RECEIVED

10:55 am, Jun 20, 2007

Alameda County Environmental Health

June 19, 2007

#### MONITORING WELL INSTALLATION REPORT

6310 Houston Place Dublin, California

AEI Project No. 261639 ACHCSA Fuel Leak No. RO0002862

Prepared For

Mr. Cary Greyson G&G International Holding PO Box 1435 Alamo, California 94507

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, California 94597 (925) 283-6000



## TABLE OF CONTENTS

| 1.0 INTRODUCTION                                                                         | 2      |
|------------------------------------------------------------------------------------------|--------|
| 2.0 SITE DESCRIPTION AND HISTORY                                                         | 2      |
| 3.0 GEOLOGY AND HYDROLOGY                                                                | 4      |
| 4.0 MONITORING WELL INSTALLATION                                                         | 4      |
| 5.0 Well Development and Sampling                                                        | 5      |
| 6.0 SAMPLE ANALYTICAL RESULTS                                                            |        |
| <ul><li>6.1 Soil Analytical Results</li><li>6.2 Groundwater Analytical Results</li></ul> | 6<br>6 |
| 7.0 SITE SURVEY                                                                          | 7      |
| 8.0 Well Survey                                                                          | 7      |
| 9.0 SUMMARY AND CONCLUSIONS                                                              | 8      |
| 10.0 References                                                                          | 9      |
| 11.0 REPORT LIMITATIONS AND SIGNATURES                                                   | 10     |

#### FIGURES

| FIGURE 1 | SITE LOCATION MAP                     |
|----------|---------------------------------------|
| FIGURE 2 | SITE PLAN                             |
| FIGURE 3 | GROUNDWATER ELEVATION – 4/10/07       |
| FIGURE 4 | GROUNDWATER ANALYTICAL DATA – 4/10/07 |

#### TABLES

- TABLE 1
   MONITORING WELL CONSTRUCTION DETAILS
- TABLE 2
   SOIL SAMPLE ANALYTICAL DATA
- TABLE 3
   GROUNDWATER SAMPLE ANALYTICAL DATA SOIL BORINGS
- TABLE 4
   GROUNDWATER ELEVATION DATA
- TABLE 5
   GROUNDWATER SAMPLE ANALYTICAL DATA TPH, BTEX, FUEL ADDITIVES
- TABLE 6
   GROUNDWATER SAMPLE ANALYTICAL DATA SVOCS, ANIONS, COD

#### **APPENDICES**

APPENDIX AMONITORING WELL PERMIT DOCUMENTATIONAPPENDIX BMONITORING WELL CONSTRUCTION LOGSAPPENDIX CGROUNDWATER MONITORING FIELD FORMSAPPENDIX DLABORATORY ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATIONAPPENDIX ESURVEY DATA



#### **1.0** INTRODUCTION

This *Monitoring Well Installation Report* has been prepared on behalf of G&G International Holding (G&G) for the facility located at 6310 Houston Place in the City of Dublin, Alameda County, California (Figure 1). AEI Consultants (AEI) has been retained by G&G to provide environmental engineering and consulting services associated with a release of petroleum hydrocarbons from the former diesel underground storage tank (UST) system at the site.

This report documents the installation and initial monitoring of seven (7) groundwater monitoring wells at the site. These activities were requested by the Alameda County Health Care Services Agency (ACHCSA) to further evaluate impacted groundwater at the site in a letter dated July 31, 2006. The purpose of the monitoring wells is to investigate contaminant plume characteristics and evaluate treatment options in preparation for remediation.

#### 2.0 SITE DESCRIPTION AND HISTORY

The subject property is located in a commercial and light industrial area of Dublin, on the south side of Houston Place, just east of Dougherty Road. Please refer to Figures 1 and 2 for the site location map and site plan details. According to records on file with the Dublin Building Department (DBD), three USTs (one 12,000-gallon diesel USTs, one 7,500-gallon gasoline UST, and one 2,000-gallon gasoline UST) were installed on the subject property in 1968.

#### **Previous Releases**

According to a case closure summary report prepared by Alameda County Health Care Services Agency (ACHCSA), a piping leak and a localized surface spill of used motor oil were discovered at the site prior to 1984. Following the release, 156 cubic yards of contaminated soil was removed from the site to the satisfaction of San Francisco Bay Regional Water Quality Control Board (SFRWQCB). On March 31, 1989, four USTs (one 500-gallon waste oil, two 12,000-gallon and one 8,000-gallon diesel tanks) were excavated, three of which were removed. One 12,000-gallon diesel UST was refinished internally with "Glass Armor" coating and was reinstalled for continued use. Soil samples collected from the sidewalls of the excavation during tank removal activities had concentrations of Total Petroleum Hydrocarbons as diesel (TPH-d) to 190 milligrams per kilogram (mg/kg) and Total Oil and Grease (TOG) up to 240 mg/kg. No concentrations of TPH as gasoline; Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX); or chlorinated hydrocarbons were detected in these samples. One grab groundwater sample was collected from the diesel UST excavation, which had concentrations of TPH-d and TOG up to 380,000 micrograms per liter ( $\mu$ g/L) and 50,000  $\mu$ g/l, respectively.

Following removal of the three USTs, three groundwater monitoring wells (MW-1 through MW-3) were installed on August 9, 1989, and quarterly groundwater monitoring and sampling commenced. To further define the extent of the groundwater contamination plume, three additional wells (MW-4 through MW-6) were installed between May 1990 and March 1991. TPH-d and TOG were detected up to 22,000  $\mu$ g/L and 8,600  $\mu$ g/L, respectively, during initial



sampling of these wells. Intermittent monitoring and sampling of the wells continued between August 1989 and October 1994. During the last sampling episode conducted in October 1994 concentrations of TPH-d and TOG were detected up to 850  $\mu$ g/L and 600  $\mu$ g/L, respectively. Based on a recent site inspection, the former onsite monitoring wells had been decommissioned. Approximate former well locations are shown on Figure 2.

Based on the gradual decline of TPH-d and TOG in the groundwater, and the remaining low concentrations of these contaminants in groundwater and soil, the ACHCSA granted case closure in a letter dated February 28, 1995.

At the request of a prospective purchaser of the property, AEI collected samples from on-site monitoring wells MW-1, MW-2, and MW-5 on January 23, 2001. TPH-d was detected up to 5,200  $\mu$ g/L in the samples. No concentrations of TOG were detected in these samples. Monitoring wells MW-1 through MW-6 have been decommissioned, although no information was available to AEI as to the date and methods of decommissioning.

#### 12,000-gallon diesel UST Removal

On October 27, 2004, the remaining 12,000-gallon diesel UST, fuel dispensers, and product piping were removed from the subject property by Golden Gate Tank Removal, Inc. (GGTR). Following excavation, GGTR collected a total of seven soil and two groundwater samples from the UST excavation bottom and sidewall, overburden stockpile, and areas in the vicinity of the fuel dispensers and product piping. These samples were analyzed for TPH-d, MTBE, and BTEX. TPH-d was detected at concentrations of 6 mg/kg and 197 mg/kg in stockpile soil samples and at a concentration of 1 mg/kg in a soil sample obtained from the UST excavation sidewall. TPH-d was detected in the water sample collected from the UST pit at 0.3 mg/L and at 23.8 mg/L in water that was present in the shallow excavation beneath the dispenser. Locations of the samples collected by GGTR are shown on Figure 2 and a summary of sample analytical data from the tank removal is presented in Tables 3 and 4. The excavation was backfilled with the stockpiled soil and imported fill.

Upon reviewing the GGTR Tank Closure Report, the ACHCSA issued a letter dated April 12, 2005 requesting additional investigation regarding the release of petroleum hydrocarbons from the 12,000-gallon UST. On March 14, 2006, AEI performed a Soil and Groundwater Investigation consisting of the collection and analysis of soil and groundwater samples at the site. Five soil borings were advanced in the areas of the former 12,000-gallon diesel UST, the former dispenser island and products lines, and down-gradient from the former diesel UST. TPH-d was detected in the soil up to a concentration of 53 mg/kg. TPH-d and MTBE were detected in the groundwater samples up to concentrations of 580,000  $\mu$ g/L and 2.6  $\mu$ g/L, respectively. The findings of this investigation concluded that the release of TPH-d originated from the 12,000-gallon diesel UST, as the diesel release post-dates the previous releases at the property.

Upon reviewing the *Soil and Groundwater Investigation Report*, the ACHCSA issued a letter, dated July 31, 2006, requesting the installation of monitoring wells. A *Monitoring Well Installation Workplan* for five (5) wells, dated September 19, 2006, was approved by the



ACHCSA in a letter dated October 3, 2006. A request for two (2) additional off-site wells was subsequently approved by the ACHCSA in November 2006. Due to site construction work in Fall of 2006 to Winter 2007, the work was scheduled to occur following the asphalt paving of the parking lot. The following report describes monitoring well installation activities and the subsequent sampling of the seven wells performed by AEI.

### **3.0 GEOLOGY AND HYDROLOGY**

Based on a review of the United States Geological Survey (USGS) Dublin, California Quadrangle topographic map, the site is situated in the southeast end of the San Ramon Valley, and is located approximately <sup>3</sup>/<sub>4</sub>-mile south/southeast of the Dougherty Hills, which are foothills of Mount Diablo. The site is situated east of Dougherty Creek, which is located approximately <sup>1</sup>/<sub>2</sub>-mile from the site. The site is relatively flat and at an elevation of approximately 335 feet above mean sea level (amsl). Any apparent slope throughout the surface of the site was likely produced to manage surface water drainage.

Based on the USGS Quaternary Geology of Alameda County, and Parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin Counties, California: A Digital Database, surface deposits in the vicinity of the site consist of Holocene Age Basin Deposits. These are identified as by very fine silty clay to clay deposits occupying flat-floored basins at the distal edge of alluvial fans.

During previous investigations, groundwater has been encountered at depth of approximately 12 feet below ground surface (bgs). Recent groundwater monitoring data for the newly installed seven wells show water levels stabilizing at approximately 7 to 8 feet bgs and migrating towards the south-southeast with a hydraulic gradient of 0.005 ft/ft. Previous monitoring identified a southeasterly groundwater flow direction with a hydraulic gradient of 0.001 ft/ft.

#### 4.0 MONITORING WELL INSTALLATION

Prior to initiating drilling activities, a well construction permit (permit number 27047) was obtained from Mr. Wyman Hong of the Alameda County Zone 7 Water Agency (Zone 7). Following permit approval, drilling activities were scheduled and Underground Utility Services (USA North) was notified to locate possible underground utilities in the area.

On March 14 and 15, 2007, AEI advanced seven (7) monitoring wells (DW-1 through DW-7) at the property. Locations of the newly installed wells are presented in Figure 2. The monitoring wells were initially drilled as boreholes with a standard rotary drilling rig, running 8<sup>1</sup>/<sub>4</sub>-inch diameter hollow stem augers. The boreholes were advanced to a total depth of approximately 17 feet bgs. Soil samples were collected at approximately 5' intervals, during drilling with a California modified split spoon sampler advanced ahead of the auger bit. The soil samples were collected for laboratory analysis and to verify that soil lithology was consistent with former borings at the property.

Sampling equipment, including sampling barrels, augers, and other equipment used to sample, were decontaminated between samples using a triple rinse system containing Alconox<sup>TM</sup> or similar detergent. Rinse water was contained in sealed, labeled DOT approved 55-gallon drums in a secure location on-site pending proper disposal.

A six inch brass liner from each sample was sealed with Teflon tape and plastic caps, labeled with a unique identifier, placed in a cooler filled with water ice, and transported under appropriate chainof-custody documentation for analysis to McCampell Analytical Inc., (DOHS Certification Number 1644) of Pacheco, California. Select soil samples were analyzed for Total Petroleum Hydrocarbons (TPH) multi-range (as gas/diesel/motor oil) by EPA Method 8015C.

Following sampling activities, each borehole was converted into a monitoring well. The monitoring wells were constructed by placing a 2" diameter schedule 40 PVC casing with 10' of factory slotted 0.010-inch well screen through the augers to a total depth of 17 feet bgs each (screened 7 feet bgs to 17 feet bgs). An annular sand pack (consisting of clean #2/12 Sand) was installed through the augers to approximately 1 foot above the screened interval. A 1 foot bentonite seal was placed above the sand and the remainder of each boring was sealed with cement grout. A flush mounted traffic rated well box was installed over the casing, and an expanding, locking inner cap was placed on the casing top. DWR well registration forms (DWR Form 188) have been completed for each of the wells and have been forwarded to the DWR and Zone 7.

Cuttings generated during the drilling and well installation activities were stored on-site in a single sealed, labeled 55-gallon drum pending disposal. The 55-gallon drums were removed in mid-April 2007.

## 5.0 Well Development and Sampling

The newly installed monitoring well network was developed by surging, bailing, and purging the wells to remove accumulated fines from the casing and stabilize the sand pack on April 4, 2007. The wells were developed by using a surge block to clear the sand pack and screen of any fines, and then an attempt was made to purge approximately 10 well volumes.

On April 10, 2007, groundwater samples were collected from wells DW-1 through DW-7 for the first quarterly groundwater monitoring event. Prior to purging, the well caps were removed to allow the wells to equilibrate with the atmosphere. The depth to water in each well was measured to the nearest 0.01-foot and three well volumes of groundwater were purged from each well. During purging the following water quality parameters were measured: temperature, pH, specific conductivity, dissolved oxygen (DO) and oxidation-reduction potential (ORP) along with a visual estimate of turbidity. These field parameters were recorded on Groundwater Well Sampling Field Forms (Appendix C), which include details on the sampling of each well.

Following recovery of water levels in the well to within 90% of the initial depth, samples were collected with a clean, disposable bailer.

The groundwater samples were collected from each well using clean disposable plastic bailers. Water was collected into laboratory supplied 40 ml VOA vials and 1-liter amber bottles. The VOAs were capped so that no headspace or air bubbles were visible within the sample containers. The samples were labeled, entered on a chain-of-custody form and placed in a cooler on ice pending same day transportation under appropriate chain-of custody-protocol for analysis to McCampell Analytical Inc. (DOHS Certification Number 1644) of Pacheco, California. Groundwater samples were analyzed for TPH multi-range and BTEX by EPA Method 8021B/8015C, two samples (DW-2 and DW-3) were analyzed for Semi-volatile organic compounds (SVOCs) by EPA Method 8270, Inorganic nitrate and nitrite anions by EPA Method E300.1, Chemical Oxygen Demand (COD) by EPA Method SM5220D, and MTBE, ETBE, DIPE, TAME, TBA, EDB, 1,2-DCA, ethanol, and methanol by EPA Method 8260B.

#### 6.0 SAMPLE ANALYTICAL RESULTS

#### 6.1 Soil Analytical Results

During well installation activities conducted on March 14 and 15, 2007, soil samples were collected at select intervals. TPH-g was not detected in any of the soil samples analyzed. TPH-d was detected in soil samples DW-1-7', DW-2-10', and DW-3-11' at concentrations of 2.0 mg/kg, 9.2 mg/kg, and 12 mg/kg, respectively. TPH-mo was only detected in one sample, DW-3-11' at 6.2 mg/kg. No other target analytes exceeded laboratory detection limits in the soil samples analyzed. Soil analytical results are summarized in Table 2.

#### 6.2 Groundwater Analytical Results

The following contaminants were detected during the first groundwater monitoring episode for the seven monitoring wells conducted on April 10, 2007. Light Non-Aqueous Phase Liquid (LNAPL) was reported by the laboratory in samples DW-1 through DW-3. TPH-g was detected in three wells, DW-1 through DW-3 at concentrations ranging from 100  $\mu$ g/L to 220  $\mu$ g/L. TPH-d was detected in wells DW-1 through DW-5 at concentrations ranging from 65  $\mu$ g/L to 27,000  $\mu$ g/L. TPH-mo was detected in wells DW-1 through DW-3 and DW-5 at concentrations ranging from 320  $\mu$ g/L to 9,200  $\mu$ g/L. Benzene, ethylbenzene, and xylenes were not detected in any of the wells. MTBE was detected in DW-4 at a concentration of 0.67  $\mu$ g/L. DIPE was detected in DW-6 at a concentration of 0.81  $\mu$ g/L. The remaining target fuel additive compounds were not detected at or above the laboratory detection limit. Groundwater elevation and analytical results are displayed on Tables 4 and 5, as well as on Figures 3 and 4. A copy of the laboratory analytical report is included in Appendix D.

#### 7.0 SITE SURVEY

On May 1, 2007, the well box and well casing elevations were surveyed by Morrow Surveying, West Sacramento, California; a California Registered Land Surveyor (LS No. LS 4650). Data from the survey was uploaded to the state Geotracker database. A copy of the well survey is included in Appendix E.

#### 8.0 WELL SURVEY

Well records for all wells within a <sup>1</sup>/<sub>2</sub>-mile radius of the site were collected from State of California Department of Water Resources. A well survey from the Alameda County Zone 7 Water Agency is currently underway and will be presented in forthcoming reports. A map with the locations of the wells identified in the survey relative to the site is presented in Figure 1. The identified nearby wells are also presented in the table below.

| Owner                          | Map<br>ID # | Distance<br>(ft) | Direction | Depth<br>(ft) | Screen<br>Interval (ft) | Use        |
|--------------------------------|-------------|------------------|-----------|---------------|-------------------------|------------|
| Dolan Rental Company (4 wells) | 1           | ~1,200           | South     | 20            | 5 - 20                  | Monitoring |
| Busick Air (9 wells?)          | 2           | ~ 1,500          | Southeast | 15            | 5 - 15                  | Monitoring |
| Scotsman Corp (5 wells?)       | 3           | ~2,500           | Southeast | 15            | 9 - 14                  | Monitoring |
| Charles LeMoine (1 well)       | 4           | ~1,800           | Southeast | 20            | 6.5 – 19.5              | Monitoring |
| Tosco (8 wells)                | 5           | ~1,000           | Southeast | 20            | 5 - 20                  | Monitoring |
| BP Oil (4 wells)               | 6           | ~1,000           | South     | 20            | 14 - 19                 | Monitoring |
| US Army (10 wells)             | 7           | ~2,000           | East      | 15            | 10 - 15                 | Monitoring |
| Bedford Properties (3 wells)   | 8           | ~1,300           | Northwest | 22            | 7 - 22                  | Monitoring |
| CCB Bancorp (1 well)           | 9           | ~1,700           | Southeast | 18            | 8 - 18                  | Test Well  |

Exhibit 1: Nearby Wells

NA – Information not available Distances and direction from the site are approximate

Most of the wells found during the DWR survey are monitoring and located at least ~1,000 feet away from the site. One test well owned by CCB Bancorp was found ~1,700 feet from the site. Based on the distance from the site in relation to these wells, that all identified wells are shallow, and the lack of petroleum hydrocarbons detected in down-gradient, off-site wells DW-6 and DW-7 during the initial monitoring event; the identified wells (Map ID #s 1 through 9) are not expected to be impacted by this release and would not likely act as a vertical conduit for shallow impacted groundwater at the site.

In summary, based on the well survey and the magnitude of the site hydrocarbon release, none of the identified wells appear to risk acting as preferential vertical conduits for migration of site contaminants nor does there appear to be active use of groundwater in the area that would be threatened by this release. Results of the Zone 7 well survey will be incorporated with DWR in the forthcoming groundwater monitoring report, scheduled for July 2007. In addition, no production wells were identified within the radius.



#### 9.0 SUMMARY AND CONCLUSIONS

On March 14 and 15, 2007, seven (7) soil borings were installed at the site. Each boring was subsequently converted into a 2-inch diameter groundwater monitoring well. The monitoring wells (DW-1 through DW-7) were developed, surveyed by a licensed land surveyor, and sampled for their first groundwater monitoring episode.

Based on data obtained from the first groundwater monitoring event (4/10/07), the groundwater flow direction was determined to be towards the south-southwest with a hydraulic gradient of approximately 0.005 ft/ft (Figure 3). This groundwater flow direction is roughly consistent with contaminant distributions noted during the March 14, 2006 investigation and previous data from the former on-site monitoring wells.

TPH-d concentrations detected in wells near the source area were significantly less than diesel concentrations detected in groundwater samples during the 2006 investigation. The low concentrations of TPH-g and TPH-mo detected in two of the wells are likely the result of overlap with EPA Method 8015. BTEX was not detected in any of the wells. MTBE and DIPE were detected slightly above reporting limits in samples DW-4 and DW-6, respectively.

Analytical results confirm that the dissolved phase plume is limited to diesel range hydrocarbons. Although measurable free product was not encountered, dissolved diesel concentrations suggest LNAPL may be present. No significant soil source was identified, based on soil analytical data. This is consistent with a release from a tank partially submerged beneath the water table. Nitrate depletion with high chemical oxygen demand in plume and the negative O.R.P. values could indicate biodegradation has occurred but may be limited within the source area.

In accordance with ACHCSA regulations, quarterly groundwater monitoring is scheduled to occur in July 2007. During this next event, AEI proposes to analyze all samples for TPH-diesel by EPA Method 8015 and BTEX plus fuel additives by EPA Method 8260. If the 8260 results are consistent with this 1<sup>st</sup> groundwater monitoring event, AEI recommends dropping 8260 from future monitoring events.

Based on the high concentration of TPH-diesel, it is expected that remediation will be required to achieve case closure. If the results of the 2<sup>nd</sup> groundwater monitoring episode are consistent with the 1<sup>st</sup> monitoring episode, a feasibility study will be prepared with recommendations for a remediation approach. Given the limited extent of impact, AEI will likely propose in-situ chemical oxidation or in-situ enhanced bioremediation to reduce the impact.

#### **10.0 REFERENCES**

ACHCSA, Letter, April 12, 2005

ACHCSA, Letter, January 20, 2006

ACHCSA, Letter, March 10, 2006

ACHCSA, Letter, July 31, 2006

ACHCSA, Letter, October 3, 2006

ACHCSA, Letter, November 14, 2006

AEI, *Work Plan – Soil and Groundwater Investigation*, 6310 Houston Place, Dublin, California, dated July 11, 2005.

AEI, *Soil and Groundwater Investigation Report*, 6310 Houston Place, Dublin, California, dated June 28, 2006.

AEI, *Monitoring Well Installation Workplan and Addendum*, 6310 Houston Place, Dublin, California, dated September 19, 2007 and November 2, 2007, respectively.

Golden Gate Tank Removal, *Tank Closure Report*, 6310 Houston Place, Dublin, California, dated December 2, 2004.

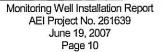
USGS, Quaternary Geology Of Contra Costa County, And Surrounding Parts Of Alameda, Marin, Sonoma, Solano, Sacramento, And San Joaquin Counties, California, 1997, Prepared by E. J Helley, et al.

#### 11.0 REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field that existed at the time and location of the work. AEI requests comment and concurrence with this plan. If you have any questions regarding this report, we can be reached at (925) 283-6000.

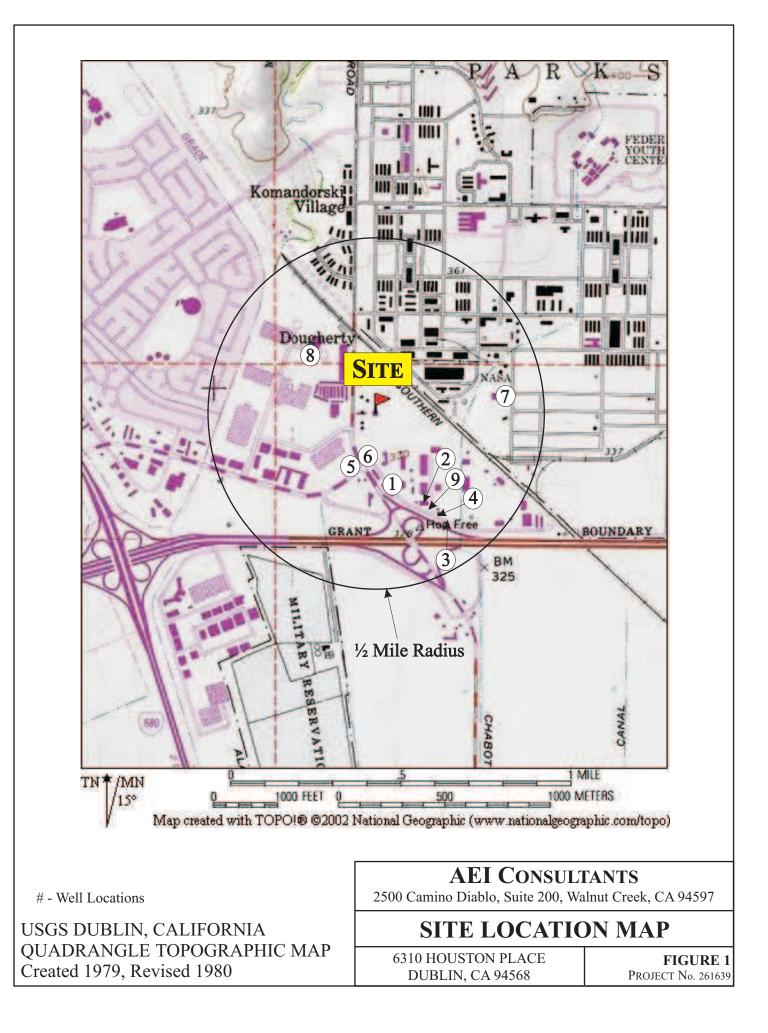
Sincerely, AEI Consultants


Adrian M. Angel

Project Geologist

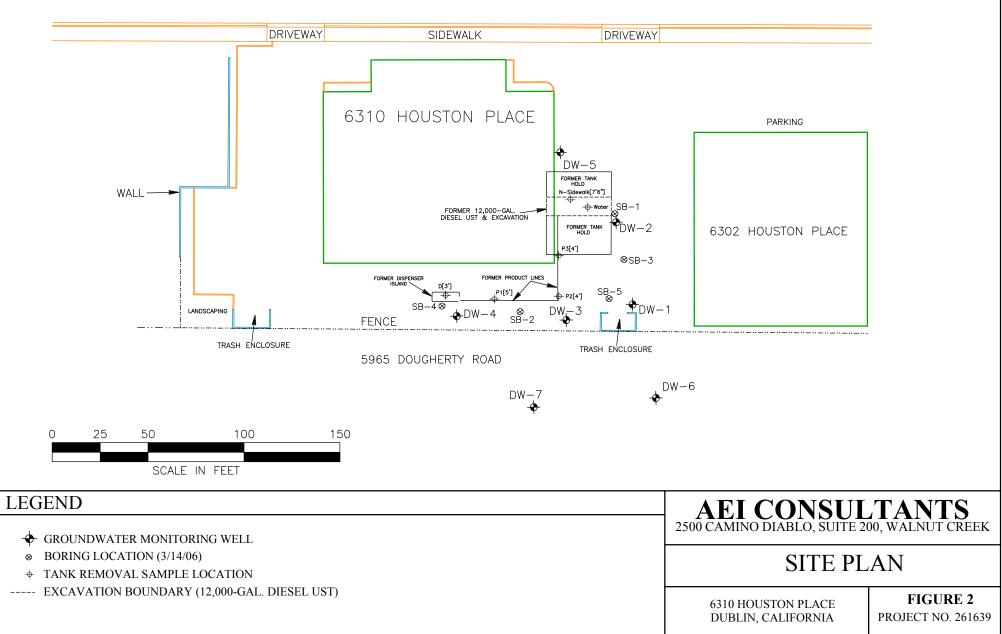
GEO ACINTYRE PETER J Peter J. McIntvre, P.G OF C Senior Project Manager

#### **Report Distribution:**


Mr. Cary Greyson G&G International Holding PO Box 1435 Alamo, CA 945407 2 hard copies Mr. Barney Chan ACHCSA 1131 Harbor Bay Parkway, #250 Oakland, CA 94612 Electronic upload to FTP site

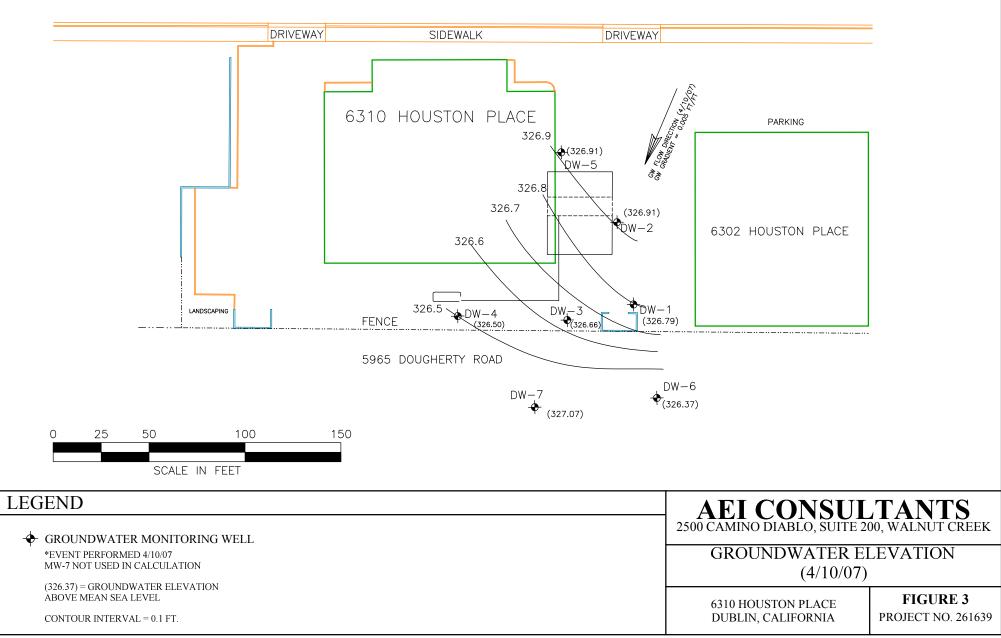





**FIGURES** 

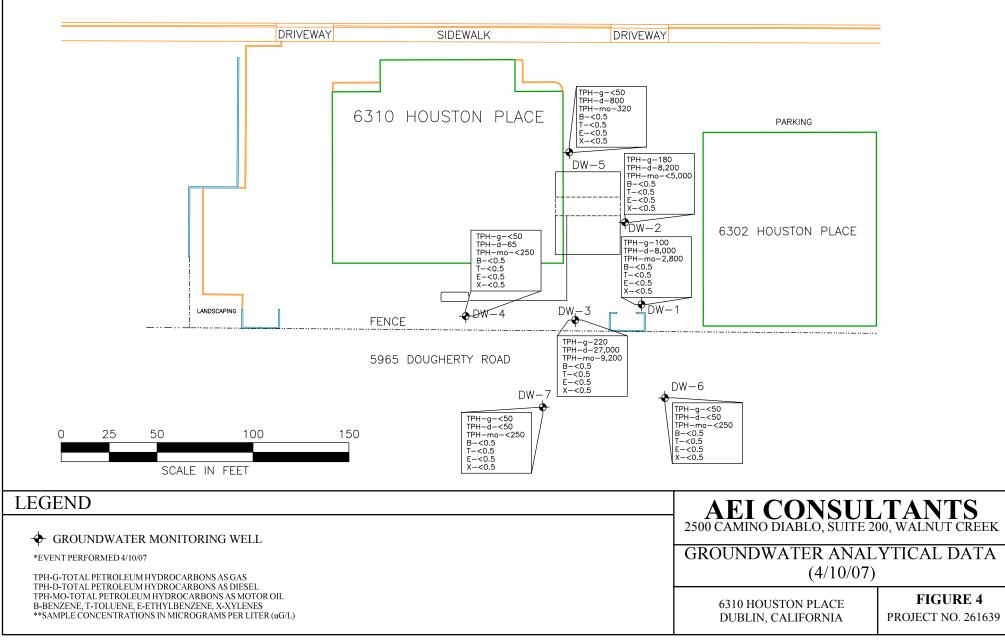





## HOUSTON PLACE

Ν




## HOUSTON PLACE

Ν



## HOUSTON PLACE

Ν



**TABLES** 



#### Table 1, 6310 Houston Place, Dublin CA Monitoring Well Construction Details

| Well ID                                  | Date<br>Drilled | Top of<br>Casing<br>Elevation | Well Box<br>Rim<br>Elevation | Well<br>Depth | Slotted<br>Casing | Slot<br>Size | Blank<br>Casing | Sand<br>Interval | Sand<br>Size | Bentonite<br>Interval | Grout<br>Interval |
|------------------------------------------|-----------------|-------------------------------|------------------------------|---------------|-------------------|--------------|-----------------|------------------|--------------|-----------------------|-------------------|
|                                          |                 | (ft amsl)                     | (ft amsl)                    | (ft)          | (ft)              | (in)         | (ft)            | (ft)             |              | (ft)                  | (ft)              |
| DW-1                                     | 03/14/07        | 334.23                        | 334.44                       | 17.00         | 7-17              | 0.010        | 0.2-5           | 4-17             | # 2/12       | 3-4                   | 0.75-2            |
| DW-2                                     | 03/14/07        | 334.00                        | 334.48                       | 17.00         | 7-17              | 0.010        | 0.5-5           | 4-17             | # 2/12       | 3-4                   | 0.75-2            |
| DW-3                                     | 03/14/07        | 334.56                        | 334.99                       | 17.00         | 7-17              | 0.010        | 0.4-5           | 4-17             | # 2/12       | 3-4                   | 0.75-2            |
| DW-4                                     | 03/14/07        | 334.49                        | 334.95                       | 17.00         | 7-17              | 0.010        | 0.5-5           | 4-17             | # 2/12       | 3-4                   | 0.75-2            |
| DW-5                                     | 03/15/07        | 333.91                        | 334.5                        | 17.00         | 7-17              | 0.010        | 0.6-5           | 4-17             | # 2/12       | 3-4                   | 0.75-2            |
| DW-6                                     | 03/15/07        | 334.99                        | 335.44                       | 17.00         | 7-17              | 0.010        | 0.5-5           | 4-17             | # 2/12       | 3-4                   | 0.75-2            |
| DW-7                                     | 03/15/07        | 335.18                        | 335.62                       | 17.00         | 7-17              | 0.010        | 0.4-5           | 4-17             | # 2/12       | 3-4                   | 0.75-2            |
| <u>Notes:</u><br>ft amsl = feet above me | ean sea level   |                               |                              |               |                   |              |                 |                  |              |                       |                   |

#### Table 2, 6310 Houston Place, Dublin CA Soil Sample Analytical Data

| Sample ID             | Sample Date  | Sample Location  | <b>TPH-g</b><br>mg/kg | <b>TPH-d</b><br>mg/kg<br>EPA Method 8015M | <b>TPH-mo</b><br>mg/kg | MTBE<br>mg/kg | Benzene<br>mg/kg | <b>Toluene</b><br>mg/kg<br>PA Methods 5030 / 80. | Ethylbenzene<br>mg/kg<br>20F | <b>Xylenes</b><br>mg/kg | MTBE<br>mg/kg<br>EPA Method 8260B |
|-----------------------|--------------|------------------|-----------------------|-------------------------------------------|------------------------|---------------|------------------|--------------------------------------------------|------------------------------|-------------------------|-----------------------------------|
| 8559-SP1              | 10/27/2004   | Stockpile        | -                     | 6                                         | -                      | <0.005        | < 0.005          | < 0.005                                          | < 0.005                      | < 0.01                  | -                                 |
| 8559-SP2              | 10/27/2004   | Stockpile        | -                     | <1                                        | -                      | < 0.005       | < 0.005          | < 0.005                                          | < 0.005                      | < 0.01                  | -                                 |
| 8559-SP3              | 10/27/2004   | Stockpile        | -                     | 197                                       | -                      | < 0.005       | < 0.005          | < 0.005                                          | < 0.005                      | < 0.01                  | -                                 |
| 8559-P1[5']           | 10/27/2004   | Product Piping   | -                     | <1                                        | -                      | < 0.005       | < 0.005          | < 0.005                                          | < 0.005                      | < 0.01                  | -                                 |
| 8559-P2[4']           | 10/27/2004   | Product Piping   | -                     | <1                                        | -                      | < 0.005       | < 0.005          | < 0.005                                          | < 0.005                      | < 0.01                  | -                                 |
| 8559-P3[4']           | 10/27/2004   | Product Piping   | -                     | <1                                        | -                      | < 0.005       | < 0.005          | < 0.005                                          | < 0.005                      | < 0.01                  | -                                 |
| 8559-N-Sidewall[7'6"] | 10/27/2004   | UST Excavation   | -                     | 1                                         | -                      | < 0.005       | < 0.005          | < 0.005                                          | < 0.005                      | < 0.01                  | -                                 |
| SB-1-8'               | 3/14/2006    | Adjacent to Tank | -                     | <1.0                                      | -                      | -             | < 0.005          | < 0.005                                          | < 0.005                      | < 0.005                 | < 0.005                           |
| SB-2-8'               | 3/14/2006    | Product Piping   | -                     | <1.0                                      | -                      | -             | < 0.005          | < 0.005                                          | < 0.005                      | < 0.005                 | <0.005                            |
| SB-3-8'               | 3/14/2006    | Downgradient     | -                     | <1.0                                      | -                      | -             | < 0.005          | < 0.005                                          | < 0.005                      | < 0.005                 | < 0.005                           |
| SB-4-8'               | 3/14/2006    | Dispenser        | -                     | 53                                        | -                      | -             | < 0.005          | < 0.005                                          | < 0.005                      | < 0.005                 | < 0.005                           |
| SB-5-8'               | 3/14/2006    | Downgradient     | -                     | <1.0                                      | -                      | -             | < 0.005          | < 0.005                                          | < 0.005                      | < 0.005                 | < 0.005                           |
| DW-1-7'               | 3/14-15/2007 | Upgradient       | <1.0                  | 2.0                                       | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| DW-2-10'              | 3/14-15/2007 | Source Zone      | <1.0                  | 9.2                                       | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| DW-3-11'              | 3/14-15/2007 | Downgradient     | <1.0                  | 12                                        | 6.2                    | -             | -                | -                                                | -                            | -                       | -                                 |
| DW-4-12'              | 3/14-15/2007 | Crossgradient    | <1.0                  | <1.0                                      | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| DW-5-7'               | 3/14-15/2007 | Crossgradient    | <1.0                  | <1.0                                      | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| DW-6-9'               | 3/14-15/2007 | Downgradient     | <1.0                  | <1.0                                      | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| DW-7-11'              | 3/14-15/2007 | Downgradient     | <1.0                  | <1.0                                      | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| Composite Sample #1   | 3/14-15/2007 | InvDerived Waste | <1.0                  | <1.0                                      | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| Composite Sample #2   | 3/14-15/2007 | InvDerived Waste | <1.0                  | <1.0                                      | <5.0                   | -             | -                | -                                                | -                            | -                       | -                                 |
| RL                    | -            | -                | 1.0                   | 1.0                                       | 5.0                    | 0.005         | 0.005            | 0.005                                            | 0.005                        | 0.005                   | 0.005                             |

TPH-g = Total Petroleum Hydrocarbons as gas, TPH-d = TPH as diesel, TPH-mo = TPH as motor oil MTBE = Methyl tertiary-Butyl Ether

RL = Laboratory reporting limit

UST excavation and sampling routine performed by Golden Gate Tank Removal, Inc., October 2004.

mg/kg = milligrams per kilogram (equivalent to parts per million)  $\mu g/kg = micrograms$  per kilogram (equivalent to parts per billion)

UST = Underground Storage Tank

## Table 3, 6310 Houston Place, Dublin, CAGroundwater Sample Analytical Data

| Sample ID  | Sample Date | Sample Location  | <b>TPH-d</b><br>μg/L | <b>MTBE</b><br>μg/L | Benzene<br>µg/L | <b>Toluene</b><br>μg/L | <b>Ethylbenzene</b><br>µg/L | <b>Xylenes</b><br>µg/L | <b>MTBE</b><br>μg/L |
|------------|-------------|------------------|----------------------|---------------------|-----------------|------------------------|-----------------------------|------------------------|---------------------|
|            |             |                  | EPA Method 8015M     |                     | E               | EPA Methods 5030 / 802 | 20F                         |                        | EPA Method 8260B    |
| 8559-D[3'] | 10/27/2004  | Dispenser        | 23,800               | 1.1                 | <0.5            | <0.5                   | <0.5                        | 1.8                    | -                   |
| 8559-Water | 10/27/2004  | UST Excavation   | 300                  | 3.8                 | <0.5            | <0.5                   | <0.5                        | <1.0                   | -                   |
| SB-1-W     | 3/14/2006   | Adjacent to tank | 450,000              | -                   | <0.5            | <0.5                   | <0.5                        | <0.5                   | <0.5                |
| SB-2-W     | 3/14/2006   | Product Piping   | 4,100                | -                   | <0.5            | <0.5                   | <0.5                        | <0.5                   | <0.5                |
| SB-3-W     | 3/14/2006   | Downgradient     | 340,000              | -                   | <0.5            | <0.5                   | <0.5                        | <0.5                   | <0.5                |
| SB-4-W     | 3/14/2006   | Dispenser        | 17,000               | -                   | <0.5            | <0.5                   | <0.5                        | <0.5                   | <0.5                |
| SB-5-W     | 3/14/2006   | Downgradient     | 580,000              | -                   | <0.5            | <0.5                   | <0.5                        | <0.5                   | <0.5                |
| RL         | -           | -                | 0.05                 | 0.5                 | 0.5             | 0.5                    | 0.5                         | 0.5                    | 0.5                 |

TPH-d = Total Petroleum Hydrocarbons as diesel MtBE = Methyl tertiary-Butyl Ether mg/L = milligrams per liter (equivalent to parts per million)

 $\mu g/L$  = micrograms per kilogram (equivalent to parts per billion)

RL = Laboratory reporting limit

UST = Underground Storage Tank

UST excavation and sampling routine performed by Golden Gate Tank Removal, Inc., October 2004.

| Well ID<br>(Screen Interval) | Date<br>Collected | Well<br>Elevation<br>(ft amsl) | Depth to<br>Water<br>( <i>ft</i> ) | Groundwater<br>Elevation<br>(ft amsl) |
|------------------------------|-------------------|--------------------------------|------------------------------------|---------------------------------------|
| <b>DW-1</b><br>(7 - 17)      | 4/10/2007         | 334.23                         | 7.44                               | 326.79                                |
| <b>DW-2</b><br>(7 - 17)      | 4/10/2007         | 334.00                         | 7.09                               | 326.91                                |
| <b>DW-3</b><br>(7 - 17)      | 4/10/2007         | 334.56                         | 7.90                               | 326.66                                |
| <b>DW-4</b><br>(7 - 17)      | 4/10/2007         | 334.49                         | 7.99                               | 326.50                                |
| <b>DW-5</b><br>(7 - 17)      | 4/10/2007         | 333.91                         | 7.00                               | 326.91                                |
| <b>DW-6</b><br>(7 - 17)      | 4/10/2007         | 334.99                         | 8.62                               | 326.37                                |
| <b>DW-7</b><br>(7 - 17)      | 4/10/2007         | 335.18                         | 8.11                               | 327.07                                |

# Table 4, 6310 Houston Place, Dublin, CAGroundwater Elevation Data

| Event # | Date     | Average Water<br>Table Elevation<br>(ft amsl) | Change from<br>Previous Episode<br>(ft) | Flow Direction<br>(gradient)<br>(ft/ft) |
|---------|----------|-----------------------------------------------|-----------------------------------------|-----------------------------------------|
| 1       | 3/9/2006 | 326.74                                        | NA                                      | S-SE / 0.005                            |

ft amsl = feet above mean sea level

All water level depths are measured from the top of casing

| Sample ID | Date      | TPH-g<br>μg/L | TPH-d<br>μg/L | TPH-mo<br>μg/L | Benzene<br>µg/L | Toluene<br>µg/L | Ethylbenzene<br>µg/L | Xylenes<br>µg/L | MTBE<br>µg/L | TAME<br>µg/L | TBA<br>µg/L | DIPE<br>μg/L | ETBE<br>μg/L | Ethanol<br>μg/L | Methanol<br>µg/L |
|-----------|-----------|---------------|---------------|----------------|-----------------|-----------------|----------------------|-----------------|--------------|--------------|-------------|--------------|--------------|-----------------|------------------|
| DW-1      | 4/10/2007 | 100           | 8,000         | 2,800          | <0.5            | <0.5            | <0.5                 | <0.5            | <0.5         | <0.5         | <5.0        | <0.5         | <0.5         | <50             | <500             |
| DW-2      | 4/10/2007 | 180           | 8,200         | <5,000         | <0.5            | < 0.5           | <0.5                 | <0.5            | <0.5         | <0.5         | <5.0        | <0.5         | <0.5         | <50             | <500             |
| DW-3      | 4/10/2007 | 220           | 27,000        | 9,200          | <0.5            | <0.5            | <0.5                 | <0.5            | <0.5         | <0.5         | <5.0        | <0.5         | <0.5         | <50             | <500             |
| DW-4      | 4/10/2007 | <50           | 65            | <250           | <0.5            | <0.5            | <0.5                 | <0.5            | 0.67         | <0.5         | <5.0        | <0.5         | <0.5         | <50             | <500             |
| DW-5      | 4/10/2007 | <50           | 800           | 320            | <0.5            | <0.5            | <0.5                 | <0.5            | <0.5         | <0.5         | <5.0        | <0.5         | <0.5         | <50             | <500             |
| DW-6      | 4/10/2007 | <50           | <50           | <250           | <0.5            | < 0.5           | <0.5                 | <0.5            | <0.5         | <0.5         | <5.0        | 0.81         | <0.5         | <50             | <500             |
| DW-7      | 4/10/2007 | <50           | <50           | <250           | <0.5            | <0.5            | <0.5                 | <0.5            | <0.5         | <0.5         | <5.0        | <0.5         | <0.5         | <50             | <500             |

## Table 5, 375 6310 Houston Place, Dublin, CA Groundwater Sample Analytical Data - TPH, BTEX, Fuel Additives

Notes:

TPHmo = total petroleum hydrocarbons as motor oil (C18+) using EPA Method 8015 TPHd = total petroleum hydrocarbons as diesel (C10-C23) using EPA Method 8015 TPHg = total petroleum hydrocarbons as gasoline (C6-C12) using EPA Method 8015 Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B MTBE = methyl-tertiary butyl ether using EPA Method 8260B TBA = tert-butyl alcohol using EPA Method 8260B DIPE = diisopropyl ether using EPA Method 8260B ETBE = ethyl tert-butyl ether using EPA Method 8260B ETBE = tertyl tert-butyl ether using EPA Method 8260B SVOCs using EPA Method 8260B SVOCs using EPA Method 8270C  $\mu g/L=$  micrograms per liter ND<50 = non detect at respective reporting limit

#### Table 6, 6310 Houston Place, Dublin, CA

#### Groundwater Sample Analytical Data - SVOCs, Inorganic Anions and COD

| Sample ID | Date      | All SVOCs<br>µg/L                                                                 | Nitrite as N<br>µg/L | Nitrate as N<br>µg/L | Nitrate as NO3 <sup>-</sup><br>µg/L | COD<br>mg/L |
|-----------|-----------|-----------------------------------------------------------------------------------|----------------------|----------------------|-------------------------------------|-------------|
| DW-1      | 4/10/2007 | -                                                                                 | <1.0                 | <0.1                 | <0.45                               | 19          |
| DW-2      | 4/10/2007 | <mdl< th=""><th>&lt; 0.1</th><th>&lt;0.1</th><th>&lt; 0.45</th><th>17</th></mdl<> | < 0.1                | <0.1                 | < 0.45                              | 17          |
| DW-3      | 4/10/2007 | <mdl< th=""><th>&lt;1.0</th><th>&lt;0.1</th><th>&lt; 0.45</th><th>48</th></mdl<>  | <1.0                 | <0.1                 | < 0.45                              | 48          |
| DW-4      | 4/10/2007 | -                                                                                 | <1.0                 | <0.1                 | < 0.45                              | <10         |
| DW-5      | 4/10/2007 | -                                                                                 | <0.50                | <0.1                 | < 0.45                              | <10         |
| DW-6      | 4/10/2007 | -                                                                                 | <1.0                 | 3.4                  | 15                                  | <10         |
| DW-7      | 4/10/2007 | -                                                                                 | <1.0                 | 5.2                  | 23                                  | <10         |

Notes: SVOCs = semi-volatile organic compounds

COD = chemical oxygen demand using EPA Method SM5220D

nitrite and nitrates analyzed using EPA Method E300.1 mg/L= milligrams per liter

Hg/L = micrograms per liter <0.50 = non detect at respective reporting limit "-" = not analyzed

## APPENDIX A

## Monitoring Well Permit Documentation



#### ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

100 NORTH CANYONS PARKWAY, LIVERMORE, CA 94551-9486

PHONE (925) 454-5000

٥

March 13, 2007

Mr. Adrian Angel AEI Consultants 2500 Camino Diablo, Suite 200 Walunt Creek, CA 94597

Dear Mr. Angel:

Enclosed is drilling permit 27047 for a monitoring well construction project at 6310 Houston Place in Dublin for Cary Greyson. Also enclosed is a current drilling permit application for your files. Drilling permit applications for future projects can also be downloaded from our web site at www.zone7water.com.

Please note that permit conditions A-2 requires that a well construction report be submitted after completion of the work. The report should include drilling and completion logs, location sketch, permit number and any analysis of the soil and water samples. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact me at extension 5056 or Matt Katen at extension 5071.

Sincerely,

Wyman Hong () Water Resources Specialist

Enc.

P:\WRE\GPOs\GPO1\GPO1.MONITORING.wpd



## ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728

#### DRILLING PERMIT APPLICATION

| FOR APPLICANT TO COMPLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION OF PROJECT 6310 Houston Place, Dublin, C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| California Coordinates Sourceft .Accuracy=ft<br>CCNft CCEft<br>APN941~0550~067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CLIENT<br>Name_Mr. (avy Grzyson<br>Address_Juli 3 Stirrup CtPhone/425) 438~2222<br>City_Walwut Creek CAZip_44596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| APPLICANT,<br>Name Harian Angel-AET Consultants<br>Fax (425)293-6121<br>Address 2500 (amiho Diablo Phone (6125)293-6121<br>City Walnut (Verel, CA Zip 114597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TYPE OF PROJECT       Geotechnical Investigation         Well Construction       Geotechnical Investigation         Cathodic Protection       Geotechnical Investigation         Water Supply       Contamination         Monitoring       Well Destruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PROPOSED WELL USE       Irrigation       Irrigation       Industrial         New Domestic       Irrigation       Industrial       Industrial       Industrial         Industrial       Industrial       Groundwater Monitoring       Image: State |
| DRILLING METHOD:<br>Mud Rotary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DRILLING COMPANY Spectrum Exploration<br>DRILLER'S LICENSE NO. C57-512268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WELL PROJECTS<br>Drill Hole Diameterin. Maximum<br>Casing Diameterin. Depthft.<br>Surface Seal Depthft. Number7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SOIL BORINGS<br>Number of Borings Maximum<br>Hole Diameterin. Depthft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ESTIMATED STARTING DATE 3/15/07<br>ESTIMATED COMPLETION DATE 3/16/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.

APPLICANT'S SIGNATURE Date Adrian Angel

FOR OFFICE USE

PERMIT NUMBER 27047 WELL NUMBER 3S/1E-6C19 to 6C25 (DW-1 to DW-7) APN 941-0550-067-00

PERMIT CONDITIONS

(Circled Permit Requirements Apply)

A. GENERAL

- 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date.
- Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects or drilling logs and location sketch for geotechnical projects.
- Permit is void if project not begun within 90 days of approval date.

B. WATER SUPPLY WELLS

- Minimum surface seal thickness is two inches of cement grout placed by tremie.
- Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.
- 3. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements.
- A sample port is required on the discharge pipe near the wellhead.
- C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
  - Minimum surface seal thickness is two inches of cement grout placed by tremie.
  - Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
- D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
- E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
- F. WELL DESTRUCTION. See attached.
- G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after the completion of permitted work the well installation report <u>including all</u> <u>soil and water laboratory analysis results</u>.

Approved Date 3/12/07 Wyman Hong

ATTACH SITE PLAN OR SKETCH

Revised: April 27, 2005

## **APPENDIX B**

Monitoring Well Construction Logs

## Log of Boring DW-1

| Date(s)<br>Drilled March 14, 2007 | Logged By Adrian Angel      | Checked By Peter McIntyre                |
|-----------------------------------|-----------------------------|------------------------------------------|
| Drilling                          | Drill Bit                   | Total Depth                              |
| Method Hollow Stem Auger          | Size/Type                   | of Borehole <b>17 feet bgs</b>           |
| Drill Rig                         | Drilling                    | Approximate                              |
| Type Mobil B61                    | Contractor <b>Spectrum</b>  | Surface Elevation <b>334.44 feet MSL</b> |
| Groundwater Level                 | Sampling                    | Hammer                                   |
| and Date Measured                 | Method(s) <b>California</b> | Data                                     |
| Borehole<br>Backfill See Below    | Location                    |                                          |

| Elevation, feet                                                                             | Depth, feet | Sample Type      | Sample<br>Number | Graphic Log |                                                                   |       | Well Loa |          | REMARKS AND OTHER                             |
|---------------------------------------------------------------------------------------------|-------------|------------------|------------------|-------------|-------------------------------------------------------------------|-------|----------|----------|-----------------------------------------------|
| Ele                                                                                         |             | Sar              | Sar<br>Nur       | Gra         | MATERIAL DESCRIPTION                                              |       | We       | :        | TESTS                                         |
| _                                                                                           | 0-          |                  |                  |             | Concrete                                                          | _/×   | ∞        | <b>.</b> | - TOC 334.23 ft. amsl                         |
| _                                                                                           | -           |                  |                  |             | Sandy Clay, dark brown, moderately dense, low plasticity<br>-     | -     |          |          |                                               |
| -                                                                                           | -           | -                |                  |             | -                                                                 | -     | 8        |          | Neat cement grout                             |
| -                                                                                           | -           | -                |                  |             | -                                                                 |       |          |          | - Blank 2" schedule 40 PVC<br>casing          |
| 30 4—                                                                                       | _           |                  |                  |             | _                                                                 |       |          |          |                                               |
|                                                                                             |             |                  |                  |             |                                                                   |       |          | •        | - Bentonite chips                             |
| -                                                                                           | 5           | $\left  \right $ |                  |             |                                                                   | -     |          |          |                                               |
| _                                                                                           | -           |                  |                  |             | -                                                                 |       |          |          |                                               |
|                                                                                             |             |                  | DW-1-7'          |             |                                                                   |       | ··       | •        | - # 2/12 Monterey sand                        |
| -                                                                                           | -           |                  | 000-1-7          |             | Silty Clay, dark brown, medium plasticity, moist, petroleum odors | [.    | : =      |          | Blow Counts: 4/6/7                            |
| _                                                                                           |             |                  |                  |             | -                                                                 | _     | ÷Ē       |          | - 0.010 slotted, 2" schedule<br>40 PVC casing |
|                                                                                             |             |                  |                  |             |                                                                   |       | ÷E       |          |                                               |
| 25.4—                                                                                       | -           |                  |                  |             | -                                                                 | - .:  | E        |          |                                               |
| -                                                                                           | 10-         |                  |                  |             | _                                                                 | _     | ÷E       |          |                                               |
|                                                                                             |             |                  |                  |             |                                                                   | ·.    | Ē        |          |                                               |
| -                                                                                           | -           |                  |                  |             | -                                                                 | -     | Ē        |          |                                               |
| _                                                                                           |             |                  | DW-1-12'         |             | -                                                                 |       |          |          |                                               |
|                                                                                             |             |                  |                  |             |                                                                   | ,<br> | ΞĒ       |          | Blow Counts: 3/3/4                            |
| -                                                                                           | -           | +                |                  |             | -                                                                 | 1.    |          |          |                                               |
| 20.4—                                                                                       | -           |                  |                  |             | -                                                                 |       | ۰Ē       |          |                                               |
|                                                                                             |             |                  |                  |             |                                                                   |       | E        |          |                                               |
| -                                                                                           | 15-         |                  |                  |             | —                                                                 | -     | ÷Ē       |          |                                               |
| _                                                                                           | - 1         |                  | DW-1-16'         |             |                                                                   |       |          |          | Plaus Country 2/5/2                           |
|                                                                                             |             |                  |                  |             | Silty Clay, dark brown, tight, moist                              | ŀ     | E        |          | Blow Counts: 3/5/8                            |
| -                                                                                           | -           |                  |                  |             | Bottom of Boring at 17 feet bgs                                   |       | .⊏       | 1        |                                               |
| _                                                                                           | - 1         |                  |                  |             | -                                                                 | _     |          |          |                                               |
|                                                                                             |             |                  |                  |             |                                                                   |       |          |          |                                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | - 1         |                  |                  |             | -                                                                 |       |          |          | Figur                                         |

## Log of Boring DW-2

| Date(s)<br>Drilled March 14, 2007 | Logged By Adrian Angel      | Checked By Peter McIntyre                |
|-----------------------------------|-----------------------------|------------------------------------------|
| Drilling                          | Drill Bit                   | Total Depth                              |
| Method Hollow Stem Auger          | Size/Type                   | of Borehole <b>17 feet bgs</b>           |
| Drill Rig                         | Drilling                    | Approximate                              |
| Type <b>Mobil B61</b>             | Contractor <b>Spectrum</b>  | Surface Elevation <b>334.48 feet MSL</b> |
| Groundwater Level                 | Sampling                    | Hammer                                   |
| and Date Measured                 | Method(s) <b>California</b> | Data                                     |
| Borehole<br>Backfill See Below    | Location                    |                                          |

| Elevation, feet                                                                                                              | Depth, feet   | Sample Type | Sample<br>Number | Graphic Log | MATERIAL DESCRIPTION                                                      |   | N/I I NO | REMARKS AND OTHER<br>TESTS                                            |
|------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------------|-------------|---------------------------------------------------------------------------|---|----------|-----------------------------------------------------------------------|
| _                                                                                                                            | 0             |             |                  |             | Asphalt<br>Silty Sand, dark brown, poorly graded, loose, dry              |   |          | TOC 334 ft<br>Neat cement grout<br>Blank 2" schedule 40 PVC<br>casing |
| 30.5—<br>-<br>-                                                                                                              | -<br>5        |             |                  |             |                                                                           |   |          | Bentonite chips                                                       |
| -<br>325.5—                                                                                                                  | -<br>-<br>10— |             | DW-2-10'         |             |                                                                           |   |          | 0.010 slotted, 2" schedule<br>40 PVC casing                           |
| -<br>330.5<br>-<br>-<br>-<br>325.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -             |             |                  |             | Silty Clay, dark brown, medium plasticity, moist<br>                      |   |          | Blow Counts: 4/5/7                                                    |
| 320.5—<br>-<br>-                                                                                                             | -<br>15—<br>- |             | DW-2-15'         |             | Clayey Sand, minor clay, greenish brown, fine grained, petroleum<br>odors |   |          | Blow Counts: 4/6/9                                                    |
| 315.5                                                                                                                        |               |             |                  |             | Bottom of Boring at 17 feet bgs<br>_                                      | _ |          | <br>Figure                                                            |

## Log of Boring DW-3

| Date(s)<br>Drilled March 14, 2007 | Logged By Adrian Angel      | Checked By Peter McIntyre                |
|-----------------------------------|-----------------------------|------------------------------------------|
| Drilling                          | Drill Bit                   | Total Depth                              |
| Method Hollow Stem Auger          | Size/Type                   | of Borehole <b>17 feet bgs</b>           |
| Drill Rig                         | Drilling                    | Approximate                              |
| <sub>Type</sub> Mobil B61         | Contractor <b>Spectrum</b>  | Surface Elevation <b>334.99 feet MSL</b> |
| Groundwater Level                 | Sampling                    | Hammer                                   |
| and Date Measured                 | Method(s) <b>California</b> | Data                                     |
| Borehole<br>Backfill See Below    | Location                    |                                          |

| Elevation, feet                                                                                                                                 | Depth, feet  | Sample Type | Sample<br>Number | Graphic Log | MATERIAL DESCRIPTION                                         | Well Log | REMARKS AND OTHER<br>■ REMARKS AND OTHER<br>TESTS                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------------|-------------|--------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------|--|
| -<br>331-<br>-<br>326-<br>-<br>321-<br>-<br>-<br>321-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0            |             | :                |             | Asphalt<br>Silty Sand, dark brown, poorly graded, loose, dry | -        | TOC 334.56 ft  Neat cement grout Blank 2" schedule 40 PVC casing  Bentonite chips         |  |
| -<br>-<br>326<br>-                                                                                                                              | <br><br>- 10 |             | DW-3-10'         |             |                                                              |          | # 2/12 Monterey sand<br>0.010 slotted, 2" schedule<br>40 PVC casing<br>Blow Counts: 4/6/7 |  |
| -<br>321—<br>-                                                                                                                                  |              |             | DW-3-15'         |             |                                                              |          | Blow Counts: 5/8/10                                                                       |  |
| -<br>316                                                                                                                                        |              |             |                  |             | Bottom of Boring at 17 feet bgs                              |          | Figure                                                                                    |  |

## Log of Boring DW-4

| Date(s)<br>Drilled March 14, 2007 | Logged By Adrian Angel      | Checked By Peter McIntyre         |
|-----------------------------------|-----------------------------|-----------------------------------|
| Drilling                          | Drill Bit                   | Total Depth                       |
| Method Hollow Stem Auger          | Size/Type                   | of Borehole <b>17 feet bgs</b>    |
| Drill Rig                         | Drilling                    | Approximate                       |
| Type Mobil B61                    | Contractor <b>Spectrum</b>  | Surface Elevation 334.95 feet MSL |
| Groundwater Level                 | Sampling                    | Hammer                            |
| and Date Measured                 | Method(s) <b>California</b> | Data                              |
| Borehole<br>Backfill See Below    | Location                    |                                   |

| Elevation, feet     | Depth, feet  | Sample Type | Sample<br>Number | Graphic Log |                                                                        | Well Log | REMARKS AND OTHER                                                             |
|---------------------|--------------|-------------|------------------|-------------|------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------|
| Ŭ<br> <br>          | 0<br>        | Sa          | SCa              | Gr          | Asphalt<br>Clayey Sand, dark brown, poorly graded, slightly dense, dry | M        | TESTS<br>- TOC 334.49 ft<br>- Neat cement grout<br>- Blank 2" schedule 40 PVC |
| -<br>331—<br>-<br>- | -<br>5       |             |                  |             |                                                                        |          | easing                                                                        |
| -<br>-<br>326       | _            |             |                  |             |                                                                        |          | - # 2/12 Monterey sand<br>- 0.010 slotted, 2" schedule<br>40 PVC casing       |
| -                   | 10           |             | DW-4-12'         |             |                                                                        |          | Blow Counts: 5/7/9                                                            |
| -<br>321—<br>-      | -<br>-<br>15 |             |                  |             |                                                                        |          |                                                                               |
| -                   |              |             |                  |             | Bottom of Boring at 17 feet bgs                                        |          |                                                                               |
| 316                 |              |             |                  |             |                                                                        |          | Figure                                                                        |

## Log of Boring DW-5

| Date(s)<br>Drilled March 15, 2007 | Logged By Adrian Angel      | Checked By Peter McIntyre               |
|-----------------------------------|-----------------------------|-----------------------------------------|
| Drilling                          | Drill Bit                   | Total Depth                             |
| Method Hollow Stem Auger          | Size/Type                   | of Borehole <b>17 feet bgs</b>          |
| Drill Rig                         | Drilling                    | Approximate                             |
| Type <b>Mobil B61</b>             | Contractor <b>Spectrum</b>  | Surface Elevation <b>334.5 feet MSL</b> |
| Groundwater Level                 | Sampling                    | Hammer                                  |
| and Date Measured                 | Method(s) <b>California</b> | Data                                    |
| Borehole<br>Backfill See Below    | Location                    |                                         |

| Elevation, feet                                                                                                                       | Depth, feet | Sample Type | Sample<br>Number | Graphic Log | MATERIAL DESCRIPTION                                                              |  | REMARKS AND OTHER<br>TESTS                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------------|-------------|-----------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------|
|                                                                                                                                       | 0           |             |                  |             | Asphalt<br>Clayey Sand, dark brown, poorly graded, slightly dense, dry            |  | - TOC 333.91 ft<br>- Neat cement grout<br>- Blank 2" schedule 40 PVC<br>casing |
| 30.5—<br>-<br>-                                                                                                                       | 5           | -           |                  |             |                                                                                   |  | Bentonite chips                                                                |
| <br><br>325.5                                                                                                                         | -           |             | DW-5-7'          |             | Silty Clay, dark brown, medium plasticity, moist                                  |  | - # 2/12 Monterey sand<br>- 0.010 slotted, 2" schedule<br>40 PVC casing        |
| -<br>330.5<br>-<br>-<br>325.5<br>-<br>-<br>320.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 10          | -           |                  |             |                                                                                   |  |                                                                                |
|                                                                                                                                       | -<br>15     |             | DW-5-16'         |             |                                                                                   |  |                                                                                |
| -<br>-<br>315.5                                                                                                                       | -           |             |                  |             | Silty Sand, minor clay, dark brown, very moist<br>Bottom of Boring at 17 feet bgs |  | Blow Counts: 5/8/10                                                            |

## Log of Boring DW-6

| Date(s)<br>Drilled March 15, 2007 | Logged By Adrian Angel      | Checked By Peter McIntyre         |
|-----------------------------------|-----------------------------|-----------------------------------|
| Drilling                          | Drill Bit                   | Total Depth                       |
| Method Hollow Stem Auger          | Size/Type                   | of Borehole <b>17 feet bgs</b>    |
| Drill Rig                         | Drilling                    | Approximate                       |
| Type <b>Mobil B61</b>             | Contractor Spectrum         | Surface Elevation 335.44 feet MSL |
| Groundwater Level                 | Sampling                    | Hammer                            |
| and Date Measured                 | Method(s) <b>California</b> | Data                              |
| Borehole<br>Backfill See Below    | Location                    |                                   |

| Elevation, feet                                                                                                            | Depth, feet   | Sample Type | Sample<br>Number | Graphic Log | MATERIAL DESCRIPTION                                                   | Well Log | REMARKS AND OTHER<br>TESTS                              |
|----------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------------|-------------|------------------------------------------------------------------------|----------|---------------------------------------------------------|
| _                                                                                                                          | 0             |             |                  |             | Asphalt<br>Clayey Sand, dark brown, poorly graded, slightly dense, dry |          | -TOC 334.99 ft                                          |
| -<br>-<br>31.4                                                                                                             | -             | -           |                  |             |                                                                        | -        | Neat cement grout<br>Blank 2" schedule 40 PVC<br>casing |
| _                                                                                                                          | 5             | _           |                  |             |                                                                        |          | Bentonite chips                                         |
| _                                                                                                                          | -             |             | DW-6-9'          |             |                                                                        |          | 0.010 slotted, 2" schedule<br>40 PVC casing             |
| -<br>31.4<br>-<br>-<br>-<br>26.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>10—<br>- |             |                  |             | Silty Clay, dark brown, medium plasticity, moist                       |          | Blow Counts: 4/5/6                                      |
| -<br>21.4<br>-                                                                                                             | -<br>-<br>15— |             | DW-6-14'         |             | Silty Sand, minor clay, dark brown, very moist                         |          | Blow Counts: 3/3/5                                      |
| _<br>_<br>16.4                                                                                                             | -             |             |                  |             | Bottom of Boring at 17 feet bgs                                        |          |                                                         |
|                                                                                                                            |               |             |                  |             |                                                                        |          | Figure                                                  |

## Log of Boring DW-7

| Date(s)<br>Drilled March 15, 2007 | Logged By Adrian Angel      | Checked By Peter McIntyre         |
|-----------------------------------|-----------------------------|-----------------------------------|
| Drilling                          | Drill Bit                   | Total Depth                       |
| Method Hollow Stem Auger          | Size/Type                   | of Borehole <b>17 feet bgs</b>    |
| Drill Rig                         | Drilling                    | Approximate                       |
| Type <b>Mobil B61</b>             | Contractor <b>Spectrum</b>  | Surface Elevation 335.62 feet MSL |
| Groundwater Level                 | Sampling                    | Hammer                            |
| and Date Measured                 | Method(s) <b>California</b> | Data                              |
| Borehole<br>Backfill See Below    | Location                    |                                   |

| 0       Asphalt         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       - | Elevation, feet  | Depth, feet | Sample Type | Sample<br>Number | Graphic Log |                                                  |           | Well Loo |            | REMARKS AND OTHER                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-------------|------------------|-------------|--------------------------------------------------|-----------|----------|------------|---------------------------------------------|
| 131.6 131.6 5 5 6 10 33.18 ft 10 33.18 ft Neat cernent grout Blank 2" schedule 40 PVC casing # 2/12 Monterey sand 0.010 slotted, 2" schedule 40 PVC casing # 2/12 Monterey sand 0.010 slotted, 2" schedule 40 PVC casing # 2/12 Monterey sand 0.010 slotted, 2" schedule 40 PVC casing # 2/12 Monterey sand 0.010 slotted, 2" schedule 40 PVC casing Blow Counts: 3/4/5 Blow Counts: 3/4/5 Blow Counts: 3/4/5 Blow Counts: 4/5/8                                                                                                                                                                                                                                                                          | Ē                |             | Se          | ŠŽ               | อ็          |                                                  |           | >        | \$         | TESTS                                       |
| Blank 2" schedule 40 PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                | -           | _           |                  |             |                                                  |           |          |            | - TOC 335.18 ft                             |
| 31.6<br>5<br>5<br>6<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                | -           | _           |                  |             |                                                  |           |          |            | Blank 2" schedule 40 PVC                    |
| 28.6<br>10<br>DW-7-11<br>21.6<br>5ilty Sand, minor clay, dark brown, very moist<br>blow Counts: 3/4/5<br>Blow Counts: 4/5/8<br>Blow Counts: 4/5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | -<br>5—     | -           |                  |             | - · ·                                            |           |          |            |                                             |
| 28.6<br>10<br>DW-7-11'<br>21.6<br>5ilty Clay, dark brown, medium plasticity, moist<br>Blow Counts: 3/4/5<br>Blow Counts: 3/4/5<br>Blow Counts: 4/5/8<br>Blow Counts: 4/5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                | -           | -           |                  |             | - · ·                                            |           |          |            | +# 2/12 Monterey sand                       |
| 10       10       Silty Clay, dark brown, medium plasticity, moist         10       DW-7-11       Blow Counts: 3/4/5         121.6       5ilty Sand, minor clay, dark brown, very moist       Blow Counts: 4/5/8         15       DW-7-16       Blow Counts: 4/5/8                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                | -           |             |                  |             |                                                  | <br> <br> |          |            | 0.010 slotted, 2" schedule<br>40 PVC casing |
| B21.6<br>BIOW Counts: 4/5/8<br>BIOW Counts: 4/5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 326.6—<br>-<br>- | -<br>10—    |             | DW-7-11'         |             | Silty Clay, dark brown, medium plasticity, moist |           |          |            | Blow Counts: 3/4/5                          |
| Silty Sand, minor clay, dark brown, very moist<br>DW-7-16<br>Blow Counts: 4/5/8<br>Bottom of Boring at 17 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                | -           |             |                  |             |                                                  |           |          |            |                                             |
| Blow Counts: 4/5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.6             | -<br>15—    |             |                  |             | Silty Sand, minor clay, dark brown, very moist   | -         |          |            |                                             |
| Bottom of Boring at 17 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                | -           |             | DW-7-16'         |             |                                                  | _         |          |            | Blow Counts: 4/5/8                          |
| 316.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                | -           |             |                  |             | Bottom of Boring at 17 feet bgs                  | _;<br>_   | ÷E       | <u>1</u> . |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 316.6            | -           |             |                  |             |                                                  |           |          |            |                                             |

### **APPENDIX C**

Groundwater Monitoring Field Forms

#### AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

|                        |                             | М      | onitoring Well Number: | DW-1       |  |  |  |  |
|------------------------|-----------------------------|--------|------------------------|------------|--|--|--|--|
| Duringt Name           |                             |        | Data of Compliant      | 4/0/0007   |  |  |  |  |
| Project Name:          | G&G International Holding   | )      | Date of Sampling:      | 4/3/2007   |  |  |  |  |
| Job Number:            | 261639                      |        | Name of Sampler:       | R Bartlett |  |  |  |  |
| Project Address:       | 6310 Houston Place, Dublin, | CA     |                        |            |  |  |  |  |
|                        |                             |        |                        |            |  |  |  |  |
| MONITORING WELL DATA   |                             |        |                        |            |  |  |  |  |
| Well Casing Diameter   | (2"/4"/6")                  |        | 2                      |            |  |  |  |  |
| Wellhead Condition     |                             | ОК     |                        |            |  |  |  |  |
| Elevation of Top of Ca | sing (feet above msl)       | 334.23 |                        |            |  |  |  |  |
| Depth of Well          |                             |        | 17.00                  |            |  |  |  |  |
| Depth to Water (from t | op of casing)               | 7.44   |                        |            |  |  |  |  |

326.79

3

4.6

Water Elevation (feet above msl)

Calculated Gallons Purged: formula valid only for casing

sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)

Well Volumes Purged

| Actual Volume Pu    |                           | 6.0                    |               |                         |                 |              |          |  |  |  |
|---------------------|---------------------------|------------------------|---------------|-------------------------|-----------------|--------------|----------|--|--|--|
| Appearance of Pu    | Appearance of Purge Water |                        |               |                         |                 | Milky grey   |          |  |  |  |
|                     |                           | Free Proc              | duct Present? | no                      | Thickness (ft): |              |          |  |  |  |
| GROUNDWATER SAMPLES |                           |                        |               |                         |                 |              |          |  |  |  |
| Number of Sampl     | es/Container S            | Size                   |               | 3 VOAs & 1-liter        |                 |              |          |  |  |  |
| Time                | Vol Removed<br>(gal)      | Temperature<br>(deg C) | рН            | Conductivity<br>(μS/cm) | DO<br>(mg/L)    | ORP<br>(meV) | Comments |  |  |  |
|                     | 2                         | 18.04                  | 7.28          | 5101                    | 3.80            | -191.8       |          |  |  |  |
|                     | 4                         | 17.04                  | 7.26          | 5162                    | 2.55            | -209.8       |          |  |  |  |
|                     | 6                         | 16.93                  | 7.26          | 5182                    | 1.25            | -225.9       |          |  |  |  |
|                     |                           |                        |               |                         |                 |              |          |  |  |  |

#### COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

| No petroleum odors noted. |  |  |  |  |  |  |  |  |
|---------------------------|--|--|--|--|--|--|--|--|
|                           |  |  |  |  |  |  |  |  |
|                           |  |  |  |  |  |  |  |  |
|                           |  |  |  |  |  |  |  |  |

|                  | Mor                            | nitoring Well Number: | DW-2       |
|------------------|--------------------------------|-----------------------|------------|
|                  |                                |                       |            |
| Project Name:    | G&G International Holding      | Date of Sampling:     | 4/3/2007   |
| Job Number:      | 261639                         | Name of Sampler:      | R Bartlett |
| Project Address: | 6310 Houston Place, Dublin, CA |                       |            |
|                  |                                |                       |            |

### MONITORING WELL DATA

| Well Casing Diameter (2"/4"/6")                                                                               | 2          |        |  |  |  |        |  |  |
|---------------------------------------------------------------------------------------------------------------|------------|--------|--|--|--|--------|--|--|
| Wellhead Condition                                                                                            | ОК         |        |  |  |  |        |  |  |
| Elevation of Top of Casing (feet above msl)                                                                   |            | 334.00 |  |  |  |        |  |  |
| Depth of Well                                                                                                 |            | 17.00  |  |  |  |        |  |  |
| Depth to Water (from top of casing)                                                                           | 7.09       |        |  |  |  |        |  |  |
| Water Elevation (feet above msl)                                                                              | 326.91     |        |  |  |  | 326.91 |  |  |
| Well Volumes Purged                                                                                           | 3          |        |  |  |  |        |  |  |
| Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) | 4.8        |        |  |  |  |        |  |  |
| Actual Volume Purged (gallons)                                                                                | 6.0        |        |  |  |  |        |  |  |
| Appearance of Purge Water                                                                                     | Milky grey |        |  |  |  |        |  |  |
| Free Product Present?                                                                                         | , , ,      |        |  |  |  |        |  |  |

#### GROUNDWATER SAMPLES

| Number of Sampl |                      | 3 VOAs & 1-li          | ter  |                         |              |              |          |
|-----------------|----------------------|------------------------|------|-------------------------|--------------|--------------|----------|
| Time            | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН   | Conductivity<br>(μS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments |
|                 | 2                    | 21.29                  | 7.65 | 940                     | 2.97         | -179.4       |          |
|                 | 4                    | 19.59                  | 7.62 | 2030                    | 2.46         | -193.8       |          |
|                 | 6                    | 19.01                  | 7.64 | 1348                    | 1.09         | -242.7       |          |
|                 |                      |                        |      |                         |              |              |          |
|                 |                      |                        |      |                         |              |              |          |
|                 |                      |                        |      |                         |              |              |          |

| Strong petroleum odors noted. |  |  |
|-------------------------------|--|--|
|                               |  |  |
|                               |  |  |
|                               |  |  |

|                  | Mo                             | nitoring Well Number: | DW-3       |
|------------------|--------------------------------|-----------------------|------------|
|                  |                                |                       |            |
| Project Name:    | G&G International Holding      | Date of Sampling:     | 4/3/2007   |
| Job Number:      | 261639                         | Name of Sampler:      | R Bartlett |
| Project Address: | 6310 Houston Place, Dublin, CA |                       |            |
|                  |                                |                       |            |

### MONITORING WELL DATA

| Well Casing Diameter (2"/4"/6")                                                                               | 2          |        |  |  |  |        |  |  |
|---------------------------------------------------------------------------------------------------------------|------------|--------|--|--|--|--------|--|--|
| Wellhead Condition                                                                                            | ОК         |        |  |  |  |        |  |  |
| Elevation of Top of Casing (feet above msl)                                                                   |            | 334.56 |  |  |  |        |  |  |
| Depth of Well                                                                                                 |            | 17.00  |  |  |  |        |  |  |
| Depth to Water (from top of casing)                                                                           | 7.90       |        |  |  |  |        |  |  |
| Water Elevation (feet above msl)                                                                              | 326.66     |        |  |  |  | 326.66 |  |  |
| Well Volumes Purged                                                                                           | 3          |        |  |  |  |        |  |  |
| Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) | 4.4        |        |  |  |  |        |  |  |
| Actual Volume Purged (gallons)                                                                                | 6.0        |        |  |  |  |        |  |  |
| Appearance of Purge Water                                                                                     | Milky grey |        |  |  |  |        |  |  |
| Free Product Present?                                                                                         |            |        |  |  |  |        |  |  |

| GROUNDWATER | SAMPLES |
|-------------|---------|
|-------------|---------|

| Number of Samples/Container Size |                      |                        |      | 3 VOAs & 1-li           | ter          |              |          |
|----------------------------------|----------------------|------------------------|------|-------------------------|--------------|--------------|----------|
| Time                             | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН   | Conductivity<br>(μS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments |
|                                  | 2                    | 17.95                  | 6.93 | 4323                    | 6.83         | -234.3       |          |
|                                  | 4                    | 17.15                  | 6.99 | 4458                    | 5.02         | -251.4       |          |
|                                  | 6                    | 17.11                  | 6.99 | 4434                    | 3.15         | -269.1       |          |
|                                  |                      |                        |      |                         |              |              |          |
|                                  |                      |                        |      |                         |              |              |          |
|                                  |                      |                        |      |                         |              |              |          |

| Strong petroleum odors. |
|-------------------------|
|                         |
|                         |
|                         |
|                         |

|                                             |                             | Mor     | itoring Well Number: | DW-4       |  |  |  |  |
|---------------------------------------------|-----------------------------|---------|----------------------|------------|--|--|--|--|
|                                             |                             |         |                      |            |  |  |  |  |
| Project Name:                               | G&G International Holding   | 9       | Date of Sampling:    | 4/3/2007   |  |  |  |  |
| Job Number:                                 | 261639                      |         | Name of Sampler:     | R Bartlett |  |  |  |  |
| Project Address:                            | 6310 Houston Place, Dublin, | lin, CA |                      |            |  |  |  |  |
|                                             |                             |         |                      |            |  |  |  |  |
| MONITORING WELL DATA                        |                             |         |                      |            |  |  |  |  |
| Well Casing Diameter                        | rer (2"/4"/6")              | 2       |                      |            |  |  |  |  |
| Wellhead Condition                          |                             | ОК      |                      |            |  |  |  |  |
| Elevation of Top of Casing (feet above msl) |                             |         | 334.49               |            |  |  |  |  |
| Depth of Well                               |                             | 17.00   |                      |            |  |  |  |  |
| Depth to Water (from                        | n top of casing)            | 7.99    |                      |            |  |  |  |  |
| Water Elevation (fee                        | et above msl)               | 326.50  |                      |            |  |  |  |  |
| Well Volumes Purge                          | ed                          |         | 3                    |            |  |  |  |  |

| Gallons Purged<br>gal/ft)        | : formula valid o<br>, 4" (.65 gal/ft), a | , ,         | · · | 4.3                |    |     |          |  |
|----------------------------------|-------------------------------------------|-------------|-----|--------------------|----|-----|----------|--|
| Actual Volume P                  |                                           |             |     | 3.0                |    |     |          |  |
| Appearance of P                  |                                           |             | Ν   | /lilky grey        |    |     |          |  |
| Free Product Present?            |                                           |             |     | no Thickness (ft): |    |     |          |  |
| GROUNDWATER SAMPLES              |                                           |             |     |                    |    |     |          |  |
| Number of Samples/Container Size |                                           |             |     | 3 VOAs & 1-liter   |    |     |          |  |
| Timo                             | Vol Removed                               | Temperature | nЦ  | Conductivity       | DO | ORP | Commonte |  |

Gallons Purged: formula valid only for casing sizes of 2" (.16

| Time | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН   | Conductivity<br>(μS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments |
|------|----------------------|------------------------|------|-------------------------|--------------|--------------|----------|
|      | 2                    | 17.67                  | 7.60 | 3495                    | 2.20         | -242.1       |          |
|      | 4                    | 17.37                  | 7.28 | 3528                    | 1.63         | -269.1       |          |
|      | 6                    | 17.38                  | 7.34 | 1947                    | 1.42         | -249.8       |          |
|      |                      |                        |      |                         |              |              |          |
|      |                      |                        |      |                         |              |              |          |
|      |                      |                        |      |                         |              |              |          |

|                         |  | - | <br>- |  |
|-------------------------|--|---|-------|--|
| Strong Petroleum odors. |  |   |       |  |
|                         |  |   |       |  |
|                         |  |   |       |  |
|                         |  |   |       |  |

|                                   |                                | Mon | itoring Well Number: | DW-5     |  |  |
|-----------------------------------|--------------------------------|-----|----------------------|----------|--|--|
| Project Name:                     | G&G International Holding      | 3   | Date of Sampling:    | 4/3/2007 |  |  |
| Job Number:                       | 261639                         |     | Name of Sampler:     |          |  |  |
| Project Address:                  | 6310 Houston Place, Dublin, CA |     |                      |          |  |  |
| MONITORING WELL DATA              |                                |     |                      |          |  |  |
| Woll Casing Diameter (2"/4"/6") 2 |                                |     |                      |          |  |  |
| Wellhead Condition                |                                | ОК  |                      | ▼        |  |  |
| Elevation of Top of Cas           | sing (feet above msl)          |     | 333.91               |          |  |  |
| Depth of Well                     |                                |     | 17.00                |          |  |  |

7.00

326.91

3

4.8

6.0

Milky grey

Depth to Water (from top of casing)

Gallons Purged: formula valid only for casing sizes of 2" (.16

gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)

Water Elevation (feet above msl)

Actual Volume Purged (gallons)

Appearance of Purge Water

Well Volumes Purged

| Free Product Present?            |                      |                        | no            | 7                       | Thickness (ft): |              |          |  |  |
|----------------------------------|----------------------|------------------------|---------------|-------------------------|-----------------|--------------|----------|--|--|
|                                  | GROUNDWATER SAMPLES  |                        |               |                         |                 |              |          |  |  |
| Number of Samples/Container Size |                      |                        | 3 VOAs & 1-li | ter                     | -               |              |          |  |  |
| Time                             | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН            | Conductivity<br>(μS/cm) | DO<br>(mg/L)    | ORP<br>(meV) | Comments |  |  |
|                                  | 2                    | 19.93                  | 7.21          | 3355                    | 4.07            | -121.5       |          |  |  |
|                                  | 4                    | 18.56                  | 7.13          | 3661                    | 2.07            | -171.6       |          |  |  |
|                                  | 6                    | 18.67                  | 7.05          | 3227                    | 1.43            | -196.1       |          |  |  |
|                                  |                      |                        |               |                         |                 |              |          |  |  |
|                                  |                      |                        |               |                         |                 |              |          |  |  |
|                                  |                      |                        |               |                         |                 |              |          |  |  |

| Slight petroleum odors. |  |  |
|-------------------------|--|--|
|                         |  |  |
|                         |  |  |
|                         |  |  |

|                         |                                | Mor    | nitoring Well Number: | DW-6       |  |  |
|-------------------------|--------------------------------|--------|-----------------------|------------|--|--|
|                         |                                |        |                       |            |  |  |
| Project Name:           | G&G International Holding      | g      | Date of Sampling:     | 4/3/2007   |  |  |
| Job Number:             | 261639                         |        | Name of Sampler:      | R Bartlett |  |  |
| Project Address:        | 6310 Houston Place, Dublin, CA |        |                       |            |  |  |
|                         |                                |        |                       |            |  |  |
| MONITORING WELL DATA    |                                |        |                       |            |  |  |
| Well Casing Diameter    | (2"/4"/6")                     |        | 2                     |            |  |  |
| Wellhead Condition      |                                | OK     |                       | •          |  |  |
| Elevation of Top of Cas | sing (feet above msl)          |        | 334.99                |            |  |  |
| Depth of Well           |                                | 17.00  |                       |            |  |  |
| Depth to Water (from t  | top of casing)                 |        | 8.62                  |            |  |  |
| Water Elevation (feet a | above msl)                     | 326.37 |                       |            |  |  |
| Well Volumes Purged     |                                |        | 3                     |            |  |  |

| Well Volumes Purged                                                                                           |    | 3               |
|---------------------------------------------------------------------------------------------------------------|----|-----------------|
| Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) |    | 4.0             |
| Actual Volume Purged (gallons)                                                                                |    | 6.0             |
| Appearance of Purge Water                                                                                     |    |                 |
| Free Product Present?                                                                                         | no | Thickness (ft): |
|                                                                                                               |    |                 |

| GROUNDWATER | SAMPLES |
|-------------|---------|
|-------------|---------|

| Number of Samples/Container Size |                      |                        |      | 3 VOAs & 1-liter        |              |              |          |
|----------------------------------|----------------------|------------------------|------|-------------------------|--------------|--------------|----------|
| Time                             | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН   | Conductivity<br>(μS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments |
|                                  | 2                    | 18.49                  | 7.27 | 4767                    | 2.52         | -186.7       |          |
|                                  | 4                    | 17.71                  | 7.24 | 4800                    | 1.33         | -174.7       |          |
|                                  | 6                    | 17.84                  | 7.19 | 4619                    | 0.81         | -203.4       |          |
|                                  |                      |                        |      |                         |              |              |          |
|                                  |                      |                        |      |                         |              |              |          |
|                                  |                      |                        |      |                         |              |              |          |

| No petroleum odors. |  |  |
|---------------------|--|--|
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |

|                       |                                 | Mor    | itoring Well Number: | DW-7       |  |  |  |
|-----------------------|---------------------------------|--------|----------------------|------------|--|--|--|
|                       |                                 |        |                      |            |  |  |  |
| Project Name:         | G&G International Holding       | 9      | Date of Sampling:    | 4/3/2007   |  |  |  |
| Job Number:           | 261639                          |        | Name of Sampler:     | R Bartlett |  |  |  |
| Project Address:      | 6310 Houston Place, Dublin,     |        |                      |            |  |  |  |
|                       |                                 |        |                      |            |  |  |  |
|                       | MONITORING WELL DATA            |        |                      |            |  |  |  |
| Well Casing Diamet    | Well Casing Diameter (2"/4"/6") |        |                      |            |  |  |  |
| Wellhead Condition    |                                 | ОК     |                      | <b>—</b>   |  |  |  |
| Elevation of Top of ( | Casing (feet above msl)         | 335.18 |                      |            |  |  |  |
| Depth of Well         |                                 | 17.00  |                      |            |  |  |  |
| Depth to Water (fror  | m top of casing)                |        | 8.11                 |            |  |  |  |

327.07

3

4.3

6.0

Thickness (ft):

Water Elevation (feet above msl)

Actual Volume Purged (gallons)

Appearance of Purge Water

Gallons Purged: formula valid only for casing sizes of 2" (.16

gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)

Well Volumes Purged

|                 | GROUNDWATER SAMPLES  |                        |      |                         |              |              |          |
|-----------------|----------------------|------------------------|------|-------------------------|--------------|--------------|----------|
| Number of Sampl | es/Container S       | Size                   |      | 3 VOAs & 1-li           | ter          |              |          |
| Time            | Vol Removed<br>(gal) | Temperature<br>(deg C) | рН   | Conductivity<br>(µS/cm) | DO<br>(mg/L) | ORP<br>(meV) | Comments |
|                 | 1                    | 21.03                  | 6.90 | 23497                   | 1.26         | 76.0         |          |
|                 | 2                    | 21.21                  | 7.00 | 32164                   | 1.13         | 61.4         |          |
|                 | 3                    | 21.36                  | 7.43 | 33314                   | 2.53         | 29.2         |          |
|                 |                      |                        |      |                         |              |              |          |
|                 |                      |                        |      |                         |              |              |          |
|                 |                      |                        |      |                         |              |              |          |

no

Free Product Present?

| No petroleum odors. |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |

# **APPENDIX D**

Laboratory Analytical Results With Chain of Custody Documentation



# **McCampbell Analytical, Inc.**

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| AEI Consultants               | Client Project ID: #261639; G&G | Date Sampled: 03/15/07   |
|-------------------------------|---------------------------------|--------------------------|
| 2500 Camino Diablo, Ste. #200 |                                 | Date Received: 03/16/07  |
| Walnut Creek, CA 94597        | Client Contact: Adrian Angel    | Date Reported: 03/23/07  |
| Wallact Creek, Cri 91891      | Client P.O.:                    | Date Completed: 03/23/07 |

#### WorkOrder: 0703413

March 23, 2007

#### Dear Adrian:

Enclosed are:

- 1). the results of 11 analyzed samples from your #261639; G&G project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

|                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                 |           |     |               |       | ł            | 40   | 1         |       |             | 0                    | 70                                                | 03                                    | 4                                      | H                                 | 5                                   |                                                  |                               |                                       |                                                                                                                |                                |                                   |                                             |                                              |                                    |                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|-------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|-----------------|-----------|-----|---------------|-------|--------------|------|-----------|-------|-------------|----------------------|---------------------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| M                 | cCAMPI                   | BELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |               |                 | L,        | IN  | C.            |       |              |      | -1        | T     |             | TAN                  |                                                   |                                       |                                        |                                   |                                     |                                                  |                               | C                                     | US                                                                                                             |                                | ac                                |                                             | RI                                           | EC                                 | 0]                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                       |
|                   | i                        | PITTSBUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CG, CA 945 | 565-170       | )1              |           |     |               |       |              |      |           |       | 10          | RN                   | A                                                 | KU                                    | U                                      | ND                                | 11                                  | IVIL I                                           | 5                             | F                                     |                                                                                                                | H                              |                                   |                                             |                                              | 48 F                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 DAY                   |
|                   | phone: (877)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | MAL: 303      | Fax:            | (925)     | 25  | 11.co<br>2-92 | 69    |              |      |           |       | Ge          | oTr                  | ac                                                | ker                                   | E                                      | DF                                |                                     | 1                                                | PD                            |                                       |                                                                                                                |                                |                                   |                                             |                                              |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                      |
|                   |                          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | -             | /               |           |     |               |       |              |      |           |       |             |                      |                                                   |                                       |                                        | _                                 | Ģ                                   | Real Property lies                               | Party Statem                  | -                                     | the second s | mpl                            | le is                             | effl                                        | uen                                          | t an                               | and so the second s | The later is the l | - All and the second se | required                |
| Report To: Adria  | an Huge                  | 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | II To:        | 50              | eme       | 2   |               |       |              |      |           | +     |             |                      | -                                                 |                                       | -                                      | A                                 | aly                                 | sis ]                                            | Req                           | ues                                   | t.                                                                                                             |                                |                                   |                                             |                                              |                                    | . 0                                                                                                            | ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Convents                |
| Company: AET      |                          | 1 tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |               |                 |           | 1   |               |       |              |      |           | -     |             | 6                    |                                                   |                                       |                                        |                                   |                                     | LIBO                                             |                               |                                       |                                                                                                                |                                |                                   |                                             |                                              |                                    | 0                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Filter                  |
| WalnutCre         | Camino                   | pias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E          | -Mail         | = A1            | inel      | 10  | 6 er          | Caria | 8241         | Í.   | h         |       | 38.1W/(SI08 | LR/H                 |                                                   |                                       |                                        |                                   |                                     | affice                                           |                               | 1                                     |                                                                                                                |                                |                                   |                                             |                                              |                                    | (801                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samples                 |
| Tele: ( 125) 282  | 6000                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F          | ax: (         | 925             | 128       | 3-  | 61-           | 21    |              | 140- | 4.        |       | Ist         | 4420                 |                                                   | _                                     |                                        | =                                 |                                     | 2                                                |                               |                                       |                                                                                                                |                                |                                   | 6020                                        | (0205                                        |                                    |                                                                                                                | (ibution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for Metals<br>analysis: |
| Project #: 2011   | 039                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P          | roject        | Nau             | ie: 6     | 36  | ,7            |       |              |      |           |       |             | 110                  |                                                   | 118.1                                 | 8                                      | 1803                              | -                                   | 00                                               | ,                             | cides                                 |                                                                                                                |                                | (av)                              | 1010                                        | 10%                                          |                                    | OW                                                                                                             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes / No                |
| Project Location: | 6310 How                 | nston f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Jub           | ins             | A         |     |               |       |              |      |           |       | + 1208      | 2                    |                                                   | 5) 3020                               | E                                      | 56                                | lefte                               | Nº S                                             | -                             | 12.3                                  | 8                                                                                                              | (1)                            | A/B                               | 8/8                                         | 8/60                                         | 070)                               | amp                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Sampler Signatur  | e: hile                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , y y      |               | /               |           | _   |               |       | _            |      |           | li    | 1209)       |                      |                                                   | đ.                                    | EON                                    | VAN                               | Puel                                | INO                                              | atick                         | 0                                     | NOC                                                                                                            | OVE                            | PAB                               | 200                                         | 200.1                                        | 0/0                                | 6                                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                   |                          | SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LING       | un.           | Type Containers | M         | AT  | RIX           |       |              |      | RVE       | D     |             | 1510                 | Todal Petroleum Oli of Granse (1004) 2020 20 0000 | Total Petrolevon Bydrocarboos (418.1) | EPA 502.2 / 601 / 8010 / 8021 (BY OCE) | MTBE / BTEX ONLY (EPA 602 / 8021) | EPA 695/ 608 / 8081 [CI Pusticides) | EPA 608 / 6052 PCB's ONLY; Arocist's / Congeners | EPA 507/ 8141 (NP Pesticides) | EPA 615 / 8131 (Acidle Cl Rerbicides) | EFA 624.2 / 624 / 6360 (VOCs)                                                                                  | EFA 625.2 / 625 / 8270 (SYOCs) | EPA 8270 SIM / 8310 (PAH. / FNA.) | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | LUFT \$ Metals (200.7 / 200.8 / 6010 / 6020) | Lend (200.7 / 209.8 / 6010 / 6020) | TPH multivauge                                                                                                 | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| SAMPLE ID         | LOCATION/<br>Field Point |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | iner          | utalı           |           |     |               |       |              |      | 1         |       |             | 1 9                  | H                                                 |                                       | 201                                    | X                                 | 8/8                                 | 083 1                                            | 141                           | 1618                                  | 128                                                                                                            | 623                            | SIM /                             | atal.                                       | tals (                                       | 1 200                              | ñ va                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                   | Name                     | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time       | 뷤             | ວິ              | 5         |     | 5             | 5     |              |      | 2         | 5     | F a         | E De                 |                                                   | een o                                 | 122                                    | Eq.                               | 98/ 6                               | 0 / 80                                           | 1/10                          | 151                                   | 242                                                                                                            | 252                            | 1012                              | 11 M                                        | \$ Me                                        | 200.7                              | HIM                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | # Containers  | Ape             | Water     | 14  | Sludge        | the   | Ð            | U    | ž         | Other | BTEX & TPH  | TPH as Diesel (8015) |                                                   | Otal 7                                | PAS                                    | E                                 | PAG                                 | PAG                                              | PAB                           | PAS                                   | LAR                                                                                                            | PA6                            | PA 8                              | AM                                          | E                                            | C) Date                            | E                                                                                                              | Brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 011 71            |                          | 21/11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | #             | 2.              |           |     | 02            | F     | F V          | H    | 54(1      | 4     |             | 6 8                  | -                                                 | F                                     | M                                      | ×                                 | NA I                                | ы                                                | 91                            | M                                     | M                                                                                                              | 14                             | R                                 | -                                           | 12                                           | 12                                 | E                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| PW-1-7'           |                          | 315-16/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | A             | D               | -12       | 4   | +             |       | Â            | -    | -         | +     | +           | +                    | +                                                 | -+                                    | -                                      | -                                 | _                                   |                                                  |                               |                                       | -                                                                                                              | 1_                             | -                                 | +                                           | -                                            | -                                  | X                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| DW-1-12           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2             | 4               | $\vdash$  | 11- | +-            | -     | 4            |      | -         | +     | -           | +                    | -                                                 | -                                     | -                                      |                                   |                                     |                                                  | -                             | -                                     |                                                                                                                | 1-                             | 1                                 |                                             | +                                            | +-                                 | -                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DN-1-16'          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2             | 5               | $\vdash$  | 4   | +             | -     |              |      | $\square$ | +     | -           | -+-                  | -                                                 | -                                     |                                        |                                   |                                     |                                                  | -                             | -                                     | -                                                                                                              | 1                              | 1-                                | +                                           | -                                            | +                                  |                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-2-10           | ·                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 3             | 3               |           | 4   | +             | -     | 1            |      | $\vdash$  | +     | -           | -                    | -                                                 | -                                     | -                                      |                                   |                                     | -                                                | -                             | -                                     | -                                                                                                              |                                | -                                 | 1_                                          | 1-                                           | +                                  | $\bowtie$                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-2-15'          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 3             |                 |           | 11- | -             | -     | 1            |      |           | +     | -+          |                      | -                                                 | -+                                    | _                                      |                                   |                                     | -                                                | -                             | -                                     | -                                                                                                              | 1                              | -                                 | +                                           | 1                                            | 1-                                 |                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-3-11           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                 | $\square$ | 11  | -             | -     | $\downarrow$ |      | $\square$ | _     |             | _                    | _                                                 | -                                     | _                                      | _                                 |                                     |                                                  |                               |                                       | L                                                                                                              |                                | ŀ                                 | -                                           | 1_                                           | 1                                  | X                                                                                                              | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-3-151          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 3             |                 | $\square$ | 1   | -             | 1     |              |      |           | _     | 1           | _                    | _                                                 | _                                     | _                                      |                                   | _                                   | -                                                | -                             |                                       |                                                                                                                | 1                              | 1                                 | -                                           | 1                                            | 1                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-4-12           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 5             |                 |           |     | -             | L     |              |      |           |       |             |                      |                                                   |                                       | _                                      |                                   |                                     |                                                  |                               | 1                                     | 1                                                                                                              |                                | -                                 |                                             | 1                                            | _                                  | X                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-4-15'          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2             |                 |           |     |               |       |              | ŀ    |           |       |             |                      |                                                   |                                       |                                        |                                   |                                     |                                                  |                               |                                       |                                                                                                                |                                |                                   |                                             |                                              |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-S-7'           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2             |                 |           |     |               |       |              |      |           | -     |             |                      |                                                   |                                       |                                        |                                   |                                     |                                                  |                               |                                       |                                                                                                                |                                |                                   |                                             |                                              |                                    | X                                                                                                              | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-5-16'          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1             |                 |           | T   |               |       |              |      | Π         |       |             |                      |                                                   |                                       |                                        |                                   |                                     |                                                  |                               |                                       | [                                                                                                              | Γ                              | T                                 |                                             |                                              |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| DW-6-91           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | T               | Π         |     |               |       | T            |      | $\square$ | 1     |             |                      |                                                   |                                       |                                        |                                   |                                     |                                                  | 1                             |                                       | T                                                                                                              | 1                              | T                                 | 1                                           |                                              | -                                  | X                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Dw-6-14'          |                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 1             |                 | TT        | 1   | -             | 1     | T            | 1    |           | 1     | 1           | -                    | -                                                 |                                       |                                        |                                   | -                                   | 1                                                | 1                             | T                                     | T                                                                                                              | T                              | 1                                 | 1                                           | 1                                            | T                                  | T                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| DW-7-11           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -             | V               |           | 1   | T             | 1     | V            | -    |           | 1     | -           | -                    | -                                                 | 7                                     | -                                      |                                   | 1                                   | 1                                                | T                             | 1-                                    | 1                                                                                                              | T                              | T                                 | 1                                           | 1                                            | T                                  | X                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Relinquished By:  | 1                        | Dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:      | Rece          | thread E        |           | 41  | _             | -     |              |      |           | +     | ICI         |                      | V                                                 | -                                     |                                        | 1                                 | 1                                   | 1                                                | 1                             |                                       |                                                                                                                | _                              | -                                 | _                                           | C                                            | OMD                                | MEN                                                                                                            | rs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Hin               | /                        | 3/16/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7:00P      | Er            | wir             | 0-        | T   | ecl           | h     | 5            | 46   | 2.        |       |             | OD C                 |                                                   |                                       |                                        |                                   | -                                   |                                                  |                               |                                       |                                                                                                                |                                |                                   |                                             | 83                                           |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Relinquished By:  |                          | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time:      |               | shed I          | y;        |     | -             | -     | -            | _    |           | -     | DE          | CHL                  | OR                                                | INAT                                  | ED                                     | IN I                              |                                     |                                                  | -/                            | /                                     |                                                                                                                |                                |                                   |                                             |                                              |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Envira-Tec        | h sik.                   | Statement of the local division of the local |            | Statement and |                 |           | -   |               | _     |              | _    | -         | _     |             | ISIO                 |                                                   |                                       |                                        |                                   | MAR.                                | aa                                               | -V-                           |                                       |                                                                                                                |                                |                                   |                                             |                                              |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Relinquished By:  |                          | Dete:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:      | Rec           | efved. I        | Fy:       |     |               |       |              |      |           |       |             |                      |                                                   |                                       | V                                      | OAS                               | 0                                   | 4&G                                              | N                             | ET/                                   | us                                                                                                             | 0                              | THE                               | R                                           |                                              |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                 |           |     |               |       |              |      |           |       | PR          | ESICE                | RAN                                               | TIO                                   |                                        |                                   |                                     |                                                  |                               | 10                                    |                                                                                                                |                                |                                   |                                             |                                              |                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                       |

p.2

ì

l.

McCampbell Analytical, In 1-925-252-9269

Dec 21 2006 1:01PM

5

| Webs                      | cCAMPI<br>11<br>site: <u>www.mcc</u><br>e: (877) 7 <del>98-</del><br>2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2 5 | ampbell.c | <u>om</u> Emai<br>2 <i>6</i> 2 | l: mai        | in@m<br>Fa      | ccar<br>ax:<br>25 | npbe<br>(925<br>Z- | II.co | om    | 522        | 7   |     |       |                               | ГUН<br>Geo           |                                                  |                                      | OU                                    | ND<br>DF                          | TI                                  |                                                 | PD<br>Ch                       | F [                                   | RUS<br>if s                   | H<br>Exe                       | 24<br>cel                         | )<br>HR                                     | W                                           |                                    | e On (D)      | R 5 DAY<br>W) |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|---------------|-----------------|-------------------|--------------------|-------|-------|------------|-----|-----|-------|-------------------------------|----------------------|--------------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------------------|--------------------------------|---------------------------------------|-------------------------------|--------------------------------|-----------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|---------------|---------------|
| Company: AEL              | (a c. II                                                                                                                  | L         | DI                             | 1110          | · W             | me                |                    |       |       |            |     |     |       | $\vdash$                      | -                    |                                                  |                                      |                                       | A                                 | IIdl                                | 515                                             | rec                            | ues                                   | 1                             |                                |                                   |                                             | 1                                           | -                                  | Other         | Comments      |
| Company: MEX              | (ONJUITO                                                                                                                  | nt        |                                |               |                 |                   | /                  |       |       |            |     |     |       | - 🖂                           |                      | (E)                                              |                                      |                                       |                                   |                                     | lers                                            |                                |                                       |                               |                                |                                   |                                             |                                             | ł                                  | $\neg$        | Filter        |
| 3200                      | Comino P                                                                                                                  | 4010      |                                |               |                 |                   | 1                  |       |       | 4          | 11  | 1   | ~     | 8015) / MTBE                  |                      | /B&                                              |                                      |                                       |                                   |                                     | nger                                            |                                |                                       |                               |                                |                                   |                                             |                                             |                                    | S             | Samples       |
| Walnut                    | Creek)                                                                                                                    | A         | E                              | -Mai<br>ax: ( | : 44            | ye                | C                  | her   | Con   | M          | tim | 130 | n     |                               |                      | 20 E                                             |                                      |                                       |                                   |                                     | Co                                              |                                |                                       |                               |                                |                                   | 20)                                         | (0)                                         |                                    | 20            | for Metals    |
| Valuet<br>Tele: (A)-S) 28 | 5-6000                                                                                                                    |           | Fa                             | ax: (         | 925             | )                 | 183                | -6    | 121   |            |     |     |       | 8015                          |                      | / 55                                             | 1)                                   | Cs)                                   | (12)                              |                                     | ors                                             |                                | es)                                   |                               |                                | ()                                | / 60                                        | / 602                                       |                                    | 0             | analysis:     |
| Project #: 20             | 059                                                                                                                       |           | P                              | roject        | t Nan           | ie:               | 63                 | 6     |       |            |     |     |       | +                             |                      | 664                                              | (418                                 | VOC                                   | 2 / 80                            | es)                                 | rocl                                            |                                | icide                                 |                               |                                | NAS                               | 010                                         | 010                                         |                                    | (g) d line)   | Yes / No      |
| <b>Project Location:</b>  | Dublin                                                                                                                    | At        |                                |               |                 |                   |                    |       |       |            |     |     |       | 802                           |                      | se (1                                            | ons                                  | 1 (H                                  | 602                               | hicid                               | Y; A                                            | les)                           | Ierb                                  | (s)                           | (Cs)                           | s/P                               | 8/6                                         | 8/6                                         | 020)                               | of le         |               |
| Sampler Signatur          | e: At                                                                                                                     | 1         |                                |               |                 |                   |                    |       |       |            |     |     |       | 02/                           |                      | Grea                                             | arb                                  | 802                                   | EPA                               | Pest                                | INC                                             | ticid                          | CIF                                   | VOC                           | SVO                            | HY                                | 200.                                        | 200.                                        | 0/0                                | E.            |               |
|                           |                                                                                                                           | SAMP      | LING                           |               | s               |                   | MAT                | FRI   | x     |            |     | ГНО |       | as (6                         |                      | & (                                              | droc                                 | 10/                                   | CY (                              | (CI                                 | 3's C                                           | Pes                            | idic                                  | 60 (                          | 70 (                           | 10 (1                             | 1 1.0                                       | 11.                                         | 601                                | 2             |               |
|                           |                                                                                                                           |           |                                | rs            | inel            |                   |                    | _     |       | P1         | RES | ERV | /ED   | 2 8                           | 8015                 | liO                                              | Hy H                                 | / 80                                  | INO                               | 8081                                | PCI                                             | IN)                            | (Ac                                   | / 82                          | / 82                           | / 83                              | (20)                                        | (200                                        | 0.8/                               | am            |               |
| SAMPLE ID                 | LOCATION/<br>Field Point<br>Name                                                                                          | Date      | Time                           | Containers    | Type Containers | Water             | Soil               | AIT   | Other | ICE        | HCL | HNO | Other | BTEX & TPH as Gas (602 / 8021 | TPH as Diesel (8015) | Total Petroleum Oil & Grease (1664 / 5520 E/B&F) | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | MTBE / BTEX ONLY (EPA 602 / 8021) | EPA 505/ 608 / 8081 (Cl Pesticides) | EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners | EPA 507 / 8141 (NP Pesticides) | EPA 515 / 8151 (Acidic Cl Herbicides) | EPA 524.2 / 624 / 8260 (VOCs) | EPA 525.2 / 625 / 8270 (SVOCs) | EPA 8270 SIM / 8310 (PAHs / PNAs) | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) | Lead (200.7 / 200.8 / 6010 / 6020) | PH Multirange |               |
|                           |                                                                                                                           |           |                                | #             | Τ               | >                 | S.                 |       | 20    | <u> </u> = | 1   |     | 0     | 2                             | E L                  | T                                                | T                                    | E                                     | M                                 | E                                   | E                                               | E                              | E                                     | E                             | E                              | E                                 | U                                           | L                                           | L                                  | - <u>+</u> -  |               |
| DW-7-15'                  |                                                                                                                           | 315-1617  |                                | 2             | BURS            |                   |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
| Composite Sample #1       |                                                                                                                           | 1         |                                | )             |                 |                   |                    | -     |       | +          | +   | 1   | 1     | +                             |                      | 1                                                | 1                                    |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
| Composite sample H1       |                                                                                                                           | () /      |                                | İ             | 11              |                   | -                  | -     |       | +          | +   | +   | +     | +                             | -                    | -                                                | -                                    |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             | -                                  |               |               |
| Composite Sample Ho       | -                                                                                                                         | V         |                                | 1             | V               | -                 |                    | -     | -     | +          | -   | -   | +     | +                             |                      |                                                  | -                                    | -                                     |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       | _     |            |     |     |       | _                             |                      | _                                                | _                                    | _                                     |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    | -     | -     | +          | +   | +   | +     | +                             | -                    | -                                                | -                                    | -                                     | -                                 | -                                   | -                                               |                                | -                                     |                               | -                              | -                                 | -                                           |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 | -                 |                    | -     |       | +          | +   | +   | +     | +                             |                      | -                                                | -                                    | -                                     | -                                 | -                                   | -                                               |                                | -                                     |                               |                                | -                                 |                                             |                                             | -                                  |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           | . ~       |                                |               |                 |                   |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               | -               | $\vdash$          |                    | -     | -     | +          | -   | -   | +     | +                             | -                    | -                                                | +                                    | 1                                     | -                                 | -                                   | -                                               | -                              | -                                     | -                             | -                              | -                                 | -                                           | -                                           | -                                  |               |               |
|                           |                                                                                                                           |           |                                | -             | -               | +                 |                    | -     |       | +          | +   | -   | +     | +                             |                      |                                                  | -                                    | -                                     | -                                 |                                     | -                                               | -                              | -                                     | -                             | -                              | -                                 | -                                           | -                                           | -                                  |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            |     |     |       |                               | _                    |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            | 0   |     |       |                               |                      |                                                  |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
| Relinguished By:          | 1                                                                                                                         | Date:     | Time:                          | Rece          | eived I         | By:               |                    |       |       |            | 1   |     | -     | +                             | ICE/ť                | ,                                                |                                      | -                                     | -                                 |                                     |                                                 | 1                              | 1                                     | 1                             | 1                              | 1                                 | 1                                           | CO                                          | MM                                 | IENTS:        | 1             |
| Inte                      | 1                                                                                                                         | 3/16/07   | 7'00P                          |               | ivice           |                   | To                 | - L   |       | 50         | >   |     |       |                               | GOO                  | D CO                                             |                                      |                                       |                                   |                                     |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
| Relinquished By:          | ,<br>                                                                                                                     | Date:     | Time:                          | Rec           | Wed I           | 30.               | 151                | Cr    | 1 .   | 1.1        |     |     |       |                               | HEAI<br>DECI         |                                                  |                                      |                                       |                                   | AD                                  |                                                 |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
|                           | 150                                                                                                                       | 3/16/07   |                                | 1/2           |                 | ·                 | 1                  | 1     | _     | _          | _   |     |       |                               | APPR                 |                                                  |                                      |                                       |                                   |                                     | RS                                              |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
| Enviro-Tec                | IN IK.                                                                                                                    |           |                                | P             | inc.d.          | ~                 | C                  |       |       |            |     |     |       |                               | PRES                 |                                                  |                                      |                                       |                                   |                                     | -                                               |                                |                                       |                               |                                |                                   |                                             |                                             |                                    |               |               |
| Relinquished By:          |                                                                                                                           | Date:     | Time:                          | Rec           | eived l         | by:               |                    |       |       |            |     |     |       |                               |                      |                                                  |                                      | v                                     | OAS                               | 0                                   | &G                                              | м                              | ETA                                   | LS                            | OT                             | HFE                               | 2                                           |                                             |                                    |               |               |
|                           |                                                                                                                           |           |                                |               |                 |                   |                    |       |       |            |     |     |       |                               | PRES                 | ERV                                              | ATI                                  |                                       | 040                               | 0                                   | a o                                             |                                | <2                                    | 00                            | 01                             | iii.i                             |                                             |                                             |                                    |               |               |

# McCampbell Analytical, Inc.

|   | . 3 | A        | V) |
|---|-----|----------|----|
| 6 |     | )ā       | Y  |
| A | 4   |          |    |
|   | -   | <u>_</u> | -4 |

1534 Willow Pass Rd

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Pittsburg, C<br>(925) 252-9                   | CA 94565-1701<br>9262         |                   |                              | □EDF            |       | Work<br>□F |              | : 0703  | 5 <b>413</b><br>▼ Emai       |                   |             | <b>): AEL</b><br>HardCopy |             | Thire      | dParty          |          |      |
|-----------------------------------------------|-------------------------------|-------------------|------------------------------|-----------------|-------|------------|--------------|---------|------------------------------|-------------------|-------------|---------------------------|-------------|------------|-----------------|----------|------|
| Report to:<br>Adrian Angel<br>AEI Consultant: | s                             | Email:<br>TEL:    | aangel@aeic<br>(925) 283-600 | onsultants.com  | 283-6 |            | Bill t<br>De | enise M | _                            | -                 |             |                           | Re          | queste     | d TAT:          | -        | days |
| 2500 Camino E<br>Walnut Creek, (              | Diablo, Ste. #200<br>CA 94597 | ProjectNo:<br>PO: | #261639; G&                  | 3               |       | <b>-</b>   | Wa           | alnut C | nino Di<br>reek, C<br>@aeico | A 9459<br>nsultan | 7<br>ts.com |                           | Da          | te Pri     | ceived<br>nted: |          |      |
| Sample ID                                     | ClientSampID                  |                   | Matrix                       | Collection Date | Hold  | 1          | 2            | 3       | Req<br>4                     | uested<br>5       | Tests<br>6  | (See leg<br>7             | gend b<br>8 | elow)<br>9 | 10              | 11       | 12   |
| 0703413-001                                   | DW-1-7'                       |                   | Soil                         | 3/15/07         |       | А          |              |         |                              |                   |             |                           |             |            |                 | <u>т</u> |      |
| 0703413-004                                   | DW-2-10'                      |                   | Soil                         | 3/15/07         | ΙΠ    | A          |              |         |                              |                   |             |                           |             |            | -               | -        | 1    |
| 0703413-006                                   | DW-3-11'                      |                   | Soil                         | 3/15/07         |       | A          |              |         |                              |                   |             |                           |             |            |                 |          | -    |
| 0703413-008                                   | DW-4-12'                      |                   | Soil                         | 3/15/07         |       | А          |              |         |                              |                   |             |                           |             |            |                 | -        |      |
| 0703413-010                                   | DW-5-7'                       |                   | Soil                         | 3/15/07         |       | Α          |              |         |                              |                   |             |                           |             |            | -               | -        |      |
| 0703413-012                                   | DW-6-9'                       |                   | Soil                         | 3/15/07         |       | Α          | Α            |         |                              |                   |             |                           |             |            |                 |          |      |
| 0703413-013                                   | DW-6-14'                      |                   | Soil                         | 3/15/07         |       |            | Α            |         |                              |                   |             |                           |             |            |                 |          |      |
| 0703413-014                                   | DW-7-11'                      |                   | Soil                         | 3/15/07         |       | Α          |              |         |                              |                   |             |                           |             |            |                 |          |      |
| 0703413-016                                   | Composite Sample              | #1                | Soil                         | 3/15/07         |       | Α          |              |         |                              |                   |             |                           |             |            |                 |          |      |
| 0703413-017                                   | Composite Sample              | #2                | Soil                         | 3/15/07         |       | А          |              |         |                              |                   |             |                           |             |            |                 |          |      |

#### **Test Legend:**

| 1 G-MBTEX_S | 2 GRAINSIZE | 3 | 4 | 5  |
|-------------|-------------|---|---|----|
| 6           | 7           | 8 | 9 | 10 |
| 11          | 12          | ] |   |    |

The following SampIDs: 0703413-001A, 0703413-004A, 0703413-006A, 0703413-008A, 0703413-010A, 0703413-012A, 0703413-014A, 0703413-016A, 0703413-017A contain testgroup.

Prepared by: Melissa Valles

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

|                   | CCampbell Analyti<br>"When Ouality Counts"        | cal, Inc.          | Web: www.mccamp                             | Pass Road, Pittsburg, CA 94565-<br>bbell.com E-mail: main@mccan<br>877-252-9262 Fax: 925-252-92 | npbell.com |       |
|-------------------|---------------------------------------------------|--------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|------------|-------|
| AEI Consulta      | unts                                              | Client Project ID: | #261639; G&G                                | Date Sampled: 03/15                                                                             | /07        |       |
| 2500 Camino       | Diablo, Ste. #200                                 |                    |                                             | Date Received: 03/16                                                                            | /07        |       |
| Walnut Creek      | CA 94597                                          | Client Contact: A  | Adrian Angel                                | Date Extracted: 03/16                                                                           | /07        |       |
|                   | , 01171077                                        | Client P.O.:       |                                             | Date Analyzed 03/17                                                                             | /07-03/1   | 8/07  |
| Extraction method |                                                   | <u> </u>           | atile Hydrocarbons as G<br>methods SW8015Cm |                                                                                                 | rder: 07   | 02/12 |
| Lab ID            | Client ID                                         | Matrix             | TPH(g                                       |                                                                                                 | DF         | % SS  |
| 001A              | DW-1-7'                                           | S                  | ND                                          | ·                                                                                               | 1          | 89    |
| 004A              | DW-2-10'                                          | S                  | ND                                          |                                                                                                 | 1          | 86    |
| 006A              | DW-3-11'                                          | S                  | ND                                          |                                                                                                 | 1          | 95    |
| 008A              | DW-4-12'                                          | S                  | ND                                          |                                                                                                 | 1          | 87    |
| 010A              | DW-5-7'                                           | S                  | ND                                          |                                                                                                 | 1          | 88    |
| 012A              | DW-6-9'                                           | S                  | ND                                          |                                                                                                 | 1          | 95    |
| 014A              | DW-7-11'                                          | S                  | ND                                          |                                                                                                 | 1          | 87    |
| 016A              | Composite Sample #1                               | S                  | ND                                          |                                                                                                 | 1          | 93    |
| 017A              | Composite Sample #2                               | S                  | ND                                          |                                                                                                 | 1          | 96    |
|                   |                                                   |                    |                                             |                                                                                                 |            |       |
|                   |                                                   |                    |                                             |                                                                                                 |            |       |
|                   |                                                   |                    |                                             |                                                                                                 |            |       |
|                   |                                                   |                    |                                             |                                                                                                 |            |       |
|                   |                                                   |                    |                                             |                                                                                                 |            |       |
|                   |                                                   |                    |                                             |                                                                                                 |            |       |
|                   |                                                   |                    |                                             |                                                                                                 |            |       |
|                   | porting Limit for DF =1;                          | W                  | NA                                          |                                                                                                 | N          | A     |
|                   | means not detected at or bove the reporting limit | S                  | 1.0                                         |                                                                                                 | mg         | /Kg   |

\* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu$ g/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu$ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

|                    | Campbell Analyti                                    | ical, | Inc.             | Web: www.mcca | w Pass Road, Pittsburg, CA 945<br>mpbell.com E-mail: main@mc<br>e: 877-252-9262 Fax: 925-252 | campbell.con | 1      |
|--------------------|-----------------------------------------------------|-------|------------------|---------------|----------------------------------------------------------------------------------------------|--------------|--------|
| AEI Consultar      | nts                                                 | Clier | nt Project ID:   | #261639; G&G  | Date Sampled: 03/                                                                            | 15/07        |        |
| 2500 Camino I      | Diablo, Ste. #200                                   |       |                  |               | Date Received: 03/                                                                           | 16/07        |        |
| Walnut Creek,      | СА 94597                                            | Clie  | nt Contact: A    | drian Angel   | Date Extracted: 03/                                                                          | 16/07        |        |
| wantut Creek,      | CA 94397                                            | Clier | nt P.O.:         |               | Date Analyzed 03/                                                                            | 19/07-03/    | 22/07  |
| Extraction method: | Diesel (C10-23) and Oil (                           | C18+) | Analytical metho | -             |                                                                                              | k Order: 0'  | 703413 |
| Lab ID             | Client ID                                           |       | Matrix           | TPH(d)        | TPH(mo)                                                                                      | DF           | % SS   |
| 0703413-001A       | DW-1-7'                                             |       | S                | 2.0,b         | ND                                                                                           | 1            | 81     |
| 0703413-004A       | DW-2-10'                                            |       | S                | 9.2,c         | ND                                                                                           | 1            | 97     |
| 0703413-006A       | DW-3-11'                                            |       | S                | 12,c          | 6.2                                                                                          | 1            | 97     |
| 0703413-008A       | DW-4-12'                                            |       | S                | ND            | ND                                                                                           | 1            | 97     |
| 0703413-010A       | DW-5-7'                                             |       | S                | ND            | ND                                                                                           | 1            | 96     |
| 0703413-012A       | DW-6-9'                                             |       | S                | ND            | ND                                                                                           | 1            | 98     |
| 0703413-014A       | DW-7-11'                                            |       | S                | ND            | ND                                                                                           | 1            | 106    |
| 0703413-016A       | Composite Sample #1                                 |       | S                | ND            | ND                                                                                           | 1            | 105    |
| 0703413-017A       | Composite Sample #2                                 |       | S                | ND            | ND                                                                                           | 1            | 103    |
|                    |                                                     |       |                  |               |                                                                                              |              |        |
|                    |                                                     |       |                  |               |                                                                                              |              |        |
|                    |                                                     |       |                  |               |                                                                                              |              |        |
|                    |                                                     |       |                  |               |                                                                                              |              |        |
|                    |                                                     |       |                  |               |                                                                                              |              |        |
|                    |                                                     |       |                  |               |                                                                                              |              |        |
|                    |                                                     |       |                  |               |                                                                                              |              |        |
| -                  | orting Limit for DF =1;<br>means not detected at or |       | W                | NA            | NA                                                                                           | ug           |        |
|                    | ove the reporting limit                             |       | S                | 1.0           | 5.0                                                                                          | mg           | /Kg    |

\* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.



NONE

"When Ouality Counts"

# QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

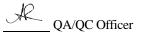
QC Matrix: Soil

WorkOrder 0703413

| EPA Method SW8015Cm   | Extra  | ction SW | 5030B  |        | Bat    | chID: 26 | 885    | Sp       | iked Sam | ole ID: | 0703412-00   | 4A  |
|-----------------------|--------|----------|--------|--------|--------|----------|--------|----------|----------|---------|--------------|-----|
| Analyte               | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS      | LCSD   | LCS-LCSD | Acce     | eptance | Criteria (%) |     |
| / mary to             | mg/Kg  | mg/Kg    | % Rec. | % Rec. | % RPD  | % Rec.   | % Rec. | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |
| TPH(btex <sup>f</sup> | ND     | 0.60     | 111    | 107    | 3.96   | 102      | 95.9   | 5.71     | 70 - 130 | 30      | 70 - 130     | 30  |
| MTBE                  | ND     | 0.10     | 71.6   | 77     | 7.23   | 114      | 107    | 6.93     | 70 - 130 | 30      | 70 - 130     | 30  |
| Benzene               | ND     | 0.10     | 93.2   | 99.3   | 6.39   | 97       | 96.5   | 0.518    | 70 - 130 | 30      | 70 - 130     | 30  |
| Toluene               | ND     | 0.10     | 103    | 109    | 5.88   | 88       | 87.6   | 0.442    | 70 - 130 | 30      | 70 - 130     | 30  |
| Ethylbenzene          | ND     | 0.10     | 101    | 107    | 6.33   | 98.5     | 94.2   | 4.49     | 70 - 130 | 30      | 70 - 130     | 30  |
| Xylenes               | ND     | 0.30     | 112    | 119    | 5.71   | 95.7     | 92     | 3.91     | 70 - 130 | 30      | 70 - 130     | 30  |
| %SS:                  | 106    | 0.10     | 95     | 95     | 0      | 88       | 95     | 7.82     | 70 - 130 | 30      | 70 - 130     | 30  |

#### BATCH 26885 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled | Date Extracted | Date Analyzed     |
|--------------|--------------|----------------|-------------------|--------------|--------------|----------------|-------------------|
| 0703413-001A | 03/15/07     | 03/16/07       | 03/17/07 8:12 PM  | 0703413-004A | 03/15/07     | 03/16/07       | 03/17/07 9:12 PM  |
| 0703413-006A | 03/15/07     | 03/16/07       | 03/17/07 10:12 PM | 0703413-008A | 03/15/07     | 03/16/07       | 03/17/07 11:12 PM |
| 0703413-010A | 03/15/07     | 03/16/07       | 03/17/07 11:42 PM | 0703413-012A | 03/15/07     | 03/16/07       | 03/18/07 12:12 AM |
| 0703413-014A | 03/15/07     | 03/16/07       | 03/18/07 12:42 AM | 0703413-016A | 03/15/07     | 03/16/07       | 03/18/07 1:12 AM  |
| 0703413-017A | 03/15/07     | 03/16/07       | 03/18/07 1:41 AM  |              |              |                |                   |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.





### <u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

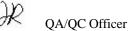
QC Matrix: Soil

WorkOrder: 0703413

| EPA Method SW8015C | Extra  | ction SW | 3550C  |        | Ba     | tchID: 26 | 886    | Sp       | iked Sam | ole ID: | 0703413-01   | 7A  |
|--------------------|--------|----------|--------|--------|--------|-----------|--------|----------|----------|---------|--------------|-----|
| Analyte            | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS       | LCSD   | LCS-LCSD | Acce     | eptance | Criteria (%) | )   |
| , indigite         | mg/Kg  | mg/Kg    | % Rec. | % Rec. | % RPD  | % Rec.    | % Rec. | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |
| TPH(d)             | ND     | 20       | 108    | 110    | 1.10   | 110       | 110    | 0        | 70 - 130 | 30      | 70 - 130     | 30  |
| %SS:               | 103    | 50       | 94     | 96     | 1.86   | 92        | 93     | 0.493    | 70 - 130 | 30      | 70 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 26886 SUMMARY


| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed    |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------|
| 0703413-001A | 03/15/07     | 03/16/07       | 03/19/07 9:48 PM | 0703413-004A | 03/15/07     | 03/16/07       | 03/22/07 6:52 AM |
| 0703413-006A | 03/15/07     | 03/16/07       | 03/19/07 7:22 PM | 0703413-008A | 03/15/07     | 03/16/07       | 03/19/07 6:13 PM |
| 0703413-010A | 03/15/07     | 03/16/07       | 03/19/07 5:05 PM | 0703413-012A | 03/15/07     | 03/16/07       | 03/22/07 6:52 AM |
| 0703413-014A | 03/15/07     | 03/16/07       | 03/19/07 7:22 PM | 0703413-016A | 03/15/07     | 03/16/07       | 03/19/07 6:13 PM |
| 0703413-017A | 03/15/07     | 03/16/07       | 03/19/07 5:05 PM |              |              |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.





# **McCampbell Analytical, Inc.**

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| AEI Consultants               | Client Project ID: #261639; G&G Holding | Date Sampled: 04/10/07   |
|-------------------------------|-----------------------------------------|--------------------------|
| 2500 Camino Diablo, Ste. #200 | Co.                                     | Date Received: 04/10/07  |
| Walnut Creek, CA 94597        | Client Contact: Adrian Angel            | Date Reported: 04/16/07  |
|                               | Client P.O.:                            | Date Completed: 04/16/07 |

#### WorkOrder: 0704210

April 16, 2007

#### Dear Adrian:

Enclosed are:

- 1). the results of 7 analyzed samples from your #261639; G&G Holding Co. project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

| Telepho                              |               | 110 2 <sup>nd</sup> AV<br>PACHEO |                        | UTH,         | #D7<br>60          |       |       | 7.0    | 0 14  | (1)    |     |                  |                        | TU                   | RN                    | AR                                   |                            | CH                   |                           |                     |                |                   |               |               | D)            | ]                            |                                       |                                |                     |                     | 2 HR   | D<br>5 DAY |
|--------------------------------------|---------------|----------------------------------|------------------------|--------------|--------------------|-------|-------|--------|-------|--------|-----|------------------|------------------------|----------------------|-----------------------|--------------------------------------|----------------------------|----------------------|---------------------------|---------------------|----------------|-------------------|---------------|---------------|---------------|------------------------------|---------------------------------------|--------------------------------|---------------------|---------------------|--------|------------|
| Telephol                             | ne: (925) 798 | 8-1020                           |                        |              | r                  | ax:   | (925) | ) /90  | 8-10  | 022    |     |                  | Ī                      | EDF                  | Rec                   | quire                                | ed?                        | Ę                    | Y                         | es                  |                | N                 | -             |               |               |                              | FRe                                   |                                |                     |                     |        | U DITT     |
| Report To: Adria                     | nn Angel      |                                  | B                      | ill Te       | o: Sa              | me    |       |        |       |        |     |                  | t                      |                      |                       |                                      |                            | Ana                  | lysis                     | Req                 | uest           | :                 |               |               |               |                              |                                       | Oth                            | her                 |                     | Comm   | ents       |
| Company: AEI C                       |               |                                  |                        |              |                    |       |       |        |       |        |     |                  |                        |                      | (F)                   |                                      |                            |                      |                           |                     |                |                   |               |               |               |                              |                                       |                                |                     |                     |        |            |
|                                      | Camino Dia    |                                  |                        | M            |                    | 1.    |       |        |       |        |     |                  |                        |                      | Grease (5520 E&F/B&F) |                                      |                            |                      |                           |                     |                | 0                 |               |               |               |                              | 8                                     |                                |                     |                     |        |            |
| Tel: (925) 944-28                    | it Creek, C   |                                  |                        |              | l: aai             | ~     |       |        | ultan | nts.co | om  |                  | OU SYMTEE              |                      | E&I                   | <b></b>                              |                            |                      |                           |                     |                | 8310              |               |               |               |                              | 0150                                  | demand                         |                     |                     |        |            |
| Project #: 261639                    |               | 152                              |                        |              | t Nar              |       |       |        | oldi  | ng (   | Co. |                  | - 10                   | (CINC                | 5520                  | (418                                 |                            |                      |                           |                     |                | 8270 /            |               |               |               |                              | PA 8                                  | n den                          |                     | $\setminus$         | ~      |            |
| Project Location:                    |               | ton Pl., D                       |                        |              |                    | ue.   | Gee   |        | ortar |        |     |                  | + UCU6/                |                      | ase (                 | suo                                  | ist)                       | 8020)                |                           |                     |                | 625 / 8.          |               |               |               | (0B)                         | by E                                  | tyger                          |                     | $ \rangle$          | Se     | 0          |
| Sampler Signatur                     |               |                                  |                        |              |                    |       |       |        |       |        |     |                  | 000/0                  | 700/7                | Gre                   | ocarb                                | 10 li                      | 02 / 8               | 8080                      |                     |                | A 62              |               |               |               | (826                         | (ou                                   | al ox                          |                     | в                   | lia be | 20         |
|                                      | 0             | SAMP                             | LING                   | LS           | ners               | I     | IAI   | RD     | x     |        |     | HOD              | D<br>Gan (60           | (8015)               | n Oil &               | n Hydro                              | :260 (80                   | (EPA 6               | 8 / 809                   | 4 / 8260            |                | s by EPA          | s             |               | ٨A            | genates                      | ge (g/d/                              | oiologic                       | rite "              | C/8021              | : 1iù  | Call       |
| SAMPLE ID<br>(Field Point Name)      | LOCATION      | Date                             | Time                   | # Containers | Type Containers    | Water | Soil  | Sludge | Other | Ice    | HCI | HNO <sub>3</sub> | DTEV & TBU an Gan (600 | TPH as Diesel (8015) | Total Petroleum Oil & | Total Petroleum Hydrocarbons (418.1) | HVOCs EPA 8260 (8010 list) | BTEX ONLY (EPA 602 / | Pesticides EPA 608 / 8080 | VOCs EPA 624 / 8260 | EPA 625 / 8270 | PAH's / PNA's by  | CAM-17 Metals | LUFT 5 Metals | SVOCs and PNA | Nine Fuel Oxygenates (8260B) | TPH multi-range (g/d/mo) by EPA 8015C | Chemical and biological oxygen | Nitrate and Nitrite | BTEX by 8015C/8021B | 55     |            |
| DW-1                                 | 261639        | 4/10                             | 1500                   | 8            | No:4               | Х     |       | +      |       | Х      |     |                  | $^{+}$                 | 1                    |                       |                                      |                            |                      |                           | -                   | $\top$         |                   |               |               |               | Х                            | X                                     | Х                              | Х                   | Х                   |        |            |
| DW-2                                 | 1             | 4/10                             | 1440                   | 8            | 1                  | X     |       | 1      | 1     | X      |     |                  |                        |                      | 1                     |                                      | _                          |                      |                           | -                   |                |                   |               |               | Х             | X                            | Χ                                     | X                              | X                   | X                   |        |            |
| DW-3                                 |               | 4110                             | 1510                   | 8            | $\uparrow$         | X     |       | -      | 1     | X      |     |                  |                        |                      |                       |                                      |                            |                      |                           |                     |                |                   |               |               | X             | X                            | X                                     | X                              | X                   | X                   |        |            |
| DW-4                                 |               | 4/10                             | 1422                   | 8            | $ \uparrow\rangle$ | X     |       | -      |       | X      |     |                  |                        |                      |                       |                                      |                            |                      |                           | -                   |                |                   |               |               |               | X                            | X                                     | X                              | X                   | X                   |        |            |
| DW-5                                 |               | 4/10)                            | 1410                   | 8            |                    | X     |       | +      | -     | X      |     |                  |                        |                      |                       |                                      |                            |                      |                           |                     |                |                   |               |               |               | X                            | X                                     | X                              | X                   | X                   |        |            |
| DW-6                                 |               | 4/10                             | 1350                   | 8            |                    | X     |       | +      | 1     | X      |     |                  | +                      |                      | 1                     |                                      |                            |                      |                           |                     |                |                   |               |               |               | X                            | X                                     | X                              | X                   | X                   |        |            |
| DW-7                                 | V             | 4/10                             | 1330                   | 8            | J                  | X     |       |        |       | X      |     |                  |                        |                      |                       |                                      |                            |                      |                           |                     |                |                   |               |               |               | Х                            | Χ                                     | Х                              | X                   | X                   |        |            |
|                                      |               |                                  |                        |              |                    |       |       |        |       |        |     |                  |                        |                      |                       |                                      |                            |                      |                           |                     |                |                   |               |               |               |                              |                                       |                                |                     |                     |        |            |
|                                      |               |                                  |                        |              |                    |       |       |        |       |        | 7   |                  |                        | /                    |                       |                                      |                            |                      |                           |                     |                |                   |               |               |               |                              |                                       |                                |                     |                     |        |            |
| Relinquished By:<br>Relinquished By: | 2             | Date:<br>4/10/07<br>Date:        | Time:<br>[525<br>Time: | 1            | ived B             | 10    | h     | 1      | L     | 1      | 1   |                  |                        | GO                   |                       | CON                                  |                            | TION                 |                           | /                   |                | PRE<br>APP<br>CON | ROI           | PRL           | ATE           | )N_                          | QAS                                   | 08                             | &G                  | М                   | IETALS | OTHE       |
| Relinquished By:                     |               | Date:                            | Time:                  | Dece         | ived B             | v.    |       |        |       |        |     |                  | -                      |                      |                       |                                      |                            | TED                  |                           | AR                  | -              |                   |               |               |               | IN                           | LAB                                   | 3                              |                     |                     |        |            |

Not though sample to run BOD

# McCampbell Analytical, Inc.

|   | SW. |
|---|-----|
| 6 | 3V  |
| 1 | -   |
|   | ~~/ |

1534 Willow Pass Rd

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Pittsburg, C.<br>(925) 252-9                        | A 94565-1701<br>2262 |                           |                              |                                                       |        | Work             | Order        | : 07042                                    | 210                 | C                | lientIE     | ): AEL  | 1      |        |         |                    |      |
|-----------------------------------------------------|----------------------|---------------------------|------------------------------|-------------------------------------------------------|--------|------------------|--------------|--------------------------------------------|---------------------|------------------|-------------|---------|--------|--------|---------|--------------------|------|
|                                                     |                      |                           |                              | EDF                                                   |        | Excel            |              | Fax                                        | ٦                   | 🖌 Email          |             | Hard    | lCopy  | 🗌 Thir | rdParty |                    |      |
| Report to:<br>Adrian Angel                          |                      | Email:                    | aangel@aeic                  | onsultants.com                                        |        |                  | Bill t<br>De | enise Mo                                   | ockel               |                  |             |         | Red    | queste | d TAT:  | 5 c                | lays |
| AEI Consultants<br>2500 Camino D<br>Walnut Creek, C | iablo, Ste. #200     | TEL:<br>ProjectNo:<br>PO: | (925) 283-600<br>#261639; G& | · · ·                                                 | 944-28 | 89               | 25<br>Wa     | El Consu<br>00 Cam<br>alnut Cro<br>nockel@ | nino Dia<br>eek, CA | 94597            | ,           | )       |        |        |         | 04/10/2<br>04/11/2 |      |
|                                                     |                      |                           |                              |                                                       |        |                  |              |                                            | Requ                | uested           | Tests       | (See le | gend b | elow)  |         |                    |      |
| Sample ID                                           | ClientSampID         |                           | Matrix                       | <b>Collection Date</b>                                | Hold   |                  |              |                                            |                     |                  |             |         |        | -      |         |                    | 4.0  |
|                                                     |                      |                           |                              |                                                       | noiu   | 1                | 2            | 3                                          | 4                   | 5                | 6           | 7       | 8      | 9      | 10      | 11                 | 12   |
| 0704210-001                                         | DW-1                 |                           | Water                        | 4/10/07 3:00:00                                       |        | 1<br>D           | 2            | 3<br>C                                     | 4<br>E              | <b>5</b><br>A    | 6<br>B      | 7       | 8      | 9      | 10      | 11                 | 12   |
| 0704210-001<br>0704210-002                          | DW-1<br>DW-2         |                           | Water<br>Water               | 4/10/07 3:00:00<br>4/10/07 2:40:00                    |        |                  | 2<br>F       | 3<br>C<br>C                                | 4<br>E<br>E         |                  | 6<br>B<br>B | 7       | 8      | 9      | 10      |                    | 12   |
|                                                     |                      |                           |                              |                                                       |        | D                | _            | -                                          |                     | A                |             | 7       | 8      | 9      | 10      |                    | 12   |
| 0704210-002                                         | DW-2                 |                           | Water                        | 4/10/07 2:40:00                                       |        | D<br>D           | F            | С                                          | E                   | A                | В           | 7       | 8      | 9      |         |                    | 12   |
| 0704210-002<br>0704210-003                          | DW-2<br>DW-3         |                           | Water<br>Water               | 4/10/07 2:40:00<br>4/10/07 3:10:00                    |        | D<br>D<br>D      | F            | C<br>C                                     | E                   | A<br>A<br>A      | B           | 7       | 8      | 9      |         |                    | 12   |
| 0704210-002<br>0704210-003<br>0704210-004           | DW-2<br>DW-3<br>DW-4 |                           | Water<br>Water<br>Water      | 4/10/07 2:40:00<br>4/10/07 3:10:00<br>4/10/07 2:22:00 |        | D<br>D<br>D<br>D | F            | C<br>C<br>C                                | E                   | A<br>A<br>A<br>A | B<br>B<br>B | 7       | 8      | 9      |         |                    | 12   |

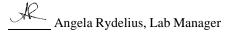
Test Legend:

| 1  | 300_1_W       |   | 2  | 8270D_W | [ | 3 | 9-OXYS_W |   | 4 | COD_W | 5  | G-MBTEX_W |
|----|---------------|---|----|---------|---|---|----------|---|---|-------|----|-----------|
| 6  | TPH(DMO)WSG_W |   | 7  |         |   | 8 |          | Ľ | 9 |       | 10 |           |
| 11 |               | ſ | 12 |         |   |   |          |   |   |       |    |           |

Prepared by: Melissa Valles

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.


|               | McCampbell                                        | Analyt | ical, Inc.                      |         | Web: www.mcca            | mpbell.cor              | ad, Pittsburg, CA 94565<br>n E-mail: main@mccar<br>-9262 Fax: 925-252-9 | mpbell.com | n      |  |  |
|---------------|---------------------------------------------------|--------|---------------------------------|---------|--------------------------|-------------------------|-------------------------------------------------------------------------|------------|--------|--|--|
| AEI Con       | sultants                                          |        | Client Project I<br>Holding Co. | D: #261 | .639; G&G                |                         | e Sampled: 04/10/                                                       |            |        |  |  |
| 2500 Can      | nino Diablo, Ste. #200                            |        |                                 |         |                          | Date                    | e Received 04/10/                                                       | /07        |        |  |  |
| Walnut C      | Creek, CA 94597                                   |        | Client Contact                  | : Adria | n Angel                  | Date Extracted 04/10/07 |                                                                         |            |        |  |  |
|               |                                                   |        | Client P.O.:                    |         |                          | Date                    | e Analyze 04/10/                                                        | /07-04/1   | 2/07   |  |  |
| Extraction me | thod E300.1                                       |        | <b>Inorgan</b><br>Analytical me |         | <b>IS by IC*</b><br>00.1 |                         | Work C                                                                  | Order: 0   | 704210 |  |  |
| Lab ID        | Client ID                                         | Matrix | Nitrite as N                    | DF      | Nitrate as N             | DF                      | Nitrate as NO3 <sup>-</sup>                                             | DF         | % SS   |  |  |
| 001D          | DW-1                                              | W      | ND<1.0,j,h                      | 1       | ND                       | 1                       | ND                                                                      | 10         | 100    |  |  |
| 002D          | DW-2                                              | W      | ND,h                            | 1       | ND                       | 1                       | ND                                                                      | 1          | 98     |  |  |
| 003D          | DW-3                                              | W      | ND<1.0,j,h                      | 1       | ND                       | 1                       | ND                                                                      | 10         | 100    |  |  |
| 004D          | DW-4                                              | W      | ND<1.0,j                        | 1       | ND                       | 1                       | ND                                                                      | 10         | 95     |  |  |
| 005D          | DW-5                                              | W      | ND<0.50,j                       | 1       | ND                       | 1                       | ND                                                                      | 5          | 93     |  |  |
| 006D          | DW-6                                              | W      | ND<1.0,j                        | 1       | 3.4                      | 1                       | 15                                                                      | 10         | 94     |  |  |
| 007D          | DW-7                                              | W      | ND<1.0,j                        | 1       | 5.2                      | 1                       | 23                                                                      | 10         | 100    |  |  |
|               |                                                   |        |                                 |         |                          |                         |                                                                         |            |        |  |  |
|               |                                                   |        |                                 |         |                          |                         |                                                                         |            |        |  |  |
|               |                                                   |        |                                 |         |                          |                         |                                                                         |            |        |  |  |
|               |                                                   |        |                                 |         |                          |                         |                                                                         |            |        |  |  |
|               |                                                   |        |                                 |         |                          |                         |                                                                         |            |        |  |  |
|               |                                                   |        |                                 |         |                          |                         |                                                                         |            |        |  |  |
| Repor         | rting Limit for DF =1;                            | W      | 0.1                             |         | 0.1                      |                         | 0.45                                                                    |            | mg/I   |  |  |
| ND m          | eans not detected at or<br>ve the reporting limit | S      | 0.1<br>NA                       |         | NA                       |                         | NA                                                                      |            | mg/K   |  |  |

\* water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

\* [Nitrate as NO3<sup>-</sup>] = 4.4286 x [Nitrate as N]

# surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted/reporting limit raised due to high inorganic content/matrix interference; k) sample arrived with head space.



| <u>McCampbell</u>                                  |                 | Inc.     |             | 1534 Willow Pass Road, Pittsburg, CA 94565-1701<br>Web: www.mccampbell.com E-mail: main@mccampbell.com<br>Telephone: 877-252-9262 Fax: 925-252-9269 |                                                  |                   |                   |         |  |  |  |  |
|----------------------------------------------------|-----------------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|-------------------|---------|--|--|--|--|
|                                                    | uality Counts"  |          |             |                                                                                                                                                     |                                                  |                   |                   |         |  |  |  |  |
| AEI Consultants                                    |                 |          |             | #261639; G&G                                                                                                                                        | Date S                                           | ampled: 04/10/0   | 7                 |         |  |  |  |  |
| 2500 Carrier Dishla Sta #200                       | Hol             | ding Co  | ).          |                                                                                                                                                     | Date R                                           | eceived: 04/10/0  | 7                 |         |  |  |  |  |
| 2500 Camino Diablo, Ste. #200                      | Clie            | ent Con  | tact A      | drian Angel                                                                                                                                         | Date E                                           | tracted: 04/10/07 |                   |         |  |  |  |  |
|                                                    |                 |          |             |                                                                                                                                                     |                                                  |                   | -                 |         |  |  |  |  |
| Walnut Creek, CA 94597                             | Clie            | nt P.O.: |             |                                                                                                                                                     | Date A                                           | analyzed 04/12/0  | 7                 |         |  |  |  |  |
|                                                    | Semi-Volatile   | e Orgai  | nics by (   | GC/MS (Basic Target                                                                                                                                 | List)*                                           |                   |                   |         |  |  |  |  |
| Extraction Method: SW3510C                         |                 | Anal     | ytical Metl | hod: SW8270C                                                                                                                                        |                                                  | Work Ord          | er: 070           | )4210   |  |  |  |  |
| Lab ID                                             |                 |          |             | 0704210-0021                                                                                                                                        | 7                                                |                   |                   |         |  |  |  |  |
| Client ID                                          |                 |          |             | DW-2                                                                                                                                                |                                                  |                   |                   |         |  |  |  |  |
| Matrix                                             |                 |          |             | Water                                                                                                                                               |                                                  |                   |                   |         |  |  |  |  |
|                                                    | <b>a</b>        | DE       | Reporting   |                                                                                                                                                     |                                                  | G                 | DE                | Report  |  |  |  |  |
| Compound                                           | Concentration * | DF       | Limit       | Compound                                                                                                                                            |                                                  | Concentration *   | DF                | Ĺim     |  |  |  |  |
| Acenaphthene                                       | ND              | 1.0      | 10          | Acenaphthylene                                                                                                                                      |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| Acetochlor                                         | ND              | 1.0      | 10          | Anthracene                                                                                                                                          |                                                  | ND                |                   |         |  |  |  |  |
| Benzidine                                          | ND              | 1.0      | 50          | Benzoic Acid                                                                                                                                        |                                                  | ND                | 1.0               | 50      |  |  |  |  |
| Benzo(a)anthracene                                 | ND              | 1.0      | 10          | Benzo(b)fluoranthene                                                                                                                                |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| Benzo(k)fluoranthene                               | ND              | 1.0      | 10          | Benzo(g,h,i)perylene                                                                                                                                |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| Benzo(a)pyrene                                     | ND<br>ND        | 1.0      | 10<br>10    | Benzyl Alcohol                                                                                                                                      | othono                                           | ND<br>ND          | 1.0               | 20      |  |  |  |  |
| 1,1-Biphenyl<br>Bis (2-chloroethyl) Ether          | ND              | 1.0      | 10          | Bis (2-chloroethoxy) M                                                                                                                              |                                                  | 1.0               | 1                 |         |  |  |  |  |
| Bis (2-ethylhexyl) Phthalate                       | ND              | 1.0      | 10          | · · · · · · · · · · · · · · · · · · ·                                                                                                               | -chloroisopropyl) Ether<br>mophenyl Phenyl Ether |                   | 1.0               | 1       |  |  |  |  |
| Bis (2-ethyliexyl) Phthalate                       | ND              | 1.0      | 10          | 4-Chloroaniline                                                                                                                                     | Ether                                            | ND<br>ND          | 1.0               | 2       |  |  |  |  |
| 4-Chloro-3-methylphenol                            | ND              | 1.0      | 10          | 2-Chloronaphthalene                                                                                                                                 |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| 2-Chlorophenol                                     | ND              | 1.0      | 10          | 4-Chlorophenyl Phenyl                                                                                                                               | Ether                                            | ND                | 1.0               | 1       |  |  |  |  |
| Chrysene                                           | ND              | 1.0      | 10          | Dibenzo(a,h)anthracene                                                                                                                              | Luioi                                            | ND                | 1.0               | 1       |  |  |  |  |
| Dibenzofuran                                       | ND              | 1.0      | 10          | Di-n-butyl Phthalate                                                                                                                                |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| 1,2-Dichlorobenzene                                | ND              | 1.0      | 10          | 1,3-Dichlorobenzene                                                                                                                                 |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| 1,4-Dichlorobenzene                                | ND              | 1.0      | 10          | 3,3-Dichlorobenzidine                                                                                                                               |                                                  | ND                | 1.0               | 20      |  |  |  |  |
| 2,4-Dichlorophenol                                 | ND              | 1.0      | 10          | Diethyl Phthalate                                                                                                                                   |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| 2,4-Dimethylphenol                                 | ND              | 1.0      | 10          | Dimethyl Phthalate                                                                                                                                  |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| 4,6-Dinitro-2-methylphenol                         | ND              | 1.0      | 50          | 2,4-Dinitrophenol                                                                                                                                   |                                                  | ND                | 1.0               | 50      |  |  |  |  |
| 2,4-Dinitrotoluene                                 | ND              | 1.0      | 10          | 2,6-Dinitrotoluene                                                                                                                                  |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| Di-n-octyl Phthalate                               | ND              | 1.0      | 10          | 1,2-Diphenylhydrazine                                                                                                                               |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| Fluoranthene                                       | ND              | 1.0      | 10          | Fluorene                                                                                                                                            |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| Hexachlorobenzene                                  | ND              | 1.0      | 10          | Hexachlorobutadiene                                                                                                                                 |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| Hexachlorocyclopentadiene                          | ND              | 1.0      | 50          | Hexachloroethane                                                                                                                                    |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| Indeno (1,2,3-cd) pyrene                           | ND              | 1.0      | 10          | Isophorone                                                                                                                                          |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| 2-Methylnaphthalene                                | ND              | 1.0      | 10          | 2-Methylphenol (o-Cres                                                                                                                              | ol)                                              | ND                | 1.0               | 10      |  |  |  |  |
| 3 &/or 4-Methylphenol (m,p-Cres                    | ND              | 1.0      | 10          | Naphthalene                                                                                                                                         |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| 2-Nitroaniline                                     | ND              | 1.0      | 50          | 3-Nitroaniline                                                                                                                                      |                                                  | ND                | 1.0               | 5       |  |  |  |  |
| 4-Nitroaniline                                     | ND              | 1.0      | 50          | Nitrobenzene                                                                                                                                        |                                                  | ND                | 1.0               | 1       |  |  |  |  |
| 2-Nitrophenol                                      | ND              | 1.0      | 50          | 4-Nitrophenol                                                                                                                                       |                                                  | ND                | 1.0               | 5       |  |  |  |  |
| N-Nitrosodiphenylamine                             | ND              | 1.0      | 10          | N-Nitrosodi-n-propylam                                                                                                                              | ine                                              | ND                | 1.0               | 1       |  |  |  |  |
| Pentachlorophenol                                  | ND              | 1.0      | 50          | Phenanthrene                                                                                                                                        |                                                  | ND                | 1.0               | 10      |  |  |  |  |
| Phenol<br>Pyridine                                 | ND<br>ND        | 1.0      | 10<br>50    | Pyrene<br>1,2,4-Trichlorobenzene                                                                                                                    |                                                  | ND<br>ND          | <u>1.0</u><br>1.0 | 10      |  |  |  |  |
| 2.4.5-Trichlorophenol                              | ND<br>ND        | 1.0      | 10          | 2.4.6-Trichlorophenol                                                                                                                               |                                                  | ND<br>ND          | 1.0               | 10      |  |  |  |  |
| <u>2.4.3-1110100000000000000000000000000000000</u> |                 |          |             | coveries (%)                                                                                                                                        |                                                  |                   | 1.0               | <u></u> |  |  |  |  |
| %SS1:                                              | 11              |          | 3 It        | %SS2:                                                                                                                                               |                                                  | 116               | 5                 |         |  |  |  |  |
| %SS3:                                              | 11              |          |             | %\$\$2:<br>%\$\$4:                                                                                                                                  |                                                  | 109               |                   |         |  |  |  |  |
| /0000.                                             | 11              | U        |             | /UDDT.                                                                                                                                              |                                                  | 105               | ,                 |         |  |  |  |  |

\* water samples in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.



| McCampbell                                       |                | l, Inc.     |                    | 1534 Willow Pass Road, Pittsburg, CA 94565-1701<br>Web: www.mccampbell.com E-mail: main@mccampbell.com<br>Telephone: 877-252-9262 Fax: 925-252-9269 |           |                                                    |         |                 |  |  |  |  |
|--------------------------------------------------|----------------|-------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------|---------|-----------------|--|--|--|--|
|                                                  | uality Counts" | iont Droig  | ot ID:             | #261639; G&G                                                                                                                                        |           | $\frac{62}{\text{ampled:}} \frac{725-252-9269}{2}$ |         |                 |  |  |  |  |
| AEI Consultants                                  |                | olding Co   |                    | 4201039, 0&0                                                                                                                                        |           | •                                                  |         |                 |  |  |  |  |
| 2500 Camino Diablo, Ste. #200                    |                | oluling Co  | <i>.</i>           |                                                                                                                                                     | Date F    | Received: 04/10/0                                  | 07      |                 |  |  |  |  |
| 2000 Cullino Diaolo, Ste. #200                   |                | lient Con   | tact: A            | drian Angel                                                                                                                                         | Date E    | Extracted: 04/10/07                                |         |                 |  |  |  |  |
| Walnut Creek, CA 94597                           | С              | lient P.O.: |                    |                                                                                                                                                     | Date A    | nalyzed 04/13/0                                    | 07      |                 |  |  |  |  |
|                                                  | Somi Volat     | ilo Orgo    | nice by (          | GC/MS (Basic Targe                                                                                                                                  | t I ict)* |                                                    |         |                 |  |  |  |  |
| Extraction Method: SW3510C                       | Senn-voiat     | -           | -                  | hod: SW8270C                                                                                                                                        | t List).  | Work Ord                                           | or: 070 | 1210            |  |  |  |  |
|                                                  |                | Allal       | ytical Met         |                                                                                                                                                     |           | WORK OID                                           | ei. 070 | 4210            |  |  |  |  |
| Lab ID                                           |                |             |                    | 0704210-003                                                                                                                                         | SF        |                                                    |         |                 |  |  |  |  |
| Client ID                                        |                |             |                    | DW-3                                                                                                                                                |           |                                                    |         |                 |  |  |  |  |
| Matrix                                           |                |             | r                  | Water                                                                                                                                               |           |                                                    | 1       | <del></del>     |  |  |  |  |
| Compound                                         | Concentration  | * DF        | Reporting<br>Limit | Compound                                                                                                                                            |           | Concentration *                                    | DF      | Reporti<br>Limi |  |  |  |  |
| Acenaphthene                                     | ND             | 1.0         | 10                 | Acenaphthylene                                                                                                                                      |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Acetochlor                                       | ND             | 1.0         | 10                 | Anthracene                                                                                                                                          |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Benzidine                                        | ND             | 1.0         | 50                 | Benzoic Acid                                                                                                                                        |           | ND                                                 | 1.0     | 50              |  |  |  |  |
| Benzo(a)anthracene                               | ND             | 1.0         | 10                 | Benzo(b)fluoranthene                                                                                                                                |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Benzo(k)fluoranthene                             | ND             | 1.0         | 10                 | Benzo(g,h,i)perylene                                                                                                                                |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Benzo(a)pyrene                                   | ND             | 1.0         | 10                 | Benzyl Alcohol                                                                                                                                      |           | ND                                                 | 1.0     | 20              |  |  |  |  |
| 1,1-Biphenyl                                     | ND             | 1.0         | 10                 | Bis (2-chloroethoxy)                                                                                                                                |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Bis (2-chloroethyl) Ether                        | ND             | 1.0         | 10                 | Bis (2-chloroisopropy                                                                                                                               |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Bis (2-ethylhexyl) Phthalate                     | ND             | 1.0         | 10<br>10           | 4-Bromophenyl Pheny<br>4-Chloroaniline                                                                                                              | 1 Etner   | ND<br>ND                                           | 1.0     | 10              |  |  |  |  |
| Butylbenzyl Phthalate<br>4-Chloro-3-methylphenol | ND<br>ND       | 1.0         | 10                 | 2-Chloronaphthalene                                                                                                                                 |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| 2-Chlorophenol                                   | ND             | 1.0         | 10                 | 4-Chlorophenyl Pheny                                                                                                                                | l Ether   | ND                                                 | 1.0     | 10              |  |  |  |  |
| Chrysene                                         | ND             | 1.0         | 10                 | Dibenzo(a,h)anthracen                                                                                                                               |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Dibenzofuran                                     | ND             | 1.0         | 10                 | Di-n-butyl Phthalate                                                                                                                                | c         | ND                                                 | 1.0     | 10              |  |  |  |  |
| 1,2-Dichlorobenzene                              | ND             | 1.0         | 10                 | 1,3-Dichlorobenzene                                                                                                                                 |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| 1,4-Dichlorobenzene                              | ND             | 1.0         | 10                 | 3,3-Dichlorobenzidine                                                                                                                               |           | ND                                                 | 1.0     | 20              |  |  |  |  |
| 2,4-Dichlorophenol                               | ND             | 1.0         | 10                 | Diethyl Phthalate                                                                                                                                   |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| 2,4-Dimethylphenol                               | ND             | 1.0         | 10                 | Dimethyl Phthalate                                                                                                                                  |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| 4,6-Dinitro-2-methylphenol                       | ND             | 1.0         | 50                 | 2,4-Dinitrophenol                                                                                                                                   |           | ND                                                 | 1.0     | 50              |  |  |  |  |
| 2,4-Dinitrotoluene                               | ND             | 1.0         | 10                 | 2,6-Dinitrotoluene                                                                                                                                  |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Di-n-octyl Phthalate                             | ND             | 1.0         | 10                 | 1,2-Diphenylhydrazine                                                                                                                               | •         | ND                                                 | 1.0     | 10              |  |  |  |  |
| Fluoranthene                                     | ND             | 1.0         | 10                 | Fluorene                                                                                                                                            |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Hexachlorobenzene                                | ND             | 1.0         | 10                 | Hexachlorobutadiene                                                                                                                                 |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Hexachlorocyclopentadiene                        | ND             | 1.0         | 50                 | Hexachloroethane                                                                                                                                    |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Indeno (1,2,3-cd) pyrene<br>2-Methylnaphthalene  | ND<br>ND       | 1.0         | 10<br>10           | Isophorone<br>2-Methylphenol (o-Cro                                                                                                                 | aal)      | ND<br>ND                                           | 1.0     | 10              |  |  |  |  |
| 3 &/or 4-Methylphenol (m.p-Cres                  | ND             | 1.0         | 10                 | Naphthalene                                                                                                                                         | (1001)    | ND                                                 | 1.0     | 10              |  |  |  |  |
| 2-Nitroaniline                                   | ND             | 1.0         | 50                 | 3-Nitroaniline                                                                                                                                      |           | ND                                                 | 1.0     | 50              |  |  |  |  |
| 4-Nitroaniline                                   | ND             | 1.0         | 50                 | Nitrobenzene                                                                                                                                        |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| 2-Nitrophenol                                    | ND             | 1.0         | 50                 | 4-Nitrophenol                                                                                                                                       |           | ND                                                 | 1.0     | 50              |  |  |  |  |
| N-Nitrosodiphenylamine                           | ND             | 1.0         | 10                 | N-Nitrosodi-n-propyla                                                                                                                               | mine      | ND                                                 | 1.0     | 10              |  |  |  |  |
| Pentachlorophenol                                | ND             | 1.0         | 50                 | Phenanthrene                                                                                                                                        |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Phenol                                           | ND             | 1.0         | 10                 | Pyrene                                                                                                                                              |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| Pyridine                                         | ND             | 1.0         | 50                 | 1,2,4-Trichlorobenzen                                                                                                                               |           | ND                                                 | 1.0     | 10              |  |  |  |  |
| 2.4.5-Trichlorophenol                            | ND             | 1.0         | 10                 | 2.4.6-Trichlorophenol                                                                                                                               |           | ND                                                 | 1.0     | 10              |  |  |  |  |
|                                                  |                |             | ogate Re           | coveries (%)                                                                                                                                        |           | 1                                                  |         |                 |  |  |  |  |
| %SS1:                                            |                | 87          |                    | %SS2:                                                                                                                                               |           | 81                                                 |         |                 |  |  |  |  |
| %SS3:                                            |                | 86          |                    | %SS4:                                                                                                                                               |           | 71                                                 |         |                 |  |  |  |  |
| %SS5:                                            |                | 71          |                    | %SS6:                                                                                                                                               |           | 84                                                 |         |                 |  |  |  |  |

\* water samples in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.



| When Ouality                  |              | <u>ic.</u>        | Web: www.mccamp        | ass Road, Pittsburg, CA<br>bell.com E-mail: main<br>77-252-9262 Fax: 925 | @mccampbell.c   | om      |  |  |  |  |
|-------------------------------|--------------|-------------------|------------------------|--------------------------------------------------------------------------|-----------------|---------|--|--|--|--|
| AEI Consultants               |              | oject ID: #261639 |                        | Date Sampled:                                                            | 04/10/07        |         |  |  |  |  |
| 2500 Camino Diablo, Ste. #200 | Holding      | Co.               |                        | Date Received:                                                           | 04/10/07        |         |  |  |  |  |
| 2500 Camino Diabio, Sc. #200  | Client C     | Contact: Adrian A | ngel                   | Date Extracted:                                                          | 04/11/07        |         |  |  |  |  |
| Walnut Creek, CA 94597        | Client P     |                   | Date Analyzed 04/11/07 |                                                                          |                 |         |  |  |  |  |
| 0                             |              |                   | 2 DCA h- D&T           |                                                                          | 0.,11,0,        |         |  |  |  |  |
| Extraction Method: SW5030B    | e            | nics + EDB and 1  | •                      | and GC/IVIS*                                                             | Work Order:     | 0704210 |  |  |  |  |
| Lab ID                        | 0704210-001C | 0704210-002C      | 0704210-003C           | 0704210-004C                                                             |                 |         |  |  |  |  |
| Client ID                     | DW-1         | DW-2              | DW-3                   | DW-4                                                                     | Reporting<br>DF |         |  |  |  |  |
| Matrix                        | W            | W                 | W                      | W                                                                        | 1               |         |  |  |  |  |
| DF                            | 1            | 1                 | 1                      | 1                                                                        | S               | W       |  |  |  |  |
| Compound                      |              | Conc              | entration              |                                                                          | ug/kg           | μg/L    |  |  |  |  |
| tert-Amyl methyl ether (TAME) | ND           | ND                | ND                     | ND                                                                       | NA              | 0.5     |  |  |  |  |
| t-Butyl alcohol (TBA)         | ND           | ND                | ND                     | ND                                                                       | NA              | 5.0     |  |  |  |  |
| 1,2-Dibromoethane (EDB)       | ND           | ND                | ND                     | ND                                                                       | NA              | 0.5     |  |  |  |  |
| 1,2-Dichloroethane (1,2-DCA)  | ND           | ND                | ND                     | ND                                                                       | NA              | 0.5     |  |  |  |  |
| Diisopropyl ether (DIPE)      | ND           | ND                | ND                     | ND                                                                       | NA              | 0.5     |  |  |  |  |
| Ethanol                       | ND           | ND                | ND                     | ND                                                                       | NA              | 50      |  |  |  |  |
| Ethyl tert-butyl ether (ETBE) | ND           | ND                | ND                     | ND                                                                       | NA              | 0.5     |  |  |  |  |
| Methanol                      | ND           | ND                | ND                     | ND                                                                       | NA              | 500     |  |  |  |  |
| Methyl-t-butyl ether (MTBE)   | ND           | ND                | ND                     | 0.67                                                                     | NA              | 0.5     |  |  |  |  |
|                               | Suri         | ogate Recoverie   | s (%)                  |                                                                          |                 |         |  |  |  |  |
|                               | 103          | 103               | 102                    | 101                                                                      |                 |         |  |  |  |  |
| %SS1:                         | 105          |                   |                        |                                                                          |                 |         |  |  |  |  |

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.



| WcCampbell An<br>"When Quality                                                        |                     | <u>c.</u>            | Web: www.mccamp       | Pass Road, Pittsburg, CA<br>bell.com E-mail: main<br>377-252-9262 Fax: 92 | n@mccampbell.c       | om       |
|---------------------------------------------------------------------------------------|---------------------|----------------------|-----------------------|---------------------------------------------------------------------------|----------------------|----------|
| AEI Consultants                                                                       |                     | oject ID: #26163     | 9; G&G                | Date Sampled:                                                             | 04/10/07             |          |
| 2500 Camino Diablo, Ste. #200                                                         | Holding             | Co.                  |                       | Date Received:                                                            | 04/10/07             |          |
|                                                                                       | Client C            | ontact: Adrian A     | Angel                 | Date Extracted:                                                           | 04/11/07             |          |
| Walnut Creek, CA 94597                                                                | Client P.           | 0.:                  |                       | Date Analyzed                                                             | 04/11/07             |          |
| Oxygenat<br>Extraction Method: SW5030B                                                | ed Volatile Organ   | nics + EDB and 1     | •                     | and GC/MS*                                                                | Work Order:          | 0704210  |
| Lab ID                                                                                | 0704210-005C        | 0704210-006C         | 0704210-007C          |                                                                           |                      |          |
| Client ID                                                                             | DW-5                | DW-6                 | DW-7                  |                                                                           | -<br>Reporting<br>DF |          |
| Matrix                                                                                | W                   | W                    | W                     |                                                                           | ]                    |          |
| DF                                                                                    | 1                   | 1                    | 1                     |                                                                           | S                    | W        |
| Compound                                                                              |                     | Conc                 | entration             |                                                                           | ug/kg                | μg/L     |
| tert-Amyl methyl ether (TAME)                                                         | ND                  | ND                   | ND                    |                                                                           | NA                   | 0.5      |
| t-Butyl alcohol (TBA)                                                                 | ND                  | ND                   | ND                    |                                                                           | NA                   | 5.0      |
| 1,2-Dibromoethane (EDB)                                                               | ND                  | ND                   | ND                    |                                                                           | NA                   | 0.5      |
| 1,2-Dichloroethane (1,2-DCA)                                                          | ND                  | ND                   | ND                    |                                                                           | NA                   | 0.5      |
| Diisopropyl ether (DIPE)                                                              | ND                  | 0.81                 | ND                    |                                                                           | NA                   | 0.5      |
| Ethanol                                                                               | ND                  | ND                   | ND                    |                                                                           | NA                   | 50       |
| Ethyl tert-butyl ether (ETBE)                                                         | ND                  | ND                   | ND                    |                                                                           | NA                   | 0.5      |
| Methanol                                                                              | ND                  | ND                   | ND                    |                                                                           | NA                   | 500      |
| Methyl-t-butyl ether (MTBE)                                                           | ND                  | ND                   | ND                    |                                                                           | NA                   | 0.5      |
|                                                                                       | Surr                | ogate Recoverie      | s (%)                 |                                                                           |                      |          |
| %SS1:                                                                                 | 103                 | 103                  | 103                   |                                                                           |                      |          |
| Comments                                                                              |                     |                      |                       |                                                                           |                      |          |
| * water and vapor samples are reported ir<br>extracts are reported in mg/L, wipe samp |                     | blid samples in mg/k | sg, product/oil/non-a | aqueous liquid sampl                                                      | es and all TCI       | LP & SPL |
| ND means not detected above the report                                                | ing limit; N/A mean | s analyte not applic | able to this analysi  | s.                                                                        |                      |          |
| # surrogate diluted out of range or coelu                                             | es with another pea | k; &) low surrogate  | due to matrix inter   | ference.                                                                  |                      |          |
| h) lighter than water immiscible sheen/pr                                             | · ·                 |                      | -                     |                                                                           | • •                  |          |

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.



| <u> </u>              | <b>Campbell Analyti</b><br>"When Ouality Counts" | cal, Inc.          |          | 1534 Willow Pass Road, Pittsburg, CA 94565-170<br>Web: www.mccampbell.com E-mail: main@mccampbell.com<br>Telephone: 877-252-9262 Fax: 925-252-9269 |            |
|-----------------------|--------------------------------------------------|--------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| AEI Consultants       |                                                  | Client Project ID: | #261639; | ; G&G Date Sampled: 04/10/07                                                                                                                       | 7          |
| 2500 Camino Diat      | olo, Ste. #200                                   | Holding Co.        |          | Date Received: 04/10/07                                                                                                                            | 7          |
| Walnut Creek, CA      | 04507                                            | Client Contact: A  | drian Ar | ngel Date Extracted: 04/11/07                                                                                                                      | 7          |
| wallut Cleek, CA      | A 94397                                          | Client P.O.:       |          | Date Analyzed 04/11/07                                                                                                                             | 7          |
| Analytical Method: SM | 15220D                                           | Chemical Oxyger    | n Deman  | d (COD)*<br>Work Orde                                                                                                                              | r: 0704210 |
| Lab ID                | Client ID                                        | Matri              | x        | COD                                                                                                                                                | DF         |
| 0704210-001E          | DW-1                                             | W                  |          | 19                                                                                                                                                 | 1          |
| 0704210-002E          | DW-2                                             | W                  |          | 17                                                                                                                                                 | 1          |
| 0704210-003E          | DW-3                                             | W                  |          | 48                                                                                                                                                 | 1          |
| 0704210-004E          | DW-4                                             | W                  |          | ND                                                                                                                                                 | 1          |
| 0704210-005E          | DW-5                                             | W                  |          | ND                                                                                                                                                 | 1          |
| 0704210-006E          | DW-6                                             | W                  |          | ND                                                                                                                                                 | 1          |
| 0704210-007E          | DW-7                                             | W                  |          | ND                                                                                                                                                 | 1          |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |
|                       |                                                  |                    |          |                                                                                                                                                    |            |

| Reporting Limit for DF = 1; ND means not detected at | W | 10 mg/L |  |
|------------------------------------------------------|---|---------|--|
| or above the reporting limit                         | S | NA      |  |

\*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

|          | McCampbell                                       | Analy     |             |             | Web: www.m                       |               | Pittsburg, CA 94565<br>E-mail: main@mcca<br>52 Fax: 925-252-9 | mpbell.com      |          |       |
|----------|--------------------------------------------------|-----------|-------------|-------------|----------------------------------|---------------|---------------------------------------------------------------|-----------------|----------|-------|
| AEI C    | onsultants                                       |           | Client Proj | ect ID: #26 | 1639; G&G Hol                    | ding Co.      | Date Sample                                                   | ed: 04/10/07    |          |       |
| 2500 0   | Camino Diablo, Ste. #200                         |           |             |             |                                  |               | Date Receiv                                                   | ed: 04/10/07    |          |       |
| XX 7 1   |                                                  |           | Client Con  | tact: Adria | ın Angel                         |               | Date Extract                                                  | ed: 04/11/07    | -04/12   | 2/07  |
| Walnu    | tt Creek, CA 94597                               |           | Client P.O. | :           |                                  |               | Date Analyz                                                   | ed 04/11/07     | -04/12   | 2/07  |
| Extracti | Gasolin<br>on method SW5030B                     | e Range ( |             | -           | arbons as Gaso<br>SW8021B/8015Cm | line with BTI | EX and MTBE                                                   | *<br>Work Order | : 070    | 4210  |
| Lab ID   | Client ID                                        | Matrix    | TPH(g)      | MTBE        | Benzene                          | Toluene       | Ethylbenzene                                                  | Xylenes         | DF       | % SS  |
| 001A     | DW-1                                             | W         | 100,g,h     |             | ND                               | ND            | ND                                                            | ND              | 1        | 87    |
| 002A     | DW-2                                             | W         | 180,g,h     |             | ND                               | ND            | ND                                                            | 1               | 81       |       |
| 003A     | DW-3                                             | W         | 220,g,h     |             | ND                               | ND            | ND                                                            | 1               | 91       |       |
| 004A     | DW-4                                             | W         | ND          |             | ND                               | ND            | ND                                                            | ND              | 1        | 90    |
| 005A     | DW-5                                             | W         | ND          |             | ND                               | ND            | ND                                                            | ND              | 1        | 93    |
| 006A     | DW-6                                             | w         | ND          |             | ND                               | ND            | ND                                                            | ND              | 1        | 95    |
| 007A     | DW-7                                             | W         | ND          |             | ND                               | ND            | ND                                                            | ND              | 1        | 92    |
|          |                                                  |           |             |             |                                  |               |                                                               |                 |          |       |
|          |                                                  |           |             |             |                                  |               |                                                               |                 |          | -     |
|          |                                                  |           |             |             |                                  |               |                                                               |                 |          |       |
|          |                                                  |           |             |             |                                  |               |                                                               |                 |          |       |
|          |                                                  |           |             |             |                                  |               |                                                               |                 |          |       |
|          |                                                  |           |             |             |                                  |               |                                                               |                 | <u> </u> |       |
|          |                                                  |           |             |             |                                  |               | <u> </u>                                                      |                 |          |       |
|          |                                                  |           |             |             |                                  |               |                                                               |                 | <u> </u> |       |
|          |                                                  |           |             |             |                                  |               |                                                               |                 |          |       |
| -        | porting Limit for DF =1;                         | W         | 50          | 5.0         | 0.5                              | 0.5           | 0.5                                                           | 0.5             | 1        | µg/L  |
|          | means not detected at or ove the reporting limit | S         | NA          | NA          | NA                               | NA            | NA                                                            | NA              | 1        | mg/Kg |

\* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu$ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



|                      | Campbell Analyti<br>"When Ouality Counts"           | cal, Inc.          | 1534 Willow Pass Road, Pittsburg, CA 94565-1701<br>Web: www.mccampbell.com E-mail: main@mccampbell.com<br>Telephone: 877-252-9262 Fax: 925-252-9269 |                     |                          |        |  |  |  |
|----------------------|-----------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|--------|--|--|--|
| AEI Consultan        | ts                                                  | Client Project ID: | #261639; G&G                                                                                                                                        | Date Sampled: 04/   | /10/07                   |        |  |  |  |
| 2500 Camino D        | Diablo, Ste. #200                                   | Holding Co.        |                                                                                                                                                     | Date Received: 04/  | /10/07                   |        |  |  |  |
| Walnut Creek,        | CA 94597                                            | Client Contact: A  | drian Angel                                                                                                                                         | Date Extracted: 04/ | Date Extracted: 04/10/07 |        |  |  |  |
| Wallat Creek,        |                                                     | Client P.O.:       |                                                                                                                                                     | Date Analyzed 04/   | /10/07-04/               | 12/07  |  |  |  |
| Extraction method: S | <b>Diesel (C10-23) and Oil (C</b>                   | -                  | table Hydrocarbons wit                                                                                                                              | _                   |                          | 704210 |  |  |  |
| Lab ID               | Client ID                                           | Matrix             | TPH(d)                                                                                                                                              | TPH(mo)             | DF                       | % SS   |  |  |  |
| 0704210-001B         | DW-1                                                | W                  | 8000,a,h                                                                                                                                            | 2800                | 5                        | 99     |  |  |  |
| 0704210-002B         | DW-2                                                | W                  | 8200,a,h                                                                                                                                            | ND<5000             | 20                       | 102    |  |  |  |
| 0704210-003B         | DW-3                                                | W                  | 27,000,a,h                                                                                                                                          | 9200                | 20                       | 98     |  |  |  |
| 0704210-004B         | DW-4                                                | W                  | 65,a                                                                                                                                                | ND                  | 1                        | 88     |  |  |  |
| 0704210-005B         | DW-5                                                | W                  | 800,a                                                                                                                                               | 320                 | 1                        | 89     |  |  |  |
| 0704210-006B         | DW-6                                                | W                  | ND                                                                                                                                                  | ND                  | 1                        | 89     |  |  |  |
| 0704210-007B         | DW-7                                                | W                  | ND                                                                                                                                                  | ND                  | 1                        | 89     |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     |                          |        |  |  |  |
|                      |                                                     |                    |                                                                                                                                                     |                     | <u> </u>                 |        |  |  |  |
|                      | orting Limit for DF =1;<br>neans not detected at or | W                  | 50                                                                                                                                                  | 250<br>NA           |                          | g/L    |  |  |  |
|                      | ove the reporting limit                             | S                  | NA                                                                                                                                                  | mg                  | /Kg                      |        |  |  |  |

\* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/\text{wipe}$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to matrix interference; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.



### <u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

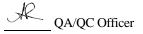
QC Matrix: Water

WorkOrder 0704210

| EPA Method SW8015C | EPA Method SW8015C Extraction SW3510C/3630 |        |        |        | Bat    | chID: 27 | 330    | Sp       | iked Sam | ole ID: | N/A          |     |
|--------------------|--------------------------------------------|--------|--------|--------|--------|----------|--------|----------|----------|---------|--------------|-----|
| Analyte            | Sample                                     | Spiked | MS     | MSD    | MS-MSD | LCS      | LCSD   | LCS-LCSD | Acc      | eptance | Criteria (%) |     |
| , and y to         | µg/L                                       | µg/L   | % Rec. | % Rec. | % RPD  | % Rec.   | % Rec. | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |
| TPH(d)             | N/A                                        | 1000   | N/A    | N/A    | N/A    | 102      | 103    | 1.02     | N/A      | N/A     | 70 - 130     | 30  |
| %SS:               | N/A                                        | 2500   | N/A    | N/A    | N/A    | 100      | 101    | 0.923    | N/A      | N/A     | 70 - 130     | 30  |
|                    |                                            |        |        |        |        |          |        |          |          |         |              |     |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 27330 SUMMARY


| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|-------------------|--------------|------------------|----------------|-------------------|
| 0704210-001B | 04/10/07 3:00 PM | 04/10/07       | 04/12/07 12:05 AM | 0704210-002B | 04/10/07 2:40 PM | 04/10/07       | 04/11/07 6:04 AM  |
| 0704210-003B | 04/10/07 3:10 PM | 04/10/07       | 04/11/07 3:46 AM  | 0704210-004B | 04/10/07 2:22 PM | 04/10/07       | 04/11/07 2:37 AM  |
| 0704210-004B | 04/10/07 2:22 PM | 04/10/07       | 04/11/07 10:57 PM | 0704210-005B | 04/10/07 2:10 PM | 04/10/07       | 04/11/07 1:27 AM  |
| 0704210-006B | 04/10/07 1:50 PM | 04/10/07       | 04/11/07 12:17 AM | 0704210-007B | 04/10/07 1:30 PM | 04/10/07       | 04/10/07 11:07 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8270C

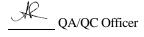
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0704210

| EPA Method SW8270C        | Extra  | ction SW | 3510C  |        | Bat    | chID: 27 | 360    | Sp       | oiked Samp | ole ID: | N/A          |     |
|---------------------------|--------|----------|--------|--------|--------|----------|--------|----------|------------|---------|--------------|-----|
| Analyte                   | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS      | LCSD   | LCS-LCSD | Acce       | eptance | Criteria (%) |     |
| / that y to               | µg/L   | µg/L     | % Rec. | % Rec. | % RPD  | % Rec.   | % Rec. | % RPD    | MS / MSD   | RPD     | LCS/LCSD     | RPD |
| Acenaphthene              | N/A    | 50       | N/A    | N/A    | N/A    | 75.3     | 76     | 0.899    | N/A        | N/A     | 30 - 130     | 30  |
| 4-Chloro-3-methylphenol   | N/A    | 100      | N/A    | N/A    | N/A    | 72.4     | 76.6   | 5.63     | N/A        | N/A     | 30 - 130     | 30  |
| 2-Chlorophenol            | N/A    | 100      | N/A    | N/A    | N/A    | 83.4     | 83.5   | 0.0839   | N/A        | N/A     | 30 - 130     | 30  |
| 1,4-Dichlorobenzene       | N/A    | 50       | N/A    | N/A    | N/A    | 87.3     | 85.4   | 2.13     | N/A        | N/A     | 30 - 130     | 30  |
| 2,4-Dinitrotoluene        | N/A    | 50       | N/A    | N/A    | N/A    | 99.5     | 97.5   | 2.10     | N/A        | N/A     | 30 - 130     | 30  |
| 4-Nitrophenol             | N/A    | 100      | N/A    | N/A    | N/A    | 70.8     | 70.6   | 0.233    | N/A        | N/A     | 30 - 130     | 30  |
| N-Nitrosodi-n-propylamine | N/A    | 50       | N/A    | N/A    | N/A    | 81       | 81.8   | 1.06     | N/A        | N/A     | 30 - 130     | 30  |
| Pentachlorophenol         | N/A    | 100      | N/A    | N/A    | N/A    | 81.4     | 81.9   | 0.674    | N/A        | N/A     | 30 - 130     | 30  |
| Phenol                    | N/A    | 100      | N/A    | N/A    | N/A    | 73.2     | 71.4   | 2.47     | N/A        | N/A     | 30 - 130     | 30  |
| Pyrene                    | N/A    | 50       | N/A    | N/A    | N/A    | 82.2     | 79.6   | 3.30     | N/A        | N/A     | 30 - 130     | 30  |
| 1,2,4-Trichlorobenzene    | N/A    | 50       | N/A    | N/A    | N/A    | 86.6     | 85.7   | 1.01     | N/A        | N/A     | 30 - 130     | 30  |
| %SS1:                     | N/A    | 5000     | N/A    | N/A    | N/A    | 86       | 84     | 2.27     | N/A        | N/A     | 30 - 130     | 30  |
| %SS2:                     | N/A    | 5000     | N/A    | N/A    | N/A    | 87       | 85     | 2.46     | N/A        | N/A     | 30 - 130     | 30  |
| %SS3:                     | N/A    | 5000     | N/A    | N/A    | N/A    | 81       | 82     | 1.39     | N/A        | N/A     | 30 - 130     | 30  |
| %SS4:                     | N/A    | 5000     | N/A    | N/A    | N/A    | 82       | 83     | 1.75     | N/A        | N/A     | 30 - 130     | 30  |
| %SS5:                     | N/A    | 5000     | N/A    | N/A    | N/A    | 83       | 81     | 2.75     | N/A        | N/A     | 30 - 130     | 30  |
| %SS6:                     | N/A    | 5000     | N/A    | N/A    | N/A    | 85       | 81     | 5.38     | N/A        | N/A     | 30 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


| BATCH 27360 SUMMARY |                  |                |                   |              |                  |                |                   |  |  |  |  |
|---------------------|------------------|----------------|-------------------|--------------|------------------|----------------|-------------------|--|--|--|--|
| Sample ID           | Date Sampled     | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     |  |  |  |  |
| 0704210-002F        | 04/10/07 2:40 PM | 04/10/07       | 04/12/07 10:31 AM | 0704210-003F | 04/10/07 3:10 PM | 04/10/07       | 04/13/07 11:24 AM |  |  |  |  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.





NONE

"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8260B

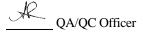
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0704210

| EPA Method SW8260B            | Extra  | ction SW | 5030B  |        | Bat    | tchID: 27 | 361    | Sp       | Spiked Sample ID: 0704210-006C |         |              |     |  |
|-------------------------------|--------|----------|--------|--------|--------|-----------|--------|----------|--------------------------------|---------|--------------|-----|--|
| Analyte                       | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS       | LCSD   | LCS-LCSD | Acce                           | eptance | Criteria (%) |     |  |
| / that y to                   | µg/L   | µg/L     | % Rec. | % Rec. | % RPD  | % Rec.    | % Rec. | % RPD    | MS / MSD                       | RPD     | LCS/LCSD     | RPD |  |
| tert-Amyl methyl ether (TAME) | ND     | 10       | 108    | 114    | 5.31   | 104       | 103    | 1.22     | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| t-Butyl alcohol (TBA)         | ND     | 50       | 93.9   | 99.2   | 5.51   | 92.1      | 92.1   | 0        | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| 1,2-Dibromoethane (EDB)       | ND     | 10       | 94.5   | 101    | 6.13   | 93.8      | 91     | 3.00     | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| 1,2-Dichloroethane (1,2-DCA)  | ND     | 10       | 113    | 118    | 3.68   | 110       | 109    | 0.857    | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| Diisopropyl ether (DIPE)      | 0.81   | 10       | 116    | 118    | 1.86   | 119       | 116    | 2.68     | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| Ethanol                       | ND     | 500      | 97.6   | 95.1   | 2.35   | 98.7      | 98.1   | 0.526    | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| Ethyl tert-butyl ether (ETBE) | ND     | 10       | 116    | 121    | 4.55   | 111       | 109    | 2.27     | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| Methanol                      | ND     | 2500     | 101    | 102    | 1.16   | 100       | 101    | 0.602    | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| Methyl-t-butyl ether (MTBE)   | ND     | 10       | 113    | 119    | 5.60   | 109       | 110    | 0.247    | 70 - 130                       | 30      | 70 - 130     | 30  |  |
| %SS1:                         | 103    | 10       | 99     | 97     | 2.76   | 96        | 100    | 4.10     | 70 - 130                       | 30      | 70 - 130     | 30  |  |

#### BATCH 27361 SUMMARY


| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|------------------|
| 0704210-001C | 04/10/07 3:00 PM | 04/11/07       | 04/11/07 2:01 AM | 0704210-002C | 04/10/07 2:40 PM | 04/11/07       | 04/11/07 2:45 AM |
| 0704210-003C | 04/10/07 3:10 PM | 04/11/07       | 04/11/07 3:29 AM | 0704210-004C | 04/10/07 2:22 PM | 04/11/07       | 04/11/07 4:13 AM |
| 0704210-005C | 04/10/07 2:10 PM | 04/11/07       | 04/11/07 4:56 AM | 0704210-006C | 04/10/07 1:50 PM | 04/11/07       | 04/11/07 5:41 AM |
| 0704210-007C | 04/10/07 1:30 PM | 04/11/07       | 04/11/07 6:25 AM |              |                  |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.





NONE

"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

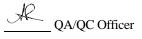
QC Matrix: Water

WorkOrder 0704210

| EPA Method SW8021B/8015Cm | Extra  | ction SW | 5030B  | BatchID: 27379 |        |        |        | Sp       | piked Sample ID: 0704206-001A |     |          |     |
|---------------------------|--------|----------|--------|----------------|--------|--------|--------|----------|-------------------------------|-----|----------|-----|
| Analyte                   | Sample | Spiked   | MS     | MSD            | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acceptance Criteria (%)       |     |          |     |
| Analyte                   | µg/L   | µg/L     | % Rec. | % Rec.         | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD                      | RPD | LCS/LCSD | RPD |
| TPH(btex) <sup>£</sup>    | ND     | 60       | 94.2   | 95.1           | 0.875  | 105    | 111    | 6.10     | 70 - 130                      | 30  | 70 - 130 | 30  |
| MTBE                      | ND     | 10       | 90.6   | 121            | 28.5   | 109    | 106    | 2.92     | 70 - 130                      | 30  | 70 - 130 | 30  |
| Benzene                   | ND     | 10       | 109    | 118            | 7.72   | 93.2   | 94.8   | 1.68     | 70 - 130                      | 30  | 70 - 130 | 30  |
| Toluene                   | ND     | 10       | 100    | 105            | 4.39   | 103    | 104    | 1.55     | 70 - 130                      | 30  | 70 - 130 | 30  |
| Ethylbenzene              | ND     | 10       | 108    | 110            | 2.06   | 99.5   | 102    | 2.10     | 70 - 130                      | 30  | 70 - 130 | 30  |
| Xylenes                   | ND     | 30       | 107    | 107            | 0      | 110    | 113    | 2.99     | 70 - 130                      | 30  | 70 - 130 | 30  |
| %SS:                      | 102    | 10       | 99     | 105            | 5.58   | 94     | 95     | 0.440    | 70 - 130                      | 30  | 70 - 130 | 30  |

#### BATCH 27379 SUMMARY

| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|-------------------|
| 0704210-001A | 04/10/07 3:00 PM | 04/11/07       | 04/11/07 8:10 PM | 0704210-002A | 04/10/07 2:40 PM | 04/11/07       | 04/11/07 8:43 PM  |
| 0704210-003A | 04/10/07 3:10 PM | 04/11/07       | 04/11/07 9:16 PM | 0704210-004A | 04/10/07 2:22 PM | 04/11/07       | 04/11/07 10:22 PM |
| 0704210-005A | 04/10/07 2:10 PM | 04/11/07       | 04/11/07 1:07 PM | 0704210-006A | 04/10/07 1:50 PM | 04/11/07       | 04/11/07 4:17 PM  |
| 0704210-007A | 04/10/07 1:30 PM | 04/12/07       | 04/12/07 2:45 AM |              |                  |                |                   |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.





### McCampbell Analytical, Inc.

"When Ouality Counts"

### QC SUMMARY REPORT FOR E300.1

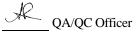
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0704210

| EPA Method E300.1                                                                                                                        | EPA Method E300.1 Extraction E300.1 |        |        |        |        |        | BatchID: 27385 Spiked Sample ID: N/A |          |          |         |              |     |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|--------|--------|--------|--------|--------------------------------------|----------|----------|---------|--------------|-----|
| Analyte                                                                                                                                  | Sample                              | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD                                 | LCS-LCSD | Acce     | eptance | Criteria (%) |     |
| , and y to                                                                                                                               | mg/L                                | mg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec.                               | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |
| Nitrate as N                                                                                                                             | N/A                                 | 1      | N/A    | N/A    | N/A    | 91     | 92                                   | 1.08     | N/A      | N/A     | 85 - 115     | 15  |
| Nitrite as N                                                                                                                             | N/A                                 | 1      | N/A    | N/A    | N/A    | 96.6   | 95.4                                 | 1.30     | N/A      | N/A     | 85 - 115     | 15  |
| %SS:                                                                                                                                     | N/A                                 | 0.10   | N/A    | N/A    | N/A    | 98     | 98                                   | 0        | N/A      | N/A     | 90 - 115     | 10  |
| All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:<br>NONE |                                     |        |        |        |        |        |                                      |          |          |         |              |     |

#### BATCH 27385 SUMMARY


| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|-------------------|--------------|------------------|----------------|-------------------|
| 0704210-001D | 04/10/07 3:00 PM | 04/10/07       | 04/10/07 10:24 PM | 0704210-001D | 04/10/07 3:00 PM | 04/10/07       | 04/11/07 9:19 PM  |
| 0704210-002D | 04/10/07 2:40 PM | 04/10/07       | 04/10/07 10:53 PM | 0704210-003D | 04/10/07 3:10 PM | 04/10/07       | 04/10/07 11:22 PM |
| 0704210-003D | 04/10/07 3:10 PM | 04/10/07       | 04/11/07 9:47 PM  | 0704210-004D | 04/10/07 2:22 PM | 04/10/07       | 04/10/07 11:50 PM |
| 0704210-004D | 04/10/07 2:22 PM | 04/10/07       | 04/11/07 10:16 PM | 0704210-005D | 04/10/07 2:10 PM | 04/10/07       | 04/11/07 12:19 AM |
| 0704210-005D | 04/10/07 2:10 PM | 04/10/07       | 04/11/07 10:45 PM | 0704210-006D | 04/10/07 1:50 PM | 04/10/07       | 04/11/07 12:48 AM |
| 0704210-006D | 04/10/07 1:50 PM | 04/10/07       | 04/12/07 7:40 PM  | 0704210-007D | 04/10/07 1:30 PM | 04/10/07       | 04/11/07 1:17 PM  |
| 0704210-007D | 04/10/07 1:30 PM | 04/10/07       | 04/12/07 8:08 PM  |              |                  |                |                   |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.





### McCampbell Analytical, Inc.

"When Ouality Counts"

### QC SUMMARY REPORT FOR SM5220D

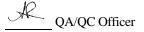
W.O. Sample Matrix: Water

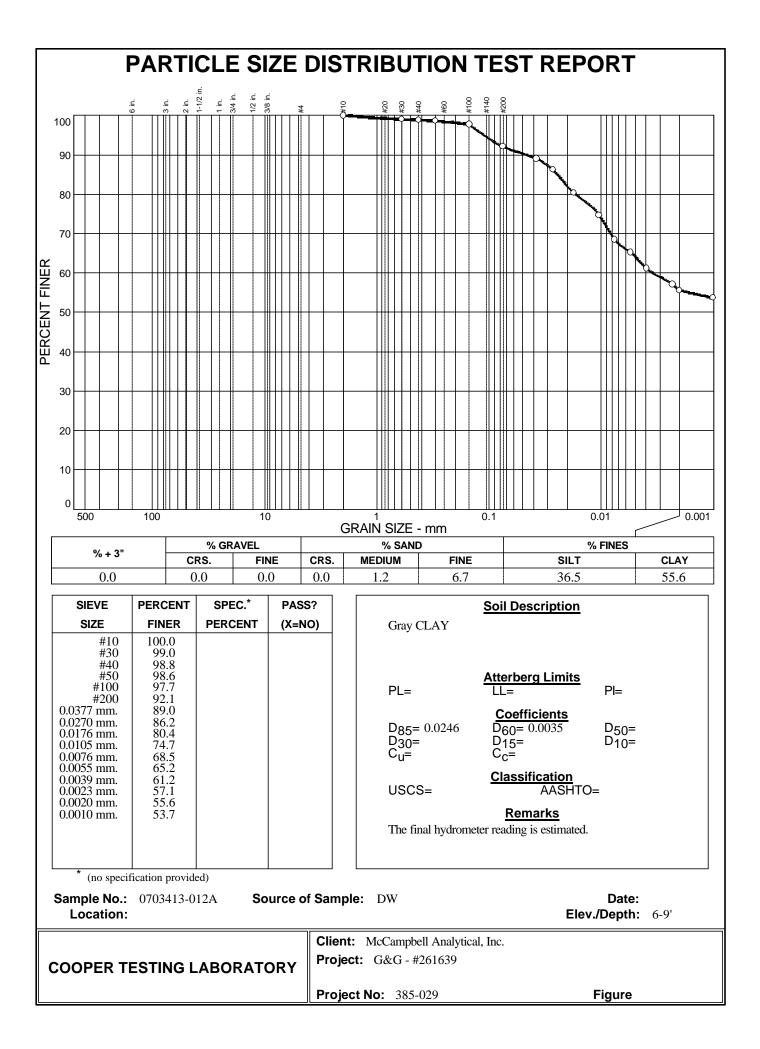
QC Matrix: Water

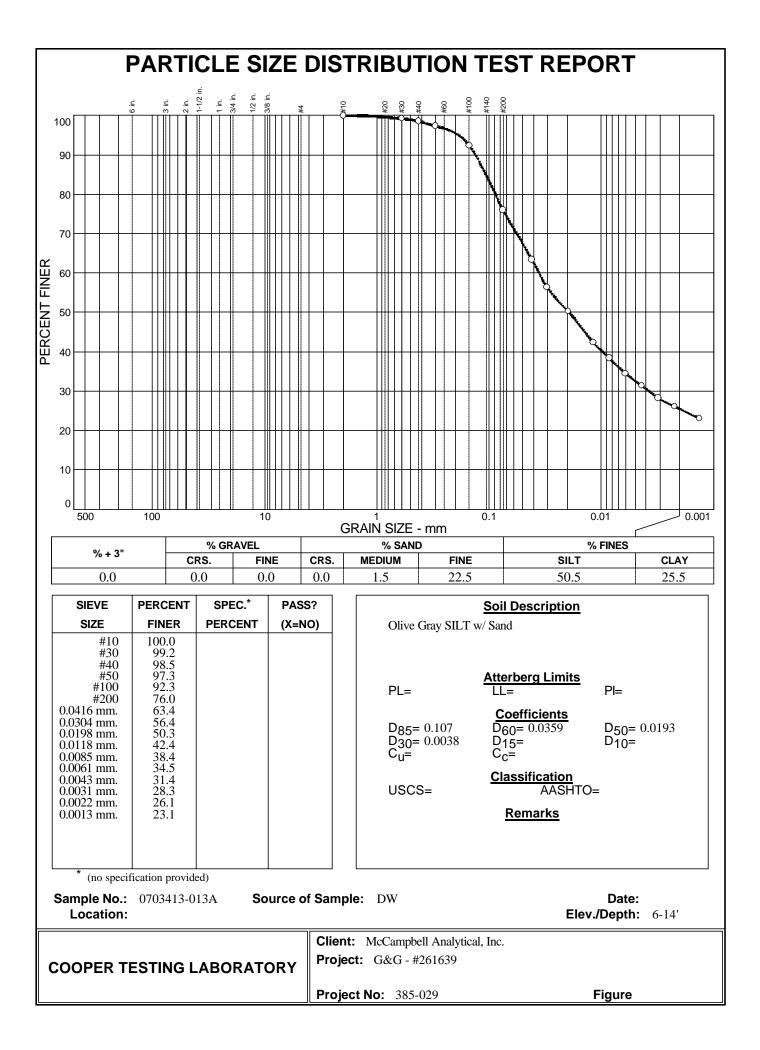
WorkOrder 0704210

| EPA Method SM5220D                                                                                                                       | Extraction SM5220D |        |        |        | BatchID: 27386 |        |        | Spiked Sample ID: 0704210-007E |                         |     |          |     |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|--------|--------|----------------|--------|--------|--------------------------------|-------------------------|-----|----------|-----|
| Analyte                                                                                                                                  | Sample             | Spiked | MS     | MSD    | MS-MSD         | LCS    | LCSD   | LCS-LCSD                       | Acceptance Criteria (%) |     |          |     |
|                                                                                                                                          | mg/L               | mg/L   | % Rec. | % Rec. | % RPD          | % Rec. | % Rec. | % RPD                          | MS / MSD                | RPD | LCS/LCSD | RPD |
| COD                                                                                                                                      | ND                 | 400    | 92.8   | 95.8   | 3.17           | 102    | 98.8   | 2.99                           | 80 - 120                | 20  | 90 - 110 | 20  |
| All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:<br>NONE |                    |        |        |        |                |        |        |                                |                         |     |          |     |

#### BATCH 27386 SUMMARY

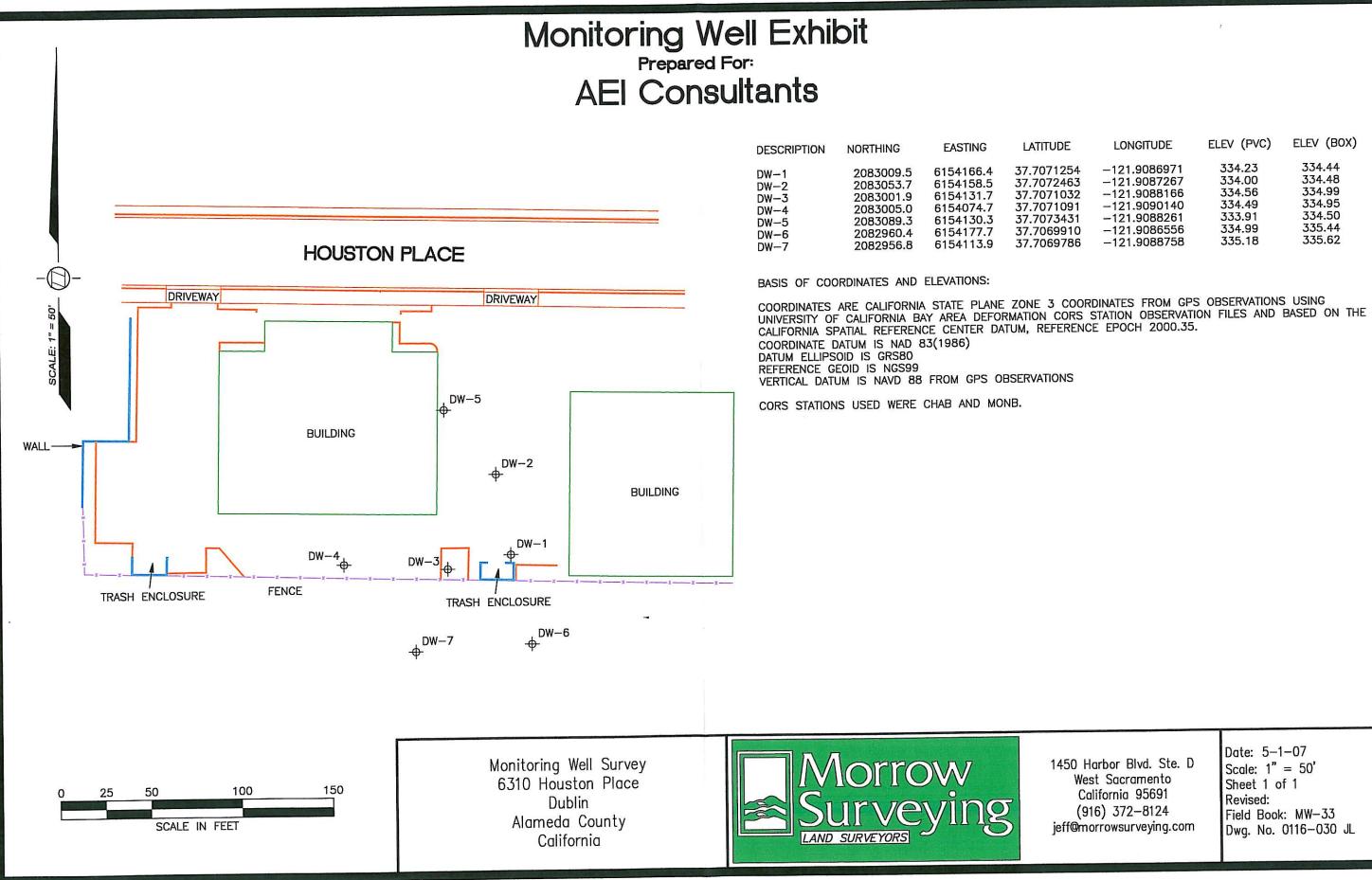

| Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|-------------------|--------------|------------------|----------------|-------------------|
| 0704210-001E | 04/10/07 3:00 PM | 04/11/07       | 04/11/07 10:01 AM | 0704210-002E | 04/10/07 2:40 PM | 04/11/07       | 04/11/07 10:07 AM |
| 0704210-003E | 04/10/07 3:10 PM | 04/11/07       | 04/11/07 10:13 AM | 0704210-004E | 04/10/07 2:22 PM | 04/11/07       | 04/11/07 10:19 AM |
| 0704210-005E | 04/10/07 2:10 PM | 04/11/07       | 04/11/07 10:25 AM | 0704210-006E | 04/10/07 1:50 PM | 04/11/07       | 04/11/07 10:31 AM |
| 0704210-007E | 04/10/07 1:30 PM | 04/11/07       | 04/11/07 10:37 AM |              |                  |                |                   |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.








# **APPENDIX E**

Survey Data



| JDE                                                  | LONGITUDE                                                                                                    | ELEV (PVC)                                                         | ELEV (BOX)                                                         |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| 1254<br>2463<br>1032<br>1091<br>3431<br>9910<br>9786 | -121.9086971<br>-121.9087267<br>-121.9088166<br>-121.9090140<br>-121.9088261<br>-121.9086556<br>-121.9088758 | 334.23<br>334.00<br>334.56<br>334.49<br>333.91<br>334.99<br>335.18 | 334.44<br>334.48<br>334.99<br>334.95<br>334.50<br>335.44<br>335.62 |
|                                                      |                                                                                                              |                                                                    |                                                                    |

| 450 Harbor Blvd. Ste. D<br>West Sacramento<br>California 95691<br>(916) 372—8124<br>eff@morrowsurveying.com | Date: 5-1-07<br>Scale: 1" = 50'<br>Sheet 1 of 1<br>Revised:<br>Field Book: MW-33<br>Dwg. No. 0116-030 JL |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                             |                                                                                                          |