Atlantic Richfield Company

Chuck Carmel

Environmental Business Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3803 Fax: (925) 275-3815 E-Mail: charles.carmel@bp.com

RECEIVED

9:08 am, Jan 06, 2010

Alameda County
Environmental Health

5 January 2010

Re: Fourth Quarter 2009 Semi-Annual Ground-Water Monitoring Report

Atlantic Richfield Company Service Station #498 286 South Livermore Avenue, Livermore, California

ACEH Case No. RO0002873

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Chuck Carmel Environmental Business Manager

Attachment

Fourth Quarter 2009 Semi-Annual Ground-Water Monitoring Report

Atlantic Richfield Company Station #498 286 Livermore Avenue, Livermore, California ACEH Case #RO0002873

Prepared for

Mr. Chuck Carmel
Environmental Business Manager
Atlantic Richfield Company
P.O. Box 1257
San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

5 January 2010

Project No. 08-82-603

5 January 2010

Project No. 08-82-603

Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: Fourth Quarter 2009 Semi-Annual Ground-Water Monitoring Report, Atlantic Richfield

Company Station #498, 286 South Livermore Avenue, Livermore, California;

ACEH Case #RO0002873

Dear Mr. Carmel:

Provided herein is the *Fourth Quarter 2009 Semi-Annual Ground-Water Monitoring Report* for Atlantic Richfield Company (a BP affiliated company) Station #498 (herein referred to as Station #498) located at 286 South Livermore Avenue, Livermore, California (Site). This report presents the results of Fourth Quarter 2009 ground-water monitoring at the Site.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact me at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E.

Senior Engineer

Enclosures

cc: Mr. Paresh Khatri, Alameda County Environmental Health, 1131 Harbor Bay Parkway,

Suite 250, Alameda, CA 84502 (Submitted via ACEH ftp Site)

Electronic copy uploaded to GeoTracker

NEVADA ARIZONA CALIFORNIA TEXAS

STATION #498 GROUND-WATER MONITORING REPORT

Facility: #498 Address: 286 South Livermore Avenue, Livermore

Environmental Business Manager: Mr. Chuck Carmel

Consulting Co./Contact Person: Broadbent & Associates, Inc. (BAI) / Mr. Tom Venus, PE

(530) 566-1400

Alameda County Environmental Health (ACEH)/ Primary Agency/Regulatory ID No.:

ACEH Case #RO0002873

08-82-603 Consultant Project No.:

Facility Permits/Permitting Agency: NA

WORK PERFORMED THIS QUARTER (Fourth Quarter 2009):

1. Prepared and submitted *Third Quarter 2009 Ground-Water Monitoring Report* (BAI, 10/26/2009).

2. Conducted ground-water monitoring/sampling for Fourth Quarter 2009. Work performed on 9 November 2009 by BAI.

WORK PROPOSED FOR NEXT QUARTER (First Quarter 2010):

1. Prepared and submitted Fourth Quarter 2009 Semi-Annual Ground-Water Monitoring Report (contained herein).

2. Begin implementation of the offsite soil and ground-water investigation work activities following approval by the ACEH of the work plan submitted 28 August 2009.

QUARTERLY RESULTS SUMMARY:

Current phase of project: **Ground-water monitoring/Sampling/Assessment** Frequency of ground-water Semi-Annually (20 & 40): MW-1, MW-2, MW-3,

monitoring: and MW-4

Frequency of ground-water sampling: Semi-Annually (20 & 40): MW-1, MW-2, MW-3,

and MW-4

Is free product (FP) present on-site: No NA

Current remediation techniques:

Depth to ground water (below TOC): General ground-water flow direction:

Approximate hydraulic gradient:

31.82 (MW-1) to 43.79 (MW-2) feet

South-Southwest

0.13 ft/ft

DISCUSSION:

Fourth Quarter 2009 ground-water monitoring and sampling was conducted at Station #498 on 9 November 2009 by BAI. Water levels were gauged in each of the four wells at the Site. A measurement of 0.10 ft at the bottom of well MW-4 was interpreted as likely being standing water in the well cap and therefore recorded as dry. No other irregularities were noted during water level gauging. Depth-to-water measurements ranged from 31.82 ft at MW-1 to 43.79 ft at MW-2. Resulting groundwater surface elevations ranged from 464.90 ft above datum in well MW-1 to 451.56 ft in well MW-2. Water level elevations are summarized in Table 1. Water level elevations yielded a potentiometric ground-water flow direction and gradient to the south-southwest at approximately 0.13 ft/ft. Groundwater monitoring field data sheets are provided within Appendix A. Measured depths to ground water and respective ground-water elevations are summarized in Table 1. Current and historic ground-water

flow directions and gradients are provided in Table 3. A Site Location Map is presented as Drawing 1. Potentiometric ground-water elevation contours are presented in Drawing 2.

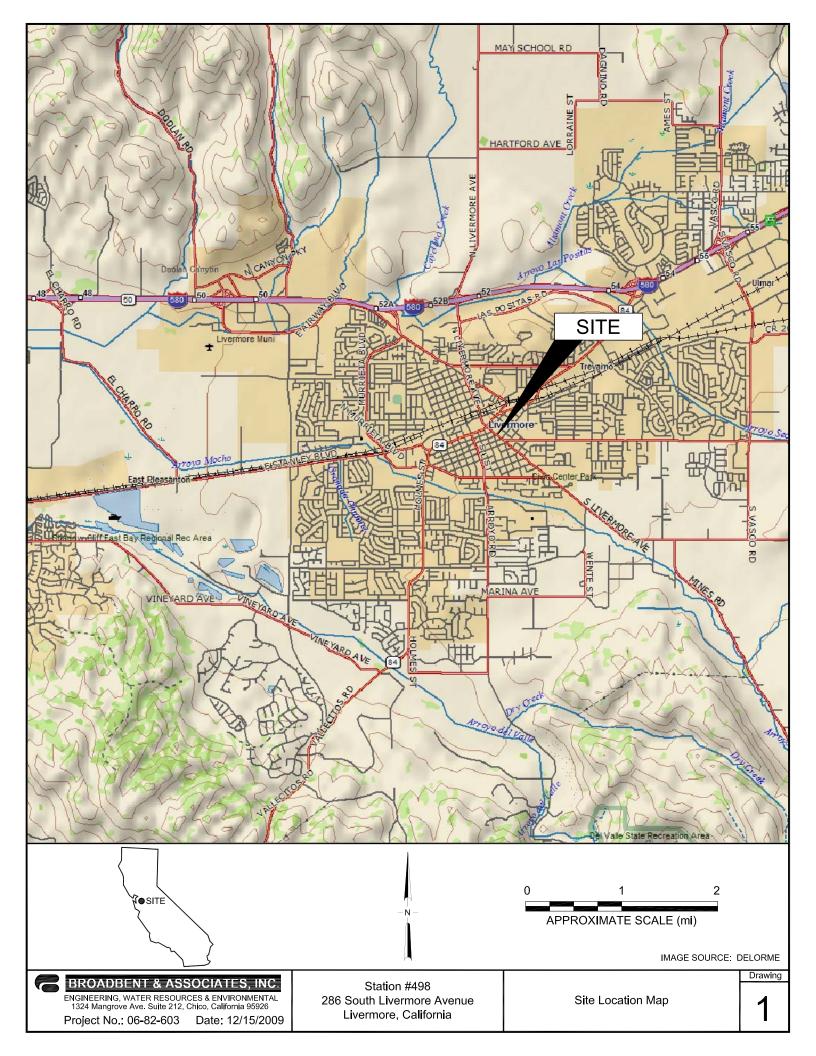
Water samples were collected from wells MW-1, MW-2, and MW-3 on 9 November 2009. Well MW-4 did not contain enough water for sampling. No other irregularities were reported during sampling. Samples were submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc. (Garden Grove, California), for analysis of Gasoline Range Organics (GRO, C6-C12) by EPA Method 8015B; for Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by EPA Method 8260B; and Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl Ether(DIPE), Tert-Butyl Alcohol (TBA), 1,2-Dibromomethane (EDB), 1,2-Dichloroethane (1,2-DCA), and Ethanol by EPA Method 8260B. No significant irregularities were encountered during laboratory analysis of the samples. Ground-water sampling field data sheets and the laboratory analytical report, including chain-of-custody documentation, are provided in Appendix A.

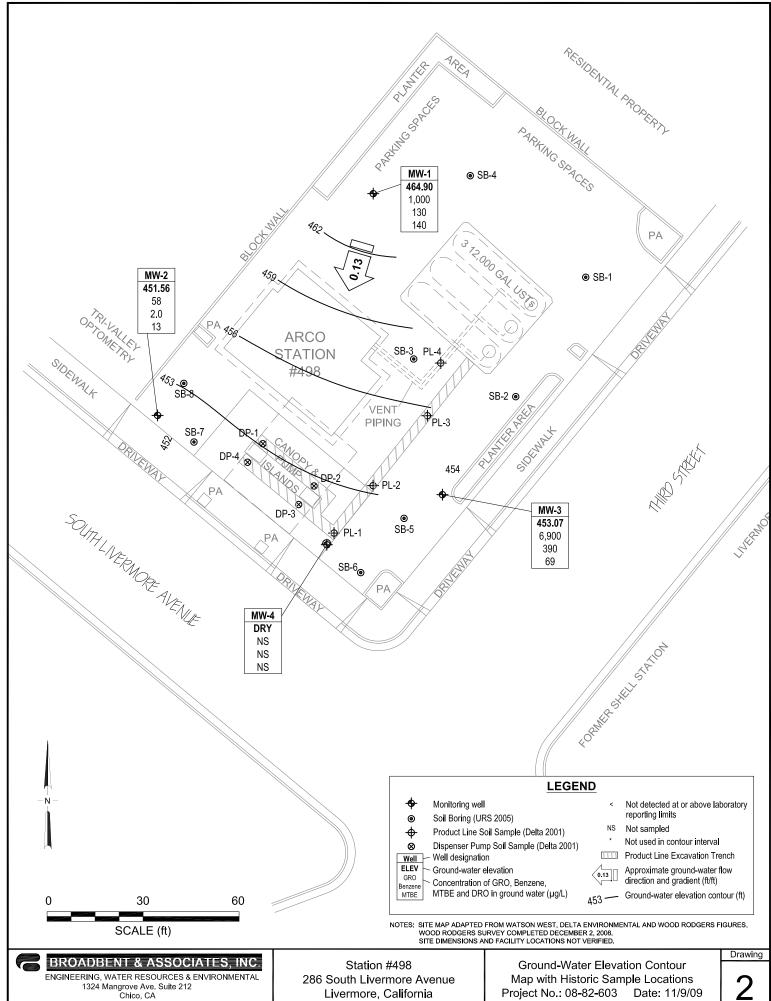
Concentrations of GRO were reported in each of the three wells sampled during Fourth Quarter 2009 (MW-1, MW-2, and MW-3) with concentrations ranging from 58 micrograms per liter (μ g/L) in MW-2 to 6,900 μ g/L in MW-3. Benzene was detected in each well sampled with concentrations ranging from 2.0 μ g/L in well MW-2 to 390 μ g/L in well MW-3. Toluene was detected in MW-1 and MW-3 at concentrations of 12 μ g/L and 27 μ g/L, respectively. Ethylbenzene was detected in MW-1 and MW-3 at concentrations of 35 μ g/L and 480 μ g/L, respectively. Total Xylenes were detected in MW-1 and MW-3 at concentrations of 39 μ g/L and 680 μ g/L, respectively. MTBE was detected in each well sampled at concentrations ranging from 13 μ g/L in well MW-2 to 140 μ g/L in well MW-1. TBA was detected in MW-1 and MW-2 at concentrations of 47 μ g/L and 41 μ g/L, respectively. TAME was detected in well MW-1 at a concentration of 3.1 μ g/L. No other analytes were detected from ground-water samples collected during Fourth Quarter 2009. Historic laboratory analytical results are summarized in Table 1 and Table 2. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 2. A copy of the Laboratory Analytical Report, including chain-of-custody documentation is provided in Appendix A. Ground-water monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation pages are provided in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS:

The Fourth Quarter 2009 water level elevations were within the historic minimum and maximum elevations range for each well based on the one year of monitoring data available. With respect to analytical results: the GRO concentration of 58 μ g/L in well MW-2 was a minimum; the Benzene concentrations of 130 μ g/L in well MW-1 and 390 μ g/L in well MW-3 were maximums; the Toluene concentration of 12 μ g/L in well MW-1 was a maximum; the Ethylbenzene concentration of 35 μ g/L in well MW-1 was a maximum; the Total Xylenes concentration of 39 μ g/L in well MW-1 was a maximum; the MTBE concentration of 140 μ g/L in well MW-1 was a maximum; the TBA concentration of 47 μ g/L in well MW-1 was a maximum; and the TAME concentration of 3.1 μ g/L in well MW-1 was a maximum. The remaining reported concentrations were within the historic minimum and maximum concentration range for each analyte for each well based on the one year of monitoring data available.

On 28 August 2009 BAI submitted to ACEH the Soil and Ground-Water Investigation Work Plan for offsite characterization requested by the ACEH in their letter dated 16 March 2009. A response from the ACEH regarding proposed work plan activities has not been received.


Page 3


CLOSURE:

The findings presented in this report are based upon: observations of BAI field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

- Drawing 1. Site Location Map, Station #498, 286 South Livermore Avenue, Livermore, California
- Drawing 2. Analytical Summary Map, Station #498, 286 South Livermore Avenue, Livermore, California
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #498, 286 South Livermore Avenue, Livermore, California
- Table 2. Summary of Fuel Additives Analytical Data, Station #498, 286 South Livermore Avenue, Livermore, California
- Table 3. Historical Ground-Water Flow Direction and Gradient, Station #498, 286 South Livermore Avenue, Livermore, California
- Appendix A. Broadbent & Associates, Inc., Ground-Water Sampling Data Package (Includes Field Data Sheets, Certified Analytical Results, Chain-of-Custody Documentation, and Field Procedures for Ground-Water Sampling)
- Appendix B. GeoTracker Upload Confirmation Receipts

Livermore, California

2

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #498, 286 South Livermore Avenue, Livermore, CA

				Top of	Bottom of		Product	Water Level		C	oncentrati	ons in (µg/l	L)			
Well and Sample Date	P/NP	Comments	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Thickness (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MtBE	DO (mg/L)	pН
MW-1																
12/29/2008	P		496.72	20	40	28.81		467.91	1,100	38	1.2	4.0	3.3	17	2.72	6.83
3/20/2009	P		496.72	20	40	28.95		467.77	640	9.1	< 0.50	4.1	< 0.50	21	0.35	7.28
6/2/2009	P		496.72	20	40	30.90		465.82	600	1.6	< 0.50	< 0.50	< 0.50	32	0.59	7.17
9/2/2009	P		496.72	20	40	32.00		464.72	570	< 0.50	< 0.50	< 0.50	< 0.50	5.3	1.02	7.38
11/9/2009	P		496.72	20	40	31.82		464.90	1,000	130	12	35	39	140	1.39	7.02
MW-2																
12/29/2008	P		495.35	37	57	48.76		446.59	110	7.1	< 0.50	< 0.50	0.76	16	1.04	7.67
3/20/2009	P		495.35	37	57	38.78		456.57	200	3.9	<1.0	<1.0	<1.0	56	0.41	7.51
6/2/2009	P		495.35	37	57	43.98		451.37	110	5.1	<1.0	<1.0	<1.0	44	1.87	7.42
9/2/2009	P		495.35	37	57	50.25		445.10	88	0.79	< 0.50	< 0.50	< 0.50	12	1.55	6.91
11/9/2009	P		495.35	37	57	43.79		451.56	58	2.0	<0.50	<0.50	< 0.50	13	0.86	7.14
MW-3																
12/29/2008	P		496.32	37	57	48.21		448.11	28,000	310	200	840	6,200	71	1.95	7.39
3/20/2009	P		496.32	37	57	38.48		457.84	11,000	360	84	600	1,500	71	0.56	7.25
6/2/2009	P	a	496.32	37	57	43.33		452.99	5,100	310	14	180	310	66	2.06	7.18
9/2/2009	P		496.32	37	57	49.60		446.72	25,000	380	150	930	2,900	75	1.35	6.93
11/9/2009	P		496.32	37	57	43.25		453.07	6,900	390	27	480	680	69	0.54	6.9
MW-4																
12/29/2008		Dry	496.01	20	40											
3/20/2009	P		496.01	20	40	37.82		458.19	410	0.78	< 0.50	< 0.50	0.64	16	0.52	7.16
6/2/2009		Dry	496.01	20	40											
9/2/2009		Dry	496.01	20	40											
11/9/2009		Dry	496.01	20	40											

SYMBOLS AND ABBREVIATIONS:

-- = Not sampled/analyzed/applicable/measured/ available <= Not detected at or above specified laboratory reporting limit

DO = Dissolved oxygen

DTW = Depth to water in ft bgs
ft bgs= feet below ground surface
ft MSL= feet above mean sea level

GRO = Gasoline range organics GWE = Groundwater elevation measured in ft MSL

mg/L = Milligrams per liter
MTBE = Methyl tert-butyl ether
NP = Not purged before sampling
P = Purged before sampling

TOC = Top of casing measured in ft MSL

 $\mu g/L = Micrograms per liter$

NOTES:

a = Sample preserved improperly.

Table 2. Summary of Fuel Additives Analytical Data Station #498, 286 South Livermore Avenue, Livermore, CA

Well and		Concentrations in (μg/L)							
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-1									
12/29/2008	<300	<10	17	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
3/20/2009	<300	25	21	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/2/2009	<300	28	32	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
9/2/2009	<300	17	5.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/9/2009	<300	47	140	<0.50	<0.50	3.1	<0.50	<0.50	
MW-2									
12/29/2008	<300	22	16	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
3/20/2009	<600	62	56	<1.0	<1.0	<1.0	<1.0	<1.0	
6/2/2009	<600	83	44	<1.0	<1.0	<1.0	<1.0	<1.0	
9/2/2009	<300	37	12	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/9/2009	<300	41	13	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-3									
12/29/2008	<30,000	<1,000	71	< 50	< 50	< 50	<50	< 50	
3/20/2009	<7,500	<250	71	<12	<12	<12	<12	<12	
6/2/2009	<3,000	100	66	< 5.0	< 5.0	<5.0	<5.0	<5.0	
9/2/2009	<7,500	<250	75	<12	<12	<12	<12	<12	
11/9/2009	<3,000	<100	69	<5.0	<5.0	<5.0	<5.0	<5.0	
MW-4									
3/20/2009	<300	2,000	16	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	

SYMBOLS AND ABBREVIATIONS:

--/--- = Not sampled/analyzed/applicable/measured/avaliable < = Not detected at or above specified laboratory reporting limit

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDI-E = DI-Isopropyl ether
EDB= 1,2-Dibromoethane
ETBE = Ethyl tert-butyl ether
MTBE = Methyl tert-butyl ether
TAME = tert-Amyl methyl ether
TBA = tert-Butyl alcohol

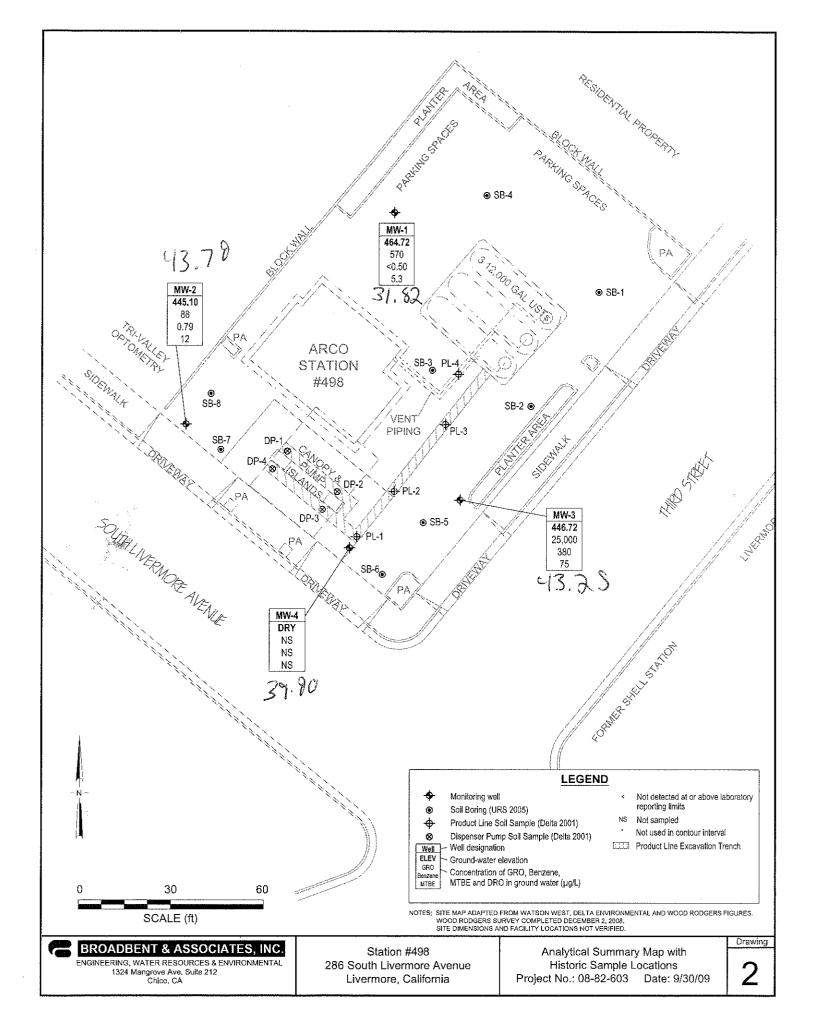
 $\mu g/L = Micrograms per liter$

Table 3. Historical Ground-Water Flow Direction and Gradient Station #498, 286 South Livermore Avenue, Livermore, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
12/29/2008	NA	NA
3/20/2009	North-Northwest	0.02
6/2/2009	NA	NA
9/2/2009	NA	NA
11/9/2009	South-Southwest	0.13

NOTES:

NA = Not Available


APPENDIX A

BROADBENT & ASSOCIATES, INC. GROUND-WATER SAMPLING DATA PACKAGE (Includes Field Data Sheets, Chain-Of-Custody Documentation, Certified Analytical Results, and Field Procedures)

DAILY REPORT
Page __/_ of _/__

Project: BP 498 BP G(13	Project No.:	08-92-603	
Field Representative(s): CFTG	Day: Monda	Date: 1	1/09/00
Time Onsite: From:			
Signed HASPSafety Glasses UST Emergency System Shut-off Switches Proper Level of Barricading Other P	Located _	Proper Gloves	Safety Vest
Weather: Clew 55° Equipment In Use: Serie & Hack			
Visitors:			
TIME: WORD 070 G office prept ship a 0800 Derat office for L 0930 G equipce for big 1000 depoff 5332 so 1015 drift B1 6113 1430 office B1613 1445 office 498 1635 office 498	las inplo@ Test. 2 2 2 1 81 12.5	1747.3 narr. Sa 819.1	effice W10 0815
	30.5 23 147 75 V524a		
Signature	ŕ		

Well I.D.:	MW	-2	<u> </u>			
Project Name/Location:	BP4	96			Project #	:08.82.63
Sampler's Name:	EFT	G			Date: <u>[</u>]/	919
Purging Equipment:	Bailer					
Sampling Equipment:	Buly					
Casing Type: PVC						
Casing Diameter:			inch	•	*UNIT	CASING VOLUMES
Total Well Depth:		58.0	feet feet		2"	= 0.16 gal/lin ft.
Depth to Water:		- <u>43, T</u>	79feet		3"	= 0.37 gal/lin ft.
Water Column Thickness	5;	= (40] feet		4"	= 0.65 gal/lin ft.
Unit Casing Volume*:		x 0.16	gallon / fo	oot	6"	= 1.47 gal/lin ft.
Casing Water Volume:		= 3,3	7gallons			
Casing Volume:		x	3 each			
Estimated Purge Volume	2:	= 6.83	2gallons			
Free product measurem		esent):				
Purged Time DO	ORP	Fe	Conductance	Temperature	рН	Observations
(gallons) (24:00)	(mV)		(μS)	(Fahrenheit)	·7	
C 1607 0.86	-47		1095	18.4	/, 3/	William Control of the Control of th
25 1610 x	Х	Х	112/	18.9	7.13	
4 1613 12	×	×	1136	19.1	7.14	
X	Х	Х				
X	Х	X				
x	х	х				
X	Х	Х				
×	×	Х				
Total Water Volume Pur	ged:		4	gallons		
Depth to Water at Samp		tion:	43,97	feet		
Sample Collection Tin			1620		Pun	ged Dry?(Y/ N/)
Comments:						
			v.			

Well I.D.:			MW	-3						
Project Na	me/Loc	ation:	BP "	178			Project #	#:08-8Q·603		
Sampler's			EFT	E			Date: [1/9/8		
Purging E		it:	Bar. L							
Sampling			Bala							
Casing Ty	pe: PVC		-		- 0					
Casing Dia				430	う又 inch	•	*UNIT	CASING VOLUMES		
Total Well	Depth:			57,	<u>CØ</u> feet			= 0.16 gal/lin ft.		
Depth to	Water:			- <u>43.7</u>				= 0.37 gal/lin ft.		
Water Col	umn Thi	ckness	<u> </u>	= 13.75 feet 4" = 0.65 gal/lin ft.						
Unit Casir	ıg Volum	ne*:		x 0.1	gallon / f	oot	6"	= 1.47 gal/lin ft.		
Casing Wa	ater Volu	ıme:		= 3,	<u> }</u> gallons					
Casing Vo	lume:			×						
Estimated	Purge \	/olume:		= 6.6	gallons					
Free prod	uct mea	sureme	nt (if pr							
Purged	Time	DO	ORP	Fe	Conductance	Temperature	pН	Observations		
(gallons)	(24:00)		(mV)		(μS)	(Fahrenheit)	/			
0	1542	,94	-94		1065	19.5	6.9			
5	1551	x `	×	Х	1070	192	6.9			
4.5	1600	НВ	х	Х	1068	14.3	6.9			
		Х	х	Х						
		Х	Х	×			,			
		х	x	Х						
		Х	х	Х				·		
		Х	х	×						
Total Wat	er Volun	ne Pura	ed:	<u></u>	4.5	gallons				
Depth to				tion:	44.65	feet				
Sample (1,600		Pur	ged Dry? (Y/N)		
Jumpio							-			
Comment	s:									
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

			MW	-1						
Well I.D.:		-	00	U90			Project #	:08.82.603		
Project Na		ation:	FET/	7			Date: \	7919		
Sampler's		· ·	P 1	<u> </u>			Date. [[777		
Purging Eq	• •	_	DK. 14	1 .		<u></u>				
Sampling l			Bail							
Casing Typ				<i>'</i> 2	i		*!!NITT	CASING VOLUMES		
Casing Dia				40.	inch	2" = 0.16 gal/lin ft.				
Total Well	Depth:									
Depth to V	Vater:			- <u>31.8</u>				= 0.37 gal/lin ft.		
Water Colu	umn Thi	ckness:		= \frac{\gamma_{\cdot}}{G}.				= 0.65 gal/lin ft.		
Unit Casin	g Volum	າe*:		x <u>() .</u>	gallon / fo	oot	6"	= 1.47 gal/lin ft.		
Casing Wa	iter Volu	ıme:		= 1.3	Ø gallons					
Casing Vo	lume:			x	3 each					
Estimated	Purge \	/olume:		= 3.9	2 gallons					
Free produ	uct mea	sureme	nt (if pr	esent):						
Purged	Time	DQ	ORP	Fe	Conductance	Temperature	Hq	Observations		
(gallons)	(24:00)	ing/L	(mV)		(μS)	(Fahrenheit)	000			
0	1523	1,37	58	, <u>-</u>	881.9	20.0	6,92			
3	1572	Х	X	Х	897.8	20.3	6.99			
4	1s97	х	Х	Х	894,1	20,0	7.02			
		Х	х	х						
		Х	Х	Х						
		X	×	х						
		Х	Х	Х						
		х	×	×						
Total Wate	er Volur	ne Pura	ed:	A.,	٦/	gallons	<u></u>			
Depth to				tion:	37.28	feet				
Sample C					1530		- Pur	ged Dry?(Y/N)		
Sample		_		/1 ~		1	-			
Comment	s: (). ઇને	M	1/60	2 Post p	11/80				
		 								

# * 5			MW-	4						
Well I.D.:	41	•	12P	9 98			Project #	: 08.82.603		
Project Na		ation:	FET	6			Date:]/	1 A ()		
Sampler's			Builo				Date. 17	/ / /		
Purging Ed				,/		,				
Sampling		ent:	Bail	$V_{}$						
Casing Ty				سي	<u>) </u>		*UNIT CASING VOLUMES			
Casing Dia				110	finch			= 0.16 gal/lin ft.		
Total Well				70	feet of feet		3" = 0.37 gal/lin ft.			
Depth to \				57	feet -		3'' = 0.37 gal/lin ft. 4'' = 0.65 gal/lin ft.			
Water Col	umn Thi	ckness:		=	1. (0 feet					
Unit Casin	g Volum	ie*:	gallon / foot $6'' = 1.47 \text{ gal/lin f}$							
Casing Wa	iter Volu	ıme:		=	gailons					
Casing Vo	lume:			×	3 each					
Estimated	Purge \	/olume:		<u></u>	gallons					
Free prod	uct mea	sureme	nt (if pr	esent):						
Purged Time DO			ORP	Fe	Conductance	Temperature	рН	Observations		
(gallons)	(24:00)		(mV)		(μ5)	(Fahrenheit)				
		Х	Х	Х						
		^								
		Х	Х	Х						
		Х	Х	Х						
		×	Х	×						
		Х	х	х						
		×	х	х						
		×	Х	×						
Total Wat	er Volun	ne Pura	ed:			gallons				
Depth to				tion:		feet				
Sample (Pur	ged Dry? (Y/N)		
Sample	JONE CO.	·	 1-11		1 - 1	,	1.			
Comment	s: ()c	11/1	-{	Nato I	o Samp	<u> U</u>			
						•				
		V-100								
						<u> </u>				

FIELD PROCEDURES

A.1 QUALITY ASSURANCE/QUALITY CONTROL FIELD PROTOCOLS

Field protocols have been implemented to maximize the accuracy and reliability of data collection, ground-water sample collection, transportation and laboratory analysis. Discussion of these protocols is provided below.

A.1.1 Water Level & Free-Phase Product Measurement

Prior to ground-water sample collection from each monitor well, the presence of free-phase product and depth to ground water shall be measured. Depth to ground water will be measured with a standard M-Scope water level indicator (or equivalent) that has been decontaminated prior to its use in accordance with procedures discussed below. Depth to ground water will be gauged from a saw cut notch at the top of the well casing on each well head. Once depth to water has been measured, a new disposable bailer will be utilized to monitor for the presence and thickness of free-phase product.

A.1.2 Monitor Well Purging

Subsequent to measuring depth to ground water, a minimum of three casing volumes of water will be purged from each monitor well using a Geosquirt submersible pump (or equivalent) and disposable plastic tubing dedicated to each individual well. The well will be purged at a low flow rate to minimize the possibility of purging the well dry. To assure that the sample collected is representative of formation water, several field parameters will be monitored during the purging process and the sample will not be collected until these parameters have stabilized to within 10% of a measured value. These parameters will include temperature, pH, and conductivity. If a well is purged dry, the sample will not be collected until the well has recovered to a minimum 50% of its initial volume.

Ground-water sampling equipment (e.g., M-scope and the Geosquirt purge pump) will be thoroughly cleansed with a solution of Liquinox, rinsed with tap water, and finally rinsed with control water prior to use in each well. Pre-cleaned disposable bailers and disposable plastic tubing will be dedicated to each individual well.

A.1.3 Ground-Water Sample Collection

Once the wells are satisfactorily purged, water samples will be collected from each well. Water samples for organic analyses will be collected using a clean disposable bailer and transferred to laboratory-prepared 40 ml vials, in duplicate; such that no head space or air bubbles are present in the sample. The samples will be properly labeled (sample identification, sampler initials, date and time of collection, site location, and requested analyses), placed in an ice chest with blue ice, and delivered to an analytical laboratory.

A.1.4 Surface Water Sample Collection

Surface water samples will be collected from mid-depth in the central area of the associated stream. Water samples will be collected in laboratory-prepared 40 ml vials by dipping the vial into the stream water. Each vial will be inverted to check that no head space or bubbles are present. The samples will be properly labeled and transported as described above.

A.1.5 Chain of Custody Procedure

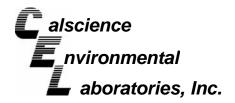
Sample identification documents will be carefully prepared so identification and chain of custody can be maintained and sample disposition can be controlled. The sample identification documents include Chain-of-Custody (COC) records and Daily Field Report forms. Chain of custody procedures are outlined below.

Field Custody Procedures

The field sampler is personally responsible for the care and custody of the samples collected until they are properly transferred.

Samples will have individual labels. The information on these labels will correspond to the COC which shows the identification of individual samples and the contents of the shipping container. The original COC will accompany the shipment and a copy will be retained by the sampler for the client.

The staff person conducting the sampling will determine whether proper custody procedures were followed during the field work.


Transfer of Custody and Shipment

A COC will accompany samples during transfer and shipment. When transferring samples, the individual's relinquishing and receiving the samples will sign, date, and note the time on the COC. This COC documents the sample custody transfer.

Samples will be packaged properly for shipment and dispatched to the appropriate laboratory for analysis, with a separate COC accompanying each shipment. Shipments will be accompanied by the original COC. Samples will be delivered by BAI personnel to the laboratory, or shipped by courier.

A.1.6 Field Records

In addition to sample identification numbers and Chain-of Custody records, Daily Field Report records will be maintained by staff personnel to provide daily records of significant events, observations, and measurements during field investigations. These documents will contain information such as: personnel present, site conditions, sampling procedures, measurement procedures, calibration records, etc. Field measurements will be recorded on the appropriate forms. Entries on the data forms will be signed and dated. The data forms will be kept as permanent records.

November 24, 2009

Tom Venus Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Subject: Calscience Work Order No.: 09-11-0987

> Client Reference: **BP 498**

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/12/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Richard Villafania

Richard Veller

Project Manager

Analytical Report

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: 11/12/09 09-11-0987 EPA 5030B EPA 8015B (M)

Project: BP 498 Page 1 of 1

Pioject. BP 496							Г	age i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1		09-11-0987-1-C	11/09/09 15:30	Aqueous	GC 11	11/16/09	11/17/09 10:17	091116B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	1000	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	103	38-134						
MW-2		09-11-0987-2-C	11/09/09 16:20	Aqueous	GC 11	11/16/09	11/17/09 10:51	091116B01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	58	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	50	38-134						
MW-3		09-11-0987-3-C	11/09/09 16:00	Aqueous	GC 11	11/16/09	11/17/09 11:25	091116B01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	6900	1200	25		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	60	38-134						
Method Blank		099-12-695-691	N/A	Aqueous	GC 11	11/16/09	11/16/09 20:49	091116B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	43	38-134						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Analytical Report

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received:
Work Order No:
Preparation:
Method:
Units:

11/12/09 09-11-0987 EPA 5030B EPA 8260B ug/L

Project: BP 498

Page 1 of 2

1 Toject. Di 490										ıaç	Je 1 01 Z
Client Sample Number				ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
MW-1			09-11-	0987-1-A	11/09/09 15:30	Aqueous	GC/MS BB	11/18/09	11/19/ 03:5		091118L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	130	5.0	10		Methyl-t-Butyl	Ether (MTB	E)	140	5.0	10)
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		47	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	ther (DIPE)		ND	0.50	1	
Ethylbenzene	35	5.0	10		Ethyl-t-Butyl E	Ether (ETBE))	ND	0.50	1	
Toluene	12	0.50	1		Tert-Amyl-Me	thyl Ether (T.	AME)	3.1	0.50	1	
Xylenes (total)	39	0.50	1		Ethanol	,		ND	300	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,2-Dichloroethane-d4	99	80-128			Dibromofluoro	omethane		97	80-127		
Toluene-d8	102	80-120			1,4-Bromofluo	orobenzene		98	68-120		
MW-2			09-11-	0987-2-B	11/09/09 16:20	Aqueous	GC/MS BB	11/19/09	11/19/ 14:0		091119L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	2.0	0.50	1		Methyl-t-Butyl	l Ether (MTB	F)	13	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc		_,	41	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	` ,		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	` ,)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	` ,		ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol	,	· ···-/	ND	300	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	•	Qual
		Limits					•	·····	Limits		
1,2-Dichloroethane-d4	109	80-128			Dibromofluoro	omethane		100	80-127		
Toluene-d8	100	80-120			1,4-Bromofluo	orobenzene		98	68-120		
MW-3			09-11-	0987-3-A	11/09/09 16:00	Aqueous	GC/MS BB	11/18/09	11/19/ 04:5		091118L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	<u>Qual</u>
Benzene	390	5.0	10		Methyl-t-Butyl	Ether (MTB	E)	69	5.0	10)
1,2-Dibromoethane	ND	5.0	10		Tert-Butyl Alc	`	,	ND	100	10	
1,2-Dichloroethane	ND	5.0	10		Diisopropyl Et	` ,		ND	5.0	10	
Ethylbenzene	480	10	20		Ethyl-t-Butyl E	` ,)	ND	5.0	10	
Toluene	27	5.0	10		Tert-Amyl-Me	, ,		ND	5.0	10	
Xylenes (total)	680	5.0	10		Ethanol	,	,	ND	3000	10	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	.0	Qual
<u> </u>		Limits		~~~	<u> </u>		•	(/0/	Limits		~~~
1,2-Dichloroethane-d4	107	80-128			Dibromofluoro	omethane		102	80-127		
Toluene-d8	100	80-120			1,4-Bromofluo			98	68-120		
		=0			,						

DF - Dilution Factor

Qual - Qualifiers

Analytical Report

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received:
Work Order No:
Preparation:
Method:
Units:

11/12/09 09-11-0987 EPA 5030B EPA 8260B ug/L

Project: BP 498

Page 2 of 2

Client Sample Number				ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T I Analyz		QC Batch ID
Method Blank			099-12	-703-1,131	N/A	Aqueous	GC/MS BB	11/18/09	11/18/ 23:4		091118L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTBI	Ξ)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Etl	ner (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control		<u>Qual</u>
1.2-Dichloroethane-d4	111	<u>Limits</u> 80-128			Dibromofluoro	methane		105	<u>Limits</u> 80-127		
Toluene-d8	100	80-120			1,4-Bromofluo			97	68-120		
Method Blank			099-12	-703-1,132	•		GC/MS BB	11/19/09	11/19/		091119L01
									11:4	0	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
<u>Parameter</u> Benzene	<u>Result</u> ND	<u>RL</u> 0.50	<u>DF</u> 1	<u>Qual</u>	Parameter Methyl-t-Butyl	Ether (MTBI	≣)	Result ND	<u>RL</u> 0.50	<u>DF</u> 1	<u>Qual</u>
			_	<u>Qual</u>		`	≣)			<u>DF</u> 1 1	Qual
Benzene	ND	0.50	_	<u>Qual</u>	Methyl-t-Butyl	ohol (TBA)	≣)	ND	0.50	<u>DF</u> 1 1 1	<u>Qual</u>
Benzene 1,2-Dibromoethane	ND ND	0.50 0.50	_	Qual	Methyl-t-Butyl Tert-Butyl Alco	ohol (TBA) ner (DIPE)	,	ND ND	0.50 10	<u>DF</u> 1 1 1	<u>Qual</u>
Benzene 1,2-Dibromoethane 1,2-Dichloroethane	ND ND ND ND ND	0.50 0.50 0.50	1 1 1	<u>Qual</u>	Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Etl	ohol (TBA) ner (DIPE) ther (ETBE)	,	ND ND ND ND ND	0.50 10 0.50	DF 1 1 1 1	<u>Qual</u>
1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50	1 1 1		Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Etl Ethyl-t-Butyl E Tert-Amyl-Met Ethanol	ohol (TBA) ner (DIPE) ther (ETBE)	AME)	ND ND ND ND ND ND	0.50 10 0.50 0.50 0.50 0.50 300	DF 1 1 1 1 1	
1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 Control	1 1 1 1 1	Qual Qual	Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Etl Ethyl-t-Butyl E Tert-Amyl-Met	ohol (TBA) ner (DIPE) ther (ETBE)	AME)	ND ND ND ND ND	0.50 10 0.50 0.50 0.50 300 Control	DF 1 1 1 1 1	<u>Qual</u> <u>Qual</u>
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Surrogates:	ND ND ND ND ND ND ND REC (%)	0.50 0.50 0.50 0.50 0.50 0.50 Control Limits	1 1 1 1 1		Methyl-t-Butyl Tert-Butyl Alcc Diisopropyl Etl Ethyl-t-Butyl E Tert-Amyl-Met Ethanol Surrogates:	ohol (TBA) her (DIPE) ther (ETBE) hyl Ether (T	AME)	ND ND ND ND ND ND ND REC (%)	0.50 10 0.50 0.50 0.50 300 Control Limits	DF 1 1 1 1 1	
1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 Control	1 1 1 1 1		Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Etl Ethyl-t-Butyl E Tert-Amyl-Met Ethanol	ohol (TBA) ner (DIPE) ther (ETBE) hyl Ether (Ta	AME)	ND ND ND ND ND ND	0.50 10 0.50 0.50 0.50 300 Control	DF 1 1 1 1 1	

Quality Control - Spike/Spike Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: 11/12/09 09-11-0987 EPA 5030B EPA 8015B (M)

Project BP 498

Quality Control Sample ID	Matrix	Matrix Instrument			Date I alyzed	MS/MSD Batch Number	
09-11-0986-1	Aqueous	GC 11	11/16/09	11/	16/09	091116S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Gasoline Range Organics (C6-C12)	89	88	38-134	1	0-25		

MMM_

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - Spike/Spike Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: 11/12/09 09-11-0987 EPA 5030B EPA 8260B

Project BP 498

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-11-0985-5	Aqueous	GC/MS BB	11/18/09		11/19/09	091118S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	103	76-124	1	0-20	
Carbon Tetrachloride	102	101	74-134	1	0-20	
Chlorobenzene	101	99	80-120	2	0-20	
1,2-Dibromoethane	97	98	80-120	1	0-20	
1,2-Dichlorobenzene	101	102	80-120	1	0-20	
1,1-Dichloroethene	83	61	73-127	30	0-20	LN,BA,AY
Ethylbenzene	98	92	78-126	7	0-20	
Toluene	101	98	80-120	3	0-20	
Trichloroethene	100	100	77-120	0	0-20	
Vinyl Chloride	91	89	72-126	3	0-20	
Methyl-t-Butyl Ether (MTBE)	118	110	67-121	3	0-49	
Tert-Butyl Alcohol (TBA)	108	96	36-162	11	0-30	
Diisopropyl Ether (DIPE)	102	100	60-138	3	0-45	
Ethyl-t-Butyl Ether (ETBE)	103	100	69-123	3	0-30	
Tert-Amyl-Methyl Ether (TAME)	101	98	65-120	2	0-20	
Ethanol	93	88	30-180	5	0-72	

Quality Control - Spike/Spike Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Date Received: Work Order No: Preparation: Method: 11/12/09 09-11-0987 EPA 5030B EPA 8260B

Project BP 498

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
09-11-0995-2	Aqueous	GC/MS BB	11/19/09		11/19/09	091119S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	103	105	76-124	2	0-20		
Carbon Tetrachloride	100	102	74-134	1	0-20		
Chlorobenzene	100	103	80-120	3	0-20		
1,2-Dibromoethane	97	100	80-120	2	0-20		
1,2-Dichlorobenzene	100	102	80-120	2	0-20		
1,1-Dichloroethene	99	96	73-127	3	0-20		
Ethylbenzene	99	103	78-126	4	0-20		
Toluene	100	101	80-120	2	0-20		
Trichloroethene	103	103	77-120	0	0-20		
Vinyl Chloride	100	100	72-126	0	0-20		
Methyl-t-Butyl Ether (MTBE)	71	16	67-121	13	0-49	LN,AY	
Tert-Butyl Alcohol (TBA)	133	121	36-162	4	0-30		
Diisopropyl Ether (DIPE)	101	102	60-138	1	0-45		
Ethyl-t-Butyl Ether (ETBE)	98	99	69-123	1	0-30		
Tert-Amyl-Methyl Ether (TAME)	99	101	65-120	2	0-20		
Ethanol	99	94	30-180	5	0-72		

MMM_

RPD - Relative Percent Difference , CL - Control Limit

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method:

09-11-0987 EPA 5030B EPA 8015B (M)

N/A

Project: BP 498

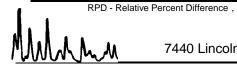
Quality Control Sample ID Matrix		Instrument	Date Analyzed	Lab File	ID LO	LCS Batch Number			
099-12-695-691	Aqueous	GC 11	11/16/09	005F050	1	091116B01			
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers			
Gasoline Range Organics (C6	6-C12)	2000	1590	79	78-120				

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - LCS/LCS Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Date Received: Work Order No: Preparation: Method:


N/A 09-11-0987 **EPA 5030B** EPA 8260B

Project: BP 498

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Numbe	
099-12-703-1,131	Aqueous	GC/MS BB	11/18/09	11/18	/09	091118L	02
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	104	105	80-120	73-127	1	0-20	
Carbon Tetrachloride	103	104	74-134	64-144	1	0-20	
Chlorobenzene	102	101	80-120	73-127	1	0-20	
1,2-Dibromoethane	103	104	79-121	72-128	2	0-20	
1,2-Dichlorobenzene	103	104	80-120	73-127	1	0-20	
1,1-Dichloroethene	106	105	78-126	70-134	1	0-28	
Ethylbenzene	102	103	80-120	73-127	1	0-20	
Toluene	103	103	80-120	73-127	1	0-20	
Trichloroethene	102	103	79-127	71-135	1	0-20	
Vinyl Chloride	97	100	72-132	62-142	3	0-20	
Methyl-t-Butyl Ether (MTBE)	107	109	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	97	91	63-123	53-133	7	0-20	
Diisopropyl Ether (DIPE)	107	110	59-137	46-150	2	0-37	
Ethyl-t-Butyl Ether (ETBE)	106	110	69-123	60-132	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	104	106	70-120	62-128	2	0-20	
Ethanol	89	91	28-160	6-182	2	0-57	

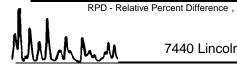
Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Date Received: Work Order No: Preparation: Method:


N/A 09-11-0987 **EPA 5030B EPA 8260B**

Project: BP 498

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Batch Number			
099-12-703-1,132	Aqueous	GC/MS BB	11/19/09	11/19	/09	091119L	01		
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers		
Benzene	101	106	80-120	73-127	5	0-20			
Carbon Tetrachloride	102	107	74-134	64-144	5	0-20			
Chlorobenzene	101	105	80-120	73-127	5	0-20			
1,2-Dibromoethane	98	105	79-121	72-128	7	0-20			
1,2-Dichlorobenzene	100	104	80-120	73-127	4	0-20			
1,1-Dichloroethene	103	107	78-126	70-134	3	0-28			
Ethylbenzene	103	107	80-120	73-127	4	0-20			
Toluene	100	106	80-120	73-127	5	0-20			
Trichloroethene	99	106	79-127	71-135	6	0-20			
Vinyl Chloride	102	107	72-132	62-142	5	0-20			
Methyl-t-Butyl Ether (MTBE)	98	104	69-123	60-132	6	0-20			
Tert-Butyl Alcohol (TBA)	95	94	63-123	53-133	1	0-20			
Diisopropyl Ether (DIPE)	102	107	59-137	46-150	5	0-37			
Ethyl-t-Butyl Ether (ETBE)	98	104	69-123	60-132	6	0-20			
Tert-Amyl-Methyl Ether (TAME)	95	105	70-120	62-128	10	0-20			
Ethanol	92	86	28-160	6-182	7	0-57			

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-11-0987

Qualifier	<u>Definition</u>
AX	Sample too dilute to quantify surrogate.
BA	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
ВН	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
BZ	Sample preserved improperly.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J, DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.

Work Order Number: 09-11-0987

<u>Qualifier</u>	<u>Definition</u>
LR	LCS recovery below method control limits.
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Laboratory Management Program LaMP	Chain	of Custody Record	698	Pa	ge	of	
BP/ARC Project Name: BP 498		Req Due Date (mm/dd/yy):	Standard	Rush TAT	: Yes	No_	<u> </u>
BD/ABC English No.	400	Lab Work Order Number					

Ī	A BP affiliated company	BP/ARC Fa	cility No:										498	-	Lab	Worl	k Orc	ier N	umbe	er:							
Lab Na	me: Calscience			BP/	ARC	Facil	ity Ac	idress	:	286	South	Liverr	nore A	\venu	е				Cons	Consultant/Contractor: Broadbent & Associates, Inc.							
Lab Ac	dress: 7440 Lincoln Way			City	, Sta	ite, ZI	P Co	de:		Live	rmore,	CA							Consultant/Contractor Project No: 08-82-603-001-813								
Lab PN	t: Richard Villafania			Lea	d Re	gulate	ory A	gency		ACE	Н								Address: 1324 Mangrove Ave. Ste. 212, Chico, CA 95926								
Lab Ph	one: 714-895-5494			California Global ID No.: T0600124081								Cons	ultant	/Contr	actor	PM:	Tom	Venus									
Lab Sh	ipping Accnt:		9225	25 Enfos Proposal No: 000QX-0004							Phon	e:	530-6	566-14	400												
Lab Bo	ttle Order No:					Accounting Mode: Provision X OOC-BU OOC-RM Email EDD To: tv								tvenu	us@b	roadb	entinc.com										
Other I	nfo:			Stag	ge:	App	raise	(1)	A	ctivity:	Mor	nitori	ng (1	3)					Invoid	е То	:	BP	/ARC	<u> </u>	Contracto	r	
BP/AR	C EBM: Chuck Carmel				M	atrix		No	. Co	ntain	iers /	Pres	ervai	ive				Requ	ested Analyses Report Type & QC Level								
ЕВМ Р	hone:						;	s																	St	andard _X	
ЕВМ Е	mail;							Containers											6	<u> </u>	ļ				Full Data Pa	ackage	-
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor		Total Number of Con	Unpreserved	H ₂ SO₄	HNO ₃	HCI	Methanol		GRO (8015)	BTEX (8260)	5 Oxys (8260)	EDB (8260)	1,2-DCA (8260)	Ethanol (8260)					Co Note: If sample not Sample" in commer and initial any prepri	nts and single-s	strike out
1	MW-1	11/9/69	1530		х							х			Х	Х	х	х	х	Х							
2	MW-2		1620		×				_			х			х	X,	х	х	х	Х				ļ			
	MW-3		1600		x							×			х	х	х	×	х	х							
44	MW-4				×	_						×			х	х	х	х	X	х					Did not S	amp1e	/
4	Trip Blank																								Did not S Holdarip	Blank	
				<u> </u>																							
		_				<u> </u>																					
				<u> </u>																							
										<u> </u>	<u> </u>																
			<u> </u>	<u> </u>																							
Sample	er's Name: Tracy bedde	5									Affilia	tion			<u> </u>	ate		me			Acc	epted	d By	/ Aff	iliation	Date	Time
Sample	er's Company: BAT				1	2-1	<u> </u>	Sa	3/	BA	I				11/1	1/09	08	00									Pa
Shipme	ent Method: (-(-)	Ship Date: 1	1/11/09				<i>/</i>																				age
<u> </u>	ent Tracking No: 10646246	50		<u>L</u>											<u> </u>		<u> </u>					///		al	A	11/12/09	10450
Speci	al Instructions:			_														 .			,	, V	<u>/</u>				<u>숙</u>
	THIS LINE - LAB USE ONLY: Cust	ody Seals In Pla	ce: Yes / No		Tem	ıp Bla	nk: Y	es / N	0	C	ooler	Temp	on Re	eceipt:			_°F/C		Tri	p Blar	nk: Ye	s / No		M	S/MSD Sample Sub	mitted: Yes /	No 4

BP/ARC LaMP COC Rev. 6 01/01/2009

Calscience

Laboratories, inc

WORK ORDER #: **09-11-** ∅ ¶ 🛭 🗗

SAMPLE RECEIPT FORM

Cooler \(\frac{1}{2}\) of \(\frac{1}{2}\)

CLIENT: Broadbent	DATE:	11/12/	09_
☐ Sample(s) outside temperature criteria (PM/APM contacted by:). ☐ Sample(s) outside temperature criteria but received on ice/chilled on same d		☐ Sample	
☐ Received at ambient temperature, placed on ice for transport by Co Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs or		Initial:	40
Ambient Temperature. E. Ambient E. Motalo Olliy E. F. Obe	Offig		
CUSTODY SEALS INTACT: Cooler	□ N/A	Initial:	
SAMPLE CONDITION:	Yes	No N	I/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete.	. Thulala		
Collection date/time, matrix, and/or # of containers logged in based on sample labels.	. "414°1		
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.			
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	9		
Sample container(s) intact and good condition			
Correct containers and volume for analyses requested			
Analyses received within holding time	Ø		
Proper preservation noted on COC or sample container	. F		
☐ Unpreserved vials received for Volatiles analysis	_		
Volatile analysis container(s) free of headspace	. Z		\supset
Tedlar bag(s) free of condensation	. 🗆	ر 🗆	Z
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □	∃TerraCore:	s® □	
Water: □VOA ☑VOAn □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB □]1AGB na₂ □1/	∖GB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	; □1PB □]500PB □500F	² B na
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □			
Air: □Tedlar [®] □Summa [®] Other: □ Trip Blank Lot#: ראסן אַ	iffly (Checked by:	<u> </u>
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E:	•	eviewed by:	
Preservative: h: HCL n: HNO3 na2:Na2S2O3 Na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f	: Field-filtered	Scanned by:	11_

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 4Q09 GEO_WELL 498

Facility Global ID: T0600124081
Facility Name: ARCO #0498
File Name: GEO_WELL.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 12/22/2009 3:38:29 PM

Confirmation Number: 1774267911

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

<u>Submittal Type:</u> EDF - Monitoring Report - Quarterly

Submittal Title: 4Q09 GW Monitoring

 Facility Global ID:
 T0600124081

 Facility Name:
 ARCO #0498

 File Name:
 09110987.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 12/8/2009 11:53:33 AM

Confirmation Number: 9943406462

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California