Atlantic Richfield Company

Shannon Couch Project Manager

RECEIVED

10:04 am, Aug 01, 2012

Alameda County Environmental Health

July 30, 2012

Re: Second Quarter 2012 Semi-Annual Groundwater Monitoring Report Atlantic Richfield Company Service Station #498 286 South Livermore Avenue, Livermore, California ACEH Case No. RO0002873

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Shannon Couch Project Manager

Attachment

A BP affiliated company

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: shannon.couch@bp.com

SECOND QUARTER 2012 SEMI-ANNUAL GROUNDWATER MONITORING REPORT Atlantic Richfield Company Station #498 286 South Livermore Ave. Livermore, Alameda County, California

Prepared for:

Ms. Shannon Couch Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583

Prepared by:

Broadbent & Associates, Inc. 1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400

July 30, 2012

No. 08-82-603

July 30, 2012

Project No. 08-82-603

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Ms. Shannon Couch

Re: Second Quarter 2012 Semi-Annual Groundwater Monitoring Report, Atlantic Richfield Company Station #498, 286 South Livermore Avenue, Livermore, California; ACEH Case #RO0002873

Dear Ms. Couch:

Attached is the Second Quarter 2012 Semi-Annual Groundwater Monitoring Report for Atlantic Richfield Company Station #498 located at 286 South Livermore Avenue, Livermore, California. Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely, BROADBENT & ASSOCIATES, INC.

Joson Durch

Jason Duda Project Scientist

16-

Matthew G. Herrick, P.G., C.HG Senior Hydrogeologist

Enclosure

 cc: Mr. Jerry Wickham, Alameda County Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 84502 (Submitted via ACEH ftp Site)
 Electronic copy uploaded to GeoTracker

SECOND QUARTER 2012 SEMI-ANNUAL GROUNDWATER MONITORING REPORT STATION #498, LIVERMORE, CALIFORNIA

Broadbent & Associates, Inc. (Broadbent) is pleased to present this *Second Quarter 2012 Semi-Annual Groundwater Monitoring Report* on behalf of Atlantic Richfield Company (a BP affiliated company) for Station #498 located in Livermore, Alameda County, California. Reporting is being submitted to Alameda County Environmental Health consistent with the requirements under the legal authority of the California Regional Water Quality Control Board, as codified by the California Code of Regulations Title 23, Section 2652(d). Details of work performed, discussion of results, and recommendations are provided below.

Facility Name / Address:	ARCO Station #498 / 286 South Livermore Avenue
Client Project Manager / Title:	Ms. Shannon Couch / Project Manager
Broadbent Contact:	Jason Duda, (530) 566-1400
Broadbent Project No.:	08-82-603
Primary Regulatory Agency / ID No.:	ACEH, Case #RO0002873
Current phase of project:	Monitoring and Assessment
List of Acronyms / Abbreviations:	See end of report text for list of acronyms/abbreviations used in report.

WORK PERFORMED THIS QUARTER (Second Quarter 2012):

- 1. Prepared and submitted First Quarter 2012 Status Report (Broadbent, 4/13/2012).
- 2. Conducted groundwater monitoring/sampling for Second Quarter 2012 on April 10, 2012.

WORK SCHEDULED FOR NEXT QUARTER (Third Quarter 2012):

- 1. Prepare and submit Second Quarter 2012 Semi-Annual Groundwater Monitoring Report (contained herein).
- 2. Conduct off-site soil and groundwater investigation activities upon acquisition of off-site property access agreement.

GROUNDWATER MONITORING PLAN SUMMARY:

Groundwater level gauging:	MW-1 through MW-4	(2Q and 4Q)
Groundwater sample collection:	MW-1 through MW-4	(2Q and 4Q)
Biodegradation indicator parameter		
monitoring:	NA	
OILA DTEDI V DECHI TO CUMMA DI	¥7.	
QUARTERLY RESULTS SUMMARY	r:	
LNAPL		
LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter	None	(gal)

noundwater Floretion and Cradi	ant.	
Cumulative LNAPL recovered:	None	(gal)
LNAPL recovered this quarter:	None	(gal)

Groundwater Elevation and Gradient:

Depth to groundwater:	30.35 (MW-1) to 39.25 (MW-2)	(ft below TOC)
Gradient direction:	West-Northwest	(compass direction)
Gradient magnitude:	0.01	(ft/ft)
Average change in elevation:	-4.51	(ft since last measurement)

Laboratory Analytical Data Summary:

GRO were detected in two of the four wells sampled at a maximum concentration of 3,000 μ g/L in well MW-3. Benzene was detected in two of the four wells sampled at a maximum concentration of 440 μ g/L in well MW-3. MTBE was detected in each of the four wells sampled at a maximum concentration of 46 μ g/L in well MW-3.

ACTIVITIES CONDUCTED & RESULTS:

Second Quarter 2012 groundwater monitoring was conducted on April 10, 2012 by Broadbent personnel in accordance with the monitoring plan summary detailed above. No irregularities were noted during water level gauging. Light, Non-Aqueous Phase Liquid (LNAPL, or free product) was not noted to be present in the wells monitored during this event. Depth to water measurements ranged from 30.35 ft at MW-1 to 39.25 ft at MW-2. Resulting groundwater surface elevations ranged from 456.10 ft at MW-2 to 466.37 ft at MW-1. Groundwater elevations are summarized in Table 1. Water level elevations yielded a groundwater gradient to the west-northwest at approximately 0.01 ft/ft. Field methods used during groundwater monitoring are provided in Appendix A. Field data sheets are included in Appendix B. A Site Location Map is presented as Drawing 1. Potentiometric groundwater elevation contours are presented in Drawing 2.

Groundwater samples were collected on April 10, 2012 from wells MW-1 through MW-4, consistent with the current monitoring schedule. No irregularities were reported during sampling. Samples were submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc. (Garden Grove, California) for analysis of Gasoline-Range Organics (GRO, C6-C12) by EPA Method 8015M; for Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl Ether (DIPE), 1,2-Dibromomethane (EDB), 1,2-Dichloroethane (1,2-DCA), Tert-Butyl Alcohol (TBA) and Ethanol by EPA Method 8260. The GRO concentrations detected in the samples collected from wells MW-1 and MW-3 were "quantitated against gasoline." No other significant irregularities were encountered during analysis of the samples. The laboratory analytical report, including chain-of-custody documentation, is provided in Appendix C.

Hydrocarbons in the GRO range were detected above the laboratory reporting limit in two of the four wells sampled at concentrations up to 3,000 micrograms per liter ($\mu g/L$) in well MW-3. Benzene was detected above the laboratory reporting limit in two of the four wells sampled at concentrations up to 440 $\mu g/L$ in well MW-3. Toluene was detected above the laboratory reporting limit in well MW-1 at a concentration of 2.0 $\mu g/L$. Ethylbenzene was detected above the laboratory reporting limit in two of the four wells sampled at concentrations up to 69 $\mu g/L$ in well MW-3. Total Xylenes were detected above the laboratory reporting limit in two of the four wells sampled at concentrations up to 69 $\mu g/L$ in well MW-3. Total Xylenes were detected above the laboratory reporting limit in two of the four wells sampled at concentrations up to 40 $\mu g/L$ in well MW-3. Total Xylenes were detected above the laboratory reporting limit in two of the four wells sampled at concentrations up to 40 $\mu g/L$ in well MW-3. Total Xylenes were detected above the laboratory reporting limit in two of the four wells sampled at concentrations up to 40 $\mu g/L$ in well MW-3. The four wells sampled at concentrations up to 46 $\mu g/L$ in well MW-3. TBA was detected above the laboratory reporting limit in MW-1 at a concentration of 49 $\mu g/L$. The remaining analytes were not detected above their laboratory reporting limits in the wells sampled this monitoring event. Groundwater monitoring laboratory analytical results are summarized in Table 1 and Table 2. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 2. Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix D.

DISCUSSION:

Groundwater levels were between historic minimum and maximum elevations for each well gauged this quarter. Groundwater elevations yielded a groundwater gradient to the west-northwest at approximately 0.01 ft/ft, generally consistent with the historic gradient data presented in Table 3.

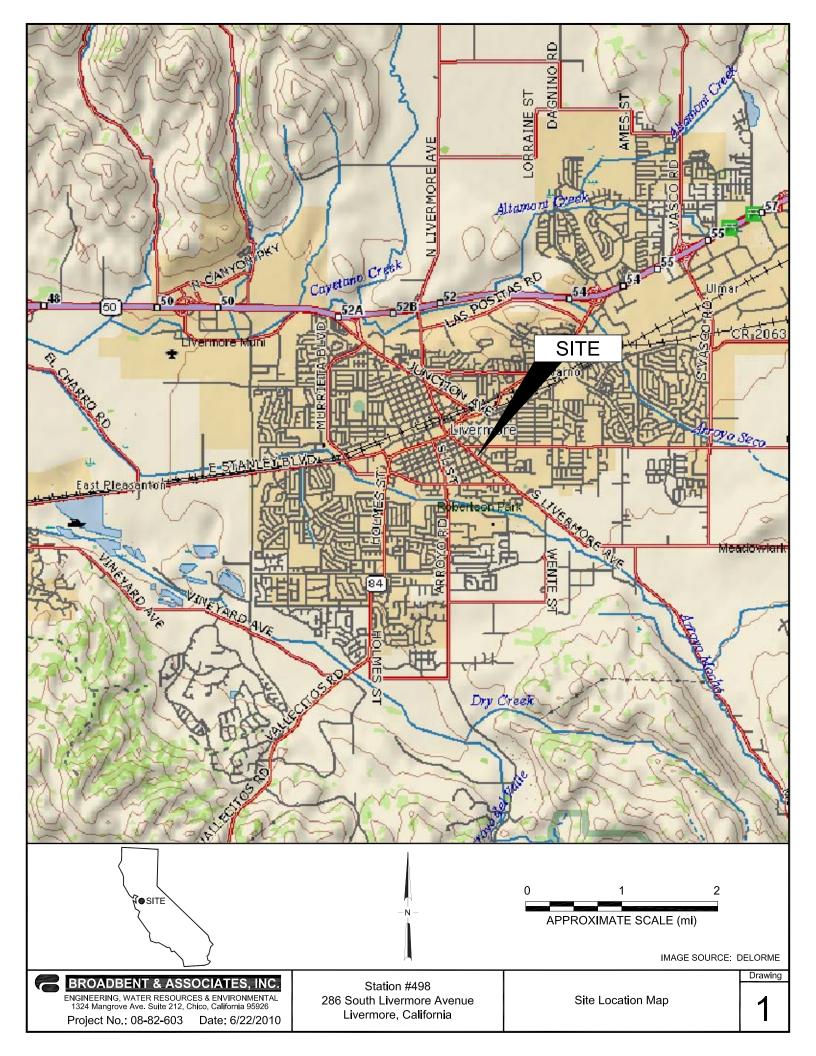
This event's detected analytical concentrations were within the historic minimum and maximum ranges recorded for each well with the following exceptions: Ethylbenzene and Total Xylenes reached historic minimum concentrations in well MW-3 and MTBE reached historic minimum concentrations in wells MW-2 and MW-4. Recent and historic laboratory analytical results are summarized in Table 1 and Table 2. The

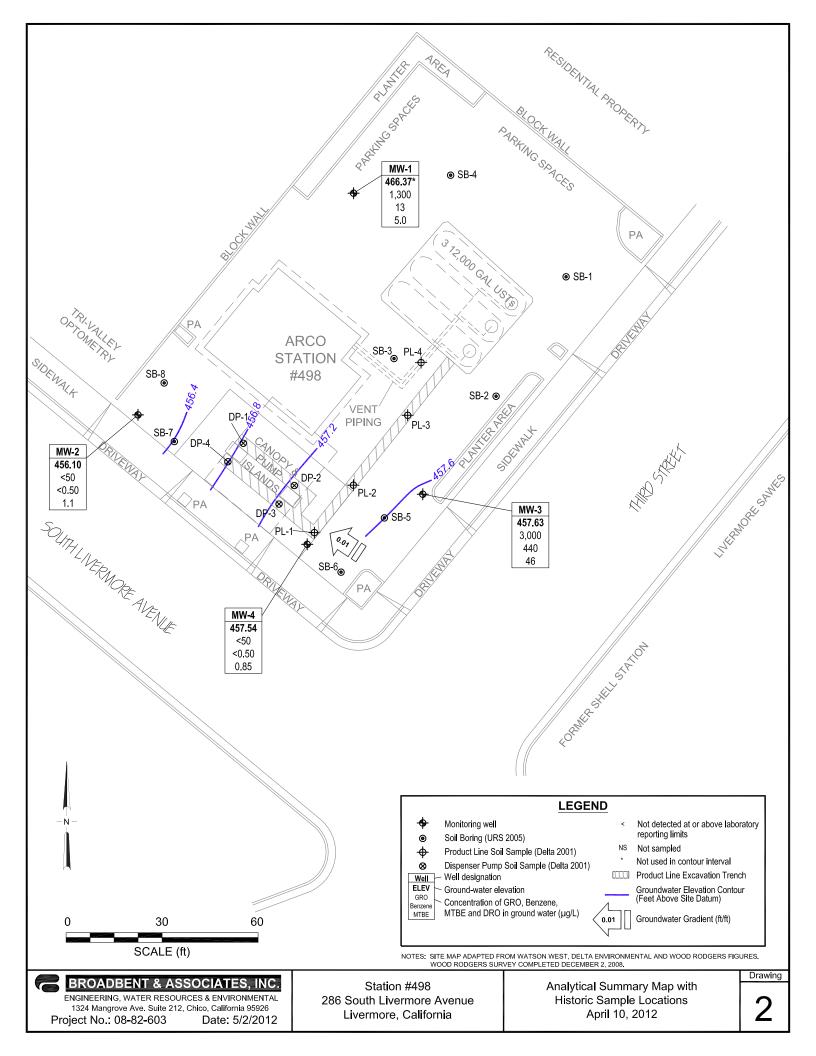
next semi-annual groundwater monitoring and sampling event is scheduled to be conducted during the Fourth Quarter 2012.

RECOMMENDATIONS:

In their letter dated August 12, 2010, ACEH approved the *Soil and Ground-Water Investigation Work Plan Addendum* submitted by Broadbent on April 12, 2010. Off-site property access is required in order to complete the scope of work detailed in the Work Plan. Contact with the owner of the property located immediately northwest of the Site has been made. However, the property owner has been reluctant to allow property access in order to complete the off-site investigation. Contact with the owner of the property further northwest of the Site was made during Second Quarter 2012. Unfortunately, the request for property access was denied. It is requested that ACEH assist in acquiring off-site property access to facilitate completion of additional characterization activities needed to delineate plume extent. In email correspondence dated November 4, 2010, ACEH approved a request to postpone the previous deadline of November 10, 2010 established for submittal of the Soil and Water Investigation Report until official property access is obtained.

LIMITATIONS:


The findings presented in this report are based upon observations of field personnel, points investigated, and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of the Atlantic Richfield Company. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.


ATTACHMENTS:

Drawing 1:	Site Location Map
Drawing 2:	Groundwater Elevation Contours and Analytical Summary Map, April 10, 2012
Table 1:	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
Table 2:	Summary of Fuel Additives Analytical Data
Table 3:	Historic Groundwater Gradient – Direction and Magnitude
Appendix A:	Field Methods
Appendix B:	Field Data Sheets and Non-Hazardous Waste Data Form
Appendix C:	Laboratory Report and Chain-of-Custody Documentation
Appendix D:	GeoTracker Upload Confirmation Receipts

LIST OF COMMONLY USED ACCRONYMS/ABBREVIATIONS:

ACEH:	Alameda County Environmental Health	gal:	Gallons
BTEX:	Benzene, Toluene, Ethylbenzene, Total Xylenes	GRO:	Gasoline-Range Organics
1,2-DCA:	1,2-Dichloroethane	LNAPL:	Light Non-Aqueous Phase Liquid
DIPE:	Di-Isopropyl Ether	MTBE:	Methyl Tertiary Butyl Ether
DO:	Dissolved Oxygen	NO ₃ :	Nitrate as Nitrogen
DRO:	Diesel-Range Organics	ppb:	parts per billion
EDB:	1,2-Dibromomethane	SO_4 :	Sulfate
Eh:	Oxidation Reduction Potential	TAME:	Tert-Amyl Methyl Ether
EPA:	Environmental Protection Agency	TBA:	Tertiary Butyl Ether
ETBE:	Ethyl Tertiary Butyl Ether	TOC:	Top of Casing
Fe^{2+} :	Ferrous Iron	μg/L:	micrograms per liter
ft/ft:	feet per foot		

			Top of	Bottom of		Product	Water Level			Concentra	ations in µg	g/L				
Well ID and		тос	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-1																
12/29/2008	Р	496.72	20.00	40.00	28.81	0.00	467.91	1,100	38	1.2	4.0	3.3	17	2.72	6.83	
3/20/2009	Р		20.00	40.00	28.95	0.00	467.77	640	9.1	< 0.50	4.1	< 0.50	21	0.35	7.28	
6/2/2009	Р		20.00	40.00	30.90	0.00	465.82	600	1.6	< 0.50	< 0.50	< 0.50	32	0.59	7.17	
9/2/2009	Р		20.00	40.00	32.00	0.00	464.72	570	< 0.50	< 0.50	< 0.50	< 0.50	5.3	1.02	7.38	
11/9/2009	Р		20.00	40.00	31.82	0.00	464.90	1,000	130	12	35	39	140	1.39	7.02	
5/20/2010	Р		20.00	40.00	28.94	0.00	467.78	1,000	4.4	< 0.50	0.76	0.73	22	0.59	6.6	
11/2/2010	Р		20.00	40.00	32.03	0.00	464.69	1,300	83	20	40	61	39	0.72	6.0	b (GRO), c
5/25/2011	Р		20.00	40.00	26.69	0.00	470.03	2,900	32	3.1	20	2.9	< 0.50	0.68	7.0	lw (GRO)
10/25/2011	Р		20.00	40.00	30.11	0.00	466.61	1,100	20	3.7	< 0.50	5.4	21	0.78	7.4	lw (GRO)
4/10/2012	Р		20.00	40.00	30.35	0.00	466.37	1,300	13	2.0	7.0	7.1	5.0	0.20	6.71	lw (GRO)
MW-2																
12/29/2008	Р	495.35	37.00	57.00	48.76	0.00	446.59	110	7.1	< 0.50	< 0.50	0.76	16	1.04	7.67	
3/20/2009	Р		37.00	57.00	38.78	0.00	456.57	200	3.9	<1.0	<1.0	<1.0	56	0.41	7.51	
6/2/2009	Р		37.00	57.00	43.98	0.00	451.37	110	5.1	<1.0	<1.0	<1.0	44	1.87	7.42	
9/2/2009	Р		37.00	57.00	50.25	0.00	445.10	88	0.79	< 0.50	< 0.50	< 0.50	12	1.55	6.91	
11/9/2009	Р		37.00	57.00	43.79	0.00	451.56	58	2.0	< 0.50	< 0.50	< 0.50	13	0.86	7.14	
5/20/2010	Р		37.00	57.00	32.07	0.00	463.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	27	0.61	6.8	
11/2/2010	Р		37.00	57.00	39.23	0.00	456.12	<50	< 0.50	< 0.50	< 0.50	< 0.50	57	1.34	6.8	
5/25/2011	Р		37.00	57.00	28.19	0.00	467.16	<50	< 0.50	< 0.50	< 0.50	< 0.50	15	3.74	7.1	
10/25/2011	Р		37.00	57.00	33.33	0.00	462.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	5.7	1.28	7.8	
4/10/2012	Р		37.00	57.00	39.25	0.00	456.10	<50	<0.50	<0.50	<0.50	<0.50	1.1	1.04	7.13	
MW-3																
12/29/2008	Р	496.32	37.00	57.00	48.21	0.00	448.11	28,000	310	200	840	6,200	71	1.95	7.39	
3/20/2009	Р		37.00	57.00	38.48	0.00	457.84	11,000	360	84	600	1,500	71	0.56	7.25	
6/2/2009	Р		37.00	57.00	43.33	0.00	452.99	5,100	310	14	180	310	66	2.06	7.18	а
9/2/2009	Р		37.00	57.00	49.60	0.00	446.72	25,000	380	150	930	2,900	75	1.35	6.93	
11/9/2009	Р		37.00	57.00	43.25	0.00	453.07	6,900	390	27	480	680	69	0.54	6.9	
5/20/2010	Р		37.00	57.00	31.56	0.00	464.76	9,400	690	<10	300	83	77	0.36	6.8	
11/2/2010	Р		37.00	57.00	38.68	0.00	457.64	4,400	420	<10	110	33	70	0.59	6.8	b (GRO)

 Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

			Top of	Bottom of		Product	Water Level			Concentra	ations in µg	g/L				
Well ID and Date Monitored	P/NP	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Thickness (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	pН	Footnote
MW-3 Cont.																
5/25/2011	Р	496.32	37.00	57.00	27.56	0.00	468.76	4,500	560	<10	210	22	74	0.70	9.8	lw (GRO)
10/25/2011	Р		37.00	57.00	32.77	0.00	463.55	2,700	190	<4.0	82	51	33	0.69	7.6	
4/10/2012	Р		37.00	57.00	38.69	0.00	457.63	3,000	440	<4.0	69	10	46	0.28	6.57	lw (GRO)
MW-4																
12/29/2008		496.01	20.00	40.00												Dry
3/20/2009	Р		20.00	40.00	37.82	0.00	458.19	410	0.78	< 0.50	< 0.50	0.64	16	0.52	7.16	
6/2/2009			20.00	40.00												Dry
9/2/2009			20.00	40.00												Dry
11/9/2009			20.00	40.00												Dry
5/20/2010	Р		20.00	40.00	31.29	0.00	464.72	290	<2.0	<2.0	<2.0	<2.0	10	0.82	6.6	
11/2/2010	NP		20.00	40.00	38.42	0.00	457.59	51	<2.0	<2.0	<2.0	<2.0	5.1	1.12	6.4	b (GRO), c
5/25/2011	Р		20.00	40.00	27.58	0.00	468.43	94	<1.0	<1.0	<1.0	<1.0	6.2	0.86	6.9	lw (GRO)
10/25/2011	Р		20.00	40.00	32.51	0.00	463.50	73	< 0.50	< 0.50	< 0.50	<0.50	4.3	0.49	7.4	lw (GRO)
4/10/2012			20.00	40.00	38.47	0.00	457.54	<50	<0.50	<0.50	<0.50	<0.50	0.85		7.06	

 Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

Symbols & Abbreviations: -- = Not sampled/analyzed/applicable/measured/ available < = Not detected at or above specified laboratory reporting limit DO = Dissolved oxygen DTW = Depth to water in ft bgs ft bgs= feet below ground surface ft MSL= feet above mean sea level GRO = Gasoline range organics GWE = Groundwater elevation measured in ft MSL mg/L = Milligrams per liter MTBE = Methyl tert-butyl ether NP = Not purged before sampling P = Purged before sampling TOC = Top of casing measured in ft MSL μg/L = Micrograms per liter

Footnotes:

a = Sample preserved improperly

b = Quantitation of unknown hydrocarbon(s) in sample based on gasoline

c = Hydrocarbon odor

lw = Quantitated against gasoline

Table 2. Summary of Fuel Additives Analytical Data

Concentrations in µg/L								
Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
<300	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
<300	49	5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
<300	22	16	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
<600	62	56	<1.0	<1.0	<1.0	<1.0	<1.0	
<600	83	44	<1.0	<1.0	<1.0	<1.0	<1.0	
<300	37	12	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
<300	41	13	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
<300	22	27	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
<300	26	57	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
<300	<10	15	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
<300	<10	5.7	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
<300	<10	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	
<30,000	<1,000	71	<50	<50	<50	<50	<50	
<7,500	<250	71	<12	<12	<12	<12	<12	
<3,000	100	66	<5.0	<5.0	<5.0	<5.0	<5.0	
<7,500	<250	75	<12	<12	<12	<12	<12	
<3,000	<100	69	<5.0	<5.0	<5.0	<5.0	<5.0	
<6,000	<200	77	<10	<10	<10	<10	<10	
<6,000	<200	70	<10	<10	<10	<10	<10	
<6000	<200	74	<10	<10	<10	<10	<10	
	<300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300 <300	<300	<300	EthanolTBAMTBEDIPE<300	<300<1017<0.50<0.50<300	Ethanol TBA MTBE DIPE ETBE TAME <300	Ethanol TBA MTBE DIPE ETBE TAME 1,2-DCA <300	Ethanol TBA MTBE DIPE ETBE TAME 1,2-DCA EDB < 300 $< < 10$ 17 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 </td

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

Table 2. Summary of Fuel Additives Analytical Data

Well ID and				Concentrati					
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-3 Cont.									
10/25/2011	<2,400	<80	33	<4.0	<4.0	<4.0	<4.0	<4.0	
4/10/2012	<2,400	<80	46	<4.0	<4.0	<4.0	<4.0	<4.0	
MW-4									
3/20/2009	<300	2,000	16	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/20/2010	<1,200	1,000	10	<2.0	<2.0	<2.0	<2.0	<2.0	
11/2/2010	<1,200	500	5.1	<2.0	<2.0	<2.0	<2.0	<2.0	
5/25/2011	<600	230	6.2	<1.0	<1.0	<1.0	<1.0	<1.0	
10/25/2011	<300	150	4.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
4/10/2012	<300	<10	0.85	<0.50	<0.50	<0.50	<0.50	<0.50	

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

Symbols & Abbreviations: --/--- = Not sampled/analyzed/applicable/measured/avaliable < = Not detected at or above specified laboratory reporting limit 1,2-DCA = 1,2-Dichloroethane DIPE = Diisopropyl ether EDB= 1,2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Amyl methyl ether TBA = tert-Butyl alcohol µg/L = Micrograms per liter

	· · · · · · · · · · · · · · · · · · ·	, ,
Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
12/29/2008	NA	NA
3/20/2009	North-Northwest	0.02
6/2/2009	NA	NA
9/2/2009	NA	NA
11/9/2009	NA	NA
5/20/2010	West-Northwest	0.02
11/2/2010	West-Northwest	0.02
5/25/2011	West-Northwest	0.02
10/25/2011	West-Northwest	0.02
4/10/2012	West-Northwest	0.01

Table 3. Historical Groundwater Gradient - Direction and MagnitudeARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

Symbols & Abbreviations:

NA = Not Available

APPENDIX A

FIELD METHODS

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 EQUIPMENT CALIBRATION

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 DEPTH TO GROUNDWATER AND LIGHT NON-AQUEOUS PHASE LIQUID MEASUREMENT

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurements were recorded as "apparent." If a bailer was used for LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 WELL PURGING AND GROUNDWATER SAMPLE COLLECTION

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined

volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Table 1. Chieffa for Defining Stabilizati	on or water-Quanty mulcator rarameters
Parameter	Stabilization Criterion
Temperature	± 0.2°C (± 0.36°F)
pH	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	$\pm 10 \text{ mV}$
Turbidity ¹	+ 10% or 1.0 NTU (whichever is greater)

Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

In accordance with ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

4.0 DECONTAMINATION

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

² According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

5.0 SAMPLE CONTAINERS, LABELING, AND STORAGE

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 CHAIN OF CUSTODY RECORD AND PROCEDURE

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 FIELD RECORDS

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX B

FIELD DATA SHEETS AND NON-HAZARDOUS WASTE DATA FORM

DAILY REPORT

Page _____ of ____

Project: BP 498	Project No.: 08-82-603
Field Representative(s): J. Pamos / h. Mar	time Day: Tuesday Date: 4/10/12
	; From: To:; From: To:
🗡 Signed HASP 🛛 📉 Safety Glass	es 🔄 📩 Hard Hat 🔄 🖄 Steel Toe Boots 🛛 🔀 Safety Vest
🗡 UST Emergency System Shut-off S	Switches Located X Proper Gloves
\times Proper Level of Barricading \times	Other PPE (describe) rain gew
Weather: Rainy	
Equipment In Use: <u>Compressor</u> , big	dder pomp, YSI, Flow Cell
Visitors: None	
TIME:	WORK DESCRIPTION:
1255 Arrived ousite a	and conducted health/sufficts tailign te
1365 Set up @ MW-1	
1505 Set up @ MW-3	
1550 Setup @ Mw-4	
1615 Set UP @ MW-2	
1715 cleaned up/com;	pieted monitoring / offsite.
<u> </u>	/
Signature: <u>Mambo Jh</u>	Revision: 1/24/2012

GROUNDWATER MONITORING SITE SHEET

Page _____ of _____

	······						ъ '				1 ~~~~	Dat	111.	
Project:	BP	4945	5,		~ i *		Proje	ect No.:	08.	82-	603	Date:	4/10	116
Field Represen												-		
Formation rech										A int +	te of al	l aquin i	used)	
W. L. Indicator	(ID #:				oil/Water	Interfac	e ID #:			(LISI +	rs of al	i equip i	iseu.)	
V	WELL ID	RECOR	D		W	'ELL GA	UGING	RECOR	D		LA	B ANAI	LYSES	
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)					
MW-1					411		******	30,35						
MN-C					1521			39.25						
MW-3					1503			38.60						
MW-4					1553			38.47	7					
		ļ												
														<u> </u>
														<u> </u>
		<u> </u>												
				1										
				1	-									-
					-									
										<u>.</u>				
									+					
		1				1								
		····												
				-								-		
				-										
							1							
* Device used If bailer used					Bailer Entry			ater Inter				<i>ircle on</i> er		
Signature:	//	3m	//)	ñ~										a: 1/24/20
	V		/											

Page _____ of _____

Project:	BP 4	78			Projec	ct No	o.:	08-82-603	>	Date:	41/10/12
Field Repre	sentative:	J. Rama	35/A.Ma				-				
Well ID:					- End	Tim	e:	<u>1450</u> Tota	l Time (m	inutes).	55
							-				<u> </u>
PURGE EQ			Disp. Bailer		120V P			X Flow Ce	11		
	Disp. Tubing		12V Pump	<u> </u>	Peristal	ltic Pu	mp	Other/ID#:			
	DINTEGRI			Comments:							
Good	Improvement		(circle one)		- ALAN AND AND AND AND AND AND AND AND AND A						
	SAMPLING			Well Volume	Low-	Flow	(Other:			(circle one)
	PREDETERN]		пі			LOW-FLC	W	
1" (0.04)	Diameter Unit V							Previous Low-Flow Purg	e Rate:		(gpm)
4" (0.66)	1.25" (0.08) 6" (1.50)	2" (0.17) 8" (2.60)	3" (0.38)				ь	Total Well Depth (a):			<u>40.00 (ft)</u>
Total Well Dep		a (2.00)	12" (5.81)	" ()	a	H		Initial Depth to Water (b			<u>30.35 (ft)</u>
Initial Depth to	• •			(ft) (ft)		<u>[</u> +	<u>.</u>	Pump In-take Depth = b			<u>35 17 (ft)</u>
	Height (WCH) =	- (a - b):		(ft)	I í	Ē	-	Maximum Allowable Dr Low-Flow Purge Rate:	awdown ≕ (a	-5)/8:	<u>1.20 (ft)</u>
	Volume (WCV)		Volume:	(gal)	1	B		_	مو		(gpm)*
	Volumes = WC			(gal)		E		Comments: <u>4.6</u>	8		31.55
Five Casing V	/olumes = WCV	x 5:		(gal)) ↓	E		*Low-flow purge rate should	he within range	of instruments	used but should not
Pump Depth (if	pump used):	· · · · · · · · · · · · · · · · · · ·		(ft))			exceed 0.25 gpm, Drawdown :			
		GRC	OUNDWATE	ER STABILI	ZATIC	ON P.		AMETER RECORD			
Time	Cumulative	Temperature	pН	Conductivity		Other			NOTES		
(24:00)	Volume (gal)	(° <u></u>)		(<u>MS</u>)	- i	00			or, sheen, tu	bidity, or oth	er
1430	0.0	<u>9.21</u>	6.60	889		.60		- 33			
1433	0.5	19.12	<u>6.69</u> 6.71	<u> </u>		.43		~50			
1430	<u>I.G</u> 1.5	19.34	6.71	881		20		-52			
		· · · · · · · · · · · · · · · · · · ·	<u></u>	<u>847</u>	- <u>v</u>	20		- JUB			
								······································			
								Rodon			
· · · · · · · · · · · · · · · · · · ·	· · · · ·····	·									
					-						
			·					·····			
											. <u> </u>
	. <u></u>										
Previous Stabili	zed Parameters										
	MPLETION	RECORD	V Law Else	2 D							
	Derion	RECORD		oc ratameters t	Stable		3 C	asing Volumes & Parame	ters Stable	5 Casin	g Volumes
	SAN		Other:	0000							
Danilla to ML :		APLE COLL		LOKD				GEOCHE	EMICAL P	ARAMET	ERS
Depth to Water								Parameter		Time	Measurement
1	ted Via:		Dedicated I	Pump Tubing				DO (mg/L)		1439	0.20
<u> </u>		Other:						Ferrous Iron (mg/L)			
	_MW~1						:00)	Redox Potential (mV)		439	-51
Containers (#):	<u>6</u> VOA (<u>k</u> preserved o	or unprese	rved) I	liter Am	iber		Alkalinity (mg/L)	[···		
							_	Other:			
210 Schulter and a Company of the	Other:			Other:				Other:			
o	th	$\overline{\Lambda}$	and the second						l	******	1
Signature:	-4m	$\sim V$		······································		~		••		R	evision: 1/24/2012

GROUNDWATER SAMPLING DATA SHEET

Page <u>2</u> of <u>4</u>

oject:	BP 49.	5		Pr	oject No.:	03-82	-603	Date: 4	110/12
	entative:		A.Me						
	MW-Z				End Time:	1150	Total Time ((minutes): 🧃	5
	MW-C								- 1
JRGE EQU	IPMENT	D	isp. Bailer		20V Pump	<u> </u>	Flow Cell		
<u>X</u> I	Disp. Tubing	12	2V Pump	<u>.</u> <u>R</u> P	eristaltic Pump	Other/ID#:			
ELL HEAT) INTEGRIT	Y (cap, lock, va	ult, etc.)	Comments:					
Good	Improvement N	leeded	(circle one)		A		<u></u>		
URGING/S	AMPLING M	1ETHOD	Predetermined	Well Volume	OW-FOW OI	her: <u>Biad</u>	Hach pump		circle one)
Р	REDETERM	INED WELI	L VOLUME				LOW-F	LOW	
	iameter Unit Ve						Flow Purge Rate:		(gpm)(ft)
	1.25" (0.08)		3" (0.38)		b ,	fotal Well De			(it) (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" () 575.00 (ft)		nitial Depth (Sump In take	Depth = $b + (a-b)/2$		(ft)
otal Well Dept				39.25 (ft)			lowable Drawdown		(ft
itial Depth to	water (b): Height (WCH) =	(a • b) [.]		i8,75(ft)		Low-Flow Pu			(gpm)*
	Volume (WCV)		/olume:	3.18 (gal)		Comments:			
	Volumes = WCV			(gal)					
	/olumes = WCV			<u> </u>			e rate should be within r		
ump Depth (if	pump used):			(ft)			n. Drawdown should not	exceed Maximum Alle	owable Drawdown
			UNDWATI	1	ZATION PAR	AMETER		TES	
Time	Cumulative	Temperature	pН	Conductivity	Other トロ	JRP		n, turbidity, or othe	er
(24:00)	Volume (قطّع)	<u>(C)</u> 18.04	7.00	1,200	2.83	170	000, 000, 3100	i, taroiarij, or ean	
1638	0,0	18.67	7.13	1223	1.24	59.3			
1644	1.0	18.87	7.15	1230	1.10	46.3			
1647	6.6	(7.00	7.13	1230	1.04	37.7			
						<	liqui oder	·····	
		· · · · · · · · · · · · · · · · · · ·					1. Jui anei		
	·								
			<u> </u>						
					-				
						-			
	-	-		-					
				_					
	ilized Parameter			R. De servedore	Stable 10	Lesing Volum	nes & Parameters St	able 5 Casi	ng Volumes
PURGE C	OMPLETIO	A KECOKD					hes & Parameters St Mameters		b
					- <u>> >1.00</u>	Te pa	GEOCHEMIC		TERS
		MPLE COL		LECOKD				Time	Measureme
1	ter at Sampling:						Parameter	1647	1.04
Sample Colle	ected Via:	_ Disp. Bailer	Dedicate	d Pump Tubing		DO (mg/l			1
J Disp. F	ump Tubing	Other:			2 0 C*N		on (mg/L)	1647	377
					1651 (24:00		tential (mV)		
Containers (eserved)		Alkalinit	y (mg/L)		
	Other:			Other:		Other:			
	Other:			Other:		Other:			
	1	1.	\square						Revision: 1/24
Signature	e:	\mathbb{W}	\longrightarrow	and the second					
		s (V						

Θ	BROADBENT	
----------	-----------	--

GROUNDWATER SAMPLING DATA SHEET

Page <u>3</u> of <u>4</u>

roject:	BP L	10.9		F	Project No.:	03-52	2-603	Date:	4/10/12
ield Repre	sentative:	J. Ramo	s/A.Ma	Stinez					
	Mw-3		tart Time:		End Time:	1535	Total Time	(minutes):	39
				1000	-	1~~~~~	-	(
URGE EQ	UIPMENT	I	Disp. Bailer		120V Pump	<u>×</u>	Flow Cell		
<u> </u>	Disp. Tubing	1	2V Pump	<u> </u>	Peristaltic Pump	Other/ID#:			
NELL HEA	D INTEGRI	ΓY (cap, lock, v	ault, etc.)	Comments:					
Good	Improvement	Needed	(circle one)						
PURGING/	SAMPLING I	METHOD	Predetermined	i Weli Volume	Low-Flow O	ther: Bie	ndder pr	-~~?	(circle one)
	PREDETERN	INED WEL	L VOLUME	Ξ]		300000 ⁰⁰⁰⁰	LOW-I	FLOW	
Casing	Diameter Unit V		(circle one)			Previous Low-	Flow Purge Rate:		(gpm)
1" (0.04)	1.25" (0.08)	and the second s	3" (0.38)	Other:	b	Total Well Dep	oth (a):		(ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	<u>"(()</u>	a L ¯	Initial Depth to		_	(ft)
Fotal Well Dep				57.08 (ft)		-	Depth = b + (a-b)/2		(ft)
initial Depth to				<u>38.69 (ft)</u>			owable Drawdown	= (a-b)/8:	(ft)
	Height (WCH) =	. ,		<u>13.3 (</u> ft)	Ē	Low-Flow Pur	ge Rate:		(gpm)*
	Volume (WCV) g Volumes = WC		volume:	<u>3.11 (gal)</u> (gal)		Comments:			
	Volumes = WCV			(gal)		t an Can mara	rate should be within i	source of instruments	used but should not
-	if pump used):	A J.		(gm) (ft)			Drawdown should not		
unp o opar (GRO		· · · · · · · · · · · · · · · · · · ·	ZATION PAR			CALEER MANNING M	
Time	Cumulative	Temperature	pH	Conductivity	Other			DTES	
(24:00)	Volume (gal)	(° <u>C_)</u>	•	(MS)	50	ORP	Odor, color, sheet	n, turbidity, or oth	er
520	0.0	19.42	6.59	ન્ય ન્ય ક	1.35	4.3			
1523	0.5	19.51	6.59	1090	0.57	-28.3			
1526	1.0	19.55	6.54	1126	0.34	-29.4			
1529	1.5	19.55	6.57	1138	_0.2%	- 31-6			······ ··· ··· ··· ···
	-					· · · · · · · · · · · · · · · · · · ·			
<u></u>			· ···· · · · · · · · · ·						
	_								
				-}					
	·								
D: Ctal	1		1						
	ilized Parameters					l			
PURGEC	OMPLETION	RECORD		w & Parameters S	<u>^</u>		& Parameters Sta	ble 5 Casin	ng Volumes
					<u>s stabi</u>				
		MPLE COLL		ECORD		<u> </u>	GEOCHEMIC	AL PARAME	TERS
··············	ler at Sampling:					P	arameter	Time	Measuremen
Sample Colle	cted Via:	Disp. Bailer	Dedicated	Pump Tubing		DO (mg/L)		1529	0.20
📉 Disp. P	ump Tubing	Other:				Ferrous Iron	(mg/L)		
Sample ID:	MW	-3	Sample Coli	ection Time: 1	533 (24:00)	Redox Pote	ntial (mV)	1529	-31.0
Containers (/	in lie von i	X preserved	or unpres	served)I	Liter Amber	Alkalinity (mg/L)		
); <u>ka</u> vua (1
				Other:		Other:			
				Other: Other:		Other: Other:	<u></u>		
	Other:			Other: Other:		Other: Other:			
Signature	Other: Other:]	Revision: 1/24/20

Page <u>4</u> of <u>4</u>

Project:	BP	498			Project No.	:_08-8	z-603	Date:	4/10/1
Field Repr	esentative:	J-Ram	SA.M	activez				-	
						:1605	Total Time	(minutes):	15
PURGE E	QUIPMENT	X	Disp. Bailer		120V Pump		Flow Cell		
	_ Disp. Tubing		12V Pump		Peristaltic Pur		110w Cell		
WELL HE	AD INTEGRI			Comments:	T CHSIGNIC T UN	p Other/ID#;			
7 Good	Improvement		(circle one)	Comments.					
And a	SAMPLING								
TOROINO				d Well Volume	Low-Flow	Other:			(circle one)
Coning	PREDETER			5	ן 1 וחו		LOW-	FLOW	
l" (0.04)	Diameter Unit V			~			Flow Purge Rate:		(g
4" (0.66)			3" (0.38)			Total Well Dep	.,	_	
Total Well De		8" (2.60)	12" (5.81)	* ()	1 a ⁻	Initial Depth to		_	
Initial Depth	• • •			(ft)			Depth = b + (a-b)/2		
	n Height (WCH) =	= (a - h):		(ft)		Maximum Alic	wable Drawdown	= (a-b)/8:	
	n Volume (WCV)			(ft)	E	Low-Flow Pur	ge Rate:		(gp
	ng Volumes = WC		, orume	(gal) (gal)		Comments;		•••••	
	y Volumes = WCV			,					
-	(if pump used):	× 5.		(gal) (ft)			ate should be within		
ramp z opur	(ii puilip usou).	GP(Drawdown should no	t exceed Maximum 2	Allowable Drava
Time	Cumulative	Temperature	pH	Conductivity	CATION PA Other	RAMETER R			
(24:00)	Volume (gal)	(° <u>C</u>)	P11	(<u>KS</u>)				DTES	1
1600		17.7	7.66	1386	02P 222		Odor, color, sheet	n, turbiality, or ot	ner
			L, V =	3.30%	2.00				
						ska.	ANO	ater 1	. Ma a-
						inoasir	ed due h	AMEICI V	1) wate
						column	(1.5(1), 1)	und a he	5.165
							· ilected a		
								.,	
							= 35.47		
····			· ····· ·· ·· <u></u> ···			Totet	Depth = 4	6.00	
					-				
								· · ·	
		1							
	ilized Parameters	· · · · · · · · · · · · · · · · · · ·							
PURGE C	OMPLETION	RECORD	Low Flow	v & Parameters S	Stable 3	Casing Volumes	& Parameters Stat	ole 5 Casi	ng Volumes
			🔀 Other:						
	SAN	MPLE COLL	ECTION RI	ECORD		G	EOCHEMICA	LPARAME	TERS
Depth to Wa	ter at Sampling:		(ft)				rameter	Time	
Sample Colle	ected Via: 📉			Pump Tubing			ancici		Measuren
1			Druitated	a amp a doung		DO (mg/L)		1600	
		Other:				Ferrous Iron (
Sample ID;	Mw-	7	Sample Colle	ction Time:	<u>ししろ (</u> 24:0	0) Redox Potent	ial (mV)	1000	222
Containers (#	#): <u>6</u> VOA (X preserved	or unprese	erved)L	iter Amber	Alkalinity (m	g/L)		
	Other:			Other:		Other:		1	-
				Other:		Other:			

NO. 689954

NON-HAZARDOUS WASTE DATA FORM

		BESI #	
	Generator's Name and Mailing Address	Generator's Site Address (if different than mailing address)	
	BP WEST COAST PRODUCTS, LLC	BP 493	
	P.O. BOX 80249	286 South Livermore Av	e .
	RANCHO SANTA MARGARITA, CA. 92688		~~~
		Livermore, CA	
	Generator's Phone: 049-460-5200		
	Container type removed from site:	Container type transported to receiving facility:	
	Drums Divacuum Truck Di Roll-off Truck Dump Truck	🖬 Drums 🔲 Vacuum Truck 🔲 Roll-off Truck	Dump Truck
	□ Other	Other	
TOR	Quantity 4.5 gallows	Quantity Volume	
GENERATOR	WASTE DESCRIPTION NON-HAZARDOUS WATER	GENERATING PROCESS WELL PURGING / DEC	ON WATER
Z	COMPONENTS OF WASTE PPM %	COMPONENTS OF WASTE	PPM %
Ō	1. WATER 99-100%		
		3	
	2	4	
	Waste Profile PROPERTIES: pH	7-10 🖸 solid 🕮 liquid 🗔 sludge 🖵 slurry 🖵	OTHER
	ا کا کورس کا کو کا کا کا کو	∑ ک. کمید (مدیر معند مارسند کم مارسند ک کارمده امین معند (۲۰۱۲ کارمیه کل کارمیه کل کیمی کر کیمی کر کیمی کر کرد مراجع	
	HANDLING INSTRUCTIONS: WEAR ALL APPROPRIATE PERSON	AL PRUIEUTIVE EQUIPMENT.	
	Generator Printed/Typed Name Signature	~h-	Month Day Year
	James Ramos K		1517112
	The Generator certifies that the waste as described is 100% non-hazardous		······································
	Transporter 1 Company Name	Phone#	
æ	BROADBENT & ASSOCIATES, INC>	530-566-1400	
	Transporter 1 Printed/Typed Name Signature		Month Day Year
Ä	Alex Martinez aller	, Altophica	the second
õ	Transporter Acknowledgment of Receipt of Materials		2 7 12
Ž	Transporter 2 Company Nome		<u> </u>
HER REAL PROPERTY AND INC.	Transporter 2 Company Name	Phone#	
AA		Phone#	
TRANSPORTE		Phone#	Month Day Year
TRA	Transporter 2 Printed/Typed Name Signature	Phone#	
	Transporter 2 Printed/Typed Name Signature		
	Transporter 2 Printed/Typed Name Signature	Phone# Phone# 530-753-1829	
	Transporter 2 Printed/Typed Name Signature	Phone#	
	Transporter 2 Printed/Typed Name Signature	Phone#	
	Transporter 2 Printed/Typed Name Signature Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD.	Phone#	
	Transporter 2 Printed/Typed Name Signature Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD.	Phone#	
	Transporter 2 Printed/Typed Name Signature Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD. RIO VISTA, CA 94571	Phone#	Month Day Year
	Transporter 2 Printed/Typed Name Signature Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD.	Phone#	
RECEIVING FACILITY	Transporter 2 Printed/Typed Name Signature Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD. RIO VISTA, CA 94571	Phone# 530-753-1829	Month Day Year

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

WORK ORDER NUMBER: 12-04-0857

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For Client: Broadbent & Associates, Inc. Client Project Name: BP 498 Attention: Jason Duda 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Richard Ville).)

Approved for release on 04/25/2012 by: Richard Villafania Project Manager

ResultLink)

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

40 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501 • www.calscience.com

Contents

Client Project Name: BP 498 Work Order Number: 12-04-0857

1	Client Sample Data	
2	Quality Control Sample Data 2.1 MS/MSD and/or Duplicate 2.1 MS/MSD and/or Duplicate 2.2 LCS/LCSD	
3	Glossary of Terms and Qualifiers	13
4	Chain of Custody/Sample Receipt Form	15

Page 3 of 17

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method:

EPA 8015B (M)

04/13/12

12-04-0857

EPA 5030C

Page 1 of 2

Project: BP 498

Trojecki Britec								ge i ei E
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1		12-04-0857-1-E	04/10/12 14:44	Aqueous	GC 42	04/14/12	04/14/12 23:40	120414B01
Comment(s): -LW Quantitated	against Gasoline.							
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	1300	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	96	38-134						
MW-2		12-04-0857-2-E	04/10/12 16:51	Aqueous	GC 42	04/14/12	04/15/12 00:16	120414B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
					0			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	82	38-134						
MW-3		12-04-0857-3-E	04/10/12 15:33	Aqueous	GC 42	04/14/12	04/15/12 00:52	120414B01
Comment(s): -LW Quantitated	against Gasoline.							
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	3000	100	2		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	96	38-134						
MW-4		12-04-0857-4-E	04/10/12 16:00	Aqueous	GC 42	04/14/12	04/15/12 01:28	120414B01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	81	38-134						

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

04/13/12

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method:

Page 2 of 2

EPA 8015B (M)

12-04-0857

EPA 5030C

Project: BP 498							Pa	age 2 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-695-1,308	N/A	Aqueous	GC 42	04/14/12	04/14/12 10:27	120414B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	82	38-134						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

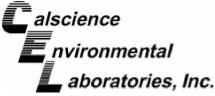
Analytical Report

Date Received:

J of

04/13/12

Broadbent & Associates, Inc. 1324 • ~ 040 Chic


	110.				Baterio						
1324 Mangrove Ave, Ste 2	212				Work Or	der No:				12	-04-0857
Chico, CA 95926-2642					Preparat	ion:				FΡ	A 5030C
011100, 071 30320 2042					•	1011.					
					Method:					E٢	PA 8260B
					Units:						ug/L
Droiget: DD 400										Da	and of O
Project: BP 498										Pa	ige 1 of 2
			La	ab Sample	Date/Time			Date	Date/	Time	
Client Sample Number				Number	Collected	Matrix	Instrument	Prepared	Analy		QC Batch ID
MW-1				0857-1-A	04/10/12	Aqueous	GC/MS T	04/19/12	04/19	a/12	120419L01
			12-04-	0007-1-A	14:44	Aqueous	60/101	04/13/12	22:		120413201
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Benzene	13	0.50	1		Methyl-t-Butyl	Ether (MTB	F)	5.0	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	•)	49	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	· · ·		ND	0.50	1	
Ethylbenzene	7.0		1		Ethyl-t-Butyl E		`	ND			
5		0.50							0.50	1	
Toluene	2.0	0.50	1		Tert-Amyl-Me	unyi ⊑uner (i	AIVIE)	ND	0.50	1	
Xylenes (total)	7.1	0.50	1		Ethanol			ND	300	1	
<u>Surrogates:</u>	<u>REC (%)</u>	<u>Control</u>	<u>Qua</u>	al	Surrogates:			<u>REC (%)</u>	Control	<u>-</u>	Qual
	100	<u>Limits</u>			5			407	Limits		
1,4-Bromofluorobenzene	103	68-120			Dibromofluoro	omethane		107	80-127		
1,2-Dichloroethane-d4	114	80-128			Toluene-d8			104	80-120		
MW-2			12-04-	0857-2-A	04/10/12	Aqueous	GC/MS T	04/19/12	04/19		120419L01
					16:51				20:	51	
_				- ·	_						- ·
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
<u>Parameter</u> Benzene	<u>Result</u> ND	<u>RL</u> 0.50	<u>DF</u> 1	<u>Qual</u>	<u>Parameter</u> Methyl-t-Butyl	Ether (MTB	E)	<u>Result</u> 1.1	<u>RL</u> 0.50	<u>DF</u> 1	<u>Qual</u>
				<u>Qual</u>		``	E)				Qual
Benzene	ND	0.50	1	<u>Qual</u>	Methyl-t-Butyl	ohol (TBA)	E)	1.1	0.50	1	<u>Qual</u>
Benzene 1,2-Dibromoethane	ND ND	0.50 0.50	1 1	<u>Qual</u>	Methyl-t-Butyl Tert-Butyl Alc	cohol (TBA) ther (DIPE)	,	1.1 ND	0.50 10	1 1	<u>Qual</u>
Benzene 1,2-Dibromoethane 1,2-Dichloroethane	ND ND ND	0.50 0.50 0.50 0.50	1 1 1 1	<u>Qual</u>	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E	ohol (TBA) ther (DIPE) Ether (ETBE)	1.1 ND ND	0.50 10 0.50 0.50	1 1 1 1	<u>Qual</u>
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND	0.50 0.50 0.50	1 1 1	<u>Qual</u>	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et	ohol (TBA) ther (DIPE) Ether (ETBE)	1.1 ND ND ND	0.50 10 0.50	1 1 1	<u>Qual</u>
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1 1		Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol	ohol (TBA) ther (DIPE) Ether (ETBE)	1.1 ND ND ND ND	0.50 10 0.50 0.50 0.50 300	1 1 1 1 1	
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1		Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me	ohol (TBA) ther (DIPE) Ether (ETBE)	1.1 ND ND ND ND ND	0.50 10 0.50 0.50 0.50	1 1 1 1 1	<u>Qual</u> Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u>	ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 <u>Control</u>	1 1 1 1 1		Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol <u>Surrogates:</u>	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T)	1.1 ND ND ND ND ND	0.50 10 0.50 0.50 0.50 300 <u>Control</u>	1 1 1 1 1	
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene	ND ND ND ND ND ND <u>REC (%)</u>	0.50 0.50 0.50 0.50 0.50 0.50 <u>Control</u> Limits 68-120	1 1 1 1 1		Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T)	1.1 ND ND ND ND REC (%)	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127	1 1 1 1 1	
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4	ND ND ND ND ND REC (%)	0.50 0.50 0.50 0.50 0.50 0.50 <u>Control</u> Limits	1 1 1 1 1 <u>Qua</u>	<u>al</u>	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane) AME)	1.1 ND ND ND REC (%) 95 86	0.50 10 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120	1 1 1 1 1	Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene	ND ND ND ND ND REC (%)	0.50 0.50 0.50 0.50 0.50 0.50 <u>Control</u> Limits 68-120	1 1 1 1 1 <u>Qua</u>		Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T)	1.1 ND ND ND REC (%) 95	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127	1 1 1 1 1 2 9/12	
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4	ND ND ND ND ND REC (%)	0.50 0.50 0.50 0.50 0.50 0.50 <u>Control</u> Limits 68-120	1 1 1 1 1 <u>Qua</u>	<u>al</u>	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro Toluene-d8 04/10/12	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane) AME)	1.1 ND ND ND REC (%) 95 86	0.50 10 0.50 0.50 <u>0.50</u> <u>300</u> <u>Control</u> <u>Limits</u> 80-127 80-120 04/15	1 1 1 1 1 2 9/12	Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4	ND ND ND ND ND REC (%)	0.50 0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128	1 1 1 1 <u>Qua</u>	al 0857-3-A	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane) AME)	1.1 ND ND ND REC (%) 95 86	0.50 10 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23:	1 1 1 1 1 2 9/12 12	Qual 120419L01
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 <u>MW-3</u> Parameter	ND ND ND ND REC (%) 90 112 Result	0.50 0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128	1 1 1 1 <u>Qua</u> 12-04-	<u>al</u>	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous) AME) GC/MS T	1.1 ND ND ND ND REC (%) 95 86 04/19/12 Result	0.50 10 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/1 23:	1 1 1 1 1 9/12 12 DF	Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 <u>MW-3</u> <u>Parameter</u> Benzene	ND ND ND ND REC (%) 90 112 <u>Result</u> 440	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10	1 1 1 1 <u>Qua</u> 12-04- <u>DF</u> 20	al 0857-3-A	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33 <u>Parameter</u> Methyl-t-Butyl	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous) AME) GC/MS T	1.1 ND ND ND REC (%) 95 86 04/19/12 <u>Result</u> 46	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0	1 1 1 1 1 1 1 2 //12 12 <u>DF</u> 8	Qual 120419L01
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 <u>MW-3</u> <u>Parameter</u> Benzene 1,2-Dibromoethane	ND ND ND ND REC (%) 90 112 <u>Result</u> 440 ND	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0	1 1 1 1 <u>Qua</u> 12-04- <u>DF</u> 20 8	al 0857-3-A	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33 <u>Parameter</u> Methyl-t-Butyl Tert-Butyl Alc	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous) AME) GC/MS T	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80	1 1 1 1 1 1 1 1 1 1 1 2 //12 //12 //12 //12 //12 //12 //12 //12 //12	Qual 120419L01
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane	ND ND ND ND REC (%) 90 112 <u>Result</u> 440 ND ND	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0	1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8	al 0857-3-A	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33 <u>Parameter</u> Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous Ether (MTB ohol (TBA) ther (DIPE)) AME) GC/MS T	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80 4.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Qual 120419L01
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	ND ND ND ND REC (%) 90 112 <u>Result</u> 440 ND ND 69	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0 4.0	1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8 8	al 0857-3-A	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33 <u>Parameter</u> Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B	cohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous I Ether (MTB cohol (TBA) ther (DIPE) Ether (ETBE) AME) GC/MS T E)	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND	0.50 10 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80 4.0 4.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Qual 120419L01
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND REC (%) 90 112 <u>Result</u> 440 ND ND 69 ND	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0 4.0 4.0	1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8 8 8 8	al 0857-3-A	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33 <u>Parameter</u> Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me	cohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous I Ether (MTB cohol (TBA) ther (DIPE) Ether (ETBE) AME) GC/MS T E)	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND ND	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80 4.0 4.0 4.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Qual 120419L01
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u> 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 <u>MW-3</u> <u>Parameter</u> Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND ND <u>REC (%)</u> 90 112 <u>Result</u> 440 ND 69 ND 69 ND 10	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0 4.0 4.0 4.0 4.0	1 1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8 8 8 8 8 8	al 0857-3-A Qual	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro Toluene-d8 04/10/12 15:33 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol	cohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous I Ether (MTB cohol (TBA) ther (DIPE) Ether (ETBE) AME) GC/MS T E)	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND ND ND ND	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80 4.0 4.0 4.0 2400	1 1 1 1 1 1 1 1 2 DF 8 8 8 8 8 8 8 8 8	Qual 120419L01 Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND REC (%) 90 112 <u>Result</u> 440 ND ND 69 ND	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8 8 8 8	al 0857-3-A Qual	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol <u>Surrogates:</u> Dibromofluoro Toluene-d8 04/10/12 15:33 <u>Parameter</u> Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me	cohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous I Ether (MTB cohol (TBA) ther (DIPE) Ether (ETBE) AME) GC/MS T E)	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND ND	0.50 10 0.50 0.50 300 <u>Control</u> <u>Limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80 4.0 4.0 4.0 2400 <u>Control</u>	1 1 1 1 1 1 1 1 2 DF 8 8 8 8 8 8 8 8 8	Qual 120419L01
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates:	ND ND ND ND ND REC (%) 90 112 90 112 <u>Result</u> 440 ND 69 ND 10 REC (%)	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.	1 1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8 8 8 8 8 8	al 0857-3-A Qual	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro Toluene-d8 04/10/12 15:33 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl Alc Diisopropyl Et	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous Ether (MTB ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T) AME) GC/MS T E)	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND ND ND ND ND ND <u>REC (%)</u>	0.50 10 0.50 0.50 300 <u>Control</u> <u>limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80 4.0 4.0 4.0 2400 <u>Control</u> <u>Limits</u>	1 1 1 1 1 1 1 1 2 DF 8 8 8 8 8 8 8 8 8	Qual 120419L01 Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,4-Bromofluorobenzene	ND ND ND ND ND REC (%) 90 112 90 112 <u>Result</u> 440 ND 69 ND 10 REC (%) 100	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 50000000000	1 1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8 8 8 8 8 8	al 0857-3-A Qual	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro Toluene-d8 04/10/12 15:33 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl Alc Diisopropyl Et	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous Ether (MTB ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T) AME) GC/MS T E)	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND ND ND ND <u>REC (%)</u> 99	0.50 10 0.50 0.50 0.50 300 <u>Control</u> <u>limits</u> 80-127 8 0-120 04/15 23 : RL 4.0 80 4.0 4.0 4.0 2400 <u>Control</u> <u>Limits</u> 80-127	1 1 1 1 1 1 1 1 2 DF 8 8 8 8 8 8 8 8 8	Qual 120419L01 Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates: 1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates:	ND ND ND ND ND REC (%) 90 112 90 112 <u>Result</u> 440 ND 69 ND 10 REC (%)	0.50 0.50 0.50 0.50 <u>Control</u> <u>Limits</u> 68-120 80-128 <u>RL</u> 10 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.	1 1 1 1 1 <u>Qua</u> 12-04- DF 20 8 8 8 8 8 8 8 8	al 0857-3-A Qual	Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl B Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro Toluene-d8 04/10/12 15:33 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl Alc Diisopropyl Et	ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T omethane Aqueous Ether (MTB ohol (TBA) ther (DIPE) Ether (ETBE thyl Ether (T) AME) GC/MS T E)	1.1 ND ND ND <u>REC (%)</u> 95 86 04/19/12 <u>Result</u> 46 ND ND ND ND ND ND ND <u>REC (%)</u>	0.50 10 0.50 0.50 300 <u>Control</u> <u>limits</u> 80-127 80-120 04/15 23: <u>RL</u> 4.0 80 4.0 4.0 4.0 2400 <u>Control</u> <u>Limits</u>	1 1 1 1 1 1 1 1 2 DF 8 8 8 8 8 8 8 8 8	Qual 120419L01 Qual

RL - Reporting Limit , DF - Dilution Factor

```
Qual - Qualifiers
,
```

1 A

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Analytical Report

Date Receiv

Work Order

Preparation: Method:

Units:

ug/L

Page 2 of 2

L aboratories, Inc. Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

	Neac
ed:	04/13/12
No:	12-04-0857
	EPA 5030C
	EPA 8260B

Project: BP 498

MW-4 12-04-0857-4-A 04/19/12 Aqueous GC/MS T 04/19/12	Client Sample Number		Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID	
Berzene 1,2-Dibromoethane 1,2-Dichoroethane ND 0.50 1 Methyl-Buryl Ether (INTBE) Diisopropyl Ether (DIPE) 0.50 1 0.50 1 1,2-Dichoroethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 10 1 1,2-Dichoroethane ND 0.50 1 Tert-Amyl-Methyl Ether (TEME) ND 0.50 1 Ethylbenzene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Surrogates: REC (%) Control (minis Qual Emission ND 0.50 1 1,4-Bromofluorobenzene 97 68-120 Dibromofluoromethane 102 80-127 120419L01 1,2-Dichoroethane-d4 103 80-128 Toluene-d8 83 80-120 120419L01 1,2-Dichoroethane ND 0.50 1 Methyl-Buryl Ether (ITBA) ND 0.50 1 120419L01 1,2-Dichoroethane ND 0.50 1 Tert-Amyl-Methyl Ether (ITBA) ND 0.50 1 1,2-Dichoroethane ND 0.50 1 Tert-Amyl-Methyl Ether (MW-4			12-04-0857-4-A			Aqueous	GC/MS T	04/19/12			120419L01
1-2-Dichoroncethane ND 0.50 1 Tert-Buty Alcohol (TEA) ND 1 1.2-Dichoroethane ND 0.50 1 Disoprop/Ether (DIPE) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Disoprop/Ether (DIPE) ND 0.50 1 Toluene ND 0.50 1 Tert-Amy-Methy Ether (TFBE) ND 0.50 1 Surrogates: REC (%) Control. Qual Surrogates: REC (%) Control. Qual Limits Limits Qual Surrogates: REC (%) Control. Qual Method Blank 03 80-122 Toluene-d8 93 80-122 1201101 Parameter Result RL DE Qual Parameter Result RL DE Qual Parameter Result RL DE Qual Parameter Result RL DE Qual Parameter Result RL DE Qual Parameter Result RL DE Qual L2-	Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
12-Dichoronderhane ND 0.50 1 Terl-Buryl Acohol (TBA) ND 10 1 1.2-Dichloroethane ND 0.50 1 Disopropyl Ether (DIPA) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Disopropyl Ether (DIPA) ND 0.50 1 Toluene ND 0.50 1 Tert-Armyl-Methyl Ether (TABE) ND 0.50 1 Surrogates: REC (%) Control. Qual Surrogates: REC (%) Control. Qual 1,4-Bromofluorobenzene 97 68-120 Dibromofluoromethane 102 80-127 1201011 Method Blank Result RL DE Qual Parameter Result RL DE Qual Parameter Result RL DE Qual Parameter Result RL DE Qual 1.2-Dichloroethane ND 0.50 1 Terl-Amyl-Huryl Ether (TABE) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Terl-Muryl-Huryl Ether (TABE) ND <	Benzene	ND	0.50	1		Methyl-t-Buty	/I Ether (MTB	E)	0.85	0.50	1	
Ethylenzene ND 0.50 1 Ethyl-Ediyl Ether (ETBE) ND 0.50 1 Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual 1,4-Bromofluorobenzene 97 68-120 Dibromofluoromethane 102 80-127 1,2-Dichloroethane-d4 103 80-128 Toluene-d8 93 80-120 Method Blank 0.50 1 Methyl-Ediyl Ether (MTBE) ND 0.50 1 Parameter Result RL DE Qual Parameter Result RL DE Qual 1,2-Dichloroethane ND 0.50 1 Methyl-Bulyl Ether (MTBE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Bulyl Alcohol (TBA) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Bulyl Alcohol (TBA) <td< td=""><td>1,2-Dibromoethane</td><td>ND</td><td></td><td>1</td><td></td><td colspan="3"></td><td>ND</td><td></td><td></td><td></td></td<>	1,2-Dibromoethane	ND		1					ND			
Toluene ND 0.50 1 Teft-Amyl-Methyl Ether (TAME) ND 0.50 1 Xylenes (total) ND 0.50 1 Ethanol ND 300 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual 1.4-Bromofluorobenzene 97 68-120 Dibromofluoromethane 102 80-127 1.2-Dichloroethane-d4 103 80-128 Toluene-d8 93 80-127 1.2-Dichloroethane-d4 103 80-128 Toluene-d8 93 80-127 1.2-Dichloroethane ND 0.50 1 Methyl-Ethur (MTEE) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Tert-Mayl-Methyl Ether (MTEE) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Tert-Mayl-Methyl Ether (TAME) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Tert-Mayl-Methyl Ether (TAME) ND 0.50	1,2-Dichloroethane	ND	0.50	1		Diisopropyl Ether (DIPE)			ND	0.50	1	
Xylenes (total) ND 0.50 1 Ethanol ND 300 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual 1,4-Bromofluorobenzene 97 68-120 Dibromofluoromethane 102 80-127 120419/12 04/19/12 04/19/12 04/19/12 04/19/12 120419L01 Method Blank 099-12-703-2,098 N/A Aqueous GC/MS T 04/19/12 04/19/12 120419L01 Parameter Result RL DE Qual Parameter Result RL DE Qual Benzene ND 0.50 1 TetH-Butyl Alcohol (TBA) ND 10 1 12-Dichloroethane ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Ethyl-H-Butyl Ether (ITBE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Ethyl-H-Butyl Ether (TAME)	Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl	Ether (ETBE)	ND	0.50	1	
Surrogates: REC (%) Limits Control Limits Qual Surrogates: REC (%) Parameter Control Limits Qual Surrogates: REC (%) Parameter Control Limits Qual Surrogates: REC (%) Parameter Control Limits Qual Control Limits Qual	Toluene	ND	0.50	1		Tert-Amyl-Methyl Ether (TAME)			ND	0.50	1	
Limits Limits Limits Limits Limits 1.4-Bromofluorobenzene 97 68-120 Dibromofluoromethane 102 80-127 1.2-Dichloroethane-d4 103 80-128 Toluene-d8 93 80-120 Method Blank 099-12-703-2,098 N/A Aqueous GC/MS T 04/19/12 04/19/12 120419L01 Parameter Result RL DE Qual Parameter Result RL DE Qual Benzene ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Ethyl-Heutyl Ether (MTBE) ND 0.50 1 1.2-Dichloroethane ND 0.50 1 Ethyl-Heutyl Ether (TAME) ND 0.50 1 1.2-Dichloroethane-d4 ND 0.50 1 Ethanol ND 0.50 1 1.2-Dichloroethane-d4 105 80-128 Toluene-d8 95 80-120 1 <t< td=""><td>Xylenes (total)</td><td>ND</td><td>0.50</td><td>1</td><td></td><td>Ethanol</td><td></td><td></td><td>ND</td><td>300</td><td>1</td><td></td></t<>	Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
1,2:Dickhoredhane-d4 103 80-128 Toluene-d8 83 80-120 Method Blank 099-12-703-2,098 N/A Aqueous GC/MS T 04/19/12 04/19/12 120419L01 Parameter Result RL DE Qual Parameter Result RL DE Qual Benzene ND 0.50 1 Methyl-Ether (MTBE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Ethyl-Butyl Ether (DIPE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Ethyl-Butyl Ether (TAME) ND 0.50 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual 1,4-Bromofluorobenzene 93 68-120 Dibromofluoromethane 100 80-127 120420L01	Surrogates:	<u>REC (%)</u>		<u>Qual</u>	<u> </u>	Surrogates:			<u>REC (%)</u>		<u>C</u>	<u>Qual</u>
Method Blank 099-12-703-2,098 N/A Aqueous GC/MS T 04/19/12 04/19/12 120419L01 Parameter Result RL DE Qual Qual Qual Parameter Result RL DE Qual Qual Qual ND 0.50 1 Tert-Maryl Alcohol (TBA) ND 0.50 1 DE Parameter Result RL DE Qual DE Qual	1,4-Bromofluorobenzene	97	68-120			Dibromofluoromethane			102	80-127		
Method Plank Result RL DE Qual Parameter Result RL DE Qual Benzene ND 0.50 1 Methyl-Heutyl Ether (MTBE) ND 0.50 1 1,2-Dibromoethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 10 1 1,2-Dibromoethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Ethyl-Edutyl Ether (TBE) ND 0.50 1 Toluene ND 0.50 1 Ethyl-Edutyl Ether (TAME) ND 0.50 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual Imits 1,4-Bromofluorobenzene 93 68-120 Dibromofluoromethane 100 80-127 12042012 12042012 12042012 12042012 12042012 13:37 12042012 12042012 13:37 12042012	1,2-Dichloroethane-d4	103	80-128			Toluene-d8			93	80-120		
Benzene ND 0.50 1 Methyl-t-Butyl Ether (MTBE) ND 0.50 1 1,2-Dibromoethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 10 1 1,2-Dibromoethane ND 0.50 1 Disopropyl Ether (DIPE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Ethyl-t-Butyl Ether (CIPE) ND 0.50 1 Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Xytenes (total) ND 0.50 1 Ethanol ND 0.50 1 1,4-Bromofluorobenzene 93 68-120 Dibromofluoromethane 100 80-127 120420L01 1,2-Dichloroethane-d4 105 80-128 Toluene-d8 95 80-120 1 Parameter Result RL DE Qual Parameter (MTBE) ND 0.50 1 104201/2 120420L01 15:37 120420L01 15:37 120420L01 15:37 120420L01 15:37 120420L01 15:37 120420L01 </td <td>Method Blank</td> <td></td> <td></td> <td>099-12-</td> <td>703-2,098</td> <td>N/A</td> <td>Aqueous</td> <td>GC/MS T</td> <td>04/19/12</td> <td></td> <td></td> <td>120419L01</td>	Method Blank			099-12-	703-2,098	N/A	Aqueous	GC/MS T	04/19/12			120419L01
1,2-Dibromoethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 10 1 1,2-Dibromoethane ND 0.50 1 Diisopropyl Ether (DIPE) ND 0.50 1 Ethylbenzene ND 0.50 1 Ethyl-t-Butyl Ether (TAME) ND 0.50 1 Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Xylenes (total) ND 0.50 1 Ethanol ND 300 1 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual 1,2-Dichloroethane-d4 105 80-128 Dibromofluoromethane 100 80-127 120420L01 1,2-Dichloroethane-d4 105 80-128 Toluene-d8 95 80-120 120420L01 1,2-Dichloroethane ND 0.50 1 Methyl-t-Butyl Ether (MTBE) ND 0.50 1 120420L01 1,2-Dichloroethane ND 0.50 1 Methyl-t-Butyl Ether (MTBE) ND 0.50 1 1,2-Di	Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	Qual
1,2-Dichloroethane ND 0.50 1 Diisopropyl Ether (DIPE) ND 0.50 1 Ethylbenzene ND 0.50 1 Ethyl-Hsutyl Ether (ETBE) ND 0.50 1 Toluene ND 0.50 1 Ethyl-Hsutyl Ether (ETBE) ND 0.50 1 Surrogates: REC (%) Control Limits Qual Surrogates: ND 0.60 1 1,4-Bromofluorobenzene 93 68-120 Dibromofluoromethane 100 $80-127$ Qual 1,2-Dichloroethane-d4 105 $80-128$ Toluene-d8 GC/MST $04/20/12$ $120420L01$ Parameter Result RL DF Qual Parameter Result RL DF Qual Parameter (DTBE) ND 0.50 1 1,2-Dichoroethane ND 0.50 1 Methyl-Hsutyl Ether (DTBE) ND 0.50 1 1,2-Dichoroethane ND 0.50 1 Methyl-Hsutyl Ether (DTBE) ND 0.50 1 1,2-Dichoroethane ND 0.50 1	Benzene	ND	0.50	1		Methyl-t-Buty	/I Ether (MTB	E)	ND	0.50	1	
Ethylbenzene ND 0.50 1 Ethyl-t-Butyl Ether (ETBE) ND 0.50 1 Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Xylenes (total) ND 0.50 1 Ethanol ND 0.50 1 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Imits Qual 1,4-Bromofluorobenzene 93 68-120 Dibromofluoromethane 100 80-127 1202012 04/20/12 120420L01 1,2-Dichloroethane-d4 105 80-128 Toluene-d8 95 80-120 120420L01 1,2-Dichloroethane ND 0.50 1 Tert-Amyl-Hethyl Ether (MTBE) ND 0.50 1 Parameter Result RL DF Qual Parameter Result RL DF Qual 1,2-Dibromoethane ND 0.50 1 Tert-Amyl-Hethyl Ether (MTBE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Myl-Hethyl Ether (DIPE) ND<	1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Al	cohol (TBA)	,	ND	10	1	
Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Xylenes (total) ND 0.50 1 Ethanol ND 300 1 Surrogates: REC (%) Control Limits Qual Qual Surrogates: ND 0.50 1 Qual 1,4-Bromofluorobenzene 93 68-120 Dibromofluoromethane 100 80-127 120420L01 1,2-Dichloroethane-d4 105 80-128 Toluene-d8 95 80-120 Method Blank Result RL DF Qual Parameter Result RL DF Qual 1,2-Dichloroethane ND 0.50 1 Methyl-t-Butyl Ether (MTBE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 0.50	1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Xylenes (total)ND0.501EthanolND3001Surrogates:REC (%)ControlQualSurrogates:REC (%)ControlQual1,4-Bromofluorobenzene9368-120Dibromofluoromethane10080-1271,2-Dichloroethane-d410580-128Toluene-d89580-120Method Blank0.501MethodAqueousGC/MS T04/20/1204/20/1204/20/12120420L01ParameterResultRLDFQualParameterResultRLDFQualBenzeneND0.501Methyl-t-Butyl Ether (MTBE)ND0.5011,2-DichloroethaneND0.501Tert-Butyl Alcohol (TBA)ND1011,2-DichloroethaneND0.501Tert-Butyl Alcohol (TBA)ND0.5011,2-DichloroethaneND0.501Tert-Butyl Alcohol (TBA)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (DIPE)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.50 <td< td=""><td>Ethylbenzene</td><td>ND</td><td>0.50</td><td>1</td><td></td><td>Ethyl-t-Butyl</td><td>Ether (ETBE</td><td>)</td><td>ND</td><td>0.50</td><td>1</td><td></td></td<>	Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl	Ether (ETBE)	ND	0.50	1	
Surrogates:REC (%) LimitsControl LimitsQualSurrogates:REC (%) LimitsControl LimitsQual1,4-Bromofluorobenzene9368-120Dibromofluoromethane10080-1271,2-Dichloroethane-d410580-128Toluene-d89580-120Method BlankOg9-12-703-2,100N/AAqueousGC/MS T04/20/1204/20/12120420L01ParameterResultRLDFQualParameterResultRLDFQualBenzeneND0.501Methyl-t-Butyl Ether (MTBE)ND0.5011,2-DibromoethaneND0.501Tert-Butyl Alcohol (TBA)ND1011,2-DibromoethaneND0.501Diisopropyl Ether (DIPE)ND0.5011,2-DichloroethaneND0.501Tert-Butyl Alcohol (TBA)ND0.5011,2-DibrhoroethaneND0.501Ethyl-t-Butyl Ether (DIPE)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Te	Toluene	ND	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	
LimitsLimitsLimitsLimits1,4-Bromofluorobenzene9368-120Dibromofluoromethane10080-1271,2-Dichloroethane-d410580-128Toluene-d89580-120Method BlankO99-12-703-2,100N/AAqueousGC/MS T04/20/1204/20/12120420L01ParameterResultRLDFQualParameterResultRLDFQualBenzeneND0.501Methyl-t-Butyl Ether (MTBE)ND0.5011,2-DibromoethaneND0.501Tert-Butyl Alcohol (TBA)ND1011,2-DichloroethaneND0.501Disopropyl Ether (DIPE)ND0.5011,2-DichloroethaneND0.501Ethyl-t-Butyl Ether (ETBE)ND0.5011,2-DichloroethaneND0.501Ethyl-t-Butyl Ether (TAME)ND0.5011,2-DichloroethaneND0.501Ethyl-t-Butyl Ether (TAME)ND0.5011,4-BromofluorobenzeneND0.501EthanolND0.5011,4-Bromofluorobenzene9168-120Dibromofluoromethane10080-127	Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
1,2-Dichloroethane-d4 105 80-128 Toluene-d8 95 80-120 Method Blank 099-12-703-2,100 N/A Aqueous GC/MS T 04/20/12 04/20/12 120420L01 Parameter Result RL DF Qual Parameter Result RL DF Qual Benzene ND 0.50 1 Methyl-t-Butyl Ether (MTBE) ND 0.50 1 1,2-Dibloromethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 10 1 1,2-Dichloroethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Butyl Ether (DIPE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Stylenes (total) ND 0.50 1 Ethanol ND 0.50 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual <t< td=""><td>Surrogates:</td><td><u>REC (%)</u></td><td></td><td><u>Qua</u></td><td><u> </u></td><td>Surrogates:</td><td></td><td></td><td><u>REC (%)</u></td><td></td><td><u>(</u></td><td><u>Qual</u></td></t<>	Surrogates:	<u>REC (%)</u>		<u>Qua</u>	<u> </u>	Surrogates:			<u>REC (%)</u>		<u>(</u>	<u>Qual</u>
Method Blank099-12-703-2,100N/AAqueousGC/MS T04/20/1204/20/12120420L01ParameterResultRLDFQualParameterResultRLDFQualBenzeneND0.501Methyl-t-Butyl Ether (MTBE)ND0.5011,2-DibromoethaneND0.501Tert-Butyl Alcohol (TBA)ND1011,2-DichloroethaneND0.501Disopropyl Ether (DIPE)ND0.501EthylbenzeneND0.501Ethyl-t-Butyl Ether (TAME)ND0.501TolueneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.501Xylenes (total)ND0.501EthanolND3001Surrogates:REC (%)ControlQualSurrogates:REC (%)ControlQual1,4-Bromofluorobenzene9168-120Dibromofluoromethane10080-127	1,4-Bromofluorobenzene	93	68-120			Dibromofluor	omethane		100	80-127		
ParameterResultRLDFQualParameterResultRLDFQualBenzeneND0.501Methyl-t-Butyl Ether (MTBE)ND0.5011,2-DibromoethaneND0.501Tert-Butyl Alcohol (TBA)ND1011,2-DichloroethaneND0.501Diisopropyl Ether (DIPE)ND0.501EthylbenzeneND0.501Ethyl-t-Butyl Ether (ETBE)ND0.501TolueneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.501Xylenes (total)ND0.501EthanolND3001Surrogates:REC (%)Control LimitsQualSurrogates:REC (%) LimitsQualSurrogates:REC (%) LimitsQual1,4-Bromofluorobenzene9168-120Dibromofluoromethane10080-127	1,2-Dichloroethane-d4	105	80-128			Toluene-d8			95	80-120		
Benzene ND 0.50 1 Methyl-t-Butyl Ether (MTBE) ND 0.50 1 1,2-Dibromoethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 10 1 1,2-Dibromoethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Diisopropyl Ether (DIPE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Ethyl-t-Butyl Ether (DIPE) ND 0.50 1 Ethylbenzene ND 0.50 1 Ethyl-t-Butyl Ether (ETBE) ND 0.50 1 Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Xylenes (total) ND 0.50 1 Ethanol ND 300 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual 1,4-Bromofluorobenzene 91 68-120	Method Blank			099-12-	703-2,100	N/A	Aqueous	GC/MS T	04/20/12			120420L01
1,2-Dibromoethane ND 0.50 1 Tert-Butyl Alcohol (TBA) ND 10 1 1,2-Dichloroethane ND 0.50 1 Diisopropyl Ether (DIPE) ND 0.50 1 1,2-Dichloroethane ND 0.50 1 Diisopropyl Ether (DIPE) ND 0.50 1 Ethylbenzene ND 0.50 1 Ethyl-t-Butyl Ether (ETBE) ND 0.50 1 Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Xylenes (total) ND 0.50 1 Ethanol ND 300 1 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual 1,4-Bromofluorobenzene 91 68-120 Dibromofluoromethane 100 80-127	Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
1,2-Dichloroethane ND 0.50 1 Diisopropyl Ether (DIPE) ND 0.50 1 Ethylbenzene ND 0.50 1 Ethyl-t-Butyl Ether (DIPE) ND 0.50 1 Toluene ND 0.50 1 Ethyl-t-Butyl Ether (ETBE) ND 0.50 1 Xylenes (total) ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual 1,4-Bromofluorobenzene 91 68-120 Dibromofluoromethane 100 80-127	Benzene	ND	0.50	1		Methyl-t-Buty	/I Ether (MTB	E)	ND	0.50	1	
Ethylbenzene ND 0.50 1 Ethyl-t-Butyl Ether (ETBE) ND 0.50 1 Toluene ND 0.50 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 Xylenes (total) ND 0.50 1 Ethanol ND 300 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual 1,4-Bromofluorobenzene 91 68-120 Dibromofluoromethane 100 80-127	1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Al	cohol (TBA)		ND	10	1	
TolueneND0.501Tert-Amyl-Methyl Ether (TAME)ND0.501Xylenes (total)ND0.501EthanolND3001Surrogates:REC (%)Control LimitsQualSurrogates:REC (%)Control LimitsQualSurrogates:REC (%)Qual LimitsSurrogates:REC (%)Qual LimitsSurrogates:1,4-Bromofluorobenzene9168-120Dibromofluoromethane10080-127	1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Xylenes (total)ND0.501EthanolND3001Surrogates:REC (%)Control LimitsQualSurrogates:REC (%)Control LimitsQual1,4-Bromofluorobenzene9168-120Dibromofluoromethane10080-127	5			1			· ·	,				
Surrogates:REC (%)Control LimitsQualSurrogates:REC (%)Control LimitsQual1,4-Bromofluorobenzene9168-120Dibromofluoromethane10080-127				-		,	ethyl Ether (T	AME)			-	
LimitsLimits1,4-Bromofluorobenzene9168-120Dibromofluoromethane10080-127	Xylenes (total)			•		Ethanol					•	
	Surrogates:	<u>REC (%)</u>		<u>Qua</u>	<u> </u>	Surrogates:			<u>REC (%)</u>		<u>c</u>	<u>Qual</u>
	1,4-Bromofluorobenzene	91	68-120			Dibromofluor	omethane		100	80-127		
	1,2-Dichloroethane-d4	107	80-128			Toluene-d8			95	80-120		

RL - Reporting Limit , DF - Dilution Factor ,

MM

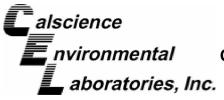
actor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 7 of 17	Page	7	of	17
--------------	------	---	----	----

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642	Date Received: Work Order No: Preparation: Method:	04/13/12 12-04-0857 EPA 5030C
	Method:	EPA 8015B (M)

Project BP 498


Quality Control Sample ID	Matrix	Instrument		Date ent Prepared			ISD Batch umber		
12-04-0654-1	Aqueous	GC 42	04/14/12		GC 42 04/14/12 04/14/12		04/14/12 04/14/12		414S01
Parameter	SPIKE ADDED	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>		
Gasoline Range Organics (C6-C12)	2000	86	101	38-134	15	0-25			

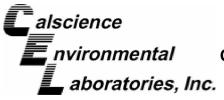
Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hm

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642	Date Received: Work Order No: Preparation: Method:	04/13/12 12-04-0857 EPA 5030C EPA 8260B
	mourou	ELVERED


Project BP 498

Quality Control Sample ID	Matrix Instrument			ate bared	Date Analyzed		ISD Batch umber
MW-2	Aqueous	GC/MS T	04/1	9/12	04/19/12	120	419S01
Parameter	SPIKE ADDED	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	10.00	107	103	76-124	3	0-20	
Carbon Tetrachloride	10.00	113	109	74-134	4	0-20	
Chlorobenzene	10.00	100	97	80-120	3	0-20	
1,2-Dibromoethane	10.00	103	98	80-120	5	0-20	
1,2-Dichlorobenzene	10.00	95	91	80-120	5	0-20	
1,2-Dichloroethane	10.00	101	99	80-120	2	0-20	
Ethylbenzene	10.00	108	105	78-126	4	0-20	
Toluene	10.00	106	93	80-120	13	0-20	
Trichloroethene	10.00	112	104	77-120	7	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	113	110	67-121	2	0-49	
Tert-Butyl Alcohol (TBA)	50.00	462	312	36-162	39	0-30	LM,BA,AY
Diisopropyl Ether (DIPE)	10.00	114	109	60-138	5	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	118	115	69-123	3	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	105	105	65-120	0	0-20	
Ethanol	100.0	99	97	30-180	2	0-72	

RPD - Relative Percent Difference, CL - Control Limit

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642	Date Received: Work Order No: Preparation: Method:	04/13/12 12-04-0857 EPA 5030C EPA 8260B

Project BP 498

Quality Control Sample ID	Matrix	Matrix Instrument		ate bared	Date Analyzed		ISD Batch umber
12-04-1095-6	Aqueous	GC/MS T	04/2	0/12	04/20/12	120	420S01
Parameter	SPIKE ADDED	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	10.00	98	108	76-124	10	0-20	
Carbon Tetrachloride	10.00	103	109	74-134	5	0-20	
Chlorobenzene	10.00	94	99	80-120	5	0-20	
1,2-Dibromoethane	10.00	98	105	80-120	7	0-20	
1,2-Dichlorobenzene	10.00	92	101	80-120	9	0-20	
1,2-Dichloroethane	10.00	90	99	80-120	9	0-20	
Ethylbenzene	10.00	101	111	78-126	9	0-20	
Toluene	10.00	99	111	80-120	11	0-20	
Trichloroethene	10.00	102	105	77-120	3	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	107	111	67-121	4	0-49	
Tert-Butyl Alcohol (TBA)	50.00	326	123	36-162	90	0-30	LM,BA,AY
Diisopropyl Ether (DIPE)	10.00	106	110	60-138	3	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	113	118	69-123	4	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	94	103	65-120	9	0-20	
Ethanol	100.0	113	112	30-180	1	0-72	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 ·

4) 895-5494 · FAX: (714) 894-7501

Broadbent & Associates, Inc.	Date Received:	N/A
1324 Mangrove Ave, Ste 212	Work Order No:	12-04-0857
Chico, CA 95926-2642	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)

Project: BP 498

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	I	LCS/LCSD Batch Number	
099-12-695-1,308	Aqueous	GC 42	04/14/12	04/14/12		120414B01	
Parameter	<u>SPIKE AD</u>	DED LCS %REC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Gasoline Range Organics (C6-C12)	2000	100	107	78-120	7	0-20	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

ha

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received:N/AWork Order No:12-04-0857Preparation:EPA 5030CMethod:EPA 8260B

Project: BP 498

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date alyzed	LCS	/LCSD Batch Number	
099-12-703-2,098	Aqueous	GC/MS T	04/19/1	2 04/1	9/12	1	20419L01	
Parameter	SPIKE ADDED	<u>LCS %REC</u> L	<u>CSD %REC</u>	<u>%REC CL</u>	ME CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	10.00	102	86	80-120	73-127	17	0-20	
Carbon Tetrachloride	10.00	99	99	74-134	64-144	0	0-20	
Chlorobenzene	10.00	92	84	80-120	73-127	10	0-20	
1,2-Dibromoethane	10.00	97	88	79-121	72-128	10	0-20	
1,2-Dichlorobenzene	10.00	92	88	80-120	73-127	5	0-20	
1,2-Dichloroethane	10.00	102	84	80-120	73-127	19	0-20	
Ethylbenzene	10.00	100	91	80-120	73-127	9	0-20	
Toluene	10.00	104	84	80-120	73-127	21	0-20	RB
Trichloroethene	10.00	100	91	79-127	71-135	9	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	96	93	69-123	60-132	3	0-20	
Tert-Butyl Alcohol (TBA)	50.00	109	103	63-123	53-133	6	0-20	
Diisopropyl Ether (DIPE)	10.00	97	94	59-137	46-150	3	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	99	96	69-123	60-132	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	100	85	70-120	62-128	16	0-20	
Ethanol	100.0	104	106	28-160	6-182	2	0-57	

Total number of LCS compounds : 15 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received:N/AWork Order No:12-04-0857Preparation:EPA 5030CMethod:EPA 8260B

Project: BP 498

Quality Control Sample ID	Matrix	Instrument	Date Preparec		Date alyzed	LCS	/LCSD Batch Number	
099-12-703-2,100	Aqueous	GC/MS T	04/20/1	2 04/2	0/12	1	20420L01	
Parameter	SPIKE ADDED	D_LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	98	95	80-120	73-127	3	0-20	
Carbon Tetrachloride	10.00	107	103	74-134	64-144	4	0-20	
Chlorobenzene	10.00	97	94	80-120	73-127	3	0-20	
1,2-Dibromoethane	10.00	96	97	79-121	72-128	1	0-20	
1,2-Dichlorobenzene	10.00	90	92	80-120	73-127	2	0-20	
1,2-Dichloroethane	10.00	97	92	80-120	73-127	6	0-20	
Ethylbenzene	10.00	102	101	80-120	73-127	1	0-20	
Toluene	10.00	104	96	80-120	73-127	9	0-20	
Trichloroethene	10.00	104	99	79-127	71-135	5	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	107	102	69-123	60-132	4	0-20	
Tert-Butyl Alcohol (TBA)	50.00	104	102	63-123	53-133	2	0-20	
Diisopropyl Ether (DIPE)	10.00	109	103	59-137	46-150	5	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	112	110	69-123	60-132	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	99	94	70-120	62-128	4	0-20	
Ethanol	100.0	97	105	28-160	6-182	8	0-57	

Total number of LCS compounds : 15 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

hM

Glossary of Terms and Qualifiers

Work Order Number: 12-04-0857

<u>Qualifier</u>	Definition
AX	Sample too dilute to quantify surrogate.
BA	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
BZ	Sample preserved improperly.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
ET	Sample was extracted past end of recommended maximum holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix
,	interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix
	interference suspected.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.

Definition

Qualifier

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. MPN - Most Probable Number

Atlantic Richfield Company © A BP atfiliated company		Labor	nagement Program LaMP Chain of Custo									tody Record						Page of									
		BP/ARC Project Name: BP/ARC Facility No:		BP 498								Req Due Date (mm/dd/yy):							Rush TAT: Yes No _x								
				498							Req Due Date (mm/dd/yy): Rush TAT: Yes N Lab Work Order Number: 12-04-0857																
Lab Name: Cal Science				BP/ARC Facility Address: 286 South Livermore Ave.							Consultant/Contractor: Broadbent																
Lab Address: 7440 Lincoln Way				City,	City, State, ZIP Code: Livermore, CA 94550											Consultant/Contractor Project No: 08-82-603											
Lab PM: Richard Villafania				Lead Regulatory Agency: ACEH									Address: 1324 Mangrove Ave., Ste. 212, Chico, CA 95926														
Lab Phone: 714-895-5494 / 714-894-7501 (fax)				California Global ID No.: T0600124081									Consultant/Contractor PM: Jason Duda														
Lab Shipping Accnt: 9255				Enfos Proposal No: 0056X-0002 WR 245438										Phone: 530-566-1400 / 530-566-1401 (fax)													
Lab Bottle Order No:				Accounting Mode: Provision X OOC-BU OOC-RM								Email EDD To: jduda@broadbentinc.com															
Other Info:				Stage: Execute (4) Activity: GWM (401)									Invoice To: BP/ARC x Contractor														
BP/ARC EBM: Shannon Couch				Matrix No. Containers / Preservative							Requested Analyses								Report Type & QC Level								
EBM I	Phone: 925-275-3804					1		6																		Standard <u>X</u>	_
EBM Email: <u>shannon.couch@bp.com</u>								Containers																	Full Data	Package	—
Lab No.	Sample Description	Date	Time	Soil / Solid Water / Liquid		Air / Vapor		Total Number of Coni	Unpreserved	H₂SO₄	HNO ₃	HCI	Methanol		GRO (8015M)	BTEX (8260B)	5-Oxys (8260B)	EDB (8260B)	Ethanol (8260B)	1,2-DCA (8260B)					C Note: If sample no Sample" in comm and initial any pre	ents and single	-strike out
	MW-1	4/10/12	1444		x			6				x			x	x	x	x	х	x				·			
2	MW-2		1651		x			6				×			x	x	x	x	x	x							
3	MW-3		1533		x			6				×			x	x	x	x	x	x							
4	MW-4	↓ ↓	1600		x		<u> </u>	6				×			x	x	x	x	х	x					Grab s	<u>Sample</u>	2
							\perp																				
					L	\bot	\bot																				
				 	L	_	_																				
					<u> </u>	<u> </u>	_	_			<u> </u>																
				╄	<u> </u>	_	_				<u> </u>															<u> </u>	
S TB-498-04102012				┢	x			1				X														ON HOLD	
Sampler's Name: Alex Martinez				Relinquished By / Affiliation						•		ite ,		me	Accepted By / Affiliation Date Time					Time ບ							
Sampler's Company: Broadbent				aller to da / Broadbent 4/12/12								12	30														
Shipment Method: 650 Ship Date: 4/12/12 Shipment Tracking No: 1073279944				┢											1/1/12/12 103 Q												
				<u> </u>	Temp Blank: Yes / No Cooler Temp on Receipt							ceint.		°F/C Trip Blank: Yes / No MS/MSD Sample Submitte					ubmitted. Yes	17 17							
THIS LINE - LAB USE ONLY: Custody Seals In Place: Yes / No					Temp Blank: Yes / No Cooler Temp on Receipt:								°F/C Trip Blank: Yes / No MS/MSD Sample Submitted: Yes					/ No									

BP/ARC LaMP COC Rev. 6 01/01/2009

Page 16 of 17

.

	SHIPPING AIR BILL
1 DATE 4/12/12 SHIPPERS GSO ACCOUNT NO. 9255	
company Broadbent & Associates	
UN VOINING LN	PACKAGE (WT) ~7 Lbs
ADDRESS STEA	1-800-322-5555
V Vacaville, CA ZIP 95688	
SENDERS Alex Martinez PHONE 707-455-72-	
2 COMPANY Calscience	STDELIVERY TIMES MAY BE LATER IN SOME AREAS . CONSULT YOUR SERVICE GUIDE OR CALL GOLDEN STATE OVERNIGHT.
	6 SIGNATURE
raddress 7440 Lincoln Way	SIGN TO AUTHORIZE DELIVERY WITHOUT OBTAINING SIGNATURE
) ADDRESS STE/	
ROOM	8 INFORMATION 4525021
Contraction Grove ZIP CODE 92841	TIME DRIVER # ROUTE #
YOUR INTERNAL BILLING REFERENCE WILL APPEAR	
	9 GSO TRACKING NUMBER
GOLDEN STATE, DUERNIGHT	
www.gso.com	
PDS A	
DEN GROVE	
2841 8 lb 1/ZQX	
D92841A	
627 1204122049 CSL-06	•

		Pag	e 17 of 17			
Environmental WORK ORDER #:	12-04	-08	57			
SAMPLE RECEIPT FOR	RM c	Cooler	of			
CLIENT: Broadbent		04 /)				
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0° C – 6.0° C, not frozen)						
	Blank	🗌 Samp	le			
Sample(s) outside temperature criteria (PM/APM contacted by:).						
□ Sample(s) outside temperature criteria but received on ice/chilled on same da	y of sampli	ng.				
□ Received at ambient temperature, placed on ice for transport by Cou	urier.					
Ambient Temperature: Air Filter		Initia	ıl:			
		• •				
		1.10	1.00			
PCooler □ □ No (Not Intact) □ Not Present	□ N/A		al: $$			
□ Sample □ □ No (Not Intact) ☑ Not Present		Initia	al: <u>//v /</u>			
SAMPLE CONDITION:	(es	No	N/A			
Chain-Of-Custody (COC) document(s) received with samples	Ø					
COC document(s) received complete	Z					
Collection date/time, matrix, and/or # of containers logged in based on sample labels.						
□ No analysis requested. □ Not relinquished. □ No date/time relinquished.						
Sampler's name indicated on COC	R					
Sample container label(s) consistent with COC	P					
Sample container(s) intact and good condition						
Proper containers and sufficient volume for analyses requested	Ø					
Analyses received within holding time						
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours						
Proper preservation noted on COC or sample container						
□ Unpreserved vials received for Volatiles analysis						
Volatile analysis container(s) free of headspace	Þ					
Tedlar bag(s) free of condensation			Ø			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	® □Terra	Cores® 🗆				
Water: UVOA	□1AGB	⊒1AGB na ₂	□1AGB s			
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB	□1PBna I	□500PB			
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ □						
Air: DTedlar [®] DSumma [®] Other: Trip Blank Lot#: <u>1263297</u> Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: E Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +N	Envelope F	Reviewed by	y: <u></u>			

Return to Contents

APPENDIX D

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	GEO_WELL
Submittal Title:	2Q12 GEO_WELL 498
Facility Global ID:	T0600124081
Facility Name:	ARCO #0498
File Name:	GEO_WELL.zip
Organization Name:	Broadbent & Associates, Inc.
<u>Username:</u>	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	5/3/2012 12:15:11 PM
Confirmation Number:	9617970287

Copyright © 2012 State of California

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	EDF - Monitoring Report - Semi-Annually
Submittal Title:	2Q12 GW Monitoring
Facility Global ID:	T0600124081
Facility Name:	ARCO #0498
File Name:	12040857.zip
Organization Name:	Broadbent & Associates, Inc.
Username:	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	5/3/2012 12:05:18 PM
Confirmation Number:	7975102245

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2012 State of California