April 14, 2006

SITE INVESTIGATION WORKPLAN

7272 San Ramon Road Dublin, California 94568

Project No. 115876 ACEHS Toxics Case # RO0002863

Prepared On Behalf Of

Bruce Burrows Main Street Properties 985 Moraga Road Lafayette, California 94549

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND SUMMARY	1
3.0	GEOLOGY AND HYDROGEOLOGY	1
4.0	Investigation activities	2
4.	1 Drilling	2
4.2	2 Soil Sampling and Analyses	3
4.	3 Hydropunch [™] Groundwater Sampling	3
4.4	4 Soil Vapor Sampling	3
4.	5 Boring Destruction	4
4.0	6 Equipment Decontamination	4
4.'	7 Laboratory Analysis and Sample Storage	4
5.0	FINDINGS	5
5.	1 Soil Sample Analytical Results	5
5.2	2 Groundwater Sample Analytical Results	5
5.3	3 Soil Vapor Sample Analytical Results	5
6.0	COMPARATIVE RISK EVALUATION	6
6	1 Contaminants of Concern	6
6.2	2 ESL Comparison	6
7.0	SUMMARY AND CONCLUSIONS	7
8.0	References	8
9.0	SIGNATURES	9

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	OIL HOUSE DETAIL
FIGURE 3	GROUNDWATER SAMPLE ANALYTICAL DATA
FIGURE 4	A-A' Fence Diagram
FIGURE 5	B-B' Fence Diagram

TABLES

TABLE 1	SOIL SAMPLE ANALYTICAL DATA – PETROLEUM HYDROCARBONS & LEAD
TABLE 2	SOIL SAMPLE ANALYTICAL DATA – VOCS AND SVOCS
TABLE 3	GROUNDWATER SAMPLE ANALYTICAL DATA – PETROLEUM HYDROCARBONS
TABLE 4	GROUNDWATER SAMPLE ANALYTICAL DATA – VOCS AND SVOCS

APPENDICES

ASOIL BORING LOGSBLABORATORY ANALYSES WITH CHAIN OF CUSTODY DOCUMENTATION

1.0 INTRODUCTION

AEI Consultants (AEI) conducted a soil and groundwater investigation for Crow Canyon Cleaners (Site) located at 7272 San Ramon Road in Dublin, California (Figure 1). The goal of the investigation was to assess the magnitude and extent of halogenated volatile organic compounds (HVOCs), particularly tetrachloroethylene (PCE), detected during a Phase II subsurface investigation performed in January 2005 at the subject property. AEI was retained by Main Street Properties to perform the following soil and groundwater investigation to comply with the Alameda County Environmental Health Services (ACEHS) request to further investigate impacted soil, soil vapor and groundwater at the site.

2.0 BACKGROUND SUMMARY

The subject property (hereinafter referred to as the "site" or "property") is one suite (7272 San Ramon Road) in a commercial building located on the west side of San Ramon Road. The site is located in a mixed residential/commercial area of Dublin, California.

AEI performed a *Phase I Environmental Site Assessment* (ESA) of the shopping center 7214-7300 San Ramon Road in December 2004. Historical resources and site reconnaissance revealed that one of the units of the building (7272 San Ramon Road) has been occupied by a dry-cleaning facility since 1988. The dry-cleaning and solvent storage areas are located in the back of the building; however, no information was known as to previous solvent storage areas. Based on the duration of dry-cleaning on the property, the ESA recommended that a subsurface investigation be performed to determine if a release of hazardous materials, particularly PCE, had impacted the subsurface. As of recent, the dry-cleaning facility has abandoned the use of HVOCs in exchange for petroleum-based solvents.

AEI performed a preliminary subsurface investigation at the property on January 27, 2005. A total of three (3) soil borings (SB-1 to SB-3) were advanced to a terminus depth of 12 feet below ground surface (bgs). Three shallow soil samples and three groundwater samples were analyzed for HVOCs by EPA Method 8260B. PCE was detected in all the soil and groundwater samples analyzed, up to 0.071 milligrams per kilogram (mg/kg) in soil and 22 micrograms per liter (μ g/L) in groundwater. In addition, TCE was detected in the groundwater up to 3.0 μ g/L. Please refer to AEI's *Phase II Subsurface Investigation Report* of the property, dated February 8, 2005, for more detailed information.

Based on the results of sampling, the ACEHS, in a letter dated August 30, 2005, requested that the release of HVOCs be investigated further.

3.0 GEOLOGY AND HYDROGEOLOGY

The United States Geology Survey (USGS) Contra Costa County Quaternary Geologic 1:100,000 (1997) and USGS Contra Costa County bedrock Geologic 1:75,000 (1994) maps were reviewed. The property sits on Holocene alluvial fan deposits overlying undivided Quaternary surficial

deposits. The area is generally characterized by fine to coarse grain unconsolidated sediments. The topographic map shows the property located at approximately 365 feet above mean sea level. The surface of the property is relatively flat.

The stratigraphy of the site encountered during drilling can be characterized by three units of soils; silty clay overlying sandy clay with interbedded sandy gravel. These units are illustrated on Figures 8 and 9, two fence diagrams across the site. Fence Diagram A-A' (Figure 8) provides a west-east profile of the subsurface. Fence Diagram B-B' (Figure 9) provides a south-north profile through the center of the dry-cleaning machine area. Please note that ground elevation north of the site building and landscaping is approximately 5 feet higher than ground elevation within the site building and its parking lot.

Two permeable, water-bearing zones were identified within the stratigraphic column to the total depth explored (30 feet bgs). Both aquifers were found within permeable sandy gravels. The upper water-bearing zone (A-Zone), approximately 2 feet thick, consists of sandy gravel and is typically encountered at a depth of approximately 10 feet bgs. The deeper water-bearing zone (B-Zone), approximately 1.5 foot thick, similarly consists of sandy gravel encountered at a depth of approximately 25 feet bgs. These two water-bearing zones are separated by an approximately 12 foot thick sandy clay. The results of groundwater samples collected from the two zones indicate that there may be some connectivity between the two zones, although contaminant concentrations are much lower in the B-zone. The clay appears to be somewhat of an effective barrier.

It has not been established if the two aquifer units are hydraulically connected or if the intervening lower permeability unit is an aquitard that restricts the vertical flow of shallow groundwater.

The topography of the area is relatively flat, but overall slopes to the east. An unnamed creek is located to the north which appears to be at a slightly lower elevation. Groundwater is expected to flow in a easterly or northerly direction.

4.0 INVESTIGATION ACTIVITIES

A soil boring drilling permit was obtained from Zone 7 Water Agency (Zone 7) in Alameda County prior to field activities. Underground Service Alert North was notified to identify and clear public utilities in the work area more than two working days prior to commencement of drilling.

4.1 Drilling

AEI advanced seven (7) soil borings throughout the subject property to further delineate the extent of the solvent release on February 2, 3, and 6, 2006. Outside of the site building, three of these borings (SB-4, SB-6, and SB-8) were continuously cored to a depth of approximately 30 feet bgs to identify and sample groundwater zones present. Once the water-bearing zones were been located, AEI used Hydropunch[™] technology to discretely sample groundwater in these three locations and in two other locations (SB-5 and SB-7). Inside the building, two borings (SB-9 and SB-10) were continuously cored to

approximately 12 feet bgs for soil sampling and then hydropunched to collect groundwater samples. Soil boring locations (labeled SB-1 through SB-10) are shown on Figure 2.

Direct push drilling work was performed by Vironex, a California C57 licensed drilling contractor (C57 License # 705927). Soil borings outside of the site building were advanced with a limited-access GeoprobeTM 66DT track-mounted direct-push drilling rig. Inside soil borings were advanced using a limited access GeprobeTM Badger direct-push drilling rig.

It should be noted that borings SB-6 and SB-7 were not able to be advanced in proposed locations approved by the ACEHS, as a public electrical utility line ran directly through these locations. The two borings were subsequently advanced approximately 14 feet north, the nearest possible drilling location in the sidewalk parallel to Amador Valley Road. Please refer to Appendix B for detailed logs of the borings, including depth of samples collected.

4.2 Soil Sampling and Analyses

Drilling, borehole logging, and sample collection were performed by AEI staff under the direction of an AEI California professional geologist. The borings were logged using the Unified Soil Classification System (USCS). Soil samples were screened in the field with sensory perceptions and a portable photo-ionization detector (PID) device. Selection of soil samples for laboratory analysis was based on field observations and PID measurements. Selected samples were sealed with Teflon tape and end caps, labeled with a unique identifier, entered onto chain of custody, and placed in a cooler with water-ice.

4.3 Hydropunch[™] Groundwater Sampling

This sampling method operated by advancing 1 ³/₄ inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods were retracted; exposing the encased filter screen and allowing groundwater to infiltrate hydrostatically from the formation into the inlet screen. A check valve or peristaltic pump was then used for sample collection from tubing inserted through the rod. Upon completion of sample collection, the push rods and sampler, with the exception of the steel drop off tip were retrieved to the ground surface, were decontaminated and prepared for the next sampling event. Groundwater samples were collected into 40 ml volatile organic analysis (VOA) vials. The containers were sealed so that no head-space or air bubbles were visible within the containers and placed in a cooler with water-ice.

4.4 Soil Vapor Sampling

A soil vapor survey was requested by ACEHS to investigate whether significant contaminant vapor concentrations exist in the shallow soils beneath the site. The purpose of the survey was to evaluate if PCE in soil and groundwater beneath the site is

a potential concern for contaminant vapor intrusion into the site building and/or neighboring commercial spaces.

A total of three (3) vapor sampling locations were advanced (SB-4, SB-9, and SB-10); two inside the site building and one outside. Each vapor probe boring was advanced to approximately 5 feet bgs where a soil vapor sample was collected. Soil gas sampling procedures, and sample analyses was based on the *Advisory – Active Soil Gas Investigation*, January 28, 2005, issued by the Department of Toxic Substances Control (DTSC).

In order to obtain the soil gas samples, the temporary soil gas sampling probes were installed in the proposed locations. The vapor probe consists of hollow ³/₄ inch stainless steel rods with an internally threaded bottom sub and sacrificial tip. At the desired depth, the rods were pulled back, dropping the sacrificial tip. The top of the borehole was sealed with a temporary seal of hydrated Bentonite and an appropriate leak detection compound utilized to check for leaks. A ¹/₄-inch disposable poly sampling line was then inserted inside the rods and screwed into the end sub. Air was then flushed from the rods prior to sample collection. Soil vapor samples were collected into 6-liter Summa canisters. In addition to the three vapor samples collected, a duplicate vapor sample was collected from boring SB-4, and a trip blank accompanied the soil vapor samples on the trip to the laboratory (Air Toxics Ltd.).

4.5 Boring Destruction

Following groundwater sample collection, each boring was grouted with neat cement per applicable Alameda County and State of California guidelines.

4.6 Equipment Decontamination

Sampling equipment, including sampling barrels, drilling rods, augers, and other equipment used to sample, were decontaminated between samples using a triple rinse system containing Alconox TM or similar detergent.

4.7 Laboratory Analysis and Sample Storage

Laboratory analysis work was performed by California Department of Health Services certified laboratories following current EPA analytical methodologies. Soil and groundwater samples were transported to McCampbell Analytical (Department of Health Services Certification #01644) under chain of custody protocol for analyses. Soil vapor samples were transported to Air Toxics Ltd. Laboratories (Department of Health Services Certification #02110) under chain of custody protocol.

All samples, excluding the vapor samples, were sealed and labeled immediately upon collection, and placed into a cooler with water ice. Selected soil and groundwater samples

were analyzed for HVOCs by EPA Method 8260B. Soil vapor samples were analyzed for HVOCs by EPA Method TO-15. Analytical results and chain of custody documentation are included as Appendix B.

5.0 FINDINGS

5.1 Soil Sample Analytical Results

No HVOC analytes were detected exceeding laboratory reporting limits in any of the soil samples analyzed, with the exception of sample SB-10-8.5' containing PCE at a concentration of 0.013 mg/kg. Soil sample analytical data is summarized in Table 1.

5.2 Groundwater Sample Analytical Results

Groundwater samples were obtained from the two water-bearing zones in each of the seven borings advanced. Groundwater sample analytical data is summarized in Table 1, along with specific sampling interval. An A-Zone PCE Isocontour map is presented in Figure 7.

Shallow Water-Bearing Zone (A-Zone) Analytical Results

PCE was detected in groundwater samples SB-4-W-1, SB-9-W-1, and SB-10-W-1 at concentrations of 0.90 μ g/L, 4.9 μ g/L, and 23 μ g/L, respectively.

No other HVOC analytes were detected exceeding laboratory reporting limits in the rest of the groundwater samples analyzed from the shallow zone.

Deeper Water-Bearing Zone (B-Zone) Analytical Results

PCE was detected in groundwater samples SB-4-W-2, SB-9-W-2, and SB-10-W-2 at concentrations of 0.56 μ g/L, 0.50 μ g/L, and 4.7 μ g/L, respectively.

No other HVOC analytes were detected exceeding laboratory reporting limits in the rest of the groundwater samples analyzed from the deeper zone.

5.3 Soil Vapor Sample Analytical Results

PCE was detected in all three of the soil vapor samples, SB-4-V, SB-9-V, and SB-10-V at concentrations of 16,000 micrograms per cubic meter (μ g/m3), 30 μ g/m3, and 230 μ g/m3, respectively. No other HVOCs were detected in the rest of the soil vapor samples. Soil vapor analytical data is summarized in Table 3.

6.0 COMPARATIVE RISK EVALUATION

The following comparative risk evaluation has been made in an effort to help determine the potential risk posed by CVOCs in the soil, groundwater, and soil vapor. Site specific analytical data is compared with "Environmental Screening Level" values presented in the RWQCB document *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, February 2005. The ESL comparison approach is considered adequate for this site as an initial screening level risk assessment.

6.1 Contaminants of Concern

The primary HVOCs detected in soil, groundwater, and soil vapor consist of PCE and TCE. Maximum concentrations of these contaminants are summarized in the following table.

Contaminant	Max. Detected in Groundwater / Location (µg/L)	Max. Detected in Soil / Location (mg/kg)	Max. Detected in Soil Vapor / Location (µg/m3)
PCE	23 / SB-10-W-1	0.071 / SB-2	16,000 / SB-4
TCE	3.0 / SB-3-5'	< 0.005	<2.7

6.2 ESL Comparison

To evaluate possible risk posed to occupants of commercial and residential structures near the source area of the release, the maximum concentrations of PCE and TCE are compared against the ESLs for both drinking water and indoor air impacts. The HVOC contaminants present are volatile, therefore an evaluation of the potential for volatilization of these contaminants from groundwater and shallow soil into building spaces is considered. The ESL guidance document includes ESLs for vapor intrusion into buildings based on the *Johnson and Ettinger Model for Vapor Intrusion Into Buildings* (1991). This model is considered valid for the site as a first order evaluation. Groundwater ESLs based on this model are presented for both coarse and fine grained sediments in a 10 foot thick vadose zone. Based on boring logs, the fine grained model results are considered appropriate for shallow soils present at this site.

Contaminant	Maximum Detected	Drinking Water	Volatilization ESL
Containmain	$(\mu g/L)$	ESL (μ g/L)	(Commercial Land Use)
PCE	23	5.0	1,700
TCE	3.0	5.0	6,900

*From Tables E-1a, low to moderate permeability soils

Based on this comparison, maximum PCE concentrations at the site do not exceed ESLs for volatilization potential (Volatilization ESL) from groundwater for commercial use. ESLs for shallow soil gas are presented below:

Contaminant	Max. Detected / Location (µg/m3)	Commercial/Industrial Land Use ESL (µg/m3)		
PCE	16,000 / SB-4-V-D	1,400		
TCE	<2.7	NA		

*Shallow soil gas, Table E

The maximum site concentration for PCE (from SB-4) exceeds the ESL for soil gas in residential and commercial/industrial land use. It should be noted that the location of the maximum soil vapor concentration detected is outside of the building. Other soil vapor locations inside the building contained PCE concentrations well below the residential and commercial/industrial land use soil gas ESLs.

7.0 SUMMARY AND CONCLUSIONS

The goal of the investigation was to assess the magnitude and extent of halogenated volatile organic compounds (HVOCs), particularly tetrachloroethylene (PCE), detected during a Phase II subsurface investigation performed in January 2005 at the subject property. Review of the site specific data collected so far indicates the following.

The release of PCE into the soil and groundwater was likely the result of surface spillage from the dry-cleaning machine. Based on analytical data, it is likely that buried utilities within the vicinity of the site provide preferential pathways for migration of contaminants. The high soil vapor concentration detected in boring SB-4, nearby the observed back-door sewer utility line, is possible evidence of this.

The lack of HVOCs in groundwater from borings SB-5 through SB-7, and more importantly downgradient boring SB-8, indicate that the contamination plume appears to be limited. HVOCs appear to have impacted the A-Zone aquifer primarily and portions of the B-Zone aquifer, although the PCE concentrations detected in the B-zone are low. This indicates that the two water-bearing zones may have only limited connectivity.

Although one of the soil vapor samples had a high concentration of PCE, it was located outside of the building and therefore does not appear to pose significant risk to building occupants.

The presence of a common PCE degradation product, TCE, detected around the dry-cleaning machine indicates that active degradation by reductive dechlorination may be taking place. Vinyl Chloride or other degradation products were not detected during both investigations, suggesting that such breakdown is either slow or incomplete.

Based on apparently limited lateral and vertical extent and low concentrations of PCE in the groundwater, further investigation of groundwater does not appear necessary and the site should be considered eligible for low-risk case closure.

8.0 **REFERENCES**

AEI, Phase I Environmental Site Assessment, December 10, 2004

AEI Phase II Subsurface Investigation Report, February 8, 2005

Alameda County Environmental Health Services, File # RO000263, Letter dated August 30, 2005

United States Geology Survey (USGS) Contra Costa County Quaternary 1:100,000 Geologic Map (1997)

USGS Contra Costa County bedrock 1:75,000 Geologic Map (1994)

Department of Toxic Substances Control (DTSC) Advisory – Active Soil Gas Investigation, January 28, 2005

SF Bay California Regional Water Quality Control Board, Screening For Environmental Concerns At Sites With Contaminated Soil And Groundwater, February 2005

9.0 SIGNATURES

This report has been prepared by AEI on behalf of Main Street Properties to address the release of halogenated VOCs on the property located at 7272 San Ramon Road in the City of Dublin, Alameda County, California. The discussion rendered in this report was based on field investigations and laboratory testing of material samples. This report does not reflect subsurface variations that may exist between sampling points. These variations cannot be anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This report should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site will be identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s), the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. All specified work was performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology and were performed under the direction of appropriate registered professional(s).

Please contact either of the undersigned with any questions or comments at (925) 283-6000.

Sincerely, AEI Consultants

Adrian M. Angel

Staff Geologist

Peter McIntyre, PG Project Manager

Distribution:

Gaberiel Chui c/o Bruce Burrows Main Street Properties 985 Moraga Road Lafayette, CA 94549

Alameda County Environmental Health Services (ACEHS) Attn: Mr. Jerry Wickham 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

GeoTracker

FIGURES

TABLES

Sample	Date	Sample Depth	РСЕ	ТСЕ	All other HVOCs
ID		feet bgs	mg/kg	mg/kg EPA Method SW8260B	mg/kg
SB-1 5'	1/27/05	5	0.023	< 0.005	< 0.005
SB-2 5'	1/27/05	5	0.071	< 0.005	< 0.005
SB-3 5'	1/27/05	5	0.029	<0.005	< 0.005
SB-4-5'	2/6/06	5	<0.005	<0.005	< 0.005
SB-4-9'	2/6/06	9	<0.005	< 0.005	< 0.005
SB-4-16'	2/6/06	16	< 0.005	< 0.005	< 0.005
SB-6-15'	2/2/06	15	<0.005	< 0.005	< 0.005
SB-9-5'	2/6/06	5	< 0.005	<0.005	< 0.005
SB-9-8'	2/6/06	8	<0.005	<0.005	< 0.005
SB-10-5'	2/6/06	5	< 0.005	< 0.005	< 0.005
SB-10-8.5'	2/6/06	8.5	0.013	< 0.005	< 0.005
SB-10-12'	2/6/06	12	< 0.005	< 0.005	<0.005
ESLs RL	-	-	0.25 0.005	0.46 0.005	0.005

Table 1Soil Sample Analytical Data

PCE = tetrachloroethylene

TCE = trichloroethylene

VC = vinyl chloride

ESLs = Environmental Screening Levels for shallow soils where groundwater is current or potential source of drinking water in commercial/industrial zones, California Regional Water Quality Control Board, February 2005 Soil values reported in milligrams per kilogram (mg/kg)

RL = laboratory reporting limit (with no dilution)

Sample		Screen Interval	РСЕ	TCE	All other HVOCs
ID	Date	feet bgs	μg/L	μg/L EPA Method SW82	μg/L 260B
SB-1-W	1/27/05	_	22	<0.5	<mdl< td=""></mdl<>
SB-2-W	1/27/05	_	14	0.62	<mdi< td=""></mdi<>
5 D -2- W	1/2//05		17	0.02	-WIDE
SB-3-W	1/27/05	-	19	3.0	<mdl< td=""></mdl<>
SB-4-W-1	2/6/06	(11 - 13)	0.90	<0.5	<mdl< td=""></mdl<>
SB-4-W-2	2/6/06	(31 - 34)	0.56	<0.5	<mdl< td=""></mdl<>
SB-5-W-1	2/3/06	(9 - 12)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-5-W-2	2/3/06	(37 - 39)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-6-W-1	2/3/06	(11-14)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-6-W-2	2/3/06	(31 - 34)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-7-W-1	2/3/06	(9 - 12)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-7-W-2	2/3/06	(37 - 39)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-8-W-1	2/2/06	(9 - 12)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-8-W-2	2/2/06	(23 - 26)	<0.5	<0.5	<mdl< td=""></mdl<>
SB-9-W-1	2/6/06	(9 - 12)	4.9	<0.5	<mdl< td=""></mdl<>
SB-9-W-2	2/6/06	(28 - 32)	0.50	<0.5	<mdl< td=""></mdl<>
SB-10-W-1	2/6/06	(9 - 12)	23	<0.5	<mdl< td=""></mdl<>
SB-10-W-2	2/6/06	(28 - 32)	4.7	<0.5	<mdl< td=""></mdl<>
ESLs RL	-	-	5.0 0.5	5.0 0.5	- varies

Table 2Groundwater Sample Analytical Data

PCE = tetrachloroethylene

TCE = trichloroethylene

VC = vinyl chloride

ESLs = Environmental Screening Levels for shallow soils where groundwater is current or potential source of drinking water in commercial/industrial zones, California Regional Water Quality Control Board, February 2005 Groundwater values reported in micrograms per liter (ug/L)

RL = laboratory reporting limit (with no dilution)

Number following "W" designation indicates water-bearing zone (1 - A Zone, 2 - B Zone)

MDL = method detection limit

Sample ID	Date	PCE μG/m^3 <i>El</i>	TCE μG/m^3 PA Method SW826	All other HVOCs µG/m^3 0B
SB-4-V	2/6/06	13000	<2.7	<mdl< td=""></mdl<>
SB-4-V-D	2/6/06	16000	<2.7	<mdl< td=""></mdl<>
SB-9-V	2/6/06	30	<2.7	<mdl< td=""></mdl<>
SB-10-V	2/6/06	230	<2.7	<mdl< td=""></mdl<>
ESLs RL	-	1400 0.5	4100 2.7	varies

Table 3Soil Vapor Sample Analytical Data

PCE = tetrachloroethylene

TCE = trichloroethylene

ESLs = Environmental Screening Levels for shallow soil gas in commercial/industrial zones,

California Regional Water Quality Control Board, February 2005

VC = vinyl chloride

Soil values reported in micrograms per cubic meter (uG/m^3)

RL = laboratory reporting limit (with no dilution)

APPENDIX A

Soil Boring Logs

Project: Gabriel Chiu Project Location: 7272 San Ramon Road Project Number: 10365

Log of Boring SB-1

Date(s) Drilled January 27, 2005	Logged By JR	Checked By PJM
Drilling Method Direct Push	Drill Bit Size/Type	Total Depth of Borehole 12 feet bgs
Drill Rig Type Pneumatic Hammer	Drilling Contractor Vironex	Approximate Surface Elevation 365 feet
Groundwater Level and Date Measured 8.5 feet ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Cement Slurry	Location	

12.tpl]	Elevation, feet	Denth feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
probe		U-			Asphalt		Concrete/Fill		
ng Logs.bgs [AEI geo	_ 363—		_		CL		Silty Clay, some 1/4 inch round gravel, moderately stiff, somewhat plastic, silt content appears to be increasing with depth, brown - 10 YR 4/3		Hand Auger 0-4'
Original PH II\Borir	_			SB-1.5'	CL		Sandy Clay, low plasticity, fine sand, approximately 40% sand, olive brown - 2.5 Y 4/3	<1	-
Dublin - AA\PH I &	-	5–			- CL		Sandy Clay, slight plasticity, moist, fine sand, brown - 10 YR 4/3		-
GWI (Main Street) -	358—		-	SB-1 8'	GW			<1	_
ZATION/11172 SC	_	10-	_		CL		- grain sand, saturated -		-
CHARACTER	- 353—						Bottom of Boring at 12 feet bgs		-
& REMEDIATION	-		_						
ACTERIZATION	-	15-							
SICHAR									
X:\PROJECT	348			1		I			Figure

Project: Gabriel Chiu Project Location: 7272 San Ramon Road Project Number: 10365

Log of Boring SB-2

Date(s) Drilled January 27, 2005	Logged By JR	Checked By PJM
Drilling Method Direct Push	Drill Bit Size/Type 1 3/4 inch	Total Depth of Borehole 12 feet bgs
Drill Rig Type Pneumatic Hammer	Drilling Contractor Vironex	Approximate Surface Elevation 365 feet
Groundwater Level and Date Measured 8.5 feet ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Cement Slurry	Location	

12.tpl]	Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
probe .	7	0			Asphalt		Concrete/Fill		
I Logs.bgs [AEI geop	- 53—	-			CL		Silty Clay, some 1/4 inch round gravel, stiff, somewhat plastic, silt content appears to be increasing with depth, brown - 10 YR 4/3		Hand Auger 0-4'
jinal PH II∖Boring	_	-			CL		Sandy Clay, low plasticity, fine sand, approximately 40% sand, olive	-	
- AA\PH I & Oriç	_	5		SB-2 5'			brown - 2.5 Y 4/3	<1	
n Street) - Dublin	58—	-		SB-2 8'	CL		Sandy Clay, slight plasticity, fine sand, brown - 10 YR 4/3 -	<1	
2 SGWI (Maii	_	-			GW			-	
ON/1117	-	10			CI		Sandy Clay, high plantinity, brown, 10 VP 4/2		
ARACTERIZATI	_	-	-					-	
EDIATION/CH/	53—	-					Bottom of Boring at 12 feet bgs	_	
ZATION & REM	_	- 15—							
S/CHARACTERI.	_	-						-	
X:/PROJECT	18—	_			I			I	Figure

Project: Gabriel Chiu Project Location: 7272 San Ramon Road Project Number: 10365

Log of Boring SB-3

Date(s) Drilled January 27, 2005	Logged By JR	Checked By PJM
Drilling Method Direct Push	Drill Bit Size/Type 1 3/4 inch	Total Depth of Borehole 12 feet bgs
Drill Rig Type Pneumatic Hammer	Drilling Contractor Vironex	Approximate Surface Elevation 365 feet
Groundwater Level and Date Measured 8.5 feet ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Cement Slurry	Location	

2.tpl]	Elevation, feet	Depth. feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
robe 1	٦	0			Asphalt		Concrete/Fill		
geop	_								
-ogs.bgs [AEI	363—	-	_		CL		Silty Clay, some 1/4 inch round gravel, stiff, somewhat plastic, silt content appears to be increasing with depth, brown - 10 YR 4/3		Hand Auger 0 -4'
riginal PH II\Boring L	_	-							
0 %	_	5	Ж	SB-3 5'	CI		Sandy Clay low plasticity fina cand approximately 40% and alive	<1	-
AVPH							brown - 2.5 Y 4/3		
Dublin - /	_	-	+		CL		Sandy Clay, slight plasticity, fine sand, brown - 10 YR 4/3		
ain Street) -	358—								
N N			X	SB-3 8'	GW		Constru Oranal unall and a second to 4/4// discussion from the reading (ATD) 型	<1	-
1172 SG	_				000		- sand, saturated -		
ATION1	-	10-							
ARACTERIZ	_				CL		Sandy Clay, high plasticity, brown - 10 YR 4/3 		
TION/CH/	353—						Bottom of Boring at 12 feet bgs		
REMEDIA	-		1						
ATION & F	-		1						
CTERIZA	-	15-	1						
S\CHARA	-								
X:\PROJECT	348							•	Figure

Log of Boring SB-4

Date(s) Drilled February 6, 2006	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Direct Push	Size/Type	of Borehole 16 feet bgs
Drill Rig	Drilling	Approximate
Type Limited-Acess Badger	Contractor Vironex	Surface Elevation
Groundwater Level	Sampling	Well
and Date Measured	Method(s) Tube	Permit.
Borehole Backfill Neat Cement Grout	Location	

	Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
CTS/CHARACTERIZATION & REMEDIATION/CHARACTER/ZATION/11172 SGWI (Main Street) - Dublin - AA/11172 - Soil Logs.bgs [AEI geoprobe 30.tp]		5		SB-4-5' SB-4-9' SB-4-16'	GP		Concrete Sandy Clay with silt, fine grained, dark brown (Munsell 7.5 YR 3/2), low to medium plasticity, slightly soft, dry to slightly moist ✓ increasing sand content with depth Sandy Gravel, poorly sorted, dark brown (Munsell 7.5 YR 3/2), slightly soft, SATURATED Sandy Clay, minor gravel, dark brown (Munsell 7.5YR 3/2), soft, mottled, medium plasticity, moist to very most Bottom of Boring at 16 feet bgs	<1	Vapor sampled at 5 feet bgs DTW = 9.5' bgs after 10 minutes for first aquifer *Continuous core terminated at 16' bgs, Hydropunched to second aquifer (screened 27-30' bgs)
X:\PROJE									Figure

Log of Boring SB-6

Date(s) Drilled February 6, 2006	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Direct Push	Size/Type 2 3/4 inch	of Borehole 35 feet bgs
Drill Rig	Drilling	Approximate
Type Limited-access Geoprobe 54DT	Contractor Vironex	Surface Elevation
Groundwater Level	Sampling	Well
and Date Measured	Method(s) Tube	Permit.
Borehole Backfill Neat Cement Grout	Location	

Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
	- - - 5 - -		SB-6-5'	CL		Concrete Silty Clay, dark brown 7.5 YR 3/2, low plasticity, medium stiff, dry Sandy Clay, dark brown, 7.5 YR 3/2, low plasticity, medium stiff, very moist	<1	
	- 10 - - -		SB-6-9'	CL		Sandy Clay, 7.5YR 3/2, fine grained, slightly soft, medium plasticity, very	<1	DTW = 13' bgs after 10 minutes for first aquifer
			_SB-6-16'	GP CL		moist Sandy Gravel, dark brown 7.5YR 3/2, fine grained, medium plasticity, soft, saturated Sandy Clay, dark brown 7.5YR 3/2, fine grained, local gravel, mottled (white), medium plasticity, slightly soft, very moist to moist	<1	
	 25 							
-				GP		Sandy Gravel, dark brown 7.5YR 3/2, poorly graded, slightly soft, very wet		-
				CL		to saturated Sandy Clay, dark brown 7.5YR 3/2, mottled (white), high plasticity, slightly soft, very moist to moist Bottom of Boring at 35 feet bgs		
	40							Figure

Log of Boring SB-8

Date(s) Drilled February 6, 2006	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Direct Push	Size/Type 2 3/4 inch	of Borehole 30 feet bgs
Drill Rig	Drilling	Approximate
Type Limited-access Geoprobe 54DT	Contractor Vironex	Surface Elevation
Groundwater Level	Sampling	Well
and Date Measured	Method(s) Tube	Permit.
Borehole Backfill Neat Cement Grout	Location	

Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
	- - -			CL		Concrete Silty Clay, minor gravel, dark brown (7.5 YR 3/2), medium dense, poorly graded, dry to moist		
-	5— - -	X	SB-6-5'	CL		Sandy Clay, dark brown (7.5 YR 3/2), mottled (white), low plasticity, moist	<1	
-	-	Х	SB-6-9'	CL		Sandy Clay, minor sand, dark brown (7.5 YR 3/2), dense, poorly graded, moist to very moist	<1	
_	10			GP		Sandy Gravel, dark brown (7.5 YR 3/2), minor clay, poorly graded, saturated		-
- - - - - -	- - 15	X	SB-6-16'	CL		Sandy Clay, minor clay, dark brown (7.5 YR 3/2), mottled (white), poorly graded, moist	<1	DTW = 10' bgs after 10 minutes for first aquifer
	20 			CL		Sandy Clay, dark brown 7.5YR 3/2, slightly soft, mottled (white) medium plasticity, moist		
- - - -	- 25			GP CL		Sandy Gravel, dark brown 7.5YR 3/2, minor gravel, slightly soft, medium to high plasticity, saturated Sandy Clay, dark brown 7.5YR 3/2, slightly soft, locally mottled (white), medium to high plasticity, very moist to moist		
-						Bottom of Boring at 30 feet bgs		
- - - - -	- - 35							
_	40							
								Figure

Log of Boring SB-9

Date(s) Drilled February 6, 2006	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Direct Push	Size/Type 2 3/4 inch	of Borehole 12 feet bgs
Drill Rig	Drilling	Approximate
Type Limited-access Geoprobe 54DT	Contractor Vironex	Surface Elevation
Groundwater Level	Sampling	Well
and Date Measured	Method(s) Tube	Permit.
Borehole Backfill Neat Cement Grout	Location	

	Elevation, feet	Ueptn, reet Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
JECTS/CHARACTERIZATION & REMEDIATION/CHARACTERIZATION/1172 SGWI (Main Street) - Dublin - AA/1172 - Soil Logs.bgs [AEI geoprobe 30.tp]]	- 0 - 5 - 10 - 15 - 20 - 25 - 30 - 35 - 35 - 40		SB-9-5'	CL CL CL		Concrete Silty Clay, dark brown (7.5 YR 3/2), dense, poorly graded, dry Sandy Clay, dark brown (7.5 YR 3/2), dense, poorly graded, moist Sandy Cravel with clay, dark brown (7.5 YR 3/2), poorly graded, saturated Sandy Clay, minor gravel, dark brown (7.5 YR 3/2), mottled (white), poorly graded, moist Bottom of Boring at 12 feet bgs		Vapor sampled at 5 feet bgs DTW = 9.5' bgs after 10 minutes for first aquifer Hydropunched to second aquifer (screened = 25 - 28 feet bgs)
X:/PROJ								Figure

Log of Boring SB-10

Date(s) Drilled February 6, 2006	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Direct Push	Size/Type 2 3/4 inch	of Borehole 12 feet bgs
Drill Rig	Drilling	Approximate
Type Limited-access Geoprobe 54DT	Contractor Vironex	Surface Elevation
Groundwater Level	Sampling	Well
and Date Measured	Method(s) Tube	Permit.
Borehole Backfill Neat Cement Grout	Location	

」Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
	-			CL		Concrete Silty Clay, dark brown (7.5 YR 3/2), dense, poorly graded, dry		-
-	5 - - -		SB-9-5'	CL		Sandy Clay, dark brown (7.5 YR 3/2), dense, poorly graded, moist	<1	Vapor sampled at 5 feet bgs
	10 	-		GP		Sandy Gravel with clay, dark brown (7.5 YR 3/2), poorly graded, saturated Sandy Clay, minor gravel, dark brown (7.5 YR 3/2), mottled (white), poorly		DTW = 9.5' bos after 10
-	- - 15	-				Graded, moist Graded,		Hydropunched to second
-	-	-				 		feet bgs)
-	20— – –	-						
-	25— _ _							
-	- 30 -							
-	- - 35	-						
-	- - 40	•						
	_	I	<u> </u>	I	1		1	Figure

APPENDIX B

Sample Analytical Data With Chain of Custody Documentation

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #115876; Main Street	Date Sampled: 02/02/06	
2500 Camino Diablo, Ste. #200		Date Received: 02/03/06	
Walnut Creek, CA 94597	Client Contact: Adrian Angel	Date Reported: 02/09/06	
	Client P.O.:	Date Completed: 02/09/06	

WorkOrder: 0602085

February 09, 2006

Dear Adrian:

Enclosed are:

1). the results of 9 analyzed samples from your #115876; Main Street project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

AEI Consultants 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 Halogenated Volatil Extraction Method: SW5030B	Client Project ID: Street Client Contact: Ad Client P.O.: e Organics by P&T Analytical Method	#115876; Main Irian Angel	Date Sampled: Date Received: Date Extracted:	02/02/06 02/03/06	
2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 Halogenated Volatil Extraction Method: SW5030B	Street Client Contact: Ac Client P.O.: e Organics by P&T Analytical Methor	lrian Angel	Date Received: Date Extracted:	02/03/06	
Walnut Creek, CA 94597 Halogenated Volatil	Client Contact: Ad Client P.O.: e Organics by P&T Analytical Methor	lrian Angel	Date Extracted:		
Walnut Creek, CA 94597 Halogenated Volatil Extraction Method: SW5030B	Client P.O.: e Organics by P&T			02/03/06	
Halogenated Volatil Extraction Method: SW5030B	e Organics by P&T		Date Analyzed:	02/07/06	
		' and GC-MS (8010 d: SW8260B	Basic Target List) [*]	* Work Orde	۲: 0602085
Lab ID 06020)85-008A		*	r	
Client ID SF	3-6-15'			Reporting	Limit for
X				Dr	-1
Matrix	8			c	W
DF	1			5	W
Compound		Concentration		mg/kg	μg/L
Bromodichloromethane	ND			0.005	NA
Bromoform	ND	-		0.005	NA
Bromomethane	ND			0.005	NA
Carbon Tetrachloride	ND			0.005	NA
Chlorobenzene	ND			0.005	NA
Chloroethane	ND		-	0.005	NA
2-Chloroethyl Vinyl Ether	ND			0.005	NA
Chloroform	ND			0.005	NA
Chloromethane	ND			0.005	NA NA
Dibromochloromethane	ND			0.005	NA
1,2-Dichlorobenzene	ND			0.005	NA
1,3-Dichlorobenzene	ND			0.005	NA
1,4-Dichlorobenzene	ND			0.005	NA NA
Dichlorodifluoromethane	ND			0.005	
1,1-Dichloroethane	ND			0.005	NA
1,2-Dichloroethane (1,2-DCA)	ND			0.005	
1.1-Dichloroethene	ND			0.005	
cis-1.2-Dichloroethene	ND			0.005	
trans-1,2-Dichloroethene	ND			0.005	NA NIA
1,2-Dichloropropane	ND			0.005	
cis-1,3-Dichloropropene	ND			0.005	
trans-1,3-Dichloropropene	ND			0.005	
Methylene chloride	ND			0.005	
1,1,2,2-Tetrachloroethane	ND		-	0.005	NA
Tetrachloroethene	ND			0.005	NA NA
1,1,1-Trichloroethane	ND			0.005	NA NA
1,1,2-Trichloroethane	ND			0.005	
Trichloroethene	ND			0.005	NA
Trichlorofluoromethane	ND			0.005	NA
Vinyl Chloride	ND			0.005	NA
	Surrogate Rec	overies (%)			
%SS1:	95				
%SS2: 1	08				
%\$\$3:	08		-		
Comments					

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An	alytical.	Inc.		110 2nd Avenue Telephone : 9 Website: www.mccar	South, #D7, Pacheco, C. 925-798-1620 Fax : 92: npbell.com E-mail: mair	A 94553-5560 5-798-1622 @mccampbell.	com
AEI Consultants	Cli	ent Project ID:	#11587	6; Main	Date Sampled:	02/02/06	
2500 Camino Diablo Ste #200	Str	eet			Date Received:	02/03/06	
	Cli	ent Contact: Ac	lrian An	gel	Date Extracted:	02/06/06	
Walnut Creek, CA 94597	Cli	ent P.O.:			Date Analyzed:	02/06/06	
Halogenated Y Extraction Method: SW5030B	Volatile Or	ganics by P&T Analytical Methor	and GC d: SW8260B	C-MS (8010 Ba	sic Target List)*	Work Orde	er: 0602085
Lab ID	0602085-0	12A 0602085-	-013A	0602085-014A	0602085-015A		
Client ID	SB-6-W-	1 SB-6-V	V-2	SB-8-W-1	SB-8-W-2	Reporting DF	Limit for =1
Matrix	W	W		W	w	-	
DF	1	1		1	1	S	W
Compound			Concen	tration		μg/kg	μg/L
Bromodichloromethane	ND	ND		ND	ND	NA	0.5
Bromoform	ND	ND		- ND	ND	NA	0.5
Bromomethane	ND	ND		ND	ND	NA	0.5
Carbon Tetrachloride	ND	ND		ND	ND	NA	0.5
Chlorobenzene	ND	ND		ND	ND	NA	0.5
Chloroethane	ND	ND		ND	ND	NA	0,5
2-Chloroethyl Vinyl Ether	ND	ND		ND	ND	NA	1.0
Chloroform	ND	ND		ND	ND	NA	0.5
Chloromethane	ND	ND		ND	ND	NA	0.5
Dibromochloromethane	ND	ND		ND	ND	NA	0.5
1.2-Dichlorobenzene	ND	ND		ND	ND	NA	0.5
1,3-Dichlorobenzene	ND	ND		ND	ND	NA	0.5
1,4-Dichlorobenzene	ND	ND		ND	ND	NA	0.5
Dichlorodifluoromethane	ND	ND		ND	ND	NA	0.5
1,1-Dichloroethane	ND	ND		ND	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND	ND		ND	ND	NA	0.5
1,1-Dichloroethene	ND	ND		ND	ND	NA	0.5
cis-1,2-Dichloroethene	ND	ND		ND	ND	NA	0.5
trans-1,2-Dichloroethene	ND	ND		ND	ND	NA	0.5
1.2-Dichloropropane	ND	ND		ND	ND	NA	0.5
cis-1,3-Dichloropropene	ND	ND		ND	ND	NA	0.5
trans-1,3-Dichloropropene	ND	ND		ND	ND	NA	0.5
Methylene chloride	ND	ND		ND	ND	NA	0.5
T,1,2,2-1 etrachloroethane	ND	ND		ND	ND	NA	0.5
	ND	ND		ND	ND	NA	0.5
1,1,2 Trichloroethane	ND	ND		ND	ND	NA	0.5
Triplarathena	ND	ND		ND	ND	NA	0.5
Trichlorofluoromethung	ND	ND		ND	ND	NA	0.5
Vinyl Chlorida	ND	ND		ND	ND	NA	0.5
vinyi Chionae	UN				ND	NA	0.5
%SS1:	103	Surrogate Rec	overies (<u>%)</u>	10.4		
%SS2:	00	00		00	00		
%SS3:	102	103		101	101		
Comments	i	i		i			

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An	alytical,	Inc.		110 2nd Avenue Telephone : Website: www.mcca	e South, #D7, Pacheco, C 925-798-1620 Fax : 92 mpbell.com E-mail: mair	A 94553-5560 5-798-1622 a@mccampbell.	com
AEI Consultants	Cli	ent Project ID:	#1158	76; Main	Date Sampled:	02/02/06	
2500 Camino Diablo, Ste. #200	Str	eet			Date Received:	02/03/06	
	Cli	ent Contact: Ad	drian A	ngel	Date Extracted:	02/06/06	
Walnut Creek, CA 94597	Cli	ent P.O.:			Date Analyzed:	02/06/06	
Halogenated * Extraction Method: SW5030B	Volatile Or	ganics by P&T Analytical Metho	and G d: SW8260	GC-MS (8010 Ba	usic Target List) [;]	* Work Ord	er: 0602085
Lab ID	0602085-0	16A 0602085-	-017A	0602085-018A	0602085-019A		
Client ID	SB-5-W-	1 SB-5-V	V-2	SB-7-W-1	SB-7-W-2	- Reporting DF	Limit for
Matrix	W	W		W	W		
DF	1	1		1	1	S	W
Compound			Conce	entration		μg/kg	μg/L
Bromodichloromethane	ND	ND		ND	ND	NA NA	0.5
Bromoform	ND	ND		- ND	ND	NA	0.5
Bromomethane	ND	NA	0.5				
Carbon Tetrachloride	ND	NA	0.5				
Chlorobenzene	ND	NA	0.5				
Chloroethane	ND	ND		ND	ND	NA	0.5
2-Chloroethyl Vinyl Ether	ND	ND		ND	ND	NA	1.0
Chloroform	ND	ND		ND	ND	NA	0.5
Chloromethane	ND	ND		ND	ND	NA	0.5
1 2 Dichlandhane	<u>ND</u>	NA	0.5				
1,2-Dichlorobenzene	ND	ND		ND	ND	NA	0.5
1,3-Dichlorobenzene	ND	ND		ND	ND	NA	0.5
Dichlorodifluoromethane		ND ND		ND	ND	NA	0.5
1 1-Dichloroethane	ND	ND		ND	ND	NA	0.5
1.2-Dichloroethane (1.2-DCA)	ND	ND		ND	ND	NA	0.5
1 1-Dichloroethene	ND	ND		ND	ND	<u>NA</u>	0.5
cis-1.2-Dichloroethene	ND	ND		ND	ND	NA	0.5
trans-1,2-Dichloroethene	ND			ND	ND	NA NA	0.5
1,2-Dichloropropane	ND	ND		ND	ND		0.5
cis-1,3-Dichloropropene	ND	ND		ND	ND	NA	0.5
trans-1,3-Dichloropropene	ND	ND		ND	ND	NA	0.5
Methylene chloride	ND	ND		ND	ND	NA	0.5
1,1,2,2-Tetrachloroethane	ND	ND		ND	ND	NA	0.5
Tetrachloroethene	ND	ND		ND	ND	NA	0.5
1,1,1-Trichloroethane	ND	ND	1	ND	ND	NA	0.5
1,1,2-Trichloroethane	ND	ND		ND	ND	NA	0.5
Trichloroethene	ND	ND		ND	ND	NA	0.5
Trichlorofluoromethane	ND	ND		ND	ND	NA	0.5
Vinyl Chloride	ND	ND		ND	ND	NA	0.5
		Surrogate Rec	overies	(%)			
%SS1:	102	103		104	104		
%SS2:	100	99		100	99		
%SS3:	99	100		101	101		
Comments	i	i		i			
				-			

* water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An	alytic	al, Inc	:.		110 2nd Avenue Telephone : Website: www.mcca	e South, #D7, Pacheco, C 925-798-1620 Fax : 92 mpbell.com E-mail: mat	CA 94553-5560 25-798-1622 n@mccampbell.	com
AEI Consultants		Client Pr	roject ID:	#1158	376; Main	Date Sampled:	02/06/06	
2500 Camino Diablo. Ste #200		Street Pr	op.			Date Received:	02/06/06	
		Client C	ontact: Ac	lrian A	ngel	Date Extracted:	02/06/06-	02/07/06
Walnut Creek, CA 94597		Client P.	0.:			Date Analyzed:	02/07/06	
Halogenated Extraction Method: SW5030B	Volatile	Organic An	es by P&T	and C	GC-MS (8010 B: ^{0B}	isic Target List)	* Work Ord	er: 0602106
Lab ID	060210	6-002A	0602106-	005A	0602106-008A	0602106-010A		ments to any
Client ID	SB-	-4-9'	SB-9-	8'	SB-10-8.5'	SB-4-W-1	Reporting	Limit for
Matrix	5	5	S		S	W		
DF		1	1		1	1	S	W
Compound				Conce	entration		mg/kg	μg/L
Bromodichloromethane	N	D	ND		ND	ND	0.005	0.5
Bromoform	N	D	ND		- ND	ND	0.005	0.5
Bromomethane	N	D	ND		ND	ND	0.005	0.5
Carbon Tetrachloride	N	D	ND		ND	ND	0.005	0.5
Chlorobenzene	N	D	ND		ND	ND	0.005	0.5
Chloroethane	N	ND NI			ND	ND	0.005	0.5
2-Chloroethyl Vinyl Ether	N	D	ND		ND	ND	0.005	1.0
Chloroform	N	D	ND		ND	ND	0.005	0.5
Chloromethane	N	D	ND		ND	ND	0.005	0.5
Dibromochloromethane	N	D	ND		ND	ND	0.005	0.5
1.2-Dichlorobenzene	N	D	ND		ND	ND	0.005	0.5
1,3-Dichlorobenzene	N	D	ND		ND	ND	0.005	0.5
1,4-Dichlorobenzene	N	D	ND		ND	ND	0.005	0.5
Dichlorodifluoromethane	N	D	ND		ND	ND	0.005	0.5
1,1-Dichloroethane	N	D	ND		ND	ND	0.005	0.5
1,2-Dichloroethane (1,2-DCA)	NI	D	ND		ND	ND	0.005	0.5
1,1-Dichloroethene	N	D	ND		ND	ND	0.005	0.5
cis-1,2-Dichloroethene	NI	D	ND		ND	ND	0.005	0.5
trans-1,2-Dichloroethene	NI	D	ND		ND	ND	0.005	0.5
1,2-Dichloropropane	NI	D	ND		ND	ND	0.005	0.5
cis-1,3-Dichloropropene	NI)	ND		ND	ND	0.005	0.5
trans-1,3-Dichloropropene	NI	2	ND		ND	ND	0.005	0.5
Methylene chloride	NI	2	ND		ND	ND	0.005	0.5
T-trachloroethane	NI		<u>ND</u>		ND	ND	0.005	0.5
	NI	2	ND		0.013	0.90	0.005	0.5
1,1,1-1 richloroethane	NI	2	ND		ND	ND	0.005	0.5
Trightereathere		<u> </u>	ND		ND	ND	0.005	0.5
Trichlorofluoromethan	NL		ND		ND	ND	0.005	0.5
Vinvl Chloride			ND		ND	ND	0.005	0.5
viayi enionae	NL	<u> </u>	ND	-	ND	ND	0.005	0.5
0/ 551.		Sur	rogate Rec	overies	(%)			
/0351:			96		97	105		
%\$\$2:	10'	7	106		106	97		
%SS3:	11:	2	109		108	95		
Comments				1		i		

* water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An	alytical, In	с.		110 2nd Avenue Telephone : 9 Website: www.mccar	South, #D7, Pacheco, C 925-798-1620 Fax : 92: npbell.com E-mail: mair	A 94553-5560 5-798-1622 1@mccampbell.	com
AEI Consultants	Client I	Project ID:	#1158	76; Main	Date Sampled:	02/06/06	
2500 Camino Diablo, Ste. #200	Street F	rop.			Date Received:	02/06/06	
and an and a state of the state	Client (Contact: Ac	lrian A	ngel	Date Extracted:	02/06/06-0	02/07/06
Walnut Creek, CA 94597	Client I	9.0.:			Date Analyzed:	02/07/06	
Halogenated Extraction Method: SW5030B	Volatile Organi A	cs by P&T	and G	GC-MS (8010 Ba	sic Target List)	* Work Orde	er: 0602106
Lab ID	0602106-011A	0602106-	012A	0602106-013A	0602106-014A		
Client ID	SB-4-W-2	SB-9-V	V-1	SB-9-W-2	SB-10-W-1	DF	Limit for
Matrix	W	W		W	w		
DF	1	1		l	1	5	W
Compound			Conce	entration		mg/kg	μg/L
Bromodichloromethane	ND	ND		ND	ND	0.005	0.5
Bromoform	ND	ND		- ND	ND	0.005	0.5
Bromomethane	ND	ND		ND	ND	0.005	0.5
Carbon Tetrachloride	ND	ND		ND	ND	0.005	0.5
Chlorobenzene	ND	ND		ND	ND	0.005	0.5
Chloroethane	ND	ND		ND	ND	0.005	0.5
2-Chloroethyl Vinyl Ether	ND	ND		ND	ND	0.005	1.0
Chloroform	ND	ND		ND	ND	0.005	0.5
Chloromethane	ND	ND		ND	ND	0.005	0.5
Dibromochloromethane	ND	ND		ND	ND	0.005	0.5
1.2-Dichlorobenzene	ND	ND		ND	ND	0.005	0.5
1,3-Dichlorobenzene	ND	ND		ND	ND	0.005	0.5
1,4-Dichlorobenzene	ND	ND		ND	ND	0.005	0.5
Dichlorodifluoromethane	ND	ND		ND	ND	0.005	0.5
1.1-Dichloroethane	ND	ND		ND	ND	0.005	0.5
1,2-Dichloroethane (1,2-DCA)	ND	ND		ND	ND	0.005	0.5
1,1-Dichloroethene	ND	ND		ND	ND	0.005	0.5
cts-1,2-Dichloroethene	ND	ND		ND	ND	0.005	0.5
trans-1,2-Dichloroethene	ND	ND		ND	ND	0.005	0.5
ria 1.2 Dichloropropane	ND	ND		ND	ND	0.005	0.5
trans 1.3 Dichloropropene	ND	ND		ND	ND	0.005	0.5
Mathulana ablarida	ND	ND ND		ND	ND	0.005	0.5
1 1 2 2 Tetrachloroathana	ND	ND		ND ND	ND	0.005	0.5
Tatrachloroathana	ND		10	ND	ND	0.005	0.5
1 1 1-Trichloroethane	0.30	ND	4.9	0.50	23	0.005	0.5
1.1.2-Trichloroethane	ND	ND		ND	ND	0.005	0.5
Trichloroethene	ND	ND		ND	ND	0.005	0.5
Trichlorofluoromethane				ND		0.005	0.5
Vinyl Chloride	ND	ND		ND		0.005	0.5
	 C.	rrogoto D	ovorte	(9/)		0.005	0.3
%SS1:	105	104	overies	104	105		
0/2521	08	00		104	103		
0/ 552.	98	98		99	99		
70333: Commente	95	95		96	94		
Comments							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An	alytic	cal, Inc.	110 2nd Avenu Telephone : Website: www.ncca	e South, #D7, Pacheco, C. 925-798-1620 Fax : 92: impbell.com E-mail: mair	A 94553-5560 5-798-1622 @mccampbell.	com
AEI Consultants		Client Project ID:	#115876; Main	Date Sampled:	02/06/06	
2500 Camino Diablo Ste #200		Street Prop.		Date Received:	02/06/06	
		Client Contact: Ac	lrian Angel	Date Extracted:	02/06/06-	02/07/06
Walnut Creek, CA 94597		Client P.O.:		Date Analyzed:	02/07/06	
Halogenated Extraction Method: SW5030B	Volatile	Organics by P&T Analytical Method	and GC-MS (8010 B 4: SW8260B	asic Target List) [;]	r Work Ord	er: 0602106
Lab ID	06021	06-015A				
Client ID	SB-I	0-W-2			Reporting	Limit for
Matrix		w				1
DF		1			S	w
Compound	******		Concentration	<u> </u>	mg/kg	μg/L
Bromodichloromethane	Ν	ND			0.005	0.5
Bromoform	N	ND			0.005	0.5
Bromomethane	٢	ND			0.005	0.5
Carbon Tetrachloride	N	۱D			0.005	0.5
Chlorobenzene	N	1D			0.005	0.5
Chloroethane	N	1D			0.005	0.5
2-Chloroethyl Vinyl Ether	Ν	1D			0.005	1.0
Chloroform	N	1D			0.005	0.5
Chloromethane	N	ID			0.005	0.5
Dibromochloromethane	N	1D			0.005	0.5
1.2-Dichlorobenzene	N	ID			0.005	0.5
1,3-Dichlorobenzene	N	ID			0.005	0.5
1,4-Dichlorobenzene	N	ID			0.005	0.5
Dichlorodifluoromethane	N	ID			0.005	0.5
1,1-Dichloroethane	N	ID			0.005	0.5
1,2-Dichloroethane (1,2-DCA)	N	ID			0.005	0.5
1,1-Dichloroethene	N	ID			0.005	0.5
cis-1,2-Dichloroethene	N	ID			0.005	0.5
trans-1,2-Dichloroethene	N	D			0.005	0.5
1,2-Dichloropropane	N	D			0.005	0.5
cis-1,3-Dichloropropene	N	D			0.005	0.5
trans-1,3-Dichloropropene	N	D			0.005	0.5
Methylene chloride	N	D			0.005	0.5
1,1,2,2-1 etrachloroethane	N	D			0.005	0.5
Tetrachloroethene		4.7			0.005	0.5
1,1,1-1 richloroethane	N	D			0.005	0.5
T,1,2-1richloroethane	N	D			0.005	0.5
Trichloroethene	N	D			0.005	0.5
Vinul Chlorida	<u>N</u>				0.005	0.5
vinyi Cilloride	N				0.005	0.5
0/201.		Surrogate Rec	overies (%)			
70551:	10	15				
%SS2:	9	8				
%SS3:	9	5				
Comments						
* water and vapor samples are reported in µg/	L, soil/slu	dge/solid samples in mg	/kg, product/oil/non-aqueou	s liquid samples and al	I TCLP & SP	LP

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An	alytical, In	nc.		110 2nd Avenue Telephone : Website: www.mcca	South, #D7, Pacheco, C 925-798-1620 Fax : 92 npbell.com E-mail: mai	A 94553-5560 5-798-1622 n@mccampbell.	com
AEI Consultants	Client	Project ID:	#1158	376; Main	Date Sampled:	02/06/06	
2500 Camino Diablo, Ste. #200	Street	Prop.			Date Received:	02/06/06	
	Client	Contact: A	drian A	ngel	Date Extracted:	02/15/06	
Walnut Creek, CA 94597	Client	P.O.:			Date Analyzed:	02/16/06	
Halogenated	Volatile Orgar	ics by P&T	and C	GC-MS (8010 Ba	sic Target List)	*	
Extraction Method: SW5030B	0(0210(001)	Analytical Metho	d: SW826	DB	1	Work Ord	er: 0602106
Lab ID	0602106-001A	0602106	-003A	0602106-004A	0602106-007A	Reporting	Limit for
Client ID	SB-4-5'	SB-4-	16'	SB-9-5'	SB-10-5'	DF	=1
Matrix	S	S		S	S		
DF	1	1		1	1	S	W
Compound			Conce	entration		mg/kg	µք/L
Bromodichloromethane	ND	ND		ND	ND	0.005	NA
Bromoform	ND	ND		- ND	ND	0.005	NA
Bromomethane	ND	ND		ND	ND	0.005	NA
Carbon Tetrachloride	ND	ND		ND	ND	0.005	NA
Chlorobenzene	ND	ND		ND	ND	0.005	NA
Chloroethane	ND	ND		ND	ND	0.005	NA
2-Chloroethyl Vinyl Ether	ND	ND		ND	ND	0.005	NA
Chlorotorm	ND	ND		ND	ND	0.005	NA
Diheren II	ND	ND		ND	ND	0.005	NA
1.2. Dichlorohonzena	ND	ND		ND	ND	0.005	NA
1.2-Dichlorobenzene		ND		<u>ND</u>	ND	0.005	NA
1.4-Dichlorobenzene	ND	ND		ND	<u>ND</u>	0.005	NA
Dichlorodifluoromethane	ND	ND		ND	ND	0.005	NA
1 1-Dichloroethane		ND		ND	ND	0.005	NA
1.2-Dichloroethane (1.2-DCA)		ND		ND	ND	0.005	NA
1.1-Dichloroethene	ND	ND		ND		0.005	NA
cis-1.2-Dichloroethene	ND	ND		ND		0.005	NA
trans-1,2-Dichloroethene	ND	ND		ND	ND	0.005	NA
1,2-Dichloropropane	ND	ND		ND	ND	0.005	
cis-1,3-Dichloropropene	ND	ND		ND	ND	0.005	
trans-1,3-Dichloropropene	ND	ND		ND	ND	0.005	NA NA
Methylene chloride	ND	ND		ND	ND	0.005	NA NA
1,1,2,2-Tetrachloroethane	ND	ND		ND	ND	0.005	NA
Tetrachloroethene	ND	ND		ND	ND	0.005	NA
1,1,1-Trichloroethane	ND	ND		ND	ND	0.005	NA
1,1,2-Trichloroethane	ND	ND		ND	ND	0.005	NA
Trichloroethene	ND	ND		ND	ND	0.005	NA
Trichlorofluoromethane	ND	ND		ND	ND	0.005	NA
Vinyl Chloride	ND	ND		ND	ND	0.005	NA
	S	urrogate Rec	overies	(%)			
%SS1:	97	99		99	98		
%SS2:	111	111		110	110		
%SS3:	115	113		112	112		
Comments							
* wotar and warms around a second sec	1			in a second s			

* water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An	alytical, In	с.	110 2nd Aven Telephone Website: www.mc	ue South, #D7, Pacheco, C : : 925-798-1620 Fax : 92 campbell.com E-mail: mai	A 94553-5560 5-798-1622 n@mccampbell.	com
AEI Consultants	Client I	Project ID:	#115876; Main	Date Sampled:	02/06/06	
2500 Comine Dishts Ste #200	Street I	Prop.		Date Received:	02/06/06	
2500 Camino Diabio, Ste. #200	Client (Contact: Ad	drian Angel	Date Extracted:	02/15/06	
Walnut Creek, CA 94597	Client I	P.O.:		Date Analyzed:	02/16/06	
Halogenated	Volatile Organ	les by P.C.T	and CC MS (9010 I	Pagia Tangat List):	*	
Extraction Method: SW5030B	A A	nalytical Metho	d: SW8260B		Work Ord	er: 0602106
Lab ID	0602106-009A				Domenting	timit for
Client ID	SB-10-12'				DI	$\frac{1}{2}$ Limit for $\frac{1}{2}$
Matrix	S					
DF	1				S	w
Compound		aline and an and a second s	Concentration		mg/kg	μg/L
Bromodichloromethane	ND				0.005	NA
Bromoform	ND				0.005	NA
Bromomethane	ND				0.005	NA
Carbon Tetrachloride	ND				0.005	NA
Chlorobenzene	ND				0.005	NA
Chloroethane	ND				0.005	NA
2-Chloroethyl Vinyl Ether	ND				0.005	NA
Chloroform	ND				0.005	NA
Chloromethane	ND				0.005	NA
Dibromochloromethane	ND				0.005	NA
1,2-Dichlorobenzene	ND				0.005	NA
1,3-Dichlorobenzene	ND				0.005	NA
1.4-Dichlorobenzene	ND				0.005	NA
Dichlorodifluoromethane	ND				0.005	NA
1,1-Dichloroethane	ND				0.005	NA
1.2-Dichloroethane (1.2-DCA)	ND				0.005	NA
1,1-Dichloroethene	ND				0.005	NA
cis-1,2-Dichloroethene	ND				0.005	NA
trans-1,2-Dichloroethene	ND				0.005	NA
1,2-Dichloropropane	ND				0.005	NA
cis-1,3-Dichloropropene	ND				0.005	NA
trans-1,3-Dichloropropene	ND				0.005	NA
Methylene chloride	ND				0.005	NA
1,1,2,2-Tetrachloroethane	ND				0.005	NA
Tetrachloroethene	ND				0.005	NA
1,1,1-Trichloroethane	ND				0.005	NA
1,1,2-Trichloroethane	ND				0.005	NA
Tichloroethene	ND				0.005	NA
Visual Charita	ND				0.005	NA
Vinyi Chloride	ND				0.005	NA
	Sı	irrogate Rec	overies (%)			
%SS1:	98					
%SS2:	111					
%SS3:	115					
Comments						
* water and vapor samples are reported in µg	L, soil/sludge/solid	samples in m	2/kg, product/oil/non-aqueo	us liquid samples and a	II TCLP & SI	P.P

extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

NONE

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil				QC Mat	rix: Soil				WorkOrder:	0602106
EPA Method: SW8260B	E	xtraction	: SW5030	в	Batcl	hID: 20309)	Spiked Sa	mple ID 0602	222-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
-	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Chlorobenzene	ND .	0.050	114	114	0	116	116	0	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	97.6	96.6	1.02	107	106	1.27	70 - 130	70 - 130
1,1-Dichloroethene	ND	0.050	105	104	0.338	112	113	1.26	70 - 130	70 - 130
Trichloroethene	ND	0.050	107	110	2.76	112	113	0.695	70 - 130	70 - 130
%SS1:	103	0.050	96	97	1.63	102	101	1.37	70 - 130	70 - 130
%SS2:	109	0.050	97	96	0.907	95	96	0.293	70 - 130	70 - 130
%SS3:	120	0.050	93	93	0	· 91	98	7.23	70 - 130	70 - 130
All target compounds in the Meth	od Blank of	this extrac	ction batch	were ND I	ess than the n	nethod RL	with the fo	ollowing exce	eptions:	

BATCH 20309 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602106-001A	2/06/06 5:10 PM	2/15/06	2/16/06 1:51 AM	0602106-003A	2/06/06 5:30 PM	2/15/06	2/16/06 2:33 AM
0602106-004A	2/06/06 11:03 AM	2/15/06	2/16/06 3:16 AM	0602106-007A	2/06/06 1:14 PM	2/15/06	2/16/06 3:58 AM
0602106-009A	2/06/06 1:27 PM	2/15/06	2/16/06 4:41 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

QA/QC Officer

	~ 00	ରାଠ	lo K)F	1]	Ċ-ł	01		
	McCAM	IPBEL	L ANA	LYT	ICA	LI	NC	•						Τ					CF	IA	IN	0	F (711	ST	n	D	V I	REC	TOT	<u>sn</u>		1.	
	1	PACHE	VENUE S	DUTH	,#D7									1	r U	RN	AF	201	UN	DT	TIN	1E	A 1	-0			Ē	Ĵ					Th	s//
Telephor	1e: (925) 798	3-1620	CO, CA 94	555-52	F	ax:	(92	5) 7	98-	162	2											~~~		RI	JSH	l	24	HR	4	8 HR		72 HF	5.	DAY
Report Tor Co	Ine An	app	т) III (T		. 40.	- 0							E	DF	Rec	uir	ed?	Coe	elt (No	ma	<u>l)</u>	No		W	rite	On	<u>1 (DW</u>	<u>v) 1</u>	No			
Company: AZT	(mil)	Last	<u>ا</u>	5111 1	0: ->:	OVV	Le	9.							T	1	Γ		Ana	aiys	SR	equ	est				1	T	<u>+</u>	Other	r	Cor	nment	.5
2500 (emino	Dial	a la											1		&F)											(x)					pr)F	
INalnu-	Cieek	CA		E-M:	nil:44	nge	ka	leic	an	sil	In	fr.	in	BE		& F/B					1	5		2									Dies (ł
Tele: ((a' 2 S)	283-60	50	F	ax:	097	5-	28	3	61	2	1,		,	WW		0 E/	8.1)				Í	2		1/83								re	T ^{De}	
Project #: // 5 5	176		F	roje	et Nar	ne:	Ma	in	51	ree	27	p	σP.	801		(552	141		6		Ì	Z		8270								pl	so fl	-
Project Location:	Vublik	~	/										'	20+		case	pons		802		NLY	E		25/			(010					l '		
Sampler Signatur	e: 10-0	1			1									2/80		5	ocar		02 /		10 S	2		A 6.			.2/6(
		SAM	PLING		ers		MA	TRI	X		ME RES	SER	OD VED	() () () () () () () () () () () () () (015)	Oil &	Hydr		PA 6		PCB	826		V EP			/239							
SAMDLE ID				lers	ain		\square	Т	Т	T		Τ	T	as G	el (8	m	m	010	R E	080	080	240 /	570	V's b	tals	sla	7421							
(Field Point Name)	LOCATION			tair	Cont	Ι.								HdT	Dies	trole	trolc	1/8/	NL	8 / 8(8 / 8(1/8	5/8:	Nd	7 Mc	Met	40/							
		Date	Time	U U	be	ater		-	BD 1	Tan	F		5 la	X&	I as	al Pe	al Pc	160	X	A 601	V 601	V 62/	V 62	1.5.1	I-W	15	q (72							
	N.		-	#	Ty	M	So	Ai A	5 3	5	a a		a d	BTE	Ē	Tot	Tot	EP/	E	E	E	EP	EP	PAI	CAI	E	12	RCI						
5B-4-5'		26/06	5:10P	Τ	A		X			1>	X			T							1	Ŵ		\neg					\square		+	dff.	1021	150
5B-4-91		Í	Saap		L																	X										T III	<u> </u>	
SB-4-16'			S:30P		e																T	X									-	*	1	1
SB-9-5'			11:03A		1					1		-									1	X									-	1	11	
58-9-81			11:054		4					-11											-P	X									+	201-01002-0		1000
5B-9-12'	-		11:1SA		+					11						-					-ľ					_								
KR-10-5'	*****		1:141		P					╢											h	XI									-	11	1	1
CK-17-85'			1.18P		T				+	╢		╈		1-	-							X										199.903		(josno)
(B - 10 - 10)			1-27P				+			╫	+			-						\neg	ł	Y	-+								+	1		1
1R-U-W-1		 		3	W.	V	Ψ			-		+	_	-							-	Y									+	- Martin	1000	41
TR-Y-W-7		 	-	2		A			+-	┥╫	+	_	+									\ominus			-+			<u> </u>	┢─┼╴					
SU IVIC		 		17		$\left \cdot \right $		_	_										_						\rightarrow									
50-1-W-1				17						-											-	S		_					 		4			
SB-1-W-2				4			<u> </u>	_				_								_		X.			_									
<u>58-10-W-1</u>		Y		4	<u> </u>	4				N	/											X										I		
Kennquished By:	1	Date:	in-2nD	Rece	a B	11/	t ns		1	11	10	$\sqrt{\gamma}$	1					1										ă	VOAR	Koe	<u>c </u>		1 07	1150
Relinquished By:	/	010/00 Date:	Time	Ree	UT I	10	LU	1	(/)	20	*(F	<u> </u>	-	ICE	/t"	V				/		P	RES	ER	٧A	TIC	DN_	V	- Oat	<u> </u>	ALE LAL		HER
			inde.		area D	y .									GO	DDC	ON	DIT	ION	ч <u></u> с м т		ř	A	PPI	OF	PRI	ATI	Ev	/					
Relinquished By:		Date:	Time:	Reco	ived B	y:								1	DEC	CHL	ORI	NA'	LD31	IN		3	C	PE	RSE	ERV	VED	IN	LAB					
						-08007																												

																																	/	lot	2	-
	Telepho	McCAN	1PBEL 110 2 nd A PACHE 3-1620	L ANA VENUE 5 CO, CA 9	LYT OUTH 4553-55	CICA , #D7 560	LI Fax:	NC (92:	5) 79	98-1	622	2			ר	ſIJ	RN	AF	0	CH	IA D]	IN FIN	0 1E	F			ГC	D) [24	Y I J HR	RE		DR	D	<u>р</u> 72 нв	Ę	X
	Report To: Adv	ian Ana	1		Dill T		а <u></u>								E	DF	Rec	luire	d?	Coe	lt (No	ma	l)	N	0	W	rite	On	1 (D	W)	N	0			
	Company: AE	t Consil	Fand	3	bill 1	<u>u:</u>	an	M							┝	Γ				Ana	lys	is R	equ	est			1	T	<u> </u>	_	01	her	<u> </u>	Com	men	ts
	<u>2500 (p</u>	mino D	iable	<u>،</u>					1.	***							B&F																			
	Tele: 0 (921)	Lieck,	CH		E-M:	$\frac{\text{all: } i}{2}$	aun	-14	00	ren	í				ATBE		-&F/						S		3310											
	Project #: 105	76	0		Proiec	t Na	3-6	MA	$\frac{-e}{i}$	2/0	1		+	_	015)/		5201	118.1					V0		70/8											
	Project Location:	Pybl	in	<u> </u>			· ·	10 1 21	.41/1	<u></u>		20	1		8 + 0		se (5) suc		020)		2	H		/ 82			6						- 7		
	Sampler Signatur	e: /	j C	~7											2/802(Grea	carb(12/8		NO	\cap		A 625			109/						PL	11-	
			SAM	PLING		S	I	MAT	FRE	X	PR	MET	THOI)	19 (60)	15)	oil &	lydro		A 60		CB's	8260		EPA			239.2						n-e.D	uA	
	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	ntainers	Containe	1		ae ae	20 5-			ERVI	<u></u>	& TPH as Ga	s Diesel (80	etroleum C	etrolcum H	0108/10	ONLY (EP	08 / 8080	08 / 8080 b	24/8240/	25/8270	/ PNA's by	7 Metals	5 Metals	240/7421/2						pl	08-8	r
	(0.10.11.2				ບຶ #	Type	Wat	Soil	Slud	Othe	Ice	HCI	ONH	Othe	BTEX	TPH a	Total F	Total F	EPA 6	BTEX	EPA 6	EPA 6	EPA 6	EPA 6	PAH's	CAM-I	LUFT :	Lead (7	RCI							
2	SB-10-W-2		2/6/06	<u> </u>	<u> </u>	vons	X				X				-								\langle													
┟				<u> </u>																					-											
ł					<u> </u>					<u> </u>																										
\mathbf{F}										_	<u> </u>		┞	_							!															
\mathbf{F}														4																						
ŀ														_		_			_															-		
ŀ														_					_												$ \downarrow$					
ł								_ _				_		_		-+			_					_												
-										-					_	_			_							_										
ŀ												_														_					_					
								_		-				_		_					_				_											
-										$\left - \right $		_												+												
F								_			\vdash	-	-+	- -					-				_	_		_	_		-		_		_	•••••••••		
	Relingülshed By:		Date: 2/6/06	Time: 6.30P	Retei	ved By 4/11		1/	in.)() i	\cap																			/OA8		&G		FTAI	07	HED
Γ	Relinquished By:		Date:	Time:	Recei	ved By	<u></u> ':	<u></u>	<u>/ / \</u>						10 G	CE/1	D C	ONE	ÎT	ION	V		and the second s	PI A	RES PPF	ER ROP	VA' 'RI#	ГІО \TE	N				<u> </u>			
	Relinquished By:	uished By: Date: Time: Received By:					-	H D	ECI	D SI HLC	PACI	E A AT	BSE ED I	NT. N İ	AB		C(ON' PEI	TAI RSE	NE	RS_ ED		LAB			-										

ß

McCampbell Analytical, Inc.

E.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

.

Page 1 of 1

[<u>7</u>] (925) 798	3-1620			Wor	kOrd	er: 06	02106		Clie	ntID: /	AEL		EDF:	NO			
Report to: Adrian Angel AEI Consultar 2500 Camino Walnut Creek	nts 9 Diablo, Ste. #200 k, CA 94597	TEL: FAX: ProjectNo: PO:	(925) 283-600 (925) 283-612 #115876; Mai	00 11 n Street Prop.			Bill to: Joa AE 250 Wa	anne Br I Consu 00 Cam alnut Cre	yant Iltants ino Dia eek, CA	blo, Ste \ 94597	ə. #200 ,		Re Da Da	queste nte Rec nte Ado nte Pri	ed TAT: ceived: d-On: nted:	02/00 02/15 02/15	5 days 5/2006 5/2006 5/2006
Sample ID	ClientSamplD		Matrix	Collection Date	Hold	1	2	3	Re 4	questec 5	Tests (6	See leg 7	end belo 8	ow) 9	10	11	12
Sample ID	ClientSampID SB-4-5'		Matrix	Collection Date	Hold	1 A	2	3	Re 4	questec 5	l Tests (6	See leg 7	end belo 8	ow) 9	10	11	12
Sample ID 0602106-001 0602106-003	ClientSampID SB-4-5' SB-4-16'		Matrix Soil Soil	Collection Date 2/6/06 5:10:00 PM 2/6/06 5:30:00 PM	Hold	1 A	2	3	Re 4	questec	I Tests (See leg 7	end belo 8	9 9	10		12
Sample ID 0602106-001 0602106-003 0602106-004	ClientSampID SB-4-5' SB-4-16' SB-9-5'		Matrix Soil Soil Soil	Collection Date 2/6/06 5:10:00 PM 2/6/06 5:30:00 PM 2/6/06 11:03:00 AM	Hold	1 	2	3	Re 4	questec	I Tests (See leg 7	end belo	ow) 9	10	11	12
Sample ID 0602106-001 0602106-003 0602106-004 0602106-007	ClientSampID SB-4-5' SB-4-16' SB-9-5' SB-10-5'		Matrix Soil Soil Soil Soil	Collection Date 2/6/06 5:10:00 PM 2/6/06 5:30:00 PM 2/6/06 11:03:00 AM 2/6/06 1:14:00 PM	Hold	1 A A A A	2	3	Re 4	questec	I Tests (See leg 7	end belo	9 9	10	11	12

Test Legend:

1 8010BMS_S	2	3	4	5
6	7	8	9	10
11	12			

Prepared by: Kathleen	I Owen
-----------------------	--------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

W.O. Sample Matrix: Soil	QC Matrix: Soil								WorkOrder:	0602106
EPA Method: SW8260B	E	extraction	: SW5030	в	Batc	hID: 20177	,	Spiked Sa	mple ID 060	2111-006A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Chlorobenzene	ND	0.050	102	103	0.831	102	102	0	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	106	106	0	102	111	8.65	70 - 130	70 - 130
l,1-Dichloroethene	ND	0.050	111	111	0	107	113	6.05	70 - 130	70 - 130
Trichloroethene	ND	0.050	99.7	103	3.43	96.9	101	4.30	70 - 130	70 - 130
%SS1:	98	0.050	102	99	3.01	100	105	5.39	70 - 130	70 - 130
%SS2:	107	0.050	97	94	2.38	97	95	1.71	70 - 130	70 - 130
%SS3:	111	0.050	91	95	4.45	92	91	1.22	70 - 130	70 - 130
All target compounds in the Met NONE	hod Blank ol	f this extra	ction batel	1 were ND	less than the r	nethod RL	with the f	ollowing exc	eptions:	

BATCH 20177 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602106-002A	2/06/06 5:20 PM	2/06/06	2/07/06 1:39 AM	0602106-005A	2/06/06 11:05 AM	2/06/06	2/07/06 2:22 AM
0602106-008A	2/06/06 1:18 PM	2/06/06	2/07/06 3:04 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

QA/QC Officer

W.O. Sample Matrix: Water	QC Matrix: Water								WorkOrder: 0602106		
EPA Method: SW8260B	E	Extraction	: SW5030	В	Batc	hID: 20199)	Spiked Sa	mple ID 060	2101-001A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
Chlorobenzene	ND	10	102	101	1.27	112	115	2.26	70 - 130	70 - 130	
1,2-Dichloroethane (1,2-DCA)	ND	10	105	104	1.19	95.3	98.3	3.13	70 - 130	70 - 130	
1,1-Dichloroethene	ND	10	112	112	0	104	108	3.54	70 - 130	70 - 130	
Trichloroethene	ND	10	104	103	1.29	94.2	96.4	2.38	70 - 130	70 - 130	
%SS1:	102	10	105	105	0	102	101	1.49	70 - 130	70 - 130	
%SS2:	98	10	95	95	0	101	101	0	70 - 130	70 - 130	
%SS3:	95	10	89	88	1.48	105	106	0.461	70 - 130	70 - 130	
All target compounds in the Met	hod Blank of	this extrac	ction batch	were ND	less than the r	nethod RL	with the f	ollowing exce	eptions:		

BATCH 20199 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602106-010A	2/06/06	2/07/06	2/07/06 12:53 AM	0602106-011A	2/06/06	2/07/06	2/07/06 1:46 AM
0602106-012A	2/06/06	2/07/06	2/07/06 2:37 AM	0602106-013A	2/06/06	2/07/06	2/07/06 3:33 AM
0602106-014A	2/06/06	2/07/06	2/07/06 4:26 AM	0602106-015A	2/06/06	2/07/06	2/07/06 5:19 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

H QA/QC Officer

W.O. Sample Matrix: Soil	QC Matrix: Soil									0602085
EPA Method: SW8260B	E	xtraction	: SW5030	В	Batc	hID: 20177		Spiked Sa	mple ID 0602	2111-006A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Chlorobenzene	ND	0.050	102	103	0.831	102	102	0	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	106	106	0	102	111	8.65	70 - 130	70 - 130
1,1-Dichloroethene	ND	0.050	111	111	0	107	113	6.05	70 - 130	70 - 130
Trichloroethene	ND	0.050	99.7	103	3.43	96.9	101	4.30	70 - 130	70 - 130
%SS1:	98	0.050	102	99	3.01	100	105	5.39	70 - 130	70 - 130
%SS2:	107	0.050	97	94	2.38	97	95	1.71	70 - 130	70 - 130
%SS3:	111	0.050	91	95	4.45	92	91	1.22	70 - 130	70 - 130
All target compounds in the Met NONE	hod Blank of	this extra	ction batch	were ND	less than the r	nethod RL	with the f	ollowing exce	eptions:	

BATCH 20177 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602085-008A	2/02/06 12:25 PM	2/03/06	2/07/06 12:44 PM			2000 in 1990 in	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

W.O. Sample Matrix: Water	QC Matrix: Water									0602085
EPA Method: SW8260B	E	xtraction	: SW5030	В	Batc	hID: 20185		Spiked Sa	mple ID 0602	2089-006C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Chlorobenzene	ND	10	118	120	1.21	114	118	2.89	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	104	104	0	96.9	102	4.64	70 - 130	70 - 130
1,1-Dichloroethene	ND	10	115	115	0	108	114	4.77	70 - 130	70 - 130
Trichloroethene	ND	10	100	98.6	1.70	94.7	98.2	3.57	70 - 130	70 - 130
%SS1:	103	10	102	102	0	102	101	0.989	70 - 130	70 - 130
%SS2:	100	10	100	100	0	101	100	0.577	70 - 130	70 - 130
%SS3:	109	10	107	106	0.506	108	106	1.24	70 - 130	70 - 130
All target compounds in the Met	hod Blank of	this extra	ction batch	were ND	less than the n	nethod RL	with the f	ollowing exco	eptions:	

BATCH 20185 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602085-012A	2/02/06	2/06/06	2/06/06 8:43 PM	0602085-013A	2/02/06	2/06/06	2/06/06 3:14 PM
0602085-014A	2/02/06	2/06/06	2/06/06 3:58 PM	0602085-015A	2/02/06	2/06/06	2/06/06 4:41 PM
0602085-016A	2/02/06	2/06/06	2/06/06 5:25 PM	0602085-017A	2/02/06	2/06/06	2/06/06 6:08 PM
0602085-018A	2/02/06	2/06/06	2/06/06 6:58 PM	0602085-019A	2/02/06	2/06/06	2/06/06 7:51 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

___QA/QC Officer

McCampbell Analytical, Inc.

A.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

<u>1_9</u> (925) 798	-1620			Wo	rkOre	ler: 0	602085		Clie	entID:	AEL		EDF	: NO			
Report to: Adrian Angel AEI Consulta	nts	TEL: FAX:	(925) 283-60 (925) 283-61	00 21			Bill to: Joa AF	anne Br	yant				Req	uested	TAT:	ţ	ō days
2500 Camino Walnut Creek	Diablo, Ste. #200 k, CA 94597	ProjectNo: PO:	#115876; Ma	in Street			250 Wa	00 Cam Inut Cr	ino Dia eek, C	ablo, Ste A 94597	e. #200 7		Date Date	e Rece e Prin	vived: ted:	02/03 02/03	3/2006 3/2006
Samula ID									Re	equested	l Tests	(See leg	jend bela	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0602085-008	SB-6-15'		Soil	2/2/06 12:25:00 PM		A	1	-		1					1		
0602085-012	SB-6-W-1		Water	2/2/06			A			-						-	
0602085-013	SB-6-W-2		Water	2/2/06	h		A			-							
0602085-014	SB-8-W-1		Water	2/2/06	F		A										
0602085-015	SB-8-W-2		Water	2/2/06			A										
0602085-016	SB-5-W-1		Water	2/2/06			A										
0602085-017	SB-5-W-2		Water	2/2/06			A										
0602085-018	SB-7-W-1		Water	2/2/06			A								-		
0602085-019	SB-7-W-2		Water	2/2/06			A										

Test Legend:

1	8010BMS_S	
6		
11		

2	8010BMS_W
7	
12	

3	
8	

4	_
9	 -

.

5	
10	

Prepared by: Kathleen Owen

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

L

McCampbell Analytical, Inc.

E

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

<u>L</u> (925) 79	98-1620			Wo	rkOr	der: 00	502106		(Clien	tID:	AEL		ED	F: N	0			
Report to: Adrian Ange AEI Consulta	el ants	TEL: FAX:	(925) 283-60 (925) 283-61	00			Bill to: Joa ∧⊏	anne B	Bryar	it ate				Re	queste	ad TA.	T:	!	ō days
2500 Camin Walnut Cree	o Diablo, Ste. #200 k, CA 94597	ProjectNo: PO:	#115876; Ma	in Street Prop.			250 Wa	00 Can	nino reek	Diat , CA	olo, Ste 94597	e. #200 7		Da Da	ite Re ite Pri	ceivec inted:	d:	02/06 02/06	5/2006 5/2006
Semale ID	011 10 15									Rec	jueste	d Tests	(See le	gend be	elow)				
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	8	4	5	6	7	8	9	11	10	11	12
0602106-002	SB-4-9'		Soil	2/6/06 5:20:00 PM		Δ						1	1						,
0602106-005	SB-9-8'		Soil	2/6/06 11:05:00 AM	님	Δ			-					-			-		
0602106-008	SB-10-8.5'		Soil	2/6/06 1:18:00 PM		A													
0602106-010	SB-4-W-1		Water	2/6/06	HH-		Δ												
0602106-011	SB-4-W-2	2	Water	2/6/06			A .		_						-				
0602106-012	SB-9-W-1		Water	2/6/06	HH		A							-					
0602106-013	SB-9-W-2		Water	2/6/06			A								-				
0602106-014	SB-10-W-1		Water	2/6/06			A		-										
0602106-015	SB-10-W-2		Water	2/6/06			A								-				

Test Legend:

1	8010BMS_S	
6		
11		

2	8010BMS_W
7	
12	

3	
8	

4	
9	

5	
10	

Prepared by: Kathleen Owen

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

		<u>-</u>	ചവ	a r	NE	ł																							1. 1. M.	10	-f	1	
		MCAM	PBELI	L ANAI	.YT	ICA	1.11	NC.	- And And					******	ina landra			C	H	IP	10	FC	CU	SI	ro	D	Y F	RE	CC	RI	D		200
		1	10 2 ⁵⁷ A' FACHEI	VENUE SO 70. CA 9#)UTH. 5531-55	4D7 (1)								Т	UR	N d	XR	ου	ND	T'I	ME			Q		ſ,	Ì		Ţ			Q	(``Q`()
	Telephor	10: (925) 793	-1620			F	ar:	(925)	798.	-162	2			БD	JE7 13			1.7	'osle			Б	RI	USH	1	24	HR	and the	48 H	IR No	7:	2 HR	5 DAY
	Report To: Acir	Ten Ar	नर्य	1	ill To		w	S.					-	<u> </u>	ulle let	erju	mei	<u>A</u>	naty	315	Reat	0251	1940		k k i	ne	Un		Oil	190	T	Com	ients
	Company: PET	Censur	Francis	F,		in a starter								T		c.l	Т	Ť		Τ	T			1		1	-			1	1		
	2500 0	emint	Digits	là				<i>.</i>								IA & F					-	`										PPt	1
	Maj rive	<u>+ isreek</u>	<u>CA</u>		E-iMa	11:24	hée	Pik	e itr	211	12ml	1 19	4.00	MTH		141	_				2.5		8010									1-e-j	LIV I
	Tele: () / d.d.S. (<u>-275-20</u> 771		<u>ין</u> מ	nu: (1 11 11 11	2-	125	$\frac{1-6}{5}$	这	1	el-y-	1	01-510		925	i i		_		01		/ 012									100	C.C.
	Project Location:	Duble	~	1	Tujec	1141	HCL2	191	<u>(A</u>)	11 4	- I amonto		F-	*		3K ()) 5U0		6770	LY	H		20/5			(0)						î ÷	2
	Sampler Signatur	e:/(-1	e										11091		Owc	crary		2	NO.	N	¢.	4 62			2/601							
			SAMI	PLING	53	1ers	1	MAT	RIX		MET	ERVI	D ED	Cost (SIL	19109	S IOI	Hydre			PCB'	17,82.60		by CL.	ц		11/239.							
	SAMPLE ID	LOCATION			ainer	Intal								ME HIA	[c3c]	cleun	olcun	/ 801(1608(/ RUK	/ 824(1 8270	NA's	Metal	fetals	0/742							
1	(Field Point Name)		Date	Time	onte	N C	ter	2014	dge	ICL		õ	Ler.	1.8.2	ND SI	1 Peu	I Pett	09	N 009	C-US	624	179	[IS]	1-1-1	151	1(724			-				
					# C	Typ	W/a	501	Sla	Oth O	a Di	NH	9	H H			Tota			EPA	N H	FPA	FAH	CAN	LUF LUF	1 car	1.731						
	58-4-51		1600	5:10P	1	A		X)	X										1												
	56-4-9		1	Side		L															X												
	58-7-16			5 30P		2	WALKERS AND							l																			
	56-9-5			11 OSA		4																											
	58-9-8			11:025		4															X												
	3B-9-12'			IT ISA		+													_														
	SB-10-5'			1:1412		P						ŀ																	L				
	51-10-8.5			1.188																	X												
200000	56-10-12			1:278		V		4																									
)	58-1-12-1			~	2		\times														X												
5	56-4-W-2			-	R		1														X												
Ð	5B-4-W-1			-	il																X												
2	38-9-1-1-1			-	Ч																\times	Vermann.									_		
	5B-12-W-1		¥	1 m ^m	Ы		\$			1	e l	La									X												
	Reinquisfied for	al and	Date:	Time:	Rece	ived B	77		. 1	3	101	1						,t			9979 96396 392752							2.014	e.]		1	in d	111111-02
	References Mary	Z	Bates	F -3.7	Iller	in a p	111	أيذر	1	1.1	24.1	1	_	I	: PA	, 	<u>v</u> .			1		F	RE	SEN	WA	TIC	7N_	V	<u> </u>			- 14.5	
	are ir dana urai mār		L'air.	a ertifier										G	OO EAI	D C 1 D 5 P	OND	DITH Diat	ON_ BSEN	T	1	ř C	(PP) CON	ROI TA	PRI. INF	ATT RS	E r	/					
	Relinguished By:		Datzi	Time:	Heer	ived B	y:	anda kalendari ya gifut					-	D	ECI	ILO	RIN	IATI	ED II	N L	19		PE	RS	ERV	ED	IN	LAI	3				

	McCAN	IPBEL	L ANA	LY]	CIC/	۱L.	INC							Τ					CF	ĪA	IN	OI	FC	U	ST	OD	Y	RE	C	DRI	D		
		PACHE	CO, CA 9	4553-5	1, 1997 550									1	rui	RN	AI	50	UN	D	ГIЛ	1E		-	C				Ę	1			DC D
	Telephone: (925) 791	3-1620				Faa	: (91	15) 7	98	1622	F									••			-	RU	SH	24	N.E	:	48 J	HR	7	2 HR	5 DAY
	Report To: Horian Ane	o.t		BILLT	he (20	1.4.2	Ø						IC	DF	icer	LUIF	eu :	4.00		in D	Anth	1	Nu	1	Vrit	e O	<u>n (D</u>	WI	No	0		
	Company: PEI Consil	Famil	š			<u> </u>		~							1		Γ	1	-1014	ayo	15 84	squi	1 1 1	-		1		+		her	-	Com	nents
	asob (progina 1)	infl						1								H.		8 6															
	- US hut FREEL	CH.		E-M	лil:	141	14	10	C.All	1	+			186		MIN						1. ma		02			and and						
	Tele: 0 1 1 1 2 85 - 200	2		Fax:	0 1:	15-	3.8	5 -	61.	7				sjakt		30 E	8.1)					00		183									
	Project #: $12 Y + [z] + 1$			Proje	el Na	.me:	M^{2}	E.I.	5	<u>fr</u>	20)	1	-	Int		(552)	(41		5	1		1		210									
	Project Location: 1001	u <u>n</u>				5								4 DF		NLIK.	500		FOS		NIX.			3		101						20	E
ł	Sampher Signature:	T-C	7											02.00		E CH	DC-M		170		G E	e		AG		27640						TP	F.
		SAM	PLING		Lers		MA	TR	IX	E'I	ME. RES	RBA RBA	D ED	586 (6)	1015)	Cul à	1 Jydr		PA 6		H.H	(A76				234						Nepu	NAT .
	SAMPLE ID			an a	tait									0 38 1	501 (1	GIM	E	010	E) 入	020	DXD	SEC	0/1	15.V		742						plu	wfe
	(Field Point Name)	Dute	Time	ala	Ē	BH			2			-		Ë	Die	ctro	-up	11.13	INC	44	2 / 2	1	8		Mc	240,							
				ç	ype	/ate	3	노		e lite	15	NO	then	EX	H 35	d la	1 121	A 00	ă	A 60	A 60	E F	V DZ										
	20 12 11 0			1	E	F	ซ้า	1	ሻ	2	L I	Ħ	0	E	1	-	É	चें	E	ш	긢	1	1		5 3	E	12 US						
3	38-10-W-2	216706		4	verti	X				X											1	X				1	1	\square					
																					Ť		1			-	Ť	-					
											-		T							-	1		-†-			19 (a							
					-	-				+	-		-			-		-			-t												
					1	1				1-			-													-						- 100 - 100	
						-				-	-		-													1					-		
1						-		***			<u> </u>		-	_		_							_								_		
t										-	[_								-							
F											<u> </u>			_																			
-				1					1					_																			
L																							1				•						
																							1		1		•		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		-		
								1		-	-						-	-		+			-										
								1					-	-												1	1				_		and the product pro-
-											-	-														1							
F	Eclinquilshed By:	Ibate;	Tin:e:	Itsee	l Ded B	r .								1												<u> </u>							
	S inf	2/6/00	1. 30	10	$\angle f_M$	11	e 1	f_{1}	c_{k}^{ab}	17	l							e.										خدته	15	se l		ا، بر ا	OTUER
	Ertinquiished By:	Date:	Time:	Ittee	and H	y Y		5.2	<u> (</u>	<u> </u>			-	10	CEA	1	1/	-		Ç.	م م		PR	ESE	R¥Z	TIC	Jule	-14 M		SUP.	60		CAL HAR
-														G H	EAL	D CI) SP	DNI NC	E a	ION BSF	NT		and in	AP	PILC)PRI Arras	14.TT 5 D G	E .	enter a					
	Enfingrächen By:	Rhate :	Time:	Rice	ved B	Y:							-	D	ECI	110	RI	141	EDI	INI	AB		رەن 1	ER.	SER.	VED	IP	E.AB					
																												100000000000000000000000000000000000000					

	McCAN	IPBEI	L ANA	LYI	IC.	L I	INC	1						Γ				(ĊĦ	AI	N ()F	CI	JS'	rc	D	VI	RE	COR	<u>70</u>		
		PACH	ECO, CA 9	1553-5	1, #D7 560									1	'UI	٨N	AR	01	INI) 11	MI	£		D	j.	Ę	ב					124
Telepho	ne: (925) 798	3-1620				Fax:	: (92	!5) 7	98-1	622	2				i er er	n		10.4					ł	us	H	24	HR	,	48 HR		72 HR	5 DA
Report To: Adr	Ian Ang	et		BIII T	o: <	A A	N-R							EI	JF I	Req	шге	<u>a: c</u>	tual	1 (N	orn	ial)	N	0	11	'rite	<u>: On</u>	(D)	$\frac{N}{N}$	No	<u> </u>	
Company: H2	=I Cont	44-12	mtT		3	<u>,</u>	·										1	Ť		V515	Ket	lies	<u> </u>	1	T	1	-		Other	—	Com	ments
2500 6	amine.	Pin	216				1									3&F																
Walnut	Cick	CH		E-M:	ail:A	dina	10	Ci	1010	44	541	1.1.1	to	HE		<u>&</u> E4							110									
Tele: () (475)	183-600	1 		Fax:	0(92	5)	78	3-6)		J		SIM		1 C	(1				_	/ 83									
Project #: [15]	<u>C+6</u>]	Proje	ct Na	me:	Ma	in	St	re	c 1	+		108		(552	1		a		1×	1	1270									
Project Location:	- Fubli	$\frac{1}{2}$			the second s									+ 07		1350	pons		N02(25	11	1	218			10)						
Sampler Signatur	e: <u>X</u> -	a	7		·			-						12/60		Ğ	ocar		120	03	12	1	A 62			2/00						
		SAM	IPLING	10	lers		MA	TRI	х	 PH	METRESE	HOI CRV	D ED	19) इन् <u></u>	(S10)	Cil &	Hydr		LA 6	.a.J.d	(826)	1	y EP.			0139.						
SAMPLE ID				ner	tair		1			Γ				1	sel (F	En	una	010		080	510	170	1.5 5	stats	als	177						
(Field Point Name)	LOCATION	Date	Time	Itai	Col	L			u .						Dies	trol	troit	1 / 8	IN O	0 8/8	1 / 8	2 / 8	PN/	Me	Mct	407						
		Date	Time	Col	b	ate	ē	-	ther		5	0	her	XA	H Bi	al Pe	b) Po	4 CU		109	A 62-	623	1.5 ?	1-2	L.	E					$\left(1 \right)$	All
				₹Ł	F	A	ŝ	Ai	ō	Ice	H	H	ö	BTI	Ē	12	Loi		n f		fi	E.	PAI	CAU	EU	Lca	RCI				ITOIC	ЩŢ
5B-8-51		2/1/01		1	A		\mathbf{X}			X							Ì		Ī	1	1	-									ar	YOW
SB-8-10'			756A	1	2					11												An and a second	_					T				
<u>46-8-15 </u>			4-13A		e					Π		1						1			1											
56-8-201			12.2.SA		+					T										1-												
96-8-251			9.34A		Ū,																+				alain a							
56-8-30			9-40A		x								-								-							_				
SR-6-10'			12:15P		e				1											-							-					
6-6-15		1	12 256				+		+	+		+									1				_	_						
(P-1-20'			1.20									_						_			$\overline{\mathbf{X}}$				_							
<u>20 0 00</u>		+	1.001	-+			_ _								_					-								_				
>0 6-70			1211							_																						
5B-6-22		-		Y	V		VI.																1									
513-6-W-1				Ц	<i>i</i> cA	\times											1			-	X							-				
56-6-M-2				1						T		1						1			\overline{X}				1		-					
58-8-W-		Y		V	V	JT				U					-	i	-	1	-	1	X				+					-+	-	
Relinquished By:	1	Daty:	Time:	Recei	ved By	3	. /	5.7	77	1							/			1	1								<u></u> _			
Salt-	1	ippe	6.35	1	-	£.	V	al	1	Č.						\vee	6			1							vi	DAS	056	M	ETAL:	OTHER
Relinquished By: /		Date:	Time:	Recei	ved By	17			5	1				- IC - Gt	E/(*)()1		ND	itic	IN .	\checkmark	/	P	RES	ER	VA'	FIO:	N	6		-		
														HF	AD	SP/	CE	AB	SEN	T :	1	Ć	ON'	ΓA1	NEI	RS	1					
reninquished By:		Date:	Time:	Receiv	ved By	:				a channe ann				DE	СП	LOI	ιn.	ATE	D IN	LA	B		PE	RSE	RV	ED I	NI.	AB_				

CUD 2085 AEL

4 N H #
A 72 HR 5 DAY
No
r Comments
-
The second secon
METALS OTHER
-

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- · Results; and
- · Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0602255

Work Order Summary

CLIENT:	Mr. Adrian Angel AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 94597	BILL TO:	Mr. Adrian Angel AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 94597
PHONE:	925-283-6000	P.O. #	100281
FAX:	925-283-6121	PROJECT #	115876 Main Street Prop.
DATE RECEIVED: DATE COMPLETED:	02/10/2006 02/24/2006	CONTACT:	Nicole Danbacher

			RECEIPT
FRACTION #	NAME	TEST	VAC./PRES.
01A	SB-4-V	Modified TO-15	4.0 "Hg
02A	SB-4-V-D	Modified TO-15	3.5 "Hg
02AA	SB-4-V-D Duplicate	Modified TO-15	3.5 "Hg
03A	SB-9-V	Modified TO-15	3.5 "Hg
04A	SB-10-V	Modified TO-15	3.5 "Hg
05A	Ambient Blank	Modified TO-15	4.0 "Hg
06A	Trip Blank	Modified TO-15	4.6 psi
07A	Lab Blank	Modified TO-15	NA
08A	CCV	Modified TO-15	NA
09A	LCS	Modified TO-15	NA
02AA 03A 04A 05A 06A 07A 08A 09A	SB-4-V-D SB-4-V-D Duplicate SB-9-V SB-10-V Ambient Blank Trip Blank Lab Blank CCV LCS	Modified TO-15 Modified TO-15 Modified TO-15 Modified TO-15 Modified TO-15 Modified TO-15 Modified TO-15 Modified TO-15	3.5 "Hg 3.5 "Hg 3.5 "Hg 3.5 "Hg 4.0 "Hg 4.6 psi NA NA NA

CERTIFIED BY:

Sindo d. Fruman

DATE: <u>02/24/06</u>

Laboratory Director

Certification numbers: AR DEQ - 03-084-0, CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/05, Expiration date: 06/30/06

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 AEI Consultants, Inc. Workorder# 0602255

Six 6 Liter Summa Canister samples were received on February 10, 2006. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported LCS for each daily batch has been derived from more than one analytical file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SB-4-V

Lab ID#: 0602255-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Toluene	6.0	46	22	170
Tetrachloroethene	6.0	2000	40	13000
Ethyl Benzene	6.0	7.9	26	34
m,p-Xylene	6.0	-43	26	190
o-Xylene	6.0	11	26	46
4-Ethyltoluene	6.0	10	29	51
1,2,4-Trimethylbenzene	6.0	12	29	59

Client Sample ID: SB-4-V-D

Lab ID#: 0602255-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Toluene	7.6	16	29	59
Tetrachloroethene	7.6	2400	52	16000
m,p-Xylene	7.6	19	33	83

Client Sample ID: SB-4-V-D Duplicate

Lab ID#: 0602255-02AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Toluene	7.6	17	29	64
Tetrachloroethene	7.6	2400	52	16000
m,p-Xylene	7.6	17	33	76

Client Sample ID: SB-9-V

Lab ID#: 0602255-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Ethanol	3.0	44	5.7	83
Acetone	3.0	31	7.2	73
2-Propanol	3.0	8.8	7.5	22
Methylene Chloride	0.76	0.79	2.6	2.8
Hexane	0.76	3.1	2.7	11
2-Butanone (Methyl Ethyl Ketone)	0.76	3.0	2.2	8.9
Tetrahydrofuran	0.76	0.79	2.2	2.3
Chloroform	0.76	4.2	3.7	20
Cyclohexane	0.76	2.3	2.6	8.0
2,2,4-Trimethylpentane	0.76	2.1	3.6	9.9
Benzene	0.76	3.3	2.4	11

Client Sample ID: SB-9-V

Lab ID#: 0602255-03A

Heptane	0.76	3.3	3.1	14
Toluene	0.76	74	2.9	280
Tetrachloroethene	0.76	4.4	5.2	30
Ethyl Benzene	0.76	12	3.3	54
m,p-Xylene	0.76	69	3.3	300
o-Xylene	0.76	19	3.3	84
Propylbenzene	0.76	2.8	3.7	14
4-Ethyltoluene	0.76	16	3.7	79
1,3,5-Trimethylbenzene	0.76	5.3	3.7	26
1,2,4-Trimethylbenzene	0.76	17	3.7	84

Client Sample ID: SB-10-V

Lab ID#: 0602255-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Ethanol	3.0	21	5.7	39
Acetone	3.0	120	7.2	270
2-Propanol	3.0	8.3	7.5	20
Hexane	0.76	2.1	2.7	7.3
2-Butanone (Methyl Ethyl Ketone)	0.76	8.0	2.2	23
Chloroform	0.76	2.6	3.7	13
Cyclohexane	0.76	1.3	2.6	4.6
2,2,4-Trimethylpentane	0.76	0.86	3.6	4.0
Benzene	0.76	2.0	2.4	6.5
Heptane	0.76	2.2	3.1	9.0
Toluene	0.76	56	2.9	210
Tetrachloroethene	0.76	34	5.2	230
Ethyl Benzene	0.76	8.8	3.3	38
m,p-Xylene	0.76	55	3.3	240
o-Xylene	0.76	15	3.3	63
Propylbenzene	0.76	2.3	3.7	11
4-Ethyltoluene	0.76	14	3.7	67
1,3,5-Trimethylbenzene	0.76	4.4	3.7	22
1,2,4-Trimethylbenzene	0.76	17	3.7	86

Client Sample ID: Ambient Blank

Lab ID#: 0602255-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Ethanol	3.1	11	5.8	20
Acetone	3.1	5.0	7.4	12
2-Propanol	3.1	18	7.6	44
Carbon Disulfide	0.78	0.96	2.4	3.0
Toluene	0.78	3.2	2.9	12
m,p-Xylene	0.78	2.0	3.4	8.7
4-Ethyltoluene	0.78	1.1	3.8	5.2
1,2,4-Trimethylbenzene	0.78	1.6	3.8	7.6

Client Sample ID: Trip Blank

Lab ID#: 0602255-06A No Detections Were Found.

-

Client Sample ID: SB-4-V

Lab ID#: 0602255-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021624		Date of Collection:	2/6/06
Dil. Factor:	11.9	Date of Analysis: 2/17/06 03:45 AM		
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	6.0	Not Detected	29	Not Detected
Freon 114	6.0	Not Detected	42	Not Detected
Chloromethane	24	Not Detected	49	Not Detected
Vinyl Chloride	6.0	Not Detected	15	Not Detected
1,3-Butadiene	6.0	Not Detected	13	Not Detected
Bromomethane	6.0	Not Detected	23	Not Detected
Chloroethane	6.0	Not Detected	16	Not Detected
Freon 11	6.0	Not Detected	33	Not Detected
Ethanol	24	Not Detected	45	Not Detected
Freon 113	6.0	Not Detected	46	Not Detected
1,1-Dichloroethene	6.0	Not Detected	24	Not Detected
Acetone	24	Not Detected	56	Not Detected
2-Propanol	24	Not Detected	58	Not Detected
Carbon Disulfide	6.0	Not Detected	18	Not Detected
3-Chloropropene	24	Not Detected	74	Not Detected
Methylene Chloride	6.0	Not Detected	21	Not Detected
Methyl tert-butyl ether	6.0	Not Detected	21	Not Detected
trans-1,2-Dichloroethene	6.0	Not Detected	24	Not Detected
Hexane	6.0	Not Detected	21	Not Detected
1,1-Dichloroethane	6.0	Not Detected	24	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.0	Not Detected	18	Not Detected
cis-1,2-Dichloroethene	6.0	Not Detected	24	Not Detected
Tetrahydrofuran	6.0	Not Detected	18	Not Detected
Chloroform	6.0	Not Detected	29	Not Detected
1,1,1-Trichloroethane	6.0	Not Detected	32	Not Detected
Cyclohexane	6.0	Not Detected	20	Not Detected
Carbon Tetrachloride	6.0	Not Detected	37	Not Detected
2,2,4-Trimethylpentane	6.0	Not Detected	28	Not Detected
Benzene	6.0	Not Detected	19	Not Detected
1,2-Dichloroethane	6.0	Not Detected	24	Not Detected
Heptane	6.0	Not Detected	24	Not Detected
Trichloroethene	6.0	Not Detected	32	Not Detected
1,2-Dichloropropane	6.0	Not Detected	27	Not Detected
1,4-Dioxane	24	Not Detected	86	Not Detected
Bromodichloromethane	6.0	Not Detected	40	Not Detected
cis-1,3-Dichloropropene	6.0	Not Detected	27	Not Detected
4-Methyl-2-pentanone	6.0	Not Detected	24	Not Detected
Toluene	6.0	46	22	170
trans-1,3-Dichloropropene	6.0	Not Detected	27	Not Detected
1,1,2-Trichloroethane	6.0	Not Detected	32	Not Detected
Tetrachloroethene	6.0	2000	40	13000
2-Hexanone	24	Not Detected	97	Not Detected

Client Sample ID: SB-4-V

Lab ID#: 0602255-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021624	Date of Collection: 2/6/06		
Dil. Factor:	11.9	Date of Analysis: 2/17/06 03:4		
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	6.0	Not Detected	51	Not Detected
1,2-Dibromoethane (EDB)	6.0	Not Detected	46	Not Detected
Chlorobenzene	6.0	Not Detected	27	Not Detected
Ethyl Benzene	6.0	7.9	26	34
m,p-Xylene	6.0	-43	26	190
o-Xylene	6.0	11	26	46
Styrene	6.0	Not Detected	25	Not Detected
Bromoform	6.0	Not Detected	62	Not Detected
Cumene	6.0	Not Detected	29	Not Detected
1,1,2,2-Tetrachloroethane	6.0	Not Detected	41	Not Detected
Propylbenzene	6.0	Not Detected	29	Not Detected
4-Ethyltoluene	6.0	10	29	51
1,3,5-Trimethylbenzene	6.0	Not Detected	29	Not Detected
1,2,4-Trimethylbenzene	6.0	12	29	59
1,3-Dichlorobenzene	6.0	Not Detected	36	Not Detected
1,4-Dichlorobenzene	6.0	Not Detected	36	Not Detected
alpha-Chlorotoluene	6.0	Not Detected	· 31	Not Detected
1,2-Dichlorobenzene	6.0	Not Detected	36	Not Detected
1,2,4-Trichlorobenzene	24	Not Detected	180	Not Detected
Hexachlorobutadiene	24	Not Detected	250	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SB-4-V-D

Lab ID#: 0602255-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5021625Date of Collection:15.2Date of Analysis: 2			2/6/06 2/17/06 04:08 AM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	7.6	Not Detected	38	Not Detected	
Freon 114	7.6	Not Detected	53	Not Detected	
Chloromethane	30	Not Detected	63	Not Detected	
Vinyl Chloride	7.6	Not Detected	19	Not Detected	
1,3-Butadiene	7.6	Not Detected	17	Not Detected	
Bromomethane	7.6	Not Detected	30	Not Detected	
Chloroethane	7.6	Not Detected	20	Not Detected	
Freon 11	7.6	Not Detected	43	Not Detected	
Ethanol	30	Not Detected	57	Not Detected	
Freon 113	7.6	Not Detected	58	Not Detected	
1,1-Dichloroethene	7.6	Not Detected	30	Not Detected	
Acetone	30	Not Detected	72	Not Detected	
2-Propanol	30	Not Detected	75	Not Detected	
Carbon Disulfide	7.6	Not Detected	24	Not Detected	
3-Chloropropene	30	Not Detected	95	Not Detected	
Methylene Chloride	7.6	Not Detected	26	Not Detected	
Methyl tert-butyl ether	7.6	Not Detected	27	Not Detected	
trans-1,2-Dichloroethene	7.6	Not Detected	30	Not Detected	
Hexane	7.6	Not Detected	27	Not Detected	
1,1-Dichloroethane	7.6	Not Detected	31	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	7.6	Not Detected	22	Not Detected	
cis-1,2-Dichloroethene	7.6	Not Detected	30	Not Detected	
Tetrahydrofuran	7.6	Not Detected	22	Not Detected	
Chloroform	7.6	Not Detected	37	Not Detected	
1,1,1-Trichloroethane	7.6	Not Detected	41	Not Detected	
Cyclohexane	7.6	Not Detected	26	Not Detected	
Carbon Tetrachloride	7.6	Not Detected	48	Not Detected	
2,2,4-Trimethylpentane	7.6	Not Detected	36	Not Detected	
Benzene	7.6	Not Detected	24	Not Detected	
1,2-Dichloroethane	7.6	Not Detected	31	Not Detected	
Heptane	7.6	Not Detected	31	Not Detected	
Trichloroethene	7.6	Not Detected	41	Not Detected	
1,2-Dichloropropane	7.6	Not Detected	35	Not Detected	
1,4-Dioxane	30	Not Detected	110	Not Detected	
Bromodichloromethane	7.6	Not Detected	51	Not Detected	
cis-1,3-Dichloropropene	7.6	Not Detected	34	Not Detected	
4-Methyl-2-pentanone	7.6	Not Detected	31	Not Detected	
Toluene	7.6	16	29	50	
rans-1,3-Dichloropropene	7.6	Not Detected	23	Not Detected	
1,1.2-Trichloroethane	7.6	Not Detected	J-4 / 1	Not Detected	
Tetrachloroethene	7.6	2400	50	16000	
2-Hexanone	30	Not Detected	120	Not Detected	
	50		120	NUL Delected	

Client Sample ID: SB-4-V-D

Lab ID#: 0602255-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021625	Date of Collection: 2/6/06		
Dil. Factor:	15.2	Date of Analysis: 2/17/06 04		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	7.6	Not Detected	65	Not Detected
1,2-Dibromoethane (EDB)	7.6	Not Detected	58	Not Detected
Chlorobenzene	7.6	Not Detected	35	Not Detected
Ethyl Benzene	7.6	Not Detected	33	Not Detected
m,p-Xylene	7.6	-19	33	83
o-Xylene	7.6	Not Detected	33	Not Detected
Styrene	7.6	Not Detected	32	Not Detected
Bromoform	7.6	Not Detected	78	Not Detected
Cumene	7.6	Not Detected	37	Not Detected
1,1,2,2-Tetrachloroethane	7.6	Not Detected	52	Not Detected
Propylbenzene	7.6	Not Detected	37	Not Detected
4-Ethyltoluene	7.6	Not Detected	37	Not Detected
1,3,5-Trimethylbenzene	7.6	Not Detected	37	Not Detected
1,2,4-Trimethylbenzene	7.6	Not Detected	37	Not Detected
1,3-Dichlorobenzene	7.6	Not Detected	46	Not Detected
1,4-Dichlorobenzene	7.6	Not Detected	46	Not Detected
alpha-Chlorotoluene	7.6	Not Detected	39	Not Detected
1,2-Dichlorobenzene	7.6	Not Detected	46	Not Detected
1,2,4-Trichlorobenzene	30	Not Detected	220	Not Detected
Hexachlorobutadiene	30	Not Detected	320	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SB-4-V-D Duplicate

Lab ID#: 0602255-02AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021626		Date of Collection:	2/6/06	
Dil. Factor:	15.2		Date of Analysis: 2/17/06 04:31 AM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	7.6	Not Detected	38	Not Detected	
Freon 114	7.6	Not Detected	53	Not Detected	
Chloromethane	30	Not Detected	63	Not Detected	
Vinyl Chloride	7.6	Not Detected	19	Not Detected	
1,3-Butadiene	7.6	Not Detected	17	Not Detected	
Bromomethane	7.6	Not Detected	30	Not Detected	
Chloroethane	7.6	Not Detected	20	Not Detected	
Freon 11	7.6	Not Detected	43	Not Detected	
Ethanol	30	Not Detected	57	Not Detected	
Freon 113	7.6	Not Detected	58	Not Detected	
1,1-Dichloroethene	7.6	Not Detected	30	Not Detected	
Acetone	30	Not Detected	72	Not Detected	
2-Propanol	30	Not Detected	75	Not Detected	
Carbon Disulfide	7.6	Not Detected	24	Not Detected	
3-Chloropropene	30	Not Detected	95	Not Detected	
Methylene Chloride	7.6	Not Detected	26	Not Detected	
Methyl tert-butyl ether	7.6	Not Detected	27	Not Detected	
trans-1,2-Dichloroethene	7.6	Not Detected	30	Not Detected	
Hexane	7.6	Not Detected	27	Not Detected	
1,1-Dichloroethane	7.6	Not Detected	31	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	7.6	Not Detected	22	Not Detected	
cis-1,2-Dichloroethene	7.6	Not Detected	30	Not Detected	
Tetrahydrofuran	7.6	Not Detected	22	Not Detected	
Chloroform	7.6	Not Detected	37	Not Detected	
1,1,1-Trichloroethane	7.6	Not Detected	41	Not Detected	
Cyclohexane	7.6	Not Detected	26	Not Detected	
Carbon Tetrachloride	7.6	Not Detected	48	Not Detected	
2,2,4-Trimethylpentane	7.6	Not Detected	36	Not Detected	
Benzene	7.6	Not Detected	24	Not Detected	
1,2-Dichloroethane	7.6	Not Detected	31	Not Detected	
Heptane	7.6	Not Detected	31	Not Detected	
Trichloroethene	7.6	Not Detected	41	Not Detected	
1,2-Dichloropropane	7.6	Not Detected	35	Not Detected	
1,4-Dioxane	30	Not Detected	110	Not Detected	
Bromodichloromethane	7.6	Not Detected	51	Not Detected	
cis-1,3-Dichloropropene	7.6	Not Detected	34	Not Detected	
4-Methyl-2-pentanone	7.6	Not Detected	31	Not Detected	
Toluene	7.6	17	29	64	
trans-1,3-Dichloropropene	7.6	Not Detected	34	Not Detected	
1,1,2-Trichloroethane	7.6	Not Detected	41	Not Detected	
Tetrachloroethene	7.6	2400	52	16000	
2-Hexanone	30	Not Detected	120	Not Detected	

Client Sample ID: SB-4-V-D Duplicate

Lab ID#: 0602255-02AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021626		Date of Collection:	2/6/06
Dil. Factor:	15.2	Date of Analysis: 2/17/06 04:3		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	7.6	Not Detected	65	Not Detected
1,2-Dibromoethane (EDB)	7.6	Not Detected	58	Not Detected
Chlorobenzene	7.6	Not Detected	35	Not Detected
Ethyl Benzene	7.6	Not Detected	33	Not Detected
m,p-Xylene	7.6	-17	33	76
o-Xylene	7.6	Not Detected	33	Not Detected
Styrene	7.6	Not Detected	32	Not Detected
Bromoform	7.6	Not Detected	78	Not Detected
Cumene	7.6	Not Detected	37	Not Detected
1,1,2,2-Tetrachloroethane	7.6	Not Detected	52	Not Detected
Propylbenzene	7.6	Not Detected	37	Not Detected
4-Ethyltoluene	7.6	Not Detected	37	Not Detected
1,3,5-Trimethylbenzene	7.6	Not Detected	37	Not Detected
1,2,4-Trimethylbenzene	7.6	Not Detected	37	Not Detected
1,3-Dichlorobenzene	7.6	Not Detected	46	Not Detected
1,4-Dichlorobenzene	7.6	Not Detected	46	Not Detected
alpha-Chlorotoluene	7.6	Not Detected	39	Not Detected
1,2-Dichlorobenzene	7.6	Not Detected	46	Not Detected
1,2,4-Trichlorobenzene	30	Not Detected	220	Not Detected
Hexachlorobutadiene	30	Not Detected	320	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	101	70-130
Client Sample ID: SB-9-V

Lab ID#: 0602255-03A

File Name:	5021627		Date of Collection:	2/6/06
Dil. Factor:	1.52		Date of Analysis: 2	2/17/06 05:00 AM
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.76	Not Detected	3.8	Not Detected
Freon 114	0.76	Not Detected	5.3	Not Detected
Chloromethane	3.0	Not Detected	6.3	Not Detected
Vinyl Chloride	0.76	Not Detected	1.9	Not Detected
1,3-Butadiene	0.76	Not Detected	1.7	Not Detected
Bromomethane	0.76	Not Detected	3.0	Not Detected
Chloroethane	0.76	Not Detected	2.0	Not Detected
Freon 11	0.76	Not Detected	4.3	Not Detected
Ethanol	3.0	44	5.7	83
Freon 113	0.76	Not Detected	5.8	Not Detected
1,1-Dichloroethene	0.76	Not Detected	3.0	Not Detected
Acetone	3.0	31	7.2	73
2-Propanol	3.0	8.8	7.5	22
Carbon Disulfide	0.76	Not Detected	2.4	Not Detected
3-Chloropropene	3.0	Not Detected	9.5	Not Detected
Methylene Chloride	0.76	0.79	2.6	2.8
Methyl tert-butyl ether	0.76	Not Detected	2.7	Not Detected
trans-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
Hexane	0.76	3.1	2.7	11
1,1-Dichloroethane	0.76	Not Detected	3.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.76	3.0	2.2	8.9
cis-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
Tetrahydrofuran	0.76	0.79	2.2	2.3
Chloroform	0.76	4.2	3.7	20
1,1,1-Trichloroethane	0.76	Not Detected	4.1	Not Detected
Cyclohexane	0.76	2.3	2.6	8.0
Carbon Tetrachloride	0.76	Not Detected	4.8	Not Detected
2,2,4-Trimethylpentane	0.76	2.1	3.6	9.9
Benzene	0.76	3.3	2.4	11
1,2-Dichloroethane	0.76	Not Detected	3.1	Not Detected
Heptane	0.76	3.3	3.1	14
Trichloroethene	0.76	Not Detected	4.1	Not Detected
1,2-Dichloropropane	0.76	Not Detected	3.5	Not Detected
1,4-Dioxane	3.0	Not Detected	11	Not Detected
Bromodichloromethane	0.76	Not Detected	5.1	Not Detected
cis-1,3-Dichloropropene	0.76	Not Detected	3.4	Not Detected
4-Methyl-2-pentanone	0.76	Not Detected	3.1	Not Detected
Toluene	0.76	74	2.9	280
trans-1,3-Dichloropropene	0.76	Not Detected	3.4	Not Detected
1,1,2-Trichloroethane	0.76	Not Detected	4.1	Not Detected
Tetrachloroethene	0.76	4.4	5.2	30
2-Hexanone	3.0	Not Detected	12	Not Detected

.

Client Sample ID: SB-9-V

Lab ID#: 0602255-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021627		Date of Collection:	2/6/06
Dil. Factor:	1.52		Date of Analysis: 2	2/17/06 05:00 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	0.76	Not Detected	6.5	Not Detected
1,2-Dibromoethane (EDB)	0.76	Not Detected	5.8	Not Detected
Chlorobenzene	0.76	Not Detected	3.5	Not Detected
Ethyl Benzene	0.76	12	3.3	54
m,p-Xylene	0.76	-69	3.3	300
o-Xylene	0.76	19	3.3	84
Styrene	0.76	Not Detected	3.2	Not Detected
Bromoform	0.76	Not Detected	7.8	Not Detected
Cumene	0.76	Not Detected	3.7	Not Detected
1,1,2,2-Tetrachloroethane	0.76	Not Detected	5.2	Not Detected
Propylbenzene	0.76	2.8	3.7	14
4-Ethyltoluene	0.76	16	3.7	79
1,3,5-Trimethylbenzene	0.76	5.3	3.7	26
1,2,4-Trimethylbenzene	0.76	17	3.7	84
1,3-Dichlorobenzene	0.76	Not Detected	4.6	Not Detected
1,4-Dichlorobenzene	0.76	Not Detected	4.6	Not Detected
alpha-Chlorotoluene	0.76	Not Detected	3.9	Not Detected
1,2-Dichlorobenzene	0.76	Not Detected	4.6	Not Detected
1,2,4-Trichlorobenzene	3.0	Not Detected	22	Not Detected
Hexachlorobutadiene	3.0	Not Detected	32	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SB-10-V

Lab ID#: 0602255-04A

File Name:	5021628		Date of Collection:	2/6/06
Dil. Factor:	1.52		Date of Analysis: 2	2/17/06 05:30 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.76	Not Detected	3.8	Not Detected
Freon 114	0.76	Not Detected	5.3	Not Detected
Chloromethane	3.0	Not Detected	6.3	Not Detected
Vinyl Chloride	0.76	Not Detected	1.9	Not Detected
1,3-Butadiene	0.76	Not Detected	1.7	Not Detected
Bromomethane	0.76	Not Detected	3.0	Not Detected
Chloroethane	0.76	Not Detected	2.0	Not Detected
Freon 11	0.76	Not Detected	4.3	Not Detected
Ethanol	3.0	21	5.7	39
Freon 113	0.76	Not Detected	5.8	Not Detected
1,1-Dichloroethene	0.76	Not Detected	3.0	Not Detected
Acetone	3.0	120	7.2	270
2-Propanol	3.0	8.3	7.5	20
Carbon Disulfide	0.76	Not Detected	2.4	Not Detected
3-Chloropropene	3.0	Not Detected	9.5	Not Detected
Methylene Chloride	0.76	Not Detected	2.6	Not Detected
Methyl tert-butyl ether	0.76	Not Detected	2.7	Not Detected
trans-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
Hexane	0.76	2.1	2.7	7.3
1,1-Dichloroethane	0.76	Not Detected	3.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.76	8.0	2.2	23
cis-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
Tetrahydrofuran	0.76	Not Detected	2.2	Not Detected
Chloroform	0.76	2.6	3.7	13
1,1,1-Trichloroethane	0.76	Not Detected	4.1	Not Detected
Cyclohexane	0.76	1.3	2.6	4.6
Carbon Tetrachloride	0.76	Not Detected	4.8	Not Detected
2,2,4-Trimethylpentane	0.76	0.86	3.6	4.0
Benzene	0.76	2.0	2.4	6.5
1,2-Dichloroethane	0.76	Not Detected	3.1	Not Detected
Heptane	0.76	2.2	3.1	9.0
Trichloroethene	0.76	Not Detected	4.1	Not Detected
1,2-Dichloropropane	0.76	Not Detected	3.5	Not Detected
1,4-Dioxane	3.0	Not Detected	11	Not Detected
Bromodichloromethane	0.76	Not Detected	5.1	Not Detected
cis-1,3-Dichloropropene	0.76	Not Detected	3.4	Not Detected
4-Methyl-2-pentanone	0.76	Not Detected	3.1	Not Detected
loluene	0.76	56	2.9	210
trans-1,3-Dichloropropene	0.76	Not Detected	3.4	Not Detected
1,1,2-I richloroethane	0.76	Not Detected	4.1	Not Detected
l etrachloroethene	0.76	34	5.2	230
2-Hexanone	3.0	Not Detected	12	Not Detected

Client Sample ID: SB-10-V

Lab ID#: 0602255-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021628		Date of Collection:	2/6/06
Dil. Factor:	1.52		Date of Analysis: 2	2/17/06 05:30 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	0.76	Not Detected	6.5	Not Detected
1,2-Dibromoethane (EDB)	0.76	Not Detected	5.8	Not Detected
Chlorobenzene	0.76	Not Detected	3.5	Not Detected
Ethyl Benzene	0.76	8.8	3.3	38
m,p-Xylene	0.76	-55	3.3	240
o-Xylene	0.76	15	3.3	63
Styrene	0.76	Not Detected	3.2	Not Detected
Bromoform	0.76	Not Detected	7.8	Not Detected
Cumene	0.76	Not Detected	3.7	Not Detected
1,1,2,2-Tetrachloroethane	0.76	Not Detected	5.2	Not Detected
Propylbenzene	0.76	2.3	3.7	11
4-Ethyltoluene	0.76	14	3.7	67
1,3,5-Trimethylbenzene	0.76	4.4	3.7	22
1,2,4-Trimethylbenzene	0.76	17	3.7	86
1,3-Dichlorobenzene	0.76	Not Detected	4.6	Not Detected
1,4-Dichlorobenzene	0.76	Not Detected	4.6	Not Detected
alpha-Chlorotoluene	0.76	Not Detected	3.9	Not Detected
1,2-Dichlorobenzene	0.76	Not Detected	4.6	Not Detected
1,2,4-Trichlorobenzene	3.0	Not Detected	22	Not Detected
Hexachlorobutadiene	3.0	Not Detected	32	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: Ambient Blank

Lab ID#: 0602255-05A

in the

File Name:	5021629		Date of Collection:	2/6/06
Dil. Factor:	1.55	Date of Analysis: 2/1		2/17/06 06:00 AM
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.78	Not Detected	3.8	Not Detected
Freon 114	0.78	Not Detected	5.4	Not Detected
Chloromethane	3.1	Not Detected	6.4	Not Detected
Vinyl Chloride	0.78	Not Detected	2.0	Not Detected
1,3-Butadiene	0.78	Not Detected	1.7	Not Detected
Bromomethane	0.78	Not Detected	3.0	Not Detected
Chloroethane	0.78	Not Detected	2.0	Not Detected
Freon 11	0.78	Not Detected	4.4	Not Detected
Ethanol	3.1	11	5.8	20
Freon 113	0.78	Not Detected	5.9	Not Detected
1,1-Dichloroethene	0.78	Not Detected	3.1	Not Detected
Acetone	3.1	5.0	7.4	12
2-Propanol	3.1	18	7.6	44
Carbon Disulfide	0.78	0.96	2.4	3.0
3-Chloropropene	3.1	Not Detected	9.7	Not Detected
Methylene Chloride	0.78	Not Detected	2.7	Not Detected
Methyl tert-butyl ether	0.78	Not Detected	2.8	Not Detected
trans-1,2-Dichloroethene	0.78	Not Detected	3.1	Not Detected
Hexane	0.78	Not Detected	2.7	Not Detected
1,1-Dichloroethane	0.78	Not Detected	3.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.78	Not Detected	2.3	Not Detected
cis-1,2-Dichloroethene	0.78	Not Detected	3.1	Not Detected
Tetrahydrofuran	0.78	Not Detected	2.3	Not Detected
Chloroform	0.78	Not Detected	3.8	Not Detected
1,1,1-Trichloroethane	0.78	Not Detected	4.2	Not Detected
Cyclohexane	0.78	Not Detected	2.7	Not Detected
Carbon Tetrachloride	0.78	Not Detected	4.9	Not Detected
2,2,4-Trimethylpentane	0.78	Not Detected	3.6	Not Detected
Benzene	0.78	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.78	Not Detected	3.1	Not Detected
Heptane	0.78	Not Detected	3.2	Not Detected
Trichloroethene	0.78	Not Detected	4.2	Not Detected
1,2-Dichloropropane	0.78	Not Detected	3.6	Not Detected
1,4-Dioxane	3.1	Not Detected	11	Not Detected
Bromodichloromethane	0.78	Not Detected	5.2	Not Detected
cis-1,3-Dichloropropene	0.78	Not Detected	3.5	Not Detected
4-Methyl-2-pentanone	0.78	Not Detected	3.2	Not Detected
Toluene	0.78	3.2	2.9	12
rans-1,3-Dichloropropene	0.78	Not Detected	3.5	Not Detected
1,1,2-Trichloroethane	0.78	Not Detected	4.2	Not Detected
Tetrachloroethene	0.78	Not Detected	5.2	Not Detected
2-Hexanone	3.1	Not Detected	13	Not Detected

- --- -

Client Sample ID: Ambient Blank

Lab ID#: 0602255-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5021629 1.55	5021629 Date of Col 1.55 Date of Anz		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	0.78	Not Detected	6.6	Not Detected
1,2-Dibromoethane (EDB)	0.78	Not Detected	6.0	Not Detected
Chlorobenzene	0.78	Not Detected	3.6	Not Detected
Ethyl Benzene	0.78	Not Detected	3.4	Not Detected
m,p-Xylene	0.78	2.0	3.4	8.7
o-Xylene	0.78	Not Detected	3.4	Not Detected
Styrene	0.78	Not Detected	3.3	Not Detected
Bromoform	0.78	Not Detected	8.0	Not Detected
Cumene	0.78	Not Detected	3.8	Not Detected
1,1,2,2-Tetrachloroethane	0.78	Not Detected	5.3	Not Detected
Propylbenzene	0.78	Not Detected	3.8	Not Detected
4-Ethyltoluene	0.78	1.1	3.8	5.2
1,3,5-Trimethylbenzene	0.78	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.78	1.6	3.8	7.6
1,3-Dichlorobenzene	0.78	Not Detected	4.6	Not Detected
1,4-Dichlorobenzene	0.78	Not Detected	4.6	Not Detected
alpha-Chlorotoluene	0.78	Not Detected	4.0	Not Detected
1,2-Dichlorobenzene	0.78	Not Detected	4.6	Not Detected
1,2,4-Trichlorobenzene	3.1	Not Detected	23	Not Detected
Hexachlorobutadiene	3.1	Not Detected	33	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: Trip Blank

Lab ID#: 0602255-06A

· · · · · · · · ·

File Name: Dil. Factor:	5021630		Date of Collection:	2/6/06
	1.00		Date of Analysis:	2/17/06 06:29 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	0.50	Not Detected	1.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Client Sample ID: Trip Blank

Lab ID#: 0602255-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021630		Date of Collection:	2/6/06
Dil. Factor:	1.00		Date of Analysis: 2	2/17/06 06:29 AM
Compound	R¤t. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	91	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: Lab Blank

Lab ID#: 0602255-07A

File Name: Dil. Factor:	5021606 1.00		Date of Collection: N Date of Analysis: 2	IA /16/06 03:20 PM
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	0.50	Not Detected	1.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank

Lab ID#: 0602255-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021606	Date of Collection: NA		
Dil. Factor:	1.00		Date of Analysis: 2	2/16/06 03:20 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: CCV

Lab ID#: 0602255-08A

File Name:	5021602	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/16/06 12:31 PM

Compound	%Recovery
Freon 12	95
Freon 114	105
Chloromethane	105
Vinyl Chloride	92
1,3-Butadiene	88
Bromomethane	103
Chloroethane	91
Freon 11	108
Ethanol	89
Freon 113	107
1,1-Dichloroethene	99
Acetone	90
2-Propanol	93
Carbon Disulfide	99
3-Chloropropene	88
Methylene Chloride	94
Methyl tert-butyl ether	76
trans-1,2-Dichloroethene	94
Hexane	95
1,1-Dichloroethane	96
2-Butanone (Methyl Ethyl Ketone)	106
cis-1,2-Dichloroethene	98
Tetrahydrofuran	89
Chloroform	103
1,1,1-Trichloroethane	104
Cyclohexane	100
Carbon Tetrachloride	113
2,2,4-Trimethylpentane	93
Benzene	95
1,2-Dichloroethane	109
Heptane	110
Trichloroethene	106
1,2-Dichloropropane	98
1,4-Dioxane	100
Bromodichloromethane	108
cis-1,3-Dichloropropene	103
4-Methyl-2-pentanone	100
Toluene	104
trans-1,3-Dichloropropene	105
1,1,2-Trichloroethane	104
Tetrachloroethene	109
2-Hexanone	92

Client Sample ID: CCV

Lab ID#: 0602255-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021602	Da	ate of Collection: NA	
Dil. Factor:	1.00	Da	ate of Analysis: 2/16	5/06 12:31 PM

Compound	%Recovery
Dibromochloromethane	113
1,2-Dibromoethane (EDB)	108
Chlorobenzene	104
Ethyl Benzene	104
m,p-Xylene	111
o-Xylene	107
Styrene	111
Bromoform	116
Cumene	110
1,1,2,2-Tetrachloroethane	104
Propylbenzene	104
4-Ethyltoluene	112
1,3,5-Trimethylbenzene	106
1,2,4-Trimethylbenzene	110
1,3-Dichlorobenzene	105
1,4-Dichlorobenzene	105
alpha-Chlorotoluene	114
1,2-Dichlorobenzene	111
1,2,4-Trichlorobenzene	101
Hexachlorobutadiene	103

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS

Lab ID#: 0602255-09A

File Name:	5021603	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/16/06 12:54 PM

Compound	%Recovery
Freon 12	102
Freon 114	112
Chloromethane	82
Vinyl Chloride	99
1,3-Butadiene	107
Bromomethane	113
Chloroethane	100
Freon 11	112
Ethanol	99
Freon 113	116
1,1-Dichloroethene	100
Acetone	99
2-Propanol	101
Carbon Disulfide	113
3-Chloropropene	90
Methylene Chloride	97
Methyl tert-butyl ether	100
trans-1,2-Dichloroethene	103
Hexane	101
1,1-Dichloroethane	100
2-Butanone (Methyl Ethyl Ketone)	117
cis-1,2-Dichloroethene	101
Tetrahydrofuran	91
Chloroform	105
1,1,1-Trichloroethane	105
Cyclohexane	106
Carbon Tetrachloride	112
2,2,4-Trimethylpentane	95
Benzene	100
1,2-Dichloroethane	108
Heptane	108
Trichloroethene	107
1,2-Dichloropropane	100
1,4-Dioxane	104
Bromodichloromethane	102
cis-1,3-Dichloropropene	100
4-Methyl-2-pentanone	102
Toluene	106
trans-1,3-Dichloropropene	88
1,1,2-Trichloroethane	105
Tetrachloroethene	108
2-Hexanone	92

Client Sample ID: LCS

Lab ID#: 0602255-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5021603 Date of Collection: NA	
Dil. Factor:	1.00 Date of Analysis: 2/16/06 1	2.54 PM

Compound	%Recoverv
Dibromochloromethane	103
1,2-Dibromoethane (EDB)	107
Chlorobenzene	106
Ethyl Benzene	105
m,p-Xylene	110
o-Xylene	99
Styrene	101
Bromoform	90
Cumene	109
1,1,2,2-Tetrachloroethane	102
Propylbenzene	107
4-Ethyltoluene	110
1,3,5-Trimethylbenzene	101
1,2,4-Trimethylbenzene	83
1,3-Dichlorobenzene	101
1,4-Dichlorobenzene	101
alpha-Chlorotoluene	110
1,2-Dichlorobenzene	104
1,2,4-Trichlorobenzene	94
Hexachlorobutadiene	96

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	107	70-130	
4-Bromofluorobenzene	101	70-130	

CHAIN-OF CLISTORY RECORD	Sample Transpor Relinguishing signature with all applicable local, of any kind Air Toxics shipping of these samp	tation Notice : on this docume State, Federal, m : Limited assume ples, Falinquishic	t indicates that sample is being shipped in complian stional, and international laws, ragulations and ordinanc ⇒ no flability with respect to the collection, Fandling g signature also indicates agreement to hold harmle	∞ 180 BLUE ≋ FOLS(ज (916) 985-1	RAVINE ROAD, SUITE B DM, CA 95630-4719 000 FAX (916) 985-1020
Man-OF-COSTODY RECORD	defand, and indemnify / to the collection, handli	Air Toxice Limited ing, or shipping o	against any claim, demend, or action, of any kind, relat samples, D.O.T. Hot ine (800) 467-4922.	ed	Pageof
Constact Person Harlan Friger	1 DAILAD File	icon Hoster	Project Info:	Turn Around Time:	LED LAS ONLY
Address 2500 Genivo Diablo #200 Ciprilla Wil	Hirekon (A	T- aucor	P.D. #_100281	Mormal	Thessurized by,
Phone (035)083-6000 x 132 Fad	(125) 383-61	20-1011	Project # 115876	C Rush	Date: <u>And Nor</u> D.
Collected by: (signature) Adrian Angel;	alia	1	Project NEMe Main Street Prop.		Pressurization Gas:
				Canis	ter Pressure/Vacuum
	Can# Date	Time	Analyses Requested	Initial	Final Receipt Final
CAR SB-J-V	12600	4308	+0-15	+255	+54 4.014 5.00
	22000	5-00P	TO-15	+254	+54 3,5%
SKALLED LON	3 216 06	10:55H	-T0-13	+254	+SH 3544
	4 216 00	1:05P	TO-IS	1+2 <i>5</i> 15	+54 354
and the sent Dlank	6 216 06		to-15		AD HA AL
WAR WIP BLOOKE	52600				4 1215 4 68
2 (3 A 20)	1				
	<u>۲</u>		-		
Belingstished by feignatural Date/Time	1				
1/1 2/2/8/06/3	28P Hecaived b	y: (Signature)	Date/Time Notes:		
Relinquished by: (signature) Date/Time	Received by	(signature)	Date/Time		
Delland block					
Reinquished by: (signature) Data/Time	Received by	y: (signature)	Date/Time		
Shipper Name	ir Bill #			·	
Lab. 141 2921			S Condition Gustomer Se	eals Intact? -	Work Order #
Only 06149	227 2 J	1_1U-4	GIDOC Yes No	None 3	0602255