RECEIVED

10:45 am, Aug 17, 2010

Alameda County Environmental Health

August 17, 2010

Mr. Jerry Wickham Department of Environmental Health Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

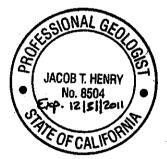
Dear Mr. Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in URS' report titled "SLIC Case No. RO0002892, Chevron Sunol Pipeline, 2793 Calaveras Road, Sunol, CA – Second Quarter 2010 Groundwater Monitoring Report" are true and correct to the best of my knowledge at the present time.

Submitted by:

Johnson flery W:

Jeffery Johnson Chevron Pipe Line Company


This letter report ("Second Quarter 2010 Groundwater Monitoring Report") was prepared under my direct supervision. The information presented in this report is based on our review of available data obtained during our quarterly sampling activities and our previous subsurface investigation efforts. To the best of our knowledge, we have incorporated into our . recommendations all relevant data pertaining to the Chevron Pipeline Company's Sunol Spill Site in Sunol, California.

The Second Quarter 2010 Groundwater Monitoring Report discussed herein was developed in accordance with the standard of care used to develop this type of report. The assumptions that were made and the recommendations for continued field activities were based on our professional experience and protocols reported in the literature for similar investigations.

URS Corporation Approved by:

Morgan III

Jacob Henry, P.G.

REPORT

SECOND QUARTER 2010 GROUNDWATER MONITORING REPORT

SLIC CASE #RO0002892 CHEVRON PIPELINE COMPANY SUNOL SPILL 2793 CALAVERAS RD. SUNOL, CA

Prepared for Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, CA 94502

August 2010

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612

26815217

August 17, 2010

Mr. Jerry Wickham Department of Environmental Health Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Subject: SLIC Case No. RO0002892, Chevron Pipeline Company, Sunol Spill, 2793 Calaveras Rd, Sunol, CA, Second Quarter 2010 Groundwater Monitoring Report

Dear Mr. Wickham:

A December 30, 2005 letter provided by the Alameda County Environmental Health Department staff (ACEHD) requested the initiation of a quarterly groundwater monitoring program for the Chevron Pipeline Company (CPL) Sunol Spill Site (Site). In response to this request and on behalf of CPL, URS has prepared the Site groundwater monitoring report for the second quarter 2010.

If you have any questions on this report, please call Mr. Joe Morgan or Mr. Jacob Henry of URS at 510-874-3201 or 510-874-3252, respectively.

Sincerely yours,

URS Corporation

Jacob Henry, P.G. Senior Geologist

cc: Mr. Jeff Johnson, Chevron Pipeline Company Ms. Rachel Naccarati, URS Oakland

Tables:

Table 1 – Monitoring Well Groundwater Levels

Table 2 – Monitoring Well Groundwater Elevations

- Table 3 Summary of Groundwater Analytical Results Gasoline Compounds
- Table 4 Summary of Groundwater Analytical Results Geochemical Indicators and Other Parameters

Figures:

Figure 1 – Site Vicinity Map

Figure 2 - SVE and Groundwater Monitoring Well Locations

Figure 3 - Unconfined Water-Bearing Zone and Bedrock Elevations Map

Appendices:

Appendix A – Groundwater Sampling Forms Appendix B – Laboratory Analytical Results

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612-1924 Tel: 510.893.3600 Fax: 510.874.3268

ONAL JACOB T. HENRY No. 8504 A12 31 2011

reganso

Joe Morgan III Senior Project Manager

On June 23 and 24, 2010, URS conducted field activities to assess the groundwater conditions at the Site. A Site vicinity map is included as Figure 1. URS gauged the depth to groundwater at groundwater monitoring wells MW-1 through MW-4 and MW-8 through MW-11. URS collected groundwater samples for laboratory analysis from groundwater monitoring wells MW-2, MW-4, and MW-8 through MW-11. The groundwater elevations in monitoring wells MW-1 and MW-3 were below bedrock and hydraulically disconnected from the unconfined water bearing zone, therefore they were not sampled as part of this sampling event. URS also collected a surface water sample from the very small stream, located northwest of the release location. Monitoring well and surface water sampling locations are provided on Figure 2. Monitoring wells MW-5 through MW-7 were abandoned on June 23, 2008, and are no longer part of the groundwater monitoring program.

1.1 SITE HYDROGEOLOGY

Prior to collecting groundwater samples, depth to groundwater measurements were recorded from monitoring wells MW-1 through MW-4 and MW-8 through MW-11 from the top of casing using an electronic oil/water interface probe. Product was not detected in any Site wells during the second quarter 2010. Depth to groundwater measurements are presented in Table 1 and calculated groundwater elevations above mean sea level are presented in Table 2.

Unconfined Water Bearing Zone

The groundwater surface elevation decreased in all monitoring wells (MW-1 through MW-4 and MW-8 through MW-11) relative to the last sampling event in March 2010. The groundwater surface elevation change at MW-1 and MW-3 resulted in hydraulic disconnection. The groundwater elevations for monitoring wells MW-1 through MW-4 and MW-9 through MW-11 were 290.55, 291.49, 291.71, 292.26, 291.13, 291.37, and 292.17 feet above average mean sea level (msl), respectively. The groundwater elevation for MW-8, which is screened in an apparent hillside groundwater recharge source for the Valley Crest Tree Company's (nursery) unconfined water-bearing zone, was 314.11 feet above msl.

Based on water level data from MW-2, MW-4, and MW-9 through MW-11, the local groundwater flow direction within the nursery's unconfined water-bearing zone is in a northeast direction with a calculated hydraulic gradient of 0.02 feet/feet. The seasonal groundwater recharge from the hillside appears to flow into the unconfined nursery water-bearing zone on a limited basis. Monitoring wells MW-1, MW-3, and MW-8 were not included with the groundwater contours because the groundwater elevations in monitoring wells MW-1 and MW-3 below bedrock indicating the wells were hydraulically disconnected from the water bearing zone and MW-8 is screened in a different water bearing zone.

Figure 3 provides groundwater contours for the unconfined water-bearing zone as well as bedrock surface elevations for the gravel-siltstone contact for comparison.

2.1 QUARTERLY MONITORING ACTIVITIES

After measuring the depth to groundwater at each monitoring well, URS conducted groundwater sampling on June 23 and 24, 2010. The rationale for the method used at each monitoring well is described below:

- MW-2, MW-4 and MW-9 through MW-11 were sampled using low-flow methods.
- MW-8 was sampled using a disposable bailer.
- A surface water sample was collected using a clean disposable cup from the very small stream northwest of the release location.

2.1.1 MW-1 and MW-9 Sorbent Booms

From the March 2007 until May 2009, URS placed sorbent booms (booms) in MW-1 and MW-9 as an interim remedial measure. The booms were effective in passively collecting and facilitating degradation of petroleum hydrocarbons within the monitoring wells and allowed for quarterly groundwater sample collection. Since May 2009, MW-1 and MW-9 have been gauged monthly, including during the second quarter 2010 groundwater monitoring event, with no measurable product observed. URS will continue to monitor MW-1 and MW-9 during the monthly groundwater gauging events for product.

2.1.2 MW-2, MW-4 and MW-9 through MW-11

Low-flow purging rates of 300-500 milliliters per minute (mL/min) were used dependent on the rate of recharge at each monitoring well. The low-flow groundwater sampling forms are included in Appendix A.

In addition to monitoring the water level at each monitoring well during low-flow sampling, temperature, pH, conductivity, oxidation reduction potential (ORP), and dissolved oxygen (DO) of the purged groundwater were measured using an in-line flow-through cell and multi-parameter Horiba U-22XD. The multi-parameter device was calibrated prior the sampling event. During purging, the parameter readings described above were recorded every 3 minutes until the parameters stabilized.

Parameters were considered to be stable when three consecutive readings were within the following guidelines: pH +/- 0.2 pH units, conductivity +/- 3% of reading, ORP +/- 20 millivolts (mV), DO +/- 0.2 milligrams per liter (mg/L).

After monitoring all field parameters, the flow through cell was detached and groundwater samples were collected directly from the pump tubing.

2.1.3 Surface Water Sample

The sampling location along the very small stream is located at the base of the alluvial terrace within the Alameda Creek floodplain and is shown on Figure 2. The former sampling point (SW-Creek, sampled prior to the first quarter of 2007) is also provided on Figure 2 for reference. To the west, beyond the current sampling location, the very small stream fans out into the floodplain and surface flow terminates within floodplain grasses. A stream sample was collected on June 24, 2010 using a clean disposable cup.

3.1 ANALYTICAL PROGRAM

The groundwater samples from monitoring wells MW-2, MW-4, and MW-8 through MW-11 were collected in clean laboratory provided containers. The containers were labeled with unique project specific identification, packed to prevent breakage, and placed on ice in a cooler with a trip blank immediately after collection. The samples were submitted to Lancaster Analytical Laboratory in Lancaster, Pennsylvania, a California Certified Laboratory, under URS chain-of-custody procedures. The samples were analyzed on a standard turn-around-time.

Monitoring wells MW-1 and MW-3 were not sampled because groundwater levels were below the bedrock indicating the monitoring wells were hydraulically disconnected from the water bearing zone.

Groundwater samples collected during quarterly sampling activities were analyzed for the following parameters:

Gasoline Compounds

- Total petroleum hydrocarbons gasoline range organics (TPH-GRO) by N. CA LUFT GRO
- Benzene, toluene, ethylbenzene, xylenes (BTEX) by USEPA Method 8260B

Geochemical Indicator Parameters

- Nitrate and sulfate by USEPA Method 300.0
- Total manganese and dissolved iron by USEPA Method 6010B
- Ferrous iron by SM20 Method 3500-FE B Modified
- Methane by USEPA Method 8015B Modified
- Alkalinity including breakdown products by USEPA Method 310.1
- Total dissolved solids (TDS) by USEPA Method 160.1

3.2 GROUNDWATER ANALYTICAL RESULTS DISCUSSION

A tabulated summary of the analytical results for the gasoline compounds and associated environmental screening levels (ESLs), for groundwater as a current or potential source of drinking water, developed by the Regional Water Quality Control Board (RWQCB 2008) are presented in Table 3. Complete laboratory analytical results and chain of custody forms are presented as Appendix B.

3.2.1 Unconfined Water-Bearing Zone Monitoring Wells

The unconfined water bearing zone wells sampled during the fourth quarter sampling event included MW-2 through MW-4 and MW-8 through MW-11. The second quarter 2010 groundwater sample results are as follows:

- The MW-8 sample contained TPH-GRO at 14,000 µg/L, benzene at 630 µg/L, toluene at 680 µg/L, ethylbenzene at 870 µg/L, and total xylenes at 2,500 µg/L. Samples results slightly increased since the sampling event in March 2010.
- The MW-9 sample contained TPH-GRO at 16,000 µg/L, benzene at 0.9 µg/L, toluene at 7 µg/L, ethylbenzene at 210 µg/L, and total xylenes at 1,300 µg/L. With the exception of benzene, sample results slightly decreased since the March 2010 sampling event.
- The analytical results from MW-2, MW-3 MW-4, MW-10, and MW-11 were below laboratory method detection limits for TPH-GRO and BTEX.

Groundwater analytical results are presented in Table 3.

3.2.2 Surface Water Sample

A surface water sample was collected on June 24, 2010. TPH-GRO and BTEX were below method detection limits in the sample collected from the stream (Table 3).

3.2.3 Analytical Result Comparison to ESLs

The TPH-GRO analytical results for monitoring wells MW-8 and MW-9 exceeded the TPH-GRO ESL of 100 μ g/L with concentrations of 14,000 μ g/L, and 16,000 μ g/L, respectively.

The benzene analytical result for monitoring well MW-8 exceeded the benzene ESL of 1 μ g/L with a concentration of 630 μ g/L.

The toluene analytical result for monitoring well MW-8 exceeded the toluene ESL of 40 μ g/L with a concentration of 680 μ g/L.

The ethylbenzene analytical results for monitoring wells MW-8 and MW-9 exceeded the ethylbenzene ESL of 30 μ g/L with concentrations of 870 μ g/L and 210 μ g/L, respectively.

The total xylenes analytical results for monitoring wells MW-8 and MW-9 exceeded the total xylenes ESL of 20 μ g/L with concentrations of 2,500 μ g/L and 1,300 μ g/L, respectively.

3.2.4 Geochemical Analytical Results

The groundwater samples collected from MW-2, MW-4 and MW-8 through MW-11 were also analyzed for geochemical parameters. Overall, the geochemical parameters indicate a low oxygen (anaerobic) environment. A preliminary assessment of the lower sulfate level in impacted monitoring well MW-8, indicate a potential for anaerobic biodegradation of the hydrocarbon plume by the sulfate reduction process. URS will continue to collect geochemical parameters when possible from all monitoring wells. The geochemical results are presented in Table 4.

3.3 SUMMARY OF QA/QC REVIEW PARAMETERS

The quality assurance/quality control (QA/QC) program includes using standard sample collection procedures in the field and established analytical methodologies in the laboratory. Laboratory and field QC sample results were evaluated to assess the quality of the individual sample results and overall method performance. Analytical performance was evaluated on a "batch QC" basis by evaluating the QC sample results for groups of samples that were prepared and analyzed together. The data evaluation performed included a review of:

- Blanks (laboratory method blanks and trip blanks)
- Spikes (laboratory control sample spikes, matrix control spikes, blank spikes and surrogate spikes)
- Duplicates (laboratory control sample duplicates and field duplicates)
- Sample Integrity (chain-of-custody documentation, sample preservation, and holding time compliance)

Method Holding Times

Analytical methods have prescribed holding times. The method holding time is defined as the maximum amount of time after collection that a sample may be held prior to extraction and/or analysis. Sample integrity becomes questionable for samples extracted and/or analyzed outside of the prescribed holding

times due to degradation and/or volatilization of the sample. All samples were analyzed within the appropriate hold times.

Method Blanks

Method blanks are prepared in the laboratory using deionized, distilled (Reagent Grade Type II) water. Method blanks are extracted and/or analyzed following the same procedures as an environmental sample. Analysis of the method blank indicates potential sources of contamination from laboratory procedures (e.g. contaminated reagents, improperly cleaned laboratory equipment) or persistent contamination due to the presence of certain compounds in the ambient laboratory environment. The QA/QC review identifies method blanks with detections of target analytes and evaluates the effect of the detections on associated sample results. Iron was detected at a concentration of 80.3 μ g/L in the method blank from Batch 101791848005. The iron detections in samples MW-8_Filtered Grab Water and MW-9_Filtered Grab Water were qualified with a "J+", indicating evidence of laboratory contamination, and that the sample results may be biased high. No other method blanks had detections of target analytes.

Trip Blanks

Trip blanks are samples of deionized, distilled (Reagent Grade Type II) water that are prepared in the laboratory, taken to the field, retained on site throughout sample collection, returned to the laboratory, and analyzed with the environmental samples. The QA/QC review identifies trip blanks with detections of target analytes and evaluates the effect of the detections on associated sample results. Two trip blanks were analyzed during this sampling event. The trip blanks did not have detections of any target analytes, indicating no evidence of contamination during shipment of the laboratory samples.

Matrix Spikes and Laboratory Control Samples

Matrix spikes (MS), matrix spike duplicates (MSD), laboratory control samples (LCS), laboratory control sample duplicates (LCSD), blank spikes (BS) and blank spike duplicates (BSD) are analyzed by the laboratory to evaluate the accuracy and precision of the sample extraction and analysis procedures and to evaluate potential matrix interference. Matrix interference, the effect of the sample matrix on the analysis, may partially or completely mask the response of analytical instrumentation to the target analyte(s). Matrix interference may have a varying impact on the accuracy and precision of the extraction and/or analysis procedures, and may bias the sample results high or low.

The MS or MSD is prepared by adding a known quantity of the target compound(s) to a sample. The sample is then extracted and/or analyzed as a typical environmental sample and the results are reported as percent recovery. The spike percent recovery is defined as:

Recovery (%) = $\frac{\text{spike analysis result} - \text{original sample concentration}}{\text{concentration of spike addition}} x100\%$

MS and MSD recoveries are reviewed for compliance with laboratory-established control limits to evaluate the accuracy of the extraction and/or analysis procedures.

LCS, LCSD, BS and BSD are prepared exactly like MS and MSD using a clean control matrix rather than an environmental sample. Typical control matrices include Reagent Grade Type II water and clean sand. LCS, LCSD, BS and BSD are used to evaluate laboratory accuracy independent of matrix effects.

The QA/QC review identifies spike recoveries outside laboratory control limits and evaluates the effect of these recoveries on the associated sample results.

Laboratory Duplicate Analyses

Duplicate analyses are performed by the laboratory to evaluate the precision of analytical procedures. The laboratory may perform MSD and/or BSD analyses.

Precision is evaluated by calculating a relative percent difference (RPD) using the following equation:

$$RPD(\%) = \frac{(Spike Concentration - Spike Duplicate Concentration)}{\frac{1}{2}(Spike Concentration + Spike Duplicate Concentration)} \times 100\%$$

The RPD is compared to laboratory-established control limits to evaluate analytical precision. The QA/QC review identifies RPDs outside laboratory control limits and evaluates the effect of these recoveries on the associated sample results.

Field Duplicate Analyses

Field duplicate samples are collected in the field and analyzed to evaluate the heterogeneity of the matrices. A field duplicate sample is collected and analyzed during the first and third quarters.

Surrogate Recoveries

Surrogates are organic compounds that are similar to the target analytes in terms of their chemical structures and response to the analytical instrumentation, but are not usually detected in environmental samples. Surrogates are added to each environmental and laboratory QC sample to monitor the effect of the matrix on the accuracy of the extraction and/or analysis of organic analytes. Results for surrogate analyses are reported in terms of percent recovery (defined above). Reported recoveries are compared to laboratory-established control limits to evaluate sample-specific accuracy. The QA/QC review identifies surrogate recoveries outside laboratory control limits and evaluates the effect of these recoveries on the sample results. There were no surrogate recoveries outside laboratory control limits in any of the samples.

EXPLANATION OF ANALYTICAL DATA QUALIFIERS

The analytical data were reviewed and qualified following USEPA guidelines for organic data review (USEPA, 1999). A "J" qualifier indicates that the analyte was positively identified, but that the associated numerical value is an approximate concentration of the analyte in the sample. A "UJ" qualifier indicates that the analyte was not detected above the reported sample quantitation limit (i.e., the laboratory reporting limit). However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. An "R" qualifier indicates that the sample results were rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria, and therefore, the presence or absence of the analyte could not be verified.

SUMMARY OF QA/QC REVIEW FINDINGS

The results of the data evaluation are summarized in the following paragraphs.

Iron was detected at a concentration of $80.3 \ \mu g/L$ in the method blank from Batch 101791848005. The iron detections in samples MW-8_Filtered Grab Water and MW-9_Filtered Grab Water were qualified with a "J+", indicating evidence of laboratory contamination, and that the sample results may be biased high.

Chain-of-custody documentation is complete and consistent. Samples were preserved as required per method specifications. All samples were analyzed within method specified holding times. Based on the data quality evaluation, no systematic problems were detected and the overall data objectives for sample contamination, precision, accuracy, and sample integrity were met. These analytical data are of acceptable quality and may be used for their intended purposes.

Quarterly groundwater monitoring field activities conducted on June 23 and 24, 2010 included measuring the depth to groundwater at monitoring wells MW-1 through MW-4 and MW-8 through MW-11 and collecting analytical samples from groundwater monitoring wells MW-2, MW-4, MW-8 through MW-11, and the stream. The findings are as follows:

- Free product was not observed in monitoring wells MW-1 through MW-4, and MW-8 through MW-11 during the second quarter 2010 groundwater monitoring activities.
- Groundwater elevations collected on June 23, 2010 indicate the local groundwater flow direction within the nursery's unconfined water bearing zone is to the northeast at a hydraulic gradient of 0.02 feet/foot.
- The groundwater surface elevations decreased in all monitoring wells since the last sampling event in March 2010. The groundwater surface elevation change resulted in hydraulic disconnection of monitoring wells MW-1 and MW-3.
- The MW-8 sample contained TPH-GRO at 14,000 µg/L, benzene at 630 µg/L, toluene at 680 µg/L, ethylbenzene at 870 µg/L, and total xylenes at 2,500 µg/L. The sample results for all petroleum constituents analyzed exceeded their respective ESL. Sample results increased slightly since the sampling event in March 2010.
- The MW-9 sample contained TPH-GRO at 16,000 μ g/L, benzene at 0.9 μ g/L, toluene at 7 μ g/L, ethylbenzene at 210 μ g/L, and total xylenes at 1,300 μ g/L. The sample results for TPH-GRO, ethylbenzene, and total xylenes exceeded their respective ESL. Overall, with the exception of benzene, sample results decreased slightly since the sampling event in March 2010.
- Groundwater samples collected from monitoring wells MW-2, MW-4, MW-10 and MW-11 have remained non-detect since the sampling event in March 2010.
- Other than the initial spray release (August 2005) to the nursery, the known petroleum hydrocarbon plume within the hillside has had limited contact with groundwater which is the transportation mechanism for petroleum hydrocarbons to the nursery.

SECTIONFIVE

Based on the June 23 and 24, 2010 field observations and analytical results URS makes the following recommendations:

- Continue quarterly groundwater monitoring to further assess the effect of seasonal and long-term groundwater elevation fluctuations and contaminant concentration trends within the unconfined water-bearing zone; and,
- Continue development of a Conceptual Site Model to identify any potential data gaps that may require additional data collection.

No evaluation is thorough enough to preclude the possibility that materials that are currently considered hazardous or materials that may be considered hazardous in the future may be present at a site. Since regulatory evaluation criteria are constantly changing, concentrations of contaminants presently considered nonhazardous may, in the future, fall under different regulatory standards and require remediation. Opinions and judgments expressed herein, which are based on understanding and interpretation of current regulatory standards, should not be construed as legal opinions. This document and the information contained herein have been prepared solely for use by CPL, and reliance on this report by third parties will be at such party's sole risk.

TABLE 1 Monitoring Well Groundwater Levels Second Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID Screen Interval (feet bgs) ¹ Date		Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thicknes (feet)
MW-1	29.3-39.3	2/21/2006	36.34		
		6/7/2006	34.28		
		8/22/2006	37.11	37.08	0.03
		11/14/2006	37.05		
		2/20/2007	36.14		
		6/5/2007	37.21		
		9/12/2007	37.67	37.55	0.12
		12/11/2007	37.49	37.46	0.03
		3/19/2008	35.94		
		5/20/2008	35.51		
		6/5/2008	35.69		
		9/18/2008	37.62	37.61	0.01
		12/15/2008	37.53	37.52	0.01
		3/27/2009	35.24		
		6/9/2009	37.05		
		9/28/2009	37.61		
		12/9/2009	37.56		
		3/9/2010	34.41		
MANA/ O	00.0.00.0	6/23/2010	37.49		
MW-2	23.3-38.3	2/21/2006	32.19		
		6/7/2006	30.23 33.11		
		8/22/2006			
		11/14/2006	33.01 31.93		
		2/20/2007			
		6/5/2007	33.23		
		9/12/2007	33.62 33.52		
		12/5/2007 3/19/2008	33.52		
		5/20/2008	31.41		
		6/5/2008	31.56		
		9/18/2008	33.65		
		12/15/2008	33.59		
		3/27/2009	31.14		
		6/9/2009	33.08		
		9/28/2009	33.62		
		12/9/2009	33.61		
		3/9/2010	30.36		
		6/23/2010	32.66		
MW-3	21.3-36.3	2/21/2006	31.97		
	2110 0010	6/7/2006	30.91		
		8/22/2006	34.66		
		11/14/2006	34.71		
		2/20/2007	31.66		
		6/5/2007	34.63		
		9/12/2007	34.71		
		12/11/2007	34.77		
		3/19/2008	31.64		
		5/20/2008	31.26		
		6/5/2008	31.45		
		9/18/2008	34.81		
		12/15/2008	34.79		
		3/27/2009	30.87		
		6/9/2009	34.48		
		9/28/2009	34.82		
		12/9/2009	34.83		
		3/9/2010	30.60		

TABLE 1 Monitoring Well Groundwater Levels Second Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Screen Interval (feet bgs) ¹	Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thickness (feet)
MW-3		6/23/2010	33.94		
MW-4	30.7-40.7	2/21/2006	36.72		
		6/7/2006	35.76		
		8/22/2006	38.79		
		11/14/2006	38.84		
		2/20/2007	36.54		
		6/5/2007	38.77		
		9/12/2007	38.93		
		12/11/2008	39.00		
		3/19/2008	36.29		
		5/20/2008	36.27		
		6/5/2008	36.38		
		9/18/2008	39.03		
		12/15/2008	39.03		
		3/27/2009	36.10		
		6/9/2009	38.62		
		9/28/2009	39.04		
		12/9/2009	39.09		
		3/9/2010	35.69		
		6/23/2010	37.41		
MW-8	14.5-24.5	8/22/2006	18.71		
1111-0	14.0 24.0	11/14/2006	18.73		
		2/20/2007	19.23		
		6/5/2007	20.48		
		9/12/2007	21.47		
		12/11/2007	19.58		
		Q1 2008	NM		
		Q1 2008	NM		
		9/18/2008	21.67		
		12/15/2008	20.73		
		3/27/2009	19.54		
		6/9/2009	23.31		
			23.51		
		9/28/2009			
		12/9/2009	20.66	20.65	0.01
		3/9/2010	18.97		
	00.0.40.0	6/23/2010	19.82		
MW-9	36.0-46.0	8/22/2006	42.59	42.55	0.04
		11/14/2006	42.62	42.54	0.08
		2/20/2007	41.91	41.86	0.05
		6/5/2007	42.71	42.69	0.02
		9/12/2007	43.09	43.01	0.08
		12/11/2007	42.91		
		3/20/2007	41.76	41.75	0.01
		12/11/2007	42.91		
		5/20/2008	41.33		
		6/5/2008	41.57		
		9/18/2008	43.07		
		12/15/2008	43.00		
		3/27/2009	41.02		
		6/9/2009	42.53		
		9/28/2009	43.02		
		12/9/2009	42.99		
		3/9/2010	39.97		
		6/23/2010	41.94		

TABLE 1 Monitoring Well Groundwater Levels Second Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Screen Interval (feet bgs) ¹	Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thickness (feet)
MW-10	40.3-55.3	9/5/2007	54.86		
		12/12/2007	46.84		
		3/20/2008	44.41		
		5/20/2008	44.09		
		6/5/2008	43.67		
		9/18/2008	45.89		
		12/15/2008	45.91		
		3/27/2009	43.82		
		6/9/2009	45.19		
		9/28/2009	45.94		
		12/9/2009	46.02		
		3/9/2010	42.62		
		6/23/2010	44.52		
MW-11	37.0-47.0	9/6/2007	Dry		
		12/12/2007	42.73		
		3/20/2008	37.29		
		5/20/2008	37.06		
		6/4/2008	37.18		
		9/18/2008	38.97		
		12/15/2008	39.36		
		3/27/2009	36.87		
		6/9/2009	38.30		
		9/28/2009	39.21		
		12/9/2009	39.73		
		3/9/2010	36.28		
		6/23/2010	37.72		

Notes:

NM - Not measured

1. Screen intervals measured from feet below ground surface (feet bgs)

2. Groundwater and product levels measured from top of casing - north (TOC-N).

3. MW-5 through MW-7 abandoned 6/23/08.

TABLE 2 Monitoring Well Groundwater Elevations Second Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

	Date	Ground Surface	Top of Casing	Date	Groundwater	Product	Product
Well ID	Completed	Elevation	Elevation	Measured	Elevation	Elevation	Thickness
	Completed	(feet msl) ¹	(feet msl) ^{1, 2}	weasured	(feet msl) ¹	(feet msl) ¹	(feet)
MW-1	10/20/2005	328.49	328.04	2/21/2006	291.70		
				6/7/2006	293.76		
				8/22/2006	290.93	290.96	0.03
				11/14/2006	290.99		
				2/20/2007	291.90		
				6/5/2007	290.83		
				9/12/2007	290.37		
				12/11/2007	290.55	290.58	0.03
				3/19/2008	292.10		
				5/20/2008	292.53		
				6/5/2008	292.35		
				9/18/2008	290.42	290.43	0.01
				12/15/2008	290.51	290.52	0.01
				3/27/2009	292.80		
				6/9/2009	290.99		
				9/28/2009	290.43		
				12/9/2009	290.48		
				3/9/2010	293.63		
				6/23/2010	290.55		
MW-2	10/21/2005	324.85	324.15	2/21/2006	291.96		
	10/21/2000	021.00	021110	6/7/2006	293.92		
				8/22/2006	291.04		
				11/14/2006	291.14		
				2/20/2007	292.22		
				6/5/2007	290.92		
				9/12/2007	290.53		
				12/5/2007	290.63		
				3/19/2008	292.39		
				5/20/2008	292.74		
				6/5/2008	292.59		
				9/18/2008	290.50		
				12/15/2008	290.56		
				3/27/2009	293.01		
				6/9/2009	291.07		
				9/28/2009	290.53		
				12/9/2009	290.54		
				3/9/2010	293.79		
				6/23/2010	291.49		
MW-3	10/21/2005	326.05	325.65	2/21/2006	293.68		
	10,21,2000	020.00	020.00	6/7/2006	294.74		
				8/22/2006	290.99		
				11/14/2006	290.93		
				2/20/2007	293.99		
				6/5/2007	291.02		
				9/12/2007	290.94		
				12/11/2007	290.88		
				3/19/2008	294.01		
				5/20/2008	294.39		
				6/5/2008	294.39		
				9/18/2008	294.20		
				12/15/2008	290.84		
	1		1	12/13/2000	230.00		

TABLE 2 Monitoring Well Groundwater Elevations Second Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Date	Ground Surface Elevation	Top of Casing Elevation	Date	Groundwater Elevation	Product Elevation	Product Thickness
	Completed	(feet msl) ¹	(feet msl) ^{1, 2}	Measured	(feet msl) ¹	(feet msl) ¹	(feet)
MW-3		(leet mai)		6/9/2009	291.17		
10100-5				9/28/2009	290.83		
				12/9/2009	290.82		
				3/9/2010	295.05		
				6/23/2010	291.71		
MW-4	1/31/2006	329.97	329.67	2/21/2006	292.95		
				6/7/2006	293.91		
				8/22/2006	290.88		
				11/14/2006	290.83		
				2/20/2007	293.13		
				6/5/2007	290.90		
				9/12/2007	290.74		
				12/11/2007	290.67		
				3/19/2008	293.38		
				5/20/2008	293.40		
				6/5/2008	293.29		
				9/18/2008	290.64		
				12/15/2008	290.64		
				3/27/2009	293.57		
				6/9/2009	291.05		
				9/28/2009	290.63		
				12/9/2009	290.58		
				3/9/2010	293.98		
				6/23/2010	292.26		
MW-8	8/15/2006	335.23	333.93	8/22/2006	315.22		
				11/14/2006	315.20		
				2/20/2007	314.70		
				6/5/2007	313.45		
				9/12/2007	312.46		
				12/11/2007	314.35		
				Q1 2008	NM		
				Q2 2008	NM		
				9/18/2008	312.26		
				12/15/2008	313.20		
				3/27/2009	314.39		
				6/9/2009	310.62		
				9/28/2009	311.35		
				12/9/2009	313.27	313.28	0.01
				3/9/2010	314.96		
				6/23/2010	314.11		
MW-9	8/16/2006	333.49	333.07	8/22/2006	290.48	290.52	0.04
				11/14/2006	290.45	290.53	0.08
				2/20/2007	291.16	291.21	0.05
				6/5/2007	290.36	290.38	0.02
				9/12/2007	289.98	290.06	0.08
				12/11/2007	290.16		
				3/20/2007	291.31		
				12/11/2007	290.16		
				5/20/2008	291.74		
				6/5/2008	291.50		
				9/18/2008	290.00		
				12/15/2008	290.07		
				3/27/2009	292.05		
	1			6/9/2009	290.54		

TABLE 2 Monitoring Well Groundwater Elevations Second Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Date Completed	Ground Surface Elevation (feet msl) ¹	Top of Casing Elevation (feet msl) ^{1, 2}	Date Measured	Groundwater Elevation (feet msl) ¹	Product Elevation (feet msl) ¹	Product Thickness (feet)
MW-9		(loot mol)	(loot mol)	9/28/2009	290.05		
1111-5				12/9/2009	290.08		
				3/9/2010	293.10		
				6/23/2010	291.13		
MW-10	9/5/2007	336.55	335.89	9/12/2007	281.03		
	0/0/2001	000.00	000.00	12/12/2007	289.05		
				3/20/2008	291.48		
				5/20/2008	291.80		
				6/5/2008	292.22		
				9/18/2008	290.00		
				12/15/2008	289.98		
				3/27/2009	292.07		
				6/9/2009	290.70		
				9/28/2009	289.95		
				12/9/2009	289.87		
				3/9/2010	293.27		
				6/23/2010	291.37		
MW-11	9/6/2007	330.29	329.89	9/12/2007	Dry		
				12/12/2007	287.16		
				3/20/2008	292.60		
				5/20/2008	292.83		
				6/5/2008	292.71		
				9/18/2008	290.92		
				12/15/2008	290.53		
				3/27/2009	293.02		
				6/9/2009	291.59		
				9/28/2009	290.68		
				12/9/2009	290.16		
				3/9/2010	293.61		
				6/23/2010	292.17		

Notes:

NM - Not measured

1. All elevations displayed in feet above average mean sea level (msl).

2. Groundwater and product elevations calculated from depths as measured from top of casing - north.

MW-1 through MW-3 surveyed on October 31, 2005.

MW-4 through MW-7 surveyed on February 14, 2006.

MW-8 and MW-9 surveyed on November 10, 2006.

MW-10 and MW-11 surveyed on September 13, 2007.

MW-5 through MW-7 abandoned 6/23/08.

Well ID			Gase	oline Compou	Inds	
	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL ¹⁾		100	1	40	30	20
MW-1	2/22/2006	57,000	38	2,700	3,000	8,700
	6/8/2006	37,000	10	330	120	8,200
	Q3 2006 ³⁾	NS	NS	NS	NS	NS
	11/15/2006	38,000	14	110	38	5,900
	2/21/2007	18,000	4	7	8	1,600
	6/5/2007	17,000	3	7	4	1,100
	Q3 2007 ³⁾	NS	NS	NS	NS	NS
	Q4 2007 ³⁾	NS	NS	NS	NS	NS
	3/19/2008	12,000	0.8	1	1	320
	6/6/2008	8,200	1	2	3	150
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/31/2009	3,700	<0.5	1	1	44
	6/10/2009	5,000	<0.5	<0.5	0.7	13
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
	3/10/2010	3,800	<0.5	<0.5	<0.5	4
	Q2 2010 ⁴⁾	NS	NS	NS	NS	NS
MW-2	2/21/2006 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.
	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/23/2006	<50	0.5	< 0.5	<0.5	<0.5
	11/14/2006	<50	0.7	< 0.5	<0.5	<0.5
	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS	NS	NS	NS	NS
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2008 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/27/2009	<50	<0.5	< 0.5	<0.5	<0.5
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
	3/10/2010	<50	<0.5	<0.5	<0.5	2
	6/23/2010	<50	<0.5	<0.5	<0.5	< 0.5
MW-3	2/21/2006	<50	<0.5	<0.5	<0.5	<0.5
	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/23/2006	170	<0.5	<0.5	<0.5	<0.5
	11/14/2006	86	<0.5	1	<0.5	<0.5
	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS	NS	NS	NS	NS
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2008	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/31/2009	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	04 2000 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾ 3/9/2010	NS <50	NS <0.5	NS <0.5	NS <0.5	NS <0.5

Well ID			Gaso	oline Compou	Inds	
	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL ¹⁾		100	1	40	30	20
MW-4	2/21/2006	<50	<0.5	< 0.5	<0.5	<0.5
	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/23/2006	70	0.6	<0.5	<0.5	1
	11/15/2006	<50	<0.5	<0.5	<0.5	0.5
	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS	NS	NS	NS	NS
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5
	6/6/2008	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/31/2009	<50	<0.5	< 0.5	<0.5	<0.5
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
	6/23/2010	<50	<0.5	<0.5	<0.5	< 0.5
MW-8/MW-X	8/24/2006	18,000	190	2,600	590	2,800
	11/16/2006	990	76	80	69	190
	2/20/2007	2,000	180	57	170	74
	6/6/2007	3,600	340	92	370	210
	9/12/2007	4,200	470	230	630	320
	12/11/2007	4,900	350	300	490	650
	Q1 2008 ⁵⁾	NS	NS	NS	NS	NS
	Q2 2008 ⁵⁾	NS	NS	NS	NS	NS
	9/18/2008 ²⁾	11,000 / 9,200	740 / 690	320 / 290	790 / 720	2,600 / 2,100
	12/15/2008	12,000	810	920	880	3,300
	3/27/2009	29,000/29,000J	1,500/1,200	7,200/4,500	1,200/1,100	4,700/4,100
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	12/10/2009	19,000	930	1,600	1,200	3,800
	3/10/2010	10,000 / 10,000	570 / 580	500 / 500	730 / 730	1,800 / 1,800
	6/24/2010	14,000	630	680	870	2,500
MW-9	Q3 2006 ³⁾	NS	NS	NS	NS	NS
	11/15/2006	74,000	480	12,000	2,200	17,000
	Q1 2007 ³⁾	NS	NS	NS	NS	NS
	Q2 2007 ³⁾	NS	NS	NS	NS	NS
	Q3 2007 ³⁾	NS	NS	NS	NS	NS
	12/11/2007	48,000	62	5,400	1,700	12,000
	Q1 2008 ³⁾	NS	NS	NS	NS	NS
	6/6/2008	31,000	5	1,000	1,300	9,000
	9/18/2008	25,000	6	610	800	4,800
	12/16/2008	34,000	6	750	930	6,000
	3/31/2009	20,000	3	100	460	3,200
	6/10/2009	27,000	<3	66	610	4,100
	Q3 2009 ³⁾	NS	NS	NS	NS	NS
	12/10/2009	20,000	3	85	460	2,800
	3/10/2010	18,000	<3	17	250	1,700
	6/24/2010	16,000	0.9	7	210	1,300

Well ID			Gase	oline Compo	unds	
	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL ¹⁾		100	1	40	30	20
MW-10/MW-X 7)	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	12/14/2007	<50	< 0.5	< 0.5	<0.5	<0.5
-	3/20/2008	<50	0.9	<0.5	<0.5	<0.5
-	6/6/2008	<50	<0.5	<0.5	<0.5	<0.5
	9/18/2008	<50	<0.5	<0.5	<0.5	<0.5
	12/15/2008	<50	<0.5	<0.5	<0.5	<0.5
	3/27/2009	52	<0.5	0.7	<0.5	<0.5
	6/10/2009	<50	<0.5	1	<0.5	<0.5
	9/28/2009	<50/<50	<0.5/<0.5	<0.5/<0.5	<0.5/<0.5	<0.5/<0.5
-	12/10/2009	540	1	2	5	23
-	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
-	6/23/2010	<50	<0.5	<0.5	<0.5	<0.5
MW-11	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	12/14/2007	<50	<0.5	<0.5	<0.5	<0.5
-	3/20/2008 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5
-	6/6/2008	<50	<0.5	<0.5	<0.5	<0.5
	9/18/2008	<50	<0.5	<0.5	<0.5	<0.5
	12/15/2008	<50	< 0.5	<0.5	<0.5	<0.5
	3/27/2009	<50	<0.5	<0.5	<0.5	<0.5
-	6/10/2009	59	<0.5	2	<0.5	3
-	9/29/2009	<50	<0.5	<0.5	<0.5	<0.5
	12/10/2009	66	<0.5	<0.5	<0.5	3
-	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
-	6/23/2010	<50	<0.5	<0.5	<0.5	<0.5
SW-Creek	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/22/2006	<50	<0.5	<0.5	<0.5	<0.5
	11/15/2006	<50	<0.5	<0.5	<0.5	<0.5
	11/15/2006	<50	<0.5	<0.5	<0.5	<0.5
Stream	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2007	<50	<0.5	<0.5	<0.5	<0.5
	9/12/2007	<50	<0.5	<0.5	<0.5	<0.5
	1/25/2008	<50	<0.5	<0.5	<0.5	<0.5
	3/20/2008	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2008	<50	<0.5	<0.5	<0.5	<0.5
	9/18/2008	<50	<0.5	<0.5	<0.5	<0.5
	12/15/2008	<50	<0.5	<0.5	<0.5	<0.5
	3/31/2009	<50	<0.5	<0.5	<0.5	<0.5
	6/9/2009	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2009 ⁶⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁶⁾	NS	NS	NS	NS	NS
	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
	6/24/2010	<50	<0.5	<0.5	<0.5	<0.5

Notes:

Bold values exceed laboratory reporting limits.

J qualifier - The reported value is the approximate concentration of the analyte in the sample due to sample heterogeneity.

µg/L -NS - Not

TPH-GRO -

1) Environmental Screening Levels (ESLs) for groundwater as a current or potential source of drinking water were obtained from the San Francisco Regional Water Quality Control Board (RWQCB) Interim Final: Table A, May 2008.

2) Both sample and duplicate concentrations from well location are displayed.

3) Sample not collected during quarterly monitoring due to the presence of measurable free product.

4) Sample not collected during quarterly monitoring because well is not hydraulically connected to unconfined water-bearing zone.

Well ID		Gasoline Compounds							
	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes			
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)			
ESL ¹⁾		100	1	40	30	20			

5) Sample not collected due to extreme overhead hazards posed by dead trees on the 80-90% grade directly uphill from the sampling location.

6) Sample not collected during quarterly monitoring due to the stream sample location being dry.7) Duplicate sampled collected from MW-10 during the third quarter 2009 sampling event because

MW-8 was not hydraulically connected to the water bearing zone.

TABLE 4 Summary of Groundwater Analytical Results Geochemical Indicators and Other Parameters Second Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

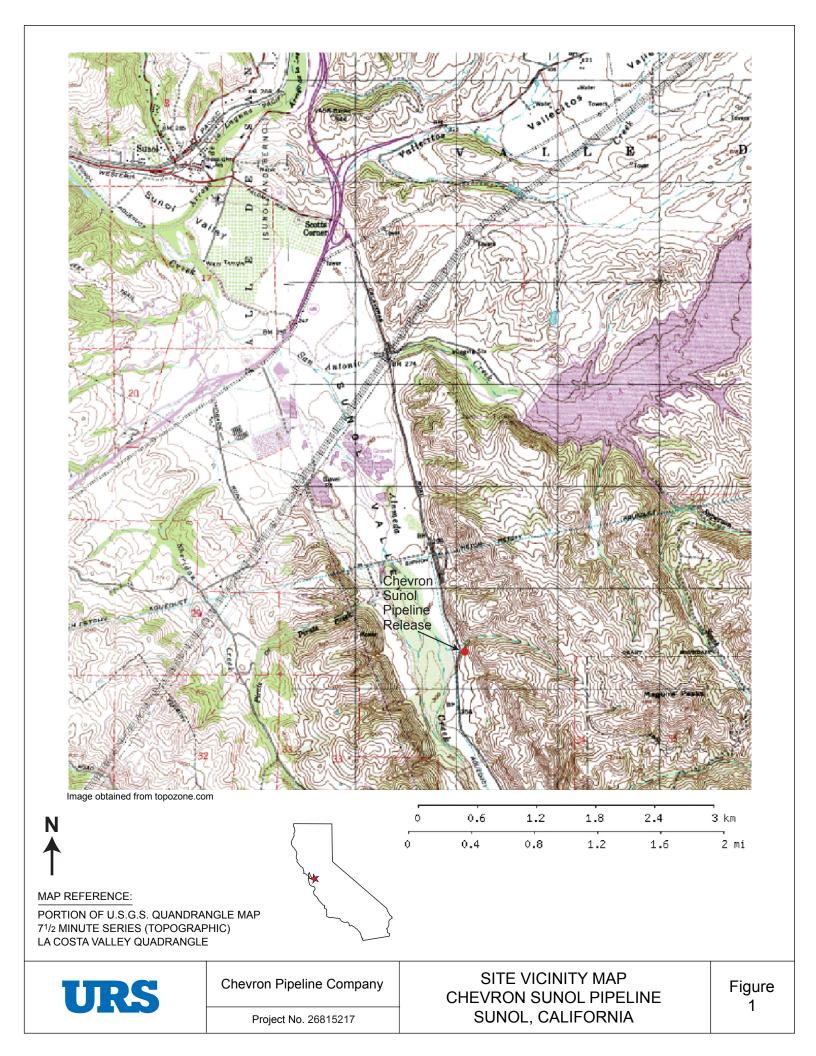
						Ge	ochemical Indi	cators and	Other Para	meters			
		DO ¹⁾	ORP ¹⁾	Nitrate	Manganese			Sulfate	Methane	pH ¹⁾	TDS	Alkalinity to pH 4.5	Alkalinity to pH 8.3
Well ID	Date	(mg/L)	(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ma/L)		(mg/L)	(mg/L) as CaCO ₃	(mg/L) as CaCO ₃
MW-1	6/8/2006	0.28	88.15	2.6	0.116	<0.008	<0.052	48.3	<0.002	6.62	494	317	<0.46
	Q3 2006	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾
	11/15/2006	4.87 ⁶⁾	25	0.37 J	1	0.22	0.079	108	<0.002	6.67	882	597	<0.46
	3/31/2009	2.45	-147	10.3J	0.534	0.12	< 0.052	62.4	0.051	6.61	650	343	<0.46
	6/10/2009	0.00	-115	0.42	0.576	0.2	< 0.052	72.6	< 0.005	7.07	614	422	<0.46
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/10/2010	0.00	-118	4 J	0.431	<0.01	<0.0522	56.9	0.067	6.79	551	347	<0.46
	Q2 2010	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
MW-2	6/7/2006	NR ³⁾	36.43	11.9	0.003	<0.008	<0.052	47.5	<0.002	6.56	465	286	<0.46
	8/23/2006	0.32	25.69	7	0.024	0.015	<0.052	121	0.005	6.63	811	470	<0.46
	11/14/2006	0.2	220.84	4	0.021	0.021	<0.052 UJ	126 J	0.004	6.72	867	530	<0.46
	3/27/2009	5.47	-86	18.2	0.017	0.036J	< 0.052	65	< 0.01	6.62	642	347	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/10/2010 6/23/2010	2.81 2.18	38 173	13 J 13.2	0.0182	0.35	<0.0522	54.9 50.9	<0.005 <0.005	6.89 11.51	532 524	322 319	<0.46 <0.46
MW-3	6/23/2010	0.37	31.23	10.9	0.005	<0.008	<0.0522	45.1	<0.005	6.56	446	274	<0.46
14144-2	8/23/2006	0.3	-1.8	<0.25	0.368	0.24	<0.052	26.3	1.5	6.6	711	421	<0.46
	11/14/2006	0.12	-17.57	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾	0.42	6.95	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾
	3/31/2009	0.00	48	22.2J	0.0017	0.08	< 0.052	57.7	<0.01	6.75	688	320	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/9/2010	1.75	182	12.6 J	0.0093	0.064	<0.0522	54.4	< 0.005	6.78	496	293	<0.46
	Q2 2010	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
MW-4	6/7/2006	0.28	29.57	9.2	0.02	0.059	< 0.052	60.2	< 0.002	6.65	423	282	<0.46
	8/23/2006	NR ³⁾	-22.49	<0.25	0.226	0.7	< 0.052	78.4	0.003	6.62	590	396	<0.46
	11/15/2006	3.46 ⁶⁾	106	0.34 J	0.137	0.47	< 0.052	90.3	0.003	6.74	672	490	<0.46
	3/31/2009	3.96	5	19.5J	0.0406	0.14	< 0.052	83.7	< 0.01	6.64	631	323	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/9/2010	0.05	123	10.5 J	0.0343	0.13	< 0.0522	89.8	< 0.005	6.74	560	312	<0.46
	6/23/2010	0.03	164	9.4	0.0295	0.034	< 0.0522	62.5	<0.005	11.03	491	297	<0.46
MW-8	8/24/2006	NM ²⁾	NM ²⁾	<0.25	0.171	0.14	<0.052	90.2	<0.002 UJ	NM ²⁾	563	362	<0.46
	11/16/2006	0.05	-74	<0.25	0.123	0.8	<0.052	78.6 J	0.002	7.22	564	350	<0.46
	3/27/2009	6.88 ⁶⁾	-113	0.27	0.553	2.5J	< 0.052	15.5	0.13	6.74	639	467	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	12/10/2009	0.04	-165	<0.25 UJ	0.549 J	<2.5	0.06	2 J	<0.2	6.94	576	445	<0.46
	3/10/2010	0.00	-85	<0.25	0.334	3	<0.0522	1.7	0.33	6.89	587	453	<0.46
	6/24/2010	5.83 ⁶⁾	-84	<0.25	1.08	7.8	0.0949 J+	6.1	0.65	6.72	679	502	<0.46
MW-9	Q3 2006	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾
	11/15/2006	3.01 ⁶⁾	4	<0.25 UJ	4.41	1.2	0.496	29.5	0.009	6.92	836	657	<0.46
	3/31/2009	3.35	-179	0.39J	3.2	0.099	< 0.052	60.5	0.012	6.59	632	419	<0.46
	6/10/2009	0.00	-141 -188	<0.25 <0.25 UJ	3.01	1.7 3.3	<0.052	46.4 4.5 J	< 0.005	6.98 6.6	622 734	468 620	<0.46 <0.46
	12/10/2009 3/10/2010	1.43	-188	<0.25 UJ <0.25	4.39 J 2.94	3.3	<0.0522	4.5 J 40.9	<0.2 0.046	6.84	734 596	620 448	<0.46
	6/24/2010	0.00	-108	<0.25	2.46	1.5	0.131 J+	33.5	0.040	6.61	489	380	<0.46
MW-10	3/27/2009	3.65	48	8.2	0.367	0.21J	<0.052	155	0.28	6.69	1,200	645	<0.46
	6/10/2009	0.37	109	<0.25	0.767	0.8	<0.052	133	2.30	7.20	1,100	623	<0.46
	12/10/2009	0.06	-74	0.33 J	0.964 J	10.90	< 0.052	640 J	<0.2	6.85	1,580	512	<0.46
	3/9/2010	1.52	105	13.9 J	0.0357	0.054	<0.052	63.6	0.19	6.89	596	349	<0.46
	6/23/2010	0.00	79	0.68	0.265	0.2	<0.0522	136	0.94	6.76	1,000	604	<0.46
MW-11	3/27/2009	5.86	53	15.3	0.114	0.058J	< 0.052	134	0.06	6.61	742	365	<0.46
	6/10/2009	0.37	44	NM	0.415	NM	NM	NM	0.12	7.16	NM	NM	NM
	12/10/2009	1.01	-50	0.48 J	0.804 J	3.6	< 0.052	151 J	<0.2	6.84	1720	556	<0.46
	3/9/2010	3.68	133	11.9 J	0.0176	0.087	< 0.0522	91.7	0.039	6.73	615	314	<0.46
	6/23/2010	0.45	-2	0.42	0.242	0.15	<0.0522	437	0.29	6.7	1,300	479	<0.46

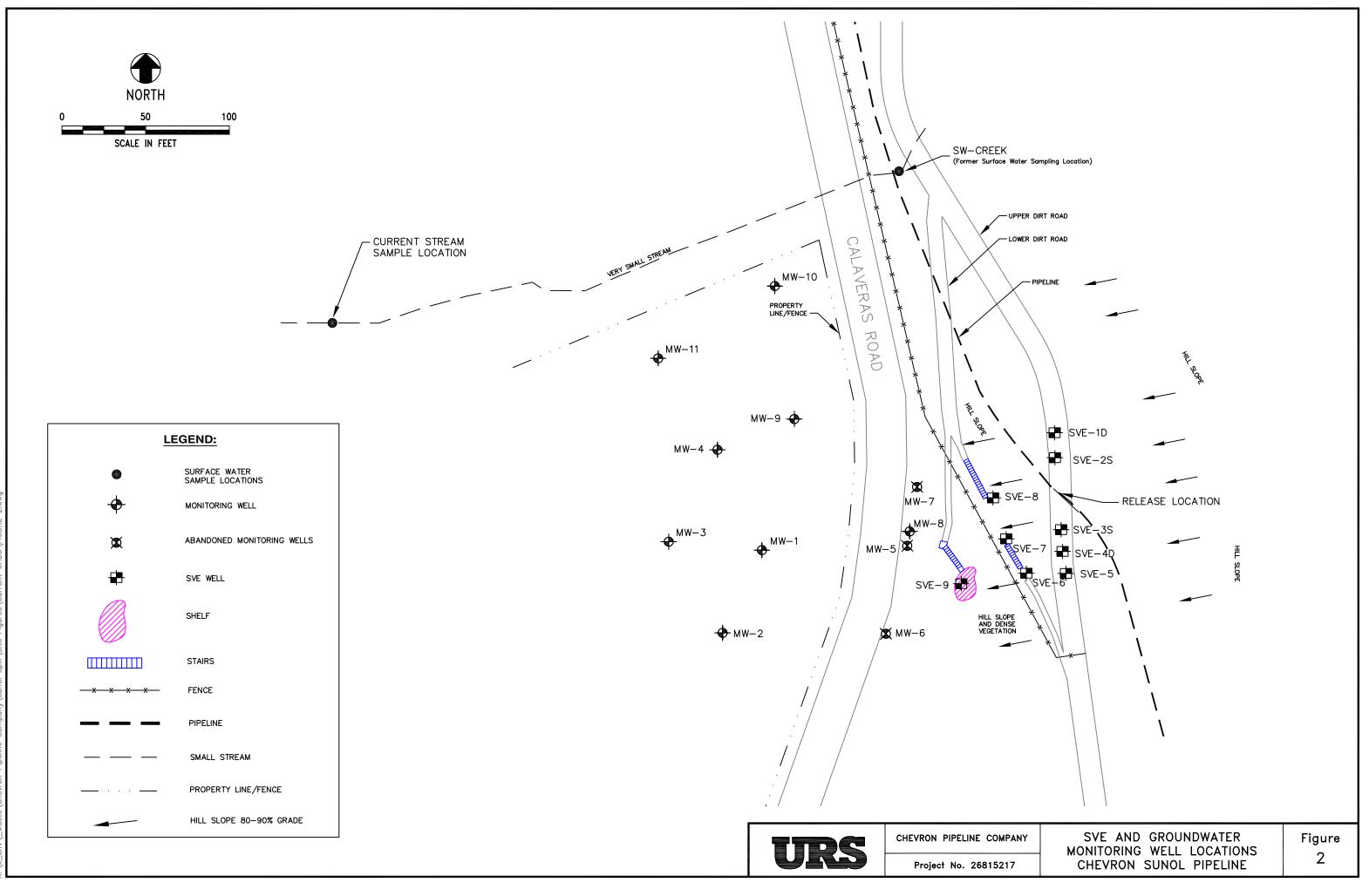
Notes:

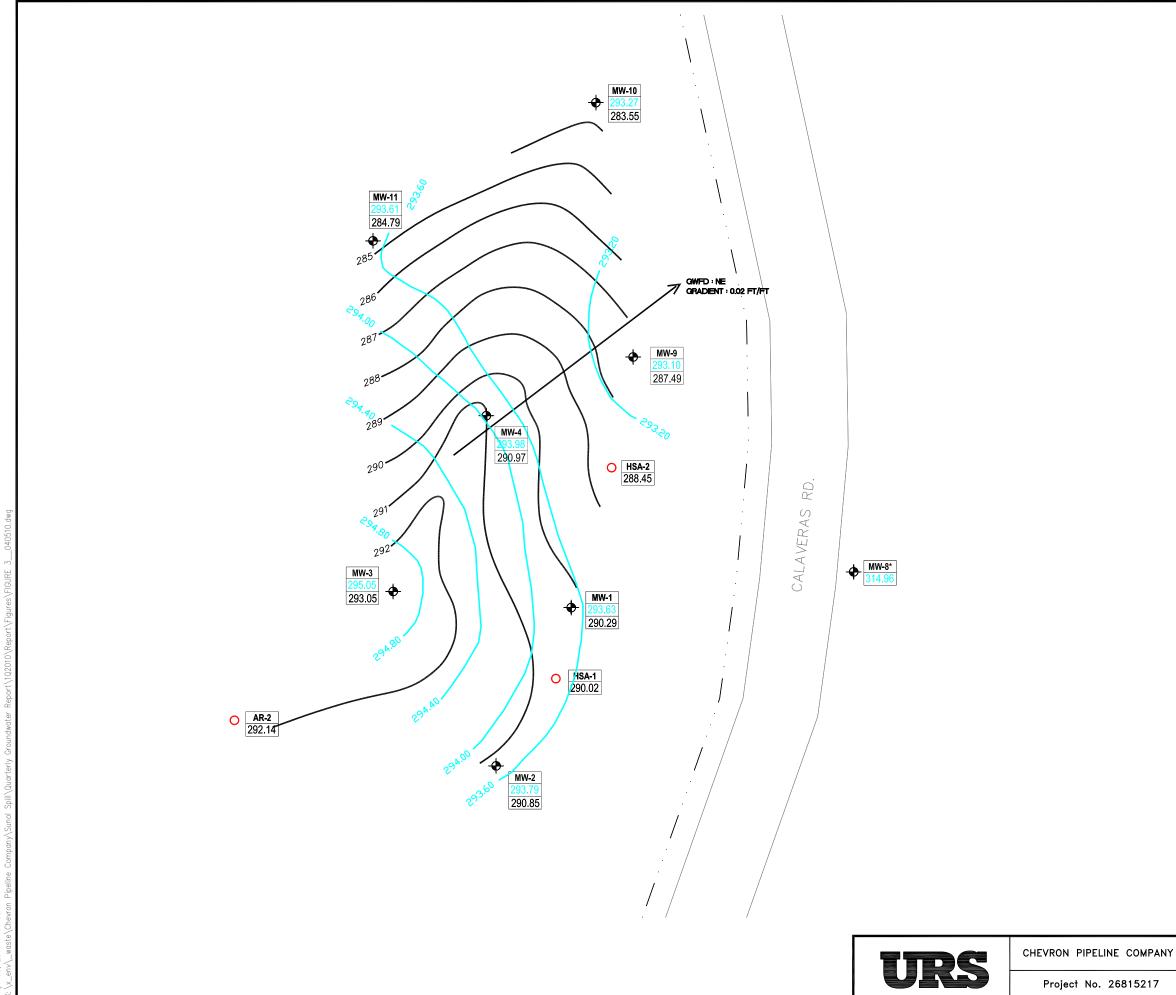
 DO = Dissolved oxygen
 NM = Not measured
 J+ = Estimated high value

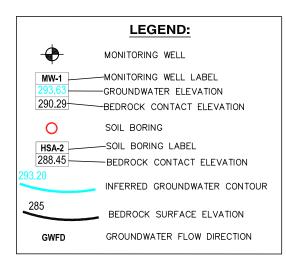
 ORP = Oxygen reduction potential
 NR = Not Reported

 TDS = Total dissolved solids
 J = Estimated result


UJ = Estimated result


CaCO₃ = Calcium Carbonate Note: MW-5, MW-6, and MW-7 were destroyed on 6/23/08


DO, ORP, and pH values were obtained in the field using a flow-through cell and a multi-parameter meter unless otherwise noted.
 Field data was not collected for DO, ORP, and pH because groundwater was removed from the well without using the in-line flow-through cell due to insufficient recharge.


a) DO meter did not appear to be functioning correctly.
b) The well was not sampled and parameters were not measured due to the presence of free product at this location.
c) The well was purged dry and recharge was insufficient to collect groundwater for geochemical analysis.

6) DO readings were artificially high because purge water was poured into the multi-parameter meter from a bailer.
 7) Sample not collected during quarterly monitoring because well is not hydraulically connected to unconfined water-bearing zone.

NOTES:

- 1. ELEVATIONS IN FEET ABOVE AVERAGE MEAN SEA LEVEL (msl).
- 2. GROUNDWATER ELEVATIONS FOR MW-1 THROUGH MW-4 AND MW-9 THROUGH MW-11, AS MEASURED ON MARCH 9, 2010.
- BEDROCK ELEVATION DATA OBTAINED FROM THE BORING LOGS OF MW-1 THROUGH MW-4, MW-9 THROUGH MW-11, HSA-1, HSA-2, AND AR-2.
- 4. THE BEDROCK ELEVATIONS SHOWN REPRESENT THE OVERBURDEN CONTACT WITH THE WEATHERED SILTSTONE/CLAYSTONE BEDROCK UNIT (POSSIBLY CRETACEOUS-AGE CLAY SHALE OF THE PANOCHE FORMATION).
- 5. CALCULATED GROUNDWATER GRADIENT IN NORTHEASTERLY FLOW DIRECTION dh/dl = 0.02 ft/ft.
- * GROUNDWATER ELEVATION DATA NOT USED TO CALCULATE GROUNDWATER CONTOURS

30' 60' SCALE 1"= 30'

UNCONFINED WATER-BEARING ZONE GROUNDWATER AND	Figure
BEDROCK ELEVATIONS MAP CHEVRON SUNOL PIPLINE	3

Appendix A Groundwater Sampling Forms

URS		06/23/10	Horiba U-22XD ISI Low-Flow Log
Project Information:		Pump Information:	
Operator Name	Rachel Naccarati/ Kim Morris	Pump Model/Type	Mega Monsoon
Company Name	URS	Tubing Type	Polyethylene
Project Name	Chevron Sunol Pipeline	Tubing Diameter	3/8 [in]
Site Name	Sunol	Tubing Length	45 [ft]
		Pump placement from TOC	35 [ft]
Well Information:		Pumping information:	
Well Id	MW-2	Final pumping rate	350 mL/min
Well diameter	4 [in]	Flowcell volume	1000 mL
Well total depth	38.3 [ft]	Calculated Sample Rate	NM
Depth to top of screen	23.5 [ft]	Sample rate	NM
Screen length	15 [ft]	Stabilized drawdown	NM
Depth to Water	32.66 [ft]		

	Time	Temp [C]					ORP [mV]
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20
	13:55	17.8	7.92	97	29.4	2.46	167
	13:58	17.8	9.57	97	47.5	2.39	166
	14:01	17.8	10.69	97	53.0	2.29	168
	14:04	17.8	11.23	97	43.0	2.22	170
	14:07	17.8	11.52	97	39.7	2.21	171
	14:10	17.8	11.51	97	37.7	2.18	173
Multi-parameter Readings			Sample collect	ed from MW-2 at 14	4:15 on 6/23/10		
		0.0	0.54		40.0	0.07	
Variance in last 4 readings						-0.07	2
		0.0	0.29	0	-3.3	-0.01	1
		0.0	-0.01	0	-2.0	-0.03	2

Notes: Starting Pumping at 13:50 Initial Depth to Water = 32.66 ft Total Volume Purged = 3 gallons Sample collected at 14:15 on 6/23/10

URS		06/23/10	Horiba U-22XD ISI Low-Flow Log
Project Information:		Pump Information:	
Operator Name	Rachel Naccarati/Kim Morris	Pump Model/Type	Mega Monsoon
Company Name	URS	Tubing Type	Polyethylene
Project Name	Chevron Sunol Pipeline	Tubing Diameter	3/8 [in]
Site Name	Sunol	Tubing Length	43 [ft]
		Pump placement from TOC	39.7 [ft]
Well Information:		Pumping information:	
Well Id	MW-4	Final pumping rate	500 mL/min
Well diameter	4 [in]	Flowcell volume	1000 mL
Well total depth	40.7 [ft]	Calculated Sample Rate	NM
Depth to top of screen	30.7 [ft]	Sample rate	NM
Screen length	10 [ft]	Stabilized drawdown	NM
Depth to Water	37.41 [ft]		

	Time	Temp [C]								
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20			
	14:57	17.0	7.33	98	36.4	0.05	201			
	15:00	16.9	6.68	96	31.8	0.00	194			
	15:03	16.7	6.65	95	31.1	0.00	182			
	15:06	16.7	10.28	95	34.1	0.02	165			
	15:09	16.5	10.31	95	33.7	0.01	165			
	15:12	16.6	11.03	95	33.9	0.03	164			
	Sample collected from MW-4 at 15:20 on 6/23/10									
Multi-parameter Readings			Campie concer							
Variance in last 4 readings		0.0	3.63		3.0	0.02	-17			
		0.0	3.03	0	3.0	0.02	-17			
		-0.2	0.03	0	-0.4	-0.01	0			
		0.1	0.72	0	0.2	0.02	-1			

Notes: Starting Pumping at 14:55 Initial Depth to Water = 37.41 ft Total Volume Purged = 4.5 gallons Sample collected at 15:20 on 6/23/10

URS			Horiba U-22XD
		06/24/10	ISI Low-Flow Log
Project Information:		Pump Information:	
Operator Name	Rachel Naccarati/ Jacob Henry	Pump Model/Type	Disposable Bailer
Company Name	URS	Tubing Type	NA
Project Name	Chevron Sunol Pipeline	Tubing Diameter	1 [in]
Site Name	Sunol	Tubing Length	[ft]
		Pump placement from TOC	[ft]
Well Information:		Pumping information:	
Well Id	MW-8	Final pumping rate	NA
Well diameter	2 [in]	Flowcell volume	NA
Well total depth	24.5 [ft]	Calculated Sample Rate	NA
Depth to top of screen	14.5 [ft]	Sample rate	NA
Screen length	10 [ft]	Stabilized drawdown	NA
Depth to Water	19.82 [ft]		

Stabilization Settings	Time	Temp [C]	рН [рН] +/-0.2	Cond. [µS/cm] +/-3%	Turb [NTU] +/-10	DO [mg/L] +/-0.2	ORP [mV] +/-20
	1 well volume						
	11:20	20.5	6.84	109	138.0	13.46	-43
	2 well volumes 11:23	19.5	6.65	117	553.0	8.07	-74
	3 well volumes						
	11:26	19.4	6.72	123	882.0	5.83	-84
Multi-parameter Readings			Sample collecte	ed from MW-8 at 1	1:30 on 6/24/10		

Starting Pumping at 11:15 Initial Depth to Water = 19.82 ft Total Volume Purged = 2.5 gallons Sample collected at 11:30 on 6/24/10 Slight odor Clear water

Notes:

URS		06/24/10	Horiba U-22XD ISI Low-Flow Log
Project Information:		Pump Information:	
Operator Name	Rachel Naccarati/ Jacob Henry	Pump Model/Type	Mega Monsoon
Company Name	URS	Tubing Type	Polyethylene
Project Name	Chevron Sunol Pipeline	Tubing Diameter	3/8 [in]
Site Name	Sunol	Tubing Length	50.0 [ft]
		Pump placement from TOC	43.0 [ft]
Well Information:		Pumping information:	
Well Id	MW-9	Final pumping rate	300 mL/min
Well diameter	2 [in]	Flowcell volume	1000 mL
Well total depth	46.0 [ft]	Calculated Sample Rate	NM
Depth to top of screen	36.0 [ft]	Sample rate	NM
Screen length	10 [ft]	Stabilized drawdown	NM
Depth to Water	41.94 [ft]		

	Time	Temp [C]				DO [mg/L]	ORP [mV]			
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20			
	9:47	17.5	6.63	102	97.7	0.16	-71			
	9:50	17.0	6.59	102	54.3	0.00	-78			
	9:53	17.8	6.60	101	21.1	0.00	-94			
	9:56	17.7	6.58	100	15.6	0.00	-98			
	9:59	17.9	6.60	100	16.0	0.00	-102			
	10:02	18.4	6.61	100	15.4	0.00	-108			
Multi-parameter Readings	Sample collected from MW-9 at 10:10 on 6/24/10									
Multi-parameter Readings										
		-0.1	-0.02	-1	-5.5	0.00	-4			
Variance in last 4 readings		0.2	0.02	0	0.4	0.00	-4			
		0.5		0						

Starting Pumping at 09:45 Initial Depth to Water = 41.94 ft Total Volume Purged = 2.5 gallons Sample collected at 10:10 Slight odor observed Water dark color

Notes:

URS		06/23/10	Horiba U-22XD ISI Low-Flow Log
Project Information:		Pump Information:	
Operator Name	Rachel Naccarati/ Kim Morris	Pump Model/Type	Mega Monsoon
Company Name	URS	Tubing Type	Polyethylene
Project Name	Chevron Sunol Pipeline	Tubing Diameter	3/8 [in]
Site Name	Sunol	Tubing Length	56 [ft]
		Pump placement from TOC	54.3 [ft]
Well Information:		Pumping information:	
Well Id	MW-10	Final pumping rate	200 mL/min
Well diameter	2 [in]	Flowcell volume	1000 mL
Well total depth	55.3 [ft]	Calculated Sample Rate	NM
Depth to top of screen	40.3 [ft]	Sample rate	NM
Screen length	15 [ft]	Stabilized drawdown	NM
Depth to Water	44.52 [ft]		

	Time	Temp [C]								
Stabilization Settings			+/-0.2	+/-3%	+/-10	+/-0.2	+/-20			
	10:58	18.3	6.73	176	130.0	0.17	242			
	11:01	18.0	6.74	170	83.6	0.00	166			
	11:04	18.0	6.76	171	80.4	0.00	156			
	11:07	18.1	6.77	172	61.4	0.00	131			
	11:10	18.6	6.77	173	53.9	0.00				
	11:13	18.8			49.2	0.00				
	11:16	18.3								
Multi-parameter Readings	Sample collected from MW-10 at 11:20 on 6/23/10									
			Sample collecte	a nonn ww-ro at i	1.20 011 0/23/10					
		0.5	0.00	1	-7.5	0.00	-19			
Variance in last 4 readings		0.5	0.00	I	-7.5	0.00	-19			
		0.2	-0.01	-1	-4.7	0.00	-17			
		-0.5	0.00	0	-3.4	0.00	-16			

Notes: Starting Pumping at 10:55 Initial Depth to Water = 44.52 ft Total Volume Purged = 2.5 gallons Sample collected at 11:20 on 6/23/10

URS		06/23/10	Horiba U-22XD ISI Low-Flow Log
Project Information:		Pump Information:	
Operator Name	Rachel Naccarati/ Kim Morris	Pump Model/Type	Mega Monsoon
Company Name Project Name	URS Chevron Sunol Pipeline	Tubing Type Tubing Diameter	Polyethylene 3/8 [in]
Site Name	Sunol	Tubing Length	
	Suno	Pump placement from TOC	50 [ft] 46 [ft]
Well Information:		Pumping information:	
Well Id	MW-11	Final pumping rate	400 mL/min
Well diameter	2 [in]	Flowcell volume	1000 mL
Well total depth	47.0 [ft]	Calculated Sample Rate	NM
Depth to top of screen	37.0 [ft]	Sample rate	NM
Screen length	10 [ft]	Stabilized drawdown	NM
Depth to Water	37.72 [ft]		

Stabilization Settings	Time	Temp [C]	рН [рН] +/-0.2				ORP [mV] +/-20		
	12:48	19.4	6.94	196	180.0	2.20	-31		
	12:51	19.9	10.59	184	147.0	1.25	-28		
	12:54	19.7	6.73	173	106.0	1.03	-19		
	12:57	19.5	7.55	163	75.9	0.95	-12		
	13:00	19.3	9.12	159	70.5	0.81	-10		
	13:03	19.4	6.67	155	69.1	0.69	-5		
Multi-parameter Readings	13:06	19.5	6.71	157	57.0	0.57	-2		
	13:09	20.0	6.70	159	55.0	0.45	-2		
	Sample collected from MW-11 at 13:15 on 6/23/10								
		0.1	-2.45	-4	-1.4	-0.12	5		
Variance in last 4 readings		0.1	0.04	2		-0.12	3		
		0.5		2			0		

Starting Pumping at 12:45 Initial Depth to Water = 37.72 ft Total Volume Purged = 3 gallons Sample collected at 13:15 on 6/23/10 Well purged dry

Notes:

Appendix B Laboratory Analytical Results

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

July 07, 2010

Project: Sunol, CA

Submittal Date: 06/24/2010 Group Number: 1200469 PO Number: 0015041168 Release Number: JOHNSON State of Sample Origin: CA

Client Sample Description MW-4 NA Water MW-4_Filtered NA Water MW-2 NA Water MW-2_Filtered NA Water MW-10 NA Water MW-10_Filtered NA Water MW-11_Filtered NA Water TB-1 NA Water

Lancaster Labs (LLI)

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	URS	Attn: Joe Morgan
ELECTRONIC	URS	Attn: Rachel Naccarati
COPY TO ELECTRONIC	URS	Attn: Jacob Henry
COPY TO ELECTRONIC COPY TO	URS Corporation	Attn: Kimberly Morgan

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Elizabeth A Leonhardt at (510) 232-8894

Respectfully Submitted,

Saial C Sarah M. Snyder Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description:	MW-4 NA Water	LLI Sample	#	WW 6016708
	NA URSO	LLI Group	#	1200469
	Sunol Pipeline SL0600100443 MW-4	Account	#	11875

Project Name: Sunol, CA

Collected:	06/23/2010	15:20	by КМ	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIPM4

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846 80	015B	ug/l	ug/l	
	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846 80	015B modified	ug/l	ug/l	
07105	Methane		74-82-8	N.D.	5.0	1
Metals	5	SW-846 60	010B	ug/l	ug/l	
07058	Manganese		7439-96-5	29.5	0.84	1
Wet Ch	emistry	EPA 300.0)	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	9,400	250	5
00228	Sulfate		14808-79-8	62,500	1,500	5
		EPA 160.3	L	ug/l	ug/l	
00212	Total Dissolved Sol		n.a.	491,000	9,700	1
		EPA 310.3	L	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	297,000	460	1
			n.a.	N.D.	460	1
		SM20 3500 modified) Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	34	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 17:48	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 17:48	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 15:14	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample D	escription:	MW - 4	NA	Water		
		NA UR	so			
		Sunol	. P:	ipeline	SL0600100443	MW - 4

LLI Sample # WW 6016708 LLI Group # 1200469 Account # 11875

Project Name: Sunol, CA

Collected:	06/23/2010	15:20	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIPM4

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010	15:14	Carrie E Miller	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101760020A	06/29/2010	03:16	Elizabeth J Marin	1
07058	Manganese	SW-846 6010B	1	101791848003	06/29/2010	09:28	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010	21:00	Annamaria Stipkovits	1
00368	Nitrate Nitrogen	EPA 300.0	1	10176196601B	06/25/2010	13:36	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10176196601B	06/25/2010	13:36	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10180021201A	06/29/2010	09:28	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10177834401A	06/26/2010	06:20	Daniel S Smith	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-4 Filtered NA Water	LLI	Sample	#	WW 6016709
	NA URSO	LLI	Group	#	1200469
	Sunol Pipeline SL0600100443 MW-4	Acc	ount	#	11875

Project Name: Sunol, CA

Collected:	06/23/2010	15:20	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metals Dissolved	SW-846 6010B	ug/l	ug/l	
01754 Iron	7439-89-6	N.D.	52.2	1

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	101791848003	06/29/2010 09:32	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010 21:00	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description:	MW-2 NA Water	LLI Sample	# WW 6016710
	NA URSO	LLI Group	# 1200469
	Sunol Pipeline SL0600100443 MW-2	Account	# 11875

Project Name: Sunol, CA

Collected:	06/23/2010	14:15	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIPM2

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846 80	15B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846 80	15B modified	ug/l	ug/l	
07105	Methane		74-82-8	N.D.	5.0	1
Metals	5	SW-846 60	10B	ug/l	ug/l	
07058	Manganese		7439-96-5	103	0.84	1
Wet Ch	nemistry	EPA 300.0		ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	13,200	250	5
	Sulfate		14808-79-8	50,900	1,500	5
		EPA 160.1		ug/l	ug/l	
00212	Total Dissolved Sol			524,000	19,400	1
		EPA 310.1		ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.		n.a.	319,000	460	1
00201			n.a.	N.D.	460	1
	- E					
		SM20 3500 modified	Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	4,000	200	20

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 18:13	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 18:13	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 14:52	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description:	MW-2 1	NA Water					
	NA URSO						
	Sunol	Pipeline	SL0600100443	MW - 2			

LLI Sample # WW 6016710 LLI Group # 1200469 Account # 11875

Project Name: Sunol, CA

Collected:	06/23/2010	14:15	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIPM2

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010	14:52	Carrie E Miller	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101760020A	06/29/2010	03:32	Elizabeth J Marin	1
07058	Manganese	SW-846 6010B	1	101791848003	06/29/2010	09:35	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010	21:00	Annamaria Stipkovits	1
00368	Nitrate Nitrogen	EPA 300.0	1	10176196601B	06/25/2010	13:21	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10176196601B	06/25/2010	13:21	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10180021201A	06/29/2010	09:28	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10177834401A	06/26/2010	06:20	Daniel S Smith	20

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-2 Filtered NA Water	LLI	Sample	#	WW 60	16711
	NA URSO Sunol Pipeline SL0600100443 MW-2		Group			
	Bunor riperine Biooboroorio MM-2	ACCO	unc	π	11075	,

Project Name: Sunol, CA

Collected:	06/23/2010	14:15	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metals Dissolved	SW-846 6010B	ug/l	ug/l	
01754 Iron	7439-89-6	N.D.	52.2	1

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	101791848003	06/29/2010 09:38	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010 21:00	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description:	MW-10 NA Water	LLI Sample	e # WW 6016712
	NA URSO	LLI Group	# 1200469
	Sunol Pipeline SL0600100443 MW-10	Account	# 11875

Project Name: Sunol, CA

Collected:	06/23/2010	11:20	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIP10

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 8	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
	TPH-GRO N. CA water			N.D.	50	1
GC Mi	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	940	25	5
Metal	5	SW-846	5010B	ug/l	ug/l	
07058	Manganese		7439-96-5	265	0.84	1
Wet C	hemistry	EPA 300	. 0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	680	250	5
	Sulfate		14808-79-8	136,000	6,000	20
		EPA 160	. 1	ug/l	ug/l	
00212	Total Dissolved Sol		n.a.	1,000,000	38,800	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.		n.a.	604,000	460	1
00201			n.a.	N.D.	460	1
		SM20 350 modified		ug/l	ug/l	
08344	Ferrous Iron		n.a.	200	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 18:38	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 18:38	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 15:35	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description:	MW-10 NA Water	
	NA URSO	
	Sunol Pipeline SL0600100443 MW-	-10

LLI Sample # WW 6016712 LLI Group # 1200469 Account # 11875

Project Name: Sunol, CA

Collected:	06/23/2010	11:20	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIP10

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010	15:35	Carrie E Miller	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101760020A	06/29/2010	18:36	Elizabeth J Marin	5
07058	Manganese	SW-846 6010B	1	101791848003	06/29/2010	09:41	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010	21:00	Annamaria Stipkovits	1
00368	Nitrate Nitrogen	EPA 300.0	1	10176196601B	06/25/2010	12:50	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10176196601B	06/28/2010	17:58	Ashley M Adams	20
00212	Total Dissolved Solids	EPA 160.1	1	10180021201A	06/29/2010	09:28	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10177834401A	06/26/2010	06:20	Daniel S Smith	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-10_Filtered NA Water	LLI Sample	# WW 6016713
	NA URSO	LLI Group	# 1200469
	Sunol Pipeline SL0600100443 MW-10	Account	# 11875

Project Name: Sunol, CA

Collected:	06/23/2010	11:20	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metals Dissolved	SW-846 6010B 7439-89-6	ug/1 N.D.	ug/l 52.2	1
01/54 11011	7439-89-8	N.D.	52.2	T

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	101791848003	06/29/2010 09:44	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010 21:00	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description:	MW-11 NA Water	LLI Sample	e # WW 6016714
	NA URSO	LLI Group	# 1200469
	Sunol Pipeline SL0600100443 MW-11	Account	# 11875

Project Name: Sunol, CA

Collected:	06/23/2010	13:15	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIP11

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
•	Benzene		71-43-2	N.D.	0.5	1
	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mi	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	290	5.0	1
Metal	S	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	242	0.84	1
Wet Cl	hemistry	EPA 300	.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	420	250	5
00228	Sulfate		14808-79-8	437,000	15,000	50
		EPA 160	.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	1,300,000	38,800	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	479,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35 modifie		ug/l	ug/l	
08344	Ferrous Iron		n.a.	150	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 14:02	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 14:02	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 15:57	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description:	MW-11 NA Water	
	NA URSO	
	Sunol Pipeline SL0600100443	MW-11

LLI Sample # WW 6016714 LLI Group # 1200469 Account # 11875

Project Name: Sunol, CA

Collected:	06/23/2010	13:15	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

PIP11

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010	15:57	Carrie E Miller	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101760020A	06/29/2010	04:05	Elizabeth J Marin	1
07058	Manganese	SW-846 6010B	1	101791848003	06/29/2010	09:47	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010	21:00	Annamaria Stipkovits	1
00368	Nitrate Nitrogen	EPA 300.0	1	10176196601B	06/25/2010	13:05	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10176196601B	06/28/2010	18:14	Ashley M Adams	50
00212	Total Dissolved Solids	EPA 160.1	1	10180021201A	06/29/2010	09:28	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10179020201A	06/28/2010	08:36	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10177834401A	06/26/2010	06:20	Daniel S Smith	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-11_Filtered NA Water	LLI Sample	# WW 6016715
	NA URSO	LLI Group	# 1200469
	Sunol Pipeline SL0600100443 MW-11	Account	# 11875

Project Name: Sunol, CA

Collected:	06/23/2010	13:15	by KM	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/24/2010	09:15		Covington LA 70433
Reported:	07/07/2010	08:34		
Discard:	08/07/2010			

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metals Dissolved	SW-846 6010B 7439-89-6	ug/l N.D.	ug/1 52.2	1
01/01 1100	,100 00 0	11121	5212	-

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	101791848003	06/29/2010 09:51	Eric L Eby	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848003	06/28/2010 21:00	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	TB-1 NA Water	LLI Sample	# WW 6016716
	NA URSO	LLI Group	# 1200469
	Sunol Pipeline SL0600100443 TB-1	Account	# 11875

Chevron Pipeline Co. 100 Northpark Blvd

Covington LA 70433

Project Name: Sunol, CA

Collected: 06/23/2010

Submitted: 06/24/2010 09:15 Reported: 07/07/2010 08:34 Discard: 08/07/2010

PIPTB

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 13:12	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 13:12	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 12:55	Carrie E Miller	1
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010 12:55	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Reported: 07/07/10 at 08:34 AM Group Number: 1200469

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: Z101792AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample numbe N.D. N.D. N.D. N.D. N.D.	er(s): 601 0.5 0.5 0.5 0.5 0.5	6708,6016 ug/l ug/l ug/l ug/l	710,601671 86 88 88 88 90	12,6016714	,6016716 79-120 79-120 79-120 80-120		
Batch number: 10183A20A TPH-GRO N. CA water C6-C12	Sample numbe N.D.	er(s): 601 50.	6708,6016 ug/l	710,601671 127	12,6016714 127	,6016716 75-135	0	30
Batch number: 101760020A Methane	Sample numbe N.D.	er(s): 601 5.0	6708,6016 ug/l	710,601671 103	12,6016714	80-120		
Batch number: 101791848003 Iron Manganese	Sample numbe N.D. N.D.	er(s): 601 52.2 0.84	.6708-6016 ug/l ug/l	715 98 98		90-112 90-110		
Batch number: 10176196601B Nitrate Nitrogen Sulfate	Sample numbe N.D. N.D.	er(s): 601 50. 300.	.6708,6016 ug/l ug/l	710,601671 104 107	12,6016714	90-110 89-110		
Batch number: 10177834401A Ferrous Iron	Sample numbe N.D.	er(s): 601 10.	6708,6016 ug/l	710,601671 100	12,6016714	92-105		
Batch number: 10179020201A Alkalinity to pH 4.5	Sample numbe N.D.	er(s): 601 460.	6708,6016 ug/l as CaCO3		12,6016714	98-103		
Batch number: 10180021201A Total Dissolved Solids	Sample numbe N.D.	er(s): 601 9,700.	6708,6016 ug/l	710,601671 103	12,6016714	80-120		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: Z101792AA	Sample	number(s)	: 6016708	,601673	10,6016	712,601671	4,6016716 0	JNSPK: P015873	
Benzene	92	90	80-126	2	30				
Ethylbenzene	96	94	71-134	2	30				
Toluene	95	92	80-125	3	30				
Xylene (Total)	98	95	79-125	3	30				

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Reported: 07/07/10 at 08:34 AM Group Number: 1200469

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Batch number: 10183A20A TPH-GRO N. CA water C6-C12	MS MSD <u>%REC %REC</u> Sample number(s 118	MS/MSD RPD Limits RPD MAX 5): 6016708,6016710,6010 63-154	Conc C	UP DUP <u>onc RPD</u>)16716 UNSPK: 60167	Dup RPD <u>Max</u> 10
Batch number: 101760020A Methane	Sample number(s 63 63	e): 6016708,6016710,601 35-157 0 20	6712,6016714 UN	NSPK: P015864	
Batch number: 101791848003	Sample number(s	s): 6016708-6016715 UNS	PK: P018109 BKG	G: P018109	
Iron Manganese	100 ¹ 100 99 100	75-12502075-125020		1.D. 0 (1) 1.D. 0 (1)	20 20
Batch number: 10176196601B Nitrate Nitrogen Sulfate	Sample number(s 114* 108	e): 6016708,6016710,601 90-110 90-110	N.D. N	NSPK: P016811 BKG: I.D. 0 (1) ,400 3 (1)	P016811 20 20
Batch number: 10177834401A Ferrous Iron	Sample number(s 98 96	e): 6016708,6016710,601 73-120 1 6		NSPK: P016751 BKG: ,700 1 (1)	P016751 5
Batch number: 10179020201A Alkalinity to pH 4.5 Alkalinity to pH 8.3	Sample number(s 95	s): 6016708,6016710,601 73-121	97,500 9	NSPK: P015618 BKG: 7,500 0 .D. 0 (1)	P015618 5 5
Batch number: 10180021201A Total Dissolved Solids	Sample number(s 102	s): 6016708,6016710,601 62-135		NSPK: P016499 BKG: ,100,000 1	P016499 9

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5016708	99	97	97	94
5016710	99	95	97	94
5016712	98	96	97	94
5016714	100	97	97	94
5016716	99	97	97	95
Blank	100	96	97	94
LCS	99	99	97	95
4S	99	99	97	95
MSD	99	97	97	95
Limits:	80-116	77-113	80-113	78-113
	Iame: TPH-GRO N. CA water per: 10183A20A	C6-C12		
	Trifluorotoluene-F			

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Reported: 07/07/10 at 08:34 AM Group Number: 1200469

Surrogate Quality Control

6016716 85 Blank 83 LCS 116 LCSD 118	

Limits: 63-135

Analysis Name: Volatile Headspace Hydrocarbon Batch number: 101760020A Propene

6016708	51			
6016710	60			
6016712	79			
6016714	76			
Blank	102			
LCS	103			
MS	56			
MSD	56			
Limits:	42-131			

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Chevron California Region Analysis Request/Chain of Custody

Where quality is a												ļ	nal	yses	Rec	ques	sted		-	┥	orc	χφ	# 120	204
Facility #: <u>SWNON</u> Site Address: <u>MP 2</u> Shevron PM: TR FF	.1' Su			nsultant: (105)					H			Pres	erva	tion	N	H				Pr H = HC N = HN S = H ₂ S) 103	T = Thio B = NaC O = Oth	sulfate)H
Chevron PM: JEff John 20 M Lead Consultant: UPS Consultant/Office: UPS - Oald and Consultant Pri. Mgr.: Joe Morgan Consultant Phone #: (510) 893-3600 Fax #: (510) 814-3268 Sampler: K. Morris R. Naccavati							Total Number of Containers		TPH 8015 MOD GRO TPH 8015 MOD DRO TI Silica Gel Cleanup		lates		- 1	TOTAL Manyquesse (0)	Iran 3500-Fe Brad	80	:ol	NJ EPR MOM	Must possil 8021 M Confi	meet lo ble for a TBE Co rm high	rting neede owest detec 8260 comp onfirmation hest hit by 8	tion limi ounds 3260		
ervice Order #:		Repeat	□ Non Top	SAR:	Time	New	Grab	Composite	otal Nun	BTEX -MB	PH 8015 MC	8260 full scan	Oxygenates	ead 7420 🔲 7421 🔲	1 Wate	0111 Ma	Funus	Lethan	verla	5	∐ Confii □ Run _	ന്ന all h റ	iits by 8260 (y's on high (y's on all h) nest hit
bint Name MW -4	Matrix S		Depth	<u>'ear Month Day</u> <u>jo-le-23</u>		Field Pt.			17	Β X	X			9	Ź	X	X	X		Ż	Comm X Met	ents /	Remarks	;
nu) - Z	W			10-6-23					17	X	X				X	X	X	\mathbf{X}	\triangleleft	X	filt	eved	l.	
<u>mw - 10</u>				10-6-23					17	X	X				X	X	X	\rightarrow	\langle	X				
MW-II	W			10-6-23			<u> </u>		17	X					X	X	X		\bigcirc	\leq				
TB-1	Ŵ			10-6-23																				
					Relinguispe	d b																		
Turnaround Time Re	quested (1 72 hour 4 day	48	se circle) 3 hour day		Relinquishe	MI	//li	in.	,			Date <u>1)</u> -6- Date	23	Time <u>\70</u> Time			eived	5					Date Date	Time
Data Package Options (please circle if required) Relinquired) QC Summary Type I – Full					Relinquished by: Date Time Received by						<u>+</u> +			Date	Time									
	Coelt Deli		l needed		Relinquishe UPS Temperature	FedEx)		her	1.6c	.0					L					li des	No	Date GhUli	Time MOLLO

Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	Ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	I	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- **C** Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- **N** Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \ge IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

July 07, 2010

Project: Sunol, CA

Submittal Date: 06/25/2010 Group Number: 1200480 PO Number: 0015041168 Release Number: JOHNSON State of Sample Origin: CA

Client Sample Description MW-8 Grab Water MW-8_Filtered Grab Water MW-9 Grab Water MW-9_Filtered Grab Water STREAM Grab Water TB-2 NA Water

Lancaster Labs (LLI) # 6016751 6016752 6016753

6016755 6016755 6016756

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	URS	Attn: Joe Morgan
ELECTRONIC	URS	Attn: Rachel Naccarati
COPY TO		
ELECTRONIC	URS	Attn: Jacob Henry
COPY TO		
ELECTRONIC	URS Corporation	Attn: Kimberly Morgan
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Elizabeth A Leonhardt at (510) 232-8894

Respectfully Submitted,

Saial C Sarah M. Snyder Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description:	MW-8 Grab Water	LLI Sample	# WW 6016751
	NA URSO	LLI Group	# 1200480
	Sunol Pipeline SL0600100443 MW-8	Account	# 11875

Project Name: Sunol, CA

Collected:	06/24/2010	11:30	by JH	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/25/2010	09:00		Covington LA 70433
Reported:	07/07/2010	10:50		
Discard:	08/07/2010			

SPMW8

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
•	Benzene		71-43-2	630	13	25
10943	Ethylbenzene		100-41-4	870	13	25
	Toluene		108-88-3	680	13	25
10943	Xylene (Total)		1330-20-7	2,500	13	25
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	14,000	250	5
GC Mi	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	650	25	5
Metal	S	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	1,080	0.84	1
Wet Cl	hemistry	EPA 300	0.0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	N.D.	250	5
00228	Sulfate		14808-79-8	6,100	1,500	5
		EPA 160	0.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	679,000	19,400	1
		EPA 310	0.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	502,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35 modifie	500 Fe B ed	ug/l	ug/l	
08344	Ferrous Iron		n.a.	7,800	250	25

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 14:53	Ginelle L Feister	25
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 14:53	Ginelle L Feister	25
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 19:57	Carrie E Miller	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description:	MW-8 Grab Water
	NA URSO
	Sunol Pipeline SL0600100443 MW-8

LLI Sample # WW 6016751 LLI Group # 1200480 Account # 11875

Project Name: Sunol, CA

Collected:	06/24/2010	11:30	by JH	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/25/2010	09:00		Covington LA 70433
Reported:	07/07/2010	10:50		
Discard:	08/07/2010			

SPMW8

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010	19:57	Carrie E Miller	5
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101760020A	06/29/2010	18:52	Elizabeth J Marin	5
07058	Manganese	SW-846 6010B	1	101791848005	06/29/2010	10:50	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848005	06/28/2010	21:00	Annamaria Stipkovits	1
00368	Nitrate Nitrogen	EPA 300.0	1	10176196601A	06/26/2010	01:57	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10176196601A	06/26/2010	01:57	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10180021201B	06/29/2010	09:28	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10180020201A	06/29/2010	10:13	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10180020201A	06/29/2010	10:13	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10177834401A	06/26/2010	06:20	Daniel S Smith	25

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-8_Filtered Grab Water NA URSO Sunol Pipeline SL0600100443 MW-8	LLI	-	#	WW 6016752 1200480 11875
	-				

Project Name: Sunol, CA

Collected:	06/24/2010	11:30	by JH	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/25/2010	09:00		Covington LA 70433
Reported:	07/07/2010	10:50		
Discard:	08/07/2010			

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metals Dissolved	SW-846 6010B	ug/l	ug/1	1
01754 Iron	7439-89-6	94.9	52.2	

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	101791848005	06/29/2010 10:54	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848005	06/28/2010 21:00	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description:	MW-9 Grab Water	LLI Sample	# WW 6016753
	NA URSO	LLI Group	# 1200480
	Sunol Pipeline SL0600100443 MW-9	Account	# 11875

Project Name: Sunol, CA

Collected:	06/24/2010	10:10	by JH	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/25/2010	09:00		Covington LA 70433
Reported:	07/07/2010	10:50		
Discard:	08/07/2010			

SPMW9

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
•	Benzene		71-43-2	0.9	0.5	1
	Ethylbenzene		100-41-4	210	5	10
	Toluene		108-88-3	7	0.5	1
	Xylene (Total)		1330-20-7	1,300	5	10
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	16,000	250	5
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	12	5.0	1
Metals	5	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	2,460	0.84	1
Wet Cl	nemistry	EPA 300	.0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	N.D.	250	5
00228	Sulfate		14808-79-8	33,500	1,500	5
		EPA 160	.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	489,000	9,700	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	380,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35 modifie	00 Fe B ed	ug/l	ug/l	
08344	Ferrous Iron		n.a.	1,500	50	5

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 15:18	Ginelle L Feister	1
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 15:42	Ginelle L Feister	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 15:18	Ginelle L Feister	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description	n: MW-9 (Grab Water	<u>c</u>	
	NA UR	SO		
	Sunol	Pipeline	SL0600100443	MW - 9

LLI Sample # WW 6016753 LLI Group # 1200480 Account # 11875

Project Name: Sunol, CA

Collected:	06/24/2010	10:10	by JH	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/25/2010	09:00		Covington LA 70433
Reported:	07/07/2010	10:50		
Discard:	08/07/2010			

SPMW9

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	2	Z101792AA	06/28/2010	15:42	Ginelle L Feister	10
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010	20:18	Carrie E Miller	5
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010	20:18	Carrie E Miller	5
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101760020A	06/29/2010	04:38	Elizabeth J Marin	1
07058	Manganese	SW-846 6010B	1	101791848005	06/29/2010	11:05	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848005	06/28/2010	21:00	Annamaria Stipkovits	1
00368	Nitrate Nitrogen	EPA 300.0	1	10176196601A	06/26/2010	02:13	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10176196601A	06/26/2010	02:13	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10180021201B	06/29/2010	09:28	Hannah M Royer	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10180020201A	06/29/2010	10:13	Susan A Engle	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10180020201A	06/29/2010	10:13	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10177834401A	06/26/2010	06:20	Daniel S Smith	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-9 Filtered Grab Water	LLI Sampl	e #	ww	6016754
	NA URSO	LLI Group			
	Sunol Pipeline SL0600100443 MW-9	Account	Ŧ	118	575

Project Name: Sunol, CA

Collected:	06/24/2010	10:10	by JH	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/25/2010	09:00		Covington LA 70433
Reported:	07/07/2010	10:50		
Discard:	08/07/2010			

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metals Dissolved	SW-846 6010B	ug/l	ug/l	
01754 Iron	7439-89-6	131	52.2	1

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01754	Iron	SW-846 6010B	1	101791848005	06/29/2010 11:09	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	101791848005	06/28/2010 21:00	Annamaria Stipkovits	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	STREAM Grab Water	LLI Sample	# WW 6016755
	NA URSO	LLI Group	# 1200480
	Sunol Pipeline SL0600100443 STREAM	Account	# 11875

Project Name: Sunol, CA

Collected:	06/24/2010	09:30	by JH	Chevron Pipeline Co.
				100 Northpark Blvd
Submitted:	06/25/2010	09:00		Covington LA 70433
Reported:	07/07/2010	10:50		
Discard:	08/07/2010			

SPSTR

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 16:07	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 16:07	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 16:19	Carrie E Miller	1
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010 16:19	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	TB-2 NA Water	LLI Sample	# WW 6016756
	NA URSO	LLI Group	# 1200480
	Sunol Pipeline SL0600100443 TB-2	Account	# 11875

Chevron Pipeline Co. 100 Northpark Blvd

Covington LA 70433

Project Name: Sunol, CA

COTTCCCCC. 00/24/2010	Collected:	06/	24/	2010
-----------------------	------------	-----	-----	------

Submitted: 06/25/2010 09:00 Reported: 07/07/2010 10:50 Discard: 08/07/2010

SPTB2

CAT No.			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX 8260B Water	SW-846 8260B	1	Z101792AA	06/28/2010 13:37	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101792AA	06/28/2010 13:37	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10183A20A	07/02/2010 13:47	Carrie E Miller	1
01146	GC VOA Water Prep	SW-846 5030B	1	10183A20A	07/02/2010 13:47	Carrie E Miller	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Reported: 07/07/10 at 10:50 AM Group Number: 1200480

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: Z101792AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample numbe N.D. N.D. N.D. N.D. N.D.	er(s): 601 0.5 0.5 0.5 0.5 0.5	.6751,6016 ug/l ug/l ug/l ug/l	753,601675 86 88 88 88 90	55-6016756	79-120 79-120 79-120 80-120		
Batch number: 10183A20A	Sample numbe							
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	127	127	75-135	0	30
Batch number: 101760020A	Sample numbe	er(s): 601	.6751,6016	753				
Methane	N.D.	5.0	ug/l	103		80-120		
Batch number: 101791848005	Sample numbe	er(s): 601	.6751-6016	754				
Iron	80.3	52.2	ug/l	106		90-112		
Manganese	N.D.	0.84	ug/l	101		90-110		
Batch number: 10176196601A	Sample numbe	er(s): 601	.6751,6016	753				
Nitrate Nitrogen	N.D.	50.	ug/l	104		90-110		
Sulfate	N.D.	300.	ug/l	107		89-110		
Batch number: 10177834401A	Sample numbe	er(s): 601	.6751,6016	753				
Ferrous Iron	N.D.	10.	ug/l	100		92-105		
Batch number: 10180020201A	Sample numbe	er(g) · 601	6751 6016	753				
Alkalinity to pH 4.5	N.D.	460.	ug/l as CaCO3			98-103		
Batch number: 10180021201B	Sample numbe	er(s): 601	.6751,6016	753				
Total Dissolved Solids	N.D.	9,700.	ug/l	103		80-120		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: Z101792AA	Sample	number(s): 6016751	,60167	53,6016	5755-601675	56 UNSPK: P	015873	
Benzene	92	90	80-126	2	30				
Ethylbenzene	96	94	71-134	2	30				
Toluene	95	92	80-125	3	30				
Xylene (Total)	98	95	79-125	3	30				

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Reported: 07/07/10 at 10:50 AM Group Number: 1200480

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Batch number: 10183A20A TPH-GRO N. CA water C6-C12	MS MSD <u>%REC %REC</u> Sample number(s 118	MS/MSD RPD Limits RPD MAX): 6016751,6016753,6016 63-154	BKG <u>Conc</u> 755-6016756	DUP <u>Conc</u> UNSPK: P016	DUP <u>RPD</u> 710	Dup RPD <u>Max</u>
Batch number: 101760020A Methane	Sample number(s 63 63): 6016751,6016753 UNSP 35-157 0 20	K: P015864			
Batch number: 101791848005 Iron Manganese	Sample number(s 156 (2) 84 (2) 85 90): 6016751-6016754 UNSP 75-125 3 20 75-125 1 20	<pre>PK: P017117 1 20,600 1,160</pre>	BKG: P017117 20,500 1,150	1	20 20
Batch number: 10176196601A Nitrate Nitrogen Sulfate	Sample number(s 106 100): 6016751,6016753 UNSP 90-110 90-110	<pre>WK: P016728 1 910 18,300</pre>	BKG: P016728 950 18,500	4 (1) 1 (1)	20 20
Batch number: 10177834401A Ferrous Iron	Sample number(s 98 96): 6016751,6016753 UNSP 73-120 1 6	7,800 PK: 6016751	BKG: 6016751 7,700	1 (1)	5
Batch number: 10180020201A Alkalinity to pH 4.5 Alkalinity to pH 8.3	Sample number(s 85): 6016751,6016753 UNSP 73-121	<pre>'K: P017830 102,000 N.D.</pre>	BKG: P017830 104,000 N.D.	2 0 (1)	5 5
Batch number: 10180021201B Total Dissolved Solids	Sample number(s 102): 6016751,6016753 UNSP 62-135		BKG: P016721 26,400,000		9

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
6016751	98	96	97	95
6016753	98	96	98	97
6016755	99	95	97	95
6016756	99	97	97	93
Blank	100	96	97	94
LCS	99	99	97	95
MS	99	99	97	95
MSD	99	97	97	95
Limits:	80-116	77-113	80-113	78-113
	Jame: TPH-GRO N. CA water per: 10183A20A Trifluorotoluene-F	C6-C12		

6016751 92 6016753 108

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Reported: 07/07/10 at 10:50 AM Group Number: 1200480

Surrogate Quality Control

6016755	83									
6016756	84									
Blank	83									
LCS	116									
LCSD	118									
MS	102									
Limits:	63-135									
Analysis Name: Volatile Headspace Hydrocarbon										
Batch numb	ber: 101760020A									
	Propene									
6016751	85									
6016753	76									
Blank	102									
LCS	103									
MS	56									
MSD	56									
Limits:	42-131									

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Chevron California Region Analysis Request/Chain of Custody

Kere quality is a	Labor	atories					Ac	xct. #:	<u>[] {</u>	87	5	l Sampl	For L e #:	anc: (oC	aster	Lab	orate	ories	s use S (only Ø	/SCR#:	246	191	
- · · ·											····	A	hal	yses	s Re	ques	sted		<u> </u>		Grp#12	0048	Ο	
Facility #: SUMO	50111		_							L		1	Pres	erva	ation	Co					Preserva		1	
Site Address: MP 2	.1 5	unol,	CA	~						H						N	4		<u> </u>	<u> </u>		T = Thiosı B = NaO⊦		
Chevron PM: Jeff			-	onsultant: UP:	5				Ś		CALMET Silica Gel Cleanup				L Ko	μġ	Nov Nov	196	COR MUN	3	S = H ₂ SO ₄	O = Other		
Consultant/Office:	45-0a	Kland							iner	ē	1				52	10				Method	J value reporti	-		
Consultant Prj. Mgr.: _	Joe M	organ							of Containers	J 8021 🗆					3			EPI	er	3	Must meet low possible for 82			
Consultant Phone #:	(510) 5	893-31	100	Fax #: (10)	874-32	68		1	ofC	8260 5	h]_				2	146	٢	s	5	E B B	8021 MTBE Com	limation		
Sampler: <u>Tucob</u> 1	tenin	1-tim	-M	This Rache	1 Nacc	avati		۱۹	nbei	ŝ	- L		nates	74	Sulful	and the second s	Nov Vov	2	200			-	60	
Service Order #:	· .)	, . 		n SAR:				Composite	Total Number	ĮĘ	TPH 8015 MOD GR	8260 full scan	Oxygenates	ead 7420 🔲 7421 🔲	Ŗ	Total Manganese	rennus Ivon	1 A	5	<u>کر</u>	Confirm all hits	=	st hit	
Field	Matrix	Repeat	Top	Year Month Day	Time	New	Grab	E	otal	BTEX	HAC HA	260 ft	Ĭ	ead 7	Ě	Le la	2	Ę		16	□ Run oxy			
Point Name	Matrix	Sample		2010-06-24	1130	N	ĬX		11	™ ×	X	<u></u>] 	X	X	X		×	X	Comments / R	emarks		1
MW-9					1010	N	X		17	X	X	+			X	X	×		×		Kinetals to		/	1
STREAM					930	N.	X		6	×	\times								ľ	ľ	filtered			1
<u>TB-2</u>				*		N			2	X	X													1
	· · · · · · · · · · · · · · · · · · ·					$\left \right $				_	-											1		
							-					_	-		<u> </u>					 				1
		<u> </u>						$\left \right $					 	<u> </u>						<u> </u>				1
										1									-					
												+												
· · · · · · · · · · · · · · · · · · ·												+							1	†				
																				1	1			
	,			<u> </u>																		r		
Turnaround Time Red	quested	(TAT) (ple:	ase circh	e)	Relinquishe	d by:	>					Date 24]2	E	Tim 300	_	Rece	eived	l by:				Date	Time	
STD. TAT	72 hour	r 4	8 hour	F	Relinquishe	d-by:						Date		Tim		Rece	eived	bv:			······································	Date	Time	
24 hour	4 day	5	i day				· · · · · ·		shranger															
Data Package Option	s (please	circle if requ	uired)		Relinquishe	d by:				~		-Date	4	Tim	e	Rece	eived	by:				Date	Time	1
	Γype I − Fu			_ 	Relinquishe	d by Germ	nercia	al Car	rier [.]]		-+	Rece	ived	bv:•			·····	Date	Time	1
Type VI (Raw Data) [WIP (RWQCB)]Coelt De	eliverable no	ot neede	a I	UPS	FedEx			her_							\mathcal{V}	1,	Ň	N	\sim	ť	-25-10		Į
Disk				F	Temperature	e Upon Re	ceipt	4,6	2		,°					Cust	\mathbf{A}	Seals	, s Inta	ict?	(Yes) No	1	-6-25-	15
L				L			_		_						1		-					لسف	693	. 0

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300

3460 Rev. 10/04/01

Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	Ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	I	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight** basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- **C** Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- **N** Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \ge IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.