RECEIVED

9:04 am, May 24, 2010

Alameda County Environmental Health NOzaki & Associates 3390 Dwight Way Berkeley, California 94704

May 15, 2010

Mark Detterman Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Regarding: RO#0002869, Supplemental Environmental Data Report and Request for a nofurther-action (NFA) closure at 1240 Powell Street, Emeryville, CA 94608

Dear Mr. Detterman:

Attached is a report that includes the most recent analytical results from the April 14, 2010 soil and groundwater sampling event at 1240 Powell Street in Emeryville, California (the Site). The environmental samples were collected pursuant to an approved Work Plan of October 26, 2009, as well as the incorporation of comments from the Alameda County Department of Environmental Health (ACDEH) for additional analytical testing (December 23, 2009). A copy of County's comments is attached to this report as Attachment A. The purpose of this report is to request a no-further-action closure from the Alameda County Department of Environmental Health (ACDEH).

Site use has not changed significantly since the construction of the present two-story building in 1982 and removal of the last underground storage tank in 1991. At present, the building is occupied by business offices and two health exercise studios. None of the businesses use industrial chemicals during the course of their business activities. No new information has surfaced regarding the site history since our previous report.

The Site has been the focus of a limited number of studies. Although low concentrations of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, toluene (BTEX), methyl-

tertiary-butyl ether (MTBE), 1,2-dichloroethane (1,2-DCA), n-butyl benzene, sec-butyl benzene, and n-propyl benzene have been reported in soil and groundwater in recently collected environmental samples, the only indication that the presence of residual chemicals might represent an environmental concern were six grab groundwater samples collected by AEI in 2002, which exceeded the current San Francisco Bay Regional Water Quality Control Board's (RWQCB) Environmental Screening Level (ESL) of 100 ug/L for TPH_{gasoline} and TPH_{diesel} that apply to Shallow Soils \leq 3m, and where groundwater is a current or potential source of drinking water (RWQCB 2007 Revised May 2008, Table A). 1,2-DCA was also found to exceed its ESL of 0.5 ug/L when the beneficial use classification of groundwater changed to a potential source of drinking water. Current and historical site-specific environmental data is presented in Tables 1 and 2 of this report.

With the exception of 1,2-dichloroethane (1,2-DCA), all groundwater samples collected onsite since 2005, including groundwater samples collected at MW-2 downgradient from SB-1 and SB-2, where AEI found the highest $TPH_{gasoline}$ and TPH_{diesel} concentrations, have been non-detect to date (Table 1). BTEX have never been detected in groundwater downgradient of the excavated service station USTs (Table 1).

Although low residual concentrations of 1,2-DCA remain in groundwater at MW-2 at this time, all other chemicals including MTBE detected prior to 2005 have diminished to non-detect levels. The detected concentrations of 1,2-DCA have also shown decreasing concentrations over the 7-year period from 2002 to 2009. When last tested in 2009, it found at a concentration of 4.1 ug/L (arithmetic average of the original sample and the duplicate), down from 5.1 ug/L in 2002. At a concentration of 4.1 ug/L compared with the Table B ESL for shallow soil and non-potable classified groundwater, an ESL of 200 ug/L, 1,2-DCA is insignificant. When compared with the Table A ESL for shallow soil and potable classified groundwater, an ESL of 0.5 ug/L, 1,2-DCA suddenly becomes a concern.

Since 1,2-DCA found in MW-2 is located in the street and does not pose a threat to the tenants of 1240 Powell, shallow groundwater is not used for drinking water in Emeryville, the potential source area for 1,2-DCA is beneath a parking lot, natural attenuation is evident at the site, and no

other chemicals are a concern at the Site, its presence does not pose a public health concern. Further, it appears that shallow groundwater in Emeryville is not suitable or potentially suitable for municipal or domestic water supply (MUN) consistent with the criteria identified in the *San Francisco Bay Basin (Region 2), Water Quality Control Plan (Basin Plan)*, January 18, 2007. Although MW-2 will produce an average greater than 300 gallons per day, because of the proximity of Emeryville to San Francisco Bay, the total dissolved solids will likely exceed 3000 milligrams per liter, and because Emeryville was formerly an industrial community, its groundwater is pervasively contaminated by industrial chemicals that cannot reasonably be treated for domestic use. Further, the state MCL for turbidity is 0.3 NTUs and the site-specific turbidity at MW-2 was an average of 76.7 NTU in 2004, 1.84 NTU as measured on September 20, 2005, and 59.5 NTU in 2009.

In conclusion, there is historical evidence that a petroleum hydrocarbon release most likely occurred during the period when the Site was used as a service station from the late 1950s until 1974. That evidence lies in the environmental sampling data collected by AEI in 2002. Whether due to natural attenuation over the 28 years since the 4 service station USTs were removed and when AEI performed their Phase II investigation, or because the spill was not significant release, the data collected by AEI in 2002 indicated the presence of a relatively small number of detected chemicals at relatively low concentrations. 1,2-DCA is the only remaining chemical found in groundwater at this time. Its last detected concentration of 4.1 ug/L exceeds its ESL of 0.5 ug/L when shallow groundwater is considered potential drinking water. However, groundwater at this site does not meet the criteria for MUN identified in the Basin Plan. All other chemicals are now at non-detect levels in groundwater (Table 1). This site represents a low threat to public health and the environment. The continued natural attenuation of 1,2-DCA will ensure this conclusion.

In view of the findings based on the presented data in the accompanying report, a no-furtheraction closure is requested for this Site. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions or comments, please feel free to contact Mr. Ron Silberman or me. I can be reached by telephone at 510-301-9869 or by email at <u>nozaki4472@gmail.com</u>.

Sincerely.

Norman T. Ozaki, Ph.D. Principal Toxicologist

Attachment

cc: Ron Silberman

RO#0002869 Supplemental Environmental Data Report and Request for a No-Further-Action Closure at 1240 Powell Street, Emeryville, CA 2009-03-10 Updated ClosureRpt.doc

SUPPLEMENTAL ENVIRONMENTAL DATA REPORT And REQUEST FOR A NO-FURTHER-ACTION CLOSURE 1240 Powell Street Emeryville, California 94608 RO#0002869

Prepared for:

Mr. Ron Silberman 1240 Powell Street Associates 5835 Doyle Street, Suite 101 Emeryville, CA 94608

Prepared by:

NOzaki & Associates 3390 Dwight Way Berkeley, CA 94704

May 15, 2010

Table of Contents

1.0	BACKGROUND	1
2.0	SITE HISTORY	2
3.0	ENVIRONMENTAL HISTORY AND CHARACTERIZATION	
3.1	The 4000-gallon UST	
3.2	Gasoline Service Station	6
4.0	CONCLUSIONS	10
5.0	REFERENCES	11

FIGURES

Figure 1	Site Location Map
Figure 2	Historical Site Drawing
Figure 3	Current Site Layout
Figure 3A	Groundwater Elevations – August 2002
Figure 3B	Groundwater Elevations – October 2004
Figure 3C	Groundwater Elevations – September 2005
Figure 3D	Groundwater Elevations – January 2009
Figure 4	Soil Boring Log – Boring B-1

Figure 5 Soil Boring Log – Boring B-2

TABLES

|--|

- Table 2Historical Soil Data
- Table 3Metals Soil Data
- Table 4Groundwater Elevation Data

APPENDICES

- Appendix A Laboratory Data Certificates October 27, 2004 Sampling
- Appendix B Laboratory Data Certificates September 20, 2005 Sampling
- Appendix C Laboratory Data Certificates January 8, 2009 Sampling
- Appendix D Hand written log prepared by Susan Hugo, Alameda County Department of Environmental Health, 1991

i

Appendix E Laboratory Data Certificates – April 14, 2010 Sampling

ATTACHMENTS

Attachment A Modified Work Plan Approval – December 23, 2009 Attachment B Risk Assessment Documentation

RO#0002869 Supplemental Environmental Data Report and Request for a No-Further-Action Closure at 1240 Powell Street, Emeryville, CA 2009-03-10 Updated ClosureRpt.doc May 15, 2010

Supplemental Environmental Data Report And Request for a No-Further-Action Closure 1240 Powell Street Emeryville, California 94608

1.0 BACKGROUND

The property in question located at 1240 Powell Street in Emeryville, California, 94608 (the Site) has a history of land-use that dates to the 1930s and 1940s. The Site currently consists of approximately 10,000 square feet located at the northwest corner of Powell Street and Vallejo Street (see Figures 1 and 2). It has been improved with a two-story office building measuring approximately 12,200 square feet. The eastern portion of Site is improved with parking and landscaped areas.

Past Site characterization activities consisted of both Phase I and Phase II investigations including the installation of three groundwater monitoring wells (MW-1, MW-2, and MW-3) by AEI Consultants in September 2002. AEI concluded that soil and groundwater beneath the Site were affected by petroleum hydrocarbons apparently from an onsite release. Two subsequent rounds of groundwater sampling in October 2004, September 2005 were completed by SOMA Corporation (SOMA) and two rounds of environmental sampling in January 2009 and April 2010 were completed by NOzaki and Associates.

According to a Phase I report prepared by AEI Consultants (AEI, 2001a), the Site was vacant prior to the 1930s. AEI is an environmental consulting company that was retained by Wells Fargo Bank to perform various environmental studies of the Site. Their reports, and one by Aqua Science Engineers, Inc. (ASE, 1991), appear to be the only environmental studies completed and available concerning this Site. SOMA has been performing groundwater sampling and analyses since October 2004; however, since the

results of the sampling indicated either predominantly non-detect or declining concentrations of insignificant levels, no formal reports were prepared for the present owner. The SOMA and NOzaki and Associates groundwater data have been compiled and presented in Table 1. The laboratory data certificates are presented in Appendices A, B, C and E. Available reports and other accounts used in the preparation of this report are identified in the Reference section of this data report.

Although the property currently bears the address 1240 Powell Street, the property has been identified by other addresses throughout its history. According to AEI, the following addresses applied to this Site (AEI 2001a):

Address	Date of Address	Land-Use
1250 Powell Street	1911 Sanborn Map	Vacant
1250 Powell Street	1930 Aerial	One small commercial building in the southeast portion of the lot.
1234 Powell Street	1968 Sanborn Map	Gas Station
5805 Vallejo Street	1968 Sanborn Map	Gas Station
1234 Powell Street	1969	Gas Station
1240 Powell Street	1981	Vacant

Table A. Variations in the Site Address.

This data report summarizes the previously available reports and presents historical information and environmental data associated with the Site. In addition to presenting the most recent round of soil and groundwater sampling results, this report and the accompanying cover letter represent a request to Alameda County Department of Environmental Health (ACDEH) for a no-further-action file closure of the Site (NFA).

2.0 SITE HISTORY

According to AEI, the property was vacant land prior to 1930. A restaurant occupied the property during the 1940s and 1950s. Beginning in the late 1950s until 1974, the property was the site of a gas station. Record of two 6000-gallon USTs, one 2000-gallon

UST and one 550-gallon waste oil UST were documented in the files maintained by the Emeryville Building Department in 1969 (AEI 2002a). In that year, the northern-most 6000-gallon tank was replaced with a 10,000-gallon UST. In 1974, the gas station was demolished and all underground storage tanks (USTs) and above ground facilities were permitted for removal. No record of any soil or groundwater samples has remained from the removal activities. The Site was subsequently used as an open-air produce market until the early 1980s when the current two-story building present onsite was constructed for office use in 1982 (AEI 2001a). The site use has largely remained unchanged since the construction of the two-story office building.

A 4000-gallon gasoline UST was installed sometime after the completion of the office building in conjunction with business activities that were conducted at the Site. According to AEI, the 4000-gallon UST was used to fuel delivery trucks (AEI 2001a, 2002ab). This tank was scheduled for removal according to a permit issued by the Emeryville Fire Department and an *Underground Tank Closure Plan* approved by the Alameda County Department of Environmental Health on November 8, 1991 (ASE, 1991). The tank was successfully removed on November 22, 1991 (ASE 1991).

3.0 ENVIRONMENTAL HISTORY AND CHARACTERIZATION

Based on available documents, there are two sources of environmental concern in the history of the Site. The most recent was a 4000-gallon gasoline UST that was installed at the Site sometime after 1982. It was excavated and disposed offsite in 1991. The second source of environmental concern was the existence of a gasoline service station from the late 1950s through 1974, when the gas station was demolished.

3.1 The 4000-gallon UST

The 4000-gallon UST was installed sometime after construction of the two-story building and was used for storing and dispensing gasoline. Documents presented in the AEI Phase

I report indicate that the UST was owned by Frank Garza of Garza and Associates (AEI 2001a). It was removed for offsite disposal on November 22, 1991 under the oversight of Susan Hugo, then, the Project Specialist for the ACDEH and George Warren of the Emeryville Fire Department (ASE, 1991). AEI identified ASE as the UST removal contractor; however, because AEI failed to locate a removal report during their Phase I activities, they concluded that ASE did not file a removal report either with the Emeryville Fire Department or with ACDEH (AEI, 2001a). AEI indicated that they performed a follow-up interview with ASE in conjunction with their Phase I activities (AEI 2001a). AEI was told that ASE recalled removing the UST; however, it appears that ASE did not mention their December 4, 1991 UST removal report.

ASE completed a tank removal report entitled, *Project Report, Underground Storage Tank Removal at Garza and Associates, 1240 Powell Street, Emeryville, CA 94608*, on December 4, 1991. The report was prepared for Mr. Frank Garza. It appears that either Frank Garza or ASE submitted the report to ACDEH. There is a date stamp on the title page of the report with the date, December 19, 1991, 12:23 PM, although it has not been verified that the date stamp belongs to ACDEH. SOMA obtained the report from ACDEH and the date stamp approximates the date of the report.

As of 2005, the regulatory status of the 4000-gallon UST had not been resolved. A subsequent file review of the documents in ACDEH's files yielded among other things, hand written notes submitted by "SH" (presumably Ms. Susan Hugo) indicating that she had approved ASE's tank removal work plan on November 8, 1991. ASE's December 4, 1991 *Underground Storage Tank Removal Report* contains a copy of the work plan with an official ACDEH stamp signed by Susan Hugo approving the work plan on November 8, 1991. Further, her notes indicate that the UST was removed on November 22, 1991, and her entry for November 25,1991 indicated that laboratory analytical results, presumably resulting from the environmental samples collected according to her

directions (in the work plan), were all non-detect for "both TPH gasoline & BTX&E" (Table 2). (A copy of these notes is attached to this report as Appendix D.)

A review of ASE's report of December 4, 1991 indicates that the 4000-gallon UST was removed on November 22, 1991. Visual inspection of the tank, as reported by ASE, revealed the absence of corrosion and evidence of leaks, the underlying soil showed no signs of gasoline contamination, no gasoline odors, and air quality monitoring as measured with a field instrument (TEI organic vapor analyzer model 580A) at the time of removal showed no evidence of organic vapors near the edge of the excavation (ASE 1991). The analytical results from the soil samples collected beneath the tank and from the stock piled soil were all non-detect for TPH_{gasoline}, benzene, toluene, ethylbenzene, and xylene (Table 2). Although tetraethyl lead was phased out beginning in 1976, and by 1979 methyl tertiary butyl ether (MTBE) was in use, it appears that ASE included lead in its analytical suite. Tetraethyl lead is considered volatile in a mixture of gasoline and unless lead as tetraethyl lead is extracted from environmental samples as a volatile, it will be lost if standard extraction methods for metals are used. Very low concentrations of total lead were reported, well below the concentration acceptable for residential land use. The detected concentrations appear to be within natural background concentrations rather than attributable to anthropogenic sources (Table 3). According to ASE, the tank removal activities of November 22, 1991 were witnessed by Susan Hugo and George Warren. There is an absence of any documentation indicating that ACDEH had issued any UST NFA closure approval based on ASE's 1991 UST Removal Report.

ASE followed an ACDEH-approved work plan for environmental sampling following the removal of the 4000-gallon UST. In view of the fact that all soil samples collected by ASE did not indicate the presence of any residual TPH as gasoline-related chemicals, an NFA closure of this UST is appropriate at this time, and is requested by Ron Silberman, the current property owner.

3.2 Gasoline Service Station

According to historical documents identified by AEI, a gasoline service station existed onsite from the late 1950s through 1974 (AEI 2001a). The service station consisted of two 6000-gallon USTs, one 2000-gallon UST, and one 550-gallon waste-oil UST. In 1969, the northern 6000-gallon UST was replace with a 10,000-gallon UST (Figure 2). According to an Emeryville Building Permit dated June 27, 1974, "...all above ground and below ground facilities" were identified for removal (AEI 2001a). No record of actual removal or any soil or groundwater samples have been recorded from the demolition of the service station (AEI 2002a).

In the absence of any environmental data documenting the environmental conditions resulting from the USTs used at the service station, on February 7, 2002, AEI Consultants (AEI) performed Phase 2 environmental sampling at the request of Wells Fargo Bank. AEI drilled 8 shallow soil borings (SB-1 through SB-8) and collected soil and grab groundwater samples. According to AEI, the boring locations were selected based on the locations of the USTs and associated piping (Figure 2). During the boring activities, AEI reported fuel hydrocarbon odors at depth in borings SB-1, SB-2 and SB-5. An evaluation of the boring logs and groundwater analytical results indicated the highest concentrations of residual concentrations of TPH_{gasoline} and TPH_{diesel} in groundwater at these locations, as well as at SB-8 (Table1 and 2); however, soil samples did not reflect the presence of odors. For reasons not made clear, no soil samples were collected at SB-2. The boring log simply indicated low soil recovery for an interval of 4 feet between 4 to 8 feet bgs.

SOMA used Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control District (RWQCB) to evaluate the significance of the chemical concentrations detected at the site. RWQCB has indicated that ESLs for shallow groundwater less than 3 meters below ground surface where the groundwater is a current or potential source of drinking water should be used in reference to the Site. Relatively low concentrations of TPH gasoline and TPH diesel were detected by AEI in soil (47 mg/kg and 5.8 mg/kg respectively) at one sampling location, SB-1 in 2002 (Figure 2, Table 2). These two concentrations are considerably lower than the Environmental Screening Levels (ESLs) established by RWQCB for commercial/industrial and residential land use. The ESLs used for evaluating the significance of the residual concentrations of TPH_{gasoline} and TPH_{diesel} in soil is 83 mg/kg, and is found in Table A of *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (RWQCB 2007 Revised 2008). Table A criteria apply to Shallow Soils (\leq 3m bgs) where groundwater is a current or potential source of drinking water. No residual concentrations of benzene, toluene, ethylbenzene, xylene (BTEX), MTBE, and 1,2-dichloroethane 1,2-DCA), that were found in groundwater were found in soil during AEI's Phase 2 investigation (Tables 1 & 2).

As noted in Basics Environmental (Basics) 2008 *Environmental Transaction Screen* review of AEI's two environmental reports (AEI 2002ab), groundwater analytical results showed the presence of low concentrations of petroleum hydrocarbons as TPH_{gasoline} and TPH_{diesel} including BTEX, MTBE, and 1,2-DCA (Basics 2008). Six groundwater samples collected from soil borings exceeded RWQCB's ESL for TPH_{gasoline} and TPH_{diesel} at SB-1W, SB-2W, SB-5W, and SB-8W (Table 1). These samples were collected from soil borings may have been due to the fact that these early groundwater samples were grab groundwater samples and may have contained soil in the sample.

Subsequently, AEI installed three groundwater monitoring wells on behalf of Wells Fargo Bank. The well locations were surveyed in by Mr. David Logan (California Professional land Surveyor No. 5003) on August 15, 2002 (AEI 2002b). Groundwater elevation data are presented in Table 4. The groundwater gradient and flow direction based on the data in Table 4 are presented in Figures 3A through 3D, and summarized in Figure 3. The relationship of MW-2 to the dispensing stations and the USTs that were used at the service station, including SB-2, is downgradient each time MW-2 was sampled (Figure 3).

The one UST location that was inaccessible at the time AEI performed their Phase II investigation was the former location of the 550-gallon waste-oil UST. It appears to be beneath the foundation of the 2-story building (Figure 2). On October 21, 2009, an electro-magnetic utility survey was completed to identify a suitable location for a soil boring. It was confirmed that the 550-gallon waste oil UST was not longer present as indicated in the historical site map (Figure 2). Based on the results of the survey, a downgradient boring location (B-2) adjacent to the former location of the UST was identified and included in the Work Plan of October 26, 2009, which was approved by ACDEH.

On April 14, 2010, the Boring B-2 was installed using a hydraulic direct-push portable drilling rig. The boring location was measured to be approximately one-foot from the measured southern corner of the UST. The boring was installed to a depth of 16 feet without encountering groundwater. A soil sample collected at 8 feet was submitted for laboratory analyses. This sample was selected for three reasons: 1) the water level in the adjacent monitoring well at MW-3 was measured to be 8.5 feet bgs, 2) there was a stratigraphic change from soil that was predominantly sand and gravel to moist, clayey soils and a color change from brown to tan-brown at 8 feet, and, 3) it was thought that any UST release would begin to spread laterally as well as vertically at the clay layer and should show up in a soil sample at this depth. The PID monitor used during the drilling did not register any concentration of significance and no petroleum odors were encountered during drilling (Figures 4 and 5).

8

The B-2, 8-foot soil sample was analyzed for:

- TPH_{gasoline}(8015Bm)
- TPH_{diesel} (SW8015B)
- TPH_{motor oil} (SW8015B)

RO#0002869 Supplemental Environmental Data Report and Request for a No-Further-Action Closure at 1240 Powell Street, Emeryville, CA 2009-03-10 Updated ClosureRpt.doc May 15, 2010

- BTEX & MTBE (SW8021B)
- LUFT Metals (SW6010B)
- PAHs (SW8270C SIM by GC/MS)
- VOCs (SW6260B)
- PCBs (SW8082)
- Petroleum Oil & Grease with Silica Gel Clean-up (SM5520E/F)

Boring B-2 was drilled to a depth of 16 feet without encountering groundwater. This finding was inconsistent with the presence of groundwater at 8.5 feet in the nearby monitoring well MW-3.

The results of the April 14, 2010 site investigation resulted in new information about the environmental conditions associated with the former waste oil UST (Figure 2). No analytes were found in soil at Boring B-2 despite subjecting the soil to nine different laboratory analytical methods. The results of the laboratory analyses of the soil sample from boring B-2 indicated absence of TPH _{gasoline}, TPH_{diesel}, Petroleum oil and grease confirmed by the absence of TPH_{motor oil}, BTEX and MTBE, PAHs, PCBs, and VOCs, that is, all chemicals tested for. Of the LUFT metals, lead and cadmium were reported as not detected, while detected concentrations for chromium, nickel, and zinc resembled naturally occurring background concentrations. The results of the chemical analyses indicate that soil downgradient from the former waste oil UST are free of chemicals associated with a potential UST release. Based on the absence of any chemicals at B-2, it would be safe to say that there is evidence that the former waste oil UST did not leak.

Boring B-1, was located downgradient from the service station UST source areas and was sited so that a shallow groundwater sample could be collected at the top of the water table. Unfortunately, groundwater was not encountered despite drilling to a depth of 16 feet. This finding was puzzling in view of the fact that groundwater was found at 9 feet in the adjacent monitoring well MW-2. The soil sample from the 9-foot depth interval

was submitted for laboratory analyses. This depth was chosen because the groundwater level in the adjacent groundwater monitoring well was found to be at 9 feet, and the highest photoionization detector (pid) reading of 12.3 parts per million (ppm) occurred at 9 feet. Three additional soil samples were collected at 6 feet, 12 feet and 16 feet and were requested to be held pending the results of the 9-foot sample. These samples have not been tested as of this date.

Only six analytes were detected in soil at a depth of 9 feet at B-1 (TPH_{gasoline}, TPH_{diesel}, xylene, nbutylbenzene, sec-butylbenzene, and n-propylbenzene). Since TPH will float on top of a water column, the 9-foot soil sample was analyzed for TPH-related chemicals. The chemical concentrations of TPH_{gasoline}, TPH_{diesel}, xylene did not exceeded residential soil ESLs (Table 2). Because there are no ESLs for n-butyl benzene, sec-butyl benzene, and n-propyl benzene, a quantitative screening risk assessment method was used to estimate whether these three chemicals might be a public health concern. As suggested by the Office of Environmental Health Hazard Assessment (OEHHA), the RfD for Cumene (CASRN 98-82-8) or isopropyl benzene identified by the US Environmental Protection Agency in their Integrated Risk Information System (IRIS) was used as a surrogate toxicity criterion to evaluate incidental ingestion as a potential exposure pathway. The calculated hazard index was four orders of magnitude lower (0.00015) than the RfD indicating that potential adverse health effects for a residential child from ingestion of soil at B-1 would not likely pose a threat to public health (Attachment B). The calculated hazard index was five orders of magnitude lower (0.000016) than the RfD indicating that potential adverse health effects for a residential adult from ingestion of soil at B-1 would not likely pose a threat to public health (Attachment B).

4.0 CONCLUSIONS

There appears to be adequate information about the 4000-gallon UST in ASE's 1991 report entitled, *Project Report, Underground Storage Tank Removal at Garza and Associates, 1240 Powell Street, Emeryville, California* to warrant a NFA closure. No residual TPHrelated chemicals were found in the soil after removal. This situation was confirmed by visual observations of the condition of the UST during removal, the absence of TPHrelated odors from the soil, and the condition of the surrounding soil as acknowledged by RO#0002869 Supplemental Environmental 10 May 15, 2010 Data Report and Request for a No-Further-Action Closure at 1240 Powell Street, Emeryville, CA 2009-03-10 Updated ClosureRpt.doc Susan Hugo in 1991 (ACDEH nd). In view of the available documentation and Susan Hugo's verification of the findings, a no-further-action closure is requested for this UST.

After groundwater sampling in 2002, analytical results indicated that relatively low concentrations of TPH_{gasoline}, TPH_{diesel}, BTEX, MTBE, and 1,2-DCA were detected in groundwater (Table 1). During the last round of groundwater sampling in 2009, all TPH-related chemicals were non-detect with the exception of 1,2-DCA. It was detected at a concentration of 4.1 ug/L (Table 1). Residual concentrations of 1,2-DCA over time reflected a decreasing concentrations from 5.1 ug/L in 2002 to 4.1 ug/L in 2009. Under the circumstances discussed in the report, a NFA closure is requested for the 4 service station USTs including the former waste oil UST.

5.0 **REFERENCES**

- Alameda County Department of Environmental Health (ACDEH). No Date (ND). Hand-entered notes from Ms. Susan Hugo on a ACDEH form. Each of her observations is dated. (See Appendix D for copy).
- AEI. 2001a. Phase I, Environmental Site Assessment, 1240 Powell Street, Emeryville, California 94608. December 20.
- AEI. 2001b. Letter Summary of *Phase I Environmental Site Assessment*. Letter report from Holly Gannaway, REA to Mr. William Rauch, Wells Fargo Bank RETECHS dated December 20, 2001.
- AEI. 2002a. Phase II, Subsurface Investigation, 1240 Powell Street, Emeryville, California 94608. February 15.
- AEI. 2002b. Groundwater Monitoring Well Installation & Initial Monitoring Report, 1240 Powell Street, Emeryville, California 94608. September 5.
- Aqua Science Engineers, Inc. 1991. Project Report, Underground Storage Tank Removal at Garza and Associates, 1240 Powell Street, Emeryville, California 94608. December 4.
- Basics Environmental (Basics). 2008. Environmental Transaction Screen, 1240 Powell Street, Emeryville, California. December 3.

- California Environmental Protection Agency (Cal EPA), Department of Toxic Substances Control (DTSC). 1992. Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities. July.
- Cal EPA (DTSC). 1994. Preliminary Endangerment Assessment Guidance Manual. January.
- Environmental Sampling Services. 2004. October 2004 Groundwater Monitoring Event Sampling for 1240 Powell Street, Emeryville, California. November 3.
- Integrated Risk Information System (IRIS). Searchable online database: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList.
- McCampbell Analytical, Inc. 2004. Laboratory certificates from the October 27, 2004 sampling event.
- McCampbell Analytical, Inc. 2005. Laboratory certificates from the September 20, 2005 sampling event.
- McCampbell Analytical, Inc. 2009. Laboratory certificates from the January 8, 2009 sampling event.
- McCampbell Analytical, Inc. 2010. Laboratory certificates from the April 14, 2010 sampling event.
- San Francisco Bay Regional Water Quality Control District (RWQCB). 2007. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater. Revised May 2008.
- San Francisco Bay Regional Water Quality Control District (RWQCB). 2007. San Francisco Bay Basin (Region 2), Water Quality Control Plan (Basin Plan). January 18.
- United States Environmental Protection Agency (U.S. EPA). 1991. *Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual. Supplemental Guidance: "Standard Default Exposure Parameters".* Interim Final. March.
- U.S. EPA. 1997. *Exposure Factors Handbook. Volume I: General Factors*. Office of Research and Development.
- U.S. EPA. 2000. Region 9 Preliminary Remediation Goals (PRGs) 2000. November 1.

FIGURES

TABLES

Sample ID	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	1,2-DCA
SB-1W	02/07/2002	320	230	< 0.5	< 0.5	5.2	3.3	<5.0	-
SB-2W	02/07/2002	1400	1400	5.7	3.0	3.3	4.0	<5.0	-
SB-3W	02/07/2002	< 5.0	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	5.7	-
SB-4W	02/07/2002	< 5.0	<5.0	< 0.5	<5.0	<0.5	< 0.5	<5.0	-
SB-5W	02/07/2002	71	200	< 0.5	1.5	<0.5	< 0.5	<5.0	-
SB-6W	02/07/2002	<5.0	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	-
SB-8W	02/07/2002	<5.0	580	< 0.5	< 0.5	<0.5	< 0.5	<5.0	-
MW-1	08/13/2002	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	< 0.5
MW-1	10/27/2004	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.71	< 0.5
MW-1	09/20/2005	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.64	< 0.5
MW-1	01/08/2009	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-2	08/13/2002	<50	81	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	5.1
MW-2	10/27/2004	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	4.2
MW-2	09/20/2005	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3.9
MW-2	01/08/2009	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	4.8
MW-3	08/13/2002	<50	130	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	< 0.5
MW-3	10/27/2004	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-3	09/20/2005	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
MW-3	01/08/2009	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-3-Dup	10/27/2004	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
MW-2-Dup	09/20/2005	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0	4.0
MW-2-Dup	01/08/2009	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	3.3

Table 1. Historical Groundwater Data (ug/L)

Note: SB-1 through SB-8 were grab groundwater samples.

SB-1 through SB-8 non-detected compounds were reported as the method detection limit (MDL).

"-" Indicates not analyzed.

MW-Dup for the 12/27/2004 sampling was colleced at MW-3.

MW-Dup for the 09/20/2005 sampling was colleced at MW-2.

MW-Dup for the 01/08/09 sampling was colleced at MW-2.

Table 2. Historical Soil Data (mg/kg)

Sample ID	Date	Depth (feet)	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	TPH Oil and Grease	TPH Motor Oil SW8015B)	VOCs (8260)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	n-Butyl benzene	sec-Butyl benzene	n-Propyl benzene	PAH SW8270C
GRZ West	11/22/1991	9	<1.0	-	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRZ East	11/22/1991	9	<1.0	-	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRZSTKP1-4	11/22/1991	††	<1.0	-	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-1	02/07/2002	8	47	5.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-3	02/07/2002	4	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-4	02/07/2002	8	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-5	02/07/2002	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-6	02/07/2002	8	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-7	02/07/2002	8	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-7	02/07/2002	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<50	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-7	02/07/2002	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	< 0.005*	-	-	-	-	-	-	-	-	-	-	-	-
SB-8	02/07/2002	10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-1	08/13/2002	11	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-2	08/13/2002	11	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-3	08/13/2002	11	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-1	04/14/2010	9	59	9.8	< 0.10	< 0.10	< 0.10	0.17	<1.0	-	<5.0	-									0.47	0.28	0.44	-
B-2	04/14/2010	8	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<50	<5.0	< 0.005*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
Notes:	 * The dash indicates the sample was not analyzed. * This soil sample was a four point composite of the stockpiled soil resulting from the excavation. * Reporting limit varied with chemical. * Elevated reporting limits were due to matrix interference requiring a dilution factor of 20. Reporting limit indicated is the method detection limit (MDL). 																							

		Depth		Chromiu			
Sample ID	Date	(feet)	Cadmium	m	Lead	Nickel	Zinc
GRZ West	11/22/1991	9	-	-	< 0.5	-	-
GRZ East	11/22/1991	9	-	-	5.50	-	-
GRZSTKP1-4	11/22/1991	††	-	-	4.96	-	-
SB-7	02/07/2002	12	< 0.5	26	5.7	40	41
B-2	04/14/2010	8	<1.5	34	<5.0	27	43

 Table 3. Metals Soil Data (mg/kg)

Notes: †† This soil sample was a four point composite of the stockpiled soil resulting from the excavation.

		Depth to	Top of	Groundwater
	Date	Water	Casing*	Elevation
Location	Sampled	(feet, TOC)	(feet)	(feet)
MW-1	08/13/2002	7.69	28.17	20.48
	10/27/2004	6.29	28.17	21.88
	09/20/2005	7.25	28.17	20.92
	01/08/2009	7.29	28.17	20.88
MW-2	08/13/2002	8.58	26.17	17.59
	10/27/2004	8.06	26.17	18.11
	09/20/2005	8.52	26.17	17.65
	01/08/2009	8.19	26.17	17.98
MW-3	08/13/2002	8.28	28.62	20.34
	10/27/2004	7.24	28.62	21.38
	09/20/2005	8.53	28.62	20.09
	01/08/2009	8.1	28.62	20.52

 Table 4. Groundwater Elevation Data

Note: TOC - Top of well casing.

* Surveyed in as feet above mean sea level.

APPENDICES

APPENDIX A

Laboratory Data Certificates – October 27, 2004

Soma Corporation	Client Project ID: 1240 Powell Street	Date Sampled: 10/27/04
1412 62nd Street		Date Received: 10/28/04
	Client Contact: Estelle Shiroma	Date Reported: 11/02/04
Emeryvine, CA 94008	Client P.O.:	Date Completed: 11/03/04

WorkOrder: 0410425

November 03, 2004

Dear Estelle:

19

Enclosed are:

- 1). the results of **5** analyzed samples from your **1240 Powell Street project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly, Angela Rydelius, Lab Manager
	McCam	pbell A	Analytic	al, Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com							
Soma C	orporation		Client I	Project ID: 124) Powell St	reet	Date Sampled:	10/27/04				
1412 62	nd Street						Date Received:	10/28/04				
Emorra		5	Client (Contact: Estelle	Shiroma		Date Extracted:	10/30/04				
Enteryv	me, CA 94008	5	Client F	P.O.:			Date Analyzed:	10/30/04		·		
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B-8015Cm Work Order: 0410425 Lab ID Client ID Matrix TPH(g) MTRE Baggraph Tolumpo Ethelbergage Note: 0410425												
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	Trip Blank	W	ND	ND	ND	ND	ND	ND	1	99.0		
002A	MW-2	W	ND	ND	ND	ND	ND	ND	1	98.0		
003A	MW-1	W	ND	ND	ND	ND	ND	ND	1	99.0		
004A	MW-3	W	ND	ND	ND	ND	ND	ND	1	99.0		
005A	MW-DUP	. W	ND	ND	ND	ND	ND	ND	1	103		
							-					
		·							· · · · · · · · · · · · · · · · · · ·			
		· · · · · ·		· · · · · · · · · · · · · · · · · · ·			}					
		· · · · ·			****							
	• 14 101 11 11 1 11 14	·		<u> </u>					· ·			
<u> </u>												
			i									
		·										
			;									
		:	·····									
Reporting I ND means r	Limit for DF =1; not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	· 1	μg/L		
above the	reporting limit	S	NA	NA	NA NA NA NA					mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

DHS Certification No. 1644

Mc	Campbell A	nalytical,	Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main/g/mccampbell.com						
Soma Corpora	ition	Client Proje	ect ID: 1240 I	Powell Street	Date Sampled:	10/27/04				
1412 62nd Str	eet				Date Received:	10/28/04				
	A 04/00	Client Cont	act: Estelle Sh	iroma	Date Extracted:	10/28/04				
Emeryville, CA	A 94008	Client P.O.:			Date Analyzed:	10/29/04-	10/30/0)4		
	Die	sel Range (C1	0-C23) Extrac	table Hydrocarbo	ns as Diesel*					
Extraction method: S	SW3510C		Analytical me	thods: SW8015C		wo		0410425		
Lab ID	Client ID	Matrix		IPH(d)		192 AD 31 3 TO THE STOLE S	Dr	70 55		
0410425-002C	MW-2	W		ND			1	88.0		
0410425-003C	MW-1	W		ND			1	94.0		
0410425-004C	MW-3	W		ND			1	94.0		
0410425-005C	MW-DUP	W		ND		,	1	94.0		
		· · · · · · · · · · · · · · · · · · ·								
i										
		i								
		1								
		:								

Reporting Limit for $DF = 1$;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

McCampbell A	nalytical,	Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@imccampbell.com					
Soma Corporation	Client Proje	ect ID:	1240	Powell Street	Date Samp	led: 10/27/04		
1412 62nd Street					Date Recei	ved: 10/28/04		
	Client Cont	act: Es	stelle Sl	niroma	Date Extrac	cted: 10/29/04-1	1/01/0)4
Emeryville, CA 94608	Client P.O.	:			Date Analy	zed: 10/29/04-1	1/01/0)4
Vo	latile Organic	es by P	&T an	d GC/MS (Basic Tar	rget List)*			
Extraction Method: SW5030B		Ana	lytical Met	hod: SW8260B	· · ·	Work	Order: 0	410425
Lab ID Client ID Matrix				0410425-002 MW-2 Water	В	······		
Compound Co	oncentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit
Acetone	ND	1.0	5.0	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (T	AME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0
n-Butyl henzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ethe	r	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropro	pane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	:	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-I	DCA)	4.2	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ET	BE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5
Hexachloroethane	ND ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND ND	1.0		4-Isopropyl toluene		ND	1.0	0.5
Methyd 2 paptanana (MIBK)	ND	1.0	0.5	Neutylene chioride	****		1.0	0.5
4-Methyl-2-pentanolie (MIBK)		1.0	10	n Propul benzene		ND	1.0	0.5
Sturene	ND	1.0	0.5	1 1 1 2 Tetrachloroethans		ND	1.0	0.5
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1.2.3-Trichlorobenzene		ND	1.0	0.5
1.2.4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes		ND	1.0	0.5
		Surr	ogate Re	coveries (%)				
%SS1:	97.0			%SS2:		103		
%SS3:	118							· I
Comments:								

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil / sludge / solid samples in $\mu g/kg$, wipe samples in $\mu g/wipe$, product / oil / non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen product is present; i) liquid sample that contains greater than \sim 1 vol. % sediment; j) sample diluted due to high organic content; m) the concentration for this compound was above our upper calibration standard and is reported as an estimated value. This data was requested 3 weeks after initial analysis thereby precluding re-analysis at the correct dilution.

McCampbell	Analytical,	Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mecampbell.com							
Soma Corporation	Client Proje	ect ID:	1240	Powell Street	Date Sample	ed: 10/27/04				
1412 62nd Street					Date Receiv	red: 10/28/04				
	Client Cont	act: E	stelle Sl	hiroma	Date Extrac	ted: 10/29/04-1	1/01/0)4		
Emeryville, CA 94608	Client P.O.:				Date Analyz	ed: 10/29/04-1	1/01/0)4		
	Volatile Organic	es by I	P&T an	d GC/MS (Basic Ta	rget List)*					
Extraction Method: SW5030B		An	alytical Me	thod: SW8260B	<u> </u>	Work	Order: 04	410425		
Lab ID Client ID Matrix				0410425-003 MW-1 Water	3B					
Compound	Compound Concentration * DF Reporting Compound Concentration									
Acetone	ND	1.0	5.0	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene	,	ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	····	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Eth	er	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1 2-Dibromo-3-chloropro	onane	ND	1.0	0.5		
1.2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	opune	ND	1.0	0.5		
1.2-Dichlorobenzene	ND	1.0	0.5	1 3-Dichlorobenzene	······ · · · · · · · · · · · · · · · ·	ND	1.0	0.5		
1 4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane ND 1.0						
1 L-Dichloroethane	ND	1.0	0.5	1.2-Dichloroethane (1.2)		ND	1.0	0.5		
1.1-Dichloroethene		1.0	0.5	cis_1.2-Dichloroethene		ND	1.0	0.5		
trans_1.2_Dichloroethene		1.0	0.5	1.2 Dichloropropage		ND	1.0	0.5		
1.3-Dichloropropage	ND	1.0	0.5	2.2 Dichloropropane	· · · · · · · · · · · · · · · · · · ·		1.0	0.5		
1,3-Dichloropropene	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5		
trans 1.3 Dichloropropana		1.0	0.5	Diigonronul other (DIRE)	:	ND	1.0	0.5		
Ethylhonzona	ND	1.0	0.5	Ethul test hutul athen (ET			1.0	0.5		
Emplo	ND	1.0	0.5	Einyi tert-Dutyi etner (EI	BE)		1.0	0.5		
Lawashlarasthana		1.0	10	Hexachioroduladiene		ND	1.0	0.5		
Hexachioroemane		1.0	0.5	2-Hexanone		ND	1.0	0.5		
Nothul t hutul other (MTDE)	ND	1.0	0.5	4-isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MIBE)	0.71	1.0	0.5	Methylene chloride		ND .	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene		1.0	10	n-Propyl benzene	!	ND	1.0	0.5		
Styrene	ND	1.0	0.5	T,T,T,Z-Tetrachloroethan	e	ND	1.0	0.5		
Taluara	NU	1.0	0.5	1 etrachioroethene		ND	1.0	0.5		
1 2 4 Trickland and a	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5		
1,2,4-1 memorobenzene		5 1,1,1-Trichloroethane ND 1.0								
Triablorofluorenations		<u> </u>	0.5	1 2 2 Tri-11-		NU	1.0	0.5		
1 2 4 Thim attack descent		1.0		1,2,3-Tricnioropropane		ND	1.0	- 0.5		
1,2,4-1 rimeinyidenzene	ND	1.0	0.5	1,3,5-1rimethylbenzene		ND	1.0	0.5		
v myr Chloride	<u>ND</u>	1.0	0.5	Ayienes		ND	1.0	0.5		
		Suri	ogate Re	coveries (%)						
%SS1:	98.0			%SS2:		101				
%\$\$\$3:	116									
Comments:										

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil / sludge / solid samples in µg/kg, wipe samples in µg/wipe, product / oil / non-aqueous liquid samples in mg L.

ND means not detected above the reporting limit: N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than \sim 1 vol. % sediment; j) sample diluted due to high organic content; m) the concentration for this compound was above our upper calibration standard and is reported as an estimated value. This data was requested 3 weeks after initial analysis thereby precluding re-analysis at the correct dilution.

McCampbell A	Analytical, I	Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com							
Soma Corporation	Client Proje	et ID:	1240	Powell Street	Date Sam	pled: 10/27/04					
1412 62nd Street				-	Date Reco	eived: 10/28/04					
	Client Cont	act: Es	stelle Sl	niroma	Date Extr	acted: 10/29/04-1	1/01/0)4			
Emeryville, CA 94608	Client P.O.:				Date Ana	lyzed: 10/29/04-1	1/01/0)4			
N	/olatile Organic	s by P	&T an	d GC/MS (Basic Ta	rget List)	*					
Extraction Method: SW5030B		Ana	lytical Met	hod: SW8260B		Work	Order: 0	410425			
Lab ID				0410425-004	4B						
Client ID				MW-3							
Matrix Water											
Compound	Concentration *	DF	Compound		Concentration *	DF	Limit				
Acetone	ND	1.0	5.0	Acrolein (Propenal)		ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND ND	1.0	0.5	Bromodichioromethane		ND	1.0	0.5			
Bromotorm	ND	1.0	0.5	bromometnane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alconol (TBA)	· ···	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ethe	er	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropro	opane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	<u> </u>	ND	1.0	0.5			
1,1-Dichloroethane	ND	- 1.0	0.5	1,2-Dichloroethane (1,2-	DCA)	ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Disopropyl ether (DIPE)	 	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (E I	BE)	ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5			
Hexachioroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropyibenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene		1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	T-trachloroethane	e	ND ND	1.0	0.5			
Toluono		1.0	0.5	1 2 2 Trichlandhamman		ND	1.0	0.5			
1 2 4 Tricklauchennene		1.0	0.5	1,2,3-Inchlorobenzene		ND	1.0	0.5			
1,2,4-Themorobenzene	ND	1.0		Thigh langethere		ND ND	1.0	0.5			
Trichlorofluoromethana		1.0	0.5	1 2 3 Trichloron	··· ··· ·· · · · · · · · · · ·		1.0	0.5			
1.2.4 Trimethylbenzono		1.0	0.5	1.2.5 Trimethylbourge			1.0	0.5			
1,2,4-11incuryiDenzene		1.0	0.5	1,5,5-11metnyiDenzene Vylenec		ND ND	1.0	0.5			
v myr Chlonde	NU	1.0	0.5	Ayienes		ND	1.0	0.5			
		Surr	ogate Re	coveries (%)							
%8S1:	%SS1: 96.0 %SS2: 102										
%883:	118							· · · · · · ·			
Comments:											

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil / sludge / solid samples in µg/kg, wipe samples in µg/wipe, product / oil . non-aqueous liquid samples in mg L.

ND means not detected above the reporting limit: N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than \sim 1 vol. % sediment; j) sample diluted due to high organic content; m) the concentration for this compound was above our upper calibration standard and is reported as an estimated value. This data was requested 3 weeks after initial analysis thereby precluding re-analysis at the correct dilution.

McCampbell A	nalytical, I	Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mecampbell.com E-mail: main@mecampbell.com							
Soma Corporation	Client Proje	ect ID:	1240	Powell Street	Date Sampled:	10/27/04					
1412 62nd Street					Date Received:	10/28/04					
	Client Cont	act: E	stelle Sł	niroma	Date Extracted	: 10/29/04-1	1/01/0	4			
Emeryville, CA 94608	Client P.O.:			Date Analyzed: 10/29/04-11/01/04							
		a ha T		d CCMS (Basia T	ugat List)*			<u></u>			
¥ 0 Extraction Method: SW5030B		Anc	alytical Met	Acthod: SW8260B Work Order: 0410425							
Lab ID				0410425-00	5B						
Client ID Moteix				MW-DUI Woter		• ···· · · ·					
	an contration *	DE	Reporting	Compound	t Cor	contration *	DE	Reporting			
Compound Co	Sheentration *		Limit	Compound		ND		Linut			
Acetone	ND	1.0	. 3.0	Acrolein (Propenal)	(TAME)	ND	1.0	5.0			
Ponzena	ND	1.0	0.5	Bromobenzene	(TAME)	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND .	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0			
n Butyl henzene	ND	1.0	0.5	sec_Butyl benzene		ND	1.0	0.5			
II-Butyl Denzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Totrophlarida	ND	1.0		Chlorobenzene		ND	1.0	0.5			
Chloresthese		. 1.0	0.5	2 Chloreothyl Vinyl Etl		ND	1.0	1.0			
Chloreform		1.0	0.5	2-Chloroethyr villyr Eu		ND	1.0	1.0			
Chlorotorm		1.0	0.5	4 Chlorotaluana		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromocniorometnane		1.0	0.5	Dibramamathana	Topane	ND	1.0	0.5			
1,2-Dibromoetnane (EDB)		1.0	0.5	1.2 Dichlorohongono		ND	1.0	0.5			
1,2-Dichlorobenzene		1.0	0.5	Dishlars diffuserers athre		ND	1.0	0.5			
1,4-Dichlorobenzene		1.0	0.5	Dichlorodifiuoromethan		ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2	-DCA)	ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropen	B	ND .	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Disopropyl ether (DIPI	<u>5)</u>	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (E	IBE)	ND	0.1	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone	···-··	ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroetha	ne	ND	1.0	0.5			
1,1,2,2-1 etrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
loluene	ND	1.0	0.5	1,2,3-1richlorobenzene		ND	1.0	0.5			
1,2,4-1richlorobenzene	ND	$-\frac{1.0}{1.0}$	0.5	1,1,1-Irichloroethane		ND	1.0	0.5			
1,1,2-Irichloroethane	ND	ND 1.0 0									
Irichlorofluoromethane	ND ND	1.0	0.5	1,2,3-1richloropropane	· · · · · · · · · · · · · · · · · · ·	ND	. 1.0	0.5			
1,2,4-1 rimethylbenzene	ND	1.0	0.5	1,3,5-1 rimethylbenzene	: 	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes		<u>ND</u>	1.0	0.5			
		Suri	rogate Re	coveries (%)							
%SS1:	96.0			%SS2:		100					
%\$\$\$3:	106							:			
Comments											

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil / sludge / solid samples in µg/kg, wipe samples in µg/wipe, product / oil / non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit: N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

b) lighter than water immiscible sheen product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content; m) the concentration for this compound was above our upper calibration standard and is reported as an estimated value. This data was requested 3 weeks after initial analysis thereby precluding re-analysis at the correct dilution.

QC SUMMARY REPORT FOR SW8021B/8015Cm

				Matrix:	W				WorkOrder:	0410425
EPA Method: SW8021	B/8015Cm E	Extraction:	SW5030	В	Batch	ID: 13741	5	Spiked Samp	le ID: 0410	425-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptanc	e Criteria (%
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	97.4	95.4	2.12	81.1	80.4	0.937	70	130
MTBE	ND	10	86.1	89.4	3.83	107	106	0.617	70	130
Benzene	ND	10	105	112	6.03	99.5	100	0.979	70	130
Toluene	ND	10	100	107	6.74	91.8	93.3	1.69	70	130
Ethylbenzene	ND	10	103	107	3.91	96.1	97	0.946	70	130
Xylenes	ND	30	91	95.3	4.65	85.3	86	0.778	70	130
%SS:	99.0	10	112	115	2.81	107	105	1.49	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

				WorkOrder: 0410425							
EPA Method: SW8015C	Ε	Extraction:	SW35100	0	Batch	ID: 13740	Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, when y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	N/A	7500	N/A	N/A	N/A	90.5	89.3	1.36	70	130	
%SS:	N/A	2500	N/A	N/A	N/A	86	86	0	70	130	
All target compounds in the Me NONE	thod Blank o	f this extra-	ction batch v	vere ND le	ess than the m	nethod RL	with the fo	llowing excep	tions:		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QA/QC Officer

QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

				Matrix:	W				WorkOrder:	0410425
EPA Method: SW8260B	E	Extraction:	SW5030E	3	Batch	ID: 13739	S	14-003B		
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
, nory to	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	83.1	78.7	5.45	85.2	82.2	3.59	70	130
Benzene	ND	10	116	114	1.33	119	120	1.34	70	130
t-Butyl alcohol (TBA)	ND	50	88.1	86.5	1.85	91.1	90.9	0.217	70	130
Chlorobenzene	ND	10	102	97.9	4.58	112	111	0.536	70	130
1,2-Dibromoethane (EDB)	ND	10	100	85.2	16.0	105	102	2.60	70	130
1,2-Dichloroethane (1,2-DCA)	ND	10	109	101	7.56	120	112	6.99	70	130
1,1-Dichloroethene	ND	10	120	111	7.84	122	124	1.28	70	130
Diisopropyl ether (DIPE)	ND	10	121	120	1.00	124	120	2.80	70	130
Ethyl tert-butyl ether (ETBE)	ND	10	117	113	3.51	122	117	4.04	70	130
Methyl-t-butyl ether (MTBE)	ND	10	109	98.2	10.0	113	107	4.93	70	130
Toluene	ND	10	107	103	4.10	116	118	1.38	70	130
Trichloroethene	ND	10	114	110	3.12	123	120	2.30	70	130
%SS1:	108	10	103	100	3.71	104	100	3.29	70	130
%SS2:	104	10	102	97	4.98	104	104	0	70	130
%SS3:	119	10	106	108	1.50	110	111	1.08	70	130
All target compounds in the Meth	nod Blank o	f this extrac	tion batch w	ere ND le	ss than the m	ethod RL v	vith the fo	llowing except	tions:	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{i*} MS ² MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

NONE

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560

(925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0410425 ClientID: SCE

Report to: Estelle Shiro Soma Corpo 1412 62nd S Emeryville, C	ma ration treet CA 94608	TEL: FAX: Projec PO:	(510) 654-390 (510) 654-190 tNo: 1240 Powell \$	00 60 Street		Bill to: Estelle Shiroma Soma Corporation 1412 62nd Street Emeryville, CA 94608								Reque Date Date	ested TA Receive Printee	.Т: ed: d:	5 days 53:19 PM 10/28/04			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	Requ	uested 6	Tests (7	See le 8	egend 9	below) 10	11	12	13	· 14	4 15
0410425-002	MW-2	Water	10/27/04 2:48:00		в	A	С													
0410425-003	MW-1	Water	10/27/04 3:31:00		В	A	С													
0410425-004	MW-3	Water	10/27/04 4:17:00		В	Α	С													
0410425-005	MW-DUP	Water	10/27/04 4:47:00		В	Α	С	•												

Test Legend:

1	8260B_W	2	G-MBTEX_W	Ĩ	3 TPH(D)_W	4	5
6		7	· <u></u> ·		8	· 9	10
11		12			13	14	15

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

0410425

Web Telephon	McCAMPBELL ANALYTICAL, INC. 110 2 ^{md} AVENUE SOUTH, #D7 PACHECO, CA 94553-5560 Website: www.mccampbell.com Telephone: (925) 798-1620 Fax: (925) 798-1622 Bill To: Same as Report to "								CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 D EDF Required? Coelt (Normal) No Write On (DW) No						Х R 5 ДАУ																
Report to: ESF	ule shir	romor		Bill T	<u>o: S</u>	rme	as k	oport	to	<i>*(</i>				·······		,		Δ	nal	ysis	Rec	lnes	t						Otl	aer	Comments
Tele: (510) 6: Project #: Sampler Signatur	1412 62 nd Street Evylery Uille, 04 94608 E-Mail: Tele: (510) 654 - 3900 Fax: (510) 654 - 1960 'roject #: Project Name: 1240 Powell Street 'roject Location: 1240 Powell Street Emergyille, 04 Sampler Signature: Ital MATRIX METHO SAMPLING 5 5 5 5					<u>æt</u>		02/8020 + 8015)/MTBE		rease (5520 E&F/B&F)	rocarbons (418.1)		02 / 8020)		s only			0		A 625 / 8270 / 8310	. 6020)	(020)	010)			Filter Samples for Metals analysis: Ves / No					
		SAM	PLING		ers	1	MAT	RIX	PR	UET ESF	HOD ERVE		3as (6	3015)	ii & C	Hyd	802	P.4 6	:	PCB.			826	3270	y EP	(6010	6010	0 0			
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Contain	Water	Soil	Sludge	Uniter	HCL	HNO ₃	Other	BTEX & TPH as (TPH as Diesel (8	Total Petroleum O	Total Petroleum	EPA 601 / 8010 /	BTEX ONLY (E	EPA 608 / 8081	EPA 608 / 8082	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624	EPA 525 / 625 / 8	PAIL'S, PNA's b	CAM-17 Metals	LUFT 5 Metals (Lead (200.8 / 200			
Trip Blonk		19/27/04	13:00	2	40 ml	\mathbf{X}		·	X	X	••••••	-	Z											·····							
1 MW-2		19/27/21	19:48	4	45.47	X			X	X		ľ	\mathbf{X}	$\overline{\mathbf{v}}$	· · · · · ·				•	• • • • •			\mathbf{X}				•		1		· · · · · · ·
MW-1	a for a finite state of the second seco	12/27/04	15:31	4	414-0	X			X	X			χİ	$\widehat{\mathbf{x}}$									\mathbf{x}		-		•				· · · · · ·
MW-3	· · · · · · · · · · · · · · · · · · ·	10/37/04	16:17-	4		X			X	×	••• ••••		Ž	$\frac{1}{\sqrt{2}}$			-						$\langle \rangle$							1	
MW-DUD		12/27/04	16:47	ų.		X			Ì	X			y -	$\overline{\mathbf{A}}$;				1	$\widehat{}$							-	
	· · · · · · · · · · ·		1.0.11						ľ È	1.		- 1	<u></u>	Δ						•			$\langle \cdot \rangle$:	1		•				
			-			-								 						-											17/2.8/0
																										:	•	1	1		
N			· · · · · · · · · · · · · · · · · · ·			ļ				 										ľ							•				
·····													. [:	i			1						-		Λ			
· · · · · · · · · · · · · · · · · · ·	· ···.																								,						
· · · · · · · · · · · · · · · · · · ·					X																		× * *			مسمع . ا					
Relinquished By:		Date:	Time:	Rete	if ed P	YL.		C:	1		999999999999 (July 1)	T	ICE	/t°	V			. /		en e	k.	المحمودي	الد ميد من				CO	ммі	ENTS:	المتعاجم	
XWat_t		12 /04	10:27		<u>Y</u>	m			\geq	2			GO! HE/	UD (AD S	UON IPAC	DFT E A	ION BSE	NT NT	\checkmark	•											
venudaren aki:	- The State of the	Date:	Time:	Rece	ived B	ly:			0				DEC API PRE	(HL) PROI	ORI PRIA 2V10	NAT VIE D IN	ED I CON L AT	IN ÊĂ VTAR 8	B VER	s_ 🗸	Í										
Relinquished By:		Date:	Time:	Rece	ived B	ly:			ale and an an a state of the		*********************************		FRE	SEF	AVA.	FIO	- VO 8	• •AS	98	G	ME oHs	ТАІ 2	s	OTH	ER						

APPENDIX B

Laboratory Data Certificates – September 20, 2005

Soma Corporation	Client Project ID: 1240 Powell Street	Date Sampled: 09/20/05
1412 62nd Street		Date Received: 09/20/05
Emerurille CA 04608	Client Contact: Estelle Shiroma	Date Reported: 09/28/05
Emeryvine, CA 94008	Client P.O.:	Date Completed: 09/28/05

WorkOrder: 0509452

September 28, 2005

Dear Estelle:

Enclosed are:

- 1). the results of **5** analyzed samples from your **1240 Powell Street project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Angela Rydelius, Lab Manager

	McCam	pbell A	Analytic	al, Inc.	V	110 2nd Av Telepho Vebsite: www.r	enue South, #D7, Pache ne : 925-798-1620 Fax nccampbell.com E-mail:	co, CA 94553-5 : 925-798-1622 main@meeamp	560 bell.com	
Soma C	Corporation		Client I	Project ID: 124	10 Powell Str	reet	Date Sampled:	09/20/05		
1412 62	2nd Street						Date Received:	09/20/05		
Emera		Q	Client (Contact: Estelle	Shiroma		Date Extracted:	09/25/05-0	9/27/0)5
Emeryv	IIIC, CA 94006	5	Client I	P.O.:			Date Analyzed:	09/25/05-0	9/27/0)5
Extraction	Gasol method: SW5030B	line Rang	e (C6-C12)	Volatile Hydro Analytical me	carbons as thods: SW8021E	Gasoline v 3/8015Cm	vith BTEX and	MTBE* Work	Order: (0509452
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	Trip Blank	W	ND	ND	ND	ND	ND	ND	1	112
002A	MW-3	W	ND	ND	ND	ND	ND	ND	1	111
003A	MW-1	W	ND	ND	ND	ND	ND	ND	1	106
004A	MW-2	W :	ND	ND	ND	ND	ND	ND	1	109
005A	MW-Dup	W	ND	ND	ND	ND	ND	ND	1	107
										1
		ļ. į		: : :				<i>x x</i>		
		· · · · · · · · · · · · · · · · · · ·				77				
i					<u>I</u>					
		1					· · · · · · · · · · · · · · · · · · ·			
		·	: 							
				· · · · · · · · · · · · · · · · · · ·					:	
				1						
Reporting ND means	Limit for DF $=1$; not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
above the	e reporting limit	S	NA	NA	NA	NA	NA	NA	. 1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

DHS Certification No. 1644

Mc	Campbell A	nalytic	al, Inc.	110 2nd Avenu Telephone : Website: www.mce	e South, #D7, Pacheco, CA 94553 925-798-1620 Fax : 925-798-16 ampbell.com E-mail: main@meca	-5560 22 npbell.cor	11		
Soma Corporat	ion		Client Project ID:	1240 Powell Street	Date Sampled: 09/20	/05			
1412 62nd Stre	et				Date Received: 09/20	/05			
Emeravilla CA	04608		Client Contact: E	ntact: Estelle Shiroma Date Extracted: 09/2					
Emeryvine, CA	4008		Client P.O.:		Date Analyzed: 09/22	/05-09,	/23/05		
Extraction method: SV	Die v3510C	esel Range	(C10-C23) Extrac Analytical me	table Hydrocarbons : thods: SW8015C	as Diesel* We	ork Order:	: 0509452		
Lab ID	Client ID	Matrix		TPH(d)		DF	% SS		
0509452-002C	MW-3	W		ND		1	109		
0509452-003C	MW-1	W		ND		1	106		
0509452-004C	MW-2	W		ND		1	118		
0509452-005C	MW-Dup	W		ND					
						i			
· · · · · · · · · · · · · · · · · · ·						i			
		1							
	· · · · · • • • dudo · · · · · · · · · · · · · · · · · ·			17 M 1991 M 1					
	·								
							ļ		
		:							
Reporting L	imit for DF =1;	W		50		μ	g/L		
ND means no	ot detected at or	S		NA		N	 J Δ		

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene kerosene range jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent mineral spirit.

DHS Certification No. 1644

above the reporting limit

Angela Rydelius, Lab Manager

NA

McCampbell	Analytica	l, Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com					
Soma Corporation	С	lient Proj	ect ID:	1240 Powell Street	Date Sampled: 09/20/	05			
					Date Received: 09/20/	05			
1412 62nd Street		lient Con	tact Est	elle Shiroma	Date Extracted: 09/21/	tracted: 09/21/05			
Emervville, CA 94608		lient P ()			Date Analyzed: 09/21/	05			
			•		Date MaryZea. 09/21/	0.5			
Extraction Method: SW5030B	Volatile Orga	nics by F Ana	P&T and alytical Met	d GC/MS (Basic Targe hod: SW8260B	et List)* Work	Order: 0	509452		
Lab ID				0509452-002B					
Client ID				MW-3					
Matrix				Water					
Compound	Concentration	* DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TA)	ME) ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5		
Carbon Tetrachloride	ND	: 1.0	0.5	Chlorobenzene	ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropa	ne ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DC	A) ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE	L) ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	<u>ND</u>	1.0	0.5	Naphthalene	ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	: 1.0	0.5	Tetrachloroethene	ND	1.0	0.5		
loluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5		
1,2,4-1 richlorobenzene	ND	1.0	0.5	1,1,1-1richloroethane	ND	1.0	0.5		
1,1,2-1 richloroethane	ND	1.0	0.5	1 nonioroetnene	ND	1.0	0.5		
1 TicnioroIluoromethane	ND	1.0	0.5	1,2,5-1 richloropropane		0.1	0.5		
1,2,4-1rimethylbenzene		1.0	0.5	1,5,5-1rimetnylbenzene	ND	1.0	0.5		
v myi Chioride		1.0	0.3	Aylenes	ND	1.0	0.5		
		Suri	rogate Re	coveries (%)					
%8S1:		102		%SS2:					
%SS3:	· · · · · ·	93		n					
Comments:									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbel	l Analytical		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com							
Soma Corporation	Cl	ient Pro	ject ID:	1240 Powell Street	Date Sampled: 09/20/0	05				
					Date Received: 09/20/0)5				
1412 62nd Street	Cl	ient Cor	tact Est	telle Shiroma	Date Extracted: 09/22/0)5				
Emeryville, CA 94608	CI	ient P.O		Date Analyzed: 09/22/05						
	Valatila Orana) 0 T		(T •)+		<u></u>			
Extraction Method: SW5030B	volatile Organ	Ana	alytical Me	thod: SW8260B	t LISt)* Work	Order: (509452			
Lab ID	.			0509452-003B						
Client ID				MW-1	e e e anna anna anna anna anna anna ann					
Matrix			Reporting	Water			Perorting			
Compound	Concentration *	DF	Linút	Compound	Concentration *	DF	Limit			
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAM	IE) ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromotorm	ND	1.0	0.5 Bromomethane ND 1.0							
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0			
Chlorotorm	ND	1.0	0.5	Chloromethane	ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	e ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA	ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	I ND I	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5			
Freen 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5			
Hexachioroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5			
Isopropyibenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	0.64	1.0	0.5	Methylene chloride	ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-1etrachloroethane	ND	1.0	0.5			
Taluana	ND ND	1.0	0.5	1 etrachioroethene	ND	1.0	0.5			
1.2.4 Trichlorohonzono	ND	1.0	0.5	1,2,3-1richlorobenzene	ND	1.0	0.5			
1,2,4- memoroocnizene		1.0	- 0.5	Triablaroothana	ND ND	1.0	0.5			
Trichlorofluoromethane		1.0	0.5	1 2 3 Trichloropropage		1.0	0.5			
1.2.4-Trimethylbenzene		1.0	0.5	1.3.5 Trimethylbanzono	ND ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Yvlenes		1.0	0.5			
		£	0.0		עא	1.0	0.3			
0/ 001.		Surr	ogate Re	coveries (%)		······.				
70331:	9	9 c		%882:	95					
70883:	8	2								
Comments:										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell	Analytica	l, Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Soma Corporation	С	lient Proj	ect ID:	1240 Powell Street	Date Sampled: 09/20/	05				
					Date Received: 09/20/	05				
1412 62nd Street	C	lient Con	tact Est	elle Shiroma	Date Extracted: 09/22/	05				
Emeryville, CA 94608		lient P O			Date Analyzed: 09/22/0)5				
	<u></u>									
Extraction Method: SW5030B	Volatile Orga	nics by P	W I an	d GC/MS (Basic Target thod: SW\$260B	t List)* Work	Order: (509452			
Lab ID				0509452-004B						
Client ID				MW-2						
Matrix			Reporting	Water	·····		Reporting			
Compound	Concentration	* DF	Limit	Compound	Concentration *	DF	Limit			
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAM	IE) ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropan	e ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA	A) <u>3.9</u>	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND *	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND ND	1.0	0.5	1,1,1,2-1 etrachloroethane	ND	1.0	0.5			
1,1,2,2-1 etrachloroethane	ND	1.0	0.5	l etrachloroethene	ND	1.0	0.5			
	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5			
1,2,4-1 FICHIOFODERZENE		1.0	0.5	1,1,1-1 FICHIOFORTHARE	ND ND	1.0	0.5			
r, r, 2- i richloroeinane	ND	1.0	0.5	1 2 2 Trichlandment	ND :	1.0	0.5			
1.2.4. Trimethalles	ND	1.0	0.5	1,2,5-1 richloropropane	ND	1.0	0.5			
Vinyl Chlorida	ND	1.0	0.5	1,5,5-1rimetnylbenzene	ND	1.0	0.5			
Y myr Chlonde	ND	1.0	0.2	Aylenes	IND.	1.0	0.5			
A/201		Surr	ogate Re	coveries (%)						
%881:		98		%8S2:	94					
%SS3:		85		.						
Comments:										

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell A	Analytical	, Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Soma Corporation	Cl	ient Proj	ect ID:	1240 Powell Street	Date Sampled: 09/20/	05				
					Date Received: 09/20/	05				
1412 62nd Street	CI	ient Con	tact Est	elle Shiroma	Date Extracted: 09/22/	05				
Emeryville, CA 94608	Cl	ient P.O			Date Analyzed: 09/22/	05				
	Volatile Organ	nies hy F	&T an	d CC/MS (Basic Targe	t I ist)*					
Extraction Method: SW5030B	volatile of gai	Ana	ilytical Met	hod: SW8260B	Work	Order: ()509452			
Lab ID				0509452-005B						
Client ID				MW-Dup						
Matrix			Reporting	Water			Reporting			
Compound	Concentration *	' DF	Limit	Compound	Concentration *	DF	Limit			
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAN	IE) ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromoloimi	ND		0.5	Bromometnane	ND .	1.0	0.5			
n-Butyl henzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	5.0			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropan	e ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA	A) 4.0	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	: 0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Disopropyl ether (DIPE)	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND 1	1.0	0.5			
Freen 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5			
Hexachioroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5			
Isopropyidenzene Methyl t butyl ether (MTPE)	ND	1.0	0.5	4-isopropyi toluene	ND	1.0	0.5			
4-Methyl 2 pentanone (MIBK)		1.0	0.5	Nanhthalene		1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1 1 1 2-Tetrachloroethane	ND	1.0	0.5			
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5			
Toluene	ND	1.0	0.5	1.2.3-Trichlorobenzene	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5			
······································		Surr	ogate Re	coveries (%)	· · · · · · · · · · · · · · · · · · ·					
%SS1:	9	9	1	%SS2:	94					
%SS3:	8	6		1.1 Contraction and a second of the secon	······					
Comments:			· · ·							

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg /wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509452

EPA Method: SW8021B/801	EPA Method: SW8021B/8015Cm Extraction: SW5030B					hID: 18118	5	Spiked Sample ID: 0509452-004A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
Palayte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	60	111	95.5	15.0	110	110	U	70 - 130	70 - 130	
МТВЕ	ND	10	88.2	105	17.5	90.1	96.8	7.15	70 - 130	70 - 130	
Benzene	ND	10	92.4	112	19.6	86.7	90.7	4.46	70 - 130	70 - 130	
Toluene	ND	10	94.4	107	12.8	88.8	92	3.55	70 - 130	70 - 130	
Ethylbenzene	ND	10	95.1	107	11.7	89.2	92.2	3.40	70 - 130	70 - 130	
Xylenes	ND	30	95.3	90.7	5.02	90.3	94.3	4.33	70 - 130	70 - 130	
%SS:	109	10	99	117	17.2	88	90	2.41	70 - 130	70 - 130	
All target compounds in the Meth	od Blank of thi	s extractior	h batch wer	e ND less th	an the method	RL with the	e following	exceptions:			
NONE											

BATCH 18115 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509452-001A	9/20/05 1:00 PM	9/27/05	9/27/05 8:32 PM	0509452-002A	9/20/05 1:38 PM	9/25/05	9/25/05 6:39 PM
0509452-003A	9/20/05 2:17 PM	9/25/05	9/25/05 7:39 PM	0509452-004A	9/20/05 3:09 PM	9/25/05	9/25/05 8:38 PM
0509452-005A	9/20/05 3:35 PM	9/25/05	9/25/05 9:08 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

__QA/QC Officer

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509452

EPA Method: SW8015C	E	Extraction	: SW 3510	С	Batcl	hID: 18116	i	Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	102	97.2	4.56	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	102	98	3.91	N/A	70 - 130	
All target compounds in the Meth	od Blank of th	is extraction	hatch wer	e ND less th	an the method	RL with th	e following	excentions.			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 18116 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509452-002C	9/20/05 1:38 PM	9/20/05	9/22/05 10:14 PM	0509452-003C	9/20/05 2:17 PM	9/20/05	9/22/05 11:20 PM
0509452-004C	9/20/05 3:09 PM	9/20/05	9/23/05 1:12 PM	0509452-005C	9/20/05 3:35 PM	9/20/05	9/23/05 1:34 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

____QA/QC Officer

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	er QC Matrix: Water WorkOrder: 05						0509452			
EPA Method: SW8260B	E	Extraction	: SW5030	B	Batc	hID: 1812:	3	Spiked San	nple ID: 050	9452-002B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
,	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
tert-Amyl methyl ether (TAME)	ND	10	85.3	82.2	3.68	91.4	90.2	1.34	70 - 130	70 - 130
Benzene	ND	10	113	110	2.58	113	. 111	1.41	70 - 130	70 - 130
t-Butyl alcohol (TBA)	ND	50	99.7	98.7	1.01	107	102	4.77	70 - 130	70 - 130
Chlorobenzene	ND	10	117	119	1.61	119	117	1.11	70 - 130	70 - 130
1,2-Dibromoethane (EDB)	ND	10	94.6	92.2	2.60	94.5	92.4	2.23	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	111	109	1.21	117	110	5.80	70 - 130	70 - 130
1,1-Dichloroethene	ND	10	96.4	90.3	6.52	109	101	7.58	70 - 130	70 - 130
Diisopropyl ether (DIPE)	ND	10	119	119	0	119	118	0.588	70 - 130	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	90.2	86.7	3.98	96.9	96.8	0.145	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	87.1	85.7	1.61	96.1	95.1	1.04	70 - 130	70 - 130
Toluene	ND	10	106	102	3.17	105	103	1.80	70 - 130	70 - 130
Trichloroethene	ND	10	86.2	83.9	2.70	88.9	86.3	3.00	70 - 130	70 - 130
%SS1:	102	10	100	102	1.55	103	102	1.15	70 - 130	70 - 130
%SS2:	94	10	95	94	1.21	96	95	1.33	70 - 130	70 - 130
%SS3:	93	10	99	104	5.08	100	100	0	70 - 130	70 - 130

BATCH 18123 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509452-002B	9/20/05 1:38 PM	9/21/05	9/21/05 6:49 PM	0509452-003B	9/20/05 2:17 PM	9/22/05	9/22/05 3:15 PM
0509452-004B	9/20/05 3:09 PM	9/22/05	9/22/05 4:00 PM	0509452-005B	9/20/05 3:35 PM	9/22/05	9/22/05 4:44 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

_QA/QC Officer

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

sce 0509452

-

		McCAMPBELL ANALYTICAL, INC. 110 2 nd AVENUE SOUTH, #D7														C	H	AI	N	OF	F C	US	ST		Y	RI	R C	OR	D			
		1	10 2 nd A PACHE	VENUE S CO. CA 94	OUTH 553-55	, #D7 60								Т	'UR	RN .	AR	ου	JNE) Т	IM	E		Ę	2	Ē	ר ב		Õ			Ì
	Web	site: <u>www.mc</u>	campbell	.com Em	ail: m	ain@1	ncca	mpbel	l.con	n														RUS	н	24	HR	4	48 H	R	72 H	R 5 DAY
	Telephor Deposit True	<u>ie: (925) 798</u>	-1620]	Fax:	(925)	798	-162	2			EI	DF F	Redi	uire	d? (Coel	t (ľ	Nori	nal)	l I	No	W	/rite	On	(DV	V)	No		
	Company: Som	HEILE 3	anto wi	0	Sill T	0:` <	SW/K	A3	<u>Rep</u>	s.+.	íe	• •					1	1	A	nal	ysis	Rec	jues	st						Otl	ier	Comments
	Evenpany. John	1.7. J	Serior L				•														1						;					Filtor
	E ann	Add CA	Treet Quilain	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	F Mo									CBE		&F)										0						Samples
	Tele: (510) 6	54-390C			79X:	11. (***)		su.	- 19	PILT	1			LW/(εF/B	18.1									831						for Metals
	Project #:	2			roie	t Na	me:			COL				8015		0 E.S	ıs (4		<u> </u>							270	ĺ					analysis:
	Project Location:	1240 Po	well a	Street	Êm	e. Not i	lle	C.A	91	600	4			+ 03		(552	rbon		3020		ΓX			ľ		<u>8</u>	20)	6				Yes / No
	Sampler Signatur	e: Atryl	-f2			- 1-		<u></u>						2/80:		rease	ocal		12 / 8		Ö			S.		V 62:	/ 60	602	<u>e</u>			
			SAM	PLING		ers	1	MAT	RIX	P	ME RES	THO	D ED	3as (60	8015)	il & G	Hydı	/ 8021	3PA 6(PCB's			/ 8260	8270	y EP.	(6010	6010)9 / 6(
	SAMPLE ID				ners	tain				\top) as (sel (8	0 m	eum	010	Y (E	081	082	8141	8151	624	25/8	q s.v	tals	als (/ 200			
	(Field Point Name)	LOCATION	Data	Time	itaiı	Con	L		e					TPF	Die	troler	etrol	1/8	ONL	8/8	8 / 8	40 / 1	20/8	4.2 /	5 / 6:	Z	Me	Met	0.8			
1			Date	Inne	Con	be	ate	- L	gbu	her	a 🖻	i S	her	δX &	H as	al Per	al P	4 60	EX (4 60	A 60	A 81	81	\ 52 [,]	V 52!	1's /	ст-И	T 5	q (3(
	9				#	Ê	à	Ai So	S	٥ļ٩	리포		ŏ	BTI	ΤP	Tot	Tot	EP,	BT	EP	EP	EP	EP	EP	EP/	ΡAI	CA	TCI I	Lea		-	
~ 1	Tirip Blank		7/20/05	13.00	1	VS:AS 40,01	X			X	$\langle X \rangle$		-1	X															-+		-	
1	MW-3		9/20/05	13.38	4	Yem 1	X			X	Ĺχ			X	\times									$\overline{\mathbf{v}}$		4 	10 A					/
$\overline{\mathbf{A}}$	MW-1		960/05	14:17	J.J	1	X			X		<u>e</u>		X	X												[
	MW-7		9/20/05	15.09	प		X		† †	- İy			-	X	$\frac{1}{\sqrt{2}}$									\mathbf{x}			1					
	Min - Don		9/20/05	15.25	1 U	5	X		+					$\frac{1}{\sqrt{2}}$	$\overline{\mathbf{v}}$									* \			.			- 4		
ŀ	1.10- 00p		10 105	13.20	<u> </u>					- ^{r}		}												X		ĺ				1		
	, /			l								+ +	\rightarrow	4	\searrow										1			-		,	6	
ŀ											-	\square	\square			\searrow									ļ					\bigwedge	X	4
-					Į				┨──┤		\checkmark						\setminus	<									(_	X	1	MA S	2
-		\searrow			[4									、												\mathbb{N}_0	
		-		ļ															\backslash													
- 1			<u> </u>					\angle												\mathbb{N}					1			1		Ē		··· ··· ··
			\mathbf{h}				\square											_			\searrow				·							
						\sim		1												-		\setminus	•							:		
				\square																	····	· · · · · · · · · · · · · · · · · · ·	$\overline{\ }$	Λ		. i	ł					
ſ	Relinquished By:		Date:	Time:	Rece	jved B	ـــــــــــــــــــــــــــــــــــــ	<u> </u>		7		السبيان. معمد	7	ICE	2/t°	\neg			ŕ i				<u> </u>			· .		COM	IME	NTS:		
Ĺ	the time		7/20/05	Spin		1.1	l	đ.		R		and the second se		GO HE	OD (An s	CON	DIT	ION BSEI	NT	J	(
	Relinquished By:	ished By: Date: Time: Received By:					DE	CHL	ORI	NAT	ED I	IN L	AB																			
ļ								API PRI	PRO ESEF	PRI/ RVE!	ATE D IN	CON	NTAI B	NEF	RS	. .	-															
	Refinquished By: Date: Time: Received By:													1	1			Т														
L										PRI	ESEF	RVA'	TION	VO N	DAS	08	¢G	ME nH<	:ТАІ :2	.s	011	IER										

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

r (925) /9	8-1020			V	Vork	Orde	er: 050	09452		C	lientI	D: S	CE		EDF:	NO				
Report to: Estelle Shiro Soma Corpo	ma ration	TEL: FAX:	(510) 654-3900 (510) 654-1960				B	lill to: Este Sor	elle SI na Co	hirom	a				Requ	ested	TAT:		5 c	lays
1412 62nd S Emeryville, (treet CA 94608	Proje PO:	ctNo: 1240 Powell Street					141 Em	2 62n eryville	d Stre e, CA	et 9460	8			Date Date	Rece Print	ived: ted:	09 05	9/20/2 9/20/2	005 005
Sample ID	ClientSampID	Matrix	Collection Date Hold	1	2	3	4	5	Req	ueste 6	d Tes 7	ts (Se 8	e leger	id belov 9 1	v) 0 11		12	13	14	15
0509452-001	Trip Blank	Water	9/20/05 1:00:00 PM		Δ	-	-	;												
0509452-002	MW-3	Water	9/20/05 1:38:00 PM	B	Δ	<u> </u>										• • • •				
0509452-003	MW-1	Water	9/20/05 2:17:00 PM	B	Δ	<u> </u>					···			·						
0509452-004	MW-2	Water	9/20/05 3:09:00 PM	В	A	č				·										
0509452-005	MW-Dup	Water	9/20/05 3:35:00 PM	B	A	C							· -• .							

Test Legend:

1	8260B_W	2	G-MBTEX_W	 3	TPH(D)_W	4	5
6		7		8	and a fair and a second s	9	10
11		12		13		14	15

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

APPENDIX C

Laboratory Data Certificates – January 8, 2009

McCampbell Ar	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
Environmental Sampling Services	Client Project ID: #1240 I	Powell Street	Date Sampled:	01/08/09
6680 Alhambra Ave. #102			Date Received:	01/08/09
Martinez, CA 94553	Client Contact: Ron Silbe	rman	Date Reported:	01/14/09
	Client P.O.:		Date Completed:	01/12/09

WorkOrder: 0901130

January 14, 2009

Dear Ron:

Enclosed within are:

- 1) The results of the **5** analyzed samples from your project: **#1240 Powell Street**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Environmental S	ampling Service	s		Date ar	nd Time Received:	01/08/09 6	:14:09 PM
Project Name:	#1240 Powell St	reet Assoc.			Checkl	ist completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0901130	Matrix <u>Water</u>			Carrier	: Derik Cartan (N	Al Courier)	
		<u>Cha</u>	ain of Cu	stody (C	OC) Informat	tion		
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when relinqui	ished and received	? Yes	✓	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name n	noted on COC?		Yes	✓	No 🗆			
			<u>Sample</u>	Receipt	Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample container	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pre	servatior	n and Ho	old Time (HT)	Information		
All samples receive	ved within holding tim	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	3.9°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials submi	itted	
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice T	ype: WE	TICE)			
* NOTE: If the "N	lo" box is checked, s	ee comments belov	v					

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality	[nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C bbell.com E-mail: mai 377-252-9262 Fax: 9	A 94565-1701 n@mccampbell.com 25-252-9269			
Environmental Sampling Services	Client	Project ID:	#124	40 Powell Street	Date Sampled:	01/08/09		
		Ū			Date Received:	01/08/09		
6680 Alhambra Ave. #102	Client	Contact: F	Ron Si	lberman	Date Extracted:	01/09/09		
Martinez, CA 94553	Client			iberman	Date Analyzed	01/09/09		
		1.0	-			01/07/07		
	Volatile Orga	anics by P&	ar an	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	T	Analytica	1 Metho	d: SW8260B		Work Order: 0901	1130	
Lab ID				0901130	0-001A			
Client ID				Trip B	lank			
Matrix				Wat	er			1
Compound	Concentration ³	DF R	eporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl er	ther (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	Bromochloromethane ND 1.0 0.5 Bromodichlor							0.5
Bromoform	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	2-Butanone (MEK) ND 1.0 2.0 t-Butyl alcohol (TBA)							2.0
n-Butyl benzene	n-Butyl benzene ND 1.0 0.5 sec-Butyl benzene							0.5
Carban Tatrashlari da	ND	1.0	0.5		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometh	ane	ND	1.0	0.5
1.2-Dibromo-3-chloropropane	ND	1.0	0.2	1.2-Dibromoethane	(EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen	e	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen	ND	1.0	0.5	
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe	thene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan	e	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen	e	ND	1.0	0.5
CIS-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5
Ethyl tert butyl ether (ETRE)	ND	1.0	0.5	Etnylbenzene Freon 113		ND	1.0	10
Heyachlorobutadiene	ND	1.0	0.5	Heyachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5
1,2,4-Trichlorobenzene ND 1.0				0.5 1,1,1-Trichloroethane ND 1.0				0.5
1,1,2-Trichloroethane	U.5 Trichloroethene ND 1.0			1.0	0.5			
1 2 4 Trimothylhorecco	0.5	1,2,3-1richloroprop	ane	ND	1.0	0.5		
Vinyl Chloride	0.5	1,5,5-1rimethylben	zene		1.0	0.5		
		Surrog	ote Ra	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		μU	1.0	1 0.5
% SS1.		0/	are M	04 552.		0	3	
%SS3·		70.552.		8	J			
Comments:								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Au "When Quality	McCampbell Analytical, Inc. "When Ouality Counts" Environmental Sampling Services Client Project					A 94565-1701 in@mccampbell.com 25-252-9269		
Environmental Sampling Services	Client F	Project ID:	#124	40 Powell Street	Date Sampled:	01/08/09		
					Date Received:	01/08/09		
6680 Alhambra Ave. #102	Client	Contact: 1	20n Si	lberman	Date Extracted:	01/09/09		
Martinez CA 94553	Client		1011 51	liberman	Date Extracted.	01/09/09		
Wather, Crr94555	Chent P	20.:			Date Analyzed	01/09/09		
Volati	lles Organics + C)xygenate	es by H	P&T and GC/MS (1	Basic Target Lis	t)*		
Extraction Method: SW5030B		Analytica	al Metho	od: SW8260B		Work Order: 090	1130	
Lab ID				0901130	0-002A			
Client ID				MW	-1			
Matrix				Wat	er			
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	ND		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometh	nane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane	(EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen	e	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen	e	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe	thene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan	e	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen	e	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol		ND	1.0	50
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth	er (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadien	e	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Methanol	ND	1.0	500	Isopropylbenzene Mathul t hutul atha	(MTDE)	ND	1.0	0.5
4-Isopropyi toluene	ND	1.0	0.5	Methyl-t-butyl ethe	$\Gamma(MIBE)$	ND	1.0	0.5
Methylene chioride	ND ND	1.0	0.5	4-Metnyl-2-pentance	one (MIBK)	ND	1.0	0.5
Sturano	ND	1.0	0.5	1 1 1 2 Tatrachloro	othana	ND	1.0	0.5
1 1 2 2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ethane	ND	1.0	0.5
Toluene	1,1,2,2-Tetrachloroethane ND 1.0 Toluono ND 1.0					ND	1.0	0.5
1 olueneND1.01 2 4-TrichlorobenzeneND1.0				0.5 1,2,3-Trichlorobenzene ND 1.0 0.5 1.1 1.1-Trichloroethane ND 1.0			1.0	0.5
1,1,2-Trichloroethane ND 1.0				0.5 Trichloroethene ND 1.0			0.5	
Trichlorofluoromethane	ND	1.0	0.5	1.2.3-Trichloropror	ane	ND	1.0	0.5
.2.4-Trimethylbenzene ND 1.0 0.5				1.3.5-Trimethylben	zene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5 Xylenes ND 1.0					0.5
		ate R4	ecoveries (%)			1.0	. 0.0	
% SS1:	Q	5	140	%\$\$2.		Q	2	
%\$\$\$1. %\$\$3.	9.	8		/0002.		0	-	
		U						

Comments:

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell Au "When Quality	McCampbell Analytical, Inc. "When Ouality Counts" Environmental Sampling Services Client Project					A 94565-1701 n@mccampbell.com 25-252-9269		
Environmental Sampling Services	Client F	Project ID:	#124	40 Powell Street	Date Sampled:	01/08/09		
					Date Received:	01/08/09		
6680 Alhambra Ave. #102	Client	Contact: I	20n Si	lberman	Date Extracted:	01/09/09		
Martinez CA 94553	Client			lioerman	Date Extracted.	01/09/09		
Wather, Crr94555	Chent P	20.:			Date Analyzed	01/09/09		
Volati	lles Organics + O	Oxygenate	s by I	P&T and GC/MS (1	Basic Target List	t)*		
Extraction Method: SW5030B		Analytica	l Metho	d: SW8260B		Work Order: 090	1130	
Lab ID				0901130	0-003A			
Client ID				MW	-3			
Matrix				Wat	er			
Compound	Concentration *	DF F	leporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl er	ther (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	rt-Butyl benzene ND 1.0 0.5 Carbon Disulfide							0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometh	ane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane	(EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen	e	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen	e	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe	thene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan	e	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen	e	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol		ND	1.0	50
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadien	e	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Methanol	ND	1.0	500	IsopropyIbenzene Mathyl t hytyl atha	(MTDE)	ND	1.0	0.5
4-Isopropyi toluene	ND	1.0	0.5	A Mathed 2 mentane	r(MIBE)	ND	1.0	0.5
Naphthalana	ND	1.0	0.5	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.5
Styrapa	ND	1.0	0.5	1 1 1 2 Tetrachloro	othana	ND	1.0	0.5
1 1 2 2 Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ethane	ND	1.0	0.5
Toluene	1,1,2,2-Tetrachloroethane ND 1.0 Toluono ND 1.0					ND	1.0	0.5
1.2.4-Trichlorobenzene	0.5	0.5 1,2,3-Trichlorobenzene ND 1.0 0.5 1,1,1 Trichloroethane ND 1.0			1.0	0.5		
1,1,2-Trichloroethane ND 1.0				0.5 Trichloroethene ND 1.0				0.5
Trichlorofluoromethane	ND	1.0	0.5	1.2.3-Trichloropror	ane	ND	1.0	0.5
1.2.4-Trimethylbenzene	4-Trimethylbenzene ND 1.0 0.5				zene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes		ND	1.0	0.5
		ate R4	ecoveries (%)			1.0	. 0.0	
% SS1:	Q	5		%\$\$2.		Q	2	
%\$\$\$1. %\$\$3.	9.	7		/0002.		. 0	-	
	. 0	1		1				

Comments:

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

			1534 Willow P	Pass Road, Pittsburg C	A 94565-1701			
McCampbell Al	nalytical, li	<u>1C.</u>		Web: www.mccamp	bell.com E-mail: mai	n@mccampbell.com		
"When Ouality	v Counts"			Telephone: 8	877-252-9262 Fax: 9	25-252-9269		
Environmental Sampling Services	Client F	Project ID:	#124	40 Powell Street	Date Sampled:	01/08/09		
6680 Albambra Ave #102					Date Received:	01/08/09		
0000 Anianora Ave. #102	Client 0	Contact: 1	Ron Si	lberman	Date Extracted:	01/12/09		
Martinez, CA 94553	Client F	2.0.:			Date Analyzed	01/12/09		
Volati	iles Organics + O	Dxygenate	s by I	P&T and GC/MS (1	Basic Target Lis	t)*		
Extraction Method: SW5030B	C	Analytica	d Metho	d: SW8260B	C	Work Order: 090	1130	
L ah ID				0001120	0044			
Client ID				0901130 MW 1	Dup			
Matrix				Wat	er			
		DE I	Reporting			G	DE	Reportin
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	10	tert-Amyl methyl et	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
2 Butanone (MEK)		1.0	2.0	t Butyl alashal (TP	A.)	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alconol (1B.	A)	ND	1.0	2.0
n-Butyl benzene	ND	Carbon Digulfido	2-Butyl benzene ND					
Carbon Tatrachlarida	ND	1.0	0.5	Carbon Disunde	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5	
Chloromethane	ND	1.0	0.5	2 Chlorotoluono		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	2-Cillofotoluelle Dibromochlorometh	ane	ND	1.0	0.5
1.2-Dibromo-3-chloropropage	ND	1.0	0.2	1.2-Dibromoethane	(EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.2	1.2-Dichlorobenzen	(LDD) e	ND	1.0	0.5
1 3-Dichlorobenzene	ND	1.0	0.5	1 4-Dichlorobenzen	e	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1.1-Dichloroethane	e	ND	1.0	0.5
1.2-Dichloroethane (1.2-DCA)	3.3	1.0	0.5	1.1-Dichloroethene		ND	1.0	0.5
cis-1.2-Dichloroethene	ND	1.0	0.5	trans-1.2-Dichloroe	thene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan	e	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen	e	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol		ND	1.0	50
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadien	e	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Methanol	ND	1.0	500	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether	r (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5
1,2,4-Trichlorobenzene ND 1.0				0.5 1,1,1-Trichloroethane ND 1.0			1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5 Trichloroethene ND 1.			1.0	0.5	
Trichlorofluoromethane	Frichlorofluoromethane ND 1.0 0				ane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben:	ND	1.0	0.5	
Vinvl Chloride	0.5	Xvlenes		ND	1.0	0.5		
		Surrog	ate Re	ecoveries (%)				
%SS1:	9	9		%SS2:		8	5	
%SS3:	7	8						
0								

Comments:

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell Au "When Ouality	<u>ıc.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 877-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269				
Environmental Sampling Services	Client F	Project ID:	#124	40 Powell Street	Date Sampled:	01/08/09			
		5			Date Received:	01/08/09			
6680 Alhambra Ave. #102	Client	Contact.	Ron Si	lberman	Date Extracted:	01/12/09			
Martinez CA 94553	Client			lociman	Date Analyzed	01/12/09			
	Client P	0.:			Date Analyzed	01/12/09			
Volati	lles Organics + C	Oxygenate	es by I	P&T and GC/MS (I	Basic Target List	t)*			
Extraction Method: SW5030B		Analytic	al Metho	d: SW8260B		Work Order: 090	1130		
Lab ID				0901130	0-005A				
Client ID				MW	-2				
Matrix				Wat	er				
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB.	A)	ND	1.0	2.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5	
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5	
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometh	ane	ND	1.0	0.5	
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane	(EDB)	ND	1.0	0.5	
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen	e	ND	1.0	0.5	
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen	e	ND	1.0	0.5	
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	4.8	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5	
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe	thene	ND	1.0	0.5	
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan	e	ND	1.0	0.5	
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen	e	ND	1.0	0.5	
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5	
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol		ND	1.0	50	
Etnylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (EIBE)	ND	1.0	0.5	
Freon 113	ND	1.0	10	A Hexachlorobutadien	e	ND	1.0	0.5	
Hexachloroethane	ND	1.0	5.00	2-Hexanone		ND	1.0	0.5	
A Isopropul toluono	ND	1.0	0.5	Isopropyibenzene Mothyl t butyl otho	"(MTDE)	ND	1.0	0.5	
4-Isopropyi toluelle	ND	1.0	0.5	4 Mathul 2 paptana	$\Gamma(WIDE)$	ND	1.0	0.5	
Naphthalana	ND	1.0	0.5	4-Methyl-2-pentanc	one (MIBK)	ND	1.0	0.5	
Sturano	ND	1.0	0.5	1 1 1 2 Tetrachloro	othana	ND	1.0	0.5	
1 1 2 2 Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ethane	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1 2 3 Trichlorobenz	ana	ND	1.0	0.5	
1.2.4-Trichlorobenzene	4-Trichlorobenzene ND 1.0				0.5 1,2,3-Trichlorobenzene ND 1.0				
1,1,2-Trichloroethane ND 1.0				0.51,1,1-11enoroethaneND1.00.5TrichloroetheneND1.0				0.5	
Trichlorofluoromethane	Trichlorofluoromethane ND 1.0					0.5 1,2,3-Trichloropropane ND 1.0			
1.2.4-Trimethylbenzene ND 1.0 0				1.3.5-Trimethylben	zene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xylenes		ND	1.0	0.5	
	ate Re	coveries (%)							
%SS1:	Q	9	,	%SS2		Q	4		
%SS3:	9. Q	1		/0002.		. 0			
Commonter	. 0								

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Environmental Sampling Services Client Project ID: #1240 Powell Street Date Sampled: 01/08/09											
6680	Alhambra Ave. #102						Date R	eceived: 01/	08/09		
			Clie	nt Contact:	Ron Silberr	nan	Date E	xtracted: 01/0)9/09		
Martin	nez, CA 94553		Clie	nt P.O.:			Date A	nalyzed 01/	09/09		
E-tt	Gas	oline Ra	unge (C6-C12	2) Volatile H	Hydrocarbor	ns as Gasolir	ne with BTH	EX and MTBI	E*	l	1120
Lab ID	Client ID	Matrix	TPH	(g)	MTBE	Benzene	n Toluene	Ethylbenzene	Xylenes	DF	% SS
002B	MW-1	W	NI)		ND	ND	ND	ND	1	94
003B	MW-3	w	NI)		ND	ND	ND	ND	1	94
004B	MW-Dup	w	ND			ND	ND	ND	ND	1	95
005B	MW-2	W	ND			ND	ND	ND	ND	1	94
		<u> </u>						1		<u> </u>	
Repo: ND m	rting Limit for $DF = 1$; eans not detected at or	W	50		5	0.5	0.5	0.5	0.5	με	g/L
abo	ve the reporting limit	S	1.0)	0.05	0.005	0.005	0.005	0.005	mg	/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

	CCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow I Web: www.mccamp Telephone: 5	Pass Road, Pittsburg, CA 94565- obell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	1701 pbell.com 69	
Environmenta	al Sampling Services	Client Project ID:	#1240 Powell Street	Date Sampled: 01/08/	/09	
6680 Alhamb	ra Ave. #102			Date Received: 01/08/	/09	
		Client Contact: R	on Silberman	Date Extracted: 01/08/	09	
Martinez, CA	94553	Client P.O.:		Date Analyzed 01/09/	/09	
Extraction wathod	To	tal Extractable Pet	roleum Hydrocarbons*	Work Or	dam 000	01120
Extraction method	Sw3510C	Analytical	methods: SW8015B	work Or	der: 090	01130
Lab ID	Client ID	Matrix	(C10-C23)	DF	% SS
0901130-002C	MW-1	W	ND		1	108
0901130-003C	MW-3	W	ND		1	107
0901130-004C	MW-Dup	W	ND		1	108
0901130-005C	MW-2	W	ND		1	108
					r	

Reporting Limit for DF =1;	W	50	μg/L	
ND means not detected at or	c	ΝA	NA	
above the reporting limit	3	NA	INA	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

w.O. Sample Mainx. Water	W.O. Sample Matrix: Water QC Matrix: Water Batchle				mID: 40724 WorkOrder: 0901130							
EPA Method SW8260B	Method SW8260B Extraction SW5030B Spiked Sampl							nple ID	: 0901122-0)10B		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	97.8	104	6.20	101	99.1	1.95	70 - 130	30	70 - 130	30
Benzene	ND	10	120	122	2.13	114	109	4.12	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	2.8	50	87.7	89.2	1.51	103	104	1.54	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	110	116	5.00	105	101	3.65	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	117	124	5.37	113	110	2.84	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	99.8	119	17.6	108	105	2.75	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	80.1	83	3.58	78.1	75.6	3.16	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	107	113	5.32	107	104	2.50	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	115	123	7.01	121	118	2.65	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	8.0	10	91.4	87.6	2.25	111	108	3.05	70 - 130	30	70 - 130	30
Toluene	ND	10	128	126	1.83	119	114	3.76	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	105	121	14.6	106	101	4.87	70 - 130	30	70 - 130	30
%SS1:	100	25	89	95	6.60	91	91	0	70 - 130	30	70 - 130	30
%SS2:	98	25	89	87	2.17	83	84	0.670	70 - 130	30	70 - 130	30
%SS3:	88	2.5	110	85	25.3	92	91	0.178	70 - 130	30	70 - 130	30

BATCH 40724 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901130-001A	01/08/09 8:00 AM	01/09/09	01/09/09 9:18 PM	0901130-002A	01/08/09 10:15 AM	01/09/09	01/09/09 3:28 PM
0901130-003A	01/08/09 10:55 AM	01/09/09	01/09/09 10:04 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matri	x: Water			BatchID: 40727				WorkOrder: 0901130		
EPA Method SW8260B	Extra	ction SW	5030B					5	piked Sample ID: 0901130-004				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	104	103	0.554	92.6	93.1	0.606	70 - 130	30	70 - 130	30	
Benzene	ND	10	121	120	0.737	110	111	0.245	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	103	100	3.20	90.2	90.6	0.423	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	10	108	107	1.09	103	102	0.689	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	117	117	0	111	108	2.73	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	3.3	10	116	117	0.567	96.1	95	1.11	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	10	81.7	81.1	0.684	74.7	75.4	0.881	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	114	114	0	100	101	0.649	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	125	124	0.955	109	109	0	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	115	115	0	98.7	98	0.671	70 - 130	30	70 - 130	30	
Toluene	ND	10	116	116	0	120	120	0	70 - 130	30	70 - 130	30	
Trichloroethene	ND	10	119	118	0.744	96.6	96.4	0.148	70 - 130	30	70 - 130	30	
%SS1:	99	25	99	99	0	91	90	1.03	70 - 130	30	70 - 130	30	
%SS2:	85	25	85	84	1.14	91	90	1.41	70 - 130	30	70 - 130	30	
%SS3:	78	2.5	78	77	0.779	105	107	1.65	70 - 130	30	70 - 130	30	
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 40727 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901130-004A	01/08/09 11:10 AM	01/12/09	01/12/09 1:20 PM	0901130-005A	01/08/09 11:40 AM	01/12/09	01/12/09 2:03 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 40723		WorkC	Drder: 09011	30
EPA Method SW8021B/8015Cm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: 0901128-0)04A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	109	106	2.53	99.7	107	7.50	70 - 130	20	70 - 130	20
MTBE	ND	10	98.7	103	4.10	96.3	81.5	16.6	70 - 130	20	70 - 130	20
Benzene	ND	10	86.3	93.9	8.42	88.5	84	5.21	70 - 130	20	70 - 130	20
Toluene	ND	10	89.1	94.9	6.32	94.2	87.4	7.54	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	91.9	85.4	7.35	96.3	88.2	8.84	70 - 130	20	70 - 130	20
Xylenes	ND	30	102	110	7.57	108	99.8	8.05	70 - 130	20	70 - 130	20
%SS:	96	10	99	99	0	103	100	2.92	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 40723 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901130-002B	01/08/09 10:15 AM	01/09/09	01/09/09 6:40 PM	0901130-003B	01/08/09 10:55 AM	01/09/09	01/09/09 7:14 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 40728		Work	Order: 09011	30
EPA Method SW8021B/8015Cm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: 0901130-0	05B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
, mayte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	102	105	3.23	105	101	3.80	70 - 130	20	70 - 130	20
MTBE	ND	10	94.5	92.9	1.66	86.4	101	16.0	70 - 130	20	70 - 130	20
Benzene	ND	10	89	81.3	9.01	82.9	96.8	15.4	70 - 130	20	70 - 130	20
Toluene	ND	10	91.1	87.7	3.88	86.6	99.3	13.7	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	82.2	91	10.1	86.5	99.2	13.7	70 - 130	20	70 - 130	20
Xylenes	ND	30	103	102	0.274	99	114	13.8	70 - 130	20	70 - 130	20
%SS:	94	10	99	103	4.14	100	101	0.362	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 40728 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901130-004B	01/08/09 11:10 AM	01/09/09	01/09/09 7:47 PM	0901130-005B	01/08/09 11:40 AM	01/09/09	01/09/09 8:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water			QC Matri	x: Water			Batch	ID: 40729	WorkOrder: 0901130					
EPA Method SW8015B	Extra	ction SW	3510C					5	Spiked Sar	nple ID	: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	96.2	95.9	0.323	N/A	N/A	70 - 130	30		
%SS:	N/A	2500	N/A	N/A	N/A	74	74	0	N/A	N/A	70 - 130	30		
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 40729 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901130-002C	01/08/09 10:15 AM	01/08/09	01/09/09 2:09 AM	0901130-003C	01/08/09 10:55 AM	01/08/09	01/09/09 5:35 AM
0901130-004C	01/08/09 11:10 AM	01/08/09	01/09/09 6:43 AM	0901130-005C	01/08/09 11:40 AM	01/08/09	01/09/09 7:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

			-							(0	9	()(13	30)									1			
	Environme Sampling S	ental Service	6680 Mart S Tel: (Log () Alhar inez, C 925) 3 Code: I	nbra Av Californ 872-810 ESSM	ve., # ia 94 18 I ww	#102 4553 Fax: (ww.ei	-610 925) nvsar	5 372 nplii	-670 1g.co)5] m	TUP LAE McC	RN . BOF	ARC	OR OR	CH ID 1 Y:	HA FIM	IN	OF	C C	US		DY J 8	RE	COI	RD	Ø	nal	Page Other:	e <u>1</u>
Report To: Ron	n Silberman	Te	lephone :	510-54	47-7177							Lab (Cod	e: N	1AC					-					cen					
Company: <u>124</u>	0 Powell Street Assoc	Fa	ix:		1040						ŀ	_				_	_	Ar	aly	sis	Red	que	st		_	_			Comr	nent
Address: 583 Em cc results (E-M Sampler(s): Jac Ster GeoTracker No Reporting Re	5 Doyle Street eryville, CA 945608 ail): <u>nozaki4472@gm</u> <u>queline Lee</u> 2 ohen Penman 3 .: <u>NA</u> quirement: Hard C	Pr Pr ail.com Bi Sau Sau Sau	roject Na roject Nu ill To: mpler's Sign mpler's Sign SS 🗹 No	me: mber: <u>1240 I</u> ature: ature:	Powell S	treet	Asso	<u>c.</u>	<u>et</u>		-	A 8015)*	Ethanol												Fiel	d Filt	ered	(FF)		
EDD File: Yes	No 🗆	El	ectronic	(EDF)	: Yes			No	⊠	_	4	X (EF	pue	015)					1											
		San	nple		iner		Matr	ix	Pres	ervativ	ve	BTE BTE	4 SS	A 80																
SAMPLE ID	FIELD POINT NAME	Date	Time	Number of Containers	Type of Conta	Groundwater	Soil Vapor	Water Other	lce	HNO ₃	H ₂ SO ₄	VOCs (EPA 826 TPH-Gasoline &	Fuel Oxygenat	TPH-Diesel (EF																
Trip Blenk	QCTB I	1/0/09	8:00	ч	l			×	x		6	×																	* Fuel Oxy	ygei
MW-1	M10-1	1/8/09	10:15	5	1.2	×			x	d	Ţ	XX	X	×	Π														TBA, MTI	BE,
MW-3	MW-3	1/2/09	10:55	5	1.2	×			2		5	(X	*	~	Π	1		Ħ	\uparrow	\square	+	Ħ			\square	Ħ	+		ETBE, TA	ME
MID-DUP	PLED	Yalna	11:10	5	1.2						ť	(N		<u>~</u>	Ħ	+		H	+	Ħ	+	Ħ	-			++	+		EDB & 1.2-DC/	4
A4 40 - 7	4010	Vala	11:452	S	10	Û		+	$\frac{1}{2}$		ť		~	14	+	-		+	+		+		~		4	+	+	+		-
MW-2	MW-2	18/09	11:40	3	12	P		+	K/	++	P	X	X	× -	\square	+	ICI	11	44	15	3	1	1				+			
						\mathbb{H}		-	4		4		-	+	\square	+	HE	AD	SPAC		BSE	HT	VA	PPRC	PRIA	TE IERS	V	1	7	/
						H	1		\vdash	+	+		-		$\left \right $	+	PR	ESE	RVA	TION	VO	ASI		MET	SER	THEF	IN L		2	
	$\overline{)}$					Ħ			\vdash	Ħ	$^{+}$				H	t	Η	+	+	+	+	H			ť	P	-	+		
		/									T							1					1	1			1			
						Π					T										1	Π						Π		
Relinquished By:	//	Data 12-1	Time:	Received	By:	10	1	SR	-		1	= Sa	amp	le Co	ontai	ner 1	Туре	: 1	vo	A 2*	Glas	ss 3	=Plas	tic 4	=Sum	ıma (Cani	ster		
Relinquished By: FNV10 -	Ech 8ª	Date: 1/8 V8/20	Time 1620 Time: 1625	Received I	erk	- 4	aut			_	- C	UE Pleas	STI e ei	ION mail	S R CO	EG <i>I</i> C fo	ARI	onfi	G C	tion	to:	V L	ESS		C P	Int On rese	act Ice rvat	IPL	E RECE Cold Ambie Correct?	nt

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9	9262					Work	Order:	0901	130	Cli	ientCode:	ESS			
			WriteOn	EDF		Excel	[Fax	✓	Email	Ha	rdCopy	ThirdPart	/ 🔲	J-flag
Report to:							Bill to:					Rec	uested TAT	: 5	days
Ron Silberman Environmental 6680 Alhambra Martinez, CA 94	Sampling Services Ave. #102 4553 FAX (925) 372-6705	Email: cc: PO: ProjectNo	rons51@yahc nozaki4472@ : #1240 Powell	oo.com gmail.com Street			Ro 124 583 Em	n Silbe 40 Pow 35 Doy neryville	rman rell Street le Street e, CA 945	Assoc 608		Dai Dai	te Received te Printed:	: 01/08 01/12	3/2009 2/2009
									Reque	sted T	ests (See l	egend k	pelow)		
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9 10	11	12
0901130-001	Trip Blank		Water	1/8/2009 8:00			А		А						
0901130-002	MW-1		Water	1/8/2009 10:15		А		В		С					
0901130-003	MW-3		Water	1/8/2009 10:55		А		В		С					
0901130-004	MW-Dup		Water	1/8/2009 11:10		A		В		С					
0901130-005	MW-2		Water	1/8/2009 11:40		А		В		С					

Test Legend:

1	8260B+7OXY_W
6	
11	

2	8260B_W
7	
12	

3	G-MBTEX_W
8	

4	PREDF REPORT
9	

5	TPH(D)_W
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

APPENDIX D

Hand Written Log Prepared by Susan Hugo, Alameda County Department of Environmental Health, 1991

FILE OR) ENVELOPE	PLAN REVIEW	(By	Date	H			3y Date	e {
S.H. No of	\$ 435	00	Ree	c'd. TS	1/7/91		Pre-Concrete/Gunite			Pre-Covering
PER NO. J J 100 07	No. Colt	246	Plans Rea			100	Pre-Plaster			
DOWNER Garza & Assoc.	Plans Approved	410			_		Final			
Address 1240 Powell St.	Lavout Made		······································		-	Z	Septic Tank			Final
Emervuille 94608Phone	Layour Made				-	VATIO	Absorption Field			
Contractor hqua Science Engr.	Rejected	_		·····		EXCA	Absorption Reid			
Address (. U. Box 535/2500 QU	Applicant Notifie	ed								
Unger Conyon I in Kanon 9458	Plans Returned				·	- ·	House Sewer		4	
Shund Trull	Permit Issued		OCDESS	ACCEPTAN	<u> </u>	FINA	Septic Tank			
Address	CONSTRU		UGRESS	ACCEPTAIN	~E		Absorption Field			
Address	O Pre-Plaster/d	irywall					Absorption Bed		a	
Phone	<u>Q</u> <u>Pre-Final</u>		<u></u>			DTHE	·			
CONTACT FOR INVESTIGATION	Final	I						<u> </u>		
XR			1 1		REMAI	RKS			ION	
		Date	By	contd.						
REMARKS				hust	be pl	Rfo	contaled , 2501			
Date By				ormal	les co	lle	ated from each			
11/8/91 St Jank Claure plan r	even ed,			and of	the ?	tan	<u>k.</u>			Vicinity Map DEB
axyround.		1/85/91	5#	Kecen	ied for	out	apy of lat real	E		D
11/22/91 SH 1- 4000 G gasaline T	tank			bottom	· zai	180	mileal stockpile	P		
removed. Executal	inpit			Súl 30	mfle	. M	une N. P. for			
accessible to public	no			both :	THG	bst	line & BTXGE	ų		
apparent halls in	Ketark				0	-				Project # 61214
Escavation pit la	red with									For Poid 432
plactic stockyiled	sail used	5								Date 11/7/91
banktitled Hy sit	for		-							
allit. Alsom . It a	// ·	[-	*						
- the all of the	tacksiles		[
SADE SI CAL DAL FULLA	tackpiles									
Amounts A THA	tackpily able BTXEE									
amounts of TPHg, I Jotal Ph Stocker	tackpily able BTXGE Ed Sail									

7

.

Bitter 8/10/07 Amik

 $(\underline{})$ 200

APPENDIX E

Laboratory Data Certificates – April 14, 2010

WcCampbell An	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
Nozaki & Associates	Client Project ID: #RO000)2869	Date Sampled:	04/14/10
3390 Dwight Way			Date Received:	04/14/10
	Client Contact: Norm Oza	ıki	Date Reported:	04/20/10
Berkeley, CA 94704	Client P.O.:		Date Completed:	04/20/10

WorkOrder: 1004412

April 20, 2010

Dear Norm:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#RO0002869**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

N We Telepho	Direction of the second	BELL 1534 WI PITTSBU campbell 2-9262	ANA LLOW PA JRG, CA 9 .com Em	LY] SS RO 4565-1' ail: ma	ΓIC DAD 701 ain@1	AL \ (mcca Fax:	., I)() mp1 (92	N(6ell. 5) 2	C. 	+12 269	2			1	TUF D G	RN .	AR Fra	C OU	CH. NI er F	AI) T EDF	N O IM	OF E	PI		ST) SH		DY HR Exce	R	E 5 48 1	CO HR	RD ^{72 1} rite C	HR 5 DAY
Report To: Norn	o Ozaki		1	Bill Te	o: Ro	n Si	lber	ma	n					\vdash	-				A	nal	veie	Rec	11165	t							Ther	Commont
Company: Noza	ki & Associat	tes			5835 Doyle Street, Suite 101					_	\vdash				-	-	mai	y 313	Kee	lues		-		1			L,	Juler	Comments			
3390	Dwight Way				En	nery	ville	e, C	A 94	608	1			12)			3&F)				ener											Filter
Berke	ley, CA 9470	4		E-Ma	il: no	zak	i447	2@	gma	il.co	m			+ 8(0 E/E				Cong							-				Samples
Tele: (510) 301-	9869		I	ax: (()								8021	51)		552	-	(8		Is/		-				602(6020				for Metals
Project #: RO000	2869		I	rojec	t Nai	me:							_	02 / 3	/ 803		664 /	418.1	00/	(5	roclo		cides			NAs)	10/	10/				Yes / No
Project Location	: 1240 Powell	Street,	Emeryvi	lle, C	A									as (6	602	(\$10)	se (1	ons ((H)	ticide	Y; A	les)	lerbi	(8)	3	A D	8/6	8 / 60	020)			
Sampler Signatu	re: WI	K_				_				_				as o	(EPA	Oil (8	Grea	carb	802	Pest	ONL	sticic	CIF	VOC	SVO	(H)	200.	200.2	0/6			
	l	SAM	PLING	~	lers	L	MA	TR	IX	Р	ME	THO	D ED	TPH	NLY	fotor (Oil &	Hydro	8010	81 (CI	CB's (NP Pe	Acidic	8260 (8270 (8310 (200.7 /	00.7 /	8 / 601			
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Container	Type Contain	Water	Soil	Air	Sludge	ICE	HCL	HNO ₃	Other	MTBE / BTEX &	MTBE / BTEX 0	TPH as Diesel / N	Total Petroleum (Total Petroleum I	EPA 502.2 / 601 /	EPA 505/ 608 / 80	EPA 608 / 8082 P	EPA 507 / 8141 (EPA 515 / 8151 (EPA 524.2 / 624 /	EPA 525.2 / 625 /	EPA 8270 SIM /	CAM 17 Metals (LUFT 5 Metals (2	Lead (200.7 / 200.	ПОСР		
B-1@6'	B-1	4-14-10		1	-	\vdash	X		-	x		-										_	-							1		
B-1@9'	B-1	4-14-10		1			x	-		x	-	-		1		1								1						~	-	
B-1@12'	B-1	4-14-10	1	1	-		x			T _x	+	-		~		V								~		-		-		1		
B-1@16'	B-1	4-14-10		1			x	-		x	-	-														-			-	1		
B-2@8'	B-2	4-14-10		1			X	-	-	x	-	+		1		1	1				1			1		./		1		~		
																-	*				~					~		•				
								1	-	+	-	-						-		C												
Relinquished By: Relinquished By: Relinquished By:		Date: 14-19 Date: 4/10		Rece	ived B	y:	Z						-	ICI GC HE DE AP PR	E/C OOD AD S CHL PRO ESE	CON SPAC	DIT CE A NAT	ION BSEI ED I CON LAI		AB		Ay						CON	1ME	NTS	:	1
Kennquisned By:		Date:	Time:	Rece	ived B	y:								PR	ESEI	RVA	F101	vo	AS	08	G	ME pH<	TAL 2	s (отн	ER						

B-2@8'

1534 Willow Pass Rd Pittsburg CA 94565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262	/01					Work	Order	: 1004	412	Cl	ientCo	de: NZ	ZKI				
		WaterTrax	WriteOr	n EDF		Excel		Fax	6	🖊 Email	[HardO	Сору	Thir	dParty	□J-	flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Norm Ozaki Nozaki & Associates 3390 Dwight Way Berkeley, CA 94704 (510) 301-9869 FAX		Email: r cc: PO: ProjectNo: #	nozaki4472@ #RO0002869	∮gmail.com			Ro No 58 En no	on Silbe ozaki & 2 35 Doy neryville ozaki447	erman Associa le Stree e, CA 94 72@gma	tes t, Suite 1 608 ail.com	01		Dat Dat	e Rece e Print	ived: ted:	04/14/ 04/20/	/2010 /2010
									Requ	lested T	ests (S	See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1004412-002	B-1@9'		Soil	4/14/2010				Δ		Δ		Δ					T

А

А

А

А

4/14/2010

Test Legend:

1004412-005

1	5520E_SG_S
6	LUFT_S
11	

2	8082A_PCB_S	
7	TPH(DMO)_S	
12		

Soil

3	8260B_S
8	

4	8270D-PNA_S
9	

А

А

А

5	G-MBTEX_S
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Nozaki & Associa	ates				Date	and T	ime Received:	4/14/2010	9:56:07 PM
Project Name:	#R00002869					Chec	klist o	completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	1004412	Matrix	<u>Soil</u>			Carrie	er:	Rob Pringle (M	Al Courier)	
			<u>Chair</u>	n of Cu	<u>stody (C</u>	OC) Inform	ation	<u>1</u>		
Chain of custody	v present?			Yes	\checkmark	No 🗆				
Chain of custody	v signed when relinquis	shed and	received?	Yes	\checkmark	No 🗆				
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌				
Sample IDs noted	by Client on COC?			Yes	\checkmark	No 🗆				
Date and Time of	collection noted by Cli	ent on CO	OC?	Yes	\checkmark	No 🗆				
Sampler's name r	noted on COC?			Yes	✓	No 🗆				
			<u>s</u>	ample	Receipt	Information	<u>n</u>			
Custody seals int	tact on shipping contai	iner/coole	er?	Yes		No 🗆			NA 🗹	
Shipping containe	er/cooler in good cond	ition?		Yes	\checkmark	No 🗆				
Samples in prope	er containers/bottles?			Yes	\checkmark	No 🗆				
Sample containe	ers intact?			Yes	\checkmark	No 🗆				
Sufficient sample	e volume for indicated	test?		Yes	✓	No 🗌				
		<u>Sar</u>	mple Prese	rvatior	n and Ho	ld Time (HT	<u>Г) Inf</u>	ormation		
All samples recei	ived within holding time	e?		Yes	✓	No 🗌				
Container/Temp B	Blank temperature			Coole	r Temp:	1.1°C			NA 🗆	
Water - VOA vial	ls have zero headspac	ce / no bi	ubbles?	Yes		No 🗆	No	VOA vials submi	itted 🗹	
Sample labels ch	necked for correct pres	servation	?	Yes	\checkmark	No 🗌				
Metal - pH accep	table upon receipt (pH	<2)?		Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	\checkmark	No 🗆				
			(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	No" box is checked, se	e comm	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

	IcCampbell Analyt "When Ouality Counts"	ical, Inc.	1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pitts bell.com E-1 377-252-9262	sburg, CA mail: main Fax: 925	94565-1701 @mccampbel 5-252-926 <u>9</u>	l.com		
Nozaki & As	sociates	Client Project ID:	#RO0002869	Date Sam	pled:	04/14/10			
3390 Dwight	Way			Date Received: 04/14/10					
		Client Contact:	Norm Ozaki	Date Extr	acted:	04/14/10			
Berkeley, CA	94704	Client P.O.:		Date Ana	lyzed	04/16/10			
Extraction method	Petro SM5520E/F	leum Oil & Greas	e with Silica Gel Clean-U	р*		Work Order	1004412		
Lab ID	Client ID	Matrix	POG		DF	% SS	Comments		
1004412-005A	B-2@8'	S	ND		1	N/A			

Reporting Limit for $DF = 1$;	W	NA	NA
ND means not detected at or above the reporting limit	S	50	mg/Kg

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell An	WcCampbell Analytical, Inc. "When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Nozaki & Associates	Client Pr	oject ID: #	#RO000	02869	Date Sampled:	04/14/10				
3300 Dwight Way					Date Received: 04/14/10					
5550 Dwight Way	Client C	ontact: No	orm Oza	ıki	Date Extracted: 04/14/10					
Berkeley, CA 94704	Client P.	0.:			Date Analyzed:	04/16/10				
Po	lychlorinated Bi	phenyls (P	CBs) A	roclors by GC-I	ECD*					
Extraction Method: SW3550B	Ana	lytical Method	: SW808	2	1	Work Order:	1004412			
Lab ID	1004412-005A									
Client ID	B-2@8'					Reporting DF	Limit for =1			
Matrix	S									
DF	1					S	W			
Compound		Concentration				mg/kg	ug/L			
Aroclor1016	ND					0.05	NA			
Aroclor1221	ND					0.05	NA			
Aroclor1232	ND					0.05	NA			
Aroclor1242	ND					0.05	NA			
Aroclor1248	ND					0.05	NA			
Aroclor1254	ND					0.05	NA			
Aroclor1260	ND					0.05	NA			
PCBs, total	ND					0.05	NA			
	Surr	ogate Rec	overies	s (%)						
%SS:	102									
Comments										
* water samples in μg/L, soil/sludge/solid samples and all TCLP & SPLP extracts a ND means not detected above the reporti	samples in mg/kg, w re reported in mg/L ng limit/method de	vipe samples	in μg/wi ; N/A m	pe, filter samples ir eans analyte not ap	μg/filter, product/oil	/non-aqueous	s liquid			

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An "When Oualit"	nalytical, I	nc.		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, C. bell.com E-mail: mai 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269			
Nozaki & Associates	Client l	Project ID	: #RO	0002869	Date Sampled:	04/14/10			
2200 D 1 1/ W					Date Received:	Date Received: 04/14/10			
3390 Dwight way	Client	Contact:	Norm (Dzaki	Date Extracted:	04/14/10			
Berkeley, CA 94704	Client l	P.O.:			Date Analyzed:	: 04/19/10			
	Volatile Orga	nics by Pa	&T and	d GC/MS (Basic Ta	rget List)*				
Extraction Method: SW5030B	0	Analytic	cal Metho	od: SW8260B	0	Work Order: 1004	4412		
Lab ID				1004412	-002A				
Client ID				B-1@	00211 09'				
Matrix				Soi	1				
Compound	Concentration *	DE	Reporting	Compour	, d	Concentration *	DE	Reporting	
Acatona	ND-2.0	40	Limit	tert Amyl methyl et	her (TAME)	ND<0.20	40	Limit	
Benzene	ND<2.0	40	0.005	Bromohenzene	lier (TAME)	ND<0.20	40	0.005	
Bromochloromethane	ND<0.20	40	0.005	Bromodichlorometh	ane	ND<0.20	40	0.005	
Bromoform	ND<0.20	40	0.005	Bromomethane	ND<0.20	40	0.005		
2-Butanone (MEK)	ND<0.80	40	0.02	t-Butyl alcohol (TB	ND<2.0	40	0.05		
n-Butyl benzene	0.47	40	0.005	sec-Butyl benzene	0.28	40	0.005		
tert-Butyl benzene	ND<0.20	40	0.005	5 Carbon Disulfide		ND<0.20	40	0.005	
Carbon Tetrachloride	ND<0.20	40	0.005	Chlorobenzene		ND<0.20	40	0.005	
Chloroethane	ND<0.20	40	0.005	Chloroform		ND<0.20	40	0.005	
Chloromethane	ND<0.20	40	0.005	2-Chlorotoluene		ND<0.20	40	0.005	
4-Chlorotoluene	ND<0.20	40	0.005	Dibromochlorometh	ane	ND<0.20	40	0.005	
1,2-Dibromo-3-chloropropane	ND<0.16	40	0.004	1,2-Dibromoethane	(EDB)	ND<0.16	40	0.004	
1.3 Dichlorobenzene	ND<0.20	40	0.005	1,2-Dichlorobenzen	ND<0.20	40	0.005		
Dichlorodifluoromethane	ND<0.20	40	0.005	1,4-Dichloroethane		ND<0.20	40	0.005	
1.2-Dichloroethane (1.2-DCA)	ND<0.16	40	0.004	1.1-Dichloroethene		ND<0.20	40	0.005	
cis-1,2-Dichloroethene	ND<0.20	40	0.005	trans-1,2-Dichloroe	thene	ND<0.20	40	0.005	
1,2-Dichloropropane	ND<0.20	40	0.005	1,3-Dichloropropan	e	ND<0.20	40	0.005	
2,2-Dichloropropane	ND<0.20	40	0.005	1,1-Dichloropropen	e	ND<0.20	40	0.005	
cis-1,3-Dichloropropene	ND<0.20	40	0.005	trans-1,3-Dichlorop	ropene	ND<0.20	40	0.005	
Diisopropyl ether (DIPE)	ND<0.20	40	0.005	Ethylbenzene		ND<0.20	40	0.005	
Ethyl tert-butyl ether (ETBE)	ND<0.20	40	0.005	Freon 113		ND<4.0	40	0.1	
Hexachlorobutadiene	ND<0.20	40	0.005	Hexachloroethane		ND<0.20	40	0.005	
2-Hexanone	ND<0.20	40	0.005	Isopropylbenzene		ND<0.20	40	0.005	
4-Isopropyl toluene	ND<0.20	40	0.005	Methyl-t-butyl ether	r (MTBE)	ND<0.20	40	0.005	
Nephthelene	ND<0.20	40	0.005	a Propul honzono	lie (MIDK)	ND<0.20	40	0.005	
Styrene	ND<0.20	40	0.005	1 1 1 2-Tetrachloro	ethane	ND<0.20	40	0.005	
1.1.2.2-Tetrachloroethane	ND<0.20	40	0.005	5 Tetrachloroethene		ND<0.20	40	0.005	
Toluene	ND<0.20	40	0.005	5 1.2.3-Trichlorobenzene		ND<0.20	40	0.005	
1,2,4-Trichlorobenzene	ND<0.20	40	0.005	1,1,1-Trichloroetha	ne	ND<0.20	40	0.005	
1,1,2-Trichloroethane	ND<0.20	40	0.005	Trichloroethene		ND<0.20	40	0.005	
Trichlorofluoromethane	ND<0.20	40	0.005	1,2,3-Trichloroprop	ane	ND<0.20	40	0.005	
1,2,4-Trimethylbenzene	ND<0.20	40	0 0.005 1,3,5-Trimethylbenzene ND<0.20 40 0.00					0.005	
Vinvl Chloride	ND<0.20	40	0.005	Xvlenes		ND<0.20	40	0.005	
		Surro	gate Re	coveries (%)					
%SS1:	1	04		%SS2:		9	1		
<u>%\$\$3:</u>	1	05		1					

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Oualit"	nalytical, In v Counts"	nc.		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, C. bell.com E-mail: mai 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269			
Nozaki & Associates	Client I	Project ID	: #RO	0002869	Date Sampled:	04/14/10			
					Date Received:	: 04/14/10			
3390 Dwight Way	Client	Contact:	Norm (Dzaki	Date Extracted:	04/14/10			
Berkeley, CA 94704	Client I	P.O.:			Date Analyzed: 04/19/10				
	Volatile Orga	nics by P	&T 911	d CC/MS (Basic Ta	rget I ist)*				
Extraction Method: SW5030B	volutile Organ	Analytic	cal Metho	d. SW8260B	ii get List)	Work Order: 100/	1412		
Lab ID				1004412	005 4				
Client ID				B_2@	-003A				
Matrix				D-2@	1				
	a	DE	Reporting		,	G	DE	Reporting	
Combound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005	
Bromochloromathana	ND	1.0	0.005	Bromobenzene	070	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethene	alle	ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.003	t-Butyl alcohol (TB)	ND	1.0	0.005		
n-Butyl benzene	ND	1.0	0.002	sec-Butyl benzene	ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005	
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004	
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	2	ND	1.0	0.005	
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	2	ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	4	ND	1.0	0.005	
1.2 Dichloropropage	ND	1.0	0.005	1.3 Dichleropropag	inene	ND	1.0	0.005	
2.2-Dichloropropane	ND	1.0	0.005	1,5-Dichloropropan		ND	1.0	0.005	
cis-1 3-Dichloropropene	ND	1.0	0.005	trans-1.3-Dichlorop	ropene	ND	1.0	0.005	
Dijsopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	opene	ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether	r (MTBE)	ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	ne (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
1 2 4 Trichlorchongono	ND	1.0	0.005	5 1,2,3-Trichlorobenzene		ND	1.0	0.005	
1 1 2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1.2.3-Trichloroprop	ane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0 0.005 1.3.5-Trimethylbenzene ND 1 0 0					0.005	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005	
		Surro	gate Re	ecoveries (%)					
%SS1:	10	05		%SS2:		9	7		
%SS3:	10	07				· · · · · ·			
Commentar									

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	McCampbell Analytical, Inc. "When Ouality Counts"				ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	om	
Nozaki & Associates		Client Project	t ID: #RO00	02869	Date Sampled:	04/14/10		
2200 Dericht Wass					Date Received:	04/14/10		
5590 Dwight way	-	Client Conta	ct: Norm Oz	aki	Date Extracted:	: 04/14/10		
Berkeley, CA 94704	-	Client P.O.:			Date Analyzed:	04/19/10		
Polynuclear A	romatic	Hydrocarbo	ns (PAHs / Pl	NAs) using SIM	Mode by GC/MS*	*		
Extraction Method: SW3550C		Analytical	l Method: SW827	OC	-	Work Order:	1004412	
Lab ID	100441	12-005A						
Client ID	B-2	2@8'				Reporting DF	Limit for =1	
Matrix		S]		
DF		1				S	W	
Compound			Conce	entration		mg/kg	ug/L	
Acenaphthene	Ν	ND				0.005	NA	
Acenaphthylene	١	ND				0.005	NA	
Anthracene	Ν	ND				0.005	NA	
Benzo(a)anthracene	١	ND				0.005	NA	
Benzo(a)pyrene	Ν	ND				0.005	NA	
Benzo(b)fluoranthene	Ν	ND				0.005	NA	
Benzo(g,h,i)perylene	Ν	ND				0.005	NA	
Benzo(k)fluoranthene	Ν	ND				0.005	NA	
Chrysene	Ν	ND				0.005	NA	
Dibenzo(a,h)anthracene	Ν	ND				0.005	NA	
Fluoranthene	Ν	ND				0.005	NA	
Fluorene	Ν	ND				0.005	NA	
Indeno (1,2,3-cd) pyrene	Ν	ND				0.005	NA	
1-Methylnaphthalene	Ν	ND				0.005	NA	
2-Methylnaphthalene	Ν	ND				0.005	NA	
Naphthalene	Ν	ND				0.005	NA	
Phenanthrene	Ν	ND				0.005	NA	
Pyrene	Ν	ND				0.005	NA	
		Surrogat	te Recoverie	s (%)				
%SS1		85						
%SS2		82						
Comments								
* water samples in µg/L, soil/sludge/solid	samples i	n mg/kg, wipe s	samples in µg/w	ipe, product/oil/non	-aqueous liquid samp	les and all TC	CLP &	

SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

	McCampbo	ell An en Ouality (alyti	ical, Ir	<u>nc.</u>	Web	1534 Willow P : www.mccampl Telephone: 8	ass Road, Pittsbur bell.com E-mail 77-252-9262 Fa	g, CA 94565-1' : main@mccamp x: 925-252-926	701 bell.com 9				
Nozał	ci & Associates			Client P	roject ID: #	RO0002869		Date Sample	ed: 04/14	/10				
33901	Dwight Wav					Date Received: 04/14								
	6			Client C	Contact: No	orm Ozaki Date Extracted: 04/1					4/10			
Berke	ley, CA 94704			Client P	.0.:			Date Analyz	xed: 04/15	5/10-04/	16/10			
Extraction	G on method: SW5030B	asoline F	Range ((C6-C12)	Volatile Hy Analy	drocarbons	as Gasoline 5W8021B/8015	e with BTEX a	and MTBE [*]	k Wor	k Order:	1004412		
Lab ID	Client ID	Matrix	TF	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
002A	B-1@9'	S		59	ND<1.0	ND<0.10	ND<0.10	ND<0.10	0.17	20	116	d7,d9		
005A	B-2@8'	S]	ND	ND	ND	ND	ND	ND	1	87			
Repor	rting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5		ug/L	1		
abo	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g		

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram d9) no recognizable pattern

	McCampbo	ell Ana	lytical, Inc	<u>.</u>	1534 Web: www Te	Willow F w.mccamp lephone: 8	Pass Road, l bell.com 377-252-92	Pittsburg, CA E-mail: main 62 Fax: 92:	. 94565-1701 @mccampbell.com 5-252-9269	m		
Nozaki	& Associates		Client Pro	ject ID: #	RO0002869		Date S	ampled:	04/14/10			
3390 D	wight Way						Date R	Received:	04/14/10			
			Client Co	ntact: Noi	m Ozaki		Date E	xtracted:	04/14/10			
Berkele	ey, CA 94704		Client P.O).:			Date A	analyzed:	04/16/10			
Extraction	n method: SW3050B			L	UFT 5 Metals*	5010B				Work O	rder: 1(004412
Lab ID	Client ID	Matrix	Extraction Type	Cadmium	Chromium	ıd	Nickel	Zinc	DF	% SS	Comments	
005A	B-2@8'	S	TOTAL	ND	34	NI)	27	43	1	93	

Reporting Limit for DF =1;	W	TOTAL	NA	NA	NA	NA	NA	NA
ND means not detected at or above the reporting limit	S	TOTAL	1.5	1.5	5.0	1.5	5.0	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container. DISS = Dissolved metals by direct analysis of $0.45 \ \mu m$ filtered and acidified sample.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	Campbell Analy "When Ouality Counts	tical, Inc.	1534 Web: www Tele	Willow Pass Road, Pittsburg, CA mccampbell.com E-mail: main- ephone: 877-252-9262 Fax: 925	94565-170 @mccampbe -252-9269	1 ll.com		
Nozaki & Ass	ociates	Client Project I	D: #RO0002869	Date Sampled:	04/14/	10		
2200 Dwight W	Way			Date Received:	04/14/10			
	v ay	Client Contact	t: Norm Ozaki	Date Extracted:	04/14/	14/10		
Berkeley, CA 9	94704	Client P.O.:		Date Analyzed:	04/19/	10		
Extraction method:	SW3550C	Total Extrac Analytica	ctable Petroleum Hydro	ocarbons*	W	ork Order:	1004412	
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments	
1004412-002A	B-1@9'	S	9.8	ND	1	111	e4,e2	
1004412-005A	B-2@8'	S	ND	ND	1	105		

Reporting Limit for $DF = 1$;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC /

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable patterne4) gasoline range compounds are significant.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8082

W.O. Sample Matrix: Soil	W.O. Sample Matrix: Soil QC Matrix: Soil					BatchID: 49898 WorkOrder 1004412						12
EPA Method SW8082 Extraction SW3550B								5	Spiked Sar	nple ID	: 1004281-0	002A
Analyte	Sample	Sample Spiked MS MSD MS-MSD				LCS	LCSD	LCS-LCSD	Acc	ceptance Criteria (%)		
Analyte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	64	0.15	NR	NR	NR	92.9	92.9	0	70 - 130	20	70 - 130	20
%SS:	#	0.050	#	#	N/A	105	102	3.04	70 - 130	20	70 - 130	20
All target compounds in the Method NONE	l Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 49898 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1004412-005A	04/14/10	0 04/14/10	04/16/10 12:30 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SM5520E/F

W.O. Sample Matrix: Soil	QC Matrix: Soil BatchID: 49919 WorkOrder 100441						12					
EPA Method SM5520E/F	Extra	ction SM	5520E/F				Spiked Sample ID: 1004261-001					01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CSD Acceptance Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
POG	ND	2000	103	104	0.945	94.1	95.7	1.66	70 - 130	30	70 - 130	30
All target compounds in the Method B NONE	nod Blank of this extraction batch were ND less than the method RL with the following exceptions:											

BATCH 49919 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1004412-005A	04/14/10	0 04/14/10	04/16/10 10:55 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

McCampbell Analytical, Inc. "When Ouality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701Web: www.mccampbell.comE-mail: main@mccampbell.comTelephone: 877-252-9262Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil		(QC Matri	x: Soil			BatchID: 49968 WorkOrder 1004412					12
EPA Method SW8015B	Extra	ction SW	3550C			Spiked Sample ID: 1004395-0)25A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CS-LCSD Acceptance Criteria (%			
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	7.0	40	122	125	1.94	102	104	1.13	70 - 130	30	70 - 130	30
%SS:	91	25	111	111	0	99	100	0.946	70 - 130	30	70 - 130	30
All target compounds in the Metho NONE	d Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 49968 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1004412-002A	04/14/10	04/14/10	04/19/10 6:29 PM	1004412-005A	04/14/10	04/14/10	04/19/10 5:07 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil		(QC Matri	x: Soil			Batch	ID: 49970	WorkOrder 1004412				
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					s	Spiked Sample ID: 1004395-025A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	ND	0.60	101	101	0	110	100	9.16	70 - 130	20	70 - 130	20	
MTBE	ND	0.10	91	94.2	3.38	107	94.8	11.8	70 - 130	20	70 - 130	20	
Benzene	ND	0.10	89.9	91.4	1.60	92.2	92.1	0.204	70 - 130	20	70 - 130	20	
Toluene	ND	0.10	89.1	90.6	1.68	92.1	90.8	1.33	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	0.10	89.7	91.1	1.54	91.3	91.1	0.243	70 - 130	20	70 - 130	20	
Xylenes	ND	0.30	90.1	91.7	1.63	93.1	93.1	0	70 - 130	20	70 - 130	20	
%SS:	81	0.10	94	96	1.62	96	96	0	70 - 130	20	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:				

BATCH 49970 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1004412-002A	04/14/10	0 04/14/10	04/15/10 5:38 PM	1004412-005A	04/14/10	04/14/10	04/16/10 7:25 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 49987	49987 WorkOrder 1004412					
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked San	ked Sample ID: 1004403-019				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)				
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
tert-Amyl methyl ether (TAME)	ND	0.050	71	72.6	2.16	84.2	79.3	6.01	70 - 130	30	70 - 130	30		
Benzene	ND	0.050	105	103	2.07	90.8	89.3	1.66	70 - 130	30	70 - 130	30		
t-Butyl alcohol (TBA)	ND	0.25	73.8	76.6	3.69	91	87	4.45	70 - 130	30	70 - 130	30		
Chlorobenzene	ND	0.050	105	101	3.95	124	114	8.54	70 - 130	30	70 - 130	30		
1,2-Dibromoethane (EDB)	ND	0.050	92.8	87.3	6.13	111	104	6.90	70 - 130	30	70 - 130	30		
1,2-Dichloroethane (1,2-DCA)	ND	0.050	93	89.7	3.59	88.8	87.5	1.38	70 - 130	30	70 - 130	30		
1,1-Dichloroethene	ND	0.050	104	102	2.39	75.6	76.6	1.39	70 - 130	30	70 - 130	30		
Diisopropyl ether (DIPE)	ND	0.050	106	102	3.90	94.1	87.2	7.60	70 - 130	30	70 - 130	30		
Ethyl tert-butyl ether (ETBE)	ND	0.050	85.8	84	2.17	94.4	87.7	7.43	70 - 130	30	70 - 130	30		
Methyl-t-butyl ether (MTBE)	ND	0.050	93	85.6	8.31	86.6	86.4	0.243	70 - 130	30	70 - 130	30		
Toluene	ND	0.050	113	110	2.41	126	118	7.10	70 - 130	30	70 - 130	30		
Trichloroethene	ND	0.050	105	103	2.69	117	115	1.34	70 - 130	30	70 - 130	30		
%SS1:	89	0.13	105	102	2.57	81	86	5.28	70 - 130	30	70 - 130	30		
%SS2:	110	0.13	113	111	1.22	108	108	0	70 - 130	30	70 - 130	30		
%SS3:	108	0.013	102	93	8.61	112	103	8.37	70 - 130	30	70 - 130	30		
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 49987 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1004412-002A	04/14/10	04/14/10	04/19/10 6:04 PM	1004412-005A	04/14/10	04/14/10	04/19/10 5:19 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 49996	WorkOrder 1004412					
EPA Method SW8270C	Extra	ction SW	3550C					5	Spiked Sar	piked Sample ID: 1004412-005				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)				
Analyte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Benzo(a)pyrene	ND	0.20	100	99.2	1.12	81.2	81.9	0.896	30 - 130	30	30 - 130	30		
Chrysene	ND	0.20	98.3	95.2	3.18	83	80.4	3.28	30 - 130	30	30 - 130	30		
1-Methylnaphthalene	ND	0.20	109	104	4.17	96	91.6	4.71	30 - 130	30	30 - 130	30		
2-Methylnaphthalene	ND	0.20	101	95.4	5.25	89	86	3.45	30 - 130	30	30 - 130	30		
Phenanthrene	ND	0.20	113	114	0.830	111	106	4.83	30 - 130	30	30 - 130	30		
Pyrene	ND	0.20	105	103	2.20	92.3	89.4	3.20	30 - 130	30	30 - 130	30		
%SS1:	85	2	84	84	0	81	78	4.54	30 - 130	30	30 - 130	30		
%SS2:	82	2	80	83	3.19	79	75	4.58	30 - 130	30	30 - 130	30		
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

			BATCH 49996 SL	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1004412-005A	04/14/10	04/14/10	04/19/10 11:39 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil

QC Matrix: Soil

EPA Method SW6010B			Extract	tion SW3	3050B		BatchID): 49995	Spik	ed Sample	ID:	1004411-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%	5)
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Cadmium	ND	50	94.1	94.1	0	10	94.9	93.5	1.54	75 - 125	25	75 - 125	25
Chromium	41	50	102	99.8	1.15	10	98.3	93.4	5.11	75 - 125	25	75 - 125	25
Lead	51	50	NR	NR	NR	10	107	97.4	9.58	75 - 125	25	75 - 125	25
Nickel	40	50	101	96.9	2.20	10	95.5	89.4	6.65	75 - 125	25	75 - 125	25
Zinc	74	500	104	97.8	5.45	100	101	102	0.468	75 - 125	25	75 - 125	25
%SS:	101	250	108	111	2.93	250	107	103	3.33	70 - 130	20	70 - 130	20
All target compounds in th NONE	e Method B	lank of th	is extract	ion batch	were ND les	ss than the	e method F	RL with the	e following e	exceptions:			

			<u>BATCH 49995 SL</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1004412-005A	04/14/10	04/14/10	04/16/10 8:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

ATTACHMENT A

Alameda County Department of Environmental Health Modified Work Plan Approval – December 23, 2010 ALAMEDA COUNTY HEALTH CARE SERVICES

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 23, 2009

Mr. Ron Silberman 1240 Powell Street LLC 5835 Doyle Street, Suite 101 Emeryville, CA 94608 (sent via electronic mail to: <u>RonS51@yahoo.com</u>) Sean Absher 1240 Powell St LLC 44 Montgomery St # 4200 San Francisco, CA 94104 Frank Garza Garza & Associates Unknown Address

Subject: Modified Work Plan Approval; Fuel Leak Case No. RO0002869 and Geotracker, Global ID # Geotracker Global ID T06019727624, Garza & Associates, 1240 Powell St., Emeryville CA 94608

Dear Mr.'s Silberman, Absher, and Garza:

Thank you for the recent submittal of the document entitled *Work Plan Soil and Groundwater Investigation,* dated October 26, 2009, and received at the County's FTP website on November 13, 2009. The document was submitted on your behalf by Nozaki & Associates. ACEH staff has reviewed the document and are in general agreement with the approach outlined in the work plan, but requests several minor modifications, or clarifications, as detailed in the following technical comments. Provided the technical comments are incorporated into the work, it may be implemented. Please provide advance written notification to this office by e-mail (mark.detterman@acgov.org) 72 hours prior to the start of field activities.

TECHNICAL COMMENTS

- Source Area Characterization at Waste Oil UST Figure 2 of the Work Plan depicts a soil bore location in close proximity to the former location of the waste oil UST. The location appears appropriate to detect potential impact in both soil and groundwater proximal to the former UST location. Please also ensure the following technical comments are incorporated into the work at this location.
 - a. The Work Plan indicates that soil and groundwater samples for the waste oil underground storage tank (UST) investigation will be analyzed for total oil and grease (TOG) and polycyclic aromatic hydrocarbons (PAHs). Please also analyze Total Petroleum Hydrocarbons (TPH) as gasoline, TPH as diesel, BTEX, fuel oxygenates and lead scavengers, halogenated volatile organic compounds, the five LUFT metals, PCB, PCP (i.e. all compounds or metals as listed in the *Recommended Minimum Verification Analysis for Underground Storage Tank Leaks* for waste oil USTs) by appropriate methodology.
- 2. **Potential Improper Well Screen Interval** Figure 2 of the Work Plan depicts a second soil bore location downgradient of the former location of the fuel hydrocarbon USTs at the site to investigate the depth of first groundwater at the site. Please also ensure the following technical comments are incorporated into the work at this location.
 - a. Please install this soil bore no deeper than 8 feet bgs to investigate the possibility of shallow groundwater beneath the site, rather than the estimated 12 to 13 feet bgs described in the Work Plan. Please allow sufficient time for water to infiltrate.

- b. The Work Plan indicates that the groundwater sample to be collected for this portion of the investigation will be analyzed for BTEX and MTBE by EPA Method 8021B/602 and VOCs by EPA Method 8260B (in addition to TPHg and TPHd by EPA Method 8015M/602). To clarify this point, please also ensure that all fuel oxygenates and lead scavengers are also analyzed with EPA Method 8260B, if shallow groundwater is present in the soil bore. If groundwater is not present please ensure that a soil sample is collected and analyzed as indicated by staining, PID detections, or if none are encountered, at the base of the soil bore above groundwater.
- 3. **General Technical Comments** The following technical comments are applicable to both portions of the proposed investigation:
 - a. The Work Plan did not describe soil bore sampling protocols; while likely an oversight, please ensure that a PID (Photo-Ionization Detector) is utilized to monitor soil during drilling, and that soils will be classified, and soil bore logs submitted, using USCS methods.
 - b. The Work Plan specified two sample collection depths of 6 and 12 feet below grade surface (bgs). Rather than collect soil samples at the predetermined depths, please ensure that soil samples are collected at signs of impact (staining, PID detections, etc), changes in lithology, or if impacted media is not encountered, directly above first encountered groundwater. Collection of additional soil samples below the lowest sign of contamination will also delineate the vertical extent of any contamination; please ensure that a minimum of one deeper soil sample is collected in each bore.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Mark Detterman), according to the following schedule:

• March 1, 2010 – Soil and Groundwater Investigation Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker Please visit the SWRCB website for more information on these requirements (in PDF format). (http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Should you have any questions, please contact me at (510) 567-6876 or send me an electronic mail message at <u>mark.detterman@acgov.org</u>.

Sincerely,

Mark E. Detterman, PG, CEG Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Norman Nozaki, Nozaki & Associates, 3390 Dwight Way, Berkeley, CA 94704 (sent via electronic mail to <u>nozaki4472@gmail.com</u>)
Donna Drogos (sent via electronic mail to <u>donna.drogos@acgov.org</u>)
Mark Detterman (sent via electronic mail to <u>mark.detterman@acgov.org</u>), File

Alameda County Environmental Cleanup Oversight Programs	ISSUE DATE: July 5, 2005	
	REVISION DATE: March 27, 2009	
(LOP and SLIC)	PREVIOUS REVISIONS: December 16, 2005, October 31, 2005	
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions	

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements **must** be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

• A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>

Or

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to http://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT B

n-Butyl Benzene, sec-Butyl Benzene, n-Propyl Benzene Risk Assessment Documentation

Attachment B Risk Assessment Documentation

A cursory quantitative risk assessment was employed to evaluate the significance of three chemicals that were discovered in soil during the supplementary site investigation on April 14, 2010. The chemicals were n-butyl benzene, sec-butyl benzene, and n-propyl benzene, which were discovered in concentrations of less than one part per billion (Table 2). At these concentrations, one would not expect these three chemicals to be of concern, but to be more objective, a quantitative approach was elected to lend more support to the conclusion. These three chemicals were discovered in soil at a depth of 9 feet at Boring B-1 beneath the present concrete foundation of the onsite building (Figure 2). These environmental conditions would also preclude actual direct physical contact with the chemicals; however, for the sake of quantitative evaluation, a theoretical incidental ingestion scenario based on current land use was used to evaluate an appropriate potential exposure pathway and potential public health hazards.

Although current land use is commercial, for the sake conservativeness, a residential exposure scenario was evaluated in this evaluation. This exposure scenario represents the regulatory requirements for an unrestricted land-use site closure. The resident is assumed to be a 30-year old receptor born and raised at the Site. To model the child and adult stages of this receptor, the resident receptor is conceptualized as a 6-year period as a child and a 24-year period as an adult. Consequently, the resident receptor is exposed to Site conditions for 6 years as a child and 24 years as an adult, for 350 days per year. Although both child and adult residents were modeled independently in this evaluation, these two receptors are treated as two different periods of a single 30-year old resident receptor.

As suggested by the Office of Environmental Health Hazard Assessment (OEHHA), the RfD for Cumene (CASRN 98-82-8) or isopropyl benzene was used as a surrogate toxicity criterion to evaluate incidental ingestion as a potential exposure pathway (IRIS). The RfD is 1×10^{-1} mg/kg-day. Cumene is not classified as a carcinogen.

The exposure point concentration of n-butyl benzene, sec-butyl benzene, and n-propyl benzene, used in the calculations was the summed total concentration of the three chemicals found in soil. Thus, a concentration of 1.19 mg/kg or 1.19 parts per million was used for the calculations.

Table B-1 presents the equation was used to evaluate the incidental ingestion of soil.

Table B-1. Ingestion Chronic Daily Intake and Hazard Index Equations

Equation Parameters		Acronym	Units	Risk Equation				
Incidental Ingestion of Soil								
Ingestion Noncarcinogenic Chronic Daily Intake Factor		Ing NC CDI Factor	mg/kg-day	IngR *CF * FI * EF * ED				
				BW * ATnon-carc				
Ingestion Noncarcinogenic Hazard Index		Ing NC HI	unitless	[(Ing NC CDI) * (Soil or Sediment Concentration)] / RfD				
Notes:								
AT	Averaging time	FI	Fraction ingeste	d				
BW	Body weight	HI	Hazard Index					
CDI	Chronic daily intake	Ing	Ingestion					
CF	Conversion factor	mg/kg-day	Millgrams per kilogram-day					
ED	Exposure duration	RfD	Noncarcinogenie	Noncarcinogenic reference dose				
EF	Exposure frequency							

The input parameters used in the equation above to calculate the hazard index for incidental ingestion is presented in the table below, Table B-2.

Table B-2. Residential Exposure Parameters

Exposure Parameters	Acronym	Units	Value	Source
Adult Resident Receptor				
Incidental Ingestion Pathway				
Ingestion Rate - Adult Resident	AdRes IngR	mg/day	100	Cal/EPA 1992
Unit conversion factor	CF	kg/mg	1.00E-06	NA
Fraction Ingested	FI	Unitless	1	U.S. EPA 1991
General Parameters				
Exposure Frequency - Adult Resident	AdRes EF	days/year	350	Cal/EPA 1992 / U.S. EPA 1991 - Default for resident
Exposure Duration - Adult Resident	AdRes ED	year	24	Cal/EPA 1992 / U.S. EPA 1991 - Default for adult when child is 6 yrs (30 yrs total)
Body Weight - Adult Resident	AdRes BW	kg	70	Cal/EPA 1992 / U.S. EPA 1991
Averaging Time-Non-carcinogenic - Adult Resident	AdRes AT _{non-carc}	days	8760	Calculated (ED [years] * 365 days/year)
Child Resident Receptor				
Incidental Ingestion Pathway				
Ingestion Rate - Child Resident	ChRes IngR	mg/day	200	Cal/EPA 1992 / U.S. EPA 1997
Unit conversion factor	CF	kg/mg	1.00E-06	NA
Fraction Ingested	FI	Unitless	1	U.S. EPA 1991
General Parameters				
Exposure Frequency - Child Resident	ChRes EF	days/year	350	Cal/EPA 1992 / U.S. EPA 1991 - Default for resident
Exposure Duration - Child Resident	ChRes ED	year	6	Cal/EPA 1992 / U.S. EPA 1991 - Default for child when adult is 24 yrs (30 yrs total)
Body Weight - Child Resident	ChRes BW	kg	15	Cal/EPA 1992 / U.S. EPA 1991 - Default for child resident
Averaging Time-Non-carcinogenic - Child Resident	ChRes AT _{non-carc}	days	2190	Calculated (ED [years] * 365 days/year)

Notes: kg

mg

Kilogram

Milligram

References:

California Environmental Protection Agency (Cal EPA), Department of Toxic Substances Control (DTSC). 1992. Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities. July

DTSC. 1994. Preliminary Endangerment Assessment Guidance Manual. January.

Department of Toxic Substances Control (DTSC). 2000. Guidance for the Dermal Exposure Pathway. Draft Memorandum from S. DiZio, M. Wade, D. Oudiz to Human and Ecological Risk Division. January 17.

United States Environmental Protection Agency (U.S. EPA). 1991. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual. Supplemental Guidance: "Standard Default Exposure Parameters". Interim Final. March. U.S. EPA. 1997. Exposure Factors Handbook. Volume I: General Factors. Office of Research and Development.

U.S. EPA. 2000. Region 9 Preliminary Remediation Goals (PRGs) 2000. November 1.

U.S. EPA. 2001. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Interim Review Draft - For Public Comment. EPA/540/R/99-005. September.

The results of performing the calculation for the hazard index (HI) for <u>adult residents</u> resulting from incidental ingestion of soil containing n-butyl benzene, sec-butyl benzene, and n-propyl benzene at a total concentration of 1.19 mg/kg is <u>0.000016</u>. This HI is approximately five orders of magnitude lower than an HI that would predict that an adverse health outcome may occur.

The results of performing the calculation for the hazard index (HI) for <u>child residents</u> resulting from incidental ingestion of soil containing n-butyl benzene, sec-butyl benzene, and n-propyl benzene at a total concentration of 1.19 mg/kg is <u>0.00015</u>. This HI is approximately four orders of magnitude lower than an HI that would predict that an adverse health outcome may occur.

In conclusion, a quantitative evaluation of potential ingestion of onsite soil containing n-butyl benzene, sec-butyl benzene, and n-propyl benzene at a total concentration of 1.19 mg/kg indicates that there would not be an expectation of potential adverse public health effects to individuals based on a residential scenario.