February 21, 2007

# ADDITIONAL SITE INVESTIGATION REPORT

7272 San Ramon Road Dublin, California 94568

Project No. 263294 ACEHS Toxics Case # RO0002863

Prepared On Behalf Of

Bruce Burrows Main Street Properties 985 Moraga Road Lafayette, California 94549

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

# TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                     | 1 |
|-----|--------------------------------------------------|---|
| 2.0 | BACKGROUND SUMMARY                               | 1 |
| 3.0 | GEOLOGY AND HYDROGEOLOGY                         | 2 |
| 4.0 | INVESTIGATION ACTIVITIES                         | 2 |
| 4   | 1 Drilling                                       | 3 |
| 4.  | .2 Soil Sampling and Analyses                    | 3 |
| 4.  | .3 Hydropunch <sup>TM</sup> Groundwater Sampling | 3 |
| 4.  | .4 Soil Vapor Sampling                           | 4 |
| 4.  | .5 Boring Destruction                            | 4 |
| 4.  | .6 Equipment Decontamination                     | 4 |
| 4.  | .7 Laboratory Analysis and Sample Storage        | 5 |
| 5.0 | FINDINGS                                         | 5 |
| 5   | 1 Soil Sample Analytical Results                 | 5 |
| 5.  | .2 Groundwater Sample Analytical Results         | 5 |
| 5.  | .3 Soil Vapor Sample Analytical Results          | 6 |
| 6.0 | COMPARATIVE RISK EVALUATION                      | 6 |
| 6   | 1 Contaminants of Concern                        | 6 |
| 6.  | 2 ESL Comparison                                 | 6 |
| 7.0 | SUMMARY AND CONCLUSIONS                          | 7 |
| 8.0 | References                                       | 8 |
| 9.0 | SIGNATURES                                       | 9 |

# FIGURES

| FIGURE 1  | SITE LOCATION MAP                  |
|-----------|------------------------------------|
| FIGURE 2  | SITE PLAN                          |
| FIGURE 3  | UTILITY MAP                        |
| FIGURE 4  | Soil Analytical Data               |
| FIGURE 5  | A-ZONE GROUNDWATER ANALYTICAL DATA |
| FIGURE 6  | B-ZONE GROUNDWATER ANALYTICAL DATA |
| FIGURE 7  | Soil Vapor Analytical Data         |
| FIGURE 8  | A-ZONE PCE ISOPLETH                |
| FIGURE 9  | Soil Vapor Isopleth                |
| FIGURE 10 | A – A' FENCE DIAGRAM               |
| FIGURE 11 | B-B' FENCE DIAGRAM                 |
|           |                                    |

### TABLES

TABLE 1SOIL SAMPLE ANALYTICAL DATATABLE 2GROUNDWATER SAMPLE ANALYTICAL DATATABLE 3SOIL VAPOR ANALYTICAL DATA

#### **APPENDICES**

APPENDIX ASOIL BORING LOGSAPPENDIX BLABORATORY ANALYSES WITH CHAIN OF CUSTODY DOCUMENTATION

# **1.0** INTRODUCTION

AEI Consultants (AEI) conducted an additional soil, soil vapor, and groundwater investigation for Crow Canyon Cleaners (Site) located at 7272 San Ramon Road in Dublin, California (Figure 1). The goal of the investigation was to further assess the magnitude and extent of halogenated volatile organic compounds (HVOCs), particularly tetrachloroethylene (PCE), detected during previous investigations performed at the subject property. Additionally, the investigation was designed to evaluate whether the adjacent Montessori School had been impacted by the release of HVOCs. AEI was retained by Main Street Properties to perform this assessment to comply with Alameda County Environmental Health Services' (ACEHS) request to further investigate the release at the site.

# 2.0 BACKGROUND SUMMARY

The subject property (hereinafter referred to as the "site" or "property") is one suite (7272 San Ramon Road) in a commercial building located on the west side of San Ramon Road. The site is located in a mixed residential/commercial area of Dublin, California.

AEI performed a *Phase I Environmental Site Assessment* (ESA) of the shopping center 7214-7300 San Ramon Road in December 2004. Historical resources and site reconnaissance revealed that one of the units of the building (7272 San Ramon Road) has been occupied by a dry-cleaning facility since 1988. The dry-cleaning and solvent storage areas are located in the back of the building; however, no information was known as to previous solvent storage areas. Based on the duration of dry-cleaning on the property, the ESA recommended that a subsurface investigation be performed to determine if a release of hazardous materials, particularly PCE, had impacted the subsurface. As of recent, the dry-cleaning facility has abandoned the use of HVOCs in exchange for petroleum-based solvents.

AEI performed a preliminary subsurface investigation at the property on January 27, 2005. A total of three (3) soil borings (SB-1 to SB-3) were advanced to a terminus depth of 12 feet below ground surface (bgs). Three shallow soil samples and three groundwater samples were analyzed for HVOCs by EPA Method 8260B. PCE was detected in all the soil and groundwater samples analyzed, up to 0.071 milligrams per kilogram (mg/kg) in soil and 22 micrograms per liter ( $\mu$ g/L) in groundwater. In addition, TCE was detected in the groundwater up to 3.0  $\mu$ g/L. Please refer to AEI's *Phase II Subsurface Investigation Report* of the property, dated February 8, 2005, for more detailed information. Please refer to Tables 1 and 2 for results of the 2005 investigation.

At the request of the ACEHS, AEI performed an additional subsurface investigation at the property on February 2 through 6, 2006. Soil, soil vapor, and groundwater samples were collected from a total of seven (7) soil borings advanced through the property. PCE was detected in one soil sample at a concentration of 0.013 mg/kg. PCE was detected in groundwater samples collected from the shallowest (A-Zone) and deeper (B-Zone) aquifers up to a concentration of 23  $\mu$ g/L and 4.7  $\mu$ g/L, respectively. PCE was detected in all three soil vapor samples, ranging in concentrations from 30 micrograms per cubic meter ( $\mu$ g/m<sup>3</sup>) to 16,000  $\mu$ g/m<sup>3</sup>.



Based on the results of this investigation, and considering the proximity of the adjacent Montessori School, the ACEHS, in a letter dated August 22, 2006, requested that the release of HVOCs be investigated further. Additionally, the ACEHS requested a utility study to evaluate whether they may act as preferential migration pathways.

A utility survey conducted on September 24, 2006 revealed that a sewer line runs from a drain within the dry-cleaner through Montessori School towards a cleanout in the direction of San Ramon Road. Please refer to Figure 3 for detailed results of the utility survey.

# **3.0** GEOLOGY AND HYDROGEOLOGY

The United States Geology Survey (USGS) Contra Costa County Quaternary Geologic 1:100,000 (1997) and USGS Contra Costa County bedrock Geologic 1:75,000 (1994) maps were reviewed. The property sits on Holocene alluvial fan deposits overlying undivided Quaternary surficial deposits. The area is generally characterized by fine to coarse grain unconsolidated sediments. The topographic map shows the property located at approximately 365 feet above mean sea level. The surface of the property is relatively flat, although the landscaping to the west of the building slopes up toward the adjacent residential property.

The stratigraphy of the site encountered during drilling can be characterized by three units of soils; silty clay overlying sandy clay with interbedded sandy gravel. These units are illustrated on Figures 8 and 9, two fence diagrams across the site. Fence Diagram A-A' (Figure 8) provides a west-east profile of the subsurface. Fence Diagram B-B' (Figure 9) provides a south-north profile through the center of the dry-cleaning machine area. Please note that ground elevation north of the site building and landscaping is approximately 5 feet higher than ground elevation within the site building and its parking lot.

Two permeable, water-bearing zones were identified within the stratigraphic column to the total depth explored (30 feet bgs). Both aquifers were found within permeable sandy gravels. The upper water-bearing zone (A-Zone), approximately 2 feet thick, consists of sandy gravel and is typically encountered at a depth of approximately 10 feet bgs. The deeper water-bearing zone (B-Zone), approximately 1.5 foot thick, similarly consists of sandy gravel encountered at a depth of approximately 25 feet bgs. These two water-bearing zones are separated by an approximately 12 foot thick sandy clay. The results of groundwater samples collected from the two zones indicate that there may be some connectivity between the two zones, although contaminant concentrations are much lower in the B-zone. The clay appears to be somewhat of an effective barrier.

The topography of the area is relatively flat, but overall slopes to the east. An unnamed creek is located to the north which appears to be at a slightly lower elevation. Groundwater is expected to flow in an easterly or northerly direction.

# 4.0 INVESTIGATION ACTIVITIES

A soil boring drilling permit was obtained from Zone 7 Water Agency (Zone 7) in Alameda County



prior to field activities (Zone 7 Permit # 26220). Underground Service Alert North was notified to identify and clear public utilities in the work area more than two working days prior to commencement of drilling.

### 4.1 Drilling

AEI advanced five (5) soil borings throughout the property on December 27, 2006 and January 15, 2007. Two borings (SB-14 and SB-15) were advanced near the front of the drycleaning facility, down-gradient from the dry-cleaning facility. Two borings (SB-11 and SB-12) were advanced at the rear of the dry-cleaning facility. One boring (SB-13) was advanced adjacent to the sewer line trace inside the Montessori School. The soil borings were advanced to depths ranging from approximately 5 feet bgs to 30 feet bgs. Soil boring locations (labeled SB-1 through SB-15) are shown on Figure 2.

Direct push drilling work was performed by Vironex, a California C57 licensed drilling contractor (C57 License # 705927). The two soil borings near the front of the dry-cleaning facility were advanced using a truck-mounted Geoprobe<sup>TM</sup> 6600 direct-push drilling rig. The other three soil borings were advanced using a limited access Geprobe<sup>TM</sup> Badger direct-push drilling rig.

Please refer to Appendix B for detailed logs of the borings, including depth of samples collected.

# 4.2 Soil Sampling and Analyses

Drilling, borehole logging, and sample collection were performed by an AEI project geologist under the direction of an AEI California Professional Geologist. The borings were logged using the Unified Soil Classification System (USCS). Soil samples were screened in the field with sensory perceptions and a portable photo-ionization detector (PID) device. Selection of soil samples for laboratory analysis was based on field observations and PID measurements. Selected samples were sealed with Teflon tape and end caps, labeled with a unique identifier, entered onto chain of custody, and placed in a cooler with water-ice.

# **4.3** Hydropunch<sup>™</sup> Groundwater Sampling

This sampling method operated by advancing 1 <sup>3</sup>/<sub>4</sub> inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods were retracted; exposing the encased filter screen and allowing groundwater to infiltrate hydrostatically from the formation into the inlet screen. A check valve or peristaltic pump was then used for sample collection from tubing inserted through the rod. Upon completion of sample collection, the push rods and sampler, with the exception of the steel drop off tip were retrieved to the ground surface, were



decontaminated and prepared for the next sampling event. Groundwater samples were collected into 40 ml volatile organic analysis (VOA) vials. The containers were sealed so that no head-space or air bubbles were visible within the containers and placed in a cooler with water-ice.

# 4.4 Soil Vapor Sampling

A soil vapor survey was requested by ACEHS to investigate whether significant contaminant vapor concentrations exist in the shallow soils beneath the site. The purpose of the survey was to evaluate if PCE in soil and groundwater beneath the site is a potential concern for contaminant vapor intrusion into the site building and/or neighboring commercial spaces.

A total of four (4) soil vapor samples were advanced from four soil borings (SB-11, SB-12, SB-13, and SB-15). Each vapor probe boring was advanced to approximately 5 feet bgs where a soil vapor sample was collected. Soil vapor sampling procedures and vapor sample analyses was based on the *Advisory – Active Soil Gas Investigation*, January 28, 2005, issued by the Department of Toxic Substances Control (DTSC).

In order to obtain the soil gas samples, the temporary soil gas sampling probes were installed in the proposed locations. The vapor probe consists of hollow <sup>3</sup>/<sub>4</sub> inch stainless steel rods with an internally threaded bottom sub and sacrificial tip. At the desired depth, the rods were pulled back, dropping the sacrificial tip. The top of the borehole was sealed with a temporary seal of hydrated Bentonite and an appropriate leak detection compound utilized to check for leaks. A <sup>1</sup>/<sub>4</sub>-inch disposable poly sampling line was then inserted inside the rods and screwed into the end sub. Air was then flushed from the rods prior to sample collection. Soil vapor samples were collected into 6-liter Summa canisters. In addition to the four vapor samples collected, two duplicate vapor samples were collected.

# 4.5 Boring Destruction

Following groundwater sample collection, each boring was grouted with neat cement per applicable Alameda County and State of California guidelines.

# 4.6 Equipment Decontamination

Sampling equipment, including sampling barrels, drilling rods, and other equipment used to sample, were decontaminated between samples using a triple rinse system containing Alconox <sup>TM</sup> or similar detergent.

# 4.7 Laboratory Analysis and Sample Storage

Laboratory analysis work was performed by California Department of Health Services certified laboratories following current EPA analytical methodologies. Soil and groundwater samples were transported to McCampbell Analytical (Department of Health Services Certification #01644) under chain of custody protocol for analyses. Soil vapor samples were transported to Air Toxics Ltd. Laboratories (Department of Health Services Certification #02110) under chain of custody protocol.

All samples, excluding the vapor samples, were sealed and labeled immediately upon collection, and placed into a cooler with water ice. Selected soil and groundwater samples were analyzed for HVOCs by EPA Method 8260B. Soil vapor samples were analyzed for HVOCs by EPA Method TO-15 modified (target contaminants included: PCE, TCE, cis-1,2-Dichloroethene (DCE), trans-1,2-DCE, vinyl chloride, and the leak check compound, 2-propanol) Analytical results and chain of custody documentation are included as Appendix B.

# 5.0 FINDINGS

# 5.1 Soil Sample Analytical Results

No HVOC analytes were detected exceeding laboratory reporting limits in any of the soil samples analyzed. Soil sample analytical data is summarized in Table 1.

### 5.2 Groundwater Sample Analytical Results

Groundwater samples were obtained from the two water-bearing zones of the additional four soil borings advanced (SB-12 through SB-15). Groundwater sample analytical data is summarized in Table 1, along with specific sampling interval. An A-Zone PCE Isocontour map is presented in Figure 7.

### Shallow Water-Bearing Zone (A-Zone) Analytical Results

PCE was detected in groundwater samples SB-13-W-1 and SB-14-W-1 at concentrations of 0.78  $\mu$ g/L and 2.5  $\mu$ g/L, respectively.

No other HVOC analytes were detected exceeding laboratory reporting limits in the rest of the groundwater samples analyzed from the shallow zone.

### Deeper Water-Bearing Zone (B-Zone) Analytical Results

TCE was detected in groundwater sample SB-14-W-2 at a concentration of 1.1  $\mu$ g/L.

No other HVOC analytes, including PCE, were detected exceeding laboratory reporting limits in the rest of the groundwater samples analyzed from the deeper zone.



# 5.3 Soil Vapor Sample Analytical Results

PCE was detected in all four of the soil vapor samples (SB-11-V-D, SB-12-V, SB-13-V-D, and SB-15-V at concentrations of 380,000  $\mu$ g/m<sup>3</sup>, 270  $\mu$ g/m<sup>3</sup>, 6,800  $\mu$ g/m<sup>3</sup>, and 630  $\mu$ g/m<sup>3</sup>, respectively. TCE was detected in vapor samples SB-11-V-D, SB-12-V, and SB-15-V at concentrations of 3,200  $\mu$ g/m<sup>3</sup>, 12  $\mu$ g/m<sup>3</sup>, and 4.4  $\mu$ g/m<sup>3</sup>, respectively. No other target HVOCs were detected in the rest of the soil vapor samples. It should be noted that the leak check compound, 2-propanol, was detected at 3,200  $\mu$ g/m<sup>3</sup> in vapor sample SB-15-V, indicating that a leak had occurred. Soil vapor analytical data is summarized in Table 3.

# 6.0 COMPARATIVE RISK EVALUATION

The following comparative risk evaluation has been made in an effort to help determine the potential risk posed by HVOCs detected in the soil, groundwater, and soil vapor to date. Site specific analytical data is compared with "Environmental Screening Level" (ESL) values presented in the RWQCB document *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, February 2005. The ESL comparison approach is considered adequate for this site as a screening level risk assessment. As required by the ACEHS, residential land use ESLs are utilized in this comparative risk evaluation.

# 6.1 Contaminants of Concern

The primary HVOCs detected in soil, groundwater, and soil vapor consist of PCE and TCE. Maximum concentrations of these contaminants are summarized in the following table.

| Contaminant /<br>Sample | Max. Detected in<br>Groundwater /<br>Location<br>(µg/L) | Max. Detected in Soil /<br>Location<br>(mg/kg) | Max. Detected in Soil<br>Vapor / Location<br>(µg/m3) |
|-------------------------|---------------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| PCE                     | 23 / SB-10-W-1                                          | 0.071 / SB-2                                   | 380,000 / SB-11-V-D                                  |
| TCE                     | 3.0 / SB-3-5'                                           | < 0.005                                        | 3,200 / SB-11-V-D                                    |

# 6.2 ESL Comparison

To evaluate possible risk posed to occupants of structures near the source area of the release, the maximum concentrations of PCE and TCE are compared against the ESLs with respect to exposure to groundwater via drinking water, exposure to soil through leaching, exposure via direct contact, and exposure via soil vapor intrusion.

#### Soil Data ESL Comparison

| Contaminant | Maximum Detected<br>(mg/kg) | Direct Exposure ESL<br>(mg/kg) | Groundwater<br>Protection ESL<br>(mg/kg) |
|-------------|-----------------------------|--------------------------------|------------------------------------------|
| PCE         | 0.071                       | 0.43                           | 0.70                                     |
| TCE         | < 0.005                     | 2.9                            | 0.46                                     |

\*From Table A-1

Based on this comparison, maximum PCE and TCE concentrations at the site do not exceed direct exposure and groundwater protection (soil leaching) ESLs for residential land use.

ESLs for groundwater concerns are presented below:

#### Groundwater Data ESL Comparison

| Contaminant | Maximum Detected (µg/L) | Drinking Water ESL (µg/L) |
|-------------|-------------------------|---------------------------|
| PCE         | 23                      | 5.0                       |
| TCE         | 3.0                     | 5.0                       |

\*From Tables F-1a

Based on this comparison, maximum PCE concentrations in groundwater do exceed drinking water ESLs for residential land use, although impacted groundwater is very limited in extent.

ESLs for shallow soil gas concerns are presented below:

Soil Vapor Data ESL Comparison

| Contaminant | Max. Detected / Location $(\mu g/m^3)$ | Residential<br>Land Use ESL<br>(µg/m <sup>3</sup> ) |  |
|-------------|----------------------------------------|-----------------------------------------------------|--|
| PCE         | 380,000 / SB-11-V-D                    | 410                                                 |  |
| TCE         | 3,200 / SB-11-V-D                      | 1,200                                               |  |

\*Shallow soil gas, Table E-2

The majority of soil vapor samples collected to date exceed the ESL for soil vapor in residential land use for PCE, sample SB-11-V-D being the highest concentration detected.

# 7.0 SUMMARY AND CONCLUSIONS

The goal of the investigation was to better define the magnitude and extent of halogenated volatile organic compounds (HVOCs), particularly tetrachloroethylene (PCE) that occurred from drycleaning operations at the site, and to evaluate whether the adjacent Montessori School had been impacted by the release of HVOCs.

The release of PCE into the soil and groundwater was likely the result of surface spillage in the area



of the dry-cleaning machine and rear door. The presence of a common PCE degradation product, TCE, detected during the investigations indicates that active degradation by reductive dechlorination may be taking place. Vinyl Chloride or other degradation products have not been detected during the investigations to date, suggesting that such breakdown is either slow or incomplete.

HVOCs appear to have primarily impacted the A-Zone aquifer and portions of the B-Zone aquifer, although the PCE and TCE concentrations detected in the B-zone are very low. Several groundwater samples exceed residential drinking water ESLs for PCE; however these samples are limited to a small area around the dry-cleaning machine. The small amounts and lack of HVOCs in groundwater from down-gradient borings indicate that the contamination plume appears to be limited. Soil sample concentrations detected to date do not exceed residential ESLs for direct exposure or groundwater protection concerns. Based on these findings, no further investigation of groundwater is needed.

Based on soil vapor analytical data, it is likely that the sewer line within the vicinity of the site is providing a preferential pathway for migration of contaminants. The soil vapor concentrations detected in borings SB-13 and SB-14, advanced near the sewer line, are evidence of this. The majority of soil vapor samples collected to date exceed the residential ESL for soil vapor, including the vapor sample collected from within the Montessori School. It is expected that additional investigation and mitigation of vapor phase HVOCs may be necessary.

# 8.0 **REFERENCES**

AEI, Phase I Environmental Site Assessment, December 10, 2004

AEI Phase II Subsurface Investigation Report, February 8, 2005

Alameda County Environmental Health Services, File # RO0002863, letter dated August 30, 2005

Alameda County Environmental Health Services, File # RO0002863, letter dated August 22, 2006

United States Geology Survey (USGS) Contra Costa County Quaternary 1:100,000 Geologic Map (1997)

USGS Contra Costa County bedrock 1:75,000 Geologic Map (1994)

Department of Toxic Substances Control (DTSC) Advisory – Active Soil Gas Investigation, January 28, 2005

SF Bay California Regional Water Quality Control Board, *Screening For Environmental Concerns* At Sites With Contaminated Soil And Groundwater, Volumes 1 and 2, February 2005

### 9.0 SIGNATURES

This report has been prepared by AEI on behalf of Main Street Properties to address the release of halogenated VOCs on the property located at 7272 San Ramon Road in the City of Dublin, Alameda County, California. The discussion rendered in this report was based on field investigations and laboratory testing of material samples. This report does not reflect subsurface variations that may exist between sampling points. These variations cannot be anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This report should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site will be identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s), the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. All specified work was performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology and were performed under the direction of appropriate registered professional(s).

Please contact either of the undersigned with any questions or comments at (925) 283-6000.

Sincerely, AEI Consultants

Adrian M. Angel

Adrian M. Angel Project Geologist

Peter McIntyre, PG Senior Project Manager  $Q_{FT} = Q_{FT} = Q_{F$ 

Distribution:

Gaberiel Chui c/o Bruce Burrows Main Street Properties 985 Moraga Road Lafayette, CA 94549

Alameda County Environmental Health Services (ACEHS) Attn: Mr. Steven Plunkett 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

GeoTracker



**FIGURES** 







# AEI CONSULTANTS 2500 CAMINO DIABLO BLVD, SUITE 200, WALNUT CREEK, CA

# **UTILITY MAP**

7272 San Ramon Road Dublin, CA 94568

FIGURE 3 PROJECT NO. 263294

















TABLES

| Sample               | Date     | Sample Depth | РСЕ                   | TCE                  | All other HVOCs     |
|----------------------|----------|--------------|-----------------------|----------------------|---------------------|
| ID                   |          | feet bgs     | mg/kg                 | mg/kg                | mg/kg               |
|                      |          |              | <u> </u>              | EPA Method SW8200B   |                     |
| SB-1 5'              | 1/27/05  | 5            | 0.023                 | < 0.005              | <mdl< td=""></mdl<> |
| SB-2 5'              | 1/27/05  | 5            | 0.071                 | < 0.005              | <mdl< td=""></mdl<> |
| SB-3 5'              | 1/27/05  | 5            | 0.029                 | < 0.005              | <mdl< td=""></mdl<> |
| SB-4-5'              | 2/6/06   | 5            | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-4-9'              | 2/6/06   | 9            | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-4-16'             | 2/6/06   | 16           | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-6-15'             | 2/2/06   | 15           | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-9-5'              | 2/6/06   | 5            | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-9-8'              | 2/6/06   | 8            | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-10-5'             | 2/6/06   | 5            | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-10-8.5'           | 2/6/06   | 8.5          | 0.013                 | <0.005               | <mdl< td=""></mdl<> |
| SB-10-12'            | 2/6/06   | 12           | < 0.005               | <0.005               | <mdl< td=""></mdl<> |
| SB-12-3'             | 1/16/07  | 3            | < 0.005               | <0.005               | <mdl< td=""></mdl<> |
| SB-12-4'             | 12/27/06 | 4            | < 0.005               | <0.005               | <mdl< td=""></mdl<> |
| SB-12-6'             | 12/27/06 | 6            | < 0.005               | <0.005               | <mdl< td=""></mdl<> |
| SB-13-3'             | 1/16/07  | 3            | < 0.005               | <0.005               | <mdl< td=""></mdl<> |
| SB-13-6'             | 1/16/07  | 6            | < 0.005               | < 0.005              | <mdl< td=""></mdl<> |
| SB-15-6'             | 12/27/06 | 6            | < 0.005               | <0.005               | <mdl< td=""></mdl<> |
| ESL - DE<br>ESL - GP | -        | -            | 0.43<br>0.70<br>0.005 | 2.9<br>0.46<br>0.005 | -                   |

# Table 1Soil Sample Analytical Data

PCE = tetrachloroethylene

TCE = trichloroethylene

ESLs = Environmental Screening Levels for shallow soils where groundwater is current or potential

source of drinking water in residential zones, California Regional Water Quality Control Board, February 2005

DE = direct exposure

GP = groundwater protection

Soil values reported in milligrams per kilogram (mg/kg)

RL = laboratory reporting limit (with no dilution)

MDL = method detection limit

| Sample          |          | Screen Interval | PCE        | TCE                       | All other HVOCs         |
|-----------------|----------|-----------------|------------|---------------------------|-------------------------|
| ID              | Date     | feet bgs        | μg/L       | μg/L<br>EDA Mothed SW226( | µg/L                    |
|                 |          |                 |            | EPA Methoa Sw8200         | <i>JB</i>               |
| SB-1-W          | 1/27/05  | -               | 22         | <0.5                      | <mdl< td=""></mdl<>     |
| SB-2-W          | 1/27/05  | -               | 14         | 0.62                      | <mdl< td=""></mdl<>     |
| SB-3-W          | 1/27/05  | -               | 19         | 3.0                       | <mdl< td=""></mdl<>     |
| SB-4-W-1        | 2/6/06   | (11 - 13)       | 0.90       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-4-W-2        | 2/6/06   | (31 - 34)       | 0.56       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-5-W-1        | 2/3/06   | (9 - 12)        | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-5-W-2        | 2/3/06   | (37 - 39)       | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-6-W-1        | 2/3/06   | (11-14)         | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-6-W-2        | 2/3/06   | (31 - 34)       | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-7-W-1        | 2/3/06   | (9 - 12)        | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-7-W-2        | 2/3/06   | (37 - 39)       | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-8-W-1        | 2/2/06   | (9 - 12)        | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-8-W-2        | 2/2/06   | (23 - 26)       | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-9-W-1        | 2/6/06   | (9 - 12)        | 4.9        | <0.5                      | <mdl< td=""></mdl<>     |
| SB-9-W-2        | 2/6/06   | (28 - 32)       | 0.50       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-10-W-1       | 2/6/06   | (9 - 12)        | 23         | <0.5                      | <mdl< td=""></mdl<>     |
| SB-10-W-2       | 2/6/06   | (28 - 32)       | 4.7        | <0.5                      | <mdl< td=""></mdl<>     |
| SB-12-W-1       | 1/16/07  | (9 - 12)        | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-12-W-2       | 1/16/07  | (24 - 28)       | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-13-W-1       | 1/16/07  | (9 - 12)        | 0.78       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-13-W-2       | 1/16/07  | (24 - 28)       | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-14-W-1       | 12/27/06 | (9 - 12)        | 2.5        | <0.5                      | <mdl< td=""></mdl<>     |
| SB-14-W-2       | 12/27/06 | (23 - 27)       | <0.5       | 1.1                       | <mdl*< td=""></mdl*<>   |
| SB-15-W-1       | 12/27/06 | (9 - 12)        | <0.5       | <0.5                      | <mdl< td=""></mdl<>     |
| SB-15-W-2       | 12/27/06 | (24 - 28)       | <0.5       | <0.5                      | <mdl**< td=""></mdl**<> |
| ESL - DWT<br>RL | -        | -               | 5.0<br>0.5 | 5.0<br>0.5                | Varies                  |

Table 2 **Groundwater Sample Analytical Data** 

PCE = tetrachloroethylene

TCE = trichloroethylene

VC = vinyl chloride

ESLs = Environmental Screening Levels for shallow soils where groundwater is current or potential source of drinking water in residential zones, California Regional Water Quality Control Board, February 2005

DWT = drinking water toxicity

Groundwater values reported in micrograms per liter (ug/L)

RL = laboratory reporting limit (with no dilution)

Number following "W" designation indicates water-bearing zone (1 - A Zone, 2 - B Zone)

MDL = method detection limit

\*= Toluene detected at 0.88 ug/L and xylenes at 1.0 ug/L

\*\*= Chloroform, dibromochloromethane, and bromodichloromethane detected at 0.54, 0.91, and 0.97 ug/L, respectively

| Sample            | Date      | РСЕ         | TCE                               | All other target HVOCs |
|-------------------|-----------|-------------|-----------------------------------|------------------------|
| ID                | Collected | $\mu g/m^3$ | μg/m <sup>3</sup><br>EPA Method T | μg/m <sup>3</sup>      |
| SB-4-V            | 2/6/06    | 13000       | <2.7                              | <mdl< td=""></mdl<>    |
| SB-4-V-D          | 2/6/06    | 16000       | <2.7                              | <mdl< td=""></mdl<>    |
| SB-9-V            | 2/6/06    | 30          | <2.7                              | <mdl< td=""></mdl<>    |
| SB-10-V           | 2/6/06    | 230         | <2.7                              | <mdl< td=""></mdl<>    |
| SB-11-V           | 12/27/06  | 320,000     | 2,900                             | <mdl< td=""></mdl<>    |
| SB-11-V Duplicate | 12/27/06  | 380,000     | 3,200                             | <mdl< td=""></mdl<>    |
| SB-12-V           | 12/27/06  | 270         | 12                                | <mdl< td=""></mdl<>    |
| SB-13-V           | 1/15/07   | 6,700       | <23                               | <mdl< td=""></mdl<>    |
| SB-13-V-Duplicate | 1/15/07   | 6,800       | <23                               | MDL                    |
| SB-15-V           | 12/27/06  | 630         | 4.4                               | <mdl*< td=""></mdl*<>  |
| ESL - Res<br>RL   | -         | 410<br>0.5  | 1,200<br>varies                   | varies                 |

# Table 3Soil Vapor Sample Analytical Data

PCE = tetrachloroethylene

TCE = trichloroethylene

HVOCs = halogenated volatile organic compounds

ESLs = Environmental Screening Levels for shallow soil gas in residential zones,

California Regional Water Quality Control Board, February 2005

Soil vapor concentrations reported in micrograms per cubic meter (ug/m<sup>3</sup>)

RL = laboratory reporting limit (with no dilution)

\* = The lead check compound, 2-Propanol, detected at  $3,200 \text{ ug/m}^3$ 

# APPENDIX A

Soil Boring Logs

# Project: Gabriel Chiu Project Location: 7272 San Ramon Road Project Number: 10365

# Log of Boring SB-1

| Date(s)<br>Drilled January 27, 2005              | Logged By JR                      | Checked By PJM                                   |
|--------------------------------------------------|-----------------------------------|--------------------------------------------------|
| Drilling<br>Method Direct Push                   | Drill Bit<br>Size/Type            | Total Depth<br>of Borehole <b>12 feet bgs</b>    |
| Drill Rig<br>Type Pneumatic Hammer               | Drilling<br>Contractor Vironex    | Approximate<br>Surface Elevation <b>365 feet</b> |
| Groundwater Level and Date Measured 8.5 feet ATD | Sampling<br>Method(s) <b>Tube</b> | Well<br>Permit.                                  |
| Borehole<br>Backfill Cement Slurry               | Location                          |                                                  |

| LZ.tplj<br>5<br>Elevation, feet   | Depth, feet      | Sample Type | Sample<br>Number | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                  | PID Reading,<br>ppm | REMARKS AND OTHER TESTS |   |
|-----------------------------------|------------------|-------------|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---|
| Jeoprope                          |                  |             |                  |             | Concrete/Fill                                                                                                                                         |                     |                         |   |
| Iginal PH Inbound Logs.bgs [AEI ( | · -              | -           |                  |             | Silty Clay, some 1/4 inch round gravel, moderately stiff, somewhat<br>plastic, silt content appears to be increasing with depth, brown - 10 YR<br>4/3 | -                   | Hand Auger 0-4'         |   |
| 360                               | - 5              | X           | SB-1 5'          |             | Sandy Clay, low plasticity, fine sand, approximately 40% sand, olive brown - 2.5 Y 4/3                                                                | <1                  |                         |   |
|                                   |                  |             | SB-1 8'          |             | Sandy Clay, slight plasticity, moist, fine sand, brown - 10 YR 4/3                                                                                    | <1                  |                         |   |
| ACIERIZATION/11                   | 10               | -           |                  |             | (ATD)<br>Sandy Gravel, well graded gravel up to 1/4" diameter, fine to medium<br>grain sand, saturated                                                | -                   |                         |   |
|                                   |                  |             |                  |             | Sandy Clay, high plasticity, ~20% sand, moist. brown - 10 YR 4/3                                                                                      | -                   |                         |   |
|                                   | <br>             | -           |                  |             | Bottom of Boring at 12 feet bgs                                                                                                                       | -                   |                         |   |
| 350-                              | <sup>⊥</sup> 15– |             |                  |             |                                                                                                                                                       | 1                   | Figure                  | L |

# Project: Gabriel Chiu Project Location: 7272 San Ramon Road Project Number: 10365

# Log of Boring SB-2

| Date(s)<br>Drilled January 27, 2005              | Logged By <b>JR</b>                      | Checked By PJM                                   |
|--------------------------------------------------|------------------------------------------|--------------------------------------------------|
| Drilling<br>Method Direct Push                   | Drill Bit<br>Size/Type <b>1 3/4 inch</b> | Total Depth<br>of Borehole <b>12 feet bgs</b>    |
| Drill Rig<br>Type Pneumatic Hammer               | Drilling<br>Contractor Vironex           | Approximate<br>Surface Elevation <b>365 feet</b> |
| Groundwater Level and Date Measured 8.5 feet ATD | Sampling<br>Method(s) <b>Tube</b>        | Well<br>Permit.                                  |
| Borehole<br>Backfill Cement Slurry               | Location                                 |                                                  |

| 12.tpl]<br>Elevation, feet               | Depth, feet | Sample Type | Sample<br>Number | Graphic Log | MATERIAL DESCRIPTION                                                                                                                    | PID Reading,<br>ppm | REMARKS AND OTHER TESTS |   |
|------------------------------------------|-------------|-------------|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---|
| jeoprope                                 |             |             |                  |             | Concrete/Fill                                                                                                                           |                     |                         |   |
| inal PH INBoring Logs.bgs [AEI g         |             |             |                  |             | Silty Clay, some 1/4 inch round gravel, stiff, somewhat plastic, silt<br>content appears to be increasing with depth, brown - 10 YR 4/3 |                     | Hand Auger 0-4'         |   |
| 100 2000 100 100 100 100 100 100 100 100 | - 5         | X           | SB-2 5'          |             | Sandy Clay, low plasticity, fine sand, approximately 40% sand, olive brown - 2.5 Y 4/3                                                  | <1                  |                         |   |
| 172 SGWI (Main Street) - Du              |             | <br>X       | SB-2 8'          |             | Sandy Clay, slight plasticity, fine sand, brown - 10 YR 4/3                                                                             | <1                  |                         |   |
|                                          |             |             |                  |             | Sandy Gravel, well graded gravel up to 1/4" diameter, fine to medium =<br>grain sand, saturated -                                       |                     |                         |   |
| VEDIATION/CHARACC                        | 10—         |             |                  |             | Sandy Clay, high plasticity, brown - 10 YR 4/3                                                                                          |                     |                         |   |
| CHARACTERIZATION & REN                   |             |             |                  |             | Bottom of Boring at 12 feet bgs                                                                                                         |                     |                         |   |
| X:/PROJECTS/                             | 15          |             |                  |             |                                                                                                                                         |                     | Figure                  | ] |

# Project: Gabriel Chiu Project Location: 7272 San Ramon Road Project Number: 10365

# Log of Boring SB-3

| Date(s)<br>Drilled January 27, 2005              | Logged By <b>JR</b>                      | Checked By PJM                                   |
|--------------------------------------------------|------------------------------------------|--------------------------------------------------|
| Drilling<br>Method Direct Push                   | Drill Bit<br>Size/Type <b>1 3/4 inch</b> | Total Depth<br>of Borehole <b>12 feet bgs</b>    |
| Drill Rig<br>Type Pneumatic Hammer               | Drilling<br>Contractor Vironex           | Approximate<br>Surface Elevation <b>365 feet</b> |
| Groundwater Level and Date Measured 8.5 feet ATD | Sampling<br>Method(s) <b>Tube</b>        | Well<br>Permit.                                  |
| Borehole<br>Backfill Cement Slurry               | Location                                 |                                                  |

| 12.tplj<br>5<br>Elevation, feet  | Depth, feet | Sample Type | Sample<br>Number | Graphic Log | MATERIAL DESCRIPTION                                                                                                                 | PID Reading,<br>ppm | REMARKS AND OTHER TESTS |   |
|----------------------------------|-------------|-------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---|
| eoprope                          |             |             |                  |             | Concrete/Fill                                                                                                                        |                     |                         |   |
| lai PH II/Boring Logs.bgs (AEI g |             | -           |                  |             | Silty Clay, some 1/4 inch round gravel, stiff, somewhat plastic, silt content appears to be increasing with depth, brown - 10 YR 4/3 | -                   | Hand Auger 0 -4'        |   |
|                                  | 5           |             | SB-3 5'          |             |                                                                                                                                      | <1                  |                         |   |
|                                  |             |             |                  |             | Sandy Clay, low plasticity, fine sand, approximately 40% sand, olive brown - 2.5 Y 4/3                                               |                     |                         |   |
| Z SGWI (Main Street) - D         |             |             |                  |             | Sandy Clay, slight plasticity, fine sand, brown - 10 YR 4/3                                                                          |                     |                         |   |
|                                  |             |             | 50-3 0           |             | (ATD) ≚<br>Sandy Gravel, well graded gravel tp 1/4" diameter, fine to medium grain<br>- sand, saturated                              | <1                  |                         |   |
| 355                              | 10          |             |                  |             |                                                                                                                                      |                     |                         |   |
|                                  |             |             |                  |             |                                                                                                                                      |                     |                         |   |
|                                  | -           |             |                  | ×///////    | Bottom of Boring at 12 feet bgs                                                                                                      |                     |                         |   |
| SICHARAC LERIZATION              |             |             |                  |             |                                                                                                                                      | -                   |                         |   |
| 350-                             | 15          |             |                  |             |                                                                                                                                      | J                   | Figure                  | ] |

# Log of Boring SB-4

| Date(s)<br>Drilled February 6, 2006    | Logged By Adrian Angel | Checked By Peter McIntyre      |
|----------------------------------------|------------------------|--------------------------------|
| Drilling                               | Drill Bit              | Total Depth                    |
| Method Direct Push                     | Size/Type              | of Borehole <b>30 feet bgs</b> |
| Drill Rig                              | Drilling               | Approximate                    |
| Type Limited-Acess Badger              | Contractor Vironex     | Surface Elevation              |
| Groundwater Level                      | Sampling               | Well                           |
| and Date Measured                      | Method(s) <b>Tube</b>  | Permit.                        |
| Borehole<br>Backfill Neat Cement Grout | Location               |                                |

| Elevation, feet | Depth, feet      | Sample Type | Sample<br>Number | USCS Symbol | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                                                                 | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS                                                                            |
|-----------------|------------------|-------------|------------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------|
|                 | -<br>-<br>-<br>5 |             | SB-4-5'          | CL          |             | Concrete<br>Sandy Clay with silt, fine grained, dark brown (Munsell 7.5 YR 3/2), low<br>to medium plasticity, slightly soft, dry to slightly moist<br>-<br>-<br>✓ increasing sand content with depth | <1                  | Vapor sampled at 5 feet bgs                                                                           |
| -               | -<br>-<br>10     | $\times$    | SB-4-9'          |             |             |                                                                                                                                                                                                      | <1                  |                                                                                                       |
|                 | -                | -           |                  | GP          |             | Sandy Gravel, poorly sorted, dark brown (Munsell 7.5 YR 3/2), slightly - soft, SATURATED                                                                                                             | -                   |                                                                                                       |
| -               | -<br>-<br>15     |             |                  | CL          |             | Sandy Clay, minor gravel, dark brown (Munsell 7.5YR 3/2), soft, mottled,<br>medium plasticity, moist to very most                                                                                    | _                   | DTW = 9.5' bgs after 10<br>minutes for first aquifer                                                  |
|                 | -                | X           | SB-4-16'         |             |             | End of continous coring                                                                                                                                                                              | <1                  | *Continuous core terminated<br>at 16' bgs, Hydropunched to<br>second aquifer (screened<br>27-30' bgs) |
| -               | -<br>20          | -           |                  |             |             | - · ·                                                                                                                                                                                                | -                   |                                                                                                       |
| _               | -                |             |                  |             |             | - Hydropunch                                                                                                                                                                                         | -                   |                                                                                                       |
| -               | 25—<br>_         |             |                  |             |             |                                                                                                                                                                                                      |                     |                                                                                                       |
| _               | -                | -           |                  |             |             | - · · ·                                                                                                                                                                                              |                     |                                                                                                       |
| -               | 30—              |             |                  |             |             | Bottom of Boring at 30 feet bgs                                                                                                                                                                      |                     |                                                                                                       |
|                 |                  |             |                  |             |             |                                                                                                                                                                                                      | •                   | Figure                                                                                                |

# Log of Boring SB-6

| Date(s)<br>Drilled February 6, 2006    | Logged By Adrian Angel      | Checked By Peter McIntyre |
|----------------------------------------|-----------------------------|---------------------------|
| Drilling                               | Drill Bit                   | Total Depth               |
| Method Direct Push                     | Size/Type <b>2 3/4 inch</b> | of Borehole 35 feet bgs   |
| Drill Rig                              | Drilling                    | Approximate               |
| Type Limited-access Geoprobe 54DT      | Contractor Vironex          | Surface Elevation         |
| Groundwater Level                      | Sampling                    | Well                      |
| and Date Measured                      | Method(s) <b>Tube</b>       | Permit.                   |
| Borehole<br>Backfill Neat Cement Grout | Location                    |                           |

| , Elevation, feet | Depth, feet              | Sample Type | Sample<br>Number | USCS Symbol | Graphic Log | MATERIAL DESCRIPTION                                                                                                                    | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS |
|-------------------|--------------------------|-------------|------------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|
|                   | -<br>-<br>-<br>5         |             | SB-6-5'          | CL          |             | Concrete<br>Silty Clay, dark brown 7.5 YR 3/2, low plasticity, medium stiff, dry                                                        | <1                  |                            |
| -                 | -<br>-<br>-<br>10        |             | SB-6-9'          | CL          |             | <ul> <li>Sandy Clay, dark brown, 7.5 YR 3/2, low plasticity, medium stiff, very moist</li> <li></li></ul>                               | - <1                | DTW = 13' bgs after 10     |
| -                 | -<br>-<br>15             |             | SD 6 16          | CL<br>GP    |             | Sandy Clay, 7.5YR 3/2, fine grained, slightly soft, medium plasticity, very moist                                                       | -                   | minutes for first aquifer  |
| -                 | <br><br>20<br><br><br>25 |             | <u> </u>         | CL          |             | Sandy Clay, dark brown 7.5YR 3/2, fine grained, local gravel, mottled<br>(white), medium plasticity, slightly soft, very moist to moist | -                   |                            |
|                   | -<br>-<br>30             |             |                  |             |             | -<br>-<br>-<br>-<br>                                                                                                                    | -                   | Figure                     |

# Log of Boring SB-6

Sheet 2 of 2

| Elevation, feet<br>Depth, feet | Sample<br>Number | USCS Symbol | Graphic Log | MATERIAL DESCRIPTION                                                                                                                         | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS |
|--------------------------------|------------------|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|
| 31                             |                  | CL          |             | Sandy Clay, dark brown 7.5YR 3/2, fine grained, local gravel, mottled (white), medium plasticity, slightly soft, very moist to moist (cont.) |                     |                            |
|                                |                  | GP          | ' X<br>     | Sandy Gravel, dark brown 7.5YR 3/2, poorly graded, slightly soft, very wet to saturated                                                      |                     |                            |
|                                |                  | CL          |             | Sandy Clay, dark brown 7.5YR 3/2, mottled (white), high plasticity, slightly soft, very moist to moist                                       | -                   | _                          |
| - +                            |                  |             |             | Bottom of Boring at 35 feet bgs                                                                                                              |                     | _                          |
| - 36                           |                  |             |             |                                                                                                                                              |                     |                            |
|                                |                  |             |             | · · · · · · · · · · · · · · · · · · ·                                                                                                        |                     |                            |
|                                |                  |             |             |                                                                                                                                              |                     |                            |
|                                |                  |             |             |                                                                                                                                              | _                   |                            |
| - 41                           |                  |             |             |                                                                                                                                              | -                   |                            |
|                                |                  |             | -           |                                                                                                                                              |                     |                            |
|                                |                  |             |             |                                                                                                                                              |                     |                            |
|                                |                  |             |             |                                                                                                                                              |                     |                            |
| - 46                           |                  |             |             |                                                                                                                                              | _                   |                            |
|                                |                  |             | -           |                                                                                                                                              | -                   |                            |
|                                |                  |             |             |                                                                                                                                              |                     |                            |
|                                |                  |             |             |                                                                                                                                              |                     |                            |
| - 51                           |                  |             |             |                                                                                                                                              |                     |                            |
|                                |                  |             | -           |                                                                                                                                              | _                   |                            |
|                                |                  |             |             |                                                                                                                                              | -                   |                            |
|                                |                  |             | -           |                                                                                                                                              |                     |                            |
|                                |                  |             | -           |                                                                                                                                              |                     |                            |
| 56                             |                  |             |             |                                                                                                                                              |                     |                            |
|                                |                  |             |             |                                                                                                                                              | -                   |                            |
|                                |                  |             |             |                                                                                                                                              | -                   |                            |
| + $+$                          |                  |             |             |                                                                                                                                              | -                   |                            |
| 61-                            |                  |             |             |                                                                                                                                              | 1                   |                            |
|                                |                  |             |             |                                                                                                                                              | _                   | Figure                     |

# Log of Boring SB-8

| Date(s)<br>Drilled February 6, 2006    | Logged By Adrian Angel      | Checked By Peter McIntyre      |
|----------------------------------------|-----------------------------|--------------------------------|
| Drilling                               | Drill Bit                   | Total Depth                    |
| Method Direct Push                     | Size/Type <b>2 3/4 inch</b> | of Borehole <b>30 feet bgs</b> |
| Drill Rig                              | Drilling                    | Approximate                    |
| Type Limited-access Geoprobe 54DT      | Contractor Vironex          | Surface Elevation              |
| Groundwater Level                      | Sampling                    | Well                           |
| and Date Measured                      | Method(s) <b>Tube</b>       | Permit.                        |
| Borehole<br>Backfill Neat Cement Grout | Location                    |                                |

| Elevation, feet | Sample Type | Sample<br>Number | USCS Symbol | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                  | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS                          |
|-----------------|-------------|------------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------|
|                 | _           |                  | CL          |             | Concrete Silty Clay, minor gravel, dark brown (7.5 YR 3/2), medium dense, poorly graded, dry to moist                                                 |                     |                                                     |
| - <b>5</b><br>  |             | SB-6-5'          | CL          |             | Sandy Clay, dark brown (7.5 YR 3/2), mottled (white), low plasticity,<br>moist                                                                        | <1                  |                                                     |
|                 | ×           | SB-6-9'          | CL          |             | Sandy Clay, minor sand, dark brown (7.5 YR 3/2), dense, poorly graded,<br>– moist to very moist                                                       | <1                  | -                                                   |
| - 10-<br>       |             |                  | GP          | ·           | Sandy Gravel, dark brown (7.5 YR 3/2), minor clay, poorly graded,<br>- saturated                                                                      | _                   |                                                     |
|                 |             | SB-6-16'         | CL          |             | <ul> <li>Sandy Clay, minor clay, dark brown (7.5 YR 3/2), mottled (white), poorly graded, moist</li> <li></li></ul>                                   | <1                  | DTW = 10' bgs after 10<br>minutes for first aquifer |
| - <b>20</b> -   | -           |                  | CL          |             | Sandy Clay, dark brown 7.5YR 3/2, slightly soft, mottled (white) medium<br>— plasticity, moist -<br>-                                                 | -                   |                                                     |
|                 | -           |                  | GP          | 1.          | Sandy Gravel, dark brown 7.5YR 3/2, minor gravel, slightly soft, medium<br>– to high plasticity, saturated                                            | _                   |                                                     |
| - 25-<br>       |             |                  | CL          |             | <ul> <li>Sandy Clay, dark brown 7.5YR 3/2, slightly soft, locally mottled (white), medium to high plasticity, very moist to moist</li> <li></li></ul> | -                   |                                                     |
| 30              |             |                  |             |             | Bottom of Boring at 30 feet bgs                                                                                                                       |                     |                                                     |
|                 |             |                  |             |             |                                                                                                                                                       |                     | Figure                                              |
### Project: Main Street Project Location: 7272 San Ramon Rd., Dublin CA Project Number: 115876

## Log of Boring SB-9

| Date(s)<br>Drilled February 6, 2006    | Logged By Adrian Angel      | Checked By Peter McIntyre |
|----------------------------------------|-----------------------------|---------------------------|
| Drilling                               | Drill Bit                   | Total Depth               |
| Method Direct Push                     | Size/Type <b>2 3/4 inch</b> | of Borehole 28 feet bgs   |
| Drill Rig                              | Drilling                    | Approximate               |
| Type Limited-access Geoprobe 54DT      | Contractor Vironex          | Surface Elevation         |
| Groundwater Level                      | Sampling                    | Well                      |
| and Date Measured                      | Method(s) <b>Tube</b>       | Permit.                   |
| Borehole<br>Backfill Neat Cement Grout | Location                    |                           |

| Levation, feet | Depth, feet       | Sample Type | Sample<br>Number | USCS Symbol | Graphic Log | MATERIAL DESCRIPTION                                                                                                                          |   | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS                                         |
|----------------|-------------------|-------------|------------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|--------------------------------------------------------------------|
| -              | -<br>-<br>-<br>5  |             | SB-9-5'          | CL          |             | Concrete<br>Silty Clay, dark brown (7.5 YR 3/2), dense, poorly graded, dry<br>                                                                |   | <1                  | Vapor sampled at 5 feet bgs                                        |
|                | -<br>-<br>-<br>10 |             | SB-9-9'          | GP          | <b>*</b>    | -<br>-<br>-<br>-<br>-<br>-<br>Sandy Gravel with clay, dark brown (7.5 YR 3/2), poorly graded,<br>_ saturated                                  |   | <1                  |                                                                    |
| -              | -                 |             |                  | CL          |             | <ul> <li>Sandy Clay, minor gravel, dark brown (7.5 YR 3/2), mottled (white), poorly graded, moist</li> <li>End of continous coring</li> </ul> |   |                     | DTW = 9.5' bgs after 10<br>minutes for first aquifer               |
| -              |                   |             |                  |             |             |                                                                                                                                               | - |                     | Hydropunched to second<br>aquifer (screened = 25 - 28<br>feet bgs) |
| -              |                   |             |                  |             |             | Hydropunch<br>                                                                                                                                | - |                     |                                                                    |
|                |                   |             |                  |             |             | Bottom of Boring at 28 feet bgs                                                                                                               | - |                     |                                                                    |
|                |                   |             |                  |             |             |                                                                                                                                               |   |                     | Figure                                                             |

### Project: Main Street Project Location: 7272 San Ramon Rd., Dublin CA Project Number: 115876

## Log of Boring SB-10

| Date(s)<br>Drilled February 6, 2006    | Logged By Adrian Angel      | Checked By Peter McIntyre |
|----------------------------------------|-----------------------------|---------------------------|
| Drilling                               | Drill Bit                   | Total Depth               |
| Method Direct Push                     | Size/Type <b>2 3/4 inch</b> | of Borehole 28 feet bgs   |
| Drill Rig                              | Drilling                    | Approximate               |
| Type Limited-access Geoprobe 54DT      | Contractor Vironex          | Surface Elevation         |
| Groundwater Level                      | Sampling                    | Well                      |
| and Date Measured                      | Method(s) <b>Tube</b>       | Permit.                   |
| Borehole<br>Backfill Neat Cement Grout | Location                    |                           |

| Elevation, feet                                                                                                                      | Depth, feet | Sample Type | Sample<br>Number | USCS Symbol    | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                           | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------------|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| S/CHARACTERIZATION & REMEDIATION/CHARACTERIZATION/11172 SGWI (Main Street) - Dublin - AA/11772 - Soil Logs.bgs [AEI geoprobe 30.tp]] |             |             | SB-9-5'          | CL<br>CL<br>CL |             | Concrete Silty Clay, dark brown (7.5 YR 3/2), dense, poorly graded, dry Sandy Clay, dark brown (7.5 YR 3/2), dense, poorly graded, moist Sandy Gravel with clay, dark brown (7.5 YR 3/2), poorly graded, saturated Sandy Clay, minor gravel, dark brown (7.5 YR 3/2), mottled (white), poorly graded, moist End of continous coring Hydropunch Bottom of Boring at 28 feet bgs | <1                  | Vapor sampled at 5 feet bgs<br>DTW = 9.5' bgs after 10<br>minutes for first aquifer<br>Hydropunched to second<br>aquifer (screened = 25 - 28<br>feet bgs) |
|                                                                                                                                      | J _         | -           |                  | 1              |             |                                                                                                                                                                                                                                                                                                                                                                                | <br>                | Figure                                                                                                                                                    |

### Project: Main Street Property Services Project Location: 7272 San Ramon Rd., Dublin, CA Project Number: 263294

## Log of Boring SB-12

| Date(s)<br>Drilled January 15, 2007    | Logged By Adrian Angel | Checked By Peter McIntyre |
|----------------------------------------|------------------------|---------------------------|
| Drilling                               | Drill Bit              | Total Depth               |
| Method Direct Push                     | Size/Type              | of Borehole 28 feet bgs   |
| Drill Rig                              | Drilling               | Approximate               |
| Type Limited-Acess Badger              | Contractor Vironex     | Surface Elevation         |
| Groundwater Level                      | Sampling               | Well                      |
| and Date Measured                      | Method(s) <b>Tube</b>  | Permit.                   |
| Borehole<br>Backfill Neat Cement Grout | Location               |                           |

| Levation, feet | Depth, feet        | Sample Type | Sample<br>Number     | USCS Symbol | Graphic Log | MATERIAL DESCRIPTION                                                                                                     | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS                                                         |
|----------------|--------------------|-------------|----------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|
| -              | -<br>-<br>-<br>5   |             | SB-12-3'<br>SB-12-6' | CL          |             | Concrete Sandy Clay, minor silt, dark brown (7.5YR 3/2), low to medium plasticity, soft, increasing sand with depth, dry | <1                  |                                                                                    |
| -              | -<br>-<br>-<br>10  |             | SB-12-9'             | GP          |             |                                                                                                                          | <1                  | *Continuous coro terminated                                                        |
| -              | -<br>-<br>15—<br>- |             |                      |             |             | End of continuous coring                                                                                                 |                     | at 12' bgs. Hydropunched to<br>second aquifer (screened 24<br>ft bgs to 28 ft bgs) |
| -              | -<br>20—<br>-      |             |                      |             |             | Hydropunch                                                                                                               |                     |                                                                                    |
| -              | -<br>25<br>-<br>-  | -           |                      |             |             | Bottom of Boring at 28 feet bgs                                                                                          |                     |                                                                                    |
|                | 30                 |             |                      |             |             |                                                                                                                          |                     | Figure                                                                             |

### Project: Main Street Property Services Project Location: 7272 San Ramon Rd., Dublin, CA Project Number: 263294

## Log of Boring SB-13

| Date(s)<br>Drilled January 15, 2007    | Logged By Adrian Angel      | Checked By Peter McIntyre |
|----------------------------------------|-----------------------------|---------------------------|
| Drilling                               | Drill Bit                   | Total Depth               |
| Method Direct Push                     | Size/Type <b>2 3/4 inch</b> | of Borehole 28 feet bgs   |
| Drill Rig                              | Drilling                    | Approximate               |
| Type Limited-Acess Badger              | Contractor Vironex          | Surface Elevation         |
| Groundwater Level                      | Sampling                    | Well                      |
| and Date Measured                      | Method(s) <b>Tube</b>       | Permit.                   |
| Borehole<br>Backfill Neat Cement Grout | Location                    |                           |

| Elevation, feet                                                                                                                | Depth, feet | Sample Type | Sample<br>Number     | USCS Symbol    | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                      | PID Reading,<br>ppm | REMARKS AND OTHER<br>TESTS                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|----------------------|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARACTERIZATION & REMEDIATION/CHARACTERIZATION/11172 SGWI (Main Street) - Dublin - AA/2007 Invest/logs.bgs [AEI geoprobe 30.tp] | 0           |             | SB-13-3'<br>SB-13-6' | CL<br>CL<br>GP |             | Concrete Silty Clay, dark brown (7.5YR 3/2), low plasticity, dense, increasing sand with depth, dry Sandy Clay, dark brown (7.5YR 3/2), dense, poorly graded, moist Sandy Gravel, minor clay, dark brown (7.5YR 3/2), poorly graded, SATURATED Bottom of Boring at 12 feet bgs Hydropunch Bottom of Boring at 28 feet bgs Bottom of Boring at 28 feet bgs | 2.7                 | Vapor sampled at 5 feet bgs<br>in 6-L Summa<br>*Continuous core terminated<br>at 12' bgs. Hydropunched to<br>second aquifer (screened 24<br>ft bgs to 28 ft bgs) |
| X:\PROJECTS\CH                                                                                                                 | 30          | 1           |                      |                |             |                                                                                                                                                                                                                                                                                                                                                           |                     | Figure                                                                                                                                                           |

## **APPENDIX B**

Sample Analytical Data With Chain of Custody Documentation



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| AEI Consultants               | Client Project ID: Main Street | Date Sampled: 12/27/06   |
|-------------------------------|--------------------------------|--------------------------|
| 2500 Camino Diablo, Ste. #200 |                                | Date Received: 12/29/06  |
| Walnut Creek, CA 94597        | Client Contact: Adrian Angel   | Date Reported: 01/05/07  |
|                               | Client P.O.:                   | Date Completed: 01/05/07 |

#### WorkOrder: 0612645

January 05, 2007

### Dear Adrian:

Enclosed are:

- 1). the results of **6** analyzed samples from your **Main Street project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

|            | Report To: Add                                                                                                                                                             | McCAMPBELL ANALYTICAL, INC.<br>1534 WILLOW PASS ROAD<br>PITTSBURG, CA 94565-1701<br>Website: <u>www.nccampbell.com</u><br>Telephone: (877) 252-9262<br><b>Fax:</b> (925) 252-9269<br>Report Te: Adrian Angel<br>Bill To: Same<br>Commany: Att (Aculture) |              |       |                                                                                       |                 |       |    |                          |                                |                              |                    |                      | CHAIN OF CUSTODY RECORD<br>TURN AROUND TIME<br>RUSH 24 HR 48 HR 72 HR<br>GeoTracker EDF PDF L Excel Write On (DW)<br>Check if sample is effluent and "J" flag is r<br>Analysis Request |                         |                           |                          |                  |                         |                        | S DAV                 |                      |                          |                       |                        |                                                         |                           |       |       |                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|---------------------------------------------------------------------------------------|-----------------|-------|----|--------------------------|--------------------------------|------------------------------|--------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--------------------------|------------------|-------------------------|------------------------|-----------------------|----------------------|--------------------------|-----------------------|------------------------|---------------------------------------------------------|---------------------------|-------|-------|-------------------------------------------------------|
|            | Company: AEI Cansulfund<br>2500 (amino Diablo<br>Walnut Creek (A<br>Tele: (125) 283-6000<br>Project #:<br>Project Location: Dublin<br>Sampler Signature:<br>SAMPLINO       |                                                                                                                                                                                                                                                          |              |       | E-Mail: dawsd erei carsy fants yr<br>Fax: (925) 183-6121<br>Project Name: Main Street |                 |       |    | 02 / 8621 + 8015) / MTBE |                                | Praise (1664 / 3520 2/B&F)   | arboos (418.1)     | W21 (BVOCs)          | EPA 602 / 8021)                                                                                                                                                                        | Pasticules)             | NLY; Arociars / Cangemeri | (icidas)                 | VOCe1            | WOCs)                   | AHa / PNAs)            | 200.8 / 6010 / 6020]  | 200.8 / 6010 / 6020) | 0 / 602.0)               |                       |                        | Filter<br>Samples<br>for Metals<br>malysis:<br>Yes / No |                           |       |       |                                                       |
|            | SAMPLE ID                                                                                                                                                                  | LOCATION/<br>Field Point<br>Name                                                                                                                                                                                                                         | SAMI<br>Date | Time  | # Containers                                                                          | Type Containers | Water | AI | Sludge                   | ICE                            | HEIT<br>HEIT                 | HOD<br>RVE         | BTEX & TPE an Gas (6 | TPH as Diesel (8015)                                                                                                                                                                   | Total Petroleum Oll & C | Total Petrolence Bydroc   | EPA 502.3 / 601 / 8010 / | MTBE/BTEX ONLY ( | EPA 696/ 608 / 3051 [CI | EPA 608 / 6052 PCB's C | BPA 507/ 8141 (NP Per |                      | EPA 625.2 / 625 / 8270 ( | EPA 8270 SIM / 8510 ( | CAM 17 Metals (200.7 / | LUFT S Metals (209.77)                                  | Lead (200.7 / 209.8 / 601 |       | I     | tole                                                  |
| +10        | SB-12-4'<br>SB-12-8'<br>SB-15-6'<br>SB-15-9-5'<br>SB-14-W-1                                                                                                                |                                                                                                                                                                                                                                                          | 12/27/06     |       |                                                                                       | Acctate         |       |    |                          |                                |                              |                    |                      |                                                                                                                                                                                        |                         |                           |                          |                  |                         |                        |                       |                      |                          |                       |                        |                                                         |                           |       | <br>1 | Staken<br>Levell<br>2 29 16<br>2 er A.A.<br>5 Jay TAT |
| +10<br>+10 | SB-14-W-2<br>SB-15-W-1<br>SB-15-W-2                                                                                                                                        |                                                                                                                                                                                                                                                          |              |       |                                                                                       | T S             | ¥     |    |                          |                                |                              |                    |                      |                                                                                                                                                                                        |                         |                           |                          |                  |                         |                        |                       |                      |                          |                       |                        |                                                         |                           |       |       |                                                       |
|            | Relingidenced By:                                                                                                                                                          | /                                                                                                                                                                                                                                                        | Dute:        | Time: | Recei                                                                                 | ived By         | 77    | 67 | -<br>Fe                  |                                |                              | 7-2                | I(<br>G              | EA*                                                                                                                                                                                    | EÓN                     |                           | HON_                     |                  |                         |                        |                       |                      |                          |                       |                        |                                                         | MIMIN                     | 2NTS: |       |                                                       |
|            | Rellinguished By:     Date:     Time:     Received By:       12/25     6.20     AD/       Rellinguished By:     Date:     Time:       Rellinguished By:     12/25     6.30 |                                                                                                                                                                                                                                                          |              |       |                                                                                       |                 |       |    | HL<br>DJ<br>AJ<br>Pl     | EAD S<br>ECHIL<br>PPRO<br>UESE | SPAC<br>/ORI<br>PRI/<br>RVEI | I A<br>NAT<br>D IN | ED E<br>CON<br>LAB   | NT_NLA                                                                                                                                                                                 | UB<br>NEKS              | G                         | MET                      | ALS              | от                      | HER                    |                       |                      |                          |                       |                        | 1                                                       |                           |       |       |                                                       |

IN FRIDGE

1-925-252-9269 McCampbell Analytical, In 2006 1:01PM

Dec 21

сл Сл

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Pittsburg, CA<br>(925) 252-926                                                                      | 94565-1701<br>52                                            |                              |                                              | WorkOrder: 0612645 ClientID: AEL                         |        |    |             |   |       |         |           |          |              |                   |               |             |               |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|----------------------------------------------|----------------------------------------------------------|--------|----|-------------|---|-------|---------|-----------|----------|--------------|-------------------|---------------|-------------|---------------|
|                                                                                                     |                                                             |                              |                                              | EDF                                                      |        | F  | ax          | [ | Email |         | ПН        | ardCopy  |              | Third             | Party         |             |               |
| Report to:<br>Adrian Angel<br>AEI Consultants<br>2500 Camino Dia                                    | ablo, Ste. #200                                             | Email:<br>TEL:<br>ProjectNo: | aangel@aeico<br>(925) 283-600<br>Main Street | nsultants.com<br>0 FAX: (925)                            | 283-61 | 21 | Bill to:    |   |       |         |           |          | Requ<br>Date | uested<br>e Recei | TAT:<br>ived: | 5<br>12/29/ | days<br>/2006 |
| Walnut Creek, C                                                                                     | A 94597                                                     | PO:                          |                                              |                                                          |        |    | ,           |   |       |         |           |          | Date         | e Print           | ed:           | 12/29/      | /2006         |
|                                                                                                     |                                                             |                              |                                              |                                                          |        |    |             |   | Red   | questec | l Tests ( | See lege | nd belo      | ow)               |               |             |               |
| Sample ID                                                                                           | ClientSampID                                                |                              | Matrix                                       | <b>Collection Date</b>                                   | Hold   | 1  | 2           | 3 | 4     | 5       | 6         | 7        | 8            | 9                 | 10            | 11          | 12            |
|                                                                                                     |                                                             |                              |                                              |                                                          | L      |    | -           | - | •     | 5       | v         | •        | -            |                   |               |             |               |
| 0040045 004                                                                                         |                                                             |                              | N/- ( - r                                    | 4.0/00/00                                                |        |    | _           |   | •     | •       |           | -        | -            |                   | 1             |             | 1             |
| 0612645-001                                                                                         | SB-12-4'                                                    |                              | Water                                        | 12/29/06                                                 |        | A  |             |   |       | 5       |           |          |              |                   |               |             |               |
| 0612645-001<br>0612645-003                                                                          | SB-12-4'<br>SB-15-6'                                        |                              | Water<br>Water                               | 12/29/06<br>12/27/06                                     |        | A  |             |   |       |         |           |          |              |                   |               |             |               |
| 0612645-001<br>0612645-003<br>0612645-005                                                           | SB-12-4'<br>SB-15-6'<br>SB-14-W-1                           |                              | Water<br>Water<br>Water                      | 12/29/06<br>12/27/06<br>12/27/06                         |        | A  |             |   |       |         |           |          |              |                   |               |             |               |
| 0612645-001<br>0612645-003<br>0612645-005<br>0612645-006                                            | SB-12-4'<br>SB-15-6'<br>SB-14-W-1<br>SB-14-W-2              |                              | Water<br>Water<br>Water<br>Water             | 12/29/06<br>12/27/06<br>12/27/06<br>12/27/06             |        | A  | A           |   |       |         |           |          |              |                   |               |             |               |
| 0612645-001           0612645-003           0612645-005           0612645-006           0612645-007 | SB-12-4'<br>SB-15-6'<br>SB-14-W-1<br>SB-14-W-2<br>SB-15-W-1 |                              | Water<br>Water<br>Water<br>Water<br>Water    | 12/29/06<br>12/27/06<br>12/27/06<br>12/27/06<br>12/27/06 |        | A  | A<br>A<br>A |   |       |         |           |          |              |                   |               |             |               |

#### Test Legend:

| 1  | 8260B_S |
|----|---------|
| 6  |         |
| 11 |         |

| 2  | 8260B_W |
|----|---------|
| 7  |         |
| 12 |         |

| ε |  |
|---|--|
|   |  |
| 8 |  |
|   |  |

| 4 |  |
|---|--|
| 9 |  |

| 5  |  |
|----|--|
| 10 |  |

### **Prepared by: Lisa Cavalier**

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

| McCampbell An<br>"When Quality                          | nalytical, In   | <u>c.</u>    |                    | 1534 Willow P<br>Web: www.mccamp<br>Telephone: 8 | ass Road, Pittsburg, CA<br>bell.com E-mail: mair<br>77-252-9262 Fax: 92 | A 94565-1701<br>n@mccampbell.com<br>55-252-9269 |       |                    |
|---------------------------------------------------------|-----------------|--------------|--------------------|--------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|-------|--------------------|
| AEI Consultants                                         | Client P        | roject ID:   | Mai                | n Street                                         | Date Sampled:                                                           | 12/29/06                                        |       |                    |
|                                                         |                 |              |                    |                                                  | Date Received:                                                          | 12/29/06                                        |       |                    |
| 2500 Camino Diablo, Ste. #200<br>Client Contact: Adrian |                 |              |                    | Angel                                            | Date Extracted:                                                         | 12/29/06                                        |       |                    |
| Walnut Creek, CA 94597                                  | Client P.       | 0.:          |                    |                                                  | Date Analyzed:                                                          | 01/02/07                                        |       |                    |
|                                                         | Volatile Organ  | ics by P8    | kT and             | l GC/MS (Basic Ta                                | rget List)*                                                             |                                                 |       |                    |
| Extraction Method: SW5030B                              | A               | nalytical Me | ethod:             | SW8260B                                          |                                                                         | Work Order: 061264                              | 45    |                    |
| Lab ID                                                  |                 |              |                    | 0612645                                          | -001A                                                                   |                                                 |       |                    |
| Client ID                                               |                 | SB-12        | 2-4'               |                                                  |                                                                         |                                                 |       |                    |
| Matrix                                                  |                 |              |                    | Wat                                              | er                                                                      |                                                 |       |                    |
| Compound                                                | Concentration * | DF           | Reporting<br>Limit | Compour                                          | ıd                                                                      | Concentration *                                 | DF    | Reporting<br>Limit |
| Acetone                                                 | ND              | 1.0          | 0.05               | Acrolein (Propenal)                              |                                                                         | ND                                              | 1.0   | 0.05               |
| Acrylonitrile                                           | ND              | 1.0          | 0.02               | tert-Amyl methyl et                              | her (TAME)                                                              | ND                                              | 1.0   | 0.005              |
| Benzene                                                 | ND              | 1.0          | 0.005              | Bromobenzene                                     |                                                                         | ND                                              | 1.0   | 0.005              |
| Bromochloromethane                                      | ND              | 1.0          | 0.005              | Bromodichlorometh                                | ane                                                                     | ND                                              | 1.0   | 0.005              |
| Bromoform                                               | ND              | 1.0          | 0.005              | Bromomethane                                     |                                                                         | ND                                              | 1.0   | 0.005              |
| 2-Butanone (MEK)                                        | ND              | 1.0          | 0.02               | t-Butyl alcohol (TBA                             | 4)                                                                      | ND                                              | 1.0   | 0.05               |
| n-Butyl benzene                                         | ND              | 1.0          | 0.005              | sec-Butyl benzene                                | ND                                                                      | 1.0                                             | 0.005 |                    |
| tert-Butyl benzene                                      | ND              | 1.0          | 0.005              | Carbon Disulfide                                 |                                                                         | ND                                              | 1.0   | 0.005              |
| Carbon Tetrachloride                                    | ND              | 1.0          | 0.005              | Chlorobenzene                                    |                                                                         | ND                                              | 1.0   | 0.005              |
| Chloroethane                                            | ND              | 1.0          | 0.005              | 2-Chloroethyl Vinyl Ether                        |                                                                         | ND                                              | 1.0   | 0.01               |
| Chloroform                                              | ND              | 1.0          | 0.005              | Chloromethane                                    |                                                                         | ND                                              | 1.0   | 0.005              |
| 2-Chlorotoluene                                         | ND              | 1.0          | 0.005              | 4-Chlorotoluene                                  |                                                                         | ND                                              | 1.0   | 0.005              |
| Dibromocniorometnane                                    | ND              | 1.0          | 0.005              | Dibromomothene                                   |                                                                         | ND                                              | 1.0   | 0.005              |
| 1,2-Dibromoethane (EDB)                                 | ND              | 1.0          | 0.005              | Dibromomethane                                   |                                                                         | ND                                              | 1.0   | 0.005              |
| 1.4 Dichlorobenzene                                     | ND              | 1.0          | 0.005              | Dishlaradifluoromat                              | ND                                                                      | 1.0                                             | 0.005 |                    |
| 1,4-Dichloroethane                                      | ND              | 1.0          | 0.005              | 1.2-Dichloroethane                               | (1.2 - DCA)                                                             | ND                                              | 1.0   | 0.005              |
| 1 1-Dichloroethene                                      | ND              | 1.0          | 0.005              | cis-1 2-Dichloroethe                             | ene                                                                     | ND                                              | 1.0   | 0.005              |
| trans-1 2-Dichloroethene                                | ND              | 1.0          | 0.005              | 1 2-Dichloropropan                               | 2                                                                       | ND                                              | 1.0   | 0.005              |
| 1.3-Dichloropropane                                     | ND              | 1.0          | 0.005              | 2.2-Dichloropropan                               | e                                                                       | ND                                              | 1.0   | 0.005              |
| 1.1-Dichloropropene                                     | ND              | 1.0          | 0.005              | cis-1.3-Dichloroprop                             | bene                                                                    | ND                                              | 1.0   | 0.005              |
| trans-1,3-Dichloropropene                               | ND              | 1.0          | 0.005              | Diisopropyl ether (E                             | DIPE)                                                                   | ND                                              | 1.0   | 0.005              |
| Ethylbenzene                                            | ND              | 1.0          | 0.005              | Ethyl tert-butyl ethe                            | r (ETBE)                                                                | ND                                              | 1.0   | 0.005              |
| Freon 113                                               | ND              | 1.0          | 0.1                | Hexachlorobutadiene                              | e                                                                       | ND                                              | 1.0   | 0.005              |
| Hexachloroethane                                        | ND              | 1.0          | 0.005              | 2-Hexanone                                       |                                                                         | ND                                              | 1.0   | 0.005              |
| Isopropylbenzene                                        | ND              | 1.0          | 0.005              | 4-Isopropyl toluene                              |                                                                         | ND                                              | 1.0   | 0.005              |
| Methyl-t-butyl ether (MTBE)                             | ND              | 1.0          | 0.005              | Methylene chloride                               |                                                                         | ND                                              | 1.0   | 0.005              |
| 4-Methyl-2-pentanone (MIBK)                             | ND              | 1.0          | 0.005              | Naphthalene                                      |                                                                         | ND                                              | 1.0   | 0.005              |
| Nitrobenzene                                            | ND              | 1.0          | 0.1                | n-Propyl benzene                                 |                                                                         | ND                                              | 1.0   | 0.005              |
| Styrene                                                 | ND              | 1.0          | 0.005              | 1,1,1,2-Tetrachloro                              | ethane                                                                  | ND                                              | 1.0   | 0.005              |
| 1,1,2,2-Tetrachloroethane                               | ND              | 1.0          | 0.005              | Tetrachloroethene                                |                                                                         | ND                                              | 1.0   | 0.005              |
| Toluene                                                 | ND              | 1.0          | 0.005              | 1,2,3-Trichlorobenz                              | ene                                                                     | ND                                              | 1.0   | 0.005              |
| 1,2,4-Trichlorobenzene                                  | ND              | 1.0          | 0.005              | 1,1,1-Trichloroetha                              | ne                                                                      | ND                                              | 1.0   | 0.005              |
| 1,1,2-Trichloroethane                                   | ND              | 1.0          | 0.005              | 1 2 2 Trichloroethene                            |                                                                         | ND                                              | 1.0   | 0.005              |
| 1 2 4 Trimothylhog and                                  | ND              | 1.0          | 0.005              | 1,2,3-1 TICNIOTOPTOP                             | ane                                                                     | ND                                              | 1.0   | 0.005              |
| Vinyl Chloride                                          |                 | 1.0          | 0.005              | 1,5,5-1rimethylbenz                              | ene                                                                     |                                                 | 1.0   | 0.005              |
|                                                         |                 | Surrea       | u.uuu<br>Into Do   | coveries (%)                                     |                                                                         | ND                                              | 1.0   | 0.003              |
| 0/ 551.                                                 | 10/             | Surrog       | αις κε             |                                                  |                                                                         | 100                                             |       |                    |
| %0551:<br>0/ 552                                        | 100             | J            |                    | %332:                                            |                                                                         | 100                                             |       |                    |
| <u> </u>                                                | 91              |              |                    | 1                                                |                                                                         |                                                 |       |                    |

#### Comments:

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



| McCampbell An<br>"When Quality                          | nalytical, In   | <u>c.</u>    |                   | 1534 Willow P<br>Web: www.mccamp<br>Telephone: 8 | ass Road, Pittsburg, CA<br>bell.com E-mail: mair<br>77-252-9262 Fax: 92 | A 94565-1701<br>n@mccampbell.com<br>5-252-9269 |       |                    |
|---------------------------------------------------------|-----------------|--------------|-------------------|--------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-------|--------------------|
| AEI Consultants                                         | Client Pr       | oject ID:    | Mai               | n Street                                         | Date Sampled:                                                           | 12/27/06                                       |       |                    |
|                                                         |                 |              |                   |                                                  | Date Received:                                                          | 12/29/06                                       |       |                    |
| 2500 Camino Diablo, Ste. #200<br>Client Contact: Adrian |                 |              |                   | Angel                                            | Date Extracted:                                                         | 12/29/06                                       |       |                    |
| Walnut Creek, CA 94597                                  | Client P.       | 0.:          |                   | 0                                                | Date Analyzed:                                                          | 01/02/07                                       |       |                    |
|                                                         | Volatile Organi | cs by P8     | zT and            | d GC/MS (Basic Ta                                | rget List)*                                                             |                                                |       |                    |
| Extraction Method: SW5030B                              | A               | nalytical Me | ethod:            | SW8260B                                          |                                                                         | Work Order: 061264                             | -5    |                    |
| Lab ID                                                  |                 |              |                   | 0612645                                          | -003A                                                                   |                                                |       |                    |
| Client ID                                               |                 | SB-1:        | 5-6'              |                                                  |                                                                         |                                                |       |                    |
| Matrix                                                  |                 |              |                   | Wat                                              | er                                                                      |                                                |       |                    |
| Compound                                                | Concentration * | DF           | eporting<br>Limit | Compour                                          | ıd                                                                      | Concentration *                                | DF    | Reporting<br>Limit |
| Acetone                                                 | ND              | 1.0          | 0.05              | Acrolein (Propenal)                              |                                                                         | ND                                             | 1.0   | 0.05               |
| Acrylonitrile                                           | ND              | 1.0          | 0.02              | tert-Amyl methyl et                              | her (TAME)                                                              | ND                                             | 1.0   | 0.005              |
| Benzene                                                 | ND              | 1.0          | 0.005             | Bromobenzene                                     |                                                                         | ND                                             | 1.0   | 0.005              |
| Bromochloromethane                                      | ND              | 1.0          | 0.005             | Bromodichlorometh                                | ane                                                                     | ND                                             | 1.0   | 0.005              |
| Bromoform                                               | ND              | 1.0          | 0.005             | Bromomethane                                     |                                                                         | ND                                             | 1.0   | 0.005              |
| 2-Butanone (MEK)                                        | ND              | 1.0          | 0.02              | t-Butyl alcohol (TBA                             | A)                                                                      | ND                                             | 1.0   | 0.05               |
| n-Butyl benzene                                         | ND              | 1.0          | 0.005             | sec-Butyl benzene                                | ND                                                                      | 1.0                                            | 0.005 |                    |
| tert-Butyl benzene                                      | ND              | 1.0          | 0.005             | Carbon Disulfide                                 |                                                                         | ND                                             | 1.0   | 0.005              |
| Carbon Tetrachloride                                    | ND              | 1.0          | 0.005             | Chlorobenzene                                    |                                                                         | ND                                             | 1.0   | 0.005              |
| Chloroethane                                            | ND              | 1.0          | 0.005             | 2-Chloroethyl Vinyl Ether                        |                                                                         | ND                                             | 1.0   | 0.01               |
| Chloroform                                              | ND              | 1.0          | 0.005             | Chloromethane                                    |                                                                         | ND                                             | 1.0   | 0.005              |
| 2-Chlorotoluene                                         | ND              | 1.0          | 0.005             | 4-Chlorotoluene                                  |                                                                         | ND                                             | 1.0   | 0.005              |
| Dibromochloromethane                                    | ND              | 1.0          | 0.005             | 1,2-Dibromo-3-chloropropane                      |                                                                         | ND                                             | 1.0   | 0.005              |
| 1,2-Dibromoethane (EDB)                                 | ND              | 1.0          | 0.005             | Dibromomethane                                   |                                                                         | ND                                             | 1.0   | 0.005              |
| 1,2-Dichlorobenzene                                     | ND              | 1.0          | 0.005             | 1,3-Dichlorobenzene                              | ND                                                                      | 1.0                                            | 0.005 |                    |
| 1,4-Dichlorobenzene                                     | ND              | 1.0          | 0.005             | Dichlorodifluoromet                              | hane                                                                    | ND                                             | 1.0   | 0.005              |
| 1,1-Dichloroethane                                      | ND              | 1.0          | 0.005             | 1,2-Dichloroethane                               | (1,2-DCA)                                                               | ND                                             | 1.0   | 0.005              |
| 1,1-Dichloroethene                                      | ND              | 1.0          | 0.005             | 1.2 Dishlararranan                               |                                                                         | ND                                             | 1.0   | 0.005              |
| 1 3 Dichloropropage                                     | ND              | 1.0          | 0.005             | 2.2 Dichloropropan                               | 2                                                                       | ND                                             | 1.0   | 0.005              |
| 1.1 Dichloropropane                                     | ND              | 1.0          | 0.005             | cis 1.3 Dichloroprov                             | oono                                                                    | ND                                             | 1.0   | 0.005              |
| trans-1 3-Dichloropropene                               | ND              | 1.0          | 0.005             | Dijsopropyl ether (F                             | MPF)                                                                    | ND                                             | 1.0   | 0.005              |
| Ethylbenzene                                            | ND              | 1.0          | 0.005             | Ethyl tert-butyl ethe                            | er (ETBE)                                                               | ND                                             | 1.0   | 0.005              |
| Freon 113                                               | ND              | 1.0          | 0.1               | Hexachlorobutadiene                              | e e e e e e e e e e e e e e e e e e e                                   | ND                                             | 1.0   | 0.005              |
| Hexachloroethane                                        | ND              | 1.0          | 0.005             | 2-Hexanone                                       |                                                                         | ND                                             | 1.0   | 0.005              |
| Isopropylbenzene                                        | ND              | 1.0          | 0.005             | 4-Isopropyl toluene                              |                                                                         | ND                                             | 1.0   | 0.005              |
| Methyl-t-butyl ether (MTBE)                             | ND              | 1.0          | 0.005             | Methylene chloride                               |                                                                         | ND                                             | 1.0   | 0.005              |
| 4-Methyl-2-pentanone (MIBK)                             | ND              | 1.0          | 0.005             | Naphthalene                                      |                                                                         | ND                                             | 1.0   | 0.005              |
| Nitrobenzene                                            | ND              | 1.0          | 0.1               | n-Propyl benzene                                 |                                                                         | ND                                             | 1.0   | 0.005              |
| Styrene                                                 | ND              | 1.0          | 0.005             | 1,1,1,2-Tetrachloro                              | ethane                                                                  | ND                                             | 1.0   | 0.005              |
| 1,1,2,2-Tetrachloroethane                               | ND              | 1.0          | 0.005             | Tetrachloroethene                                |                                                                         | ND                                             | 1.0   | 0.005              |
| Toluene                                                 | ND              | 1.0          | 0.005             | 1,2,3-Trichlorobenz                              | ene                                                                     | ND                                             | 1.0   | 0.005              |
| 1,2,4-Trichlorobenzene                                  | ND              | 1.0          | 0.005             | 1,1,1-Trichloroetha                              | ne                                                                      | ND                                             | 1.0   | 0.005              |
| 1,1,2-Trichloroethane                                   | ND              | 1.0          | 0.005             | Trichloroethene                                  |                                                                         | ND                                             | 1.0   | 0.005              |
| Trichlorofluoromethane                                  | ND              | 1.0          | 0.005             | 1,2,3-Trichloroprop                              | ane                                                                     | ND                                             | 1.0   | 0.005              |
| 1,2,4-Trimethylbenzene                                  | ND              | 1.0          | 0.005             | 1,3,5-Trimethylbenz                              | zene                                                                    | ND                                             | 1.0   | 0.005              |
| vinvi Chloride                                          | ND              | I I.0        | 0.005             | Avlenes                                          |                                                                         | ND                                             | 1.0   | 0.005              |
|                                                         | 1               | Surrog       | ate Re            | coveries (%)                                     |                                                                         |                                                |       |                    |
| %SS1:                                                   | 101             |              |                   | %SS2:                                            |                                                                         | 99                                             |       |                    |
| %SS3:                                                   | 90              |              |                   |                                                  |                                                                         |                                                |       |                    |

#### Comments:

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



| McCampbell An<br>"When Ouality"                         | nalytical, In<br>Counts" | <u>c.</u>    |                   | 1534 Willow P<br>Web: www.mccamp<br>Telephone: 8 | ass Road, Pittsburg, CA<br>bell.com E-mail: maii<br>77-252-9262 Fax: 92 | x 94565-1701<br>n@mccampbell.com<br>5-252-9269 |     |                    |
|---------------------------------------------------------|--------------------------|--------------|-------------------|--------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-----|--------------------|
| AEI Consultants                                         | Client Pr                | oject ID:    | Mai               | n Street                                         | Date Sampled:                                                           | 12/27/06                                       |     |                    |
|                                                         |                          |              |                   |                                                  | Date Received:                                                          | 12/29/06                                       |     |                    |
| 2500 Camino Diablo, Ste. #200<br>Client Contact: Adriar |                          |              |                   | Angel                                            | Date Extracted:                                                         | 12/31/06                                       |     |                    |
| Walnut Creek, CA 94597                                  | Client P.                | 0.:          |                   | C                                                | Date Analyzed:                                                          | 12/31/06                                       |     |                    |
|                                                         | Volatile Organi          | cs by P&     | T and             | d GC/MS (Basic Ta                                | rget List)*                                                             |                                                |     |                    |
| Extraction Method: SW5030B                              | A                        | nalytical Me | ethod:            | SW8260B                                          | inger List)                                                             | Work Order: 061264                             | 5   |                    |
| Lab ID                                                  |                          |              |                   | 0612645                                          | -005A                                                                   |                                                |     |                    |
| Client ID                                               |                          |              |                   | SB-14-                                           | W-1                                                                     |                                                |     |                    |
| Matrix                                                  |                          |              |                   | Wat                                              | er                                                                      |                                                |     |                    |
| Compound                                                | Concentration *          | DF R         | eporting<br>Limit | Compoun                                          | ıd                                                                      | Concentration *                                | DF  | Reporting<br>Limit |
| Acetone                                                 | ND                       | 1.0          | 10                | Acrolein (Propenal)                              |                                                                         | ND                                             | 1.0 | 5.0                |
| Acrylonitrile                                           | ND                       | 1.0          | 2.0               | tert-Amyl methyl et                              | her (TAME)                                                              | ND                                             | 1.0 | 0.5                |
| Benzene                                                 | ND                       | 1.0          | 0.5               | Bromobenzene                                     |                                                                         | ND                                             | 1.0 | 0.5                |
| Bromochloromethane                                      | ND                       | 1.0          | 0.5               | Bromodichlorometh                                | ane                                                                     | ND                                             | 1.0 | 0.5                |
| Bromoform                                               | ND                       | 1.0          | 0.5               | Bromomethane                                     |                                                                         | ND                                             | 1.0 | 0.5                |
| 2-Butanone (MEK)                                        | ND                       | 1.0          | 2.0               | t-Butyl alcohol (TBA                             | A)                                                                      | ND                                             | 1.0 | 5.0                |
| n-Butyl benzene                                         | ND                       | 1.0          | 0.5               | sec-Butyl benzene                                |                                                                         | ND                                             | 1.0 | 0.5                |
| tert-Butyl benzene                                      | ND                       | 1.0          | 0.5               | Carbon Disulfide                                 |                                                                         | ND                                             | 1.0 | 0.5                |
| Carbon Tetrachloride                                    | ND                       | 1.0          | 0.5               | Chlorobenzene                                    |                                                                         | ND                                             | 1.0 | 0.5                |
| Chloroethane                                            | ND                       | 1.0          | 0.5               | 2-Chloroethyl Vinyl Ether                        |                                                                         | ND                                             | 1.0 | 1.0                |
| Chloroform                                              | ND                       | 1.0          | 0.5               | Chloromethane                                    |                                                                         | ND                                             | 1.0 | 0.5                |
| 2-Chlorotoluene                                         | ND                       | 1.0          | 0.5               | 4-Chlorotoluene                                  |                                                                         | ND                                             | 1.0 | 0.5                |
| Dibromochloromethane                                    | ND                       | 1.0          | 0.5               | 1,2-Dibromo-3-chloropropane                      |                                                                         | ND                                             | 1.0 | 0.5                |
| 1,2-Dibromoethane (EDB)                                 | ND                       | 1.0          | 0.5               | Dibromomethane                                   |                                                                         | ND                                             | 1.0 | 0.5                |
| 1,2-Dichlorobenzene                                     | ND                       | 1.0          | 0.5               | 1,3-Dichlorobenzene                              | ND                                                                      | 1.0                                            | 0.5 |                    |
| 1,4-Dichlorobenzene                                     | ND                       | 1.0          | 0.5               | Dichlorodifluoromet                              | hane                                                                    | ND                                             | 1.0 | 0.5                |
| 1,1-Dichloroethane                                      | ND                       | 1.0          | 0.5               | 1,2-Dichloroethane                               | (1,2-DCA)                                                               | ND                                             | 1.0 | 0.5                |
| trans 1.2 Dichloroothone                                | ND                       | 1.0          | 0.5               | 1.2 Dichleropropen                               | elle                                                                    | ND                                             | 1.0 | 0.5                |
| 1 3-Dichloropropage                                     | ND                       | 1.0          | 0.5               | 2.2-Dichloropropane                              | 2<br>a                                                                  | ND                                             | 1.0 | 0.5                |
| 1 1-Dichloropropene                                     | ND                       | 1.0          | 0.5               | cis-1 3-Dichloroprot                             | oene                                                                    | ND                                             | 1.0 | 0.5                |
| trans-1 3-Dichloropropene                               | ND                       | 1.0          | 0.5               | Diisopropyl ether (F                             | DIPE)                                                                   | ND                                             | 1.0 | 0.5                |
| Ethylbenzene                                            | ND                       | 1.0          | 0.5               | Ethyl tert-butyl ethe                            | er (ETBE)                                                               | ND                                             | 1.0 | 0.5                |
| Freon 113                                               | ND                       | 1.0          | 10                | Hexachlorobutadiene                              |                                                                         | ND                                             | 1.0 | 0.5                |
| Hexachloroethane                                        | ND                       | 1.0          | 0.5               | 2-Hexanone                                       |                                                                         | ND                                             | 1.0 | 0.5                |
| Isopropylbenzene                                        | ND                       | 1.0          | 0.5               | 4-Isopropyl toluene                              |                                                                         | ND                                             | 1.0 | 0.5                |
| Methyl-t-butyl ether (MTBE)                             | ND                       | 1.0          | 0.5               | Methylene chloride                               |                                                                         | ND                                             | 1.0 | 0.5                |
| 4-Methyl-2-pentanone (MIBK)                             | ND                       | 1.0          | 0.5               | Naphthalene                                      |                                                                         | ND                                             | 1.0 | 0.5                |
| Nitrobenzene                                            | ND                       | 1.0          | 10                | n-Propyl benzene                                 |                                                                         | ND                                             | 1.0 | 0.5                |
| Styrene                                                 | ND                       | 1.0          | 0.5               | 1,1,1,2-Tetrachloroe                             | ethane                                                                  | ND                                             | 1.0 | 0.5                |
| 1,1,2,2-Tetrachloroethane                               | ND                       | 1.0          | 0.5               | Tetrachloroethene                                |                                                                         | 2.5                                            | 1.0 | 0.5                |
| Toluene                                                 | ND                       | 1.0          | 0.5               | 1,2,3-Trichlorobenz                              | ene                                                                     | ND                                             | 1.0 | 0.5                |
| 1,2,4-Trichlorobenzene                                  | ND                       | 1.0          | 0.5               | 1,1,1-Trichloroetha                              | ne                                                                      | ND                                             | 1.0 | 0.5                |
| 1,1,2-Trichloroethane                                   | ND                       | 1.0          | 0.5               | Trichloroethene                                  |                                                                         | ND                                             | 1.0 | 0.5                |
| Trichlorofluoromethane                                  | ND                       | 1.0          | 0.5               | 1,2,3-Trichloroprop                              | ane                                                                     | ND                                             | 1.0 | 0.5                |
| 1,2,4-Trimethylbenzene                                  | ND                       | 1.0          | 0.5               | 1,3,5-Trimethylbenz                              | zene                                                                    | ND                                             | 1.0 | 0.5                |
| vinvi Chloride                                          | ND                       | I I.0        | 0.5               | Xvlenes                                          |                                                                         | ND                                             | 1.0 | 0.5                |
|                                                         |                          | Surrog       | ate Ke            | coveries (%)                                     |                                                                         |                                                |     |                    |
| %SS1:                                                   | 110                      | )            |                   | %SS2:                                            |                                                                         | 101                                            |     |                    |
| %SS3:                                                   | 103                      |              |                   |                                                  |                                                                         |                                                |     |                    |

#### Comments: i

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



| McCampbell Analytical, Inc.           "When Ouality Counts" |                 |                 |          | 1534 Willow P<br>Web: www.mccampl<br>Telephone: 8 | ass Road, Pittsburg, CA<br>bell.com E-mail: main<br>77-252-9262 Fax: 92 | x 94565-1701<br>n@mccampbell.com<br>5-252-9269 |     |           |
|-------------------------------------------------------------|-----------------|-----------------|----------|---------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-----|-----------|
| AEI Consultants                                             | Client Pr       | oject ID:       | Mai      | n Street                                          | Date Sampled:                                                           | 12/27/06                                       |     |           |
|                                                             |                 |                 |          |                                                   | Date Received:                                                          | 12/29/06                                       |     |           |
| 2500 Camino Diablo, Ste. #200<br>Client Contact: Adrian     |                 |                 |          | Angel                                             | Date Extracted:                                                         | 12/31/06                                       |     |           |
| Walnut Creek, CA 94597                                      | Client P.       | 0.:             |          | 6                                                 | Date Analyzed:                                                          | 12/31/06                                       |     |           |
|                                                             | Volatile Organi | cs by Pá        | T and    | d CC/MS (Basic Ta                                 |                                                                         |                                                |     |           |
| Extraction Method: SW5030B                                  | A A             | nalytical Me    | ethod:   | SW8260B                                           | ii get List)                                                            | Work Order: 061264                             | 15  |           |
| Lab ID                                                      |                 |                 |          | 0612645                                           | -006A                                                                   |                                                |     |           |
| Client ID                                                   |                 |                 |          | SB-14-                                            | W-2                                                                     |                                                |     |           |
| Matrix                                                      |                 |                 |          | Wate                                              | er                                                                      |                                                |     |           |
| Compound                                                    | Concentration * | DF              | eporting | Compoun                                           | d                                                                       | Concentration *                                | DF  | Reporting |
|                                                             | ND              | 1.0             | Limit    |                                                   |                                                                         | ND                                             | 1.0 | Limit     |
| Acetone                                                     | ND              | 1.0             | 10       | Acrolein (Propenal)                               | han (TAME)                                                              | ND                                             | 1.0 | 5.0       |
| Acrylonitrile                                               | ND              | 1.0             | 2.0      | Bromobenzene                                      | ner (TAME)                                                              | ND                                             | 1.0 | 0.5       |
| Bromochloromethane                                          | ND              | 1.0             | 0.5      | Bromodichlorometh                                 | 374                                                                     | ND                                             | 1.0 | 0.5       |
| Bromoform                                                   | ND              | 1.0             | 0.5      | Bromomethane                                      | ane                                                                     | ND                                             | 1.0 | 0.5       |
| 2-Butanone (MEK)                                            | ND              | 1.0             | 2.0      | t-Butyl alcohol (TB)                              | 4)                                                                      | ND                                             | 1.0 | 5.0       |
| n-Butyl benzene                                             | ND              | 1.0             | 0.5      | sec-Butyl benzene                                 | 1)                                                                      | ND                                             | 1.0 | 0.5       |
| tert-Butyl benzene                                          | ND              | 1.0             | 0.5      | Carbon Disulfide                                  |                                                                         | ND                                             | 1.0 | 0.5       |
| Carbon Tetrachloride                                        | ND              | 1.0             | 0.5      | Chlorobenzene                                     |                                                                         | ND                                             | 1.0 | 0.5       |
| Chloroethane                                                | ND              | 1.0             | 0.5      | 2-Chloroethyl Vinyl Ether                         |                                                                         | ND                                             | 1.0 | 1.0       |
| Chloroform                                                  | ND              | 1.0             | 0.5      | Chloromethane                                     | Ether                                                                   | ND                                             | 1.0 | 0.5       |
| 2-Chlorotoluene                                             | ND              | 1.0             | 0.5      | 4-Chlorotoluene                                   |                                                                         | ND                                             | 1.0 | 0.5       |
| Dibromochloromethane                                        | ND              | 1.0             | 0.5      | 1.2-Dibromo-3-chlor                               | ropropane                                                               | ND                                             | 1.0 | 0.5       |
| 1.2-Dibromoethane (EDB)                                     | ND              | 1.0             | 0.5      | Dibromomethane                                    |                                                                         | ND                                             | 1.0 | 0.5       |
| 1,2-Dichlorobenzene                                         | ND              | 1.0             | 0.5      | 1,3-Dichlorobenzene                               | ND                                                                      | 1.0                                            | 0.5 |           |
| 1,4-Dichlorobenzene                                         | ND              | 1.0             | 0.5      | Dichlorodifluoromet                               | ND                                                                      | 1.0                                            | 0.5 |           |
| 1,1-Dichloroethane                                          | ND              | 1.0             | 0.5      | 1,2-Dichloroethane                                | (1,2-DCA)                                                               | ND                                             | 1.0 | 0.5       |
| 1,1-Dichloroethene                                          | ND              | 1.0             | 0.5      | cis-1,2-Dichloroethe                              | ene                                                                     | ND                                             | 1.0 | 0.5       |
| trans-1,2-Dichloroethene                                    | ND              | 1.0             | 0.5      | 1,2-Dichloropropane                               | e                                                                       | ND                                             | 1.0 | 0.5       |
| 1,3-Dichloropropane                                         | ND              | 1.0             | 0.5      | 2,2-Dichloropropane                               | e                                                                       | ND                                             | 1.0 | 0.5       |
| 1,1-Dichloropropene                                         | ND              | 1.0             | 0.5      | cis-1,3-Dichloropror                              | bene                                                                    | ND                                             | 1.0 | 0.5       |
| trans-1,3-Dichloropropene                                   | ND              | 1.0             | 0.5      | Diisopropyl ether (D                              | DIPE)                                                                   | ND                                             | 1.0 | 0.5       |
| Ethylbenzene                                                | ND              | 1.0             | 0.5      | Ethyl tert-butyl ethe                             | r (ETBE)                                                                | ND                                             | 1.0 | 0.5       |
| Freon 113                                                   | ND              | 1.0             | 10       | Hexachlorobutadiene                               |                                                                         | ND                                             | 1.0 | 0.5       |
| Hexachloroethane                                            | ND              | 1.0             | 0.5      | 2-Hexanone                                        |                                                                         | ND                                             | 1.0 | 0.5       |
| Isopropylbenzene                                            | ND              | 1.0             | 0.5      | 4-Isopropyl toluene                               |                                                                         | ND                                             | 1.0 | 0.5       |
| Methyl-t-butyl ether (MTBE)                                 | ND              | 1.0             | 0.5      | Methylene chloride                                |                                                                         | ND                                             | 1.0 | 0.5       |
| 4-Methyl-2-pentanone (MIBK)                                 | ND              | 1.0             | 0.5      | Naphthalene                                       |                                                                         | ND                                             | 1.0 | 0.5       |
| Nitrobenzene                                                | ND              | 1.0             | 10       | n-Propyl benzene                                  |                                                                         | ND                                             | 1.0 | 0.5       |
| Styrene                                                     | ND              | 1.0             | 0.5      | 1,1,1,2-Tetrachloroe                              | ethane                                                                  | ND                                             | 1.0 | 0.5       |
| 1,1,2,2-Tetrachloroethane                                   | ND              | 1.0             | 0.5      | Tetrachloroethene                                 |                                                                         | ND                                             | 1.0 | 0.5       |
| Toluene                                                     | 0.88            | 1.0             | 0.5      | 1,2,3-Trichlorobenzo                              | ene                                                                     | ND                                             | 1.0 | 0.5       |
| 1,2,4-Trichlorobenzene                                      | ND              | 1.0             | 0.5      | 1,1,1-1richloroethai                              | ne                                                                      | ND                                             | 1.0 | 0.5       |
| 1,1,2-Irichloroethane                                       | ND              | 1.0             | 0.5      | 1 2 2 Trichland                                   |                                                                         | 1.1<br>ND                                      | 1.0 | 0.5       |
| 1 2 4 Trimesthelle                                          | ND              | 1.0             | 0.5      | 1,2,3-1 Ticnioroprop                              |                                                                         | ND                                             | 1.0 | 0.5       |
| Vinyl Chloride                                              | ND              | 1.0             | 0.5      | 1,3,3-1rimethylbenz                               | ene                                                                     | ND<br>1.0                                      | 1.0 | 0.5       |
|                                                             | ND              | <u><u> </u></u> | U.3      | Avienes                                           |                                                                         | 1.0                                            | 1.0 | 0.5       |
|                                                             |                 | Surrog          | ate Ke   | coveries (%)                                      |                                                                         |                                                |     |           |
| %SS1:                                                       | 110             | )               |          | %SS2:                                             |                                                                         | 102                                            |     |           |
| <u>  %SS3:</u>                                              | 103             | i               |          |                                                   |                                                                         |                                                |     |           |

#### Comments: i

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



| McCampbell An<br>"When Quality                          | nalytical, I  | <u>nc.</u>     |         | 1534 Willow P<br>Web: www.mccamp<br>Telephone: 8 | ass Road, Pittsburg, CA<br>bell.com E-mail: mair<br>77-252-9262 Fax: 92 | x 94565-1701<br>a@mccampbell.com<br>5-252-9269 |     |           |
|---------------------------------------------------------|---------------|----------------|---------|--------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-----|-----------|
| AEI Consultants                                         | Client        | Project ID:    | Mai     | n Street                                         | Date Sampled:                                                           | 12/27/06                                       |     |           |
|                                                         |               |                |         |                                                  | Date Received:                                                          | 12/29/06                                       |     |           |
| 2500 Camino Diablo, Ste. #200<br>Client Contact: Adrian |               |                |         | Angel                                            | Date Extracted:                                                         | 12/31/06                                       |     |           |
| Walnut Creek, CA 94597                                  | Client        | P.O.:          |         |                                                  | Date Analyzed:                                                          | 12/31/06                                       |     |           |
|                                                         | Volotilo Orga | nice by D&     | Ton     | CC/MS (Decia Ta                                  | maget I ist)*                                                           |                                                |     |           |
| Extraction Method: SW5030B                              | volatile Orga | Analytical Met | hod     | SW8260B                                          | ii get List).                                                           | Work Order: 061264                             | 15  |           |
| Lab ID                                                  |               |                | nou.    | 0612645                                          | -007 4                                                                  |                                                |     |           |
| Client ID                                               |               |                |         | SB-15-                                           | W-1                                                                     |                                                |     |           |
| Matrix                                                  |               |                |         | Wat                                              | er i                                                                    |                                                |     |           |
|                                                         |               | Re             | porting |                                                  |                                                                         |                                                | DE  | Reporting |
| Compound                                                | Concentration | * DF           | Limit   | Compoun                                          | d                                                                       | Concentration *                                | DF  | Limit     |
| Acetone                                                 | ND            | 1.0            | 10      | Acrolein (Propenal)                              |                                                                         | ND                                             | 1.0 | 5.0       |
| Acrylonitrile                                           | ND            | 1.0            | 2.0     | tert-Amyl methyl et                              | her (TAME)                                                              | ND                                             | 1.0 | 0.5       |
| Benzene                                                 | ND            | 1.0            | 0.5     | Bromobenzene                                     |                                                                         | ND                                             | 1.0 | 0.5       |
| Bromochloromethane                                      | ND            | 1.0            | 0.5     | Bromodichlorometh                                | ane                                                                     | ND                                             | 1.0 | 0.5       |
| Bromotorm                                               | ND            | 1.0            | 0.5     | Bromomethane                                     | • `                                                                     | ND                                             | 1.0 | 0.5       |
| 2-Butanone (MEK)                                        | ND            | 1.0            | 2.0     | t-Butyl alcohol (TB)                             | ND                                                                      | 1.0                                            | 5.0 |           |
| n-Butyl benzene                                         | ND            | 1.0            | 0.5     | Sec-Butyl benzene                                | ND                                                                      | 1.0                                            | 0.5 |           |
| Carbon Tetrachloride                                    | ND            | 1.0            | 0.5     | Chlorobenzene                                    |                                                                         | ND                                             | 1.0 | 0.5       |
| Chloroethane                                            | ND            | 1.0            | 0.5     | 2-Chloroethyl Vinyl Ether                        |                                                                         | ND                                             | 1.0 | 1.0       |
| Chloroform                                              | ND            | 1.0            | 0.5     | Chloromethane                                    |                                                                         | ND                                             | 1.0 | 0.5       |
| 2-Chlorotoluene                                         | ND            | 1.0            | 0.5     | 4-Chlorotoluene                                  |                                                                         | ND                                             | 1.0 | 0.5       |
| Dibromochloromethane                                    | ND            | 1.0            | 0.5     | 1,2-Dibromo-3-chlo                               | ropropane                                                               | ND                                             | 1.0 | 0.5       |
| 1,2-Dibromoethane (EDB)                                 | ND            | 1.0            | 0.5     | Dibromomethane                                   |                                                                         | ND                                             | 1.0 | 0.5       |
| 1,2-Dichlorobenzene                                     | ND            | 1.0            | 0.5     | 1,3-Dichlorobenzene                              | ND                                                                      | 1.0                                            | 0.5 |           |
| 1,4-Dichlorobenzene                                     | ND            | 1.0            | 0.5     | Dichlorodifluoromet                              | ND                                                                      | 1.0                                            | 0.5 |           |
| 1,1-Dichloroethane                                      | ND            | 1.0            | 0.5     | 1,2-Dichloroethane                               | (1,2-DCA)                                                               | ND                                             | 1.0 | 0.5       |
| 1,1-Dichloroethene                                      | ND            | 1.0            | 0.5     | cis-1,2-Dichloroethe                             | ene                                                                     | ND                                             | 1.0 | 0.5       |
| trans-1,2-Dichloroethene                                | ND            | 1.0            | 0.5     | 1,2-Dichloropropane                              | e                                                                       | ND                                             | 1.0 | 0.5       |
| 1,3-Dichloropropane                                     | ND            | 1.0            | 0.5     | 2,2-Dichloropropane                              | 9                                                                       | ND                                             | 1.0 | 0.5       |
| 1,1-Dichloropropene                                     | ND            | 1.0            | 0.5     | cis-1,3-Dichloroprop                             | bene                                                                    | ND                                             | 1.0 | 0.5       |
| trans-1,3-Dichloropropene                               | ND            | 1.0            | 0.5     | Diisopropyl ether (E                             | DIPE)                                                                   | ND                                             | 1.0 | 0.5       |
| Ethylbenzene                                            | ND            | 1.0            | 0.5     | Ethyl tert-butyl ethe                            | r (ETBE)                                                                | ND                                             | 1.0 | 0.5       |
| Freon 113                                               | ND            | 1.0            | 10      | Hexachlorobutadiene                              |                                                                         | ND                                             | 1.0 | 0.5       |
| Hexachioroethane                                        | ND            | 1.0            | 0.5     | 4 Isopropul toluono                              |                                                                         | ND                                             | 1.0 | 0.5       |
| Mothyl t butyl other (MTPE)                             | ND            | 1.0            | 0.5     | 4-Isopropyr toruelle                             |                                                                         | ND                                             | 1.0 | 0.5       |
| 4-Methyl-2-pentanone (MIBK)                             | ND            | 1.0            | 0.5     | Naphthalene                                      |                                                                         | ND                                             | 1.0 | 0.5       |
| Nitrobenzene                                            | ND            | 1.0            | 10      | n-Propyl benzene                                 |                                                                         | ND                                             | 1.0 | 0.5       |
| Styrene                                                 | ND            | 1.0            | 0.5     | 1.1.1.2-Tetrachloroe                             | ethane                                                                  | ND                                             | 1.0 | 0.5       |
| 1.1.2.2-Tetrachloroethane                               | ND            | 1.0            | 0.5     | Tetrachloroethene                                | , mano                                                                  | ND                                             | 1.0 | 0.5       |
| Toluene                                                 | ND            | 1.0            | 0.5     | 1,2,3-Trichlorobenz                              | ene                                                                     | ND                                             | 1.0 | 0.5       |
| 1,2,4-Trichlorobenzene                                  | ND            | 1.0            | 0.5     | 1,1,1-Trichloroetha                              | ne                                                                      | ND                                             | 1.0 | 0.5       |
| 1,1,2-Trichloroethane                                   | ND            | 1.0            | 0.5     | Trichloroethene                                  |                                                                         | ND                                             | 1.0 | 0.5       |
| Trichlorofluoromethane                                  | ND            | 1.0            | 0.5     | 1,2,3-Trichloroprop                              | ane                                                                     | ND                                             | 1.0 | 0.5       |
| 1,2,4-Trimethylbenzene                                  | ND            | 1.0            | 0.5     | 1,3,5-Trimethylbenz                              | zene                                                                    | ND                                             | 1.0 | 0.5       |
| Vinvl Chloride                                          | ND            | 1.0            | 0.5     | Xvlenes                                          |                                                                         | ND                                             | 1.0 | 0.5       |
|                                                         |               | Surroga        | te Re   | coveries (%)                                     |                                                                         |                                                |     |           |
| %SS1:                                                   | 1             | 09             |         | %SS2:                                            |                                                                         | 100                                            |     |           |
| %SS3:                                                   | 1             | 03             |         |                                                  |                                                                         |                                                |     |           |
| Communities 1                                           |               |                |         |                                                  |                                                                         |                                                |     |           |

#### Comments: i

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



| McCampbell An                 | nalytical, In<br>Counts" | <u>ıc.</u>    |                   | 1534 Willow P<br>Web: www.mccampt<br>Telephone: 8 | ass Road, Pittsburg, CA<br>pell.com E-mail: mair<br>77-252-9262 Fax: 92 | x 94565-1701<br>n@mccampbell.com<br>5-252-9269 |     |                    |  |
|-------------------------------|--------------------------|---------------|-------------------|---------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-----|--------------------|--|
| AEI Consultants               | Client I                 | Project ID:   | Mai               | n Street                                          | Date Sampled:                                                           | 12/27/06                                       |     |                    |  |
| 2500 C : D: 11 C #200         |                          |               |                   |                                                   | Date Received:                                                          | 12/29/06                                       |     |                    |  |
| 2500 Camino Diablo, Ste. #200 | Client (                 | Contact: A    | drian             | Angel                                             | Date Extracted:                                                         | 01/03/07                                       |     |                    |  |
| Walnut Creek, CA 94597        | Client F                 | 2.0.:         |                   |                                                   | Date Analyzed:                                                          | 01/03/07                                       |     |                    |  |
|                               | Volatile Organ           | nics by P&    | T and             | d GC/MS (Basic Ta                                 | rget List)*                                                             |                                                |     |                    |  |
| Extraction Method: SW5030B    |                          | Analytical Me | thod:             | SW8260B                                           | 0 /                                                                     | Work Order: 061264                             | 15  |                    |  |
| Lab ID 0612645-008A           |                          |               |                   |                                                   |                                                                         |                                                |     |                    |  |
| Client ID                     |                          |               |                   | SB-15-                                            | W-2                                                                     |                                                |     |                    |  |
| Matrix                        |                          |               |                   | Wate                                              | er                                                                      |                                                |     |                    |  |
| Compound                      | Concentration *          | DF            | eporting<br>Limit | Compoun                                           | d                                                                       | Concentration *                                | DF  | Reporting<br>Limit |  |
| Acetone                       | ND                       | 1.0           | 10                | Acrolein (Propenal)                               |                                                                         | ND                                             | 1.0 | 5.0                |  |
| Acrylonitrile                 | ND                       | 1.0           | 2.0               | tert-Amyl methyl et                               | her (TAME)                                                              | ND                                             | 1.0 | 0.5                |  |
| Benzene                       | ND                       | 1.0           | 0.5               | Bromobenzene                                      |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Bromochloromethane            | ND                       | 1.0           | 0.5               | Bromodichlorometha                                | ane                                                                     | 0.97                                           | 1.0 | 0.5                |  |
| Bromoform                     | ND                       | 1.0           | 0.5               | Bromomethane                                      |                                                                         | ND                                             | 1.0 | 0.5                |  |
| 2-Butanone (MEK)              | ND                       | 1.0           | 2.0               | t-Butyl alcohol (TBA                              | A)                                                                      | ND                                             | 1.0 | 5.0                |  |
| n-Butyl benzene               | ND                       | 1.0           | 0.5               | sec-Butyl benzene                                 |                                                                         | ND                                             | 1.0 | 0.5                |  |
| tert-Butyl benzene            | ND                       | 1.0           | 0.5               | Carbon Disulfide                                  |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Carbon Tetrachloride          | ND                       | 1.0           | 0.5               | Chlorobenzene                                     |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Chloroethane                  | ND                       | 1.0           | 0.5               | 2-Chloroethyl Vinyl Ether                         |                                                                         | ND                                             | 1.0 | 1.0                |  |
| Chloroform                    | 0.54                     | 1.0           | 0.5               | Chloromethane                                     |                                                                         | ND                                             | 1.0 | 0.5                |  |
| 2-Chlorotoluene               | ND                       | 1.0           | 0.5               | 4-Chlorotoluene                                   |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Dibromocniorometnane          | 0.91                     | 1.0           | 0.5               | Dibromomothano                                    |                                                                         | ND                                             | 1.0 | 0.5                |  |
| 1,2-Dibromoethane (EDB)       | ND                       | 1.0           | 0.5               | 1 3 Dichlorobenzene                               | ND                                                                      | 1.0                                            | 0.5 |                    |  |
| 1.4 Dichlorobenzene           | ND                       | 1.0           | 0.5               | Dichlorodifluoromet                               | hana                                                                    | ND                                             | 1.0 | 0.5                |  |
| 1 1-Dichloroethane            | ND                       | 1.0           | 0.5               | 1.2-Dichloroethane (                              | (1.2-DCA)                                                               | ND                                             | 1.0 | 0.5                |  |
| 1 1-Dichloroethene            | ND                       | 1.0           | 0.5               | cis-1.2-Dichloroethe                              | ne                                                                      | ND                                             | 1.0 | 0.5                |  |
| trans-1.2-Dichloroethene      | ND                       | 1.0           | 0.5               | 1.2-Dichloropropane                               | )                                                                       | ND                                             | 1.0 | 0.5                |  |
| 1.3-Dichloropropane           | ND                       | 1.0           | 0.5               | 2,2-Dichloropropane                               | 2                                                                       | ND                                             | 1.0 | 0.5                |  |
| 1,1-Dichloropropene           | ND                       | 1.0           | 0.5               | cis-1,3-Dichloroprop                              | oene                                                                    | ND                                             | 1.0 | 0.5                |  |
| trans-1,3-Dichloropropene     | ND                       | 1.0           | 0.5               | Diisopropyl ether (D                              | OIPE)                                                                   | ND                                             | 1.0 | 0.5                |  |
| Ethylbenzene                  | ND                       | 1.0           | 0.5               | Ethyl tert-butyl ethe                             | r (ETBE)                                                                | ND                                             | 1.0 | 0.5                |  |
| Freon 113                     | ND                       | 1.0           | 10                | Hexachlorobutadiene                               |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Hexachloroethane              | ND                       | 1.0           | 0.5               | 2-Hexanone                                        |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Isopropylbenzene              | ND                       | 1.0           | 0.5               | 4-Isopropyl toluene                               |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Methyl-t-butyl ether (MTBE)   | ND                       | 1.0           | 0.5               | Methylene chloride                                |                                                                         | ND                                             | 1.0 | 0.5                |  |
| 4-Methyl-2-pentanone (MIBK)   | ND                       | 1.0           | 0.5               | Naphthalene                                       |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Nitrobenzene                  | ND                       | 1.0           | 10                | n-Propyl benzene                                  |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Styrene                       | ND                       | 1.0           | 0.5               | 1,1,1,2-Tetrachloroe                              | ethane                                                                  | ND                                             | 1.0 | 0.5                |  |
| 1,1,2,2-Tetrachloroethane     | ND                       | 1.0           | 0.5               | Tetrachloroethene                                 |                                                                         | ND                                             | 1.0 | 0.5                |  |
| Toluene                       | ND                       | 1.0           | 0.5               | 1,2,3-Trichlorobenze                              | ene                                                                     | ND                                             | 1.0 | 0.5                |  |
| 1,2,4-1 FICHIOFODENZENE       | ND                       | 1.0           | 0.5               | Trichlorooth                                      | le                                                                      | ND                                             | 1.0 | 0.5                |  |
| Triablerofluoromathana        | ND                       | 1.0           | 0.5               | 1 2 2 Trichloroprop                               |                                                                         | ND                                             | 1.0 | 0.5                |  |
| 1.2.4 Trimethylbergene        |                          | 1.0           | 0.5               | 1.3.5 Trimothylkon                                | and                                                                     |                                                | 1.0 | 0.5                |  |
| Vinyl Chloride                | ND                       | 1.0           | 0.5               | Xylenes                                           |                                                                         | ND                                             | 1.0 | 0.5                |  |
|                               |                          | Surrog        | ate Re            | coveries (%)                                      |                                                                         |                                                | 1.0 | . 0.2              |  |
| 0% SS1.                       | 0                        | 7             |                   | 06 552.                                           |                                                                         | 00                                             |     |                    |  |
| /0551.                        | 9                        | 0             |                   | 70.552:                                           |                                                                         | 89                                             |     |                    |  |
|                               | 8                        | U             |                   | 1                                                 |                                                                         |                                                |     |                    |  |

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0612645

| EPA Method SW8260B              | E           | xtraction    | SW503     | 0B        |             | Batchl    | D: 25453 | ę              | Spiked Sar  | nple ID | : 0612607-0   | )50A |
|---------------------------------|-------------|--------------|-----------|-----------|-------------|-----------|----------|----------------|-------------|---------|---------------|------|
| Analyte                         | Sample      | Spiked       | MS        | MSD       | MS-MSD      | LCS       | LCSD     | LCS-LCSD       | A           | cceptan | ce Criteria ( | %)   |
| , analyte                       | mg/Kg       | mg/Kg        | % Rec.    | % Rec.    | % RPD       | % Rec.    | % Rec.   | % RPD          | MS / MSD    | RPD     | LCS/LCSD      | RPD  |
| tert-Amyl methyl ether (TAME    | ND          | 0.050        | 89.4      | 88.6      | 0.873       | 84.9      | 85.7     | 0.958          | 70 - 130    | 30      | 70 - 130      | 30   |
| Benzene                         | ND          | 0.050        | 116       | 114       | 1.83        | 110       | 111      | 1.36           | 70 - 130    | 30      | 70 - 130      | 30   |
| t-Butyl alcohol (TBA)           | ND          | 0.25         | 90.1      | 97.7      | 8.01        | 80.2      | 88.8     | 10.2           | 70 - 130    | 30      | 70 - 130      | 30   |
| Chlorobenzene                   | ND          | 0.050        | 98        | 96        | 2.03        | 92.1      | 92.7     | 0.677          | 70 - 130    | 30      | 70 - 130      | 30   |
| 1,2-Dibromoethane (EDB)         | ND          | 0.050        | 97.3      | 97.3      | 0           | 94.7      | 92       | 2.81           | 70 - 130    | 30      | 70 - 130      | 30   |
| 1,2-Dichloroethane (1,2-DCA)    | ND          | 0.050        | 101       | 101       | 0           | 97.8      | 98.5     | 0.741          | 70 - 130    | 30      | 70 - 130      | 30   |
| 1,1-Dichloroethene              | ND          | 0.050        | 98        | 98.2      | 0.196       | 94.4      | 94.3     | 0.119          | 70 - 130    | 30      | 70 - 130      | 30   |
| Diisopropyl ether (DIPE)        | ND          | 0.050        | 102       | 101       | 0.335       | 98.3      | 96.8     | 1.60           | 70 - 130    | 30      | 70 - 130      | 30   |
| Ethyl tert-butyl ether (ETBE)   | ND          | 0.050        | 96        | 94.7      | 1.35        | 93        | 91.7     | 1.40           | 70 - 130    | 30      | 70 - 130      | 30   |
| Methyl-t-butyl ether (MTBE)     | ND          | 0.050        | 97.1      | 96.7      | 0.427       | 93.2      | 91.7     | 1.64           | 70 - 130    | 30      | 70 - 130      | 30   |
| Toluene                         | ND          | 0.050        | 98.5      | 95.8      | 2.78        | 98.2      | 94.4     | 3.95           | 70 - 130    | 30      | 70 - 130      | 30   |
| Trichloroethene                 | ND          | 0.050        | 78.7      | 76        | 3.39        | 75        | 74.7     | 0.471          | 70 - 130    | 30      | 70 - 130      | 30   |
| %SS1:                           | 94          | 0.050        | 107       | 106       | 0.607       | 106       | 105      | 1.28           | 70 - 130    | 30      | 70 - 130      | 30   |
| %SS2:                           | 96          | 0.050        | 97        | 97        | 0           | 102       | 97       | 4.66           | 70 - 130    | 30      | 70 - 130      | 30   |
| %SS3:                           | 93          | 0.050        | 96        | 96        | 0           | 96        | 96       | 0              | 70 - 130    | 30      | 70 - 130      | 30   |
| All target compounds in the Met | hod Blank o | f this extra | ction hat | ch were N | ID less tha | n the met | hod RI w | vith the follo | wing excent | ions    |               |      |

NONE

#### BATCH 25453 SUMMARY

| Sample ID   | Date Sampled | Date Extracted | Date Analyzed   | Sample ID   | Date Sampled | Date Extracted | Date Analyzed   |
|-------------|--------------|----------------|-----------------|-------------|--------------|----------------|-----------------|
| 0612645-001 | 12/29/06     | 12/29/06       | 1/02/07 3:03 PM | 0612645-003 | 12/27/06     | 12/29/06       | 1/02/07 3:47 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0612645

| EPA Method SW8260B              | E           | xtraction    | SW503      | 0B        |            | Batchl    | D: 25466 | 5             | Spiked Sar  | nple ID | : 0612645-0   | A800 |
|---------------------------------|-------------|--------------|------------|-----------|------------|-----------|----------|---------------|-------------|---------|---------------|------|
| Analyte                         | Sample      | Spiked       | MS         | MSD       | MS-MSD     | LCS       | LCSD     | LCS-LCSD      | A           | cceptan | ce Criteria ( | %)   |
| Analyte                         | µg/L        | µg/L         | % Rec.     | % Rec.    | % RPD      | % Rec.    | % Rec.   | % RPD         | MS / MSD    | RPD     | LCS/LCSD      | RPD  |
| tert-Amyl methyl ether (TAME    | ND          | 10           | 90         | 88.9      | 1.27       | 88.6      | 86.2     | 2.80          | 70 - 130    | 30      | 70 - 130      | 30   |
| Benzene                         | ND          | 10           | 115        | 114       | 0.991      | 115       | 115      | 0             | 70 - 130    | 30      | 70 - 130      | 30   |
| t-Butyl alcohol (TBA)           | ND          | 50           | 105        | 107       | 1.94       | 109       | 117      | 7.24          | 70 - 130    | 30      | 70 - 130      | 30   |
| Chlorobenzene                   | ND          | 10           | 93.9       | 90.1      | 4.07       | 84.7      | 87.3     | 3.06          | 70 - 130    | 30      | 70 - 130      | 30   |
| 1,2-Dibromoethane (EDB)         | ND          | 10           | 103        | 102       | 1.46       | 94.2      | 95.5     | 1.36          | 70 - 130    | 30      | 70 - 130      | 30   |
| 1,2-Dichloroethane (1,2-DCA)    | ND          | 10           | 103        | 100       | 2.39       | 100       | 101      | 0.692         | 70 - 130    | 30      | 70 - 130      | 30   |
| 1,1-Dichloroethene              | ND          | 10           | 105        | 85.6      | 20.5       | 77.6      | 84.3     | 8.21          | 70 - 130    | 30      | 70 - 130      | 30   |
| Diisopropyl ether (DIPE)        | ND          | 10           | 106        | 106       | 0          | 103       | 98.8     | 3.90          | 70 - 130    | 30      | 70 - 130      | 30   |
| Ethyl tert-butyl ether (ETBE)   | ND          | 10           | 95.9       | 96.7      | 0.824      | 95.4      | 91.2     | 4.48          | 70 - 130    | 30      | 70 - 130      | 30   |
| Methyl-t-butyl ether (MTBE)     | ND          | 10           | 99.2       | 99.9      | 0.668      | 98.7      | 94.6     | 4.19          | 70 - 130    | 30      | 70 - 130      | 30   |
| Toluene                         | ND          | 10           | 96         | 94.3      | 1.72       | 87.2      | 83.5     | 4.27          | 70 - 130    | 30      | 70 - 130      | 30   |
| Trichloroethene                 | ND          | 10           | 73.7       | 72.7      | 1.39       | 70.3      | 71.5     | 1.67          | 70 - 130    | 30      | 70 - 130      | 30   |
| %SS1:                           | 97          | 10           | 105        | 109       | 3.23       | 104       | 97       | 7.19          | 70 - 130    | 30      | 70 - 130      | 30   |
| %SS2:                           | 89          | 10           | 92         | 93        | 0.554      | 91        | 86       | 6.65          | 70 - 130    | 30      | 70 - 130      | 30   |
| %SS3:                           | 88          | 10           | 105        | 104       | 0.296      | 106       | 100      | 5.98          | 70 - 130    | 30      | 70 - 130      | 30   |
| All target compounds in the Met | hod Blank o | f this extra | ection bat | ch were N | D less tha | n the met | hod RL w | ith the follo | wing excent | ions    |               |      |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exce NONE

#### BATCH 25466 SUMMARY

| Sample ID   | Date Sampled | Date Extracted | Date Analyzed    | Sample ID   | Date Sampled | Date Extracted | Date Analyzed    |
|-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------|
| 0612645-005 | 12/27/06     | 12/31/06       | 12/31/06 9:06 AM | 0612645-006 | 12/27/06     | 12/31/06       | 12/31/06 9:49 AM |
| 0612645-007 | 12/27/06     | 12/31/06       | 2/31/06 10:31 AM | 0612645-008 | 12/27/06     | 1/03/07        | 1/03/07 10:04 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| AEI Consultants               | Client Project ID: #115876; Main Street | Date Sampled: 01/16/07   |
|-------------------------------|-----------------------------------------|--------------------------|
| 2500 Camino Diablo, Ste. #200 |                                         | Date Received: 01/16/07  |
| Walnut Creek, CA 94597        | Client Contact: Adrian Angel            | Date Reported: 01/23/07  |
|                               | Client P.O.:                            | Date Completed: 01/23/07 |

#### WorkOrder: 0701300

January 23, 2007

### Dear Adrian:

Enclosed are:

- 1). the results of **6** analyzed samples from your **#115876; Main Street project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

|                  | Telephor                        | McCAN<br>ne: (925) 79         | <b>IPBELI</b><br>110 2 <sup>nd</sup> AV<br>PACHEC<br>8-1620 | ANAI<br>VENUE SC<br>CO, CA 945 | LYT<br>DUTH,<br>553-55 | ICA<br>#D7<br>50<br>F | L I     | NC<br>(92               | 5) 75 | 98-1   | 622    | 2             |                       |       | T            | UF<br>DF I    | <b>R</b> eq    | AF             | ROI<br>ed? | CF         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN<br>FIN<br>Yes |                         | FC            | CU<br>RI<br>No |            | 'O<br>Em    | DY<br>24 I    | Y I<br>]<br>HR<br>PD | RE<br>FR | CC<br>48 H<br>.epo |     | D<br>7<br>YE | 2 HR  | 5 DAY                                                |
|------------------|---------------------------------|-------------------------------|-------------------------------------------------------------|--------------------------------|------------------------|-----------------------|---------|-------------------------|-------|--------|--------|---------------|-----------------------|-------|--------------|---------------|----------------|----------------|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|---------------|----------------|------------|-------------|---------------|----------------------|----------|--------------------|-----|--------------|-------|------------------------------------------------------|
| ŀ                | Report To: Adria                | an Angel                      |                                                             | В                              | ill To                 | : Sa                  | me      |                         |       | -      |        |               |                       |       |              |               |                |                |            | An         | alys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is R             | equ                     | est           |                |            |             |               |                      |          | Ot                 | her |              | Com   | ments                                                |
|                  | Company: AEI C                  | Consultants                   |                                                             |                                |                        |                       |         |                         |       |        | 6      |               |                       |       |              |               | ()             |                |            |            | , in the second |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       | an an an the sector conjugation of system of sectors |
|                  | 2500 (                          | Camino Dia                    | blo, Suite                                                  | 200                            |                        |                       |         |                         |       |        |        |               |                       |       |              |               | B&I            |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | T                       |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | Walnu                           | ut Creek, C                   | A 94597                                                     | E                              | -Mai                   | l: aa                 | ngel    | @ae                     | eicon | sulta  | nts.   | com           | 1                     |       | TBE          |               | &F/I           |                |            | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 20                      |               | 310            |            |             |               |                      |          |                    |     |              |       |                                                      |
| l                | Tel: (925) 944-28               | 899, extensio                 | on 132                                                      | F                              | 'ax: (                 | 925)                  | 944     | 4-28                    | 895   |        |        |               |                       |       | 5)/M         |               | 20 E.          | 8.1)           |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | tai                     |               | .8/(           | 1          |             |               |                      |          |                    |     |              |       |                                                      |
| I                | Project #: 115876               | 5                             |                                                             | Р                              | rojec                  | t Nar                 | ne:     | Ma                      | ain S | stree  | et     |               |                       |       | 801          |               | (552           | (41            |            | 6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 010                     |               | 827(           |            |             |               |                      |          |                    |     |              |       |                                                      |
| I                | Project Location: Dublin        |                               |                                                             |                                |                        |                       |         | 20 +                    |       | ase    | pons   | list)         | 802                   |       |              | 18            |                | 25/            |            |            | 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | Sampler Signature: 4 - 12-1     |                               |                                                             |                                |                        |                       |         |                         | 2/80  |        | Gre    | ocar          | 0101                  | 02 /  | 3080         |               |                |                | A 6        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/60             |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| I                | SAMPLING & MATRIX METHO         |                               |                                                             |                                |                        |                       | D       | s (60                   | 15)   | il &   | lydro  | 0 (8(         | A 6                   | 8 / 8 | 3080         | 8260          |                | EP             |            |            | 239.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  |                                 |                               |                                                             |                                | LS                     | ineı                  |         |                         |       |        | - P    | RES           | SERV                  | ED    | s Ga         | (80           | mC             | mĦ             | 826(       | (EP        | A 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 / 8            | 24 /                    | 20            | 's by          | als        | ls          | 421/          |                      |          | 1                  |     |              |       |                                                      |
|                  | SAMPLE ID<br>(Field Point Name) | LOCATION                      | Date                                                        | Time                           | # Containe             | Type Conta            | Water   | Soil                    | Air   | Sludge | Uulter |               | HNO <sub>3</sub>      | Other | BTEX & TPH a | TPH as Diesel | Total Petroleu | Total Petroleu | HVOCs EPA  | BTEX ONLY  | Pesticides EP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCBs EPA 60      | VOCs EPA 62             | EPA 625 / 82' | PAH's / PNA    | CAM-17 Met | LUFT 5 Meta | Lead (7240/74 | RCI                  |          |                    |     |              |       |                                                      |
| ł                | 10-12-7'                        |                               | 1/16/12                                                     | 12 . Can                       | 1                      | Δ                     |         | $\overline{\checkmark}$ |       |        |        |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $\bigtriangledown$      |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| $\left  \right $ |                                 | 3-12-3 1/10/07 10:314 1 H X X |                                                             |                                |                        |                       |         |                         |       |        |        |               |                       |       |              | $ \land $     |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         | 1             |                |            | ······      |               |                      |          |                    |     |              |       |                                                      |
|                  | 5/3-12-0                        |                               |                                                             | 11:24/4                        |                        | 0                     |         |                         |       |        |        |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | 58-12-9"                        |                               |                                                             | 11:39A                         |                        | 3                     |         | anime to came           |       |        |        | Telephone and |                       |       |              |               |                |                |            |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | 53-13-3'                        |                               |                                                             | 12:49P                         |                        | 克」                    |         |                         |       |        |        | and a second  |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Х                       |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | 58-13-61                        |                               |                                                             | 1:468                          |                        | V                     |         |                         |       |        |        |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| ł                | (B-12-1N-1                      |                               |                                                             | 141                            | Z                      | WILS                  | X       |                         |       |        |        |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $\mathbf{X}$            |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| ŀ                | Sp phil                         |                               |                                                             |                                | 3                      | 1 j                   | Í       |                         |       |        |        |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $\overline{\checkmark}$ |               |                |            |             |               |                      | 1        |                    |     |              |       |                                                      |
| $\left  \right $ | 35-12-1V-L                      |                               |                                                             |                                | 5                      |                       |         |                         |       |        | _      |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $\bigcirc$              |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| ŀ                | 56-13-1V-1                      |                               |                                                             | Millipor                       | 5                      |                       |         |                         |       |        | _      |               |                       | -     |              |               |                |                |            | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $\bigcirc$              | _             |                | -          |             |               |                      |          |                    |     |              |       |                                                      |
| 1                | SB-13-1V-d                      |                               | V                                                           | faggerlick or                  | 1                      | V                     | V       |                         |       |        | 9      | ¥             |                       |       |              |               |                |                |            | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | $\wedge$                |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | 1-                              |                               |                                                             |                                |                        |                       | ŀ       |                         |       |        |        |               |                       |       |              |               |                |                | -<br>-     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | · · ·                           |                               |                                                             |                                |                        |                       |         |                         |       |        |        |               |                       |       | ·            |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         | 2             |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| ł                |                                 |                               |                                                             |                                | -                      |                       |         |                         |       |        |        |               |                       |       |              | 1.4           |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| $\left  \right $ |                                 | and the second                |                                                             |                                |                        |                       |         |                         |       |        |        |               | +                     |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            | -           |               |                      |          |                    |     |              |       |                                                      |
|                  |                                 |                               | 1                                                           |                                |                        |                       |         |                         |       |        |        |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              | -     |                                                      |
| $\left  \right $ | D. P                            |                               | Deter                                                       | Time                           | Deer                   | ived P                |         |                         |       |        |        | ,             |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | Reinguisned By:                 |                               | Date:                                                       | ine:                           | In In                  | Vill                  | 01      | ec                      | ch    |        | T      | L             | Second St. March 1994 |       |              |               |                | to .           | -          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               | V                    | OAS      | 0                  | &G  | M            | ETALS | OTHER                                                |
| ŀ                | Relinquished By-                | è                             | Date:                                                       | Time:                          | Rece                   | ived B                | v:A     |                         |       |        | L      |               |                       |       | I            | CE/           | /tº_/          | Di             | L          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         | P             | RE             | SER        | <b>VA</b>   | TIC           | DN_                  | 4        |                    |     | 1            |       |                                                      |
|                  | TAV SY T                        | focu                          | 116 00                                                      | 18.10                          |                        | 20                    | jl      |                         |       |        |        |               |                       |       |              | JOC<br>IF A   | )D (           | CON<br>DA4     | NDI'<br>CF | LIO<br>VBS | N_1<br>EN'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Г                | _/                      | A A           | ON             | KOI<br>TAI | 'KI<br>INF  | ATI<br>RS     | Ľ ⁄                  |          |                    |     |              |       |                                                      |
| $\mathbf{F}$     | Relinquished Rw                 |                               | Date:                                                       | Time                           | Beceived By:           |                       |         |                         |       |        |        |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
|                  | An.C                            |                               | 1-11-                                                       | (1)7K                          |                        | 100                   | 1       | 4                       | A     | UI     | ON     |               |                       |       |              |               |                |                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             |               |                      |          |                    |     |              |       |                                                      |
| L                | F1071                           |                               | 10                                                          | 1.05                           | A                      | YUSI                  | gu anno |                         |       |        |        |               |                       |       |              |               |                | 10000          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |               |                |            |             | - States Last |                      |          |                    |     |              |       |                                                      |

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Pittsburg, CA<br>(925) 252-926                                                                                          | 94565-1701<br>2                                                             |                                                   |                                                                                   |        | WorkO              | Order:           | 07013 | 300     | C            | ientID         | : AEL         |              |          |       |        |       |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|--------|--------------------|------------------|-------|---------|--------------|----------------|---------------|--------------|----------|-------|--------|-------|
|                                                                                                                         |                                                                             |                                                   | EDF                                                                               |        | Fax                | х                |       | Emai    |              | □Ha            | ardCopy       | [            | Third    | Party |        |       |
| Report to:<br>Adrian Angel<br>AEL Consultants                                                                           |                                                                             | Email: aangel@ae                                  | iconsultants.com                                                                  | 283-61 | B                  | Bill to:         |       |         |              |                |               | Req          | uested   | TAT:  | 5      | days  |
| 2500 Camino Dia                                                                                                         | ablo, Ste. #200                                                             | ProjectNo: #115876; N                             | lain Street                                                                       | 200-01 | 21                 |                  |       |         |              |                |               | Dat          | e Recei  | ved:  | 01/16/ | 2007  |
| Walnut Creek, CA                                                                                                        | A 94597                                                                     | PO:                                               |                                                                                   |        |                    | ,                |       |         |              |                |               | Date         | e Print  | ed:   | 01/16/ | /2007 |
|                                                                                                                         |                                                                             |                                                   |                                                                                   |        |                    |                  |       |         |              |                |               |              |          |       |        |       |
|                                                                                                                         |                                                                             |                                                   |                                                                                   | [      |                    |                  |       | Re      | auested      | Tests (        | See lea       | end bel      | ow)      |       |        |       |
| Sample ID                                                                                                               | ClientSampID                                                                | Matrix                                            | Collection Date                                                                   | Hold   | 1                  | 2                | 3     | Re<br>4 | quested<br>5 | Tests (        | See lege<br>7 | end bel<br>8 | ow)<br>9 | 10    | 11     | 12    |
| Sample ID<br>0701300-001                                                                                                | ClientSampID<br>SB-12-3'                                                    | Matrix<br>Soil                                    | Collection Date                                                                   | Hold   | <b>1</b>           | 2                | 3     | Re<br>4 | quested<br>5 | Tests (\$<br>6 | See lege<br>7 | end bel<br>8 | ow)<br>9 | 10    | 11     | 12    |
| Sample ID 0701300-001 0701300-004                                                                                       | ClientSampID<br>SB-12-3'<br>SB-13-3'                                        | Matrix<br>Soil<br>Soil                            | Collection Date 1/16/07 10:59:00 1/16/07 12:49:00                                 | Hold   | 1<br>A<br>A        | 2                | 3     | Re<br>4 | quested<br>5 | Tests (\$      | See lege<br>7 | end bel<br>8 | ow)<br>9 | 10    | 11     | 12    |
| Sample ID 0701300-001 0701300-004 0701300-006                                                                           | ClientSampID<br>SB-12-3'<br>SB-13-3'<br>SB-12-W-1                           | Matrix<br>Soil<br>Soil<br>Water                   | Collection Date<br>1/16/07 10:59:00<br>1/16/07 12:49:00<br>1/16/07                | Hold   | <b>1</b><br>A<br>A | <b>2</b><br>A    | 3     | Re<br>4 | quested<br>5 | Tests (5       | See lege<br>7 | end bel<br>8 | ow)<br>9 | 10    | 11     | 12    |
| Sample ID           0701300-001           0701300-004           0701300-006           0701300-007                       | ClientSampID<br>SB-12-3'<br>SB-13-3'<br>SB-12-W-1<br>SB-12-W-2              | Matrix<br>Soil<br>Soil<br>Water<br>Water          | Collection Date 1/16/07 10:59:00 1/16/07 12:49:00 1/16/07 1/16/07                 | Hold   | 1<br>A<br>A        | 2<br>A<br>A      | 3     | Re<br>4 | quested<br>5 | Tests (\$      | See lege<br>7 | end bel<br>8 | ow)<br>9 | 10    | 11     | 12    |
| Sample ID           0701300-001           0701300-004           0701300-006           0701300-007           0701300-008 | ClientSampID<br>SB-12-3'<br>SB-13-3'<br>SB-12-W-1<br>SB-12-W-2<br>SB-13-W-1 | Matrix<br>Soil<br>Soil<br>Water<br>Water<br>Water | Collection Date 1/16/07 10:59:00 1/16/07 12:49:00 1/16/07 1/16/07 1/16/07 1/16/07 | Hold   | 1<br>A<br>A        | 2<br>A<br>A<br>A | 3     | Re<br>4 | guested<br>5 | Tests (\$      | See lege<br>7 | 8            | ow)<br>9 | 10    | 11     | 12    |

#### Test Legend:

| 1  | 8010BMS_S |
|----|-----------|
| 6  |           |
| 11 |           |

| 2  | 8010BMS_W |
|----|-----------|
| 7  |           |
| 12 |           |

| 3 |  |
|---|--|
| 8 |  |
|   |  |

| 4 |  |  |  |
|---|--|--|--|
| 9 |  |  |  |

| 5  |  |
|----|--|
| 10 |  |

### **Prepared by: Lisa Cavalier**

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

| McCampbell An<br>"When Ouality            | alytical,<br><sub>Counts"</sub> | Inc.           |                            | 1534 Willow P<br>Web: www.mccampl<br>Telephone: 8 | ass Road, Pittsburg, CA<br>pell.com E-mail: main<br>77-252-9262 Fax: 92: | 94565-1701<br>@mccampbell.c<br>5-252-9269 | om      |
|-------------------------------------------|---------------------------------|----------------|----------------------------|---------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|---------|
| AEI Consultants                           | Clier                           | nt Project ID: | #11587                     | 6; Main Street                                    | Date Sampled:                                                            | 01/16/07                                  |         |
| 2500 Camino Diablo. Ste. #200             |                                 |                |                            |                                                   | Date Received:                                                           | 01/16/07                                  |         |
| 2500 Camino Diabio, Sc. #200              | Clier                           | nt Contact: A  | drian A                    | ngel                                              | Date Extracted:                                                          | 01/16/07-0                                | 1/22/07 |
| Walnut Creek, CA 94597                    | Clier                           | nt P.O.:       |                            |                                                   | Date Analyzed                                                            | 01/18/07-0                                | 1/22/07 |
| Halogenated<br>Extraction Method: SW5030B | Volatile Org                    | anics by P&T   | <b>` and G</b><br>1: SW826 | C-MS (8010 Bas                                    | ic Target List)*                                                         | Work Order:                               | 0701300 |
| Lab ID                                    | 0701300-001                     | A 0701300      | -004A                      | 0701300-006A                                      | 0701300-007A                                                             |                                           |         |
| Client ID                                 | SB-12-3'                        | SB-13          | -3'                        | SB-12-W-1                                         | SB-12-W-2                                                                | DF                                        | =1      |
| Matrix                                    | S                               | S              |                            | W                                                 | W                                                                        | c                                         | XV/     |
| DF                                        | 1                               | 1              |                            | 1                                                 | 1                                                                        | 3                                         | w       |
| Compound                                  |                                 |                | Conce                      | entration                                         |                                                                          | mg/kg                                     | μg/L    |
| Bromodichloromethane                      | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Bromoform                                 | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Bromomethane                              | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Carbon Tetrachloride                      | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Chlorobenzene                             | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Chloroethane                              | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 2-Chloroethyl Vinyl Ether                 | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.01                                      | 1.0     |
| Chloroform                                | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Chloromethane                             | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Dibromochloromethane                      | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1,2-Dichlorobenzene                       | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1,3-Dichlorobenzene                       | ND                              |                |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Dishlara difluoromathana                  | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1 1 Dichloroethane                        | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1.2 Dichloroothana (1.2 DCA)              | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1.1-Dichloroethene                        | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| cis-1 2-Dichloroethene                    | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| trans-1 2-Dichloroethene                  | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1.2-Dichloropropane                       | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| cis-1.3-Dichloropropene                   | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| trans-1.3-Dichloropropene                 | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Methylene chloride                        | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1,1,2,2-Tetrachloroethane                 | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Tetrachloroethene                         | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1,1,1-Trichloroethane                     | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| 1,1,2-Trichloroethane                     | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Trichloroethene                           | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Trichlorofluoromethane                    | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
| Vinyl Chloride                            | ND                              | ND             |                            | ND                                                | ND                                                                       | 0.005                                     | 0.5     |
|                                           |                                 | Surrogate Re   | coverie                    | s (%)                                             |                                                                          |                                           |         |
| %SS1:                                     | 85                              | 85             |                            | 102                                               | 101                                                                      |                                           |         |
| %SS2:                                     | 89                              | 88             |                            | 96                                                | 95                                                                       | 1                                         |         |
| % \$\$3:                                  | 80                              | 00             |                            | 83                                                | 84                                                                       | 1                                         |         |
| Commonts                                  | 07                              | 00             |                            | :                                                 | :                                                                        | <u>+</u>                                  |         |
| Comments                                  |                                 |                |                            | 1                                                 |                                                                          | <u> </u>                                  |         |

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.



| McCampbell Ana<br>"When Quality C           | alytical, In             | <u>c.</u>                             |              | 1534 Willow F<br>Web: www.mccamp<br>Telephone: 8 | Pass Road, Pittsburg, CA<br>bell.com E-mail: main<br>377-252-9262 Fax: 925 | 94565-1701<br>@mccampbell.c<br>5-252-9269 | om              |  |
|---------------------------------------------|--------------------------|---------------------------------------|--------------|--------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|-----------------|--|
| AEI Consultants                             | Client Pr                | oject ID:                             | #11587       | 6; Main Street                                   | Date Sampled:                                                              | 01/16/07                                  |                 |  |
| 2500 Camino Diablo, Ste. #200               |                          |                                       |              |                                                  | Date Received:                                                             | 01/16/07                                  |                 |  |
| 2500 Camino Diabio, Stc. #200               | Client C                 | ontact: Ac                            | drian A      | ngel                                             | Date Extracted:                                                            | 01/16/07-0                                | 1/22/07         |  |
| Walnut Creek, CA 94597                      | Client P.                | D.:                                   |              |                                                  | Date Analyzed                                                              | 01/18/07-01/22/07                         |                 |  |
| Halogenated C<br>Extraction Method: SW5030B | Volatile Organic<br>Anal | <b>cs by P&amp;T</b><br>ytical Method | <b>and G</b> | <b>C-MS (8010 Ba</b>                             | sic Target List)*                                                          | Work Order:                               | 0701300         |  |
| Lab ID                                      | 0701300-008A             | 0701300-                              | -009A        |                                                  |                                                                            |                                           |                 |  |
| Client ID                                   | SB-13-W-1                | SB-13-                                | W-2          |                                                  |                                                                            | Reporting<br>DF                           | Limit for<br>=1 |  |
| Matrix                                      | W                        | W                                     |              |                                                  |                                                                            | G                                         | 117             |  |
| DF                                          | 1                        | 1                                     |              |                                                  |                                                                            | 5                                         | w               |  |
| Compound                                    |                          |                                       | Conce        | ntration                                         |                                                                            | mg/kg                                     | μg/L            |  |
| Bromodichloromethane                        | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Bromoform                                   | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Bromomethane                                | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Carbon Tetrachloride                        | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Chlorobenzene                               | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Chloroethane                                | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 2-Chloroethyl Vinyl Ether                   | ND                       | ND                                    |              |                                                  |                                                                            | 0.01                                      | 1.0             |  |
| Chloroform                                  | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Chloromethane                               | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Dibromochloromethane                        | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,2-Dichlorobenzene                         | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,3-Dichlorobenzene                         | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,4-Dichlorobenzene                         | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Dichlorodifluoromethane                     | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,1-Dichloroethane                          | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,2-Dichloroethane (1,2-DCA)                | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,1-Dichloroethene                          | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| cis-1,2-Dichloroethene                      | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| trans-1,2-Dichloroethene                    | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,2-Dichloropropane                         | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| cis-1,3-Dichloropropene                     | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| trans-1,3-Dichloropropene                   | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Methylene chloride                          | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,1,2,2-Tetrachloroethane                   | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Tetrachloroethene                           | 0.78                     | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,1,1-Trichloroethane                       | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| 1,1,2-Trichloroethane                       | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Trichloroethene                             | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Trichlorofluoromethane                      | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| Vinyl Chloride                              | ND                       | ND                                    |              |                                                  |                                                                            | 0.005                                     | 0.5             |  |
| ļ                                           | Su                       | rrogate Re                            | coverie      | s (%)                                            |                                                                            |                                           |                 |  |
| %SS1:                                       | 103                      | 102                                   |              |                                                  |                                                                            |                                           |                 |  |
| %SS2:                                       | 99                       | 96                                    |              |                                                  |                                                                            |                                           |                 |  |
| %SS3:                                       | 80                       | 83                                    |              |                                                  |                                                                            |                                           |                 |  |
| Comments                                    | i                        | i                                     |              |                                                  |                                                                            |                                           |                 |  |

\* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8260B

| W.O. Sample Matrix: Soil                                                                                                                 | QC Matrix: Soil Work |                                     |        |        |        |        |            |                               |          | Order 0701: | 300            |     |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|--------|--------|--------|--------|------------|-------------------------------|----------|-------------|----------------|-----|
| EPA Method SW8260B                                                                                                                       | E                    | Extraction SW5030B BatchID: 25737 S |        |        |        |        | Spiked San | piked Sample ID: 0701292-001A |          |             |                |     |
| Analyte                                                                                                                                  | Sample               | Spiked                              | MS     | MSD    | MS-MSD | LCS    | LCSD       | LCS-LCSD                      | A        | cceptan     | ce Criteria (º | %)  |
|                                                                                                                                          | mg/Kg                | mg/Kg                               | % Rec. | % Rec. | % RPD  | % Rec. | % Rec.     | % RPD                         | MS / MSD | RPD         | LCS/LCSD       | RPD |
| Chlorobenzene                                                                                                                            | ND                   | 0.050                               | 97.8   | 99.2   | 1.40   | 95.1   | 93.8       | 1.39                          | 70 - 130 | 30          | 70 - 130       | 30  |
| 1,2-Dichloroethane (1,2-DCA)                                                                                                             | ND                   | 0.050                               | 108    | 110    | 1.04   | 106    | 105        | 1.09                          | 70 - 130 | 30          | 70 - 130       | 30  |
| 1,1-Dichloroethene                                                                                                                       | ND                   | 0.050                               | 90.2   | 112    | 21.6   | 75     | 76.3       | 1.74                          | 70 - 130 | 30          | 70 - 130       | 30  |
| Trichloroethene                                                                                                                          | ND                   | 0.050                               | 74.1   | 74.1   | 0      | 71.1   | 70.6       | 0.702                         | 70 - 130 | 30          | 70 - 130       | 30  |
| %SS1:                                                                                                                                    | 105                  | 0.050                               | 110    | 110    | 0      | 111    | 110        | 0.374                         | 70 - 130 | 30          | 70 - 130       | 30  |
| %SS2:                                                                                                                                    | 98                   | 0.050                               | 93     | 97     | 4.47   | 87     | 89         | 2.30                          | 70 - 130 | 30          | 70 - 130       | 30  |
| %SS3:                                                                                                                                    | 87                   | 0.050                               | 99     | 103    | 3.54   | 102    | 105        | 2.42                          | 70 - 130 | 30          | 70 - 130       | 30  |
| All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:<br>NONE |                      |                                     |        |        |        |        |            |                               |          |             |                |     |

#### BATCH 25737 SUMMARY

| Sample ID   | Date Sampled     | Date Extracted | Date Analyzed   | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|-------------|------------------|----------------|-----------------|-----------|--------------|----------------|---------------|
| 0701300-001 | 1/16/07 10:59 AM | 1/16/07        | 1/18/07 7:41 AM |           |              |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8260B

| W.O. Sample Matrix: Soil        | QC Matrix: Soil WorkOrde                                                                                                         |                                     |        |        |        |        |            |                               |          | Order 07013 | 300            |     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|--------|--------|--------|------------|-------------------------------|----------|-------------|----------------|-----|
| EPA Method SW8260B              | E                                                                                                                                | Extraction SW5030B BatchID: 25758 S |        |        |        |        | Spiked San | piked Sample ID: 0701300-004A |          |             |                |     |
| Analyte                         | Sample                                                                                                                           | Spiked                              | MS     | MSD    | MS-MSD | LCS    | LCSD       | LCS-LCSD                      | A        | cceptan     | ce Criteria (S | %)  |
| , and you                       | mg/Kg                                                                                                                            | mg/Kg                               | % Rec. | % Rec. | % RPD  | % Rec. | % Rec.     | % RPD                         | MS / MSD | RPD         | LCS/LCSD       | RPD |
| Chlorobenzene                   | ND                                                                                                                               | 0.050                               | 98.8   | 98.3   | 0.504  | 98.1   | 97.5       | 0.633                         | 70 - 130 | 30          | 70 - 130       | 30  |
| 1,2-Dichloroethane (1,2-DCA)    | ND                                                                                                                               | 0.050                               | 107    | 111    | 3.90   | 103    | 105        | 1.87                          | 70 - 130 | 30          | 70 - 130       | 30  |
| 1,1-Dichloroethene              | ND                                                                                                                               | 0.050                               | 114    | 94.4   | 19.1   | 112    | 115        | 3.06                          | 70 - 130 | 30          | 70 - 130       | 30  |
| Trichloroethene                 | ND                                                                                                                               | 0.050                               | 75.2   | 76.8   | 1.98   | 73.2   | 73.9       | 0.890                         | 70 - 130 | 30          | 70 - 130       | 30  |
| %SS1:                           | 85                                                                                                                               | 0.050                               | 109    | 109    | 0      | 108    | 110        | 1.71                          | 70 - 130 | 30          | 70 - 130       | 30  |
| %SS2:                           | 88                                                                                                                               | 0.050                               | 92     | 91     | 1.15   | 99     | 95         | 3.24                          | 70 - 130 | 30          | 70 - 130       | 30  |
| %SS3:                           | 88                                                                                                                               | 0.050                               | 98     | 98     | 0      | 104    | 101        | 2.59                          | 70 - 130 | 30          | 70 - 130       | 30  |
| All target compounds in the Met | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: |                                     |        |        |        |        |            |                               |          |             |                |     |
| NONE                            |                                                                                                                                  |                                     |        |        |        |        |            |                               |          |             |                |     |

#### BATCH 25758 SUMMARY

| Sample ID   | Date Sampled     | Date Extracted | Date Analyzed   | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|-------------|------------------|----------------|-----------------|-----------|--------------|----------------|---------------|
| 0701300-004 | 1/16/07 12:49 PM | 1/16/07        | 1/18/07 8:24 AM |           |              |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8260B

| W.O. Sample Matrix: Water                                                                                                                |        | QC Matrix: Water WorkOrder 0701300     |        |        |        |        |        |            |                               |         |               |     |
|------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------|--------|--------|--------|--------|--------|------------|-------------------------------|---------|---------------|-----|
| EPA Method SW8260B                                                                                                                       | E      | Extraction SW5030B BatchID: 25740 Spik |        |        |        |        |        | Spiked Sar | biked Sample ID: 0701278-007F |         |               |     |
| Analyte                                                                                                                                  | Sample | Spiked                                 | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD   | A                             | cceptan | ce Criteria ( | %)  |
| , maryte                                                                                                                                 | µg/L   | µg/L                                   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD      | MS / MSD                      | RPD     | LCS/LCSD      | RPD |
| Chlorobenzene                                                                                                                            | ND<100 | 10                                     | 101    | 97.2   | 4.05   | 99     | 101    | 1.64       | 70 - 130                      | 30      | 70 - 130      | 30  |
| 1,2-Dichloroethane (1,2-DCA)                                                                                                             | ND<100 | 10                                     | 95.5   | 93.7   | 1.81   | 108    | 112    | 3.24       | 70 - 130                      | 30      | 70 - 130      | 30  |
| 1,1-Dichloroethene                                                                                                                       | ND<100 | 10                                     | 106    | 84.9   | 21.7   | 118    | 102    | 14.6       | 70 - 130                      | 30      | 70 - 130      | 30  |
| Trichloroethene                                                                                                                          | ND<100 | 10                                     | NR     | NR     | NR     | 77.6   | 77.6   | 0          | 70 - 130                      | 30      | 70 - 130      | 30  |
| %SS1:                                                                                                                                    | 97     | 10                                     | 95     | 94     | 1.20   | 110    | 110    | 0          | 70 - 130                      | 30      | 70 - 130      | 30  |
| %SS2:                                                                                                                                    | 95     | 10                                     | 127    | 129    | 1.40   | 97     | 100    | 3.11       | 70 - 130                      | 30      | 70 - 130      | 30  |
| %SS3:                                                                                                                                    | 89     | 10                                     | 100    | 98     | 1.48   | 102    | 102    | 0          | 70 - 130                      | 30      | 70 - 130      | 30  |
| All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:<br>NONE |        |                                        |        |        |        |        |        |            |                               |         |               |     |

#### BATCH 25740 SUMMARY

| Sample ID   | Date Sampled | Date Extracted | Date Analyzed   | Sample ID   | Date Sampled | Date Extracted | Date Analyzed   |
|-------------|--------------|----------------|-----------------|-------------|--------------|----------------|-----------------|
| 0701300-006 | 1/16/07      | 1/19/07        | 1/19/07 1:39 PM | 0701300-007 | 1/16/07      | 1/19/07        | 1/19/07 3:53 PM |
| 0701300-008 | 1/16/07      | 1/22/07        | 1/22/07 7:15 PM | 0701300-009 | 1/16/07      | 1/19/07        | 1/19/07 2:23 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





### Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific



### WORK ORDER #: 0701003

Work Order Summary

| CLIENT:         | Mr. Adrian Angel<br>AEI Consultants, Inc.<br>2500 Camino Diablo<br>Suite 200 | BILL TO:         | Mr. Adrian Angel<br>AEI Consultants, Inc.<br>2500 Camino Diablo<br>Suite 200 |
|-----------------|------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------|
|                 | Walnut Creek, CA 94597                                                       |                  | Walnut Creek, CA 94597                                                       |
| PHONE:          | 925-283-6000                                                                 | <b>P.O.</b> #    | 1                                                                            |
| FAX:            | 925-283-6121                                                                 | <b>PROJECT</b> # | 26394 Main Street                                                            |
| DATE RECEIVED:  | 01/02/2007                                                                   | CONTACT:         | Sarah Nguyen                                                                 |
| DATE COMPLETED: | 01/12/2007                                                                   | 001111011        | Surun reguyen                                                                |

| FRACTION # | <u>NAME</u>       | <u>TEST</u>    | VAC./PRES. |
|------------|-------------------|----------------|------------|
| 01A        | SB-11-V           | Modified TO-15 | 3.5 "Hg    |
| 01AA       | SB-11-V Duplicate | Modified TO-15 | 3.5 "Hg    |
| 02A        | SB-12-V           | Modified TO-15 | 7.0 "Hg    |
| 03A        | SB-15-V           | Modified TO-15 | 4.0 "Hg    |
| 04A        | Lab Blank         | Modified TO-15 | NA         |
| 05A        | CCV               | Modified TO-15 | NA         |
| 06A        | LCS               | Modified TO-15 | NA         |
|            |                   |                |            |

CERTIFIED BY:

Sinda d. Fruman

01/15/07 DATE:

RECEIPT

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020



### LABORATORY NARRATIVE Modified TO-15 AEI Consultants, Inc. Workorder# 0701003

Three 6 Liter Summa Canister samples were received on January 02, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

| Requirement             | TO-15                         | ATL Modifications                                                                                                                                                                                    |
|-------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Daily CCV               | +- 30% Difference             | = 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers                                                                                                                    |
| Sample collection media | Summa canister                | ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request                                                                       |
| Method Detection Limit  | Follow 40CFR Pt.136<br>App. B | The MDL met all relevant requirements in Method TO-15<br>(statistical MDL less than the LOQ). The concentration of<br>the spiked replicate may have exceeded 10X the<br>calculated MDL in some cases |

### **Receiving Notes**

There were no receiving discrepancies.

### **Analytical Notes**

There were no analytical discrepancies.

### **Definition of Data Qualifying Flags**

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector



r1-File was requantified for the purpose of reissue



### Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS

### **Client Sample ID: SB-11-V**

### Lab ID#: 0701003-01A

|                   | Rpt. Limit | Amount | Rpt. Limit | Amount  |
|-------------------|------------|--------|------------|---------|
| Compound          | (ppbv)     | (ppbv) | (uG/m3)    | (uG/m3) |
| Trichloroethene   | 150        | 540    | 820        | 2900    |
| Tetrachloroethene | 150        | 48000  | 1000       | 320000  |

#### **Client Sample ID: SB-11-V Duplicate**

#### Lab ID#: 0701003-01AA

|                   | Rpt. Limit | Amount | Rpt. Limit | Amount  |
|-------------------|------------|--------|------------|---------|
| Compound          | (ppbv)     | (ppbv) | (uG/m3)    | (uG/m3) |
| Trichloroethene   | 150        | 600    | 820        | 3200    |
| Tetrachloroethene | 150        | 57000  | 1000       | 380000  |

### Client Sample ID: SB-12-V

#### Lab ID#: 0701003-02A

|                   | Rpt. Limit | Amount | Rpt. Limit | Amount  |
|-------------------|------------|--------|------------|---------|
| Compound          | (ppbv)     | (ppbv) | (uG/m3)    | (uG/m3) |
| Trichloroethene   | 0.88       | 2.2    | 4.7        | 12      |
| Tetrachloroethene | 0.88       | 39     | 5.9        | 270     |

### Client Sample ID: SB-15-V

#### Lab ID#: 0701003-03A

|                   | Rpt. Limit | Amount | Rpt. Limit | Amount  |
|-------------------|------------|--------|------------|---------|
| Compound          | (ppbv)     | (ppbv) | (uG/m3)    | (uG/m3) |
| Trichloroethene   | 0.78       | 0.82   | 4.2        | 4.4     |
| Tetrachloroethene | 0.78       | 93     | 5.2        | 630     |
| 2-Propanol        | 3.1        | 1300 E | 7.6        | 3200 E  |



### Client Sample ID: SB-11-V

### Lab ID#: 0701003-01A

### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | t011027<br>304       |                  | Date of Collection:<br>Date of Analysis: 1 | 12/27/06<br>/11/07 06:28 AM |
|----------------------------|----------------------|------------------|--------------------------------------------|-----------------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                      | Amount<br>(uG/m3)           |
| Vinyl Chloride             | 150                  | Not Detected     | 390                                        | Not Detected                |
| cis-1,2-Dichloroethene     | 150                  | Not Detected     | 600                                        | Not Detected                |
| Trichloroethene            | 150                  | 540              | 820                                        | 2900                        |
| Tetrachloroethene          | 150                  | 48000            | 1000                                       | 320000                      |
| trans-1,2-Dichloroethene   | 150                  | Not Detected     | 600                                        | Not Detected                |
| 2-Propanol                 | 610                  | Not Detected     | 1500                                       | Not Detected                |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 95        | 70-130 |  |
| Toluene-d8            | 98        | 70-130 |  |
| 4-Bromofluorobenzene  | 101       | 70-130 |  |



### Client Sample ID: SB-11-V Duplicate Lab ID#: 0701003-01AA

## MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | t011029<br>304       |                  | Date of Collection:<br>Date of Analysis: 1 | 12/27/06<br>/11/07 09:07 AM |
|----------------------------|----------------------|------------------|--------------------------------------------|-----------------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                      | Amount<br>(uG/m3)           |
| Vinyl Chloride             | 150                  | Not Detected     | 390                                        | Not Detected                |
| cis-1,2-Dichloroethene     | 150                  | Not Detected     | 600                                        | Not Detected                |
| Trichloroethene            | 150                  | 600              | 820                                        | 3200                        |
| Tetrachloroethene          | 150                  | 57000            | 1000                                       | 380000                      |
| trans-1,2-Dichloroethene   | 150                  | Not Detected     | 600                                        | Not Detected                |
| 2-Propanol                 | 610                  | Not Detected     | 1500                                       | Not Detected                |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 98        | 70-130 |  |
| Toluene-d8            | 102       | 70-130 |  |
| 4-Bromofluorobenzene  | 102       | 70-130 |  |



### Client Sample ID: SB-12-V

### Lab ID#: 0701003-02A

### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | t011024<br>1.75      |                  | Date of Collection:<br>Date of Analysis: 1 | 12/27/06<br>//11/07 04:10 AM |
|----------------------------|----------------------|------------------|--------------------------------------------|------------------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                      | Amount<br>(uG/m3)            |
| Vinyl Chloride             | 0.88                 | Not Detected     | 2.2                                        | Not Detected                 |
| cis-1,2-Dichloroethene     | 0.88                 | Not Detected     | 3.5                                        | Not Detected                 |
| Trichloroethene            | 0.88                 | 2.2              | 4.7                                        | 12                           |
| Tetrachloroethene          | 0.88                 | 39               | 5.9                                        | 270                          |
| trans-1,2-Dichloroethene   | 0.88                 | Not Detected     | 3.5                                        | Not Detected                 |
| 2-Propanol                 | 3.5                  | Not Detected     | 8.6                                        | Not Detected                 |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 100       | 70-130 |  |
| Toluene-d8            | 97        | 70-130 |  |
| 4-Bromofluorobenzene  | 103       | 70-130 |  |



Client Sample ID: SB-15-V

Lab ID#: 0701003-03A

### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | t011026<br>1.55      |                  | Date of Collection:<br>Date of Analysis: 1 | 12/28/06<br>/11/07 05:44 AM |
|----------------------------|----------------------|------------------|--------------------------------------------|-----------------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                      | Amount<br>(uG/m3)           |
| Vinyl Chloride             | 0.78                 | Not Detected     | 2.0                                        | Not Detected                |
| cis-1,2-Dichloroethene     | 0.78                 | Not Detected     | 3.1                                        | Not Detected                |
| Trichloroethene            | 0.78                 | 0.82             | 4.2                                        | 4.4                         |
| Tetrachloroethene          | 0.78                 | 93               | 5.2                                        | 630                         |
| trans-1,2-Dichloroethene   | 0.78                 | Not Detected     | 3.1                                        | Not Detected                |
| 2-Propanol                 | 3.1                  | 1300 E           | 7.6                                        | 3200 E                      |

E = Exceeds instrument calibration range.

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 100       | 70-130 |  |
| Toluene-d8            | 100       | 70-130 |  |
| 4-Bromofluorobenzene  | 101       | 70-130 |  |



### Client Sample ID: Lab Blank Lab ID#: 0701003-04A

### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | t011006<br>1.00      |                  | Date of Collection:<br>Date of Analysis: 1 | NA<br>/10/07 01:05 PM |
|----------------------------|----------------------|------------------|--------------------------------------------|-----------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                      | Amount<br>(uG/m3)     |
| Vinyl Chloride             | 0.50                 | Not Detected     | 1.3                                        | Not Detected          |
| cis-1,2-Dichloroethene     | 0.50                 | Not Detected     | 2.0                                        | Not Detected          |
| Trichloroethene            | 0.50                 | Not Detected     | 2.7                                        | Not Detected          |
| Tetrachloroethene          | 0.50                 | Not Detected     | 3.4                                        | Not Detected          |
| trans-1,2-Dichloroethene   | 0.50                 | Not Detected     | 2.0                                        | Not Detected          |
| 2-Propanol                 | 2.0                  | Not Detected     | 4.9                                        | Not Detected          |

### Container Type: NA - Not Applicable

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 99        | 70-130 |  |
| Toluene-d8            | 99        | 70-130 |  |
| 4-Bromofluorobenzene  | 102       | 70-130 |  |



**Client Sample ID: CCV** 

Lab ID#: 0701003-05A

### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:   | t011004 | Date of Collection: NA             |
|--------------|---------|------------------------------------|
| Dil. Factor: | 1.00    | Date of Analysis: 1/10/07 11:26 AM |
|              |         |                                    |

| Compound                 | %Recovery |
|--------------------------|-----------|
| Vinyl Chloride           | 107       |
| cis-1,2-Dichloroethene   | 106       |
| Trichloroethene          | 112       |
| Tetrachloroethene        | 113       |
| trans-1,2-Dichloroethene | 109       |
| 2-Propanol               | 85        |

### Container Type: NA - Not Applicable

|                       |           | Method<br>Limits |
|-----------------------|-----------|------------------|
| Surrogates            | %Recovery |                  |
| 1,2-Dichloroethane-d4 | 97        | 70-130           |
| Toluene-d8            | 104       | 70-130           |
| 4-Bromofluorobenzene  | 103       | 70-130           |



**Client Sample ID: LCS** 

Lab ID#: 0701003-06A

### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:   | t011003 | Date of Collection: NA             |
|--------------|---------|------------------------------------|
| Dil. Factor: | 1.00    | Date of Analysis: 1/10/07 10:34 AM |

| Compound                 | %Recovery |
|--------------------------|-----------|
| Vinyl Chloride           | 115       |
| cis-1,2-Dichloroethene   | 105       |
| Trichloroethene          | 113       |
| Tetrachloroethene        | 108       |
| trans-1,2-Dichloroethene | 107       |
| 2-Propanol               | 88        |

### **Container Type: NA - Not Applicable**

|                       |           | Method<br>Limits |
|-----------------------|-----------|------------------|
| Surrogates            | %Recovery |                  |
| 1,2-Dichloroethane-d4 | 97        | 70-130           |
| Toluene-d8            | 106       | 70-130           |
| 4-Bromofluorobenzene  | 103       | 70-130           |


# Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific



## WORK ORDER #: 0701258

Work Order Summary

| CLIENT:         | ENT: Mr. Adrian Angel BILL TO |               | Mr. Adrian Angel       |
|-----------------|-------------------------------|---------------|------------------------|
|                 | AEI Consultants, Inc.         |               | AEI Consultants, Inc.  |
|                 | 2500 Camino Diablo            |               | 2500 Camino Diablo     |
|                 | Suite 200                     |               | Suite 200              |
|                 | Walnut Creek, CA 94597        |               | Walnut Creek, CA 94597 |
| PHONE:          | 925-283-6000                  | <b>P.O.</b> # |                        |
| FAX:            | 925-283-6121                  | PROJECT #     | 115876 Main St. Prop.  |
| DATE RECEIVED:  | 01/17/2007                    | CONTACT       | Sarah Nguyen           |
| DATE COMPLETED: | 01/26/2007                    | contact.      | Surun reguyon          |

|            |                   |                | KECEH I    |
|------------|-------------------|----------------|------------|
| FRACTION # | NAME              | <u>TEST</u>    | VAC./PRES. |
| 01A        | SB-13-V           | Modified TO-15 | 3.0 "Hg    |
| 01AA       | SB-13-V Duplicate | Modified TO-15 | 3.0 "Hg    |
| 02A        | Trip Blank        | Modified TO-15 | 28.5 "Hg   |
| 03A        | Lab Blank         | Modified TO-15 | NA         |
| 04A        | CCV               | Modified TO-15 | NA         |
| 05A        | LCS               | Modified TO-15 | NA         |
|            |                   |                |            |

Sinda d. Fruman

DATE: <u>01/30/07</u>

DECEIDT

Laboratory Director

CERTIFIED BY:

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 1 of 10



## LABORATORY NARRATIVE Modified TO-15 AEI Consultants, Inc. Workorder# 0701258

Two 6 Liter Summa Canister samples were received on January 17, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

| Requirement             | TO-15                         | ATL Modifications                                                                                                                                                                                    |
|-------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Daily CCV               | +- 30% Difference             | = 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers                                                                                                                    |
| Sample collection media | Summa canister                | ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request                                                                       |
| Method Detection Limit  | Follow 40CFR Pt.136<br>App. B | The MDL met all relevant requirements in Method TO-15<br>(statistical MDL less than the LOQ). The concentration of<br>the spiked replicate may have exceeded 10X the calculated<br>MDL in some cases |

# **Receiving Notes**

There were no receiving discrepancies.

## **Analytical Notes**

There were no analytical discrepancies.

## **Definition of Data Qualifying Flags**

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:



a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



# Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS

#### Client Sample ID: SB-13-V

| Lab ID#: 0701258-01A                |                      |                  |                       |                   |
|-------------------------------------|----------------------|------------------|-----------------------|-------------------|
| Compound                            | Rɒt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3) | Amount<br>(uG/m3) |
| Tetrachloroethene                   | 4.2                  | 990              | 29                    | 6700              |
| Client Sample ID: SB-13-V Duplicate |                      |                  |                       |                   |
| Lab ID#: 0701258-01AA               |                      |                  |                       |                   |
| Compound                            | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3) | Amount<br>(uG/m3) |
| Tetrachloroethene                   | 4.2                  | 1000             | 29                    | 6800              |

# **Client Sample ID: Trip Blank**

#### Lab ID#: 0701258-02A

No Detections Were Found.



# Client Sample ID: SB-13-V Lab ID#: 0701258-01A

## MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | 5011924<br>8.51      |                  | Date of Collection:<br>Date of Analysis: 1/ | 1/15/07<br>20/07 12:50 AM |
|----------------------------|----------------------|------------------|---------------------------------------------|---------------------------|
| Compound                   | Rɒt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                       | Amount<br>(uG/m3)         |
| Vinyl Chloride             | 4.2                  | Not Detected     | 11                                          | Not Detected              |
| cis-1,2-Dichloroethene     | 4.2                  | Not Detected     | 17                                          | Not Detected              |
| Trichloroethene            | 4.2                  | Not Detected     | 23                                          | Not Detected              |
| Tetrachloroethene          | 4.2                  | 990              | 29                                          | 6700                      |
| trans-1,2-Dichloroethene   | 4.2                  | Not Detected     | 17                                          | Not Detected              |
| 2-Propanol                 | 17                   | Not Detected     | 42                                          | Not Detected              |

#### Container Type: 6 Liter Summa Canister

|                       |           | Method<br>Limits |  |
|-----------------------|-----------|------------------|--|
| Surrogates            | %Recovery |                  |  |
| 1,2-Dichloroethane-d4 | 124       | 70-130           |  |
| Toluene-d8            | 99        | 70-130           |  |
| 4-Bromofluorobenzene  | 92        | 70-130           |  |



# Client Sample ID: SB-13-V Duplicate Lab ID#: 0701258-01AA MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | 5011925<br>8.51      |                  | Date of Collection:<br>Date of Analysis: 1/ | 1/15/07<br>20/07 01:18 AM |
|----------------------------|----------------------|------------------|---------------------------------------------|---------------------------|
| Compound                   | Rɒt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                       | Amount<br>(uG/m3)         |
| Vinyl Chloride             | 4.2                  | Not Detected     | 11                                          | Not Detected              |
| cis-1,2-Dichloroethene     | 4.2                  | Not Detected     | 17                                          | Not Detected              |
| Trichloroethene            | 4.2                  | Not Detected     | 23                                          | Not Detected              |
| Tetrachloroethene          | 4.2                  | 1000             | 29                                          | 6800                      |
| trans-1,2-Dichloroethene   | 4.2                  | Not Detected     | 17                                          | Not Detected              |
| 2-Propanol                 | 17                   | Not Detected     | 42                                          | Not Detected              |

#### Container Type: 6 Liter Summa Canister

|                       |           | Method<br>Limits |  |
|-----------------------|-----------|------------------|--|
| Surrogates            | %Recovery |                  |  |
| 1,2-Dichloroethane-d4 | 127       | 70-130           |  |
| Toluene-d8            | 104       | 70-130           |  |
| 4-Bromofluorobenzene  | 93        | 70-130           |  |



# Client Sample ID: Trip Blank Lab ID#: 0701258-02A MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | 5011926<br>1.00      |                  | Date of Collection: N<br>Date of Analysis: 1/ | NA<br>/20/07 01:50 AM |
|----------------------------|----------------------|------------------|-----------------------------------------------|-----------------------|
| Compound                   | Rɒt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                         | Amount<br>(uG/m3)     |
| Vinyl Chloride             | 0.50                 | Not Detected     | 1.3                                           | Not Detected          |
| cis-1,2-Dichloroethene     | 0.50                 | Not Detected     | 2.0                                           | Not Detected          |
| Trichloroethene            | 0.50                 | Not Detected     | 2.7                                           | Not Detected          |
| Tetrachloroethene          | 0.50                 | Not Detected     | 3.4                                           | Not Detected          |
| trans-1,2-Dichloroethene   | 0.50                 | Not Detected     | 2.0                                           | Not Detected          |
| 2-Propanol                 | 2.0                  | Not Detected     | 4.9                                           | Not Detected          |

### Container Type: 6 Liter Summa Canister

|                       |           | Method<br>Limits |  |
|-----------------------|-----------|------------------|--|
| Surrogates            | %Recovery |                  |  |
| 1,2-Dichloroethane-d4 | 117       | 70-130           |  |
| Toluene-d8            | 100       | 70-130           |  |
| 4-Bromofluorobenzene  | 93        | 70-130           |  |



# Client Sample ID: Lab Blank Lab ID#: 0701258-03A MODIFIED EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor: | 5011904<br>1.00      |                  | Date of Collection: N<br>Date of Analysis: 1/ | NA<br>/19/07 11:38 AM |
|----------------------------|----------------------|------------------|-----------------------------------------------|-----------------------|
| Compound                   | Rɒt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(uG/m3)                         | Amount<br>(uG/m3)     |
| Vinyl Chloride             | 0.50                 | Not Detected     | 1.3                                           | Not Detected          |
| cis-1,2-Dichloroethene     | 0.50                 | Not Detected     | 2.0                                           | Not Detected          |
| Trichloroethene            | 0.50                 | Not Detected     | 2.7                                           | Not Detected          |
| Tetrachloroethene          | 0.50                 | Not Detected     | 3.4                                           | Not Detected          |
| trans-1,2-Dichloroethene   | 0.50                 | Not Detected     | 2.0                                           | Not Detected          |
| 2-Propanol                 | 2.0                  | Not Detected     | 4.9                                           | Not Detected          |

## Container Type: NA - Not Applicable

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 121       | 70-130 |  |
| Toluene-d8            | 99        | 70-130 |  |
| 4-Bromofluorobenzene  | 99        | 70-130 |  |



**Client Sample ID: CCV** 

Lab ID#: 0701258-04A

#### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:   | 5011902 | Date of Collection: NA             |
|--------------|---------|------------------------------------|
| Dil. Factor: | 1.00    | Date of Analysis: 1/19/07 09:45 AM |
|              |         |                                    |

| Compound                 | %Recovery |
|--------------------------|-----------|
| Vinyl Chloride           | 109       |
| cis-1,2-Dichloroethene   | 125       |
| Trichloroethene          | 112       |
| Tetrachloroethene        | 112       |
| trans-1,2-Dichloroethene | 104       |
| 2-Propanol               | 124       |

#### Container Type: NA - Not Applicable

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 123       | 70-130 |  |
| Toluene-d8            | 105       | 70-130 |  |
| 4-Bromofluorobenzene  | 94        | 70-130 |  |



**Client Sample ID: LCS** 

Lab ID#: 0701258-05A

#### MODIFIED EPA METHOD TO-15 GC/MS

| File Name:   | 5011903 | Date of Collection: NA             |
|--------------|---------|------------------------------------|
| Dil. Factor: | 1.00    | Date of Analysis: 1/19/07 10:34 AM |
|              |         |                                    |

| Compound                 | %Recovery |
|--------------------------|-----------|
| Vinyl Chloride           | 105       |
| cis-1,2-Dichloroethene   | 111       |
| Trichloroethene          | 104       |
| Tetrachloroethene        | 108       |
| trans-1,2-Dichloroethene | 108       |
| 2-Propanol               | 120       |

#### Container Type: NA - Not Applicable

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 122       | 70-130 |  |
| Toluene-d8            | 103       | 70-130 |  |
| 4-Bromofluorobenzene  | 104       | 70-130 |  |