RECEIVED

8:42 am, Apr 13, 2010

Alameda County Environmental Health

April 12, 2010

Mr. Jerry Wickham Department of Environmental Health Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Dear Mr. Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in URS' report titled "SLIC Case No. RO0002892, Chevron Sunol Pipeline, 2793 Calaveras Road, Sunol, CA – First Quarter 2010 Groundwater Monitoring Report" are true and correct to the best of my knowledge at the present time.

Hery W. Johnson

Submitted by:

Jeffery Johnson

Chevron Pipe Line Company

FIRST QUARTER 2010 GROUNDWATER MONITORING REPORT

SLIC CASE #RO0002892 CHEVRON PIPELINE COMPANY SUNOL SPILL 2793 CALAVERAS RD. SUNOL, CA

Prepared for Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, CA 94502

April 2010

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612


This letter report ("First Quarter 2010 Groundwater Monitoring Report") was prepared under my direct supervision. The information presented in this report is based on our review of available data obtained during our quarterly sampling activities and our previous subsurface investigation efforts. To the best of our knowledge, we have incorporated into our recommendations all relevant data pertaining to the Chevron Pipeline Release site in Sunol, California.

The first quarter 2010 groundwater monitoring report discussed herein was developed in accordance with the standard of care used to develop this type of report. The assumptions that were made and the recommendations for continued field activities were based on our professional experience and protocols reported in the literature for similar investigations.

URS Corporation Approved by:

Joe Morgan III

Jacob Henry, P.G.

April 12, 2010

Mr. Jerry Wickham Department of Environmental Health Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Subject: SLIC Case No. RO0002892, Chevron Pipeline Company, Sunol Spill, 2793 Calaveras Rd, Sunol, CA, First Quarter 2010 Groundwater Monitoring Report

Dear Mr. Wickham:

A December 30, 2005 letter provided by the Alameda County Environmental Health staff (ACEH) requested the initiation of a Quarterly Groundwater Monitoring Program for the CPL Sunol site (Site). In response to this request and on behalf of Chevron Pipe Line Company (CPL), URS has prepared this groundwater monitoring report for the Site for the first quarter of 2010.

If you have any questions on this report, please call Mr. Joe Morgan of URS at 510-874-3201.

Sincerely yours,

URS Corporation

Jacob Henry, P.G.

Senior Geologist

Joe Morgan III

Senior Project Manager

cc:

Mr. Jeff Johnson, Chevron Pipeline Company

JACOB T. HENRY

Ms. Rachel Naccarati, URS Oakland

Tables:

Table 1 – Monitoring Well Groundwater Levels

Table 2 – Monitoring Well Groundwater Elevations

Table 3 – Summary of Groundwater Analytical Results – Gasoline Compounds

Table 4 - Summary of Groundwater Analytical Results - Geochemical Indicators and Other Parameters

Figures:

Figure 1 - Site Vicinity Map

Figure 2 – SVE and Groundwater Monitoring Well Locations

Figure 3 – Unconfined Water-Bearing Zone and Bedrock Elevations Map

Appendices:

Appendix A – Groundwater Sampling Forms

Appendix B - Laboratory Analytical Results

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612-1924 Tel: 510.893.3600 Fax: 510.874.3268 **SECTIONONE** Introduction

On March 9 and 10, 2010, URS conducted field activities to assess the groundwater conditions at the Site. A Site vicinity map is included as Figure 1. URS measured the fluid and collected samples for laboratory analysis from groundwater monitoring wells MW-1 through MW-4 and MW-8 through MW-11. URS also collected a surface water sample from the very small stream, located northwest of the release location. Monitoring well and surface water sampling locations are provided on Figure 2. Monitoring wells MW-5 through MW-7 were abandoned on June 23, 2008, and are no longer part of the groundwater monitoring program.

1.1 SITE HYDROGEOLOGY

Prior to collecting groundwater samples, depth to water measurements were recorded from monitoring wells MW-1 through MW-4 and MW-8 through MW-11 from the top of casing using an electronic oil/water interface probe. Product was not detected in any Site wells during the first quarter 2010. Depth to groundwater measurements are presented in Table 1 and calculated groundwater elevations above mean sea level are presented in Table 2.

Unconfined Water Bearing Zone

The groundwater surface elevation increased in all monitoring wells (MW-1 through MW-4 and MW-8 through MW-11) relative to the last sampling event in December 2009. The groundwater surface elevation change resulted in hydraulic connection of all Site monitoring wells. The groundwater elevations for monitoring wells MW-1 through MW-4 and MW-9 through MW-11 were 293.63, 293.79, 295.05, 293.98, 293.10, 293.27 and 293.61 feet above average mean sea level (msl), respectively. The groundwater elevation for MW-8, which is screened in an apparent hillside groundwater recharge source for the Valley Crest Tree Company's (nursery) unconfined water-bearing zone, was 314.96 feet above msl.

Based on water level data from MW-1 through MW-4 and MW-9 through MW-11, the local groundwater flow direction within the nursery's unconfined water-bearing zone is in a northeast direction with a calculated hydraulic gradient of 0.02 feet/feet. The seasonal groundwater recharge from the hillside appears to flow into the unconfined nursery water-bearing zone on a limited basis.

Figure 3 provides groundwater contours for the unconfined water-bearing zone as well as bedrock surface elevations for the gravel-siltstone contact for comparison.

2.1 **OUARTERLY MONITORING ACTIVITIES**

After measuring the fluid levels at each monitoring well, URS conducted groundwater sampling on March 9 and 10, 2010. First quarter sampling efforts were influenced by the known seasonally high groundwater levels which typically occur from January through June. The rationale for the method used at each monitoring well is described below:

- MW-1 through MW-4 and MW-8 through MW-11 were sampled using low-flow methods.
- A surface water sample was collected from the very small stream northwest of the release location.

SECTIONTWO **Field Activities**

2.1.1 MW-1 and MW-9 Sorbent Booms

Up until May 2009, URS placed sorbent booms (booms) in MW-1 and MW-9 as an interim remedial measure. The booms were effective in passively collecting and facilitating degradation of petroleum hydrocarbons within the monitoring wells and allowed for quarterly groundwater sample collection. Since May 2009, MW-1 and MW-9 have been gauged monthly, including during the first quarter 2010 groundwater monitoring event, with no measurable product observed. URS will continue to monitor MW-1 and MW-9 during the monthly groundwater gauging events. A boom was re-installed in MW-9 during the third quarter 2009 sampling event after product was observed while purging. Product has not been measured since the boom was re-installed in MW-9.

2.1.2 MW-1 through MW-4 and MW-8 through MW-11

Low-flow purging rates of between 350-500 milliliters per minute (mL/min) were used dependent on the rate of recharge at each monitoring well. The low-flow groundwater sampling forms are included in Appendix A.

In addition to monitoring the water level at each monitoring well during low-flow sampling, parameters such as temperature, pH, conductivity, oxidation reduction potential (ORP), and dissolved oxygen (DO) of the purged groundwater were measured using an in-line flow-through cell and multi-parameter Horiba U-22XD. The multi-parameter device was calibrated prior sampling. During purging, the parameter readings described above were recorded every 3 minutes until the parameters stabilized.

Parameters were considered to be stable when three consecutive readings were within the following guidelines: pH +/- 0.2 pH units, conductivity +/- 3% of reading, ORP +/- 20 millivolts (mV), DO \pm 0.2 milligrams per liter (mg/L).

After monitoring all field parameters, the flow through cell was detached and groundwater samples were collected directly from the pump tubing.

2.1.3 **Surface Water Sample**

The sampling location along the very small stream is located at the base of the alluvial terrace within the Alameda Creek floodplain and is shown on Figure 2. The former sampling point (SW-Creek, sampled prior to the first quarter of 2007) is also provided on Figure 2 for reference. To the west, beyond the current sampling location, the very small stream fans out into the floodplain and surface flow terminates within floodplain grasses. A stream sample was collected on March 9, 2010.

3.1 ANALYTICAL PROGRAM

The groundwater samples from monitoring wells MW-1 through MW-4 and MW-8 through MW-11 were collected in clean laboratory provided containers, the containers were labeled with unique project specific identification, packed to prevent breakage, and placed on ice in a cooler with a trip blank immediately after collection. The samples were submitted to Lancaster Analytical Laboratory in Lancaster, Pennsylvania, a California Certified Laboratory, under URS chain-of-custody procedures. The samples were analyzed on a standard turn-around-time.

Groundwater samples collected during quarterly sampling activities were analyzed for the following parameters:

Gasoline Compounds

- Total petroleum hydrocarbons gasoline range organics (TPH-GRO) by N. CA LUFT GRO
- Benzene, toluene, ethylbenzene, xylenes (BTEX) by USEPA Method 8260B

Geochemical Indicator Parameters

- Nitrate and sulfate by USEPA Method 300.0
- Total manganese and dissolved iron by USEPA Method 6010B
- Ferrous iron by SM20 Method 3500-FE B Modified
- Methane by USEPA Method 8015B Modified
- Alkalinity including breakdown by USEPA Method 310.1
- Total dissolved solids (TDS) by USEPA Method 160.1

3.2 GROUNDWATER ANALYTICAL RESULTS DISCUSSION

A tabulated summary of the analytical results for the gasoline compounds and associated environmental screening levels (ESLs), for groundwater as a current or potential source of drinking water, developed by Regional Water Quality Control Board (RWQCB 2008) are presented in Table 3. Complete laboratory analytical results and chain of custody forms are presented as Appendix B.

3.2.1 **Unconfined Water-Bearing Zone Monitoring Wells**

The unconfined water bearing zone wells sampled during the fourth quarter sampling event included MW-1 through MW-4 and MW-8 through MW-11. The first quarter 2010 groundwater sample results are as follows:

- The MW-1 sample contained TPH-GRO at 3,800 micrograms per liter (µg/L) and total xylenes at 4 µg/L.
- The MW-2 sample contained total xylenes at 2 µg/L.
- The MW-8 sample contained TPH-GRO at 10,000 µg/L, benzene at 570 µg/L, toluene at 500 μ g/L, ethylbenzene at 730 μ g/L, and total xylenes at 1,800 μ g/L.
- The MW-9 sample contained TPH-GRO at 18,000 μg/L, toluene at 17 μg/L, ethylbenzene at 250 μg/L, and total xylenes at 1,700 μg/L.

The analytical results from MW-3 MW-4, MW-10, and MW-11 were below laboratory method detection limits for TPH-GRO and BTEX.

Groundwater analytical results are presented in Table 3.

3.2.2 Surface Water Sample

A surface water sample was collected on March 9, 2010. TPH-GRO and BTEX were below method detection limits in the sample collected from the stream (Table 3).

3.2.3 Analytical Result Comparison to ESLs

The TPH-GRO analytical results in monitoring wells MW-1, MW-8 and MW-9 exceeded the TPH-GRO ESLs of 100 µg/L at concentrations of 3,800 µg/L, 10,000 µg/L, and 18,000 µg/L, respectively.

Benzene analytical results in the sample collected from monitoring well MW-8 exceeded the benzene ESL of 1 μ g/L at concentration of 570 μ g/L.

Toluene analytical results in the sample collected from monitoring well MW-8 exceeded the toluene ESL of 40 µg/L at concentrations of 500 µg/L.

Ethylbenzene analytical results in samples collected from monitoring wells MW-8 and MW-9 exceeded the ethylbenzene ESL of 30 µg/L at concentrations of 730 µg/L and 250 µg/L, respectively.

Total xylenes analytical results in samples collected from monitoring wells MW-8 and MW-9 exceeded the total xylenes ESL of 20 µg/L at concentrations of 1,800 µg/L and 1,700 µg/L, respectively.

3.2.4 **Geochemical Analytical Results**

The groundwater samples collected from MW-1 through MW-4 and MW-8 through MW-11 were also analyzed for geochemical parameters. Overall, the geochemical parameters indicate a low oxygen (anaerobic) environment. A preliminary assessment of the lower sulfate level in monitoring well MW-8 that is currently impacted, indicate a potential for anaerobic biodegradation of the hydrocarbon plume by the sulfate reduction process. URS will continue to collect geochemical parameters when possible from all monitoring wells. The geochemical results are presented in Table 4.

3.3 SUMMARY OF OA/OC REVIEW PARAMETERS

The quality assurance/quality control (QA/QC) program includes using standard sample collection procedures in the field and established analytical methodologies in the laboratory. Laboratory and field QC sample results were evaluated to assess the quality of the individual sample results and overall method performance. Analytical performance was evaluated on a "batch QC" basis by evaluating the QC sample results for groups of samples that were prepared and analyzed together. The data evaluation performed included a review of:

Blanks (laboratory method blanks and trip blanks)

- Spikes (laboratory control sample spikes, matrix control spikes, blank spikes and surrogate spikes)
- Duplicates (laboratory control sample duplicates and field duplicates)
- Sample Integrity (chain-of-custody documentation, sample preservation, and holding time compliance)

Method Holding Times

Analytical methods have prescribed holding times. The method holding time is defined as the maximum amount of time after collection that a sample may be held prior to extraction and/or analysis. Sample integrity becomes questionable for samples extracted and/or analyzed outside of the prescribed holding times due to degradation and/or volatilization of the sample. All samples were analyzed within the appropriate hold times.

Method Blanks

Method blanks are prepared in the laboratory using deionized, distilled (Reagent Grade Type II) water. Method blanks are extracted and/or analyzed following the same procedures as an environmental sample. Analysis of the method blank indicates potential sources of contamination from laboratory procedures (e.g. contaminated reagents, improperly cleaned laboratory equipment) or persistent contamination due to the presence of certain compounds in the ambient laboratory environment. The QA/QC review identifies method blanks with detections of target analytes and evaluates the effect of the detections on associated sample results. None of the method blanks had detections of target analytes.

Trip Blanks

Trip blanks are samples of deionized, distilled (Reagent Grade Type II) water that are prepared in the laboratory, taken to the field, retained on site throughout sample collection, returned to the laboratory, and analyzed with the environmental samples. The QA/QC review identifies trip blanks with detections of target analytes and evaluates the effect of the detections on associated sample results. Two trip blanks were analyzed during this sampling event. The trip blanks did not have detections of any target analytes, indicating no evidence of contamination during shipment of the laboratory samples.

Matrix Spikes and Laboratory Control Samples

Matrix spikes (MS), matrix spike duplicates (MSD), laboratory control samples (LCS), laboratory control sample duplicates (LCSD), blank spikes (BS) and blank spike duplicates (BSD) are analyzed by the laboratory to evaluate the accuracy and precision of the sample extraction and analysis procedures and to evaluate potential matrix interference. Matrix interference, the effect of the sample matrix on the analysis, may partially or completely mask the response of analytical instrumentation to the target analyte(s). Matrix interference may have a varying impact on the accuracy and precision of the extraction and/or analysis procedures, and may bias the sample results high or low.

The MS or MSD is prepared by adding a known quantity of the target compound(s) to a sample. The sample is then extracted and/or analyzed as a typical environmental sample and the results are reported as percent recovery. The spike percent recovery is defined as:

Recovery (%) =
$$\frac{\text{spike analysis result - original sample concentration}}{\text{concentration of spike addition}} \times 100\%$$

MS and MSD recoveries are reviewed for compliance with laboratory-established control limits to evaluate the accuracy of the extraction and/or analysis procedures.

LCS, LCSD, BS and BSD are prepared exactly like MS and MSD using a clean control matrix rather than an environmental sample. Typical control matrices include Reagent Grade Type II water and clean sand. LCS, LCSD, BS and BSD are used to evaluate laboratory accuracy independent of matrix effects.

The QA/QC review identifies spike recoveries outside laboratory control limits and evaluates the effect of these recoveries on the associated sample results.

Laboratory Duplicate Analyses

Duplicate analyses are performed by the laboratory to evaluate the precision of analytical procedures. The laboratory may perform MSD and/or BSD analyses.

Precision is evaluated by calculating a relative percent difference (RPD) using the following equation:

RPD (%) =
$$\frac{\left| \text{(Spike Concentration - Spike Duplicate Concentration)}}{\frac{1}{2} \text{(Spike Concentration + Spike Duplicate Concentration)}} \right| \times 100\%$$

The RPD is compared to laboratory-established control limits to evaluate analytical precision. The QA/QC review identifies RPDs outside laboratory control limits and evaluates the effect of these recoveries on the associated sample results.

Field Duplicate Analyses

Field duplicate samples are collected in the field and analyzed to evaluate the heterogeneity of the matrices. One field duplicate sample was collected during this sampling event, and no qualifications were necessary as the RPD was less than 30 percent for all of the analytes.

Surrogate Recoveries

Surrogates are organic compounds that are similar to the target analytes in terms of their chemical structures and response to the analytical instrumentation, but are not usually detected in environmental samples. Surrogates are added to each environmental and laboratory QC sample to monitor the effect of the matrix on the accuracy of the extraction and/or analysis of organic analytes. Results for surrogate analyses are reported in terms of percent recovery (defined above). Reported recoveries are compared to laboratory-established control limits to evaluate

sample-specific accuracy. The QA/QC review identifies surrogate recoveries outside laboratory control limits and evaluates the effect of these recoveries on the sample results. There were no surrogate recoveries outside laboratory control limits in any of the samples.

EXPLANATION OF ANALYTICAL DATA QUALIFIERS

The analytical data were reviewed and qualified following USEPA guidelines for organic data review (USEPA, 1999). A "J" qualifier indicates that the analyte was positively identified, but that the associated numerical value is an approximate concentration of the analyte in the sample. A "UJ" qualifier indicates that the analyte was not detected above the reported sample quantitation limit (i.e., the laboratory reporting limit). However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. An "R" qualifier indicates that the sample results were rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria, and therefore, the presence or absence of the analyte could not be verified.

SUMMARY OF QA/QC REVIEW FINDINGS

The results of the data evaluation are summarized in the following paragraphs.

High nitrate nitrogen RPD recovery was observed in batch 1006919601A. The nitrate nitrogen detections in samples MW-3, MW-4, MW-10, and MW-11 were qualified with a "J".

High nitrate nitrogen percent recovery was observed in batch 10070196602A. The nitrate nitrogen detections in samples MW-1 and MW-2 were qualified with a "J".

Chain-of-custody documentation is complete and consistent. Samples were preserved as required per method specifications. All samples were analyzed within method specified holding times. Based on the data quality evaluation, no systematic problems were detected and the overall data objectives for sample contamination, precision, accuracy, and sample integrity were met. These analytical data are of acceptable quality and may be used for their intended purposes.

SECTIONFOUR **Findings**

Quarterly groundwater monitoring field activities conducted on March 9 and 10, 2010 included measuring the fluid levels and collecting analytical samples from groundwater monitoring wells MW-1 through MW-4 and MW-8 through MW-11. The findings are as follows:

- Free product was not observed in monitoring wells MW-1 through MW-4, and MW-9 through MW-11 during the first quarter 2010 groundwater monitoring activities.
- The groundwater surface elevation increased in all monitoring wells since the last sampling event in December 2009. The rain received in February is the cause for the increased groundwater levels measured. The groundwater surface elevation change resulted in a hydraulic reconnection of all monitoring wells.
- The MW-1 sample contained TPH-GRO at 3,800 µg/L and total xylenes at 4 µg/L. The sample results for TPH-GRO exceeded the ESL of 100 µg/L. The monitoring well has not been sampled since June 2009, however the March 2010 results were lower than previous sampling events.
- The MW-2 sample contained total xylenes at 2 µg/L. The sample results for all petroleum constituents analyzed exceeded their respective ESL.
- The MW-8 sample contained TPH-GRO at 10,000 µg/L, benzene at 570 µg/L, toluene at 500 μg/L, ethylbenzene at 730 μg/L, and total xylenes at 1,800 μg/L. The sample results for all petroleum constituents analyzed exceeded their respective ESL. However, sample results decreased since the last sampling event in December 2009.
- The MW-9 sample contained TPH-GRO at 18,000 µg/L, toluene at 17 µg/L, ethylbenzene at 250 μg/L, and total xylenes at 1,700 μg/L. The sample results for TPH-GRO, ethylbenzene, and total xylenes exceeded their respective ESL. However, sample results decreased since the last sampling event in December 2009.
- Groundwater samples collected from all monitoring wells have decreased or remained nondetect since the last sampling event in December 2009.
- Other than the initial spray release (August 2005) to the nursery, the release on the hillside has not been in continuous contact with groundwater which is a transportation mechanism for petroleum hydrocarbons to the nursery.

SECTIONFIVE **Recommendations**

Based on the March 9 and 10, 2010 field observations and analytical results URS makes the following recommendations:

Continue quarterly groundwater monitoring to further assess the effect of seasonal groundwater fluctuations on groundwater behavior and contaminant transport within the unconfined water-bearing zone; and,

Develop a Conceptual Site Model to identify any potential data gaps that may require additional data collection.

SECTIONS IX Limitations

No evaluation is thorough enough to preclude the possibility that materials that are currently considered hazardous or materials that may be considered hazardous in the future may be present at a site. Because regulatory evaluation criteria are constantly changing, concentrations of contaminants presently considered nonhazardous may, in the future, fall under different regulatory standards and require remediation. Opinions and judgments expressed herein, which are based on understanding and interpretation of current regulatory standards, should not be construed as legal opinions. This document and the information contained herein have been prepared solely for CPL's use, and reliance on this report by third parties will be at such party's sole risk.

TABLE 1 Monitoring Well Groundwater Levels First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Screen Interval (feet bgs) ¹	Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thickness (feet)
MW-1	29.3-39.3	2/21/2006	36.34		
		6/7/2006	34.28		
		8/22/2006	37.11	37.08	0.03
		11/14/2006	37.05		
		2/20/2007	36.14		
		6/5/2007	37.21		
		9/12/2007	37.67	37.55	0.12
		12/11/2007	37.49	37.46	0.03
		3/19/2008	35.94		
		5/20/2008	35.51		
		6/5/2008	35.69		
		9/18/2008	37.62	37.61	0.01
		12/15/2008	37.53	37.52	0.01
		3/27/2009	35.24		
		6/9/2009	37.05		
		9/28/2009	37.61		
		12/9/2009	37.56		
		3/9/2010	34.41		
MW-2	23.3-38.3	2/21/2006	32.19		
IVI VV-Z	20.0-00.0	6/7/2006	30.23		
		8/22/2006	33.11		
		11/14/2006	33.01		
		2/20/2007	31.93		
		6/5/2007	33.23		
		9/12/2007	33.62		
		12/5/2007	33.52		
		3/19/2008	31.76		
		5/20/2008	31.41		
		6/5/2008	31.56		
		9/18/2008	33.65		
		12/15/2008	33.59		
		3/27/2009	31.14		
		6/9/2009	33.08		
		9/28/2009	33.62		
		12/9/2009	33.61		
		3/9/2010	30.36		
MW-3	21.3-36.3	2/21/2006	31.97		
		6/7/2006	30.91		
		8/22/2006	34.66		
		11/14/2006	34.71		
		2/20/2007	31.66		
		6/5/2007	34.63		
		9/12/2007	34.71		
		12/11/2007	34.77	==	
		3/19/2008	31.64		
		5/20/2008	31.26		
		6/5/2008	31.45		
		9/18/2008	34.81		
		12/15/2008	34.79		
		3/27/2009	30.87		
		6/9/2009	34.48		
			34.82		
		9/28/2009			
		12/9/2009	34.83		

TABLE 1 Monitoring Well Groundwater Levels First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Screen Interval (feet bgs) ¹	Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thickness (feet)
MW-4	30.7-40.7	2/21/2006	36.72		
		6/7/2006	35.76	==	
		8/22/2006	38.79		
		11/14/2006	38.84	==	
		2/20/2007	36.54	==	
		6/5/2007	38.77		
		9/12/2007	38.93		
		12/11/2008	39.00		
		3/19/2008	36.29		
		5/20/2008	36.27		
		6/5/2008	36.38		
		9/18/2008	39.03		
		12/15/2008	39.03		
		3/27/2009	36.10		
		6/9/2009	38.62		
		9/28/2009	39.04		
			39.04		
		12/9/2009			
BANA/ O	445045	3/9/2010	35.69		
MW-8	14.5-24.5	8/22/2006	18.71		
		11/14/2006	18.73		
		2/20/2007	19.23		
		6/5/2007	20.48		
		9/12/2007	21.47	==	
		12/11/2007	19.58	==	
		Q1 2008	NM		
		Q2 2008	NM		
		9/18/2008	21.67		
		12/15/2008	20.73		
		3/27/2009	19.54		
		6/9/2009	23.31		
		9/28/2009	22.58		
		12/9/2009	20.66	20.65	0.01
		3/9/2010	18.97	==	
MW-9	36.0-46.0	8/22/2006	42.59	42.55	0.04
		11/14/2006	42.62	42.54	0.08
		2/20/2007	41.91	41.86	0.05
		6/5/2007	42.71	42.69	0.02
		9/12/2007	43.09	43.01	0.08
		12/11/2007	42.91		
		3/20/2007	41.76	41.75	0.01
		12/11/2007	42.91		
		5/20/2008	41.33		
		6/5/2008	41.57		
		9/18/2008	43.07		
		12/15/2008	43.00		
		3/27/2009	41.02		
		6/9/2009	42.53		
		9/28/2009	43.02		
		12/9/2009	42.99		
		3/9/2010	39.97		

TABLE 1 Monitoring Well Groundwater Levels First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Screen Interval (feet bgs) ¹	Date	Depth to Groundwater (feet TOC-N) ²	Depth to Product (feet TOC-N)	Product Thickness (feet)
MW-10	40.3-55.3	9/5/2007	54.86		
		12/12/2007	46.84		
		3/20/2008	44.41		
		5/20/2008	44.09		
		6/5/2008	43.67		
		9/18/2008	45.89		
		12/15/2008	45.91		
		3/27/2009	43.82		
		6/9/2009	45.19		
		9/28/2009	45.94		
		12/9/2009	46.02		
		3/9/2010	42.62		
MW-11	37.0-47.0	9/6/2007	Dry		
		12/12/2007	42.73		
		3/20/2008	37.29		
		5/20/2008	37.06		
		6/4/2008	37.18		
		9/18/2008	38.97		
		12/15/2008	39.36		
		3/27/2009	36.87		
		6/9/2009	38.30		
		9/28/2009	39.21		
		12/9/2009	39.73		
		3/9/2010	36.28		

Notes:

NM - Not measured

- 1. Screen intervals measured from feet below ground surface (feet bgs)
- 2. Groundwater and product levels measured from top of casing north (TOC-N).
- 3. MW-5 through MW-7 abandoned 6/23/08.

TABLE 2 Monitoring Well Groundwater Elevations First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

		Ground Surface	Top of Casing		Groundwater	Product	Product
Well ID	Date	Elevation	Elevation	Date	Elevation	Elevation	Thickness
	Completed	(feet msl) ¹	(feet msl) ^{1, 2}	Measured	(feet msl) ¹	(feet msl) ¹	(feet)
MW-1	10/20/2005	328.49	328.04	2/21/2006	291.70		
				6/7/2006	293.76		
				8/22/2006	290.93	290.96	0.03
				11/14/2006	290.99		
				2/20/2007	291.90		
				6/5/2007	290.83		
				9/12/2007	290.37		
				12/11/2007	290.55	290.58	0.03
				3/19/2008	292.10		
				5/20/2008	292.53		
				6/5/2008	292.35		
				9/18/2008	290.42	290.43	0.01
				12/15/2008	290.51	290.52	0.01
				3/27/2009	292.80		
				6/9/2009	290.99		
				9/28/2009	290.43		
				12/9/2009	290.48		
				3/9/2010	293.63		
MW-2	10/21/2005	324.85	324.15	2/21/2006	291.96		
				6/7/2006	293.92		
				8/22/2006	291.04		
				11/14/2006	291.14		
				2/20/2007	292.22		
				6/5/2007	290.92		
				9/12/2007	290.53		
				12/5/2007	290.63		
				3/19/2008	292.39		
				5/20/2008	292.74		
				6/5/2008	292.59		
				9/18/2008	290.50		
				12/15/2008	290.56		
				3/27/2009	293.01		
				6/9/2009	291.07		
				9/28/2009	290.53		
				12/9/2009	290.54		
				3/9/2010	293.79		
MW-3	10/21/2005	326.05	325.65	2/21/2006	293.68		
				6/7/2006	294.74		
				8/22/2006	290.99		
				11/14/2006	290.94		
				2/20/2007	293.99		
				6/5/2007	291.02		
				9/12/2007	290.94		
				12/11/2007	290.88		
				3/19/2008	294.01		
				5/20/2008	294.39		
				6/5/2008	294.20		
				9/18/2008	290.84		
				12/15/2008	290.86		
				3/27/2009	294.78		

TABLE 2 Monitoring Well Groundwater Elevations First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Date	Ground Surface Elevation	Top of Casing Elevation	Date	Groundwater Elevation	Product Elevation	Product Thickness
well ID	Completed	(feet msl) ¹	(feet msl) ^{1, 2}	Measured	(feet msl) ¹	(feet msl) ¹	(feet)
MW-3		(leet ilisi)	(leet ilisi)	6/9/2009	291.17	(leet ilisi)	
IVIVV-3				9/28/2009	290.83		
				12/9/2009	290.82		
				3/9/2010	295.05		
MW-4	1/31/2006	329.97	329.67	2/21/2006	292.95		
10100-4	1/01/2000	020.07	020.07	6/7/2006	293.91		
				8/22/2006	290.88		
				11/14/2006	290.83		
				2/20/2007	293.13		
				6/5/2007	290.90		
				9/12/2007	290.74		
				12/11/2007	290.67		
				3/19/2008	293.38		
				5/20/2008	293.40		
				6/5/2008	293.29		
				9/18/2008	290.64		
				12/15/2008	290.64		
				3/27/2009	293.57		
				6/9/2009	291.05		
				9/28/2009	290.63		
				12/9/2009	290.58		
				3/9/2010	293.98		
MW-8	8/15/2006	335.23	333.93	8/22/2006	315.22		
				11/14/2006	315.20		
				2/20/2007	314.70		
				6/5/2007	313.45		
				9/12/2007	312.46		
				12/11/2007	314.35		
				Q1 2008	NM		
				Q2 2008	NM		
				9/18/2008	312.26		
				12/15/2008	313.20		
				3/27/2009	314.39		
				6/9/2009	310.62		
				9/28/2009	311.35		
				12/9/2009	313.27	313.28	0.01
BANA/ O	0/40/2000	333.49	333.07	3/9/2010	314.96		
MW-9	8/16/2006	333.49	333.07	8/22/2006	290.48	290.52	0.04
				11/14/2006 2/20/2007	290.45 291.16	290.53 291.21	0.08
				6/5/2007	290.36	291.21	0.03
				9/12/2007	289.98	290.36	0.02
				12/11/2007	290.16	290.06	0.06
				3/20/2007	291.31		
				12/11/2007	290.16		
				5/20/2008	291.74		
				6/5/2008	291.50		
				9/18/2008	290.00		
				12/15/2008	290.07		
				3/27/2009	292.05		
				6/9/2009	290.54		
			I	2. 2. 2000			

TABLE 2 Monitoring Well Groundwater Elevations First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

Well ID	Date Completed	Ground Surface Elevation (feet msl) ¹	Top of Casing Elevation (feet msl) ^{1, 2}	Date Measured	Groundwater Elevation (feet msl) ¹	Product Elevation (feet msl) ¹	Product Thickness (feet)
MW-9				9/28/2009	290.05		
				12/9/2009	290.08		
				3/9/2010	293.10		
MW-10	9/5/2007	336.55	335.89	9/12/2007	281.03		
				12/12/2007	289.05		
				3/20/2008	291.48		
				5/20/2008	291.80		
				6/5/2008	292.22		
				9/18/2008	290.00		
				12/15/2008	289.98		
				3/27/2009	292.07		
				6/9/2009	290.70		
				9/28/2009	289.95		
				12/9/2009	289.87		
				3/9/2010	293.27		
MW-11	9/6/2007	330.29	329.89	9/12/2007	Dry		
				12/12/2007	287.16		
				3/20/2008	292.60		
				5/20/2008	292.83		
				6/5/2008	292.71		
				9/18/2008	290.92		
				12/15/2008	290.53		
				3/27/2009	293.02		
				6/9/2009	291.59		
				9/28/2009	290.68		
				12/9/2009	290.16		
				3/9/2010	293.61		

Notes:

NM - Not measured

- 1. All elevations displayed in feet above average mean sea level (msl).
- 2. Groundwater and product elevations calculated from depths as measured from top of casing north.

MW-1 through MW-3 surveyed on October 31, 2005.

MW-4 through MW-7 surveyed on February 14, 2006.

MW-8 and MW-9 surveyed on November 10, 2006.

MW-10 and MW-11 surveyed on September 13, 2007.

MW-5 through MW-7 abandoned 6/23/08.

TABLE 3
Summary of Groundwater Analytical Results
Gasoline Compounds
First Quarter 2010 Groundwater Monitoring Report
Chevron Sunol Pipeline

			Gaso	oline Compo	unds	
Well ID	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ES	SL ¹⁾	100	1	40	30	20
MW-1	2/22/2006	57,000	38	2,700	3,000	8,700
	6/8/2006	37,000	10	330	120	8,200
	Q3 2006 ³⁾	NS	NS	NS	NS	NS
	11/15/2006	38,000	14	110	38	5,900
	2/21/2007	18,000	4	7	8	1,600
	6/5/2007	17,000	3	7	4	1,100
	Q3 2007 ³⁾	NS	NS	NS	NS	NS
	Q4 2007 ³⁾	NS 40.000	NS	NS	NS	NS
	3/19/2008 6/6/2008	12,000 8,200	0.8	2	3	320 150
	Q3 2008 ⁴⁾	NS	NS	NS NS	NS NS	NS
	Q4 2008 ⁴⁾	NS NS	NS	NS	NS NS	NS NS
	3/31/2009	3,700	<0.5	1	1	44
	6/10/2009	5,000	<0.5	<0.5	0.7	13
	Q3 2009 ⁴⁾	NS	NS	NS	NS NS	NS
	Q4 2009 ⁴⁾	NS	NS	NS	NS NS	NS
	3/10/2010	3,800	<0.5	<0.5	<0.5	4
MW-2	2/21/2006 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5
	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/23/2006	<50	0.5	<0.5	<0.5	<0.5
	11/14/2006	<50	0.7	<0.5	<0.5	<0.5
	2/21/2007	<50	<0.5	< 0.5	<0.5	<0.5
	6/5/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS	NS	NS	NS	NS
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2008 ²⁾	<50 / <50	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/27/2009	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
	3/10/2010	<50	<0.5	<0.5	<0.5	2
MW-3	2/21/2006	<50	<0.5	<0.5	<0.5	<0.5
	6/7/2006 8/23/2006	<50 170	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	11/14/2006	86	<0.5	1	<0.5	<0.5
	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS	NS	NS	NS	NS
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2008	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/31/2009	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾	NS	NS	NS	NS	NS
	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
MW-4	2/21/2006	<50	<0.5	<0.5	<0.5	<0.5
	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/23/2006	70	0.6	<0.5	<0.5	1
	11/15/2006	<50	<0.5	<0.5	<0.5	0.5
	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2007 ⁴⁾	NS	NS	NS	NS NO	NS
	Q3 2007 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2007 ⁴⁾	NS .FO	NS -0.5	NS -0.5	NS -0.5	NS -0.5
	3/19/2008	<50	<0.5	<0.5	<0.5	<0.5

TABLE 3 Summary of Groundwater Analytical Results Gasoline Compounds First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

			Gaso	line Compou	ınde	
Well ID	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	2410	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL	1)	100	1	40	30	20
MW-4	6/6/2008	<50	<0.5	<0.5	<0.5	<0.5
	Q3 2008 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2008 ⁴⁾	NS	NS	NS	NS	NS
	3/31/2009	<50	<0.5	<0.5	<0.5	<0.5
	Q2 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁴⁾	NS NS	NS	NS	NS	NS
	3/9/2010	<50	<0.5	<0.5	<0.5	<0.5
MW-8/MW-X	8/24/2006	18,000	190	2,600	590	2,800
iiii oniii x	11/16/2006	990	76	80	69	190
	2/20/2007	2,000	180	57	170	74
	6/6/2007	3,600	340	92	370	210
	9/12/2007	4,200	470	230	630	320
	12/11/2007	4,900	350	300	490	650
	Q1 2008 ⁵⁾	NS	NS	NS	NS	NS
	Q2 2008 ⁵⁾	NS	NS	NS	NS	NS
	9/18/2008 ²⁾	11,000 / 9,200	740 / 690	320 / 290	790 / 720	2,600 / 2,100
	12/15/2008	12,000	810	920	880	3,300
	3/27/2009	29,000/29,000J	1,500/1,200	7,200/4,500	1,200/1,100	4,700/4,100
	Q2 2009 4)	NS	NS	NS	NS	NS
	Q3 2009 ⁴⁾	NS	NS	NS	NS	NS
	12/10/2009	19,000	930	1,600	1,200	3,800
	3/10/2010	10,000 / 10,000	570 / 580	500 / 500	730 / 730	1,800 / 1,800
MW-9	Q3 2006 ³⁾	NS	NS	NS	NS	NS
	11/15/2006	74,000	480	12,000	2,200	17,000
	Q1 2007 ³⁾	NS	NS	NS	NS	NS
	Q2 2007 ³⁾	NS	NS	NS	NS	NS
	Q3 2007 ³⁾	NS	NS	NS	NS	NS
	12/11/2007	48,000	62	5,400	1,700	12,000
	Q1 2008 ³⁾	NS	NS	NS	NS	NS
	6/6/2008	31,000	5	1,000	1,300	9,000
	9/18/2008	25,000	6	610	800	4,800
	12/16/2008	34,000	6	750	930	6,000
	3/31/2009	20,000	3	100	460	3,200
	6/10/2009	27,000	<3	66	610	4,100
	Q3 2009 ³⁾	NS	NS	NS	NS	NS
	12/10/2009	20,000	3	85	460	2,800
BBB 40/2004 1/ 7\	3/10/2010	18,000	<3	17	250	1,700
MW-10/MW-X 7)	00.00074)	NO	NIO	NO	NO	NO
	Q3 2007 ⁴⁾	NS 450	NS 40 F	NS -0.5	NS 40.5	NS 10.5
	12/14/2007	<50	<0.5	<0.5	<0.5	<0.5
	12/14/2007 3/20/2008	<50 <50	<0.5 0.9	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008	<50 <50 <50	<0.5 0.9 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008	<50 <50 <50 <50	<0.5 0.9 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008	<50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008	<50 <50 <50 <50	<0.5 0.9 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009	<50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.7	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009	<50 <50 <50 <50 <50 <50 <50 52	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 <0.5/<0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
MW-11	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴)	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 <0.5/<0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴⁾ 12/14/2007	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5/ <0.5/ <0.5/ <0.5/ <0.5/ <0.5/ <0.5/	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 <0.5/<0.5 2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴⁾ 12/14/2007 3/20/2008 ²⁾	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NS	<0.5 <0.5 <0.5 <0.5 <0.5 <0.7 1 <0.5/<0.5 2 <0.5 NS	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴⁾ 12/14/2007 3/20/2008 ²⁾ 6/6/2008	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.7 1 <0.5/<0.5 2 <0.5 NS <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴) 12/14/2007 3/20/2008 ²) 6/6/2008 9/18/2008	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 <0.5/<0.5 2 <0.5 NS <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴) 12/14/2007 3/20/2008 ²) 6/6/2008 9/18/2008	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5/ <0.5/ <0.5/ <0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1 <0.5/<0.5 2 <0.5 NS <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴⁾ 12/14/2007 3/20/2008 ²⁾ 6/6/2008 9/18/2008 12/15/2008 3/27/2009	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1 <0.5/<0.5 2 <0.5 NS <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴⁾ 12/14/2007 3/20/2008 ²⁾ 6/6/2008 12/15/2008 3/27/2009 6/10/2009	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5/ <0.5/ <0.5/ <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 <0.5/<0.5 2 <0.5 NS <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 12/15/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴⁾ 12/14/2007 3/20/2008 ²⁾ 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/29/2009	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5/ <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 <0.5/<0.5 2 <0.5 NS <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	12/14/2007 3/20/2008 6/6/2008 9/18/2008 12/15/2008 3/27/2009 6/10/2009 9/28/2009 12/10/2009 3/9/2010 Q3 2007 ⁴⁾ 12/14/2007 3/20/2008 ²⁾ 6/6/2008 12/15/2008 3/27/2009 6/10/2009	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 0.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5/ <0.5/ <0.5/ <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 <0.5/<0.5 2 <0.5 NS <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

TABLE 3

Summary of Groundwater Analytical Results Gasoline Compounds First Quarter 2010 Groundwater Monitoring Report

Chevron Sunol Pipeline

			Gaso	oline Compo	unds	
Well ID	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ES	L ¹⁾	100	1	40	30	20
SW-Creek	6/7/2006	<50	<0.5	<0.5	<0.5	<0.5
	8/22/2006	<50	<0.5	<0.5	<0.5	<0.5
	11/15/2006	<50	<0.5	<0.5	<0.5	< 0.5
	11/15/2006	<50	<0.5	<0.5	<0.5	< 0.5
Stream	2/21/2007	<50	<0.5	<0.5	<0.5	<0.5
	6/5/2007	<50	<0.5	<0.5	<0.5	< 0.5
	9/12/2007	<50	<0.5	<0.5	<0.5	< 0.5
	1/25/2008	<50	<0.5	< 0.5	<0.5	< 0.5
	3/20/2008	<50	<0.5	< 0.5	<0.5	< 0.5
	6/5/2008	<50	<0.5	< 0.5	<0.5	< 0.5
	9/18/2008	<50	<0.5	< 0.5	<0.5	< 0.5
	12/15/2008	<50	<0.5	< 0.5	<0.5	< 0.5
	3/31/2009	<50	<0.5	< 0.5	<0.5	< 0.5
	6/9/2009	<50	<0.5	<0.5	<0.5	< 0.5
	Q3 2009 ⁶⁾	NS	NS	NS	NS	NS
	Q4 2009 ⁶⁾	NS	NS	NS	NS	NS
	3/9/2010	<50	<0.5	< 0.5	<0.5	< 0.5

Notes: **Bold** values exceed laboratory reporting limits.

J qualifier - The reported value is the approximate concentration of the analyte in the sample due to sample heterogeneity.

μg/L - micrograms per liter

NS - Not Sampled

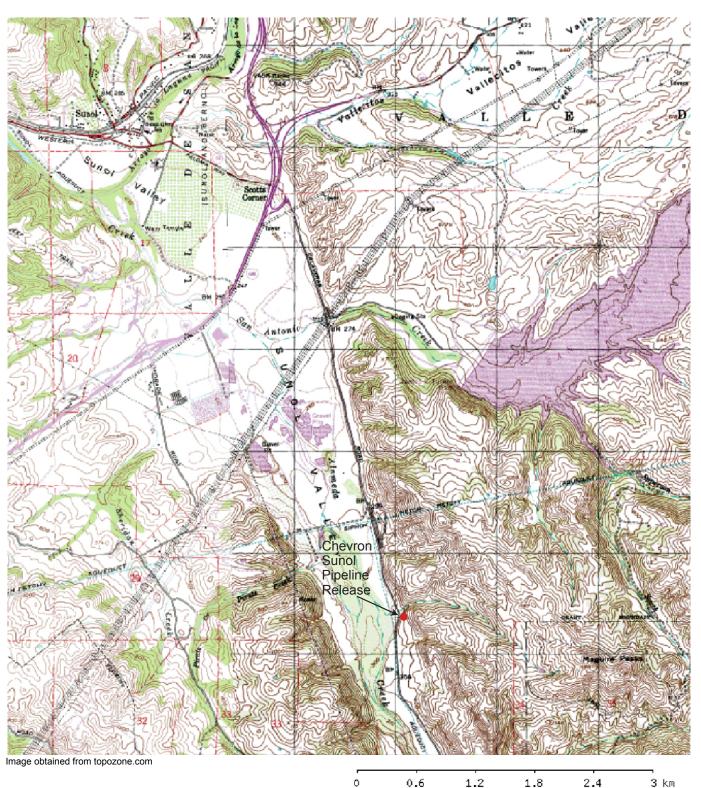
TPH-GRO - Total Petroleum Hydrocarbons as Gasoline Range Organics

- 1) Environmental Screening Levels (ESLs) for groundwater as a current or potential source of drinking water were obtained from the San Francisco Regional Water Quality Control Board (RWQCB) Interim Final: Table A, May 2008.
- 2) Both sample and duplicate concentrations from well location are displayed.
- 3) Sample not collected during quarterly monitoring due to the presence of measurable free product.
- 4) Sample not collected during quarterly monitoring because well is not hydraulically connected to unconfined water-bearing zone.
- 5) Sample not collected due to extreme overhead hazards posed by dead trees on the 80-90% grade directly uphill from the sampling location.
- 6) Sample not collected during quarterly monitoring due to the stream sample location being dry.
- 7) Duplicate sampled collected from MW-10 during the third quarter 2009 sampling event because MW-8 was not hydraulically connected to the water bearing zone.

TABLE 4

Summary of Groundwater Analytical Results Geochemical Indicators and Other Parameters First Quarter 2010 Groundwater Monitoring Report Chevron Sunol Pipeline

						G	eochemical Indi	cators and	Other Para	meters			
	-	DO ¹⁾	ORP ¹⁾	Nitrate	Manganese	Ferrous Iron	Dissolved Iron	Sulfate	Methane	pH ¹⁾	TDS	Alkalinity to pH 4.5	Alkalinity to pH 8.3
Well ID	Date	(mg/L)	(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)	(mg/L) as CaCO ₃	(mg/L) as CaCO ₃
MW-1	6/8/2006	0.28	88.15	2.6	0.116	<0.008	<0.052	48.3	<0.002	6.62	494	317	<0.46
IVI VV- I	Q3 2006	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾
		4.87 ⁶⁾									!		
	11/15/2006 3/31/2009	2.45	25 -147	0.37 J 10.3J	1 0.534	0.22 0.12	0.079 <0.052	108 62.4	<0.002 0.051	6.67 6.61	882 650	597 343	<0.46 <0.46
	6/10/2009	0.00	-147	0.420	0.534	0.12	<0.052	72.6	<0.005	7.07	614	422	<0.46
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	0.570 NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/10/2010	0.00	-118	4 J	0.431	<0.01	<0.0522	56.9	0.067	6.79	551	347	<0.46
MW-2	6/7/2006	NR ³⁾	36.43	11.9	0.431	<0.008	<0.0522	47.5	<0.007		465	286	<0.46
141 44-7	8/23/2006	0.32	25.69	7	0.003	0.015	<0.052	121	0.002	6.56 6.63	811	470	<0.46
	11/14/2006	0.32	220.84	4	0.024	0.013	<0.052 <0.052 UJ	126 J	0.003	6.72	867	530	<0.46
	3/27/2009	5.47	-86	18.2	0.021	0.021 0.036J	<0.052	65	<0.004	6.62	642	347	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q2 2009 Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/10/2010	2.81	38	13 J	0.0182	0.350	<0.0522	54.9	<0.005	6.89	532	322	<0.46
MW-3	6/7/2006	0.37	31.23	10.9	0.0162	<0.008	<0.0522	45.1	<0.005	6.56	446	274	<0.46
INI NA-2	8/23/2006	0.37	-1.8	<0.25	0.003	0.008	<0.052	26.3	1.5	6.60	711	421	<0.46
	11/14/2006	0.12	-17.57	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾	0.42	6.95	NM ⁵⁾	NM ⁵⁾	NM ⁵⁾
	3/31/2009	0.12	48	22.2J	0.0017	0.08	<0.052	57.7	<0.01	6.75	688	320	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	Q2 2009 Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	3/9/2010	1.75	182	12.6 J	0.0093	0.064	<0.0522	54.4	<0.005	6.78	496	293	<0.46
MW-4	6/7/2006	0.28	29.57	9.2	0.0093	0.064	<0.0522	60.2	<0.005	6.65	496	282	<0.46
IVI VV-4	8/23/2006	NR ³⁾	-22.49	<0.25	0.02	0.039	<0.052	78.4	0.002	6.62	590	396	<0.46
		3.46 ⁶⁾				-					672		
	11/15/2006		106 5	0.34 J	0.137	0.47 0.14	<0.052	90.3	0.003	6.74		490	<0.46
	3/31/2009	3.96 NM ⁷⁾	NM ⁷⁾	19.5J NM ⁷⁾	0.0406 NM ⁷⁾	0.14 NM ⁷⁾	<0.052 NM ⁷⁾	83.7 NM ⁷⁾	<0.01 NM ⁷⁾	NM ⁷⁾	631 NM ⁷⁾	323 NM ⁷⁾	<0.46 NM ⁷⁾
	Q2 2009								NM ⁷⁾			NM ⁷⁾	NM ⁷⁾
	Q4 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾		NM ⁷⁾	NM ⁷⁾		
B414/ O	3/9/2010	0.05	123	10.5 J	0.0343	0.13	<0.0522	89.8	<0.005	6.74	560	312	<0.46
MW-8	8/24/2006	NM ²⁾	NM ²⁾	<0.25	0.171	0.14	<0.052	90.2	<0.002 UJ	NM ²⁾	563	362	<0.46
	11/16/2006	0.05	-74	<0.25	0.123	0.8	<0.052	78.6 J	0.002	7.22	564	350	<0.46
	3/27/2009	6.88 ⁶⁾	-113	0.27	0.553	2.5J	<0.052	15.5	0.13	6.74	639	467	<0.46
	Q2 2009	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾	NM ⁷⁾
	12/10/2009	0.04	-165.00	<0.25 UJ	0.549 J	<2.5	0.06	2 J	<0.2	6.94	576	445	<0.46
B414/ O	3/10/2010	0.00	-85	<0.25	0.334	3	<0.0522	1.7	0.33	6.89	587	453	<0.46
MW-9	Q3 2006	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾	NM ⁴⁾
	11/15/2006	3.01 ⁶⁾	4	<0.25 UJ	4.41	1.2	0.496	29.5	0.009	6.92	836	657	<0.46
	3/31/2009	3.35	-179	0.39J	3.2	0.099	<0.052	60.5	0.012	6.59	632	419	<0.46
	6/10/2009	0.00	-141	<0.25	3.01	1.70	<0.052	46.4	<0.005	6.98	622	468	<0.46
	12/10/2009 3/10/2010	1.43 0.00	-188	<0.25 UJ	4.39 J	3.300	2.540	4.5 J	<0.2 0.046	6.60 6.84	734	620	<0.46 <0.46
MW-10	3/10/2010	3.65	-197 48	<0.25 8.2	2.94 0.367	1.7 0.21J	<0.0522 <0.052	40.9 155	0.046	6.69	596 1,200	448 645	<0.46 <0.46
IVIVV-IU	6/10/2009	0.37	109	<0.25	0.367	0.213	<0.052	133	2.30	7.20	1,100	623	<0.46
	12/10/2009	0.06	-74	0.33 J	0.767 0.964 J	10.90	<0.052	640 J	<0.2	6.85	1,580	512	<0.46
	3/9/2010	1.52	105	13.9 J	0.904 3	0.054	<0.052	63.6	0.190	6.89	596	349	<0.46
MW-11	3/27/2009	5.86	53	15.3	0.114	0.054 0.058J	<0.052	134	0.190	6.61	742	365	<0.46
	6/10/2009	0.37	44	NM	0.415	NM	NM	NM	0.120	7.16	NM	NM	NM
	12/10/2009	1.01	-50	0.48 J	0.804 J	3.600	<0.052	151 J	<0.2	6.84	1720	556	<0.46
	3/9/2010	3.68	133	11.9 J	0.0176	0.087	<0.0522	91.7	0.039	6.73	615	314	<0.46


Notes:
DO = Dissolved oxygen
ORP = Oxygen reduction potential
TDS = Total dissolved solids

NM = Not measured
NR = Not Reported
J = Estimated result NM = Not measured CaCO₃ = Calcium Carbonate UJ = Estimated result

Note: MW-5, MW-6, and MW-7 were destroyed on 6/23/08

- 1) DO, ORP, and pH values were obtained in the field using a flow-through cell and a multi-parameter meter unless otherwise noted.
- 2) Field data was not collected for DO, ORP, and pH because groundwater was removed from the well without using the in-line flow-through cell due to insufficient recharge.

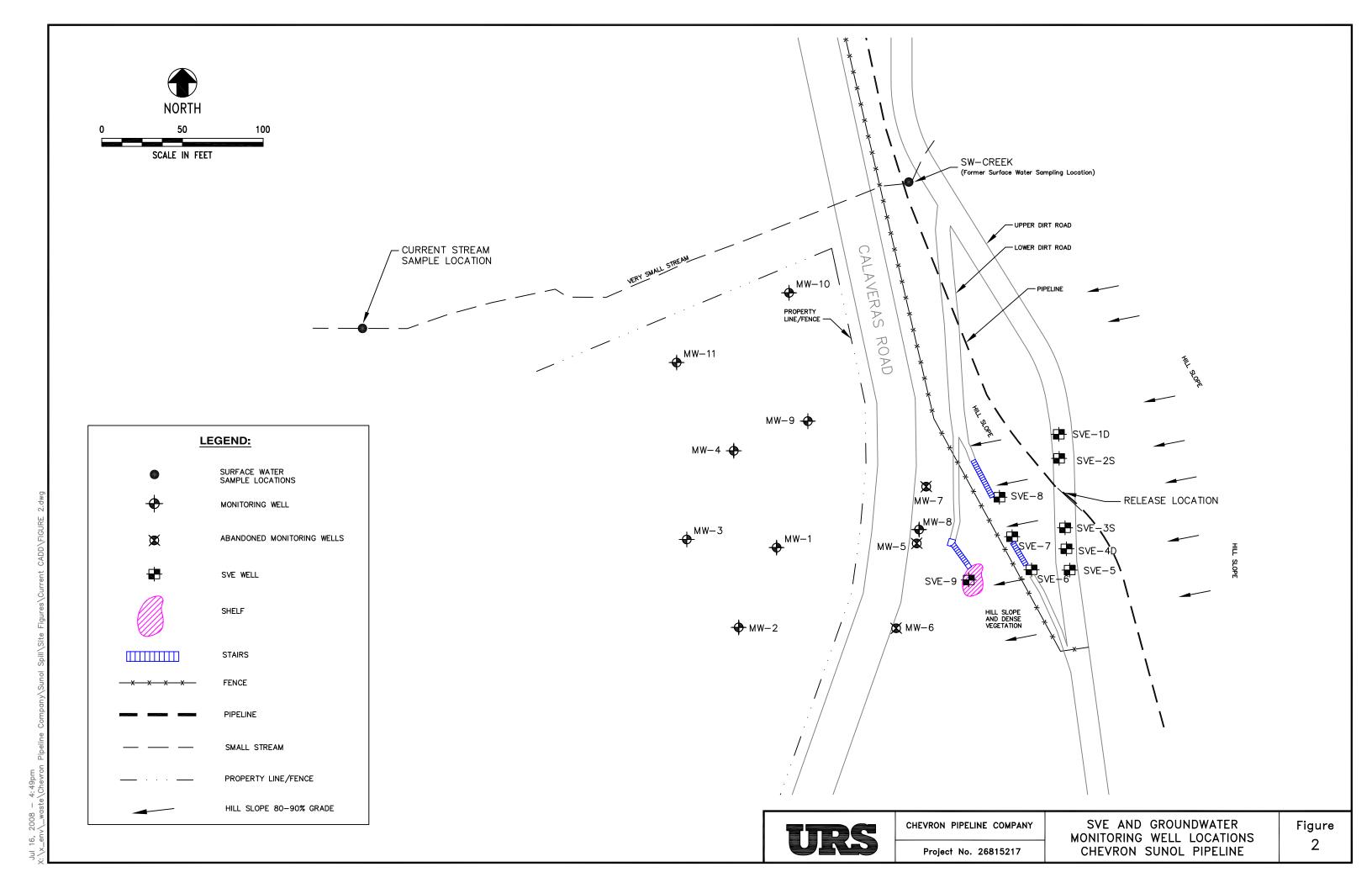
 3) DO meter did not appear to be functioning correctly.
- 4) The well was not sampled and parameters were not measured due to the presence of free product at this location.
- 5) The well was purged dry and recharge was insufficient to collect groundwater for geochemical analysis.
- 6) DO readings were artificially high because purge water was poured into the multi-parameter meter from a bailer.
- 7) Sample not collected during quarterly monitoring because well is not hydraulically connected to unconfined water-bearing zone.

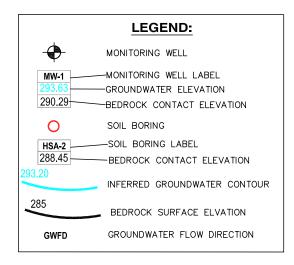
N

MAP REFERENCE:

PORTION OF U.S.G.S. QUANDRANGLE MAP 71/2 MINUTE SERIES (TOPOGRAPHIC) LA COSTA VALLEY QUADRANGLE

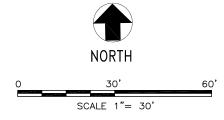
ó	0.6	1.2	1.8	2.4	3 km
ó	0.4	0.8	1.2	1.6	 2 mi




Chevron Pipeline Company

Project No. 26815217

SITE VICINITY MAP CHEVRON SUNOL PIPELINE SUNOL, CALIFORNIA


Figure 1

NOTES:

- 1. ELEVATIONS IN FEET ABOVE AVERAGE MEAN SEA LEVEL (msl).
- 2. GROUNDWATER ELEVATIONS FOR MW-1 THROUGH MW-4 AND MW-9 THROUGH MW-11, AS MEASURED ON MARCH 9, 2010.
- 3. BEDROCK ELEVATION DATA OBTAINED FROM THE BORING LOGS OF MW-1 THROUGH MW-4, MW-9 THROUGH MW-11, HSA-1, HSA-2, AND AR-2.
- 4. THE BEDROCK ELEVATIONS SHOWN REPRESENT THE OVERBURDEN CONTACT WITH THE WEATHERED SILTSTONE/CLAYSTONE BEDROCK UNIT (POSSIBLY CRETACEOUS-AGE CLAY SHALE OF THE PANOCHE FORMATION).
- 5. CALCULATED GROUNDWATER GRADIENT IN NORTHEASTERLY FLOW DIRECTION dh/dl = 0.02 ft/ft.
- * GROUNDWATER ELEVATION DATA NOT USED TO CALCULATE GROUNDWATER CONTOURS

CHEVRON PIPELINE COMPANY

Project No. 26815217

UNCONFINED WATER-BEARING ZONE GROUNDWATER AND BEDROCK ELEVATIONS MAP CHEVRON SUNOL PIPLINE

Figure 3

Appendix A
Groundwater Sampling Forms

Pump Information: **Project Information:** Rachel Naccarati/ Andrew Fowler Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/2 [in] Site Name Sunol Tubing Length 45 [ft] Pump placement from TOC 38.3 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-1 400 mL/min 4 [in] 39.3 [ft] 1000 mL NM Depth to top of screen 29.3 [ft] Sample rate NM Screen length 10 [ft] Stabilized drawdown NM Depth to Water 34.41 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]					ORP [mV]				
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20				
	10:52	16.6	6.59	112	96.6	1.03	-88				
	10:55	17	6.64	108	46.1	0.01	-105				
	10:58	17.1	6.69	107	42.3	0.00	-109				
	11:01	17.2	6.71	106	38.6	0.00	-112				
	11:04	17.3	6.77	104	33.5	0.00	-118				
	11:07	17.4	6.79	102	29.1	0.00	-118				
Multi-parameter Readings	Sample collected from MW-1 at 11:10 on 3/10/10										
wulli-parameter iveaulings											
		0.1	0.02	-1	-3.7	0.0	-3.0				
Variance in last 4 readings		0.1	0.06	-2	-5.1	0.0	-6.0				
		0.1	0.02	-2	-4.4	0.0	0.0				

Notes: Starting Pumping at 10:52

Initial Depth to Water = 34.41 ft Total Volume Purged = 2.25 gallons Final Depth to Water: 35.52 Sample collected at 11:10 on 3/10/10

Pump Information: **Project Information:** Rachel Naccarati/ Andrew Fowler Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/2 [in] Site Name Sunol Tubing Length 45 [ft] Pump placement from TOC 37.3 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-2 400 mL/min 4 [in] 38.3 [ft] 1000 mL NM Depth to top of screen 23.5 [ft] Sample rate NM Screen length 15 [ft] Stabilized drawdown NM Depth to Water 31.03 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]					ORP [mV]		
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20		
	9:40	15.5	6.88	127	35.5	0.75	-9		
	9:43	15.5	6.94	125	48.0	0.56	-11		
	9:46	15.6	6.98	120	59.6	0.76	-9		
	9:49	15.7	7.00	115	68.7	1.18	-1		
	9:52	15.8	6.98	113	67.5	1.36	5		
	9:55	15.8	6.97	109	52.0	2.00	17		
Multi-parameter Readings	9:58	15.8	6.92	105	45.5	2.23	23		
	10:01	15.7	6.89	101	40.1	2.65	31		
	10:04	15.7	6.89	100	37.3	2.74	34		
	10:07	15.8	6.89	99	38.8	2.81	38		
	Sample collected from MW-2 at 10:10 on 3/10/10								
		-0.1	-0.03	-4	-5.4	0.42	8		
Variance in last 4 readings		0.0	0.00	-1	-2.8	0.09	3		
		0.1	0.00	-1	1.5	0.07	4		

Notes: Starting Pumping at 09:40

Initial Depth to Water = 31.03 ft Total Volume Purged = 4 gallons Final Depth to Water: 30.44 Sample collected at 10:10 on 3/10/10

Pump Information: **Project Information:** Rachel Naccarati/ Andrew Fowler Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/2 [in] Site Name Sunol Tubing Length 40 [ft] Pump placement from TOC 35.3 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-3 400 mL/min 4 [in] 36.3 [ft] 1000 mL NM Depth to top of screen 21.3 [ft] Sample rate NM Screen length 15 [ft] Stabilized drawdown NM Depth to Water 30.60 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]					ORP [mV]	
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20	
	14:09	15	6.45	92	18.8	2.77	217	
	14.09	15	0.43	92	16.6	2.11	217	
	14:12	15.1	6.43	92	59.9	2.16	210	
	14:15	15.3	6.58	92	64.6	1.92	198	
	14:18	15.4	6.70	92	60.5	1.82	189	
	14:21	15.5	6.76	92	82.8	1.76	184	
	14:24	15.5	6.78	92	99.7	1.75	182	
	Sample collected from MW-3 at 14:30 on 3/9/10							
Multi-parameter Readings								
		0.1	0.12	0	-4.1	-0.10	-9	
Variance in last 4 readings								
		0.1	0.06				-5	
		0.0	0.02	0	16.9	-0.01	-2	

Notes: Starting Pumping at 14:30

Initial Depth to Water = 30.60 ft Total Volume Purged = 2.5 gallons Final Depth to Water: NM Sample collected at 14:30 on 3/9/10

Pump Information: **Project Information:** Rachel Naccarati/ Andrew Fowler Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/4 [in] Site Name Sunol Tubing Length 43 [ft] Pump placement from TOC 39.7 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-4 300 mL/min 4 [in] 40.7 [ft] 1000 mL NM Depth to top of screen 30.7 [ft] Sample rate NM Screen length 10 [ft] Stabilized drawdown NM Depth to Water 35.69 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]					ORP [mV]		
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20		
	13:20	16.3	6.53	119	8.3	0.58	199		
	13:23	16.2	6.38	117	14.2	0.00	174		
	13:26	16.2	6.49	113	14.4	0.00	148		
	13:29	16.2	6.62	110	12.6	0.00	134		
	13:32	16.3	6.65	108	11.4	0.00	129		
	13:35	16.3	6.70	107	6.9	0.00	125		
Multi-parameter Readings	13:38	16.3	6.74	104	8.1	0.05	123		
	Sample collected from MW-4 at 13:40 on 3/9/10								
		0.1	0.03	-2	-1.2	0.00	-5		
Variance in last 4 readings		0.0	0.05	-1	-4.5	0.00	-4		
		0.0	0.04	-3	1.2	0.05	-2		

Notes: Starting Pumping at 13:20

Initial Depth to Water = 35.69 ft
Total Volume Purged = 3.5 gallons
Final Depth to Water: 35.69
Sample collected at 13:40 on 3/9/10

Pump Information: **Project Information:** Rachel Naccarati/ Andrew Fowler Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/2 [in] Site Name Sunol Tubing Length 25 [ft] Pump placement from TOC 23.5 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id Well diameter MW-8 300 mL/min 2 [in] 24.5 [ft] 1000 mL Well total depth NM Depth to top of screen 14.5 [ft] Sample rate NM Screen length 10 [ft] Stabilized drawdown NM Depth to Water 18.97 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]			Turb [NTU]		ORP [mV]	
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20	
	10.07	10.7	0.70	404	00.0	4.47	45	
	12:37	19.7	6.73	104	38.2	1.47	-45	
	12:40	19.9	6.60	104	21.4	1.08	-55	
	12:43	20.1	6.66	103	12.4	0.59	-64	
	12:46	20.2	6.77	104	9.2	0.21	-73	
	12:49	20.2	6.85	104	7.2	0.02	-79	
	12:52	20.3	6.89	105	6.4	0.00	-85	
	Sample collected from MW-8 at 12:55 on 3/10/10							
Multi-parameter Readings								
		0.1	0.11	-1	-3.2	-0.38	-9	
Variance in last 4 readings								
		0.0		0	-2.0		-6	
		0.1	0.04	-1	-0.8	-0.02	-6	

Notes: Starting Pumping at 12:35

Initial Depth to Water = 18.97 ft
Total Volume Purged = 3 gallons
Final Depth to Water: 21.54
Sample collected at 12:55 on 3/10/10
MW-X Colected at 13:00

Pump Information: **Project Information:** Pump Model/Type Mega Monsoon Operator Name Rachel Naccarati/ Andrew Fowler Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/2 [in] Site Name Sunol Tubing Length 50.0 [ft] Pump placement from TOC 45.0 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id Well diameter MW-9 300 mL/min 2 [in] 46.0 [ft] 1000 mL Well total depth NM Depth to top of screen 36.0 [ft] Sample rate NM Screen length 10 [ft] Stabilized drawdown NM Depth to Water 39.97 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]					ORP [mV]		
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20		
	8:40	16.0	6.74	117	295.0	0.00	-159		
	6.40	10.0	0.74	117	293.0	0.00	-159		
	8:43	16.6	6.85	116	230.0	0.00	-172		
	8:46	16.9	6.85	115	116.0	0.00	-185		
	8:49	17.0	6.84	114	74.9	0.00	-188		
	8:52	17.3	6.83	112	55.9	0.00	-192		
	8:55	17.6	6.83	112	32.9	0.00	-196		
Multi-parameter Readings	8:58	17.7	6.84	112	24.7	0.00	-197		
water parameter readings	Sample collected from MW-9 at 09:00 on 3/9/10								
			•						
		0.30	-0.01	-2	-19.0	0.00	-4		
Variance in last 4 readings		0.30					-4		
		0.10		0			-1		

Notes: Starting Pumping at 08:40

Initial Depth to Water = 39.97 ft
Total Volume Purged = 2.5 gallons
Sample collected at 09:00
Final Depth to Water = 40.08 ft
Sheen on purged water
Slight odor observed
Water dark color

Depth to Water

Pump Information: **Project Information:** Rachel Naccarati/ Andrew Fowler Pump Model/Type Mega Monsoon Operator Name Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/2 [in] Site Name Sunol Tubing Length 56 [ft] Pump placement from TOC 54.3 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id
Well diameter
Well total depth MW-10 400 mL/min 2 [in] 55.3 [ft] 1000 mL NM Depth to top of screen 40.3 [ft] Sample rate NM Screen length 15 [ft] Stabilized drawdown NM

42.62 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]				ORP [mV]	
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20	
	11:25	17.1	0.00	240	40.3	0.00	40	
_	11:25	17.1	6.69	219	40.3	0.00	-13	
_	11:28	17.6	6.65	210	63.5	0.00	-3	
	11:31	17.7	6.71	202	80.3	0.00	20	
	11:34	17.7	6.72	189	70.4	0.00	40	
	11:37	17.8	6.79	154	71.9	0.51	59	
	11:40	17.8	6.76	134	39.2	1.25	81	
Multi-parameter Readings	11:43	17.7	6.79	119	22.9	1.51	92	
	11:46	17.7	6.82	113	12.9	1.55	98	
	11:49	17.7	6.84	111	14.1	1.56	99	
	11:52	17.7	6.89	110	10.9	1.52	105	
	Sample collected from MW-10 at 11:55 on 3/9/10							
			·					
		0.0	0.03	-6	-10.0	0.04	6	
Variance in last 4 readings		0.0	0.02		1.2		1	
		0.0			-3.2		6	

Notes: Starting Pumping at 11:20

Initial Depth to Water = 42.62 ft Total Volume Purged = 5 gallons Sample collected at 11:55 on 3/9/10 Final Depth to Water: 42.62

1000 mL

Pump Information: **Project Information:** Rachel Naccarati/ Andrew Fowler Mega Monsoon Operator Name Pump Model/Type Tubing Type Company Name Polyethylene Project Name Chevron Sunol Pipeline Tubing Diameter 1/2 [in] Site Name Sunol Tubing Length 50 [ft] Pump placement from TOC 46 [ft]

Pumping information: Final pumping rate Flowcell volume Calculated Sample Rate Well Information: Well Id Well diameter MW-11 400 mL/min 2 [in] 47.0 [ft] Well total depth

NM Depth to top of screen 37.0 [ft] Sample rate NM Screen length 10 [ft] Stabilized drawdown NM Depth to Water 36.78[ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]					ORP [mV]			
Stabilization Settings			+/-0.2	+/-3%	+/-1	+/-0.2	+/-20			
	10:05	16.5	6.64	249	46.3	0.95	-125			
	10:08	17.2	6.60	227	31.8	0.00	-124			
	10:11	17.4	6.74	129	31.2	2.78	28			
	10:14	17.7	6.74	118	17.1	3.30	73			
	10:17	17.9	6.74	115	11.1	3.52	89			
	10:20	17.9	6.71	113	6.2	3.66	98			
Multi-parameter Readings	10:23	18.1	6.74	111	3.8	3.62	113			
	10:26	18.1	6.72	111	7.9	3.66	123			
	10:29	18.2	6.73	111	11.6	3.68	133			
	Sample collected from MW-11 at 10:35 on 3/9/10									
		0.2	0.03	-2	-2.4	-0.04	15			
Variance in last 4 readings		0.0		0		0.04	10			
		0.1		0			10			

Notes: Starting Pumping at 10:00

Initial Depth to Water = 36.78 ft Total Volume Purged = 4 gallons Final Depth to water = 36.29 Sample collected at 10:35 on 3/9/10 Sulfur odor on purge water

Appendix B
Laboratory Analytical Results

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

713-432-3267

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

March 17, 2010

Project: MP 2.7

Samples arrived at the laboratory on Wednesday, March 10, 2010. The PO# for this group is 0015041168 and the release number is JOHNSON. The group number for this submittal is 1185429.

Client Sample Description	Lancaster Labs (LLI) #
MW-3 Grab Water	5923561
MW-3_Filtered Grab Water	5923562
MW-4 Grab Water	5923563
MW-4_Filtered Grab Water	5923564
MW-10 Grab Water	5923565
MW-10_Filtered Grab Water	5923566
MW-11 Grab Water	5923567
MW-11_Filtered Grab Water	5923568
Stream Grab Water	5923569
TB-1 NA Water	5923570

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	URS	Attn: Joe Morgan
COPY TO		
ELECTRONIC	URS	Attn: Rachel Naccarati
COPY TO		
ELECTRONIC	URS	Attn: Jacob Henry
COPY TO		·

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Elizabeth A Leonhardt at (510) 232-8894

Respectfully Submitted,

Susan M. Goshert Group Leader

Susan M Goshert

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-3 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-3

LLI Sample # WW 5923561 LLI Group # 1185429

CA

Project Name: MP 2.7

Collected: 03/09/2010 14:30 by RN Account Number: 11875

 Submitted:
 03/10/2010
 09:00
 Chevron Pipeline Co.

 Reported:
 03/17/2010 at 11:52
 100 Northpark Blvd

 Discard:
 04/17/2010
 Covington LA 70433

SUN-3

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 8	3260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846 8	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846 8	015B modified	ug/l	ug/l	
07105	Methane		74-82-8	N.D.	5.0	1
Metals	5	SW-846 6	010B	ug/l	ug/l	
07058	Manganese		7439-96-5	9.3	0.84	1
Wet Cl	nemistry	EPA 300.	0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	12,600	250	5
00228	Sulfate		14808-79-8	54,400	1,500	5
		EPA 160.	1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	496,000	9,700	1
		EPA 310.	1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	293,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 350 modified		ug/l	ug/l	
08344	Ferrous Iron		n.a.	64	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06053	BTEX by 8260B	SW-846 8260B	1	F100712AA	03/12/2010 13:56	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100712AA	03/12/2010 13:56	Anita M Dale	1

03/11/2010 08:04 Susan E Hibner

03/12/2010 11:38 Geraldine C Smith 03/12/2010 11:38 Geraldine C Smith 03/10/2010 23:45 Daniel S Smith

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-3 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-3

LLI Sample # WW 5923561 LLI Group # 1185429

1

Project Name: MP 2.7

Collected: 03/09/2010 14:30 by RN Account Number: 11875

Submitted: 03/10/2010 09:00 Chevron Pipeline Co. Reported: 03/17/2010 at 11:52 100 Northpark Blvd

EPA 160.1

EPA 310.1

EPA 310.1

modified

SM20 3500 Fe B

Discard: 04/17/2010

00212 Total Dissolved Solids

00202 Alkalinity to pH 4.5

00201 Alkalinity to pH 8.3

08344 Ferrous Iron

SUN-3

			_					
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071B07A	03/15/2010	18:08	Butch A Sokolowski	1
01146	GC VOA Water Prep	SW-846 5030B	1	10071B07A	03/15/2010	18:08	Butch A Sokolowski	1
07105	Methane - VHH	SW-846 8015B modified	1	100700013A	03/11/2010	15:02	Dustin A Underkoffler	1
07058	Manganese	SW-846 6010B	1	100701848003	03/16/2010 2	21:28	John W Yanzuk II	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	100701848003	03/11/2010 2	20:20	Mirit S Shenouda	1
00368	Nitrate Nitrogen	EPA 300.0	1	10069196601A	03/10/2010	16:11	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10069196601A	03/10/2010	16:11	Ashley M Adams	5

1 10070021201A

1 10071020201A 1 10071020201A

1 10069834401A

Laboratory Sample Analysis Record

Covington LA 70433

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-3

LLI Sample # WW 5923562 LLI Group # 1185429

CA

Project Name: MP 2.7

Collected: 03/09/2010 14:30 by RN Account Number: 11875

 Submitted:
 03/10/2010
 09:00
 Chevron Pipeline Co.

 Reported:
 03/17/2010 at 11:52
 100 Northpark Blvd

 Discard:
 04/17/2010
 Covington LA 70433

CAT Analysis Name CAS Number Result Detection Limit Factor

 Metals Dissolved
 SW-846 6010B
 ug/l
 ug/l

 01754 Iron
 7439-89-6
 N.D.
 52.2
 1

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	An	nalyst	Dilution
No.					Date and Time			Factor
01754	Iron	SW-846 6010B	1	100701848003	03/16/2010 21	:46 Jo	ohn W Yanzuk II	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100701848003	03/11/2010 20	:20 Mi	rit S Shenouda	1
	rec)							

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-4 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-4

LLI Sample # WW 5923563 LLI Group # 1185429

Project Name: MP 2.7

Collected: 03/09/2010 13:40 by RN Account Number: 11875

Submitted: 03/10/2010 09:00 Chevron Pipeline Co. Reported: 03/17/2010 at 11:52 100 Northpark Blvd Covington LA 70433 Discard: 04/17/2010

SUN-4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	N.D.	5.0	1
Metals	5	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	34.3	0.84	1
Wet Cl	hemistry	EPA 300	.0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	10,500	250	5
00228	Sulfate		14808-79-8	89,800	3,000	10
		EPA 160	.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	560,000	9,700	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	312,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35 modifie	00 Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	130	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06053	BTEX by 8260B	SW-846 8260B	1	F100712AA	03/12/2010 14:18	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100712AA	03/12/2010 14:18	Anita M Dale	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-4 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-4

LLI Sample # WW 5923563 LLI Group # 1185429

Project Name: MP 2.7

Collected: 03/09/2010 13:40 by RN Account Number: 11875

Submitted: 03/10/2010 09:00 Chevron Pipeline Co. Reported: 03/17/2010 at 11:52 100 Northpark Blvd Covington LA 70433

modified

Discard: 04/17/2010

SUN-4

Laboratory Sample Analysis Record Dilution Method Trial# Batch# Analysis Name Analyst Date and Time Factor No. 01728 TPH-GRO N. CA water C6-C12 SW-846 8015B 1 10071B07A 03/15/2010 18:34 Butch A Sokolowski 1 01146 GC VOA Water Prep SW-846 5030B 1 10071B07A Butch A Sokolowski 1 03/15/2010 18:34 07105 Methane - VHH 1 100700013A 03/11/2010 15:15 Dustin A SW-846 8015B 1 modified Underkoffler 1 100701848003 07058 Manganese SW-846 6010B 03/16/2010 21:49 John W Yanzuk II 01848 WW SW846 ICP Digest (tot SW-846 3005A 1 100701848003 03/11/2010 20:20 Mirit S Shenouda rec) EPA 300.0 00368 Nitrate Nitrogen Ashley M Adams 1 10069196601A 03/10/2010 17:00 5 Ashley M Adams 00228 Sulfate EPA 300.0 10069196601A 03/11/2010 12:25 10 00212 Total Dissolved Solids EPA 160.1 1 10070021201A 03/11/2010 08:04 Susan E Hibner 1 10071020201A 1 10071020201A 03/12/2010 11:38 03/12/2010 11:38 00202 Alkalinity to pH 4.5 EPA 310.1 Geraldine C Smith 00201 Alkalinity to pH 8.3 EPA 310.1 Geraldine C Smith 08344 Ferrous Iron SM20 3500 Fe B 1 10069834401A 03/10/2010 23:45 Daniel S Smith 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-4

LLI Sample # WW 5923564

LLI Group # 1185429

Project Name: MP 2.7

Collected: 03/09/2010 13:40 by RN Account Number: 11875

Submitted: 03/10/2010 09:00 Chevron Pipeline Co. Reported: 03/17/2010 at 11:52 100 Northpark Blvd Covington LA 70433

Discard: 04/17/2010

As Received CAT As Received Dilution Method Analysis Name CAS Number Result No. Factor Detection Limit

ug/l ug/l Metals Dissolved SW-846 6010B 01754 Iron N.D. 7439-89-6 52.2 1

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
01754	Iron	SW-846 6010B	1	100701848003	03/16/2010	21:58	John W Yanzuk II	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100701848003	03/11/2010	20:20	Mirit S Shenouda	1
	rec)							

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-10 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-10

LLI Sample # WW 5923565 LLI Group # 1185429

CA

Project Name: MP 2.7

Collected: 03/09/2010 11:55 by RN

Account Number: 11875

Submitted: 03/10/2010 09:00 Reported: 03/17/2010 at 11:52 Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

As Received

Discard: 04/17/2010

SUN10

CAT No.	Analysis Name		CAS Number	As Received Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	190	5.0	1
Metals	5	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	35.7	0.84	1
Wet Cl	nemistry	EPA 300	0.0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	13,900	250	5
00228	Sulfate		14808-79-8	63,600	1,500	5
		EPA 160	0.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	596,000	19,400	1
		EPA 310	0.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	349,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35	500 Fe B ed	ug/l	ug/l	
08344	Ferrous Iron		n.a.	54	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06053	BTEX by 8260B	SW-846 8260B	1	F100712AA	03/12/2010 14:39	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100712AA	03/12/2010 14:39	Anita M Dale	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-10 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-10

LLI Sample # WW 5923565 LLI Group # 1185429

CA

Project Name: MP 2.7

by RN Collected: 03/09/2010 11:55 Account Number: 11875

Submitted: 03/10/2010 09:00 Chevron Pipeline Co. Reported: 03/17/2010 at 11:52 100 Northpark Blvd Covington LA 70433

modified

Discard: 04/17/2010

SUN10

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor				
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071B07A	03/15/2010	19:01	Butch A Sokolowski	1				
01146	GC VOA Water Prep	SW-846 5030B	1	10071B07A	03/15/2010	19:01	Butch A Sokolowski	1				
07105	Methane - VHH	SW-846 8015B modified	1	100700013A	03/11/2010	15:29	Dustin A Underkoffler	1				
07058	Manganese	SW-846 6010B	1	100701848003	03/16/2010	22:01	John W Yanzuk II	1				
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	100701848003	03/11/2010	20:20	Mirit S Shenouda	1				
00368	Nitrate Nitrogen	EPA 300.0	1	10069196601A	03/10/2010	17:16	Ashley M Adams	5				
00228	Sulfate	EPA 300.0	1	10069196601A	03/10/2010	17:16	Ashley M Adams	5				
00212	Total Dissolved Solids	EPA 160.1	1	10070021201A	03/11/2010	08:04	Susan E Hibner	1				
00202	Alkalinity to pH 4.5	EPA 310.1	1	10071020201A	03/12/2010	11:38	Geraldine C Smith	1				
00201	Alkalinity to pH 8.3	EPA 310.1	1	10071020201A	03/12/2010	11:38	Geraldine C Smith	1				
08344	Ferrous Iron	SM20 3500 Fe B	1	10069834401A	03/10/2010	23:45	Daniel S Smith	1				

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-10 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-10

LLI Sample # WW 5923566

LLI Group # 1185429

1

CA

Project Name: MP 2.7

Collected: 03/09/2010 11:55 by RN Account Number: 11875

 Submitted:
 03/10/2010
 09:00
 Chevron Pipeline Co.

 Reported:
 03/17/2010 at 11:52
 100 Northpark Blvd

Discard: 04/17/2010

100 Northpark Blvd Covington LA 70433

CAT Analysis Name CAS Number Result Detection Limit Factor

 Metals Dissolved
 SW-846 6010B
 ug/l
 ug/l

 01754 Iron
 7439-89-6
 N.D.
 52.2

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tim	ıe		Factor
01754	Iron	SW-846 6010B	1	100701848003	03/16/2010	22:04	John W Yanzuk II	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100701848003	03/11/2010	20:20	Mirit S Shenouda	1
			_		03/11/2010			=

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-11 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-11

LLI Sample # WW 5923567 LLI Group # 1185429

CA

Project Name: MP 2.7

Collected: 03/09/2010 10:35 by RN Account Number: 11875

 Submitted:
 03/10/2010
 09:00
 Chevron Pipeline Co.

 Reported:
 03/17/2010 at 11:52
 100 Northpark Blvd

 Discard:
 04/17/2010
 Covington LA 70433

SUN11

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	39	5.0	1
Metals	5	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	17.6	0.84	1
Wet Cl	nemistry	EPA 300	.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	11,900	250	5
00228	Sulfate		14808-79-8	91,700	3,000	10
		EPA 160	.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	615,000	19,400	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
	Alkalinity to pH 4.		n.a.	341,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 350		ug/l	ug/l	
08344	Ferrous Iron		n.a.	87	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	F100711AA	03/12/2010 14:49	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100711AA	03/12/2010 14:49	Anita M Dale	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-11 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-11

LLI Sample # WW 5923567 LLI Group # 1185429

CA

Project Name: MP 2.7

Collected: 03/09/2010 10:35 by RN Account Number: 11875

Submitted: 03/10/2010 09:00 Chevron Pipeline Co. Reported: 03/17/2010 at 11:52 100 Northpark Blvd Covington LA 70433

Discard: 04/17/2010

SUN11

			-7					
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071B07A	03/15/2010	19:28	Butch A Sokolowski	1
01146	GC VOA Water Prep	SW-846 5030B	1	10071B07A	03/15/2010	19:28	Butch A Sokolowski	1
07105	Methane - VHH	SW-846 8015B modified	1	100700014A	03/11/2010	20:15	Dustin A Underkoffler	1
07058	Manganese	SW-846 6010B	1	100701848003	03/16/2010	22:07	John W Yanzuk II	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	100701848003	03/11/2010	20:20	Mirit S Shenouda	1
00368	Nitrate Nitrogen	EPA 300.0	1	10069196601A	03/10/2010	17:33	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10069196601A	03/11/2010	12:42	Ashley M Adams	10
00212	Total Dissolved Solids	EPA 160.1	1	10070021201A	03/11/2010	08:04	Susan E Hibner	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10071020201A	03/12/2010	11:38	Geraldine C Smith	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10071020201A	03/12/2010	11:38	Geraldine C Smith	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10069834401A	03/10/2010	23:45	Daniel S Smith	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-11 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-11

LLI Sample # WW 5923568

LLI Group # 1185429

1

CA

Project Name: MP 2.7

Collected: 03/09/2010 10:35 by RN Account Number: 11875

Submitted: 03/10/2010 09:00 Reported: 03/17/2010 at 11:52

Discard: 04/17/2010

Chevron Pipeline Co. 100 Northpark Blvd

Covington LA 70433

CAT Analysis Name CAS Number Result Detection Limit Factor

 Metals Dissolved
 SW-846 6010B
 ug/l
 ug/l

 01754 Iron
 7439-89-6
 N.D.
 52.2

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
01754	Iron	SW-846 6010B	1	100701848003	03/16/2010 22:3	0 John W Yanzuk II	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100701848003	03/11/2010 20:2	0 Mirit S Shenouda	1
	rec)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: Stream Grab Water

NA URSO

Sunol Pipeline SL0600100443 Stream

LLI Sample # WW 5923569 LLI Group # 1185429

CA

Project Name: MP 2.7

Collected: 03/09/2010 12:45 by RN Account Number: 11875

 Submitted: 03/10/2010 09:00
 Chevron Pipeline Co.

 Reported: 03/17/2010 at 11:52
 100 Northpark Blvd

 Discard: 04/17/2010
 Covington LA 70433

SUNST

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
06053	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100711AA	03/12/2010 14:16	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100711AA	03/12/2010 14:16	Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071B07A	03/15/2010 19:55	Butch A Sokolowski	. 1
01146	GC VOA Water Prep	SW-846 5030B	1	10071B07A	03/15/2010 19:55	Butch A Sokolowski	. 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: TB-1 NA Water

NA URSO

Sunol Pipeline SL0600100443 TB-1

LLI Sample # WW 5923570 LLI Group # 1185429

CA

Project Name: MP 2.7

Collected: 03/09/2010 Account Number: 11875

 Submitted: 03/10/2010 09:00
 Chevron Pipeline Co.

 Reported: 03/17/2010 at 11:52
 100 Northpark Blvd

 Discard: 04/17/2010
 Covington LA 70433

SUNT1

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
06053	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100711AA	03/12/2010 13:29	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100711AA	03/12/2010 13:29	Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071B07A	03/15/2010 11:58	Butch A Sokolowski	. 1
01146	GC VOA Water Prep	SW-846 5030B	1	10071B07A	03/15/2010 11:58	Butch A Sokolowski	. 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1185429

Reported: 03/17/10 at 11:52 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: F100711AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample num N.D. N.D. N.D. N.D.	0.5 0.5 0.5 0.5 0.5	023567 ug/l ug/l ug/l ug/l	93 95 96 94	89 93 94 91	79-120 79-120 79-120 80-120	4 3 2 3	30 30 30 30
Batch number: F100712AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample num N.D. N.D. N.D. N.D.	0.5 0.5 0.5 0.5 0.5	023561,59235 ug/l ug/l ug/l ug/l	563,592356 89 92 93 91	5	79-120 79-120 79-120 80-120		
Batch number: T100711AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample num N.D. N.D. N.D. N.D.	0.5 0.5 0.5 0.5 0.5	923569-59235 ug/l ug/l ug/l ug/l	98 92 98 91	97 90 96 89	79-120 79-120 79-120 80-120	1 2 2 2	30 30 30 30
Batch number: 10071B07A TPH-GRO N. CA water C6-C12	Sample num	ber(s): 59 50.	023561,59235 ug/l	563,592356 109	5,5923567 118	,5923569-592 75-135	23570 8	30
Batch number: 100700013A Methane	Sample num	ber(s): 59 5.0	023561,59235 ug/l	563,592356 102	5	80-120		
Batch number: 100700014A Methane	Sample num	ber(s): 59 5.0	023567 ug/l	102		80-120		
Batch number: 100701848003 Iron Manganese	Sample num N.D. N.D.	ber(s): 59 52.2 0.84	923561-59235 ug/l ug/l	568 105 104		90-112 90-110		
Batch number: 10069196601A Nitrate Nitrogen Sulfate	Sample num N.D. N.D.	ber(s): 59 50. 300.	923561,59235 ug/l ug/l	563,592356 102 96	5,5923567	90-110 89-110		
Batch number: 10069834401A Ferrous Iron	Sample num	ber(s): 59	023561,59235 ug/l	563,592356 98	5,5923567	92-105		
Batch number: 10070021201A Total Dissolved Solids	Sample num	ber(s): 59 9,700.	023561,59235 ug/l	563,592356 99	5,5923567	80-120		
Batch number: 10071020201A Alkalinity to pH 4.5	Sample num	ber(s): 59 460.	023561,59235 ug/l as CaCO3	563,592356 101	5,5923567	98-103		

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1185429

Reported: 03/17/10 at 11:52 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP RPD	Dup RPD Max
Batch number: F100711AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample 96 99 100 97	number(s)	: 5923567 80-126 71-134 80-125 79-125	UNSPK:	P9212	60			
Batch number: F100712AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample 92 96 98 95	number(s) 94 97 99	: 5923561 80-126 71-134 80-125 79-125	,592356 2 1 0	3,5923 30 30 30 30	565 UNSPK:	P923800		
Batch number: T100711AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample 101 98 101 94	number(s)	: 5923569 80-126 71-134 80-125 79-125	-592357	0 UNSP	K: 5923569			
Batch number: 10071B07A TPH-GRO N. CA water C6-C12	Sample 100	number(s)	: 5923561 63-154	,592356	3,5923	565,5923567	,5923569-592	3570 UNS	PK: P924752
Batch number: 100700013A Methane	Sample 50	number(s)	: 5923561 35-157	,592356 0	3,5923 20	565 UNSPK:	P923746		
Batch number: 100700014A Methane	Sample -2833 (2)	number(s) -2833 (2)	: 5923567 35-157	UNSPK:	P9245 20	75			
Batch number: 100701848003 Iron Manganese	Sample 109 104	number(s) 107 101	: 5923561 75-125 75-125	-592356 2 3	8 UNSP 20 20	K: 5923561 : 346 9.3	BKG: 5923561 361 9.3	4 (1) 0 (1)	20 20
Batch number: 10069196601A Nitrate Nitrogen Sulfate	Sample 94 97	number(s)	: 5923561 90-110 90-110	,592356	3,5923	565,5923567 310 335,000	UNSPK: P922 490 342,000	2938 BKG: 46* (1) 2 (1)	P922938 20 20
Batch number: 10069834401A Ferrous Iron	Sample 97	number(s)	: 5923561 66-130	,592356 2	3,5923 6	565,5923567 25,200	UNSPK: P923 25,400	3747 BKG: 1 (1)	P923747 10
Batch number: 10070021201A Total Dissolved Solids	Sample 98	number(s)	: 5923561 54-143	,592356 1	3,5923 12	565,5923567 254,000	UNSPK: P923 254,000	8871 BKG: 0	P923871 9
Batch number: 10071020201A Alkalinity to pH 4.5 Alkalinity to pH 8.3	Sample 100	number(s)	: 5923561 64-130	,592356 0	3,5923 2	565,5923567 43,100 N.D.	UNSPK: P923 43,500 N.D.	3731 BKG: 1 0 (1)	P923731 4 4

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1185429

Reported: 03/17/10 at 11:52 AM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX by 8260B Batch number: F100711AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5923567	93	99	102	91
Blank	96	98	106	95
LCS	95	98	103	98
LCSD	97	99	106	100
MS	96	98	104	98
Limits:	80-116	77-113	80-113	78-113

Analysis	Name:	BTEX	by	8260B
D - + -1	1	-100	077	

Dacen nama	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene		
5923561	95	101	107	95		
5923563	92	97	104	93		
5923565	95	101	106	94		
Blank	95	99	106	96		
LCS	95	98	103	97		
MS	94	99	103	97		
MSD	98	101	106	99		
Limits:	80-116	77-113	80-113	78-113		

Analysis Name: BTEX by 8260B

Batch number: T100711AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5923569	101	101	102	105
5923570	98	100	103	106
Blank	99	99	103	104
LCS	100	106	103	107
LCSD	99	103	102	103
MS	99	101	103	107
Limits:	80-116	77-113	80-113	78-113

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 10071B07A
Trifluorotoluene-F

5923561	99
5923563	100
5923565	102
5923567	101
5923569	101
5923570	105
Blank	102
LCS	116
LCSD	117
MS	117
Limits:	63-135

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1185429

Reported: 03/17/10 at 11:52 AM

Surrogate Quality Control

Analysis Name: Volatile Headspace Hydrocarbon Batch number: 100700013A

Propene

5923561	57
5923563	58
5923565	69
Blank	75
LCS	75
MS	73
MSD	74

Limits: 42-131

Analysis Name: Volatile Headspace Hydrocarbon Batch number: 100700014A Propene

5923567	72
Blank	75
LCS	71
MS	90
MSD	91

Limits: 42-131

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

For Lancaster Laboratories use only

Acct. #: 11875 | Sample #: 5923 567 - 70

011732

SCR#: _

											Α	naly	ses l	Req	ueste	ed				1185	1429	7
Facility #: Swnol Spill					Matrix	x					F	rese	rvat	ion	Code	es	_			Preserva	tive Code	s
Site Address: MP 2.7 Sunol, CA				İ				H	У.Ч		H			9		\dashv	N	1			T = Thiosa B = NaOl	
Chevron PM: Jeff Timmon Lead		WLS			Τ	T^{T}	"	aphth		137	ليا			60186		Ì		12 A	fute	ጀS = H₂SO₄	O = Other	r 1
Consultant/Office: WS					able		iner	Z X	L CI	20	۲	dnue	90	tron	Ligit I		00	SP.	X	☐ J value report		
Consultant Prj. Mgr.: The May Gan					☐ Potable☐ NPDES		of Containers	8021 ☐ 8260 🔀 Naphth ☐	104	20,	X TPHGEO BY GA LINER TE	Extended Rng. Silica Gel Cleanup	Lead Total Diss. Method	ے ح	NWTPH H HCID		3	3 500 FE MOTE	J W	☐ Must meet lov possible for 8		on limits unds
Consultant Phone #: (510) 893-3400	_ Fax #: <u>(510</u>)814-321	8			4	of C	21. 2 1.	3	FALL	٤	Extend Silica (ss.	WPHIEPH DISSOLUCA	<u></u>	1.09	-	Ç	YOUR	possible for 8. 8021 MTBE Cor Confirm MTBI Confirm highe	ıfirmation	
Sampler: P Naccarati / A Towler			$\neg o$	<u> </u>		Air□	mbeı	₩X	ξ	enate	G E			, SS	믕	크	3	٤	2	☐ Confirm MTBi ☐ Confirm highe	E + Naphth: est hit by 82	
Service Order #: N	on SAR:			Soil	i ii	Ā	Total Number	\$ MI	full scs	Owyg	표	TPHD	Total	Hdi	포	ã	Mangantse	Farrains Ivon	St.	Confirm all his	s by 8260	_4 b.3
Sample Identification	Date Collected	Time Collected	Grab	[5] [5]	Water	lio l	Tota	BTEX THEF	9260-1		×		Lead	VPHI	MAT	ě	Σ	جي	2	☐ Confirm all hil ☐ Run oxy ☐ Run oxy	's on nigne _' 's on all hit	st nit s
MW-3	3/9/10		X		X			X	^	X				7		X	Х	X	X			
MW-4		1340	X	\perp	X			X		X	×			X				X	X	ļ		
MW-10		1155	X	\bot	X.	\sqcup		X		×	X			X					X	.		
Mw-11		1035	X	1	<u> </u>	11		X	×	7	X			X		X	X	ኦ	X			
STREAM		1245	×	4	K	1 1		X			×				\perp	_		ļ]		
TB-1	*			-	X	+-+		X			Х					\dashv				<u> </u>		
				+	 	+									\dashv	-				 		
			\vdash	+	+	+									+	\dashv				ŧ		
			$\vdash +$	╁	 -	\vdash									$-\dagger$	\dashv			-	ł		
				+	1										\dashv	_						·
				+	†											7				İ		
Turnaround Time Requested (TAT) (please circ	ele)	Relinqui								1 .	Date		Time	P	eceiv	ed t	oy:				Date	Time
STD. IAI 72 hour 48 hour Relinquished by:					<u> </u>						0 14		<u> </u>		$\overline{}$	<u></u>		_				
24 hour 4 day 5 day		Relinqu	ened b	<i>r</i> :							Date		Time	8	eceiv	ed b	oy:				Date	Time
Data Package Options (please circle if required) Relinquished by:			r:							Date		Time	R	eceiv	ed b	y:				Date	Time	
QC Summary Type I - Full Retinquished by C			Con	moreia	l Carr	rior							١.	eceiv						Date	Time	
Type VI (Raw Data) Disk / EDD MIP (PWOCR) Standard Format		UPS		edEx			her						_	"	H	eu [лу. Д-5)			3/10/10	900
WIP (RWQCB) Standard Format DiskOther.		Tempera						c	,0					c	ustod	ly 🖠	لمريك eals	Inta	ct?	es No	ן טניטו ליין	, • •
L																				<u> </u>		

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

713-432-3267

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

March 24, 2010

Project: MP 2.7

Samples arrived at the laboratory on Thursday, March 11, 2010. The PO# for this group is 0015041168 and the release number is JOHNSON. The group number for this submittal is 1185639.

Client Sample Description	Lancaster Labs (LLI) #
MW-1 Grab Water	5924653
MW-1_Filtered Grab Water	5924654
MW-2 Grab Water	5924655
MW-2_Filtered Grab Water	5924656
MW-8 Grab Water	5924657
MW-8_Filtered Grab Water	5924658
MW-9 Grab Water	5924659
MW-9_Filtered Grab Water	5924660
MW-X Grab Water	5924661
TB-2 NA Water	5924662

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	URS	Attn: Joe Morgan
COPY TO		
ELECTRONIC	URS	Attn: Rachel Naccarati
COPY TO		
ELECTRONIC	URS	Attn: Jacob Henry
COPY TO		·

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Elizabeth A Leonhardt at (510) 232-8894

Respectfully Submitted,

Robert Strocko Jr.
Manager

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-1 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-1

LLI Sample # WW 5924653 LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 11:10 by RN Account Number: 11875

 Submitted: 03/11/2010 09:35
 Chevron Pipeline Co.

 Reported: 03/24/2010 at 10:47
 100 Northpark Blvd

 Discard: 04/24/2010
 Covington LA 70433

SUN01

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 8	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	4	0.5	1
GC Vo	latiles	SW-846 8	3015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	3,800	50	1
GC Mi	scellaneous	SW-846 8	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	67	5.0	1
Metals	5	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	431	0.84	1
Wet Cl	nemistry	EPA 300	. 0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	4,000	250	5
00228	Sulfate		14808-79-8	56,900	1,500	5
		EPA 160	.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	551,000	19,400	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	347,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 350		ug/l	ug/l	
08344	Ferrous Iron		n.a.	N.D.	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100741AA	03/15/2010 11:42	Kerri E Koch	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100741AA	03/15/2010 11:42	Kerri E Koch	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071A20A	03/15/2010 13:09	Elizabeth J Marin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-1 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-1

LLI Sample # WW 5924653 LLI Group # 1185639

Project Name: MP 2.7

Collected: 03/10/2010 11:10 by RN Account Number: 11875

Submitted: 03/11/2010 09:35 Chevron Pipeline Co. Reported: 03/24/2010 at 10:47 100 Northpark Blvd Covington LA 70433

Discard: 04/24/2010

SUN01

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tir	ne		Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10071A20A	03/15/2010	13:09	Elizabeth J Marin	1
07105	Methane - VHH	SW-846 8015B	1	100700014A	03/12/2010	14:39	Dustin A	1
		modified					Underkoffler	
07058	Manganese	SW-846 6010B	1	100741848002	03/19/2010	08:59	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100741848002	03/15/2010	13:48	James L Mertz	1
	rec)							
00368	Nitrate Nitrogen	EPA 300.0	1	10070196602A	03/11/2010	20:38	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10070196602A	03/11/2010	20:38	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10071021201A	03/12/2010	09:04	Susan E Hibner	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10074020201A	03/15/2010	11:46	Geraldine C Smith	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10074020201A	03/15/2010	11:46	Geraldine C Smith	1
08344	Ferrous Iron	SM20 3500 Fe B	1	10070834401A	03/11/2010	22:20	Daniel S Smith	1
		modified						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-1

LLI Sample # WW 5924654

LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 11:10 by RN Account Number: 11875

 Submitted: 03/11/2010 09:35
 Chevron Pipeline Co.

 Reported: 03/24/2010 at 10:47
 100 Northpark Blvd

Discard: 04/24/2010 Covington LA 70433

CAT Analysis Name CAS Number Result Detection Limit Factor

 Metals Dissolved
 SW-846
 6010B
 ug/l
 ug/l

 01754
 Iron
 7439-89-6
 N.D.
 52.2
 1

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
01754	Iron	SW-846 6010B	1	100741848002	03/19/2010 09:02	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100741848002	03/15/2010 13:48	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-2 Grab Water

NA URSO

LLI Sample # WW 5924655 LLI Group # 1185639

Sunol Pipeline SL0600100443 MW-2

Project Name: MP 2.7

Collected: 03/10/2010 10:10 by RN Account Number: 11875

Submitted: 03/11/2010 09:35 Chevron Pipeline Co. Reported: 03/24/2010 at 10:47 100 Northpark Blvd Covington LA 70433 Discard: 04/24/2010

SUNO2

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053			71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
06053	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	2	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	N.D.	5.0	1
Metals	3	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	18.2	0.84	1
Wet Ch	nemistry	EPA 300	0.0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	13,000	250	5
00228	Sulfate		14808-79-8	54,900	1,500	5
		EPA 160).1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	532,000	9,700	1
		EPA 310).1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	322,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35	500 Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	350	10	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100741AA	03/15/2010 10:32	Kerri E Koch	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100741AA	03/15/2010 10:32	Kerri E Koch	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071A20A	03/15/2010 13:31	Elizabeth J Marin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-2 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-2

LLI Sample # WW 5924655 LLI Group # 1185639

Project Name: MP 2.7

Collected: 03/10/2010 10:10 by RN Account Number: 11875

Submitted: 03/11/2010 09:35 Chevron Pipeline Co. Reported: 03/24/2010 at 10:47 100 Northpark Blvd Covington LA 70433

Discard: 04/24/2010

SUN02

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10071A20A	03/15/2010 13	3:31	Elizabeth J Marin	1
07105	Methane - VHH	SW-846 8015B modified	1	100700014A	03/12/2010 08	8:29	Dustin A Underkoffler	1
07058	Manganese	SW-846 6010B	1	100741848002	03/19/2010 09	9:06	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100741848002	03/15/2010 13	3:48	James L Mertz	1
	rec)							
00368	Nitrate Nitrogen	EPA 300.0	1	10070196602A	03/11/2010 20	0:55	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10070196602A	03/11/2010 20	0:55	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10071021201A	03/12/2010 09	9:04	Susan E Hibner	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10074020201A	03/15/2010 11	1:46	Geraldine C Smith	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10074020201A	03/15/2010 11	1:46	Geraldine C Smith	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10070834401A	03/11/2010 22	2:20	Daniel S Smith	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-2

LLI Sample # WW 5924656

LLI Group # 1185639

Project Name: MP 2.7

Collected: 03/10/2010 10:10 by RN Account Number: 11875

Submitted: 03/11/2010 09:35 Chevron Pipeline Co. Reported: 03/24/2010 at 10:47 100 Northpark Blvd Discard: 04/24/2010

Covington LA 70433

As Received CAT As Received Dilution Method CAS Number Analysis Name Result No. Factor Detection Limit

ug/l ug/l Metals Dissolved SW-846 6010B 01754 Iron N.D. 7439-89-6 52.2 1

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
01754	Iron	SW-846 6010B	1	100741848002	03/19/2010 09:16	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100741848002	03/15/2010 13:48	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-8 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-8

LLI Sample # WW 5924657 LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 12:55 by RN Account Number: 11875

 Submitted:
 03/11/2010
 09:35
 Chevron Pipeline Co.

 Reported:
 03/24/2010 at 10:47
 100 Northpark Blvd

 Discard:
 04/24/2010
 Covington LA 70433

SUN08

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	570	5	10
06053	Ethylbenzene		100-41-4	730	5	10
	Toluene		108-88-3	500	5	10
06053	Xylene (Total)		1330-20-7	1,800	5	10
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	10,000	250	5
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	330	5.0	1
Metals	3	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	334	0.84	1
Wet Cl	nemistry	EPA 300	.0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	N.D.	250	5
00228	Sulfate		14808-79-8	1,700	1,500	5
		EPA 160	.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	587,000	19,400	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	453,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35 modifie		ug/l	ug/l	
08344	Ferrous Iron		n.a.	3,000	100	10

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100741AA	03/15/2010 13:16	Kerri E Koch	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100741AA	03/15/2010 13:16	Kerri E Koch	10
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071A20A	03/15/2010 17:52	Elizabeth J Marin	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-8 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-8

LLI Sample # WW 5924657 LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 12:55 by RN Account Number: 11875

 Submitted: 03/11/2010 09:35
 Chevron Pipeline Co.

 Reported: 03/24/2010 at 10:47
 100 Northpark Blvd

 Discard: 04/24/2010
 Covington LA 70433

SUNO8

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	.	Analyst	Dilution Factor
01146	GC VOA Water Prep	SW-846 5030B	1	10071A20A	03/15/2010 1	7:52	Elizabeth J Marin	5
07105	Methane - VHH	SW-846 8015B modified	1	100700014A	03/12/2010 08	8:43	Dustin A Underkoffler	1
07058	Manganese	SW-846 6010B	1	100741848002	03/19/2010 09	9:19	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100741848002	03/15/2010 13	3:48	James L Mertz	1
	rec)							
00368	Nitrate Nitrogen	EPA 300.0	1	10070196602A	03/11/2010 23	1:11	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10070196602A	03/11/2010 23	1:11	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10071021201A	03/12/2010 09	9:04	Susan E Hibner	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10074020201A	03/15/2010 13	1:46	Geraldine C Smith	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10074020201A	03/15/2010 13	1:46	Geraldine C Smith	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10070834401A	03/11/2010 22	2:20	Daniel S Smith	10

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-8 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-8

LLI Sample # WW 5924658

LLI Group # 1185639

1

CA

Project Name: MP 2.7

Collected: 03/10/2010 12:55 by RN Account Number: 11875

Submitted: 03/11/2010 09:35 Reported: 03/24/2010 at 10:47

Discard: 04/24/2010

Chevron Pipeline Co.

100 Northpark Blvd Covington LA 70433

CAT Analysis Name CAS Number Result Detection Limit Factor

 Metals Dissolved
 SW-846 6010B
 ug/1
 ug/1

 01754 Iron
 7439-89-6
 277
 52.2

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
01754	Iron	SW-846 6010B	1	100741848002	03/19/2010	09:22	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100741848002	03/15/2010	13:48	James L Mertz	1

As Received

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-9 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-9

LLI Sample # WW 5924659 LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 09:00 by RN Account Number: 11875

 Submitted: 03/11/2010 09:35
 Chevron Pipeline Co.

 Reported: 03/24/2010 at 10:47
 100 Northpark Blvd

 Discard: 04/24/2010
 Covington LA 70433

SUNO9

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	3	5
06053	Ethylbenzene		100-41-4	250	3	5
06053	Toluene		108-88-3	17	3	5
06053	Xylene (Total)		1330-20-7	1,700	3	5
	reporting limits for level of non-target o			s were raised due to		
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	18,000	250	5
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	46	5.0	1
Metals	3	SW-846	6010B	ug/l	ug/l	
07058	Manganese		7439-96-5	2,940	0.84	1
Wet Cl	nemistry	EPA 300	.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	N.D.	250	5
00228	Sulfate		14808-79-8	40,900	1,500	5
		EPA 160	.1	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	596,000	19,400	1
		EPA 310	.1	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	448,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35 modifie	00 Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	1,700	50	5

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100741AA	03/15/2010 13:40	Kerri E Koch	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-9 Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-9

LLI Sample # WW 5924659 LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 09:00 by RN Account Number: 11875

Submitted: 03/11/2010 09:35
Reported: 03/24/2010 at 10:47

Discard: 04/24/2010

Chevron Pipeline Co. 100 Northpark Blvd Covington LA 70433

SUNO9

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100741AA	03/15/2010	13:40	Kerri E Koch	5
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071A20A	03/15/2010	18:14	Elizabeth J Marin	5
01146	GC VOA Water Prep	SW-846 5030B	1	10071A20A	03/15/2010	18:14	Elizabeth J Marin	5
07105	Methane - VHH	SW-846 8015B modified	1	100700014A	03/12/2010	08:56	Dustin A Underkoffler	1
07058	Manganese	SW-846 6010B	1	100741848002	03/19/2010	09:26	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	100741848002	03/15/2010	13:48	James L Mertz	1
00368	Nitrate Nitrogen	EPA 300.0	1	10070196602A	03/11/2010	22:01	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10070196602A	03/11/2010	22:01	Ashley M Adams	5
00212	Total Dissolved Solids	EPA 160.1	1	10071021201A	03/12/2010	09:04	Susan E Hibner	1
00202	Alkalinity to pH 4.5	EPA 310.1	1	10076020201A	03/17/2010	10:47	Geraldine C Smith	1
00201	Alkalinity to pH 8.3	EPA 310.1	1	10076020201A	03/17/2010	10:47	Geraldine C Smith	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10070834401A	03/11/2010	22:20	Daniel S Smith	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-9 Filtered Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-9

LLI Sample # WW 5924660

LLI Group # 1185639

1

CA

Project Name: MP 2.7

Collected: 03/10/2010 09:00 by RN Account Number: 11875

Submitted: 03/11/2010 09:35 Reported: 03/24/2010 at 10:47

Discard: 04/24/2010

Chevron Pipeline Co. 100 Northpark Blvd

Covington LA 70433

CAT Analysis Name CAS Number Result Detection Limit Factor

 Metals Dissolved
 SW-846 6010B
 ug/l
 ug/l

 01754 Iron
 7439-89-6
 N.D.
 52.2

General Sample Comments

State of California Lab Certification No. 2501 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
01754	Iron	SW-846 6010B	1	100741848002	03/19/2010	09:29	Joanne M Gates	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	100741848002	03/15/2010	13:48	James L Mertz	1
	rec)							

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-X Grab Water

NA URSO

Sunol Pipeline SL0600100443 MW-X

LLI Sample # WW 5924661 LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 13:00 by RN Account Number: 11875

 Submitted: 03/11/2010 09:35
 Chevron Pipeline Co.

 Reported: 03/24/2010 at 10:47
 100 Northpark Blvd

 Discard: 04/24/2010
 Covington LA 70433

SUNOX

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	580	5	10
06053	Ethylbenzene		100-41-4	730	5	10
06053	Toluene		108-88-3	500	5	10
06053	Xylene (Total)		1330-20-7	1,800	5	10
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	10,000	250	5

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100741AA	03/15/2010 14:03	Kerri E Koch	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100741AA	03/15/2010 14:03	Kerri E Koch	10
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10071A20A	03/15/2010 18:36	Elizabeth J Marin	5
01146	GC VOA Water Pren	SW-846 5030B	1	100712202	03/15/2010 18:36	Elizabeth J Marin	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: TB-2 NA Water

NA URSO

Sunol Pipeline SL0600100443 TB-2

LLI Sample # WW 5924662 LLI Group # 1185639

CA

Project Name: MP 2.7

Collected: 03/10/2010 Account Number: 11875

 Submitted:
 03/11/2010
 09:35
 Chevron Pipeline Co.

 Reported:
 03/24/2010 at 10:47
 100 Northpark Blvd

 Discard:
 04/24/2010
 Covington LA 70433

SUNOT

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
06053	Benzene		71-43-2	N.D.	0.5	1
06053	Ethylbenzene		100-41-4	N.D.	0.5	1
06053	Toluene		108-88-3	N.D.	0.5	1
06053	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06053	BTEX by 8260B	SW-846 8260B	1	T100741AA	03/15/2010 09:46	Kerri E Koch	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T100741AA	03/15/2010 09:46	Kerri E Koch	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10076B20A	03/18/2010 00:10	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10076B20A	03/18/2010 00:10	Elizabeth J Marin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1185639

Reported: 03/24/10 at 10:47 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: T100741AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D.	er(s): 592 0.5 0.5 0.5 0.5	4653,59246 ug/l ug/l ug/l ug/l	655,592465 103 90 94 90	7,5924659	,5924661-592 79-120 79-120 79-120 80-120	24662	
Batch number: 10071A20A TPH-GRO N. CA water C6-C12	Sample numbe	er(s): 592 50.	4653,59240 ug/l	655,592465 100	7,5924659 100	,5924661 75-135	0	30
Batch number: 10076B20A TPH-GRO N. CA water C6-C12	Sample numbe	er(s): 592 50.	4662 ug/l	91	100	75-135	10	30
Batch number: 100700014A Methane	Sample numbe	er(s): 592 5.0	4653,59240 ug/l	655,592465 102	7,5924659	80-120		
Batch number: 100741848002 Iron Manganese	Sample number N.D.	er(s): 592 52.2 0.84	4653-59246 ug/l ug/l	660 100 98		90-112 90-110		
Batch number: 10070196602A Nitrate Nitrogen Sulfate	Sample number N.D.	er(s): 592 50. 300.	4653,59246 ug/l ug/l	655,592465 103 98	7,5924659	90-110 89-110		
Batch number: 10070834401A Ferrous Iron	Sample numbe	er(s): 592 10.	4653,59246 ug/l	655,592465 100	7,5924659	92-105		
Batch number: 10071021201A Total Dissolved Solids	Sample numbe	er(s): 592 9,700.		655,592465 108	7,5924659	80-120		
Batch number: 10074020201A Alkalinity to pH 4.5	Sample numbe	er(s): 592 460.		655,592465 100	57	98-103		
Batch number: 10076020201A Alkalinity to pH 4.5	Sample numbe	er(s): 592 460.	4659 ug/l as CaCO3	101		98-103		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

> MSD MS/MSD RPD BKG DUP DUP MS Dup RPD

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Pipeline Co. Group Number: 1185639

Reported: 03/24/10 at 10:47 AM

Analysis Name	%REC	%REC	<u>Limits</u>	<u>RPD</u>	<u>MAX</u>	Conc	Conc	RPD	<u>Max</u>
Batch number: T100741AA Benzene Ethylbenzene Toluene Xylene (Total)	Sample 104 96 98 93	number(s) 100 94 96 90	: 5924653 80-126 71-134 80-125 79-125	,592465 4 2 2 3	30 30 30 30 30 30	657,5924659	,5924661-592	24662 UNSP	K: 5924655
Batch number: 10071A20A TPH-GRO N. CA water C6-C12	Sample 100	number(s)	: 5924653 63-154	,592465	55,5924	657,5924659	,5924661 UNS	SPK: P9247	65
Batch number: 10076B20A TPH-GRO N. CA water C6-C12	Sample 100	number(s)	: 5924662 63-154	UNSPK:	: P9262	36			
Batch number: 100700014A Methane	Sample -2833 (2)	number(s) -2833 (2)	: 5924653 35-157	,592465 0	55,5924 20	657,5924659	UNSPK: P924	1575	
Batch number: 100741848002 Iron	Sample 1621 (2)	number(s) 1280 (2)	: 5924653 75-125	-592466 3	0 UNSP 20	K: P924575 I 111,000	BKG: P924575 114,000	3	20
Manganese	95	94	75-125	0	20	999	1,000	0	20
Batch number: 10070196602A Nitrate Nitrogen Sulfate	Sample 110 107	number(s) 111* 105	: 5924653 90-110 90-110	,592465 0 1	55,5924 20 20	657,5924659 N.D. 40,000	UNSPK: P924 N.D. 39,100	1575 BKG: 0 (1) 2	P924575 20 20
Batch number: 10070834401A Ferrous Iron	Sample 95	number(s) 97	: 5924653 66-130	,592465 1	55,5924 6	657,5924659 3,000	UNSPK: 5924 2,900	1657 BKG: 1 (1)	5924657 10
Batch number: 10071021201A Total Dissolved Solids	Sample 87	number(s) 83	: 5924653 54-143	,592465 2	55,5924 12	657,5924659 1,050,000	UNSPK: P923		P923881 9
Batch number: 10074020201A Alkalinity to pH 4.5 Alkalinity to pH 8.3	Sample 85	number(s) 86	: 5924653 64-130	,592465 1	55,5924 2	657 UNSPK: 1 125,000 N.D.	P924575 BKG: 123,000 N.D.	P924575 1 0 (1)	4 4
Batch number: 10076020201A Alkalinity to pH 4.5 Alkalinity to pH 8.3	Sample 99	number(s)	: 5924659 64-130	UNSPK:	: P9248 2	43 BKG: P924 283,000 N.D.	1843 285,000 N.D.	1 0 (1)	4 4

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX by 8260B Batch number: T100741AA

Baccii IIamb	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5924653	100	100	101	106
5924655	99	101	101	102
5924657	99	99	103	106
5924659	99	100	100	106
5924661	99	101	101	104
5924662	100	102	100	100
Blank	101	102	98	99

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Na	me: Chevron Pipeline	G	Group Number: 1185639								
Reportea:	03/24/10 at 10:47 A	Surrogate	Ouality	Control							
T 00	100	_	_	CONCLOT	0.0						
LCS MS	102 99	104 102	99 100		99 103						
MSD	100	101	101		103						
พรบ	100	101	101		101						
Limits:	80-116	77-113	80-113		78-113						
	me: TPH-GRO N. CA water C6 r: 10071A20A Trifluorotoluene-F	-C12									
5924653	130										
5924655	80										
5924657	98										
5924659	116										
5924661	102										
Blank	93										
LCS	102										
LCSD	118										
MS	107										
Limits:	63-135										
	me: TPH-GRO N. CA water C6 r: 10076B20A Trifluorotoluene-F	-C12									
5924662	104										
Blank	102										
LCS	125										
LCSD	132										
MS	132										
Limits:	63-135										
	me: Volatile Headspace Hyd r: 100700014A Propene	lrocarbon									
	_										
5924653	74										
5924655	65										
5924657	59										
5924659	69										
Blank	75										
LCS	71										
MS	90										
MSD	91										
Limits:	42-131										

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

For Lancaster Laboratories use only

Acct. #: 1/875 | Sample #: 5924653-62 | SCR#:

Facility # Sun/ Spill Facility # Sun/ Spill												A	naly	ses	Req	uest	ed				118	563	ク
Site Address	Facility # SUNI Soil					Vatrix	,					Р	rese	rvat	ion (Code	es				Preserva	tive Cod	es
Consultant Print Mgr:	Site Address: MP 2.7 Culaveras P							-	\neg	• - 1	<u>,</u>				Q O		-	00	+ (0)	3000	H = HCI N = HNO ₃ S = H ₂ SO ₄	B = NaO	H
Consultant Print Mgr:	Chevron PM: <u>JC++ JONNFOVI</u> Lead (Consultant:	WO _			0.70		စ္	ge	Ñ	रुव	2			9			0	₹2	월	0 1,2004		
Consultant Print Mgr:	•			-		otable PDES		taine	X	8	20,00	3	ing. Jeanup		é	cation		3	1.20	MIS	☐ J value reporti		
Sample Identification Non SAR:						ďZ. □□	,	ខ្ល	Ž 83	3	73 20	2	Sel C	□	1 6	uantifi	0	ક	27				unds
Sample Identification Non SAR:		_Fax#:(<u>၆it</u>) 814-32	68			'	<u>ت</u> إ	22 :	\$	(-š ₽	à	Silica	iss.	20/00	<u>-</u>	ع	3	۶	hock	8021 MTBE Con		alono
Mw - 1	Sampler: FNACCOUNT / A FOWER			<u>i</u> e	1		<u> </u> □ ·	ag L		2 		3			410	무	3	ء چ کر	4	ž	☐ Confirm highe		
Mw - 1	Service Order #: No	on SAR:		Sodi		ia .	\ <u>\</u>	2	钧	100	₹ ₹	표	重	Total	ŧ	ᇎ		ΛŒ	7	ak			
Mw - 1	Sample Identification			Grat	Soil	Wat	ō	Tota 	BTEX		41	\times		Lead	*	NWTF	F	Š	في	ž			
MW-2 MW-9 1255 × x 15 × x X X X X X X X X X X X X X X X X X X				×		_	Ī		X						X		X	X	_		Comments / F	Remarks	
MW - Y Turnaround Time Requested (TAT) (please circle) Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 4 day 5 day Date Time Received by: Relinquished by: Relinquished by: Date Time Received	MW-2				L	*			X	X	X	X			¥		×	X	×	X	1		
MW - Y Turnaround Time Requested (TAT) (please circle) Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 4 day 5 day Date Time Received by: Relinquished by: Relinquished by: Date Time Received	MW-8 :		1255	×		×		5	×.	Χĺ	X	Χ̈́			X		Χl			X			
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 24 hour 4 day 5 day Date Package Options (please circle if required) QC Summary Type I - Full Received by: Date Time Received by:	MW-9		900	X		X	l li	15	X	×	×	X					X	X	人	×			
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 4 day 5 day Date Time Received by: Date	Mw-X		1300	X				6				×											
Date Prime Received by: Date Prime Received by: Date Time Received by: Date	TB-2	•	-			X			X			X											
Date Prime Received by: Date Prime Received by: Date Time Received by: Date					┞			_		_	-					_							
Date Prime Received by: Date Prime Received by: Date Time Received by: Date	<u> </u>				\vdash		$\vdash \vdash$	\dashv								\dashv							
Date Prime Received by: Date Prime Received by: Date Time Received by: Date					-		+	+	-+	\dashv									ļ				
Date Parke Received by: Date Parke Received by: Date Time Received by: Date									\neg							-					1		
Date Prime Received by: Date Prime Received by: Date Time Received by: Date																					i.		:
Date Prime Received by: Date Prime Received by: Date Time Received by: Date					<u></u>						\perp				\Box							+	,
Date Prime Received by: Date Prime Received by: Date Time Received by: Date	Turnaround Time Requested (TAT) (please circle)				4+			>								ecei	ved b	oy: 				Date	Time
Data Package Options (please circle if required) QC Summary Type I - Full Received by: Relinquished by Commercial Carrier: Type VI (Raw Data) WIP (RWQCB) Relinquished by Commercial Carrier: UPS (FedEx) Other Date Time Received by: Received by: Date Time Received by: Part How	l /		Relinqui	shed by:				_				Date	1	~	_	eceiv	ved b		$\overline{}$	_		Date	Time
QC Summary Type I - Full Type VI (Raw Data) Disk + EDB WIP (RWQCB) Standard Format Relinquished by Commercial Carrier: UPS FedEx Other	24 bour 4 day 5 day	<u> </u>			_						↓_				$oldsymbol{\perp}$								
Type VI (Raw Data) WIP (RWQCB) Received by: Date Time 3/1//10 935	Data i donage Options (piease circle ii required)										7	Date	+-7	Time	R	ecei	ved t	oy:				Date	Time
WIP (RWQCB) Standard Format UPS (FedEx) Other Lary Polity 735	I Relinquished by (Comr	nercial	l Carri	er:							R	eceiv	ved t	 oy:					
	WIP (RWQCB) Standard Format UPS (Fed								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						935								
	Othor		Tempera	ature Up	n Re	ceipt_	3.1-3	3.8	c°						C			_			(e) No		

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

lifier	(uu	9	 u	, ı ç	٠,

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.