September 20, 2010

Mr. Paresh Khatri Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 9502-6577

RECEIVED

9:19 am, Sep 22, 2010

Alameda County Environmental Health

Subject: Crow Canyon Dry Cleaners 7272 San Ramon Road Dublin, CA RO# 000283

Dear Mr. Khatri:

This enclosed report has been prepared by Endpoint Consulting, Inc. on behalf of the Burrows Company, Dwight & Carleton Perry, Gabriel H. Chui & Lai H. Trust, the Lee Family, Nam Sun and Seung Hee Park, and the Raphel-Roessler Retail Group.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions, please contact Mr. Mehrdad Javaher or Ms. Jing Heisler of Endpoint at 415-398-3265.

Sincerely,

and Rouse

James Roessler Raphel-Roessler Retail Group

September 14, 2010

Mr. Paresh Khatri Hazardous Materials Specialist Alameda County Health Care Services Agency (ACHCSA) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Vapor Well Installation and Monitoring Report Crow Canyon Dry Cleaners 7272 San Ramon Road, Dublin, California (RO # 0002863)

Dear Mr. Khatri,

Endpoint Consulting, Inc. (Endpoint) is pleased to present this letter report summarizing vapor monitoring well installation activities and vapor sampling results from the first of two rounds of sampling requested by the ACHCSA at and near the above-referenced site (Site) (see Figure 1). The work was conducted in accordance with the workplan (Endpoint, 2010a) and the workplan addendum (Endpoint, 2010b) approved in letters dated April 15, 2010 and July 1, 2010, respectively, by the ACHCSA. The primary objective of the vapor sampling activities was to evaluate PCE concentrations approximately one year following completion of interim remedial actions (IRA) involving soil vapor extraction (SVE) at the Site (Endpoint, 2009).

This report summarizes 1) new vapor well installation activities; 2) vapor sampling results from the newly installed and select existing vapor monitoring wells; and 3) an evaluation of the change in PCE concentrations since termination of IRA activities via a comparison of detected tetrachloroethene (PCE) concentrations with a range of potential cleanup goals previously discussed with the ACHCSA.

ADDITIONAL VAPOR MONITORING WELL INSTALLATION

Prior to initiation of drilling activities, a drilling permit was obtained from the Zone 7 Water Agency (Permit No. 2010072). Also, a Health and Safety Plan (HSP) was prepared, the drilling locations were marked, and Underground Service Alert (USA) was notified. Private utility clearance was also conducted to ensure clearance of potential utilities at proposed well locations.

To accommodate the Montessori School schedule, the field work was conducted during the week of August 23, 2010, at which point three (3) shallow vapor monitoring wells (VM-7, VM-8, and VM-10), and four (4) sub-slab vapor monitoring wells (VM-2SS, VM-5SS, VM-6SS, and VM-9SS) were installed at the Site. The newly installed vapor well locations are shown on Figure 1.

The new vapor wells were installed by Vironex, Inc. of Concord, California, a State Licensed Driller, under the supervision of Endpoint. Three soil-vapor wells, designated as VM-7, VM-8, and VM-10, were completed using a hand auger to a depth of approximately five feet below grade. One-quarter inch teflon tubing with a implant vapor sampling tip was placed in the hole to approximately three inches above the total depth. The lowermost six inches of annular space was filled with #2/16 sand. Approximately one foot of granular bentonite was placed over the sand pack. Neat cement grout was placed over the bentonite to the surface. A five-inch well box was placed over the sampling point at the surface. The vapor well logs are presented in Appendix A.

Three sub-slab points, designated as VM-2SS, VM-5SS, and VM-6SS, were installed within the footprint of Montessori school. These three points were located beneath shelving and underneath the existing carpet, away from foot traffic areas. Because gravels were encountered beneath the slab which would not remain open without caving, these sub-slab vapor monitoring points were built with stainless steel tubing, with the screened point extending several inches into the gravel beneath the slab. The uppermost portion of the sampling point was reamed out with a 1-1/4-inch drill bit and the rest of the cored portion of the slab was 7/8-inch diameter. A teflon washer isolated the uppermost portion of 1-1/4-inch diameter where a concrete seal was built around the stainless steel tubing, extending from the teflon washer to near the surface. A vapor tight ball valve was fitted to the tubing at the surface. A plastic cap was used to cover the valve at the top of the sampling point.

The last sub-slab sampling point VM-9SS was located within the dry cleaner in a foot traffic area, and finished with a well box at the surface. The soils beneath the slab remained open and it was possible to advance the hole with a hand auger. At this location, after coring the concrete slab, the same methodology as used in the 5-foot vapor monitoring wells was used to create the sampling point, which extended to about one foot below grade.

VAPOR MONITORING ACTIVITIES

On August 26, 2010, the newly installed wells/sample points and several previously existing wells, as defined by the approved workplan, were sampled by Vironex, Inc., under the supervision of Endpoint, in accordance with the approved work plan. Vapor well VE-1D was not sampled because there was several inches of water in the well.

Prior to sampling, a stepped purge test was performed on VM-9SS, following a shut-in test. This location was chosen as it was at the source, and because using a well with two-inch casing would have resulted in delays to extract the casing volumes using the required limited flow rates. Based on photoizonization detection (PID) readings from a "T" fitting sampling port of 2.3 parts per million (ppm) for one casing volume, 2.5 ppm for three casing volumes, and 2.8 ppm for seven casing volumes, a purge volume of seven casing volumes was used throughout the remaining soil vapor sampling activities; except for wells with two-inch casings, where two casing volumes was used due to the time required to extract that many casing volumes with the restricted flow rate, and considering the relatively close results of the stepped purge test. Field notes reflecting the vapor sampling efforts are included as

Appendix B, including data on the purge tests, shut-in tests, and leak tests associated with the vapor sampling.

Per the approved workplan, a shroud containing helium was used for leak testing. A plastic shroud was placed over the sample point and manifold, and the shroud was filled with helium to a concentration of approximately 10 to 16 %, based on helium meter monitoring. A "T" fitting was used to obtain PID and helium readings instead of tedlar bags due to the time it would take to fill tedlar bags (The one-liter summa canisters at 3 subslab locations took 40 minutes to fill). Per the work plan, a duplicate sample in a Tedlar bag for helium testing was collected at VE-1S and submitted to the lab, however, the helium was ultimately measured by the laboratory from the Summa canister sample at this location due to the limited hold time for the tedlar bag, which was received at the laboratory just prior to the weekend.

Following the helium leak test, summa canisters were utilized to collect soil vapor samples. For each vapor sample, final sampling times were recorded on the Chain of Custody. The sample elapse time ranged up to approximately 40 minutes at some locations.

Helium was not detected in the samples in the field. No VOCs were detected in sample tubing based on field screening by PID. Relatively low concentrations of VOCs (ranging from 0 ppm to 2.8 ppm) were detected at most of the wells/ sample points following helium testing, using the PID connected to a "T" fitting. The PID readings are recorded on the data sheets included in Appendix B.

Laboratory Analysis:

The vapor samples in summa canisters were transported on the same day to McCampbell Analytical in Pittsburg, California, a State-certified laboratory. The vapor samples were analyzed for EPA Method 8010 constituents by EPA Method TO-15. The laboratory analytical report is included as Appendix C. To confirm the helium screening result in the field, one vapor sample VE-1S was also analyzed for helium using ASTM D1946.

VAPOR MONITORING RESULTS

No significant breakthrough of the helium tracer was indicated during the vapor sample collection, as helium was recorded at 0% in the field (see Appendix B), and at 31 ug/L in the laboratory sample at VE-1S (see Appendix C lab result), which corresponds to ratio of 0.019 % relative to the measurements of helium introduced into the shroud. This ratio is below the 5% threshold defined by DTSC (2010) as the permissible level.

The vapor sampling results from 12 wells (7 new wells, 5 old wells) are summarized in Table 1 and presented on Figure 1. During this sampling event, the maximum concentration of PCE, the primary chemical of potential concern (COPC) at the site, was detected at newly installed sub-slab vapor monitoring well VM-9SS, inside the dry cleaner building and adjacent to the former PCE-related dry cleaning machine (recognized as the former release area), at a concentration of 11,000 ug/m³. The PCE concentrations decline with distance away from the former dry cleaning, reaching a minimum detected concentration of 28 ug/m³ in a sub-slab vapor sample from VM-2SS located inside the Montessori School.

It should also be noted that a few other chemicals other than PCE were also detected in the vapor samples (see Appendix C); however, these concentrations remain below the residential environmental screening levels (ESLs) for protection of indoor air quality (Regional Water Quality Control Board [RWQCB], 2008).

DISCUSSION

In support of evaluating the PCE impacts over time prior to and after the IRA activities, Table 1 also includes historical PCE data collected prior to initiation of SVE operations (Baseline sampling), two sampling events conducted during SVE activities, one round of sampling conducted approximately one month after termination of SVE activities, and this event which represents samples collected approximately 11 months after termination of SVE operations.

Per a discussion with ACHCSA, 95% upper confidence limit of the mean concentration (95% UCL) of PCE (see Appendix D for UCL calculations) were used to further compare the detected concentrations of PCE to a range of screening levels for the Site; these included the residential ESL for protection of indoor air quality PCE (RWQCB, 2008). commercial/industrial ESL for protection of indoor air quality (RWQCB, 2008), and a sitespecific indoor air screening calculated using the DTSC-version of the Johnson and Ettinger (J&E) vapor model, accounting for school-specific exposure duration and frequency for children present in the school. The residential and commercial/industrial risks were backcalculated directly from the corresponding ESLs per the equations summarized on Table 1. The school-specific screening level and related risks were calculated from the equation shown on Table 1 for for children as the most sensitive (and conservative) receptor and was done so based on an exposure frequency and duration of 180 days per year (DTSC, 2004) and 4 years (based on personal communication with the Montessori School personnel), respectively; all other default parameters, including building dimensions and ventilation rate, in the J&E model were maintained as unchanged from the conservative values in the DTSC's version of the model. J&E model input and output data are included as Appendix E. The model estimated indoor air concentrations under the school scenario (see table below and Appendix E) were then used to calculate the potential risk based on the previously mentioned exposure duration/frequency, estimated body weight for children (15 kg) (DTSC, 2005), inhalation rate for children (10 m³/day) for children (DTSC, 2005), a PCE cancer slope factor of 0.021 $(mg/kg-d)^{-1}$ (DTSC, 2005), and an averaging time of 70 years (DTSC, 2005).

PCE Source Concentration	Indoor Air Concentration
(ug/m3)	(ug/m3)
(95% UCL-See Table 1)	(See Appendix E)
7642	6.18
270	0.218
115	0.0931
489	0.396
4111	3.3

As indicated in Table 1, the 95% UCL concentration of PCE approximated 7,642 ug/m³ prior to initiation of SVE operations in July 2009; this concentration corresponds to an estimated carcinogenic risk of 1.86×10^{-5} under residential land use, a carcinogenic risk of 5.46×10^{-6} under commercial/industrial land use, and a carcinogenic risk of 2.4×10^{-6} under the site-specific school use for children. These risk levels are within the target acceptable risk range of 1×10^{-6} defined by the US Environmental Protection Agency.

As shown in Table 1, in the months following initiation of SVE operations, the PCE concentrations declined significantly, resulting in a reduction of risks under all three cleanup scenarios to levels below the target risk range of 1×10^{-4} to 1×10^{-6} . In November 2009, approximately one month following termination of the SVE system, the 95% UCL concentration of PCE rebounded slightly to 489 ug/m³, again yielding estimated risk levels for all three endpoints (i.e, residential, commercial/industrial, and site-specific school children) that were below the target risk range of 1×10^{-4} to 1×10^{-6} .

As shown on Table 1, the sampling results obtained during the August 2010 round of sampling indicate additional rebound of PCE concentrations since the sampling in November 2009, resulting in a 95% UCL concentration of 4,111 for PCE approximately 11 months following termination of SVE operations; however, while marking a rebound since the last sampling event, the PCE levels remain largely below levels detected prior to initiation of SVE operations. Specifically, the 95% UCL concentration of PCE during this event marks a 46% reduction from the Baseline sampling event, with estimated risk levels ranging from 1.0 x 10⁻⁵ under residential land use, 2.9 x 10⁻⁶ under commercial/industrial land use, and 1.3 x 10⁻⁶ under school usage by children; all within the target acceptable risk range of 1 x 10⁻⁴ to 1 x 10⁻⁶.

Also worth noting is that the maximum detected concentration of PCE within the footprint of the Montessori School (1,100 ug/m³) during the August 2010 event corresponds to a risk of 3.5×10^{-7} under the school land use for children (which is below the target acceptable risk range), while marking a significant reduction from 6,800 ug/m³ historically detected (Ceres, 2008) at adjacent historical sub-slab sample SB-13 (see Figure 1).

PLANNED ACTIVITIES

The next vapor monitoring event is scheduled for December 2010. Vapor samples will be collected from the same wells outlined in the ACHCSA-approved workplan (LRM, 2010), and all proposed vapor samples will be collected using summa canisters following the ACHCSA-approved procedures outlined in the workplan (Endpoint, 2010a). Vapor samples will be analyzed for 8010 list using EPA TO-15 method. Following completion of December 2010's sampling event, a monitoring report including the recommendations for future site activities will be submitted to the ACHCSA.

As always, we appreciate your assistance with this project. If you have any questions, please contact Jing Heisler at 415-342-3713 or at jing@endpoint-inc.com, or Mehrdad Javaher at 415-706-8935, or at mehrdad@endpoint-inc.com.

Sincerely, **Endpoint Consulting, Inc.**

Jing Heisler, PG, CHG Senior Geologist

Mehrdad M. Javaher, Ph.D(cand.), MPH Principal Risk Assessor

Attachments:

Table 1 - PCE and Estimated Risks in Soil Vapor

Figure 1 – Vapor Monitoring Results (August 2010)

Appendix A – Vapor Well Logs

Appendix B - Field Data Sheets

Appendix C - Laboratory Analytical Reports of Vapor Samples

Appendix D – ProUCL Calculation

Appendix E – J&E Model Input and Output

References:

Ceres Associates, 2008. Soil Vapor and Soil Sampling Report, Crow Canyon Dry Cleaners, 7272 San Ramon Road, Dublin, California. May 2008.

DTSC, 2004. Guidance for School Site Risk Assessment Pursuant to Health and Safety Code Section 901(f): Guidance for Assessing Exposures and Health Risks at Existing and Proposed School Sites, Final Report, February.

DTSC, 2005. Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, January 5.

DTSC, 2010. *Advisory – Active Soil Gas Sampling*, Department of Toxic Substances Control, California Environmental Protection Agency, March 2010

Endpoint, 2009. *Interim Remedial Action Report*, Crow Canyon Cleaners Site, 7272 San Ramon Road, Dublin, California, January 26, 2010

Endpoint, 2010a. *Vapor Well Installation and Monitoring Workplan*, Crow Canyon Cleaners Site, 7272 San Ramon Road, Dublin, California, May 10, 2010

Endpoint, 2010b. *Addendum Letter to Vapor Well Installation and Monitoring Workplan,* Crow Canyon Cleaners Site, 7272 San Ramon Road, Dublin, California, June 21, 2010

RWQCB 2008. "Screening For Environmental Concerns at Sites with Contaminated Soil and Groundwater", California Regional Water Quality Control Board, Interim Final, May 2008

TABLE

Table 1 PCE and Estimated Risks in Soil Vapor Crow Canyon Dry Clenaers

7272 San Ramon Road,

Dublin, California

		PCE C	Concentrations (ug/m ³)	
	7/18/2009 to 7/30/2009	9/1/2009	9/28/2009	11/4/09	8/26/10
	Baseline-Purge Test-SVE	1 Month after	2 Months after	~ 1 month after	~ 11 months after
weii i.D.	Shakedown Sampling	operation of SVE	operation of SVE	shutdown of SVE	shutdown of SVE
	Events	system	system	system	system
VE-1S	1,200	23	<14	970	1,100
VE-1D	420	300	<14	770	NS
VE-2S	5,900	<14	200	500	3,400
VE-2D	1,100	<14	<14	350	NS
VE-3S	2,200	30	38	<14	870
VE-3D	3,800	24	51	<14	NS
VM-1S	<73	-	<14	20	2,600
VM-1D	160	-	16	140	NS
VM-3S	8,100	-	55	81	NS
VM-3D	34J	-	<14	300	NS
VM-4S	10,000	-	180	310	1,100
VM-5SS	-	-	-	-	1,300
VM-6SS	-	-	-	-	650
VM-2SS	-	-	-	-	28
VM-7	-	-	-	-	310
VM-8	-	-	-	-	1,300
VM-9SS	-	-	-	-	11,000
VM-10	-	-	-	-	450
95% UCL Concentration (1)	7,642	270	115	489	4,111
Carcinogneic Risk-Residential Land Use (2)	1.9E-05	6.6E-07	2.8E-07	1.2E-06	1.0E-05
Carcinogneic Commercial Land Use (3)	5.5E-06	1.9E-07	8.2E-08	3.5E-07	2.9E-06
Carcinogneic Risk-School Land Use (4)	2.4E-06	8.6E-08	3.7E-08	1.6E-07	1.3E-06
	ESLs Resident	ial Exposure: 410 ug/	m ³		
	ESLs Commercial/Inc	dustrial Land Use: 1,40)0 ug/m3		
	Site-Specific Screening Le	vel for School Children	: 2,600 ug/m ³		

•

Table 1 PCE and Estimated Risks in Soil Vapor

Crow Canyon Dry Clenaers 7272 San Ramon Road, Dublin, California

Abbreviations:

SVE = Soil Vapor Extraction

ug/m³ = microgram per cubic meter

"-" or "NS" = not available or not sampled

"<" = less than laboratory reporting limit

ESLs = Environmental Screening Levels developed by RWQCB, San Francisco Bay Region, May 2008 (Table E).

Notes:

1

(1) 95% UCL calculation is detailed in Appendix D.

(2) Since the residential ESL for PCE in soil vapor is 410 ug/m³ derived from a target risk level of 1E-06, and the risk is approximately directly proportional to concentration, a potential risk posed by site PCE concentration (95% UCL) is estimated as follows:

$$risk \approx 4,11 \, lug/m^3 \times \frac{1E - 06}{410 ug/m^3} \approx 1E - 05$$

(3) Since the commercial ESL for PCE in soil vapor is $1,400 \text{ ug/m}^3$ derived from a target risk level of 1E-06, and the risk is approximately directly proportional to concentration, a potential risk posed by site PCE concentration (95% UCL) is estimated as follows:

$$risk \approx 4.11 \, lug/m^3 \times \frac{1E - 06}{1.400 \, ug/m^3} \approx 2.94E - 06$$

(4) A potential risk to children posed by site PCE concentration (95% UCL) for school use scenario is calculated based on J&E Model (Appendix E) and the equation below.

Risk = (Indoor air concentration x Inhalation Rate x Exposure Frequency x Exposure Duration x Inahlation Cancer Slope Factor)/(Body Weight x Averaging Time for Carcinogens)

FIGURE

LEGEND:

	VM-4 -	Proposed Vapor Monitoring Locations (existing wells)
EEP)	VM-2SS -	Newly Installed Sub-Slab Vapor Monitoring Well (2010)
	VM-7-	Newly Installed Shallow Vapor Monitoring Well (2010)
	VE-1 🔶	Soil Vapor Extraction Well Locations
	VM-3 🕂	Soil Vapor Monitoring Well Location
	SB-1 ●	Soil Boring Locations (PCE Concentration in μ g/m ³)
	S/D	Shallow Well Screen/Deep Well Screen
	SS	Sub-Slab Vapor Monitoring Wells
		Utility Line

Reference: Base map from drawing titled "PCE Concentrations in Soil Vapor", by Ceres, dated April 2008.

VAPOR MONITORING RESULTS AUGUST 2010

CROW CANYON DRY CLEANERS 7272 SAN RAMON ROAD DUBLIN, CALIFORNIA

BOBEIN, O			
Endpoint.	Date: 9/09/2010	Figure:	1
Strategy, Science, Sustainability.			

NATURAL GAS (~4' DEEP)

Appendix A

Vapor Well Logs

BORING LOG Permit No. 2010072 Boring & casing diameter 3"/1/4" Logged By: Joel Greger Project: 7272 San Ramon Rd., Dublin, CA Well Casing Elevation: Date drilled: 8-23-2010 Well No. VM-7 Drilling Method: hand auger Drilling Company: Vironex Other notes G.W. level Sample Deptin (USCS) Stratigraphy (USCS) Description 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 fill 0 0 0 0 0 0 2 fill 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0	BORING LOG Permit No. 2010072 Boring & casing diameter 3"/1/4" Logged By: Joel Grege Project: 7272 San Ramon Rd, Dublin, CA Well Casing Elevation: Date drilled: 8-23-20' Well No. VM-7 Drilling Method: hand auger Drilling Company: Viron Other notes G.W. (H) Sample (USCS) Sample (USCS) Description Image: Company: Viron Image: Company: Viron Description Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Comp									
Permit No. 2010072 Boring & casing diameter 3'/1/4" Logged By: Joel Greger Project: 7272 San Ramon Rd., Dublin, CA Well Casing Elevation: Date drilled: 8-23-2010 Well No. VM-7 Drilling Method: hand auger Drilling Company: Vironex Other notes G.W. level Sample Depth (ft) Stratigraphy (USCS) Description Image: Comparison of the second of the s	Permit No. 2010072 Boring & casing diameter 3'/1/4" Logged By: Joel Grege Project: 7272 San Ramon Rd., Dublin, CA Well Casing Elevation: Date drilled: 8-23-20' Well No. VM-7 Drilling Method: hand auger Drilling Company: Viron Other notes G.W. Ievel Sample (USCS) Stratigraphy (USCS) Description Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Viron Image: Company: Company: Company: Viron Image: Company: Viron <td></td> <td></td> <td></td> <td></td> <td></td> <td>BO</td> <td>RING LOG</td> <td></td> <td></td>						BO	RING LOG		
Project: 7272 San Ramon Rd., Dublin, CA Well Casing Elevation: Date drilled: 8-23-2010 Well No. VM-7 Dnilling Method: hand auger Drilling Company: Vironex Other notes G.W. level Sample Depth (t) Stratigraphy (USCS) Description Image: Company: Vironex 0 0 0 0 Description Image: Company: Vironex 0 0 0 0 0 0 Image: Company: Vironex 0 0 0 0 0 0 0 Image: Company: Vironex 0 0 0 0 0 0 0 0 0 0 0 0 <td>Project: 7272 San Ramon Rd, Dublin, CA Well Casing Elevation: Date drilled: 8-23-201 Well No. VM-7 Drilling Method: hand auger Drilling Company: Viron Other notes G.W. level Sample Depth (USCS) Stratigraphy (USCS) Description 0 0 0 0 0 Description 1 0 0 0 0 Description 2 1 0 0 0 0 2 1 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0</td> <td>Permit No. 20</td> <td>10072</td> <td></td> <td>Borin</td> <td>g&ca</td> <td>asing</td> <td>g diameter 3"</td> <td>/1/4"</td> <td>Logged By: Joel Greger</td>	Project: 7272 San Ramon Rd, Dublin, CA Well Casing Elevation: Date drilled: 8-23-201 Well No. VM-7 Drilling Method: hand auger Drilling Company: Viron Other notes G.W. level Sample Depth (USCS) Stratigraphy (USCS) Description 0 0 0 0 0 Description 1 0 0 0 0 Description 2 1 0 0 0 0 2 1 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0	Permit No. 20	10072		Borin	g&ca	asing	g diameter 3"	/1/4"	Logged By: Joel Greger
Well No. VM-7 Drilling Method: hand auger Drilling Company: Vironex Other notes G.W. level Sample Depth (ft) Stratigraphy (USCS) Description Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex Image: Company: Vironex <tr< td=""><td>Well No. VM-7 Drilling Method: hand auger Drilling Company: Viron Other notes G.W. Ievel Sample Depth (ft) Stratigraphy (USCS) Description Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (USCS) Description Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Description Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ISCS) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image:</td><td>Project: 7272 Rd., Dubli</td><td>San Ra n, CA</td><td>mon</td><td colspan="4">Well Casing Elevation:</td><td>Date drilled: 8-23-2010</td></tr<>	Well No. VM-7 Drilling Method: hand auger Drilling Company: Viron Other notes G.W. Ievel Sample Depth (ft) Stratigraphy (USCS) Description Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (USCS) Description Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Description Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ft) Image: Company: Viron (USCS) Image: Company: Viron (USCS) Image: Company: Viron (ISCS) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image: Company: Viron (ft) Image:	Project: 7272 Rd., Dubli	San Ra n, CA	mon	Well Casing Elevation:				Date drilled: 8-23-2010	
Other notes G.W. level Sample Depth (USCS) Description 0	Other notes G.W. level Sample Depth (USCS) Description 0 0 0 0 -	Well No. VN	Л-7		Drilling	Drilling Method: hand auger			Drilling Company: Vironex	
Crow Canyon Cleaners 7272 San Ramon Rd. VM-7 Date: 8-24-10 Crow Canyon Cleaners 7272 San Ramon Rd. VM-7 Date: 8-24-10	Crow Canyon Cleaners Crow Canyon Cleaners VM-7 Date: 8-24-10 Crow Canyon Cleaners VM-7 Drawn By: JG	Other notes	G.W. level	Samp Depth (ft)	le Stratigraphy (USCS)				escription	
Crow Canyon Cleaners VM-7 Date: 8-24-10 Dublin, CA VM-7 Drawn By: JG	Crow Canyon Cleaners VM-7 Dublin, CA VM-7		0 1 1 1 1 1 1 1 1 1 1 1 1 1					 @ 0' - brov pebbles to 3/8 @ 1' - few ro . @ 2.5' - relativistic (ML), moistic @ 4.5' - green 	vn silt (ML), 3 inch diamete ots, no pebble vely undisturbe t, stiff.	roots, moist, stiff, occasional r (fill). s, otherwise as above. ed native soil, greenish brown
Crow Canyon Cleaners 7272 San Ramon Rd. Dublin, CA Drawn By: JG	Crow Canyon Cleaners 7272 San Ramon Rd. Dublin, CA Drawn By: JG			6 -			T in O	otal Depth: 5'. nplant tip, #2/16 -3.5'.	1/4 inch 6 5 sand 4.5-5',	casing with soil gas sampling bentonite 3.5-4.5', neat cement
Dublin, CA Drawn By: JG	Dublin, CA Drawn By: JG	Crow 0 7272 \$	Canyon San Rai	Cleane mon Ro	rs I.			VM-7		Date: 8-24-10
			Dublin, (CA						Drawn By: JG

					D					
					B	JRING LOG				
Permit No. 201	0072		Borin	Boring & casing diameter 3"/1/4" Logged By: J			Logged By: Joel Greger			
Rd., Dublir	San Rai n, CA	mon	Well	Casi	ng	Elevation:		Date drilled: 8-23-2010		
Well No. VM-8	}		Drilling Method: hand auger			od: hand auger		Drilling Company: Vironex		
Other notes	G.W. level	Samp Depth (ft)	le Stratigraphy (USCS)				D	escription		
						@ 0' - two so then sand and	eparate asphalt d gravel base.	t pavements each 2.5" thick,		
		 - 1 · -	- fill	out	trout	@ 1' - Disturi	oed native soil	and sand and gravel base.		
		- 2 -	 	- 6	0	@ 1.5' - Dar stiff.	k gray silty c	lay/clayey silt (CL-ML), moist,		
	-	- - - - - - -	- ML-C 	1/1" teflon tubing		@ 2.5' - Colo pebbles.	or change to	change to brown, occasional subrounded		
		- 4 -	- - ML	bentonite	bentonite	@ 4' - Olive g	reen silt (ML),	moist, stiff.		
		- - 5 -	fill	#2/16 salui #2/16	sand L	@ 4.5' - appa with gravel, su	arent storm dra bangular grave	ain trench backfill, silty sand ls to 2 inches, v. moist, stiff.		
		6 —				Total Depth: 5'. implant tip, #2/10 0-3.5'.	1/4 inch o 3 sand 4.5-5',	casing with soil gas sampling bentonite 3.5-4.5', neat cement		
	F	-	-			1				
Crow C 7272 S	anyon an Rar	Cleaner	S			VM-8		Date: 8-24-10		
D	ublin, C					• 141-0		Drawn By: JG		

			t		B(ORING LOG			
Permit No. 20	10072		Bor	ing &	casi	ing diameter 3"	/1/4"	Logged By: Joel Greger	
Rd., Dubli	San Ra n, CA	mon	We	ell Cas	sing	Elevation:		Date drilled: 8-23-2010	
Well No. VM-10)		Dri	lling N	letho	od: hand auger	I: hand auger Drilling Company: Viro		
Other notes	G.W. level	Samp Depti (ft)	ble Str h (atigra USCS	phy S)		D	Description	
				#2/16 bentonite 1/1 [*] tefton tubing grout	#2/16 bentonite grout	 @ 0' - sandy angular grave @ 1.5' - brow fine-grained, s @ 2.5' - grave gravel (fill). @ 3.2' - Trans (ML), moist, st @ 3.5' - green 	silt with grave ls to 1" diamet vn sandy silt w ome roots (fill) els to 2.5" diar sition to brown iff. hish brown, oth 1/4 inch o 5 sand 4.5-5',	Al, slightly moist, stiff, sub- ter(fill).	
Crow 0 7272 s	anyon San Rar	Cleane mon Ro	ers d.			VM-10		Date: 8-24-10	
	udin, (JA 						Drawn By: JG	

plan / Figures

Appendix B

Field Data Sheets

VE -15

Note: casing spins in hole

Project Name: Crow Cany on Cleaners Date: <u>8-26-10</u> Site Location: 7272 San Roman Rd, D.Shin Weather: <u>Usen Mill</u> Field Personnel: John McAssey (Vironex), Just Greger (Endpoint) Recorded by: <u>TC</u>

Soil Vapor Probe No: $\frac{1/E}{-5}$ Sub Slab Probe No: ______ PID Serial No: ______ MDG 2002 Serial No: ______ Tracer Gas: ______ hellom

PID Lamp: 10.6 eV

Surface Type: Asphalt _____ Concrete _____ Grass ____ Other ___ Other ___ Other ___ Other ____ Othe

1 Casing Volume:

Sub Slab Volume _____ L Soil Vapor Probe Volume 1235 P

Initial Vacuum Prior to Pumping <u>29</u> inches of water Shut-in Test <u>79</u> inches of Water held for <u>5 mes</u> seconds Field Tubing: Blank PID Reading <u>9 ppmv</u> Shut in Test Completed Prior to Purging: <u>Yes</u> No

390 ml - 6' cars ing 7 2" 834 3' sond park & 0,3 porosity 1224 7" holo 2 Ft 3/16 huling - 10.86 1235 ml / 50 ml men =

8.23mm

Note magny helic guage In line but appeared to slow filling Sum one

VE-15

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L) T-Sithiry	Purge Rate (LPM)	Cumulative Volume (L)	Trac	er Gas	Sample (ppmv, %)	VOCs by PID (ppmv)	· .
8-26-10	1014	1030	16.4		150	1235ml	Shro	ud (%)			
							Min	Max			1
				1	I		10,1	15.7	0	0.0	0,800
on un one of the second					1		1			1	7eder bag
					1					1	ofter Som
											Filled

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

Yes No

MAN316-676

Sample Co	llection			MATUSIGGIC									
Date	Time	Samp	le ID	Summa Canister ID	Flow Controller #	∧Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)					
8.26-10	1029	ILE-15		A7515			-29	-7					
	1055	0											
						5. C	-	s					
	1												
	T							a					

Then cotter filled Tedlar bay for helin duplicate somple using bespreke pump + Vacuum chamber

start 1228 10:59 - 1107 END

VE-25

APPENDIX B - FIELD FORM FOR SOIL VAPOR/SUB SLAB SAMPLING

Project Name: Crow Canyon Cleaners Date: <u>8-26-10</u> Site Location: <u>7272 San Roman</u> Rd, D.blin Weather: <u>Oan + mild</u> Field Personnel: John McAssay (Vironex), Juel Greger (Endpoint) Recorded by: <u>56</u>

Soil Vapor Probe No: Sub-Slab Probe No: PID Serial No: MDG 2002 Serial No: Tracer Gas: Kellum

Surface Type: Asphalt _____ Concrete <u>x</u> <u>y.5</u> Grass _____ Other _____ Surface Thickness (i.e., asphalt or concrete) ____<u>y.5</u>

1 Casing Volume:

Sub Slab Volume _____ L Soil Vapor Probe Volume ____ 23 5 ml

Initial Vacuum Prior to Pumping <u>18</u> inches of water
 Shut-in Test <u>-28</u> inches of Water held for <u>190</u> seconds
 Field Tubing: Blank PID Reading <u>0</u> ppmv
 Shut in Test Completed Prior to Purging: <u>Yes</u> No

PID Lamp: 10.6 eV

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume	Purge Rate (LPM)	Cumulative Volume (L)	Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)
- U 10	1242	1258	16.4		150ml	1235m. 42	Shro	ud (%)	1	
				·		1	Min	Max		<u> </u>
							14,5	16.6	G	0.5
								· ·	T	
L	I						1	1		<u> </u>

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

X_Yes

No

VE-25

Sample Collection

MAN 316-671

Date	Time	Sample ID Summ Canister		Flow Controller #	Vaccum Gage #	Initial Vacuum	Final Vacuum
8.76-10	1259	VE-25	6808	T		-28	
	104	-					
				-			
· .				-			
L	L						

VB-35

Project Name: Crow Cany on Cleaners Date: <u>8-U6-10</u> Site Location: 7272 San Romon Rd, Dublin Weather: <u>clear</u>, mild Field Personnel: John McAssey (Vironex), Juel Greger (Endpoint) Recorded by: <u>56</u>

Soil Vapor Probe No: <u>VE-35</u> Sub Slab Probe No: PID Serial No: <u>02776</u> MDG 2002 Serial No; <u>047268</u> Tracer Gas: <u>Nel 10m</u>

PID Lamp: 10.6 eV

Surface Type:	Asphalt	Concrete	 Grass	c'	Other	Soul	
Surface Thickn	ess (i.e., asphalt or	concrete)		•	. *	. ·	

1 Casing Volume:

Sub Slab Volume _____ L Soil Vapor Probe Volume /2 35 av

Initial Vacuum Prior to Pumping ______ inches of water Shut-in Test ______ inches of Water held for ______ seconds Field Tubing: Blank PID Reading ______ ppmv Shut in Test Completed Prior to Purging: ______ Yes _____ No Purging VOCs by **Tracer Gas** Sample Bag Volume Purge Rate **Cumulative Volume** Start Time End Time Elapsed Date (ppmv, %) PID (LPM) (L) Time (to Fithey) (ppmv) (min.) 1235mlx 2 Shroud (%) 150ml PLOYEM 1615 1148 Am -2610 8 Min Max 13.9 .0 0.1 10.1 .

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

Yes No

MANZMA 844

1/E-35

Sample Col	Date Time Sam											
Date	Time	ime Sample ID		Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)				
8-26-10	1209 pm	VE-35		1461		-	- 29	-5				
	1238 pm											
							4					
1	T						1	· · · · · · · · · · · · · · · · · · ·				

Project Name: Crow Cany on Cleaners Date: 8 26-10 Project Number: ______ Site Location: 7272 San Roman Rd, Dublin Weather: Clearer + mild Field Personnel: John McAssey (Vironex), Juel Greger (Endpoint) Recorded by: <u>TG</u>_____

Soil Vapor Probe No: <u>1/M-1.5</u> Sub Slab Probe No: _____ PID Serial No: <u>027/C</u> MDG 2002 Serial No: <u>04/268</u> Tracer Gas: <u>helim</u>

PID Lamp: 10-6 eV

1/m-15

Surface Type: Asphalt _____ Concrete _____ Grass ____ Other <u>SOI</u>

16. Yourd

1 Casing Volume:

Sub Slab Volume _____ L Soil Vapor Probe Volume 235 ml

Initial Vacuum Prior to Pumping <u>~28</u> inches of water Shut-in Test <u>~24</u> inches of Water held for <u>/80</u> seconds Field Tubing: Blank PID Reading <u>0</u> ppmv Shut in Test Completed Prior to Purging: <u>X</u> Yes <u>No</u>

VM-15

Purging

Date	Start Time	End Time	Elapsed Bag Volume Time (L) (min.) & T-Athug)	Purge Rate (LPM)	Cumulative Volume (L)	Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)	
8-26-16	1109	1125	16.4		150	1235 ml X2	Shro	ud (%)	1	- APPING
						1	Min	Max	1	
							10,3	14.4	0	0.6
								T		
		1.1						1		
								1	1	

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

Yes Yes

G

No

Sample Collection

MAN 316844

Date 6.26.70	Time	Sample ID		Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum	Final Vacuum
	1138m	VM15		6204	T	an a	- 70	Tur ng
	1141 Am							

·~~					-			

1M-2.55

Project Name: Crow Canyon Cleaners Date: <u>8-26-10</u> Site Location: <u>7272 San Remon</u> Rd, Dublin Weather: <u>Cleantmild</u> Field Personnel: <u>John McAssey</u> (Vironex), Joel Greger (Endpoint) Recorded by: <u>JG</u>

Soll Vapor Probe No: Sub Slab Probe No: $\frac{Vm-2-5}{02716}$ PID Serial No: $\frac{02716}{02716}$ MDG 2002 Serial No: $\frac{041268}{100}$ Tracer Gas: hel m

PID Lamp: 10.6 eV

Surface Type: Asphalt _____ Concrete _____ Grass ____ Other _____ Surface Thickness (i.e., asphalt or concrete) _____ KS

 1 Casing Volume:

 Sub Slab Volume
 //ml $L^{\infty}/ = 77 ml$

 Soil Vapor Probe Volume
 L

 Initial Vacuum Prior to Pumping
 -28 inches of water

 Shut-in Test
 -15 inches of Water held for
 7m sceonds

 Field Tubing:
 Blank PID Reading
 O ppmv
 Shut in Test Completed Prior to Purging:
 X Yes
 No

YM-255

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (te⊤fitti~)	Purge Rate (LPM)	Cumulative Volume (L)	Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)
8-76-0	223	225	1.5	[50mg	91	Shrou	ıd (%)		· · · ·
				· ·			Min	Max		
							10.3	12.4	0	0.0
the second second second	1									
						-				

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

8

MAN SIGLES

Sample Collection

Date	Time	Sample ID	Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)
1.26-10 2:	233	Vm-2.53	6803			-28	-6
	310	and		i i			
				-			
	1		1				· ·

Project Name: Crow Canyon Cleaners Date: 5-26-70 Project Number: ______ Site Location: 7272 San Roman Rd, Dublin Weather: ______ clear, mild Field Personnel: John McAssey (Viranex), Juel Greger (Endpoint) Recorded by: _____G

Soil Vapor Probe No: <u>VM-45</u> Sub Stab Probe No: PID Serial No: <u>02716</u> MDG 2002 Serial No: <u>041268</u> Tracer Gas: <u>helium</u>

Surface Type: Asphalt _____ Concrete _____ Grass ____ Other _____ Surface Thickness (i.e., asphalt or concrete) _____

1 Casing Volume:

Sub Slab Volume _____L Soil Vapor Probe Volume ____?35Lmf x Z

Initial Vacuum Prior to Pumping <u>- 29</u> inches of water Shut-in Test <u>-12</u> inches of Water held for <u>5 mer</u> seconds Field Tubing: Blank PID Reading <u>0</u> ppmv Shut in Test Completed Prior to Purging: <u>×</u> Yes ____ No

PID Lamp: 10.6 eV

1m-45

VM-45

Parging

Date 8-26-10	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L) Ho T fathry	Purge Rate (LPM)	Cumulative (L)	Volume	Trac	Tracer Gas		VOCs by PID (ppmv)
			/0//		100 mg	16.30 ml	XZ	Shro	ıd (%)		
							:	Min	Max		
							-	10.3	15.5	0	0.2
										1	
L	L										

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud? Yes

___ No

Sample Collection

MAN 316-6670

c

Date 8-76-11:	Time	Sample ID	Summa Canister 1D	Flow Controller #	Vaccum Gage #	Initial Vacuum	Final Vacuum	
	1233	VMYS	6/14			(in of Hg)	(in Hg)	1
	1237 -	-d				- 29	- 4	
								1
				-				

Project Name: Crow Cany on Cleaners Date: <u>8-26-1c</u> Site Location: <u>7272 San Remon</u> Rd, Dublin Weather: Field Personnel: John McAssey (Vironex), Juel Greger (Endpoint) Recorded by: <u>TG</u>

Soil Vapor Probe No: Sub Slab Probe No: PID Serial No: MDG 2002 Serial No: 04/268 Tracer Gas: Control Co

۱

PID Lamp: 10.6 eV

VM 5 5/5

Surface Type: Asphalt _____ Concrete X Grass Other 4.5" Surface Thickness (i.e., asphalt or concrete)

<u>1 Casing Volume</u> Sub Slab Volume _____ I ml × 7= 77ml 2 50ml/min = 1.5 min Soil Vapor Probe Volume _____ L

Initial Vacuum Prior to Pumping <u>-29</u> inches of water Shut-in Test <u>14</u> inches of Water held for <u>240</u> seconds Field Tubing: Blank PID Reading <u>0</u> ppmv Shut in Test Completed Prior to Purging: <u>4</u> Yes <u>No</u>

HASTS VM-535

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L)	Purge Rate (LPM) '	Cumulative Volume (L)	Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)
a.							Shro	ud (%)		
-							Min	Max		
8-2610	118 Pm	120 pm	1.5		50ml/m	7×11=77ml	10,3	12-1137	0	0,0
									-	
	T					· · · · · · · · · · · · · · · · · · ·				
						-				L

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

_____Yes _____ No

Sample Collection

MAN 316672

Sample Col	ICCHUR.			/ /	11. 1.001-		
Date	Time	Sample ID	Summa Canister 1D	Flow /- Controller	↓ Vaccum Gage #	Initial Vacuum	Final Vacuum
1			1	#		(in of Hg)	(in Hg)
8-2610	122 M	Um-555	6801			-29	-5
	2009M						
	-			- u			

20 mm

/m -6 55

Project Name: Crow Canyon Cleaners Date: 8-26-10 Project Number: Site Location: 7272 San Roman Rd, Dublin Weather: Class + neld Field Personnel: John McAssey (Vironex), Juel Greger (Endpoint) Recorded by: JG

Soft Vapor Probe No. Sub Slab Probe No: VM-/ PID Serial No: 02716 OY MDG 2002 Serial No: Tracer Gas: 20. IUN

PID Lamp: 10,6eV

Surface Thickness (i.e., asphalt or concrete) _____Y.S. Surface Type: Asphalt _____ Concrete _____ Other

1 Casing Volume:

11 mbx 7=77ml = 1.5 mer Sub Slab Volume Soil Vapor Probe Volume

Initial Vacuum Prior to Pumping ______ inches of water 7 Shut-in Test - 7.2 inches of Water held for 240 seconds Field Tubing: Blank PID Reading _ C ppmv Shut in Test Completed Prior to Purging: X Yes No

VM-655

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume Purge Rate (L) (LPM) for Thefing	Cumulative Volume (L)	Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)	
1.26-10	413	215	1.5	2	.50		Shro	ud (%)		
							Min	Max	1	
							10,1	13.1	0	0.0
-								1		
								1 .	1	
								1	1	

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud? No

Yes Yes

Sample Collection

MAN316629

Date	Time	Sample ID		Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum	Final Vacuum	
8-26-14	214	VM-658		6806			-7.8	- 55	
	2540	nd							1 ~
		1					-		1
					-				1
L	1								1

6

Project Name: Crow Cany on Cleaners Date: <u>8-26-10</u> Site Location: <u>7272 San Pamon</u> RJ, Dublin Weather: <u>Clem, and C</u> Field Personnel: John McAssey (Vironex), Juel Greger (Endpoint) Recorded by: <u>56</u>

Soil Vapor Probe No: <u>VM-7</u> Sub Stab Probe No: <u>PID Serial No: 02716</u> MDG 2002 Serial No: <u>041268</u> Tracer Gas: <u>helim</u>

PID Lamp: 10,6 eV

in landscaped aren

Surface Type: Asphalt _____ Concrete _____ Grass ____ Other ______ Surface Thickness (i.e., asphalt or concrete) _____

1 Casing Volume:

Sub Stab Volume _ L ml (x7 casing vol) Soil Vapor Probe Volume 58 L (x7 casing vol)

Initial Vacuum Prior to Pumping <u>28</u> inches of water Shut-in Test <u>29</u> inches of Water held for <u>300</u> seconds Field Tubing: Blank PID Reading <u>0</u> ppmv Shut in Test Completed Prior to Purging: <u>X</u> Yes No
VM-7

3m16 see

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume	Purge Rate (LPM)	Cumulative Volume (L)	Trac	er Gas	Sample (ppmv, %)	VOCs by PID (ppmv)
			· .			-	Shro	ud (%)	1	
						1	Shroud (%) Min Max		1	
8-26-10	gourm	903.2	3m/65		150	7 × 58 ml	10,7 15,6		0	0.4
									Τ.	
		alpanan and a state of the second	L					Ι	1	

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

Sample Collection

MAN 316-762

Date	Time	Samj	ole ID	Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)
8-26-16	904	VM-7		6171			- 28	-5
	910				,			
							-	
-					-			

APPENDIX B - FIELD FORM FOR SOIL VAPOR/SUB SLAB SAMPLING

Project Name: Crow Canyon Cleaners Date: 8-26-10 Project Number: Site Location: 7272 San Roman Rd, Dublin Weather: clar, mile Field Personnel: John McAssey (Vironex), Juel Greger (Endpoint) Recorded by: TG

Soil Vapor Probe No: Sub-Slab Probe No: PID Serial No: MDG 2002 Serial No: Tracer Gas: Aelium

PID Lamp: 10.6 eV

VM-8

Surface Type: Asphalt <u>></u> Concrete Grass Other _____ Surface Thickness (i.e., asphalt or concrete) <u>5</u>[#]

1 Casing Volume:

Sub Slab Volume _____L Soil Vapor Probe Volume __S mlx 2/ ml on sond to 5.43 = 37 to bing 7 w 5.43 = 37 21 Initial Vacuum Prior to Pumping ______ inches of water Shut-in Test _____R inches of Water held for ______ be seconds Field Tubing: Blank PID Reading _____ ppmv Shut in Test Completed Prior to Purging: ______ Yes _____ No 7 Cossi ng Volumes

Page 1 of 2

VM-8

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L) (7 frfing)	Purge Rate (LPM)	Cumulative Volume (L)	Trace he	er Gas lim	Sample (ppmv, %)	VOCs by PID (ppmv)
8-26-10	826AM	829 AM	311/65		150 ml	7×58.ml	Shrou	ıd (%)		
			-	· ·			Min	Max		
	I				I		10.2	15.2	0	2.4
and the second secon					1		[
,Cantonan A, Nanan A, Malaing A, A						·		· ·	I	
	T.			[-	

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

:

Sample Collection

MAN 316 843

Date	Time	Samp	de ID	Summa Canister ID	Flow? Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)
8-26-10	832	VM-8		6423			- 78	-5
	676:4							
· · · · ·					5			

VM9 5/5

APPENDIX B - FIELD FORM FOR SOIL VAPOR/SUB SLAB SAMPLING

Project Name: Crow Cany in Cleaners Date: <u>8/24/10</u> Project Number: ______ Site Location: <u>7272 San Ramon</u>Ri, Diblin Weather: <u>cool</u>, breezy (7 Am) Field Personnel: John McAssay (Vironex), Juel Greger (Endpoint) Recorded by: <u>IG</u>

PID = Mini RAE 2000

Soil Vapor Probe No: Sub Slab Probe No: VM 9 5/5 PID Serial No: VZ 7/6 MDG 2002 Serial No: Cyl 768 Tracer Gas: holoum

PID Lamp: 10,6 eV

Surface Type: Asphalt ____ Concrete X Grass Other Surface Thickness (i.e., asphalt or concrete) _______ 3" sende 3 140 ml/ft (13 porosity) = 10.5 ml 10.5 ml tor 3" vertical of send <u>10.86 for 2'hiling</u> 1 Casing Volume: Sub Slab Volume 21 ml Selt Vapor Probe Volume

Initial Vacuum Prior to Pumping ______ inches of water Shut-in Test ______ inches of Water held for ______ seconds Field Tubing: Blank PID Reading ______ ppmv Shut in Test Completed Prior to Purging: ______ Yes _____ No

Vm 9 5/5

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume	Purge Rate (LPM)	Cumulative Volume (L)	Trac	er Gas	Sample (ppmv, %)	VOCs by PID (ppmv)
8-26-10	745 Am		1.1	1	150ml /m		Shro	ud (%)		
	T	1			1			Max	· -	
				7 500	[·	zim	10.2	14.1	0	2.3
				2/000		63~	1	1./.	0	2.5
			757A	49500		147ml	TU	1.	0	2.8
										·

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

<u>× Yes</u> No

MAN 316 669

Sample Co	llection															
Date	Time	Sample ID 29 ∨m 95/5 21	Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)									
876/10	757Am	Vm 955		6312			-30	-5								
and	804 AM				а.											
	1		-													
						· · · · ·										

APPENDIX B - FIELD FORM FOR SOIL VAPOR/SUB SLAB SAMPLING

Project Name: Crow Cany on Cleaners Date: <u>8-26-10</u> Site Location: <u>7272 San Remon</u> RJ, D.blin Weather: <u>Clear F mills</u> Field Personnel: John McAssey (Vironex), Juel Greger (Endpoint) Recorded by: <u>TG</u>

PID Lamp: /1.6 eV

Surface Type: Asphalt ____ Concrete ____ Grass ____ Other _____ Surface Thickness (i.e., asphalt or concrete) _____

1 Casing Volume:

Sub Stab Volume _____ L Soil Vapor Probe Volume _____ L

Initial Vacuum Prior to Pumping ______ inches of water Shut-in Test _ 2.5 _____ inches of Water held for ______ seconds Field Tubing: Blank PID Reading ______ ppmv Shut in Test Completed Prior to Purging: ______ Yes _____ No Purging Det

8-26-10	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L) Thething)	Purge Rate (LPM)	Cumulative Volume (L)	Trac	er Gas	Sample (ppmv, %)	VOCs by PID (ppmv)
							Sbro	ud (%)		
-	729AM	300 165	Zmlla				Min	Max		
		931	200/02		150ml	7×58 ml	10,1	15,3	0	DI
		and the state of the								
						in the second				
		Name of Stations of Stations				-				

VM-10

3 m 16 s purge

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

Sample Collection

Data Data	lection	1			MAN316.71	Z	
Date	Time	Sample ID	Summa Canister ID	Flow Z Controller	CVaccum Gage #	Initial Vacuum	Final Vacuum
8-26-10	939AM	UM-10	6420	#		(in of Hg)	(in Hg)
			+			20	
					-		

Appendix C

Laboratory Analytical Reports of Vapor Samples

McCampbell An "When Quality	nalytical, Inc.	1534 Willow Pass F Web: www.mccampbell.c Telephone: 877-2	Road, Pittsburg, CA 945 com E-mail: main@mc 52-9262 Fax: 925-25	565-1701 ccampbell.com 2-9269
Endpoint	Client Project ID: Crow Car	nyon Cleaners	Date Sampled:	08/26/10
98 Battery Street, Suite 200		Date Received:	08/26/10	
	Client Contact: Mehrdad J	Date Reported:	09/02/10	
San Francisco, CA 94111	Client P.O.:	Date Completed:	09/02/10	

WorkOrder: 1008827

September 02, 2010

Dear Mehrdad:

Enclosed within are:

- 1) The results of the 12 analyzed samples from your project: Crow Canyon Cleaners,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

72 HR 5 DAY n (DW) flag is required flag is
72 HR 5 DAY n (DW) find is required er Comments **Indicate here if thes samples ampotentially dangerous handle:
72 HR 5 DAY n (DW) flag is required flag is required flag is required flag is required flag is required **Indicate here if thes samples ar potentially dangerous handle:
flag is required free Comments **Indicate here if thes samples ary potentially dangerous handle:
**Indicate here if thes samples ar- potentially dangerous handle:
**Indicate here if thes samples ar potentially dangerous handle:
here if thes samples ar potentially dangerous handle:
samples ar potentially dangerous handle:
potentially dangerous handle:
handle:
handle:
000
0
6
20
13
2 2
XV
· · · · · · · · · · · · · · · · · · ·
N
c
777

We Tel	McCAMPBELL ANALYTICAL, INC. ISJ4 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Temail: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269 port To: Mehrdad Javah er Ian Bill To: End point f mpany: Endpoint Consulting Y Braffery St - Suife 200 Son Francisco CA 94111 E-Mail: mahrdad Den point Project Name: CrawCany MATRIX MATRIX OB Fax: () OB Fax: () </th <th>1</th> <th></th> <th></th> <th></th> <th></th> <th>TU Ge</th> <th>RN</th> <th>I A</th> <th>R</th> <th>C DU r E</th> <th>H. ND</th> <th></th> <th></th> <th>OI E PD</th> <th>F</th> <th></th> <th>ST H Ex</th> <th>24 cel</th> <th></th> <th>R</th> <th>EC 48 H Vri</th> <th>CO IR te (</th> <th>72 72 0n (</th> <th></th> <th>5 DAY W)</th>									1					TU Ge	RN	I A	R	C DU r E	H. ND			OI E PD	F		ST H Ex	24 cel		R	EC 48 H Vri	CO IR te (72 72 0n (5 DAY W)
Report To: Meh	rdad la	100 62	r/an B	ill Ta	. =	01	0	~//	+		-	-		+			-			A	nab	veie	Rec	THE	1 32	шр	e is	em	uen	t an	0	ther	lg n	Comments
Company: Engl	part C	cnsu	than		1. 0	- w	P							t	-						nai	1919	MEL	ues								inci	N	Comments
980	Battery	St.S.	ite 2	00										٦.		6						2										1	9	**Indicate
San Fr	anciso	CA 9	4111 E	-Mai	1: me	hrd	ad	De	N	0011	17	, e	m			0.00	Deck					ngen									.8	1	0	samples are
Tele: (4/5) 7	068935	-	F	ax: (()			-		-				Nº 1	1	SO E					Cor						(0)	6		alys		0	notentially
Project #:			P	rojec	t Nar	ne: (Cn	u	Co.	nya	14	Tea	120	5	100	-	6	9	8	[1]		OLS		8			(/ 600	602		ds an		Š.	dangerous to
Project Location:	7272.	Sank	amon	RJ	De	16	in	C	A	-					+	1	1001	(418	NO	5/80	(8)	Iroc		vicid			NA	0105	010		meta	5	y	handle:
Sampler Signatur	e: sul	1~	/		1						-				2098		Ise	outs	B	A 600	ticld	N; A	des)	Hert	3	8	I/ SE	8/6	8/6	602.0	EDI	2	3	
	/	SAME	DINC				MA	TP	TY	T	ME	TH	OD		200		5	cart	803	(EP)	1 Pes	INO	stic	O	NO	(SVC	PAI	200	200	10/	ALO	R	U.	
		SPLIT	LING		2		VAZA		IA	P	RES	SER	VEI	의)	as a	6	8	ydro	010	TA	1 (C	B's	P Pe	cidio	260	270	310	90.7	0.7/	160	ISSO		5	
SAMPLE ID LOCATION/ Field Point Name Date Time U										PH as C	100) 130	feran O	leum H	601/8	TEX ON	908 / 808	9082 PC	8141 (N	8151 (A	624/8	625/8	SIM / S	etals (2)	stals (20	/ 200.8	le for D	1151	444						
Name Date Time 2 0 5 5							1	2 1					Petro	02.2	181	9/50	08/8	140	15/	24.2	25.2	1270	17 M	SM	200.7	amp	0	t						
CL CL CON										X I			tal	A S	TBE	S Ve	9 Ve	A S	A S	AS	SAS	8 Y.	IWN	H	ad (tter s	0	H						
	HC Official Annual Annua											2		-	F		M	E	E	E	E	EI	E	E	0	FI	Z	F	00					
VM-255		8/w/k	3/092	1	S		1	x		Т				Т																		X	Т	
NF-15-tedlar		12610	IIIAM	1	T			J		1																						,	XT.	
10101010		10010	111011	-	1			*		+	+	+	-	+	1	-		-														-	4	
				-	-		-	+	-	+	-	+	+	+	+	+	+	-	-	-	_										_	-	+	
					-		-	+	-	+	-	+	-	+	-		+	-+	-			-										-	+	
				-	_		_	4	_	-	-	-	-	+	-	_	-	-	_	_	_		-		-		_					_	+	
																																	T	
~											1	+	1	1		-	1	1													-		+	
							-	+	-	+	+	+	+	+	-	+	+	-	-			-		-					-			-	+	
				-	-			+	-	+	-	+	+	+	+	+	+	+	-	-			-				-	_					+	
				-	-		-	-	-	+	-	+	+	+	+	-	-	-	-	-			-	_	-							-	+	
**MAI clients MUST	disclose any day	orerous ch.	emicals kn	own to	henry	sent	in th	eir -	mbre	itted	ear	mple	e in	COR	cente	ofier	ns fb	nat m	192 .		e imer	nedi	ate b	arm		rien	fut	ine h	ealth	end	ange	men	ine -	a result of brief
gloved, open air, samp	le handling by l	MAI staff.	Non-disclo	sure in	ncurs a	n im	medi	ate	\$250	sure	han	ge a	nd th	he c	lient	is su	bjec	t to	full	legal	liab	ility	for h	arm	suffe	red	Tha	nk y	ou fo	r you	ur un	derst	andi	ing and for
allowing us to work sa	fely.																																	
Relinquished By:		Date:	Time:	Rece	eived B	V:			,	1	-			T	CE/		-	-	-			-				-		-	CON	IME	NTS			
Joel m	beln 8-76-10 404 Am Environeel T.							-(1.	1	G00	DC	ONI	DITI	ON	a tree																		
Relinquished By:	inquished By: Date: / Time: Received By: /							-	-		DECI	D SP HLO	RIN	E AI	ED I	NT_	AB																	
Environ-Ter	March Terhor R R 2/0/01/7/D										1	APPE	OP	RIA	TE	CON	TAI	NEF	RS	-	_													
Relinguished By:		Date:	Time:	Rece	elved B	Vie	-		-	-	-	-	/	1	PRES	ERV	ED	IN	LAB	3	-													
FAL		3/20/13	1740	1	Å	M	U	a	2	I	1	(5	1	PRES	ERV	VAT	ION	VO.	AS	08	kG	ME pH<	TAL 2	S	OTH	ER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg CA 94565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252	2-9262					Work	Order	: 1008	827	(Client	Code: E	PB				
		WaterTrax	WriteOn	EDF		Excel		Fax		🗸 Email		Hard	Сору	🗌 Thir	rdParty	□ J-	flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Mehrdad Java Endpoint 98 Battery Str San Francisco 415-706-8935	aher eet, Suite 200 o, CA 94111 FAX	Email: n cc: PO: ProjectNo: (nehrdad@en Crow Canyon	dpoint-inc.com Cleaners			Ac Er 98 Sa	counts dpoint Battery an Franc	Payabl [,] Street cisco, C	e , Suite 2 CA 9411	200 1		Dat Dat	e Rece e Prin	ived: ted:	08/26/ 08/31/	'2010 /2010
									Rea	uested	Tests	(See leo	aend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1008827-001	VM9 SS		Soil Vapor	8/26/2010 8:04			Α	А	Α						T		T
1008827-002	VM8		Soil Vapor	8/26/2010 8:38					А								
1008827-003	VM7		Soil Vapor	8/26/2010 9:10					А								
1008827-004	VM10		Soil Vapor	8/26/2010 9:40					Α								
1008827-005	VE-1S		Soil Vapor	8/26/2010 10:55		А			Α								
1008827-006	VM-1S		Soil Vapor	8/26/2010 11:41					Α								
1008827-007	VE-3S		Soil Vapor	8/26/2010 12:08					Α								
1008827-008	VM-4S		Soil Vapor	8/26/2010 12:37					Α								
1008827-009	VE-2S		Soil Vapor	8/26/2010 13:04					Α								
1008827-010	VM-5 SS		Soil Vapor	8/26/2010 14:00					Α								
1008827-011	VM-6 SS		Soil Vapor	8/26/2010 14:54					Α								
1008827-012	VM-2 SS		Soil Vapor	8/26/2010 15:00					А								

Test Legend:

1 HELIUM_SOILGAS	2 PRTedlarBa
6	7
11	12

3	PRUNUSEDSUMMA	4	TO15-8
8		9	

TO15-8010_SOIL(UG/M3)

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Maria Venegas

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Endpoint					Date a	and Time Received:	8/26/2010	5:40:00 PM	
Project Name:	Crow Canyon Clo	eaners				Chec	klist completed and r	eviewed by:	Maria Venegas	
WorkOrder N°:	1008827	Matrix	Soil Vapor			Carrie	er: <u>Benjamin Ysla</u>	s (MAI Courier	<u>)</u>	
			<u>Chain</u>	of Cu	stody (COC	c) Informa	ation			
Chain of custody	v present?			Yes	\checkmark	No 🗆				
Chain of custody	v signed when relinqui	shed and	d received?	Yes	\checkmark	No 🗆				
Chain of custody	agrees with sample I	abels?		Yes	\checkmark	No 🗌				
Sample IDs noted	d by Client on COC?			Yes	\checkmark	No 🗆				
Date and Time of	collection noted by Cli	ient on C	OC?	Yes	\checkmark	No 🗆				
Sampler's name i	noted on COC?			Yes	\checkmark	No 🗆				
	Sample Receipt Information									
Custody seals in	tact on shipping conta	iner/cool	ler?	Yes		No 🗆		NA 🗹		
Shipping contain	er/cooler in good cond	lition?		Yes	\checkmark	No 🗆				
Samples in prope	er containers/bottles?			Yes	\checkmark	No 🗆				
Sample containe	ers intact?			Yes	\checkmark	No 🗆				
Sufficient sample	e volume for indicated	test?		Yes	\checkmark	No 🗌				
		<u>Sa</u>	imple Prese	rvatio	n and Hold	<u>Time (HT</u>	<u>) Information</u>			
All samples recei	ived within holding tim	e?		Yes	\checkmark	No 🗌				
Container/Temp I	Blank temperature			Coole	er Temp:			NA 🗹		
Water - VOA via	ls have zero headspa	ce / no b	oubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹		
Sample labels ch	necked for correct pres	servatior	n?	Yes		No 🗌				
Metal - pH accep	table upon receipt (pH	l<2)?		Yes		No 🗆		NA 🗹		
Samples Receive	ed on Ice?			Yes		No 🗹				

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Analytical, Inc. "When Ouality Counts"			15 Web: w	534 Willow F www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 9 bbell.com E-mail: main@ 377-252-9262 Fax: 925-2	94565-1701 mccampbel 252-9269	l.com		
Endpo	int	Client I	Project ID: 0	Crow Canyon		Date Sampled:	08/26/10)		
98 Bat	tery Street, Suite 200	Cleaner	-S	Date Received:			08/26/10)		
	•	Client	Contact: Me	hrdad Javahe	er	Date Extracted:	08/31/10)		
San Fr	rancisco, CA 94111	Client H	2.0.:			Date Analyzed:	08/31/10)		
Entre etie	a materia ACTAD 1046 00		A 1-	Helium*	STM D 1044	- 00		We de (Durlan, 10	00007
Extractio	on method: ASTM D 1946-90		Anaiy	tical methods: A	.STM D 1946	5-90		work (Jrder: 10	108827
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure	Helium		DF	% SS	Comments	
005A	VE-1S	Soil Vapor	11.02	22		31		1	N/A	
				ļ						

Reporting Limit for DF =1;	W	psia	psia	NA	NA
ND means not detected at or above the reporting limit	Soil Vapor	psia	psia	10	µg/L
* vapor samples are reported in µg/L.					
%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor	I				

DHS ELAP Certification 1644

McCampbell An "When Quality	alytical, l	nc.		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92	94565-1701 @mccampbell.c 5-252-9269	om
Endpoint	Client	Project ID:	Crow (Canyon	Date Sampled:	08/26/10	
1	Cleane	ers	08/26/10				
98 Battery Street, Suite 200	Client	Contact: M	08/27/10-0	08/27/10-08/31/10			
San Francisco, CA 94111	Client	PO·			Date Analyzed:	08/27/10-0	<u>8/31/10</u>
			• 0	1. /	244	00/2//10 0	5/51/10
	Halogenated	olatile Orga	anic Co	mpounds in µg/i	n ^{3*}	W. 1.0.1	1000007
Extraction Method: TO15	A	nalytical Method	1: 1015			Work Order:	1008827
Lab ID	1008827-001A	<u>1008827</u>	-002A	1008827-003A	1008827-004A	- Banarting	Limit for
Client ID	VM9 55	VM	8	VM/	VMI0	DF	-1
Matrix	Soil Vapor	Soil V	anor	Soil Vapor	Soil Vapor	-	-1
DF	1	1	upor	1	1		
Initial Pressure (psia)	13.02	12.3	31	12.17	12.93	Soil Vapor	W
Final Pressure (psia)	26.06	24.5	5	24.27	25.8	1	
Compound			Conce	ntration	1	µg/m ³	ug/L
A Dromodiableromethere	ND	ND		ND	ND	14	NA
Bromoform	ND ND)	ND	ND	21	NA NA
Bromomethane	ND	ND)	ND	ND	7.9	NA
Carbon Tetrachloride	ND	ND)	ND	ND	13	NA
Chlorobenzene	ND	ND)	ND	ND	9.4	NA
Chloroform	ND ND)	ND ND	ND ND	5.4	NA NA
Chloromethane	ND)	ND	ND	4.2	NA
Dibromochloromethane	ND	ND)	ND	ND	17	NA
1,2-Dibromoethane (EDB)	ND	ND)	ND	ND	16	NA
1,2-Dichlorobenzene	ND	ND)	ND	ND	12	NA
1,3-Dichlorobenzene	ND)	ND	ND	12	NA
Dichlorodifluoromethane	ND)	ND	ND	12	NA
1.1-Dichloroethane	ND	ND)	ND	ND	8.2	NA
1.2-Dichloroethane (1.2-DCA)	ND	ND)	ND	ND	8.2	NA
1.1-Dichloroethene	ND	ND)	ND	ND	8.1	NA
cis-1.2-Dichloroethene	17 ND)	ND ND	ND	8.1	NA NA
1.2-Dichloropropane	ND ND)	ND	ND	9.4	NA
cis-1.3-Dichloropropene	ND	ND)	ND	ND	9.2	NA
trans-1.3-Dichloropropene	ND	ND)	ND	ND	9.2	NA
1.2-Dichloro-1.1.2.2-tetrafluoroethane	ND	ND)	ND	ND	14	NA
Freon 113 Methylene chloride	ND ND)	ND ND	ND	7.1	NA NA
1.1.1.2-Tetrachloroethane	ND	ND)	ND	ND	14	NA
1.1.2.2-Tetrachloroethane	ND	ND)	ND	ND	14	NA
Tetrachloroethene	11.000	1	300	310	450	14	NA
1.2.4-Trichlorobenzene	ND	ND)	ND	ND	15	NA
1.1.1-Irichloroethane	ND)	ND	23 ND	11	NA NA
Trichloroethene	110)	ND	ND	11	NA
Trichlorofluoromethane	ND	ND		ND	ND	11	NA
Vinvl Chloride	ND	ND		ND	ND	5.2	NA
	Si	irrogate Rec	overies	(%)			
%SS1:	92	93	1	91	92	+	
%\$\$3:	102	100)	101	103	1	
Comments				- // •		<u> </u>	
*vanor samples are reported in ug/m ³	-						

p μg

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

McCampbell An "When Ouality	nalytical, In Counts"	<u>.</u>		McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 "When Ouality Counts" Web: www.mccampbell.com "When Ouality Counts" E-mail: main@mccampbell.com											
Endpoint	Client P	roject ID:	Crow (Canyon	Date Sampled:	08/26/10									
1	Cleaners	Cleaners Date Received:													
98 Battery Street, Suite 200	Client C	ontact: M	08/27/10-08/31/10												
San Francisco, CA 94111	Client P	<u>0</u> .			Date Analyzed	08/27/10-0	8/31/10								
	H-l			1 . . /		00/2//10 0	0/01/10								
	Halogenated Vo	latile Orga	anic Co	mpounds in µg/r	n ^{3*}	W 101	1000007								
Extraction Method: TO15	Ana	lytical Method	1: 1015			Work Order:	1008827								
Lab ID	1008827-005A	1008827	<u>-006A</u>	1008827-007A	1008827-008A	- Domontino	T : f. f								
Client ID	VE-IS	VM-	15	VE-3S	VM-4S	Reporting	-1								
Matrix	Soil Vapor	Soil V	nor	Soil Vapor	Soil Vapor		-1								
DF	<u> </u>	1 1													
Initial Pressure (psia)	11.02	11 7	6	12.29	14 17	Soil Vapor	W								
Final Pressure (psia)	22	23.5	3	24.53	28.25	-									
Compound			Conce	ntration		110/m ³	119/L								
					ND	µg,									
Bromodichloromethane	ND ND	ND		ND ND	ND ND	21	NA NA								
Bromomethane	ND	ND		ND	ND	7.9	NA								
Carbon Tetrachloride	ND	ND		ND	ND	13	NA								
Chlorobenzene	ND	ND		ND	ND	9.4	NA								
Chloroethane	ND	ND		ND	ND	5.4	NA								
Chloroform	27 ND	2/ ND		ND ND	ND ND	9.9	NA NA								
Dibromochloromethane	ND	ND		ND	ND	4.2	NA								
1,2-Dibromoethane (EDB)	ND	ND		ND	ND	16	NA								
1,2-Dichlorobenzene	ND	ND		ND	ND	12	NA								
1,3-Dichlorobenzene	ND	ND		ND	ND	12	NA								
1,4-Dichlorobenzene	ND	ND		ND	ND	12	NA								
1 1-Dichloroethane	ND ND	ND		ND ND	ND ND	8.2	NA NA								
1.2-Dichloroethane (1.2-DCA)	ND	ND		ND	ND	8.2	NA								
1.1-Dichloroethene	ND	ND		ND	ND	8.1	NA								
cis-1.2-Dichloroethene	ND	ND		ND	ND	8.1	NA								
trans-1.2-Dichloroethene	ND	ND		ND	ND	8.1	NA								
cis-1 3-Dichloropropene	ND	ND		ND	ND	9.4	NA NA								
trans-1.3-Dichloropropene	ND	ND		ND	ND	9.2	NA								
1.2-Dichloro-1.1.2.2-tetrafluoroethane	ND	ND		ND	ND	14	NA								
Freon 113	ND	ND		ND	ND	16	NA								
Methylene chloride	ND	ND		ND	ND	7.1	NA								
1.1.2-Tetrachloroethane	ND	ND		ND ND	ND	14	NA NA								
Tetrachloroethene	1100	2	600	870	1100	14	NA								
1.2.4-Trichlorobenzene	ND	ND		ND	ND	15	NA								
1.1.1-Trichloroethane	ND	ND		ND	ND	11	NA								
1.1.2-Trichloroethane	ND	ND		ND	ND	11	NA								
Trichlorofluoromethana	ND ND	ND ND		ND ND	ND ND		NA NA								
Vinyl Chloride	ND			ND	ND	5.2	NA								
	Sur	rogate Reco	overies	(%)											
%SS1:	92	92		93	93										
%SS2:	110	111		110	110										
%SS3:	104	103	3	103	104	1									
Comments															

vapor samples are reported in $\mu g/m^3$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

McCampbell An "When Ouality	McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 "When Ouality Counts" Web: www.mccampbell.com "When Ouality Counts" Telephone: 877-252-9262										
Endpoint	Client	Project ID:	Crow (Canvon	Date Sampled:	08/26/10					
F	Clean	Cleaners Date Receive									
98 Battery Street, Suite 200	Clien	liant Contact: Mahrdad Javahar Data Extracted:					08/27/10 08/31/10				
San Francisco, CA 94111	Client		lemuau	Javanci	Date Analyzad:	$00/27/10^{\circ}$	8/31/10 8/31/10				
	Client	F.U			Date Allalyzeu.	06/27/10-06	0/31/10				
	Halogenated	Volatile Orga	anic Co	mpounds in µg/r	n ^{3*}	W. 1 0 1	1000005				
Extraction Method: TO15	1	Analytical Method	1: 1015		1	Work Order:	1008827				
Lab ID	1008827-009	<u>A 1008827</u>	-010A	1008827-011A	1008827-012A	- D	T T T C				
Client ID	VE-2S	VM-5	SS	VM-6 SS	VM-2 SS	Reporting	Limit for				
Motriy	Soil Vapor	Soil V	nor	Soil Vapor	Soil Vapor	- Dr	=1				
	<u> </u>	3011 V	apoi			-					
Initial Pressure (psia)	12.16	12 1	2	12.03	11 21	Soil Vapor	W				
Final Pressure (psia)	24.31	24	. <u>2</u> 7	24.03	22.42	-					
Compound	24.51	24	Conce		22.42	ug/m3	ug/I				
Compound			Conce			µg/m²	ug/L				
Bromodichloromethane	ND	ND)	ND	ND	14	NA				
Bromonothane	ND ND)	ND ND	ND ND	21	NA NA				
Carbon Tetrachloride	ND	ND)	ND	ND	13	NA				
Chlorobenzene	ND	ND)	ND	ND	9.4	NA				
Chloroethane	ND	ND)	ND	ND	5.4	NA				
Chloroform	ND	ND)	ND	ND	9.9	NA				
Chloromethane	ND	ND)	ND	ND	4.2	NA				
Dibromochloromethane	ND ND	ND)	ND	ND	17	NA				
1,2-Dibromoetnane (EDB)	ND)	ND	ND	10	NA NA				
1 3-Dichlorobenzene	ND	ND)	ND	ND	12	NA				
1,4-Dichlorobenzene	ND	ND)	ND	ND	12	NA				
Dichlorodifluoromethane	ND	ND)	ND	ND	10	NA				
1.1-Dichloroethane	ND	ND)	ND	ND	8.2	NA				
1.2-Dichloroethane (1.2-DCA)	ND	ND)	ND	ND	8.2	NA				
1.1-Dichloroethene	ND ND	ND)	ND	ND	8.1	NA				
cis-1.2-Dichloroethene	ND ND)	ND	ND	8.1	NA				
1 2-Dichloropropane	ND)	ND	ND	9.1	NA				
cis-1.3-Dichloropropene	ND	ND)	ND	ND	9.2	NA				
trans-1.3-Dichloropropene	ND	ND)	ND	ND	9.2	NA				
1.2-Dichloro-1.1.2.2-tetrafluoroethane	ND	ND)	ND	ND	14	NA				
Freon 113	ND	ND)	ND	ND	16	NA				
Methylene chloride	ND	ND)	ND	ND	7.1	NA				
1.1.2.2 Tetrachloroethane	ND ND)	ND ND	ND	14	NA NA				
Tetrachloroethene	<u>ND</u> 3400	ND	300	650	38	14	NA NA				
1.2.4-Trichlorobenzene	ND	ND)	ND	ND	15	NA				
1.1.1-Trichloroethane	ND	ND		ND	ND	11	NA				
1.1.2-Trichloroethane	ND	ND)	ND	ND	11	NA				
Trichloroethene	62	ND)	ND	ND	11	NA				
Trichlorofluoromethane	ND	ND)	ND	ND	11	NA				
Vinvl Chloride	ND C	Urrogata Page) overies	<u>ND</u>	I ND	5.2	NA				
0/ 551.	101		5701103		07						
%SS2·	101	95	1	96	96	+					
%SS3:	109	105	5	105	103						
Comments											
*vapor samples are reported in µg/m ³ .		<u>.</u>			•	£					

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR ASTM D 1946-90

W.O. Sample Matrix: Soil Vapor		QC Matrix: Soil Vapor					BatchID: 52797			WorkOrder 1008827		27
EPA Method ASTM D 1946-90	Extra	Extraction ASTM D 1946-90 Spiked Sa							Spiked San	Sample ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD LCS-LCSD Acceptance Cri				Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Helium	N/A	83	N/A	N/A	N/A	90.8	88	3.09	N/A	N/A	70 - 130	20
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 52797 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008827-005A	08/26/10 10:55 AM	08/31/10	08/31/10 2:47 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor	QC Matrix: Indoor Air				BatchID: 52642 WorkOrder 1008			Order 10088	27			
EPA Method TO15	Extra	ction TO	15				Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Chlorobenzene	N/A	5	N/A	N/A	N/A	101	102	0.568	N/A	N/A	70 - 130	30
1,2-Dibromoethane (EDB)	N/A	5	N/A	N/A	N/A	107	107	0	N/A	N/A	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	N/A	5	N/A	N/A	N/A	95.8	97.1	1.29	N/A	N/A	70 - 130	30
1,2-Dichloro-1,1,2,2-tetrafluoroetha	N/A	5	N/A	N/A	N/A	102	104	1.69	N/A	N/A	70 - 130	30
Freon 113	N/A	5	N/A	N/A	N/A	93.3	92.6	0.822	N/A	N/A	70 - 130	30
Methylene chloride	N/A	5	N/A	N/A	N/A	96.5	98	1.58	N/A	N/A	70 - 130	30
1,1,1,2-Tetrachloroethane	N/A	5	N/A	N/A	N/A	97.8	97.7	0.0941	N/A	N/A	70 - 130	30
1,1,2,2-Tetrachloroethane	N/A	5	N/A	N/A	N/A	95.9	97.4	1.53	N/A	N/A	70 - 130	30
1,2,4-Trichlorobenzene	N/A	5	N/A	N/A	N/A	109	109	0	N/A	N/A	70 - 130	30
Trichloroethene	N/A	5	N/A	N/A	N/A	103	103	0	N/A	N/A	70 - 130	30
%SS1:	N/A	100	N/A	N/A	N/A	95	94	0.266	N/A	N/A	70 - 130	30
%SS2:	N/A	100	N/A	N/A	N/A	102	103	0.751	N/A	N/A	70 - 130	30
%SS3:	N/A	100	N/A	N/A	N/A	102	103	0.785	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 52642 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008827-001A	08/26/10 8:04 AM	08/27/10	08/27/10 8:49 PM	1008827-001A	08/26/10 8:04 AM	08/30/10	08/30/10 4:41 PM
1008827-002A	08/26/10 8:38 AM	08/27/10	08/27/10 9:32 PM	1008827-003A	08/26/10 9:10 AM	08/27/10	08/27/10 10:23 PM
1008827-004A	08/26/10 9:40 AM	08/27/10	08/27/10 11:06 PM	1008827-005A	08/26/10 10:55 AM	08/27/10	08/27/10 11:54 PM
1008827-006A	08/26/10 11:41 AM	08/28/10	08/28/10 12:43 AM	1008827-006A	08/26/10 11:41 AM	08/30/10	08/30/10 5:26 PM
1008827-007A	08/26/10 12:08 PM	08/28/10	08/28/10 1:32 AM	1008827-008A	08/26/10 12:37 PM	08/28/10	08/28/10 2:19 AM
1008827-009A	08/26/10 1:04 PM	08/31/10	08/31/10 3:30 PM	1008827-009A	08/26/10 1:04 PM	08/31/10	08/31/10 6:21 PM
1008827-010A	08/26/10 2:00 PM	08/31/10	08/31/10 4:12 PM	1008827-011A	08/26/10 2:54 PM	08/31/10	08/31/10 4:55 PM
1008827-012A	08/26/10 3:00 PM	08/31/10	08/31/10 5:39 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

Appendix D

ProUCL Calculation

General UCL Statistics for Baseline Sampling Data Set

User Selected Options From File E:\LRM Consulting, Inc\Misc\RISK ASSESSMENT\UCL Pro\WorkSheet.wst Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

C2

General Statistics			
Number of Valid Observations	11	Number of Distinct Observations	11
Raw Statistics		Log-transformed Statistics	
Minimum	34	Minimum of Log Data	3.526
Maximum	10000	Maximum of Log Data	9.21
Mean	2995	Mean of log Data	6.832
Median	1200	SD of log Data	2.045
SD	3519		
Coefficient of Variation	1.175		
Skewness	1.113		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.826	Shapiro Wilk Test Statistic	0.907
Shapiro Wilk Critical Value	0.85	Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	4919	95% H-UCL	224278
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	18950
95% Adjusted-CLT UCL (Chen-1995)	5121	97.5% Chebyshev (MVUE) UCL	25008
95% Modified-t UCL (Johnson-1978)	4978	99% Chebyshev (MVUE) UCL	36909
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.45	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	6653		
MLE of Mean	2995		
MLE of Standard Deviation	4464		
nu star	9.906		
Approximate Chi Square Value (.05)	3.883	Nonparametric Statistics	
Adjusted Level of Significance	0.0278	95% CLT UCL	4741
Adjusted Chi Square Value	3.292	95% Jackknife UCL	4919
		95% Standard Bootstrap UCL	4703
Anderson-Darling Test Statistic	0.241	95% Bootstrap-t UCL	5746
Anderson-Darling 5% Critical Value	0.778	95% Hall's Bootstrap UCL	5105
Kolmogorov-Smirnov Test Statistic	0.113	95% Percentile Bootstrap UCL	4816
Kolmogorov-Smirnov 5% Critical Value	0.268	95% BCA Bootstrap UCL	5003
Data appear Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	7621
		97.5% Chebyshev(Mean, Sd) UCL	9622
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	13553
95% Approximate Gamma UCL	7642		
95% Adjusted Gamma UCL	9014		

Potential UCL to Use

Use 95% Approximate Gamma UCL

7642

General UCL Statistics for September 1 2009 Sample Results

User Selected Options From File Full Precision Confidence Coefficient Number of Bootstrap Operations

E:\LRM Consulting, Inc\Misc\RISK ASSESSMENT\UCL Pro\WorkSheet.wst OFF 95% 2000

C6

General Statistics		
Number of Valid Observations	6 Number of Distinct Observations	5
Raw Statistics	Log-transformed Statistics	
Minimum	7 Minimum of Log Data	1.946
Maximum	300 Maximum of Log Data	5.704
Mean	65.17 Mean of log Data	3.218
Median	23.5 SD of log Data	1.375
SD	115.4	
Coefficient of Variation	1.771	
Skewness	2.412	

Warning: A sample size of 'n' = 6 may not adequate enough to compute meaningful and reliable test statistics and estimates!

It is suggested to collect at least 8 to 10 observations using these statistical methods! If possible compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Warning: There are only 6 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.571	Shapiro Wilk Test Statistic	0.846
Shapiro Wilk Critical Value	0.788	Shapiro Wilk Critical Value	0.788
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	160.1	95% H-UCL	1818
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	170.5
95% Adjusted-CLT UCL (Chen-1995)	192.3	97.5% Chebyshev (MVUE) UCL	222.1
95% Modified-t UCL (Johnson-1978)	167.9	99% Chebyshev (MVUE) UCL	323.6
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.43	Data appear Lognormal at 5% Significance Level	
Theta Star	151.4		
MLE of Mean	65.17		
MLE of Standard Deviation	99.32		
nu star	5.166		
Approximate Chi Square Value (.05)	1.23	Nonparametric Statistics	
Adjusted Level of Significance	0.0122	95% CLT UCL	142.7
Adjusted Chi Square Value	0.67	95% Jackknife UCL	160.1
		95% Standard Bootstrap UCL	135.7
Anderson-Darling Test Statistic	0.816	95% Bootstrap-t UCL	755.5
Anderson-Darling 5% Critical Value	0.728	95% Hall's Bootstrap UCL	813.8
Kolmogorov-Smirnov Test Statistic	0.377	95% Percentile Bootstrap UCL	156.3
Kolmogorov-Smirnov 5% Critical Value	0.346	95% BCA Bootstrap UCL	162.7
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	270.6
Ũ		97.5% Chebyshev(Mean, Sd) UCL	359.5
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	534.1
95% Approximate Gamma UCL	273.8		
95% Adjusted Gamma UCL	502.4		
Potential UCL to Use		Use 95% Chebyshey (Mean, Sd) UCL	270.6

General UCL Statistics for September 28, 2009 Data Set

User Selected Options From File E:\LRM Consulting, Inc\Misc\RISK ASSESSMENT\UCL Pro\WorkSheet.wst Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

C8

General Statistics			
Number of Valid Observations	11	Number of Distinct Observations	7
Raw Statistics		Log-transformed Statistics	
Minimum	7	Minimum of Log Data	1.946
Maximum	200	Maximum of Log Data	5.298
Mean	52.27	Mean of log Data	3.143
Median	16	SD of log Data	1.333
SD	70.65		
Coefficient of Variation	1.352		
Skewness	1.661		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.684	Shapiro Wilk Test Statistic	0.822
Shapiro Wilk Critical Value	0.85	Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	90.88	95% H-UCL	264.8
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	142.8
95% Adjusted-CLT UCL (Chen-1995)	98.71	97.5% Chebyshev (MVUE) UCL	183.2
95% Modified-t UCL (Johnson-1978)	92.66	99% Chebyshev (MVUE) UCL	262.5
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.597	Data Follow Appr. Gamma Distribution at 5% Signi	ficance Level
Theta Star	87.58		
MLE of Mean	52.27		
MLE of Standard Deviation	67.66		
nu star	13.13		
Approximate Chi Square Value (.05)	5.981	Nonparametric Statistics	
Adjusted Level of Significance	0.0278	95% CLT UCL	87.31
Adjusted Chi Square Value	5.215	95% Jackknife UCL	90.88
		95% Standard Bootstrap UCL	84.51
Anderson-Darling Test Statistic	0.943	95% Bootstrap-t UCL	161
Anderson-Darling 5% Critical Value	0.763	95% Hall's Bootstrap UCL	284.7
Kolmogorov-Smirnov Test Statistic	0.265	95% Percentile Bootstrap UCL	89.55
Kolmogorov-Smirnov 5% Critical Value	0.265	95% BCA Bootstrap UCL	98.27
Data tollow Appr. Gamma Distribution at 5% Significa	nce Level	95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	145.1 185.3
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	264.2
95% Approximate Gamma UCL	114.8		
95% Adjusted Gamma UCL	131.6		

Potential UCL to Use

Use 95% Approximate Gamma UCL

114.8

General UCL Statistics for November 4, 2009 Data Set

User Selected Options From File E:\LRM Consulting, Inc\Misc\RISK ASSESSMENT\UCL Pro\WorkSheet.wst Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

C10

General Statistics			
Number of Valid Observations	11	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	7	Minimum of Log Data	1.946
Maximum	970	Maximum of Log Data	6.877
Mean	314.1	Mean of log Data	4.842
Median	300	SD of log Data	1.796
SD	321.5		
Coefficient of Variation	1.024		
Skewness	1.037		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.875	Shapiro Wilk Test Statistic	0.875
Shapiro Wilk Critical Value	0.85	Shapiro Wilk Critical Value	0.85
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	489.8	95% H-UCL	9117
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	1678
95% Adjusted-CLT UCL (Chen-1995)	506	97.5% Chebyshev (MVUE) UCL	2198
95% Modified-t UCL (Johnson-1978)	494.9	99% Chebyshev (MVUE) UCL	3220
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.548	Data appear Normal at 5% Significance Level	
Theta Star	573.4		
MLE of Mean	314.1		
MLE of Standard Deviation	424.4		
nu star	12.05		
Approximate Chi Square Value (.05)	5.26	Nonparametric Statistics	
Adjusted Level of Significance	0.0278	95% CLT UCL	473.6
Adjusted Chi Square Value	4.551	95% Jackknife UCL	489.8
		95% Standard Bootstrap UCL	465.2
Anderson-Darling Test Statistic	0.34	95% Bootstrap-t UCL	540.3
Anderson-Darling 5% Critical Value	0.768	95% Hall's Bootstrap UCL	610.7
Kolmogorov-Smirnov Test Statistic	0.192	95% Percentile Bootstrap UCL	478.2
Kolmogorov-Smirnov 5% Critical Value	0.266	95% BCA Bootstrap UCL	492.5
Data appear Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	736.7
Assuming Osman Distributio		97.5% Unepyshev (Mean, Sd) UCL	919.5
Assuming Gamma Distribution	740 5	99% Unebysnev(Mean, Sd) UCL	1279
95% Approximate Gamma UCL	/19.5		
95% Aujusted Gamma UCL	831.8		

Potential UCL to Use

Use 95% Student's-t UCL

489.8

General UCL Statistics for August 2010 Data Sets

 User Selected Options

 From File
 E:\LRM Consulting, Inc\Misc\RISK ASSESSMENT\UCL Pro\Dublin\Dublin Data.wst

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

C0

General Statistics			
Number of Valid Observations	12	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	28	Minimum of Log Data	3.332
Maximum	11000	Maximum of Log Data	9.306
Mean	2009	Mean of log Data	6.839
Median	1100	SD of log Data	1.454
SD	2987	-	
Coefficient of Variation	1.487		
Skewness	2.893		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.601	Shapiro Wilk Test Statistic	0.92
Shapiro Wilk Critical Value	0.859	Shapiro Wilk Critical Value	0.859
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	3558	95% H-UCL	14223
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	6945
95% Adjusted-CLT UCL (Chen-1995)	4197	97.5% Chebyshev (MVUE) UCL	8949
95% Modified-t UCL (Johnson-1978)	3678	99% Chebyshev (MVUE) UCL	12886
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.639	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	3145		
MLE of Mean	2009		
MLE of Standard Deviation	2514		
nu star	15.33		
Approximate Chi Square Value (.05)	7.491	Nonparametric Statistics	
Adjusted Level of Significance	0.029	95% CLT UCL	3427
Adjusted Chi Square Value	6.671	95% Jackknife UCL	3558
		95% Standard Bootstrap UCL	3375
Anderson-Darling Test Statistic	0.48	95% Bootstrap-t UCL	6908
Anderson-Darling 5% Critical Value	0.765	95% Hall's Bootstrap UCL	8615
Kolmogorov-Smirnov Test Statistic	0.236	95% Percentile Bootstrap UCL	3607
Kolmogorov-Smirnov 5% Critical Value	0.255	95% BCA Bootstrap UCL	4486
Data appear Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	5768
-		97.5% Chebyshev(Mean, Sd) UCL	7394
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	10589
95% Approximate Gamma UCL	4111	- • •	
95% Adjusted Gamma UCL	4616		

Potential UCL to Use

Use 95% Approximate Gamma UCL

4111

Appendix E

J&E Model Input and Output

DATA ENTRY SHEET

SG-SCREEN					DTSC
PA Version 2.0; 04		Soil	Gas Concentratio	n Data	Vapor Intrusion Guidance Interim Final 12/04
Reset to	ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
	Chemical CAS No.	gas conc.,	OR	gas conc.,	
	(numbers only, no dashes)	C _g (μg/m ³)		C _g (ppmv)	Chemical
	127184	7.64E+03			Tetrachloroethylene

	ENTER	ENTER	ENTER	ENTER		ENTER
	Depth					
MORE	below grade	Soil gas		Vadose zone		User-defined
$\mathbf{+}$	to bottom	sampling	Average	SCS		vadose zone
	of enclosed	depth	soil	soil type		soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
	L _F	Ls	Ts	soil vapor		k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
	15	152.4	24			1.00E-08

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T	Vadose zone soil air-filled porosity, θ_a^V (cm ³ (cm ³)	Vadose zone effective total fluid saturation, S _{te}	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building} (cm ³ (c)
(cm)	(cm/cm)	(cm/cm)	(cm)	(CIII)	(cm)	(cm)	(µg/m*)	(cm/s)
137.4	0.280	#N/A	#N/A	#N/A	1.00E-08	4,000	7.64E+03	3.39E+04
Area of enclosed space below grade, A _B	Crack- to-total area ratio, η	Crack depth below grade, Z _{crack}	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS}	Henry's law constant at ave. soil temperature, H _{TS}	Henry's law constant at ave. soil temperature, H' _{TS}	Vapor viscosity at ave. soil temperature, μ _{TS}	Vadose zone effective diffusion coefficient, D ^{eff} v	Diffusion path length, L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
	5 005 00			1 = 1 = 00	T (1 F o)	1 005 01	5.005.00	107.1
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	5.62E-03	137.4
Convertier	Course		Average	Crack		Exponent of equivalent	Infinite source	Infinite
Convection	Source	Crack	vapor flow rato	diffusion	Area of	Poclot	Indoor	source
length.	conc	radius.	into blda	coefficient.	crack.	number.	coefficient.	conc
L _p	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^f)	α	C _{building}
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	7.645+02	1 25	9.225+01	5 625 03	5.00E+02	7 725 1 12	8 00E 04	6 19 5 100
15	1.04LTU3	1.20	0.00LTUI	J.UZL-03	J.UULTUJ	1.136712	0.032-04	0.102700

Unit risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
5.9E-06	3.5E-02
	_
END	

DATA ENTRY SHEET

SG-SCREEN					DTSC
PA Version 2.0; 04/					Vapor Intrusion Guidance
	_	Soil (Gas Concentration	n Data	Interim Final 12/04
Reset to	ENTER	ENTER		ENTER	(last modified 2/4/09)
Dofaulto		Soil		Soil	
Delaults	Chemical	gas	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	Cg		Cg	
	no dashes)	(µg/m ³)		(ppmv)	Chemical
	127184	2.70E+02			Tetrachloroethylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
15	152.4	24			1.00E-08

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T	Vadose zone soil air-filled porosity, θ_a^V	Vadose zone effective total fluid saturation, S _{te}	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{ra}	Vadose zone soil effective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
						5 <i>t</i>		
137.4	0.280	#N/A	#N/A	#N/A	1.00E-08	4,000	2.70E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	5.62E-03	137.4
Convection	Source	Crook	Average vapor	Crack effective	Area of	Exponent of equivalent foundation	Infinite source indoor	Infinite source
length	conc	radius	into bldg	coefficient	crack	number	coefficient	conc
L _p	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^f)	α	C _{building}
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m³)
15	2.70E+02	1.25	8.33E+01	5.62E-03	5.00E+03	7.73E+12	8.09E-04	2.18E-01

Unit risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
5.9E-06	3.5E-02
	_
END	

DATA ENTRY SHEET

SG-SCREEN					DTSC
PA Version 2.0; 04/		Soil C	Gas Concentration	n Data	Vapor Intrusion Guidance Interim Final 12/04
Reset to	ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
	Chemical CAS No.	gas conc.,	gas OR conc.,	gas conc.,	
	(numbers only, no dashes)	C _g (µg/m ³)		C _g (ppmv)	Chemical
	127184	1.15E+02			Tetrachloroethylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
15	152.4	24			1.00E-08

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T	Vadose zone soil air-filled porosity, θ_a^V	Vadose zone effective total fluid saturation, S _{te}	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{rg}	Vadose zone soil effective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)
137.4	0.280	#N/A	#N/A	#N/A	1.00E-08	4,000	1.15E+02	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
A _B	η ()	Zcrack	$\Delta H_{v,TS}$	H _{TS}	H ^T TS	μ _{TS}	$D^{-1}v$	L _d
(cm)	(unitiess)	(cm)	(cal/mol)	(atm-m /mol)	(unitiess)	(g/cm-s)	(cm /s)	(cm)
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	5.62E-03	137.4
			Average	Crack		Exponent of equivalent	Infinite source	Infinite
Convection	Source	0	vapor	effective	, , , , , , , , , , , , , , , , , , ,	foundation	indoor	source
path length	vapor	Crack	tiow rate	diffusion	Area of	Peclet	attenuation	bldg.
L _p	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^f)	α	C _{building}
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	1.15E+02	1.25	8.33E+01	5.62E-03	5.00E+03	7.73E+12	8.09E-04	9.31E-02

Unit risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
5.9E-06	3.5E-02
	_
END]

DATA ENTRY SHEET

SG-SCREEN PA Version 2.0; 04/					DTSC Vapor Intrusion Guidance
	-	Soil	Gas Concentratior	Data	Interim Final 12/04
Reset to	ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
Delauits	Chemical	gas	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	Cg		Cg	
	no dashes)	(µg/m ³)		(ppmv)	Chemical
	127184	4.89E+02			Tetrachloroethylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
15	152.4	24			1.00E-08

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T	$\begin{array}{c} \text{Vadose zone} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{ V} \end{array}$	Vadose zone effective total fluid saturation, S _{te}	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{rg}	Vadose zone soil effective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)
137.4	0.280	#N/A	#N/A	#N/A	1.00E-08	4,000	4.89E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µrs (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	5.62E-03	137.4
Convection path	Source vapor	Crack	Average vapor flow rate	Crack effective diffusion	Area of	Exponent of equivalent foundation Peclet	Infinite source indoor attenuation	Infinite source bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
L _p	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	Acrack	exp(Pe ^t)	α	C _{building}
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm²/s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	4.89E+02	1.25	8.33E+01	5.62E-03	5.00E+03	7.73E+12	8.09E-04	3.96E-01

Unit	Deference
factor,	conc.,
URF (µg/m ³) ⁻¹	RfC (mg/m ³)
5.9E-06	3.5E-02
END]

DATA ENTRY SHEET

SG-SCREEN					DTSC
PA Version 2.0; 04/					Vapor Intrusion Guidance
	_	Soil	Gas Concentratio	n Data	Interim Final 12/04
Reset to	ENTER	ENTER		ENTER	(last modified 2/4/09)
Defaulto		Soil		Soil	
Delaulis	Chemical	gas	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	C _q		Cq	
	no dashes)	(µg/m ³)		(ppmv)	Chemical
	127184	4.11E+03			Tetrachloroethylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
15	152.4	24			1.00E-08

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$	Vadose zone effective total fluid saturation, S _{te}	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{rg}	Vadose zone soil effective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)
137.4	0.280	#N/A	#N/A	#N/A	1.00E-08	4,000	4.11E+03	3.39E+04
Area of enclosed space below grade, A _B	Crack- to-total area ratio, η	Crack depth below grade, Z _{crack}	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS}	Henry's law constant at ave. soil temperature, H _{TS}	Henry's law constant at ave. soil temperature, H' _{TS}	Vapor viscosity at ave. soil temperature, μτs	Vadose zone effective diffusion coefficient, D ^{eff} v	Diffusion path length, L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	5.62E-03	137.4
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bldg.,	Crack effective diffusion coefficient,	Area of crack,	Exponent of equivalent foundation Peclet number,	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,
Lp	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	Acrack	exp(Pe ^t)	α	C _{building}
(cm)	(µg/m³)	(cm)	(cm ³ /s)	(cm²/s)	(cm ²)	(unitless)	(unitless)	(µg/m³)
15	4.11E+03	1.25	8.33E+01	5.62E-03	5.00E+03	7.73E+12	8.09E-04	3.33E+00

Unit risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
5.9E-06	3.5E-02
	_
END	
DATA ENTRY SHEET

ENTER

 $\mathsf{Q}_{\mathsf{soil}}$

(L/m)

5

SG-SCREEN					DTSC
PA Version 2.0; 04/					Vapor Intrusion Guidance
	_	Soil	Gas Concentratio	n Data	Interim Final 12/04
Reset to	ENTER	ENTER		ENTER	(last modified 2/4/09)
Defaults		Soil		Soil	
	Chemical	gas OR	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	Cg		Cg	
	no dashes)	(µg/m ³)	,	(ppmv)	Chemical
	127184	1.10E+03			Tetrachloroethylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	Vadose zone SCS soil type (used to estimate OR soil vapor permeability)	
15	152.4	24			1.00E-08

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T	Vadose zone soil air-filled porosity, θ_a^V	Vadose zone effective total fluid saturation, Ste	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{ra}	Vadose zone soil effective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	#N/A	#N/A	#N/A	1.00E-08	4,000	1.10E+03	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L₀ (cm)
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	5.62E-03	137.4
Convection	Source		Average vapor	Crack effective		Exponent of equivalent foundation	Infinite source indoor	Infinite source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
L _p	Conc., C _{source}	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^f)	α	C _{building}
(cm)	(µg/m³)	(cm)	(cm³/s)	(cm²/s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	1.10E+03	1.25	8.33E+01	5.62E-03	5.00E+03	7.73E+12	8.09E-04	8.90E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
5.9E-06	3.5E-02
	_
END	