

Global Gas

K. H. (Kimberly) Tourloukis Environmental Specialist Health, Environment & Safety
Chevron Pipe Line Company
4800 Fournace Place
Bellaire, TX 77401
Tel 713-432-3344
Fax 713-432-3477
ktourloukis@chevron.com

RECEIVED

2:32 pm, Nov 12, 2010

Alameda County
Environmental Health

November 15, 2010

Mr. Jerry Wickham Department of Environmental Health Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, CA 94502

Dear Mr. Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in URS' report titled "SLIC Case No. RO0002892, Chevron Sunol Pipeline, 2793 Calaveras Road, Sunol, CA – Third Quarter 2010 Groundwater Monitoring Report" are true and correct to the best of my knowledge at the present time.

Sincerely, Simberly Combachis

K. H. (Kimberly) Yourloukis

KHT/rmf

THIRD QUARTER 2010 GROUNDWATER MONITORING REPORT

SLIC CASE #RO0002892 CHEVRON PIPELINE COMPANY SUNOL SPILL 2793 CALAVERAS RD. SUNOL, CA

Prepared for Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, CA 94502

November 2010

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612 This letter report ("Third Quarter 2010 Groundwater Monitoring Report") was prepared under my direct supervision. The information presented in this report is based on our review of available data obtained during our quarterly sampling activities and our previous subsurface investigation efforts. To the best of our knowledge, we have incorporated into our recommendations all relevant data pertaining to the Chevron Pipeline Company's Sunol Spill Site in Sunol, California.

The Third Quarter 2010 Groundwater Monitoring Report discussed herein was developed in accordance with the standard of care used to develop this type of report. The assumptions that were made and the recommendations for continued field activities were based on our professional experience and protocols reported in the literature for similar investigations.

URS Corporation Approved by:

Joe Morgan III

Jacob Menry, P.G.

November 15, 2010

Mr. Jerry Wickham Department of Environmental Health Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Subject: SLIC Case No. RO0002892, Chevron Pipeline Company, Sunol Spill, 2793 Calaveras

Rd, Sunol, CA, Third Quarter 2010 Groundwater Monitoring Report

Dear Mr. Wickham:

A December 30, 2005 letter provided by the Alameda County Environmental Health Department (ACEHD) staff requested the initiation of a quarterly groundwater monitoring program for the Chevron Pipeline Company (CPL) Sunol Spill Site (Site). In response to this request and on behalf of CPL, URS Corporation (URS) has prepared the Site groundwater monitoring report for the third quarter 2010.

If you have any questions on this report, please call Mr. Joe Morgan or Mr. Jacob Henry of URS at 510-874-3201 or 510-874-3252, respectively.

Sincerely yours,

URS Corporation

Jacob Henry, P.G.

Senior Geologist

Joe Morgan III

Senior Project Manager

cc:

Ms. Kimberly Tourloukis, Chevron Pipeline Company

JACOB T. HENRY No. 8504

Ms. Rachel Naccarati, URS Oakland

Tables:

Table 1 – Monitoring Well Groundwater Levels

Table 2 – Monitoring Well Groundwater Elevations

Table 3 – Summary of Groundwater Analytical Results – Gasoline Compounds

Table 4 – Summary of Groundwater Analytical Results – Geochemical Indicators and Other Parameters

Figures:

Figure 1 – Site Vicinity Map

Figure 2 – SVE and Groundwater Monitoring Well Locations

Figure 3 – Unconfined Water-Bearing Zone and Bedrock Elevations Map

Appendices:

Appendix A – Groundwater Sampling Forms

Appendix B – Laboratory Analytical Results

SECTIONONE Introduction

On September 28 and 29, 2010, URS conducted field activities to assess the groundwater conditions at the Chevron Pipeline Company (CPL) Sunol Spill Site (Site). A Site vicinity map is included as Figure 1. Monitoring well and surface water sampling locations are provided on Figure 2.

URS gauged the depth to groundwater at groundwater monitoring wells MW-1 through MW-4 and MW-8 through MW-11. URS collected groundwater samples for laboratory analysis from groundwater monitoring wells MW-8 through MW-11. The groundwater elevations in monitoring wells MW-1 through MW-4 were below bedrock and hydraulically disconnected from the unconfined water bearing zone, therefore, they were not sampled as part of this sampling event. URS also collected a surface water sample from the very small stream, located northwest of the release location. Monitoring wells MW-5 through MW-7 were abandoned on June 23, 2008, and are no longer part of the groundwater monitoring program.

1.1 SITE HYDROGEOLOGY

Prior to collecting groundwater samples, depth to groundwater measurements were recorded from monitoring wells MW-1 through MW-4 and MW-8 through MW-11 from the top of casing using an electronic oil/water interface probe. Product (0.01 feet) was detected in monitoring well MW-8 during the third quarter 2010. Depth to groundwater measurements are presented in Table 1 and calculated groundwater elevations above mean sea level are presented in Table 2.

Unconfined Water Bearing Zone

The groundwater surface elevation decreased in all monitoring wells (MW-1 through MW-4 and MW-8 through MW-11) relative to the last sampling event in June 2010. The groundwater surface elevation change at MW-1 and MW-4 resulted in hydraulic disconnection. The groundwater elevations for monitoring wells MW-1 through MW-4 and MW-9 through MW-11 were 290.68, 290.74, 290.85, 290.69, 290.26, 290.00, and 285.05 feet above average mean sea level (msl), respectively. The groundwater elevation for MW-8, which is screened in an apparent hillside groundwater recharge source for the Valley Crest Tree Company's (nursery) unconfined water-bearing zone, was 311.70 feet above msl.

Groundwater monitoring wells MW-1 through MW-4 were not accessible on September 28, 2010 due to spraying of pesticides at the nursery. Based on these wells being inaccessible on September 28, all the monitoring wells were gauged on September 29, 2010, after MW-8 and MW-10 were purged. The monitoring wells were gauged on September 29, 2010 after MW-10 and MW-11 had been sampled. Monitoring wells MW-10 and MW-11 had not fully recharged and MW-2 through MW-4 were hydraulically disconnected. Therefore, groundwater contours could not be completed and groundwater flow direction was not determined for the third quarter 2010.

Figure 3 provides the bedrock surface elevations for the gravel-siltstone contact for comparison.

SECTIONTWO **Field Activities**

2.1 QUARTERLY MONITORING ACTIVITIES

After measuring the depth to groundwater at each monitoring well, URS conducted groundwater sampling on September 28 and 29, 2010. The rationale for the method used at each monitoring well is described below:

- MW-9 through MW-11 were sampled using low-flow methods.
- MW-8 was sampled using a disposable bailer.
- A surface water sample was collected using a clean disposable cup from the very small stream northwest of the release location.

2.1.1 MW-1 and MW-9 Sorbent Booms

From March 2007 until May 2009, URS placed sorbent booms (booms) in MW-1 and MW-9 as an interim remedial measure. The booms were effective in passively collecting and facilitating degradation of petroleum hydrocarbons within the monitoring wells and allowing for quarterly groundwater sample collection. Since May 2009, MW-1 and MW-9 have been gauged monthly, including during the third quarter 2010 groundwater monitoring event, with no measurable product observed. URS will continue to monitor MW-1 and MW-9 during the monthly groundwater gauging events for product.

2.1.2 MW-9 through MW-11

Low-flow purging rates of 175-200 milliliters per minute (mL/min) were used dependent on the rate of recharge at each monitoring well. The low-flow groundwater sampling forms are included in Appendix A.

In addition to monitoring the water level at each monitoring well during low-flow sampling, temperature, pH, conductivity, oxidation reduction potential (ORP), and dissolved oxygen (DO) of the purged groundwater were measured using an in-line flow-through cell and multi-parameter Horiba U-22XD. The multi-parameter device was calibrated prior the sampling event. During purging, the parameter readings described above were recorded every 3 minutes until the parameters stabilized.

Parameters were considered to be stable when three consecutive readings were within the following guidelines: pH +/- 0.2 pH units, conductivity +/- 3% of reading, ORP +/- 20 millivolts (mV), DO +/- 0.2 milligrams per liter (mg/L).

After monitoring all field parameters, the flow through cell was detached and groundwater samples were collected directly from the pump tubing.

2.1.3 **Surface Water Sample**

The sampling location along the very small stream is located at the base of the alluvial terrace within the Alameda Creek floodplain and is shown on Figure 2. The former sampling point (SW-Creek, sampled prior to the first quarter of 2007) is also provided on Figure 2 for reference. To the west, beyond the current sampling location, the very small stream fans out into the floodplain and surface flow terminates within floodplain grasses. A stream sample was collected on September 28, 2010 using a clean disposable cup.

3.1 ANALYTICAL PROGRAM

The groundwater samples from monitoring wells MW-8 through MW-11 were collected in clean laboratory provided containers. The containers were labeled with unique project specific identification, packed to prevent breakage, and placed on ice in a cooler with a trip blank immediately after collection. The samples were submitted to Lancaster Analytical Laboratory in Lancaster, Pennsylvania, a California Certified Laboratory, under URS chain-of-custody procedures. The samples were analyzed on a standard turn-around-time.

Monitoring wells MW-1 through MW-4 were not sampled because groundwater levels were below the bedrock indicating the monitoring wells were hydraulically disconnected from the water bearing zone.

Groundwater samples collected during quarterly sampling activities were analyzed for the following parameters:

Gasoline Compounds

- Total petroleum hydrocarbons gasoline range organics (TPH-GRO) by N. CA LUFT GRO
- Benzene, toluene, ethylbenzene, xylenes (BTEX) by USEPA Method 8260B

Geochemical Indicator Parameters

- Nitrate and sulfate by USEPA Method 300.0
- Total manganese and dissolved iron by USEPA Method 6010B
- Ferrous iron by SM20 Method 3500-FE B Modified
- Methane by USEPA Method 8015B Modified
- Alkalinity including breakdown products by USEPA Method 310.1
- Total dissolved solids (TDS) by USEPA Method 160.1

Geochemical parameters were not collected from the sample collected from MW-8 due to the amount of water located in the well.

3.2 GROUNDWATER ANALYTICAL RESULTS DISCUSSION

A tabulated summary of the analytical results for the gasoline compounds and associated environmental screening levels (ESLs), for groundwater as a current or potential source of drinking water, developed by the Regional Water Quality Control Board (RWQCB 2008) are presented in Table 3. Complete laboratory analytical results and chain of custody forms are presented as Appendix B.

3.2.1 **Unconfined Water-Bearing Zone Monitoring Wells**

The unconfined water bearing zone wells sampled during the third quarter sampling event included MW-8 through MW-11. The third quarter 2010 groundwater sample results are as follows:

- The MW-8 sample contained TPH-GRO at 74,000 µg/L, benzene at 1,400 µg/L, toluene at 16,000 µg/L, ethylbenzene at 3,200 µg/L, and total xylenes at 16,000 µg/L. Samples results increased since the sampling event in June 2010 due to the small amount of product encountered in the well and the decreased water levels in the aquifer.
- The MW-9 sample contained TPH-GRO at 24,000 µg/L, ethylbenzene at 440 µg/L, and total xylenes at 2,100 µg/L. Benzene and toluene were not detected above laboratory reporting limits. Sample results slightly increased since the June 2010 sampling event, most likely due to the decreased water levels in the aquifer.

The analytical results from MW-10, and MW-11 were below laboratory method detection limits for TPH-GRO and BTEX.

Groundwater analytical results are presented in Table 3.

3.2.2 **Surface Water Sample**

A surface water sample was collected on September 28, 2010. TPH-GRO and BTEX were below method detection limits in the sample collected from the stream (Table 3).

3.2.3 **Analytical Result Comparison to ESLs**

The TPH-GRO analytical results for monitoring wells MW-8 and MW-9 exceeded the TPH-GRO ESL of 100 μg/L with concentrations of 74,000 μg/L, and 24,000 μg/L, respectively.

The benzene analytical result for monitoring well MW-8 exceeded the benzene ESL of 1 µg/L with a concentration of 1,400 µg/L.

The toluene analytical result for monitoring well MW-8 exceeded the toluene ESL of 40 µg/L with a concentration of 16,000 µg/L.

The ethylbenzene analytical results for monitoring wells MW-8 and MW-9 exceeded the ethylbenzene ESL of 30 µg/L with concentrations of 3,200 µg/L and 440 µg/L, respectively.

The total xylenes analytical results for monitoring wells MW-8 and MW-9 exceeded the total xylenes ESL of 20 μg/L with concentrations of 16,000 μg/L and 2,100 μg/L, respectively.

3.2.4 Geochemical Analytical Results

The groundwater samples collected from MW-9 through MW-11 were also analyzed for geochemical parameters. Geochemical parameters were not collected from the sample collected from MW-8 due to the amount of water in the well. Overall, the geochemical parameters indicate a low oxygen (anaerobic) environment. URS will continue to collect geochemical parameters when possible from all monitoring wells. Current and historical geochemical results are presented in Table 4.

3.2.4.1 Oxidation Reduction Potential

ORP in groundwater generally ranges from -400 mV (reducing conditions) to +800 mV (oxidizing conditions). ORP levels in MW-1 ranged from -147 mV to 88.15 mV. ORP levels in MW-8 ranged from -165 mV to -74 mV. ORP levels in MW-9 ranged from -197 mV to 4 mV. In general, reducing conditions appear to exist at the Site.

3.2.4.2 Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in the aerobic biodegradation of petroleum hydrocarbons. DO concentrations in MW-1 ranged from 0.0 milligrams per liter (mg/L) to 2.45 mg/L DO concentrations in MW-8 ranged from 0.0 mg/L to 0.05 mg/L. DO concentrations in MW-9 ranged from 0.0 mg/L to 3.35 mg/L. Recent DO concentrations in all monitoring wells have reached 0.0 mg/L indicating anaerobic conditions at the Site.

3.2.4.3 **Nitrates**

After DO has been depleted in the groundwater, nitrate may be consumed during the anaerobic biodegradation of TPH-g and BTEX. In this process, called denitrification, nitrate is reduced to nitrite and ultimately to nitrogen gas. Reduced nitrate concentrations in a hydrocarbon-impacted area compared to the areas outside the plume suggest that anaerobic biodegradation is occurring under nitrate-reducing conditions. In general, nitrate levels in MW-2 through MW-4, MW-10, and MW-11 are higher than in MW-1, MW-8, and MW-9.

Nitrate concentrations in MW-1 ranged from 0.37 mg/L to 10.3 mg/L; however, overall nitrate concentrations are much lower. Nitrate concentrations in MW-8 ranged from <0.25 mg/L to 0.27 mg/L. Nitrate concentrations in MW-9 ranged from <0.25 mg/L to 0.39 mg/L. The lack of nitrate may indicate that it has either been consumed by the denitrification process or is not naturally present at the Site.

3.2.4.4 Ferric Iron

After both DO and nitrate are depleted in anaerobic groundwater, ferric iron in soil may be consumed by anaerobic biodegradation. In this process, ferric iron in soil is reduced to ferrous iron, which is soluble in water. Therefore, if groundwater has relatively high levels of ferrous iron, anaerobic biodegradation may be occurring.

Ferrous iron concentrations in MW-1 ranged from <0.008 mg/L to 0.22 mg/L. Ferrous iron concentrations in MW-8 ranged from 0.14 mg/L to 7.8 mg/L. Ferrous iron concentrations in MW-9 ranged from 0.099 mg/L to 3.3 mg/L, however, recent ferrous iron concentrations have been decreasing. In general, elevated levels of ferrous iron are present at MW-8 indicating that anaerobic biodegradation is occurring at that location.

3.2.4.5 Sulfate

After DO, nitrate and ferric iron are depleted in anaerobic groundwater; sulfate may be consumed in the anaerobic biodegradation process. Sulfate is reduced to sulfide, which reacts with ferric iron on soil particles to precipitate out as various sulfides of iron and can also lead to higher ferrous iron concentrations. Iron sulfides are re-oxidized to iron oxides in the presence of oxygen in the vadose zone. Any dissolved sulfides are oxidized at the plume fringes where impacted groundwater mixes with nonimpacted groundwater. If reported sulfate concentrations vary inversely with hydrocarbon concentrations, anaerobic biodegradation of fuel hydrocarbons is likely occurring under sulfate-reducing conditions.

Sulfate concentrations in MW-1 ranged from 48.3 mg/L to 108 mg/L. Sulfate concentrations in MW-8 ranged from 1.7 mg/L to 90.2 mg/L, though recent sulfate concentrations have been below 10 mg/L. Sulfate concentrations in MW-9 ranged from 4.5 mg/L to 60.5 mg/L with recent sulfate concentrations above 30 mg/L. The elevated levels of sulfate in the nursery groundwater (MW-1 and MW-9) indicate that sulfate reduction is not occurring in this area. However, lower levels of sulfate in the groundwater at MW-8 (eastern side of Calaveras Road) indicate sulfate reduction may be ongoing.

It is worth noting the background levels of sulfate at MW-2 are slightly higher than those observed at MW-1 and MW-9 further indicating that sulfate reduction is not occurring in the nursery at this time.

3.2.4.6 Methane

The final step in the anaerobic biodegradation process is methanogenesis. When all soluble electron acceptors such as DO, nitrate, ferric iron, and sulfate are depleted, groundwater conditions become

conducive to fermentation, and methane is generated by methanogenesis. The only electron acceptor available for the methanogenesis is carbon from carbon dioxide. This source of carbon dioxide is primarily from the by-products of previous stages of anaerobic biodegradation. Without methanogenesis, a great deal of carbon (in the form of fermentation products) would accumulate in anaerobic environments.

It was observed that the methane levels in nursery monitoring wells MW-1 (0.067 mg/L) and MW-9 (0.012 mg/L) were low with sulfate levels being high, indicating methanogenesis is not occurring. However, the methane level observed at MW-8 (0.65 mg/L) was slightly higher with lower sulfate levels indicating methanogenesis is occurring.

In conclusion, biodegradation parameters indicate that anaerobic conditions exist within the plume and anaerobic biodegradation is occurring within the plume. However, the soluble electron acceptors within the plume are depleted and may be limiting the rate of biodegradation activity. Hence, addition of electron acceptors to stimulate biodegradation activity appears to be a viable remedial approach for the Site.

3.2.4.7 TPH-q and BTEX Concentration Trends

TPH-g and BTEX concentrations have steadily decreased since the pipeline release. The highest concentrations of TPH-g (16,000 mg/L to 74,000 mg/L) were in groundwater at monitoring well MW-9 located in the nursery. Monitoring well MW-9 has had free product in the past but not since early 2007. The highest concentrations of benzene (76 mg/L to 1,500 mg/L) were in groundwater at monitoring well MW-8 located on the eastern side of Calaveras Road. The highest concentrations of toluene (57 mg/L to 7,200 mg/L) were in groundwater at monitoring well MW-8. The highest concentrations of ethylbenzene (210 mg/L to 2,200 mg/L) were in groundwater at monitoring well MW-9. The highest concentrations of total xylenes (1,300 mg/L to 17,000 mg/L) were in groundwater at monitoring well MW-9. MW-1 has had free product in the past but not since late 2008.

SUMMARY OF QA/QC REVIEW PARAMETERS 3.3

The quality assurance/quality control (QA/QC) program includes using standard sample collection procedures in the field and established analytical methodologies in the laboratory. Laboratory and field QC sample results were evaluated to assess the quality of the individual sample results and overall method performance. Analytical performance was evaluated on a "batch QC" basis by evaluating the QC sample results for groups of samples that were prepared and analyzed together. The data evaluation performed included a review of:

- Blanks (laboratory method blanks and trip blanks)
- Spikes (laboratory control sample spikes, matrix control spikes, blank spikes and surrogate spikes)
- Duplicates (laboratory control sample duplicates and field duplicates)
- Sample Integrity (chain-of-custody documentation, sample preservation, and holding time compliance)

Method Holding Times

Analytical methods have prescribed holding times. The method holding time is defined as the maximum amount of time after collection that a sample may be held prior to extraction and/or analysis. Sample integrity becomes questionable for samples extracted and/or analyzed outside of the prescribed holding times due to degradation and/or volatilization of the sample. All samples were analyzed within the appropriate hold times, with the exception of ferrous iron. The ferrous iron hold time of 24 hours for

Method SM20 3500 Fe B was exceeded in samples MW-9, MW-10 and MW-11. The ferrous iron detections in these samples were qualified as estimated and flagged with a "J."

Method Blanks

Method blanks are prepared in the laboratory using deionized, distilled (Reagent Grade Type II) water. Method blanks are extracted and/or analyzed following the same procedures as an environmental sample. Analysis of the method blank indicates potential sources of contamination from laboratory procedures (e.g. contaminated reagents, improperly cleaned laboratory equipment) or persistent contamination due to the presence of certain compounds in the ambient laboratory environment. The QA/QC review identifies method blanks with detections of target analytes and evaluates the effect of the detections on associated sample results. All reported results for the laboratory method blanks were nondetect (less than the laboratory reporting limit), indicating no evidence of contamination from laboratory instrumentation.

Trip Blanks

Trip blanks are samples of deionized, distilled (Reagent Grade Type II) water that are prepared in the laboratory, taken to the field, retained on site throughout sample collection, returned to the laboratory, and analyzed with the environmental samples. The QA/QC review identifies trip blanks with detections of target analytes and evaluates the effect of the detections on associated sample results. Two trip blanks were analyzed during this sampling event. The trip blanks did not have detections of any target analytes, indicating no evidence of contamination during shipment of the laboratory samples.

Matrix Spikes and Laboratory Control Samples

Matrix spikes (MS), matrix spike duplicates (MSD), laboratory control samples (LCS) and laboratory control sample duplicates (LCSD) are analyzed by the laboratory to evaluate the accuracy and precision of the sample extraction and analysis procedures and to evaluate potential matrix interference. Matrix interference, the effect of the sample matrix on the analysis, may partially or completely mask the response of analytical instrumentation to the target analyte(s). Matrix interference may have a varying impact on the accuracy and precision of the extraction and/or analysis procedures, and may bias the sample results high or low.

The MS or MSD is prepared by adding a known quantity of the target compound(s) to a sample. The sample is then extracted and/or analyzed as a typical environmental sample and the results are reported as percent recovery. The spike percent recovery is defined as:

Recovery (%) =
$$\frac{\text{spike analysis result - original sample concentration}}{\text{concentration of spike addition}} \times 100\%$$

MS and MSD recoveries are reviewed for compliance with laboratory-established control limits to evaluate the accuracy of the extraction and/or analysis procedures.

LCS and LCSD are prepared exactly like MS and MSD using a clean control matrix rather than an environmental sample. Typical control matrices include Reagent Grade Type II water and clean sand. LCS and LCSD are used to evaluate laboratory accuracy independent of matrix effects.

The OA/OC review identifies spike recoveries outside laboratory control limits and evaluates the effect of these recoveries on the associated sample results. All reported LCS/LCSD and MS/MSD sample recoveries were within laboratory QC limits, or were outside laboratory QC limits but did not require qualification.

Laboratory Duplicate Analyses

Duplicate analyses are performed by the laboratory to evaluate the precision of analytical procedures. The laboratory may perform MSD and/or LSD analyses.

Precision is evaluated by calculating a relative percent difference (RPD) using the following equation:

RPD (%) =
$$\frac{\left| \text{(Spike Concentration - Spike Duplicate Concentration)}}{\frac{1}{2} \text{(Spike Concentration + Spike Duplicate Concentration)}} \right| \times 100\%$$

The RPD is compared to laboratory-established control limits to evaluate analytical precision. The OA/OC review identifies RPDs outside laboratory control limits and evaluates the effect of these recoveries on the associated sample results. All laboratory duplicate analyses were within laboratory QC limits, or were outside laboratory QC limits but did not require qualification, with the exception of the following:

High duplicate RPD was observed for ferrous iron in the duplicate sample from MW-11. The ferrous iron detection in MW-11 was qualified as estimated and flagged with a "J."

Field Duplicate Analyses

Field duplicate samples are collected in the field and analyzed to evaluate the heterogeneity of the matrices. One field duplicate sample, MW-X (duplicate of MW-8), was collected during this sampling event. The QA/QC review identifies relative percent (%) difference (RPD) greater than 30% for compounds detected in the field sample and corresponding field duplicate sample. The following field sample/duplicate sample pair had RPDs greater than 30%:

RPDs of 36%, 44% and 79% were observed for toluene, xylene and TPH-GRO, respectively, in field sample/duplicate sample pair MW-8/MW-X. The toluene, xylene and TPH-GRO results in samples MW-8 and MW-X were qualified with a "J," indicating heterogeneity of the sample matrix.

Surrogate Recoveries

Surrogates are organic compounds that are similar to the target analytes in terms of their chemical structures and response to the analytical instrumentation, but are not usually detected in environmental samples. Surrogates are added to each environmental and laboratory QC sample to monitor the effect of the matrix on the accuracy of the extraction and/or analysis of organic analytes. Results for surrogate analyses are reported in terms of percent recovery (defined above). Reported recoveries are compared to laboratory-established control limits to evaluate sample-specific accuracy. The QA/QC review identifies surrogate recoveries outside laboratory control limits and evaluates the effect of these recoveries on the sample results. All surrogate recoveries were within laboratory QC limits, or were outside laboratory QC limits but did not require qualification.

EXPLANATION OF ANALYTICAL DATA QUALIFIERS

The analytical data were reviewed and qualified following USEPA guidelines for organic data review (USEPA, 2008) and inorganic data review (USEPA, 2010). A "J" qualifier indicates that the analyte was positively identified, but that the associated numerical value is an approximate concentration of the analyte in the sample. A "UJ" qualifier indicates that the analyte was not detected above the reported sample quantitation limit (i.e., the laboratory reporting limit). However, the reported quantitation limit is

approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. An "R" qualifier indicates that the sample results were rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria, and therefore, the presence or absence of the analyte could not be verified.

SUMMARY OF QA/QC REVIEW FINDINGS

The results of the data evaluation are summarized in the following paragraphs.

The ferrous iron hold time of 24 hours for Method SM20 3500 Fe B was exceeded in samples MW-9. MW-10 and MW-11. The ferrous iron detections in these samples were qualified as estimated and flagged with a "J."

High duplicate RPD was observed for ferrous iron in the duplicate sample from MW-11. The ferrous iron detection in MW-11 was qualified as estimated and flagged with a "J."

RPDs of 36%, 44% and 79% were observed for toluene, xylene and TPH-GRO, respectively, in field sample/duplicate sample pair MW-8/MW-X. The toluene, xylene and TPH-GRO results in samples MW-8 and MW-X were qualified with a "J," indicating heterogeneity of the sample matrix.

Reporting limits were raised due to interference from the sample matrix for Method 8260B analysis in sample MW-9, and the sample was diluted by a factor of 20. As a result, benzene and toluene were non-detect at the elevated laboratory reporting limit of 10 ug/L.

Chain-of-custody documentation is complete and consistent. Samples were preserved as required per method specifications. All samples were analyzed within method specified holding times, except as noted. Based on the data quality evaluation, no systematic problems were detected and the overall data objectives for sample contamination, precision, accuracy, and sample integrity were met. These analytical data are of acceptable quality and may be used for their intended purposes.

SECTIONFOUR **Findings**

Quarterly groundwater monitoring field activities conducted on September 28 and 29, 2010 included measuring the depth to groundwater at monitoring wells MW-1 through MW-4 and MW-8 through MW-11 and collecting analytical samples from groundwater monitoring wells MW-8 through MW-11, and the stream. The findings are as follows:

- Free product was observed in monitoring well MW-8 at a thickness of 0.01 feet during the third quarter 2010 groundwater monitoring activities.
- The groundwater elevations decreased in all monitoring wells since the last sampling event in June 2010. Groundwater elevations collected on September 29, 2010 could not be used to determine the groundwater gradient and flow direction within the nursery's unconfined water bearing zone due to MW-1 through MW-4 being hydraulically disconnected.
- The MW-8 sample contained TPH-GRO at 74,000 µg/L, benzene at 1,400 µg/L, toluene at 16,000 μg/L, ethylbenzene at 3,200 μg/L, and total xylenes at 16,000 μg/L. Sample results increased since the sampling event in June 2010 due to the small amount of product encountered in the well and may be associated with the decreased water levels in the aguifer.
- The MW-9 sample contained TPH-GRO at 24,000 µg/L, ethylbenzene at 440 µg/L, and total xylenes at 2,100 µg/L. Sample results slightly increased since the June 2010 sampling event which is associated with the decreased water levels in the aguifer.
- Groundwater samples collected from monitoring wells MW-10 and MW-11 have remained non-detect since the sampling event in June 2010.
- Other than the initial release (August 2005), the known petroleum hydrocarbon along the hillside has had limited contact with groundwater which is the transportation mechanism for petroleum hydrocarbons to the nursery.

SECTIONFIVE **Recommendations**

Based on the September 28 and 29, 2010 field observations and analytical results URS makes the following recommendations:

- Continue monthly groundwater gauging to assess the effect of seasonal and long-term groundwater elevation fluctuations within the unconfined water-bearing zone.
- Reduce the groundwater sampling schedule from quarterly to semiannual sampling. URS proposes sampling during the first and third quarter because these quarters represent the highest and lowest groundwater levels, respectively.

No evaluation is thorough enough to preclude the possibility that materials that are currently considered hazardous or materials that may be considered hazardous in the future may be present at a site. Since regulatory evaluation criteria are constantly changing, concentrations of contaminants presently considered nonhazardous may, in the future, fall under different regulatory standards and require remediation. Opinions and judgments expressed herein, which are based on understanding and interpretation of current regulatory standards, should not be construed as legal opinions. This document and the information contained herein have been prepared solely for use by CPL, and reliance on this report by third parties will be at such party's sole risk.

TABLE 1 Monitoring Well Groundwater Levels Third Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Screen Interval (feet bgs) ¹	Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thickness (feet)
MW-1	29.3-39.3	2/21/2006	36.34		
		6/7/2006	34.28		
		8/22/2006	37.11	37.08	0.03
		11/14/2006	37.05		
		2/20/2007	36.14		
		6/5/2007	37.21		
		9/12/2007	37.67	37.55	0.12
		12/11/2007	37.49	37.46	0.03
		3/19/2008	35.94		
		5/20/2008	35.51		
		6/5/2008	35.69		
		9/18/2008	37.62	37.61	0.01
		12/15/2008	37.53	37.52	0.01
		3/27/2009	35.24		
		6/9/2009	37.05		
		9/28/2009	37.61		
		12/9/2009	37.56		
		3/9/2010	34.41		
		6/23/2010	37.49		
		9/29/2010	37.36		
MW-2	23.3-38.3	2/21/2006	32.19		
		6/7/2006	30.23		
		8/22/2006	33.11		
		11/14/2006	33.01		
		2/20/2007	31.93		
		6/5/2007	33.23		
		9/12/2007	33.62		
		12/5/2007	33.52		
		3/19/2008	31.76		
		5/20/2008	31.41		
		6/5/2008	31.56		
		9/18/2008	33.65		
		12/15/2008	33.59		
		3/27/2009	31.14		
		6/9/2009	33.08		
		9/28/2009	33.62		
		12/9/2009	33.61		
		3/9/2010	30.36		
		6/23/2010	32.66		
		9/29/2010	33.41		
MW-3	21.3-36.3	2/21/2006	31.97		
		6/7/2006	30.91		
		8/22/2006	34.66		
		11/14/2006	34.71		
		2/20/2007	31.66		
		6/5/2007	34.63		
		9/12/2007	34.71		
		12/11/2007	34.77		
		3/19/2008	31.64		
		5/20/2008	31.26		
		6/5/2008	31.45		
		9/18/2008	34.81		
		12/15/2008	34.79		
		3/27/2009	30.87		
		6/9/2009	34.48		
		9/28/2009	34.82		

TABLE 1 Monitoring Well Groundwater Levels Third Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

MW-3 cont.	Screen Interval (feet bgs) ¹ Date Depth to Groundwater (feet TOC-N) ²		Depth to Product (feet TOC-N)	Product Thickness (feet)	
	21.3-36.3	12/9/2009	34.83		
		3/9/2010	30.60		
		6/23/2010	33.94		
		9/29/2010	34.80		
MW-4	30.7-40.7	2/21/2006	36.72	==	
		6/7/2006	35.76	==	
		8/22/2006	38.79	==	
		11/14/2006	38.84		
		2/20/2007	36.54	==	
		6/5/2007	38.77	==	
		9/12/2007	38.93		
		12/11/2008	39.00		
		3/19/2008	36.29	==	
		5/20/2008	36.27		
		6/5/2008	36.38		
		9/18/2008	39.03		
		12/15/2008	39.03		
		3/27/2009	36.10		
		6/9/2009	38.62		
		9/28/2009	39.04		
		12/9/2009	39.09		
		3/9/2010	35.69		
		6/23/2010	37.41		
		9/29/2010	38.98		
MW-8	14.5-24.5	8/22/2006	18.71		
14144-0	14.0 24.0	11/14/2006	18.73		
		2/20/2007	19.23		
		6/5/2007	20.48		
		9/12/2007	21.47		
		12/11/2007	19.58		
		Q1 2008	NM		
		Q2 2008	NM		
		9/18/2008	21.67		
		12/15/2008	20.73		
		3/27/2009	19.54		
			23.31		
		6/9/2009 9/28/2009	22.58		
		12/9/2009	20.66	20.65	0.01
		3/9/2010	18.97	20.00	0.01
		6/23/2010	19.82		
		9/29/2010	19.62	22.22	0.01
MW o	36.0-46.0	8/22/2006	42.59	42.55	0.01
MW-9	30.0-40.0	11/14/2006	42.59 42.62	42.55	0.04
		2/20/2007	41.91	41.86	0.05
		6/5/2007	42.71	42.69	0.05
		9/12/2007	43.09	42.69	0.02
		12/11/2007	43.09 42.91	43.01	0.08
		3/20/2007	41.76 42.91	41.75	0.01
		12/11/2007			
		5/20/2008	41.33		
		6/5/2008	41.57		
		9/18/2008	43.07		
		12/15/2008	43.00		
		3/27/2009	41.02		
		6/9/2009 9/28/2009	42.53 43.02		

TABLE 1 Monitoring Well Groundwater Levels Third Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Screen Interval (feet bgs) ¹	Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thickness (feet)
MW-9	36.0-46.0	12/9/2009	42.99		
cont.		3/9/2010	39.97		
		6/23/2010	41.94		
		9/29/2010	42.81		
MW-10	40.3-55.3	9/5/2007	54.86		
		12/12/2007	46.84		
		3/20/2008	44.41		
		5/20/2008	44.09		
		6/5/2008	43.67		
		9/18/2008	45.89		
		12/15/2008	45.91		
		3/27/2009	43.82		
		6/9/2009	45.19		
		9/28/2009	45.94		
		12/9/2009	46.02		
		3/9/2010	42.62		
		6/23/2010	44.52		
		9/29/2010	45.89		
MW-11	37.0-47.0	9/6/2007	Dry		
		12/12/2007	42.73		
		3/20/2008	37.29		
		5/20/2008	37.06		
		6/4/2008	37.18		
		9/18/2008	38.97		
		12/15/2008	39.36		
		3/27/2009	36.87		
		6/9/2009	38.30		
		9/28/2009	39.21		
		12/9/2009	39.73		
		3/9/2010	36.28		
		6/23/2010	37.72		
		9/29/2010	44.84		

Notes:

NM - Not measured

- 1. Screen intervals measured from feet below ground surface (feet bgs)
- 2. Groundwater and product levels measured from top of casing north (TOC-N).
- 3. MW-5 through MW-7 abandoned 6/23/08.

TABLE 2 Monitoring Well Groundwater Elevations Third Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

	Date	Ground Surface	Top of Casing	Date	Groundwater	Product	Product
Well ID	Completed	Elevation	Elevation	Measured	Elevation	Elevation	Thickness
	Completed	(feet msl) ¹	(feet msl) ^{1, 2}	Mcasarca	(feet msl) ¹	(feet msl) ¹	(feet)
MW-1	10/20/2005	328.49	328.04	2/21/2006	291.70		
				6/7/2006	293.76		
				8/22/2006	290.93	290.96	0.03
				11/14/2006	290.99		
				2/20/2007	291.90		
				6/5/2007	290.83		
				9/12/2007	290.37		
				12/11/2007	290.55	290.58	0.03
				3/19/2008	292.10		
				5/20/2008	292.53		
				6/5/2008	292.35		
				9/18/2008	290.42	290.43	0.01
				12/15/2008	290.51	290.52	0.01
				3/27/2009	292.80		
				6/9/2009	290.99		
				9/28/2009			
					290.43		
				12/9/2009	290.48		
				3/9/2010	293.63		
				6/23/2010	290.55		
	40/04/0005	224.25	224.45	9/28/2010	290.68		
MW-2	10/21/2005	324.85	324.15	2/21/2006	291.96		
				6/7/2006	293.92		
				8/22/2006	291.04		
				11/14/2006	291.14		
				2/20/2007	292.22		
				6/5/2007	290.92		
				9/12/2007	290.53		
				12/5/2007	290.63		
				3/19/2008	292.39		
				5/20/2008	292.74		
				6/5/2008	292.59		
				9/18/2008	290.50		
				12/15/2008	290.56		
				3/27/2009	293.01		
				6/9/2009	291.07		
				9/28/2009	290.53		
				12/9/2009	290.54		
				3/9/2010	293.79		
				6/23/2010	291.49		
				9/28/2010	290.74		
MW-3	10/21/2005	326.05	325.65	2/21/2006	293.68		
11117-3	10/21/2003	J20.03	525.05	6/7/2006	294.74		
				8/22/2006	290.99		
		i	1				
				11/11/2000	200 0 4		
				11/14/2006	290.94		
				2/20/2007	293.99		
				2/20/2007 6/5/2007	293.99 291.02		
				2/20/2007 6/5/2007 9/12/2007	293.99 291.02 290.94		
				2/20/2007 6/5/2007 9/12/2007 12/11/2007	293.99 291.02 290.94 290.88		
				2/20/2007 6/5/2007 9/12/2007 12/11/2007 3/19/2008	293.99 291.02 290.94 290.88 294.01		
				2/20/2007 6/5/2007 9/12/2007 12/11/2007	293.99 291.02 290.94 290.88 294.01 294.39	 	
				2/20/2007 6/5/2007 9/12/2007 12/11/2007 3/19/2008	293.99 291.02 290.94 290.88 294.01	 	
				2/20/2007 6/5/2007 9/12/2007 12/11/2007 3/19/2008 5/20/2008	293.99 291.02 290.94 290.88 294.01 294.39	 	
				2/20/2007 6/5/2007 9/12/2007 12/11/2007 3/19/2008 5/20/2008 6/5/2008	293.99 291.02 290.94 290.88 294.01 294.39 294.20	 	

TABLE 2 Monitoring Well Groundwater Elevations Third Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

W II IB	Date	Ground Surface	Top of Casing	Date	Groundwater	Product	Product
Well ID	Completed	Elevation	Elevation	Measured	Elevation	Elevation	Thickness
		(feet msl) ¹	(feet msl) ^{1, 2}		(feet msl) ¹	(feet msl) ¹	(feet)
MW-3				6/9/2009	291.17		
cont.				9/28/2009	290.83		
				12/9/2009	290.82		
				3/9/2010	295.05		
				6/23/2010	291.71		
				9/28/2010	290.85		
MW-4	1/31/2006	329.97	329.67	2/21/2006	292.95		
				6/7/2006	293.91		
				8/22/2006	290.88		
				11/14/2006	290.83		
				2/20/2007	293.13		
				6/5/2007	290.90		
				9/12/2007	290.74		
				12/11/2007	290.67		
				3/19/2008	293.38		
				5/20/2008	293.40		
				6/5/2008	293.29		
				9/18/2008	290.64		
				12/15/2008	290.64		
				3/27/2009	293.57		
				6/9/2009	291.05		
				9/28/2009	290.63		
				12/9/2009	290.58		
				3/9/2010	293.98		
				6/23/2010	292.26		
				9/28/2010	290.69		
MW-8	8/15/2006	335.23	333.93	8/22/2006	315.22		
_				11/14/2006	315.20		
				2/20/2007	314.70		
				6/5/2007	313.45		
				9/12/2007	312.46		
				12/11/2007	314.35		
				Q1 2008	NM		
				Q2 2008	NM		
				9/18/2008	312.26		
				12/15/2008	313.20		
				3/27/2009	314.39		
				6/9/2009	310.62		
				9/28/2009	311.35		
				12/9/2009	313.27	313.28	0.01
				3/9/2010	314.96		
				6/23/2010	314.11		
				9/28/2010	311.70	311.71	0.01
MW-9	8/16/2006	333.49	333.07	8/22/2006	290.48	290.52	0.01
1V1 V V - 3	0/10/2000	555.45	555.07	11/14/2006	290.45	290.53	0.04
				2/20/2007	291.16	290.33	0.05
				6/5/2007	290.36	290.38	0.03
				9/12/2007	289.98	290.36	0.02
				12/11/2007	290.16	290.00	
				3/20/2007	291.31		
				12/11/2007	290.16		
				5/20/2008	291.74		
				6/5/2008	291.50		
				9/18/2008	290.00		
	Ī			12/15/2008	290.07		

TABLE 2 Monitoring Well Groundwater Elevations Third Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Date Completed	Ground Surface Elevation (feet msl) ¹	Top of Casing Elevation (feet msl) ^{1, 2}	Date Measured	Groundwater Elevation (feet msl) ¹	Product Elevation (feet msl) ¹	Product Thickness (feet)
MW-9				3/27/2009	292.05		
cont.				6/9/2009	290.54		
				9/28/2009	290.05		
				12/9/2009	290.08		
				3/9/2010	293.10		
				6/23/2010	291.13		
				9/28/2010	290.26		
MW-10	9/5/2007	336.55	335.89	9/12/2007	281.03		
				12/12/2007	289.05		
				3/20/2008	291.48		
				5/20/2008	291.80		
				6/5/2008	292.22		
				9/18/2008	290.00		
				12/15/2008	289.98		
				3/27/2009	292.07		
				6/9/2009	290.70		
				9/28/2009	289.95		
				12/9/2009	289.87		
				3/9/2010	293.27		
				6/23/2010	291.37		
				9/28/2010	290.00		
MW-11	9/6/2007	330.29	329.89	9/12/2007	Dry		
				12/12/2007	287.16		
				3/20/2008	292.60		
				5/20/2008	292.83		
				6/5/2008	292.71		
				9/18/2008	290.92		
				12/15/2008	290.53		
				3/27/2009	293.02		
				6/9/2009	291.59		
				9/28/2009	290.68		
				12/9/2009	290.16		
				3/9/2010	293.61		
				6/23/2010	292.17		
				9/28/2010	285.05		

Notes:

NM - Not measured

- 1. All elevations displayed in feet above average mean sea level (msl).
- $2. \ Groundwater \ and \ product \ elevations \ calculated \ from \ depths \ as \ measured \ from \ top \ of \ casing \ -north.$

MW-1 through MW-3 surveyed on October 31, 2005.

MW-4 through MW-7 surveyed on February 14, 2006.

MW-8 and MW-9 surveyed on November 10, 2006.

MW-10 and MW-11 surveyed on September 13, 2007.

MW-5 through MW-7 abandoned 6/23/08.

TABLE 3
Summary of Groundwater Analytical Results
Gasoline Compounds
Third Quarter 2010 Groundwater Monitoring Report
Chevron Sunol Pipeline

			Ga	asoline Compound	ds	
Well ID	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL ¹⁾		100	1	40	30	20
MW-1	2/22/2006	57,000	38	2,700	3,000	8,700
	6/8/2006	37,000	10	330	120	8,200
	Q3 2006 ³⁾	NS	NS	NS	NS	NS
	11/15/2006	38,000	14	110	38	5,900
	2/21/2007	18,000	4	7	8	1,600
	6/5/2007	17,000	3	7	4	1,100
	Q3 2007 ³⁾	NS	NS	NS	NS	NS
	Q4 2007 ³⁾	NS	NS	NS	NS	NS
	3/19/2008	12,000	0.8	1	1	320
	6/6/2008	8,200	1	2	3	150
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/31/2009	3,700	<0.5	1	1	44
	6/10/2009	5,000	<0.5	<0.5	0.7	13
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
	3/10/2010	3,800	<0.5	<0.5	<0.5	4
	Q2 2010 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2010 ⁴⁾	NS	NS	NS	NS	NS
MW-2	2/21/2006 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5
	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
=	8/23/2006	<50	0.5	<0.5	<0.5	<0.5
=	11/14/2006	<50	0.7	<0.5	<0.5	<0.5
	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS	NS	NS	NS	NS
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2008 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/27/2009	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
 	Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
	3/10/2010	<50	<0.5	<0.5	<0.5	2
	6/23/2010	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2010 ⁴⁾	NS	NS	NS	NS	NS
MW-3	2/21/2006	<50	<0.5	<0.5	<0.5	<0.5
	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/23/2006	170	<0.5	<0.5	<0.5	<0.5
[11/14/2006	86	<0.5	1	<0.5	<0.5
	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS	NS	NS	NS	NS
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5

TABLE 3
Summary of Groundwater Analytical Results
Gasoline Compounds
Third Quarter 2010 Groundwater Monitoring Report
Chevron Sunol Pipeline

Well ID Date TPH-GRO Benzene Toluene Ethylbenzene Xylenes (µg/L)				Ga	soline Compound	ls	
Cont. Cont	Well ID	Date	TPH-GRO				Xylenes
MW-3 6/5/2008 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
cont. Q3 2008 ⁴⁾ NS	ESL ¹⁾		100	1	40	30	20
Q4 2008 ⁴⁰	MW-3	6/5/2008	<50	<0.5	<0.5	<0.5	<0.5
Q4 2008 ⁴⁰	cont.	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
3/31/2009 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.		Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
Q3 2009 NS			<50	<0.5	<0.5	<0.5	<0.5
Q4 2009 NS		Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
3/9/2010		Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
3/9/2010		Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
MW-4		3/9/2010					
MW-4		Q2 2010 ⁴⁾	NS	NS	NS	NS	NS
MW-4			NS	NS	NS	NS	NS
8/23/2006	MW-4		<50	<0.5	<0.5	<0.5	<0.5
11/15/2006 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0		6/7/2006			<0.5	<0.5	<0.5
2/21/2007 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.							-
Q2 2007 ⁴⁾ NS							
Q3 2007 ⁴⁾ NS							
Q4 2007 ⁴⁾ NS							
3/19/2008							NS
Color					NS		
Q3 2008 ⁴ NS							
Q4 2008 ⁴ NS							
3/31/2009 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.		Q3 2008 ⁴⁾					
Q2 2009 NS							
Q3 2009 NS							
Q4 2009 NS							
3/9/2010							
MW-8/MW-X							
NS							
MW-8/MW-X							
11/16/2006 990 76 80 69 190 2/20/2007 2,000 180 57 170 74 6/6/2007 3,600 340 92 370 210 9/12/2007 4,200 470 230 630 320 12/11/2007 4,900 350 300 490 650 Q1 2008 ⁵⁾ NS NS NS NS NS Q2 2008 ⁵⁾ NS NS NS NS NS 9/18/2008 ²⁾ 11,000 / 9,200 740 / 690 320 / 290 790 / 720 2,600 / 2,100 12/15/2008 12,000 810 920 880 3,300 3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 ⁴⁾ NS NS NS NS NS NS							
2/20/2007 2,000 180 57 170 74 6/6/2007 3,600 340 92 370 210 9/12/2007 4,200 470 230 630 320 12/11/2007 4,900 350 300 490 650 Q1 2008 ⁵⁾ NS NS NS NS NS Q2 2008 ⁵⁾ NS NS NS NS NS NS 9/18/2008 ²⁾ 11,000 / 9,200 740 / 690 320 / 290 790 / 720 2,600 / 2,100 12/15/2008 12,000 810 920 880 3,300 3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 ⁴⁾ NS NS NS NS NS NS Q3 2009 ⁴⁾ NS NS NS NS NS NS	MW-8/MW-X				·		·
6/6/2007 3,600 340 92 370 210 9/12/2007 4,200 470 230 630 320 12/11/2007 4,900 350 300 490 650 Q1 2008 ⁵⁾ NS NS NS NS NS Q2 2008 ⁵⁾ NS NS NS NS NS NS 9/18/2008 ²⁾ 11,000 / 9,200 740 / 690 320 / 290 790 / 720 2,600 / 2,100 12/15/2008 12,000 810 920 880 3,300 3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 ⁴⁾ NS NS NS NS NS Q3 2009 ⁴⁾ NS NS NS NS NS							
9/12/2007 4,200 470 230 630 320 12/11/2007 4,900 350 300 490 650 Q1 2008 ⁵⁾ NS NS NS NS NS NS Q2 2008 ⁵⁾ NS NS <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
12/11/2007 4,900 350 300 490 650 Q1 2008 ⁵⁾ NS							
Q1 2008 ⁵⁾ NS NS NS NS NS Q2 2008 ⁵⁾ NS NS NS NS NS 9/18/2008 ²⁾ 11,000 / 9,200 740 / 690 320 / 290 790 / 720 2,600 / 2,100 12/15/2008 12,000 810 920 880 3,300 3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 ⁴⁾ NS NS NS NS Q3 2009 ⁴⁾ NS NS NS NS							
Q2 2008 ⁵⁾ NS NS NS NS 9/18/2008 ²⁾ 11,000 / 9,200 740 / 690 320 / 290 790 / 720 2,600 / 2,100 12/15/2008 12,000 810 920 880 3,300 3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 ⁴⁾ NS NS NS NS NS Q3 2009 ⁴⁾ NS NS NS NS NS							
9/18/2008 ²⁾ 11,000 / 9,200 740 / 690 320 / 290 790 / 720 2,600 / 2,100 12/15/2008 12,000 810 920 880 3,300 3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 4) NS NS NS NS NS Q3 2009 4) NS NS NS NS							
12/15/2008 12,000 810 920 880 3,300 3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 4) NS NS NS NS NS NS Q3 2009 4) NS NS NS NS NS NS							
3/27/2009 29,000/29,000J 1,500/1,200 7,200/4,500 1,200/1,100 4,700/4,100 Q2 2009 4) NS NS NS NS NS Q3 2009 4) NS NS NS NS NS							
Q2 2009 4) NS NS NS NS Q3 2009 4) NS NS NS NS							·
Q3 2009 ⁴⁾ NS NS NS NS							
							1,800 / 1,800
6/24/2010 14,000 630 680 870 2,500							
							16,000 / 25,000 J

TABLE 3
Summary of Groundwater Analytical Results
Gasoline Compounds
ird Quarter 2010 Groundwater Monitoring Report

Gasoline Com	
	our
Well ID Date TPH-GRO Benzene Toluene	,
(μg/L) (μg/L) (μg/L)	

			Ga	soline Compound		
Well ID	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL ¹⁾		100	1	40	30	20
MW-9	Q3 2006 ³⁾	NS	NS	NS	NS	NS
	11/15/2006	74,000	480	12,000	2,200	17,000
	Q1 2007 ³⁾	NS	NS	NS	NS	NS
	Q2 2007 ³⁾	NS	NS	NS	NS	NS
	Q3 2007 ³⁾	NS	NS	NS	NS	NS
·	12/11/2007	48,000	62	5,400	1,700	12,000
	Q1 2008 ³⁾	NS	NS	NS	NS	NS
	6/6/2008	31,000	5	1,000	1,300	9,000
	9/18/2008	25,000	6	610	800	4,800
	12/16/2008	34,000	6	750	930	6,000
	3/31/2009	20,000	3	100	460	3,200
	6/10/2009	27,000	<3	66	610	4,100
	Q3 2009 ³⁾	NS	NS	NS	NS	NS
	12/10/2009	20,000	3	85	460	2,800
	3/10/2010	18,000	<3	17	250	1,700
	6/24/2010	16,000	0.9	7	210	1,300
	9/29/2010	24,000	<10	<10	440	2,100
MW-10/MW-X 7)	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	12/14/2007	<50	<0.5	<0.5	<0.5	<0.5
	3/20/2008	<50	0.9	<0.5	<0.5	<0.5
	6/6/2008			<0.5	<0.5	<0.5
	9/18/2008	<50	<0.5	<0.5	<0.5	<0.5
	12/15/2008	<50	<0.5	<0.5	<0.5	<0.5
	3/27/2009	52	<0.5	0.7	<0.5	<0.5
	6/10/2009	<50 <50/<50	<0.5 <0.5/<0.5	1 <0.5/<0.5	<0.5 <0.5/<0.5	<0.5 <0.5/<0.5
-	9/28/2009 12/10/2009	<50/<50 540	<0.5/<0.5	<0.5/<0.5 2	<0.5/<0.5	<0.5/<0.5 23
-	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
•	6/23/2010	<50 <50	<0.5	<0.5	<0.5	<0.5
•	9/29/2010	<50 <50	<0.5	<0.5	<0.5	<0.5
MW-11	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	12/14/2007	<50	<0.5	<0.5	<0.5	<0.5
-	3/20/2008 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5
-	6/6/2008	<50	<0.5	<0.5	<0.5	<0.5
-	9/18/2008	<50	<0.5	<0.5	<0.5	<0.5
	12/15/2008	<50	<0.5	<0.5	<0.5	<0.5
	3/27/2009	<50	<0.5	<0.5	<0.5	<0.5
·	6/10/2009	59	<0.5	2	<0.5	3
	9/29/2009	<50	<0.5	<0.5	<0.5	<0.5
	12/10/2009	66	<0.5	<0.5	<0.5	3
	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
	6/23/2010	<50	<0.5	<0.5	<0.5	<0.5
	9/29/2010	<50	<0.5	<0.5	<0.5	<0.5
SW-Creek	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/22/2006	<50	<0.5	<0.5	<0.5	<0.5
	11/15/2006	<50	<0.5	<0.5	<0.5	<0.5
	11/15/2006	<50	<0.5	<0.5	<0.5	<0.5

TABLE 3

Summary of Groundwater Analytical Results Gasoline Compounds Third Quarter 2010 Groundwater Monitoring Report

Chevron Sunol Pipeline

			Ga	soline Compound	ds	
Well ID	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL ¹⁾		100	1	40	30	20
Stream	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2007	<50	<0.5	<0.5	<0.5	< 0.5
	9/12/2007	<50	<0.5	<0.5	<0.5	<0.5
	1/25/2008	<50	<0.5	<0.5	<0.5	<0.5
	3/20/2008	<50	<0.5	<0.5	<0.5	< 0.5
	6/5/2008	<50	<0.5	<0.5	<0.5	< 0.5
	9/18/2008	<50	<0.5	<0.5	<0.5	< 0.5
	12/15/2008	<50	<0.5	<0.5	<0.5	<0.5
	3/31/2009	<50	<0.5	<0.5	<0.5	< 0.5
	6/9/2009	<50	<0.5	<0.5	<0.5	< 0.5
	Q3 2009 ⁶⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁶⁾	NS	NS	NS	NS	NS
	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
	6/24/2010	<50	<0.5	<0.5	<0.5	<0.5
	9/28/2010	<50	<0.5	<0.5	<0.5	<0.5

Notes:

Bold values exceed laboratory reporting limits.

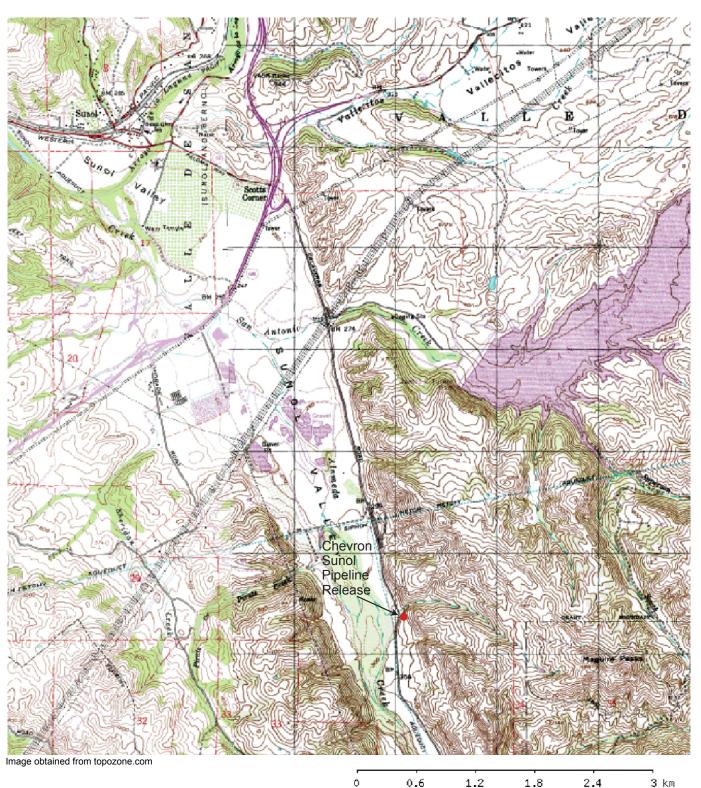
J qualifier - The reported value is the approximate concentration of the analyte in the sample due to sample heterogeneity. µg/L - micrograms per liter

NS - Not Sampled

TPH-GRO - Total Petroleum Hydrocarbons as Gasoline Range

- 1) Environmental Screening Levels (ESLs) for groundwater as a current or potential source of drinking water were obtained from the San Francisco Regional Water Quality Control Board (RWQCB) Interim Final: Table A, May 2008.
- 2) Both sample and duplicate concentrations from well location are displayed.
- 3) Sample not collected during quarterly monitoring due to the presence of measurable free product.
- 4) Sample not collected during quarterly monitoring because well is not hydraulically connected to unconfined water-bearing zone.
- 5) Sample not collected due to extreme overhead hazards posed by dead trees on the 80-90% grade directly uphill from the sampling location.
- 6) Sample not collected during quarterly monitoring due to the stream sample location being dry.
- 7) Duplicate sampled collected from MW-10 during the third quarter 2009 sampling event because

MW-8 was not hydraulically connected to the water bearing zone.


TABLE 4 Summary of Groundwater Analytical Results Geochemical Indicators and Other Parameters Third Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

						Ge	ochemical India	cators and	Other Para	meters			
	•	DO ¹⁾	ORP ¹⁾	Nitrate	Manganese	Ferrous Iron	Dissolved Iron	Sulfate	Methane	pH ¹⁾	TDS	Alkalinity to pH 4.5	Alkalinity to pH 8.3
Well ID	Date	(mg/L)	(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)	(mg/L) as CaCO ₃	(mg/L) as CaCO ₃
MW-1	6/8/2006	0.28	88.15	2.6	0.116	<0.008	<0.052	48.3	<0.002	6.62	494	317	<0.46
	Q3 2006	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾
	11/15/2006	4.87 ⁶⁾	25	0.37 J	1	0.22	0.079	108	<0.002	6.67	882	597	<0.46
	3/31/2009	2.45	-147	10.3J	0.534	0.12	< 0.052	62.4	0.051	6.61	650	343	<0.46
	6/10/2009	0.00	-115	0.42	0.576	0.2	< 0.052	72.6	<0.005	7.07	614	422	<0.46
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/10/2010	0.00	-118	4 J	0.431	<0.01	<0.0522	56.9	0.067	6.79	551	347	<0.46
	Q2 2010	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
MW-2	Q3 2010	NM ⁷⁾		NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
19199-2	6/7/2006 8/23/2006	NR ³⁾ 0.32	36.43 25.69	11.9 7	0.003 0.024	<0.008	<0.052 <0.052	47.5 121	<0.002 0.005	6.56 6.63	465 811	286 470	<0.46 <0.46
	11/14/2006	0.32	220.84	4	0.024	0.021	<0.052 UJ	126 J	0.003	6.72	867	530	<0.46
	3/27/2009	5.47	-86	18.2	0.017	0.036J	<0.052	65	<0.01	6.62	642	347	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/10/2010	2.81	38	13 J	0.0182	0.35	<0.0522	54.9	<0.005	6.89	532	322	<0.46
	6/23/2010	2.18	173	13.2	0.103	4	<0.0522	50.9	<0.005	11.51	524	319	<0.46
MW-3	Q3 2010	NM ⁷⁾ 0.37	NM ⁷⁾	NM ⁷⁾ 10.9	NM ^{/)}	NM ⁷⁾	NM ⁷⁾	NM ⁽⁾	NM ⁷⁾	NM ⁽⁾	NM ⁷⁾ 446	NM ⁷⁾ 274	NM ⁷⁾ <0.46
IVIVV-3	6/7/2006 8/23/2006	0.37	31.23 -1.8	10.9 <0.25	0.005 0.368	<0.008	<0.052 <0.052	45.1 26.3	<0.002 1.5	6.56 6.6	711	274 421	<0.46 <0.46
	11/14/2006	0.12	-17.57	NM ⁵⁾	NM ⁵⁾	0.24 NM ⁵⁾	NM ⁵⁾	NM ⁵⁾	0.42	6.95	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾
	3/31/2009	0.00	48	22.2J	0.0017	0.08	<0.052	57.7	<0.01	6.75	688	320	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
•	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/9/2010	1.75	182	12.6 J	0.0093	0.064	< 0.0522	54.4	<0.005	6.78	496	293	<0.46
	Q2 2010	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q3 2010	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
MW-4	6/7/2006	0.28	29.57	9.2	0.02	0.059	<0.052	60.2	<0.002	6.65	423	282	<0.46
	8/23/2006	NR ³⁾ 3.46 ⁶⁾	-22.49	<0.25	0.226	0.7	<0.052	78.4	0.003	6.62	590	396	<0.46
	11/15/2006 3/31/2009	3.46	106 5	0.34 J 19.5J	0.137 0.0406	0.47 0.14	<0.052 <0.052	90.3 83.7	0.003 <0.01	6.74 6.64	672 631	490 323	<0.46 <0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	0.0400 NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/9/2010	0.05	123	10.5 J	0.0343	0.13	<0.0522	89.8	<0.005	6.74	560	312	<0.46
	6/23/2010	0.03	164	9.4	0.0295	0.034	< 0.0522	62.5	<0.005	11.03	491	297	<0.46
	Q3 2010	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
MW-8	8/24/2006	NM ²⁾	NM ²⁾	<0.25	0.171	0.14	< 0.052	90.2	<0.002 UJ	NM ²⁾	563	362	<0.46
	11/16/2006	0.05	-74	<0.25	0.123	0.8	<0.052	78.6 J	0.002	7.22	564	350	<0.46
	3/27/2009	6.886)	-113	0.27	0.553	2.5J	<0.052	15.5	0.13	6.74	639	467	<0.46
	Q2 2009 12/10/2009	NM ⁷⁾ 0.04	NM ⁷⁾ -165	NM ⁷⁾ <0.25 UJ	NM ⁷⁾ 0.549 J	NM ⁷⁾ <2.5	NM ⁷⁾ 0.06	NM ⁷⁾ 2 J	NM ⁷⁾ <0.2	NM ⁷⁾ 6.94	NM ⁷⁾ 576	NM ⁷⁾ 445	NM ⁷⁾ <0.46
	3/10/2009	0.04	-85	<0.25 03	0.334	3	<0.0522	1.7	0.33	6.89	587	453	<0.46
	6/24/2010	5.83 ⁶⁾	-84	<0.25	1.08	7.8	0.0949 J+	6.1	0.65	6.72	679	502	<0.46
	Q3 2010	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾	NM ⁸⁾
MW-9	Q3 2006	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾
	11/15/2006	3.01 ⁶⁾	4	<0.25 UJ	4.41	1.2	0.496	29.5	0.009	6.92	836	657	<0.46
	3/31/2009	3.35	-179	0.39J	3.2	0.099	<0.052	60.5	0.012	6.59	632	419	<0.46
	6/10/2009	0.00	-141	<0.25	3.01	1.7	<0.052	46.4	<0.005	6.98	622	468	<0.46
	12/10/2009 3/10/2010	1.43 0.00	-188 -197	<0.25 UJ <0.25	4.39 J 2.94	3.3 1.7	2.54 <0.0522	4.5 J 40.9	<0.2 0.046	6.6 6.84	734 596	620 448	<0.46 <0.46
	6/24/2010	0.00	-197	<0.25	2.46	1.7	<0.0522 0.131 J+	33.5	0.046	6.61	489	380	<0.46
	9/29/2010	0.70	-231	<0.25	3.83	2.2 J	0.082	4.5	0.012	6.68	627	549	<0.46
MW-10	3/27/2009	3.65	48	8.2	0.367	0.21J	< 0.052	155	0.28	6.69	1,200	645	<0.46
	6/10/2009	0.37	109	<0.25	0.767	0.8	<0.052	133	2.30	7.20	1,100	623	<0.46
	12/10/2009	0.06	-74	0.33 J	0.964 J	10.90	<0.052	640 J	<0.2	6.85	1,580	512	<0.46
	3/9/2010 6/23/2010	1.52 0.00	105 79	13.9 J 0.68	0.0357 0.2650	0.054 0.200	<0.052 <0.0522	63.6 136.0	0.19 0.94	6.89 6.76	596 1000	349 604	<0.46 <0.46
	9/29/2010	0.87	22	<0.25	0.2650	5.0 J	<0.0522	136.0	0.550	6.89	998	610	<0.46
MW-11	3/27/2009	5.86	53	15.3	0.114	0.058J	<0.0522	134	0.06	6.61	742	365	<0.46
	6/10/2009	0.37	44	NM	0.415	NM	NM	NM	0.12	7.16	NM	NM	NM
	12/10/2009	1.01	-50	0.48 J	0.804 J	3.6	<0.052	151 J	<0.2	6.84	1720	556	<0.46
	3/9/2010	3.68	133	11.9 J	0.0176	0.087	<0.0522	91.7	0.039	6.73	615	314	<0.46
	6/23/2010 9/28/2010	0.45 1.16	-2 7	0.4 <0.25	0.2420 0.320	0.150 0.3 J	<0.0522 <0.0522	437 457	0.29 0.350	6.70 6.99	1,300 1,310	479 458	<0.46 <0.46
	312012010	1.10	,	₹0.20	0.320	0.5 5	<0.00ZZ	401	0.330	0.55	1,310	400	<u.4u< th=""></u.4u<>

DO = Dissolved oxygen NM = Not measured ORP = Oxygen reduction potential NR = Not Reported TDS = Total dissolved solids J = Estimated result CaCO₃ = Calcium Carbonate UJ = Estimated result

Note: MW-5, MW-6, and MW-7 were destroyed on 6/23/08

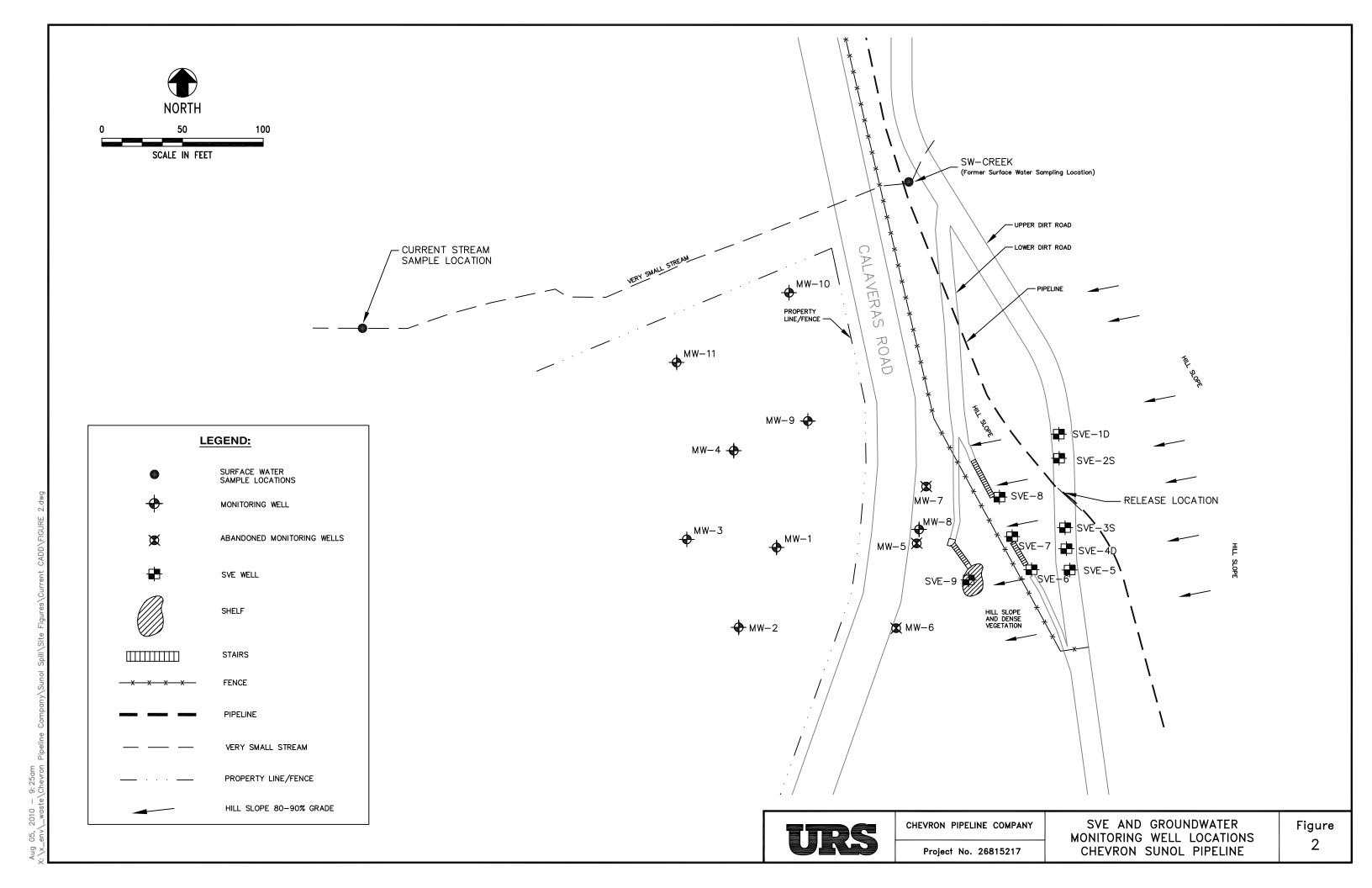
- 1) DO, ORP, and pH values were obtained in the field using a flow-through cell and a multi-parameter meter unless otherwise noted.
- 2) Field data was not collected for DO, ORP, and pH because groundwater was removed from the well without using the in-line flow-through cell due to insufficient recharge.
- 3) DO meter did not appear to be functioning correctly.
 4) The well was not sampled and parameters were not measured due to the presence of free product at this location.
- 5) The well was purged dry and recharge was insufficient to collect groundwater for geochemical analysis.
- 6) DO readings were artificially high because purge water was poured into the multi-parameter meter from a bailer.
 7) Sample not collected during quarterly monitoring because well is not hydraulically connected to unconfined water-bearing zone.
 8) Sample not collected because well dewatered before 1 well volume was collected

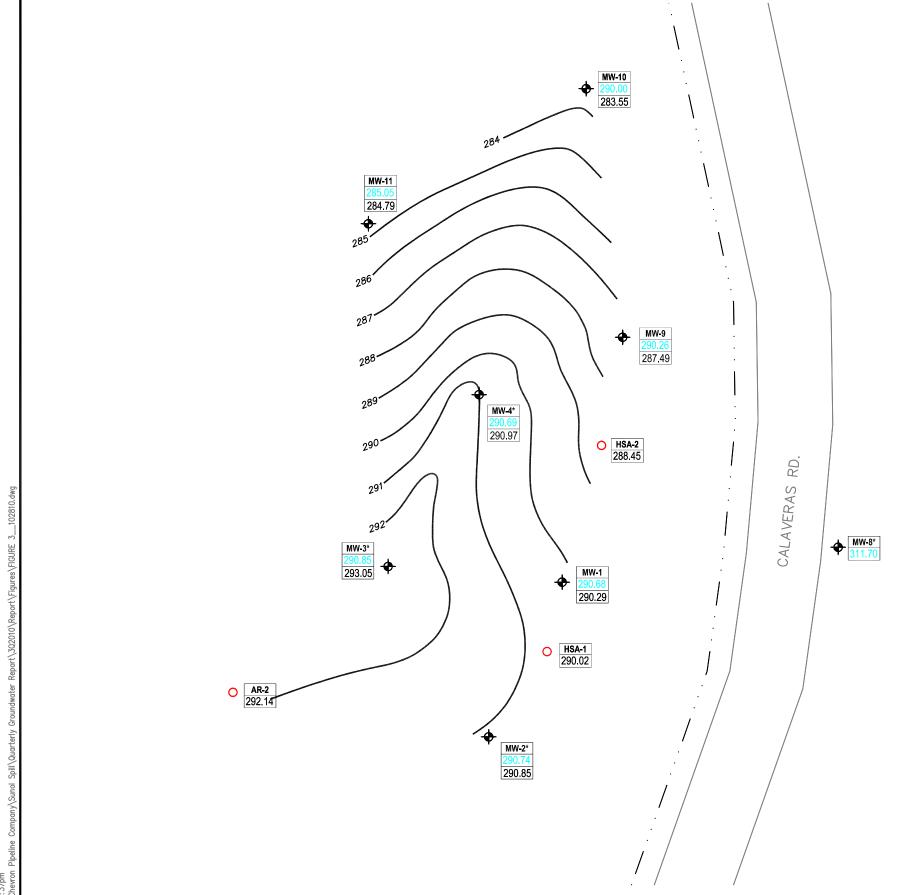
N

MAP REFERENCE:

PORTION OF U.S.G.S. QUANDRANGLE MAP 71/2 MINUTE SERIES (TOPOGRAPHIC) LA COSTA VALLEY QUADRANGLE

ó	0.6	1.2	1.8	2.4	3 km
ó	0.4	0.8	1.2	1.6	 2 mi

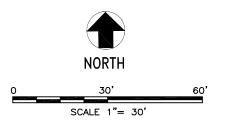



Chevron Pipeline Company


Project No. 26815217

SITE VICINITY MAP CHEVRON SUNOL PIPELINE SUNOL, CALIFORNIA

Figure 1



NOTES:

- 1. ELEVATIONS IN FEET ABOVE AVERAGE MEAN SEA LEVEL (msl).
- 2. GROUNDWATER ELEVATIONS FOR MW-1 THROUGH MW-4 AND MW-8 THROUGH MW-11, AS MEASURED ON SEPTEMBER 29, 2010.
- 3. BEDROCK ELEVATION DATA OBTAINED FROM THE BORING LOGS OF MW-1. THROUGH MW-4, MW-9 THROUGH MW-11, HSA-1, HSA-2,
- 4. THE BEDROCK ELEVATIONS SHOWN REPRESENT THE OVERBURDEN CONTACT WITH THE WEATHERED SILTSTONE/CLAYSTONE BEDROCK UNIT (POSSIBLY CRETACEOUS-AGE CLAY SHALE OF THE PANOCHE
- 5. GROUNDWATER MONITORING WELLS MW-1 THROUGH MW-4 WERE NOT ACCESSIBLE ON SEPTEMBER 28, 2010 DUE TO SPRAYING OF PESTICIDES IN THE AREA. THE MONITORING WELLS WERE GAUGED ON SEPTEMBER 29, 2010 AFTER MW-10 AND MW-11 HAD BEEN SAMPLED. MW-10 AND MW-11 HAD NOT FULLY RECHARGED AND MW-2 THROUGH MW-4 WERE HYDRAULICALLY DISCONNECTED. THEREFORE GROUNDWATER CONTOURS COULD NOT BE COMPLETED FOR THE THIRD QUARTER 2010.
- 6. GROUNDWATER GRADIENT AND FLOW NOT CALCULATED DUE TO INSUFFICIENT NUMBER OF GROUNDWATER MONITORING WELL GROUNDWATER ELEVATIONS ABOVE BEDROCK ELEVATION.
- * GROUNDWATER LEVELS ARE BELOW TOP OF BEDROCK SURFACE, WHICH LIKELY REPRESENTS STAGNANT WATER AND NOT TRUE AQUIFER CONDITIONS.

URS

CHEVRON PIPELINE COMPANY

Project No. 26815217

UNCONFINED WATER-BEARING ZONE GROUNDWATER AND BEDROCK ELEVATIONS MAP CHEVRON SUNOL PIPLINE

Figure 3

Appendix A
Groundwater Sampling Forms

Project Information:		Pump Information:	
Operator Name	Rachel Naccarati/ Kim Morris	Pump Model/Type	Disposable Bailer
Company Name	URS	Tubing Type	NA
Project Name	Chevron Sunol Pipeline	Tubing Diameter	NA
Site Name	Sunol	Tubing Length	[ft]
		Pump placement from TOC	[ft]
Well Information:		Pumping information:	
Well Id	MW-8	Final pumping rate	NA
Well diameter	2 [in]	Flowcell volume	NA
Well total depth	24.5 [ft]	Calculated Sample Rate	NA
Depth to top of screen	14.5 [ft]	Sample rate	NA
Screen length	10 [ft]	Stabilized drawdown	NA
Depth to Water	21.98 [ft]		

Low-Flow Sampling Stabilization Summary

Carbilization Cattings	Time	Temp [C]	pH [pH] +/-0.2				ORP [mV] +/-20		
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20		
	1 well volume								
	2 well volumes								
	3 well volumes								
Multi-parameter Readings	Sample collected from MW-8 at 11:45 on 9/29/10								
					_				

Starting Pumping at 11:45 Notes:

Initial Depth to Water = 21.98 ft Total Volume Purged = 1 gallons Sample collected at 11:00 on 9/29/10 Final Depth to Water: Dry

Could not collect parameters because the well was dry before 1 well volume was purged. Well was left to recharge overnight before the sample was collected. 0.01 feet of product was measured in the monitoring well before sampling on 9/29/10.

Pump Information: **Project Information:** Rachel Naccarati/ Kim Morris Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/4 [in] Site Name Sunol Tubing Length 50.0 [ft] Pump placement from TOC 45.0 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-9 175 mL/min 2 [in] 46.0 [ft] 1000 mL NM Depth to top of screen 36.0 [ft] Sample rate NM Screen length 10 [ft] Stabilized drawdown NM Depth to Water 42.81 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]				ORP [mV]		
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20		
	14:20	19.7	6.75	123	276	1.59	-203		
	14.20	10.7	0.73	123	270	1.00	200		
	14:23	19.5	6.73	121	178	1.59	-209		
	14:26	19.3	6.72	121	136	1.04	-218		
	14:29	19.3	6.70	120	117	0.86	-227		
	14:32	19.4	6.70	119	111	0.84	-230		
	14:35	19.4	6.69	119	106	0.79	-231		
Multi-parameter Readings	14:38	19.5	6.69	119	107	0.73	-231		
	14:41	19.4	6.68	118	106	0.70	-231		
	Sample collected from MW-9 at 14:45 on 9/29/10								
			·						
		0.0	-0.01	0	-5	-0.05	-1		
Variance in last 4 readings		0.1	0.00			-0.06	. 0		
		-0.1	-0.01	-1	-1	-0.03	0		

Notes: Starting Pumping at 14:15

Initial Depth to Water = 42.81 ft Total Volume Purged = 2.5 gallons Sample collected at 14:45 Final Depth to Water = 43.80 ft

Depth to Water

Project Information: Pump Information: Rachel Naccarati/ Kim Morris Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/4 [in] Site Name Sunol Tubing Length 56 [ft] Pump placement from TOC 54 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-10 200 mL/min 2 [in] 55.3 [ft] 1000 mL NM Depth to top of screen 40.3 [ft] Sample rate NM Screen length 15 [ft] Stabilized drawdown NM

45.89 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond. [µS/cm]	Turb [NTU]	DO [mg/L]	ORP [mV]		
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20		
	12:00	21.6	7.01	195	-5.0	5.81	-34		
	12.00	20	7.01		0.0	0.0 .	<u> </u>		
	12:03	22.8	6.96	211	-5.0	1.44	2		
	40.00	00.7	0.04	040	700	0.00	40		
	12:06	22.7	6.91	212	703	0.80	-19		
	12:09	21.7	6.89	193	733	0.78	-25		
	12:12	21.3	6.90	189	588	0.81	5		
	12:15	24.2	6.88	186	446	0.83	4.0		
	12.15	21.3	0.00	100	440	0.63	18		
Multi-parameter Readings	12:18	21.3	6.88	185	380	0.85	20		
wata-parameter readings									
	12:21	21.4	6.89	183	379	0.86	22		
	12:24	21.4	6.89	183	373	0.87	22		
	12.24 21.4 0.09 100 373 0.07 22								
	Sample collected from MW-10 at 12:30 on 9/29/10								
		0.0	0.00	-1	-66	0.02	2		
Variance in last 4 readings		0.0	0.00	'		0.02			
variance in last 4 readings		0.1	0.01	-2	-1	0.01	2		
		0.0	0.00	0	-6	0.01	0		

Notes: Starting Pumping at 12:00

Initial Depth to Water = 45.89 ft Total Volume Purged = 2.5 gallons Sample collected at 12:30 on 9/29/10

Depth to Water

Pump Information: **Project Information:** Rachel Naccarati/ Kim Morris Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 3/8 [in] Site Name Sunol Tubing Length 50 [ft] Pump placement from TOC 45 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-11 175 mL/min 2 [in] 47.0 [ft] 1000 mL NM Depth to top of screen 37.0 [ft] Sample rate NM Screen length 10 [ft] Stabilized drawdown NM

39.09 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]		Turb [NTU]		ORP [mV]		
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20		
	14:14	18.6	6.98	179	503.0	0.93	-25		
	14:17	19.1	6.97	178	397.0		-3		
	14:20	19.2	6.96		309.0		9		
	14:23	19.3		181	260.0		17		
	14:26	19.5	6.98	183	332.0	1.52	13		
	14:29	20.4	6.99	184	189.0	1.57	10		
Multi-parameter Readings	14:32	20.6	6.97	186	165.0	1.50	10		
a. paramoo. recamgo	14:35	21.0	6.97	187	158.0	1.33	11		
	14:38	21.2	6.99	188	152.0	1.16	7		
	Sample collected from MW-11 at 14:40 on 9/28/10								
		0.2	-0.02	2	-24.0	-0.07	0		
Variance in last 4 readings		0.4	0.00	1	-7.0	-0.17	1		
		0.2	0.02	1	-6.0	-0.17	-4		

Notes: Starting Pumping at 14:10

Initial Depth to Water = 39.09 ft
Total Volume Purged = 2.5 gallons Sample collected at 14:40
Well purged dry

Depth to Water

Project Information: Pump Information: Rachel Naccarati/ Kim Morris Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/4 [in] Site Name Sunol Tubing Length 56 [ft] Pump placement from TOC 54 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-10 200 mL/min 2 [in] 55.3 [ft] 1000 mL NM Depth to top of screen 40.3 [ft] Sample rate NM Screen length 15 [ft] Stabilized drawdown NM

45.89 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond. [µS/cm]	Turb [NTU]	DO [mg/L]	ORP [mV]		
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20		
	12:00	21.6	7.01	195	-5.0	5.81	-34		
	12.00	20	7.01		0.0	0.0 .	<u> </u>		
	12:03	22.8	6.96	211	-5.0	1.44	2		
	40.00	00.7	0.04	040	700	0.00	40		
	12:06	22.7	6.91	212	703	0.80	-19		
	12:09	21.7	6.89	193	733	0.78	-25		
	12:12	21.3	6.90	189	588	0.81	5		
	12:15	24.2	6.88	186	446	0.83	4.0		
	12.15	21.3	0.00	100	440	0.63	18		
Multi-parameter Readings	12:18	21.3	6.88	185	380	0.85	20		
wata-parameter readings									
	12:21	21.4	6.89	183	379	0.86	22		
	12:24	21.4	6.89	183	373	0.87	22		
	12.24 21.4 0.09 100 373 0.07 22								
	Sample collected from MW-10 at 12:30 on 9/29/10								
		0.0	0.00	-1	-66	0.02	2		
Variance in last 4 readings		0.0	0.00	'		0.02			
variance in last 4 readings		0.1	0.01	-2	-1	0.01	2		
		0.0	0.00	0	-6	0.01	0		

Notes: Starting Pumping at 12:00

Initial Depth to Water = 45.89 ft Total Volume Purged = 2.5 gallons Sample collected at 12:30 on 9/29/10 Appendix B
Laboratory Analytical Results

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

October 06, 2010

Project: MP 2.7

Submittal Date: 09/29/2010 Group Number: 1213963 PO Number: 0015043340 Release Number: JOHNSON State of Sample Origin: CA

Client Sample Description Lancaster Labs (LLI) #

MW-11 Grab Water6098023MW-11_Filtered Grab Water6098024Stream Grab Water6098025TB-1 NA Water6098026

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC URS Attn: Joe Morgan

COPY TO

ELECTRONIC URS Attn: Rachel Naccarati

COPY TO

ELECTRONIC URS Attn: Jacob Henry

COPY TO

ELECTRONIC URS Corporation Attn: Kimberly Morgan

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Elizabeth A Leonhardt at (510) 232-8894

Respectfully Submitted,

Robin C. Runkle Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-11 Grab Water

NA URSO

MP 2.7 SL0600100443 MW-11

LLI Sample # WW 6098023 LLI Group # 1213963

Account # 11875

Project Name: MP 2.7

Collected: 09/28/2010 14:40 by KM

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

Submitted: 09/29/2010 09:20 Reported: 10/06/2010 16:40

11/06/2010

Discard: 11/06/2010

MW11-

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	350	5.0	1
Metals	3	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	320	0.84	1
Wet Cl	nemistry	EPA 300	0.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	N.D.	250	5
00228	Sulfate		14808-79-8	457,000	15,000	50
		EPA 160	0.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	1,310,000	38,800	1
		EPA 310	0.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	458,000	460	1
00201	Alkalinity to pH 8.		n.a.	N.D.	460	1
		SM20 35	500 Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	300	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D102732AA	10/01/2010 03:17	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102732AA	10/01/2010 03:17	Kelly E Keller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10273B20A	10/01/2010 19:36	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-11 Grab Water

NA URSO

MP 2.7 SL0600100443 MW-11

LLI Sample # WW 6098023 LLI Group # 1213963

Account # 11875

Project Name: MP 2.7

Collected: 09/28/2010 14:40 by KM Chevron Pipeline Co.

100 Northpark Blvd Covington LA 70433

Submitted: 09/29/2010 09:20 Reported: 10/06/2010 16:40

Discard: 11/06/2010

MW11-

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10273B20A	10/01/2010	19:36	Marie D John	1
07105	Volatile Headspace	SW-846 8015B	1	102720029A	09/30/2010	17:55	Dustin A	1
	Hydrocarbon	modified					Underkoffler	
07058	Manganese	SW-846 6010B	1	102731848001	10/04/2010	01:27	Tara L Snyder	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	102731848001	10/01/2010	09:45	Denise K Conners	1
	rec)							
00368	Nitrate Nitrogen	EPA 300.0	1	10272196601A	09/30/2010	00:24	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10272196601A	10/02/2010	09:43	Ashley M Adams	50
00212	Total Dissolved Solids	EPA 160.1	1	10273021201A	09/30/2010	10:09	Susan E Hibner	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10274020201B	10/01/2010	06:48	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10274020201B	10/01/2010	06:48	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B	1	10273834401A	09/30/2010	04:10	Daniel S Smith	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-11 Filtered Grab Water

NA URSO

MP 2.7 SL0600100443 MW-11

LLI Sample # WW 6098024 LLI Group # 1213963

11875

Project Name: MP 2.7

Collected: 09/28/2010 14:40 by KM Chevron Pipeline Co.

100 Northpark Blvd Covington LA 70433

Submitted: 09/29/2010 09:20 Reported: 10/06/2010 16:40

Discard: 11/06/2010

CAT Analysis Name CAS Number Result As Received Method Dilution Factor

Metals Dissolved SW-846 6010B ug/l ug/l

01754 Iron 7439-89-6 N.D. 52.2

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	102731848001	10/04/2010	01:30	Tara L Snyder	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	102731848001	10/01/2010	09:45	Denise K Conners	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: Stream Grab Water

NA URSO

MP 2.7 SL0600100443 Stream

LLI Sample # WW 6098025 LLI Group # 1213963

11875

Project Name: MP 2.7

Collected: 09/28/2010 11:00 by KM

Chevron Pipeline Co.

100 Northpark Blvd Covington LA 70433

Submitted: 09/29/2010 09:20 Reported: 10/06/2010 16:40

Discard: 11/06/2010

STREA

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D102732AA	10/01/2010 03:40	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102732AA	10/01/2010 03:40	Kelly E Keller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10273B20A	10/01/2010 20:02	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10273B20A	10/01/2010 20:02	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: TB-1 NA Water

NA URSO

MP 2.7 SL0600100443

LLI Sample # WW 6098026 LLI Group # 1213963

Account # 11875

Project Name: MP 2.7

Collected: 09/28/2010

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

Submitted: 09/29/2010 09:20 Reported: 10/06/2010 16:40

Discard: 11/06/2010

MW11T

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D102732AA	09/30/2010 18:16	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102732AA	09/30/2010 18:16	Kelly E Keller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10273B20A	10/01/2010 16:20	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10273B20A	10/01/2010 16:20	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1213963

Reported: 10/06/10 at 04:40 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: D102732AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample numbe N.D. N.D. N.D. N.D.	er(s): 609 0.5 0.5 0.5 0.5	8023,60980 ug/l ug/l ug/l ug/l	025-609802 94 99 96 100	6	79-120 79-120 79-120 80-120		
Batch number: 10273B20A TPH-GRO N. CA water C6-C12	Sample numbe	er(s): 609 50.	8023,60980 ug/l	025-609802 118	118	75-135	0	30
Batch number: 102720029A Methane	Sample numbe	er(s): 609 5.0	8023 ug/l	93		80-120		
Batch number: 102731848001 Iron Manganese	Sample numbe N.D. N.D.	er(s): 609 52.2 0.84	8023-60980 ug/l ug/l	024 102 103		90-112 90-110		
Batch number: 10272196601A Nitrate Nitrogen Sulfate	Sample numbe N.D. N.D.	er(s): 609 50. 300.	8023 ug/l ug/l	105 103		90-110 89-110		
Batch number: 10273021201A Total Dissolved Solids	Sample numbe	er(s): 609 9,700.		95		80-120		
Batch number: 10273834401A Ferrous Iron	Sample numbe	er(s): 609 10.	8023 ug/l	97	100	92-105	4	4
Batch number: 10274020201B Alkalinity to pH 4.5	Sample numbe	er(s): 609 460.	8023 ug/l as CaCO3	99		98-103		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	<u>RPD</u>	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: D102732AA	Sample	number(s)	: 6098023	,60980	25-6098	026 UNSPK:	P096445		
Benzene	100	94	80-126	7	30				
Ethylbenzene	105	98	71-134	7	30				
Toluene	102	95	80-125	7	30				
Xylene (Total)	105	98	79-125	7	30				

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1213963

Reported: 10/06/10 at 04:40 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name Batch number: 10273B20A TPH-GRO N. CA water C6-C12	MS MSD <u>%REC</u> <u>%REC</u> Sample number(s 59*	MS/MSD Limits RPD : 6098023,6098 63-154	RPD BKG <u>MAX Conc</u> 025-6098026 UNSPK:	DUP <u>Conc</u> P096811	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 102720029A Methane	Sample number(s 83 67): 6098023 UNSP 35-157 22*	K: P098063 20			
Batch number: 102731848001	Sample number(s): 6098023-6098	024 UNSPK: P095235	BKG: P095235	5	
Iron	97 (2) 178 (2)	75-125 7	20 10,300	9,840	5	20
Manganese	97 96	75-125 0	20 1,870	1,910	2	20
Batch number: 10272196601A Nitrate Nitrogen Sulfate	Sample number(s 106 108): 6098023 UNSP: 90-110 90-110	K: P097992 BKG: P0 N.D. 1,610,000	N.D.	0 (1) 0	20 20
Batch number: 10273021201A Total Dissolved Solids	Sample number(s 96 88): 6098023 UNSP 62-135 4	K: P096530 BKG: P0 12 938,000	96530 948,000	1	9
Batch number: 10273834401A Ferrous Iron	Sample number(s): 6098023 BKG	: 6098023 300	280	7* (1)	5
Batch number: 10274020201B Alkalinity to pH 4.5 Alkalinity to pH 8.3	Sample number(s 96 96): 6098023 UNSP 73-121 0	K: P098063 BKG: P0 5 9,000 N.D.	98063 8,900 N.D.	1 (1) 0 (1)	5 5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

Batch number: D102732AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6098023	99	96	98	98	
6098025	100	95	99	99	
6098026	100	98	97	98	
Blank	102	94	99	98	
LCS	98	99	99	100	
MS	102	97	100	102	
MSD	100	100	98	101	
Limits:	80-116	77-113	80-113	78-113	

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 10273B20A Trifluorotoluene-F

6098023	89
6098025	89
6098026	87

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1213963

Reported: 10/06/10 at 04:40 PM

Surrogate Quality Control

Blank 88 LCS 121 LCSD 119

Limits: 63-135

Analysis Name: Volatile Headspace Hydrocarbon Batch number: 102720029A

Propene

6098023 62 Blank 98 96 77 LCS MSMSD 61

42-131 Limits:

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

^{*-} Outside of specification

Chevron California Region Analysis Request/Chain of Custody

For Lancaster Laboratories use only

Acct. #: 11875 | Sample #: 6098033 - 26 | SCR#:

													Α	naly	ses	Req	uest	ed			1	1213	3963	3
Facility #:										<u> </u>			P	rese	erva	tion	_				丁		tive Code	es
Site Address: M.V.										łl.	14	<u>g</u>					7		_		ই	$N = HNO_3$	T = Thios B = NaOl	1
Chevron PM: Teff	Joh 15	01/1	Lead C	onsultant:	<u> 185</u>				ļγ		山	Cleanup				300.D	힐	뗗.		,	പ		O = Other	
Consultant/Office: \(\limit\)	<u>5 Da</u>	Hano	<u>\</u>						Total Number of Containers	<u></u>	BUT UT LAFT	a Gel				8	<u> 20109</u>	3500-FCM	310.1		וכי	☐ J value reporti ☐ Must meet low		
Consultant Prj. Mgr.:	<u>oe 1</u>	<u>dorga</u>	Λ						ğ	20 2	9	Silic				왕	. 1 🔽		-	_ `		possible for 82		
Consultant Phone #: (510) 814 - 3021 Fax #: (510) 814 - 3268									ğ	J 097	§ 2	ွှ			2	Hai		5 3	ζş	9	٦	8021 MTBE Con	firmation	
Sampler: MM M	avv is	Ila	hel	Naccora	h	·		<u>a</u>	nper	- 83 - 83		00 0	_	Oxygenates	74,	73	\$\frac{3}{2}\frac{3}\frac{3}{2}\f	. <u>></u>		2	-	Confirm highe		60
Service Order #:				1 SAR:				posi	Ž	¥	₹ 4	15 M	sca)xyge	120	3	Σેટ્રે	a d		. ای	3	Confirm all hit	s by 8260 's on biobo	ot hit
Field	Moteire	Repeat	Тор			New	Grab	Composite	otal	втех + мтре- 8260 (X 8021□	dowstoortus	PH 80	8260 full scan		ead 7420 🔲 7421 🗀	N Trade/Sulfate	3	Ferrous Iron		$\dot{\alpha}$	ञ्ज		's on all hit	si iir S
Point Name MIN - 11	Watrix	Sample	Depth	Year Month Day ขเปไดฯ ไปรู			X		 -	X	∓ •	<u>F</u>	80		۳		<u> </u>			X	_	Comments / F		
STREAM	1			2010/09/28	6011	N	X			X	X	_	1				$^{\sim}$	7		* 	Δ I			
16-1	4																				۱	Lab Filter Mut	کلہ	
							_															MOV	J	
			ļ				<u> </u>	—	-												4			
								-	ļ						-			-			-			
			<u> </u>				┢	-	<u> </u>										+		-			
							 -	-					\dashv					+	-	-+	1			- 1
									<u> </u>								+	\top			1			
	ļ						L.	<u> </u>	<u> </u>															
<u> </u>					Relinquished	d bie			<u>L</u>				Date		T:						_		<u> </u>	
Turnaround Time Req	uested ((TAT) (ple	ase circle	e)					\supset				Jale VIII	- 1	Time ໄດ <i>ເ</i> ດ		ecer	ved b	y:				Date	Time
STD. TAT	72 hour		8 hour		Relinquished			_				\neg	Date.		Time		ecei	ved b	y:				Date	Time
24 hour	4 day	5	day									1		_								_/_	ļ!	
Data Package Options	(please o	circle if requ	uired)		Relinquished	d by:		÷					Date		Time	? R	tecei	ved b	y:				Date	Time
	/pe I – Fu		nt neada	d	Relinquished	d by Comm	ercia	ai Ca	rrier:				Regelyed by:				_) . //	Date	Time				
Type VI (Raw Data)					UPS (FedEx) Other							Kuntinley 9-29-10 092												
Disk					Temperature Upon Receipt 2 · 8° C°						c	usto	dy Se	eals I	ntact1	?	Yes No							
					L	*																	<u></u>	

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	I	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Increasie Ovelifiere

ppb parts per billion

Dry weightbasis
Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Ormania Ovalitiana

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

October 11, 2010

Project: Sunol, CA

Submittal Date: 09/30/2010 Group Number: 1214240 PO Number: 0015043340 Release Number: JOHNSON State of Sample Origin: CA

Client Sample Description	Lancaster Labs (LLI) #
MW-8 Grab Water	6099560
MW-9 Grab Water	6099561
MW-9_Filtered Grab Water	6099562
MW-10 Grab Water	6099563
MW-10_Filtered Grab Water	6099564
TB-2 NA Water	6099565
MW-X Grab Water	6099566

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	URS	Attn: Joe Morgan
ELECTRONIC COPY TO	URS	Attn: Rachel Naccarati
ELECTRONIC	URS	Attn: Jacob Henry
COPY TO ELECTRONIC	URS Corporation	Attn: Kimberly Morgan
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Elizabeth A Leonhardt at (510) 232-8894

Respectfully Submitted,

Lawrence M. Taylor Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-8 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-8

LLI Sample # WW 6099560

LLI Group # 1214240 Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010 11:00 by RN

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

SSMW8

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	1,400	5	10
10943	Ethylbenzene		100-41-4	3,200	50	100
10943	Toluene		108-88-3	16,000	50	100
10943	Xylene (Total)		1330-20-7	16,000	50	100
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	74,000	1,300	25

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D102761AA	10/04/2010 03:0	Florida A Cimino	10
10943	BTEX 8260B Water	SW-846 8260B	1	D102761AA	10/04/2010 03:2	Florida A Cimino	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102761AA	10/04/2010 03:0	Florida A Cimino	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	D102761AA	10/04/2010 03:2	Florida A Cimino	100
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10276A07A	10/04/2010 05:4	Tyler O Griffin	25
01146	GC VOA Water Prep	SW-846 5030B	1	10276A07A	10/04/2010 05:4	Tyler O Griffin	25

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-9 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-9

LLI Sample # WW 6099561

LLI Group # 1214240 Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010 14:45 by RN

Chevron Pipeline Co.

100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

SSMW9

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
•	Benzene		71-43-2	N.D.	10	20
10943	Ethylbenzene		100-41-4	440	10	20
10943	Toluene		108-88-3	N.D.	10	20
10943	Xylene (Total)		1330-20-7	2,100	10	20
Repo	rting limits were rai	sed due t	to interference from	m the sample matrix.		
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	24,000	1,300	25
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	18	5.0	1
Metals	3	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	3,830	0.84	1
Wet Cl	nemistry	EPA 300	0.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	N.D.	250	5
	Sulfate		14808-79-8	4,500	1,500	5
		EPA 160	0.1	ug/l	ug/l	
00212	Total Dissolved Sol:	ids	n.a.	627,000	19,400	1
		EPA 310	0.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	549,000	460	1
	Alkalinity to pH 8.3		n.a.	N.D.	460	1
		SM20 3!	500 Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	2,200	40	4

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z102772AA	10/04/2010 13:27	Daniel H Heller	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z102772AA	10/04/2010 13:27	Daniel H Heller	20

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-9 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-9

LLI Sample # WW 6099561

LLI Group # 1214240 Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010 14:45 by RN Chevron Pipeline Co.

100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

SSMW9

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10276A07A	10/04/2010	15:57	Tyler O Griffin	25
01146	GC VOA Water Prep	SW-846 5030B	1	10276A07A	10/04/2010	15:57	Tyler O Griffin	25
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	102740002A	10/08/2010	14:59	Elizabeth J Marin	1
07058	Manganese	SW-846 6010B	2	102801848001	10/08/2010	05:47	Tara L Snyder	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	102771848004	10/05/2010	09:42	Denise K Conners	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	2	102801848001	10/07/2010	20:30	Mirit S Shenouda	1
00368	Nitrate Nitrogen	EPA 300.0	1	10274196601A	10/01/2010	10:52	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10274196601A	10/01/2010	10:52	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10278021202A	10/05/2010	10:00	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10279020201A	10/06/2010	06:15	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10279020201A	10/06/2010	06:15	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10273834402A	09/30/2010	19:10	Daniel S Smith	4

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-9 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-9

LLI Sample # WW 6099562

LLI Group # 1214240 Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010 14:45 by RN

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

11/11/2010 Discard:

As Received CAT As Received Dilution Method Analysis Name CAS Number No. Result Factor Detection Limit

ug/l Metals Dissolved SW-846 6010B

01754 Iron 7439-89-6 82.3 52.2

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	102801848001	10/08/2010 09	:06 Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	102771848004	10/05/2010 09	0:42 Denise K Conners	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	2	102801848001	10/07/2010 20	:30 Mirit S Shenouda	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-10 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-10

_

LLI Group # 1214240 Account # 11875

LLI Sample # WW 6099563

Project Name: Sunol, CA

Collected: 09/29/2010 12:30 by RN

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

SSM10

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	550	10	2
Metals	5	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	384	0.84	1
Wet Ch	nemistry	EPA 300	0.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	N.D.	250	5
00228	Sulfate		14808-79-8	148,000	3,000	10
		EPA 160	0.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	998,000	38,800	1
		EPA 310).1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	610,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35	500 Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	5,000	200	20

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D102784AA	10/05/2010 20:5	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102784AA	10/05/2010 20:5	Florida A Cimino	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10280A20A	10/07/2010 20:3	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-10 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-10

LLI Sample # WW 6099563 LLI Group # 1214240 Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010 12:30 by RN Chevron Pipeline Co.

100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

SSM10

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.	_				Date and Ti	.me	_	Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10280A20A	10/07/2010	20:36	Marie D John	1
07105	Volatile Headspace	SW-846 8015B	1	102740002A	10/08/2010	15:29	Elizabeth J Marin	2
	Hydrocarbon	modified						
07058	Manganese	SW-846 6010B	1	102771848004	10/07/2010	08:54	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	102771848004	10/05/2010	09:42	Denise K Conners	1
	rec)							
00368	Nitrate Nitrogen	EPA 300.0	1	10274196601A	10/01/2010	11:08	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10274196601A	10/04/2010	16:44	Ashley M Adams	10
00212	Total Dissolved Solids	EPA 160.1	1	10278021202A	10/05/2010	10:00	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10279020201A	10/06/2010	06:15	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10279020201A	10/06/2010	06:15	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B	1	10273834402A	09/30/2010	19:10	Daniel S Smith	20
		modified						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-10 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-10

LLI Sample # WW 6099564 LLI Group # 1214240

Dilution

Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010 12:30 by RN Chevron Pipeline Co.

> 100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

No.

As Received CAT As Received Method Analysis Name CAS Number Result

Factor Detection Limit

ug/l Metals Dissolved SW-846 6010B

01754 Iron 7439-89-6 N.D. 52.2

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tim	ne		Factor
01754	Iron	SW-846 6010B	1	102771848004	10/07/2010	08:57	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	102771848004	10/05/2010	09:42	Denise K Conners	1
	rec)							

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: TB-2 NA Water

NA URSO

Sunol Pipeline SL0600100443 TB-2

LLI Sample # WW 6099565

LLI Group # 1214240 Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

SSTB2

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D102761AA	10/03/2010 21:05	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102761AA	10/03/2010 21:05	Florida A Cimino	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10277A20A	10/04/2010 15:40	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10277A20A	10/04/2010 15:40	Elizabeth J Marin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-X Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-X

LLI Sample # WW 6099566

LLI Group # 1214240 Account # 11875

Project Name: Sunol, CA

Collected: 09/29/2010 13:20 by RN

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

Submitted: 09/30/2010 09:00 Reported: 10/11/2010 10:15

Discard: 11/11/2010

SSMWX

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	1,500	25	50
10943	Ethylbenzene		100-41-4	4,300	25	50
10943	Toluene		108-88-3	23,000	250	500
10943	Xylene (Total)		1330-20-7	25,000	25	50
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	170,000	5,000	100

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z102772AA	10/04/2010 15:31	Daniel H Heller	50
10943	BTEX 8260B Water	SW-846 8260B	1	Z102772AA	10/04/2010 20:02	Daniel H Heller	500
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z102772AA	10/04/2010 15:31	Daniel H Heller	50
01163	GC/MS VOA Water Prep	SW-846 5030B	2	Z102772AA	10/04/2010 20:02	Daniel H Heller	500
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10277A20A	10/05/2010 00:04	Elizabeth J Marin	100
01146	GC VOA Water Prep	SW-846 5030B	1	10277A20A	10/05/2010 00:04	Elizabeth J Marin	100

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1214240

Reported: 10/11/10 at 10:15 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: D102761AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D. N.D.	er(s): 609 0.5 0.5 0.5 0.5	9560,6099 ug/l ug/l ug/l ug/l	565 93 96 96 98		79-120 79-120 79-120 80-120		
Batch number: D102784AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D.	er(s): 609 0.5 0.5 0.5 0.5	9563 ug/l ug/l ug/l ug/l	93 96 95 100	85 86 84 88	79-120 79-120 79-120 80-120	10 11 11 12	30 30 30 30
Batch number: Z102772AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D.	er(s): 609 0.5 0.5 0.5 0.5	9561,6099 ug/l ug/l ug/l ug/l	566 95 97 96 98		79-120 79-120 79-120 80-120		
Batch number: 10276A07A TPH-GRO N. CA water C6-C12	Sample number N.D.	er(s): 609 50.	9560-6099 ug/l	561 100	109	75-135	9	30
Batch number: 10277A20A TPH-GRO N. CA water C6-C12	Sample numbe	er(s): 609 50.	9565-6099 ug/l	566 100	109	75-135	9	30
Batch number: 10280A20A TPH-GRO N. CA water C6-C12	Sample numbe	er(s): 609 50.	9563 ug/l	118	118	75-135	0	30
Batch number: 102740002A Methane	Sample number N.D.	er(s): 609 5.0	9561,6099 ug/l	563 93		80-120		
Batch number: 102771848004 Iron Manganese	Sample number N.D.	er(s): 609 52.2 0.84	9563-6099 ug/l ug/l	564 102 101		90-112 90-110		
Batch number: 102801848001 Iron Manganese	Sample number N.D.	er(s): 609 52.2 0.84	9561-6099 ug/l ug/l	562 100 107		90-112 90-110		
Batch number: 10274196601A Nitrate Nitrogen Sulfate	Sample number N.D.	er(s): 609 50. 300.	9561,6099 ug/l ug/l	563 110 109		90-110 89-110		
Batch number: 10273834402A Ferrous Iron	Sample number N.D.	er(s): 609 10.	9561,6099 ug/l	563 100		92-105		
Batch number: 10278021202A Total Dissolved Solids	Sample number N.D.	er(s): 609 9,700.	9561,6099 ug/l	563 104		80-120		

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1214240

Reported: 10/11/10 at 10:15 AM

Blank Blank Report LCS LCSD LCS/LCSD

<u>Analysis Name</u> <u>Result MDL Units %REC</u> <u>%REC</u> <u>Limits</u> <u>RPD</u> <u>RPD Max</u>

Batch number: 10279020201A Sample number(s): 6099561,6099563

Alkalinity to pH 4.5 N.D. 460. ug/l as 100 98-103 CaCO3

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP RPD	Dup RPD <u>Max</u>
Batch number: D102761AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample 99 101 100 102	number(s) 88 91 90 91	: 6099560 80-126 71-134 80-125 79-125	,609956 12 10 11 12	30 30 30 30 30 30	K: P099149			
Batch number: D102784AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample 100 104 104 106	number(s)	: 6099563 80-126 71-134 80-125 79-125	UNSPK:	P1014:	23			
Batch number: Z102772AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample 103 107 105 105	number(s) 98 103 100 101	: 6099561 80-126 71-134 80-125 79-125	,609956 4 4 5 4	30 30 30 30 30 30	K: P100758			
Batch number: 10276A07A TPH-GRO N. CA water C6-C12	Sample 116	number(s)	: 6099560 63-154	-609956	1 UNSP	K: P099140			
Batch number: 10277A20A TPH-GRO N. CA water C6-C12	Sample 118	number(s)	: 6099565 63-154	-609956	6 UNSP	K: P101720			
Batch number: 10280A20A TPH-GRO N. CA water C6-C12	Sample 118	number(s)	: 6099563 63-154	UNSPK:	P1038	53			
Batch number: 102740002A Methane	Sample 63	number(s) 77	: 6099561 35-157	,609956 19	3 UNSP 20	K: P099157			
Batch number: 102771848004 Iron Manganese	Sample -28 (2) 63 (2)		: 6099563 75-125 75-125	-609956 3 3	20 20 20	K: P097109 : 42,600 6,020	BKG: P097109 41,900 5,920	2 2	20 20
Batch number: 102801848001 Iron Manganese	Sample 101 103	number(s) 100 101	: 6099561 75-125 75-125	-609956 0 1	20 20 20	K: P105006 : N.D. 49.1	BKG: P105006 N.D. 46.7	0 (1) 5	20 20
Batch number: 10274196601A Nitrate Nitrogen Sulfate	Sample 83* 107	number(s)	: 6099561 90-110 90-110	,609956	3 UNSP	K: P100601 : N.D. 416,000	BKG: P100601 N.D. 419,000	0 (1) 1 (1)	20 20

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1214240

Reported: 10/11/10 at 10:15 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD
Batch number: 10273834402A							BKG: P098890		Max
Ferrous Iron	103	96	73-120			7,200	7,200	0 (1)	5
Batch number: 10278021202A	Sample	number(s)	: 6099561	,609956	3 UNSP	K: P099157	BKG: P09915	7	
Total Dissolved Solids	99	106	62-135	3	12	327,000	337,000	3	9
Batch number: 10279020201A	Sample	number(s)	: 6099561	,609956	3 UNSP	K: P099102	BKG: P100019	9	
Alkalinity to pH 4.5	96		73-121			457,000	462,000	1	5
Alkalinity to pH 8.3						N.D.	N.D.	0 (1)	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

- 2								- 4	
Batch	numb	er	:	D1	027	617	AΑ		

Batch nu	mber: D102761AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6099560	99	94	101	100	
6099565	99	100	98	99	
Blank	101	98	100	100	
LCS	100	97	100	103	
MS	99	96	98	101	
MSD	99	100	99	102	
Limits:	80-116	77-113	80-113	78-113	
	Name: UST VOCs by	8260B - Water			
Batch nu	Dibromofluoromethane	1.2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
	Dibromonuoromethane	1,2-Dichioroethane-u4	roluerie-us	4-Bi officiaci openzene	
6099563	102	96	99	100	
Blank	105	98	98	99	
LCS	101	99	97	101	
LCSD	102	99	97	102	
MS	100	95	99	102	
Limits:	80-116	77-113	80-113	78-113	
Analysis	Name: UST VOCs by	8260B - Water			
Batch nu	mber: Z102772AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6099561	96	92	103	99	
6099566	97	95	101	97	
Blank	98	95	101	96	
LCS	98	96	101	100	
MS	97	95	102	101	
MSD	98	96	101	100	

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1214240

Reported: 10/11/10 at 10:15 AM

Surrogate Quality Control

Limits:	80-116	77-113	80-113	78-113
Analysis	Name: TPH-GRO N.	CA water C6-C12		
Batch nu	mber: 10276A07A			
	Trifluorotoluene-F			
6000560	0.6			
6099560 6099561	96 103			
Blank	93			
LCS	100			
LCSD	98			
MS	105			
115	103			
Limits:	63-135			
Analysis	Name: TPH-GRO N.	CA water C6-C12		
	mber: 10277A20A	21 #4001 00 012		
	Trifluorotoluene-F			
6099565	87			
6099566	93			
Blank	88			
LCS	110			
LCSD	107			
MS	121			
Limits:	63-135			
	Name: TPH-GRO N.	CA water C6-C12		
Batch nu	mber: 10280A20A			
	Trifluorotoluene-F			
6099563	88			
Blank	89			
LCS	119			
LCSD	117			
MS	118			
Limits:	63-135			
Analvsis	Name: Volatile H	eadspace Hydrocarb	oon	
Batch nu	mber: 102740002A	<u>.</u>		
	Propene			
6099561	57			
6099563	71			
Blank	97			
LCS	95			
MS MCD	53			
MSD	67			
Limits:	42-131			

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

For Lancaster Laboratories use only

Acct. #: 1875 | Sample #: 4099560-66 | SCR#:

		•										•	Ar	alys	es R	eque	sted				Grp#1	21424	0
Facility #: SWNO	Hiod		-				Т	T					Pı	ese	rvatio	n Co	des				Preserv	ative Code	s
Site Address: Mile Post 7.7 (Wa Vevas Rd, Symo), UA										ħ	H	dnu			(-	, 'a	J 3			X Y	H = HCI N = HNO ₃	T = Thios B = NaOl	-
Chevron PM: 1844 TOWN 190W Lead Consultant: WPS									ي ا		Ú	Gel Cleanup			5	(કૂ	'위	· ·		2	$S = H_2SO_4$	O = Other	
Consultant/Office: US - Oakland									of Containers	D K 8021	7357 7437	ca Gel					3500 Fe	310			☐ J value repo ☐ Must meet lo	-	
Consultant Prj. Mgr.: Joe Mov 9WM								등	8	2	Silica			ن ا	到 了			091	g	possible for	3260 compo	unds	
Consultant Phone #:	<u>(510)</u>	814-	370	Fax#: (510)5	14-324	28				8260	GRO] []	Z	MASSE (§	المارة		ڇ _ر	8021 MTBE Co		
Sampler: PNCCO	y oct)	K MO	6177					وا	월		В	8	_	nate	~ s	<u>يا گ</u> ر	2	* 6	ρ		☐ Confirm high	-	60
Service Order #:			_ No	n SAR:				Sosi	Ž	影	‡ ₽	15 M	SS	Oxygenates		≱ }≥:	3 3	7	S	डू	☐ Confirm all h	-	
Field Point Name	Matrix	Repeat Sample	Top Depth	Year Month Day	Time Collected	New Field Pt	Grab	Composite	Total Number	BTEX	ТРН 8 015-МО	TPH 8015 MOD DRO	8260 full scan	ر ا	Lead /420 🗆	NOTAL MAN	3	Altalinite)	1		☐ Run o>		
WM-8	V	N		2010/09/29	1000	N	X	_	6	X	X			†	_	┪	Ť			╗	Comments /	Remarks	
MW-9				1	1440		X		15	×	X				7	(X	X	Х	X	×			
MW-10		1)	<u></u>		1230			<u> </u>	15	X	X				, , ,		X	<u>ኦ</u> ኦ	X	X	Lab Filk metals	A INC	_
18-2							1×		2	X	X										wetars		
MW-X	4	*		*	1320	*	X		6	X	M												
		1						-	ļ	<u> </u>			+	_	-	-	-						
							+	†	 					-		+	+						
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1															
															51 .5								
1																							
		ļ					╂	ļ	ļ	ļ			\perp			-	-						
			l	<u> </u>	Relinguished	l hv			<u> </u>	<u> </u>			Date	 	ime	Boo	eived	buc				Date	Time
Turnaround Time Requ				م،	Music		\geq						u lio		30	, nec	eivea.	29.				Date	i ii ile
24 hour	72 hour 4 day		l8 hour i day		Relinquished	by:						Ī	Date	Т	ime	Rec	eived	by:				Date	Time
Data Package Options (please circle if required) Relinquished by:						_				[Date	Т	ime	Rec	eived	by:	1			Date	Time		
QC Summary Type I - Full Relinquished by Comm					nerci	al Ca	rrier:	-		<u> </u>		1		Pen		bv:	+	<u> </u>	-	Date	Time		
Type VI (Raw Data) ☐ Coelt Deliverable not needed WIP (RWQCB) ☐ Coelt Deliverable not needed UPS							ther_						_	Lec		Mil	1	紪	KA -	7-30-10			
Disk Temperature Upon Rec					ceipt	1	1.	c	0						tody S		Intac	t?	Qs No	10.0	<u> </u>		
				<u> </u>												L						1	

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	I	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Increasie Ovelifiere

ppb parts per billion

Dry weightbasis
Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Ormania Ovalitiana

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.