B 5	1,2,4-Trichlorobenzene	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
1.2-Dibromo-3-chioropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2-Dibrioromethane (EDE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2-Dibriorobenzene SW8260B 5/21/2009 0.5 88 44 180 µg/L R19608 1.2-Dichioropropane SW8260B 5/21/2009 1 88 84 ND µg/L R19608 1.3-Dichioropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichiorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichiorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2Dichioropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2Dichioropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2Dichioropropane SW8260B	1,2,4-Trimethylbenzene	SW8260B	5/21/2009	0.5	88	44	750		R19608
1.2-Dibromoethane (EDB) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.2-Dichlorobrane (EDC) SW8260B 5/21/2009 1 88 88 ND µg/L R19608 1.3-Dichlorobrane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichlorobrazene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichlorobrazene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Dichloropropane SW8260B 5/21/200	1,2-Dibromo-3-chloropropane	SW8260B	5/21/2009	0.5	88	44	ND		R19608
1.2-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.2-Dichloroptane SW8260B 5/21/2009 0.5 88 44 180 µg/L R1960B 1.3-Dichloroptopane SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 1.4-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 2.Chlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 2.Chlorobluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B 4-Stopropyltoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R1960B Bromobenzene SW8260B 5/21/2009 <	1,2-Dibromoethane (EDB)	SW8260B	5/21/2009	0.5	88	44	ND		R19608
1.2-Dichloropropane SW8260B 5/21/2009 1 88 44 180 µg/L R19608 1.3-Dichloropropane SW8260B 5/21/2009 0.5 88 44 110 µg/L R19608 1.3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.4-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Chloroptilouene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 A-cetone SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 <		SW8260B	5/21/2009		88	44			R19608
1.2-Dichloropropane SW8260B 5/21/2009 1 88 88 ND µg/L R19608 1.3.5-Trimethylbenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1.4-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2.2-Dichlorobropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2.Chlorothyl vinj ether SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2.Chlorothyl vinj ether SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4.Sopropyltoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B <td< td=""><td>•</td><td></td><td></td><td></td><td></td><td>44</td><td></td><td></td><td></td></td<>	•					44			
1,3,5-Trimethylbenzene SW8260B 5/21/2009 0.5 88 44 110 µg/L R19608 1,3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1,4-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2,2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2,2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2,Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4.Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Benzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochoromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochoromethane SW8260B 5/21/2009 <td< td=""><td></td><td></td><td>5/21/2009</td><td></td><td></td><td>88</td><td></td><td></td><td></td></td<>			5/21/2009			88			
1,3-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1,3-Dichloropropene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 1,4-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-cstore SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Acetore SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5									
1,3-Dichloropropene SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 1,4-Dichlorobenzene SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 2,2-Dichloropropane SW82608 5/21/2009 6 88 544 ND µg/L R19608 2.Chlorothyl vinyl ether SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 2.Chlorothyl ene SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 4.chorothuene SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 Acetone SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW82608 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW82608 5/21/2009 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1,4-Dichlorobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2,2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Chlorochly vinyl ether SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-Isopropyltoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bornochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromodichloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromodichloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromodichloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromodichloromethane SW8260B 5	•								
2.2-Dichloropropane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Chloroethyl vinyl ether SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 2-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-cohorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 A-cotone SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromobenzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Chlorobenzene SW8260B 5/21/2009 1									
2-Chloroethyl vinyl ether SW8260B 5/21/2009 6 88 530 ND µg/L R19608 2-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-Isopropyltoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Acctone SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Benzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromoform SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromoform SW8260B 5/21/2009 1 88 88 ND µg/L R19608 Chlorobenzene SW8260B 5/21/2009 0.5 88 <td< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	•								
2-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-Chlorotoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 4-Isopropyltoluene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Acetone SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Benzene SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Bromochloromethane SW8260B 5/21/2009 1 88 88 ND µg/L R19608 Chloroform SW8260B 5/21/2009 0.5 88									
4-ChlorotolueneSW8260B5/21/20090.58844NDµg/LR196084-IsopropyltolueneSW8260B5/21/20090.58844NDµg/LR19608AcetoneSW8260B5/21/20091088880NDµg/LR19608BenzeneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochtaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844ND									
4-IsopropyltolueneSW8260B5/21/20090.58844NDµg/LR19608AcetoneSW8260B5/21/20090.5884410000µg/LR19608BenzeneSW8260B5/21/20090.58844NDµg/LR19608BromobenzeneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromorethaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
AcetoneSW8260B5/21/20091088880NDµg/LR19608BenzeneSW8260B5/21/20090.5884410000µg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/200918888NDµg/LR19608BromochloromethaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844<									
BenzeneSW8260B5/21/20090.5884410000µg/LR19608BromobenzeneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromodichloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromodichloromethaneSW8260B5/21/200918888NDµg/LR19608BromothaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChlorobenzeneSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608Cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/2009 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
BromobenzeneSW8260B5/21/20090.58844NDµg/LR19608BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromodichloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromodichloromethaneSW8260B5/21/200918888NDµg/LR19608BromothaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChlorobenzeneSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608Cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.5									
BromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromodichloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromoformSW8260B5/21/200918888NDµg/LR19608BromomethaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChlorobenzeneSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608Cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844									
BromodichloromethaneSW8260B5/21/20090.58844NDµg/LR19608BromoformSW8260B5/21/200918888NDµg/LR19608BromomethaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChlorobenzeneSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844NDµg/LR19608DibromothaneSW8260B5/21/20090.58844<									
BromoformSW8260B5/21/200918888NDµg/LR19608BromomethaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChlorobenzeneSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608Cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608cis-1,3-DichloropropeneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DichlorodifluoromethaneSW8260B5/21/20090.58844NDµg/LR19608Disopropyl ether (DIPE)SW8260B5/21/20090.58844NDµg/LR19608Disopropyl ether (ETBE)SW8260B5/21/20090.58844NDµg/LR19608ChlorodifluoromethaneSW826									
BromomethaneSW8260B5/21/200918888NDµg/LR19608Carbon tetrachlorideSW8260BS/21/200918888NDµg/LR19608ChlorobenzeneSW8260BS/21/20090.58844NDµg/LR19608ChloroformSW8260BS/21/20090.58844NDµg/LR19608ChloromethaneSW8260BS/21/20090.58844NDµg/LR19608cis-1,2-DichloroetheneSW8260BS/21/20090.58844NDµg/LR19608cis-1,3-DichloropropeneSW8260BS/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260BS/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260BS/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260BS/21/20090.58844NDµg/LR19608DibromomethaneSW8260BS/21/20090.58844NDµg/LR19608DibromothaneSW8260BS/21/20090.58844NDµg/LR19608DibromothaneSW8260BS/21/20090.58844NDµg/LR19608DibromothaneSW8260BS/21/20090.58844NDµg/LR19608DibromothaneSW8260BS/21/20090.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Carbon tetrachlorideSW8260B5/21/200918888NDµg/LR19608ChlorobenzeneSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608cis-1,3-DichloropropeneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromorethaneSW8260B5/21/20090.58844NDµg/LR19608DibromorethaneSW8260B5/21/20090.58844NDµg/LR19608Disopropyl ether (DIPE)SW8260B5/21/20090.58844NDµg/LR19608Ethyl tert-butyl ether (ETBE)SW8260B5/21/20090.58844NDµg/LR19608									
ChlorobenzeneSW8260B5/21/20090.58844NDµg/LR19608ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608cis-1,3-DichloropropeneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromorethaneSW8260B5/21/20090.58844NDµg/LR19608Disopropyl ether (DIPE)SW8260B5/21/20090.58844NDµg/LR19608Ethyl tert-butyl ether (ETBE)SW8260B5/21/20090.58844NDµg/LR19608									
ChloroformSW8260B5/21/20090.58844NDµg/LR19608ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608cis-1,3-DichloropropeneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromorethaneSW8260B5/21/20090.58844NDµg/LR19608DibromorethaneSW8260B5/21/20090.58844NDµg/LR19608DibromorethaneSW8260B5/21/20090.58844NDµg/LR19608Disopropyl ether (DIPE)SW8260B5/21/20090.58844NDµg/LR19608Ethyl tert-butyl ether (ETBE)SW8260B5/21/20090.58844NDµg/LR19608									
ChloromethaneSW8260B5/21/20090.58844NDµg/LR19608cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608cis-1,3-DichloropropeneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromomethaneSW8260B5/21/20090.58844NDµg/LR19608DibromomethaneSW8260B5/21/20090.58844NDµg/LR19608DichlorodifluoromethaneSW8260B5/21/20090.58844NDµg/LR19608Diisopropyl ether (DIPE)SW8260B5/21/20090.58844NDµg/LR19608Ethyl tert-butyl ether (ETBE)SW8260B5/21/20090.58844NDµg/LR19608									
cis-1,2-DichloroetheneSW8260B5/21/20090.58844NDµg/LR19608cis-1,3-DichloropropeneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromoethaneSW8260B5/21/20090.58844NDµg/LR19608DibromoethaneSW8260B5/21/20090.58844NDµg/LR19608DichlorodifluoromethaneSW8260B5/21/20090.58844NDµg/LR19608Diisopropyl ether (DIPE)SW8260B5/21/20090.58844NDµg/LR19608Ethyl tert-butyl ether (ETBE)SW8260B5/21/20090.58844NDµg/LR19608									
cis-1,3-DichloropropeneSW8260B5/21/20090.58844NDµg/LR19608DibromochloromethaneSW8260B5/21/20090.58844NDµg/LR19608DibromomethaneSW8260B5/21/20090.58844NDµg/LR19608DibromomethaneSW8260B5/21/20090.58844NDµg/LR19608DichlorodifluoromethaneSW8260B5/21/20090.58844NDµg/LR19608Diisopropyl ether (DIPE)SW8260B5/21/20090.58844NDµg/LR19608Ethyl tert-butyl ether (ETBE)SW8260B5/21/20090.58844NDµg/LR19608									
Dibromochloromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Dibromomethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Dibromomethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Dichlorodifluoromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Diisopropyl ether (DIPE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Ethyl tert-butyl ether (ETBE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608	·								
Dibromomethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Dichlorodifluoromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Disopropyl ether (DIPE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Ethyl tert-butyl ether (ETBE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608									
Dichlorodifluoromethane SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Diisopropyl ether (DIPE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Ethyl tert-butyl ether (ETBE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608									
Diisopropyl ether (DIPE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608 Ethyl tert-butyl ether (ETBE) SW8260B 5/21/2009 0.5 88 44 ND µg/L R19608									
Ethyl tert-butyl ether (ETBE) SW8260B 5/21/2009 0.5 88 44 ND μg/L R19608									
Ethylbenzene SW8260B 5/21/2009 0.5 88 44 1100 μg/L R19608	, , ,								
	Ethylbenzene	SW8260B	5/21/2009	0.5	88	44	1100	µg/L	R19608

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 5 of 10

Date Received: 5/19/2009 **Date Reported:** 5/28/2009

Lab Sample ID: 0905122-002 Date Prepared: 5/20/2009

Client Sample ID:	MW-2
Sample Location:	700 Independent Road, Oakland
Sample Matrix:	GROUNDWATER
Date/Time Sampled	5/19/2009 2:50:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Freon-113	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
Hexachlorobutadiene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Isopropylbenzene	SW8260B	5/21/2009	1	88	88	ND	µg/L	R19608
Methyl tert-butyl ether (MTBE)	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Methylene chloride	SW8260B	5/21/2009	5	88	440	ND	µg/L	R19608
Naphthalene	SW8260B	5/21/2009	1	88	88	130	µg/L	R19608
n-Butylbenzene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
n-Propylbenzene	SW8260B	5/21/2009	0.5	88	44	120	µg/L	R19608
sec-Butylbenzene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Styrene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
t-Butyl alcohol (t-Butanol)	SW8260B	5/21/2009	5	88	440	ND	µg/L	R19608
tert-Amyl methyl ether (TAME)	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
tert-Butylbenzene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Tetrachloroethene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Toluene	SW8260B	5/21/2009	0.5	88	44	92	µg/L	R19608
trans-1,2-Dichloroethene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
trans-1,3-Dichloropropene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Trichloroethene	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Trichlorofluoromethane	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Vinyl chloride	SW8260B	5/21/2009	0.5	88	44	ND	µg/L	R19608
Xylenes, Total	SW8260B	5/21/2009	1.5	88	130	730	µg/L	R19608
Surr: Dibromofluoromethane	SW8260B	5/21/2009	0	88	61.2-131	100	%REC	R19608
Surr: 4-Bromofluorobenzene	SW8260B	5/21/2009	0	88	64.1-120	106	%REC	R19608
Surr: Toluene-d8	SW8260B	5/21/2009	0	88	75.1-127	108	%REC	R19608
TPH (Gasoline)	SW8260B(TPH)	5/21/2009	50	88	4400	31000	µg/L	G19608
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	5/21/2009	0	88	58.4-133	120	%REC	G19608

Report prepared for:	Sophia Drugan
	Vlainfaldan

Date Received: 5/19/2009 **Date Reported:** 5/28/2009

Client Sample ID:	MW-3	Lab Sample ID:	0905122-003
Sample Location:	700 Independent Road, Oakland	Date Prepared:	5/20/2009
Sample Matrix:	GROUNDWATER		
Date/Time Sampled	5/19/2009 12:40:00 PM		

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel)	SW8015B	5/21/2009	0.1	1	0.10	ND	mg/L	R19671
Surr: Pentacosane	SW8015B	5/21/2009	0	1	57.9-125	75.0	%REC	R19671

Date Received: 5/19/2009 **Date Reported:** 5/28/2009

Lab Sample ID: 0905122-003 Date Prepared: 5/20/2009

Client Sample ID:	MW-3
Sample Location:	700 Independent Road, Oakland
Sample Matrix:	GROUNDWATER
Date/Time Sampled	5/19/2009 12:40:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
1,1,1-Trichloroethane	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,1,2,2-Tetrachloroethane	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
1,1,2-Trichloroethane	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,1-Dichloroethene	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
1,1-Dichloropropene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,2,3-Trichlorobenzene	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
1,2,3-Trichloropropane	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
1,2,4-Trichlorobenzene	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
1,2,4-Trimethylbenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,2-Dibromo-3-chloropropane	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,2-Dibromoethane (EDB)	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,2-Dichlorobenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,2-Dichloroethane (EDC)	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,2-Dichloropropane	SW8260B	5/20/2009	1	1	1.0	ND	μg/L	R19608
1,3,5-Trimethylbenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
1,3-Dichlorobenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
1,3-Dichloropropene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
1,4-Dichlorobenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
2,2-Dichloropropane	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
2-Chloroethyl vinyl ether	SW8260B	5/20/2009	6	1	6.0	ND	μg/L	R19608
2-Chlorotoluene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
4-Chlorotoluene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
4-Isopropyltoluene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Acetone	SW8260B	5/20/2009	10	1	10	ND	μg/L	R19608
Benzene	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
Bromobenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
Bromochloromethane	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
Bromodichloromethane	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
Bromoform	SW8260B	5/20/2009	1	1	1.0	ND	μg/L	R19608
Bromomethane	SW8260B	5/20/2009	1	1	1.0	ND	μg/L	R19608
Carbon tetrachloride	SW8260B	5/20/2009	1	1	1.0	ND	μg/L	R19608
Chlorobenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
Chloroform	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
Chloromethane	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
cis-1,2-Dichloroethene	SW8260B	5/20/2009	0.5	1	0.50	ND		R19608
	SW8260B	5/20/2009		1			µg/L	R19608
cis-1,3-Dichloropropene Dibromochloromethane	SW8260B SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608 R19608
		5/20/2009	0.5		0.50	ND	μg/L	
Dibromomethane	SW8260B		0.5	1	0.50	ND	µg/L	R19608
Dichlorodifluoromethane	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Diisopropyl ether (DIPE)	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Ethyl tert-butyl ether (ETBE)	SW8260B	5/20/2009	0.5	1	0.50	ND	μg/L	R19608
Ethylbenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 8 of 10

Date Received: 5/19/2009 **Date Reported:** 5/28/2009

Lab Sample ID: 0905122-003 Date Prepared: 5/20/2009

MW-3
700 Independent Road, Oakland
GROUNDWATER
5/19/2009 12:40:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Freon-113	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
Hexachlorobutadiene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Isopropylbenzene	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
Methyl tert-butyl ether (MTBE)	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Methylene chloride	SW8260B	5/20/2009	5	1	5.0	ND	µg/L	R19608
Naphthalene	SW8260B	5/20/2009	1	1	1.0	ND	µg/L	R19608
n-Butylbenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
n-Propylbenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
sec-Butylbenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Styrene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
t-Butyl alcohol (t-Butanol)	SW8260B	5/20/2009	5	1	5.0	ND	µg/L	R19608
tert-Amyl methyl ether (TAME)	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
tert-Butylbenzene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Tetrachloroethene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Toluene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
trans-1,2-Dichloroethene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
trans-1,3-Dichloropropene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Trichloroethene	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Trichlorofluoromethane	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Vinyl chloride	SW8260B	5/20/2009	0.5	1	0.50	ND	µg/L	R19608
Xylenes, Total	SW8260B	5/20/2009	1.5	1	1.5	ND	µg/L	R19608
Surr: Dibromofluoromethane	SW8260B	5/20/2009	0	1	61.2-131	85.2	%REC	R19608
Surr: 4-Bromofluorobenzene	SW8260B	5/20/2009	0	1	64.1-120	101	%REC	R19608
Surr: Toluene-d8	SW8260B	5/20/2009	0	1	75.1-127	112	%REC	R19608
TPH (Gasoline)	SW8260B(TPH)	5/20/2009	50	1	50	ND	µg/L	G19608
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	5/20/2009	0	1	58.4-133	81.0	%REC	G19608

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

CLIENT: Kleinfelder Work Order: 0905122

Project: 700 Independent Road, Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: G19608

Sample ID MB_G19608	SampType: MBLK	TestCode: TPPH_W	_GC Units: µg/L		Prep Dat	te: 5/20/20	09	RunNo: 19	608	
Client ID: ZZZZZ	Batch ID: G19608	TestNo: SW8260	В(ТР		Analysis Dat	te: 5/20/20	09	SeqNo: 28	3945	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline) Surr: 4-Bromofllurobenzene	ND 12.30	50 0 11.6	0	106	58.4	133				
Sample ID LCS_G19608	SampType: LCS	TestCode: TPPH_W	_GC Units: µg/L		Prep Dat	te: 5/20/20	09	RunNo: 19	608	
Client ID: ZZZZZ	Batch ID: G19608	TestNo: SW8260	B(TP		Analysis Dat	te: 5/20/20	09	SeqNo: 28	3946	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	249.0	50 227	37	93.4	52.4	127				
Surr: 4-Bromofllurobenzene	12.10	0 11.6	0	104	58.4	133				
Sample ID LCSD_G19608	SampType: LCSD	TestCode: TPPH_W	_GC Units: µg/L		Prep Dat	te: 5/20/20	09	RunNo: 19	508	
Client ID: ZZZZZ	Batch ID: G19608	TestNo: SW8260	В(ТР		Analysis Dat	te: 5/20/20	09	SeqNo: 28	3947	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	234.0	50 227	37	86.8	52.4	127	249	6.21	20	
Surr: 4-Bromofllurobenzene	13.00	0 11.6	0	112	58.4	133	0	0	20	

S

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 1 of 5

Kleinfelder **CLIENT:** Work Order: 0905122

Project: 700 Independent Road, Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: R19608

Sample ID MB_R19608	SampType: MBLK	TestCoc	le: 8260B_W	Units: µg/L		Prep Da	ate: 5/21/2	009	RunNo: 19	608	
Client ID: ZZZZZ	Batch ID: R19608	TestN	lo: SW8260B			Analysis Da	ate: 5/21/2	009	SeqNo: 28	3929	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	1.0									
1,1,1-Trichloroethane	ND	0.50									
1,1,2,2-Tetrachloroethane	ND	1.0									
1,1,2-Trichloroethane	ND	0.50									
1,1-Dichloroethene	ND	1.0									
1,1-Dichloropropene	ND	0.50									
1,2,3-Trichlorobenzene	ND	1.0									
1,2,3-Trichloropropane	ND	1.0									
1,2,4-Trichlorobenzene	ND	1.0									
1,2,4-Trimethylbenzene	ND	0.50									
1,2-Dibromo-3-chloropropane	ND	0.50									
1,2-Dibromoethane (EDB)	ND	0.50									
1,2-Dichlorobenzene	ND	0.50									
1,2-Dichloroethane (EDC)	ND	0.50									
1,2-Dichloropropane	ND	1.0									
1,3,5-Trimethylbenzene	ND	0.50									
1,3-Dichlorobenzene	ND	0.50									
1,4-Dichlorobenzene	ND	0.50									
2,2-Dichloropropane	ND	0.50									
2-Chloroethyl vinyl ether	ND	6.0									
2-Chlorotoluene	ND	0.50									
4-Chlorotoluene	ND	0.50									
4-Isopropyltoluene	ND	0.50									
Acetone	ND	10									
Benzene	ND	0.50									
Bromobenzene	ND	0.50									
Bromochloromethane	ND	0.50									
Bromodichloromethane	ND	0.50									
Bromoform	ND	1.0									
Bromomethane	ND	1.0									
Carbon tetrachloride	ND	1.0									

Qualifiers: Е

Value above quantitation range

Holding times for preparation or analysis exceeded Н RPD outside accepted recovery limits R

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 2 of 5

ND Not Detected at the Reporting Limit

S

Kleinfelder **CLIENT:** Work Order: 0905122

Project: 700 Independent Road, Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: R19608

Sample ID MB_R19608	SampType: MBLK	TestCode:	8260B_W	Units: µg/L		Prep Da	ate: 5/21/2	009	RunNo: 196	608	
Client ID: ZZZZZ	Batch ID: R19608	TestNo:	SW8260B			Analysis Da	ate: 5/21/2	009	SeqNo: 283	3929	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	0.50									
Chloroform	ND	0.50									
Chloromethane	ND	0.50									
cis-1,2-Dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dibromomethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Ethylbenzene	ND	0.50									
Freon-113	ND	1.0									
Hexachlorobutadiene	ND	0.50									
Isopropylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	0.50									
Methylene chloride	ND	5.0									
Naphthalene	ND	1.0									
n-Butylbenzene	ND	0.50									
n-Propylbenzene	ND	0.50									
sec-Butylbenzene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	5.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
tert-Butylbenzene	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
trans-1,3-Dichloropropene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl chloride	ND	0.50									

Qualifiers: Е

Value above quantitation range

Holding times for preparation or analysis exceeded Н RPD outside accepted recovery limits R

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits Page 3 of 5 S

Kleinfelder **CLIENT:** Work Order: 0905122

Project: 700 Independent Road, Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: R19608

Sample ID MB_R19608	SampType: MBL	K TestCo	ode: 8260B_W	Units: µg/L		Prep Dat	te: 5/21/2	009	RunNo: 19	608	
Client ID: ZZZZZ	Batch ID: R196	08 Test	No: SW8260B	6		Analysis Dat	te: 5/21/20	009	SeqNo: 28	3929	
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Xylenes, Total	N	D 1.5									
Surr: Dibromofluoromethane	10.7	7 0	11.36	0	94.8	61.2	131				
Surr: 4-Bromofluorobenzene	12.7	6 0	11.36	0	112	64.1	120				
Surr: Toluene-d8	11.5	2 0	11.36	0	101	75.1	127				
Sample ID LCS_R19608	SampType: LCS	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	te: 5/21/2	009	RunNo: 19	608	
Client ID: ZZZZZ	Batch ID: R196	08 Test	No: SW8260B	ł		Analysis Dat	te: 5/21/2	009	SeqNo: 28	3930	
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	13.8	3 1.0	17.04	0	81.2	61.4	129				
Benzene	16.3	7 0.50	17.04	0	96.1	66.9	140				
Chlorobenzene	16.0	2 0.50	17.04	0	94.0	73.9	137				
Toluene	16.1	9 0.50	17.04	0	95.0	76.6	123				
Trichloroethene	15.9	5 0.50	17.04	0	93.6	69.3	144				
Surr: Dibromofluoromethane	10.5	7 0	11.36	0	93.0	61.2	131				
Surr: 4-Bromofluorobenzene	9.29	0 0	11.36	0	81.8	64.1	120				
Surr: Toluene-d8	12.4	3 0	11.36	0	109	75.1	127				
Sample ID LCSD_R19608	SampType: LCSD	TestCo	ode: 8260B_W	Units: µg/L		Prep Dat	te: 5/21/2	009	RunNo: 19	608	
Client ID: ZZZZZ	Batch ID: R196	08 Test	No: SW8260B	i		Analysis Dat	te: 5/21/20	009	SeqNo: 28	3931	
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	13.8	2 1.0	17.04	0	81.1	61.4	129	13.83	0.0723	20	
Benzene	15.6	6 0.50	17.04	0	91.9	66.9	140	16.37	4.43	20	
Chlorobenzene	15.1	6 0.50	17.04	0	89.0	73.9	137	16.02	5.52	20	
Toluene	15.4	6 0.50	17.04	0	90.7	76.6	123	16.19	4.61	20	
Trichloroethene	16.3	7 0.50	17.04	0	96.1	69.3	144	15.95	2.60	20	
Surr: Dibromofluoromethane	10.9	0 0	11.36	0	96.0	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	10.4	3 0	11.36	0	91.8	64.1	120	0	0	0	
Sun: 4-bromoliuoropenzene											

Qualifiers: Е

Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 4 of 5

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

ANALYTICAL QC SUMMARY REPORT

BatchID: R19671

Sample ID WD090520A-MB	SampType: MBLK	TestCode: TPHD_W	Units: mg/L	Prep Date: 5/20/2009	RunNo: 19671
Client ID: ZZZZZ	Batch ID: R19671	TestNo: SW8015B		Analysis Date: 5/20/2009	SeqNo: 284441
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD F	Ref Val %RPD RPDLimit Qual
TPH (Diesel)	ND	0.10			
Surr: Pentacosane	0.09100	0 0.1	0	91.0 57.9 125	
Sample ID WD090520A-LCS	SampType: LCS	TestCode: TPHD_W	Units: mg/L	Prep Date: 5/20/2009	RunNo: 19671
Client ID: ZZZZZ	Batch ID: R19671	TestNo: SW8015B		Analysis Date: 5/20/2009	SeqNo: 284442
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD F	Ref Val %RPD RPDLimit Qual
TPH (Diesel)	0.6800	0.10 1	0	68.0 50.3 125	
Surr: Pentacosane	0.09200	0 0.1	0	92.0 57.9 125	
Sample ID WD090520A-LCSD	SampType: LCSD	TestCode: TPHD_W	Units: mg/L	Prep Date: 5/20/2009	RunNo: 19671
Client ID: ZZZZZ	Batch ID: R19671	TestNo: SW8015B		Analysis Date: 5/20/2009	SeqNo: 284443
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD F	Ref Val %RPD RPDLimit Qual
TPH (Diesel)	0.7660	0.10 1	0	76.6 50.3 125	0.68 11.9 30
Surr: Pentacosane	0.09300	0 0.1	0	93.0 57.9 125	0 0 0

S

CLIENT:

Project:

Kleinfelder Work Order: 0905122

700 Independent Road, Oakland

Analyte detected below quantitation limits J

Muniputas, CA 39035 Munputas, CA 39035 CHAIN OF CUSTODY LAB WORK ORDER N LAB OF AT OR N, INC. LAB WORK 0402 63.5258 FAX: 408.263.5258 FAX: 408.263.8293 WW. torrentlab.com FOR TORRENT LAB USE ONLY.
Address: 4620 Willow Road, Suite 100 Purpose: City: Plasawion State: CA Zip Code: 94588 Special Instructions / Comments: Report to Sophia Dryan Telephone: 925-484-1700 FAX: Show Cheinhelder Show Cheinhelder REPORT TO: SAMPLER: P.O.#: EMAIL: TURNAROUND TIME: Sample TYPE: REPORT FORMAT: Time of the comment is the commen
City: Pleasanfon State: CA Zip Code: 9458% Special Instructions / Comments: Report Sphia Dryan Telephone: 925-484-1700 FAX: Shrugan@Kleinfelder REPORT TO: SAMPLER: P.O.#: EMAIL: TURNAROUND TIME: Som Value Air Occ Level IV Big
Telephone: $925-484-1700$ FAX: SAMPLER: P.O. #: EMAIL: TURNAROUND TIME: 10 Work Days 3 Work Days Noon - Nxt Day Storm Water Air QC Level IV BW 10 QC Level IV BW 10 QC Level IV BW 10 QC Level IV 10 QC Revel IV
REPORT TO: SAMPLER: P.O.#: EMAIL: TURNAROUND TIME: SAMPLE TYPE: SAMPLE TYPE: REPORT FORMAT: TST 000 Storm Water Air. OC Level IV Storm Water Storm Water Storm Water OC Level IV Storm Water Storm Water Storm Water OC Level IV Storm Water Storm Water </td
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
LAB ID CLIENT'S SAMPLE 1.D. DATE / TIME SAMPLED MATRIX #OF CONT CONT TYPE DO DO <th< td=""></th<>
-001A MW-1 5/19/09 1400 W 6 JAMber X X X 002A MW-2 5/19/09 1450 W 6 X X X
-002A MW-2 5/19/09 1450 W 6 X X X
$-003A$ $M_{10}1-3$ $5/19/09 1240$ W 6 V_1 $X \times X$
-003A MW-3 = 5/19/09 1240 W 6 V X X X 1 1 1
Temp
75-19-09
1 Relinquished By: Print: Date: Time: Received By: Print: Date: Time: 1 Relinquished By: Print: Date: Time: 1631 Print: Date: Time: 1631 2 Relinquished By: Print: Date: Time: Received By: Print: Date: Time:

June 03, 2009

Sophia Drugan KLEINFELDER INC. 4670 Willow Rd, Ste 100 Pleasanton, CA 94588

TEL: (925) 484-1700 FAX 925-484-5838

RE: 54503

Dear Sophia Drugan:

Order No.: 0905163

Torrent Laboratory, Inc. received 9 samples (One sample On hold) on 5/26/2009 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

AGUDS 6/3/19 Laboratory Director Date

Patti Sandrock QA Officer

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Sophia Drugan KLEINFELDER INC.

Date Received: 5/26/2009 **Date Reported:** 6/3/2009

Client Sample ID:	2PS-1-10
Sample Location:	700 Independent Road
Sample Matrix:	SOIL
Date/Time Sampled	5/26/2009 10:35:00 AM

Lab Sample ID: 0905163-001 Date Prepared: 5/29/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	5/29/2009	2	1	2.0	ND	mg/Kg	R19694
Surr: Pentacosane	SW8015B	5/29/2009	0	1	61.5-133	90.6	%REC	R19694
Benzene	SW8260B	5/29/2009	10	1	10	ND	µg/Kg	R19716
Toluene	SW8260B	5/29/2009	10	1	10	ND	µg/Kg	R19716
Ethylbenzene	SW8260B	5/29/2009	10	1	10	ND	µg/Kg	R19716
Xylenes, Total	SW8260B	5/29/2009	15	1	15	ND	µg/Kg	R19716
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	1	55.8-141	99.2	%REC	R19716
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	1	59.8-148	91.7	%REC	R19716
Surr: Toluene-d8	SW8260B	5/29/2009	0	1	55.2-133	95.9	%REC	R19716
TPH (Gasoline)	SW8260B(TPH)	5/29/2009	100	1	100	ND	µg/Kg	G19716
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	5/29/2009	0	1	56.9-133	86.0	%REC	G19716

KLEINFELDER INC.

Date Received:	5/26/2009
Date Reported:	6/3/2009

Lab Sample ID: 0905163-002 **Date Prepared:** 5/29/2009

t Road
5:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	5/29/2009	2	1	2.0	ND	mg/Kg	R19694
Surr: Pentacosane	SW8015B	5/29/2009	0	1	61.5-133	92.0	%REC	R19694
Benzene	SW8260B	5/29/2009	10	1	10	ND	µg/Kg	R19716
Toluene	SW8260B	5/29/2009	10	1	10	ND	µg/Kg	R19716
Ethylbenzene	SW8260B	5/29/2009	10	1	10	ND	µg/Kg	R19716
Xylenes, Total	SW8260B	5/29/2009	15	1	15	ND	µg/Kg	R19716
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	1	55.8-141	103	%REC	R19716
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	1	59.8-148	109	%REC	R19716
Surr: Toluene-d8	SW8260B	5/29/2009	0	1	55.2-133	94.1	%REC	R19716
TPH (Gasoline)	SW8260B(TPH)	5/29/2009	100	1	100	ND	µg/Kg	G19716
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	5/29/2009	0	1	56.9-133	84.0	%REC	G19716

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

KLEINFELDER INC.

Date Received: 5/26/2009 **Date Reported:** 6/3/2009

Lab Sample ID: 0905163-003 Date Prepared: 5/29/2009

Client Sample ID:	2PS-2-7
Sample Location:	700 Independent Road
Sample Matrix:	SOIL
Date/Time Sampled	5/26/2009 11:45:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	5/29/2009	2	1	2.0	23.7x	mg/Kg	R19694
Surr: Pentacosane	SW8015B	5/29/2009	0	1	61.5-133	87.3	%REC	R19694
Note: x- Sample chromatogram does quantitated as diesel.	not resemble typical dies	sel pattern (possik	oly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	5/29/2009	10	100	1000	3100	µg/Kg	R19716
Toluene	SW8260B	5/29/2009	10	100	1000	2800	µg/Kg	R19716
Ethylbenzene	SW8260B	5/29/2009	10	100	1000	8600	µg/Kg	R19716
Xylenes, Total	SW8260B	5/29/2009	15	100	1500	19000	µg/Kg	R19716
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	100	55.8-141	91.3	%REC	R19716
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	100	59.8-148	99.5	%REC	R19716
Surr: Toluene-d8	SW8260B	5/29/2009	0	100	55.2-133	104	%REC	R19716
TPH (Gasoline)	SW8260B(TPH)	6/1/2009	100	1000	100000	1200000x	µg/Kg	G19728
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	6/1/2009	0	1000	56.9-133	112	%REC	G19728

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Although TPH as Gasoline constituents are present, TPH value includes a significant portion of non-gasoliner hydrocarbons within range of C5-C12 quantified as Gasoline that biases the quantitation.

KLEINFELDER INC.

Lab Sample ID: 0905163-004 **Date Prepared:** 5/29/2009

Client Sample ID:	2PS-2-11
Sample Location:	700 Independent Road
Sample Matrix:	SOIL
Date/Time Sampled	5/26/2009 11:50:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	5/29/2009	2	1	2.0	9.16x	mg/Kg	R19694
Surr: Pentacosane	SW8015B	5/29/2009	0	1	61.5-133	91.1	%REC	R19694
Note: x- Sample chromatogram does r quantitated as diesel.	not resemble typical dies	sel pattern (possib	oly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	5/29/2009	10	5	50	880	µg/Kg	R19716
Toluene	SW8260B	5/29/2009	10	5	50	ND	µg/Kg	R19716
Ethylbenzene	SW8260B	5/29/2009	10	5	50	750	µg/Kg	R19716
Xylenes, Total	SW8260B	5/29/2009	15	5	75	310	µg/Kg	R19716
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	5	55.8-141	83.8	%REC	R19716
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	5	59.8-148	112	%REC	R19716
Surr: Toluene-d8	SW8260B	5/29/2009	0	5	55.2-133	120	%REC	R19716
TPH (Gasoline)	SW8260B(TPH)	6/1/2009	100	100	10000	53000x	µg/Kg	G19728
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	6/1/2009	0	100	56.9-133	98.0	%REC	G19728

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Although TPH as Gasoline constituents are present, TPH value includes a significant portion of non-gasoliner hydrocarbons within range of C5-C12 quantified as Gasoline that biases the quantitation.

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

					~
ΚL	EINI	FEL	DER	. IN	C.

Date Received: 5/26/2009 Date Reported: 6/3/2009

Lab Sample ID: 0905163-005 **Date Prepared:** 5/29/2009

Client Sample ID:	2PS-2-15
Sample Location:	700 Independent Road
Sample Matrix:	SOIL
Date/Time Sampled	5/26/2009 12:05:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	5/29/2009	2	1	2.0	51.7x	mg/Kg	R19694
Surr: Pentacosane	SW8015B	5/29/2009	0	1	61.5-133	89.2	%REC	R19694
Note: x- Sample chromatogram does quantitated as diesel.	not resemble typical dies	sel pattern (possil	oly fuel light	er than diesel). Hydrocarb	ons within the o	diesel range	
Benzene	SW8260B	5/29/2009	10	100	1000	3600	µg/Kg	R19716
Toluene	SW8260B	5/29/2009	10	100	1000	ND	µg/Kg	R19716
Ethylbenzene	SW8260B	5/29/2009	10	100	1000	7400	µg/Kg	R19716
Xylenes, Total	SW8260B	5/29/2009	15	100	1500	8800	µg/Kg	R19716
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	100	55.8-141	83.2	%REC	R19716
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	100	59.8-148	94.7	%REC	R19716
Surr: Toluene-d8	SW8260B	5/29/2009	0	100	55.2-133	99.4	%REC	R19716
TPH (Gasoline)	SW8260B(TPH)	6/1/2009	100	2000	200000	1700000x	µg/Kg	G19728
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	6/1/2009	0	2000	56.9-133	104	%REC	G19728

Note: Sample chromatogram does not resemble gasoline standard pattern. Although TPH as Gasoline constituents are present, TPH value includes a significant portion of non-gasoliner hydrocarbons within range of C5-C12 quantified as Gasoline that biases the quantitation.

Client Sample ID:

Sample Location:

Sample Matrix:

KLEINFELDER INC.

700 Independent Road

2PS-2-20

SOIL

Date Received: 5/26/2009 Date Reported: 6/3/2009

Lab Sample ID: 0905163-006 **Date Prepared:** 5/29/2009

Date/Time Sampled 5/26/2009 12:15:00 PM											
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch			
TPH (Diesel-SG)	SW8015B	6/2/2009	2	10	20	206x	mg/Kg	R19725			
Surr: Pentacosane	SW8015B	6/2/2009	0	10	61.5-133	118	%REC	R19725			
Note:x-Sample chromatogram does r quantitated as diesel. Benzene	not resemble typical diese SW8260B	l pattern (possibly 5/29/2009	y fuel lighte 10	r than diesel). 400	Hydrocarbo 4000	ns within the d 12000	Ū	R19716			
Toluene	SW8260B	5/29/2009	10	400 400	4000	54000	μg/Kg μg/Kg	R19716			
Ethylbenzene	SW8260B	5/29/2009	10	400	4000	45000	μg/Kg	R19716			
Xylenes, Total	SW8260B	5/29/2009	15	400	6000	180000	µg/Kg	R19716			
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	400	55.8-141	87.2	%REC	R19716			
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	400	59.8-148	107	%REC	R19716			
Surr: Toluene-d8	SW8260B	5/29/2009	0	400	55.2-133	114	%REC	R19716			
TPH (Gasoline)	SW8260B(TPH)	6/1/2009	100	2000	200000	3000000	µg/Kg	G19728			
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	6/1/2009	0	2000	56.9-133	104	%REC	G19728			

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Although TPH as Gasoline constituents are present, TPH value includes a significant portion of non-gasoliner hydrocarbons within range of C5-C12 quantified as Gasoline that biases the quantitation.

KLEINFELDER INC.

Date Received:	5/26/2009
Date Reported:	6/3/2009

Lab Sample ID: 0905163-007 **Date Prepared:** 5/29/2009

Client Sample ID:	2PS-3-10
Sample Location:	700 Independent Road
Sample Matrix:	SOIL
Date/Time Sampled	5/26/2009 1:45:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	6/1/2009	2	1	2.0	ND	mg/Kg	R19725
Surr: Pentacosane	SW8015B	6/1/2009	0	1	61.5-133	102	%REC	R19725
Benzene	SW8260B	5/29/2009	10	5	50	160	µg/Kg	R19716
Toluene	SW8260B	5/29/2009	10	5	50	ND	µg/Kg	R19716
Ethylbenzene	SW8260B	5/29/2009	10	5	50	94	µg/Kg	R19716
Xylenes, Total	SW8260B	5/29/2009	15	5	75	ND	µg/Kg	R19716
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	5	55.8-141	83.4	%REC	R19716
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	5	59.8-148	105	%REC	R19716
Surr: Toluene-d8	SW8260B	5/29/2009	0	5	55.2-133	84.5	%REC	R19716
TPH (Gasoline)	SW8260B(TPH)	6/1/2009	100	5	500	8200x	µg/Kg	G19728
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	6/1/2009	0	5	56.9-133	94.0	%REC	G19728

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Although TPH as Gasoline constituents are present, TPH value includes a significant portion of non-gasoliner hydrocarbons within range of C5-C12 quantified as Gasoline that biases the quantitation.

KLEINFELDER INC.

Date Received: 5/26/2009 **Date Reported:** 6/3/2009

Lab Sample ID: 0905163-009 Date Prepared: 5/29/2009

Client Sample ID:	2PS-3-21
Sample Location:	700 Independent Road
Sample Matrix:	SOIL
Date/Time Sampled	5/26/2009 2:05:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	6/1/2009	2	1	2.0	5.49x	mg/Kg	R19725
Surr: Pentacosane	SW8015B	6/1/2009	0	1	61.5-133	88.7	%REC	R19725
Note:x-Sample chromatogram does no quantitated as diesel.	ot resemble typical diese	el pattern (possibl	y fuel lighte	r than diesel).	Hydrocarbo	ns within the d	liesel range	
Benzene	SW8260B	5/29/2009	10	100	1000	ND	µg/Kg	R19716
Toluene	SW8260B	5/29/2009	10	100	1000	ND	µg/Kg	R19716
Ethylbenzene	SW8260B	5/29/2009	10	100	1000	1500	µg/Kg	R19716
Xylenes, Total	SW8260B	5/29/2009	15	100	1500	2100	µg/Kg	R19716
Surr: 4-Bromofluorobenzene	SW8260B	5/29/2009	0	100	55.8-141	88.9	%REC	R19716
Surr: Dibromofluoromethane	SW8260B	5/29/2009	0	100	59.8-148	109	%REC	R19716
Surr: Toluene-d8	SW8260B	5/29/2009	0	100	55.2-133	89.9	%REC	R19716
TPH (Gasoline)	SW8260B(TPH)	5/29/2009	100	100	10000	64000x	µg/Kg	G19716
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	5/29/2009	0	100	56.9-133	82.0	%REC	G19716

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Although TPH as Gasoline constituents are present, TPH value includes a significant portion of non-gasoline hydrocarbons within range of C5-C12 quantified as Gasoline that biases the quantitation.

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

CLIENT: KLEINFELDER INC. Work Order: 0905163 **Project:** 54503

ANALYTICAL QC SUMMARY REPORT

BatchID: G19716

Sample ID MB_G19716	SampType: MBLK	TestCode: TP	PH_GAS_S Units: µg/Kg		Prep Date:	5/29/2009	RunNo: 19716	
Client ID: ZZZZZ	Batch ID: G19716	TestNo: SV	V8260B(TP		Analysis Date:	5/29/2009	SeqNo: 285101	
Analyte	Result	PQL SPK	Value SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPH (Gasoline)	ND	100						
Surr: 4-Bromofllurobenzene	51.00	0	50 0	102	56.9	133		
Sample ID LCS_G19716	SampType: LCS	TestCode: TP	PH_GAS_S Units: µg/Kg		Prep Date:	5/28/2009	RunNo: 19716	
Client ID: ZZZZZ	Batch ID: G19716	TestNo: SN	V8260B(TP		Analysis Date:	5/28/2009	SeqNo: 285102	
Analyte	Result	PQL SPK	Value SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPH (Gasoline)	926.0	100	1000 0	92.6	48.2	132		
Surr: 4-Bromofllurobenzene	52.00	0	50 0	104	56.9	133		
Sample ID LCSD_G19716	SampType: LCSD	TestCode: TP	PH_GAS_S Units: µg/Kg		Prep Date:	5/29/2009	RunNo: 19716	
Client ID: ZZZZZ	Batch ID: G19716	TestNo: SV	V8260B(TP		Analysis Date:	5/29/2009	SeqNo: 285103	
Analyte	Result	PQL SPK	Value SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPH (Gasoline)	876.0	100	1000 0	87.6	48.2	132 926	5.55 30	
Surr: 4-Bromofllurobenzene	52.00	0	50 0	104	56.9	133 0	0 0	

RPD outside accepted recovery limits S

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 1 of 5

54503 **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: G19728

Sample ID MB_G19728	SampType: MBLK	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 6/1/2009	RunNo: 19728
Client ID: ZZZZZ	Batch ID: G19728	TestNo: SW8260B(TP	Analysis Date: 6/1/2009	SeqNo: 285342
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline) Surr: 4-Bromofllurobenzene	ND	100	140 560 400	
Sun: 4-Bromoniurobenzene	56.00	0 50 0	112 56.9 133	
Sample ID LCS_G19728	SampType: LCS	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 6/1/2009	RunNo: 19728
Client ID: ZZZZZ	Batch ID: G19728	TestNo: SW8260B(TP	Analysis Date: 6/1/2009	SeqNo: 285343
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	958.0	100 1000 46	91.2 48.2 132	
Surr: 4-Bromofllurobenzene	50.00	0 50 0	100 56.9 133	
Sample ID LCSD_G19728	SampType: LCSD	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 6/1/2009	RunNo: 19728
Client ID: ZZZZZ	Batch ID: G19728	TestNo: SW8260B(TP	Analysis Date: 6/1/2009	SeqNo: 285345
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	1074	100 1000 46	103 48.2 132 958	11.4 30
Surr: 4-Bromofllurobenzene	59.00	0 50 0	118 56.9 133 0	0 0

Holding times for preparation or analysis exceeded Н RPD outside accepted recovery limits R

Analyte detected below quantitation limits J

CLIENT: KLEINFELDER INC.

Work Order: 0905163

54503 **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R19694

Sample ID SDSG090527A-MB	SampType: MBLK	TestCode: TPHDOS	G_S Units: mg/Kg		Prep Dat	e: 5/27/2009		RunNo: 196	694	
Client ID: ZZZZZ	Batch ID: R19694	TestNo: SW8015E	_ 00		Analysis Dat			SeqNo: 284		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG) Surr: Pentacosane	ND 3.006	2.0 0 3.3	0	91.1	61.5	133				
Sample ID SDSG090527A-LCS	SampType: LCS	TestCode: TPHDOS	G_S Units: mg/Kg		Prep Dat	e: 5/27/2009)	RunNo: 19	694	
Client ID: ZZZZZ	Batch ID: R19694	TestNo: SW8015E	3		Analysis Date	e: 5/28/2009)	SeqNo: 284	1752	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG)	26.41	2.0 33.33	0	79.2	50.8	111				
Surr: Pentacosane	3.103	0 3.3	0	94.0	61.5	133				
Sample ID SDSG090527A-LCS	SampType: LCSD	TestCode: TPHDOS	G_S Units: mg/Kg		Prep Dat	e: 5/27/2009)	RunNo: 190	694	
Client ID: ZZZZZ	Batch ID: R19694	TestNo: SW8015E	3		Analysis Dat	e: 5/28/2009)	SeqNo: 284	1753	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG)	25.70	2.0 33.33	0	77.1	50.8	111	26.41	2.74	30	
Surr: Pentacosane	3.045	0 3.3	0	92.3	61.5	133	0	0	0	

Analyte detected below quantitation limits J

54503 **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R19716

Sample ID MB_R19716	SampType: MBLK	TestCoo	TestCode: 8260B_S Units: µg			Prep Date	e: 5/29/20	009	RunNo: 19716		
Client ID: ZZZZZ	Batch ID: R19716	Test	TestNo: SW8260B			Analysis Date: 5/29/2009			SeqNo: 28	5033	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	10									
Ethylbenzene	ND	10									
Toluene	ND	10									
Xylenes, Total	ND	15									
Surr: 4-Bromofluorobenzene	49.26	0	50	0	98.5	55.8	141				
Surr: Dibromofluoromethane	62.28	0	50	0	125	59.8	148				
Surr: Toluene-d8	45.36	0	50	0	90.7	55.2	133				
Sample ID LCS_R19716	SampType: LCS	TestCoo	de: 8260B_S	Units: µg/Kg		Prep Date	e: 5/29/20	009	RunNo: 197	716	
Client ID: ZZZZZ	Batch ID: R19716	Test	lo: SW8260B			Analysis Date	e: 5/29/20	009	SeqNo: 28	5034	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	49.76	10	50	0	99.5	66.5	135				
Toluene	53.01	10	50	0	106	56.8	134				
Surr: 4-Bromofluorobenzene	47.89	0	50	0	95.8	55.8	141				
Surr: Dibromofluoromethane	45.86	0	50	0	91.7	59.8	148				
Surr: Toluene-d8	54.63	0	50	0	109	55.2	133				
Sample ID LCSD_R19716	SampType: LCSD	TestCo	de: 8260B_S	Units: µg/Kg		Prep Date	e: 5/29/20	009	RunNo: 197	716	
Client ID: ZZZZZ	Batch ID: R19716	Test	lo: SW8260B			Analysis Date	e: 5/29/20	009	SeqNo: 28	5035	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	59.77	10	50	0	120	66.5	135	49.76	18.3	30	
		10	50	0	91.6	56.8	134	53.01	14.6	30	
Toluene	45.81	10	50	0							
I oluene Surr: 4-Bromofluorobenzene	45.81 50.13	0	50 50	0	100	55.8	141	0	0	0	
						55.8 59.8	141 148	0 0	0 0		

Qualifiers:

Value above quantitation range Е

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 4 of 5

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

R

54503 **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R19725

Sample ID SDSG090528A-MB	SampType: MBLK	TestCode: TPHDOSG_S Units: mg/	Kg Prep Date: 5/28/2	2009 RunNo: 19725
Client ID: ZZZZZ	Batch ID: R19725	TestNo: SW8015B	Analysis Date: 5/29/2	2009 SeqNo: 285293
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val %RPD RPDLimit Qual
TPH (Diesel-SG)	ND	2.0	117 01 5 100	
Surr: Pentacosane	3.850	0 3.3 0	117 61.5 133	
Sample ID SDSG090528A-LCS	SampType: LCS	TestCode: TPHDOSG_S Units: mg/	Kg Prep Date: 5/28/2	2009 RunNo: 19725
Client ID: ZZZZZ	Batch ID: R19725	TestNo: SW8015B	Analysis Date: 5/29/2	SeqNo: 285294
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val %RPD RPDLimit Qual
TPH (Diesel-SG)	31.35	2.0 33.33 0	94.1 50.8 111	
Surr: Pentacosane	3.774	0 3.3 0	114 61.5 133	
Surr: Pentacosane Sample ID SDSG090528A-LCS	3.774 SampType: LCSD	0 3.3 0 TestCode: TPHDOSG_S Units: mg/		
				2009 RunNo: 19725
Sample ID SDSG090528A-LCS	SampType: LCSD	TestCode: TPHDOSG_S Units: mg/	/Kg Prep Date: 5/28/2 Analysis Date: 5/29/2	2009 RunNo: 19725
Sample ID SDSG090528A-LCS Client ID: ZZZZ	SampType: LCSD Batch ID: R19725	TestCode: TPHDOSG_S Units: mg/ TestNo: SW8015B	/Kg Prep Date: 5/28/2 Analysis Date: 5/29/2	RunNo:197251009SeqNo:285295RPD Ref Val%RPDRPDLimitQual
Sample ID SDSG090528A-LCS Client ID: ZZZZZ Analyte	SampType: LCSD Batch ID: R19725 Result	TestCode: TPHDOSG_S Units: mg/ TestNo: SW8015B PQL SPK value SPK Ref Val	'Kg Prep Date: 5/28/2 Analysis Date: 5/29/2 %REC LowLimit HighLimit	RunNo: 19725 2009 SeqNo: 285295 RPD Ref Val %RPD RPDLimit Qual 31.35 4.81 30
Sample ID SDSG090528A-LCS Client ID: ZZZZZ Analyte TPH (Diesel-SG)	SampType: LCSD Batch ID: R19725 Result 29.88	TestCode: TPHDOSG_S Units: mg/ TestNo: SW8015B PQL SPK value SPK Ref Val 2.0 33.33 0	Ykg Prep Date: 5/28/2 Analysis Date: 5/29/2 %REC LowLimit HighLimit 89.7 50.8 111 115 61.5 133	RunNo: 19725 2009 SeqNo: 285295 RPD Ref Val %RPD RPDLimit Qual 31.35 4.81 30 0 0 0
Sample ID SDSG090528A-LCS Client ID: ZZZZ Analyte TPH (DieseI-SG) Surr: Pentacosane	SampType: LCSD Batch ID: R19725 Result 29.88 3.805	TestCode:TPHDOSG_SUnits:mg/TestNo:SW8015BPQLSPK valueSPK Ref Val2.033.33003.30	Ykg Prep Date: 5/28/2 Analysis Date: 5/29/2 %REC LowLimit HighLimit 89.7 50.8 111 115 61.5 133	RunNo: 19725 2009 SeqNo: 285295 RPD Ref Val %RPD RPDLimit Qual 31.35 4.81 30 0 0 0 0 0 0 0 0
Sample ID SDSG090528A-LCS Client ID: ZZZZ Analyte TPH (Diesel-SG) Surr: Pentacosane Sample ID SDSG090601A-MB	SampType: LCSD Batch ID: R19725 Result 29.88 3.805 SampType: MBLK	TestCode: TPHDOSG_S Units: mg/ TestNo: SW8015B PQL SPK value SPK Ref Val 2.0 33.33 0 0 3.3 0 TestCode: TPHDSG_S Units: mg/	'Kg Prep Date: 5/28/2 Analysis Date: 5/29/2 %REC LowLimit HighLimit 89.7 50.8 111 115 61.5 133 'Kg Prep Date: 5/28/2	2009 RunNo: 19725 2009 SeqNo: 285295 RPD Ref Val %RPD RPDLimit Qual 31.35 4.81 30 0 0 0 0 2009 RunNo: 19725 285352 2009 RunNo: 285352 285352
Sample ID SDSG090528A-LCS Client ID: ZZZZZ Analyte TPH (Diesel-SG) Surr: Pentacosane Sample ID SDSG090601A-MB Client ID: ZZZZZ	SampType: LCSD Batch ID: R19725 Result 29.88 3.805 SampType: MBLK Batch ID: R19725	TestCode: TPHDOSG_S Units: mg/ TestNo: SW8015B PQL SPK value SPK Ref Val 2.0 33.33 0 0 0 0 0 7 TestCode: TPHDSG_S Units: mg/ TestCode: TPHDSG_S Units: mg/ TestNo: SW8015B SW8015B SW8015B	Kg Prep Date: 5/28/2 Analysis Date: 5/29/2 %REC LowLimit HighLimit 89.7 50.8 111 115 61.5 133 /Kg Prep Date: 5/28/2 Analysis Date: 6/2/20	2009 RunNo: 19725 2009 SeqNo: 285295 RPD Ref Val %RPD RPDLimit Qual 31.35 4.81 30 0 0 0 0 2009 RunNo: 19725 285352 2009 RunNo: 285352 285352

Value above quantitation range ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits J S

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits Page 5 of 5

Holding times for preparation or analysis exceeded Н

Torrent Laboratory, Inc.

WORK ORDER Summary

54503

Project:

Client ID: KLEINFELDER (PLEASANTON)

27-*May-09* Work Order 0905163

Comments: 5 day TAT!! Pls email results to sdrugan@kleinfelder.com.

Sample ID	Client Sample ID	Collection Date	Date Received	Date Due	Matrix	Test Code	Hld MS SEL	Sub	Storage
0905163-001A	2PS-1-10	5/26/2009 10:35:00 AM	5/26/2009	6/1/2009	Soil	8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-002A	2PS-1-20	5/26/2009 10:45:00 AM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-003A	2PS-2-7	5/26/2009 11:45:00 AM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-004A	2PS-2-11	5/26/2009 11:50:00 AM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-005A	2PS-2-15	5/26/2009 12:05:00 PM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-006A	2PS-2-20	5/26/2009 12:15:00 PM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-007A	2PS-3-10	5/26/2009 1:45:00 PM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-008A	2PS-3-20	5/26/2009 1:50:00 PM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR
0905163-009A	2PS-3-21	5/26/2009 2:05:00 PM		6/1/2009		8260B_S_PETRO			SR
				6/1/2009		TPH_GAS_S_GC			SR
				6/1/2009		TPHDSG_S			SR

QC Level:

	(ELDER pple. Right Solutions.				-			<u> </u>		500	. .			.5 19	
		PROJECT NO. SYS L.P. NO. (PO. NO.)	SAMPLERS: (Si	PROJECT NAME <u>200 Independ</u> gnature/Number) m Bemer	lest Road	NO. OF	TYPE OF	41141,31S	2 TEL			7	Ţ.,				RECEIVING LAB: Torrent Lab 0905163
		DATE MM/DD/YY	SAMPLE I.D. TIME- HH-MM-SS	SAMPLE I.D.	MATRIX	CON- TAINERS	CON- TAINERS		AN AN	Ĩ	//		//				Report to Standard turnaroun
	1	5/26/09	1035	2PS-1-10	S	1		X	7	<u> </u>	Í.						[
		5/26/09	1045	2PS-1-20	S	1		\mathbf{X}	7								
		5/26/09	1145	2PS-2-7	S	1			X						·		Hold NAB
4 A 🗍		5/26/09	1150	285-2-11	, S	1		X	7							1.	HotoWAB
5A	5	5/26/09	1205	2PS-2-15	5	1		\mathbf{x}	2		,	her i		ŀ			
6 A	6	5/26/09	1215	2PS-2-20	. 5	1		$\boldsymbol{\lambda}$	$\boldsymbol{\mathbf{x}}$	<u>\</u>							
7 A [7	5/26/09	1345	2PS-3-10	S	1		XX									f and a second sec
8A[5/26/09	1350	2PS-3-20	S	2										-	Hold
٩A	9	5/26/09	1405	2PS-3-21	S	1		$ \chi ^2$	X						01		
1	0	•															
1	1			224	1. *		1.01										
1	2		•	240													
1	3			<u> </u>		·											
1	4																***1
1	5																
1	6																· · · · · · · · · · · · · · · · · · ·
1	7		• •		· ·	<u> </u>	,	↓↓		1							
1	8				_	<u> </u>				<u> </u>							
1	9																
2	20	Relinquished	(Bignature)	Date/Time	Received by /Signatur	(m)	<u> </u>		ons/Rem								
		M	Bare	\$/26/09 1611	Received by: (Signatur	ela	109	16:11		a KS:							Send Results To: Sophia Drugan
		Relinquished by:			Received by: (Signatur		<u> </u>		١								Send Results To: Sophia Drugan SDrugan@Kleinfelder.com
	ŀ	Relinquished by:	(Signature)	Date/Time	Received for Laborato	ry by: (Signat	ture)	1									Attn:
,	E	ENV-02 REV 05	5/08)	I N	White – Sampler		Cana CHAI	ary – Retur N OF				Y				Lab Copy	coc N 15336

July 09, 2009

Sophia Drugan KLEINFELDER INC. 4670 Willow Rd, Ste 100 Pleasanton, CA 94588

TEL: (925) 484-1700 FAX 925-484-5838

RE: 54504/700 Independent Rd

Dear Sophia Drugan:

Order No.: 0906269

Torrent Laboratory, Inc. received 6 samples on 6/30/2009 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

<u>7/9/09</u> Date Laboratory Director

Patti Sandrock QA Officer

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Sophia Drugan KLEINFELDER INC.

Client Sample ID:MW-4Sample Location:700 Independent RdSample Matrix:GROUNDWATERDate/Time Sampled6/29/2009 11:10:00 AM

Date Received: 6/30/2009 **Date Reported:** 7/9/2009

Lab Sample ID: 0906269-001 Date Prepared: 7/8/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/7/2009	0.1	1	0.10	ND	mg/L	R20194
Surr: Pentacosane	SW8015B	7/7/2009	0	1	64.2-123	85.0	%REC	R20194
Benzene	SW8260B	7/8/2009	0.5	1	0.50	ND	µg/L	R20201
Toluene	SW8260B	7/8/2009	0.5	1	0.50	ND	µg/L	R20201
Ethylbenzene	SW8260B	7/8/2009	0.5	1	0.50	ND	µg/L	R20201
Xylenes, Total	SW8260B	7/8/2009	1.5	1	1.5	ND	µg/L	R20201
Surr: Dibromofluoromethane	SW8260B	7/8/2009	0	1	61.2-131	85.8	%REC	R20201
Surr: 4-Bromofluorobenzene	SW8260B	7/8/2009	0	1	64.1-120	88.1	%REC	R20201
Surr: Toluene-d8	SW8260B	7/8/2009	0	1	75.1-127	82.8	%REC	R20201
TPH (Gasoline)	SW8260B(TPH)	7/8/2009	50	1	50	ND	µg/L	G20201
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/8/2009	0	1	53-118	103	%REC	G20201

KLEINFELDER INC.

Date Received:	6/30/2009
Date Reported:	7/9/2009

Lab Sample ID: 0906269-002 Date Prepared: 7/8/2009

MW-5
700 Independent Rd
GROUNDWATER
6/30/2009 10:34:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/7/2009	0.1	1	0.10	ND	mg/L	R20194
Surr: Pentacosane	SW8015B	7/7/2009	0	1	64.2-123	93.0	%REC	R20194
Benzene	SW8260B	7/8/2009	0.5	1	0.50	ND	µg/L	R20201
Toluene	SW8260B	7/8/2009	0.5	1	0.50	ND	µg/L	R20201
Ethylbenzene	SW8260B	7/8/2009	0.5	1	0.50	ND	µg/L	R20201
Xylenes, Total	SW8260B	7/8/2009	1.5	1	1.5	ND	μg/L	R20201
Surr: Dibromofluoromethane	SW8260B	7/8/2009	0	1	61.2-131	83.2	%REC	R20201
Surr: 4-Bromofluorobenzene	SW8260B	7/8/2009	0	1	64.1-120	85.7	%REC	R20201
Surr: Toluene-d8	SW8260B	7/8/2009	0	1	75.1-127	81.3	%REC	R20201
TPH (Gasoline)	SW8260B(TPH)	7/8/2009	50	1	50	ND	µg/L	G20201
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/8/2009	0	1	53-118	96.6	%REC	G20201

KLEINFELDER INC.

Date Received:	6/30/2009
Date Reported:	7/9/2009

Lab Sample ID: 0906269-003 Date Prepared: 7/7/2009

Client Sample ID:	MW-3
Sample Location:	700 Independent Rd
Sample Matrix:	GROUNDWATER
Date/Time Sampled	6/30/2009 11:55:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/7/2009	0.1	1	0.10	ND	mg/L	R20194
Surr: Pentacosane	SW8015B	7/7/2009	0	1	64.2-123	104	%REC	R20194
Benzene	SW8260B	7/7/2009	0.5	1	0.50	ND	µg/L	R20201
Toluene	SW8260B	7/7/2009	0.5	1	0.50	ND	µg/L	R20201
Ethylbenzene	SW8260B	7/7/2009	0.5	1	0.50	ND	µg/L	R20201
Xylenes, Total	SW8260B	7/7/2009	1.5	1	1.5	ND	µg/L	R20201
Surr: Dibromofluoromethane	SW8260B	7/7/2009	0	1	61.2-131	79.0	%REC	R20201
Surr: 4-Bromofluorobenzene	SW8260B	7/7/2009	0	1	64.1-120	91.3	%REC	R20201
Surr: Toluene-d8	SW8260B	7/7/2009	0	1	75.1-127	82.9	%REC	R20201
TPH (Gasoline)	SW8260B(TPH)	7/7/2009	50	1	50	ND	µg/L	G20201
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/7/2009	0	1	53-118	101	%REC	G20201

Client Sample ID:MW-1Sample Location:700 Independent Rd

Sample Matrix:GROUNDWATERDate/Time Sampled6/30/2009 2:24:00 PM

Lab Sample ID: 0906269-004 Date Prepared: 7/7/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/7/2009	0.1	1	0.10	ND	mg/L	R20194
Surr: Pentacosane	SW8015B	7/7/2009	0	1	64.2-123	94.0	%REC	R20194
Benzene	SW8260B	7/7/2009	0.5	8.8	4.4	99	µg/L	R20201
Toluene	SW8260B	7/7/2009	0.5	8.8	4.4	15	µg/L	R20201
Ethylbenzene	SW8260B	7/7/2009	0.5	8.8	4.4	33	µg/L	R20201
Xylenes, Total	SW8260B	7/7/2009	1.5	8.8	13	34	µg/L	R20201
Surr: Dibromofluoromethane	SW8260B	7/7/2009	0	8.8	61.2-131	79.2	%REC	R20201
Surr: 4-Bromofluorobenzene	SW8260B	7/7/2009	0	8.8	64.1-120	80.4	%REC	R20201
Surr: Toluene-d8	SW8260B	7/7/2009	0	8.8	75.1-127	82.5	%REC	R20201
TPH (Gasoline)	SW8260B(TPH)	7/7/2009	50	8.8	440	870	µg/L	G20201
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/7/2009	0	8.8	53-118	99.1	%REC	G20201

Note: Although TPH as Gasoline is present, result is elevated due to presence of non-target compounds within range of C5-C12 quantified as Gasoline.

KLEINFELDER INC.

Date Received: 6/30/2009 Date Reported: 7/9/2009

Lab Sample ID: 0906269-005 Date Prepared: 7/7/2009

Client Sample ID:	MW-2
Sample Location:	700 Independent Rd
Sample Matrix:	GROUNDWATER
Date/Time Sampled	6/30/2009 3:30:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/7/2009	0.1	1	0.10	0.657x	mg/L	R20194
Surr: Pentacosane	SW8015B	7/7/2009	0	1	64.2-123	96.0	%REC	R20194
Note:x-Sample chromatogram does n quantitated as diesel.	ot resemble typical diese	el pattern (possib	ly fuel lighte	r than diesel).	Hydrocarbo	ns within the c	diesel range	
Benzene	SW8260B	7/7/2009	0.5	88	44	7300	µg/L	R20201
Toluene	SW8260B	7/7/2009	0.5	88	44	ND	µg/L	R20201
Ethylbenzene	SW8260B	7/7/2009	0.5	88	44	400	µg/L	R20201
Xylenes, Total	SW8260B	7/7/2009	1.5	88	130	330	µg/L	R20201
Surr: Dibromofluoromethane	SW8260B	7/7/2009	0	88	61.2-131	84.9	%REC	R20201
Surr: 4-Bromofluorobenzene	SW8260B	7/7/2009	0	88	64.1-120	88.0	%REC	R20201
Surr: Toluene-d8	SW8260B	7/7/2009	0	88	75.1-127	82.6	%REC	R20201
TPH (Gasoline)	SW8260B(TPH)	7/7/2009	50	88	4400	20000	µg/L	G20201
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/7/2009	0	88	53-118	100	%REC	G20201

KLEINFELDER INC.

Date Received: 6/30/2009 Date Reported: 7/9/2009

Lab Sample ID: 0906269-006 **Date Prepared:** 7/7/2009

Client Sample ID:	MW-2D
Sample Location:	700 Independent Rd
Sample Matrix:	GROUNDWATER
Date/Time Sampled	6/30/2009 3:30:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/7/2009	0.1	1	0.10	0.624x	mg/L	R20194
Surr: Pentacosane	SW8015B	7/7/2009	0	1	64.2-123	89.0	%REC	R20194
Note:x-Sample chromatogram does n quantitated as diesel.	not resemble typical diese	el pattern (possibl	y fuel lighte	er than diesel).	Hydrocarbo	ns within the c	liesel range	
Benzene	SW8260B	7/7/2009	0.5	88	44	7600	µg/L	R20201
Toluene	SW8260B	7/7/2009	0.5	88	44	ND	µg/L	R20201
Ethylbenzene	SW8260B	7/7/2009	0.5	88	44	370	µg/L	R20201
Xylenes, Total	SW8260B	7/7/2009	1.5	88	130	300	µg/L	R20201
Surr: Dibromofluoromethane	SW8260B	7/7/2009	0	88	61.2-131	85.6	%REC	R20201
Surr: 4-Bromofluorobenzene	SW8260B	7/7/2009	0	88	64.1-120	84.0	%REC	R20201
Surr: Toluene-d8	SW8260B	7/7/2009	0	88	75.1-127	83.5	%REC	R20201
TPH (Gasoline)	SW8260B(TPH)	7/7/2009	50	88	4400	20000	µg/L	G20201
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/7/2009	0	88	53-118	100	%REC	G20201

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

CLIENT: KLEINFELDER INC. Work Order: 0906269

54504/700 Independent Rd **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: G20201

Sample ID MB-G20201	SampType: MBLK	TestCode: TPH_GAS_W Units: µg/L	Prep Date: 7/7/2009	RunNo: 20201
Client ID: ZZZZZ	Batch ID: G20201	TestNo: SW8260B(TP	Analysis Date: 7/7/2009	SeqNo: 292460
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline) Surr: 4-Bromofllurobenzene	ND 10.00	50 0 11.36 0	88.0 53 118	
Sample ID LCS-G20201	SampType: LCS	TestCode: TPH_GAS_W Units: µg/L	Prep Date: 7/7/2009	RunNo: 20201
Client ID: ZZZZZ	Batch ID: G20201	TestNo: SW8260B(TP	Analysis Date: 7/7/2009	SeqNo: 292461
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	215.0	50 227 0	94.7 52.4 127	
Surr: 4-Bromofllurobenzene	10.90	0 11.36 0	96.0 53 118	
Sample ID LCSD-G20201	SampType: LCSD	TestCode: TPH_GAS_W Units: µg/L	Prep Date: 7/8/2009	RunNo: 20201
Client ID: ZZZZZ	Batch ID: G20201	TestNo: SW8260B(TP	Analysis Date: 7/8/2009	SeqNo: 292462
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	208.0	50 227 0	91.6 52.4 127 215	3.31 20
Surr: 4-Bromofllurobenzene	11.20	0 11.36 0	98.6 53 118 0	0 0

Qualifiers: Е Value above quantitation range

S

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 1 of 3

CLIENT: KLEINFELDER INC.

Work Order: 0906269

Project: 54504/700 Independent Rd

ANALYTICAL QC SUMMARY REPORT

BatchID: R20194

Sample ID WDSG090702A-N	IB SampType: MBLK	TestCode: TPHDOS	G_ Units: mg/L		Prep Dat	e: 7/2/2009	RunNo: 20194	
Client ID: ZZZZZ	Batch ID: R20194	TestNo: SW8015	3		Analysis Dat	e: 7/7/2009	SeqNo: 292254	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPH (Diesel-SG)	ND	0.10						
Surr: Pentacosane	0.08400	0 0.1	0	84.0	64.2	123		
Sample ID WDSG090702A-L	CS SampType: LCS	TestCode: TPHDOS	G_ Units: mg/L		Prep Dat	e: 7/2/2009	RunNo: 20194	
Client ID: ZZZZZ	Batch ID: R20194	TestNo: SW8015	3		Analysis Dat	e: 7/7/2009	SeqNo: 292255	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPH (Diesel-SG)	0.7010	0.10 1	0	70.1	34.5	95.6		
Surr: Pentacosane	0.08600	0 0.1	0	86.0	64.2	123		
Sample ID WDSG090702A-L	CS SampType: LCSD	TestCode: TPHDOS	G_ Units: mg/L		Prep Date	e: 7/2/2009	RunNo: 20194	
Client ID: ZZZZZ	Batch ID: R20194	TestNo: SW8015	3		Analysis Dat	e: 7/7/2009	SeqNo: 292256	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPH (Diesel-SG)	0.7420	0.10 1	0	74.2	34.5	95.6 0.701	5.68 30	
Surr: Pentacosane	0.08200	0 0.1	0	82.0	64.2	123 0	0 0	

Analyte detected below quantitation limits J

CLIENT: KLEINFELDER INC.

Work Order: 0906269

54504/700 Independent Rd **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R20201

SampType: N	MBLK	TestCod	e: 8260B_W	Units: µg/L		Prep Date	e: 7/7/200	RunNo: 20201			
Batch ID: F	R20201	TestN	o: SW8260B			Analysis Date	e: 7/7/200	9	SeqNo: 292	2373	
!	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	ND	0.50									
	ND	0.50									
	ND	0.50									
	ND	1.5									
	9.190	0	11.36	0	80.9	61.2	131				
	9.220	0	11.36	0	81.2	64.1	120				
	9.580	0	11.36	0	84.3	75.1	127				
SampType: L	LCS	TestCod	le: 8260B_W	Units: µg/L		Prep Date	e: 7/7/200	9	RunNo: 202	201	
Batch ID: F	R20201	TestN	o: SW8260B			Analysis Date	e: 7/7/200	9	SeqNo: 292	2375	
!	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	19.97	0.50	17.04	0	117	66.9	140				
	16.92	0.50	17.04	0	99.3	76.6	123				
	10.56	0	11.36	0	93.0	61.2	131				
	9.270	0	11.36	0	81.6	64.1	120				
	9.810	0	11.36	0	86.4	75.1	127				
SampType: L	LCSD	TestCod	e: 8260B_W	Units: µg/L		Prep Date	e: 7/7/200	9	RunNo: 202	201	
Batch ID: F	R20201	TestN	o: SW8260B			Analysis Date	e: 7/7/200	9	SeqNo: 292	2376	
ſ	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	17.51	0.50	17.04	0	103	66.9	140	19.97	13.1	20	
	16.11	0.50	17.04	0	94.5	76.6	123	16.92	4.90	20	
								•		_	
	10.05	0	11.36	0	88.5	61.2	131	0	0	0	
	10.05 9.310	0 0	11.36 11.36	0 0	88.5 82.0	61.2 64.1	131 120	0	0	0 0	
	SampType: Batch ID: Batch ID: SampType: Batch ID:	ND ND ND 9.190 9.220 9.580 SampType: LCS Batch ID: Result 19.97 16.92 10.56 9.270 9.810 SampType: LCSD Batch ID: Result SampType: I.CSD Batch ID: Result I.CSD Batch ID: Result I.CSD Result I.T.51	Batch ID: R20201 TestN Result PQL ND 0.50 9.190 0 9.220 0 9.580 0 SampType: LCS TestCod Result PQL 19.97 0.50 16.92 0.50 10.56 0 9.270 0 9.810 0 SampType: LCSD TestCod Batch ID: R20201 TestN SampType: LCSD TestCod Batch ID: R20201 TestN Result PQL 17.51	Batch ID: R20201 TestNo: SW8260B Result PQL SPK value ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.36 9.190 0 11.36 9.220 0 11.36 9.220 0 11.36 9.580 0 11.36 SampType: LCS TestCode: 8260B_W Batch ID: R20201 TestNo: SW8260B Result PQL SPK value 19.97 0.50 17.04 16.92 0.50 17.04 10.56 0 11.36 9.270 0 11.36 9.810 0 11.36 9.810 0 11.36 9.810 0 11.36 9.810 0 11.36 9.810 0 11.36 Sa	Batch ID: R20201 TestNo: SW8260B Result PQL SPK value SPK Ref Val ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.5 9.190 0 11.36 0 9.220 0 11.36 0 0 12.36 0 SampType: LCS TestCode: 8260B_W Units: µg/L Batch ID: R20201 TestNo: SW8260B 0 11.36 0 SampType: LCS TestNo: SW8260B 0 10.50 17.04 0 16.92 0.50 17.04 0 0 10.56 0 11.36 0 9.270 0 11.36 0 0 11.36 0 0 9.810 0 11.36 0 0 11.36 0 0 SampType: LCSD TestNo: \$W8260B_W Units:	Batch ID: R20201 TestNo: SW8260B Result PQL SPK value SPK Ref Val %REC ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.5 0 80.9 9.190 0 11.36 0 80.9 9.220 0 11.36 0 81.2 9.580 0 11.36 0 84.3 SampType: LCS TestCot:: SW8260B Work: µg/L Batch ID: R20201 TestNo:: SW8260B %REC %REC 19.97 0.50 17.04 0 117 16.92 0.50 17.04 0 93.3 10.56 0 11.36 0 81.6 93.0 93.2 93.2 0 11.36 0 86.4	Batch ID: R20201 TestNo: SW8260B Analysis Data Result PQL SPK value SPK Ref Val %REC LowLimit ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.5 9.190 0 11.36 0 80.9 61.2 64.1 9.200 0 11.36 0 84.3 75.1 9.190 84.3 75.1 SampType: LCS TestCode: 8260B_W Units: µg/L Prep Data Batch ID: R20201 TestNo: SW8260B Analysis Data 19.97 0.50 17.04 0 117 66.9 16.92 0.50 17.04 0 9.3 76.6 10.56 0 11.36 0 81.6 64.1 9.810 0 11.36 0 81.6 64.1 9.810 0 11.36 0	Batch ID: R20201 TestNo: SW8260B Analysis Date: 7/7/200 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit ND 0.50 ND 0.50 ND 11.36 0 80.9 61.2 131 9.190 0 11.36 0 81.2 64.1 120 9.580 0 11.36 0 84.3 75.1 127 SampType: LCS TestCode: 8260B_W Units: µg/L Prep Date: 7/7/200 Batch ID: R20201 TestNo: SW8260B Analysis Date: 7/7/200 SampType: LCS TestCode: 8260B_W Units: µg/L Prep Date: 7/7/200 Batch ID: R20201 TestNo: SW8260B Malysis Date: 7/7/200 19.97 0.50 17.04 0 117 66.9 140 9.270 0 11.36 0 30 61.2	Batch ID: R20201 TestNo: SW8260B Analysis Date: 777/2009 Result PQL SPK Nef Value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.5 30.90 61.2 131 31 9.190 0 11.36 0 84.3 75.1 127 31 SampType: LCS TestCote: S260B_W Units: µg/L Prep Date: 777/2009 Batch ID: R20201 TestCote: S260B_W Units: µg/L Prep Date: 777/2009 SampType: LCS TestCote: S260B_W Units: µg/L NC RPD Ref Val 19.97 0.50 17.04 0 117 66.9 140 31 9.270 0.50 17.04 0 93.0 61.2 131 9.270 311.36 0 81.6 64.1 120 31.3 <tr< td=""><td>Batch ID: R20201 TestNo: SW8260B Analysis Date: 777/2009 SeqNo: 292 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD ND 0.50 ND 0.50 ND 0.50 ND ND 0.50 ND 0.50 ND 0.50 ND 1.36 0 80.9 61.2 131 120 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131</td><td>Batch ID: R20201 TestNo: SW8260B Analysis Date: 7/7/2009 SeqNo: 29233 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 0.50 ND 0.50 ND SeqNo: 29237 ND 0.50 ND 0.50 SeqNo: 29240 SeqNo: 29240 SeqNo: 29201 Result O 81.2 64.1 120 SeqNo: 29201 SeqNo: 29201 RunNo: 20201 SampType: LCS TestCode: 8260B_W Units: µg/L Analysis Date: 7/7/2009 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201</td></tr<>	Batch ID: R20201 TestNo: SW8260B Analysis Date: 777/2009 SeqNo: 292 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD ND 0.50 ND 0.50 ND 0.50 ND ND 0.50 ND 0.50 ND 0.50 ND 1.36 0 80.9 61.2 131 120 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131	Batch ID: R20201 TestNo: SW8260B Analysis Date: 7/7/2009 SeqNo: 29233 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 0.50 ND 0.50 ND SeqNo: 29237 ND 0.50 ND 0.50 SeqNo: 29240 SeqNo: 29240 SeqNo: 29201 Result O 81.2 64.1 120 SeqNo: 29201 SeqNo: 29201 RunNo: 20201 SampType: LCS TestCode: 8260B_W Units: µg/L Analysis Date: 7/7/2009 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201 SeqNo: 29201

Qualifiers:

Value above quantitation range Е

Holding times for preparation or analysis exceeded Н

R

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 3 of 3

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Torrent Laboratory, Inc.

WORK ORDER Summary

Client ID: KLEINFELDER (PLEASANTON)

Project: 54504/700 Independent Rd QC Level:

Comments: 5 Day TAT!! TPHG/ BTEX. TPHD with SiO2! Report to Sophia and Nathan EDF requested - check with client!

Sample ID	Client Sample ID	Collection Date	Date Received	Date Due	Matrix	Test Code	Hld	MS	SEL	Sub	Storage
0906269-001A	MW-4	6/29/2009 11:10:00 AM	6/30/2009	7/7/2009	Groundwater	8260B_W_PETR			\checkmark		SR
				7/7/2009		EDF					SR
				7/7/2009		TPH_GAS_W_GC					SR
				7/7/2009		TPHDSG_W					SR
)906269-002A	MW-5	6/30/2009 10:34:00 AM		7/7/2009		8260B_W_PETR			\checkmark		SR
				7/7/2009		TPH_GAS_W_GC					SR
				7/7/2009		TPHDSG_W					SR
)906269-003A	MW-3	6/30/2009 11:55:00 AM		7/7/2009		8260B_W_PETR			\checkmark		SR
				7/7/2009		TPH_GAS_W_GC					SR
				7/7/2009		TPHDSG_W					SR
906269-004A	MW-1	6/30/2009 2:24:00 PM		7/7/2009		8260B_W_PETR			\checkmark		SR
				7/7/2009		TPH_GAS_W_GC					SR
				7/7/2009		TPHDSG_W					SR
)906269-005A	MW-2	6/30/2009 3:30:00 PM		7/7/2009		8260B_W_PETR			\checkmark		SR
				7/7/2009		TPH_GAS_W_GC					SR
				7/7/2009		TPHDSG_W					SR
906269-006A	MW-2D			7/7/2009		8260B_W_PETR			\checkmark		SR
				7/7/2009		TPH_GAS_W_GC					SR
				7/7/2009		TPHDSG_W					SR

Page

1 of 1

01-Jul-09 **Work Order** 0906269

\frown											5						
	FELDER ople. Right Solutions.								\sim	A.	ĝ,						
		•			-				ŝ,	Pizz .	` <u> </u>						
PROJECT NO.	Call	PROJECT NAME	Real DA					\bigwedge^{\diamond}	×.	ÿ	/	/		/			RECEIVING LAB:
L.P. NO. (PO. NO.)	SAMPLERS: (Sig	PROJECT NAME 700 Independent Inature/Number) Mem BeMU	emilist Kd	NO. OF	TYPE OF				5 5		//		/		/ /	/	//0906269
DATE	SAMPLE I.D.	non Berner	· 	CON-	CON-	4Mart Por		ZŸ	/	/ /	/ /	/ /	/ /	/	/ /	/ /	INSTRUCTIONS/REMARKS Standard Turnaround Time
MM/DD/YY	TIME HH-MM-SS	SAMPLE I.D.	MATRIX	TAINERS	TAINERS	/>	X	Ž/	/	/.	/ •	\square		/	/	_	/
5/29/09	1110	MW-4	W	4	3 VOAS 1 Amber	X	\times										-001A
6/30/09	1034	MW-5	\mathcal{W} .	4			X										-002A
6/30/09	1155	MW-3	W	4		$\left \times \right $	X										~003A
120/09	1424	MW-1	Ŵ	4		X	X										-004A
6/30/09	1530	MW-2	W	Ч	1	\times	$\mathbf{\mathbf{x}}$			ŀ							-00 SA
6/30/09	1530	MW-2N	Ŵ	ч	\mathbf{V}	\mathbf{X}	Ŷ					ŀ					-006A
		,															
			-														
								×									
*																	
2					/												
						1	/										
•						~					\neg	\backslash					
															\square		
																/	propte
																	6-30
						Γ			T								
Relinquished by:	-Berer	6/30/01723		NAVIN Lasar	G. R	Instru	ictions/	/Remarks	:								Send Results To: Sophia Drugan
Relinquished by:	(Signature)	Date/Time	Received by: (Signature	3)													· · · ·
Relinquished by:	(Signature)	Date/Time F	Received for Laboratory	y by: (Signate	ure)												Attn:
NV-02 REV 05	5/08)	<u> </u>	nite - Sampler	C	Cana	-		opy To Sh CUS)D'	Y			Pink –	Lab Co	ору	coc 15339

July 13, 2009

Sophia Drugan KLEINFELDER INC. 4670 Willow Rd, Ste 100 Pleasanton, CA 94588

TEL: (925) 484-1700 FAX 925-484-5838

RE: 54504/700 Independent Rd

Dear Sophia Drugan:

Order No.: 0906270

Torrent Laboratory, Inc. received 9 samples on 6/30/2009 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Patti Sandroc QA Officer

Laboratory Director

Torrent Laboratory, Inc.

Date: 13-Jul-09

CLIENT:	KLEINFELDER INC.
Project:	54504/700 Independent Rd
Lab Order:	0906270

CASE NARRATIVE

Analytical Comment for Method TPH Diesel, Note: The % recovery in the MS for Diesel is outside of laboratory control limits but within % RPD limits and % recovery limits for the LCS/LCSD. No corrective action is required.

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for:	Sophia Drugan KLEINFELDER INC.	Date Received: Date Reported:	
Client Sample ID:	2PS-3A-10	Lab Sample ID:	0906270-001

Client Sample ID:	2P3-3A-10
Sample Location:	54504/700 Independent Rd
Sample Matrix:	SOIL
Date/Time Sampled	6/29/2009 1:43:00 PM

Lab Sample ID: 0906270-001 Date Prepared: 7/8/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	1	2.0	3.45x	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	1	61.5-133	89.5	%REC	R20249
Note: x- Sample chromatogram does quantitated as diesel.	not resemble typical dies	sel pattern (possil	oly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	7/8/2009	10	100	1000	ND	µg/Kg	P20223
Toluene	SW8260B	7/8/2009	10	100	1000	ND	µg/Kg	P20223
Ethylbenzene	SW8260B	7/8/2009	10	100	1000	ND	µg/Kg	P20223
Xylenes, Total	SW8260B	7/8/2009	15	100	1500	ND	µg/Kg	P20223
Surr: 4-Bromofluorobenzene	SW8260B	7/8/2009	0	100	55.8-141	80.3	%REC	P20223
Surr: Dibromofluoromethane	SW8260B	7/8/2009	0	100	59.8-148	120	%REC	P20223
Surr: Toluene-d8	SW8260B	7/8/2009	0	100	55.2-133	73.8	%REC	P20223
TPH (Gasoline)	SW8260B(TPH)	7/8/2009	100	100	10000	37000x	µg/Kg	G20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/8/2009	0	100	56.9-133	92.0	%REC	G20223

Note: x - Sample chromatogram does not resemble gasoline standard pattern. TPH value due to a significant amount of heavy unidentified compounds within the C5-C12 range quantified as Gasoline.

KLEINFELDER INC.

Date Received:	6/30/2009
Date Reported:	7/13/2009

Lab Sample ID: 0906270-002 Date Prepared: 7/8/2009

Client Sample ID:	2 PS-3A-21
Sample Location:	54504/700 Independent Rd
Sample Matrix:	SOIL
Date/Time Sampled	6/29/2009 2:14:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	1	2.0	18.7x	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	1	61.5-133	84.0	%REC	R20249
Note: x- Sample chromatogram does not re quantitated as diesel.	semble typical dies	sel pattern (possit	oly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	7/8/2009	10	100	1000	ND	µg/Kg	P20223
Toluene	SW8260B	7/8/2009	10	100	1000	2600	µg/Kg	P20223
Ethylbenzene	SW8260B	7/8/2009	10	100	1000	ND	µg/Kg	P20223
Xylenes, Total	SW8260B	7/8/2009	15	100	1500	8400	µg/Kg	P20223
Surr: 4-Bromofluorobenzene	SW8260B	7/8/2009	0	100	55.8-141	85.3	%REC	P20223
Surr: Dibromofluoromethane	SW8260B	7/8/2009	0	100	59.8-148	93.0	%REC	P20223
Surr: Toluene-d8	SW8260B	7/8/2009	0	100	55.2-133	78.7	%REC	P20223
TPH (Gasoline)	SW8260B(TPH)	7/8/2009	100	100	10000	170000x	µg/Kg	G20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/8/2009	0	100	56.9-133	70.0	%REC	G20223

Note: x - Sample chromatogram does not resemble gasoline standard pattern. TPH value due to a significant amount of heavy unidentified compounds within the C5-C12 range quantified as Gasoline.

KLEINFELDER INC.

Date Received:	6/30/2009
Date Reported:	7/13/2009

Lab Sample ID: 0906270-004 Date Prepared: 7/9/2009

Client Sample ID:	2 PS-2A-11
Sample Location:	54504/700 Independent Rd
Sample Matrix:	SOIL
Date/Time Sampled	6/29/2009 2:43:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	4	8.0	129x	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	4	61.5-133	80.4	%REC	R20249
Note: x- Sample chromatogram does no quantitated as diesel.	ot resemble typical dies	sel pattern (possil	oly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	R20223
Toluene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	R20223
Ethylbenzene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	R20223
Xylenes, Total	SW8260B	7/9/2009	15	100	1500	12000	µg/Kg	R20223
Surr: 4-Bromofluorobenzene	SW8260B	7/9/2009	0	100	55.8-141	93.1	%REC	R20223
Surr: Dibromofluoromethane	SW8260B	7/9/2009	0	100	59.8-148	103	%REC	R20223
Surr: Toluene-d8	SW8260B	7/9/2009	0	100	55.2-133	108	%REC	R20223
TPH (Gasoline)	SW8260B(TPH)	7/9/2009	100	1000	100000	750000x	µg/Kg	T20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/9/2009	0	1000	56.9-133	102	%REC	T20223

Note: x - Sample chromatogram does not resemble gasoline standard pattern. TPH value due to a significant amount of heavy unidentified compounds within the C5-C12 range quantified as Gasoline.

Report prepared for: Sophia Drugan KLEINFELDER INC.

Lab Sample ID: 0906270-005 Date Prepared: 7/8/2009

Client Sample ID:	2 PS-2A-7
Sample Location:	54504/700 Independent Rd
Sample Matrix:	SOIL
Date/Time Sampled	6/29/2009 2:35:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	1	2.0	15.2x	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	1	61.5-133	73.8	%REC	R20249
Note: x- Sample chromatogram does no quantitated as diesel.	ot resemble typical die	sel pattern (possil	bly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	7/8/2009	10	100	1000	3000	µg/Kg	P20223
Toluene	SW8260B	7/8/2009	10	100	1000	1200	µg/Kg	P20223
Ethylbenzene	SW8260B	7/8/2009	10	100	1000	ND	µg/Kg	P20223
Xylenes, Total	SW8260B	7/8/2009	15	100	1500	4700	µg/Kg	P20223
Surr: 4-Bromofluorobenzene	SW8260B	7/8/2009	0	100	55.8-141	72.6	%REC	P20223
Surr: Dibromofluoromethane	SW8260B	7/8/2009	0	100	59.8-148	111	%REC	P20223
Surr: Toluene-d8	SW8260B	7/8/2009	0	100	55.2-133	79.8	%REC	P20223
TPH (Gasoline)	SW8260B(TPH)	7/8/2009	100	100	10000	190000x	µg/Kg	G20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/8/2009	0	100	56.9-133	102	%REC	G20223

Note: x - Sample chromatogram does not resemble gasoline standard pattern. Although TPH as gasoline compounds are present, result includes significant contribution from heavy end hydrocarbons within the C5-C12 range quantified as Gasoline.

Date Received:	6/30/2009
Date Reported:	7/13/2009

Lab Sample ID: 0906270-006 Date Prepared: 7/9/2009

Client Sample ID:	2 PS-2A-15
Sample Location:	54504/700 Independent Rd
Sample Matrix:	SOIL
Date/Time Sampled	6/29/2009 2:50:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	5	10	246x	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	5	61.5-133	67.7	%REC	R20249
Note: x- Sample chromatogram does no quantitated as diesel.	t resemble typical die	sel pattern (possi	oly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	P20223
Toluene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	P20223
Ethylbenzene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	P20223
Xylenes, Total	SW8260B	7/9/2009	15	100	1500	3100	µg/Kg	P20223
Surr: 4-Bromofluorobenzene	SW8260B	7/9/2009	0	100	55.8-141	86.2	%REC	P20223
Surr: Dibromofluoromethane	SW8260B	7/9/2009	0	100	59.8-148	114	%REC	P20223
Surr: Toluene-d8	SW8260B	7/9/2009	0	100	55.2-133	94.5	%REC	P20223
TPH (Gasoline)	SW8260B(TPH)	7/9/2009	100	100	10000	180000x	µg/Kg	G20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/9/2009	0	100	56.9-133	114	%REC	G20223

Note: x - Sample chromatogram does not resemble gasoline standard pattern. TPH value due to a significant amount of heavy unidentified compounds within the C5-C12 range quantified as Gasoline.

KLEINFELDER INC.

Date Received:	6/30/2009
Date Reported:	7/13/2009

Lab Sample ID: 0906270-007 Date Prepared: 7/8/2009

Client Sample ID:	2 PS-2A-20
Sample Location:	54504/700 Independent Rd
Sample Matrix:	SOIL
Date/Time Sampled	6/29/2009 3:20:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	1	2.0	11.7x	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	1	61.5-133	75.5	%REC	R20249
Note: x- Sample chromatogram does no quantitated as diesel.	ot resemble typical die	sel pattern (possil	bly fuel light	er than diesel). Hydrocarb	ons within the	diesel range	
Benzene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	P20223
Toluene	SW8260B	7/9/2009	10	100	1000	5900	µg/Kg	P20223
Ethylbenzene	SW8260B	7/9/2009	10	100	1000	ND	µg/Kg	P20223
Xylenes, Total	SW8260B	7/9/2009	15	100	1500	44000	µg/Kg	P20223
Surr: 4-Bromofluorobenzene	SW8260B	7/9/2009	0	100	55.8-141	96.0	%REC	P20223
Surr: Dibromofluoromethane	SW8260B	7/9/2009	0	100	59.8-148	99.8	%REC	P20223
Surr: Toluene-d8	SW8260B	7/9/2009	0	100	55.2-133	108	%REC	P20223
		- /2 /2 2 2 2						
TPH (Gasoline)	SW8260B(TPH)	7/8/2009	100	1000	100000	250000x	µg/Kg	G20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/8/2009	0	1000	56.9-133	108	%REC	G20223

Note: x - Sample chromatogram does not resemble gasoline standard pattern. TPH value due to a significant amount of heavy unidentified compounds within the C5-C12 range quantified as Gasoline.

KLEINFELDER INC.

Date Received: 6/30/2009 **Date Reported:** 7/13/2009

Lab Sample ID: 0906270-008 Date Prepared: 7/9/2009

Date/Time Sampled	6/29/2009 4:03:00 PM
Sample Matrix:	SOIL
Sample Location:	54504/700 Independent Rd
Client Sample ID:	2 PS-1A-10

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	1	2.0	ND	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	1	61.5-133	72.7	%REC	R20249
Benzene	SW8260B	7/9/2009	10	1	10	ND	µg/Kg	R20223
Toluene	SW8260B	7/9/2009	10	1	10	ND	µg/Kg	R20223
Ethylbenzene	SW8260B	7/9/2009	10	1	10	ND	µg/Kg	R20223
Xylenes, Total	SW8260B	7/9/2009	15	1	15	ND	µg/Kg	R20223
Surr: 4-Bromofluorobenzene	SW8260B	7/9/2009	0	1	55.8-141	88.6	%REC	R20223
Surr: Dibromofluoromethane	SW8260B	7/9/2009	0	1	59.8-148	113	%REC	R20223
Surr: Toluene-d8	SW8260B	7/9/2009	0	1	55.2-133	82.3	%REC	R20223
TPH (Gasoline)	SW8260B(TPH)	7/9/2009	100	1	100	ND	µg/Kg	G20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/9/2009	0	1	56.9-133	70.0	%REC	G20223

KLEINFELDER INC.

Date Received:	6/30/2009
Date Reported:	7/13/2009

Lab Sample ID: 0906270-009 Date Prepared: 7/8/2009

Client Sample ID:	2-PS-1A-20
Sample Location:	54504/700 Independent Rd
Sample Matrix:	SOIL
Date/Time Sampled	6/29/2009 4:20:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	7/10/2009	2	1	2.0	ND	mg/Kg	R20249
Surr: Pentacosane	SW8015B	7/10/2009	0	1	61.5-133	77.5	%REC	R20249
Benzene	SW8260B	7/8/2009	10	1	10	ND	µg/Kg	P20223
Toluene	SW8260B	7/8/2009	10	1	10	ND	µg/Kg	P20223
Ethylbenzene	SW8260B	7/8/2009	10	1	10	ND	µg/Kg	P20223
Xylenes, Total	SW8260B	7/8/2009	15	1	15	ND	µg/Kg	P20223
Surr: 4-Bromofluorobenzene	SW8260B	7/8/2009	0	1	55.8-141	92.3	%REC	P20223
Surr: Dibromofluoromethane	SW8260B	7/8/2009	0	1	59.8-148	116	%REC	P20223
Surr: Toluene-d8	SW8260B	7/8/2009	0	1	55.2-133	104	%REC	P20223
TPH (Gasoline)	SW8260B(TPH)	7/8/2009	100	1	100	ND	µg/Kg	G20223
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	7/8/2009	0	1	56.9-133	96.0	%REC	G20223

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

CLIENT: KLEINFELDER INC. Work Order: 0906270

Project: 54504/700 Independent Rd

ANALYTICAL QC SUMMARY REPORT

BatchID: G20223

Sample ID MB_G20223	SampType: MBLK	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 7/8/2009	RunNo: 20223		
Client ID: ZZZZZ	Batch ID: G20223	TestNo: SW8260B(TP	Analysis Date: 7/8/2009	SeqNo: 292894		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
TPH (Gasoline)	ND	100				
Surr: 4-Bromofllurobenzene	47.00	0 50 0	94.0 56.9 133			
Sample ID LCS_G20223	SampType: LCS	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 7/8/2009	RunNo: 20223		
Client ID: ZZZZZ	Batch ID: G20223	TestNo: SW8260B(TP	Analysis Date: 7/8/2009	SeqNo: 292895		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
TPH (Gasoline)	1076	100 1000 0	108 48.2 132			
Surr: 4-Bromofllurobenzene	59.00	0 50 0	118 56.9 133			
Sample ID LCSD_G20223	SampType: LCSD	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 7/9/2009	RunNo: 20223		
Client ID: ZZZZZ	Batch ID: G20223	TestNo: SW8260B(TP	Analysis Date: 7/9/2009	SeqNo: 292896		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
TPH (Gasoline)	1048	100 1000 0	105 48.2 132 1076	2.64 30		
Surr: 4-Bromofllurobenzene	52.00	0 50 0	104 56.9 133 0	0 0		

S

Analyte detected below quantitation limits J

54504/700 Independent Rd

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: P20223

SampType: MBLK	TestCod	le: 8260B_S_F	PE Units: µg/Kg		Prep Date	e: 7/8/200	9	RunNo: 202	223	
Batch ID: P20223	TestN	lo: SW8260B			Analysis Date	e: 7/8/200	9	SeqNo: 292	2866	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
ND	10									
ND	10									
ND	10									
ND	15									
44.83	0	50	0	89.7	55.8	141				
54.85	0	50	0	110	59.8	148				
37.50	0	50	0	75.0	55.2	133				
SampType: LCS	TestCod	le: 8260B_S_I	PE Units: µg/Kg		Prep Date	e: 7/8/200	9	RunNo: 202	223	
Batch ID: P20223	TestN	io: SW8260B			Analysis Date	e: 7/8/200	9	SeqNo: 292	2874	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
51.66	10	50	0	103	66.5	135				
41.31	10	50	0	82.6	56.8	134				
42.63	0	50	0	85.3	55.8	141				
61.84	0	50	0	404	50.9	148				
			0	124	59.0	140				
39.66	0	50	0	124 79.3	55.2	133				
39.66 SampType: LCSD		50	-			133	9	RunNo: 202	223	
	TestCod	50	0	79.3	55.2	133 e: 7/8/200		RunNo: 202 SeqNo: 292		
SampType: LCSD	TestCod	50 de: 8260B_S_F lo: SW8260B	0	79.3	55.2 Prep Date Analysis Date	133 e: 7/8/200 e: 7/8/200				Qua
SampType: LCSD Batch ID: P20223	TestCod TestN	50 de: 8260B_S_F lo: SW8260B	0 PE Units: µg/Kg	79.3	55.2 Prep Date Analysis Date	133 e: 7/8/200 e: 7/8/200	9	SeqNo: 292	2883	Qua
SampType: LCSD Batch ID: P20223 Result	TestCod TestN PQL	50 de: 8260B_S_F lo: SW8260B SPK value	ο PE Units: μg/Kg SPK Ref Val	79.3 %REC	55.2 Prep Date Analysis Date LowLimit	133 e: 7/8/200 e: 7/8/200 HighLimit	9 RPD Ref Val	SeqNo: 292 %RPD	2883 RPDLimit	Qua
SampType: LCSD Batch ID: P20223 Result 44.42	TestCod TestN PQL 10	50 de: 8260B_S_F lo: SW8260B SPK value 50	0 PE Units: μg/Kg SPK Ref Val 0	79.3 %REC 88.8	55.2 Prep Date Analysis Date LowLimit 66.5	133 e: 7/8/200 e: 7/8/200 HighLimit 135	9 RPD Ref Val 51.66	SeqNo: 292 %RPD 15.1	2883 RPDLimit 30	Qua
SampType: LCSD Batch ID: P20223 Result 44.42 41.83	TestCod TestN PQL 10 10	50 de: 8260B_S_F lo: SW8260B SPK value 50 50	PE Units: μg/Kg SPK Ref Val 0 0	79.3 %REC 88.8 83.7	55.2 Prep Date Analysis Date LowLimit 66.5 56.8	133 e: 7/8/200 e: 7/8/200 HighLimit 135 134	9 RPD Ref Val 51.66 41.31	SeqNo: 292 %RPD 15.1 1.25	2883 RPDLimit 30 30	Qua
-	Batch ID: P20223 Result ND ND ND 44.83 54.85 37.50 SampType: LCS Batch ID: P20223 Result 51.66 41.31 42.63	Batch ID: P20223 TestN Result PQL ND 10 ND 15 44.83 0 54.85 0 37.50 0 SampType: LCS Result PQL 51.66 10 41.31 10 42.63 0	Batch ID: P20223 TestNo: SW8260B Result PQL SPK value ND 10 SeampType: 50 SampType: LCS Result PQL SPK value SPK value SampType: TestCode: 8atch ID: P20223 TestNo: SW8260B Supproverside SPK value SampType: LCS Result PQL SPK value 51.66 10 50 41.31 10 50 50	Batch ID: P202233 TestNo: SW8260B Result PQL SPK value SPK Ref Val ND 10 ND 10 ND 10 V V 44.83 0 50 0 54.85 0 50 0 SampType: LCS TestCote: 8260B_S_PE Units: µg/Kg Batch ID: P20223 TestV SPK value SPK Ref Val 51.66 10 50 0 0 41.31 10 50 0 0 42.63 <	Batch ID: P20223 TestNo: SW8260B Result PQL SPK value SPK Ref Val %REC ND 10 %REC ND 10 ND 10 ND 10 <t< td=""><td>Batch ID: P20223 TestNo: SW8260B Analysis Date Result PQL SPK value SPK Ref Val %REC LowLimit ND 10</td><td>Batch ID: P20223 TestNo: SW8260B Analysis Date: 7/8/200 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit ND 10 14 10 10 10 14</td><td>Batch ID: P20223 TestNo: SW8260B Analysis Date: 7/8/2009 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val ND 10 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val ND 10 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val ND 10 Server state Server state</td><td>Batch ID: P20223 TestNo: SW8260B Analysis Date: 7/8/2009 SeqNo: 292 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD ND 10 SM8260 0 0 110 59.8 141 14.83 0 50 0 110 59.8 144.83 148 <t< td=""><td>Batch ID:P20223TestNo:SW8260BAnalysis Date:$7/8/2009$SeqNo:222866ResultPQLSPK valueSPK Ref Val$\%$RECLowLimitHighLimitRPD Ref Val$\%$RPDRPDLimitND10</td></t<></td></t<>	Batch ID: P20223 TestNo: SW8260B Analysis Date Result PQL SPK value SPK Ref Val %REC LowLimit ND 10	Batch ID: P20223 TestNo: SW8260B Analysis Date: 7/8/200 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit ND 10 14 10 10 10 14	Batch ID: P20223 TestNo: SW8260B Analysis Date: 7/8/2009 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val ND 10 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val ND 10 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val ND 10 Server state Server state	Batch ID: P20223 TestNo: SW8260B Analysis Date: 7/8/2009 SeqNo: 292 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD ND 10 SM8260 0 0 110 59.8 141 14.83 0 50 0 110 59.8 144.83 148 <t< td=""><td>Batch ID:P20223TestNo:SW8260BAnalysis Date:$7/8/2009$SeqNo:222866ResultPQLSPK valueSPK Ref Val$\%$RECLowLimitHighLimitRPD Ref Val$\%$RPDRPDLimitND10</td></t<>	Batch ID:P20223TestNo:SW8260BAnalysis Date: $7/8/2009$ SeqNo: 222866 ResultPQLSPK valueSPK Ref Val $\%$ RECLowLimitHighLimitRPD Ref Val $\%$ RPDRPDLimitND10

Qualifiers:

Value above quantitation range Е

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 2 of 5 S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

54504/700 Independent Rd

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R20223

Sample ID MB_R20223	SampType: MBLK	TestCo	de: 8260B_S_	PE Units: µg/Kg		Prep Date	e: 7/9/200	9	RunNo: 202	223	
Client ID: ZZZZZ	Batch ID: R20223	Test	No: SW8260B			Analysis Date	e: 7/9/200	9	SeqNo: 29	2918	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	10									
Toluene	ND	10									
Ethylbenzene	ND	10									
Xylenes, Total	ND	15									
Surr: 4-Bromofluorobenzene	44.64	0	50	0	89.3	55.8	141				
Surr: Dibromofluoromethane	49.77	0	50	0	99.5	59.8	148				
Surr: Toluene-d8	38.18	0	50	0	76.4	55.2	133				
Sample ID LCS_R20223	SampType: LCS	TestCo	de: 8260B_S _	PE Units: µg/Kg		Prep Date	e: 7/9/200	9	RunNo: 202	223	
Client ID: ZZZZZ	Batch ID: R20223	Test	No: SW8260B			Analysis Date	e: 7/9/200	9	SeqNo: 292	2919	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	62.57	10	50	0	125	66.5	135				
Toluene	51.16	10	50	0	102	56.8	134				
Surr: 4-Bromofluorobenzene	43.79	0	50	0	87.6	55.8	141				
Surr: Dibromofluoromethane	63.79	0	50	0	128	59.8	148				
Surr: Toluene-d8	43.48	0	50	0	87.0	55.2	133				
Sample ID LCSD_R20223	SampType: LCSD	TestCo	de: 8260B_S_	PE Units: µg/Kg		Prep Date	e: 7/9/200	9	RunNo: 202	223	
Client ID: ZZZZZ	Batch ID: R20223	Test	No: SW8260B			Analysis Date	e: 7/9/200	9	SeqNo: 292	2920	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	59.99	10	50	0	120	66.5	135	62.57	4.21	30	
Toluene	55.21	10	50	0	110	56.8	134	51.16	7.61	30	
Surr: 4-Bromofluorobenzene	43.87	0	50	0	87.7	55.8	141	0	0	0	
Surr: Dibromofluoromethane	63.21	0	50	0	126	59.8	148	0	0	0	
Surr: Toluene-d8	47.19	0	50	0	94.4	55.2	133	0	0	0	
		e e	50	-				Ū.	Ũ	Ũ	

Qualifiers:

Value above quantitation range Е

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 3 of 5 S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

54504/700 Independent Rd

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R20249

Sample ID SDS	G090707A-MB	SampType:	MBLK	TestCoo	le: TPHDSG_	S Units: mg/Kg		Prep Dat	e: 7/7/200	9	RunNo: 202	249	
Client ID: ZZZZ	Z	Batch ID:	R20249	TestN	lo: SW8015B			Analysis Dat	e: 7/10/20	009	SeqNo: 29	3169	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG)			ND	2.0									
Surr: Pentacos	ane		3.031	0	3.3	0	91.8	61.5	133				
Sample ID SDS	G090707A-LCS	SampType:	LCS	TestCoo	le: TPHDSG_	S Units: mg/Kg		Prep Dat	e: 7/7/200	9	RunNo: 202	249	
Client ID: ZZZZ	Z	Batch ID:	R20249	TestN	lo: SW8015B			Analysis Dat	e: 7/10/20	009	SeqNo: 29	3170	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG)			29.29	2.0	33.33	0	87.9	50.8	111				
Surr: Pentacos	ane		2.972	0	3.3	0	90.1	61.5	133				
Sample ID SDS	G090707A-LCS	SampType:	LCSD	TestCo	le: TPHDSG_	S Units: mg/Kg		Prep Dat	e: 7/7/200	9	RunNo: 202	249	
Client ID: ZZZZ	Z	Batch ID:	R20249	TestN	lo: SW8015B			Analysis Dat	e: 7/10/20	009	SeqNo: 29	3171	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPH (Diesel-SG)			30.10	2.0	33.33	0	90.3	50.8	111	29.29	2.73	30	
Surr: Pentacos	ane		3.092	0	3.3	0	93.7	61.5	133	0	0	0	
Sample ID 0906	270-002A MS	SampType:	MS	TestCoo	le: TPHDSG_	S Units: mg/Kg		Prep Dat	e: 7/7/200	9	RunNo: 202	249	
Client ID: 2 PS	-3A-21	Batch ID:	R20249	TestN	lo: SW8015B			Analysis Dat	e: 7/10/20	009	SeqNo: 29	3181	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPH (Diesel-SG)			35.08	2.0	33.33	18.7	49.1	50.8	111				S
Surr: Pentacos	ane		2.656	0	3.3	0	80.5	61.5	133				
Sample ID 0906	270-002A MSD	SampType:	MSD	TestCoo	le: TPHDSG_	S Units: mg/Kg		Prep Dat	e: 7/7/200	9	RunNo: 202	249	
Client ID: 2 PS	-3A-21	Batch ID:	R20249	TestN	lo: SW8015B			Analysis Dat	e: 7/10/20	009	SeqNo: 29	3182	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPH (Diesel-SG)			39.07	2.0	33.33	18.7	61.1	50.8	111	35.08	10.8	30	
Surr: Pentacos	ane		2.819	0	3.3	0	85.4	61.5	133	0	0	0	

Qualifiers: Е

Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits Page 4 of 5

Project: 54504/700 Independent Rd

ANALYTICAL QC SUMMARY REPORT

BatchID: T20223

Sample ID MB_T20223	SampType: MBLK	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 7/10/2009	RunNo: 20223
Client ID: ZZZZZ	Batch ID: T20223	TestNo: SW8260B(TP	Analysis Date: 7/10/2009	SeqNo: 292980
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	ND	100		
Surr: 4-Bromofllurobenzene	49.00	0 50 0	98.0 56.9 133	
Sample ID LCS_T20223	SampType: LCS	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 7/9/2009	RunNo: 20223
Client ID: ZZZZZ	Batch ID: T20223	TestNo: SW8260B(TP	Analysis Date: 7/9/2009	SeqNo: 292981
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	1102	100 1000 0	110 48.2 132	
Surr: 4-Bromofllurobenzene	56.00	0 50 0	112 56.9 133	
Sample ID LCSD_T20223	SampType: LCSD	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 7/10/2009	RunNo: 20223
Client ID: ZZZZZ	Batch ID: T20223	TestNo: SW8260B(TP	Analysis Date: 7/10/2009	SeqNo: 292982
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	903.0	100 1000 0	90.3 48.2 132 1102	19.9 30
Surr: 4-Bromofllurobenzene	54.00	0 50 0	108 56.9 133 0	0 0

Value above quantitation range **Qualifiers:** Е

Holding times for preparation or analysis exceeded Н R

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 5 of 5

S

Torrent Laboratory, Inc.

WORK ORDER Summary

Client ID: KLEINFELDER (PLEASANTON)

Project: 54504/700 Independent Rd QC Level:

Comments: 5 Day TAT!! TPHG/ BTEX. TPHD with SiO2! Report to Sophia and Nathan EDF requested - check with client!

Sample ID	Client Sample ID	Collection Date	Date Received	Date Due	Matrix	Test Code	Hld MS SEL Sub Storag	je
0906270-001A	2PS-3A-10	6/29/2009 1:43:00 PM	6/30/2009	7/7/2009	Soil	8260B_S_PETRO	SR SR	
				7/7/2009		TPH_GAS_S_GC	SR SR	
				7/7/2009		TPHDSG_S	SR SR	
0906270-002A	2 PS-3A-21	6/29/2009 2:14:00 PM		7/7/2009		8260B_S_PETRO	SR	
				7/7/2009		TPH_GAS_S_GC	SR	
				7/7/2009		TPHDSG_S	SR SR	
0906270-003A	2 PS-3A-24	6/29/2009 2:26:00 PM		7/7/2009		8260B_S_PETRO	SR	
				7/7/2009		TPH_GAS_S_GC	SR	
				7/7/2009		TPHDSG_S	SR	
0906270-004A	2 PS-2A-11	6/29/2009 2:43:00 PM		7/7/2009		8260B_S_PETRO	SR	
				7/7/2009		TPH_GAS_S_GC	SR	
				7/7/2009		TPHDSG_S	SR	
0906270-005A	2 PS-2A-7	6/29/2009 2:35:00 PM		7/7/2009		8260B_S_PETRO	SR	
				7/7/2009		TPH_GAS_S_GC	SR	
				7/7/2009		TPHDSG_S	SR	
0906270-006A	2 PS-2A-15	6/29/2009 2:50:00 PM		7/7/2009		8260B_S_PETRO	SR SR	
				7/7/2009		TPH_GAS_S_GC	SR	
				7/7/2009		TPHDSG_S	SR	
0906270-007A	2 PS-2A-20	6/29/2009 3:20:00 PM		7/7/2009		8260B_S_PETRO	SR	
				7/7/2009		TPH_GAS_S_GC	SR	
				7/7/2009		TPHDSG_S	SR	
0906270-008A	2 PS-1A-10	6/29/2009 4:03:00 PM		7/7/2009		8260B_S_PETRO	SR	
				7/7/2009		TPH_GAS_S_GC	SR SR	
				7/7/2009		TPHDSG_S		
0906270-009A	2-PS-1A-20	6/29/2009 4:20:00 PM		7/7/2009		8260B_S_PETRO		
				7/7/2009		TPH_GAS_S_GC		
				7/7/2009		TPHDSG_S		

1 of 1 Page

01-Jul-09 Work Order 0906270

KLEINFELDER Bright People. Right Solutions.			(26) willing		0906270
PROJECT NO. 54564 L.P. NO. (PO. NO.) PROJECT NAME ZOO J SAMPLERS: (Signature/Number) Nathan B	rdependent Rol No	F OF			INSTRUCTIONS/REMARKS
DATE SAMPLE I.D. TIME SAM MM/DD/YY HH-MM-SS	IPLE I.D. MATRIX	ERS TAINERS	₹ / / / /		Standard turn around fime
16/29/09 1343 2B-3A	-10 5 1				DOLA
2 15/29/09 1414 2PS-34		XX)2A
36/2409 1426 2PS-3A	-24 5 1	XX		-00	
16/29/09 1443 2PS-2A	-11 \$ 1	. XX			ο4 <u>Α</u>
56/29/09 1435 2PS-2A	7-7 <u>S</u> 1	- XX			o sta
· 6/29/09 1450 2PS-2	A-15 S 1			-0	06A
76/24/09 1520- 285-2	A-20 S 1	\sim \times \times		-0	07/A
· 6/29/09 1603 2 PS-1	A-10 5 2			-0	0 8A
·6/29/04 1620 2PS-1				~0	09A
10					
11					
12					
13					- <u></u> .
14				· · · · · · · · · · · · · · · · · · ·	v
15					· · · · · · · · · · · · · · · · · · ·
16			++		······
17			-+		emp 4°C.
18					16-301
19					
20 Relinquished by: (Signature) Date/	Time Received by: (Signature)	AVIN & Instructions/F	lemarks:	Sand D	esults To:
Whentener 6/30/09	1-10- AR-Contel 10	sara			Sophia Drugan
Relinquished by: (Signature)			ι.	æ	esuits To: Sophia Drugan SDrugan@Kleintelder.com
Relinquished by: (Signature) Date/		signature)	2 1	Attn:	
ENV-02 REV 05/08)	White - Sampler \mathcal{D}/\mathcal{O} :	Canary - Return Cor CHAIN OF C		Pink – Lab Copy -	coc N 15338