RECEIVED

10:54 am, Dec 15, 2008

Alameda County Environmental Health

December 8, 2008

Aminifilibadi Masood & Amini Sharbano 909 Blue Bell Drive Livermore, CA 94551

Re: Transmittal Letter Site Location: Springtown Gas 909 Blue Bell Drive, Livermore, CA 94551

Dear Mr. Wickham:

On behalf of Aminifilibadi Masood & Amini Sharbano, Geological Technics Inc. (GTI) prepared the Hydrogen Peroxide Injection Pilot Test Report, dated December 5, 2008 that was sent to your office via electronic delivery per Alameda County's guidelines on December 8, 2008.

I declare under penalty of law that the information and/or recommendations contained in the above referenced document or report is true and correct to the best of my knowledge.

Respectfully submitted,

 $^{\rm A}$

Aminifilibadi Masood/Amini Sharbano Property Owner 909 Blue Bell Drive Livermore, CA 94551

Geological Technics Inc.

Report

Hydrogen Peroxide Injection Pilot Test

Springtown Gas 909 Bluebell Drive Livermore, California

> Project No. 1409.2 December 5, 2008

<u>Prepared for:</u> Masood Filibadi and Sharbano Amini 909 Bluebell Drive Livermore, California 95353

> <u>Prepared by:</u> Geological Technics Inc. 1101 7th Street Modesto, California 95354 (209) 522-4119

Geologícal Technics Inc. _

1101 7th Street Modesto, California 95354 (209) 522-4119 / Fax (209) 522-4227

December 5, 2008

Project No.1409.2Project Name:Springtown Gas (Blue Bell)

Masood Filibadi and Sharbano Amini Springtown Gas 909 Bluebell Drive Livermore, California 94551

RE: Report: Hydrogen Peroxide Injection Pilot Test Location: Springtown Gas, 909 Bluebell Drive, Livermore, California

Dear Masood Filibadi and Sharbano Amini:

Geological Technics Inc. is pleased to present the attached Report, *Hydrogen Peroxide Injection Pilot Test*, conducted at Springtown Gas, 909 Bluebell Drive, Livermore, California (Site). The pilot test included weekly 7% hydrogen peroxide solution injection in selected wells, weekly groundwater monitoring for field parameters and groundwater sampling for metals and chemicals of concern at the site in two events. The pilot test started on September 29, 2008 and ended on November 6, 2008. The last groundwater sampling occurred on November 20, 2008.

Hydrogen Peroxide Injection Pilot Test was performed based on the work plan "Site Conceptual Model, Hydrogen Peroxide Injectiopn, Groundwater Monitoring/Samoling and Analysis" prepared by GTI on July 29, 2008 and approved by Alameda County Health Care Services Agency (ACHCSA) in their correspondence dated August 8, 2008.

If you have any questions or need additional information, please contact me. Thank you for this opportunity to serve your environmental needs.

Sincerely,

hot

Raynold I. Kablanow II, Ph.D. Vice President

cc: Jerry Wickham – ACEHS USTCUF

TABLE OF CONTENTS

- **1.0 INTRODUCTION**
 - 1.1 Purpose & Goal
 - 1.2 Site History
- 2.0 HYDROGEN PEROXIDE INJECTION
- 3.0 GROUNDWATER FIELD PARAMETERS
- 4.0 GROUNDWATER ANLYTICAL DATA
- 5.0 **DISCUSSION**
- 6.0 CONCLUSIONS
- 7.0 **RECOMMENDATIONS**
- 8.0 LIMITATIONS
- 9.0 SIGNATURES AND CERTIFICATIONS

LIST OF FIGURES

Vicinity Map	1
Site Map	2
Groundwater Elevation Contour Maps	За-b
Rose Diagram of Groundwater Gradient	4
MTBE Contour Map	5
TBA Contour Map	6

LIST OF Appendices

Summary Tables	Α
Analytical Laboratory Reports	В
Groundwater Monitoring Field Reports	С
Site Health and Safety Plan	D

Geologícal Technics Inc.

1101 7th Street Modesto, California 95354 (209) 522-4119 / Fax (209) 522-4227

Report

Hydrogen Peroxide Injection Pilot Test

Springtown Gas 909 Bluebell Drive Livermore, California

> Project No. 1409.2 December 5, 2008

1. INTRODUCTION

1.1 Purpose and Goal

The purpose of this pilot test is to examine an advanced oxidation technique, hydrogen peroxide injection, as an approach for residual contaminants removal from groundwater and soil at the subject site. By conducting the pilot test we tested the oxidation potential for chemicals of concern (Methyl tert Butyl Eater [MtBE] and Tert Butyl Alcohol [TBA]) that hydrogen peroxide could offer. In addition to investigating the contaminants effective removal, mobilization of metals in fluid phase (groundwater) was also explored to make sure that the remedial action would not have any adverse effect on groundwater quality.

The goal is to apply chemical oxidation in such a way to minimize the adverse effect on groundwater quality. Two important factors in optimizing the remedial action are quantity and frequency of injection at the site. In other words, intensity and frequency of oxidizers application in porous media would define the chemical to be oxidized based on their oxidation potentials and concentrations.

Gasoline range petroleum hydrocarbons associated with underground storage tanks (UST), underground waste oil tank systems, and piping/dispenser network have been documented in soil and groundwater at the above site (sees Figures 1 and 2 for vicinity and site maps). The site, former Springtown Arco Service Station was found as a potential contribution to soil and groundwater contamination in an August 1988 inspection by Alameda County Department of Environmental Health, Hazardous Materials Division (ACHCSA). During the course of inspection, the Division noted the presence of three 10,000 gallon underground storage tanks and one 1000 gallon underground waste oil tank. Springtown Arco Service Station was a part of Springtown Towing Business that was converted to a gasoline/retail minimart in 1988.

ACHCSA in their correspondence dated March 27, 1990 directed the removal of the underground waste oil tank and the cleanup of any soil or groundwater contamination that may have resulted from the tank system.

The underground waste oil tank was removed by Alpha Geo Services Inc. on February 7, 1992. Soil samples collected beneath the tank area at six feet deep showed elevated levels of total oil and grease (5,000 ppm), TPH-D (89 ppm) and lead (140 ppm).

The three 10,000 gallon underground storage tanks were removed on December 13, 1993. After excavation sheen was observed in groundwater, an indication of hydrocarbon contamination resulted from tank leakage. Groundwater analysis of the sample taken from the pit indicated a 33,000 μ g/l of TPH-G, 160, 200, 220, and 1,200 μ g/l BTEX respectively. Soil samples were collected from the side walls of the excavation. The samples contained up to 43 ppm TPH-G, 0.29, 0.33, 0.35 and 1.1 ppm BTEX respectively.

Upon demolition of the former minimart building and construction of the new one and upgrading the new UST, top soil and groundwater samples were collected from the product dispenser and delivery piping removal areas by H₂OGEOL in June 2005. The sampling was directed by the Livermore-Pleasanton Fire Department. Elevated concentrations of TPHd and TPHg were detected only in soil and groundwater samples collected at product dispenser 1-2. The impacted soil was removed by over-excavation. Elevated concentrations of MtBE and TBA were detected in soil samples collected at approximately 0.5 feet bgs from product dispenser 1-2, product dispenser 5-6, product dispenser 7-8, and the product delivery piping removal areas, with the highest concentrations detected in proximity to the UST cluster. The groundwater sample also contained elevated concentrations of MtBE and TBA.

One 1000-gallon capacity waste oil UST tank was removed from the south-central portion of the Site in February 1992 (Figure 2). Soil confirmation samples collected at 6 feet bgs contained minor concentrations of total petroleum hydrocarbons as diesel (TPHd), trace concentrations of toluene, ethylbenzene, total xylenes and tetrachloroethane (PCE), and elevated concentrations of total lead (Pb). In February 1995, the waste oil UST removal

excavation was reopened and over-excavated. Confirmation samples collected from the over-excavated areas did not contain analytically detectable concentrations of TPHd, TPH as gasoline (TPHg), TOG, or benzene toluene, ethylbenzene, total xylenes (BTEX).

In December 1993, three 10,000-gallon capacity gasoline USTs used to store gasoline were removed from the southwest portion of the Site (Figure 2).

- Following removal a noticeable sheen was observed on groundwater entering the excavation (ACHCS 2000). Initially, 1,000 gallons of groundwater was removed from the gasoline UST removal pit, with another 6,000 gallons removed later (ACHCS 2000).
- The groundwater in the removal excavation was found to contain elevated TPHg and BTEX concentrations. The water was subsequently transported and treated offsite in December 1993.
- Soil confirmation samples collected along the sidewalls and at each end of the removal excavation contained minor concentrations of TPHg and BTEX.
- The gasoline UST removal pit was over excavated twice to remove TPH impacted soils. Product delivery piping was also removed concurrent with the removal of the gasoline USTs.
- Soil confirmation samples collected from the delivery line removal trenches (Figure 3) contained trace to non-detect concentrations of TPH.

A total of 1,500 cubic yards of impacted soil were removed from the waste oil and gasoline UST removal excavations. The impacted soil was heat-treated on the Site for approximately 3 months. Approximately 20 cubic yards were found to contain elevated TPH concentrations at the end of the treatment period, and were transported and disposed offsite. The remaining 1,480 cubic yards were used to backfill the gasoline UST removal excavation.

In January 1996, three groundwater monitoring wells were installed at the Site (Figure 3). Groundwater samples collected from the monitoring wells in July 1996 and April 1999 contained a maximum of 180 micrograms per liter (μ g/l) TPHg, 130 μ g/l methyl-tertiary butyl ether (MtBE), 17 μ g/l benzene and trace TEX. Halogenated volatile organic compounds (HVOCs) were not detected.

The Site received Remedial Action Completion Certification from the ACHCS on August 30, 2000 (ACHCS 2000). The ACHCS Case Closure Letter stated that up to 7,000 milligrams per kilogram (mg/kg) TPHg and 5.8 mg/kg benzene exists in soil beneath the gasoline UST removal excavation, and that up to 5,000 g/kg TOG exists in soil beneath the waste oil UST removal excavation. The three groundwater monitoring wells that were installed in January 1996 were subsequently abandoned later in 2000.

During the First and Second Quarters of 2005, the Site underwent extensive renovation. This included demolition of the former minimart building and construction of the existing minimart structure, undertaking a UST top upgrade to the three existing USTs on the Site, and removal and replacement of product delivery piping and product dispensers.

On June 29, 2005, soil samples were collected from the product dispenser and delivery piping removal areas (H₂OGEOL 2005). The samples were collected at the direction of the Livermore-Pleasanton Fire Department. A total of 14 soil samples, one groundwater sample, and three soil stockpile samples, were collected for laboratory analyses of TPHd, TPHg, BTEX, MtBE, tert-butyl alcohol (TBA), di-isopropyl ether (DIPE), ethyl-tert-butyl ether (EtBE) and tert-amyl-methyl ether (TAME). The soil stockpile samples were also analyzed for total lead (Pb). The soil and groundwater sample locations are illustrated on Figure 2 (Dispenser 1-2, Dispenser 3-4, Dispenser 5-6, Dispenser 7-8, PL1 through PL5, SCor1-2 and Ncor1-2, and PL1-1-2-GW). Table 4 in "Tables from previous works done by other consultants" lists the soil analytical results, and Table 2 lists the groundwater analytical results. Elevated concentrations of TPHd and TPHg were detected only in soil and groundwater samples collected at product dispenser 1-2. The impacted soil was removed by over-excavation. The soil stockpile samples contained trace amounts of TPHd and TPHg. BTEX compounds were not analytically detected in the soil samples, soil stockpile samples and the groundwater sample. Elevated concentrations of MtBE and TBA were detected in soil samples collected at approximately 0.5 feet bgs from product dispenser 1-2, product dispenser 5-6, product dispenser 7-8, and the product delivery piping removal areas, with the highest concentrations detected in proximity to the UST cluster. The groundwater sample also contained elevated concentrations of MtBE and TBA. The soil stockpile samples contained low to moderate levels of MtBE and TBA and low levels of total lead (Pb).

Based on the analytical results, an Underground Storage Tank Unauthorized Release Report for the Site was issued by the Livermore Pleasanton Fire Department on June 29, 2005. The Site was transferred to the ACHCS on August 10, 2005.

In February 2007, nine borings were advanced by direct-push methods (SB-1 thru SB-9) around the UST cluster and the product dispenser area (ESTC, March 2007). The locations of the borings are illustrated on Figure 2. The soil lithology encountered ranged from black stiff clay to gray silty clay to 20 feet bgs (maximum depth explored).

- Soil and groundwater samples were collected from each boring for laboratory analyses. Table 1 lists the soil analytical results, and Table 2 lists the groundwater analytical results (Tables from previous works done by other consultants).
- Concentrations of TPHd, TPHg and BTEX were not analytically detected in the soil samples. Elevated concentrations of MtBE and TBA were detected in soil samples collected between 5 feet and 15 feet bgs from boring SB-5 in the southwest portion of the product dispenser area, and borings SB-6, SB-7 and SB-8 in proximity to the north and west sides of the UST cluster, and the southwest portion of the dispenser area (SB-5).
- For the groundwater samples, elevated concentrations of TPHg were detected at borings SB-5 and SB-6 with the remaining borings all non-detect. Elevated concentrations of MtBE were detected in the groundwater samples collected from all of the borings except SB-1 and SB-8, with the highest concentrations at boring SB-5 and SB-6. Concentrations of TBA were elevated in groundwater samples collected from all of the borings except SB-3, SB-4 and SB-9, with the highest concentrations at borings SB-6, SB-7 and SB-8, all at the UST cluster.

In March 2007, a 2000-foot receptor well survey was conducted (ESTC, March 2007). A total of 51 wells were located within 2,000 feet of the site, of which 49 are monitoring wells for other contaminated sites. One domestic well and one supply well were located within 2,000 feet of the Site. The domestic well is located approximately 1950 feet southeast of the Site and the supply well is located approximately 1,400 feet southeast of the Site.

In June 2007, two Cone Penetrometer Test (CPT) boreholes were advanced hydraulically (CPT-1 and CPT-2) at the north side of the UST cluster and the southwest corner of the product dispenser area, to characterize the soil lithology underlying the Site, and collect grab groundwater samples from water-bearing zones to evaluate vertical extent of groundwater impact (ESTC July 2007). The locations of the two CPT boreholes are illustrated on Figure 2.

- At CPT-1, clay and silty clay was interpreted to approximately 30 feet bgs, followed by sand to approximately 40 feet, followed by sandy silt and clayey silt to approximately 63 feet bgs, followed by sand to approximately 68 feet bgs (maximum depth explored).
- At CPT-2, clay and silty clay followed by sandy silt and clayey silt were interpreted to approximately 16 feet bgs, followed by sand to approximately 22 feet bgs, followed by sandy silt and clayey silt to 28 feet bgs, followed by sand to 35 feet bgs, followed by sandy silt and clayey silt to 60 feet bgs, with a thin layer of sand at approximately 41 feet bgs (maximum depth explored).
- Grab Groundwater samples were collected from the CPT-interpreted sand zones. The analytical results are listed on Table 2. Concentrations of TPHg and BTEX were not detected in the samples collected. Concentrations of MtBE were detected in the samples collected from CPT-1 between 34 feet to 38 feet bgs (1.4 µg/l), and from CPT-2 between 18 feet and 22 feet bgs (89 µg/l).
- Trace concentrations of chloroform and PCE were detected in the sample collected from CPT-1 between 34 feet to 38 feet bgs, and at CPT-2 between 31 feet to 35 feet bgs.
- The analytical results established that only uppermost groundwater (<20 feet bgs) is impacted with dissolved-phase hydrocarbons.

In August 2007, four soil borings were advanced by direct-push methods (GP-1 thru GP-7), three of which were converted to 2-inch diameter groundwater monitoring wells (GP-5/STMW-1, GP-6/STMW-2, and GP-7/STMW-3). The locations of the borings and monitoring wells are illustrated on Figure 2, site map (ESTC October 2007).

- The soil lithology encountered ranged from black stiff clay to gray silty clay to 20 feet bgs (maximum depth explored) in borings GP-1 and GP-6/STMW-2.
- At GP-5/STMW-1 light brown clayey sand was encountered between approximately 13 feet and 16 feet bgs. At borings GP-2, GP-3, GP-4 and GP-7/STMW-3, a light brown to gray sand ranging from fine-grained to gravelly was encountered between approximately 13 feet to 20 feet bgs, and was inferred to correlate with the CPT-interpreted sand between 16 feet and 22 feet bgs in CPT-2 (June 2007). The sand bed was interpreted to occur only along the north end of the Site.

- Soil samples were collected from each boring for laboratory analyses. Table 1 lists the soil analytical results. Concentrations of TPHg and BTEX were not detected in the samples collected. Concentrations of MtBE and TBA were detected in samples collected from GP-1 at 5 feet bgs and 20 feet bgs, from GP-2 at 10 feet bgs, from GP-3 at 10 feet and 20 feet bgs, from GP-5/STMW-1 at 10 feet, 15 feet and 20 feet bgs, and from GP-6/STMW-2 at 5 feet and 10 feet bgs. The highest concentrations were detected at GP-5/STMW-1 and GP-6/STMW-2 north and south of the UST cluster (Figure 2), and GP-2 at the northwest comer of the product dispenser area. Correlating the soil analytical results from this investigation with the February and June 2007 investigations identified the highest soil impact in proximity to the UST cluster and the northwest portion of the product dispenser area.
- Grab groundwater samples were collected from borings GP-1 thru GP-4. Table 2 lists the grab groundwater analytical results. Concentrations of TPHg and BTEX were not detected in the grab groundwater samples, with the exception of the sample from boring GP-3, the analyses of which did not indicate a gasoline pattern. Elevated concentrations of MtBE and TBA were detected in the grab groundwater samples collected from borings GP-1 thru GP-3, with the highest MtBE concentration detected in boring GP-3, and the highest TBA concentration detected in boring GP-2. A trace concentration of methanol was detected in boring GP-2. Correlating the grab groundwater analytical results from this investigation with the February and June 2007 investigations identified the highest MtBE impact in proximity to the UST cluster and the northwest portion of the product dispenser area, coinciding with the combined soil analytical results in these two areas of the Site.
- Offsite migration of MtBE with groundwater to the north and northwest was also apparent.
- The UST cluster was inferred to be the MtBE Source Area (ESTC, October 2007).

The three groundwater monitoring wells were developed and surveyed in late August 2007, and groundwater samples collected on September 4, 2007. A rainbow sheen was observed on the groundwater sample collected from monitoring well STMW-1 (ESTC January 2008).

- \circ Table 2 lists the analytical results. Concentrations of TPHg were detected only in the groundwater samples collected from monitoring wells STMW-1 (220 μg/l) and STMW-3 (59 μg/l). Concentrations of BTEX were not detected. Concentrations of MtBE were detected only in the groundwater samples collected from monitoring wells STMW-1 (850 μg/l) and STMW-3 (160 μg/l). Concentrations of TBA were detected in each monitoring well, with the highest concentration detected in the sample collected from STMW-1 (6,500 μg/l).
- Depth to water measurements ranged from 6.58 feet bgs (510.97 feet above mean sea level [amsl]) at STMW-1, 8.30 feet bgs (511.29 feet amsl) at STMW-2, to 9.52 feet bgs (510.85 feet amsl) at STMW-3.
- Based on the depth to water measurements, groundwater was determined to be flowing northwest at a gradient of 0.006 ft/ft.
- Table 3 lists the monitoring data. The well screens in the wells were drowned (groundwater surface above the top of well screen) at the time depth to water measurements and groundwater samples were collected from the wells.

In December 2007, the monitoring wells were monitored and sampled, with the event reported as the Fourth Quarter 2007 Groundwater Monitoring and Sampling Event (ESTC, January 2008). Groundwater samples were collected on December 10, 2007. No sheen or product odor was observed on the samples collected from the three monitoring wells.

- Table 2 lists the analytical results. Concentrations of TPHg were detected only in the groundwater sample collected from monitoring wells STMW-1 (210 μ g/l). Concentrations of BTEX were not detected. Concentrations of MtBE were detected only in the groundwater samples collected from monitoring wells STMW-1 (540 μ g/l) and STMW-3 (17 μ g/l). Concentrations of TBA were detected in each monitoring well, with the highest concentration detected in the sample collected from STMW-1 (4,200 μ g/l). Methanol was detected at 10,000 μ g/l in the groundwater sample collected from STMW-1.
- Depth to water measurements ranged from 6.26 feet bgs (511.29 feet amsl) at STMW-1, 8.02 feet bgs (511.57 feet amsl) at STMW-2, to 9.12 feet bgs (511.25 feet amsl) at STMW-3.
- Based on the depth to water measurements, groundwater was determined to be flowing northwest at a gradient of 0.004 ft/ft.
- Table 3 lists the monitoring data. The well screens in the wells were drowned at the time depth to water measurements and groundwater samples were collected from the wells.

In May 2008, four borings were advanced by direct-push methods on a commercial parcel on the north side of Bluebell Drive directly north of the Site (GP-7 thru GP-10), and one boring (GP-5) advanced on a commercial parcel adjoining the Site to the east (ESTC, July 2008). The locations of the borings are illustrated on Figure 2.

- The soil lithology encountered at GP-5 ranged from black stiff clay to gray silty clay to 20 feet bgs (maximum depth explored). At borings GP-7 thru GP-8, a light brown to gray to white sand ranging from coarse-grained to gravelly in texture was encountered between approximately 10 feet to 20 feet bgs, and was inferred to correlate with the CPT-interpreted sand between 16 feet and 22 feet bgs in CPT-2 (June 2007).
- \circ Soil and groundwater samples were collected from each boring for laboratory analyses. Table 1 lists the soil analytical results, and Table 2 lists the groundwater analytical results. Concentrations of TPHg and BTEX were not analytically detected in the soil samples. Concentrations of MtBE were detected in the soil samples collected from boring GP-7 at 10 feet bgs (6.5 µg/l), boring GP-8 at 10 feet and 15 feet bgs (440 µg/l and 44 µg/l, respectively), and boring GP-9 at 15 feet bgs (14 µg/l). Concentrations of TBA were detected only in the soil samples collected from boring GP-8 at 10 feet bgs (2,300 µg/l) and 15 feet bgs (270 µg/l).
- \circ For the groundwater samples, concentrations of TPHg were detected at borings GP-6 (560 µg/l) and GP-8 (530 µg/l) with the remaining borings non-detect. Elevated concentrations of MtBE were detected in the groundwater samples collected from all of the borings except GP-6 and GP-10, with the highest concentration at boring GP-8

(970 μ g/l). Concentrations of TBA were detected in the groundwater sample collected from boring GP-8 at 4,100 μ g/l.

On June 6, 2008, a soil vapor pilot test (SVPT) was conducted on the Site using two vapor extraction wells (VE-1 and VE-2) and the existing monitoring wells on the Site as vacuum monitoring wells (STMW-1, STMW-2 and STMW-3). The purpose of the SVPT was to evaluate soil vapor extraction as an alternative for remediating soil impact in the vadose zone above uppermost groundwater at the Site. The locations of the SVPT extraction wells and vacuum monitoring wells are illustrated on Figure 2, site map (ESTC, July 2008). The extraction wells were installed in May 2008 to a depth of 10 feet bgs, and completed with 7 feet of well screen casing between 3 feet and 10 feet bgs. The test was conducted using an internal combustion engine (ICE) driving a positive displacement blower. The SVPT was run in steps to optimize air flow/vacuum characteristics for potential design purposes. Magnahellic gauges were used to measure vacuum in the vacuum monitoring wells. Unfortunately, the groundwater monitoring well screens were drowned during the SVPT, effectively precluding their use as vacuum monitoring wells. No vacuum was observed in the extraction wells when used as vacuum monitoring wells. Therefore, the results of the SVPT were inconclusive.

On September 19, 2008 an injection well (P1) was installed at the site to be used in hydrogen peroxide injection pilot test between September 29 and November 6, 2008. The hydrogen peroxide injection included weekly hydrogen peroxide injection at STMW-1, STMW-3 and P1, and DO, ORP, EC and pH parameters measurement. The three monitoring wells, vapor extraction wells and STMW-2 were sampled for 21 metals, TPH-G, BTEX and Fuel Oxygenates analysis on September 24 and November 20, 2008 to test the effect of hydrogen peroxide injection on groundwater contamination.

The 2008 third quarter groundwater monitoring event took place on September 25, 2008. Groundwater gradient in this event was found to be 0.003 ft/ft in N54°W direction. Total Petroleum Hydrocarbons as Gasoline (TPHg) was only detected in STMW-1 (230 μ g/l). MtBE was detected in STMW-1 and 3 in the amount of 204 and 67 μ g/l, respectively. TBA was detected in STMW-1, 2 and 3 in the amount of 704, 71 and 31.7 μ g/l, respectively.

2.0 HYDROGEN PEROXIDE INJECTION

As required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120), and by the Cal-OSHA "Hazardous Waste Operations and Emergency Response" guidelines (CCR Title 8, Section 5192), a site-specific Project Safety Plan (PSP) was prepared prior to the commencement of field activities (Appendix D). The PSP was reviewed by the field staff on a daily basis before beginning field activities at the Site.

In order to design the number and spacing/location of the Injection Wells at the site the radius of influence of hydrogen peroxide injection process is required. One way to measure the

radius of influence of hydrogen peroxide injection process is to inject hydrogen peroxide in an injection well and measure the DO in the neighboring wells. The dramatic change in DO or ORP of groundwater in the monitoring well will indicate that the hydrogen peroxide injection at the injection well has influence on groundwater and soil by such a distance.

To implement the testing of hydrogen peroxide injection radius of influence an injection well (P1) was installed half way between VE-1 and STMW-1 on September 19, 2008 (Figure 2). As we proceeded with preliminary weekly injection in STMW-1, STMW-3 and P1, weekly monitoring of DO and ORP in groundwater was done in all three injection wells plus STMW-2, VE-1 and VE-2. Dramatic increase of DO and ORP at STMW-1, STMW-3 and P1 indicates that the hydrogen peroxide injection is effective in increasing the DO level in injection wells or in the immediate vicinity of injection wells. The 3 monitoring wells STMW-2 and VE-1 were located either far away from injection wells or up gradient of the injection points; therefore hydrogen peroxide injection influence was not expected on these two wells. However, VE-2 is about 10 feet down gradient of P1 and therefore it could be counted as a monitoring point for the hydrogen peroxide injection influence. Dramatic increase in DO level in VE-2 indicates that the radius of influence for hydrogen peroxide is at least 10 feet. Referring to Table 4 the increase level of DO in VE-2 is somewhat less than that of increase in injection wells DO levels. The radius of influence of hydrogen peroxide injection at the site exceeds 10 feet and therefore injection wells spacing to be installed at the site should be based on a radius of influence greater than 10 feet. The pilot test was run for 6 weeks, from September 29 to November 6, 2008. The well construction for P1 is given below:

Well No.	Dia./TD	Screen	Slot	Sand Pack	Trans. Seal	Grout Seal
P1	4"/20'	10-20'	0.020"	#3 sand 8-20'	6-8'	6'-surface

Hydrogen peroxide was injected into each injection well (STMW-1, STMW-3 and P1) during each weekly visit to the site. First the groundwater level was measured in all 6 injection and monitoring wells and subsequently at least 3 volumes of water column was purged in each well to measure the groundwater field parameters including DO, ORP, pH, groundwater temperature, and Electrical Conductivity (EC). After collecting groundwater field parameters, approximately 100 gallons of 2 to 5% hydrogen peroxide solution was injected in each injection well.

Because of low hydraulic conductivity in the formation during most events just half of the expected hydrogen peroxide was injected in injection wells. The injection was conducted by gravity. To eliminate the problem associated with low recharge, the hydrogen peroxide injection must be continuous and low flow. By automating the injection process we will be able to inject a much higher volume over a week than that was injected in a batch mode with the frequency of once a week. In this approach each injection well will have a dedicated hose

that goes to the top of injection well and the other end is connected to a tank full of hydrogen peroxide 2% solution. A control panel will regulate the flow and pressure of hydrogen peroxide injection at each well.

3.0 GROUNDWATER FIELD DATA

Table 4 shows the groundwater field data collected during the hydrogen peroxide injection pilot test. The field data were not collected on October 9, 2008 because of instrument malfunction. On October 23, 30 and November 6, 2008 the field data were collected in VE-2 only to leave more time for hydrogen peroxide injection at injection wells. VE-2 was selected for this purpose because it represents the monitoring well role more than others, it is located at around 10 feet down gradient of P1 that is an injection well and therefore it is a good point to monitor the effect of hydrogen peroxide injection at P1.

PH in injection wells increased by 0.3, 1 and 0.8 on average, in STMW-1, STMW-3 and P1 respectively. pH didn't change significantly in monitoring wells except for VE-2 that showed a change in pH around 0.1 to 0.7 in different monitoring events. No significant change in groundwater temperature was observed either in injection wells or monitoring wells. The Alameda Country Health Care Services directed GTI to monitor vapor on top of injection wells using an OVM (Organic Vapor Meter) and water temperature during hydrogen peroxide injection in their letter dated August 8, 2008. Groundwater temperature monitoring was not possible because the water column at the injection well would be influenced by the injected solution. Vapor monitorin is not applicable in this case because the reaction between contaminants and hydrogen peroxide doesn't result in much of volatile compounds but water and carbon dioxide. DO and ORP are two parameters that show the oxidation state of the system, they increased in all injection wells and monitoring well VE-2.

4.0 GROUNDWATER ANALYTICAL DATA

Prior to any hydrogen peroxide injection at the site, groundwater samples were collected and sent to Excelchem Environmental Labs of Roseville, California (Certification No. 2119) for the following analysis (samples were initially collected from 3 groundwater monitoring wells, STMW-1, STMW-2 and STMW-3, at the site and vapor extraction wells, VE-1 and VE-2, newly installed injection well P1):

Metals [Sb, As, Ba, Be, Cd, Cr (III), Co, Cu, Fe, Pb, Mn, Hg, Mo, Ni, Se, Ag, Tl, V, Zn], TPH-G, BTEX, MtBE, TBA, TAME, EtBE, DIPE, 1,2-EDB, 1,2-DCA, methanol and Ethanol. All hydrocarbons were analyzed using EPA 8260B and all metals were analyzed using EPA 6010B except for Mercury that was analyzed using EPA 7470A.

The first groundwater sampling occurred on September 25, 2008. Two weeks after hydrogen peroxide injection pilot test ended, on November 20, 2008 groundwater samples were again collected and sent to Argon Laboratories (ELAP# 2359), of Ceres, California for the following analyses:

Geological Technics Inc. Site Conceptual Model Report Project No. 1409.2 December 5, 2008

Metals: Sb, As, Ba, Be, Cd, Cr (III and VI), Co, Cu, Fe, Pb, Mn, Hg, Mo, Ni, Se, Ag, Ti, V and Zn using EPA 200.8 method and Cr VI using E218.6 method. TPH-G, BTEX, TBA, MtBE, DIPE, EtBE, and TAME using EPA 8260B method.

The results and detection limits for the above analyses are listed in Tables 2 and 3 included in Appendix A. Certified analytical reports are included in Appendix B.

Samples were collected for metals analyses to inspect the effect of hydrogen peroxide injection on metals oxidation in the aquifer system. It is believed that metals have very low concentrations in groundwater and soil and therefore their chance of oxidation by hydrogen peroxide decreases dramatically although they have very high potential in comparison with hydrocarbons to be oxidized by an agent like hydrogen peroxide. The first set of analysis shown in Table 3 was based on EPA 6010B method with much higher detection limit than that of EPA 200.8 that was used in the second set of analyses. Metals concentrations given in the first set of results are much higher than that of the second set. Such a big difference in metals concentrations in groundwater in a short period of time is not expected.

Moreover, the first set of results is rather high and not representative of typical groundwater. Probably the first set of analytical data are total metals, the water was not filtered prior to analysis, even though our chain of custody requested filtering. EPA 200.8 method with lower detection limit applied after hydrogen peroxide injection pilot test indicates that none of the metals will be a source of risk of oxidation and mobilization since after six weeks of hydrogen peroxide injection relatively low concentrations of metals is still observed. Most of the metals concentration in the second round of analysis are much lower than primary and secondary MCLs except for one which is very close to primary MCL (Arsenic concentration in groundwater it is usually in the area based on our previous experience. Most of the sites have much higher concentration of Arsenic but oxidation state in the aquifer system doesn't cause any mobilization of this metal from solid to liquid phase.

TPH-G and MTBE decreased in two injection wells STMW-1 and STMW-3. However, TBA decreased in STMW-3 and increased in STMW-1. The increase in TBA can be an indication of MtBE breakdown to intermediate products such as TBA. Unfortunately P1 was not sampled for the analysis of contaminants of concern for the pre-pilot test conditions and therefore it is not possible to find the effect of hydrogen peroxide injection on hydrocarbons concentration in this well.

5.0 DISCUSSION

In Sections 2, 3 and 4 the effect of hydrogen peroxide injection on aquifer system was explained from different perspectives. In summary the effect of hydrogen peroxide injection was explored by hydrocarbons and metals concentration in groundwater as well as groundwater field parameters including DO and ORP before and after hydrogen peroxide injection pilot test. All these groups of data verify the useful effect of hydrogen peroxide in contaminants removal.

-

Page 12

Based on groundwater field and analytical data given in Sections 3 and 4 the hydrogen peroxide injection has at least a radius of influence of 10 feet since injection in P1 resulted in an increase in DO level in VE-2, which is located at around 10 feet down gradient of this injection well. The increase in DO level is also observed in all 3 injection wells. Increase in DO level is a byproduct of hydrogen peroxide injection in groundwater that will result in higher rate of biodegradation. ORP indicates the level of oxidation state in the aquifer system and the data in injection wells and VE-2 show a dramatic increase in ORP level in these four wells.

Low level of almost all metals in groundwater samples collected from all 6 injection and monitoring wells at the site show that there is no risk associated with hydrogen peroxide injection at the site in terms of metals mobilization from one phase to another. We should continue collecting samples for metals analysis during continuous low flow injection of hydrogen peroxide also to make sure that no metal mobilization occurs in the aquifer system throughout the injection process. If any dramatic change in metals concentrations is observed we should adjust the hydrogen peroxide injection flow rate and frequency to bring down the oxidation of metals in the aquifer.

The primary contaminants of concern include MtBE and TBA decreased in STMW-3. In STMW-1 MtBE and TPH-G decreased but TBA increased. The increase in TBA level can be an indication of MtBE breakdown into intermediate products or can be sourced from up gradient. The level of MtBE, TBA and TPH-G all increased in STMW-2. The injection at injection wells was not effective on STMW-2 because first of all this well is up gradient of the injection wells and secondly it is far away from the injection points (more than 50 feet) while the radius of influence of hydrogen peroxide injection is estimated to be a little over 10 Unfortunately, no groundwater sample was collected from P1 prior to hydrogen feet. peroxide injection started and therefore it is not possible to evaluate the effect hydrogen peroxide injection on hydrocarbons concentrations in this well. P1 in the second round of groundwater sampling event showed a high level of TBA. The level of TBA in this well is close to 13 times of MtBE concentration. Higher concentration of TBA than MtBE is observed in all wells and soil borings during 2007 and 2008. This can be an indication of MtBE natural attenuation and biodegradation that result in intermediate products including TBA. The intermediate products tend to be more resistant to natural attenuation and biodegradation than MtBE. Other intermediate products that we should consider for analysis Tert-Butyl Formate (TBF), 2-Methoxy-2-Methyl Propionaldehyde (MMP), Acetone are: (AC), Methyl acetate (MA), Hydroxyisobutyraldehyde (HiBA), and Formaldehyde (FA).

If the first 3 to 5 months of continuous low flow hydrogen peroxide injection doesn't cause a considerable decrease in TBA in groundwater we should add a catalyst to hydrogen peroxide solution as the intermediate products might be resistant to oxidation by hydrogen peroxide. The catalyst that is usually used in this case is Iron (FeSO₄) to make Fenton agent. In this case another alternative would be RegenOx, a product from Regenesis Advanced Technologies for groundwater Remediation. The cost for RegeOx is almost 25% more than that of hydrogen peroxide.

6.0 CONCLUSIONS

Conclusions from hydrogen peroxide injection pilot test are listed below:

Dissolved Oxygen (DO) level observed in VE-2 indicates that hydrogen peroxide injection has a radius of influence at least 10 feet.

- 1. Metals concentration in injection and monitoring wells suggest that the effect of hydrogen peroxide in metals mobilization between solid and liquid phases is minimal.
- 2. MtBE, TBA and TPHg concentration in injection wells and VE-2 as a monitoring well shows that the effect of hydrogen peroxide injection on contaminants removal is considerable.
- 3. The intermediate products of MtBE oxidation including TBA might be resistant to oxidation state imposed by hydrogen peroxide. The data we have now are not enough to make this hypothesis conclusive.
- 4. Application of a catalyst might be needed along with hydrogen peroxide to have an efficient MTBE oxidation intermediate products removal. The first 3 to 5 months of continuous low flow hydrogen peroxide injection at the site during remedial action will reveal this issue.

7.0 **RECOMMENDATIONS**

The following actions are recommended toward groundwater and soil remediation at the site:

- 1. Prepare a Remedial Action Plan and include any extra investigations needed for completing the site characterization upon the Alameda County Health care Services Agency review of this report and their direction. A brief citation of these investigations is given in Site Conceptual Model prepared by Geological Technics Inc. in December 2008.
- 2. Continuous low flow injection of 3% solution of hydrogen peroxide in injection wells to be installed at the site. The injection must be divided into two horizons: 5 to 10 feet of depth and 10 to 20 feet of depth to make the remediation more efficient both in the silty clay and sandy units.
- 3. Evaluation of the first 3 months of continuous injection and in case of low effectiveness of contaminant mass removal adding a kind of catalyst for better efficiency in contaminant removal.
- 4. Evaluate metals concentrations in monitoring wells every 2 months and take necessary action if needed.

8.0 LIMITATIONS

This report was prepared in accordance with the generally accepted standard of care and practice in effect at the time Services were rendered. It should be recognized that definition and evaluation of environmental conditions is an inexact science and that the state or practice of environmental geology/hydrology is changing and evolving and that standards existing at the present time may change as knowledge increases and the state of the practice continues to improve. Further, that differing subsurface soil characteristics can be experienced within a small distance and therefore cannot be known in an absolute sense. All conclusions and recommendations are based on the available data and information.

The tasks proposed and completed during this project were reviewed and approved by the local regulatory agency for compliance with the law. No warranty, expressed or implied, is made.

9.0 SIGNATURE & CERTIFICATION

Geological Technics Inc. will perform this project in accordance with accepted geologic and hydrologic standards of the State of California accepted and in effect at the time of this investigation. Geological Technics Inc. is not responsible for undisclosed conditions.

Geological Technics Inc. Site Conceptual Model Report Project No. 1409.2 December 5, 2008

8.0 LIMITATIONS

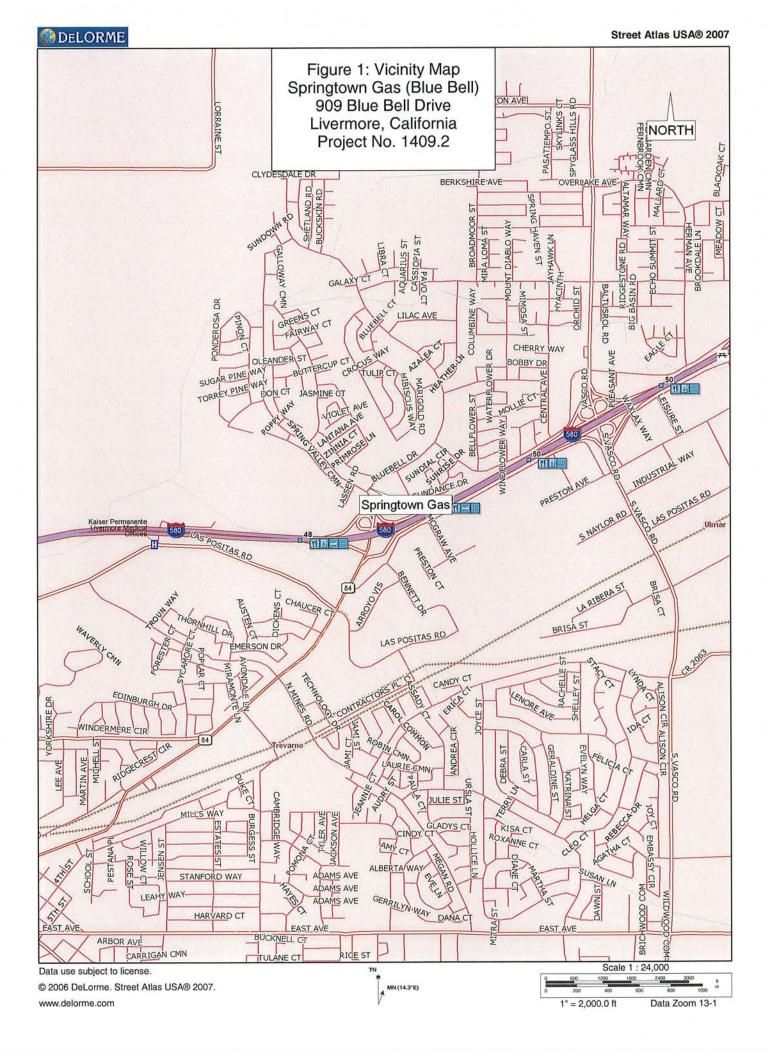
This report was prepared in accordance with the generally accepted standard of care and practice in effect at the time Services were rendered. It should be recognized that definition and evaluation of environmental conditions is an inexact science and that the state or practice of environmental geology/hydrology is changing and evolving and that standards existing at the present time may change as knowledge increases and the state of the practice continues to improve. Further, that differing subsurface soil characteristics can be experienced within a small distance and therefore cannot be known in an absolute sense. All conclusions and recommendations are based on the available data and information.

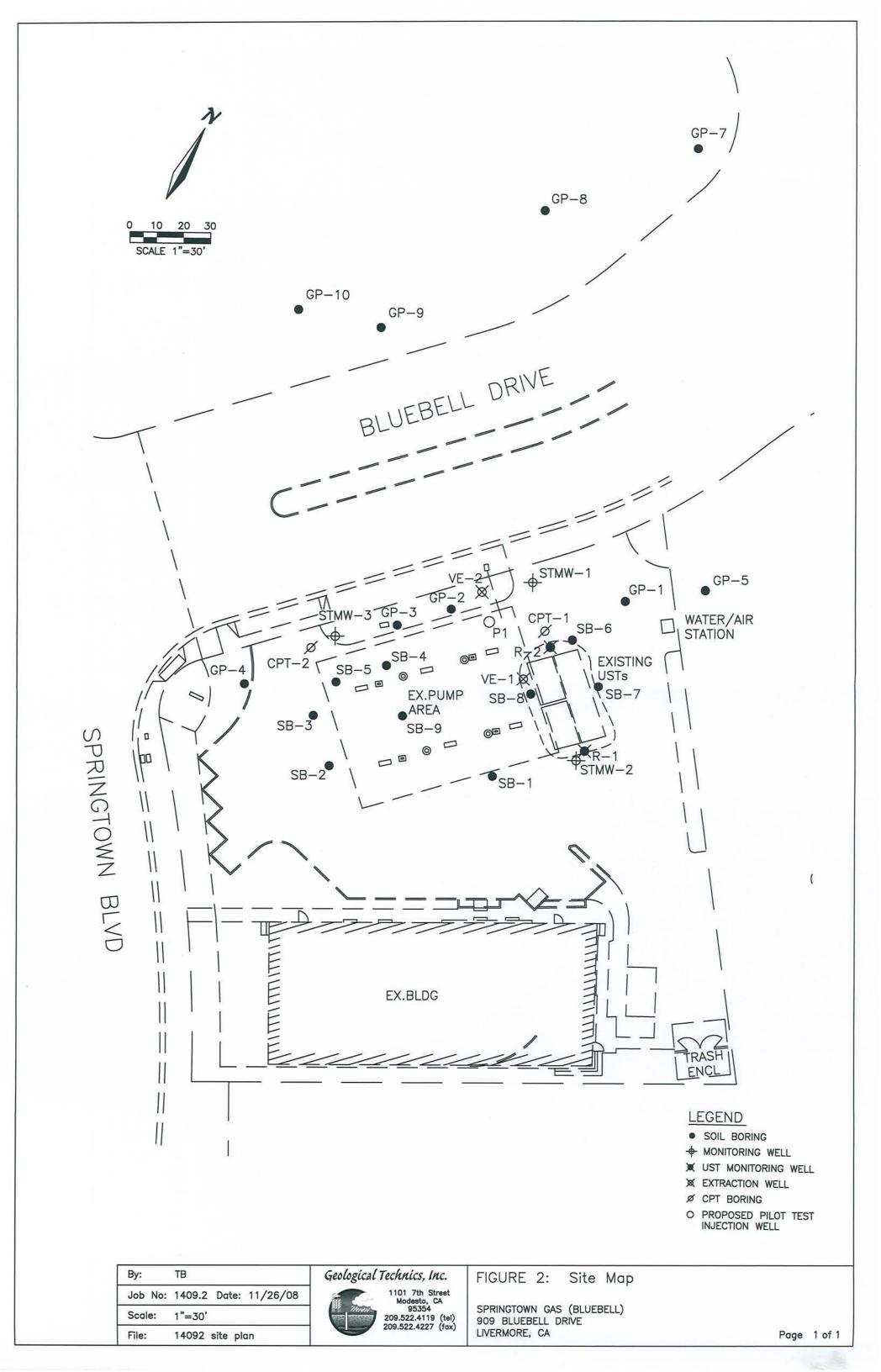
The tasks proposed and completed during this project were reviewed and approved by the local regulatory agency for compliance with the law. No warranty, expressed or implied, is made.

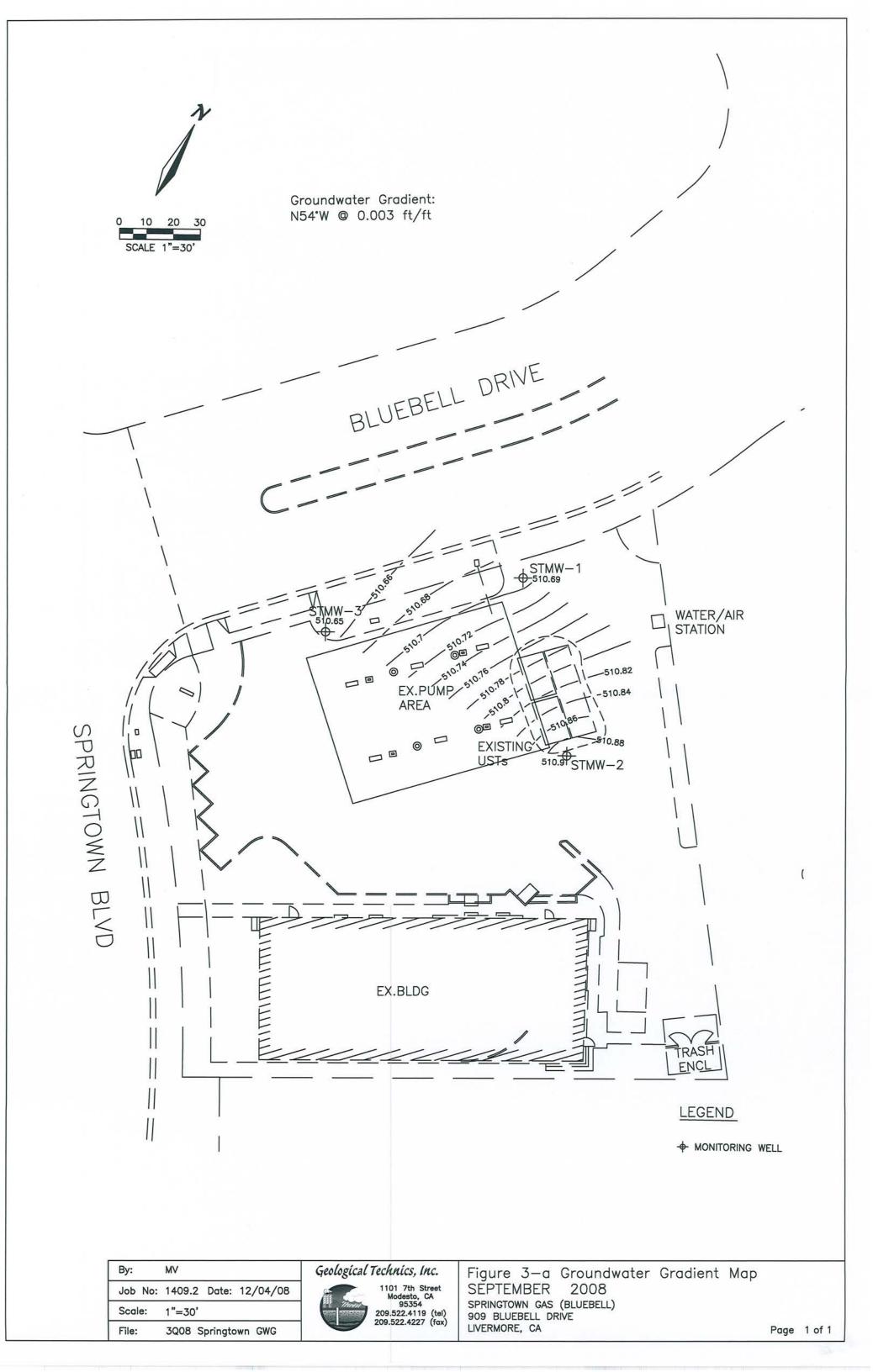
9.0 SIGNATURE & CERTIFICATION

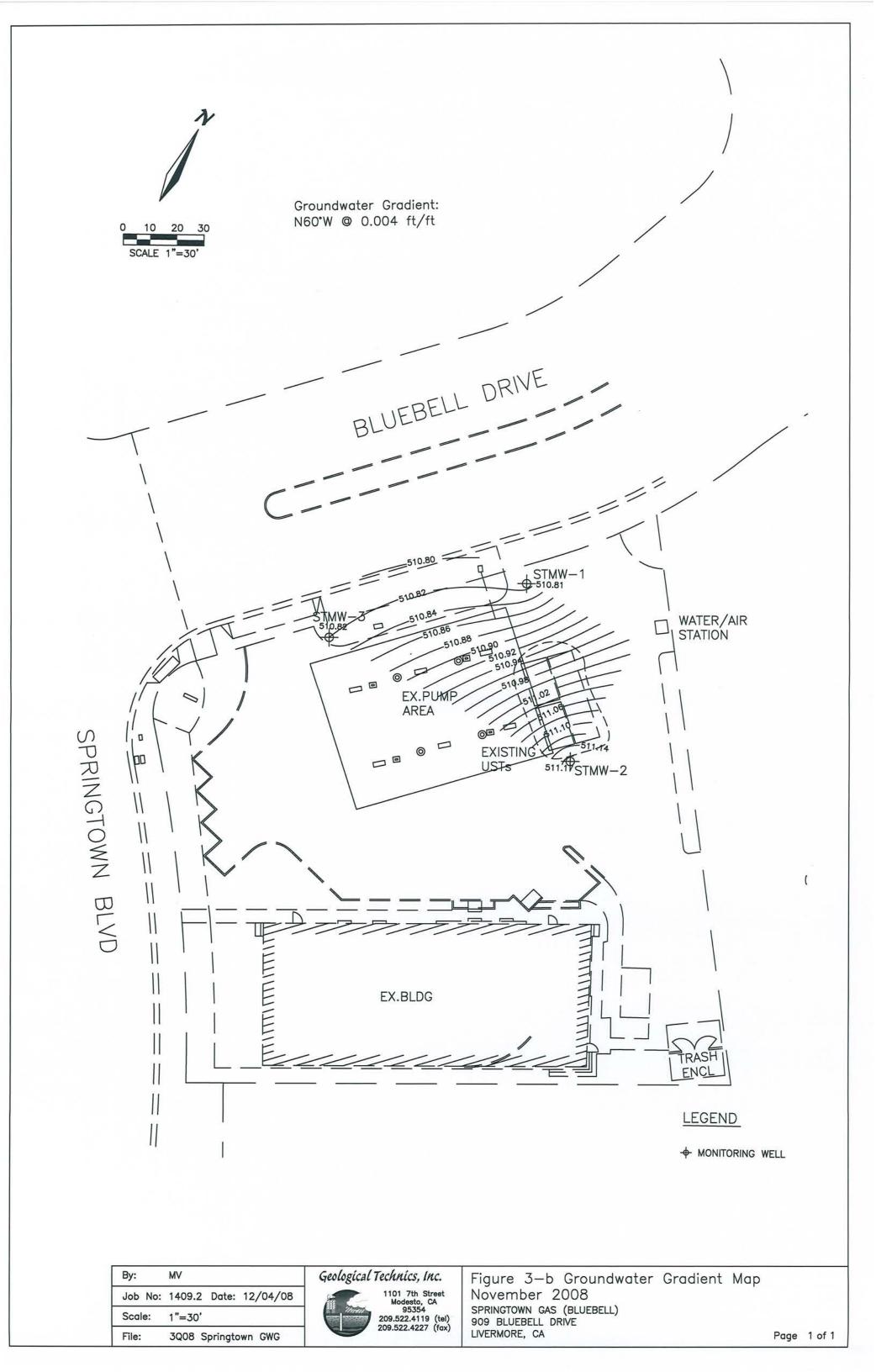
Geological Technics Inc. will perform this project in accordance with accepted geologic and hydrologic standards of the State of California accepted and in effect at the time of this investigation. Geological Technics Inc. is not responsible for undisclosed conditions.

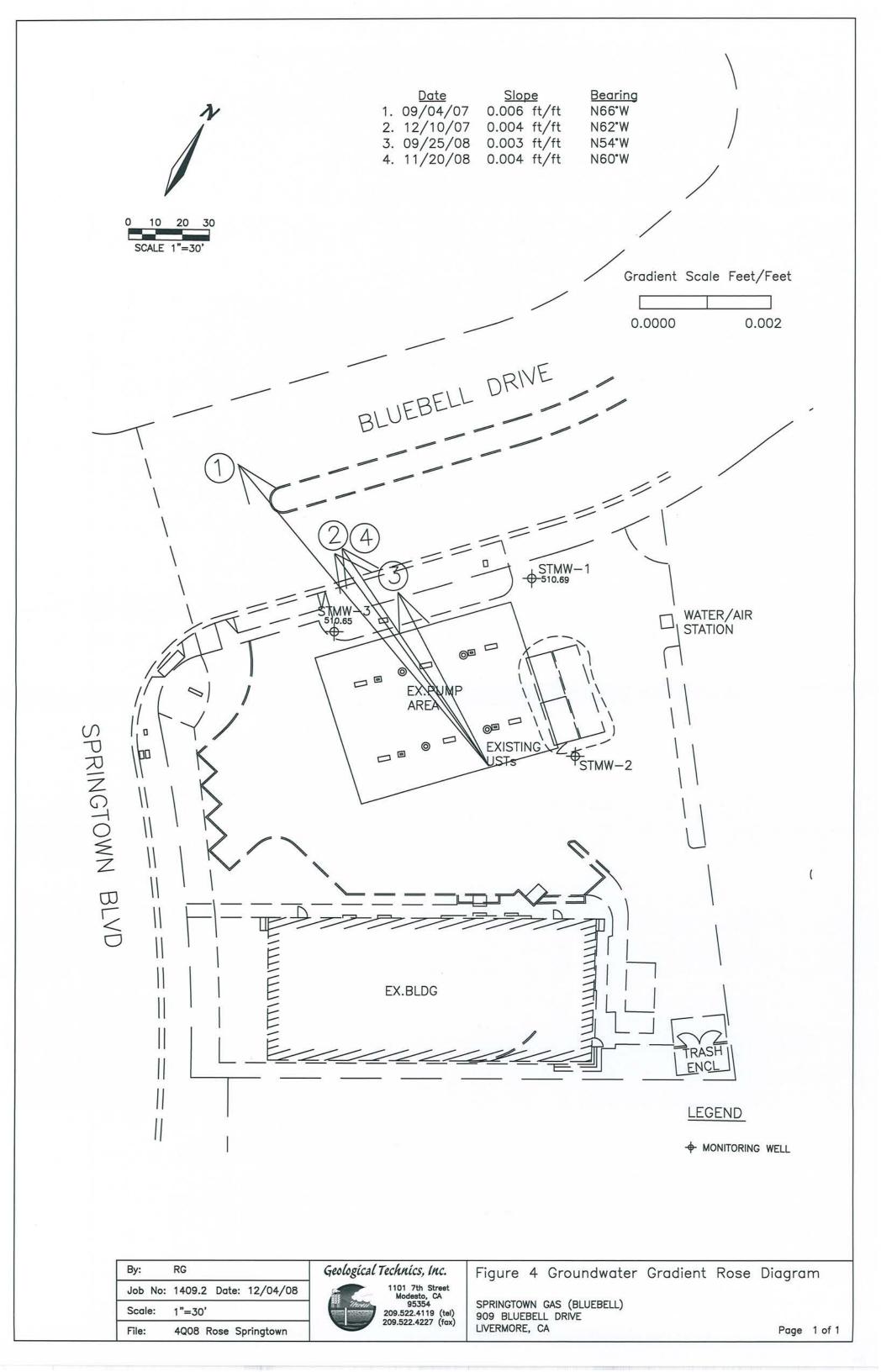
This report was prepared by:

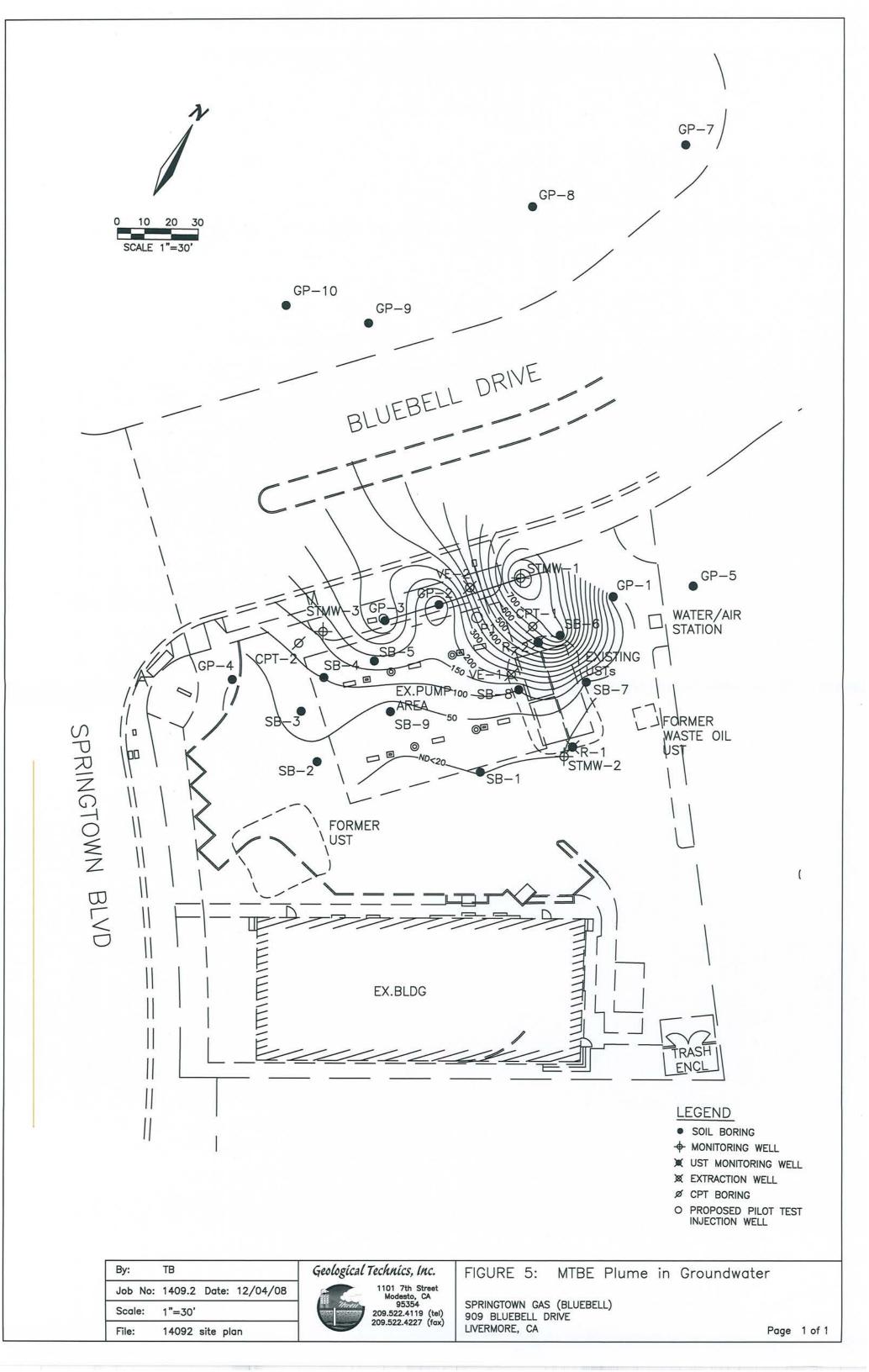

V. Ghanbah

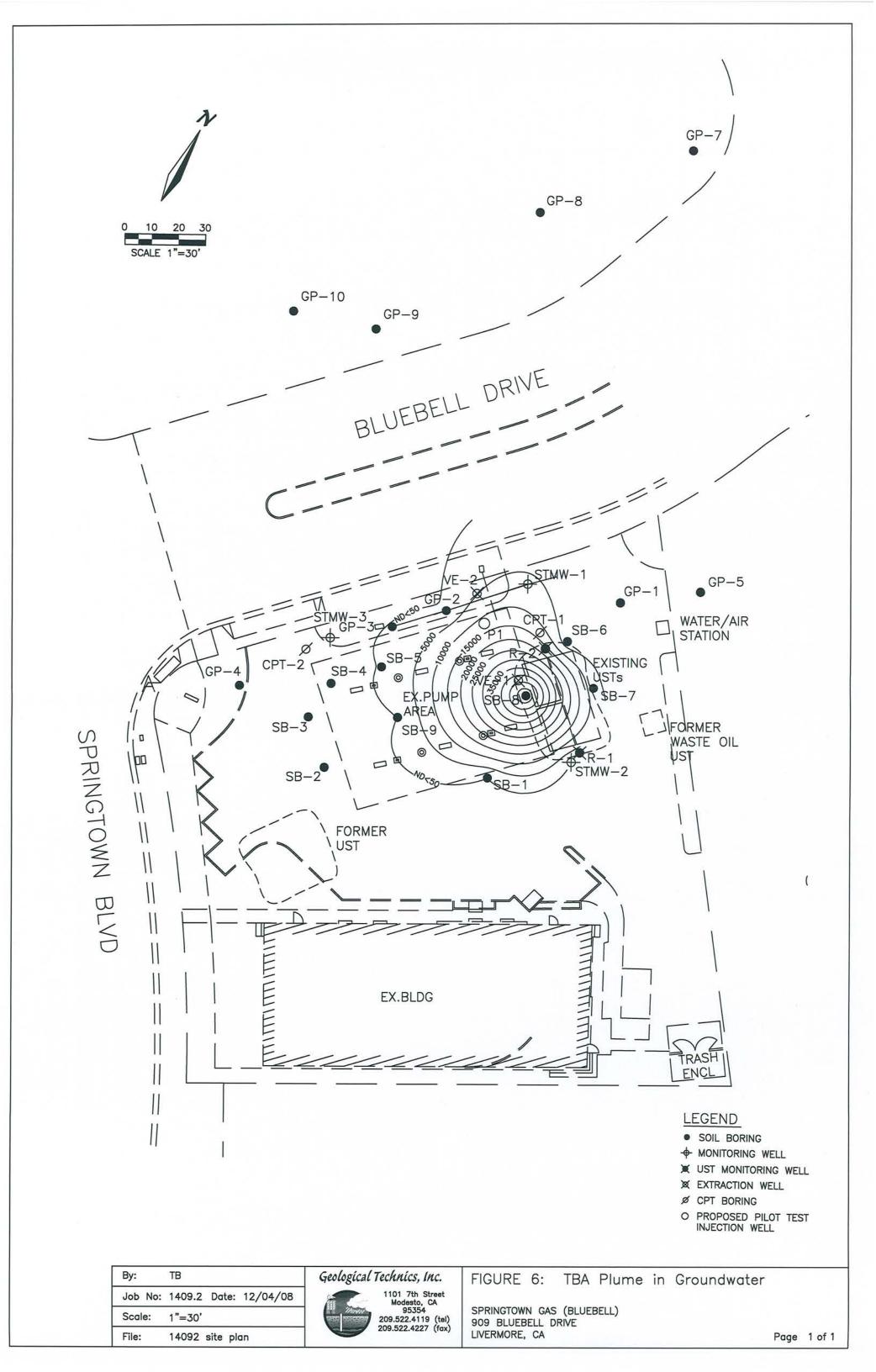

Reza Namdar Ghanbari, Ph.D. Project Manager


This report was reviewed by:


Raynold Kablanow II, Ph.D. California Professional Geologist #5234 Certified Hydrogeologist #442







Appendix A

Summary Tables

Table 1 Summary of Groundwater Elevation

Springtown Gas 909 Bluebell Drive Livermore, California

Date		STMW-1	STMW1	STMW-2	STMW2	STMW-3	STMW3	Avg GW	GW G	Gradient
	of the second second	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	Elev	Slope	Direction
	top of casing*	517.55		519.59		520.37			ft/ft	
9/4/2007		510.97	6.58	511.59	8.00	510.85	9.52	511.14	0.006	N66°W
12/10/07		511.29	6.26	511.59	8.00	511.25	9.12	511.38	0.004	N62°W
09/25/08		510.69	6.86	510.9	8.69	510.65	9.72	510.75	0.003	N54°W
11/20/08		510.81	6.74	511.17	8.42	510.82	9.55	510.93	0.004	N60°W
Historical								511.05	0.004	N61°W

*TOC elevations surveyed in on 9/06/07 by Muir Consutling Inc. NAD 83 and NGVD 29 **Gradient and slope determined from computer generated contours

Geological Technics Inc.

Table 2 Summary of Groundwater Analytical Data

Springtown Gas 909 Bluebell Drive Livermore, California

MONITORING WELL	Date	TPHg	в	т	E	х	MtBE	тва	DIPE	EtBE	TAME	1,2-DCA	EDB	Methanol	Ethanol
		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
STMW-1	9/4/2007 12/10/2007 9/25/2008 11/20/2008	220 210 230 <50	<10 <5 <0.5 <0.5	<10 <5 <0.5 <0.5	<10 <5 <0.5 <0.5	<10 <5 <1.0 <1.0	850 540 204 14	6,500 4,200 704 930	- <0.5 <0.5	- <0.5 <0.5	- 0.6 <0.5	- - <0.5 -	- - <0.5 -	- - <5 -	- - <20 -
STMW-2	9/4/2007 12/10/2007 9/25/2008 11/20/2008	<50 <50 <50 90	<0.5 <0.5 <0.5 1.7	<0.5 <0.5 <0.5 6.9	<0.5 <0.5 <0.5 1.7	<0.5 <0.5 <1 7.6	<1 <1 <0.5 2.2	42 83 71 190	- <0.5 <0.5	- <0.5 <0.5	- <0.5 <0.5	- - <0.5 -	- - <0.5 -	- - <5 -	- - <20 -
STMW-3	9/4/2007 12/10/2007 9/25/2008 11/20/2008	59 <50 <50 <50	<1 <0.5 <0.5 <0.5	<1 <0.5 <0.5 <0.5	<1 <0.5 <0.5 <0.5	<1 <0.5 <0.5 <1.0	160 17 67 12	120 86 31.7 <5	- <0.5 <0.5	- <0.5 <0.5	- <0.5 <0.5	- - <0.5 -	- <0.5 -	- - - -	- - <20 -
P1	11/20/2008	<50	<5	<5	<5	<10	180	2300	<5	<5	<5	2	-	-	-

notes:

TPHg Total petroleum hydrocarbons as gasoline

TPHd Total petroleum hydrocarbon

B Benzene

T Toluene

E Ethylbenzene

X Total xylenes

MtBE Methyl tertiary butyl ether

TBA Tert-butyl alcohol

DIPE Di-isopropyl ether

EtBE Ethyl-tertiary butyl ether

TAME Tert-amyl-methyl ether

1,2-DCA 1,2-Dichloroethane

EDB 1,2-Dibromoethane

bgs below ground surface

ug/l micrograms per liter

- Not analyzed or not reported

Table 3 Summary of Groundwater Metal Data

Springtown Gas 909 Bluebell Drive Livermore, California

MONITORING WELL	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium III	Chromium VI	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Units		µg/l	μg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l
Primary MCLs		6	0	2,000	4	5	100	-2		1,300	0	2	-	-	50	-	50	-	-
Secondary MCL	LS	-		π		-	-	-		1,000	-	-	-	-	-	100	-	-	5,000
STMW-1	9/25/2008 11/20/2008	ND<10 ND<2	44.6 3.7	1360 150	7 ND<1	40.8 ND<1	691 2.7	- 14	116 ND<5	358 ND<5	61.9 ND<1	18.9 ND<0.25	ND<10 23	709 7.4	ND<20 2.7	ND<10 ND<1	ND<20 ND<1	535 5.3	726 19
STMW-2	9/25/2008 11/20/2008	ND<10 ND<2	27.2 4.7	1860 41	6.3 ND<1	32 ND<1	561 8.8	1.7	103 ND<5	257 ND<5	58.9 ND<1	5.18 ND<0.25	ND<10 61	533 ND<5	ND<20 2.4	ND<10 ND<1	ND<20 ND<1	407 13	558 6.5
STMW-3	9/25/2008 11/20/2008	ND<10 ND<2	20.4 2.6	789 67	ND<5 ND<1	24.7 ND<1	390 2.6	- 22	101 ND<5	187 ND<5	48.9 ND<1	2.7 ND<0.25	ND<10 23	440 ND<5	ND<20 1.1	ND<10 2	ND<20 ND<1	335 3.1	425 12
P1	9/25/2008 11/20/2008	ND<10 ND<2	ND<10 5.3	206 82	ND<5 ND<1	ND<10 ND<1	75.4 3	- 12	ND<50 ND<5	30.2 ND<5	ND<10 ND<1	ND<0.25 ND<0.25	ND<10 13	76.7 ND<5	ND<20 1.4	ND<10 ND<1	ND<20 ND<1	62.5 7.3	68.5 8.1
VE-1	9/25/2008 11/20/2008	ND<10 ND<2	274 3.2	16400 210	53.1 ND<1	323 ND<1	4330 8	- ND<0.2	857 ND<5	2750 ND<5	458 ND<1	ND<0.25 ND<0.25	ND<10 20	3450 7.8	ND<20 1.8	ND<10 ND<1	ND<20 ND<1	3790 5.8	4970 43
VE-2	9/25/2008 11/20/2008	ND<10 ND<2	12.2 5.6	257 62	ND<5 ND<1	ND<10 ND<1	91.8 7.2	- 12	ND<50 ND<5	42.8 6.1	10.8 ND<1	ND<0.25 ND<0.25	11 10	87.2 10	ND<20 3.1	ND<10 ND<1	ND<20 ND<1	88.7 6.1	107 34

notes:

Total petroleum hydrocarbons as gasoline

- TPHg TPHd Total petroleum hydroca
- Benzene
- Toluene
- Ethylbenzene
- B T E X MtBE Total xylenes Methyl tertiary butyl ether
- TBA DIPE
- EtBE
- Tert-butyl alcohol Di-isopropyl ether Ethyl-tertiary butyl ether Tert-amyl-methyl ether TAME
- 1,2-DCA 1,2-Dichloroethane
- EDB 1,2-Dibromoethane
- bgs ug/l below ground surface
- micrograms per liter
- Not analyzed or not reported

Table 4 Summary of Water Quality Parameter Data

Springtown Gas 909 Bluebell Drive Livermore, California

Monitoring Well			STMW	1					STM	W-2			STMW-3					
Date	pH	E.C.	°C	°F	ORP	DO	pН	E.C.	°C	°F	ORP	DO	pН	E.C.	°C	٩F	ORP	DO
9/4/2007	6.37	1462	21.4	70.5	NM	NM	6.43	1405	21.1	70.0	NM	NM	6.14	2115	20	68.0	NM	NM
12/10/2007	6.92	1090	18.5	65.3	NM	NM	7.02	1074	19.8	67.6	NM	NM	6.77	1267	NM	NM	NM	NM
9/25/2008	7.22	1706	21.63	70.9	48.3	0.38	7.15	1652	21.26	70.3	34	0.7	6.84	1838	20.32	68.6	60.2	0.84
10/2/2008	7.16	1701	21.57	70.8	45.6	0.68	7.07	1650	21.14	70.1	51.8	0.58	6.82	1892	20.47	68.8	156	1.81
10/9/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
10/16/2008	7.53	970	21.48	70.7	71.6	36.39	7.07	1611	21.35	70.4	56.7	0.21	7.38	656	20.64	69.2	66.6	37.4
10/23/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
10/30/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
11/6/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
11/20/2008	7.36	1554	20.74	69.3	208.3	11.17	7.2	1782	21.21	70.2	211.4	1.13	7.88	771	20.63	69.1	194.6	15.53
Monitoring Well			p1						VE	-1					VE	-2		
Date	pН	E.C.	°C	٩F	ORP	DO	pН	E.C.	°C	٩F	ORP	DO	pН	E.C.	°C	٩F	ORP	DO
9/4/2007	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
12/10/2007	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
9/25/2008	7.16	1941	20.6	69.1	50.3	1.19	6.9	2072	22.8	73.0	-44.9	3.07	7.1	1933	21.67	71.0	-13.6	6.48
10/2/2008	7.1	1893	20.44	68.8	59.6	1.18	7.18	1780	22.02	71.6	2.1	8.29	NM	NM	NM	NM	NM	NM
10/9/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
10/16/2008	7.75	1285	20.61	69.1	85.9	18.23	6.84	1668	22.29	72.1	3.3	1.53	7.16	1912	21.38	70.5	-1.1	7.25
10/23/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	7.42	1924	19.91	67.8	49.6	8.48
10/30/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	7.81	1052	20.05	68.1	164.0	172.1
11/6/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	7.13	1329	19.94	67.9	183.5	9.77
11/20/2008	7.99	1392	19.96	67.9	180	8.19	6.99	1960	18.91	66.0	38.6	4.82	6.89	1593	19.47	67.0	224.5	9.09

notes:

E.C.	Electricval conductivity
°C	Degrees centigrade
°F	Degrees fahrenheit
ORP	Oxygen reduction potential
DO	Dissolved oxygen
NM	Not measured

Geological Technics Inc.

Table 5	
Summary of Monitoring Well	Completion Data

Well Number	Status	Date Drilled	Total Depth	Boring Diameter	Well Casing Diameter	Casing	Casing Slot Size Type (in)	ze Sand Type	Sand Type	Well Screen		Filter Pack		Annular Seal		Grout Sea	
			(ft)	(in)	(in)				From	То	From	То	From	То	From	То	
STMW-1	Active	8/23/2007	20.00	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0	
STMW-2	Active	8/23/2007	20.00	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0	
STMW-3	Active	8/23/2007	20.00	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0	
P1	Active	9/19/2008	20.00	10	4	PVC	0.02	#3/12	10	20	20	8	8	7	7	0	

Springtown Gas 909 Bluebell Drive Livermore, California Appendix B

Analytical Laboratory Reports

RECEIVED OCT 2 4 2008

EXCELCHEM Environmental Labs

1135 W Sunset Boulevard Suite A Rocklin, CA 95765 Phone# 916-543-4445 Fax# 916-543-4449

ELAP Certificate No. : 2119

10 October 2008 **Geological Technics Geological Technics** 1101 7th Street Modesto, CA 95354 **RE:** Springtown Gas

Workorder number:0809198

Enclosed are the results of analyses for samples received by the laboratory on 09/26/08 13:20. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

John Somers, Lab Director

Excelchem Environmental Labs

Geological Technics	Project:	Springtown Gas	
1101 7th Street	Project Number:	1409.2	Date Reported:
Modesto, CA 95354	Project Manager:	Geological Technics	10/10/08 16:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
STMW-3	0809198-01	Water	09/25/08 09:10	0 09/26/08 13:20
STMW-2	0809198-02	Water	09/25/08 09:50	0 09/26/08 13:20
VE-2	0809198-03	Water	09/25/08 10:20	0 09/26/08 13:20
STMW-1	0809198-04	Water	09/25/08 11:00	0 09/26/08 13:20
2-1	0809198-05	Water	09/25/08 11:50	0 09/26/08 13:20
VE-1	0809198-06	Water	09/25/08 12:1:	5 09/26/08 13:20

Excelchem Environmental Lab.

Laboratory Representative

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street Modesto, CA 95354		Project: Project Numbe Project Manag	er: 14	Springtown Gas 1409.2 Geological Technics			Date Reported: 10/10/08 16:45	
	6		STMW				10/10/0	0 10110
		0809	9198-01 (
Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SERIES					23			
Antimony	ND	10.0	ug/l	ARJ0067	10/02/08	10/08/08	EPA 6010B	
rsenic	20.4	10.0	"		ų		н	
Barium	789	20.0						
eryllium	ND	5.0					ч	
Cadmium	24.7	10.0					н	
Chromium	390	10.0	30	n.	u			
Cobalt .	101	50.0						
Copper	187	20.0						
Lead	48.9	10.0	0					
Iolybdenum	ND	10.0						
lickel	440	10.0					и	
elenium	ND	20.0	30.2				"	
ilver	ND	10.0					.0	
hallium	ND	20.0						
anadium	335	20.0	н				"	
linc	425	20.0						
Iercury	2.70	0.250	н	A D 10026	13			
energy and the second		0.230		ARJ0026	10/02/08	10/03/08	EPA 7470A	
olatile Organic Compounds by O								
asoline Range Hydrocarbons	ND	50.0	ug/l	ARJ0022	10/02/08	10/02/08	EPA 8260B	
thanol	ND	20.0	"	"			."	
`BA	31.7	5.0		"	"		0	
Iethyl tert-Butyl Ether	67.0	0.5		"	٩,			
Di-isopropyl ether	ND	· 0.5			"	•	н	
thyl tert-Butyl Ether	ND	0.5	"	"				
ert-Amyl Methyl Ether	ND	0.5		9 22				
,2-Dichloroethane	ND	0.5						
,2-Dibromoethane (EDB)	· ND	0.5						
enzene	ND	0.5						
oluene thylbenzene	ND	0.5						
	ND	0.5						
n,p-Xylene	ND ND	0.5					w	
-Xylene Kylenes, total	ND ND	1.0						
	ND					300.2	"	
urrogate: Dibromofluoromethane		94.0 %		% Recovery Limits		70-130		
urrogate: Toluene-d8		102 %		% Recovery Limits		70-130		
urrogate: 4-Bromofluorobenzene	5.05	102 %	% Recov	very Limits	70-	130	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

			Environ	1999 - 1999 -				
Geological Technics 1101 7th Street Modesto, CA 95354	<i>v</i>	Project: Project Numb Project Manag	er: 140	ingtown Gas 9.2 ological Tecl				Reported: 08 16:45
		080	STMW- 9198-01 (V			a =		
Analyte	Result	Reporting- Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Methanol							8015M	

Laboratory Representative

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street Modesto, CA 95354		Project: Project Numbe Project Manag	er: 14	ringtown Gas 09.2 cological Tecl				Reported:)8 16:45
		0809	STMW 9198-02 (
				,,				
Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SERI	ES							
Antimony	ND	10.0	ug/l	ARJ0067	10/02/08	10/08/08	EPA 6010B	
Arsenic	27.2	10.0	"		"	u		
Barium	1860	20.0	"		и			
Beryllium	6.3	5.0					u.	
Cadmium	32.0	-10.0			"			
Chromium	561	10.0					ш	
Cobalt	103	50.0		Э	30-22			
Copper	257	20.0						
Lead	58.9	10.0						
Molybdenum	ND	10.0	100				U.	
Nickel	533	10.0	н					
Selenium	ND	20.0						
Silver	ND	10.0						
Thallium	ND	20.0						
anadium	407	20.0				. U .		
Cinc	558	20.0			u			
Aercury	5.18	0.250		ARJ0026	10/02/08	10/03/08	EPA 7470A	
olatile Organic Compounds b	10 million (1997)	0.200		1100020	10/02/00	10/05/00	LIA 1410A	
Gasoline Range Hydrocarbons	ND	50.0	ug/l	ARJ0022	10/02/08	10/02/08	EPA 8260B	
Ethanol	ND	20.0	ug/i	AKJ0022	10/02/08	10/02/08	EI A 8200D	
ГВА	71.0	5.0	000					
Methyl tert-Butyl Ether	ND	• 0.5					n III	
Di-isopropyl ether	ND	0.5						
Ethyl tert-Butyl Ether	ND	0.5						
ert-Amyl Methyl Ether	ND	0.5						
,2-Dichloroethane	ND	0.5		л	.0			
,2-Dibromoethane (EDB)	ND	0.5			"			
Benzene	ND	0.5		я		ан (
oluene	ND	0.5			30	č u 2		
Ethylbenzene	ND	0.5	ан. С	ж				
n,p-Xylene	ND	· 0.5	i n					
-Xylene	ND	0.5	н				н	
Cylenes, total	ND	1.0		"	۳.		"	
urrogate: Dibromofluoromethane		95.6 %	% Recov	ery Limits	70	130	"	
urrogate: Toluene-d8	£	99.6 %	% Recov	ery Limits	70	130 .	"	
urrogate: 4-Bromofluorobenzene		102 %		very Limits	70		"	

Dr Dr

÷

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

16

Goological Technica		Declast	Cont	notown Co					
Geological Technics		Project:		ngtown Gas	5				
1101 7th Street	93 1	Project Number			120				Reported:
Modesto, CA 95354		Project Manager: Geological Technics 10/10/08							08 16:45
			STMW- 198-02 (V						
		0809 Reporting	198-02 (V	Vater)	Date	Date		1	87.0
Analyte	Result	0809			Date Prepared	Date Analyzed	. 1	Method	Notes
Analyte Iethanol	Result	0809 Reporting	198-02 (V	Vater)			- 1	Method	Notes

Laboratory Representative

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	E	xcelchem	Enviro	nmental]	Labs			
Geological Technics 1101 7th Street Modesto, CA 95354	1	Project: Project Numbe Project Manag	er: 14	ringtown Gas 09.2 ological Tecl				eported: 8 16:45
2		0809	VE-2 198-03 (a		
Analyte	IResult	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SEF	RIES							
Antimony	ND	10.0	ug/l	ARJ0067	10/02/08	10/08/08	EPA 6010B	
rsenic	12.2	10.0			"		"	
arium	257	20.0			.0			
eryllium	ND	• 5.0		п	, u		10.1	
admium	ND	10.0	. H C	н	н		2005	
hromium	91.8	10.0				"	"	
obalt	ND	50.0						
opper	42.8	20.0		.0				
ead	10.8	10.0						
lolybdenum	11.0	10.0			н			
lickel	87.2	10.0		0.00	- 00		н	
elenium	ND	20.0		н	н	w		
lver	ND	10.0						
hallium -	ND	20.0					"	
anadium	88.7	20.0	н		"			
inc	107	20.0	"	.0			. 11	
fercury	ND	0.250	ан (ARJ0026	10/02/08	10/03/08	EPA 7470A	

.

Laboratory Representative

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

.

		Excelchem	Enviro	nmental	Labs			
Geological Technics		Project:		oringtown Gas	5			
1101 7th Street		Project Numbe		09.2				eported:
Modesto, CA 95354		Project Manag	er: Go	eological Tecl	hnics		10/10/0	8 16:45
		.0805	STMW 9198-04					
Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SERIES								
Antimony	ND	10.0	ug/l	ARJ0067	10/02/08	10/08/08	EPA 6010B	
Arsenic	44.6	10.0	"	"	"	"	н	
Barium	1360	-20.0						
Beryllium	7.0	5.0						
Cadmium	40.8	10.0			н -			
Chromium	691	10.0						
Cobalt	116	50.0						
	358	20.0						
Copper								
ead	61.9	10.0						
10lybdenum	ND	10.0						
lickel	709	.10.0						
elenium ilver	ND ND	20.0						
Thallium	ND	10.0 20.0						
/anadium	535	20.0						
Linc	726	20.0			"			
Aercury	18.9	0.250		ARJ0026	10/02/08	10/03/08	EPA 7470A	
Course presented to		0.230		AKJ0026	10/02/08	10/03/08	EPA /4/0A	
Volatile Organic Compounds by	and the second se	10.0						
Sasoline Range Hydrocarbons	230	50.0	ug/l	ARJ0022	10/02/08	10/02/08	EPA 8260B	
thanol	ND	20.0		u				
Di-isopropyl ether	ND	0.5						
Cthyl tert-Butyl Ether	ND 0.6	0.5 0.5						
Cert-Amyl Methyl Ether								
,2-Dichloroethane	· ND	0.5						
,2-Dibromoethane (EDB) Benzene	ND ND	0.5 0.5						
°oluene	ND	0.5						
Sthylbenzene	ND	0.5			н			
n,p-Xylene	ND	0.5			"			
-Xylene	ND	0.5	107					
Kylenes, total	ND	1.0	н					
urrogate: Dibromofluoromethane		105 %	% Reco	very Limits	70-	130	"	
	() all	100 %		very Limits		130	"	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene		100 %		very Limits		130 130	"	
		105 %	70 Keco	very Limits	70-	150		
Methanol								

33

12

Excelchem Environmental Lab.

.

.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street Modesto, CA 95354		Project: Project Numbe Project Manag	er: 140	ingtown Gas 9.2 ological Tecl			Date Reported: 10/10/08 16:45			
*		080	STMW- 9198-04 (*				#1)			
Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes		
Aethanol										
Aethanol	ND	5.0	mg/L	ARJ0061	10/08/08	10/08/08	8015M			
.e		31					34			
					Ko					
	3									
ж.		6					35			
							38			
					•					
		•.								
2					(1)					
	5									

.

		Excelchem 1	Enviro	nmental I	Labs			
Geological Technics 1101 7th Street Modesto, CA 95354		Project: Project Number Project Manage	r: 14	ringtown Gas 09.2 cological Tech				eported: 8 16:45
			STMW	-1				
		080919	8-04RE	1 (Water)	×.			
Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
/olatile Organic Compounds b								
ГВА	704	50.0	ug/I	ARJ0022	10/02/08	10/03/08	EPA 8260B	
Aethyl tert-Butyl Ether	204	. 5.0						
	204	. 5.0						
Currogate: Dibromofluoromethane	204	102 %	% Recov	very Limits	70-	130	"	

97.8 % % Recovery Limits

Excelchem Environmental Lab.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

70-130

		Excercitem	1.711 9 11 9	on and a start of the start of	1403			
Geological Technics 1101 7th Street Modesto, CA 95354		Project: Project Numbe Project Manag	er: 1	pringtown Gas 409.2 Geological Tecl				eported: 8 16:45
			P-1				(in the second	
		0809	9198-05	(Water)				
Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SERIES								
Antimony	ND	10.0	ug/l	ARJ0067	10/02/08	10/08/08	EPA 6010B	
Arsenic	ND	.10.0		и.	н		"	
Barium	206	20.0		н	н	ж		
Beryllium	ND	5.0			н	2		
Cadmium	ND	10.0						
Chromium	75.4	10.0		"		"		
Cobalt	ND	50.0	"		н.			
Copper	30.2	20.0		"	н			
lead	ND	10.0		1	"	"	ан. 1	
Aolybdenum	ND	10.0					ы	
lickel	76.7	.10.0						
Selenium	ND	20.0						
ilver	ND	10.0			0. st			
Thallium	ND	20.0	11				н	
anadium	62.5	20.0	0.0			n		
Linc	68.5	20.0						
Aercury	ND	0.250		ARJ0026	10/02/08	10/03/08	EPA 7470A	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics		Project:	Sn	ringtown Gas				
1101 7th Street		Project Numbe		09.2			Date P	eported:
Modesto, CA 95354		Project Manag		ological Tecl	nnics			8 16:45
							10/10/0	0 10.10
		0800	VE-1) 198-06					
		0002	170-00 (water)	4			
Analyte	Damilt	Reporting	Units	Batch	Date Prepared	Date	Mathad	
Analyte	Result	Limit	Units	Batch	Prepared	Analyzed	Method	Notes
AFTAL C DW COOG/2000 CEDYDC								
AETALS BY 6000/7000 SERIES	ND	10.0	ug/l	ARJ0067	10/02/08	10/08/08	EPA 6010B	
rsenic	274	.10.0	" "	"	10/02/08	10/08/08	"	
arium	16400	20.0			л		н	
eryllium	53.1	5.0			н -			
Cadmium	323	10.0	"		n			
Chromium	4330	10.0			ж	3 0 2		
Cobalt	857	50.0			"			
opper	2750	20.0		π		.0	"	
ead	458	10.0		и				
folybdenum	ND	10.0	"	<u>n</u>			н	
lickel	3450	10.0		"				
elenium	ND	20.0		"	"			
ilver	ND	10.0			10°.	н		
hallium	ND	20.0	н	"	u			
anadium	3790	20.0		н	и			
inc	4970	20.0	"				"	
fercury	ND	0.250		ARJ0026	10/02/08	10/03/08	EPA 7470A	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street Modesto, CA 95354	Pr	oject: oject Number oject Manage	r: 14	oringtown G 09.2 eological Te					Date Rep 10/10/08	
	METALS	BY 6000/7	000 SE	RIES - Q	uality C	Control				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARJ0026 - EPA 7470A										
Blank (ARJ0026-BLK1)				Prepared	& Analyze	ed: 10/02/	08			
Mercury	ND	0.250	ug/l						(
LCS (ARJ0026-BS1)				Prepared	& Analyze	d. 10/02/	08			
Mercury	6.97	0.250	ug/l	6.67	& Analy Z	105	75-125			
				Descend	Q. A	4. 10/02/	0.0			
LCS Dup (ARJ0026-BSD1)	6.56	0.250	110/1	Prepared 6.67	& Analyze	98.3	75-125	6.17	20	
Mercury	0.50	0.250	ug/l	0.07		98.5	75-125	0.17	20	
Matrix Spike (ARJ0026-MS1)	So	urce: 080921	5-01	Prepared	& Analyze	ed: 10/02/	08			
Mercury	7.74	0.250	ug/l	6.67	0.332	111	75-125			
Matrix Spike Dup (ARJ0026-MSD1)	So	urce: 080921	5-01	Prepared	& Analyze	ed: 10/02/	08			
Mercury	7.67	0.250	ug/l	6.67	0.332	110	75-125	0.882	20	
Batch ARJ0067 - EPA 6010B										
Blank (ARJ0067-BLK1)	ile c			Prepared:	10/02/08	Analyzed	d: 10/08/08			
Antimony	ND	10.0	ug/l							
Arsenic	ND	10.0	"							
Barium	ND	20.0								
Beryllium	ND	5.0								
Cadmium	ND ND	· 10.0 10.0								
Chromium	ND	50.0								
Cobalt Copper	ND	20.0								
Lead	ND	10.0								
Molybdenum	ND	10.0								
Nickel	ND	10.0								
Selenium	ND	20.0								
Silver	ND	10.0								
Thallium	ND	20.0	200							
Vanadium	ND	20.0								
•	in the second									

Zinc

ND

20.0

.

Laboratory Representative

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Excelchem Environmental Labs								
Geological Technics								
1101 7th Street	Project Number:	1409.2	Date Reported:					
Modesto, CA 95354	Project Manager:	Geological Technics	10/10/08 16:45					

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARJ0067 - EPA 6010B										
LCS (ARJ0067-BS1)		1		Prepared:	10/02/08	Analyzed:	10/08/08		E.	
Antimony	942	10.0	ug/l	1000		94.2	80-120			
Arsenic	951	10.0	"	1000		. 95.1	80-120			
Barium	981	20.0	н	1000		98.1	80-120			
Beryllium	934	5.0		1000		93.4	80-120			
Cadmium	943	10.0	н	1000		94.3	80-120			
Chromium	958	10.0	u.	1000		95.8	80-120			
Cobalt	966	50.0	π	1000		96.6	80-120			
Copper	979	20.0	U .	1000		97.9	80-120			
ead	932	10.0	u.	1000		93.2	80-120			
Aolybdenum	974	10.0	п.	1000		97.4	80-120			
lickel	972	10.0		1000		97.2	80-120			
elenium	934	20.0		1000		93.4	80-120			
ilver	932	10.0		1000		93.2	80-120			
hallium	951	20.0		1000		95.1	-80-120			
/anadium	950	20.0		1000		95.0	80-120			
linc	965	20.0	"	1000		96.5	80-120			
LCS Dup (ARJ0067-BSD1)				Prepared:	10/02/08	Analyzed:	10/08/08			
Antimony	1020	10.0	ug/l	1000		102	80-120	7,48	25	
Arsenic	1010	10.0		1000		101	80-120	5.78	25	
Barium .	1050	20.0	я:	1000		105	80-120	6.81	25	
Beryllium	1010	5.0	W.	1000		. 101	80-120	8.05	25	
Cadmium	1000	10.0		1000		100	80-120	6.06	25	
Chromium	. 1030	10.0		1000		103	80-120	7.65	25	
Cobalt	1040	50.0		1000		104	80-120	7.06	25	
Copper	1040	20.0		1000		104	80-120	6.14	25	
ead	999	10.0		1000		99.9	80-120	6.94	25	
folybdenum	1030	10.0		1000		103	80-120	5.59	25	
lickel	1030	. 10.0		1000		103	80-120	5.65	25	
elenium	994	20.0		1000		99.4	80-120	6.24	25	
ilver	996	10.0	н	1000		. 99.6	80-120	6.62	25	
Thallium	1010	20.0	н	1000		101	80-120	6.12	25	
/anadium	1010	20.0	W.	1000		101	80-120	5.88	25	
Linc	1040	20.0	н	1000		104	80-120	7.06	25	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Excelchem Env	vironmental Labs	
Geological Technics	Project:	Springtown Gas	
1101 7th Street	Project Number:	1409.2	Date Reported:
Modesto, CA 95354	Project Manager:	Geological Technics	10/10/08 16:45

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARJ0067 - EPA 6010B					3		- iii			
Matrix Spike (ARJ0067-MS1)	So	urce: 080919	8-01	Prepared:	10/02/08	Analyzed:	10/08/08			
Antimony	555	10.0	ug/l	1000	ND	. 55.5	75-125			QL-0
Arsenic	951	10.0		1000	20.4	93.1	75-125			
Barium	1680	20.0		1000	789	89.0	75-125			
Beryllium	925	5.0		1000	4.34	92.1	75-125			
Cadmium	923	10.0		1000	24.7	89.9	75-125			
Chromium	1290	10.0		1000	390	90.4	75-125			
Cobalt	1000	50.0		1000	101	90.1	75-125			
Copper	1210	20.0	н	1000	187	102	75-125			
Lead	931	10.0		1000	48.9	88.3	75-125			
Molybdenum	885	10.0		1000	ND	88.5	75-125			
Nickel	1300	10.0	.0	1000	440	- 86.1	75-125			
Selenium	901	20.0		1000	ND	90.1	75-125			
Silver	962	10.0		1000	ND	96.2	75-125			
Thallium	880	20.0		1000	8.11	87.2	75-125			
Vanadium	1250	20.0		1000	335	91.8	75-125			
Zinc	1340	20.0		1000	425	91.4	75-125			
Matrix Spike Dup (ARJ0067-MSD1)	So	urce: 080919	8-01	Prepared:	10/02/08	Analyzed:	10/08/08			
Antimony	550	10.0	ug/l	1000	ND	55.0	75-125	1.08	25	QL-0
Arsenic .	959	10.0		1000	20.4	93.9	75-125	0.875	25	
Barium	1680	20.0		1000	789	89.3	75-125	0.181	25	
Beryllium	926	5.0	0.0	1000	4.34	92.2	75-125	0.0923	25	
Cadmium	. 903	10.0	S10.5	1000	24.7	87.9	75-125	2.18	25	
Chromium	1280	10.0	3 0 .2	1000	390	88.9	75-125	1.13	25	
Cobalt	1010	50.0	.0	1000	101	90.6	75-125	0.508	25	
Copper	1220	20.0		1000	187	103	75-125	0.583	25	
Lead	937	10.0		1000	48.9	88.8	75-125	0.624	25	
Molybdenum	878	10.0		1000	ND	87.8	75-125	0.832	25	
Nickel	1300	10.0		1000	440	86.0	75-125	0.0860	25	
Selenium	899	20.0		1000	ND	89.9	75-125	0.163	25	
Silver	957	10.0		1000	ND	95.7	75-125	0.432	25	
Thallium	883	20.0		1000	8.11	87.5	75-125	0.343	25	
Vanadium	1240	20.0		1000	335	90.2	75-125	1.33	25	
Zinc	1340	20.0		1000	425	91.1	75-125	0.211	25	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

.

Geological Technics 1101 7th Street Modesto, CA 95354	Pr	oject: oject Number oject Manage	r: .140	ringtown G)9.2 ological Te					Date Rep 10/10/08	
	Volatile Organ	iic Compo	unds by	GC/MS	- Quali	ty Cont	rol			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARJ0022 - EPA 8260B										
Blank (ARJ0022-BLK1)				Prepared a	& Analyze	ed: 10/02/0)8			
Surrogate: Dibromofluoromethane	12.2		ug/l	12.5		- 97.8	70-130			
Surrogate: Toluene-d8	12.7		"	12.5		102	70-130			
Surrogate: 4-Bromofluorobenzene	13.6		"	12.5		109	70-130			
Jasoline Range Hydrocarbons	ND	50.0								
ЪА	ND	5.0								
Aethyl tert-Butyl Ether	ND	0.5								
Di-isopropyl ether	ND	0.5	0							
Sthyl tert-Butyl Ether	ND	0.5								
Fert-Amyl Methyl Ether	ND	0.5					5 C			
,2-Dichloroethane	ND	0.5								
Benzene	ND	0.5								
oluene	ND	0.5								
Ethylbenzene	ND	0.5								
n,p-Xylene	ND	0.5								
-Xylene	ND	0.5								
Cylenes, total	ND	1.0	"							
LCS (ARJ0022-BS1)				Prepared	& Analyze	d. 10/02/	18			
		•			& Analyza					
Surrogate: Dibromofluoromethane	12.3		ug/l	12.5		98.6	70-130			
Surrogate: Toluene-d8	12.6		"	12.5		- 101	70-130			
Surrogate: 4-Bromofluorobenzene	13.4	0.5	· · · · · · · · · · · · · · · · · · ·	12.5		107	70-130			_
Benzene	18.0	0.5		21.0		85.6	80-120			
Coluene	18.1	0.5		21.0		86.3	80-120			
,1-Dichloroethene	19.2	0.5		21.0		91.5	80-120			
Frichloroethene	18.2	0.5		21.0		86.5	80-120			
Chlorobenzene	18.4	0.5		21.0	2.0.4	87.4	80-120			
LCS Dup (ARJ0022-BSD1)		*	1220	Prepared	& Analyze					
Surrogate: Dibromofluoromethane	12.7		ug/l	12.5		102	70-130			
Surrogate: Toluene-d8	12.5		"	12.5		99.8	70-130			
Surrogate: 4-Bromofluorobenzene	13.4		"	12.5		107	70-130			
Benzene	. 20.0	0.5	"	21.0		95.2	80-120	10.7	15	
Toluene	20.1	0.5	"	21.0		95.9	80-120	10.5	15	
,1-Dichloroethene	21.4	0.5		21.0		102	80-120	10.6	15	
Trichloroethene Chlorobenzene	20.0 20.6	0.5 0.5	n H	21.0 21.0		95.1 98.0	80-120 80-120	9.44 11.5	15 15	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics	Project:	Springtown Gas	
1101 7th Street	Project Number:	1409.2	Date Reported:
Modesto, CA 95354	Project Manager:	Geological Technics	10/10/08 16:45

Methanol - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARJ0061 - 8015M		*								
Blank (ARJ0061-BLK1)				Prepared	& Analyze	ed: 10/08/0	08			
Methanol	ND	5.0	mg/L							
LCS (ARJ0061-BS1)				Prepared	& Analyze	ed: 10/08/0)8			
Methanol	500	5.0	mg/L	500		99.9	70-130			
LCS Dup (ARJ0061-BSD1)				Prepared	& Analyze	ed: 10/08/0)8			
Methanol	499	5.0	mg/L	500		99.8	70-130	0.195	20	
Matrix Spike (ARJ0061-MS1)	So	urce: 080919	8-01	Prepared	& Analyze	ed: 10/08/0)8			
Methanol	512	5.0	mg/L	500	2.6	102	70-130			
Matrix Spike Dup (ARJ0061-MSD1)	So	urce: 080919	8-01	Prepared	& Analyze	ed: 10/08/0)8			
Methanol	515	5.0	mg/L	500	2.6	102	70-130	0.569	20	

Excelchem Environmental Lab.

Laboratory Representative

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

,

Geological Technics	Project:	Springtown Gas	
1101 7th Street	Project Number:	1409.2	Date Reported:
Modesto, CA 95354	Project Manager:	Geological Technics	10/10/08 16:45

Notes and Definitions

QL-01 Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

ND - Analyte not detected at reporting limit.

NR - Not reported

Excelchem Environmental Lab.

Laboratory Representative

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ģ	(209) 5	Cal Techn 1101 7th Street Modesto, CA 522-4119 Fax 52	2-4227	ORIG			8197 L	2				10/3 P215,1	18 5/08 154 A	Page of Chain of Custody
Global ID No. TOGO Sampled By:	Client/Proj Spr uebell : 197161 (print and si	gn name)	Gas		of Containers	Matrix (Soil, Water, Gas, Other)	Preservation Type	by method (4320) *	For the 22 metals	nalysi	s Requ	lested		Argon LabsTemp. @ Shipping:C°Temp. @ Lab Receipt:C°Purchase Order # $1409 - 162529$ EDF Report: XI YesNoTurnaround TimeS = Standard1 day2 day5 day
Date	Time	Field I.D.	Contraction of the local division of the loc	nple I.D.	G No. of	E Matrix	Lese	P-HULL	XTest	$\left \right $			_	Remarks
9125105	0910 0950		STMW STMW VE-Z	A CONTRACTOR OF A DESCRIPTION OF A DESCR	5	-	variable	Ŕ						* The 7 oxy's include
	1100		STMW P-1	-1	5	w	variable HAU)z	X	X					MTBE, ETBE, DIPE, TAME, TBA, 1, Z-DCA, EDB, Ethanol and
-	1215		VE-1		1	W	HANOZ		X					Methanol (by method \$260b)
														TPH-G & RL = 50 Mg/L BTEX & RL = 0,5 Mg/L MTBE, ETBE, DIPE, TAME, TBA,
					E									1,2-DCA, EDB, Methanoland Ethanol & RL = 0,5 Mg/L
Dallaguished	hun (al-			Dato:	Tim				Beceive	d by: (e	signature)			A Have the lab filter & Preserve
Relinquished Relinquished Relinquished Relinquished	by: (signatu	ire)	who	Date: 9 25 05 Date: 9 26 08 Date: 9 26003	Tim Tim Tim	e: 2	525 :00 20	F	Neceive	ola d by: (s) he	F	9/26/08 853 Date: 7/26/08 12:00 Date: 7/26/08 12:00 Date: 7/26/08 1:20

Please return cooler/ice chest to Geological Technics Inc.

Rev. 7/2007

argon laboratories

26 November 2008

Reza Namdar Ghanbari Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

RE: Springtown Gas Project Data

Enclosed are the results for sample(s) received on 11/20/08 15:42 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

2905 Railroad Avenue, Ceres, CA 95307 • Phone (209) 581-9280 • Fax (209) 581-9282 email: main@argonlabs.com

Ģ	(209) 5	Cal Techn 1101 7th Street Modesto, CA 222-4119 Fax 52 ail: gti@gtienv	2-4227							Analys	tis Ro		ted	(*3	ageof f Custody ry:	The There is a second
1409.2 Site Address: Global ID No. TOGO1 Sampled By: FICHAF	$\frac{FELL D}{2}$ (print and si $\frac{3}{2}E = 7$	377211 (2. 11/EEM 77 gn name) 70/60 F14	Thand Catioks		. of Containers	Matrix (Soil, Water, Gas, Other)	Preservation Type	X TH 4,5 XX5, EPH BY	ALS *						APGO Temp. @ Temp. @ Purchase 1409 EDF Rep	A LABS Shipping: Lab Receipt: Order # 7-162529 ort: \triangle Yes C nd Time $S=S$	
Date	Time 1055 1125 12NooN 1335 1400 1400 1420	Field I.D.	Sample I.I ETMU-2 VE-2 STMW-1 VE-1 STMW-3 F-1).	00 00 00 00 00 00 00 00 00 00 00 00 00	W	₹ /4214846 								$\frac{Co,Cu}{T_{1},V_{1}}$	Remark As, Ba, Be Pb, Hg, Mi & ZN. Disselven me Zh 11/20/28	Cd, Cr+3& Crth D, Ni, Se, Ag,
Relinguished	by: (signatu	re)	Date: //~/ Date: Date:	1203	Tim	<u>5</u> :	42	_	Receiv	ved by: (signatur	DU re)				Date: <i>II/20/08</i> Date:	Time: 1542 Time:

Please return cooler/ice chest to Geological Technics Inc.

1

Argon Laboratories Sample Receipt Checklist

Client Name:	Geological	Tech	nnics						Date	& Time Red	ceived:	11	/20/08	1	5:42
Project Name:	Springton (Gas							Clien	t Project Nu	umber:		14	409.2	
Received By:	S.F.				Matr	ix:	Water	~	Soil			Slud	ge		
Sample Carrier:	Client	~	Labo	oratory		Fed Ex		UPS		Other					
Argon Labs Project	Number:		<u>1811</u>	061											
Shipper Container in	good conditio	on?					Sample	es received	in prop	er containers	s?	Yes	4	No	
	N/A		Yes	7	No			es received				Yes	1	No	
Samples received un	der refrigerati	ion?	Yes	7	No		Sufficie	ent sample	volume	for requeste	d tests?	Yes	7	No	
Chain of custody pres	sent?		Yes	7	No		Sample	es received	d within I	holding time?	?	Yes	\checkmark	No	
Chain of Custody sig	ned by all par	rties?	Yes	7	No		Do san	nples cont	ain prop	er preservati N/A	ve?	Yes	7	No	
Chain of Custody ma	tches all sam	nple la	bels?				Do VOA	vials conta	in zero h	eadspace?					
			Yes	4	No				(None	submitted	□)	Yes	2	No	
	A	NY "N	No" RI	ESPONS	E MUST	BE DETA	AILED IN	THE CO	MMENT	S SECTION	BELOV	v			
Date Client Contac						Pe	erson Co	ontacted:							
Contacted By:						Subject									
Comments:															
									_						
Action Taken:							the second								
					ADDITIC	NAL TES	ST(S) RI	EQUEST /	OTHER	l.					
Contacted By:								Date:				Tim	ne:		
Call Received By:								40.512 (d. 1994)							
Comments:															
					Y	4		٠	•						

Image: Transmission and the state of the state

Geological Technics, Inc.	Project Number: 1409.2	سالد سمار
1101 7th Street	Project Name: Springtown Gas	Work Order No.:
Modesto, CA 95354	Project Manager: Reza Namdar Ghanbari	1811061

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
STMW-2	1811061-01	Water	11/20/08 10:55	11/20/08 15:42
VE-2	1811061-02	Water	11/20/08 11:25	11/20/08 15:42
STMW-1	1811061-03	Water	11/20/08 12:00	11/20/08 15:42
VE-1	1811061-04	Water	11/20/08 13:35	11/20/08 15:42
STMW-3	1811061-05	Water	11/20/08 14:00	11/20/08 15:42
P-1	1811061-06	Water	11/20/08 14:20	11/20/08 15:42

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

Į

A

المحتقد 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 آلا المحتقد (209)581-9282 المحتقد المحت

Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

Project Number: 1409.2 Project Name: Springtown Gas

Work Order No.: 1811061

Project Manager: Reza Namdar Ghanbari

Dissolved Metals

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Note
STMW-2 (I811061-01) Water	Sampled: 20-Nov-08 10:55	Received: 20-No	v-08 15:42				
Antimony	ND	2.0	ug/L	1	25-Nov-08	EPA 200.8	
Arsenic	4.7	1.0	н				
Barium	41	5.0				5 M S	
Beryllium	ND	1.0					
Cadmium	ND	1.0	н				
Chromium +3	8.8	2.0				Calculation	
Cobalt	ND	5.0				EPA 200.8	
Copper	ND	5.0					
Lead	ND	1.0					
Mercury	ND	0.25		.15	3 0 -		
Molybdenum	61	5.0					
Nickel	ND	5.0					
Selenium	2.4	1.0			**		
Silver	ND	1.0					
Fhallium	ND	1.0					
Vanadium	13	2.0					
Zinc	6.5	5.0					
VE-2 (1811061-02) Water Sa		ceived: 20-Nov-08	15:42				
Antimony	ND	2.0	ug/L	1	25-Nov-08	EPA 200.8	
Arsenic	5.6	1.0					
		1.0 5.0					
Barium	5.6 62 ND						
Arsenic Barium Beryllium Cadmium	62	5.0				0.00	
Barium Beryllium Cadmium	62 ND ND	5.0 1.0		и 11	0 11		
Barium Beryllium Cadmium Chromium +3	62 ND ND 7.2	5.0 1.0 1.0			и и и	Сн н н	
Barium Beryllium Cadmium C hromium +3 Cobalt	62 ND ND 7.2 ND	5.0 1.0 1.0 2.0 5.0			0 10 10	" " Calculation	
Barium Beryllium Cadmium Chromium +3 Cobalt Copper	62 ND ND 7.2	5.0 1.0 1.0 2.0			и и и	" " Calculation EPA 200.8	
Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead	62 ND ND 7.2 ND 6.1 ND	5.0 1.0 2.0 5.0 5.0			0 10 10 10 10 10	" " Calculation EPA 200.8 "	
Barium Beryllium Cadmium Ch romium +3 Cobalt C opper Lead Mercury	62 ND ND 7.2 ND 6.1 ND ND	5.0 1.0 2.0 5.0 5.0 1.0 0.25	0 0 0 0 0 0 0			" " Calculation EPA 200.8 "	
Sarium Seryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum	62 ND ND 7.2 ND 6.1 ND ND ND	5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0				" " Calculation EPA 200.8 " "	
Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel	62 ND ND 7.2 ND 6.1 ND ND 10 10	5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	" " Calculation EPA 200.8 " " "	
Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium	62 ND ND 7.2 ND 6.1 ND ND 10 10 3.1	5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0				" Calculation EPA 200.8 " " " "	
Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver	62 ND ND 7.2 ND 6.1 ND ND 10 10 3.1 ND	5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0 1.0				" Calculation EPA 200.8 " " " "	
Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel	62 ND ND 7.2 ND 6.1 ND ND 10 10 3.1	5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0				" " Calculation EPA 200.8 " " " " " " "	

Approved By

Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

Project Number: 1409.2 Project Name: Springtown Gas

Dissolved Metals

Project Manager: Reza Namdar Ghanbari

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
STMW-1 (1811061-03) Water	Sampled: 20-Nov-08 12:00	Received: 20-No	v-08 15:42				
Antimony	ND	2.0	ug/L	1	25-Nov-08	EPA 200.8	
Arsenic	3.7	1.0		3 6			
Barium	150	5.0			n		
Beryllium	ND	1.0		5. H ()	2 H S		
Cadmium	ND	1.0	н				
Chromium +3	2.7	2.0				Calculation	
Cobalt	ND	5.0				EPA 200.8	
Copper	ND	5.0			1		
Lead	ND	1.0	н		5 H (
Mercury	ND	0.25	н				
Molybdenum	23	5.0					
Nickel	7.4	5.0					
Selenium	2.7	1.0					
Silver	ND	1.0			a.		
Fhallium	ND	1.0					
Vanadium	5.3	2.0			. II		
Zinc	19	5.0		5.005			
VE-1 (I811061-04) Water Sa	mpled: 20-Nov-08 13:35 Re	ceived: 20-Nov-08	15:42				
Antimony	ND		CONTRACT OF		04.11 00	enance at themes were	
AIRTINOTA	ND	2.0	ug/L	1	25-Nov-08	EPA 200.8	
Charles a second	3.2	2.0 1.0	ug/L "	1	25-Nov-08	EPA 200.8	
Arsenic							
Arsenic Barium	3.2 210	1.0				0.	
Arsenic Barium Beryllium	3.2 210 ND	1.0 5.0		и 11	ан 10	0. 11.	
Arsenic Barium Beryllium Cadmium	3.2 210	1.0 5.0 1.0		н н			
Arsenic Barium Beryllium Cadmium Chromium +3	3.2 210 ND ND 8.0	1.0 5.0 1.0 1.0	8 9 8	8 9 9		n n n	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt	3.2 210 ND ND	1.0 5.0 1.0 1.0 2.0				" " " Calculation	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper	3.2 210 ND ND 8.0 ND	1.0 5.0 1.0 2.0 5.0				" " Calculation EPA 200.8	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead	3.2 210 ND ND 8.0 ND	1.0 5.0 1.0 2.0 5.0 5.0				" " Calculation EPA 200.8	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury	3.2 210 ND ND 8.0 ND ND ND	1.0 5.0 1.0 2.0 5.0 5.0 1.0			11 17 19 11 11 11 11 11 11 11 11 11 11 11 11	" " Calculation EPA 200.8 "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum	3.2 210 ND ND 8.0 ND ND ND ND 20	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	" " Calculation EPA 200.8 " "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel	3.2 210 ND ND 8.0 ND ND ND ND 20 7.8	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0			** ** ** ** ** **	" " Calculation EPA 200.8 " "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium	3.2 210 ND ND 8.0 ND ND ND 20 7.8 1.8	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0				" " Calculation EPA 200.8 " " "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver	3.2 210 ND ND 8.0 ND ND ND 20 7.8 1.8 ND	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0 1.0				" " Calculation EPA 200.8 " " "	
Animony Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium	3.2 210 ND ND 8.0 ND ND ND 20 7.8 1.8	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0 1.0 1.0				" " Calculation EPA 200.8 " " " "	

Approved By

Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

Project Number: 1409.2 Project Name: Springtown Gas

Project Manager: Reza Namdar Ghanbari

Dissolved Metals

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
STMW-3 (1811061-05) Water	Sampled: 20-Nov-08 14:00	Received: 20-No	v-08 15:42		-		
Antimony	ND	2.0	ug/L	1	25-Nov-08	EPA 200.8	
Arsenic	2.6	1.0					
Barium	67	5.0	н		"		
Beryllium	ND	1.0			"		
Cadmium	ND	1.0					
Chromium +3	2.6	2.0				Calculation	
Cobalt	ND	5.0			л	EPA 200.8	
Copper	ND	5.0					
Lead	ND	1.0					
Mercury	ND	0.25					
Molybdenum	23	5.0			"		
Nickel	ND	5.0			н		
Selenium	1.1	1.0	"		и		
Silver	2.0	1.0		й.			
Thallium	ND	1.0		н			
Vanadium	3.1	2.0			•		
Zinc	12	5.0					
P-1 (I811061-06) Water Sam	pled: 20-Nov-08 14:20 Rece	ived: 20-Nov-08	15:42				
• 50 • • • • • • • • • • • • • •	- 100100	0004093507					
Antimony	ND	2.0	ug/L	1	25-Nov-08	EPA 200.8	
Decision and the composition of	ND 5.3	2.0 1.0	ug/L "	1	25-Nov-08 "		
Arsenic							
Arsenic Barium	5.3 82	1.0					
Arsenic Barium Beryllium	5.3	1.0 5.0 1.0			и 1		
Arsenic Barium Beryllium Cadmium	5.3 82 ND	1.0 5.0 1.0 1.0	 				
Arsenic Barium Beryllium Cadmium Chromium +3	5.3 82 ND ND 3.0	1.0 5.0 1.0 2.0		11 11 11	11 11 11 11		
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt	5.3 82 ND ND	1.0 5.0 1.0 2.0 5.0	0 0 0 0	н н н н	11 11 11 11 11	" " " Calculation	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper	5.3 82 ND ND 3.0 ND	1.0 5.0 1.0 2.0 5.0 5.0		8 8 8 9 8	9 9 9 9	" " Calculation EPA 200.8	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead	5.3 82 ND ND 3.0 ND ND	1.0 5.0 1.0 2.0 5.0 5.0 1.0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9	" " Calculation EPA 200.8 "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury	5.3 82 ND ND 3.0 ND ND ND	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	" " Calculation EPA 200.8 "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum	5.3 82 ND ND 3.0 ND ND ND ND ND	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	" " Calculation EPA 200.8 " "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel	5.3 82 ND 3.0 ND ND ND ND ND ND 13	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0		0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	" " Calculation EPA 200.8 " " "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium	5.3 82 ND ND 3.0 ND ND ND 13 ND 14	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0		0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	" " Calculation EPA 200.8 " " " "	
Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver	5.3 82 ND ND 3.0 ND ND ND ND 13 ND	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0 1.0		н н н н н н н н н н н н н н н н н н н	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	" " Calculation EPA 200.8 " " " " " "	
Antimony Arsenic Barium Beryllium Cadmium Chromium +3 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium	5.3 82 ND ND 3.0 ND ND ND 13 ND 1.4 ND	1.0 5.0 1.0 2.0 5.0 5.0 1.0 0.25 5.0 5.0 1.0 1.0 1.0		н н н н н н н н н н н н н	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	" " Calculation EPA 200.8 " " " " " "	

Approved By

Geological Technics, Inc. 1101 7th Street

95354

Modesto, CA

Project Number: 1409.2 Project Name: Springtown Gas

Project Manager: Reza Namdar Ghanbari

Hexachrome by IC

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
STMW-2 (I811061-01) Water	Sampled: 20-Nov-08 10:55	Received: 20-No	v-08 15:42	2			
Chromium (VI)	1.7	0.20	ug/L	1	25-Nov-08	E218.6	
VE-2 (1811061-02) Water Sa	mpled: 20-Nov-08 11:25 Re	ceived: 20-Nov-08	15:42				
Chromium (VI)	12	0.20	ug/L	1	25-Nov-08	E218.6	
STMW-1 (1811061-03) Water	Sampled: 20-Nov-08 12:00	Received: 20-No	v-08 15:42	2			
Chromium (VI)	14	0.20	ug/L	1	25-Nov-08	E218.6	
VE-1 (I811061-04) Water Sa	mpled: 20-Nov-08 13:35 Re	ceived: 20-Nov-08	15:42				
Chromium (VI)	ND	0.20	ug/L	1	25-Nov-08	E218.6	
STMW-3 (I811061-05) Water	Sampled: 20-Nov-08 14:00	Received: 20-No	v-08 15:42	2			
Chromium (VI)	22	0.20	ug/L		25-Nov-08	E218.6	
P-1 (I811061-06) Water Sam	pled: 20-Nov-08 14:20 Rece	ived: 20-Nov-08 1	5:42				
Chromium (VI)	12	0.20	ug/L	L	25-Nov-08	E218.6	

Approved By

المحتود المحتو المحتود ال

Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

Project Number: 1409.2 Project Name: Springtown Gas

TPH-gas & Volatile Organic Compounds by GC/MS

Project Manager: Reza Namdar Ghanbari

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
STMW-2 (1811061-01) Water	Sampled: 20-Nov-08 10:55	Received: 20-No	v-08 15:42				
Total Petroleum Hydrocarbons	@ 90	50	ug/L	1	26-Nov-08	EPA 8260B	
Gasoline							
Benzene	1.7	0.5				0	
Toluene	6.9	0.5		2.00			
Xylenes, total	7.6	1.0				9:	
Ethyl Benzene	1.7	0.5	н				
t-Butanol	190	5.0		a.			
Methyl tert-Butyl Ether	2.2	0.5					
Di-Isopropyl Ether	ND	0.5					
Ethyl tert-Butyl Ether	ND	0.5	ii ii	3 0 0	н	н	
tert-Amyl Methyl Ether	ND	0.5			н.	91	
Surr. Rec.:		80 %			u	"	201 1205 C200 0013
STMW-1 (1811061-03) Water	Sampled: 20-Nov-08 12:00	Received: 20-No	v-08 15:42				
Total Petroleum Hydrocarbons @) ND	50	ug/L	1	26-Nov-08	EPA 8260B	
Gasoline		127.23		<i>4</i>			
Benzene	ND	0.5					
Toluene	ND	0.5	•				
Xylenes, total	ND	1.0			0		
Ethyl Benzene	ND	0.5					
t-Butanol	930	5.0	н		"	9 .	
Methyl tert-Butyl Ether	14	0.5					
Di-Isopropyl Ether	ND	0.5					
Ethyl tert-Butyl Ether	ND	0.5			н		
tert-Amyl Methyl Ether	ND	0.5			u.	"	
Surr. Rec.:		81 %			"	"	

Approved By

Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

Project Number: 1409.2 Project Name: Springtown Gas Work Order No .: 1811061

Project Manager: Reza Namdar Ghanbari

TPH-gas & Volatile Organic Compounds by GC/MS

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
STMW-3 (1811061-05) Water	Sampled: 20-Nov-08 14:00	Received: 20-No	v-08 15:42				
Fotal Petroleum Hydrocarbons (a) ND	50	ug/L	1	26-Nov-08	EPA 8260B	
Gasoline							
Benzene	ND	0.5				95. 11	
Foluene	ND	0.5					
Xylenes, total	ND	1.0					
Ethyl Benzene	ND	0.5		"	н		
-Butanol	ND	5.0			u.		
Methyl tert-Butyl Ether	12	0.5					
Di-Isopropyl Ether	ND	0.5		a.			
Ethyl tert-Butyl Ether	ND	0.5	щ				
ert-Amyl Methyl Ether	ND	0.5					1212-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
Surr. Rec.:		84 %			"	n	
P-1 (I811061-06) Water Sam	pled: 20-Nov-08 14:20 Rece	ived: 20-Nov-08 1	5:42		Market and Arts		_
Total Petroleum Hydrocarbons (Gasoline	@ ND	500	ug/L	10	26-Nov-08	EPA 8260B	
Benzene	ND	5.0		ii ii	"		
Toluene	ND	5.0					
Xylenes, total	ND	10	ш				
Ethyl Benzene	ND	5.0					
Contraction and the second	2300	50					
t-Butanol	180	5.0					
Methyl tert-Butyl Ether	ND	5.0			30.5		
Di-Isopropyl Ether							
	NID						
Ethyl tert-Butyl Ether tert-Amyl Methyl Ether	ND ND					*	

Surr. Rec.:

Approved By

argon laboratories	2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282	\ _
Geological Technics, Inc.	Project Number: 1409.2	sul_rr
1101 7th Street	Project Name: Springtown Gas	Work Order No.:
Modesto, CA 95354	Project Manager: Reza Namdar Ghanbari	I811061

Dissolved Metals - Quality Control

Argon Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
3atch 1802524 - EPA 200.8										
Blank (1802524-BLK1)				Prepared &	Analyzed:	11/25/08				
Cobalt	ND	5.0	ug/L							
Antimony	ND	2.0	"							
Zinc	ND	5.0								
Thallium	ND	1.0	"							
√anadium	ND	2.0								
Barium	ND	5.0								
Beryllium	ND	1.0	"							
Cadmium	ND	1.0								
Chromium +3	ND	2.0								
Arsenic	ND	1.0	<u>и</u>							
Copper	ND	5.0	н.							
lead	ND	1.0	ж							
Aercury	ND	0.25								
folybdenum	ND	5.0								
lickel	ND	5.0	н							
elenium	ND	1.0								
Silver	ND	1.0								
LCS (I802524-BS1)				Prepared &	& Analyzed	: 11/25/08				
Beryllium	9.7		ug/L	10		97	80-120			
Antimony	10.7			10		107	80-120			
Vanadium	7.8			10		78	80-120			
Barium	9.70			10		97	80-120			
Cobalt	8.7			10		87	80-120			
Fhallium	7.5			10		75	80-120			
Cadmium	9.40		(H))	10		94	80-120			
Zinc	90		п	100		90	80-120			
Arsenic	8.60		(1 1)	10		86	80-120			
Copper	94.0		н	100		94	80-120			
Lead	9.0		п	10		90	80-120			
Molybdenum	9.60			10		96	80-120			
Nickel	86.0		н	100		86	80-120			
Selenium	9.2			10		92	80-120			
Silver	9.00		эс	10		90	80-120			
LCS Dup (I802524-BSD1)				Prepared	& Analyzed	l: 11/25/08				
Cadmium	9.30		ug/L	10		93	80-120	1	20	

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

Isomatories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

argon laboratories	2905 Railroad Ave. Ceres, CA 95307	7 (209)581-9280 Fax (209)581-9282	\ _
Geological Technics, Inc.	Project Number:	1409.2	and he and he
1101 7th Street	Project Name:	Springtown Gas	Work Order No.:
Modesto, CA 95354	Project Manager: 1	Reza Namdar Ghanbari	I811061

Dissolved Metals - Quality Control

Argon Laboratories

		Reporting	11.14	Spike	Source	WREC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Linit	HOLES
Batch I802524 - EPA 200.8										
LCS Dup (I802524-BSD1)				Prepared &	Analyzed:	11/25/08				
Antimony	10.7		ug/L	10		107	80-120	0	20	
Thallium	8.1			10		81	80-120	8	20	
Barium	9.80			10		98	80-120	1	20	
Cobalt	7.7			10		77	80-120	12	20	
Beryllium	9.6			10		96	80-120	1	20	
/anadium	7.8			10		78	80-120	0	20	
linc	93			100		93	80-120	3	20	
Arsenic	8.40			10		84	80-120	2	20	
Copper	87.0			100		87	80-120	8	20	
Lead	9.7			10		97	80-120	7	20	
Aolybdenum	9.40			10		94	80-120	2	20	
lickel	81.0		3 0 -	100		81	80-120	6	20	
elenium	9.4		70	10		94	80-120	2	20	
ilver	9.20		(H .)	10		92	80-120	2	20	
Aatrix Spike (I802524-MS1)	Sou	ırce: I811061-(01	Prepared 8	Analyzed:	11/25/08				
Barium	51.3		ug/L	10	41.0	103	70-130			
Cobalt	11			10	ND	113	70-130			
/anadium	23.9			10	13.0	109	70-130			
Cadmium	8.00			10	ND	80	70-130			
Linc	94		300	100	6.5	87	70-130			
hallium	8.9			10	ND	89	70-130			
Beryllium	8.0		100	10	ND	80	70-130			
Antimony	10.1			10	ND	101	70-130			
Arsenic	17.4			10	4.70	127	70-130			
Copper	110			100	2.50	107	70-130			
Lead	10.4		н.	10	ND	104	70-130			
Molybdenum	69.8			10	61.0	88	70-130			
Nickel	105			100	3.2	102	70-130			
Selenium	14			10	2.4	120	70-130			
Silver	9.10			10	ND	91	70-130			
Matrix Spike Dup (I802524-MSD1)	Sou	urce: I811061-	01	Prepared &	& Analyzed	11/25/08				-
Zinc	92		ug/L	100	6.5	85	70-130	2	20	
Fhallium	8.9			10	ND	89	70-130	0	20	
Vanadium	23.7			10	13.0	107	70-130	0.8	20	
Cadmium	8.20			10	ND	82	70-130	2	20	

Approved By

Geological Technics, Inc. 1101 7th Street Modesto, CA 95354 Project Manager: Reza Namdar Ghanbari

Project Number: 1409.2 Project Name: Springtown Gas

Work Order No .: I811061

Dissolved Metals - Quality Control

Argon Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch I802524 - EPA 200.8										
Matrix Spike Dup (I802524-MSD1)	Sou	rce: I811061-0	1	Prepared &	Analyzed:	11/25/08				
Cobalt	11		ug/L	10	ND	110	70-130	3	20	
Antimony	10.5			10	ND	105	70-130	4	20	
Barium	51.4			10	41.0	104	70-130	0.2	20	
Beryllium	8.0			10	ND	80	70-130	0	20	
Irsenic	17.5			10	4.70	128	70-130	0.6	20	
Copper	110			100	2.50	107	70-130	0	20	
ead	8.8			10	ND	88	70-130	17	20	
Aolybdenum	68.6			10	61.0	76	70-130	2	20	
lickel	106		я.	100	3.2	103	70-130	0.9	20	
elenium	14		ж	10	2.4	121	70-130	0.7	20	
ilver	9.40			10	ND	94	70-130	3	20	

Approved By

argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 Geological Technics, Inc. Project Number: 1409.2 1101 7th Street Project Name: Springtown Gas Work Order No .: Modesto, CA 95354 1811061 Project Manager: Reza Namdar Ghanbari Hexachrome by IC - Quality Control **Argon Laboratories** Reporting Spike %REC RPD Source Result Units %REC RPD Notes Analyte Limit Level Result Limits Limit

Batch I802525 - General Prep										
Blank (I802525-BLK1)				Prepared &	& Analyzed:	11/25/08				
Chromium (VI)	ND	0.20	ug/L							
LCS (I802525-BS1)				Prepared &	k Analyzed:	11/25/08				
Chromium (VI)	9.60		ug/L	10		96	80-120			
LCS Dup (1802525-BSD1)				Prepared &	Analyzed:	11/25/08				
Chromium (VI)	8.80		ug/L	10		88	80-120	9	20	
Matrix Spike (I802525-MS1)	Source	e: I811061-0)1	Prepared &	Analyzed:	11/25/08				
Chromium (VI)	10.9		ug/L	10	1.70	92	70-130			
Matrix Spike Dup (1802525-MSD1)	Source	e: I811061-0)1	Prepared &	Analyzed:	11/25/08				
Chromium (VI)	11.8		ug/L	10	1.70	101	70-130	8	20	

Approved By

Correction 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 Geological Technics, Inc. Project Number: 1409.2 1101 7th Street Project Name: Springtown Gas Modesto, CA 95354 Project Manager: Reza Namdar Ghanbari I811061

TPH-gas & Volatile Organic Compounds by GC/MS - Quality Control

Argon Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1802523 - EPA 5030B	1000000				0000000000					
Blank (I802523-BLK1)				Prepared &	Analyzed:	11/26/08				
Surrogate: Fluorobenzene	45.5		ug/L	50		91	70-130			
Total Petroleum Hydrocarbons @ Gasoline	ND	50								
Benzene	ND	0.5								
Toluene	ND	0.5								
Xylenes, total	ND	1.0								
Ethyl Benzene	ND	0.5								
-Butanol	ND	5.0								
Methyl tert-Butyl Ether	ND	0.5								
Di-Isopropyl Ether	ND	0.5	ж							
Ethyl tert-Butyl Ether	ND	0.5	w							
ert-Amyl Methyl Ether	ND	0.5	н							
LCS (I802523-BS1)				Prepared &	Analyzed:	11/26/08				
Methyl tert-Butyl Ether	26.5		ug/L	25		106	80-120	1.18.188.1.8.1		
LCS Dup (I802523-BSD1)				Prepared &	Analyzed:	11/26/08				
Methyl tert-Butyl Ether	24.2		ug/L	25		97	80-120	9	20	
Matrix Spike (1802523-MS1)	Sou	rce: I811061-0)1	Prepared &	Analyzed:	11/26/08				
Fotal Petroleum Hydrocarbons @ Gasoline	1010		ug/L	1000	90.0	92	70-130			
Matrix Spike Dup (1802523-MSD1)	Sou	rce: I811061-0)1	Prepared &	Analyzed:	11/26/08				
Total Petroleum Hydrocarbons @ Gasoline	850		ug/L	1000	90.0	76	70-130	17	20	

Approved By

Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 Geological Technics, Inc. Project Number: 1409.2 1101 7th Street Project Name: Springtown Gas Modesto, CA 95354 Project Manager: Reza Namdar Ghanbari

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Approved By

Appendix C

Groundwater Monitoring Field Reports

Geological Technics, Inc.

Groundwater	Monitoring	Field	Log
-------------	------------	-------	-----

Samples sent to: Argon

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: P-1

Date: 10/2/2008

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
10:40	0.0	20.68	1942	7.36	59.5	12.03	Murky, slight odor, few sediments
10:49	7.5	20.19	1912	7.09	59.4	0.53	Murky, slight odor, few sediments
11:00	15.0	20.43	1908	7.13	60.8	9.17	Murky, slight odor, few sediments
11:10	22.5	20.44	1893	7.10	59.6	1.18	Murky, slight odor, few sediments (Final Reading)

Vell Constructed TD (ft):	20.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	19.06		# amber liters	preserved non-preserved
Silt Thickness (ft):	0.94		# polys	preserved non-preserved
Initial DTW (ft):	7.65		# polys	preserved non-preserved
Vater column height (ft):	11.41	Notes:		
One casing volume (gal):	7.42			n ///
** Final DTW (ft):	-	Sampled By: R. Es	tioko / M. Barrera Ruchard	stingo Muder
Casing diameter (in):	4"			75 4

Geological Technics, Inc.

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Groundwater Monitoring Field Log

Well I.D.: STMW-1

Date: 10/2/2008

Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Тетр	C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
10:24	0.0	21.72	2	1629	7.06	35.4	10.57	Brown, slight odor, many sediments
10:28	2.5	21.36	6	1689	7.13	31.0	0.80	Brown, slight odor, many sediments
10:30	5.0	21.50)	1695	7.15	33.0	0.72	Brown, slight odor, many sediments
10:34	7.5	21.5	7	1701	7.16	45.6	0.68	Brown, slight odor, many sediments (Final Reading)
Well	Purge Method: Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft):		D 1	gal/min	Sample	Containers used:		# VOAs preserved non-preserved # amber liters preserved non-preserved # polys preserved non-preserved # polys preserved non-preserved
Wate	r column height (ft):	12.59	9	1		Notes:		
One	casing volume (gal): ** Final DTW (tt):					Sampled By:	R. Estioko / M.	Barrera Puchand Estrolo May beach
c	asing diameter (in):	2"						
Sample Mo Ga	ethod: Ilons per foot of casing.			ler 🗋 Other 🗔 ia. = 0.38 4* dia. = 0.6	5, 5" dia. = 1.	* = measured 02, 6* dia. = 1.48	** = @ sampling	Purged Water Drummed: Ves No No. of Drums:

Geological Technics, Inc.

Groundwater Monitoring Field Log

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: STMW-2

Date: 10/2/2008

Samples sent to: Argon

Atalto

dant.

No. of Drums:

Purged Water Drummed:

Kielian

Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
12:00	0.0	20.6	6	1641	7.46	57.7	6.69	Murky, mild odor, many sediments
12:02	2.0	21.0	8	1641	7.27	53.4	1.22	Murky, mild odor, many sediments
12:05	4.0	21.2	4	1651	7.11	52.3	0.63	Murky, mild odor, many sediments
12:09	6.0	21.1	4	1650	7.07	51.8	0.58	Murky, mild odor, many sediments (Final Reading)
	Purge Method:	X Dedi	cated \	Vaterra DCen	trifugal pum	p with dedicated t	ubing D Oth	er
	Pumping Rate:			gal/min				
Well	Constructed TD (ft):				Sample	Containers used:		Preserved non-preserved
	* Well TD (ft):							# amber liters preserved non-preserved
	Silt Thickness (ft):	1.0	8					# polys preserved non-preserved
	Initial DTW (ft):	8.6	9					# polys preserved non-preserved
Wate	r column height (ft):	10.2	23			Notes:		
One	casing volume (gal):	1.7	4					

Sampled By: R. Estioko / M. Barrera

** = @ sampling

= measured

Sample Method:

** Final DTW (ft):

Casing diameter (in):

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Waterra D Bailer D Other D

-

2"

Yes No

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Groundwater Monitoring Field Log

Well I.D.: STMW-3

Date: 10/2/2008

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
10:00	0.0	21.03	2096	7.12	51.5	8.68	Brown, no odor, many sediments
10:04	2.0	20.60	1786	6.85	428.0	4.13	Brown, no odor, many sediments
10:08	4.0	20.56	1617	6.81	341.6	2.11	Brown, no odor, many sediments
10:11	6.0	20.47	1892	6.82	156.3	1.81	Brown, no odor, many sediments (Final Reading)

Purge Method:	I Dedicated Waterra	Centrifugal pump with dedicated tubing	Other	
Pumping Rate:	0.55 gal/min			
Well Constructed TD (ft):	20.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (tt):	19.05		# amber liters	preserved non-preserved
Silt Thickness (ft):	0.95		# polys	preserved non-preserved
Initial DTW (ft):	9.74		# polys	preserved non-preserved
Water column height (ft):	9.31	Notes:		
One casing volume (gal):	1.58			1.1 1
** Final DTW (ft):	8	Sampled By: R. Es	stioko / M. Barrera Richa	ud 95 tulto Nou brand
Casing diameter (in):	2"		/	. ,.,.,
Sample Method:	Waterra 🗆 Bailer 🗅 O	ther • = measured •• = @	sampling	Purged Water Drummed: Yes No
Gallons per foot of casing.	2" dia. = 0.17, 3" dia. = 0.38	4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48		No. of Drums:

Groundwater Monitoring Field Log

	-	-		
Project Name:	Springtown	Gas	(Blue Bell)	

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-1

Date: 10/2/2008

										_
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks	
11:10	0.0	22.0	02	1780	7.18	2.1	8	3.29	Muddy, slight odor, few sediments	
	Purge Method: Pumping Rate:		icated V		trifugal pum	p with dedicated t	ubing	Othe	her	
Well	Constructed TD (ft):	10.0	00		Sample	Containers used:			# VOAs preserved non-preserved	
	* Well TD (ft):	8.5	0				-		# amber liters preserved non-preserved	
	Silt Thickness (ft):	1.5	0						# polys preserved non-preserved	
	Initial DTW (ft):	7.6	69						# polys preserved non-preserved	
Water	column height (ft):	0.8	81	1		Notes:	Well w	ent dry at	at 11:17 A.M.	
One o	casing volume (gal):	0.5	3	1						
	** Final DTW (ft):	-				Sampled By:	R. Es	tioko / M.	1. Barrera Rutaul Cottola Manana	
C	asing diameter (in):	4']						
Sample Me	ethod: llons per foot of casing.			ler 🗋 Other 🗋 a. = 0.38 4" dia. = 0.6	5, 5" dia. = 1.	* = measured 02, 6* dia. = 1.48	** = @ s	ampling	Purged Water Drummed:	

Groundwater Monitoring Field Log

Project Nar	ne: Sprinatov	wn Gas (Blue	e Bell)
Project Nat	ne. Spiniulo	wit das (Diu	e Dell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-2

Date: 10/2/2008

Samples sent to: Argon

							_				
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	рН	ORP (millivolts)	DO	(mg/L)		Remarks	
							1				
	Purge Method: Pumping Rate:			Vaterra □Cent gal/min	rifugal pump	o with dedicated to	ubing	Othe	er		
Well	Constructed TD (ft):	10.00			Sample	Containers used:			# VOAs	preserved non-preserved	served
1.1.520.05	* Well TD (ft):								# amber liters	preserved non-preserved	served
	Silt Thickness (ft):	1.75							# polys	preserved non-preserved	served
	Initial DTW (ft):	7.55							# polys	preserved non-pre	served
Water	column height (ft):	0.70				Notes:	Well wa	as dry, the	ere was not enough water	to reach YSI chamber.	
One	asing volume (gal):	0.46) 1	1.1	/
	** Final DTW (ft):	-				Sampled By:	R. Est	ioko / M.	Barrera Richard 23	tales Mille	of

= measured

** = @ sampling

Casing diameter (in):

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Waterra D Bailer D Other D

-4"

Purged Water Drummed: Ves No

No. of Drums:

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Groundwater Monitoring Field Log

Samples sent to: Argon

Well I.D.: STMW-1

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
11:20	0.0	22.16	1051	7.62	132.7	39.13	Dark, no odor, a lot of sediments
11:24	2.0	21.74	801	7.49	169.2	37.89	Dark, no odor, a lot of sediments
11:29	4.0	21.91	910	7.51	91.4	35.94	Dark, no odor, a lot of sediments
11:35	6.0	21.48	970	7.53	71.6	36.39	Dark, no odor, a lot of sediments (Final Reading)

Purge Method:	Dedicated Waterra	Centrifugal pump with dedicated tubing	Other	
Pumping Rate:	0.40 gal/min			
Well Constructed TD (ft):	20.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	17.75		# amber liters	preserved non-preserved
Silt Thickness (ft):	2.25		# polys	preserved non-preserved
Initial DTW (ft):	6.65		# polys	preserved non-preserved
Water column height (ft):	11.10	Notes:		
One casing volume (gal):	1.89			1041 //1
** Final DTW (ft):	-	Sampled By: R. Es	toiko / M. Barrera Kuchand	Attoko natal/
Casing diameter (in):	2"		7	
Sample Method:	Waterra 🗆 Bailer 🗆 O	ther ther	sampling	Purged Water Drummed: D Yes D No
Gallons per foot of casing.	2" dia. = 0.17, 3" dia. = 0.38	4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48		No. of Drums:

Date: 10/16/2008

10/20/2008

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Date: 10/16/2008

.

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
10:45	0.0	23.28	1540	7.45	55.0	5.44	Muddy, no odor, a lot of sediments
10:49	2.0	21.28	1601	7.09	61.1	1.63	Muddy, no odor, a lot of sediments
10:53	4.0	21.33	1609	7.06	57.1	0.16	Muddy, no odor, a lot of sediments
10:56	6.0	21.35	1611	7.07	56.7	0.21	Muddy, no odor, a lot of sediments (Final Reading)

Purge Method:	Dedicated Waterra	Centrifugal pump with dedicated tubing	Other	
Pumping Rate:	0.55 gal/min			
Well Constructed TD (ft):	20.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	19.63		# amber liters	preserved non-preserved
Silt Thickness (ft):	0.37		# polys	preserved non-preserved
Initial DTW (#):	8.44		# polys	preserved non-preserved
Water column height (ft):	11.19	Notes:		
One casing volume (gal):	1.90			and all
** Final DTW (ft):	÷.	Sampled By: R. Es	toiko / M. Barrera Nicha	al estudio Inter
Casing diameter (in):	2"		,	
Sample Method:	Waterra 🗆 Bailer 🗆 C	ther □ •= measured ••= @	sampling	Purged Water Drummed: Q Yes Q No
Gallons per foot of casing.	2" dia. = 0.17, 3" dia. = 0.38	4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48		No. of Drums:

Samples sent to: Argon

10/20/2008

Groundwater Monitoring Field Log

Well I.D.: STMW-2

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Groundwater Monitoring Field Log

Well I.D.: STMW-3

Date: 10/16/2008

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
10:19	0.0	22.01	470	7.29	127.4	38.96	Muddy, mild odor, a lot of sediments
10:25	2.0	21.25	488	7.35	129.3	37.88	Muddy, mild odor, a lot of sediments
10:31	4.0	20.88	626	7.30	76.0	37.64	Muddy, mild odor, a lot of sediments
10:39	6.0	20.64	656	7.38	66.6	37.40	Muddy, mild odor, a lot of sediments (Final Reading)
						-	

Purge Method:	LA Dedicated Waterra	Centrifugal pump with	n dedicated tubing	u Other	
Pumping Rate:	0.30 gal/min				
Well Constructed TD (ft):	20.00	Sample Cont	ainers used:	# VOAs	preserved non-preserved
* Well TD (ft):	19.68			# amber liters	preserved non-preserved
Silt Thickness (ft):	0.32		×	# polys	preserved non-preserved
Initial DTW (ft):	9.55	<u></u>		# polys	preserved non-preserved
Water column height (ft):	10.13		Notes:		
One casing volume (gal):	1.72				1031 111
** Final DTW (ft):	÷	3	Sampled By: R. Est	oiko / M. Barrera Rucha	all Gottion Marthan
Casing diameter (in):	2"			,	
Sample Method:	Waterra 🗆 Bailer 🗆	Other 🗆 📩 - n	neasured ** = @ sa	ampling	Purged Water Drummed: Yes No
Gallons per foot of casing.	2" dia. = 0.17, 3" dia. = 0.38	4" dia. = 0.65, 5" dia. = 1.02, 6	" dia. = 1.48		No. of Drums:

D Other

			N 2 (***********************************	002 YO MARK 2002 MARK 2007 DOI:
K:\Jobs\S Jobs\Springtown Gas	(Blue Bell)	14092\GWM Field	Logs\08\GWM Field	Logs 081016.xls
The boot of boot op in grown and	10.00.00.01			

Project Name:	Springtown	Gas	(Blue Bell)
Fluject Name.	opingtown	uas	(Dide Dell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Groundwater Monitoring Field Log

Samples sent to: Argon

Well I.D.: P-1

Date: 10/16/2008

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
11:40	0.0	21.02	1592	7.61	145.3	36.39	Light brown, no odor, a lot of sediments
11:57	8.0	20.79	952	8.09	142.9	45.22	Light brown, no odor, a lot of sediments
	16.0	20.61	1285	7.75	85.9	18.23	Light brown, no odor, a lot of sediments

Purge Method:	I Dedicated Waterra	Centrifugal pump with dedicated tubing	Cther	
Pumping Rate:	- gal/min			
Well Constructed TD (ft):	20.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	19.30		# amber liters	preserved non-preserved
Silt Thickness (ft):	0.70	·	# polys	preserved non-preserved
Initial DTW (ft):	7.41		# polys	preserved non-preserved
Water column height (ft):	11.89	Notes:		7
One casing volume (gal):	7.73			10/1
** Final DTW (ft):	-	Sampled By: R. Es	stoiko / M. Barrera <i>Fucha</i>	1 4stato Manten
Casing diameter (in):	4"			
Sample Method:	Waterra 🗆 Bailer 🗆 Of	ther ther	sampling	Purged Water Drummed: 🛛 Yes 🖾 No
Gallons per foot of casing.	2" dia. = 0.17, 3" dia. = 0.38 4	4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48		No. of Drums:

10/20/2008

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-1

Date: 10/16/2008

Groundwater Monitoring Field Log

22.56 22.28	1563	7.56			Remarks
22.28		7.50	148.7	4.71	Dark, no odor, a lot of sediments
22.20	1699	7.18	98.3	1.23	Dark, no odor, a lot of sediments
22.24	1702	7.01	12.1	0.94	Dark, no odor, a lot of sediments
22.29	1668	6.84	3.3	1.53	Dark, no odor, a lot of sediments (Final Reading)

Purge Method:	Dedicated Waterra	Centrifugal pump with dedicated tubing	Other	
Pumping Rate:	0.11 gal/min			
Well Constructed TD (ft):	10.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	8.71		# amber liters	preserved non-preserved
Silt Thickness (ft):	1.29		# polys	preserved non-preserved
Initial DTW (ft):	7.66		# polys	preserved non-preserved
Water column height (ft):	1.05	Notes:		
One casing volume (gal):	0.68			
** Final DTW (ft):	-	Sampled By: R. Es	toiko / M. Barrera Kucha	al astratio Madreal
Casing diameter (in):	4"			1410
mple Method:	Waterra 🗆 Bailer 🗆 O	ther ther	sampling	Purged Water Drummed: 🛛 Yes 🗅 No
Gallons per foot of casing. 2	2" dia. = 0.17, 3" dia. = 0.38	4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48		No. of Drums:

Groundwater Monitoring Field Log

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-2

Date: 10/16/2008

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
11:06	0.0	21.43	1917	7.25	-92.8	3.35	Light brown, mild odor, few sediments
11:09	0.5	21.31	1907	7.03	-83.5	6.85	Light brown, mild odor, few sediments
11:11	1.0	21.39	1906	7.06	-58.9	7.12	Light brown, mild odor, few sediments
11:16	1.5	21.38	1912	7.16	-1.1	7.25	Light brown, mild odor, few sediments (Final Reading)

Purge Method:	I Dedicated Waterra	Centrifugal pump with dedicated tubing	Other .	
Pumping Rate:	0.15 gal/min			
Well Constructed TD (ft):	10.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	8.28		# amber liters	preserved non-preserved
Silt Thickness (ft):	1.72		# polys	preserved non-preserved
Initial DTW (ft):	7.35		# polys	preserved non-preserved
Water column height (ft):	0.93	Notes:		
One casing volume (gal):	0.60		,	1 agril MA
** Final DTW (ft):	3 4 0	Sampled By: R. Es	stoiko / M. Barrera / We	March astroko
Casing diameter (in):	4"		/	149

Samples sent to: Argon

K:\Jobs\S Jobs\Springtown Gas (Blue Bell) 14092\GWM Field Logs\08\GWM Field Logs 081016.xls

.

Groundwater Monitoring Field Log

Samples sent to: Argon

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-2

Date: 10/23/2008

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
10:33	0.0	19.92	1875	7.78	57.2	9.17	Murky, no odor, few sediments
10:37	0.5	20.19	1913	7.40	49.3	8.19	Murky, no odor, few sediments
10:40	1.0	19.97	1912	7.41	49.7	8.40	Murky, no odor, few sediments
10:46	1.5	19.91	1924	7.42	49.6	8.48	Murky, no odor, few sediments (Final Reading)
				1			
							N

Well Constructed TD (ft):	10.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	8.49		# amber liters	preserved non-preserved
Silt Thickness (ft):	1.51		# polys	preserved non-preserved
Initial DTW (ft):	7.63		# polys	preserved non-preserved
Water column height (ft):	0.86	Notes: Very slo	w recharge.	4
One casing volume (gal):	0.56			
** Final DTW (ft):	-	Sampled By: R. Esti	oko / M. Barrera Kielland	esticità man
Casing diameter (in):	4"		/	

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

K:\Jobs\S Jobs\Springtown Gas (Blue Bell) 14092\GWM Field Logs\08\Field Logs 081023.xls

Groundwater Monitoring Field Log

Samples sent to: Argon

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-2

Date: 10/30/2008

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
10:40	0.0	18.35	1137	7.92	196.9	186.3	Clear, no odor, very few sediments
10:41	0.1	19.15	1083	7.82	186.7	239.3	Clear, no odor, very few sediments
10:44	0.2	20.14	1053	7.83	166.1	192.1	Clear, no odor, very few sediments
10:45	0.3	20.05	1052	7.81	164.0	172.1	Clear, no odor, very few sediments (Final Reading)

Purge Method:	I Dedicated Waterra	Centrifugal pump with dedicated tubing	Cther	
Pumping Rate:	0.06 gal/min			
Well Constructed TD (ft):	10.00	Sample Containers used:	# VOAs	preserved non-preserved
* Well TD (ft):	8.08		# amber liters	preserved non-preserved
Silt Thickness (ft):	1.92		# polys	preserved non-preserved
Initial DTW (ft):	7.64	<u>.</u>	# polys	preserved non-preserved
Water column height (ft):	0.44	Notes:		
One casing volume (gal):	0.29			
** Final DTW (ft):	-	Sampled By: R. Es	tioko / M. Barrera	Atom, Maltel
Casing diameter (in):	4"		1 1	
nple Method: V	Vaterra 🗆 🛛 Bailer 🗆 🔾	ther • = measured •• = @	sampling	Purged Water Drummed: 🛛 Yes 🖾 No
Gallons per foot of casing. 2	" dia. = 0.17, 3" dia. = 0.38	4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48		No. of Drums:

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Groundwater Monitoring Field Log

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-2

Date: 11/6/2008

Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
10:09	0.0	16.17	1326	7.15	214.6	10.91	Clear, no odor, very few sediments
10:12	1.0	19.95	1327	7.09	186.0	11.95	Clear, no odor, very few sediments
10:15	2.0	19.94	1329	7.13	183.5	9.77	Clear, no odor, very few sediments (Final Reading)
	Purge Method: Pumping Rate:		Waterra □Cen gal/min	trifugal pum	p with dedicated t	ubing D Oth	er

Well Constructed TD (ft):	10.00	Sample Cont	ainers used:	# VOAs	preserved	_non-preserved	
* Well TD (ft):	8.56]		# amber liters	preserved	_non-preserved	
Silt Thickness (ft):	1.44]		# polys	preserved	_non-preserved	
Initial DTW (ft):	7.16]		# polys	preserved	_ non-preserved	
Water column height (ft):	1.40		Notes: Weekly para	meters. Well went dry after	2 gallons.		
- One casing volume (gal):	0.91]			011	///	
** Final DTW (ft):	-]	Sampled By: R. Estioko	M. Barrera Fuelad	(stide)	(hala)	
Casing diameter (in):	4"]		/	2	12	
Sample Method:	Waterra 🗆 🛛 Ba	iler 🗆 Other 🗅 🔹 🖬	neasured ** = @ sampling	1	Purged Water D	rummed: 🛛 Yes 🖸	⊠ No
Gallons per foot of casing.	2" dia. = 0.17. 3" d	dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6	" dia. = 1.48		No. o	f Drums:	0

K:\Jobs\S Jobs\Springtown Gas (Blue Bell) 14092\GWM Field Logs\08\Field Logs 081106.xls

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
11:30	0.0	19.91	1131	7.52	217.3	11.29	Muddy, no odor, few sediments
11:34	2.0	20.69	1134	7.55	217.9	11.40	Muddy, no odor, few sediments
11:39	4.0	20.72	1433	7.37	217.0	11.42	Muddy, no odor, few sediments
11:41	6.0	20.74	1554	7.36	208.3	11.17	Muddy, no odor, few sediments
12:00							Collected samples
_							

Purge Method: Pumping Rate:		Centrifugal pump with dedicated tubing	Other	
Well Constructed TD (ft): * Well TD (ft):	19.10	Sample Containers used:	4 # VOAs # amber liters 1 # polys _250 ml_	<u>X</u> preserved <u>non-preserved</u> preserved <u>non-preserved</u> preserved <u>X</u> non-preserved
Silt Thickness (ft): Initial DTW (ft):	6.74		1 # polys _ <u>250 ml</u>	<u>X</u> preserved non-preserved
Water column height (#): One casing volume (gal):	8.03	Notes:		ation and a
** Final DTW (ft): Casing diameter (in):		Sampled By: H. E	Estioko / M. Barrera <i>Fuchland 9</i>	1110/12 ////
Sample Method:		Other + = measured ++ = 6 +* dia. = 0.65, 5* dia. = 1.02, 6* dia. = 1.48	@ sampling	Purged Water Drummed: Xes INo No. of Drums: 1

Groundwater Monitoring Field Log

Samples sent to: Argon

Well I.D.: STMW-1

Date: 11/20/2008

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

0.47 gal/min

Waterra

Purge Method: 🗵 Dedicated Waterra

20.

19.

Pumping Rate:

* Well TD (ft):

Initial DTW (ft):

** Final DTW (ft):

Casing diameter (in):

Sample Method:

Silt Thickness (ft):

Well Constructed TD (ft):

Water column height (ft):

One casing volume (gal):

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Groundwater Monitoring Field Log

Well I.D.: STMW-2

Date: 11/20/2008

Samples sent to: Argon

Volume Purged (gal)	Temp C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
0.0	19.77	1783	7.37	250.2	5.50	Brown, no odor, few sediments
2.0	21.08	1777	7.36	226.2	1.63	Brown, no odor, few sediments
4.0	21.20	1780	7.26	216.2	1.37	Brown, no odor, few sediments
6.0	21.21	1782	7.20	211.4	1.13	Brown, no odor, few sediments
						Collected samples
	2.0 4.0	2.0 21.08 4.0 21.20	2.0 21.08 1777 4.0 21.20 1780	2.0 21.08 1777 7.36 4.0 21.20 1780 7.26	2.0 21.08 1777 7.36 226.2 4.0 21.20 1780 7.26 216.2	2.0 21.08 1777 7.36 226.2 1.63 4.0 21.20 1780 7.26 216.2 1.37

Centrifugal pump with dedicated tubing

20.00	Sample Containers used:	4	# VOAs	X preserved non-preserved
19.52			# amber liters	preserved non-preserved
0.48		1	# polys _250 ml	preserved <u>X</u> non-preserved
8.42		1	# polys _ <u>250 ml</u>	<u>X</u> preserved non-preserved
11.10	Notes:			/
1.89	_			and all
8.54	Sampled By: R	R. Estioko / N	1. Barrera <i>Puchlug</i>	95 who the
2"			1	1000
erra 🗵 Bailer 🗆	Other D ·= measured ···	= @ sampling	1	Purged Water Drummed: U Yes No

Other

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: STMW-3

Date: 11/20/2008

Cumulative Volume Purged C° **ORP** (millivolts) DO Temp EC (µS/cm) pH (mg/L) Time (gal) Remarks 886 7.87 241.0 20.66 Muddy, no odor, many sediments 9:56 0.0 19.36 7.82 234.1 10:00 2.0 20.86 828 18.71 Clear, no odor, few sediments 4.0 20.80 861 7.73 225.4 18.14 10:04 Clear, no odor, few sediments Clear, no odor, few sediments 6.0 20.63 771 7.88 194.6 15.53 10:11 Collected samples 14:00

Purge Method:	Dedicated Waterra	Centrifugal pump with dedicated tubing	🗆 Ot	her	
Pumping Rate:	0.40 gal/min				
Well Constructed TD (ft):	20.00	Sample Containers used:	4	# VOAs	X preserved non-preserved
* Well TD (ft):	19.49			# amber liters	preserved non-preserved
Silt Thickness (ft):	0.51		1	# polys _250 ml	preserved <u>X</u> non-preserved
Initial DTW (ft):	9.55		1	# polys <u>250 ml</u>	_X preserved non-preserved
Water column height (ft):	9.94	Notes: Samp	les were	collected before 80% red	charge.
One casing volume (gal):	1.69			1	
** Final DTW (ft):	17.37	Sampled By: R. Es	tioko / N	I. Barrera Fucha	d afters
Casing diameter (in):	2"	3		1	g. copedo

Groundwater Monitoring Field Log

Well I.D.: VE-1

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Date: 11/20/2008

Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks
3:08	0.0	18.91		1960	6.99	38.6	4	1.82	Brown, no odor, few sediments
3:35									Collected samples
	Purge Method:	区 Dedica	ited \	Waterra DCen	trifugal pum	p with dedicated t	ubing	Othe	er
Well	Purge Method: Pumping Rate: Constructed TD (ft):					p with dedicated t Containers used:			er preserved non-preserved
Well	Pumping Rate:	10.00							
Well	Pumping Rate: Constructed TD (ft):	10.00							# VOAs preserved non-preserved
Well	Pumping Rate: Constructed TD (ft): * Well TD (ft):	10.00 8.48 1.52							# VOAs preserved non-preserved non-preserved non-preserved
	Pumping Rate: Constructed TD (tt): * Well TD (tt): Silt Thickness (tt):	10.00 8.48 1.52 7.42				Containers used:		1	# VOAs preserved non-preserved # amber liters preserved non-preserved # polys _250 ml preserved _X non-preserved
Wate	Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft):	10.00 8.48 1.52 7.42 1.06				Containers used:		1	# VOAs preservednon-preserved # amber liters preservednon-preserved # polys _250 ml preservednon-preserved # polys _250 ml non-preserved # polys _250 ml
Wate	Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft): r column height (ft):	10.00 8.48 1.52 7.42 1.06 0.69				Containers used:	Well w	1 1 rent dry aft	# VOAs preserved non-preserved # amber liters preserved non-preserved # polys 250 ml preserved non-preserved # polys 250 ml
Wate One	Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft): r column height (ft): casing volume (gal):	10.00 8.48 1.52 7.42 1.06 0.69 7.50				Containers used:	Well w	1 1 rent dry aft	# VOAs preserved non-preserved # amber liters preserved non-preserved # polys 250 ml preserved non-preserved # polys 250 ml

Groundwater	Monitoring	Field	Log
-------------	------------	-------	-----

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: VE-2

Date: 11/20/2008

Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks	
11:08	0.0	17.09		1625	7.39	233.5	7.95	Clear, no odor, few sediments	
11:09	0.5	19.38		1616	6.91	225.6	10.45	Clear, no odor, few sediments	
11:10	1.0	19.49		1618	6.89	225.1	10.22	Clear, no odor, few sediments	
11:12	1.5	19.47		1593	6.89	224.5	9.09	Clear, no odor, few sediments	
11:25								Collected samples	
						· · · · · · · · · · · · · · · · · · ·			
					trifu and mum	n with dedicated t			
Well	Purge Method: Pumping Rate: Constructed TD (tt):			Vaterra □Cen gal/min		p with dedicated t Containers used:	60070. -	preserved non-preserved	
Well	Pumping Rate:	10.00				• • • • • • • • • • • • • • • • • • • •	3		
Well	Pumping Rate: Constructed TD (ft):	10.00				• • • • • • • • • • • • • • • • • • • •	3	# VOAs preserved non-preserved	
Well	Pumping Rate: Constructed TD (ft): * Well TD (ft):	10.00 8.25 1.75				• • • • • • • • • • • • • • • • • • • •	3	# VOAs preserved non-preserved non-preserved non-preserved	
	Pumping Rate: Constructed TD (tt): * Well TD (tt): Silt Thickness (tt):	10.00 8.25 1.75 7.38				• • • • • • • • • • • • • • • • • • • •	1	# VOAs preserved non-preserved # amber liters preserved non-preserved # polys _250 ml preserved _X non-preserved	
Wate	Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft):	10.00 8.25 1.75 7.38 0.87				Containers used:	1	# VOAs preserved non-preserved # amber liters preserved non-preserved # polys _250 ml preserved _X non-preserved # polys _250 ml X preserved non-preserved	
Wate	Pumping Rate: Constructed TD (tt): * Well TD (tt): Silt Thickness (tt): Initial DTW (tt): r column height (tt):	10.00 8.25 1.75 7.38 0.87 0.57				Containers used:	1	# VOAs preserved non-preserved # amber liters preserved non-preserved # polys 250 ml preserved non-preserved # polys 250 ml X preserved non-preserved	

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

No. of Drums:

Groundwater Monitoring Field Log

Project Name: Springtown Gas (Blue Bell)

Project No.: 1409.2

Project Location: 909 Bluebell Drive

Livermore, CA

Well I.D.: P-1

Date: 11/20/2008

Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks	
12:10	0.0	17.86		1384	8.18	158.0	11	1.16	Muddy, no odor, many sediments	
12:25	7.5	20.14		980	8.54	187.4	10	0.20	Clear, no odor, few sediments	
12:41	15.0	20.11		1072	8.43	180.3	10	0.38	Clear, no odor, few sediments	
12:57	20.0	19.96		1392	7.99	180.0	8	.19	Clear, no odor, few sediments	
14:20									Collected samples	
	Purge Method: Pumping Rate:			Vaterra □Cent gal/min	trifugal pum	p with dedicated t	ubing	Othe	er	
Well		(•	p with dedicated t Containers used:		Othe	# VOAsX preserved non-preserved	
Well	Pumping Rate:	20.00			•					
Well	Pumping Rate: Constructed TD (tt):	20.00			•				# VOAs <u>X</u> preserved non-preserved	
Well	Pumping Rate: Constructed TD (ft): * Well TD (ft):	20.00 19.28 0.72			•				# VOAs preserved non-preserved # amber liters preserved non-preserved	
	Pumping Rate: Constructed TD (tt): * Well TD (tt): Silt Thickness (tt):	20.00 19.28 0.72 7.53			•	Containers used:		4	# VOAs X preserved non-preserved # amber liters preserved non-preserved # polys _250 ml preserved _X non-preserved	
Wate	Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft):	20.00 19.28 0.72 7.53 11.75			•	Containers used:		4	# VOAs X preserved non-preserved # amber liters preserved non-preserved # polys 250 ml preserved X non-preserved # polys 250 ml X preserved non-preserved # polys 250 ml X preserved non-preserved # polys 250 ml X preserved # polys 250 ml X preserved # polys 250 ml Y preserved	
Wate	Pumping Rate: Constructed TD (tt): * Well TD (tt): Silt Thickness (tt): Initial DTW (tt): r column height (tt):	20.00 19.28 0.72 7.53 11.75 7.64			•	Containers used:	Well we	4 1 ent dry aft	# VOAs X preserved non-preserved # amber liters preserved non-preserved # polys 250 ml preserved X non-preserved # polys 250 ml X preserved non-preserved # polys 250 ml X preserved non-preserved # polys 250 ml X preserved	

= measured

Sample Method:

Waterra 🗵 Bailer 🗆 Other 📮

Appendix D

Site Health and Safety Plan

SITE HEALTH AND SAFETY PLAN FOR Springtown Gas 909 Bluebell Drive Livermore, California

Project No. 1409.2 September 16, 2008

Prepared by Geological Technics Inc. 1101 7th Street Modesto, California 95354 209-522-4119 In accordance with Federal OSHA Requirements 29-CFR 1910.120

Matthew H. Spielmann Health & Safety Officer

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Site Description	1
2.0	PROJECT ORGANIZATIONAL STRUCTURE	2
2.1	Project Manager Responsibilities	
2.2		2
2.3	가장 소리가 그 같은 것 같아요. 비행 것 같아요. 이 것 같아요. 그는 것이 가 가지 않는 것 같아요. 이 가지 않는 것 않는 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 않는	2
3.0	JOB HAZARD ANALYSIS	
3.1	Chemical Hazard	3
	3.1.1 Skin Puncture	4
	3.1.2 Ingestion	4
	3.1.3 Eye and Skin Absorption	4
	3.1.4 Inhalation	4
3.2	Mechanical Hazards	5
3.3		
3.4	Heat Stress	5
3.5		5
4.0	PERSONNEL TRAINING	6
5.0	PERSONAL PROTECTIVE EQUIPMENT (PPE)	
6.0	SITE CONTROL PLAN	6
7.0	DECONTAMINATION PLAN	
7.1	Emergency Decontamination	6
8.0	EMERGENCY NOTIFICATIONS	
9.0	EMERGENCY RESPONSE PLAN	
10.0	EMERGENCY ACTION PLAN	8

LIST OF ATTACHMENTS

Daily Site Safety Plan Briefing Attendance Sheet

1.0 INTRODUCTION

This Site Specific Safety Plan establishes the requirements to adequately protect workers during the installation of hydrogen peroxide injection wells, groundwater monitoring wells, quarterly groundwater monitoring, and hydrogen peroxide injection events at Springtown Gas (Site), 909 Bluebell Road, Livermore, Alameda County, California. Specific site safety procedures to be utilized for all personnel involved in the project are explained herein.

This plan presents a realistic approach to the anticipated hazards at the Site and shall be considered as an appropriate site specific worker protection plan. Site conditions may vary throughout the duration of the project. As the conditions change, parts of the plan may be updated as required. All changes in health and safety measures specified must be approved by the Site Safety Officer (SSO). A copy of this Site Safety Plan will be kept onsite at all times and made available to all personnel assigned to this project. In addition to this, all information presented in the Site Safety Plan will be reviewed with said employees by the SSO. Project personnel on the Site are expected to be familiar with, and comply with all portions of the Site Safety Plan. Regulatory personnel, visitors and contractors entering the work areas are expected to be familiar with and adhere to all provisions of the Site Safety Plan. Such personnel will be expected to utilize personal protective equipment which is equal to, or exceeds that designated by the SSO. Documentation of medical and training qualifications will be required. Any personnel failing to adhere to the requirements of the Site Safety Plan will be prohibited from entering the active work areas.

1.1 Site Description

Site location:	909 Bluebell Road
	Livermore, California
Client contact:	Masood Amini.
	Owner
	Phone: (925) 487-2598
Area Affected:	Retail gasoline service station
Properties abutting the Site:	North - retail/commercial
	South - commercial
	East - commercial
	West – retail/commercial

1

2.0 PROJECT ORGANIZATIONAL STRUCTURE

Project Manager:Matthew H. SpielmannSite Safety Officer:Matthew H. SpielmannField Team Leader:Matthew H. Spielmann

2.1 Project Manager Responsibilities

Overall management of the technical aspects of the project and the work plan.

2.2 Site Safety Officer Responsibilities

Onsite implementation of the Site Safety Plan. Halting or delaying any Site activities when necessary to protect worker or public health and safety, or the protection of the environment. Conducting inspections to determine the effectiveness of the Site Safety Plan. Any deficiencies in the Site Safety Plan identified by the SSO will be corrected as soon as possible. Providing a pre-entry briefing according to Section 4 of this plan. Inspecting the use of proper personal protective equipment by employees, contractors and subcontractors at all times. Monitoring workers for signs and symptoms of excessive heat stress. Workers experiencing excessive heat stress shall be moved outside the work area for liquid replenishment and cool down.

2.3 Sampling Team Personnel Responsibilities

Become familiar with and follow the requirements of this site safety plan and follow instructions given by the SSO. Notify the SSO of any injury, signs of symptoms of overexposure to hazardous substances, any unsafe acts or conditions occurring at the Site. Collect samples as instructed using proper equipment and safe procedures to minimize exposure to hazardous materials or conditions.

3.0 JOB HAZARD ANALYSIS

The tasks associated with the installation of the monitoring wells are summarized below: A complete description is given in the Monitoring Well Installation Work Plan for this project.

• <u>Drill Well Borings</u>: One or more soil borings will be drilled to 20 feet below grade. Groundwater beneath the Site occurs at depths ranging from approximately 6.26 to 9.25 feet below grade, or 513 to 510 feet above mean sea level, and flows generally north to northwest across the Site Soil samples for lithologic description purposes and possible laboratory analyses will be continuously collected to total depth. Soil samples for laboratory analyses will be collected for waste profiling purposes.

- <u>Hydrogen Peroxide Injection Well Installation</u>: One or more, as needed, hydrogen peroxide injection wells will be installed in the borings. The installed wells will be developed and survey controlled.
- <u>Monitoring Well Installation</u>: Additional, as needed, groundwater monitoring wells will be installed in the borings. The installed wells will be developed and survey controlled.
- <u>Groundwater Sample Collection</u>: Existing and additional groundwater monitoring wells will be sampled. Prior to sample collection, each well will be purged by pumping. Samples will be collected using a clean, unused, disposable polyethylene bailer. The collected sample will be transferred from the bailer to appropriate sample containers using a bottom emptying device.
- <u>Hydrogen Peroxide Injection:</u> Dilute hydrogen peroxide will be injected into the installed hydrogen peroxide injection points, and groundwater monitoring wells, as needed, to reduce dissolved-phase hydrocarbon concentrations in groundwater. Groundwater samples will be collected for metals analyses, and groundwater will be monitored for dissolved oxygen concentrations and oxygen reduction potential.

The work activities outlined above present potential physical and chemical hazards to the workers involved. In all instances, precautionary measures will be implemented to minimize these risks. It is not expected that any workers or nearby residents will be adversely affected by the work. Strict environmental monitoring will be conducted at and around each work station. Adherence of this SSP will minimize the risk to persons conducting the work, and also to those not associated with the field work. This assessment will be revised periodically during the assessment as more detailed information becomes available. In order to control exposures at the Site, work practices and the use of personal protective equipment/procedures will be required as outlined in Section 5 of this plan.

3.1 Chemical Hazard

The chemicals of concern are dissolved-phase hydrocarbons including total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene and total xylenes (BTEX), and oxygenates tert-butyl alcohol (TBA) and methyl-tertiary butyl ether (MtBE). Based on previous land use at and in the vicinity of the Site, the overall health risk due to exposure to the chemicals is believed to be low to moderate.

Soil cuttings produced during drilling operations, groundwater produced during well development and sampling activities, and rinsate generated by equipment decontamination activities, will be appropriately and securely stored on the Site in 55-gallon capacity steel DOT drums until laboratory results indicate if these materials should be treated as hazardous materials.

Hazardous waste sites contain a number of chemicals that may cause direct bodily injury if exposures are at levels in excess of recommended exposure limits. There are four

routes of exposure or pathways by which toxic chemicals can enter the body: skin punctures, ingestion, eye and skin absorption and inhalation.

A preliminary evaluation of the Site did not reveal obvious signs of IDLH conditions. The proper use of the personal protective equipment in conjunction with the monitoring equipment and the work procedures as described in this site safety plan should minimize the potential for over exposure of personnel.

3.1.1 Skin Puncture

Skin punctures by pointed objects, such as broken glass or work-related tools, can be avoided by wearing safety boots, long-pants, a long sleeve shirt, a hard hat, gloves, and shatter resistant eye protection.

3.1.2 Ingestion

Workers may ingest materials unintentionally when they handle food, drink, smoke, bite fingernails, etc., after contact with the material and before thoroughly washing their hands. This can be avoided if workers wash their hands prior to any of these activities. At no time will food or smoking be allowed in any work area.

3.1.3 Eye and Skin Absorption

The skin is a major protective barrier to all organs of the body. The exterior layer of the skin generally prevents foreign materials from entering the body. However, corrosive chemicals can damage the exterior layers of the skin and cause chemical burns. Some chemicals may dry the skin and cause dermatitis. Other chemicals are able to penetrate the intact skin and enter the bloodstream.

Contact of chemicals with skin or eyes can be avoided if workers wear personal protective equipment, such as Tyvek suits, safety glasses/chemical goggles, gloves, and boots.

3.1.4 Inhalation

Foreign material may be inhaled and come into direct contact with lung tissue. This may cause an adverse effect on the lung tissue which, if not irreversible, may persist for a long time before the damage can be repaired by the body. The foreign material may also enter the bloodstream, and circulate throughout the body. Once the material enters the bloodstream, all sensitive organ systems may be affected including the brain, heart, liver, kidneys, and reproductive organs. Entry of a chemical into the bloodstream may occur rapidly. Foreign materials that may be inhaled include volatile chemicals and particulates (dust) that may contain or consist of nonvolatile hazardous substances.

Inhalation of dust or chemicals can be successfully avoided by using respirators fitted with proper cartridges and by eliminating downwind work stations where possible.

3.2 Mechanical Hazards

Common mechanical hazards are present around heavy equipment, or in places where heavy objects may cause injury by falling on the worker. Any job that places a worker in a position where that worker may be injured by falling, such as working on a catwalk or ladder, also involves a mechanical hazard. The SSO will correct such hazards or institute precautionary measures once they are identified.

Heavy equipment used during field activities will include drilling rigs. Only trained or experienced personnel will operate machines, tools, and equipment employed in the investigation. All machines and tools will be cleaned regularly and maintained in good repair. All moving parts will be securely fastened or covered when not in use. Personal protective equipment required around any heavy equipment will include hard hats, steel-toe boots, high visibility vest, and eye protection. Hearing protection such as ear plugs will also be available. In areas where operating heavy equipment can create a chemical or health hazard, appropriate protective clothing and respiratory protection will also be used.

3.3 Electrical Hazards

All electrical equipment to be used during field activities will be properly grounded. Only qualified persons will work on electrical equipment and all equipment will be maintained in safe condition. The drilling rig derrick will be located a minimum of 10 feet from electrical power lines (50 KV or less) unless such lines have been de-energized. At no time will drilling rig derricks be raised or lowered without direct supervision by a Site Supervisor. Utility companies (such as PG&E) and/or private locator services will be contacted to identify underground utility lines leading into the Site. Underground electrical utilities will be located before drilling begins.

3.4 Heat Stress

Heat Stress may be caused by the combination of elevated ambient temperatures and the wearing of personal protective equipment. The effects of heat stress are heat rash, cramps, exhaustion, and heat stroke. To minimize the potential of heat stress, workers heart rates will be monitored in accordance with the guidelines published by NIOSH/OSHA/USCG/EPA Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (1985). Cool water or fluids will be readily available to the employees, who will be encouraged to drink frequently during each break.

3.5 Cold Exposure

It is not expected that cold exposure will be experienced at the Site. However, all persons working outdoors should be aware that they could be exposed to rapid body temperature cooling in the presence of winds. This is particularly a threat to the hazardous waste site worker if the body cools suddenly when chemical-protective equipment is removed and the clothing underneath is perspiration soaked. The presence of wind greatly increases the rate of cooling.

4.0 PERSONNEL TRAINING

All personnel shall be currently certified under GISO 5192 Hazardous Waste Operations and Emergency Response prior to the initiation of any work on the Site or other comparable training certification. All project personnel will be adequately trained to perform the work assigned. The suspected site specific hazards will be discussed with the assigned employees during the pre-entry briefing at the Site prior to initiating any Site activity, and as necessary to ensure that the employees are aware of the details of the Site Safety Plan. Personal Protective Equipment (PPE) will be available at the Site.

5.0 PERSONAL PROTECTIVE EQUIPMENT (PPE)

PPE listed will be provided to Site personnel by their respective employer

PPE to be provided include:

- Chemical resistant steel toed safety shoes
- Nitrile gloves
- Safety glasses at a minimum and goggles if liquids are encountered.

6.0 SITE CONTROL PLAN

All access to the Site will be controlled by the SSO who will also act as the Public Information Officer if necessary. The SSO will be present onsite during the entire operation, and monitor activities and maintain safety of personnel.

7.0 DECONTAMINATION PLAN

The disposable PPE (gloves, etc.) and any waste generated will be properly bagged, containerized, labeled and disposed of according to local, state and federal regulations.

7.1 Emergency Decontamination

If immediate medical treatment is necessary to prevent loss of life, decontamination can be delayed until the victim is stabilized. Emergencies due to heat stress require that PPE be removed as soon as possible. All contaminated PPE is to be removed after the preliminary decontamination has been performed. After removal of PPE the victim may be further decontaminated. In the event of an emergency, decontamination priority is to be given to an injured or contaminated worker.

Upon completion of the project, or daily work schedule, all workers will wash their hands thoroughly. This also applies before each break and lunch hour.

8.0

EMERGENCY NOTIFICATIONS

Local Police:	911
State Police:	911
Fire:	911
Ambulance:	911
Nearest Hospital:	Emergi-Center At Valley Memorial Hospital
	1133 E. Stanley Blvd.
	Livermore, California
Telephone:	925-373-4018

Back-up Hospital:Valley Care Medical Center5555 W. Los Positas Blvd.Livermore, CaliforniaTelephone:925-416-3400Poison Control:800-342-9293Regional EPA:Region 9National Response Ctr.:800-424-8802

9.0 EMERGENCY RESPONSE PLAN

Employees are required to become familiar with the emergency evacuation plan for the Site and fire prevention plan. In the event of an emergency, employees will be directed to evacuate the area and dial 911 for emergency response assistance.

Emergencies can be categorized as:

- Hazardous substances spills
- Medical emergencies

10.0 EMERGENCY ACTION PLAN

- Place a fire extinguisher in the work area
- Place a first aid kit in the work area
- Designate a relocation zone upwind of the hot zone

DAILY SITE SAFETY PLAN BRIEFING ATTENDANCE SHEET

SPRINGTOWN GAS 909 BLUEBELL DRIVE LIVERMORE, CALIFORNIA

Date and Time:		
Given by:	Company:	
Signature:		
<u>ATTENDEE</u>	FUNCTION	COMPANY
· · · · · · · · · · · · · · · · · · ·		
1 <u></u>		
<i>M</i> 112		