

Chuck Carmel Remediation Management Project Manager **RECEIVED** By Alameda County Environmental Health 9:25 am, May 01, 2015

> PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: chuck.carmel@bp.com

April 30, 2015

 Re: First Quarter 2015 Groundwater Monitoring Report, Updated Conceptual Site Model, and Case Closure Request Atlantic Richfield Company Station #498
 286 South Livermore Ave, Livermore, California ACEH Case #RO0002873

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by,

Chuck Carmel Remediation Management Project Manager

Attachment

FIRST QUARTER 2015 GROUNDWATER MONITORING REPORT, UPDATED CONCEPTUAL SITE MODEL, AND CASE CLOSURE REQUEST Atlantic Richfield Company Station #498 286 South Livermore Avenue Livermore, Alameda County, California

Prepared for:

Mr. Chuck Carmel Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583

Prepared by:

Broadbent & Associates, Inc. 4820 Business Center Drive, Suite 110 Fairfield, CA 94534

April 30, 2015

No. 08-82-603

Creating Solutions. Building Trust.

April 30, 2015

Project No. 08-82-603

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

 RE: First Quarter 2015 Groundwater Monitoring Report, Updated Conceptual Site Model, and Case Closure Request
 Atlantic Richfield Company Station #498
 286 South Livermore Ave, Livermore, Alameda County, California
 ACEH Case #RO0002873; GeoTracker Global ID #T0600124081

Dear Mr. Carmel:

Broadbent & Associates, Inc. (Broadbent) is pleased to submit this *First Quarter 2015 Groundwater Monitoring Report, Updated Conceptual Site Model, and Case Closure Request* for Atlantic Richfield Company Station #498 located at 286 South Livermore Avenue, Livermore, Alameda County, California (Site). This report has been prepared on behalf of Atlantic Richfield Company (a BP affiliated company) for submittal to Alameda County Environmental Health (ACEH) for use in evaluation of the Site for closure under the State Water Resources Control Board's Low-Threat Underground Storage Tank Case Closure Policy.

Please do not hesitate to contact us at (707) 455-7290 if you should have any questions or require additional information.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Nicholas Vrdoljak **Staff Geologist**

Kristene Tidwell, P.G., C.Hg. Associate Hydrogeologist

cc: Mr. Jerry Wickham, Alameda County Environmental Health (submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

FIRST QUARTER 2015 GROUNDWATER MONITORING REPORT, UPDATED CONCEPTUAL SITE MODEL, AND CASE CLOSURE REQUEST

Atlantic Richfield Company Station No. 498 286 South Livermore Avenue, Livermore, California Fuel Leak Case No. RO0002873

TABLE OF CONTENTS

<u>No.</u>	<u>Sectio</u>	<u>on</u>	Page	
1.0	INTRC	INTRODUCTION		
	1.1	Site Setting	1	
	1.2	Site Background	1	
	1.3	Document Purpose and Organization	2	
2.0	FIRST	QUARTER 2015 MONITORING REPORT	2	
	2.1	Summary	2	
	2.2	Activities Conducted and Results	3	
	2.3	Discussion	4	
	2.4	Recommendations	4	
	2.5	Limitations	4	
3.0	JUSTIF	FICATION FOR SITE CLOSURE	4	
	3.1	General Criteria	4	
	3.2	Media-Specific Criteria – Groundwater	6	
	3.3	Media-Specific Criteria – Petroleum Vapor Intrusion to Indoor Air	6	
	3.4	Media-Specific Criteria – Direct Contact and Outdoor Air Exposure	6	
	3.5	Recommendation for Case Closure	7	
4.0	LIMIT	ATIONS	7	
5.0	REFER	ENCES	7	

LIST OF DRAWINGS

Drawing 1	Site Location Map
Drawing 2	Site Map with Well and Boring Locations
Drawing 3	Groundwater Elevation Contours and Analytical Summary Map, February 2015
.	

- Drawing 4 GRO Isoconcentration Contour Map, February 2015
- Drawing 5 Benzene Isoconcentration Contour Map, February 2015
- Drawing 6 MTBE Isoconcentration Contour Map, February 2015

LIST OF TABLES

- Table 1 Conceptual Site Model
- Table 2 Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
- Table 3 Summary of Fuel Additives Analytical Data
- Table 4 Historical Groundwater Gradient - Direction and Magnitude

Page

LIST OF FIGURES

- Figure 1 MW-1 Concentrations and Groundwater Elevations vs Time
- Figure 2 MW-2 Concentrations and Groundwater Elevations vs Time
- Figure 3 MW-3 Concentrations and Groundwater Elevations vs Time
- Figure 4 MW-4 Concentrations and Groundwater Elevations vs Time

APPENDICES

- Appendix A Detailed Site Background
- Appendix B Historical Soil and Groundwater Data
- Appendix C Historical Soil Boring / Monitoring Well Logs and Geologic Cross-Sections
- Appendix D Field Methods
- Appendix E Field Data Sheets
- Appendix F Laboratory Report and Chain-of-Custody Documentation
- Appendix G GeoTracker Upload Confirmation Receipts

FIRST QUARTER 2015 GROUNDWATER MONITORING REPORT, UPDATED CONCEPTUAL SITE MODEL, AND CASE CLOSURE REQUEST

Atlantic Richfield Company Station No. 498 286 Livermore Avenue, Livermore, California Fuel Leak Case No. RO0002873

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company– (ARC, a BP affiliated company) Broadbent & Associates, Inc. (Broadbent) has prepared this *First Quarter 2015 Groundwater Monitoring Report, Updated Conceptual Site Model (CSM), and Case Closure Request* (CCR) for the Atlantic Richfield Company (ARC) Station No. 498 (herein referred to as Station No. 498), located at 286 South Livermore Avenue in Livermore, California (Site). This CSM and CCR was prepared in order to evaluate the Site's eligibility to be closed under the California State Water Resources Control Board's (CSWRCB) *Low Threat Underground Storage Tank Case Closure Policy* (LTCP; CSWRCB, 2012). This CSM and CCR includes discussions on the Site background and previous environmental activities, regional and Site geology and hydrogeology, and justification for case closure. Additionally included in this report is the First Quarter 2015 groundwater monitoring results.

1.1 Site Setting

The Site is an active ARC-branded service station located at the northern corner of the intersection of South Livermore Avenue and Third Street in Livermore, California. The land use in the immediate vicinity of the Site is mixed commercial and residential. Current structures at the Site include three underground storage tanks (USTs), two fuel dispenser islands with a total of four dispensers, and a station building. The majority of the Site is paved with asphalt and concrete. The location of the Site is presented in Drawing 1. A Site Plan that shows current and former well locations is provided as Drawing 2. A Groundwater Elevation Contour Map presenting the most current groundwater data (February 2015) is provided as Drawing 3.

The Site is bounded by the two-lane Third Street to the southeast, the two-lane South Livermore Avenue to the southwest, an optometry office to the northwest, and a residential property to the northeast. A Shell Station formerly resided on the property immediately southeast of the Site across Third Street. This station is identified as a closed leaking UST case, ACEH Fuel Leak Case No. RO0002525 / GeoTracker Global ID No. T0600156427, on the State Water Resources Control Board's Geotracker website. The environmental case was closed in 2007.

1.2 Site Background

The Site has operated as a gasoline fueling station since the environmental case was open in 1991. The Site is likely to remain a service station for the foreseeable future. A detailed history of previous Site activities is presented in Appendix A. Historic soil and groundwater data are presented in Appendix B. Copies of available soil boring and monitoring well construction logs and geologic cross-sections are provided in Appendix C.

FIRST QUARTER 2015 GROUNDWATER MONITORING REPORT, UPDATED CONCEPTUAL SITE MODEL, AND CASE CLOSURE REQUEST

Atlantic Richfield Company Station No. 498 286 Livermore Avenue, Livermore, California Fuel Leak Case No. RO0002873

1.3 Document Purpose and Organization

The purpose of this document is to evaluate the current Site conditions as presented in Broadbent's April 2014 Additional Soil & Groundwater Investigation and Conceptual Site Model report and present the case for Site closure under the LTCP. The following section presents justification for closure based on the CSM. The CSM is presented as Table 1. Tables 2 and 3 present historical and current groundwater analytical data. Table 4 summarizes historical and current groundwater gradients. Additionally, the groundwater monitoring results from First Quarter 2015 are presented herein.

In order to evaluate Site conditions against the LTCP, each category in the policy has been individually evaluated using the data presented in the CSM (Table 1). These evaluations are presented in the following sections.

2.0 FIRST QUARTER 2015 MONITORING REPORT

WORK PERFORMED THIS QUARTER (First Quarter 2015):

- 1. Submitted Fourth Quarter 2014 Quarterly Monitoring Report on January 15, 2015.
- 2. Conducted groundwater monitoring/sampling for First Quarter 2015 on February 10, 2015.

WORK SCHEDULED FOR NEXT QUARTER (Second Quarter 2015):

1. Submit First Quarter 2015 Groundwater Monitoring Report, Updated Conceptual Site Model, and Case Closure Request (contained herein).

Quarterly

2. No other activities are scheduled for Second Quarter 2015.

2.1 Summary

QUARTERLY MONITORING PLAN SUMMARY:

Groundwater	level	gauging:
Groundwater		Sunging.

	MW-1, MW-2, MW-3, MW-4, MW-5A/B and MW-6A/B	Quarterry
Groundwater sample collection:	MW-1, MW-2, MW-3, MW-4, MW-5A/B and MW-6A/B	Quarterly
Biodegradation indicator parameter monitoring:	None	(Quarterly)

QUARTERLY RESULTS SUMMARY:

LNAPL

LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter:	None	(gal)
Cumulative LNAPL recovered:	None	(gal)

Groundwater Elevation and

Gradient:				
Depth to groundwater:	29.88 ft (MW-1)	(ft below TOC)		
	to 44.04 ft (MW-6A)			
Gradient direction:		(compass direction)		
	Northwest			
Gradient magnitude:	0.02	(ft/ft)		
Average change in elevation:	+10.76	(ft since last		
		measurement)		
Laboratory Analytical Data				
Summary:	 Analytical Results are as follow GRO was detected in faconcentration of 2,000 Benzene was detected concentration of 350 µ Ethylbenzene was detected maximum concentration Total Xylenes were deta maximum concentration MTBE was detected in concentration of 1,700 Toluene was detected 	 ytical Results are as follows: GRO was detected in four wells with a maximum concentration of 2,000 μg/L in well MW-3. Benzene was detected in three wells with a maximum concentration of 350 μg/L in well MW-3. Ethylbenzene was detected in three wells with a maximum concentration of 30 μg/L in well MW-3. Total Xylenes were detected in two wells with a maximum concentration of 11 μg/L in well MW-1. MTBE was detected in four wells with a maximum concentration of 1,700 μg/L in well MW-6a. 		

concentration of 2.7 μ g/L in well MW-3.

2.2 Activities Conducted and Results

First Quarter 2015 groundwater monitoring and sampling activities were conducted on February 13, 2015 by Broadbent personnel in accordance with the First Quarter monitoring plan. No irregularities were noted during gauging. Light Non-Aqueous Phase Liquid (LNAPL) was not present in the wells monitored during this event. Depth to groundwater ranged from 29.88 ft in MW-1 to 44.04 ft in MW-6A. As shown on Drawing 3, groundwater gradient on February 13, 2015 was 0.02 ft/ft in a northwest direction. Current and historic groundwater elevations and groundwater sample analytical data are provided in Tables 2 and 3. Historical groundwater gradient information is provided in Table 4. Drawing 3 presents a groundwater elevation contours and analytical summary map for February 13, 2015. Field procedures used during groundwater monitoring are provided in Appendix D. Field data sheets are included in Appendix E.

Groundwater samples were collected on February 13, 2015. No irregularities were reported during sampling with the exception of MW-4 containing insufficient water for sampling. Samples were submitted to Test America Laboratories, Inc. (Test America) of Irvine, California

for analyses of Gasoline Range Organics, by EPA Method 8015B, and for benzene; toluene; ethylbenzene; total xylenes; methyl-t-butyl ether (MTBE); ethyl-t-butyl ether (ETBE); tert-amylmethyl ether (TAME); isopropyl ether (DIPE); tert-butyl alcohol (TBA); 1,2-dibromoethane (EDB); 1,2-dichloroethane; and ethanol by EPA Method 8260B. No irregularities were encountered during analysis of the samples. Laboratory analytical report and chain of custody record are provided in Appendix C. Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix F.

Results of the sampling event are included in the laboratory analytical data summary above. These results indicate that the highest concentrations of petroleum hydrocarbons are present in well MW-3. Further discussion of these results is presented below.

2.3 Discussion

Review of historical groundwater gradient data indicates that levels were within historical limits for all wells. Groundwater elevations yielded a potentiometric groundwater gradient to the northwest at 0.02 ft/ft, consistent with the historic gradient data presented in Table 4.

Review of historical data indicates that concentration levels for the First Quarter 2015 were generally within historical limits with the exception of the recently installed MW-5A and MW-6A wells. MW-5A increased in concentration for benzene, ethylbenzene, and GRO relative to the Second Quarter 2014 sampling event, which was the last time MW-5A was sampled. MW-6A increased in concentration for GRO and MTBE relative to the Second Quarter 2014 sampling event, which was also the last time well MW-6A was sampled. Tables 2 and 3 show the change in concentrations from the previous sampling event. The data also indicates that well MW-3 has consistently maintained the highest residual concentrations of petroleum hydrocarbons at the site relative to the other wells.

Only seven of the eight wells were sampled during the First Quarter sampling event due to insufficient water in one of the wells (MW-4). The nearly dry wells are likely a result from the ongoing drought conditions seen throughout the surrounding region.

3.0 JUSTIFICATION FOR SITE CLOSURE

As indicated in Section 1.3 above, the Site was evaluated for Closure based on comparing data presented in the CSM (Table 1) against the LTCP (CSWRCB, 2012). Closure criteria in the LTCP are organized into the following categories:

- General Criteria
- Media Specific Criteria-Groundwater
- Media Specific Criteria Petroleum Vapor Intrusion to Indoor Air
- Media Specific Criteria Direct Contact and Outdoor Air Exposure

The following sections present the details of the evaluation.

3.1 General Criteria

The general criteria relates to the Site use, presence of free product, petroleum sources, and completeness of the Site understanding. As evidenced in the data presented in the CSM, a sufficiently good understanding of Site conditions, on- and offsite receptors, and Site history has been established. These general criteria and a discussion on how the Site is consistent with these criteria are presented below.

The unauthorized release is located within the service area of a public water system

The Site is located within the Zone 7 Water Agency service area.

The unauthorized release consists only of petroleum

The original release source at the Site is uncertain, however only petroleum components have historically been detected. Additionally, concentrations have been located in and around the UST basin and product lines. All analytical data collected to date has shown no indication of any other contaminant releases other than petroleum (Table 2, Table 3, and Appendix A). The Site has been a retail service station since at least 1993 based on a review of historical aerial photographs and there is no evidence that any other activities have occurred at the Site which may have caused non-petroleum releases.

The unauthorized release has been stopped

The USTs, product piping, and product dispensers where the releases are thought to have occurred have been removed and replaced; thereby, removing the possible leak sources (Table 1; Appendix A).

Free product has been removed to the maximum extent practicable

Free product has never been measured in Site wells since monitoring operations began. As free product has not been observed for over 15 years, removal of the free product has been completed to the maximum extent practicable.

A conceptual site model (CSM) that assesses the nature, extent, and mobility of the release has been developed

A CSM has been prepared and updated for this Site and is presented as Table 1.

Secondary source has been removed to the extent practical

The dispensers and product piping were upgraded in 2001. It is not clear whether overexcavation activities occurred during these activities, although the sample data from this area indicate the fuel delivery system did not have a release, leaving the USTs as the most likely potential source. However, the highest concentrations of hydrocarbon constituents have historically been observed in well MW-3, which is located upgradient from the UST system. If the USTs were the source of the release, MW-1 would typically contain the highest concentrations due to its downgradient position from the USTs. Residual petroleum concentrations in groundwater indicate no significant secondary sources are present. Therefore, a secondary source has been removed to the extent practical.

Soil and groundwater have been tested for MTBE and results reported in accordance with Health and Safety Code 25296.15

Soil and groundwater samples collected have been analyzed for methyl tert-butyl ether (MTBE). Historical MTBE analytical data are included in Tables 2 and 3 and Appendix B.

Nuisance as defined by the Water Code section 13050 does not exist at this site

A nuisance as defined by the water code does not exist at this Site.

3.2 Media-Specific Criteria - Groundwater

The LTCP lists four scenarios for groundwater plumes. According to the petroleum plume sizes indicated in Drawings 4, 5, and 6, the plume is less than 100 feet in length when presuming the UST system and piping is the source. Under worst-case scenarios, if an offsite source is presumed and plume length is measured from MW-3, then the length closely approaches 100 feet. Current hydrocarbon concentrations do not exceed the maximum levels listed within the LTCP and free product has never been observed at the Site. A previous sensitive receptor survey indicated that one domestic or water supply wells was located within a ½ mile radius of the Site. This well is located 400 feet east of the Site (upgradient), as presented in the CSM (Table 1). The closest surface water is the Arroyo Mocho Stream, located approximately 0.62 miles south of the Site (Table 1). Site impacts have been defined downgradient to the highest degree possible. Further definition is impossible due to the denial of offsite access by the neighboring properties. Based on these criteria, the Site is eligible for closure under the LTCP groundwater category 1.

3.3 Media Specific Criteria – Petroleum Vapor Intrusion to Indoor Air

The Site is an active service station, and therefore the LTCP considers that petroleum vapors from onsite fueling activities are a far greater risk than those associated with exposure to vapors from historic petroleum releases. Concentrations above cleanup levels do not extend beyond the property boundaries with the possible exception of MTBE. Currently, MTBE does not seem to extend into any offsite area; however, previously it could have been present under the adjacent parking lot. Due to the relatively small MTBE plume size, it is unlikely that MTBE impacts will extend a significant distance in the direction of the parking lot. Regardless, Broadbent unsuccessfully attempted to negotiate access to assess the offsite impacts in this parking lot in 2013. Offsite MTBE vapor intrusion is considered of negligible risk due to the inherently low vapor risk of MTBE. Any additional assessment is impossible due to the inaccessibility of the area. Because of the lack of risk to offsite areas, lack of access, small aerial extent of MTBE, and the current Site use as a gas station, this Site data meets the criteria for closure according to the LTCP.

3.4 Media Specific Criteria – Direct Contact and Outdoor Air Exposure

Soil borings were advanced at the Site several times and soil samples were collected from each boring. Soil samples have historically been non-detectable at shallow depths by laboratory reporting limits, with the exception of the samples collected in 2001 during the fuel delivery

system upgrade. Samples at approximately 3 to 5 feet bgs were collected during this investigation. Petroleum impacts that appeared in the 2001 investigation are shown on the next page in Table A. Several soil borings have been advanced since 2001 and results indicate that impacts are concentrated at 25 ft bgs and deeper. These concentrations are well below the values listed in Table 1 of the LTCP. Locations of the soil samples collected, as well as further historical data, are presented in Appendix B.

Sample Identification	Sample Date	Benzene	Fthylbenzene
and Denth	oumple Date	(mg/kg)	(mg/kg)
	C / 1 / 2 0 0 1		
DP-1 @ 3.0	6/1/2001	<0.0010	0.0010
DP-3 @ 3.5'	6/1/2001	0.11	1.2
PL-2 @ 4.5'	6/1/2001	<0.0050	<0.0050
LTCP Maximum* - 0-5	5/5-10 feet bgs	8.2/12	89/134

Table A: Representative Maximum Concentrations of Petroleum Components in Soil Samples - 0 to 5 feet bgs

*Under a commercial/industrial exposure setting mg/kg = milligrams per kilogram

Soil samples collected from 2001 (mentioned above) were not analyzed for naphthalene or poly-aromatic hydrocarbons (PAHs). Naphthalene has not been included in the analysis of past soil samples collected at the Site. This apparent data gap can be addressed using the published relative concentrations of naphthalene and benzene in gasoline. This approach has been used by State Water Board staff in recent Closure Orders pursuant to the Policy (e.g., SWB WQ Order 2013-0003): Gasoline mixtures contain an average of approximately 2 percent benzene and 0.25 percent naphthalene (Potter and Simmons 1998); therefore, benzene concentrations can be directly substituted for naphthalene concentrations with a safety factor of approximately 10. The maximum benzene concentrations from the Site are less than the naphthalene criteria in Table 1 of the Policy. Therefore, the estimated naphthalene concentrations at the Site meet the Policy criteria for direct contact by a factor of approximately 10. Based on the data presented herein and in Appendix B, remaining petroleum concentrations in soil appear to be within acceptable levels for closure under the LTCP.

3.5 Recommendation for Case Closure

As presented above and in the attached CSM table (Table 1), this Site appears to meet all applicable criteria for case closure under the LTCP. Over 10 years of soil and 5 years of groundwater monitoring data and effective remedial efforts have shown that petroleum hydrocarbons exhibit a stable-to-decreasing trend at the Site. Adequate Site characterization both on- and off-Site to the best extent possible, evaluation of receptors, historical descriptions, and technical analysis have been performed at the Site and in this document to support a recommendation for case closure. We hereby recommend that a determination of No Further Action be made for this Site. Upon concurrence of this recommendation from the ACEH, closure activities including well decommissioning should be carried out.

4.0 LIMITATIONS

This document has been prepared for the exclusive use of Atlantic Richfield Company. The findings presented in this report are based upon the observations of previous consultants' field personnel, points of investigation and results of laboratory tests. Services were performed in accordance with the generally accepted standard of practice at the time this report was written. No warranty, expressed or implied, is intended. It is possible that variations in the soil or ground-water conditions could exist beyond the points explored in this investigation. Also, changes in site conditions could occur at some time in the future due to variations in rainfall, temperature, regional water usage or other factors.

5.0 REFERENCES

- Alameda County Environmental Health, September 9, 2013. Case File Review for Fuel Leak Case No. RO0002873 and GeoTracker Global ID T0600124081, ARCO #0498, 286 South Livermore Avenue, Livermore, CA. Letter from Mr. Jerry Wickham (ACEH) to Mr. Chuck Carmel (Atlantic Richfield Company).
- Broadbent & Associates, Inc., February 6, 2009. *Soil and Ground-Water Investigation and Fourth Quarter, 2008 Quarterly Monitoring Report,* Atlantic Richfield Company Station #498, 286 South Livermore Avenue, Livermore, CA.
- Broadbent & Associates, Inc., April 12, 2010. *Soil and Groundwater Investigation Work Plan Addendum,* Atlantic Richfield Company Station #498, 286 South Livermore Avenue, Livermore, CA.
- Broadbent & Associates, Inc., May 3, 2013. *Soil and Groundwater Investigation Report,* Atlantic Richfield Company Station #498, 286 South Livermore Avenue, Livermore, CA.
- Broadbent & Associates, Inc., April 23, 2014. Additional Soil and Groundwater Investigation,
 First Quarter 2014 Groundwater Monitoring, and Conceptual Site Model Report, Atlantic
 Richfield Company (A BP affiliated company) Station No. 498, 286 South Livermore
 Avenue, Livermore, California.
- California Department of Water Resources, 2003. San Francisco Hydrologic Region Livermore Valley Groundwater Basin. Bulletin No. 118.
- California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee, June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda County and Contra Costa Counties, CA.

- California Regional Water Quality Control Board, San Francisco Bay Region, November 2007 (Revised May 2008; ESL Workbook updated February 2013). Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater.
- Delta, September 19, 2001. *Product Line and Dispenser Island Sampling Results*, ARCO Station No. 498, 286 South Livermore Avenue, Livermore, CA.
- Potter, T.L. and K.E. Simmons, 1998. Composition of Petroleum Mixtures. TPHCWG Series, Vol. 2 Amherst Scientific Publishers, MA.
- San Francisco Bay Regional Water Quality Control Board, February 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater.
- State Water Resources Control Board, 2012. Low-Threat Underground Storage Tank Case Closure Policy, August 17.
- URS, February 15, 2005. *Site Assessment Report,* ARCO Service Station #0498, 286 South Livermore Avenue, Livermore, California.
- Zone 7 Water Agency, September 2005. *Description of Zone 7 Groundwater Basin*. Groundwater Management Plan for Livermore-Amador Valley Groundwater Basin.

DRAWINGS

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology	Regional	The Site is located within the Livermore Valley Groundwater Basin. According to the <i>California Groundwater, Bulletin 118</i> , the Livermore Valley basin, "extends from the Pleasanton Ridge east to the Altamont Hills (about 14 miles) and from the Livermore Upland north to the Orinda Upland (about 3 miles)." The valley's principal streams include Arroyo Valle, Arroyo Mocho, and Arroyo las Positas; all converging to form Arroyo de la Laguna. These natural drainages are located approximately 1.3 miles north (Arroyo las Positas), 0.6 miles south (Arroyo Mocho), and 2.5 miles southwest (Arroyo Valle) of the Site.	None	NA
		The groundwater basin is bounded by several faults; these faults act as barriers to the lateral movement of groundwater and divide the groundwater basin into several subbasins. The water-bearing materials in the Livermore basin include the Livermore Formation, the Tassahara Formation, and valley-fill.		
		Natural recharge occurs primarily along the uplands and edges of the Livermore Valley groundwater basin, through the arroyos during periods of precipitation and winter flow, by underground flow, and by applied irrigation water seeping into the ground. The basin is also recharged by controlled releases from the South Bay Aqueduct along with local surface water stored at Del Valle reservoir into Arroyo Valle and Arroyo Mocho. Mine quarrying pits on the west side of the Livermore Valley are currently being used for storm water collection to assist in recharge of groundwater in the basin (Zone 7 Water Agency, 2005).		
		The basins' groundwater is a multi-layered system with an unconfined upper aquifer overlying deeper semi-confined to confined aquifers separated by clay aquitards. These clay aquitards impede the vertical movement of groundwater between the upper and deeper aquifers. Most of the water for municipal and agricultural use is pumped from the deeper aquifers. The general groundwater gradient within the basin is to the west, then south towards Arroyo de la Laguna. Groundwater near the center of Livermore Valley flows toward a cone of depression located west of the city of Livermore near gravel mining areas. The groundwater depression is thought to have been created by extraction of groundwater for municipal and agricultural use and dewatering for gravel quarrying (Zone 7 Water Agency, 2005). The extraction of		

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology (Cont.)	Site	The Site elevation is approximately 500 feet above mean sea level; regional topography slopes from east to west (USGS Topographic Map, Livermore Quadrangle – 7.5 Minute Series). As stated above, the regional surface and groundwater flow is generally to the west. The historical groundwater flow direction at the Site has been generally to the west-northwest (Table 3). Since 2008, the hydraulic gradient has remained consistent at 0.020 ft/ft (Table 3), only deviating to 0.010 ft/ft once during Second Quarter 2010. Historical depth to groundwater measurements have ranged from approximately 26.69 to 50.25 ft bgs (Table 1). In general, the soil underlying the site primarily consists of a layer of sand and silty sand that extends to approximately 34 ft bgs with two to four foot thick interbedded lenses of clay and silty clay. At approximately 34 feet bgs the geology transitions to clay and silty clay with interspersed lenses of sand and silt. A small layer of sand and/or silty sand appears to be present beneath the silt and/or clay layer between approximately 57 and 66 ft bgs. Beneath this sand/silty sand layer is another clay and/or silty clay layer extending from a depth of approximately 66 to at least 75 ft bgs, the maximum depth explored. Geologic cross-sections are provided as Drawings 4 through 6 and boring logs are presented in Appendix D.	None	NA
Surface Water Bodies		The principal surface water bodies in the site vicinity are Arroyo Mocho to the southwest and Arroyo Las Positas to the north, located approximately 4,100 feet and 7,100 feet from the Site, respectively.	None	NA
Nearby Wells		In 2013, a Sensitive Receptor Survey was carried out to identify the presence of water wells within a 2,000 foot radius of the Site. The survey indicated the presence of four domestic wells, three municipal wells, and three wells of unknown use. The nearest well to the Site is a domestic well located approximately 400 feet in the upgradient direction; wells in the downgradient direction from the Site were not identified in the Sensitive Receptor Survey. Additional sensitive receptor data is provided in Appendix L.	None	NA

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern	Light-Non Aqueous Phase Liquid (LNAPL)	Measureable LNAPL has never been detected on-Site. Therefore LNAPL is not considered a constituent of concern.	None	NA
	Gasoline Range Organics	 Historically, concentrations of GRO have been detected in monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5A. GRO has not been detected in MW-2 and MW-4 since November 11, 2009 and October 25, 2011, respectively. The historical maximum detected concentration of GRO was recorded on December 29, 2008 in well MW-3 at 28,000 µg/L. The maximum detected concentration within the last four monitoring events was reported in well MW-3 at 3,500 µg/L, indicating a decreasing GRO trend over time. GRO has never been detected in the more recently installed MW-5B, MW-6A, nor MW-6B. Based on recent and historical data, the GRO plume has been defined and appears to be restricted to the central portion of the Site. The GRO plume length is less than 100 feet when measured from the UST/product piping, which is the presumed source of contamination. As a worst case scenario, if an offsite source of GRO exists and the plume length is measured from MW-3, the length appears to be approaching the 100 foot limit for closure under criteria 1. A GRO isoconcentration contour map for the First Quarter 2015 groundwater monitoring and sampling event is presented as Drawing 4. GRO concentration trend graphs for wells MW-1 through 4 are included as Figures 1 through 4. Decreasing trends indicate that the concentrations will continue to degrade over time. 	None	NA
	Benzene	Historically, concentrations of benzene have been detected in monitoring wells MW-1, MW-2, and MW-3; benzene was detected during a single monitoring event in MW-4 on March 20, 2009. Benzene was detected during a single monitoring event in MW-5A on February 2014. The historical maximum concentration of benzene was reported in well MW-3 at 960 µg/L on April 24, 2013. The maximum detected concentration within the last four monitoring events was reported in well MW-3, which is also the historical maximum detection referenced above.	None	NA

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern (Cont.)	Benzene (Cont.)	Benzene has never been detected in the recently installed wells MW-5B, MW-6A, and MW-6B. Based on recent and historical data, the benzene plume has been delineated and appears to be isolated within the central portion of the Site. A benzene isoconcentration contour map for the First Quarter 2015 groundwater monitoring and sampling event is presented as Drawing 5. Benzene concentration trend graphs for wells MW-1 through 4 are included in Figures 1 through 4; the graphs indicate a stable to decreasing trend in benzene concentrations over time.		
	Methyl tert- butyl ether (MTBE)	 Historically, concentrations of MTBE have been detected in monitoring wells MW-1, MW-2, MW-3, and MW-4. MTBE has also been detected in the recently installed MW-5A, 5B, and 6A. The historical maximum MTBE concentration was reported in well MW-6A at a concentration of 1700 µg/L on February 10, 2015. Based on recent and historical data, the MTBE plume has been delineated and appears to be generally isolated onsite in two separate plumes, with the potential exception along the northwestern property boundary. Access to the offsite areas for further study has not been secured by the property owners. Also, the most recent groundwater monitoring data indicates no offsite presence of MTBE. During Broadbent's 2013 Additional Soil and Groundwater Investigation, SB-19 was drilled on Second Street, northwest of the Site and as close as access issues would allow. The soil and groundwater samples obtained from SB-19 were non-detect for MTBE. An MTBE isoconcentration contour map for the First Quarter 2015 groundwater monitoring and sampling event is presented as Drawing 6. MTBE concentration trend graphs for wells MW-1 through 4 are presented in Figures 1 through 4. The graphs indicate that MTBE concentrations have generally decreased over time and will continue to degrade in the future. 	None	NA

CSM Element CSM Sub- Element	Description	Data Gap	How to Address
Potential Onsite Sources	The exact release source and volume released at the Site is unknown. The minimal concentrations observed in soil sample data collected from beneath the product lines and dispensers during upgrade activities conducted in 2001 are not indicative of a release from the fuel delivery system. It is noted that since the USTs were not removed during upgrade activities, it is difficult to assess potential contamination associated with a release from the USTs. Historically, the highest concentrations observed in groundwater have been from well MW-3, which is positioned in a general upgradient location onsite and cross-gradient of the USTs. This appears to suggest the possibility of an offsite source contributing to elevated hydrocarbon concentrations onsite in the southern portion of the property.	None	NA
Offsite	 A former Shell service station was located southeast of the Site, directly across Third Street. Three USTs, one waste oil tank, and associated dispensers and product piping were removed from the site in 2003. Subsequent investigations included numerous soil and groundwater sampling events. The case associated with this site was closed in June 2007. The Closure letter from the ACEH noted that concentrations of 540 μg/L TPHg and 3.5 μg/L MTBE remained in shallow groundwater. Due the relatively minimal petroleum compounds noted in soil and groundwater samples at this adjacent Shell site and the fact that the case is closed, it appears unlikely that this adjacent Shell station is an offsite source. However, based on the data collected from recently installed CPT boring SB-20 located immediately downgradient of the former Shell location, it appears that residual contamination within groundwater in the more shallow clay layer, presumably from the former Shell Station, is present in the form of GRO at a concentration of 1,400 µg/L. It is possible that his residual contamination has migrated within the shallow groundwater to Station 498. 	Potential, unknown offsite sources	It is unlikely that this is able to be addressed due to: limited available records and inability to access the offsite properties.

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential Sources (Cont.)	Offsite (Cont.)	Additionally, the highest concentration of MTBE was observed at MW-6A, which is upgradient from the UST system. Due to the absence of any other petroleum infrastructure in the immediate area, it is possible that the MTBE impacts have migrated from an unknown area upgradient to the east. Adjacent landowners have not permitted access for additional study in the area.		
Nature and Extent of Environmental Impacts	Extent in Soil	Soil contamination appears defined and limited to the Site boundaries. Based on historical data, the highest recently observed concentrations of GRO and benzene were noted in CPT boring SB-15 at concentrations of 1,500 mg/kg and 4.8 mg/kg, respectively, in 2013 at a depth of approximately 38 feet bgs. Boring SB-15 was located in the southeastern portion of the Site. However, this soil sample was collected within the saturated zone and was likely impacted by the presence of contaminated groundwater. Prior to the 2013 investigation, the highest concentration of GRO or TPHg was recorded at approximately 25 feet bgs in the boring advancing for installation of well MW-3, also located within the southeastern portion of the Site, at a concentration of 530 mg/kg in 2008. Shallow soil samples collected during product line and dispenser upgrades in 2001 indicated minimal hydrocarbon impact to shallow soils within the vicinity of the product delivery components. The highest concentrations of TPHg and benzene detected during the 2001 upgrades were observed at approximately 3.5 feet bgs in the soil sample collected from DP-3, located within the southwestern portion of the Site at concentrations of 87 mg/kg and 0.11 mg/kg, respectively. It is unclear whether over-excavation activities were conducted during product line and dispenser upgrades as the report documenting this work could not be located.	None	NA

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and Extent of Environmental Impacts (Cont.)	Extent in Shallow Groundwater	Data from the more recently installed wells MW-5A, 5B, 6A, and 6B have shown a groundwater gradient that flows radially inward to the area around the UST system. The current groundwater monitoring network at the Site includes well MW-1 located downgradient from the USTs; upgradient well MW-3; crossgradient well MW-4; downgradient well MW-2, upgradient wells MW-5A and B, and downgradient wells MW-6A and B. Isoconcentration maps for the most recent event conducted in First Quarter 2015 are included as Drawings 4, 5, and 6, respectively. Based on these drawings, the extent of impact is predominantly isolated onsite. Stable to decreasing concentration trends at each well are also evident in the concentration and groundwater elevation trend graphs for GRO, benzene, and MTBE provided in Figures 1 through 4. Petroleum compounds appear defined in each direction. Accessibility issues were encountered at the properties immediately north of the Site. In this northern area, current relatively low concentrations exist, together with a lack of sensitive receptors to the north, and the general cross-gradient direction, additional assessment further north of the Site does not appear	None	NA
		warranted nor feasible at this time. Additionally, it is not anticipated that the influence of petroleum compounds potentially extending beyond the Site boundaries will affect human health and trends indicate that the concentrations of the compounds will continue to degrade over time.		
	Extent in Deeper Groundwater	The extent of environmental impact in deeper groundwater was recently investigated at the Site during CPT activities and deeper well installations (MW-5B and MW-6B). Results from the CPT assessment indicated moderate GRO impact (880 μ g/L) at SB-17 between approximately 60 and 65 feet bgs in the southern portion of the Site. Concentrations for the remaining groundwater samples collected from the deeper water-bearing zone during CPT activities were below laboratory reporting limits with the exception of a minor detection of GRO (54 μ g/L) just above the laboratory reporting limit in upgradient, offsite boring SB-20. The recent groundwater samples collected from newly installed wells MW-5B and MW-6B, screened within the deeper water-bearing sand zone, resulted in detections below laboratory reporting limits for each constituent analyzed for.	Potential	Additional sampling of deeper wells to establish concentration and gradient trends

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and Extent of Environmental Impacts (Cont.)	Extent in Deeper Groundwater (Cont.)	A downward vertical gradient was previously thought to exist at the Site based on results from PPDTs conducted during CPT investigation activities in 2013. However, based on the relative absences of contaminants in groundwater samples collected from deeper wells MW-5B and MW-6B compared to the shallow wells within the same vicinity and higher groundwater elevations observed in deep wells compared to their shallow well pairings (MW-5A and MW- A), this does not appear to be the case. In contrast, due to the higher elevations observed in the deeper wells, an upward vertical gradient may actually exist.		
	Extent in Soil Vapor	The extent of environmental impact in soil vapor has not been investigated at the Site. Based on current concentrations of petroleum compounds in groundwater monitoring wells at the Site and their location (an active service station), soil vapor assessment is not warranted at the Site. Additionally, the LTCP states that the exposure from current fueling operations represents a greater risk than any associated with potential groundwater or soil vapor exposure (CSWRCB, 2012).	None	NA
Migration Pathways	Potential Conduits	A potential transmissive conduit study has not been performed on Site. However, underground utilities tend to be shallow, above 10 feet bgs. Historical depth-to-groundwater measurements at the Site have averaged approximately 36 feet bgs, which is well below the anticipated depth of utilities within the area. Therefore, potential migration of contaminants along underground conduits does not pose a concern at the Site.	None	NA
Potential Receptors	Onsite	No onsite water supply wells or surface water bodies exist. The only potential onsite receptor would be onsite workers exposed to gasoline vapors. However, the exposure from current fueling operations represents a greater risk than any associated with potential groundwater or soil vapor exposure (CSWRCB, 2012).	None	NA

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential Receptors (Cont.)	Offsite	The nearest potential surface water bodies appear to be two creeks, Arroyo Mocho and Arroyo Las Positas. However, both are located outside of the 2,000 foot search radius utilized during the Sensitive Receptor Survey. Arroyo Mocho is located approximately 4,100 feet to the southwest of the Site, in a general cross-gradient direction and Arroyo Las Positas is located approximately 7,100 feet to the north of the Site, in a general down-gradient direction. A Sensitive Receptor Survey was completed in 2013. Results from this survey identified four domestic wells, three municipal wells, and three wells of unknown use within a 2,000-foot search radius of the Site. The potential impact to municipal and domestic wells within the search radius is possible; however, the closest domestic well, located approximately 400 feet to the East of the Site, is cross-gradient from the predominantly West-Northwest flow direction. A well log with owner information could not be located for this well. All three of the Cal Water municipal water supply wells are located either cross-gradient or up-gradient at a minimum distance of approximately 1,390 feet from the Site. The remaining domestic wells and wells of unknown use were all located at a distance at or greater than 740 feet in either a cross-gradient or up-gradient direction of groundwater flow from the Site. Sensitive receptor data including a map depicting locations is provided in Appendix L. Since the plume is almost entirely limited to onsite and hydrocarbon concentrations in downgradient boring SB-19 were below laboratory reporting limits, these offsite receptors are not anticipated to be affected. Additionally, overall concentration trend graphs are included in Figures 1 through 4.	None	NA

CONCEPTUAL SITE MODEL Atlantic Richfield Company Station No. 498 286 South Livermore Avenue Livermore, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Notes: ACEH = Alameda Co	unty Environmental	lealth LTCP = Low Threat Closure Policy mg/kg = milligrams per kilogram		

CPT = Cone Penetration TestNA = NoCRA = Conestoga-Rovers & AssociatesNA = NoCSM = Conceptual Site ModelNo. = NuCSWRCB = California State Water Resources Control BoardPPDT = Uft = footUST = Uuft/ft = foot per footµg/L = m	milligrams per kilogram milligrams per cubic meter Methyl tert-butyl Ether asoline Range Organics t Applicable Imber Pore Pressure Dissipation Test nderground Storage Tank hicrograms per liter
--	--

All report references are included in Section 9 of the preceding report

Table 2. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

			Top of	Bottom of		Product	Water Level			Concentra	ations in µg	;/L				
Well ID and		тос	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-1																
12/29/2008	Р	496.72	20.00	40.00	28.81	0.00	467.91	1,100	38	1.2	4.0	3.3	17	2.72	6.83	
3/20/2009	Р		20.00	40.00	28.95	0.00	467.77	640	9.1	<0.50	4.1	<0.50	21	0.35	7.28	
6/2/2009	Р		20.00	40.00	30.90	0.00	465.82	600	1.6	<0.50	<0.50	<0.50	32	0.59	7.17	
9/2/2009	Р		20.00	40.00	32.00	0.00	464.72	570	<0.50	<0.50	<0.50	<0.50	5.3	1.02	7.38	
11/9/2009	Р		20.00	40.00	31.82	0.00	464.90	1,000	130	12	35	39	140	1.39	7.02	
5/20/2010	Р		20.00	40.00	28.94	0.00	467.78	1,000	4.4	<0.50	0.76	0.73	22	0.59	6.6	
11/2/2010	Р		20.00	40.00	32.03	0.00	464.69	1,300	83	20	40	61	39	0.72	6.0	b (GRO), c
5/25/2011	Р		20.00	40.00	26.69	0.00	470.03	2,900	32	3.1	20	2.9	<0.50	0.68	7.0	lw (GRO)
10/25/2011	Р		20.00	40.00	30.11	0.00	466.61	1,100	20	3.7	<0.50	5.4	21	0.78	7.4	lw (GRO)
4/10/2012	Р		20.00	40.00	30.35	0.00	466.37	1,300	13	2.0	7.0	7.1	5.0	0.20	6.71	lw (GRO)
10/9/2012	NP		20.00	40.00	37.61	0.00	459.11	700	<0.50	<0.50	<0.50	<1.0	3.2	2.79	7.93	
4/24/2013	Р		20.00	40.00	29.48	0.00	467.24	1,600	87	12	87	15	12	1.49	7.22	
10/9/2013	Р		20.00	40.00	31.26	0.00	465.46	810	12	0.90	4.3	2.6	30	4.24	7.17	
2/21/2014	Р		20.00	40.00	30.67	0.00	466.05	1,300	19	3.0	30	4.2	2.5	1.23	7.22	
5/21/2014	Р		20.00	40.00	32.88	0.00	463.84	710	<0.50	<0.50	<0.50	<1.0	1.0	0.61	7.63	
8/19/2014			20.00	40.00	39.67	0.00	457.05									d
11/20/2014			20.00	40.00	39.69	0.00	457.03									
2/10/2015	Р		20.00	40.00	29.88	0.00	466.84	1,600	23	2.7	12	5.1	2.3	0.83	6.04	
MW-2																
12/29/2008	Р	495.35	37.00	57.00	48.76	0.00	446.59	110	7.1	<0.50	<0.50	0.76	16	1.04	7.67	
3/20/2009	Р		37.00	57.00	38.78	0.00	456.57	200	3.9	<1.0	<1.0	<1.0	56	0.41	7.51	
6/2/2009	Р		37.00	57.00	43.98	0.00	451.37	110	5.1	<1.0	<1.0	<1.0	44	1.87	7.42	
9/2/2009	Р		37.00	57.00	50.25	0.00	445.10	88	0.79	<0.50	<0.50	<0.50	12	1.55	6.91	
11/9/2009	Р		37.00	57.00	43.79	0.00	451.56	58	2.0	<0.50	<0.50	<0.50	13	0.86	7.14	
5/20/2010	Р		37.00	57.00	32.07	0.00	463.28	<50	<0.50	<0.50	<0.50	<0.50	27	0.61	6.8	
11/2/2010	Р		37.00	57.00	39.23	0.00	456.12	<50	<0.50	<0.50	<0.50	<0.50	57	1.34	6.8	
5/25/2011	Р		37.00	57.00	28.19	0.00	467.16	<50	<0.50	<0.50	<0.50	<0.50	15	3.74	7.1	
10/25/2011	Р		37.00	57.00	33.33	0.00	462.02	<50	<0.50	<0.50	<0.50	<0.50	5.7	1.28	7.8	
4/10/2012	Р		37.00	57.00	39.25	0.00	456.10	<50	<0.50	<0.50	<0.50	<0.50	1.1	1.04	7.13	
10/9/2012	Р		37.00	57.00	41.84	0.00	453.51	<50	<0.50	<0.50	<0.50	<1.0	0.60	2.76	7.71	

Table 2. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

			Top of	Bottom of		Product	Water Level			Concentra	ations in µg	;/L				
Well ID and		тос	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-2 Cont.																
4/24/2013	Р	495.35	37.00	57.00	33.17	0.00	462.18	<50	<0.50	<0.50	<0.50	<1.0	1.1	2.51	7.53	
10/9/2013	Р		37.00	57.00	35.23	0.00	460.12	<50	<0.50	<0.50	<0.50	<1.0	5.9	4.30	7.46	
2/21/2014	Р		37.00	57.00	36.49	0.00	458.86	<50	<0.50	<0.50	<0.50	<1.0	3.6	8.05	7.17	
5/21/2014	Р		37.00	57.00	40.87	0.00	454.48	<50	<0.50	<0.50	<0.50	<1.0	4.1	674	7.67	
8/19/2014	Р		37.00	57.00	51.54	0.00	443.81	<50	<0.50	<0.50	<0.50	<1.0	0.60	7.33	8.37	
11/20/2014			37.00	57.00	56.79	0.00	438.56									
2/10/2015	Р		37.00	57.00	41.40	0.00	453.95	<50	<0.50	<0.50	<0.50	<1.0	1.2	2.54	6.46	
MW-3																
12/29/2008	Р	496.32	37.00	57.00	48.21	0.00	448.11	28,000	310	200	840	6,200	71	1.95	7.39	
3/20/2009	Р		37.00	57.00	38.48	0.00	457.84	11,000	360	84	600	1,500	71	0.56	7.25	
6/2/2009	Р		37.00	57.00	43.33	0.00	452.99	5,100	310	14	180	310	66	2.06	7.18	а
9/2/2009	Р		37.00	57.00	49.60	0.00	446.72	25,000	380	150	930	2,900	75	1.35	6.93	
11/9/2009	Р		37.00	57.00	43.25	0.00	453.07	6,900	390	27	480	680	69	0.54	6.9	
5/20/2010	Р		37.00	57.00	31.56	0.00	464.76	9,400	690	<10	300	83	77	0.36	6.8	
11/2/2010	Р		37.00	57.00	38.68	0.00	457.64	4,400	420	<10	110	33	70	0.59	6.8	b (GRO)
5/25/2011	Р		37.00	57.00	27.56	0.00	468.76	4,500	560	<10	210	22	74	0.70	9.8	lw (GRO)
10/25/2011	Р		37.00	57.00	32.77	0.00	463.55	2,700	190	<4.0	82	51	33	0.69	7.6	
4/10/2012	Р		37.00	57.00	38.69	0.00	457.63	3,000	440	<4.0	69	10	46	0.28	6.57	lw (GRO)
10/9/2012	Р		37.00	57.00	41.19	0.00	455.13	1,600	210	<2.0	28	7.4	33	1.23	7.39	
4/24/2013	Р		37.00	57.00	32.52	0.00	463.80	3,500	960	3.6	110	6.0	89	1.15	7.21	
10/9/2013	Р		37.00	57.00	34.59	0.00	461.73	<50	390	<2.5	33	<5.0	94	4.12	7.27	
2/21/2014	Р		37.00	57.00	36.03	0.00	460.29	2,000	210	<2.0	27	<4.0	44	2.03	7.41	
5/21/2014	Р		37.00	57.00	40.41	0.00	455.91	1,500	170	1.0	15	<2.0	29	0.50	7.52	
8/19/2014	Р		37.00	57.00	51.01	0.00	445.31	2,300	160	8.9	220	70	25	0.19	6.57	
11/20/2014			37.00	57.00	55.24	0.00	441.08									
2/10/2015	Р		37.00	57.00	40.58	0.00	455.74	2,000	350	2.1	30	11	41	0.63	6.63	
MW-4																
12/29/2008		496.01	20.00	40.00												Dry
3/20/2009	Р		20.00	40.00	37.82	0.00	458.19	410	0.78	<0.50	<0.50	0.64	16	0.52	7.16	1

Table 2. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

			Top of	Bottom of		Product	Water Level			Concentr	ations in µg	/L				
Well ID and		тос	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-4 Cont.																
6/2/2009		496.01	20.00	40.00												Dry
9/2/2009			20.00	40.00												Dry
11/9/2009			20.00	40.00												Dry
5/20/2010	Р		20.00	40.00	31.29	0.00	464.72	290	<2.0	<2.0	<2.0	<2.0	10	0.82	6.6	
11/2/2010	NP		20.00	40.00	38.42	0.00	457.59	51	<2.0	<2.0	<2.0	<2.0	5.1	1.12	6.4	b (GRO), c
5/25/2011	Р		20.00	40.00	27.58	0.00	468.43	94	<1.0	<1.0	<1.0	<1.0	6.2	0.86	6.9	lw (GRO)
10/25/2011	Р		20.00	40.00	32.51	0.00	463.50	73	<0.50	<0.50	<0.50	<0.50	4.3	0.49	7.4	lw (GRO)
4/10/2012			20.00	40.00	38.47	0.00	457.54	<50	<0.50	<0.50	<0.50	<0.50	0.85		7.06	
10/9/2012			20.00	40.00	39.86	0.00	456.15									d
4/24/2013	Р		20.00	40.00	32.50	0.00	463.51	<50	<0.50	<0.50	<0.50	<1.0	1.2	1.32	7.01	
10/9/2013	Р		20.00	40.00	34.77	0.00	461.24	<50	<0.50	<0.50	<0.50	<1.0	<0.50	4.14	6.98	
2/21/2014	Р		20.00	40.00	35.88	0.00	460.13	<50	<0.50	<0.50	<0.50	<1.0	<0.50	2.33	6.76	
5/21/2014			20.00	40.00	39.08	0.00	456.93									
8/19/2014			20.00	40.00	39.82	0.00	456.19									d
11/20/2014			20.00	40.00	39.84	0.00	456.17									
2/10/2015			20.00	40.00	39.85	0.00	456.16									d
MW-5A																
2/21/2014	Р	495.98			36.17	0.00	459.81	840	3.1	<0.50	19	15	3.1	2.39	7.19	
5/21/2014	Р				40.15	0.00	455.83	510	<0.50	<0.50	<0.50	<1.0	<0.50	0.51	7.46	
8/19/2014					49.26	0.00	446.72									d
11/20/2014					49.29	0.00	446.69									
2/10/2015	Р				40.58	0.00	455.40	860	4.2	<0.50	0.65	<1.0	<0.50	2.29	6.68	
MW-5B																
2/21/2014	Р	496.04			35.84	0.00	460.20	<50	<0.50	<0.50	<0.50	<1.0	<0.50	8.42	7.65	
5/21/2014	Р				40.22	0.00	455.82	<50	<0.50	<0.50	<0.50	<1.0	0.60	1.74	7.62	
8/19/2014	Р				50.85	0.00	445.19	<50	<0.50	<0.50	<0.50	<1.0	<0.50	10.86	7.03	
11/20/2014	Р				56.89	0.00	439.15	<50	<0.50	<0.50	<0.50	<1.0	<0.50	4.10	7.50	
2/10/2015	Р				40.60	0.00	455.44	<50	<0.50	<0.50	<0.50	<1.0	<0.50	5.40	7.05	
MW-6A																

Table 2. Summary	of Groundwater Monitorin	g Data: Relative Water Elevations and Laborat	ory Analyses
------------------	--------------------------	---	--------------

			Top of	Bottom of		Product	Water Level			Concentr	ations in µa	g/L				
Well ID and		тос	Screen	Screen	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-6A Cont.																
2/21/2014	Р	496.69			37.40	0.00	459.29	<50	<5.0	<5.0	<5.0	<10	780	9.15	7.36	
5/21/2014	Р				40.65	0.00	456.04	<50	<5.0	<5.0	<5.0	<10	880	0.57	7.64	
8/19/2014					49.30	0.00	447.39									d
11/20/2014					49.41	0.00	447.28									
2/10/2015	Р				44.04	0.00	452.65	58	<5.0	<5.0	<5.0	<10	1,700	0.77	6.93	
MW-6B																
2/21/2014	Р	496.89			37.26	0.00	459.63	<50	<0.50	<0.50	<0.50	<1.0	<0.50	5.81	7.36	
5/21/2014	Р				41.64	0.00	455.25	<50	<0.50	<0.50	<0.50	<1.0	<0.50	2.43	7.57	
8/19/2014	Р				52.25	0.00	444.64	<50	<0.50	<0.50	<0.50	<1.0	<0.50	8.33	7.41	
11/20/2014	Р				58.23	0.00	438.66	<50	<0.50	<0.50	<0.50	<1.0	<0.50	5.06	7.53	
2/10/2015	Р				42.08	0.00	454.81	<50	<0.50	<0.50	<0.50	<1.0	<0.50	6.76	7.10	

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA
Symbols & Abbreviations: -- = Not sampled/analyzed/applicable/measured/ available < = Not detected at or above specified laboratory reporting limit DO = Dissolved oxygen DTW = Depth to water in ft bgs ft bgs= feet below ground surface ft MSL= feet above mean sea level GRO = Gasoline range organics GWE = Groundwater elevation measured in ft MSL mg/L = Milligrams per liter MTBE = Methyl tert-butyl ether NP = Not purged before sampling P = Purged before sampling TOC = Top of casing measured in ft MSL µg/L = Micrograms per liter

Footnotes:

a = Sample preserved improperly

b = Quantitation of unknown hydrocarbon(s) in sample based on gasoline

c = Hydrocarbon odor

d = Insufficient water within well casing to collect sample

lw = Quantitated against gasoline

Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-1									
12/29/2008	<300	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
3/20/2009	<300	25	21	<0.50	<0.50	<0.50	<0.50	<0.50	
6/2/2009	<300	28	32	<0.50	<0.50	<0.50	<0.50	<0.50	
9/2/2009	<300	17	5.3	<0.50	<0.50	<0.50	<0.50	<0.50	
11/9/2009	<300	47	140	<0.50	<0.50	3.1	<0.50	<0.50	
5/20/2010	<300	75	22	<0.50	<0.50	<0.50	<0.50	<0.50	
11/2/2010	<300	50	39	<0.50	<0.50	<0.50	<0.50	<0.50	
5/25/2011	<300	32	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
10/25/2011	<300	78	21	<0.50	<0.50	0.72	<0.50	<0.50	
4/10/2012	<300	49	5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
10/9/2012	<150	47	3.2	<0.50	<0.50	<0.50	<0.50	<0.50	
4/24/2013	<150	43	12	<0.50	<0.50	<0.50	<0.50	<0.50	
10/9/2013	<150	79	30	<0.50	<0.50	0.52	<0.50	<0.50	
2/21/2014	<150	12	2.5	<0.50	<0.50	<0.50	<0.50	<0.50	
5/21/2014	<150	12	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2015	<150	<10	2.3	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
12/29/2008	<300	22	16	<0.50	<0.50	<0.50	<0.50	<0.50	
3/20/2009	<600	62	56	<1.0	<1.0	<1.0	<1.0	<1.0	
6/2/2009	<600	83	44	<1.0	<1.0	<1.0	<1.0	<1.0	
9/2/2009	<300	37	12	<0.50	<0.50	<0.50	<0.50	<0.50	
11/9/2009	<300	41	13	<0.50	<0.50	<0.50	<0.50	<0.50	
5/20/2010	<300	22	27	<0.50	<0.50	<0.50	<0.50	<0.50	
11/2/2010	<300	26	57	<0.50	<0.50	<0.50	<0.50	<0.50	
5/25/2011	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
10/25/2011	<300	<10	5.7	<0.50	<0.50	<0.50	<0.50	<0.50	
4/10/2012	<300	<10	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	
10/9/2012	<150	<10	0.60	<0.50	<0.50	<0.50	<0.50	<0.50	
4/24/2013	<150	<10	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	
10/9/2013	<150	<10	5.9	<0.50	<0.50	<0.50	<0.50	<0.50	
2/21/2014	<150	<10	3.6	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-2 Cont.									
5/21/2014	<150	<10	4.1	<0.50	<0.50	<0.50	<0.50	<0.50	
8/19/2014	<150	<10	0.60	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2015	<150	<10	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-3									
12/29/2008	<30,000	<1,000	71	<50	<50	<50	<50	<50	
3/20/2009	<7,500	<250	71	<12	<12	<12	<12	<12	
6/2/2009	<3,000	100	66	<5.0	<5.0	<5.0	<5.0	<5.0	
9/2/2009	<7,500	<250	75	<12	<12	<12	<12	<12	
11/9/2009	<3,000	<100	69	<5.0	<5.0	<5.0	<5.0	<5.0	
5/20/2010	<6,000	<200	77	<10	<10	<10	<10	<10	
11/2/2010	<6,000	<200	70	<10	<10	<10	<10	<10	
5/25/2011	<6000	<200	74	<10	<10	<10	<10	<10	
10/25/2011	<2,400	<80	33	<4.0	<4.0	<4.0	<4.0	<4.0	
4/10/2012	<2,400	<80	46	<4.0	<4.0	<4.0	<4.0	<4.0	
10/9/2012	<600	56	33	<2.0	<2.0	<2.0	<2.0	<2.0	
4/24/2013	<380	71	89	<1.3	<1.3	<1.3	<1.3	<1.3	
10/9/2013	<750	100	94	<2.5	<2.5	<2.5	<2.5	<2.5	
2/21/2014	<600	58	44	<2.0	<2.0	<2.0	<2.0	<2.0	
5/21/2014	<300	46	29	<1.0	<1.0	<1.0	<1.0	<1.0	
8/19/2014	<600	<40	25	<2.0	<2.0	<2.0	<2.0	<2.0	
2/10/2015	<600	66	41	<2.0	<2.0	<2.0	<2.0	<2.0	
MW-4									
3/20/2009	<300	2,000	16	<0.50	<0.50	<0.50	<0.50	<0.50	
5/20/2010	<1,200	1,000	10	<2.0	<2.0	<2.0	<2.0	<2.0	
11/2/2010	<1,200	500	5.1	<2.0	<2.0	<2.0	<2.0	<2.0	
5/25/2011	<600	230	6.2	<1.0	<1.0	<1.0	<1.0	<1.0	
10/25/2011	<300	150	4.3	<0.50	<0.50	<0.50	<0.50	<0.50	
4/10/2012	<300	<10	0.85	<0.50	<0.50	<0.50	<0.50	<0.50	
4/24/2013	<150	24	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	
10/9/2013	<150	13	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station #49	, 286 South Livermore Avenue	, Livermore, CA
--------------------------	------------------------------	-----------------

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-4 Cont.									
2/21/2014	<150	37	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-5A									
2/21/2014	<150	19	3.1	<0.50	<0.50	<0.50	<0.50	<0.50	
5/21/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2015	<150	16	<0.50		<0.50	<0.50	<0.50	<0.50	
MW-5B									
2/21/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
5/21/2014	<150	<10	0.60	<0.50	<0.50	<0.50	<0.50	<0.50	
8/19/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/20/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2015	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-6A									
2/21/2014	<1,500	<100	780	<5.0	<5.0	<5.0	<5.0	<5.0	
5/21/2014	<1,500	130	880	<5.0	<5.0	<5.0	<5.0	<5.0	
2/10/2015	<1,500	<100	1,700	<5.0	<5.0	<5.0	<5.0	<5.0	
MW-6B									
2/21/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
5/21/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/19/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/20/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2015	<150	21	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Symbols & Abbreviations: --/--- = Not sampled/analyzed/applicable/measured/avaliable < = Not detected at or above specified laboratory reporting limit 1,2-DCA = 1,2-Dichloroethane DIPE = Diisopropyl ether EDB= 1,2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Butyl alcohol μg/L = Micrograms per liter

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
12/29/2008	NA	NA
3/20/2009	North-Northwest	0.02
6/2/2009	NA	NA
9/2/2009	NA	NA
11/9/2009	NA	NA
5/20/2010	West-Northwest	0.02
11/2/2010	West-Northwest	0.02
5/25/2011	West-Northwest	0.02
10/25/2011	West-Northwest	0.02
4/10/2012	West-Northwest	0.01
10/9/2012	West-Northwest	0.02
4/24/2013	West-Northwest	0.02
10/9/2013	West-Northwest	0.02
2/21/2014	West-Northwest	0.02
8/19/2014	West-Northwest	0.02
11/20/2014	Radially Inward	0.02
2/10/2015	Northwest	0.02

Table 4. Summary of Groundwater Gradient - Direction and MagnitudeARCO Service Station #498, 286 South Livermore Avenue, Livermore, CA

Symbols & Abbreviations: NA = Not Available **FIGURES**

APPENDIX A

Detailed Site Background

During product line and dispenser upgrade activities completed in June 2001, Delta Environmental Consultants, Inc. (Delta) collected soil samples beneath the product lines and dispenser islands. Total purgeable hydrocarbons as gasoline (TPHg) were detected in two of the four dispenser island samples at 1.8 milligrams per kilogram (mg/kg) in sample DP-1 and 87 mg/kg in sample DP-3. Benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tertiary butyl ether (MTBE) were also detected in dispenser island sample DP-3. Toluene and total xylenes were detected in product line sample PL-2 at relatively low concentrations. Historic soil analytical data are provided in Appendix C. Historic soil sample locations are depicted in Drawing 2. Product line and dispenser island sampling activities are summarized in the Delta September 19, 2001 *Product Line and Dispenser Island Sampling Results* report.

In January 2005, URS completed a site assessment to fulfill a due diligence audit as part of the sale of the Property. Field activities were conducted to assess whether subsurface soils in the vicinity of the USTs and fuel dispensers had been impacted by petroleum hydrocarbons. The work was not required as part of a regulatory agency directive. Eight soil borings were advanced using a direct push Geoprobe® 6600 drill rig. URS stated in the February 15, 2005 Site Assessment Report that the proposed total depth of all borings was 30 feet below ground surface (bgs); however, due to difficult drilling conditions encountered, the borings were only advanced to depths ranging from 15 to 25 feet bgs. Groundwater was not encountered in the borings advanced. MTBE and tert-butyl alcohol (TBA) were detected in four of the collected soil samples (SB-1-22', SB-1-24', SB-3-25', and SB-8-25') at maximum concentrations of 0.022 mg/kg (SB-8-25') and 0.031 mg/kg (SB-1-22'), respectively. Historic soil analytical data are provided in Appendix B and sample locations are depicted on Drawing 2.

In November 2008, a soil and groundwater investigation was completed, which included the installation of monitor wells MW-1 through MW-4. Field activities were conducted to further define the vertical and lateral extent of impacted soil and complete an initial groundwater investigation. Soil sample analytical results showed the presence of petroleum hydrocarbon impacted soil at all four sample locations (MW-1 through MW-4) at depths ranging from 15 to 35 feet bgs. Historic soil analytical data are provided in Appendix B. Elevated groundwater concentrations were detected in well MW-3 and moderately elevated concentrations were detected in wells MW-1 and MW-2. Well MW-4 was found to be dry. The February 6, 2009 Soil and Ground-Water Investigation and Fourth Quarter, 2008 Quarterly Monitoring Report recommended that two additional quarters (First and Second Quarter, 2009) of groundwater monitoring/sampling be completed to better understand the hydrogeology before additional investigative work activities were proposed.

Broadbent prepared the *Soil and Groundwater Investigation Work Plan* on August 28, 2009, which proposed installation of three additional groundwater monitoring wells (MW-5, MW-6, and MW-7). The purpose of locating proposed well MW-5 adjacent to MW-1 was to determine if anomalous water levels observed in MW-1 were potentially due to a localized perched water-bearing zone. Proposed wells MW-6 and MW-7 were located off-Site and to the northwest of the station in order to further delineate the down-gradient extent of groundwater contamination. In a letter dated February 10, 2010, ACEH requested a Work Plan Addendum to address concerns regarding the proposed locations of wells MW-6 and MW-7, which may not have adequately characterized the extent of impacted groundwater due to the calculated groundwater flow direction on November 9, 2009, which was south-southwest instead of northwest as was calculated on March 20, 2009. On April 12, 2010, Broadbent submitted the Soil and Groundwater Investigation Work Plan Addendum,

which stated that the locations of MW-6 and MW-7 were based on the flow directions calculated at the Shell Station located across 3rd Street and data collected from the Site during the First Quarter 2009 groundwater monitoring event. In a letter dated August 12, 2010, ACEH approved the proposed scope of work.

Numerous attempts to obtain off-Site property access in order to complete the installation of off-Site wells have been made. However, off-Site property owners have been unresponsive and/or uncooperative in allowing access, which delayed commencement of the proposed scope of work. On August 29, 2012, ACEH, Atlantic Richfield Company, and Broadbent met to discuss the possibility of advancing borings along the northwestern property boundary in lieu of the off-Site borings. In a letter dated September 18, 2012, ACEH accepted advancing borings along the northwestern property boundary to define the site stratigraphy and vertical and lateral distribution of contamination and requested submittal of a Work Plan by November 30, 2012. ACEH also recommended use of Cone Penetration Testing (CPT) drilling procedures to adequately characterize subsurface hydro-geologic features. The *Soil and Groundwater Investigation Work Plan* dated December 7, 2012 detailed proposed CPT drilling activities and was approved by ACEH in their letter dated December 24, 2012. Details and results from the boring installations performed between March 18 and 22, 2013 were provided to ACEH in the *Soil and Groundwater Investigation Report* dated May 3, 2013. Boring locations are depicted on Drawing 2. Soil and groundwater analytical data from this investigation are provided in Appendix C.

Quarterly groundwater monitoring and sampling has been conducted on wells MW-1, MW-2, MW-3, and MW-4 at the Site since November 2008. The monitoring and sampling schedule was modified to be conducted semi-annually during the second and fourth quarters of each calendar year in June 2009. Groundwater flow direction on-Site has consistently been to the West-Northwest historically, with an average gradient of approximately 0.02. Historic groundwater monitoring and analytical data are provided in Tables 3 through 5.

APPENDIX B

Historical Soil and Groundwater Data

TABLE 1

SOIL SAMPLE LABORATORY ANALYTICAL RESULTS

ARCO Service Station No. 498 286 South Livermore Avenue Livermore, California

							й.		
					Ethyl-	Total	TPH		
		Depth	Benzene	Toluene	benzene	Xylenes	as gasoline	MTBE	Total Lead
Sample ID	Date	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dispenser Isla	and Samples	5							
DP-1	06/01/01	3.0	<0.0050	<0.0050	<0.0050	0.019	1.8	<0.050	23
DP-2	06/01/01	3.5	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	<0,050	3.7
DP-3	06/01/01	3,5	0.11	2.8	1.2	8.9	87	3.7	17
DP-4	06/01/01	3.5	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	<0.050	4.2
Product Line	Samples								
PL-1	06/01/01	3,8	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	<0.050	2.3
PL-2	06/01/01	4.5	<0.0050	0.011	<0.0050	0.010	<1.0	<0.050	13
PL-3	06/01/01	5.0	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	<0.050	5,4
PL-4	06/01/01	2.5	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	<0.050	190
Soil Stockpile	Results								
SP-1,2,3,4	06/01/01	Composite	<0.0050	<0.0050	<0.0050	0.13	5.6	<0.050	32

TPH = Total purgeable hydrocarbons.

MTBE = Methyl tertiary butyl ether (analyzed by DHS LUFT Methods)

NA = Not Analyzed

		200 0000					
Sample	Sample	Date	TPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes
Name	Depth (ft)	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	·						,
SB-1-7'	7.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-1-12'	12.0	01/20/05	ND <1.0	ND < 0.005	ND <0.005	ND <0.005	ND <0.005
SB-1-17'	17.0	01/20/05	ND <1.0	ND <0.005	ND < 0.005	ND <0.005	ND <0.005
SB-1-22'	22.0	01/20/05	ND <1.0	ND < 0.005	ND < 0.005	ND <0.005	ND <0.005
SB-1-24'	24.0	01/20/05	ND <1.0	ND <0.005	ND < 0.005	ND <0.005	ND <0.005
SB-2-10'	10.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-2-15'	15.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-2-18.5'	18.5	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND < 0.005
SB-3-10'	10.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-3-15'	15.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-3-20'	20.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-3-25'	25.0	01/19/05	ND <1.0	ND < 0.005	ND <0.005	ND <0.005	ND <0.005
SB-4-7'	7.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-4-12'	12.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-4-17'	17.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-4-22'	22.0	01/19/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-5-10'	10.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-5-15'	15.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-6-10'	10.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-6-15'	15.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-6-22'	22.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
00 7 401	(0.0	0.1.00.005					
SB-7-10"	10.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-7-14.5	14.5	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-7-20°	20.0	01/20/05	ND <1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB_2_10'	10.0	01/20/05					
GD-0-10 CD_0_16'	10.0	01/20/00				0.005 ND <0.005	ND <0.005
GB-0-10	20.0	01/20/05		ND <0.005		ND <0.005	ND <0.005
SB-0-20 SB-2-25'	20.0 25	01/20/00				ND <0.005	
<u>50-0-</u> 25	20	01/20/03	0.1 × UN	CO0.02	14D ~0.005	C00.07 UN	ND <0.005

Table 1 - Soil Analytical Data ARCO Service Station #0498 286 South Livermore Avenue, Livermore California

Notes:

ND = Not Detected at or above the laboratory reporting limit

mg/kg = milligrams per kilogram

TPH-GRO = Total Petroleum Hydrocarbons gasoline range organics

BTEX = Benzene, toluene, ethylbenzene, and xylenes

Sample Name	Sample Depth (ft)	Date Sampled	Ethanol (mg/kg)	TBA (mg/kg)	MTBE (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
SB-1-7'	7.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-1-12'	12.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-1-17'	17.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-1-22'	22.0	01/20/05	ND <0.1	0.031	0.015	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-1-24'	24.0	01/20/05	ND <0.1	0.025	0.006	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-2-10'	10.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-2-15	15.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-2-18.5'	18.5	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-3-10'	10.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-3-15	15.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-3-20	20.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-3-25'	25.0	01/19/05	ND <0.1	0.021	0.011	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-4-7'	7.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-4-12'	12.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND < 0.005	ND < 0.005
SB-4-17	17.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND < 0.005	ND < 0.005
SB-4-22	22.0	01/19/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-5-10'	10.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005			
SB-5-15	15.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-6-10'	10.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-6-15'	15.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-6-22'	22.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-7-10'	10.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-7-14.5'	14.5	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND < 0.01	ND <0.005	ND < 0.005	ND <0.005	ND <0.005
SB-7-20'	20.0	01/20/05	ND <0.1	ND <0.01	ND <0.005	ND <0.01	ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-9-10'	10.0	01/20/05			ND <0.005					
SB-0-10	10.0	01/20/05					ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-8-201	20.0	01/20/05					ND <0.005	ND <0.005	ND <0.005	ND <0.005
SB-8-25	20.0	01/20/05		0.012	0.005		ND <0.005		ND <0.005	ND <0.005
00-0-20	20	01/20/03		0.012	0.022		ND SU.005	ND <0.005	ND <0.005	Q00.0> UN

Table 2 Soil Analytical Data-Oxygenates ARCO Service Station #0498 286 South Livermore Avenue, Livermore California

Notes:

.

ND = Not Detected at or above the laboratory reporting limit

mg/kg = milligrams per kilogram

TBA = Tert-butyl alcohoi MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether ETBE = Ethyl tertiary butyl ether TAME = Tert-amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

Table 1. Summary of Soil Sample Analytical Data

Station π + 30, 200 South Liver more Avenue, Liver more, CA	Station #498	498, 286 South Livermore	Avenue,	Livermore.	CA
---	--------------	--------------------------	---------	------------	----

					Concentra					
Boring and		GRO/			Ethyl-	Total				
Sample Date	Sample ID	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	Ethanol	TBA	Comments
MW-1										
11/24/2008	MW-1 25'	45	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	
11/24/2008	MW-1 30'	0.86	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	
11/24/2008	MW-1 40'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.16	0.23	0.036	
MW-2										
11/24/2008	MW-2 40'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.010	< 0.10	0.022	
11/24/2008	MW-2 45'	18	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0019	0.44	0.022	
11/24/2008	MW-2 50'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	
MW-3										
11/26/2008	MW-3 15'	6.7	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	0.14	
11/26/2008	MW-3 20'	210	< 0.0010	< 0.0010	0.88	< 0.0010	< 0.0010	< 0.10	< 0.010	
11/26/2008	MW-3 25'	530	< 0.10	< 0.10	1.5	0.17	< 0.10	<10	<1.0	
11/26/2008	MW-3 30'	0.84	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	
11/26/2008	MW-3 35'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	0.028	
11/26/2008	MW-3 40'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.013	< 0.10	0.014	
MW-4										
11/25/2008	MW-4 30'	2.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.35	0.054	
11/25/2008	MW-4 35'	75	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0030	< 0.10	0.65	
11/25/2008	MW-4 40'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	0.14	

SYMBOLS AND ABBREVIATIONS:

< = Not detected at or above specified laboratory reporting limit GRO = Gasoline range organics MTBE = Methyl tert-butyl ether TBA = Tert-Butyl Alcohol mg/kg = Milligrams per Kilogram

NOTES:

1,2-dibromoethane (EDB), 1,2-dichloroethane (1,2 DCA), Di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE) and ter-amyl methyl ether (TAME) were not detected at or above their respective laboratory reporting limits.

GRO (C6-C12) analyzed using EPA method 8015B.

Benzene, toluene, ethylbenzene, total xylenes, MTBE, ethanol and TBA analyzed using EPA method 8260B.

The number after space in Sample ID denotes the depth at which the sample was collected in feet bls.

Soil Boring	Sample	Date	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Comments
Identification*	ID	Collected	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	comments
SB-9									
	SB-9-20'	3/22/2013	< 0.380	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0049	
	SB-9-37'	3/22/2013	< 0.390	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0049	
SB 10									
36-10	SB-10-15'	3/18/2013	< 0.400	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0049	
SB-11									
	SB-11-15'	3/20/2013	< 0.390	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0049	
SB-12									
50 12	SB-12-15'	3/20/2013	< 0.400	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0050	
	SB-12-30'	3/20/2013	< 0.350	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0050	
CD 12									
SB-13	SB-13-14'	3/21/2013	<0.390	<0.0020	<0.0020	<0.0020	<0.0040	<0.0050	
	SB-13-27'	3/21/2013	<0.370	<0.0020	< 0.0020	<0.0020	<0.0040	< 0.0050	
SB-14									
	SB-14-18'	3/22/2013	< 0.38	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0050	
	SB-14-37'	3/22/2013	<0.38	< 0.0020	< 0.0020	< 0.0020	<0.0039	<0.0049	
SB-15									
	SB-15-24'	3/21/2013	< 0.38	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0050	
	SB-15-38'	3/21/2013	1,500	4.8	53	35	230	<2.5	
SB-16									
50-10	SB-16-13'	3/21/2013	< 0.40	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0049	
	SB-16-26'	3/21/2013	< 0.36	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0050	
ESLs			83	0.044	2.9	2.9	2.3	0.023	

Table 1. Summary of Soil Sample Analytical Data Station #498, 286 South Livermore Avenue, Livermore, California

Abbreviations & Symbols:

Bolded concentrations exceed their respective ESL.

* = See Drawing 2 for soil boring locations.

GRO: Gasoline range organics.

TestAmerica: GRO (C6-C12)

GRO analyzed using EPA method 8015B

Benzene, Toluene, Ethylbenzene, Total Xylenes, and MTBE analyzed using EPA method 8260B.

mg/kg = Milligrams per kilogram.

ESLs = Environmental Screening Levels for deep soil (>3 meters bgs) where groundwater is a current or potential source of

drinking water (San Francisco Bay Regional Water Quality Control Board, 2013).

bgs = Below ground surface

Notes:

1,2-dibromoethane (EDB), 1,2-dichloroethane (1,2 DCA), tert-butyl alcohol (TBA), Di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), ter-amyl methyl ether (TAME), and ethanol were not detected at or above their respective laboratory reporting limit.

The last number in each Sample ID denotes the depth at which the sample was collected in feet bgs (i.e., SB-9-20' was collected at a depth of 20 feet bgs)

Sample ID*	Sample Depth (ft. bgs)	Date Collected	GRO µg/L	Benzene µg/L	Toluene µg/L	Ethylbenzene µg/L	Xylenes µg/L	MTBE µg/L	TBA µg/L	TAME µg/L	Comments
SB-9	55-60	3/22/2013	<50	<0.50	<0.50	<0.50	<1.0	1.9	<10	<0.50	
SB-10	45-50	3/18/2013	<50	<2.0	<2.0	<2.0	<4.0	520	67	<2.0	
SB-11	45-50	3/20/2013	73	<5.0	<5.0	<5.0	<10	1,700	570	7.5	
SB-12	45-50	3/20/2013	<50	<1.0	<1.0	<1.0	<2.0	570	21	4	
SB-13	51-56	3/21/2013	<50	<0.50	<0.50	<0.50	<1.0	100	<10	<0.50	
SB-14	55-60	3/22/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	
SB-15	50-55	3/21/2013	6,300	4.7	8.2	110	52	<1.0	<20	<1.0	
SB-16	55-60	3/21/2013	26,000	180	360	1,500	9,300	<25	<500	<25	
ESLs			100	1.0	40	30	20	5.0	12		

Table 2. Summary of Groundwater Sample Analytical DataStation #498, 286 South Livermore Avenue, Livermore, California

Abbreviations & Symbols:

Bolded concentrations exceed their respective ESL.

* = See Drawing 2 for soil boring locations.

-- = Not applicable or available

GRO: Gasoline range organics.

TestAmerica.: GRO (C6-C12)

GRO analyzed using EPA method 8015B

TBA = Tert-butyl alcohol

TAME = Tert-amyl methyl ether

Benzene, Toluene, Ethylbenzene, Total Xylenes, MTBE, TBA and TAME analyzed using EPA method 8260B.

 $\mu g/L = Micrograms$ per liter.

ESLs = Environmental Screening Levels where groundwater is a current or potential source of drinking water (San Francisco Bay Regional Water Quality

Control Board, 2013).

bgs = Below ground surface

Notes:

1,2-dibromoethane (EDB), 1,2-dichloroethane (1,2 DCA), Di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and ethanol were not detected at or above their respective laboratory reporting limit.

Table 3. Summary of Pore Pressure Dissipation Tests and Corresponding Piezometric Surface Station #498, 286 South Livermore Avenue, Livermore, California

CPT Boring ID	Test Depth (ft bgs)	u ₀ (psi)	u ₀ (ft H ₂ O)	Piezometric Surface (ft bgs)							
SB-9	32.80	Not Appli	cable - Readings did not re	each equilibrium							
SB-9	45.11	Negative	e readings indicative of dry	v soil conditions							
SB-9	52.00	Negative readings indicative of dry soil conditions									
SB-9	57.07	Negative readings indicative of dry soil conditions									
SB-10	29.50	Negative	Negative readings indicative of dry soil conditions								
SB-10	39.50	No	ot Applicable - Test termin	ated early							
SB-10	42.98	3.46	7.99	34.99							
SB-10	49.21	Not Appli	cable - Readings did not re	each equilibrium							
SB-10	57.74	6.62	15.29	42.45							
SB-11	25.09	Negative	e readings indicative of dry	v soil conditions							
SB-11	36.42	Negative	e readings indicative of dry	v soil conditions							
SB-11	45.11	13.19	30.47	14.64							
SB-11	55.28	18.02	41.63	13.65							
SB-12	15.09	Negative readings indicative of dry soil conditions									
SB-12	20.01	Negative readings indicative of dry soil conditions									
SB-12	25.26	Negative readings indicative of dry soil conditions									
SB-12	30.02	Negative readings indicative of dry soil conditions									
SB-12	35.10	Negative	e readings indicative of dry	v soil conditions							
SB-12	40.19	9.04	20.88	19.31							
SB-12	45.60	7.31	16.89	28.71							
SB-12	57.07	11.11	25.66	31.41							
				•							
SB-13	40.03	15.60	36.04	3.99							
SB-13	55.12	14.22	32.85	22.27							
				-							
SB-14	40.02	6.97	16.10	23.92							
SB-14	56.27	10.77	24.88	31.39							
				•							
SB-15	40.35	8.00	18.48	21.87							
SB-15	58.07	11.11	32.41								
SB-16	35.10	2.82	6.51	28.59							
SB-16	55.12	6.62	15.29	39.83							
SB-16	57.91	6.62	6.62 15.29								

Abbreviations and Notes:

ft = feet

bgs = below ground surface

psi = pounds per square inch

 $H_2O = Water$

 u_0 = Equilibrium pore pressure at end of dissipation test

Conversion: 1 psi = 2.31 ft H₂O

Piezometric Surface (ft bgs) = Test Depth (ft bgs) – u0 (feet H₂O)

APPENDIX C

Historical Soil Boring / Monitoring Well Logs and Geologic Cross-Sections

Project Number: 08-82-103

Project Name: BP 498

Location: <u>286 S Livermore Ave, Livermore, CA</u> Date(s): <u>01/13/2014 - 01/14/2014</u> Boring / Well No.: <u>MW-6B</u>

MONITOR WELL VAULT 12" DIAMETER, 1 FOOT FLUSH MOUNT, 2" LOCKING CAP STEEL WELL VAULT
2" LOCKING CAP STEEL WELL VAULT
Bentonite Concrete

Cement

EXPLORATORY BORING

a. Total Depth:	70 ft.
b. Diameter:	8 in.
Drilling Method:	Hollow Stem Auger

WELL CONSTRUCTION

Drilling Contractor:	Gregg Drilling						
c. Total Casing Length:	70 ft						
Material:	Schedule 40 PVC						
Diameter:	2 inches						
d. Depth to Top Perforatio	ns:60 ft						
e. Perforated Length:	10 ft.						
Perforated Interval From:	<u>60 ft.</u> to <u>70 ft.</u>						
Perforation Type:	Factory Slotted						
Perforation Size:	0.010"						
g. Surface Seal:	<u>0</u> to <u>0.5 ft.</u>						
Surface Seal Material:	Concrete						
h. Backfill Length:	54.5 ft						
Backfill Material:	Neat Cement						
i. Seal Length:	_4 ft.						
Seal Material:	Bentonite						
j. Filter Pack Length:	_11 ft.						
Filter Pack Material:	#2/12 Sand						

NOTES

Sand

Project Number: 08-82-103

Project Name:

Location: 286 S Livermore Ave, Livermore, CA

BP 498

Date: 01/15/2014

Boring / Well No.: MW-6A

EXPLORATORY BORING

epth:	50 ft.
er:	8 in.
thod:	Hollow Stem Auger

WELL CONSTRUCTION

Gregg Drilling						
50 ft						
Schedule 40 PVC						
2 inches						
ns:40 ft						
10 ft.						
40 ft. to 50 ft.						
Factory Slotted						
0.010"						
<u>0</u> to <u>0.5 ft.</u>						
Concrete						
34.5 ft						
Neat Cement						
4 ft.						
Bentonite						
_11 ft.						
#2/12 Sand						

NOTES

Project Number: 08-82-103

BP 498 Project Name:

Location: 286 S Livermore Ave, Livermore, CA

Date: 01/14/2014

Boring / Well No.: MW-5B

EXPLORATORY BORING

Depth:	66 ft.
ter:	8 in
lethod:	Hollow Stem Auger

WELL CONSTRUCTION

Drilling Contractor:	Gregg Drilling						
. Total Casing Length:	66 ft.						
/laterial:	Schedule 40 PVC						
Diameter:	2 inches						
I. Depth to Top Perforatio	ons: 56 ft.						
e. Perforated Length:	10 ft.						
Perforated Interval From:	<u>56 ft.</u> to <u>66 ft.</u>						
Perforation Type:	Factory Slotted						
Perforation Size:	0.010"						
. Surface Seal:	<u>0</u> to <u>0.5 ft.</u>						
Surface Seal Material:	Concrete						
. Backfill Length:	50.5 ft						
Backfill Material:	Neat Cement						
. Seal Length:	4 ft.						
Seal Material:	Bentonite						
. Filter Pack Length:	11 ft.						
ilter Pack Material:	#2/12 Sand						

NOTES

Project Number:

Project Name: BP 498

Location: 286 S Livermore Ave, Livermore, CA

08-82-103

Date: 01/15/2014

Boring / Well No.: MW-5A

EXPLORATORY BORING

1:	50 ft.
	8 in.
d:	Hollow Stem Auger

WELL CONSTRUCTION

rilling Contractor:	Gregg Drilling						
Total Casing Length:	50 ft.						
aterial:	Schedule 40 PVC						
ameter	2 inches						
Depth to Top Perforation	ns:40 ft						
Perforated Length:	10 ft.						
erforated Interval From:	_40 ft. to 50 ft.						
erforation Type:	Factory Slotted						
erforation Size:	0.010"						
Surface Seal:	<u>0</u> to <u>0.5 ft.</u>						
urface Seal Material:	Concrete						
Backfill Length:	34.5 ft						
ackfill Material:	Neat Cement						
Seal Length:	4 ft.						
eal Material:	Bentonite						
Filter Pack Length:	11 ft.						
lter Pack Material:	#2/12 Sand						

					1.00	2 0			G	
1333 Broadway, Suite 80			0 Borehole ID: SB-1				······			
Oakland, California 94612				2 Total Depth: 24 ft bgs						
P		DRILL	ING	INFC	RMATIC)N				
Project: ARCO Site 0498-Livermore					Drilling Company: Cascade Drilling					
Site Location	286	S. Livern	nore Ave., Livermore, CA	Driller	: Tom Evans					
Project Mana	ger: s	Scott Rol	oinson	Type o	f Drilling Rig: G	eopro	be 66	00		
RG: Bob Horw	ath		······································	Drilling	g Method: Direct	t Push	l 			
Geologist: Jac	cob He	enry		Sampl	ing Method: Co	ntinuo	ous			
JOD NUMBER:	3848.	/288		Date(s) Drilled: 1/20/0:	5				•••••,••••
Groundwater	Dentl	h: NA	BURING INI	Boring	Location: 286 S	Live		Ava Tiva		- CA
Air Knife or H	and A	uger De	epth: 5 ft bys	Boring	Diameter: 2 in	Live	more	Ave., Live	mor	e, CA
Coordinates:	X		Y	Boring	Type: Explorato	rv				·
		<u> </u>		j	• JP ••• =p+••••••	-,			1	
sôq	0						Ê	_ ₽	≥	
h (ft	ďm		Lithologic Descriptio	n	٤	SCS	dd) (aldr	×	Comments
Dept	Ś					Ξ	DIG	San	Re	
								:		Surface conditions-
-2										
										Air Knifed to a
- 4										Depth of 5 ft.
	12.	SANDY	GRAVEL: 2.5Y3/2, very dark gravish h	prown, loo	se very fine to	SP				
6	\sum_{i}	coarse	sand, fine gravels, minor coarse gravels	s (subang	ular to	0				
	$\dot{\mathbf{C}}$	angulai	, minima inco, ary.				0.0	SB1-7'		
8	5									
	ō,									
Ē	\mathcal{O}	Same a	as above, no coarse gravels							
12	$\sum_{i=1}^{n}$						0.5	SB1-12'		
	\mathcal{L}									
- 14	\mathcal{D}									
	\bigcirc	Increas	e in fines (silt/clay) content_color chanc	to 10¥4	/1 dark					
16	Δ	greenis	h gray, odor.	JO 10 1014	, dark					
	$\sum_{i \in \mathcal{I}}$						0.5	SB1-17'		
18	ŏ.									
	$\hat{\boldsymbol{\Omega}}$									
20		CLAYE	Y SAND: 10Y4/1, dark greenish gray, m	oderately	dense, fine to	SC				
- 22	damp, odor.						9.7	SB1-22'	19. 19. s	
									1997 1997 1997	
- 24	24						11.3	SB1-24'		Borings terminated at 24 ft bgs
26										
										ĺ
			C.110					•		075.4
BP/Atl	anti	c Rich	ifield Company Page 1	of 1			В	orehole	ID :	SB-1

UTRS 1333 Broadway, Suite 800 Oakland, California 94612				LO(Borehole ID	G OF BORING D: SB-2						
Carland, Camornia 3401				Total Depth: 22 ft bgs							
PROJECT INFORMATION					DRILLING INFORMATION						
Site Location: 286 S. Livermore Ave. Livermore CA				Drilling Company: Cascade Drilling							
Project Manage	er: Se	ott Rob	inson	Type o	f Drilling Rig: G	eonro	he 66	00			
RG: Bob Horwath	h			Drilling	Method: Direct	t Push					
Geologist: Jacob	b Hen	ıry		Sampl	ing Method: Con	ntinuc	ous				
Job Number: 38	84872	288		Date(s) Drilled: 1/20/05	5					
			BORING IN	ORMAT	TION						
Groundwater De	epth:	NA	······································	Boring	Location: 286 S.	Liver	more	Ave., Live	rmor	e, CA	
Air Knife or Han	Id Au	iger De	pth: 5 ft bgs	Boring	Diameter: 2 in						
Coordinates:	<u>x</u>		Υ	Boring	Type: Explorator	ry	T				
Cepth (ft bgs) Symbol Symbol Description					nscs	PID (ppm)	Sample ID	Recovery	Comments		
2 2 4 4 4 10 12 14 10 12 20 22 24 26		GRAVE sand, cr Same a SANDY +), coar (subrou Same a diamete Increas	SLLY SAND: 2.5Y3/3, dark olive brown, I barse gravels (angular to subangular), r as above, minor fines, solid rock (quartz) GRAVEL: 2.5Y5/3, light olive brown, de se sand. Gravel greater than 2" diamete nded to aubangular), minor fines, damp. as above, increased fines, some gravel of r. ed fines.	oose, mec to fines, da a. ense, coar er, possibl	lium to coarse amp. se gravel (1.5" e cobbles er than 2"	SP	0.5 10.7 17.8 22.2 7901	SB2-10' SB2-15' SB2-18.5		Surface conditions- Asphalt Air Knifed to a Depth of 5 ft. Borings terminated at 22 ft bgs	
BP/Atlar	ntic	Rich	field Company Page 1	of 1			В	orehole	ID :	SB-2	

						0						
1333 Broadway			1333 Broadway,	Suite 800	uite 800 Borehole II		D' SR-3					
		V	Oakland, Californ	ia 94612	Total Depth	n: 25	ft bg	S				
PROJECT INFORMATION					DRILLING INFORMATION							
Project: ARCO Site 0498-Livermore				Drillin	Drilling Company: Cascade Drilling							
Site Location	Site Location: 286 S. Livermore Ave., Livermore, CA				Driller: Tom Evans							
Project Manager: Scott Robinson				Туре	Type of Drilling Rig: Geoprobe 6600							
RG: Bob Horw	/ath			Drillin	Drilling Method: Direct Push							
Geologist: Jacob Henry					Sampling Method: Continuous							
Job Number: 38487288					Date(s) Drilled: 1/20/05							
BUKING INFURMATION												
Air Knife or H	and A	Auger De	enth: 5 ft bes	Boring	Boring Location. 280 S. Livermore Ave., Livermore, CA							
Coordinates:	X		Y	Boring	Boring Diameter. 2 m Boring Type: Exploratory							
		Ī			-JP Zapioieto	., 		1	1	1		
sốq	ō					0	Ê		∑			
p (t	dmy		Lithologic	Description	SCS			nple	8 8	Comments		
Cept	Ś						ऱ	San	Re l			
	!	 					<u> </u>	1				
										Surface conditions- Asphalt		
-2												
										Air Knifed to a		
-4										Depth of 5 ft.		
	~	GRAVE	ELLY SAND: 2.5Y4/4, olive b	rown, dense, coarse	sand, minor	SP						
-6	\land	mediun subroui	n sand, fine gravels with rare nded), minor non-plastic fine:	e coarse gravels (sub s. damp.	angular to							
	$ \land 4 $	1										
	$\left(\begin{array}{c} \\ \end{array} \right)$											
10	$ \land $						2.5	SB3-10'				
	\land	gravels	, dry to damp.	ium to coarse sand, i	ine							
12	$\wedge 1$											
	ľ, l											
	$ \land $						40.4	000 45				
- 16	$ \wedge' $		Color change to 2.5Y5/2, light olive brown, medium sand, fine gravels, damp, odor.					883-15				
	$ _{\Lambda}$	Color c gravels										
- 18												
	$ ^{\wedge} $	ļ										
20	$ \wedge' $						26	SB3-20'		:		
<u> </u>	$ _{\Lambda}$											
22												
	$ \uparrow\rangle$	Increas	ed fines.									
	\wedge'						114	SB3-25'		Borings terminated		
- 26							.,-	500 20		ar zo ir ogo		
F		•			1	L		. <u> </u>		·		
BP/Atlantic Richfield Company Page 1 of 1 Borehole ID: SB-3												

r			····		r <u> </u>						
URS			1333 Broadway, Suite 800		LO	<u>G 0</u>	FE	ORIN	IG		
					Borehole ID: SB-4						
			Oakland, California 946	12	Total Depti	1: 26	ft bg	s			
PROJECT INFORMATION					DRILLING INFORMATION						
Project: ARCO Site 0498-Livermore					Drilling Company: Cascade Drilling						
Site Location	: 286	S. Livern	nore Ave., Livermore, CA	Driller: Tom Evans							
Project Manager: Scott Robinson					Type of Drilling Rig: Geoprobe 6600						
RG: Bob Horw	vath			Drilling Method: Direct Push							
Geologist: Jacob Henry					Sampling Method: Continuous						
Job Number: 38487288					Date(s) Drilled: 1/20/05						
BORING INFORMATION											
Groundwater	Dept	h: NA		Boring Location: 286 S. Livermore Ave., Livermore, CA							
Air Knife or H	land A	Auger D	epth: 5 ft bgs	Boring Diameter: 2 in							
Coordinates:	Х		Y	Boring Type: Exploratory							
						ń.		I	1		
bgs]	0					0	Ê		_∑		
h (ft	٩Ę		Lithologic Description	on		l SS	d d	ald	Å	Comments	
epti	Ś					Ë		San	Re		
Ē	F								1	Surface conditions-	
								-		Asphalt	
									ĺ		
										Air Knifed to a	
										Depin of 5 ft.	
E.		GRAV	ELLY SAND: 2.5Y5/4, light olive brown,	loose, fine	to coarse	GW					
	Λ´	sand, d	coarse gravel (0.75 to 1'), angular to sul	bangular, i	to fines, dry.		0.0	SB4-7'	cree.		
E.	$ \wedge $	1					0.0	00+1			
Ē	$\left[\right]$	{									
	$ \wedge \rangle$										
	$ \wedge'$	2.5Y4/ gravels	4, light brown, moderately dense, fine to s, angular to subangular, low plasticity, (o coarse s dry to dam	GC						
12	1						28.8	SB4-12'			
	$\left \right\rangle$	Į								-	
14	$ \Lambda' $										
]							2000 C		
16		SAND	Y SILT: 2.5Y4/4. olive brown, firm, low r	lasticity, v	erv fine to fine	ML					
		sand, c	Iry to damp.		,		35.5	SB4-17'	Trescan		
18											
]									
	$\sqrt{7}$	GRAVI	ELLY SAND: 2.5Y4/4, olive brown, mod	erately der	ise, fine to	GC					
	$\left \begin{array}{c} \\ \end{array} \right $	plastici	sand, coarse gravet (0.75' +), angular to ty, dry to damp.	o subangu	iar, no to low		222	SB4-22			
	$ \Lambda' $						46.6	00+22			
- 24	$ \wedge'$									Borings terminated	
	/									at 26 ft bgs	
- 26	\vdash									sampler down hole.	
		-			•	, ,			•	-	
BP/Atlantic Richfield Company Page 1 of 1 Borehole ID: SB-4											
		69	1222 Prosduov Suito 9		LO	GC	FE	BORIN	G	· · · · · · · · · · · · · · · · · · ·	
--	------------------	---------------------------	--	--------------------------------------	-------------------------------	----------------	-----------	------------	----------	--	
		J	Oakland, California 9461	12	Borehole IE): SI	B-5				
						1: 1: INC	H Dg			·····	
Project: ARC	O Site (0498-Li	vermore	Drilling		.ING	Drillin)N		
Site Location:	286 S.	. Livern	nore Ave., Livermore, CA	Driller	Tom Evans	scaue		ng		· · · · · · · · · · · · · · · · · · ·	
Project Mana	ger: So	cott Roł	pinson	Туре с	f Drilling Rig: C	Geopro	be 66	00		<u> </u>	
RG: Bob Horw	ath		······································	Drilling	Method: Direc	t Pusł	1				
Geologist: Jac	ob Her	nry		Sampl	i ng Method: Co	ntinuo	ous				
Job Number:	384872	288		Date(s) Drilled: 1/20/0:	5					
	Denth		BORING INI	FORMA		. .					
Air Knife or H	Depth: and Au		anth: 5 ft bas	Boring	Diamotor: 286 S.	. Live	more	Ave., Live	rmor	e, CA	
Coordinates:		uger De	γ	Boring	Type: Explorato						
				Doning	Type: Explorato	.1y	1		1	1	
Depth (ft bgs)	Symbol		Lithologic Descriptio	n	·····	nscs	PID (ppm)	Sample ID	Recovery	Comments	
2										Surface conditions- Asphalt Air Knifed to a	
4 11 16 10 11 10		CLAYE mediun subrou	Y SAND: 2.5Y3/3, dark olive brown, mo a sand, rare coarse sand, fine to coarse nded), low plasticity fines, dry.	derately d gravel (su cobbles.	ense, fine to Ibangular to	sc	0.5	SB5-10'		Depth of 5 ft.	
14 16 18 20 22 24 24		SÂNDY very fin	CLAY: 10YR4/4, dark yellowish brown e to fine sand, dry.	n, very har	d, low plasticity,	CL	19.5	SB5-15'		Lost sampler down hole. Borings terminated at 15 ft bgs	
BP/Ati	antic	Rich	field Company Page 1	of 1			В	orehole	ID:	SB-5	

r						r						
		CI	4222 Droedu	Cuite Of	20	LO	<u>G 0</u>	F E	<u>BORIN</u>	IG	· · · · · · · · · · · · · · · · · · ·	
	KK.		1333 Broady	vay, Suite 80	10	Borehole I	D: SI	3-6			·	
			Oakland, Cal	itornia 9461	2	Total Depti	n: 24	ft bg	is.			
P	ROJE	ECT IN	FORMATION			DRILL	ING	INFC	RMATIC	DN		
Project: ARG	CO Site	e 0498-Li	ivermore		Drilling	Company: Ca	scade	Drilli	ng			
Site Location	1: 286 \$	S. Livern	nore Ave., Livermore,	CA	Driller: Tom Evans							
Project Mana	ager: §	Scott Rol	binson		Type c	of Drilling Rig: (Geopro	be 66	00	• • •	·····	
RG: Bob Horv	vath				Drilling	Method: Direc	t Push	1				
Geologist: Ja	cob He	enry			Sampl	ing Method: Co	ntinuc	ous				
Job Number:	3848	7288			Date(s) Drilled: 1/20/0	5					
				BORING INI	FORMA	ΓΙΟΝ						
Groundwater	Depti	h: NA			Boring	Location: 286 S	. Live	more	Ave., Live	ermor	e, CA	
Air Knife or H	land A	uger D	epth: 5 ft bgs		Boring	Diameter: 2 in						
Coordinates:	: X		Y		Boring	Type: Explorate	ory					
	1				*	·	Ī	1			1	
sộq								Ê		چ		
ŧ,	đu,		Lith	ologic Descriptio	n		SS	d d	ble	õ	Comments	
ept	ි						ļĭ		3am	Rec		
			· · · · · · · · · · · · · · · · · · ·				<u> </u>					
								-		Τ	Surface conditions-	
											Asphalt	
											Air Knifed to a	
I E,											Depth of 5 ft.	
L ⁴												
E G	$ \Lambda $	GRAVE	ELLY SAND: 2.5Y5/3,	light olive brown, l	loose, fine	to coarse	SP					
Ľ	$ \wedge 1$	fines),	dry.	ed to subangular),	non-piasi							
	$ \uparrow\rangle$											
10	$ \Lambda' $							0.0	SB6-10'			
	1.4											
12	$\left \right\rangle$											
	\wedge											
14		CLAYE	Y SAND: 2.5Y4/3, oli	ve brown, dense, l	low plastic	city fines, very	SC					
	114		nne sanu, ury.					1.0	SB6-15'			
16		No Red	covery from 15 to 20 f	eet bgs.								
		Shoe o Sandv	f sampling rod contain Clay: 2.5Y5/4, light of	ed: ive brown, verv ha	ırd. verv fi	ne to fine						
E 18		sand, I	ow plasticity, dry.	,,								
	11:	CLAYE	Y SAND: Same as ab	ove.				14				
								10.0	CDC 001			
		011 714						10.9	300-22			
E.	//	fine to I	fine sands, dry, odor.	reenish gray, very	/ nard, low	v plasticity, very		11 0	SP6_24			
E 24			······································					11.0	300-24		Borings terminated	
200											at 24 h DgS	
[‡] ⁻ ∠0	l					I						
ľ												
RD/A+	lanti	e Bieł	field Compan	V Dogo 1	of 1			P	orebole		\$ R _6	
ι οΓ/Αι	aniti			v ragel	UEL			0	OLCHOIG		0 0-0	

r										
			1222 Broadway Suite 9	00	LO	<u>G ()</u>	FE	ORIN	G	
	NK.		Ockland California 0464	10	Borehole II): SI	3-7			
			Oakland, California 946	12	Total Depth	i: 20	ft bg	S		
P	ROJE	ECT INI	FORMATION		DRILL	ING	INFO	RMATIC)N	
Project: ARG	CO Site	e 0498-L	ivermore	Drillin	Company: Ca	scade	Drillir	ıg		
Site Location	: 286	S. Livern	nore Ave., Livermore, CA	Driller	: Tom Evans					····
Project Mana	ger: (Scott Ro	binson	Туре с	of Drilling Rig: C	ieopro	be 66	00		
RG: Bob Horv	vath			Drillin	g Method: Direc	t Push				
Geologist: Ja	cob H	enry		Samp	ing Method: Co	ntinuc	ous			<u>h miles</u>
Job Number:	3848	7288		Date(s) Drilled: 1/20/03	5				·····
			BORING IN	FORMA	TION					
Groundwater	Dept	h: NA	······	Boring	Location: 286 S.	Live	more	Ave., Live	mor	e, CA
Air Knife or H	land A	Auger D	epth: 5 ft bgs	Boring	Diameter: 2 in					
Coordinates:	X		Ŷ	Boring	Type: Explorato	ry				
	<u> </u>						I	[I	
sốq							Ê	□	<u>ح</u>	
(ft	qu		Lithologic Descriptio	n		SS	dd)	ple	N N	Comments
apth	Ś					ຶ		am	Rec	Commente
ŏ								S S		
E O		<u> </u>								Surface conditions-
										Asphalt
2										Air Knifed to a
										Depth of 5 ft.
F 4										
		GRAV	ELLY SAND: 2.5Y6/2, light vellowish bro	own. loose	, fine to coarse	SP				
6	$ \uparrow\rangle$	sand, f	fine gravels (subangular to subrounded),	minimal f	ines, dry.					
	$ \wedge'$									
8	1	1								
	$ \uparrow\rangle$	ļ						007 401		
	$ \Lambda'$						11.3	SB7-10		
	1,/	1								
12	$ \uparrow\rangle$	Increa	se in fines (clay), minor coarse gravels (subangula	ar).					
	$ \Lambda' $							-		
	\square	SAND	Y SILTY CLAY: 10YR4/4, dark yellowish	brown, v	ery hard, low	CL	16.7	SB7-14.5		
	Y/	plastici gravels	ity, very fine to fine sand, minor coarse s s, dry.	sand, mine	or coarse					
		Color	change to 10YR4/4, dark yellowish brow	n, very ha	ird,					
	1	rare co	parse sand (rounded), dry.	ounded),	ine sano,					
18		1								
							27 1	\$87.20		
20		Refusa	al at 20 ft bos				21.1	557-20		Borings terminated
		1101030	a, at 20 ft. 5gs.							ar 20 m ogs
E a										
24										
26										
^{‡ 20}		j								
	I						-	auch - 1	15	OD 5
BP/At	ianti	C KIC	ntield Company Page 1	of 1			B	orenole	υ :	2R-1

			1222 Procedurary Suite 9	20	LO	G O	FE	BORIN	G		
		J)	Oakland California 9461)U 2	Borehole ID): SI	3-8				
			Carland, Camornia 940	2	Total Depth	: 25	ft bg	ļS			
PR	OJE	CT INF	ORMATION		DRILL	ING	INFO	RMATIC)N		
Project: ARCC) Site $\frac{1}{286}$	0498-Li	vermore	Drilling	Company: Cas	scade	Drilliı	ıg			
Project Manage	280 S er: S	cott Poh	inson	Driller: Tom Evans							
RG: Bob Horwat	th		///////////////////////////////////////	Drilling	Method: Direct	t Push		00			
Geologist: Jaco	b He	nry		Sampl	ing Method: Co	ntinuo	ous		·····		
Job Number: 3	8487	288		Date(s) Drilled: 1/20/05	5					
			BORING IN	ORMA							
Groundwater D	epth	I: NA		Boring	Location: 286 S.	Liver	more	Ave., Live	rmor	e, CA	
Air Knife or Ha	nd A	uger De	epth: 5 ft bgs	Boring	Diameter: 2 in						
Coordinates:			Y	Boring	Type: Explorato	ry			_		
Depth (ft bgs)	Symbol		Lithologic Descriptio	'n		nscs	PID (ppm)	Sample ID	Recovery	Comments	
0 2 4 6 10 12 14 14 14 14 14 14 14 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 14 12 14 14 12 14 12 14 14 15 12 14 15 16 17 18 12 24 24 26		GRAVE sand, rr subrour SANDY fine san CLAYE medium subrour Color cl SANDY to coars non-plas	CLAY: 10YR4/2, brown, very hard, lov d (subrounded), dry to damp. Y SAND: 2.5Y4/3, olive brown, moderat n sand, rare coarse sand, rare fine grave nded), low plasticity fines, dry to damp. CLAYEY GRAVEL: 10Y4/1, dark green sand, fine to coarse gravels (subangu stic fines, damp to moist, odor.	oose, fine s (subang v plasticity ely dense, els (rounde ish gray, lo ular to ang	to medium ular to	SP CL SC GC	14 16.7 14 21.1	SB8-10' SB8-15' SB8-20' SB8-25'		Surface conditions- Asphalt Air Knifed to a Depth of 5 ft.	
BP/Atla	ntic	Rich	field Company Page 1	of 1			B	orehole	ID :	SB-8	

SOIL BOR	ING LOG Boring	No. MW-1	Sheet: 1 of 3
Client	Arco 498	Date	11/24/2008 - 11/25/2008
Address	286 South Livermore Avenue	Drilling Co.	Woodward Drilling rig type:BK-81
	Livermore, CA	Driller	Dave
Project No.	E-498	Method	Hollow Stem Auger Hole Diameter: 8 inches
Logged By:	Collin Fischer	Sampler;	18" x 2" Split Spoon
Well Pack	sand; 40 ft. to 17 ft	Well Construction	Casing Material: Schedule 40 PVC Screen Interval: 20 ft. to 40 ft.
	bent.: 17 ft. to 14 ft	_	Casing Diameter: 2 in. Screen Slot Size: 0.020-in.
	grout: 14 ft. to 0 ft.	Depth to GW:	V first encountered 32' static

	Sample	Blow	Sar	nple		Wall	Denth	Lithologia		DID
Туре	No.	Count	Time	Recov.)etails	Scale	Column	Descriptions of Materials and Conditions	(PPM)
				1					Cleared to 5' bgs with air knife	
					- 🖏		1			
					*		— ₂	-		
							_			
							3			
							— <u>,</u>			
<u> </u>					-		—"			
							5			
							—			
			********				6			
							— ₇			
					- <u>A</u>					
						Sacial.	⁸		***************************************	
							— ₉			
				<u> </u>	1	al diff.	_°			
					2		,10			
	MW-1 10'	50/3"	1550	0		1	/		No recovery	
							/ — ''			
							12			
					S.	1				
							13			
					w.		— 14			
								GC	Gravel with silty clay matrix	
			4555		0		15			
S	MVV-1 15	14 14	1555	100			- 16			O
		16			0		^{(V}		Silty sand with clay, SM, dark yellowish brown, dense, moist	
				 	2		17		60% coarse sand, 40% clayey silt	
							—	см		
							18	SIVI		
							19			
							20			
				Recove	ery _		J		Comments:	
				Comole						
				запре						
									and the second	
									SIKAIUS	
									$\mathbf{A} \mathbf{A} \mathbf{A}$	

so	IL BORIN	IG LO	G		Boring	No. MV	V-1	Sheet: 2 of 3					
Clie	nt	Arco 4	98			Da	te	11/24/2008 - 11/25/2008					
Add	ress	286 So	outh Live	ermore	Avenue	 Dri	llina Co.	Woodward Drilling rig type: BK-81					
		Liverm	ore, CA			Dril	ller	Dave	· ···				
Proi	ect No.	E-498					thod	Hole Diameter: 8 inches					
Log	ged By:	Collin F	ischer			Sai	mpler:	18" x 2" Split Spoon					
Wel	Pack	sand:	40 ft. to	17 ft		Well C	Construction	n Casing Material: Schedule 40 PVC Screen Interval: 20 ft. to 40 ft.					
		bent.:	17 ft. to	14 ft				Casing Diameter: 2 in. Screen Slot Size: 0.020-in.					
		grout:	14 ft. to	O ft.		– De	epth to GW	Trist encountered 32' static					
	Sample	Blow	Sar	nple		Donth							
Туре	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM				
S	MW-1 20'	50/5.5	1600	0		‼/—		Silty sand with clay, SM, dark yellowish brown, dense, moist					
						i∥ - ²¹	SM						
		ļ			Ξ	22							
			<u> </u>		Ξ.								
						24							
S	MW-1 25'	41	1605	100	Ξ			Gravel with clayey silt, GM, dark grayish brown, very dense, moist	0				
		50/5"				26		70% gravel, 30% clayey silt					
						27							
		·											
						²⁸	GM						
									*				
S	MW-1 30'	12	1610	67		30		Gravel with clavey silt GM dark gravish brown very dense moist					
		15		<u>.</u>		31		70% gravel, 30% clayey silt	0				
		18				/	∇						
					:: ≣ ::	-32	×	/					
					: <u></u>	33							
						—							
							<i>.</i>						
			1015			35							
3	MIN-1 35	7	1010	67				60% silt, 40% clav					
		9				$\overline{\mathbf{Z}}$	ML						
						— ³⁷							
						³⁹							
					::E	40							
				Recove	rv			Comments:					
					,								
				6 - ·									
				Sample		L							
								and the second sec					
								SIKAIUS					

so	IL BORIN	IG LOO	G		Boring	No. MV	V-1	Sheet: 3 of 3					
Clier	nt	Arco 4	98			Dat	le	11/24/2008 - 11/25/2008					
Addr	ess	286 So	uth Live	ermore	Avenue	Dril	ling Co.	Woodward Drilling rig type:BK-81					
		Liverm	ore, CA			_ Dril	ler	Dave					
Proje	ect No.	E-498				Me	thod	Hollow Stem Auger Hole Diameter: 8 inches					
Logo	ed By:	Collin F	ischer			Sar	mpler:	18" x 2" Split Spoon					
Well	Pack	sand:	40 ft. to	17 ft		Well C	Construction	Casing Material: Schedule 40 PVC Screen Interval: 20 ft. to 40 ft.					
		bent.:	17 ft. to	14 ft				Casing Diameter: 2 in. Screen Slot Size: 0.020-in.					
		grout:	14 ft. to	0 ft.		De	epth to GW:	∇ first encountered 32' static \mathbf{V}					
	Sample	Blow	Sar	nple	Well	Depth	Lithologic	· · · · · · · · · · · · · · · · · · ·	PID				
Type	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM)				
	10100-140	10	0755	100		41		moist, 60% silt, 40% clav	2				
		12					ML	······································	i				
						42							
						43							
					1	_							
				+	-	⁴⁴							
						45							
									[
				+		-40							
				_		47							
[†		_							
						— ⁴⁹							
						50							
[Γ									
				 		— ⁵¹							

					48			
					49			
					50			
					 52			****
					53			
					 54			********

					57			
		·····			°			
					59			
I	I	R	l Recove	ry		L	Comments:	
		s	ample	<u>.</u>				
							STRATUS Environmental, inc.	

......

SOIL BOR	ING LOG Boring	No. MW-2		Sheet: 1	of 3
Client	Arco 498	Date	November 24, 2008		
Address	286 South Livermore Avenue	Drilling Co.	Woodward Drilling rig	type:BK-81	
	Livermore, CA	Driller	Dave		
Project No.	E-498	Method	Hollow Stem Auger H	ole Diameter	; 8 inches
Logged By:	Collin Fischer	Sampler:	18" x 2" Split Spoon		······································
Well Pack	sand: 57 ft. to 34 ft	Well Construction	Casing Material: Schedule	40 PVC	Screen Interval: 37 ft. to 57 ft.
	bent.: 34 ft. to 31 ft		Casing Diameter: 2 in.		Screen Slot Size: 0.020-in.
	grout: 31 ft. to 0 ft.	Depth to GW:	First encountered	static	V

	Sample	Blow	Sar	nple		Wall	Depth	Lithologic		PID
Туре	No.	Count	Time	Recov.	D	etalls	Scale	Column	Descriptions of Materials and Conditions	(PPM)
							_1		Cleared to 5' bgs with air knife	
					*	~	2			*******
					2 24		3			
					S. Sin Sim		4			
							5 			
					W	inf.	⁶			
	L				, 197. 		$-{}^{7}_{8}$			
							9			
		50 (5 F)				100 100 100 100 100 100 100 100 100 100	10			
	MW-2 10'	50/5.5"	1000	100		<u> </u>	11		Silty gravel, GM, dark yellowish brown, very dense, dry 75% medium to course grained gravel, 25% silt	0
						1	12	GM		
							13 			
					*	*	14 15			
S	MW-2 15'	16 10	1005	67	<u>A</u> L.		16			
		11					/	CL	Silty clay, CL, dark yellowish brown, very stiff, medium plasticity, moist 70% clay, 30% silt	0
					ж Ч	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		A VERANA A A A A		
							19	GC		
				Basava			20		Caromania	
				Recove	я у —		-		Comments.	
				Sample	÷]			
									STRATUS Environmental, inc.	

so	IL BORIN	BORING LOG Boring						V-2	Sheet: 2 of 3					
Clie	nt	Arco 49	98				Da	te	November 24, 2008					
Add	ess	286 So	uth Live	ermore	Ave	nue	 Dri	 llina Co.	Woodward Drilling rig type:BK-81					
,		Liverm	ore CA				Dri	iler	Dave					
Proi	ect No.	E-498	0.0, 0.1				 	thod	Hollow Stem Auger Hole Diameter: 8 inches					
Logo	red By:	Collin F	ischer				_ Sa	mpler:	18" x 2" Split Spoon					
Well	Pack	sand:	57 ft. to	34 ft			Well (Construction	Casing Material: Schedule 40 PVC Screen Interval: 37 ft. to 57 ft.					
		bent.:	34 ft. to	31 ft					Casing Diameter: 2 in. Screen Slot Size: 0.020-in					
		arout:	31 ft. to	0 ft.			 D(epth to GW	First encountered static V					
		<u></u>					_							
	Sample		Sar	nole	-									
Type	No.	- Blow Count	Time	Recov.	ים	Well etails	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)				
S	MW-2 20'	16	1010	67					Silty clayey gravel, GC, dark yellowish brown, very dense, moist to wet					
		21					21	60	75% medium gravel, 25% silty clay	0				
							(22							
]	_	[Ι		and the second s	_							
				+		**** ***	²³							
							24	e de la companya de l						
S	MW-2 25'	19	1015	67			25	GP	Silty sandy gravel, GP, dark vellowish brown, dense, moist to wet					
_		19			2 ¹⁰	2 	26		70% medium gravel, 30% silty coarse grained sand					
		25					/							
				 -			-2'							
					*									
					3-1 16-20									
							, — ²⁹	ſ						
					1997 - 19									
S	MW-2 30'	12	1020	67	*			GC	Silty clayey gravel, GC, dark yellowish brown, very dense, moist to wet	0				
		16			1	1								
		ļ			0		32							
								1						
							— 35	a ser a						
							_							
							— ³⁶							
							37							
S	MW-2 37'	10	1028	100				ML	Clayey silt, ML, dark yellowish brown, very stiff, medium plasticity, moist	1.4				
		12					³⁸		10070 SIII, 4076 CIAY					
							39							
		II		L	<u>, •: {</u> =	<u> </u>	J <u>40</u>			-l				
				Recove	ery —				Comments:					
				Sample	ə —									
									STRATUS					
									ENVIRONMENTAL, INC.					

so	IL BORIN	IG LO	G		Boring	j No. M\	N-2	Sheet: 3 of 3			
Clier		Arco 4	98			Da	te	November 24, 2008			
Add	ess	286 So	uth Live	ermore	Avenue	— Dri	lling Co.	Woodward Drilling rig type:BK-81			
		Liverm	ore, CA			— Dri	ller	Dave			
Proje	ect No.	E-498				 Me	thod	Hollow Stem Auger Hole Diameter: 8 inches			
Logg	ed By:	Collin F	ischer			 Sa	mpler:	18" x 2" Split Spoon			
Well	Pack	sand:	57 ft. to	34 ft		Wel	I Construction	Casing Material: Schedule 40 PVC Screen Interval: 37 ft, to 57 ft,			
		bent.:	34 ft. to	31 ft				Casing Diameter; 2 in, Screen Slot Size: 0.020-in.			
		arout:	31 ft. to	0 ft.			Depth to GW:	First encountered static			
		<u></u>									
[Sample		Sar	nple							
Туре	No.	Blow Count	Time	Recov.	Well Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)		
S	MW-2 40'	9	1035	100	ΞĒ			Clayey silt, ML, dark yellowish brown, very stiff, medium plasticity, moist	2.3		
	[10		+	Ξ	41		60% silt, 40% clay	 		
		10				42					
				 		43	ML				
						44					
				+	Ξ						
					.:I≣I:	45					
S	MVV-2 45'	10	1040	100					38		
		13			Ξ		CL	Silty clay, CL, dark yellowish brown, very stiff, medium plasticity, moist			
					Ξ	47		80% clay, 20% silt			
					Ξ						
								4			
				Ξ	49						
								Clavey apped with served			
s	MW-2 50'	9	1050	100	Ξ	50	sw-sc	dark gravish brown, dense, moist	46		
		21			Ξ	51		40% clay, 35% medium grained sand, 25% medium gravel			
		22									
						: - ⁵²	معر				
						53	A. C.				
					Ξ.						
						- 54					
					Ξ	55					
S	MW-2 55'	32	1100	100				Gravel with clayey sand, GC, dark grayish brown, very dense, wet	0		
		50/5"				- 56	GW-GC	60% medium to coarse gravel, 40% clayey medium to coarse grained sand			
					Ξ.	57					
						58					
						59					
				Recove	ry			Comments:			
				Sample							
				Sauthe							
								GTPATILE			

SOIL BOR	ING LOG Boring	No. MW-3	Sheet: 1	of 3
Client	ARCO 498	Date	11/25/2008 - 11/26/2008	
Address	2186 S. Livermore Aveune	Drilling Co.	Woodward Drilling rig type:BK-81	
	Livermore, CA	Driller	Dave	
Project No.	E498	Method	Hollow Stem Auger Hole Diameter	: 8 inches
Logged By:	Collin Fischer	Sampler:		
Well Pack	sand: 34 ft. to 57 ft	Well Constructio	n Casing Material: Schedule 40 PVC	Screen Interval: 37 ft. to 57 ft.
	bent.: 31 ft. to 34 ft.	_	Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.
	grout: 0 ft. to 31 ft.	_ Depth to GW	: Vist encountered 52 static	V

	Sample	Blow	Sar	Sample		Well		nth	Lithologic		
Туре	No.	Count	Time	Recov.		Details	Sc	ale	Column	Descriptions of Materials and Conditions	(PPM)
										Cleared to 5' bgs with air knife.	<u> </u>
	 	<u> </u>				1.0) <u> </u>	1			
					1	1	<u> </u>				
						100	: —	2			
						1	× –	.			
			+		Ŵ	2. G	×	°			
		ĺ					·	4			
			******				÷ –	, I			*********
ļ						Ň		5			
		1			1	े 20		1			
								6			
						14					
						12	- I	7			
					3 No.	1	× –	_			
							· —	8			
						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	/ —				
					*	2 2) 	<i>"</i>			
					N. Contraction	Å	~ —	10			
S	MW-3 10'	6	1335	67	•	1	s, Lana			Gravel with silty clay, GC, dark yellowish brown, medium dense, moist	0
		7		[11	GC	70% medium gravel, 30% silty clay	
		7				1	7				
					100	- 100	/	12			
							· _		and a second		
							<u> </u>	13	1 and 1		
						55 	칠 —		de la compañía de la		
					100	2		14			
					*	8. S.		15			
	MW-3 15'	10	1340	33		100		13	MI	Clavev silt ML dark gravish brown very stiff low plasticity moist	82
		10	1010	00		*	87	16		60% silt 40% clav	02
		11				3	° / —				
						8		17			
					199	200			مى مەربى		
						Ċ		18	1		
						1			de la compañía de la		
					*		·	19 /	, 		
					8	19	#		GC		(
	1					. A.		20			
				Recove	۲۷					Comments:	
					.,						
				Sample	э						
				-							
										$\mathcal{D}/\mathcal{K}\mathcal{A}/\mathcal{D}$	
										ENVIRONMENTAL, INC.	

SOIL BOR	ING LOG Boring	No. MW-3	Sheet: 2 of 3
Client	ARCO 498	Date	11/25/2008 - 11/26/2008
Address	2186 S. Livermore Aveune	Drilling Co.	Woodward Drilling rig type:BK-81
	Livermore, CA	Driller	Dave
Project No.	E498	Method	Hollow Stem Auger Hole Diameter: 8 inches
Logged By:	Collin Fischer	Sampler:	
Well Pack	sand: 34 ft. to 57 ft	Well Construction	n Casing Material: Schedule 40 PVC Screen Interval: 37 ft. to 57 ft.
	bent.: 31 ft. to 34 ft.		Casing Diameter: 2 in. Screen Slot Size: 0.020-in.
	grout: 0 ft. to 31 ft.	Depth to GW:	r: → first encountered 52 static ▼
Sample	Sample		

6	omplo		6	mala		1			1
Tuna	Mo	Blow	Time		Well	Depth	Lithologic	Department of Materials and Candidana	PID
S	MW-3 20'	9 12 15	1345	67	- Details	21	Column	Gravel with silty clay, GC, dark yellowish brown, medium dense, moist 70% medium gravel, 30% silty clay	216
						²² ²³ 			
S	MW-3 25'	12 15	1350	67		24 25	GC	Gravel with silty clay, GC, dark yellowish brown, dense, moist 70% medium gravel, 30% silty clay	106
						27 28 28			
S	MW-3 30'	12 12 15	1355	67		29 30 31	GC	Gravel with silty clay, GC, dark yellowish brown, medium dense, moist 70% medium gravel, 30% silty clay	76
						$-{}^{32}$ $-{}^{33}$ $-{}^{34}$			
S	MW-3 35'	12 12 15	1400	100		35 36 36 37	ML	Clayey silt, ML, dark grayish brown, very stiff, low plasticity, moist 60% silt, 40% silt	14.8
						40		Comments:	
							Ar	CO 498 MW	

SOIL B	ORIN	G LOG		Bo	oring No	. MW-3	3	Sheet: 3 of 3			
Client		ARCO 49	8			_ Da	te	11/25/2008 - 11/26/2008			
Address		2186 S. L	ivermor	e Aveu	те	Dri	lling Co.	Woodward Drilling rig type:BK-81			
		Livermore	e, CA			_ Dri	ller	Dave			
Project No	о.	E498				Me	thod	Hollow Stem Auger Hole Diameter: 8 inches			
Logged B	iy:	Collin Fis	cher			Sa	mpler:				
Well Pack	k	sand: 34	ft. to 57	7 ft		Well C	onstruction	Casing Material: Schedule 40 PVC Screen Interval: 37 ft. to 57 ft.			
		bent.: 31	ft. to 34	ft.		_		Casing Diameter: 2 in. Screen Slot Size: 0.020-in.			
		grout: 0 f	t. to 31 f	ft.		. De	pth to GW:	Tirst encountered 52 static			
Samp Type	ple No.	Blow Sample We Count Time Recov. Deta		Well Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)			

Туре	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM)
S	MW-3 40'	6	1405	100				Clayey silt, ML, dark grayish brown, very stiff, low plasticity, moist	20
		10		 		41		70% silt, 30% silt	<u> </u>
		12			目目的				
			·}		「三三三	⁴²		; 	
						1 —	ML		
						⁴³			
						<u> </u>			
						<u> </u>			+
						1		Clayey silt, will, dark grayish brown, very stiff, low plasticity, moist	
	MAN 2 AF	42	0905	100	∃ =	45		170% siit, 50% siit	
3	10100-3 40	13	0003	100					4.0
		15	·}			40		Silty clay, CL, dark vellow/sh brown, very stiff, medium plasticity, moist	+
		15				47	CI	80% clay, 20% silt	
}	+		+			1			+
					Ξ	48			
}			+				1 de la compañía de la		<u>+</u>
						49	r a a a a		
			+						+
						— 50			
S	MW-3 50'	15	0830	100				Clayey silt with coarse sand trace gravel, ML, dark yellowish brown, hard	7
		15			[∷] <u>∃</u> ∷	51		low plasticity, wet, 50% silt, 30% clay, 20% coarse grained sand	
		17				(¹ 11.)		10% fine gravel	†
			Ť			52			
									1
						53	ML		
					Ξ				1
						54			
					Ξ				
						55			_
S	MW-3 55'	30	0850	100				Clayey silt with coarse sand trace gravel, ML, dark yellowish brown, hard	
		32				56		low plasticity, wet, 50% silt, 30% clay, 20% coarse grained sand	_
		50/3"						10% fine gravel	
						57		*****	_
						⁵⁸			+
						— ⁵⁹			+
						—			
						60			1
								Comments:	
								SIRAIUS	
								ENVIRONMENTAL, INC.	
									-
							Ar	co 498 MW	

SOIL BOR	NING LOG Boring N	lo. MW-4	Sheet: 1 of 3	
Client	Arco 498	Date	November 25, 2008	
Address	286 South Livermore Avenue	Drilling Co.	Woodward Drilling rig type:BK-81	
	Livermore, CA	Driller	Dave	
Project No.	E-498	Method	Hollow Stem Auger Hole Diameter: 8 inches	
Logged By:	Collin Fischer	Sampler:	18" x 2" Split Spoon	
Well Pack	sand: 40 ft. to 17 ft	Well Construction	Casing Material: Schedule 40 PVC Screen Interval: 20 ft. to 40 ft.	
	bent.: 17 ft. to 14 ft		Casing Diameter: 2 in, Screen Slot Size: 0.020-in.	
	grout: 14 ft. to 0 ft.	Depth to GW:	first encountered 32' static	

Sample Blow Sa			npie	Well		Denth	Lithologia		DID	
Туре	No.	Count	Time	Recov.)etails	Scale	Column	Descriptions of Materials and Conditions	(PPM)
							—,		Cleared to 5' bgs with air knife	
	+			+		W	— ¹			
L					ž		2			
							—			
				+	.95		_ ³			
							4			
							— ₅			

		++			7	i and	_ ⁶			
							_7			
							— ₈			
						*				
							— ^a			
					*	1997 1997 1997	10			
s	MW-4 10'	9 16	0925	67				GC	Gravel with silty clay, GC, dark yellowish brown, hard	0
		17	********				7''	00		
				ļ 		8.040	12			
							13			
							— 	ar and a second		
					1			e e e e e e e e e e e e e e e e e e e		
S	MW-4 15	9	0930	67			15		Silty clay, CL, dark vellowish brown, very stiff, medium plasticity, moist	
		10			0		16	CL	60% clay, 40% silt	Ū
		10								
			*******				- 17			
							18	e contra		
							- ₁₀			
							¹ 9	, GM		
					:		20			
				Recove	ery –				Comments:	
				Sample	÷ -					
									STRATIIS	
									ENVIRONMENTAL, INC.	

so	IL BORIN		G		Boring	y No. MV	V-4	Sheet: 2 of 3		
Clie	nt	Arco 4	98			Da	te	November 25, 2008		
Add	ress	286 So	outh Live	ermore	Avenue	 Dri	llina Co.	Woodward Drilling rig type:BK-81		
		Liverm	ore, CA			 Drii	ller	Dave		
Proj	ect No.	E-498				 Me	thod	Hollow Stem Auger Hole Diameter: 8 inches		
Log	jed By:	Collin F	ischer			Sai	mpler:	18" x 2" Split Spoon		
Well	Pack	sand:	40 ft. to	17 ft		Well (Construction	Casing Material: Schedule 40 PVC Screen Interval: 20 ft to 40 ft		
		bent.:	17 ft. to	14 ft				Casing Diameter: 2 in Screen Interval: 20 ft. to 40 ft.		
		arout:	14 ft to	0.#		 Df	enth to GW	Virst encountered 32' static		
		grout		<u> </u>			00000			
	Sample	Diam	Sar	nple			[
Туре	No.	Count	Time	Recov.	Well Details	Scale	Column	Descriptions of Materials and Conditions	(PPM)	
S	MW-4 20'	12	0935	67		···		Gravel with clayey silt, dark grayish brown, medium dense, moist	0	
		14	 		Ξ.	21	GM	70% medium gravel, 30% clayey silt		
			ļ							
								1		
<u> </u>				+		<u>-23</u>				
						24	1. P.			
		[[II _				
S	MW-4 25'	16	0940	67	Ξ	25	GP	Gravel with sithy sand GP, dark gravish brown donse, most to unit		
Ų	10101-020	18			Ξ			70% medium gravel, 30% fine to medium grained silty sand		
		20			Ξ.	7				
						— ²⁷				
				.						
					Ξ		1 and 1			
*******					Ξ	— ²⁹	e e e			
					Ξ	— ₃₀				
S	MW-4 30'	16	0945	67			GM	Gravel with clayey silt, dark grayish brown, medium dense, moist	0	
		17			Ξ	31		70% medium gravel, 30% clayey silt		
						32	$ $ ∇			
						-33				
						34	e e de de la companya			
S	MW-4 35	6	0950	67	Ξ	- ³⁵		Clavey silt ML dark vellowish brown very stiff medium plasticity moist	212	
		10		Ŭ,		36		60% silt, 40% clay		
		16				<u> </u>	ML			
						- ³⁷				
						38				
						1				
						- ³⁹				
					.: <u> </u> ≣ ::	<u>:</u> 40				
				Recover	- v			Comments:		
					,			Teoremonie:		
				Sample						
								STRATUS		

SOIL BOR	ING LOG Boring	No. MW-4	Sheet: 3 c	of 3
Client	Arco 498	_ Date	November 25, 2008	
Address	286 South Livermore Avenue	Drilling Co.	Woodward Drilling rig type:BK-81	
	Livermore, CA	Driller	Dave	
Project No.	<u>E-498</u>	Method	Hollow Stem Auger Hole Diameter:	8 inches
Logged By:	Collin Fischer	Sampler:	18" x 2" Split Spoon	
Well Pack	sand: 40 ft. to 17 ft	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 20 ft. to 40 ft.
	bent.: 17 ft. to 14 ft	-	Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.
	grout: 14 ft. to 0 ft.	_ Depth to GW:	Vfirst encountered 32' static	

Sample Blow		Sample		Well Depth		Lithologia		PID	
Туре	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM)
	MW-4 40'	10	0955	100		×		Clayey silt, ML, dark yellowish brown, very stiff, medium plasticity, moist	13.4
		10		+		4 ¹	MI	160% sili, 40% ciay	
						42			
[
				+		⁴³			
		_				44			
						—			
******						_* ³			
						46			
						⁴⁸			
						49			
						— ⁵⁰			
						51			
						₅₂			
						⁵³			
						54			
						⁵⁶			
						⁵⁸			
						59			
	I	L		l	L			• • • • • • • • • • • • • • • • • • •	
				Recove	Ŋ	J		Comments:	
				Sample]			
								STRATUS	

PROJECT NUMBER: 08-82-498 DATE: 3/22/2013 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-9 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST SERVICEREN soil Description Deptificeti Samplell Lithology 0% 20% 0 (0.0- 6.5) Unknown - Air Knife 5 (6.5-10.0) Auger 10 (10.0- 14.0) SM - Sand + Silty Sand (14.0- 15.0) SM - Silty Sand + Sandy Silt 15 -(15.0-18.0) CL - Clay + Silty Clay (18.0-19.5) SM - Silty Sand + Sandy Silt SB-9-20' 20 -(19.5- 32.5) SM - Sand + Silty Sand Mr Sharan 25 5 30 (32.5- 33.0) SM - Silty Sand + Sandy Silt (33.0- 33.5) CL - Clay + Silty Clay

(57.5-58.0) SM - Silty Sand + Sandy Silt

DATE: 3/18/2013 PROJECT NUMBER: 08-82-603 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-10 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: СРТ UNOST Stenal Cafe soil Description Depthtreetl Sampell Lithology 0% 20% 0 (0.0- 6.5) Unknown - Air Knife 5 (6.5-10.0) Auger 10 (10.0- 35.0) SM - Sand + Silty Sand SB-10-15' 15 -20 25 30

35

(35.0- 35.5) SM - Silty Sand + Sandy Silt

PROJECT NUMBER: 08-82-603 DATE: 3/20/2013 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-11 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST SERVICEREN soil Description Depthtreet Samplell Lithology 0% 20% 0 (0.0- 6.5) Unknown - Air Knife 5 (6.5-10.0) Auger 10 (10.0- 17.5) SM - Sand + Silty Sand 15 -SB-11-15' (17.5-18.0) SM - Silty Sand + Sandy Silt (18.0- 19.5) CL - Clay + Silty Clay 20 (19.5- 20.0) SM - Silty Sand + Sandy Silt (20.0- 28.0) SM - Sand + Silty Sand 25 (28.0- 29.0) SM - Silty Sand + Sandy Silt (29.0- 36.5) SM - Sand + Silty Sand 30

DATE: 3/20/2013 PROJECT NUMBER: 08-82-603 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-12 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST Steral MAREN soil Description Depthtreetl Samplell Lithology 0% 20% 0 (0.0- 6.5) Unknown - Air Knife 5 (6.5-10.0) Auger 10 (10.0- 35.0) SM - Sand + Silty Sand SB-12-15' 15 -20 25 mont SB-12-30' 30

PROJECT NUMBER: 08-82-603 DATE: 3/20/2013 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-12 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST SERVICEREN Soil Description Deptificeti Samplell Lithology 0% 20% 35 (35.0- 36.5) SM - Silty Sand + Sandy Silt (36.5-37.0) CL - Clay + Silty Clay (37.0-44.0) CL - Clay 40 (44.0- 44.5) CL - Clay + Silty Clay 45 (44.5-47.5) CL - Clay (47.5-48.0) CL - Clay + Silty Clay (48.0-49.5) SM - Silty Sand + Sandy Silt 50 · (49.5-50.0) CL - Clay + Silty Clay (50.0-53.0) CL - Clay (53.0- 53.5) CL - Clay + Silty Clay (53.5-54.0) CL - Clay 55 (54.0-54.5) CL - Clay + Silty Clay (54.5-55.5) CL - Clay (55.5- 57.0) CL - Clay + Silty Clay (57.0- 57.5) CL - Clay

(57.5- 58.0) CL - Clay + Silty Clay

PROJECT NUMBER: 08-82-603 DATE: 3/22/2013 PROJECT NAME: BP 498 SITE ADDRESS: 286 Livermore Ave., Livermore, CA BORING ID: SB-14 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST SERALOAR soil Description Depthtreetl Sampell Lithology 0% 20% 0 (0.0- 6.5) Unknown - Air Knife 5 (6.5-10.0) Auger 10 (10.0- 32.5) SM - Sand + Silty Sand 15 SB-14-18' 20 25 30 (32.5- 33.0) SM - Silty Sand + Sandy Silt (33.0- 33.5) CL - Clay + Silty Clay

DATE: 3/22/2013

PROJECT NAME: BP 498

SITE ADDRESS: 286 Livermore Ave., Livermore, CA

BORING ID: SB-14

BORE HOLE DIAMETER: 1.78"

DRILLING COMPANY: Gregg Drilling DRILLING METHOD: CPT

PROJECT NUMBER: 08-82-603

SAMPLE METHOD: Direct Push

PROJECT NUMBER: 08-82-603 DATE: 3/21/2013 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-15 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST SERVICEREN soil Description Depthtreetl Sampell Lithology 0% 20% 0 (0.0- 6.5) Unknown - Air Knife 5 (6.5-10.0) Auger 10 (10.0- 15.0) SM - Sand + Silty Sand (15.0-15.5) SM - Silty Sand + Sandy Silt 15 -(15.5- 18.0) CL - Clay + Silty Clay (18.0- 19.0) SM - Silty Sand + Sandy Silt (19.0-33.5) SM - Sand + Silty Sand 20 SB-15-24' 25 30 (33.5- 34.0) SM - Silty Sand + Sandy Silt (34.0-34.5) CL - Clay + Silty Clay

PROJECT NUMBER: 08-82-603 DATE: 3/21/2013 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-15 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST SERVICEREN Soil Description Dephilteeti Samplell Lithology 0% 20% 35 (34.5-35.5) CL - Clay (35.5-37.0) CL - Clay + Silty Clay SB-15-38' (37.0-38.5) CL - Clay 40 (38.5-40.5) CL - Clay + Silty Clay (40.5-41.5) CL - Clay (41.5-46.0) CL - Clay + Silty Clay 45 (46.0-51.0) CL - Clay 50 -(51.0- 52.0) CL - Clay + Silty Clay (52.0- 53.0) SM - Silty Sand + Sandy Silt (53.0- 54.0) CL - Clay + Silty Clay 55 (54.0-55.5) CL - Clay (55.5- 56.0) CL - Clay + Silty Clay (56.0- 56.5) SM - Silty Sand + Sandy Silt

(56.5- 58.0) SM - Sand + Silty Sand

PROJECT NUMBER: 08-82-603 DATE: 3/21/2013 PROJECT NAME: BP 498 SITE ADDRESS: 286 South Livermore Ave., Livermore, CA BORING ID: SB-16 DRILLING COMPANY: Gregg Drilling SAMPLE METHOD: Direct Push BORE HOLE DIAMETER: 1.78" DRILLING METHOD: CPT UNOST SERALVAREI soil Description Deptificeti Samplell Lithology 0% 20% 0 (0.0- 6.5) Unknown - Air Knife 5 (6.5-10.0) Auger 10 MMM (10.0- 14.0) SM - Sand + Silty Sand SB-16-13' (14.0-15.5) SM - Silty Sand + Sandy Silt 15 -(15.5-19.0) CL - Clay + Silty Clay (19.0- 20.0) SM - Silty Sand + Sandy Silt 20 (20.0- 33.0) SM - Sand + Silty Sand 25 SB-16-26' 30 (33.0- 33.5) SM - Silty Sand + Sandy Silt (33.5-34.0) CL - Clay + Silty Clay

APPENDIX D

Field Methods

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 Equipment Calibration

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 Depth to Groundwater and Light Non-Aqueous Phase Liquid Measurement

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurements were recorded as "apparent." If a bailer was used for LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 Well Purging and Groundwater Sample Collection

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water

is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Parameter	Stabilization Criterion
Temperature	$\pm 0.2^{\circ}C (\pm 0.36^{\circ}F)$
рН	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	$\pm 10 \text{ mV}$
Turbidity ¹	\pm 10% or 1.0 NTU (whichever is greater)

 Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

Per ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

² According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.
4.0 Decontamination

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 Sample Containers, Labeling, and Storage

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were properly labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 Chain of Custody Record and Procedure

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 Field Records

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX E

Field Data Sheets

BROADBENT

DA	IL	Y	RE	PO	RT	•

Page _____ of _____

Project: <u>Rp 498</u>	Project No.: 08-82-663
Field Representative(s): <u>AM / NV</u>	Day: Tuesday Date: 2/10/15
Time Onsite: From: <u>0815</u> To: <u>1230</u> ; From	m: To:; From: To:
 Signed HASP Safety Glasses UST Emergency System Shut-off Switches Proper Level of Barricading Other Plance 	Hard Hat Steel Toe Boots Safety Vest Located Proper Gloves PE (describe)
Weather: <u>Sunny</u> Equipment In Use: <u>Had Level meter</u> US Visitors: <u>None</u>	52 meter, bindder pump
TIME: WOR	K DESCRIPTION:
0315 Arrived ansite. Conducto	d tailgate.
1830 Set up to gauge	vells.
0900 jet up @ MW-2 For	Sampling
0930 Set up @ MW-1 2 M	w-bA/B
1050 Set LO Q MW-3 E M	~- 5A/B
1230 Completed fieldwark	E offsite.
<u> </u>	· · · · · · · · · · · · · · · · · · ·
Signature:	Revision 1/24/201

-

498

GROUNDWATER MONITORING SITE SHEET

Page _____ of _____

Project:

BP

Project No.: 08-82-603 Date: 2/10/15

Field Representative: AMINV Formation recharge rate is historically:

W. L. Indicator ID #:

High Low (circle one)

Elevation:

(List #s of all equip used.) Oil/Water Interface ID #:

٧	WELL ID RECORD					WELL GAUGING RECORD			LAB ANALYSES					
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24 00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)					
MW-1					0833			29.59	40.30					
Mw- 2					0350			41.40	57.18			(
Mn - 3					0343	300		40.81	55.43		1			
Mn- 4			1		0348			39.85	40.13					
Mw- 5A					0346			40.58	49.66					ļ
Mw-5B					0845			40.66	65.79				-	
MW- 6 N					0829			44.04	49.69	95				
MW-6B					0935	26		42.08	69.59				-	-
					11534					<u></u>	1.8.2			
			ļ	-	100							-	4	-
												5		
			-											
		-	+											4
and the second														
													-	
														-
		· ·	· · · · ·										1	
					15.19		 						Ê	
			1	1.0	-				-					
1.11			f.						1					-
• 1.550	1			-		÷			1		-			_
	1		-				1				-			
<u>.</u>		-	-		0.00				-		-			-
				_					<u> </u>					
* Device used to measure LNAPL thickness:				Bailer		Oil/Wa	ater Interi	ace Mete		(cir	cte one)			
If bailer used	, note bai	iler dime	nsions (ir	iches):	Entry I	Jiameter		-	Chan	iber Dia	meter			

Signature:

GROUNDWATER SAMPLING DATA SHEET

Page <u>2</u> of <u>9</u>

Project:	BP 4	98			Project No.:	08-82	- 603	Date:	2/10/15
Field Repres	sentative:	AMI	NV						
Well ID:	mn-1		Start Time:	6930	End Time:	0950	Total Time	e (minutes):	20
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump		Flow Cell		
<u>√</u>	Disp. Tubing		L2V Pump		Peristaltic Pump	Other/ID#:	Bindder	Pump	
WELL HEA	D INTEGRITY	(cap, lock, vaul	l, etc.)	Comments:					
Good	Improvement Nee	ded (ci	rcle one)						
PURGING/S	SAMPLING ME	ETHOD Pr	edetermined Wel	I Volume Loy	w-Elew Other:			(circle o	ne)
	PREDETERM	IINED WELI	VOLUME				LOV	V-FLOW	
Casing D	liameter Unit Volu	me (gal/ft) (cire	:le one)			Previous Low-F	Tow Purge Rate:		(1pm)
1" (0.04)	1.25" (0.08)	2"] (0.17)	3" (0.38)	Other:		Total Well Dep	th (a):		<u>40,30</u> (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	<u>" ()</u>	аЦ	Initial Depth to	Water (b):		(î)(î)
Total Well Dep	th (a):			(ft)	↓	Pump In-take D	Depth = b + (a-b)/2	:	<u>15.09</u> (ft)
Initial Depth to	Water (b):			(ft)		Maximum Allo	wable Drawdown	= (a-b)/8:	<u> </u>
Water Column	Height (WCH) = (a	- b):		(ft)		Low-Flow Purg	e Rate:		(Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Volu	ime:	(gal)		Comments:			
Three Casing	Volumes = $WCV x$. 31 -		(gat)				<i>6</i>	and be a should not
Five Casing V	rolumes = w C v x c			(gai) (ft)	♥ 🖯	*Low-How purge r	are snouia oe wiinin i Doorooloo oo should wa	unge of instruments	useu pur snouta not Itoualda Danadaun
Fump Depth (it	pump useu):			TED STADI		AMETED DE		exceen maximum A	minine Drakaiwit.
Time	Cumulative Vol	Temperature	nH	Conductivity	DO	ORP	Turbidity	1	NOTES
(24:00)	gal or	°C	1	μS or prS	mg/L	mV	NTU	Odor, colo	or, sheen or other
0735	0.0	19.13	6.44	0.811	3.99	-152	>800	-	
0440	0.5	19.96	6.21	0-797	1.65	-165	576		
6942	1-0	20-21	6.07	0.791	1-11	-163	419		
<u> </u>	1-5	20-36	6.02	0-80	0.93	-162	56.3		· · · · · · · · · · · · · · · · · · ·
0946	2.0	20.46	6-04	0.735	0.4.2	-168			
	· · · · ·						-		
				· · · · · · · · · · · · · · · · · · ·					
	·								
Previous Stabil	ized Parameters					<u> </u>			
PURGE CO	MPLETION R	ECORD	Low Flow & P	arameters Stable	3 Casing V	olumes & Param	eters Stable	5 Casing Volum	es
	Other:								
	SA	MPLE COLL	ECTION RE	CORD			GEOCHEMIC	CAL PARAM	ETERS
Depth to Water at Sampling: 32.25 (ft)						Par	ameler	Time	Measurement
Sample Collec	ted Via: Dis	p. Bailer	Dedicated Pump	Tubing		DO (mg/L)			
Disn. Pu	Disp. Pump Tubing Other:					Ferrous Iron (r	ng/L)		
Sample ID:	Mn-1		Sample Collect	ion Time: 09	SO (24:00)	Redox Potenti	al (mV)		
Containam (4)	- 6 VOA (N	precerved or	unmeasure (Consection)	fitar A	mber	Alkalinity (ma		-	
Containers (#)		preserved of _	unpreserveu)	Other	moel	Other:	y ==)		1
	Other:			Outer:		Other:			
	Other: Other:					Other:		L	

GROUNDWATER SAMPLING DATA SHEET Page 3_ of 9

Project:	20.14				Project No :	13.87	603	Date:	2/10/15
	<u></u> DPY	12			Troject No	0.0.00	002	Dute.	27 107 13
Field Repres	sentative:	<u>AM /</u>	NV						
Well ID:	MW -2		Start Time:	0900	End Time:	0920	Total Time	e (minutes):	20
PURGE EQ	JIPMENT		Disp. Bailer		120V Pump		Flow Cell		
	Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:	Bindder	Pump	
WELL HEA	D INTEGRITY	(cap, lock, vaul	t, etc.)	Comments:					
Good	Improvement Nee	ded (ci	rcle one)						
PURGING/S	SAMPLING ME	ETHOD Pr	edetermined We	ll Volume 🛛 😡	w-Flow Other:			(círcle o	ne)
	PREDETERM	INED WELL	L VOLUME				LOV	V-FLOW	
Casing D	iameter Unit Volu	me (gal/ft) (circ	:le one)			Previous Low-F	low Purge Rate:		(lpm)
L" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept	h (a):		57.18 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	* ()	a	Initial Depth to	Water (b):		<u>41.40</u> (ft)
Total Well Dept	h (a):			(ft)		Pump In-take D	$epth = b + (a \cdot b)/2$		<u>47.29</u> (ft)
Initial Depth to	Water (b):			(ft)		Maximum Allo	wable Drawdown	= (a-b)/8:	1.97 (ft)
Water Column I	Height (WCH) = (a	- b):		(ft)	* * *	Low-Flow Purg	e Rate:		<u>0.25</u> (Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Volu	ime:	(gal)		Comments:			
Three Casing	Volumes = WCV x	3:		(gal)					
Five Casing V	olumes = WCV x 5	i:		(gal)	. ↓ 🗄	*Low-flow purge ro	ite should be within i	range of instruments	used but should not
Pump Depth (if	pump used):			(ft)		exceed 0.25 gpm. E	Prandown should not	t exceed Maximum A	llowable Drawdown.
		G	ROUNDWA	TER STABIL	ZATION PAR	AMETER RE	CORD		
Time	Cumulative Vol.	Temperature	рН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal of U		1 16				74	Odor, con	or, succit of other
2917	0.0	15.70	6.75	1.13	7.00	92	LO		
0314	1.0	18.63	6.43	1.12	2.55	91	14.9		
0916	1.5	(5.83	6-47	1.12	2.44	94	55.8		
0715	2.0	17.90	6-46	1.12	2.54	97	13.2		
			· · · · · ·	-					
				-					
					-				
		d.		-1					
Previous Stabili	zed Parameters			-{					
PURGE CO	MPLETION R	ECORD 🗸	Low Flow & P	arameters Stable	3 Casing Ve	olumes & Parame	ters Stable	5 Casing Volum	
l'ence co	THE BUBUL STREET ST.		Other		p caoing vi				1
	C A I			CORD			GEOCHEMIC	TAL DADAM	FTEPS
<u> </u>	5A		ECTION RE			GEOCHEMIC			
Depth to Water	at Sampling:	1<u>1-71</u> (1)			Para	imeter	11me	Measurement
Sample Collect	ted Via: Dis	p. Bailer	Dedicated Pump	Tubing		DO (mg/L)			Permanen .
Disp. Pu	np Tubing Oth	er:				Ferrous Iron (n	ng/L)		
Sample ID:	MW-Z		Sample Collec	tion Time:	10 (24:00)	Redox Potentia	al (mV)		
Containers (#):	: 🪣 VOA (🚬	preserved or _	unpreserved) Liter Ai	mber	Alkalinity (mg	/L)		
1	Other:			Other:		Other:			
	Other:			Other:		Other:			

Signature: Aly modia

GROUNDWATER SAMPLING DATA SHEET

Page <u>4</u> of <u>9</u>

Destaut	– – – –				Design Nr.		1.02	Datas	- hole
Project:	BP_4	98	1		Project NO.:	03-85	-603	Date:	11013
Field Repres	sentative: 🗧 🗨	AM/	NV NV						
Well ID:	Mw-8	As	Start Time:	1140	End Time:	1155	Total Time	e (minutes):	15
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	11	Flow Cell		
1	Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:	Bladder !	Pine	
WELL HEA	D INTEGRITY	(cap, lock, vaul	l, etc.)	Comments:					
Good	Improvement Nee	ded (ci	rele one)						· · · · · · · · · · · · · · · · · · ·
PURGING/S	SAMPLING MI	ETHOD Pr	edetermined Wei	11 Volume Lov	w-Flow Other:	· · · · · · · · · · · · · · · · · · ·		(circle o	ne)
	PREDETERM	(INED WELI	VOLUME		_		LOV	N-FLOW	
Casing D	iameter Unit Volu	me (gal/ft) (cire	le one)			Previous Low-F	low Purge Rate:	31 - 10.	(lpm)
l* (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept	th (a):		55 43 (fi)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	*]()	a b	Initial Depth to	Water (b):		40.58 (ft)
Total Well Dept	:h (a):			(ft)		Pump In-take D	epth = b + (a-b)/2	2:	48.00 (ft)
Initial Depth to	Water (b):			(ft)	¥	Maximum Allo	wable Drawdown	= (a-b)/8;	1.75 (ft)
Water Column	Height (WCH) = (a	- b):		(ft)		Low-Flow Purg	e Rate:		_0_25_(Lpm)*
Water Column	Volume (WCV) = V	WCH x Unit Volu	Ime:	(gal)		Comments:	2.0		
Three Casing	Volumes = WCV x	3:		(gal)					
Five Casing V	olumes = WCV x 4	5:		(gal)	↓ ∐	*Low-flow purge re	ate should be within i	range of instruments	used but should not
Pump Depth (if	pump used):			(ft)		exceed 0.25 gpm. L	Drawdown should not	t exceed Maximum A	llowable Drawdown,
		G	ROUNDWA	TER STABIL	IZATION PARA	AMETER RE	CORD		
Time	Cumulativę Vol.	Temperature	рН	Conductivity	DO	ORP	Turbidity	1	NOTES
(24:00)	gal or	°C		µS or ms	mg/L	mV	NTU	Odor. col	or, sheen or other
1146	0.0	20.25	7.05	1-05	3.93	-158	104	· · · · · · · · · · · · · · · · · · ·	
1149	0.5	19.97	6.66	1.07	1.09	-156	42.4		
1150	1.0	19.91	6.66	1.03	0.07	166	12.4		
1152	2 4	10.07	64	1.09	0.63	-170	54.5		
<u> </u>	C.U	12.21	<u> </u>						
				-					
						-			
								·	
	1					·····			
								·····	
Previous Stabili	zed Parameters								
PURGE CO	MPLETION R	ECORD _	Low Flow & P	arameters Stable	3 Casing Vo	olumes & Parame	eters Stable	_5 Casing Volum	ies
		_	Other:					-	
	SA	MPLE COLL	ECTION RE	CORD			GEOCHEMIC	CAL PARAM	ETERS
Depth to Water	t at Sampline:	<u>41.22</u> ())))			Par	meler	Time	Measurement
Comple Control	acoampung:		17 Dadiented Doore	Tubina			441656566	1 41435	tricustification
Sample Collect	ieu via: Dis	p. Baller	Dedicated Pump	LINDING		DO (mg/L)		-	
Disp. Put	mp Tubing Oth	er:				Ferrous Iron (n	ng/L)		
Sample ID:	Mw-	5	Sample Collect	tion Time:	(24:00)	Redox Potentia	al (mV)		
Containers (#):	: <u>6</u> VOA (🏊	_ preserved or _	unpreserved) Liter A	mber	Alkalinity (mg	/L)		
	Other:			Other:		Other:			
	Other:			Other:		Other:			
-									

Signature: Alymost

GROUNDWATER SAMPLING DATA SHEET Page 5 of 9

Project:	BP 4	198			Project No.:	08-82.	- 603	Date:	2/10/15	
Field Repres	sentative:	Aml	NV		μ.			0.0		
Well ID:	Mw	- 4	Start Time:		End Time:		Total Time	e (minutes):		
DUD OF FOI		·····			10011 5	-				
PURGE EQ	Dire Tubin		Disp. Bailer		120V Pump Paristaltic Dump	DihardDH	riow Cell			
WELLIEA	Disp. Lubing		12V Pump		renstattie Pump -					
WELL HEA	D INTEGRITY	(cap, lock, vaul	t, clc.) insta onal	Comments:						
DUDCINC	SAMPLING M									
PURGINGA	DREDETERM			Volume Lov	w-Flow Other:	(circle one)				
Casing	PREDEIERN	me (milft) (cir				Previous Low-F	ow Puree Rate:	V-FLUW	(lpm)	
	1.25" (0.08)	$2^{"}$ (0.17)	3" [(0.38)	Other:		Total Well Dent	h (a):		(îi)	
4" [(0.66)	6" [(1.50)	8" (2.60)	12" [(5.81)	*[()	b	Initial Depth to	Water (b):		(ft)	
Total Well Dep	th (a):			(fu	"	Pump In-take D	epth = b + (a-b)/2	*	(ft)	
Initial Depth to	Water (b):			(ft)		Maximum Allov	vable Drawdown	= (a·b)/8:	(fi)	
Water Column	Height (WCH) = (a	- b):		(ft)		Low-Flow Purge	Rate:		(Lpm)*	
Water Column	Volume (WCV) = V	CH x Unit Vol	ime:	(gal)		Comments:				
Three Casing	Volumes = WCV x	3:		(gal)						
Five Casing V	/olumes = WCV x 5	÷		(gal)	★ 🗄	*Low-flow purge ra	te should be within i	ange of instruments	used but should not	
Pump Depth (if	pump used):			(11)		exceed 0.25 gpm. D	rawdown should noi	exceed Maximum A	llowable Drawdown.	
	Consultation Mal	G	ROUNDWAT	ER STABIL	IZATION PARA	AMETER RE	CURD		NOTES	
(74/00)	cumulative vol.	i emperature °C	рн		DO me/l		NTH	u Odor, colo	or, sheen or other	
(14.00)	garore	<u> </u>		μο σι πο	1000			00011001		
								2		
	Tuest	FRIER	ent V	Vater						
	1430	1110.								
	· · · · · · · · · · · · · · · · · · ·									
		N-0	Da	mpie	2-01	10-6-41	ON			
	·									
	·		1					-		
d=										
Previous Stabil	ized Parameters					L				
PURGECO	MPLETION R	ECORD _	Low Flow & Pa	arameters Stable	3 Casing Vo	olumes & Parame	ters Stable	5 Casing Volum	es	
L			Other:							
L	SAI	MPLE COLL	ECTION REC	CORD			JEOCHEMIC	CAL PARAM	ETERS	
Depth to Water at Sampling:(ft)						Para	meter	Time	Measurement	
Sample Collec	ted Via: Dis	p. Bailer	Dedicated Pump	Tubing		DO (mg/L)				
Disp. Pu	mp Tubing Oth	er:				Ferrous Iron (mg/L)				
Sample ID:			Sample Collecti	on Time:	(24:00)	Redox Potential (mV)				
Containers (#)	: VOA (preserved or _	unpreserved)	Liter A	mber	Alkalinity (mg/	L)			
	Other:Other:Other:					Other:				
Other: Other:						Other:				

Signature:

aly tontin

GROUNDWATER SAMPLING DATA SHEET

Page <u>6</u> of <u></u>

Project:	BP 4	198			Project No.:	08-82-	603	Date:	2/10/15
Field Repres	sentative:	AM	INV						
Well ID:	Mw-s	5 A	Start Time:	1050	End Time:	1005	Total Time	e (minutes):	15
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump		Flow Cell		
	Disp. Tubing		12V Pump		Peristaltic Pump	✓ Other/ID#:	Bladder	Pump	
WELL HEA	D INTEGRITY	(cap, lock, vaul	t, etc.)	Comments:					
Ciond	Improvement Nee	ded (ci	rcle one)						
PURGING/S	SAMPLING ME	ETHOD Pr	edetermined Wei	Il Volume Lov	w-Flow Other:			(circle a	me)
	PREDETERM	INED WELI	VOLUME_				LOV	V-FLOW	
Casing D	hameter Unit Volu	me (gal/ft) (ciri	te one)			Previous Low-F	low Purge Rate:		(lpm)
1"](0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept	th (a):		49.66 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	"[()	a 0	Initial Depth to	Water (b):		<u>40.58</u> (ft)
Total Well Dept	th (a):				Pump In-take D	epth = b + (a-b)/2		<u>45.12</u> (ft)	
Initial Depth to	Water (b):				Maximum Allo	wable Drawdown	= (a-b)/8:		
Water Column I	Height (WCH) = (a	- Ъ):		(11)		Low-Flow Purg	e Rate:		(Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Volu	ime:	(gai)		Comments:			
Three Casing	Volumes = $WCV x$	_3: 		(gal) (gal)		at			
Pive Casing v	$volumes = w \cup v \ge 3$	1.		♥ 🗄	*Low-plow purge rate should be within range of instruments used the should not exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Drawdown.				
Pump Depta (II	pump useu).	C		TED STABI		AMETER DE		exceed Million A	
Time	Cumulative Vol	Temperature	NUCINDWA	Conductivity	DO		Turbidity		NOTES
(24:00)	gal or	°C	P	µS or the	mg/L	mV	NTU	Odor. col	or, sheen or other
1056	0-0	19.77	6.86	1.07	3.20	-100			
1038	0.5	20.07	6.66	1.07	1.40	773	197		
1100	1.0	20-11	6-64	1_0/	2.56	-197	114		
1102	1-5	20-17	6-65	1-06	2.42	-14	52.4		
1104		U.LC	6-61	1.05	L. 01	(-()	· (. C		
				·					
		······································							
				· · · · · · · · · · · · · · · · · · ·					
						<u></u>			
Previous Stabili	ized Parameters		Ļ			<u> </u>			
PURGE CO	MPLETION R	ECORD _	Low Flow & P	arameters Stable	3 Casing V	olumes & Parame	eters Stable	5 Casing Volun	ies
	SA	MPLE COLL	ECTION RE	CORD			GEOCHEMIC	CAL PARAM	ETERS
Depth to Water at Sampling:						Par	imeter	Time	Measurement
Sample Collected Via: Disp. Bailer Dedicated Pump Tubing						DO (mg/L)			
JDisp. Pus	mp Tubing Oth	er:		-		Ferrous Iron (mg/L)			
Sample ID:	MW-SA		Sample Collect	tion Time: 1	05 (24:00)	Redox Potentia	al (mV)		
Containers (#)	6 VOA (V	preserved or	unneteroad) Liter A	mber	Alkalinity (mo/l)			
Comaniers (#).		- Preserved of _	unpreserveu	, unu di		Other			
	Other:			Other:		Other:			
	Uner:				Page 62.00	1 Omer:		.I	1
Signature:	al	4 -44	-10	2					Revision: 3/15/2013

GROUNDWATER SAMPLING DATA SHEET

Page _____ of _____

Project:	120	uas			Project No.:	08-82-6	03	Date:	2/10/15
Field Repres	sentative:	ţ_ <u>`</u>						-	
Well ID:		n	Start Time:	1115	End Time:	(130)	Total Time	e (minutes):	15
wen ib.	C W	C	Start Third.		Line Hille.	(1)0	I CHAI I HIM	- (minates)	_
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump		Flow Cell		
	Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:	Bladder	Punp	
WELL HEA	D INTEGRITY	(cap, lock, vau	t, etc.)	Comments:					
Good	Improvement Nee	eded (c	ircle one)						
PURGING/S	SAMPLING MI	ETHOD P	redetermined Wel	ll Volume Lo	w-Elow Other:			(circle o	ne)
	PREDETERM	INED WEL	L VOLUME				LO	V-FLOW	
Casing D	hameter Unit Volu	me (gal/ft) (cir	cle one)	_		Previous Low-Fl	low Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept	h (a):		<u>65.79</u> (It)
4" (0.66)	6" (1.50)	8" (2.60)	12" [(5.81)		a	Initial Depth to	Water (b):		<u> </u>
Total Well Dept	th (a):			(ft)		Pump In-take De	epth = b + (a-b)/2		<u>55.19</u> (ft)
Initial Depth to	Water (b):			(ft)		Maximum Allov	vable Drawdown	= (a-b)/8:	<u> </u>
Water Column	Height (WCH) = $(a$	- b):		(ft)		Low-Flow Purge	e Rate:		(Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Vol	ume:	(gal)		Comments:			
Three Casing	Volumes = WCV x	: 3: -		(gal)	Ē				
Five Casing V	olumes = WUV x	:		(gai) (6)	▼⊟	*Low-flow purge ra	te should be within i	range of instruments	used but should not
Pump Depin (II	pump used):			TED CTADU		exceed 0.25 gpm. D		і ехсе <u>еа махітит А</u>	авнате рланаона.
Time	Cumulative Val	Tampamium	ROUNDWA	Conductivity	DO	OPP	Turbidity		NOTES
(74:00)	eal or	1 emperature °C	pri		mg/L	mV	NTU	Odor, colo	or, sheen or other
1170	0-0	19.97	7.09	1.10	6.17	-27	472		
1122	0.5	19.77	7.05	1-11	5.30	~h	้เก้า		
1124	1-0	19.63	7.05	1-11	5.37	- 3	86.4		
1,26	1-5	19.54	7.01	1-11	5.24		47.9		
N 28_	2.0	19.55	7-0>	1-0	2.40		19.8		· · · · · · · · · · · · · · · · · · ·
		P-1							
					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
		· · · · · ·							
					- (1000-010-010-01-01-01-01-01-01-01-01-01-				
					· ····································				
				_					
		· · · · · · · · · · · · · · · · · · ·							
					-				
				· · · · · · · · · · · · · · · · · · ·	·				· · ·
Previous Stabili	ized Parameters								
PURGE CO	MPLETION R	ECORD _	Low Flow & P	arameters Stable	3 Casing Vo	lumes & Parame	ters Stable	5 Casing Volum	es
			Other:		-			-	
	SA	MPLE COLI	ECTION RE	CORD			GEOCHEMIC	CAL PARAM	ETERS
Depth to Water	rat Sampline: U	0.54 0	6)			Para	meler	Time	Measurement
Samula Caller	racoampring.	n Dailar	Dadicated Dum-	Tubina				1700	111642016411614
sample Collect	ieu via:Dis	p. Baller	Dedicated Pump	ading					
- Disp. rump Luoing Other:						remous from (m	ig/L)		
Sample ID:	(L ~)	¥	Sample Collect	tion Time:	24:00)	Redox Potentia	l (mV)		
Containers (#)	: <u>6</u> VOA (_ preserved or _	unpreserved]) Liter A	mber	Alkalinity (mg/	(L.)		
	Other: Other:					Other:			
	Other: Other:					Other:			

Signature: My mother

GROUNDWATER SAMPLING DATA SHEET Page <u>5</u> of <u>9</u>

Project:	20	ucg			Project No.:	17.87.4	03	Date:	7/10/15
Field Papras	612	770		······	riejeerrien	0 1-1 2-0	<u> </u>		C/10/9
	semanye.	AMI			P 10	1018	The sector of th	(
Well ID:	Mw-6	A	Start 11me:	(000	End Time:	1015	Total Time	e (minutes):	12
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump		Flow Cell		
\checkmark	Disp. Tubing		12V Pump		Peristaltic Pump	✓ Other/ID#:	Bindder	Primp	
WELL HEA	D INTEGRITY	(cap. lock, yaul	t. etc.)	Comments:					
Good	Improvement Nee	eded (ci	rcle one)						
PURGING/S	AMPLING MI	ETHOD P	redetermined Wel	I Volume 1.0	w-Flow Other:			fcircle o	ne)
	PREDETERN	INED WELL	L VOLUME				LOV	V-FLOW	
Casing D	iameter Unit Volu	me (gal/ft) (cir	cle one)			Previous Low-F	low Purge Rate:		(lpm)
1"1(0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dep	th (a):		49.69 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	"()	a b	Initial Depth to	Water (b):		44.04 (ft)
Total Well Dept	th (a):			(ft)		Pump In-take D	epth = b + (a-b)/2	<u>}:</u>	<u>46.56</u> (ft)
Initial Depth to	Water (b):			(ft)		Maximum Allo	wable Drawdown	= (a-b)/8:	<u> </u>
Water Column	Height (WCH) = (a	- b):		(ft)		Low-Flow Purg	e Rate:		(Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Volt	ime:	(gal)		Comments:			
Three Casing	Volumes = WCV x	3:		(gal)			11 M 2 M 11 11 11 11 11		
Five Casing V	olumes = WCV x 5	5:		(gal)	↓ 🗄	*Low-flow purge ra	ite should be within i	range of instruments	used but should not
Pump Depth (if	pump used):			(ft)		exceed 0.25 gpm. L	Drawdown should no	t exceed Maximum A	llowable Drawdowπ.
		G	ROUNDWA	<u>FER STABIL</u>	IZATION PAR	AMETER RE	CORD		
Time	Cumulative Vol.	Temperature	pН	Conductivity	DO	ORP	Turbidity	1	NOTES
(24:00)	gal or(L)	°C	1 800	<u>µS or nS</u>	mg/L	mV	NIU	Odor, colo	or, sheen or other
1004	0.0	17.0	6.34	1.36		-6/	0.0		
1008	10	19.50	694	157	1.09	-121	>300	·	
1010	65	19.57	694	1.56	1.86	-135	563		
1012	2,0	1956	6.93	1-56	0.77	-129	225		
									· · · · · · · · · · · · · · · · · · ·
2-2/10-10-10-10-10-10-10-10-10-10-10-10-10-1									
									· · · · · · · · · · · · · · · · · · ·
Denuious Stabili	Parameters			<u> · · · · · · · · · · · · · · · · · · ·</u>		<u> </u>	┨────		
Previous Stabili	ADLETION D	ECORD			1	[L Carble	Casina Value	
PURUECU	MIPLETION	CLOKD _		arameters Stable	3 Casing Vo	sumes & Parame	ters stable	5 Casing Volum	5
<u> </u>			Other:			T	acooucius		
L	SA	MPLE COLL	ECTION REC	CORD			GEOCHEMIC	AL PARAMI	ETERS
Depth to Water	r at Sampling:	9.70	ît)			Para	ameter	Time	Measurement
Sample Collect	ted Via: Dis	p. Bailer	Dedicated Pump	Tubing		DO (mg/L)			
Disp. Put	mp Tubing Oth	er:				Ferrous Iron (n	ng/L)		
Sample ID:	Mw-6A		Sample Collect	ion Time: <u>10</u>	5(24:00)	Redox Potentia	al (mV)		
Containers (#):	6_ VOA (_>	preserved or	unpreserved)	Liter A	mber	Alkalinity (mg	/L)		
	Other:			Other:		Other:			
	Other:				Other:				
					1				

aly thatis

GROUNDWATER SAMPLING DATA SHEET

Page <u></u> of <u></u>

Project:	BP 4	98	-		Project No.:	08-82-	603	Date:	2/10/15
Field Repres	entative:	AM	INV						
Well ID:	Mw-	6 B	Start Time:	1020	End Time:	1035	Total Time	e (minutes):	15
PURGE EQU	JIPMENT		Disp. Bailer		120V Pump	<u>√</u>	Flow Cell		
/	Disp. Tubing		12V Pump		Peristaltic Pump	-Other/ID#:			
WELL HEA	D INTEGRITY	(cap, lock, vaul	t, etc.)	Comments:					
Good	Improvement Nee	ded (c	rcle one)						
PURGING/S	SAMPLING ME	ETHOD P	edetermined Wel	Volume Lo	w-Flow Other:			(circle o	ne)
	PREDETERM	INED WEL	L VOLUME				LO\	W-FLOW	
Casing D	iameter Unit Volu	me (gal/ft) (cir	cle one)	·····		Previous Low-F	low Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:	ь	Total Well Dept	h (a):		(ft)
4" (0.66)	6" (1.50)	8" (2.60)	$\frac{8^{"} (2.60)}{12^{"} (5.81)} = \frac{1}{"} (\underline{}) a 0 Initial Depth to Water (b):$						
Total Well Dept	lh (a):			(ft)	↓_	Pump In-take D	epth = b + (a-b)/2	2:	<u> </u>
Initial Depth to Water (b): $(1) \qquad (1) \qquad (1) \qquad (1) \qquad (1) \qquad (2) \qquad (2) \qquad (2) \qquad (3) \qquad $								0.25 (Inm)	
Water Column I	Height (WCH) = (a	• b):		(II)		Low-Flow Purge	a Kate:		(t.piii).
Water Column	Volume (WCV) = V	VCH x Unit Vol	ume:	(gat)		Comments:			
Three Casing	volumes = $WCV x$			(gal)		at a	a sa an		went hat should not
Five Casing V	$volumes = w \cup v \ge 3$	1		(f)	▼ 🗄	Low-now purge ru	te snouta pe wittin i	range of instruments 1 accord Maximum A	iiseu pin snoaiu an Ilawable Drawdawa
Pump Depin in	pump useu):			TED STADU		AMETED DE		PALEEA MAAMIMIN /	
Time	Cumulativa Vol	Temperature	NUONDWA	Conductivity			Turbidity		NOTES
(24:00)	gal or	°C			mg/L	mV	NTU	Odor, col	or, sheen or other
1027	0.0	19.64	7.24	1-11	\$.27	-6	> 990		
1029	0-5	19.42	7.12	(-1)	6.45	13	7400		
1051	1-0	19.43	7.11	1-11	6.87	17	7 800		
10 33	1.5	19.42	7-10	1-11	6.76	23	>500		
1035	2.0	19.42	7-10	1.11	6.76	1.3	> 900		
Internet and the second s									
					*				
				-	-				
								-	
				1					
						-			
Previous Stabili	ized Parameters			1					
PURGE CO	MPLETION R	ECORD	Low Flow & P	arameters Stable	3 Casing V	olumes & Parame	ters Stable	_5 Casing Volum	ies
			Other:						
SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS								ETERS	
Depth to Water	r at Sampling:	12.05	ft)			Para	imeler	Time	Measurement
Sample Collect	ted Via: Dis	p. Bailer	Dedicated Pump	Tubing		DO (mg/L)			
Disp. Pu	mp Tubing Oth	er:				Ferrous Iron (n	ıg/L)		
Sample ID:	Mw-6B		Sample Collect	ion Time: i 🛛	35 (24:00)	Redox Potentia	ul (mV)		
Containers (#)		preserved or	unneserved	liter A	mber	Alkalinity (mg	/L)		
Containers (#)		- hearted of _	unpreserveu,	Other:		Other			
1				Other:		Other:			
L	Other:					Outer.			l
Signature:	aly	na	ta	5 -	_				Revision: 3/15/2013

Laboratory Management Program LaMP Chain of Custody Record

Page	of 1
------	------

	bp Laboratory Ma				en	agement Program LaMP Chain of Custody He										usi	tody	y R	Record Page or											
	mrm	BP Site	e Node Path:	: 0				BF	- 9 498						Req Due Date (mm/dd/yy): Rush TAT:					T: Yes	š	No X								
-		BF	P Facility No:	:					498_							Lab V	Nork (Orde	er Numbe	er:					_	- 3725				
	Test America			Fac	ility A	ddres	IS:		286 5	South I	ivem	Iore A	Venu	e					Consultan	l/Contra	ictor:			Broadt	bent &	Assoc	iates Inc.	L.		
Lao Na	Inte: 17451 Darian Avenue Suite 1	Ion Invine CA		City, State, ZIP Code: Livermore, California C								Consultan	t/Contra	ictor Pr	oject l	lo:			80	82-603		91								
Lab Ad	dress: 17461 Denait Avenue, Suite 1			Lead Bequilatory Anency: ACEH Ad									Address:	482	0 Busin	ess C	enter Dri	ive, Suite	e 110,	Fairfie	d, CA		2	на						
Lab PN	A: Kathleen Hobb		_	Cal	fornia	Glob	nal iD	No	1	T060	01240	81							Consultan	VContra	ictor PM	Л:		Kristen	ne Tid	well	- C			
Lab Ph	Lab Phone: 949-261-1022					GIOL		MD		0056	x - 004	05 / W	VB273	478	10.5	2	100	-	Pho	ne: 707	-455-72	90	-			Email	ktidwe	ell@br	oadber	ntinc.com
Lab Sh	ipping Accet: Fed ex#: 1103-66	i33-7		Ena	US FR	puse		*****	Dros	icion	~	00	C-BIL	-	000	:-RM			Email EDC) To:	ŀ	didw	ell@br	oadben	ntinc.	com	and to	lab.enf	osdoc@l	bp.com
Lab Bo	ttle Order No:	-		ACC	ounts		ode:	-	PID	ALL SHOW			011					-	Invoice To	t			BI	Px			Contract	tor	_	
Other I	nlo:			Sta	ge:	Exec	ute (4)	AC	avity:	Giver	VI (4		ia		-			Reques	ted An	alvses	18			Т		Report ⁻	Туре 8	QC Le	vel
BP Pro	ject Manager (PM): Chuck Carmel			+	Ma	trix	-	Na	, Cól	ntain	ers / I	Pres	erval	Ive				_	neques		T	- 1		T -	+		S	Standarr	dx	
вр рм	Phone: 925-275-3803	_		1				2									8260									F	ull Data F	Packaor	e	
вр рм	Email: charles.carmel@bp.con	<u>n</u>		1			2	ntaine								826	ol by							1						
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	Is this location a wel	Total Number of Col	Unpreserved	H2SO4	HNO3	HCI	Methanol		GRO by 8015M	BTEX/5 FO/EDB by	1,2-DCA and Ethan								N S a	Vote: If s Sample* and initia	C ample not in comme any prep	Comme t collecter ints and : misted sa	ents d. indicate single-stri umple des	a *No ke out cripbon.
	MW-1	2/10/15	0950	T	×		у	6				x			x	x	x										_			2.2.2.2
\vdash	MW-2		0920		x	100	у	6				x			x	x	x													
	MW-3		1155	\uparrow	×		у	6				x			x	х	x							-	1		_			
	MW-4		-	\top	-	-	7	6				-*			*	-	*								1			1.5		
-	MW-5A	2/10/15	1105	+	×		у	6				x			×	x	×													
-	MW-5B		1130	T	×		у	6				x			×	x	ж							-	+	-			_	
	MW-6A		1015	Г	×		У	6				×			×	×	×			_	_		<u>.</u>		+	_				_
	MW-6B	+	1035		ж		у	6				. х			x	×	×			+	_				+		- 6	011110		-
	TB-498-02092015	-	_		x		n	2				×						_		+	-	1000	s	-	+	-				
																		_								_			Inte	Time
Sampl	er's Name: Alex Martinez & M	Nick Vrdoljak				F	lelin	quis	hed I	By / A	filia	tion			Da	ate	Tin	ne		_	Ac	cepte	d By /	Amiliau	поп	-	-	+	Alle	
Sampl	Sampler's Company: Broadbent & Associates				al	4	4	m	-0	100	-		- 6	AI	2/10	115	170	00			-	4.0		10		- 11				
Shipm	ent Method: FedEx	Ship Date:	2/1 /201	5								_				1000	_				75				-		-	+		
Shipm	ent Tracking No: \$037 80.	50 32	14																		_		_		-		1	_		_
Speci	al Instructions:							_				_	_					_			_		1			-		4. 37	Ale.	
_	THIS LINE - LAB USE ON	ILY: Custody S	eals in Place:	Yes/	No		Теп	np Bla	nk: Ye	s/No		Co	ooler T	етр	on Ae	ceipt:			_°F/C	Trip	Blank:	Yes /	No	MS/M	ISD S	ample !		U; T85/	140	

BP Remediation Management COC - Effective Dates: August 23, 2011 - June 30, 2012

m

APPENDIX F

Laboratory Report and Chain-of-Custody Documentation

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-101853-1 Client Project/Site: ARCO 0498, Livermore

For: Broadbent & Associates, Inc. 4820 Business Center Drive #110 Fairfield, California 94534

Attn: Kristene Tidwell

Dathler &

Authorized for release by: 2/28/2015 3:30:26 PM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	12
Lab Chronicle	13
QC Sample Results	15
QC Association Summary	18
Definitions/Glossary	19
Certification Summary	20
Chain of Custody	21
Receipt Checklists	22

Sample Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore TestAmerica Job ID: 440-101853-1

I ab Sample ID	Client Sample ID	Matrix	Collected	Received	3
440-101853-1	MW-1	Water	02/10/15 09:50	02/13/15 09:45	
440-101853-2	MW-2	Water	02/10/15 09:20	02/13/15 09:45	
440-101853-3	MW-3	Water	02/10/15 11:55	02/13/15 09:45	5
440-101853-4	MW-5A	Water	02/10/15 11:05	02/13/15 09:45	J
440-101853-5	MW-5B	Water	02/10/15 11:30	02/13/15 09:45	
440-101853-6	MW-6A	Water	02/10/15 10:15	02/13/15 09:45	
440-101853-7	MW-6B	Water	02/10/15 10:35	02/13/15 09:45	
					8
					9
					13

TestAmerica Irvine

Job ID: 440-101853-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-101853-1

Comments

No additional comments.

Receipt

The samples were received on 2/13/2015 9:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

Method(s) 8015B: Surrogate recovery for the following sample(s) was outside control limits: MW-1 (440-101853-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8015B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-6A (440-101853-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

0.50

0.50

0.50

150

0.50

0.50

0.50

1.0

0.50

0.50

0.50

0.50

1.0

10

Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

23

ND

12

ND

ND

3.9

2.3

1.2

ND

ND

2.7

5.1

Client Sample ID: MW-1

Date Collected: 02/10/15 09:50

Date Received: 02/13/15 09:45

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

Isopropyl Ether (DIPE)

tert-Butyl alcohol (TBA)

1,2-Dichloroethane

Analyte

Benzene

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Xylenes, Total

Ethanol

Lab Sample ID: 440-101853-1

Analyzed

02/22/15 17:13

02/22/15 17:13

1 2 3 4 5 6 7 8

02/22/15 17:13	1	
02/22/15 17:13	1	
02/22/15 17:13	1	
02/22/15 17:13	1	
02/22/15 17:13	1	8
02/22/15 17:13	·· 1	
02/22/15 17:13	1	9
02/22/15 17:13	1	
02/22/15 17:13	1	
02/22/15 17:13	1	
02/22/15 17:13	1	
02/22/15 17:13	1	

Matrix: Water

Dil Fac

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		80 - 120		-		02/22/15 17:13	1
Dibromofluoromethane (Surr)	99		76 - 132				02/22/15 17:13	1
Toluene-d8 (Surr)	105		80 - 128				02/22/15 17:13	1
Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	1600		50	ug/L			02/18/15 07:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	144	LH	65 - 140		-		02/18/15 07:16	1

TestAmerica Irvine

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore

Client Sample ID: MW-2

Date Collected: 02/10/15 09:20

Date Received: 02/13/15 09:45

Lab Sample ID: 440-101853-2

1 2 3 4 5 6 7 8

-

Matrix: Water

	e Organic Comp	ounds (GC/	MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			02/22/15 17:40	1
1,2-Dichloroethane	ND		0.50	ug/L			02/22/15 17:40	1
Benzene	ND		0.50	ug/L			02/22/15 17:40	1
Ethanol	ND		150	ug/L			02/22/15 17:40	1
Ethylbenzene	ND		0.50	ug/L			02/22/15 17:40	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			02/22/15 17:40	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			02/22/15 17:40	1
m,p-Xylene	ND		1.0	ug/L			02/22/15 17:40	1
Methyl-t-Butyl Ether (MTBE)	1.2		0.50	ug/L			02/22/15 17:40	1
o-Xylene	ND		0.50	ug/L			02/22/15 17:40	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			02/22/15 17:40	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			02/22/15 17:40	1
Toluene	ND		0.50	ug/L			02/22/15 17:40	1
Xylenes, Total	ND		1.0	ug/L			02/22/15 17:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		80 - 120		-		02/22/15 17:40	1
Dibromofluoromethane (Surr)	100		76 - 132				02/22/15 17:40	1
Toluene-d8 (Surr)	104		80 - 128				02/22/15 17:40	1
	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/18/15 07:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		65 - 140		-		02/18/15 07:45	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore

Client Sample ID: MW-3

Date Collected: 02/10/15 11:55

Date Received: 02/13/15 09:45

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 440-101853-3

Matrix: Water

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		2.0	ug/L			02/22/15 18:07	4
1,2-Dichloroethane	ND		2.0	ug/L			02/22/15 18:07	4
Benzene	350		2.0	ug/L			02/22/15 18:07	4
Ethanol	ND		600	ug/L			02/22/15 18:07	4
Ethylbenzene	30		2.0	ug/L			02/22/15 18:07	4
Ethyl-t-butyl ether (ETBE)	ND		2.0	ug/L			02/22/15 18:07	4
Isopropyl Ether (DIPE)	ND		2.0	ug/L			02/22/15 18:07	4
m,p-Xylene	8.1		4.0	ug/L			02/22/15 18:07	4
Methyl-t-Butyl Ether (MTBE)	41		2.0	ug/L			02/22/15 18:07	4
o-Xylene	2.4		2.0	ug/L			02/22/15 18:07	4
Tert-amyl-methyl ether (TAME)	ND		2.0	ug/L			02/22/15 18:07	4
tert-Butyl alcohol (TBA)	66	ID	40	ug/L			02/22/15 18:07	4
Toluene	2.1		2.0	ug/L			02/22/15 18:07	4
Xylenes, Total	11		4.0	ug/L			02/22/15 18:07	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		80 - 120		-		02/22/15 18:07	4
Dibromofluoromethane (Surr)	98		76 - 132				02/22/15 18:07	4
Toluene-d8 (Surr)	105		80 - 128				02/22/15 18:07	4
_ Method: 8015B/5030B - Gasoli	ne Range Organ	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	2000		500	ug/L			02/18/15 08:14	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		65 - 140		-		02/18/15 08:14	10

4-Bromofluorobenzene (Surr)

TestAmerica Irvine

Unit

D

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

Client Sample ID: MW-5A

Date Collected: 02/10/15 11:05

Date Received: 02/13/15 09:45

Analyte

TestAmerica Job ID: 440-101853-1

Lab Sample ID: 440-101853-4

8
9

Matrix: Water

1,2-Dibromoethane (EDB)	ND		0.50	ug/L			02/22/15 18:34	1
1,2-Dichloroethane	ND		0.50	ug/L			02/22/15 18:34	1
Benzene	4.2		0.50	ug/L			02/22/15 18:34	1
Ethanol	ND		150	ug/L			02/22/15 18:34	1
Ethylbenzene	0.65		0.50	ug/L			02/22/15 18:34	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			02/22/15 18:34	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			02/22/15 18:34	1
m,p-Xylene	ND		1.0	ug/L			02/22/15 18:34	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			02/22/15 18:34	1
o-Xylene	ND		0.50	ug/L			02/22/15 18:34	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			02/22/15 18:34	1
tert-Butyl alcohol (TBA)	16	ID	10	ug/L			02/22/15 18:34	1
Toluene	ND		0.50	ug/L			02/22/15 18:34	1
Xylenes, Total	ND		1.0	ug/L			02/22/15 18:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		80 - 120				02/22/15 18:34	1
Dibromofluoromethane (Surr)	101		76 - 132				02/22/15 18:34	1
Toluene-d8 (Surr)	104		80 - 128				02/22/15 18:34	1
Method: 8015B/5030B - Gasolir	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	860		50	ug/L			02/18/15 08:43	1
Surrogate	2 / 5	0	l inside			Bronorod	Analyzed	Dil Eso
	%Recovery	Qualifier	Limits			Frepareu	Analyzeu	DIIFac

0.50

0.50

0.50

150

0.50

0.50

0.50

1.0

0.50

0.50

0.50

10

Unit

ug/L

D

Prepared

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

Client Sample ID: MW-5B

Date Collected: 02/10/15 11:30

Date Received: 02/13/15 09:45

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

Isopropyl Ether (DIPE)

tert-Butyl alcohol (TBA)

1,2-Dichloroethane

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

o-Xylene

TestAmerica Job ID: 440-101853-1

Lab Sample ID: 440-101853-5

Analyzed

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

02/22/15 19:01

Matrix: Water

Dil Fac

1

1

1

1

5

1	
1	8
 1	
1	9
1	
 1	
1	
1	
1 1	

Fac

Toluene	ND		0.50	ug/L			02/22/15 19:01	1
Xylenes, Total	ND		1.0	ug/L			02/22/15 19:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		80 - 120		-		02/22/15 19:01	1
Dibromofluoromethane (Surr)	102		76 - 132				02/22/15 19:01	1
Toluene-d8 (Surr)	103		80 - 128				02/22/15 19:01	1
_ Method: 8015B/5030B - Gasol	ine Range Organ	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/18/15 09:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		65 - 140		-		02/18/15 09:12	1

4-Bromofluorobenzene (Surr)

5.0

5.0

5.0

5.0

1500

Client Sample ID: MW-6A

Date Collected: 02/10/15 10:15

Date Received: 02/13/15 09:45

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME) tert-Butyl alcohol (TBA)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Isopropyl Ether (DIPE)

1,2-Dichloroethane

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene Xylenes, Total

Surrogate

Toluene-d8 (Surr)

Lab Sample ID: 440-101853-6

Analyzed

02/22/15 19:28

02/22/15 19:28

02/22/15 19:28

02/22/15 19:28

02/22/15 19:28

Matrix: Water

Dil Fac

10

10

10

. 10

10

5

5.0	ug/L		02/22/15 19:28	10	8
 5.0	ug/L	 	02/22/15 19:28	10	
10	ug/L		02/22/15 19:28	10	9
5.0	ug/L		02/22/15 19:28	10	
 5.0	ug/L	 	02/22/15 19:28	10	
5.0	ug/L		02/22/15 19:28	10	
100	ug/L		02/22/15 19:28	10	
 5.0	ug/L	 	02/22/15 19:28	10	
10	ug/L		02/22/15 19:28	10	
Limits		Prepared	Analyzed	Dil Fac	
 80 - 120		 	02/22/15 19:28	10	
76 - 132			02/22/15 19:28	10	
80 - 128			02/22/15 19:28	10	

D

Prepared

Unit

ug/L

ug/L

ug/L

ug/L

ug/L

Method: 8015B/5030B - Gasoline Range Organics (GC) Result Qualifier ∆nalvte

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND ND

ND

1700

ND ND

ND ND

ND

%Recovery Qualifier

95

100

104

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	58		50	 ug/L			02/18/15 09:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		65 - 140		-		02/18/15 09:40	1

2/28/2015

_ _

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Client Sample ID: MW-6B

Date Collected: 02/10/15 10:35

Date Received: 02/13/15 09:45

TestAmerica Job ID: 440-101853-1

5

1	
1	
1	8
1	
1	9
1	
1	
1	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			02/22/15 19:55	1
1,2-Dichloroethane	ND		0.50	ug/L			02/22/15 19:55	1
Benzene	ND		0.50	ug/L			02/22/15 19:55	1
Ethanol	ND		150	ug/L			02/22/15 19:55	1
Ethylbenzene	ND		0.50	ug/L			02/22/15 19:55	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			02/22/15 19:55	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			02/22/15 19:55	1
m,p-Xylene	ND		1.0	ug/L			02/22/15 19:55	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			02/22/15 19:55	1
o-Xylene	ND		0.50	ug/L			02/22/15 19:55	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			02/22/15 19:55	1
tert-Butyl alcohol (TBA)	21		10	ug/L			02/22/15 19:55	1
Toluene	ND		0.50	ug/L			02/22/15 19:55	1
Xylenes, Total	ND		1.0	ug/L			02/22/15 19:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		80 - 120		-		02/22/15 19:55	1
Dibromofluoromethane (Surr)	102		76 - 132				02/22/15 19:55	1
Toluene-d8 (Surr)	103		80 - 128				02/22/15 19:55	1
	ine Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/18/15 10:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		65 - 140		-		02/18/15 10:09	1

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0498, Livermore

Method Description

Volatile Organic Compounds (GC/MS)

Gasoline Range Organics (GC)

Method

8260B/5030B

8015B/5030B

Protocol References:

Laboratory References:

Laboratory

TAL IRV

TAL IRV

Protocol

SW846

SW846

5	
6)
8	
9	

Lab Sample ID: 440-101853-1

Lab Sample ID: 440-101853-2

Lab Sample ID: 440-101853-3

Lab Sample ID: 440-101853-4

Lab Sample ID: 440-101853-5

Lab Sample ID: 440-101853-6

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

2 3 4 5 6 7 8

Matrix: Water

Client Sample ID: MW-1
Date Collected: 02/10/15 09:50
Date Received: 02/13/15 09:45

Baterteen	02,10,10,001										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	237964	02/22/15 17:13	WC	TAL IRV	
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	236905	02/18/15 07:16	IM	TAL IRV	

Client Sample ID: MW-2 Date Collected: 02/10/15 09:20 Date Received: 02/13/15 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	237964	02/22/15 17:40	WC	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	236905	02/18/15 07:45	IM	TAL IRV

Client Sample ID: MW-3

Date Collected: 02/10/15 11:55 Date Received: 02/13/15 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		4	10 mL	10 mL	237964	02/22/15 18:07	WC	TAL IRV
Total/NA	Analysis	8015B/5030B		10	10 mL	10 mL	236905	02/18/15 08:14	IM	TAL IRV

Client Sample ID: MW-5A

Date Collected: 02/10/15 11:05 Date Received: 02/13/15 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	237964	02/22/15 18:34	WC	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	236905	02/18/15 08:43	IM	TAL IRV

Client Sample ID: MW-5B

Date Collected: 02/10/15 11:30 Date Received: 02/13/15 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	237964	02/22/15 19:01	WC	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	236905	02/18/15 09:12	IM	TAL IRV

Client Sample ID: MW-6A Date Collected: 02/10/15 10:15 Date Received: 02/13/15 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		10	10 mL	10 mL	237964	02/22/15 19:28	WC	TAL IRV

TestAmerica Irvine

Lab Sample ID: 440-101853-6

Lab Sample ID: 440-101853-7

Matrix: Water

Matrix: Water

2 3 4 5 6 7 8 9 10

Client Sample ID: MW-6A Date Collected: 02/10/15 10:15

Date	Received:	02/13/	15	09:45	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	236905	02/18/15 09:40	IM	TAL IRV

Client Sample ID: MW-6B Date Collected: 02/10/15 10:35 Date Received: 02/13/15 09:45

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	237964	02/22/15 19:55	WC	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	236905	02/18/15 10:09	IM	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

3 Blank 4 al/NA 5

8 9

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-237964/14 Matrix: Water Analysis Batch: 237964	b Sample ID: MB 440-237964/14 Itrix: Water alysis Batch: 237964 MB MB					Client Sa	ample ID: Metho Prep Type: 1	d Blank fotal/NA
	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			02/22/15 12:45	1
1,2-Dichloroethane	ND		0.50	ug/L			02/22/15 12:45	1
Benzene	ND		0.50	ug/L			02/22/15 12:45	1
Ethanol	ND		150	ug/L			02/22/15 12:45	1
Ethylbenzene	ND		0.50	ug/L			02/22/15 12:45	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			02/22/15 12:45	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			02/22/15 12:45	1
m,p-Xylene	ND		1.0	ug/L			02/22/15 12:45	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			02/22/15 12:45	1
o-Xylene	ND		0.50	ug/L			02/22/15 12:45	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			02/22/15 12:45	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			02/22/15 12:45	1
Toluene	ND		0.50	ug/L			02/22/15 12:45	1
Xylenes, Total	ND		1.0	ug/L			02/22/15 12:45	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		80 - 120		-		02/22/15 12:45	1
Dibromofluoromethane (Surr)	98		76 - 132				02/22/15 12:45	1
Toluene-d8 (Surr)	104		80 - 128				02/22/15 12:45	1

Lab Sample ID: LCS 440-237964/4 Matrix: Water

Analysis Batch: 237964

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	25.0	23.8		ug/L		95	70 - 130	
1,2-Dichloroethane	25.0	24.6		ug/L		98	57 - 138	
Benzene	25.0	24.2		ug/L		97	68 - 130	
Ethanol	1250	1330		ug/L		107	50 - 149	
Ethylbenzene	25.0	24.8		ug/L		99	70 - 130	
Ethyl-t-butyl ether (ETBE)	25.0	27.2		ug/L		109	60 - 136	
Isopropyl Ether (DIPE)	25.0	26.2		ug/L		105	58 - 139	
m,p-Xylene	25.0	24.1		ug/L		97	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	23.7		ug/L		95	63 - 131	
o-Xylene	25.0	24.7		ug/L		99	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	22.7		ug/L		91	57 ₋ 139	
tert-Butyl alcohol (TBA)	250	254		ug/L		102	70 - 130	
Toluene	25.0	25.1		ug/L		101	70 _ 130	

	LCS		
Surrogate	%Recovery	Limits	
4-Bromofluorobenzene (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	106		76 - 132
Toluene-d8 (Surr)	99		80 - 128

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

_ Lab Sample ID: 440-101849-C- Matrix: Water Analysis Batch: 237964	1 MS							Client	Sample ID: I Prep Ty	Matrix Spike pe: Total/NA
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		25.0	25.9		ug/L		103	70 _ 131	
1,2-Dichloroethane	ND		25.0	26.6		ug/L		106	56 _ 146	
Benzene	ND		25.0	25.8		ug/L		103	66 _ 130	
Ethanol	ND		1250	1440		ug/L		115	54 _ 150	
Ethylbenzene	ND		25.0	27.0		ug/L		108	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	29.5		ug/L		118	70 _ 130	
Isopropyl Ether (DIPE)	ND		25.0	28.0		ug/L		112	64 - 138	
m,p-Xylene	ND		25.0	25.9		ug/L		104	70 ₋ 133	
Methyl-t-Butyl Ether (MTBE)	130		25.0	155	BB	ug/L		113	70 _ 130	
o-Xylene	ND		25.0	27.1		ug/L		108	70 - 133	
Tert-amyl-methyl ether (TAME)	0.57		25.0	25.1		ug/L		98	68 ₋ 133	
tert-Butyl alcohol (TBA)	ND		250	275		ug/L		110	70 _ 130	
Toluene	ND		25.0	27.4		ug/L		110	70 - 130	
	MS	MS								

%Recovery	Qualifier	Limits
98		80 - 120
104		76 - 132
100		80 - 128

Lab Sample ID: 440-101849-C-1 MSD Matrix: Water

Analysis Batch: 237964

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	24.5		ug/L		98	70 - 131	5	25
1,2-Dichloroethane	ND		25.0	25.3		ug/L		101	56 - 146	5	20
Benzene	ND		25.0	24.8		ug/L		99	66 - 130	4	20
Ethanol	ND		1250	1370		ug/L		110	54 _ 150	5	30
Ethylbenzene	ND		25.0	25.3		ug/L		101	70 - 130	6	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	28.2		ug/L		113	70 - 130	4	25
Isopropyl Ether (DIPE)	ND		25.0	26.8		ug/L		107	64 - 138	4	25
m,p-Xylene	ND		25.0	24.7		ug/L		99	70 - 133	5	25
Methyl-t-Butyl Ether (MTBE)	130		25.0	151	BB	ug/L		99	70 - 130	2	25
o-Xylene	ND		25.0	25.3		ug/L		101	70 - 133	7	20
Tert-amyl-methyl ether (TAME)	0.57		25.0	24.3		ug/L		95	68 - 133	3	30
tert-Butyl alcohol (TBA)	ND		250	264		ug/L		106	70 - 130	4	25
Toluene	ND		25.0	25.8		ug/L		103	70 - 130	6	20

MSD	MSD	
%Recovery	Qualifier	Limits
96		80 - 120
104		76 - 132
99		80 - 128
	MSD %Recovery 96 104 99	MSD MSD %Recovery Qualifier 96 104 99

5

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Method: 8015B/5030B - Gasoline Range Organics (GC)

Lab Sample ID: MB 440-236905/28 Matrix: Water								Clien	t Sample ID Prep	Method	Blank tal/NA
Analysis Batch: 236905									Tiop	1900.10	
	ME	в мв									
Analyte	Resul	t Qualifier	RL		Unit		D	Prepare	d Analy	zed	Dil Fac
GRO (C6-C12)	N	<u> </u>	50		ug/L				02/18/1	5 00:57	1
Surrogate	WE %Recover	o MD V Qualifier	Limite					Proparo	Anal	and	Dil Eac
4-Bromofluorobenzene (Surr)			<u>65140</u>					Frepare	02/18/1	5.00.57	1
	3.	2	00 - 140						02/10/1	00.07	,
Lab Sample ID: LCS 440-236905/27	,						Clie	nt Sam	ole ID: Lab (control S	ample
Matrix: Water									Prep	Type: To	tal/NA
Analysis Batch: 236905									•		
-			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	ſ	0 %Re	c Limits		
GRO (C4-C12)			800	816		ug/L		10	2 80 - 120		
		e									
Surrogate %	Recovery Qu	alifior	l imits								
4-Bromofluorobenzene (Surr)	10.3		65 - 140								
	100		001110								
Lab Sample ID: 440-101673-A-2 MS	5							Clie	nt Sample II	D: Matrix	Spike
Matrix: Water									Prep	Type: To	tal/NA
Analysis Batch: 236905									-		
-	Sample Sa	mple	Spike	MS	MS				%Rec.		
Analyte	Result Qu	alifier	Added	Result	Qualifier	Unit	[0 %Re	c Limits		
GRO (C4-C12)	ND		800	758		ug/L		9	5 65 - 140		
	MS MS	:									
Surrogate %	Recovery Qu	alifier	Limits								
4-Bromofluorobenzene (Surr)	98		65 - 140								
_											
Lab Sample ID: 440-101673-A-2 MS	D						Client	Sample	ID: Matrix S	pike Dup	olicate
Matrix: Water									Prep	Туре: То	tal/NA
Analysis Batch: 236905											
	Sample Sa	mple	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result Qu	alifier	Added	Result	Qualifier	Unit	[0 %Re	c Limits	RPD	Limit
GRO (C4-C12)	ND		800	760		ua/L		- 9	5 65 - 140	0	20
						- 3 -					
	MSD MS	D				-9-					

 surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 96
 65 - 140

TestAmerica Irvine

GC/MS VOA

Analysis Batch: 237964

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-101849-C-1 MS	Matrix Spike	Total/NA	Water	8260B/5030B	
440-101849-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/5030B	
440-101853-1	MW-1	Total/NA	Water	8260B/5030B	
440-101853-2	MW-2	Total/NA	Water	8260B/5030B	
440-101853-3	MW-3	Total/NA	Water	8260B/5030B	
440-101853-4	MW-5A	Total/NA	Water	8260B/5030B	
440-101853-5	MW-5B	Total/NA	Water	8260B/5030B	
440-101853-6	MW-6A	Total/NA	Water	8260B/5030B	
440-101853-7	MW-6B	Total/NA	Water	8260B/5030B	
LCS 440-237964/4	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-237964/14	Method Blank	Total/NA	Water	8260B/5030B	

GC VOA

Analysis Batch: 236905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-101673-A-2 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-101673-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-101853-1	MW-1	Total/NA	Water	8015B/5030B	
440-101853-2	MW-2	Total/NA	Water	8015B/5030B	
440-101853-3	MW-3	Total/NA	Water	8015B/5030B	
440-101853-4	MW-5A	Total/NA	Water	8015B/5030B	
440-101853-5	MW-5B	Total/NA	Water	8015B/5030B	
440-101853-6	MW-6A	Total/NA	Water	8015B/5030B	
440-101853-7	MW-6B	Total/NA	Water	8015B/5030B	
LCS 440-236905/27	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-236905/28	Method Blank	Total/NA	Water	8015B/5030B	

Qualifiers

GC/MS VO	A	
Qualifier	Qualifier Description	
BB	Sample > 4X spike concentration	
ID	Analyte identified by RT & presence of single mass ion	
GC VOA		
Qualifier	Qualifier Description	
LH	Surrogate Recoveries were higher than QC limits	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	9
%R	Percent Recovery	10
CFL	Contains Free Liquid	10
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	13
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-15
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-16 *
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-15 *
Hawaii	State Program	9	N/A	01-29-16
Nevada	State Program	9	CA015312007A	07-31-15
New Mexico	State Program	6	N/A	01-29-15 *
Northern Mariana Islands	State Program	9	MP0002	01-29-15 *
Oregon	NELAP	10	4005	01-29-16
USDA	Federal		P330-09-00080	06-06-15

* Certification renewal pending - certification considered valid.

TestAmerica Irvine

1.1

.

Laboratory Management Program 440-101853 Chain of Custody

BP 498

Page _ _ _ of _ Rush TAT: Yes ____ No _ 🗙

BP Site Node Path: _____ **BP Facility No:**

/v): 1.1.1.1.1 Lab Work Order Number:

1.1

-d

		BI	P Facility No	»: <u> </u>				49	8						L	.ab V	Vork (Orde	r Nun	nber: .										
Lab (Name: Test America			Facilit	ty Ad	dress:		28	6 So	uth Li	verm	ore Av	renue			_		7	Consut	tant/Co	ontracto	or:		Br	oadbei	nt & Ass	ociates li	nc.		
Lab /	Address: 17461 Derian Avenue, Suite 10	00, Irvine, CA		City, S	ity, State, ZIP Code: Livermore, California														Consultant/Contractor Project No: 08- 82-603											
Lab 1	PM: Kathleen Robb			Lead	ead Regulatory Agency: ACEH													7	Addres	s:	4820 B	usiness	Center D	Drive,	Suite 1	10, Fair	field, CA			
Lab	Phone: 949-261-1022			Cairlo	California Global ID No.: T0600124081													-	Consu)	tant/Co	ontracto	or PM:		Kr	istene	Tidwell				
Lab :	Shipping Accnt: Fed ex#: 1103-663	33-7		Enfos	Enfos Proposal No/ WR#: 0056X - 0005 / WR273478								78				Τ	P	hone:	707-45	5-7290				Em	ail: <u>ktid</u> v	well@br	roadbe	entinc.com	
Lab	Bottle Order No:			Accou	unting	g Mode	;	F	rovis	sion _	<u>×</u>	000	-BU	_ 0	00-	·RM _		E	Email E):	<u>ktic</u>	well@b	road	lbe <u>nti</u>	nc.con	<u>and</u>	to <u>lab.enf</u>	losdoc@	bp.com
Othe	er Info:			Stage	e: E	Execute	ə (4)		Activ	/ity: C	SWN	1 (40	1)					I	nvoice	To:			E	BP	x		Contra	actor		
BP P	Project Manager (PM); Chuck Carmel				Matı	rix		No. C	Cont	aine	rs / P	rese	vative						Requ	ested	Analy	ses					Repor	t Type &		.evel
BP P	PM Phone: 925-275-3803	_					Ţ				T				Ţ		60					1						Standar	-x	
BP P	M Email: <u>charles.carmel@bp.com</u>		_]				ainer					1			3260	by 82					1			l		Full Data	Package	e	
Lat No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor Is this location a well		I olal Number of Con	Unpreserved	H2SO4	HNO3	HCI	Methanol		1GHO by 8015M	BTEX/5 FO/EDB by (1,2-DCA and Ethanol									Note [,] 1 Sampi and ini	f sample n e" in comm tial any pre	Comme ot collecte- nents and s aprinted sa	ents ed, Indica single-str ample de	te "No Ike out scription.
8	MW-1	2/10/15	0950		×	у	e	;				×		×	:	×	x													
	MW-2		0920		x	у	e					×		×		×	×												_	
	MW-3	√	1155		×	у	e	;				×		x	:	×	x	_												
E_					π^+	<u>+</u>	╧	⊢∟				*+	-+-		\sim	* -	*	$ \downarrow$	_			ļ								
	MW-5A	2/10/15	1105		x	у	e			_		×		x		×	x	_	_											
	MW-5B		1130		×	у	e	;				×		×	:	×	×	_					<u> </u>							
	MW-6A		1015		×	у	f					×		×	:	×	x	$ \downarrow$												
	MW-6B	<u>↓</u>	1035	┶	x	y	e					<u>× </u>		×	<u> </u>	×	×	\downarrow												
	TB-498-02092015			+	x	_ n	2	<u>!</u> -			_	×		_	-	_		4				Ļ		-+-				ON HO	DLD	
Sam	pler's Name: Alex Martinez & Nic	ck Vrdoljak	L	┨╌┴		Reli	ngu	ished	d By	/ Aff	iliatio	 on		+-	 Date	e	Time					Accep	ted By /	/ Affil	iation				Date	 Time
Sam	Sampler's Company: Broadbent & Associates aligned to the BAJ						ÎΖ/	12/	115	170	2	VuBauli TAI 3/3/15					3/15	9.45												
Shipr Shipi	ment Method: FedEx ment Tracking No: 8037 805	Ship Date:	2/10/2015	5										+-		+		4											· · _	
Spe	cial Instructions:			,					_									_		-	Fé	Que :	780	20	62	.7 C	924	7		
<u> </u>					_	_	_				1			-			421	57		Π.		7	<u> </u>			<u> </u>			6	

OBP Remediation Management COC - Effective Dates: August 23, 2011- June 30, 2012

BP LaMP COC Rev. 7, Aug 23, 2011

Client: Broadbent & Associates, Inc.

Login Number: 101853 List Number: 1

Creator:	Blocker,	Kristina	м

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Irvine
APPENDIX G

GeoTracker Upload Confirmation Receipts