ROESSLER INVESTMENT GROUP

COMMERCIAL BROKERAGE

RECEIVED

By Alameda County Environmental Health 10:53 am, Jul 23, 2015

Ms. Karel Detterman Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 9502-6577

Subject:

Crow Canyon Dry Cleaners 7272 San Ramon Road Dublin, CA RO# 000283

Dear Ms. Detterman:

This enclosed report has been prepared by Endpoint Consulting, Inc. on behalf of the Burrows Company, Dwight & Carleton Perry, Gabriel H. Chui & Lai H. Trust, the Lee Family, Nam Sun and Seung Hee Park, and the Raphel-Roessler Retail Group.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions, please contact Mr. Mehrdad Javaherian of Endpoint at 415-706-8935.

Sincerely,

am A. Reerl

James Roessler Roessler Investment Group 442 Post St, Ste 700 San Francisco, CA 94102 Phone: (415) 837-3722 Fax: (415) 837-3717 Email: Jim@RoesslerInvestmentGroup.com CA DRE #00339311

July 20, 2015

Ms. Karel Dettermen, P.G. Alameda County Health Care Services Agency (County) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Focused Site Reconnaissance and Sampling Activities in Support of Site Closure Crow Canyon Dry Cleaners 7272 San Ramon Road, Dublin, California (RO # 0002863)

Dear Ms. Dettermen:

Endpoint Consulting, Inc. (Endpoint) is pleased to present this brief letter report summarizing results of the site reconnaissance and sampling activities performed per the request of the County and in support of environmental closure at the above-referenced site. The activities performed corresponded specifically to those requested by the County during the April 14th 2015 meeting with representatives of the site's responsible parties, Endpoint, and the County. These activities included performing a utility survey to determine the presence and orientation of any utility lines located in between the site and the adjacent residential complex, estimation of the ground surface elevation change in the area between the dry cleaner and the adjacent residential complex, resampling of VM-9SS (the sole onsite well which has exhibited tetrachloroethylene [PCE] at a concentration slightly above the commercial/industrial ESL), and resampling of VM-10 (one of the three offsite wells nearest the residential complex and which had not been sampled since June 2014), and an estimation of potential vapor intrusion health risks (under commercial/industrial land use) resulting from potential exposure to PCE beneath the drycleaner building.

Utility and Ground Elevation Survey

Per the County's request, a utility survey was performed targeting the area between the Crow Canyon Dry Cleaners building and the residential complex located adjacent to the site (see Figure 1). Also, the change in ground surface elevation local to the area in between the residential complex and the dry cleaner was estimated using a hand-held GPS device.

Figure 1 depicts the distribution of utility lines identified during this survey, while Figure 2 depicts a schematic cross-section showing the transition in ground surface elevation between the residential complex and the dry cleaner building. As indicated, an estimated 10-foot decline in ground surface elevation occurs between the location of the nearest residential building and the dry cleaner building. Moreover, while gas and sewer lines do run near the offsite wells VM-11 and VM-12, these lines do not extend to (nor are at the same elevation as) locations closer to the site where higher levels of tetrachloroethylene (PCE) have been detected. Importantly, the PCE concentrations at all three offsite

wells nearest the residential complex (ie., VM-10 through VM-12) have consistently remained below the PCE residential screening level of 210 ug/m³ (see Table 1).

Vapor Sampling

Per the County's request, a focused round of vapor sampling was conducted at source area vapor monitoring well VM-9SS, located within the dry cleaner building. Also per the request of the County, an additional vapor sample was collected at offsite vapor monitoring well VM-10, located along the walkway nearest to the residential building (see Figure 1). Vapor sampling protocols corresponded to Department of Toxic Substance Control (DTSC) guidelines as previously approved by the County and implemented by Endpoint at this site, and the laboratory analytical report is included herein as Attachment 1.

Table 1 summarizes the historical vapor monitoring results, including the above-referenced samples collected on April 16th (VM-9SS) and April 30th 2015 (VM-10), respectively. As indicated on the table, the tetrachloroethylene (PCE) concentration at MV-10 (120 ug/m³) marked a decline relative to the prior sample collected in June 2014 (10 months prior), and remains below the residential land use PCE screening level of 210 ug/m³ approved by the County for residential screening for the site.

The PCE concentration in source area well VM-9SS was reported at 3,600 ug/m³, marking a slight increase since the June 2014 round of sampling (10 months prior), but maintaining a general stable trend relative to the overall concentration trend exhibited at this well (see hydrograph below). As shown in the hydrograph below, this well remains the only well onsite and within the former source area which reports PCE at a concentration slightly above the commercial/industrial screening level.

Vapor Intrusion Risk Calculations

Per the County's request, the approach to the vapor intrusion risk assessment was documented and sent to the County for its review and approval via electronic mail on April 14, 2015; however, the County concluded that it would not provide comments on the vapor intrusion risk calculation approach until after the risk calculations were completed.

As a conservative measure, several conservative approaches were implemented in assessing the significance, if any, of the single exceedance of the PCE commercial/industrial ESL (at VM-9SS) remaining at the site. These approaches were as follow-

1) The latest detected concentration of PCE at VM-9SS was used to directly back-calculate from the ESL of 2,100 ug/m³ (which corresponds to a target cancer risk of 1 x 10⁻⁶) the PCE vapor intrusion health risk. The equation used for this back-calculation is as follows:

PCE Cancer Risk = $(3,600 \text{ ug/m}^3) \times (1 \times 10^{-6}) \div 2,100 \text{ ug/m}^3$

- 2) The latest detected concentration of PCE at VM-9SS was used in conjunction with the DTSC's latest version of the Johnson & Ettinger (J&E) Model incorporating the default building parameters and other conservative assumptions inherent to the J&E model, in order to estimate the resulting PCE health risk. The J&E model input and output data for this simulated risk calculation is included herein as Attachment 2.
- 3) The 95% UCL concentration of PCE throughout the period of record at VM-9SS was estimated and used in conjunction with the J&E model to estimate resulting vapor intrusion risks. The J&E model input and output data for this simulated risk calculation is included herein as Attachment 3.
- 4) The 95% UCL concentration of PCE was estimated using the latest round of sampling results from all source area monitoring wells at or immediately adjacent to the dry cleaner building. This concentration was then used in conjunction with the J&E model to obtain the vapor intrusion health risk estimate for PCE. The J&E model input and output data for this simulated risk calculation is included herein as Attachment 4.

The matrix below summarizes the conservatively estimated health risk using each of the abovereferenced methods. As indicated, the estimated health risk using the various methods ranges from 4.8 x 10^{-7} to 1.7×10^{-6} , all of which are either below or at the lower end of the risk management range defined by DTSC at 1×10^{-4} to 1×10^{-6} . This conservatively estimated risk is accordingly deemed acceptable under the current commercial/industrial use of the property. In evaluating the above results, it should be noted that VM-9SS and the former PCE source area are located in the very back of the dry cleaner building and immediately adjacent to the back door of the building, which remains open daily during operation of the dry cleaner; thereby significantly increasing the actual air exchange inside the building relative to that assumed conservatively by the J&E Model, which in turn would further reduce actual potential health risks relative to those conservatively calculated herein.

Source Concentration (ug/m3)	Calculation	Estimated Health Risk		
	April 2015			
2 600	Concentration at VM-	1 705 06		
5,000	9SS: Linear Back-	1.702-00		
	Calculation from ESL			
	April 2015			
3,600	Concentration at VM-	1.30E-06		
	9SS: J&E Model			
3282	95% UCL at VM-9SS Since Termination of SVE System: J&E Model	1.10E-06		
	95% UCL at VE-1S/D,			
1389	VE-2S/D, VE-3S/D, VM-	4 80F-07		
1305	1S/D, VM-4SS, VM-5SS,	4.00L 07		
	VM-9SS			

*Consistent the observed lithology at the site, default soil properties for silty soils were used in J&E model runs.

Based on the remediation and sampling results for this site and the rationale set forth herein, Endpoint is of the opinion that the residual environmental impacts remaining beneath the dry cleaner following remediation activities at the site do not pose unacceptable risks to human health and the environment, and that the environmental case for the site may accordingly be closed.

CLOSING

As always, Endpoint greatly appreciates the County's continued assistance with this project. If you have any questions, please contact Mehrdad Javaherian at 415-706-8935, or at <u>mehrdad@endpointinc.com</u>.

Sincerely, **Endpoint Consulting, Inc.**

M Jaca heria

Mehrdad Javaherian, Ph.D., MPH, PE, LEED[®]GA Program Manager

Attachments:

 Table 1 - PCE Vapor Concentrations

Figure 1 – Utility Line Layout Figure 2 – Ground Surface Elevation Change

Attachment 1 - Laboratory Analytical Reports

Attachment 2 – J&E Model Input and Output Data- April 2015 Sampling Results

Attachment 3 – J&E Model Input and Output Data- 95% UCL at VM-9SS

Attachment 4 – J&E Model Input and Output Data- 95% UCL across Source Area

TABLE

Table 1 PCE Vapor Concentrations Vapor Monitoring and Extraction Well Locations Crow Canyon Dry Clenaers

	7272 San Ramon Road,													
	7/18/2009 to 7/20/2009	0/1/2000	0/29/2000	11/4/09	8/26/10	1/12/11n, Calif	ornia 6/27/2012*	10/9/2012	08/23/2013	11/13/2013	3/12/2014	6/4/2014	8/27/2014	4/16/15 -4/30/15
	7/18/2009 to 7/30/2009	3/1/2003	3/28/2003	~ 1 month after	~ 11 months after	~ 17 months after	~ 34 months after	~ 3.5 months after	~ 5.5 months after	~ 8.5 months after	~ 12.5 months after	~ 15.5 months after	~ 18 months after	~ 26 months after
Well I.D.	Baseline-Purge Test-SVE	1 Worth after	2 Worths after	shutdown of SVE	shutdown of SVE	shutdown of SVE	shutdown of SVE	SVE restart** (CAP)	shutdown of SVE	shutdown of SVE	shutdown of SVE	shutdown of SVE	shutdown of SVE	shutdown of SVE
	Shakedown Sampling	Dilet Test (IDAD)	Dilet Test	Pilot Test	system	Pilot Test	system		system	system	system	system	system	system
	Events	PHOL TEST (IRAP)	Phot Test											
VE-1S/SB-11	380,000***	23	<14	970	1,100	19,000	12,000	41	2,100	1,600	1,000	2,500	890	NS
VE-1D	420	300	<14	770	NS	NS	4,500	NS	NS	NS	520	600	NS	NS
VE-2S	5,900	<14	200	500	3,400	13,000	14,000	35	190	NS	NS	800	NS	NS
VE-2D	1,100	<14	<14	350	NS	NS	5,100	NS	NS	NS	320	670	NS	NS
VE-3S	2,200	30	38	<14	870	260	<500	NS	NS	NS	NS	86	NS	NS
VE-3D	3,800	24	51	<14	NS	NS	790	NS	NS	NS	130	82	NS	NS
VM-1S/SB-23	17,000***	-	<14	20	2,600	580	1,200	NS	NS	NS	200	250	NS	NS
VM-1D	160	-	16	140	NS	NS	520	NS	NS	NS	NS	170	NS	NS
VM-3S	8,100	-	55	81	NS	NS	NS	NS	NS	NS	NS	77	NS	NS
VM-3D	34J	-	<14	300	NS	NS	NS	NS	NS	NS	NS	120	NS	NS
VM-4S	10,000	-	180	310	1,100	1,100	2,100	22	360	120	150	200	NS	NS
VM-5SS	-	-	-	-	1,300	1,100	NS	68	340	NS	NS	230	NS	NS
VM-6SS	-	-	-	-	650	390	NS	110	250	NS	NS	140	NS	NS
VM-2SS	-	-	-	-	28	<14	NS	NS	NS	NS	NS	57	NS	NS
VM-7	-	-	-	-	310	<14	240	NS	NS	NS	NS	88	NS	NS
VM-8	-	-	-	-	1,300	640	820	NS	NS	NS	NS	390	NS	NS
VM-9SS	-	-	-	-	11,000	14,000	7,200	280	1,200	2,200	1,800	3,200	3,100	3,600
VM-10	-	-	-	-	450	210	NS	NS	NS	NS	NS	180	NS	120
VM-11	-	-	-	-	-	-	-	-	-	-	51	190	170	NS
VM-12	-	-	-	-	-	-	-	-	-	-	15	58	NS	NS
				Shallow Soil	Gas ESL-Commercial/I	Industrial Land Use: 2,	100 ug/m3 Resident	ial Land Use: 210 ug/n	13					

Baseline Sampling prior to start of SVE Operations on June 28, 2012
 ** system shutdown one week before sampling
 *** Sample results from 2008 sample from SB-vapor probe location

NS = Not Sampled

Value exceeds the remedial action objective (Commercial/Industrial ESL) for the site

FIGURES

LEGEND:

- VM-11 Vapor Monitoring Well (June/August 2014)
- VM-4 🖶 Vapor Monitoring Well
- VM-2SS 🕂 Sub-Slab Vapor Monitoring Well (2010)
 - VE-1 Soil Vapor Extraction Well Locations
 - SB-1 Historical Soil Vapor Boring Locations (2006- 2008))
 - S/D Shallow Well Screen/Deep Well Screen
 - SS Sub-Slab Well Screen
- ----- Utility Line
- -- -- -- Water (3.5 feet deep)
- - - Gas (~3.5 feet deep)
- - - - Storm (~3 feet deep)
- WEST EAST Ground Surface Elevation Cross-Section

0 15 30 0 15 Scale (feet)						
Reference: Base map from c Concentrations in Soil Vapor"	Irawing titled "P , by Ceres, date	CE d April 2008.				
UTILITY LINE LAYOUT						
CROW CANYON DRY CLEANERS 7272 SAN RAMON ROAD DUBLIN. CALIFORNIA						
Endpoint. Strategy. Science. Sustainability.	Date: 7/18/2015	Figure: 1				

ATTACHMENT 1

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:1504678Report Created for:Endpoint1534 Plaza Lane #243
Burlingame, CA 94010Project Contact:Mehrdad JavaherProject P.O.:TM Dublin; Crow Canyon CleanersProject Received:04/16/2015

Analytical Report reviewed & approved for release on 04/23/2015 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client:	Endpoint
Project:	TM Dublin; Crow Canyon Cleaners
WorkOrder:	1504678

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Quality Control Qualifiers

F2

LCS recovery for this compound is outside of acceptance limits.

Helium						
Date Prepared:	4/20/15	Unit:	%			
Date Received:	4/16/15 13:07	Analytical Meth	od: ASTM D 1946-90			
Project:	TM Dublin; Crow Canyon Cleaners	Extraction Meth	nod: ASTM D 1946-90			
Client:	Endpoint	WorkOrder:	1504678			

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrum	ent	Batch ID
VM-955	1504678-001A	SoilGas	04/16/2015 08:00	GC26		104010
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
13.64	27.20					AK
Analytes Helium		<u>Result</u> ND		<u>RL</u> 0.050	<u>DF</u> 1	Date Analyzed 04/20/2015 13:33

Client:	Endpoint	WorkOrder:	1504678
Project:	TM Dublin; Crow Canyon Cleaners	Extraction Method:	TO15
Date Received:	4/16/15 13:07	Analytical Method:	TO15
Date Prepared:	4/22/15	Unit:	$\mu g/m^3$

Volatile Organic Compounds in µg/m³

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instru	ment	Batch ID
VM-955	1504678-001A	SoilGas	04/16/2015 08:00	GC24		104006
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
13.64	27.20					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone		ND		60	1	04/22/2015 06:31
Acrolein		ND		1.2	1	04/22/2015 06:31
Acrylonitrile		ND		1.1	1	04/22/2015 06:31
tert-Amyl methyl ether (TAME)		ND		2.1	1	04/22/2015 06:31
Benzene		ND		1.6	1	04/22/2015 06:31
Benzyl chloride		ND		2.6	1	04/22/2015 06:31
Bromodichloromethane		ND		3.5	1	04/22/2015 06:31
Bromoform		ND		5.2	1	04/22/2015 06:31
Bromomethane		ND		2.0	1	04/22/2015 06:31
1.3-Butadiene		ND		1.1	1	04/22/2015 06:31
2-Butanone (MEK)		ND		75	1	04/22/2015 06:31
t-Butyl alcohol (TBA)		ND		31	1	04/22/2015 06:31
Carbon Disulfide		ND		1.6	1	04/22/2015 06:31
Carbon Tetrachloride		ND		3.2	1	04/22/2015 06:31
Chlorobenzene		ND		2.4	1	04/22/2015 06:31
Chloroethane		ND		1.3	1	04/22/2015 06:31
Chloroform		ND		2.4	1	04/22/2015 06:31
Chloromethane		ND		1.0	1	04/22/2015 06:31
Cyclohexane		ND		18	1	04/22/2015 06:31
Dibromochloromethane		ND		4.4	1	04/22/2015 06:31
1,2-Dibromo-3-chloropropane		ND		0.12	1	04/22/2015 06:31
1,2-Dibromoethane (EDB)		ND		3.9	1	04/22/2015 06:31
1,2-Dichlorobenzene		ND		3.0	1	04/22/2015 06:31
1,3-Dichlorobenzene		ND		3.0	1	04/22/2015 06:31
1,4-Dichlorobenzene		ND		3.0	1	04/22/2015 06:31
Dichlorodifluoromethane		ND		2.5	1	04/22/2015 06:31
1,1-Dichloroethane		ND		2.0	1	04/22/2015 06:31
1,2-Dichloroethane (1,2-DCA)		ND		2.0	1	04/22/2015 06:31
1.1-Dichloroethene		ND		2.0	1	04/22/2015 06:31
cis-1.2-Dichloroethene		7.3		2.0	1	04/22/2015 06:31
trans-1,2-Dichloroethene		2.2		2.0	1	04/22/2015 06:31
1,2-Dichloropropane		ND		2.4	1	04/22/2015 06:31
cis-1.3-Dichloropropene		ND		2.3	1	04/22/2015 06:31
trans-1,3-Dichloropropene		ND		2.3	1	04/22/2015 06:31

Client:	Endpoint	WorkOrder:	1504678
Project:	TM Dublin; Crow Canyon Cleaners	Extraction Method:	TO15
Date Received:	4/16/15 13:07	Analytical Method:	TO15
Date Prepared:	4/22/15	Unit:	$\mu g/m^3$

Volatile Organic Compounds in µg/m³

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instru	ment	Batch ID
VM-955	1504678-001A	SoilGas	04/16/2015 08:00	GC24		104006
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
13.64	27.20					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
1,2-Dichloro-1,1,2,2-tetrafluoroethane		ND		3.6	1	04/22/2015 06:31
Diisopropyl ether (DIPE)		ND		2.1	1	04/22/2015 06:31
1,4-Dioxane		ND		1.8	1	04/22/2015 06:31
Ethanol		ND		96	1	04/22/2015 06:31
Ethyl acetate		ND		1.8	1	04/22/2015 06:31
Ethyl tert-butyl ether (ETBE)		ND		2.1	1	04/22/2015 06:31
Ethylbenzene		ND		2.2	1	04/22/2015 06:31
4-Ethyltoluene		ND		2.5	1	04/22/2015 06:31
Freon 113		ND		3.9	1	04/22/2015 06:31
Heptane		ND		21	1	04/22/2015 06:31
Hexachlorobutadiene		ND		5.4	1	04/22/2015 06:31
Hexane		ND		18	1	04/22/2015 06:31
2-Hexanone		2.3		2.1	1	04/22/2015 06:31
4-Methyl-2-pentanone (MIBK)		ND		2.1	1	04/22/2015 06:31
Methyl-t-butyl ether (MTBE)		ND		1.8	1	04/22/2015 06:31
Methylene chloride		ND		1.8	1	04/22/2015 06:31
Methyl methacrylate		ND		2.1	1	04/22/2015 06:31
Naphthalene		ND		5.3	1	04/22/2015 06:31
Propene		ND		88	1	04/22/2015 06:31
Styrene		ND		2.2	1	04/22/2015 06:31
1,1,1,2-Tetrachloroethane		ND		3.5	1	04/22/2015 06:31
1,1,2,2-Tetrachloroethane		ND		3.5	1	04/22/2015 06:31
Tetrachloroethene		3600		34	10	04/22/2015 02:26
Tetrahydrofuran		ND		1.5	1	04/22/2015 06:31
Toluene		ND		1.9	1	04/22/2015 06:31
1,2,4-Trichlorobenzene		ND		3.8	1	04/22/2015 06:31
1,1,1-Trichloroethane		ND		2.8	1	04/22/2015 06:31
1,1,2-Trichloroethane		ND		2.8	1	04/22/2015 06:31
Trichloroethene		110		2.8	1	04/22/2015 06:31
Trichlorofluoromethane		ND		2.8	1	04/22/2015 06:31
1,2,4-Trimethylbenzene		ND		2.5	1	04/22/2015 06:31
1,3,5-Trimethylbenzene		ND		2.5	1	04/22/2015 06:31
Vinyl Acetate		ND		1.8	1	04/22/2015 06:31
Vinvl Chloride		ND		1.3	1	04/22/2015 06:31

Client:	Endpoint	WorkOrder:	1504678
Project:	TM Dublin; Crow Canyon Cleaners	Extraction Method:	TO15
Date Received:	4/16/15 13:07	Analytical Method:	TO15
Date Prepared:	4/22/15	Unit:	$\mu g/m^3$

Volatile Organic Compounds in µg/m³

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrum	ent	Batch ID
VM-955	1504678-001A	SoilGas	04/16/2015 08:00	GC24		104006
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
13.64	27.20					AK
Analytes		<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Xylenes, Total		ND		6.6	1	04/22/2015 06:31
<u>Surrogates</u>		<u>REC (%)</u>		<u>Limits</u>		
1,2-DCA-d4		79		70-130		04/22/2015 06:31
Toluene-d8		89		70-130		04/22/2015 06:31
4-BFB		89		70-130		04/22/2015 06:31

Quality Control Report

Client:	Endpoint	WorkOrder:	1504678
Date Prepared:	4/23/15	BatchID:	104010
Date Analyzed:	4/20/15	Extraction Method:	ASTM D 1946-90
Instrument:	GC26	Analytical Method:	ASTM D 1946-90
Matrix:	Soilgas	Unit:	%
Project:	TM Dublin; Crow Canyon Cleaners	Sample ID:	MB/LCS-104010

QC Summary Report for ASTM D1946-90							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Helium	ND	ND	0.050	0.010	-	119	60-140

McCampbell Analytical, Inc. "When Quality Counts"

Quality Control Report

Client:	Endpoint	WorkOrder:	1504678
Date Prepared:	4/23/15	BatchID:	104006
Date Analyzed:	4/21/15	Extraction Method:	TO15
Instrument:	GC24	Analytical Method:	TO15
Matrix:	Soilgas	Unit:	nL/L
Project:	TM Dublin; Crow Canyon Cleaners	Sample ID:	MB/LCS-104006

QC Summary Report for TO15							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	ND	25	25	-	79	60-140
Acrolein	ND	19.2	0.50	25	-	77	60-140
Acrylonitrile	ND	22.5	0.50	25	-	90	60-140
tert-Amyl methyl ether (TAME)	ND	23.8	0.50	25	-	95	60-140
Benzene	ND	26.6	0.50	25	-	106	60-140
Benzyl chloride	ND	30.3	0.50	25	-	121	60-140
Bromodichloromethane	ND	27.3	0.50	25	-	109	60-140
Bromoform	ND	28.8	0.50	25	-	115	60-140
Bromomethane	ND	26.2	0.50	25	-	105	60-140
1,3-Butadiene	ND	23.0	0.50	25	-	92	60-140
2-Butanone (MEK)	ND	25.3	25	25	-	101	60-140
t-Butyl alcohol (TBA)	ND	20.2	10	25	-	81	60-140
Carbon Disulfide	ND	27.8	0.50	25	-	111	60-140
Carbon Tetrachloride	ND	28.4	0.50	25	-	114	60-140
Chlorobenzene	ND	28.7	0.50	25	-	115	60-140
Chloroethane	ND	22.3	0.50	25	-	89	60-140
Chloroform	ND	25.4	0.50	25	-	102	60-140
Chloromethane	ND	23.2	0.50	25	-	93	60-140
Cyclohexane	ND	25.3	5.0	25	-	101	60-140
Dibromochloromethane	ND	31.9	0.50	25	-	127	60-140
1,2-Dibromo-3-chloropropane	ND	24.0	0.012	25	-	96	60-140
1,2-Dibromoethane (EDB)	ND	28.3	0.50	25	-	113	60-140
1,2-Dichlorobenzene	ND	32.2	0.50	25	-	129	60-140
1,3-Dichlorobenzene	ND	32.3	0.50	25	-	129	60-140
1,4-Dichlorobenzene	ND	32.7	0.50	25	-	131	60-140
Dichlorodifluoromethane	ND	24.2	0.50	25	-	97	60-140
1,1-Dichloroethane	ND	26.0	0.50	25	-	104	60-140
1,2-Dichloroethane (1,2-DCA)	ND	23.3	0.50	25	-	93	60-140
1,1-Dichloroethene	ND	27.3	0.50	25	-	109	60-140
cis-1,2-Dichloroethene	ND	27.1	0.50	25	-	108	60-140
trans-1,2-Dichloroethene	ND	26.5	0.50	25	-	106	60-140
1,2-Dichloropropane	ND	25.7	0.50	25	-	103	60-140
cis-1,3-Dichloropropene	ND	28.0	0.50	25	-	112	60-140
trans-1,3-Dichloropropene	ND	25.6	0.50	25	-	102	60-140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	24.6	0.50	25	-	98	60-140
Diisopropyl ether (DIPE)	ND	22.5	0.50	25	-	90	60-140
1,4-Dioxane	ND	29.2	0.50	25	-	117	60-140
Ethanol	ND	ND	50	25	-	82	60-140
Ethyl acetate	ND	25.0	0.50	25	-	100	60-140
Ethyl tert-butyl ether (ETBE)	ND	22.7	0.50	25	-	91	60-140

(Cont.)

QA/QC Officer Page 8 of 13

McCampbell Analytical, Inc. "When Quality Counts"

Quality Control Report

Client:	Endpoint	WorkOrder:	1504678
Date Prepared:	4/23/15	BatchID:	104006
Date Analyzed:	4/21/15	Extraction Method:	TO15
Instrument:	GC24	Analytical Method:	TO15
Matrix:	Soilgas	Unit:	nL/L
Project:	TM Dublin; Crow Canyon Cleaners	Sample ID:	MB/LCS-104006

	QC Sur	nmary Repor	t for TO15				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethylbenzene	ND	29.2	0.50	25	-	117	60-140
4-Ethyltoluene	ND	32.2	0.50	25	-	129	60-140
Freon 113	ND	25.7	0.50	25	-	103	60-140
Heptane	ND	24.2	5.0	25	-	97	60-140
Hexachlorobutadiene	ND	35.7	0.50	25	-	143, F2	60-140
Hexane	ND	26.1	5.0	25	-	104	60-140
2-Hexanone	ND	25.8	0.50	25	-	103	60-140
4-Methyl-2-pentanone (MIBK)	ND	29.4	0.50	25	-	118	60-140
Methyl-t-butyl ether (MTBE)	ND	25.9	0.50	25	-	104	60-140
Methylene chloride	ND	24.4	0.50	25	-	98	60-140
Methyl methacrylate	ND	28.8	0.50	25	-	115	60-140
Naphthalene	ND	73.5	1.0	50	-	147, F2	60-140
Propene	ND	ND	50	25	-	87	60-140
Styrene	ND	32.6	0.50	25	-	131	60-140
1,1,1,2-Tetrachloroethane	ND	24.3	0.50	25	-	97	60-140
1,1,2,2-Tetrachloroethane	ND	29.5	0.50	25	-	118	60-140
Tetrachloroethene	ND	25.6	0.50	25	-	102	60-140
Tetrahydrofuran	ND	23.4	0.50	25	-	93	60-140
Toluene	ND	27.1	0.50	25	-	109	60-140
1,2,4-Trichlorobenzene	ND	32.5	0.50	25	-	129	60-140
1,1,1-Trichloroethane	ND	25.9	0.50	25	-	104	60-140
1,1,2-Trichloroethane	ND	27.2	0.50	25	-	109	60-140
Trichloroethene	ND	26.4	0.50	25	-	106	60-140
Trichlorofluoromethane	ND	18.2	0.50	25	-	73	60-140
1,2,4-Trimethylbenzene	ND	31.2	0.50	25	-	125	60-140
1,3,5-Trimethylbenzene	ND	30.5	0.50	25	-	122	60-140
Vinyl Acetate	ND	28.0	0.50	25	-	112	60-140
Vinyl Chloride	ND	22.4	0.50	25	-	90	60-140
Xylenes, Total	ND	86.8	1.5	75	-	116	60-140
Surrogate Recovery							
1,2-DCA-d4	390	399		500	78	80	60-140
Toluene-d8	446	458		500	89	92	60-140
4-BFB	442	459		500	88	92	60-140

_QA/QC Officer Page 9 of 13

1534 Willow Pass Rd Pittsburg, CA 94565-17 (925) 252-9262	nalyfical, ⁷⁰¹	Inc.			CHA wa	orkOi	- 0F	- CU	ISTOD	Y RE ClientCo	de: EPB	D	Ι	'age 1	of 1	
		WaterTrax	WriteOn	EDF	√ Ex	cel		EQuIS	🖌 Emai	[HardCop	by [ThirdPa	rty	J-flag	I
Report to:						Bil	l to:				R	eque	sted TAT:		5 da	iys
Mehrdad Javaher Endpoint 1534 Plaza Lane #243 Burlingame, CA 94010 415-706-8935 FAX:		Email: n cc/3rd Party: PO: ProjectNo: Ţ	nehrdad@endp ſM Dublin; Cro	point-inc.com w Canyon Cleaner	'S		Accour Endpoi 1534 P Burling mehrda	nts Pay int Plaza La Jame, C ad@end	able ane #243 A 94010 dpoint-inc.co	om	L L)ate 1)ate 1	Received: Printed:	0 0	4/16/20 4/24/20	15 15
									Request	ed Tests	(See leger	nd be	low)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7	8	9	10	11	12
1504678-001	VM-955		SoilGas	4/16/2015 8:00		А	А	А								

Test Legend:

1	HELIUM_LC_SOILGAS(%)	2
6		7
11		12

. ..

...

	O15_Scan-SIM_SOIL(UG/M3	
2		

3	TO15-8260_SOIL(UG/M3)
8	

4	
9	

5	
10	

The following SampID: 001A contains testgroup.

Prepared by: Erika Santos

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	Mc	Campbell A "When Quality	nalytical, y Counts"	<u>Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
				WOR	K ORDER	SUMM	ARY						
Client Name:	ENDPOINT				QC Level:	LEVEL 2				Work O	rder: 1504678		
Project:	TM Dublin; C	Crow Canyon Cleaner	S	(Client Contact:	Mehrdad Ja	waher			Date Rece	eived: 4/16/2015		
Comments:				С	ontact's Email:	mehrdad@	endpoint-inc.com	m					
		WaterTrax	WriteOn	EDF	✓ Excel	Fax	√ Email		opy ThirdPart	y ∏J-flaį	9		
Lab ID	Client ID	Matrix	Test Name		Containe /Composi	rs Bottle o tes	& Preservative	De- chlorinated	Collection Date & Time	TAT Se C	diment Hold SubOut Content		
1504678-001A	VM-955	SoilGas	TO15 w/ Helium	1	1	1	L Summa		4/16/2015 8:00	5 days			

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

			S	15046	12	5	224			0.220620							
								CH	ΙA	IN	OF	CL	JST	Ю	DY	RECORE	
McCar	mpk	bell,	Analyticc	II, Inc.		IRN	ARC	UND T	IME	: RI	JSH□	1	Dav		2 Day] 3 Day 0 5	DAY
1534 Willov	v Pass R	d. / Pitts	sburg, Ca. 94565-1	701		oTra	cker F			חק	F []I		FD	ים מי		EQUIS I 10	DAY
www.mccan	npbell.c	com / n	nain@mccampbel	11.com 269	UST Clear Un Fund Project												
Telephone	. [0//] 2				08	ST CI	ean U	hund Pr	oject	. L <u></u>				TT-1	C	huand CN#	
Report To: ENDPOINT	5		Bill To:	pond				Analysi	s Re	ques		1		Oth	ium 5	nroud SIN#	
1534 Plan 2 lal	174	2		······································			CO,	ircle	nL/L	TUI				Notes: Please Specify units if differen			if different than
Burlingene "	940	(0	E-Mail:				yde.	hane ase c	cle)			atic		defa	ults V(DCs is ug/m3 and	fixed gas is
Tele: (415) 706 89	135		Fax: ()	2.24.)			aldel	e, Et (ple	se cir		rane	roma			J. Lea	c check default is	IFA.
Project #: The Dubl	in	0	Project Name: C	leene in	(gul)	m3)	omo	cO CO	pleas	UL/L	orflc e/m3	or A					5-
Sampler Signature:	m	Igan	- BUD D	unh	gu) č	(/gn)	CH, F	, Me	N2 (ane.	A, N A, N Ie) u	and/ m/gr	1				
	Coll	ection			0-1)-15	4PC	S) CO2 cety	02,	Prop	c (IP	le) 1		Ma	atrix	Can	nister
Field Sample ID				Sampler Kit SN#	by T	y TC	(inc.	Gas: ne, A	Gas:	Gas:	Check Check	Alipl		as	٥r	Pressure	e/ Vacuum
(Location)	Date	Time	Canister SN#	Sampler Icit Stan	OCs	010 b	EED	ixed thyle	ixed	ixed	eak (PH: please)ther:	oilg	ndoc	Initial	Final
	11			1720				- IL II	D IL	<u>н</u> ;		V D		S	I 4	20	<u></u>
VM-955 4	16/15	0900	1522	1229	X.		_		+		<			1	-	- 67	
							_		+								-
									+			5		141	· ·		
										$\left - \right $							
							_		+								
										+			1.				
	-				+-				-								
								-		+						-	
										++						6	
7						\vdash						1					
11/11	1			1				-	1			1		1			
Relinquished By:	Date:	Time:	Received By:	1	1	1la									ià.	1.	
101	16/1	5/2	cor pulle	nu V	- F	emp	(°C):			Woi	k Orde	er #: _					
Relinquished By:	Date:	Time:	Received By:		C	ondi	tion:										
	Data		Dessived Pro		C	usto	iy Sea	ls Intact	?: Y	es	N	0	N	lone_			
Relinquished By:	Date:	Time:	Received By:		SI	hippo	ed Via	:									
				3.													

Sample Receipt Checklist

Client Name:	Endpoint				Date and T	ime Received:	4/16/2015 1:07:22 PM
Project Name:	TM Dublin; Cro	ow Canyon Cleaners			LogIn Revi	ewed by:	Erika Santos
WorkOrder №:	1504678	Matrix: SoilGas			Carrier:	Client Drop-In	
		<u>Chain of C</u>	ustody	<u>/ (COC) </u>	Information		
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when rel	inquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with san	nple labels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on C	OC?	Yes	✓	No 🗌		
Date and Time of	f collection noted	by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
		Sampl	e Rece	eipt Infor	mation		
Custody seals int	tact on shipping	container/cooler?	Yes		No 🗌		NA 🗹
Shipping contain	er/cooler in good	I condition?	Yes	✓	No 🗌		
Samples in prope	er containers/bot	tles?	Yes	✓	No 🗌		
Sample containe	ers intact?		Yes	✓	No 🗌		
Sufficient sample	e volume for indi	cated test?	Yes	✓	No 🗌		
		Sample Preservation	on and	Hold Tir	<u>me (HT) Info</u>	rmation	
All samples recei	ived within holdir	ng time?	Yes	✓	No 🗌		
Sample/Temp Bl	ank temperature			Temp:	:		NA 🗹
Water - VOA vial	ls have zero hea	dspace / no bubbles?	Yes		No 🗌		NA 🗹
Sample labels ch	necked for correct	t preservation?	Yes	✓	No		
pH acceptable up	pon receipt (Meta	al: <2; 522: <4; 218.7: >8)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes		No 🗹		
UCMR3 Samples	S:						
Total Chlorine	tested and acce	otable upon receipt for EPA 522?	Yes		No 🗌		NA 🗹
Free Chlorine t 300.1, 537, 539	tested and accep 9?	otable upon receipt for EPA 218.7,	Yes		No 🗌		NA 🗹
* NOTE: If the "N	lo" box is checke	ed, see comments below.					

Comments:

ATTACHMENT 2

USEPA SG-SCREEN	
Version 2.0, 04/2003	
DTSC Modification	
March 2014	

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Commercial Chemical: Tetrachloroethylene

	Result	s Summary		
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
(µg/m ³)	(unitless)	(µg/m ³)	Risk	Hazard
3.60E+03	7.2E-04	2.6E+00	1.3E-06	1.7E-02

CHEMICAL PROPERTIES SHEET

Tetrachloroethylene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m³)⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
		l							
5.05E-02	9.46E-06	1.77E-02	25	8,288	394.40	620.20	5.9E-06	3.5E-02	165.83

END

ATTACHMENT 3

	A B C				П	I		J	n			L
1		General UCL Statistics f	or Full Data	Jeis								
2	User Selected Options											
3	From File	WorkSheet.wst										
4	Full Precision	OFF										
5	Confidence Coefficient	95%										
6	Number of Bootstrap Operations	2000										
7												
8												
9	C1											
10												
11			General	Statistics								
12	Num	ber of Valid Observations	6			Num	ber of	Distinct	Observati	ons	6	
13				1								
14	Raw S	tatistics			L	og-transf	ormed	Statistic	cs			
15		Minimum	1200					Minimu	m of Log [Data	7.09	
16		Maximum	3600				1	Maximur	m of Log [Data	8.189	9
17		Mean	2517					Mea	an of log [Data	7.763	3
18		Median	2650					S	SD of log D	Data	0.42	
19		SD	930.4									
20		Coefficient of Variation	0.37									
21		Skewness	-0.333									
22				1								
23												
24	Warning: A sample size o	f 'n' = 6 may not adequate	enough to	compute mea	ningful and re	eliable tes	st stati	stics an	d estimate	sl		
25												
26	lt is s	uggested to collect at leas	st 8 to 10 obs	servations usi	ng these stat	istical me	ethods	Į				
27	If possible com	pute and collect Data Qua	lity Objectiv	es (DQO) bas	ed sample si	ize and a	nalytic	al result	ls.			
28												
29												
30		Warning:	There are or	nly 6 Values ir	n this data							
31	Note: It sho	ould be noted that even th	ough bootst	rap methods i	may be perfo	rmed on	this da	ata set,				
32		the resulting calculations	may not be	reliable enou	gh to draw co	onclusion	IS					
33												
34	The literature	suggests to use bootstra	p methods o	n data sets ha	aving more th	nan 10-15	ō obsei	rvations	•			
35												
36			Relevant U	CL Statistics							·	
37	Normal Dist	tribution Test			Lo	ognormal	Distrib	oution Te	est			
38	S	Shapiro Wilk Test Statistic	0.938				Shap	oiro Wilk	Test Stat	stic	0.915	5
39	S	hapiro Wilk Critical Value	0.788				Shap	iro Wilk	Critical Va	alue	0.788	8
40	Data appear Normal at	t 5% Significance Level			Data appear	Lognorm	al at 5	% Signi	ficance Le	vel		
41												
42	Assuming Non	mal Distribution	1		Assu	ming Log	gnorma	al Distrib	oution			
43		95% Student's-t UCL	3282						95% H-l	JCL	4075	
44	95% UCLs (Adju	sted for Skewness)				95	% Che	ebyshev	(MVUE) l	JCL	4419	
45	95% Adjuste	ed-CLT UCL (Chen-1995)	3086			97.5	% Che	ebyshev	(MVUE) l	JCL	5237	
46	95% Modifi	ed-t UCL (Johnson-1978)	3273			99	% Che	ebyshev	(MVUE) l	JCL	6842	
47												
48	Gamma Dis	tribution Test	1		_	Data	Distrib	oution				
49		k star (bias corrected)	3.909		Data appea	ar Normal	l at 5%	Signific	ance Lev	əl		
50		Theta Star	643.7									
51		MLE of Mean	2517									
52	M	ILE of Standard Deviation	1273									
53		nu star	46.91									
54	Approxima	te Chi Square Value (.05)	32.2		1	Nonparan	netric	Statistic	s			

	А	В	С	D	E	F	G H I J K								
55			Adjus	ted Level of	Significance	0.0122		95% CLT UCL							
56			Ac	ljusted Chi So	quare Value	27.87		3282							
57								3083							
58			Anders	son-Darling T	est Statistic	0.324		95% Bootstrap-t UCL							
59			Anderson-	Darling 5% C	ritical Value	0.698		3029							
60			Kolmogor	ov-Smirnov T	est Statistic	0.263			95% I	Percentile Bo	otstrap UCL	3067			
61		K	olmogorov-S	mirnov 5% C	ritical Value	0.333				95% BCA Bo	otstrap UCL	3050			
62	Data	appear Gar	nma Distribu	ted at 5% Sig	Inificance Le	evel	95% Chebyshev(Mean, Sd) UCL 41								
63								4889							
64		As	suming Gam	ma Distributi	on				99% Ch	ebyshev(Me	an, Sd) UCL	6296			
65			95% A	pproximate G	amma UCL	3667									
66			95	% Adjusted C	amma UCL	4237									
67															
68			Potential U	ICL to Use					ι	Jse 95% Stu	dent's-t UCL	3282			
69															
70	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.								e 95% UCL.						
71		These recon	nmendations	are based up	oon the resu	Its of the sin	nulation studie	es summariz	ed in Singh,	Singh, and la	aci (2002)				
72			and Singh	and Singh (2	003). For a	dditional ins	ight, the user	may want to	consult a st	atistician.					
73															

USEPA SG-SCREEN	
Version 2.0, 04/2003	D
DTSC Modification March 2014	Va

ENTER

Chemical

ENTER

Soil

gas

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

ENTER

Soil

gas

Soil Gas Concentration Data

OR

Scenario: Commercial Chemical: Tetrachloroethylene

	Result	s Summary		
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
(µg/m³)	(unitless)	(µg/m³)	Risk	Hazard
3.28E+03	7.2E-04	2.4E+00	1.1E-06	1.5E-02

CHEMICAL PROPERTIES SHEET

Tetrachloroethylene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m³)⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
		l							
5.05E-02	9.46E-06	1.77E-02	25	8,288	394.40	620.20	5.9E-06	3.5E-02	165.83

END

ATTACHMENT 4

	A	В	С	D	E	F	G	Н		J	K	L
1				General UC	L Statistics	for Full Data	Sets					
2		User Selec	ted Options									
3	From File WorkSheet.wst											
4	Full Precision OFF											
5	Confidence Coefficient 95%											
6	Number o	of Bootstrap	Operations	2000								
7												
8												
9	C2											
10												
11		General Statistics										
12			Numb	ber of Valid O	bservations	11			Numbe	er of Distinct (Observations	11
13							T					
14			Raw St	tatistics					_og-transfor	med Statistic	S	1
15					Minimum	82				Minimun	n of Log Data	4.407
16					Maximum	3600				Maximun	n of Log Data	8.189
17					Mear	688.9				Mea	in of log Data	5.893
18					Mediar	250				S	D of log Data	1.135
19					SD	1009						
20				Coefficient	of Variation	1.464						
21					Skewness	2.832						
22												
23						Relevant U	CL Statistics					
24			Normal Dist	ribution Test					ognormal D	istribution Te	st	0.011
25	Shapiro Wilk Test Statistic 0.6						Shapiro Wilk Test Statistic 0.941					
26	Shapiro Wilk Critical Value 0.85						Data anna				0.85	
27		Data no	t Normai at 5	% Significand				Data appear	Lognormal	at 5% Signin	icance Level	
28		<u>۸</u>	ourning Nor	nol Diotributio				^		ormal Diatrib	ution	
29		A	suming Non			1240		A55		ormai Disurid		2220
30		05%		stod for Skow		1240			05%	Chobychov		1645
31		90 /0	95% Adjusto		Chon 1005	1467			93%	Chobyshov		2083
32	95% Adjusted-CET UCE (Chen-1995) 1467			128/			97.5%	Chebyshev		2003		
33				CU-1 OOL (001	113011-1370	1204			5570	Chebyshev		2042
34			Gamma Dist	ribution Test					Data Di	istribution		
35				k star (bia:	s corrected)	0.722	Data	a appear Gar	nma Distrib	uted at 5% S	ianificance Le	evel
27	-			, ,	Theta Star	954.2					•	
32				Μ	ILE of Mear	688.9						
30			М	LE of Standa	rd Deviatior	810.8						
<u>4</u> 0					nu stai	15.88						
41			Approximat	te Chi Square	Value (.05)	7.88			Nonparame	etric Statistics	3	
42			Adjus	sted Level of S	Significance	0.0278				9	5% CLT UCL	1189
43			Ac	djusted Chi So	quare Value	6.98				95% Ja	ackknife UCL	1240
44	1								95%	6 Standard B	ootstrap UCL	1171
45	1		Anders	son-Darling T	est Statistic	0.594				95% Boo	otstrap-t UCL	2213
46			Anderson-	Darling 5% C	ritical Value	0.756			!	95% Hall's Bo	ootstrap UCL	3003
47	1		Kolmogor	ov-Smirnov T	est Statistic	0.221			95%	Percentile B	ootstrap UCL	1250
48		K	olmogorov-S	mirnov 5% C	ritical Value	0.263				95% BCA B	ootstrap UCL	1577
49	Data	a appear Gai	mma Distribu	ited at 5% Sig	nificance L	evel			95% C	hebyshev(Me	ean, Sd) UCL	2015
50									97.5% C	hebyshev(Me	ean, Sd) UCL	2589
51		As	suming Gam	ma Distributi	on	<u>u</u>			99% C	hebyshev(Me	ean, Sd) UCL	3716
52			95% A	pproximate G	amma UCL	1389						
53			95	% Adjusted C	amma UCL	1568						
54												

	А	В	С	D	E	F	G	Н	_	J	K	L	
55	Potential UCL to Use						Use 95% Approximate Gamma UCL 1389						
56													
57	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
58	These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002)												
59	and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.												
60													

USEPA SG-SCREEN
Version 2.0, 04/2003
DTSC Modification
March 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Soil Gas Concentration Data

Scenario: Commercial Chemical: Tetrachloroethylene

Results Summary								
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer				
(µg/m ³)	(unitless)	(µg/m ³)	Risk	Hazard				
1.39E+03	7.2E-04	1.0E+00	4.8E-07	6.5E-03				

CHEMICAL PROPERTIES SHEET

Tetrachloroethylene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m³)⁻¹	Reference conc., RfC (mg/m ³)	Molecular weight, MW (g/mol)
5.05E-02	9.46E-06	1.77E-02	25	8,288	394.40	620.20	5.9E-06	3.5E-02	165.83

END