RECEIVED

4:43 pm, Oct 06, 2010

Alameda County Environmental Health

Mr. Paresh Khatri Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: 6310 Houston Place, Dublin, California 94568

ACEHS Case No. RO0002862, GeoTracker ID T0600113164

Dear Mr. Khatri:

I declare, under penalty of perjury, that the information and or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

Mr. Cary Grayson

October 1, 2010 Project No. 2094-6310-01

Mr. Paresh Khatri Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Quarterly Monitoring and Sampling Report – Third Quarter 2010

6310 Houston Place, Dublin, California 94568 ACEHS Case No. RO0002862, GeoTracker ID T0600113164

Dear Mr. Khatri:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, which presents an update of work performed during the third quarter 2010 on behalf of Mr. Cary Grayson for the facility located at 6310 Houston Place, Dublin, California. Stratus representatives, whose signatures appear below, declare under penalty of perjury, that the information contained in the attached report are true and correct to the best of our knowledge.

If you have any questions regarding this project, please contact Mr. Steve Carter at (530) 676-6008.

Sincerely,

STRATUS ENVIRONMENTAL NINGE

Stephen J. Carter

Steplen J. Carter, P.G.

Project Manager

Gowri S. Kowtha, P.E.

Principal Engineer

Attachment: Quarterly Monitoring and Sampling Report, Third Quarter 2010

cc: Mr. Cary Grayson

October 1, 2010 Project No. 2094-6310-01

Mr. Paresh Khatri Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Quarterly Monitoring and Sampling Report - Third Quarter 2010

6310 Houston Place, Dublin, California 94568 ACEHS Case No. RO0002862, GeoTracker ID T0600113164

Dear Mr. Khatri:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, which presents an update of work performed during the third quarter 2010 on behalf of Mr. Cary Grayson for the facility located at 6310 Houston Place, Dublin, California. Stratus representatives, whose signatures appear below, declare under penalty of perjury, that the information contained in the attached report are true and correct to the best of our knowledge.

If you have any questions regarding this project, please contact Mr. Steve Carter at (530) 676-6008.

Sincerely,

STRATUS ENVIRONMENTAL. INC.

Stephen J. Carter, P.G. Project Manager

Gowri S. Kowtha, P.E. Principal Engineer

Attachment: Quarterly Monitoring and Sampling Report, Third Quarter 2010

cc: Mr. Cary Grayson

QUARTERLY MONITORING AND SAMPLING REPORT

Facility Address: 6310 Houston Place, Dublin, California 94568

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Steve Carter, P.G.

Consultant Project No: _2094-6310-01

Primary Agency/Regulatory ID No: Paresh Khatri, Alameda County Environmental Health Services

ACEHS Case No. RO0002862

WORK PERFORMED THIS QUARTER (Third Quarter 2010):

1. On July 16, 2010, Stratus notified Alameda County Environmental Health Services (ACEHS) that Mr. Cary Grayson had retained Stratus for future environmental consulting services for the site.

- 2. On August 3, 2010, Stratus conducted the third quarter 2010 semi-annual groundwater monitoring sampling event. Prior to sampling, all wells were gauged for depth to water, temperature, pH, conductivity, dissolved oxygen (DO) and oxygen-reduction potential (Redox). Groundwater samples were analyzed at a state-certified analytical laboratory for diesel range organics (DRO), by EPA Method SW8015B/DHS LUFT Manual, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tert-butyl ether (MTBE), and Naphthalene by EPA Method SW8260B. As part of the approved *Corrective Action Pilot Test Work Plan*, dated March 19, 2008, groundwater samples, from select wells, were also analyzed for copper (Cu), arsenic (As), cadmium (Cd), barium (Ba), total chromium (Cr), total Iron (Fe), Selenium (Se) and lead (Pb) by EPA Method 200.8 and for hexavalent chromium (Cr⁶⁺) by EPA Method 7199. Field data sheets, sampling procedures and laboratory analytical reports are included as Appendices A, B, and C, respectively. Tabulated historical groundwater elevation data/analytical results and well construction details are summarized in Table 1.
- 3. On September 7, 2010, Stratus notified ACEHS and RWQCB of the scheduled start-up of the approved pilot test scope of work.
- 4. On September 21 through 24, 2010, Stratus began implementation of the approved *Corrective Action Pilot Test Workplan*, dated March 19, 2008 (prepared by AEI Consultants). The approved scope of work includes injection of RegenOx™ compound at six locations adjacent to wells DW-1 and DW-3, and post-injection monitoring. Post injection monitoring will be performed in October and November 2010 and at that time, wells DW-1, DW-3, DW-5, and DW-7 will be gauged, purged and sampled. Groundwater samples will be analyzed for DRO, naphthalene, MTBE, As, Ba, Cd, Cr, Cr⁶⁺, Cu, Fe, Pb and Se.

WORK PROPOSED FOR NEXT QUARTER (Fourth Quarter 2010):

- 1. Stratus will continue implementation of the approved *Corrective Action Pilot Test Workplan*, including additional injection events as required, and follow-up monitoring to assess RegenOx™ effectiveness. A report of the pilot test results will be prepared after completion of the proposed follow-up monitoring program.
- 2. Based on a letter from ACEHS, dated July 27, 2009, the frequency of groundwater monitoring and sampling for all wells has been reduced to semi-annual (1st and 3rd quarters). The next regularly scheduled groundwater monitoring and sampling event is tentatively scheduled for February 2011.

Current Phase of Project:	Groundwater Monitoring;	Feasibility Testing
---------------------------	-------------------------	---------------------

Frequency of Groundwater Monitoring and Sampling:

Groundwater Sampling Date:

Is Free Product (FP) Present on Site:

Approximate Depth to Groundwater:

Groundwater Flow Direction / Gradient:

All Wells = Semi-annual (1st and 3rd)

August 3, 2010

No

7.32 to 8.58 feet below top of well casing.

West / 0.004 ft/ft

SITE HISTORY:

The site is located east of Dougherty Road and borders Houston Place to the north. Currently, one 12,000 square foot industrial building is located on the site's 0.7 acre lot. The building is currently occupied by an automotive repair business. The surrounding area consists of mixed light industrial, commercial and multi-family residential properties. Kahler's Porsche Service and Repair and LH Voss Landscape Materials bound the site to the west and south, respectively. A multifamily residential property is located on the north side of Houston Place adjacent to the site, and Flow Components (automotive parts) occupies the building along the site's eastern boundary.

The site came to the attention of San Francisco Bay Regional Water Quality Control Board (RWQCB) prior to 1984 when a localized surface leak was reported. 156 cubic yards of contaminated soil was removed under the direction of RWQCB, and in 1989, four USTs were excavated from the site. Three USTs were removed (one 12,000 gallon (gal) diesel tank, one 500 gal waste oil tank and, one 8,000 gal diesel tank). The remaining 12,000 gal diesel tank was internally resurfaced with "Glass Armor" coating and reinstalled for further use. Soil and water samples collected during the excavation reported elevated concentrations of TPH-d and Total Oil and Grease (TOG). No concentrations of TPH-g, BTEX, or chlorinated hydrocarbons were detected in the samples collected during excavation and reinstallation.

Monitoring wells MW-1 through MW-3 were installed, in August 1989, to monitor the site, and in 1990-1991 three additional wells (MW-4 through MW-6) were installed to further define the extent of the plume. Contamination appeared to be localized and attenuating, and ACEHS granted case closure in February 1995. Based on a review of available documents, MW-1 through MW-6 appear to have been decommissioned; however, no information is available quantifying date or method of decommissioning.

In 2004, the remaining 12,000 gallon diesel tank, fuel dispensers and product piping were excavated and removed from the site. Following excavation, seven soil and two groundwater samples were collected from the excavation area (bottom, sidewalls, overburden stockpiles and areas within the fuel dispenser and piping area). Upon review of the closure report, ACEHS issued a letter requesting additional sampling at the site. Elevated TPH-d and MTBE were detected in groundwater samples collected, and it was concluded that a release had occurred from the 12,000 gallon tank.

ACEHS issued a letter, in July 2006, requesting the installation of monitoring wells at the site. Five onsite (DW-1 through DW-5) and two offsite (DW-6 and DW-7) monitoring wells were installed in October and November 2006. As part of the report, it was determined that contamination by the 12,000 gallon tank was limited to a localized light non-aqueous phase liquids (LNAPL) plume.

In 2008, ACEHS approved the March 19, 2008 Corrective Action Pilot Test WorkPlan for vadose and saturated zone remediation. Due to financial hardship, the pilot test was not conducted. On July 16, 2010, Stratus notified ACEHS that Stratus had been retained for future environmental consulting services for the site, and on August 3, 2010, Stratus conducted groundwater sampling and baseline studies as requested per the approved 2008 workplan schedule. Results of this study are included in this report.

DISCUSSION:

At the time of the August 3, 2010 groundwater monitoring event, depth to groundwater was measured at 7.32 to 8.58 feet below ground surface (bgs) in all monitoring wells. Groundwater monitoring data were converted to feet above mean sea level (MSL) and used to prepare a groundwater elevation contour

map (Figure 2). Groundwater flow direction at the site is to the west with an approximate gradient of 0.004 ft/ft. This is consistent with historical groundwater flow since the second quarter 2008. Sheen was noted in monitoring wells DW-2 and DW-3.

No concentrations of DRO, BTEX, MTBE or Naphthalene were reported in any offsite monitoring wells (DW-6 and DW-7). DRO was reported in wells DW-1 (540 μ g/L), DW-2 (550 μ g/L), DW-3 (6,300 μ g/L), DW-4 (370 μ g/L), and DW-5 (490 μ g/L). MTBE was reported in well DW-4 (0.76 μ g/L). Tabulated groundwater analytical data are summarized in Table 1. Certified Analytical results are presented in Appendix C. DRO, benzene, and MTBE concentrations for groundwater samples collected during the third quarter 2010 are presented in Figure 4. Groundwater elevation and analytical data have been uploaded to the State of California's GeoTracker database. Documentation of completion of these data uploads are provided in Appendix D.

ATTACHMENTS:

0	Table 1	Groundwater Elevation and Analytical Summary
0	Table 2	Groundwater Analytical - Dissolved Metals Summary
0	Table 3	Historical Groundwater Data Summary
۰	Figure 1	Site Location Map
9	Figure 2	Site Plan
•	Figure 3	Groundwater Elevation Contour Map
0	Figure 4	Groundwater Analytical Summary
0	Appendix A	Field Data Sheets
8	Appendix B	Sampling and Analyses Procedures
0	Appendix C	Laboratory Analytical Reports and Chain-of-Custody Documentation
0	Appendix D	GeoTracker Electronic Submittal Confirmations

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
BAY COUNTIES PETROLEUM

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	**DRO (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-1	04/10/07	7.44	334.23	326.79	8,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	7.72	334.23	326.51	30,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.88	334.23	326.35	18,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	6.16	334.23	328.07	13,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.96	334.23	327.27	15,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.55	334.23	326.68	5,200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.02	334.23	326.21	11,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.58	334.23	326.65	5,600	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	7.43	334.23	326.80	540	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
DW-2	04/10/07	7.09	334.00	326.91	8,200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	7.40	334.00	326.60	34,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.55	334.00	326.45	14,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	5.89	334.00	328.11	17,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.63	334.00	327.37	27,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.25	334.00	326.75	16,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	7.74	334.00	326.26	11,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.23	334.00	326.77	6,900	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	7.40	334	326.60	550	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
DW-3	04/10/07	7.90	334.56	326.66	27,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2 2	07/12/07	8.19	334.56	326.37	210,000	< 0.5	<1.7	<1.7	<1.7	<1.7	
	10/11/07	8.29	334.56	326.27	71,000	<25	<25	<25	<25	< 0.5	
	01/25/08	6.63	334.56	327.93	66,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.38	334.56	327.18	58,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.94	334.56	326.62	38,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.41	334.56	326.15	29,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.12	334.56	326.44	29,000	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.02	334.56	326.54	6,300	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
BAY COUNTIES PETROLEUM

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	**DRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-4	04/10/07	7.99	334.49	326.50	65	< 0.5	< 0.5	< 0.5	< 0.5	0.67	
	07/12/07	8.22	334.49	326.27	300	< 0.5	< 0.5	< 0.5	< 0.5	0.87	
	10/11/07	8.33	334.49	326.16	640	< 0.5	< 0.5	< 0.5	< 0.5	0.80	
	01/25/08	6.62	334.49	327.87	240	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.39	334.49	327.10	340	< 0.5	< 0.5	< 0.5	< 0.5	0.94	
	07/23/08	7.94	334.49	326.55	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.94	
	10/30/08	8.39	334.49	326.10	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.92	
	01/11/10	8.13	334.49	326.36	65	<1.0	<1.0	<1.0	<1.0	< 5.0	
	08/03/10	8.00	334.49	326.49	370	< 0.50	< 0.50	< 0.50	< 0.50	0.76	
DW-5	04/10/07	7.00	333.91	326.91	800	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	7.36	333.91	326.55	990	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.52	333.91	326.39	880	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	5.93	333.91	327.98	730	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.52	333.91	327.39	780	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.24	333.91	326.67	340	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	7.68	333.91	326.23	1,200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.47	333.91	326.44	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	7.32	333.91	326.59	490[1,2]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
DW-6	04/10/07	8.62	334.99	326.37	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	8.81	334.99	326.18	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	8.53	334.99	326.46	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	7.16	334.99	327.83	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.53	334.99	327.46	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	8.24	334.99	326.75	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.62	334.99	326.37	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.18	334.99	326.81	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.25	334.99	326.74	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
BAY COUNTIES PETROLEUM

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	**DRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-7	04/10/07	8.11	335.18	327.07	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	8.34	335.18	326.84	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	8.96	335.18	326.22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	6.75	335.18	328.43	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.95	335.18	327.23	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	8.55	335.18	326.63	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.96	335.18	326.22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.62	335.18	326.56	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.58	335.18	326.60	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0

Notes

*Data through January 11, 2010, reported by AEI Contultants.

**Prior to 8/3/10, reported as TPH-D

DRO = total petroleum hydrocarbons as diesel (C13-C-22)

MTBE = methyl-tertiary butyl ether

 $\mu g/L = micrograms per liter$

[1] = reported concentration includes additional compounds uncharacteristic of common fuels and lubricants

[2] = DRO concentration may include contributions from heavier-end hydrocarbons that elute in the DRO range

TABLE 2
GROUNDWATER ANALYTICAL - DISSOLVED METALS SUMMARY
BAY COUNTIES PETROLEUM

Well Number	Date Collected	Cu (µg/L)	As (μg/L)	Cd (µg/L)	Ba (μg/L)	Cr ⁺⁶ (μg/L)	Cr (µg/L)	Fe (µg/L)	Se (µg/L)	Pb (μg/L)	
DW-1	08/03/10	<10	9.4	<1.0	28	<1.0	6.8	7,300	<5.0	<5.0	
DW-2	08/03/10										
DW-3	08/03/10	<10	<2.0	<1.0	58	<1.0	<5.0	2,300	<5.0	<5.0	
DW-4	08/03/10	900 MG									
DW-5	08/03/10	<10	5.8	<1.0	48	<1.0	< 5.0	540	<5.0	<5.0	
DW-6	08/03/10										
DW-7	08/03/10	<10	5.6	<1.0	45	<1.0	45	29,000	5.7	15	
Notes: µg/L = microgra Cu = Copper As = Arsenic Cd = Cadmium	ms per liter		$Cr = Chromium$ $Cr^{+6} = Hexavalent Chromium$ $Fe = Iron$ $Se = Selenium$								
Ba = Barium			Pb = Lea								

Bay Counties Quarterly Metals STRATUS

TABLE 3 HISTORICAL GROUNDWATER DATA SUMMARY BAY COUNTIES PETROLEUM

6310 Houston Place, Dublin, CA

Well Number	Date Collected	TPH-G (µ/L)	TPH-MO (μ/L)	TAME (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (μg/L)	Ethanol (µg/L)	Methanol (μg/L)
DW-1	04/10/07	100	2800	<0.5	<5.0	< 0.5	<0.5	<50	<500
	07/12/07	100					***		
	10/11/07	<50							
DW-2	04/10/07	180	<5,000	< 0.5	<5.0	< 0.5	< 0.5	<50	<500
	07/12/07	120							
	10/11/07	<50							
DW-3	04/10/07	220	9200	< 0.5	<5.0	<0.5	< 0.5	<50	<500
	07/12/07	2,200							
	10/11/07	18,000			per yes				
DW-4	04/10/07	<50	<250	< 0.5	<5.0	< 0.5	< 0.5	<50	<500
	07/12/07	< 50							
	10/11/07	<50							
DW-5	04/10/07	<50	320	<0.5	<5.0	< 0.5	< 0.5	<50	<500
	07/12/07	< 50							
	10/11/07	< 50							
DW-6	04/10/07	<50	<250	< 0.5	<5.0	< 0.5	< 0.5	<50	<50
	07/12/07	< 50							
	10/11/07	< 50		÷-					
DW-7	04/10/07	<50	<250	< 0.5	<5.0	<0.5	<0.5	<50	<500
	07/12/07	< 50		***					
:	10/11/07	< 50							

Notes:

*Data through January 11, 2010, reported by AEI Contultants.

 $\mu g/L = micrograms per liter$

TPH-G = total petroleum hydrocarbons as galoine (C6-C12)

TPH-MO = total petroleum hydrocarbons as motor oil (C18)

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

DIPE = di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

Bay Counties Historical Summary STRATUS

GENERAL NOTES: BASE MAP FROM U.S.G.S. DUBLIN, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1989

QUADRANGLE LOCATION

APPROXIMATE SCALE

STRATUS
ENVIRONMENTAL, INC.

BAY COUNTIES PETROLEUM
6310 HOUSTON PLACE
DUBLIN, CALIFORNIA

FIGURE

1

SITE LOCATION MAP

PROJECT NO. 2094-6310-01

HOUSTON PLACE

LEGEND

DW-1 MONITORING WELL LOCATION

SB-1 SOIL BORING LOCATION

BAY COUNTIES PETROLEUM 6310 HOUSTON PLACE DUBLIN, CALIFORNIA

SITE PLAN

FIGURE

2

PROJECT NO. 2094-6301-01

HOUSTON PLACE

LEGEND

DW-1 MONITORING WELL LOCATION

(326.80) GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

-326.60- WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

WELLS MEASURED: 8/03/10

STRATUS ENVIRONMENTAL, INC.

BAY COUNTIES PETROLEUM 6310 HOUSTON PLACE DUBLIN, CALIFORNIA

GROUNDWATER ELEVATION CONTOUR MAP 3rd QUARTER 2010 **FIGURE**

3

PROJECT NO. 2094-6301-01

3rd QUARTER 2010

APPENDIX A FIELD DATA SHEETS

Site Address	6310 Houston Place
City	Dublin
Sampled By:	VZ
Signature	V3

Site Number_	Bay Counties Petroleum
Project Number_	2094-6310-01
Project PM_	Steve Carter
DATE	SER-3-10

		Water Level	Data			Purg	e Volume (Calculations			Purg	e Metho	j	s	ample Reco	ord	Field Data
Welf ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water Column (feet)	Diamater (inches)	Multiplier	3 casing volumes (gallons	Actual Water Purged (gallons)	No Purge	Bailer	Pump	Other	DTW at sample time (feet)	Sample I.D.	Sample Time	DO (mg/L)
DW-1	0557		7.43	16.50	9,07	2	0.5	4.54	5.00		Х			7.60	DW-1	0953	1.11
DW-2	0603	***************************************	7.40	16.55	9.15	2	0.5	4.58			х			17.40		0706	024
DW-3	0908		8102	16.50	8.48	2	0.5	4-24	4,00		х			18.0B	DW-3	1017	1.21
DW-4	0905		8,00	16.15	8,75	2	0.5	4138	4.50		х			18,44	DW-4	0927	150
DW-5	0610		7.32	-14.80	9.48	2	0.5	4.74	5.00		Х			7.51	DW-5	0900	2:51
DW-6	0746	***************************************	8:25	16.80	8.55	2	0.5	4.28	4,00,		х			18.48	DW-6	0811	1.49
DW-7	0730	**	8.58	16.70	8.12	2	0.5	4.00	4.00		Х			8.58	DW-7	0823	187
																	,
										-							
								***************************************	*****	0R	4	MI					
												دين ۾ پ					
			5	V 0.17		/	72										
			Pull	A-1/	well	5	15	min	prie								
			to	- 1/. 1	1 1		/ 	1.:									
			10	a1/04	1 3/4	bak	129	100									
									l l								
					-				<u> </u>								
										\dashv							
										-+							
												_					
· · · · · ·																	
										\dashv							
			<u></u>	and the same of th									4				

Multiplier 2" = 0.5, 3" = 1.0, 4" = 2.0, 6" = 4.4 Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model)PC-10 DO Meter - Oakton 300 Series (DO is always mesured before purge)

	CALIBRATION DATE
рН	\$-3-10 02
Conductivity	
DO	

Site Address	6310 Houston Place
City_	Dublin
Sampled By: _	VZ
Signature	4/2

Site Number

Project Number

Project PM

DATE

Bay Counties Petroleum

2094-6310-01

Paroject PM

DATE

Bay Counties Petroleum

2094-6310-01

Well ID	75								
Purge start time		W-5	T		Well ID	Du	υ - ₂		1
<u> </u>		619	Odor	YO	Purge start time	06		Odor	sheen (V) N
Bail	Temp C	pH	cond	gallons	Bai/	Temp C	рН	cond	gallons
time 06/		1			time 0640	21.8	7.33	418	80
time 0 6 2 4			864		time 0644	1		582	2.5
time 090	0 19.5	7.46	758	5.0	time 0 648		w Hz		5.0
purge stop time					time 0706		7-38	476	\$.0
Well ID		629	ORP	<u>8/ </u>	purge stop time	064		ORP	123
	-	w-1			Well ID		W-6		
Purge start time	065	<u> </u>	Odor	₩ N	Purge start time	0750	-	Odor	YOR
Bail	Temp C	На	cond	gallons	Ba:	Temp C	рН	cond	gallons
time 0651	20.7	6.94	985	10	time 0750	18.3	7.11	815	30 110113
time 0656	19.7	6.91	1006		time 0755		6.94	859	2.0
time 0953 time	19.9	7.01	995	5.0	time 0754		Lews		40
			V		time 08//	19.1	7.06	847	4.0
purge stop time	070	o_{\perp}	ORP	137	purge stop time	07			117
Well ID	D	W-7			Well ID	bi	W-4		<u>'</u>
Purge start time	070	2	Odor	Y	Purge start time		9/3	Odor	× (N)
Bail	Temp C	pН	cond	gailons	Bail	Temp C	pH	cond	Y (N)
time 0802	20,2	6.75	902	R	time 0913	19.2	894	994	
time 0806	20.0	6.74	929		time 0918	19.6	6.79	995	2.0
time 0 309	1	\rightarrow			time 0927	19.5	6.78	987	
time 0823	19.2	6.84	893	4.0	time	7. 3	01/6	70	4,5
ourge stop time	9709	7	ORP	136	purge stop time	092	77	ORP	
Well ID	Du	5-3	36	lun	Well ID				16
	093	3	Odor	Ø,N	Purge start time	· · · · · · · · · · · · · · · · · · ·		Odor	
Bail	Temp C	рН	cond	gallons		Temp C	рН		Y N
ime 0933	19.5	7.07	844	X	time		P. 1		gallons
me 0938	19.4	7.10	851	2	time		46:		-
me 0942	200	الم م	20	4.0	time				
me 1017	19.2	7-//	8/3	4.0)	ime				
urge stop time	09	42	ORP	119	ourge stop time				
					av			ORP '	

40

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc® type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use
 of spiked samples, duplicate samples, split samples, use of reference blanks, and
 check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical instrument performance, a quality check sample, which is prepared independently of the calibration standards and contains the constituents of interest, is analyzed to confirm that measurements were performed accurately.

• Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to assess the reproducibility of the analytical data. One replicate groundwater sample per twenty samples collected will be analyzed per sampling event, unless otherwise specified. Triplicate samples will be collected only when specific conditions warrant and generally are sent to an alternate laboratory to confirm the accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported and stored with the samples and analyzed to assess the impact of sample transport and storage for data quality. In the event that any analyte is detected in the field blank, a trip blank will be included in the subsequent groundwater sampling event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter

Phone: (530) 676-6008 Fax: (530) 676-6005

Date Received: 08/03/10

Job:

Bay Counties Petroleum

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

Date Sampled 08/03/10 07:06 Methyl tert-batyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10					Reporting	Date	Date
Lab ID : STR10080347-01A TPH-E (DRO) S40 S0 μg/L 08.04/10 09.45 08.04/10			Parameter	Concentration	Limit	Extracted	Analyzed
Date Sampled 08/03/10 09.53 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/	Client ID:	DW-1					
Date Sampled 08/03/10 09.53 Methyl tert-butyl ether (MTBE) ND			TPH-E (DRO)	540	50 ug/L	08/04/10 09:45	08/04/10
Semzee	Date Sampled	08/03/10 09:53	Methyl tert-butyl ether (MTBE)				
Toluene	•		· · · · · · · · · · · · · · · · · · ·		• -		
Ehybenzene m.pXyslene ND			Toluene				
March Mar			Ethylbenzene				
Client ID DW-2 Application ND D.50 µg/L 08.05/10 08.			m,p-Xylene	ND			
Client ID : DW-2 Client ID : DW-3 Client ID : STR Cloro Client ID : DW-3 Client ID : DW-3 Client ID : STR Cloro Client ID : DW-4 Client ID : Client ID : DW-4 Client ID : DW-4 Client ID : DW-4 Client ID :			o-Xylene	ND		08/05/10	08/05/10
Lab ID : STR 10080347-02A TPH-E (DRO) 550 50 μg/L 08/04/10 09.45 08/04/10			Naphthalene	ND		08/05/10	
Date Sampled 08/03/10 07:06 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10 08/05/10 08/05/10 10 0.50 μg/L 08/05/10	Client ID:	DW-2					
Benzene ND	Lab ID:	STR10080347-02A	TPH-E (DRO)	550	50 μg/L	08/04/10 09:45	08/04/10
Benzene ND 0.50 μg/L 08/05/10 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10	Date Sampled	08/03/10 07:06	Methyl tert-butyl ether (MTBE)	ND	, -	08/05/10	
Ethylbenzene			Benzene	ND		08/05/10	08/05/10
Ethylbenzene ND				ND		08/05/10	08/05/10
O-Xylene ND O.50 μg/L O8/05/10 O8			Ethylbenzene	ND		08/05/10	08/05/10
Client ID : DW-3 STR10080347-03A TPH-E (DRO) 6,300 50 μg/L 08/04/10 09/45 08/05/10			• •	ND	$0.50~\mu g/L$	08/05/10	08/05/10
Lab ID : STR 10080347-03A TPH-E (DRO) 6,300 50 μg/L 08/04/10 09.45 08/05/10 Date Sampled 08/03/10 10:17 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10 Benzene ND 0.50 μg/L 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m.p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 ω-Xylene ND 0.50 μg/L 08/05/10 08/05/10 ω-Xylene ND 0.50 μg/L 08/05/10 08/05/10 ω-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10 Date Sampled 08/03/10 09:27 Methyl tert-butyl ether (MTBE) 0.76 0.50 μg/L 08/05/10 08/05/10 Benzene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 ω-Xylene ND			o-Xylene	ND	$0.50~\mu g/L$	08/05/10	08/05/10
Date Sampled 08/03/10 10:17 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10	Client ID:	DW-3					
Benzene	Lab ID:	STR10080347-03A	TPH-E (DRO)	6,300	50 μg/L	08/04/10 09:45	08/04/10
Toluene ND 0.50 µg/L 08/05/10 08/05/10 08/05/10 Ethylbenzene ND 0.50 µg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 µg/L 08/05/10 08/05/10 o-Xylene ND 0.50 µg/L 08/05/10 08/05/10 Naphthalene ND 0.50 µg/L 08/05/10 08/05/10 O-Xylene ND 0.50 µg/L 08/05/10 08/05/10 0 O-Xylene	Date Sampled	08/03/10 10:17	Methyl tert-butyl ether (MTBE)	ND	$0.50 \mu g/L$	08/05/10	08/05/10
Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 08/05/10 0-30/05/10 0-			Benzene	ND	$0.50~\mu g/L$	08/05/10	08/05/10
m.pXylene ND 0.50 μg/L 08/05/10 08/05/10 08/05/10 0-Xylene ND 0.50 μg/L 08/05/10 08/0				ND	0.50 µg/L	08/05/10	08/05/10
O-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10 O-Xylene ND 2.0 μg/L 08/05/10 08/05/10 O-Xylene ND 2.0 μg/L 08/05/10 08/05/10 O-Xylene ND 0.50 μg/L 08/05/10 08/05/10			•	ND	0.50 µg/L	08/05/10	08/05/10
Naphthalene ND 2.0 μg/L 08/05/10 08/05/10 08/05/10				ND	0.50 μg/L	08/05/10	08/05/10
Client ID : DW-4 Client ID : DW-4 Client ID : STR10080347-04A TPH-E (DRO) 370 50 μg/L 08/04/10 09:45 08/05/10 08/					0.50 μg/L	08/05/10	08/05/10
Lab ID : STR10080347-04A TPH-E (DRO) 370 50 μg/L 08/04/10 09:45 08/04/10 Date Sampled 08/03/10 09:27 Methyl tert-butyl ether (MTBE) 0.76 0.50 μg/L 08/05/10 08/05/10 Benzene ND 0.50 μg/L 08/05/10 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Client ID : DW-5 STR10080347-05A TPH-E (DRO) 490 CL 50 μg/L 08/05/10 09/05/10 08/05/10 Date Sampled 08/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 09/05/10 08/05/10 Date Sampled 08/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 09/05/10 08/05/10 Date Sampled 08/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 09/05/10 08/05/10 Benze			Naphthalene	ND	$2.0~\mu g/L$	08/05/10	08/05/10
Date Sampled 08/03/10 09:27 Methyl tert-butyl ether (MTBE) 0.76 0.50 μg/L 08/05/10 0	Client ID:	DW-4					
Benzene ND 0.50 μg/L 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 O-Xylene ND 0.50 μg/L 08/05/10 08/05/10 O-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Date Sampled O8/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10 Date Sampled O8/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10 Benzene ND 0.50 μg/L 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 O-Xylene ND 0.50 μg/L 08/05/10 08/05/10 O-Xylene ND 0.50 μg/L 08/05/10 08/05/10 O-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 0.50 μg/L 08/05/10 08/05/10 O-Xylene ND 0.50 μg/L 08/05/10 08/05/10			TPH-E (DRO)	370	50 μg/L	08/04/10 09:45	08/04/10
Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 0-Xylene ND 0.50 μg/L 08/05/10 0-Xylene ND 0.50 μg/L 08/05/10 0-	Date Sampled	08/03/10 09:27	Methyl tert-butyl ether (MTBE)	0.76		08/05/10	08/05/10
Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 0-Xylene ND 0.50 μg/L 08/05/10 0-Xylene ND 0.50 μg/L 0-Xylene ND 0.50 μg/L 0-Xylene ND 0.50 μg/L 0-Xylene ND 0.50 μ			Benzene	ND	0.50 μg/L	08/05/10	08/05/10
m,p-Xylene o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 08/05/10				ND	$0.50~\mu g/L$	08/05/10	08/05/10
o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Client ID: DW-5 Lab ID: STR10080347-05A TPH-E (DRO) 490 CL 50 μg/L 08/04/10 09:45 08/04/10 Date Sampled 08/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10 Benzene ND 0.50 μg/L 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 o-Xylene ND 0.50 μg/L 08/05/10 08/05/10			•	ND	$0.50~\mu g/L$	08/05/10	08/05/10
Client ID: DW-5 Lab ID: STR10080347-05A TPH-E (DRO) 490 CL 50 µg/L 08/04/10 09:45 08/04/10 Date Sampled 08/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 µg/L 08/05/10 08/05/10 Benzene ND 0.50 µg/L 08/05/10 08/05/10 Toluene ND 0.50 µg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 µg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 µg/L 08/05/10 08/05/10 o-Xylene ND 0.50 µg/L 08/05/10 08/05/10 Naphthalene ND 0.50 µg/L 08/05/10 08/05/10				ND	$0.50~\mu g/L$	08/05/10	08/05/10
Lab ID : STR10080347-05A TPH-E (DRO) 490 CL 50 μg/L 08/04/10 09:45 08/04/10 09:45 08/04/10 09:45 08/04/10 09:45 08/04/10 09:45 08/04/10 09:45 08/04/10 09:45 08/04/10 09:45 08/05/10 08/05/10 08/05/10 <th< td=""><td></td><td></td><td>o-Xylene</td><td>ND</td><td>$0.50~\mu g/L$</td><td>08/05/10</td><td>08/05/10</td></th<>			o-Xylene	ND	$0.50~\mu g/L$	08/05/10	08/05/10
Date Sampled 08/03/10 09:00 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 08/05/10 08/05/10 Benzene ND 0.50 μg/L 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10	Client ID:	DW-5					
Benzene ND 0.50 μg/L 08/05/10 08/05/10 Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10			` '		50 μg/ L	08/04/10 09:45	08/04/10
Toluene ND 0.50 μg/L 08/05/10 08/05/10 Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10	Date Sampled	08/03/10 09:00			$0.50 \mu g/L$	08/05/10	08/05/10
Ethylbenzene ND 0.50 μg/L 08/05/10 08/05/10 m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10					0.50 µg/L	08/05/10	08/05/10
m,p-Xylene ND 0.50 μg/L 08/05/10 08/05/10 o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10					0.50 µg/L	08/05/10	08/05/10
o-Xylene ND 0.50 μg/L 08/05/10 08/05/10 Naphthalene ND 2.0 μg/L 08/05/10 08/05/10			•		$0.50~\mu g/L$		08/05/10
Naphthalene ND 2.0 μg/L 08/05/10 08/05/10					$0.50~\mu g/L$	08/05/10	08/05/10
			-				08/05/10
Bay Counties Petroleum		7 0 . 1	Naphthalene	ND	2.0 µg/L	08/05/10	08/05/10

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	DW-6					
Lab ID:	STR10080347-06A	TPH-E (DRO)	ND	50 μg/L	08/04/10 09:45	08/04/10
Date Sampled	08/03/10 08:11	Methyl tert-butyl ether (MTBE)	ND	0.50 μg/L	08/05/10	08/05/10
		Benzene	ND	$0.50 \mu g/L$	08/05/10	08/05/10
		Toluene	ND	0.50 µg/L	08/05/10	08/05/10
		Ethylbenzene	ND	$0.50~\mu g/L$	08/05/10	08/05/10
		m,p-Xylene	ND	0.50 μg/L	08/05/10	08/05/10
		o-Xylene	ND	$0.50 \mu g/L$	08/05/10	08/05/10
Client ID:	DW-7					
Lab ID:	STR10080347-07A	TPH-E (DRO)	ND	50 μg/L	08/04/10 09:45	08/04/10
Date Sampled	08/03/10 08:23	Methyl tert-butyl ether (MTBE)	ND	0.50 μg/L	08/05/10	08/05/10
		Benzene	ND	$0.50 \mu g/L$	08/05/10	08/05/10
		Toluene	ND	0.50 μg/L	08/05/10	08/05/10
		Ethylbenzene	ND	$0.50~\mu g/L$	08/05/10	08/05/10
		m,p-Xylene	ND	$0.50~\mu g/L$	08/05/10	08/05/10
		o-Xylene	ND	$0.50 \mu g/L$	08/05/10	08/05/10
		Naphthalene	ND	$2.0~\mu g/L$	08/05/10	08/05/10

C = Reported concentration includes additional compounds uncharacteristic of common fuels and lubricants.

Diesel Range Organics (DRO) C13-C22

L = DRO concentration may include contributions from heavier-end hydrocarbons that elute in the DRO range.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analyticai, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Phone: (530) 676-6008

Steve Carter

Fax:

(530) 676-6005

Date Received: 08/03/10

Job:

Bay Counties Petroleum

Dissolved Metals by ICPMS EPA Method 200.8

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: DW-1					
Lab ID: STR10080347-01A	Copper (Cu), Dissolved	ND	10 μg/L	08/12/10 20:15	08/13/10
Date Sampled 08/03/10 09:53	Arsenic (As), Dissolved	9.4	2.0 μg/L	08/12/10 20:15	08/13/10
	Cadmium (Cd), Dissolved	ND	1.0 μg/L	08/12/10 20:15	08/13/10
	Barium (Ba), Dissolved	28	5.0 μg/L	08/12/10 20:15	08/13/10
Client ID: DW-3					
Lab ID: STR10080347-03A	Copper (Cu), Dissolved	ND	10 μg/L	08/12/10 20:15	08/13/10
Date Sampled 08/03/10 10:17	Arsenic (As), Dissolved	ND	2.0 μg/L	08/12/10 20:15	08/13/10
	Cadmium (Cd), Dissolved	ND	1.0 µg/L	08/12/10 20:15	08/13/10
•	Barium (Ba), Dissolved	58	5.0 μg/L	08/12/10 20:15	08/13/10
Client ID: DW-5					
Lab ID: STR10080347-05A	Copper (Cu), Dissolved	NÐ	10 μg/L	08/12/10 20:15	08/13/10
Date Sampled 08/03/10 09:00	Arsenic (As), Dissolved	5.8	2.0 μg/L	08/12/10 20:15	08/13/10
	Cadmium (Cd), Dissolved	ND	1.0 µg/L	08/12/10 20:15	08/13/10
	Barium (Ba), Dissolved	48	$5.0 \mu g/L$	08/12/10 20:15	08/13/10
Client ID: DW-7					
Lab ID: STR10080347-07A	Copper (Cu), Dissolved	ND	10 μg/L	08/12/10 20:15	08/13/10
Date Sampled 08/03/10 08:23	Arsenic (As), Dissolved	5.6	2.0 μg/L	08/12/10 20:15	08/13/10
	Cadmium (Cd), Dissolved	ND	1.0 μg/L	08/12/10 20:15	08/13/10
	Barium (Ba), Dissolved	45	5.0 μg/L	08/12/10 20:15	08/13/10

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Steve Carter

Phone: (530) 676-6008

Fax:

(530) 676-6005

Date Received: 08/03/10

Job:

Bay Counties Petroleum

Metals by ICPMS

EPA Method 200.8

	Parameter	Concentration	Reporting	Date	Date
			Limit	Extracted	Analyzed
Client ID: DW-1					
Lab ID: STR10080347-01A	Chromium (Cr)	6.8	5.0 μg/L	08/09/10 13:43	08/13/10
Date Sampled 08/03/10 09:53	Iron (Fe)	7,300	100 μg/L	08/09/10 13:43	08/13/10
	Selenium (Se)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
	Lead (Pb)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
Client ID: DW-3					
Lab ID: STR10080347-03A	Chromium (Cr)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
Date Sampled 08/03/10 10:17	Iron (Fe)	2,300	100 μg/L	08/09/10 13:43	08/13/10
	Selenium (Se)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
	Lead (Pb)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
Client ID: DW-5					
Lab ID: STR10080347-05A	Chromium (Cr)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
Date Sampled 08/03/10 09:00	Iron (Fe)	540	100 μg/L	08/09/10 13:43	08/13/10
	Selenium (Se)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
	Lead (Ph)	ND	5.0 μg/L	08/09/10 13:43	08/13/10
Client ID: DW-7					
Lab ID: STR10080347-07A	Chromium (Cr)	45	5.0 μg/L	08/09/10 13:43	08/13/10
Date Sampled 08/03/10 08:23	Iron (Fe)	29,000	100 μg/L	08/09/10 13:43	08/13/10
	Selenium (Se)	5.7	5.0 μg/L	08/09/10 13:43	08/13/10
	Lead (Pb)	15	5.0 μg/L	08/09/10 13:43	08/13/10

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR10080347 Job: Bay Counties Petroleum

Alpha's Sample ID	Client's Sample ID	Matrix	рН	.,
10080347-01A	DW-1	Aqueous	2	
10080347-02A	DW-2	Aqueous	2	
10080347-03A	DW-3	Aqueous	2 '	
10080347-04A	DW-4	Aqueous	5	
10080347-05A	DW-5	Aqueous	2	
10080347-06A	DW-6	Aqueous	2	
10080347-07A	DW-7	Aqueous	2	

8/11/10

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Aug-10	(QC Su	mmary	Repor	t				Work Orde 10080347	
Method Blank File ID: 081210.B\220_M.D\ Sample ID: MB-24854 Analyte	Units : µg/L Result	Type: MB F PQL	Ba tun ID: IC I	est Code: EF Itch ID: 2485 P/MS_1008 SpkRefVal	i4A		Prep Da	te:	08/13/2010 17:09 08/12/2010 20:15 /al %RPD(Limit)	Qual
Copper (Cu), Dissolved Arsenic (As), Dissolved Cadmium (Cd), Dissolved Barium (Ba), Dissolved	ND ND ND ND	10 2 1 5				······				
Laboratory Control Spike		Type: LC	S Te	est Code: EF	A Meti	hod 200.8				
File ID: 081210.B\221_LL.D\		_		tch ID: 248	-		-		08/13/2010 17:15	
Sample ID: LCS-24854 Analyte	Units : µg/L Result	PQL F		P/MS_1008			Prep Da		08/12/2010 20:15	
Copper (Cu), Dissolved Arsenic (As), Dissolved Cadmium (Cd), Dissolved Barium (Ba), Dissolved	53.7 53.5 53.2 52.3	10 2 1 5	50 50 50 50	Spkreival	107 107 106 105	80 80 80 80 80	120 120 120 120 120	PUREN	/al %RPD(Limit)	Qual
Sample Matrix Spike		Type: MS	T (est Code: El	A Met	hod 200.8				
File ID: 081210.B\226_SS.D\			Ва	atch ID: 248	54		Analysis	Date:	08/13/2010 17:43	
Sample ID: 10080347-01AMS	Units : µg/L	F	Run ID: IC	P/MS_1008	14A		Prep Da		08/12/2010 20:15	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) R	PDRef\	/al %RPD(Limit)	Quai
Copper (Cu), Dissolved Arsenic (As), Dissolved Cadmium (Cd), Dissolved Barium (Ba), Dissolved	49.8 57.2 48.7 78.3	10 2 2 5	50 50 50 50	0 9.352 0 27.92	96 97	75 75 75 75	125 125 125 125			
Sample Matrix Spike Duplicate		Type: MS	D To	est Code: El	A Met	hod 200.8				
File ID: 081210.B\227_SS.D\			Ва	atch ID: 248	54		Analysis	Date:	08/13/2010 17:48	
Sample ID: 10080347-01AMSD	Units : µg/L	F	Run ID: IC	P/MS_1008	14A		Prep Da	ite:	08/12/2010 20:15	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) R	PDRef	Val %RPD(Limit)	Qual
Copper (Cu), Dissolved Arsenic (As), Dissolved Cadmium (Cd), Dissolved Barium (Ba), Dissolved	48.1 56 48 76.6	10 2 2 5	50 50 50 50	0 9.352 0 27.92	96 93 96 97	75 75 75 75	125 125 125 125	49.70 57.1 48.69 78.33	7 2.0(20) 5 1.3(20)	_

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Aug-10	(QC Su	mmar	Repor	t				Work Orde 10080347	
Method Blank File ID: 081210.B\50_M2.D\ Sample ID: MB-24818 Analyte	Units : µg/L Result	Type: MI	Ba Run ID: IC I	est Code: EF atch ID: 2481 P/MS_1008 ² SpkRefVal	18 14B		Prep Da	te:	08/13/2010 00:20 08/09/2010 13:43 /al %RPD(Limit)	Qual
Chromium (Cr) Iron (Fe) Selenium (Se) Lead (Pb)	ND ND ND ND	5 100 5 5	· · · · · · · · · · · · · · · · · · ·			and the second second			,	
Laboratory Control Spike File ID: 081210.B\51_LL.D\ Sample ID: LCS-24818	Units : µg/L	Type: LC	Ва	est Code: EF atch ID: 248° P/MS_1008°	18	hod 200.8	Analysis Prep Da		08/13/2010 00:26 08/09/2010 13:43	
Analyte	Result	PQL				LCL(ME)	,		/al %RPD(Limit)	Qual
Chromium (Cr) Iron (Fe) Selenium (Se) Lead (Pb)	47.9 5010 49.9 46.2	5 100 5 5	50 5000 50 50		96 100 99.7 92	85 85 85 85	115 115 115 115	· · · · · · · · · · · · · · · · · · ·	·	
Sample Matrix Spike		Type: M:	S Te	est Code: El	A Met	hod 200.8				
File ID: 081210.B\56_\$\$.D\			Ва	atch ID: 248	18		Analysis	Date:	08/13/2010 00:54	
Sample ID: 10080423-01AMS	Units : µg/L			P/MS_1008		•	Prep Da		08/09/2010 13:43	
Analyte	Result	PQL		SpkRefVal		LCL(ME)	UCL(ME) R	PDRef\	/al %RPD(Limit)	Qual
Chromium (Cr) Iron (Fe) Selenium (Se) Lead (Pb)	43.5 6140 49.2 58.2	5 100 5 5	50 5000 50 50	0 1855 0 10.91	87 86 98 95	70 70 70 70	130 130 130 130			
Sample Matrix Spike Duplicate		Туре: М	SD T	est Code: El	A Met	hod 200.8				
File ID: 081210.B\57_SSS.D\			В	atch ID: 248	18		Analysis	Date:	08/13/2010 00:59	
Sample ID: 10080423-01AMSD	Units : µg/L		Run ID: IC	P/MS_1008	14B		Prep Da	ite:	08/09/2010 13:43	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) R	PDRef\	/al_%RPD(Limit)	Qual
Chromium (Cr) Iron (Fe) Selenium (Se) Lead (Pb)	41.4 5990 48.6 56.9	5 100 5 5	50 5000 50 50	0 1855 0 10.91	83 83 97 92	70 70 70 70	130 130 130 130	43.52 6144 49.19 58.24	2.6(20) 9 1.1(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 09-Aug-10	C	C Si	ummary	Repor	t				Work Orde 10080347	r:
Method Blank File ID: 7A08041005.D Sample ID: MBLK-24768 Analyte	Units : µg/L Result	Type N	Bat Run ID: FID		88 8A		Analy Prep	Date:	08/04/2010 11:18 08/04/2010 09:45 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane	ND 158	50	<u>-</u>		105	57	147			
Laboratory Control Spike File ID: 7A08041006.D Sample ID: LCS-24768	Units : µg/ L	Type L		st Code: EF tch ID: 247 ()_7_1008 03	38	hod SW80	Analy	sis Date: Date:	08/04/2010 11:45 08/04/2010 09:45	
Analyte TPH-E (DRO) Surr: Nonane	Result 2520 137	PQL 50		SpkRefVal	%REC 101 91	67 57	UCL(ME) 130 147	RPDRef	Val %RPD(Limit)	Qual
Sample Matrix Spike File ID: 7A08041013.D Sample ID: 10072920-06AMS Analyte	Units : µg/L Result	Type N	Ba Run ID: FIE		68 BA		Analy Prep	Date:	08/04/2010 15:21 08/04/2010 09:45 Val %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane	4840 146	50	···	1872		49 57	150 147		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sample Matrix Spike Duplicate File ID: 7A08041014.D Sample ID: 10072920-06AMSD Analyte	Units : µg/L Result	Type M	Ba Run ID: FI		68 3A		Analy Prep	Date:	08/04/2010 15:48 08/04/2010 09:45 Val %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane	4510 138	50	2500 150	1872	106 92	49 57	150 147	4842	2 7.0(38)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 09-Aug-10	(QC Sum	mary	Report				Work Orde 10080347	r:
Method Blank File ID: 10080504.D		Type MBL		t Code: EPA M			Date: 08	/05/2010 10:02	
Sample ID: MBLK MS12W0805A	Units: µg/L	Rur	ID: MSE	D_12_100805B		Prep Dat	te: 08 .	/05/2010 10:02	
Analyte	Result	PQL S	SpkVal S	pkRefVal %RE	C LCL(ME) UCL(ME) RF	PDRefVal	%RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	ND	0.5						· · · · · · · · · · · · · · · · · · ·	
Benzene	ND	0.5							
Toluene	ND	0.5							
Ethylbenzene m,p-Xylene	ND	0.5							
o-Xylene	ND ND	0.5 0.5							
Naphthalene	ND	2							
Surr: 1,2-Dichloroethane-d4	10.2	-	10	102	2 70	130			
Surr: Toluene-d8	9.8		10	98		130			
Surr: 4-Bromofluorobenzene	8.47		10	85	70	130			
Laboratory Control Spike		Type LCS		t Code: EPA M					
File ID: 10080503.D	11.11	_		ch ID: MS12W				/05/2010 09:39	
Sample ID: LCS MS12W0805A	Units : µg/L			D_12_100805B		Prep Da		/05/2010 09:39	
Analyte	Result	PQL S	SpkVal S	SpkRefVal %RE	EC LCL(ME) UCL(ME) R	DRefVal	%RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	9.55	0.5	10	96	62	136			
Benzene	10.9	0.5	10	10:		130			
Toluene Ethylbenzene	10.3	0.5	10	10.		120			
m,p-Xylene	10.2 11.4	0.5 0.5	10 10	10: 11:		120 130			
o-Xylene	10	0.5	10	10		130			
Surr: 1,2-Dichloroethane-d4	10.1		10	10		130			
Surr: Toluene-d8	9.76		10	98		130			
Surr: 4-Bromofluorobenzene	9.81		10	98	3 70	130			
Sample Matrix Spike		Type MS	Tes	t Code: EPA N	lethod SW8	3260B			
File ID: 10080513.D				ch ID: MS12W		•		3/05/2010 13:27	
Sample ID: 10080444-01AMS	Units: µg/L			D_12_100805B		Prep Da		3/05/2010 13:27	
Analyte	Result	PQL S	SpkVal S	SpkRefVal %RI	EC LCL(ME) UCL(ME) R	PDRefVal	%RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	143	1.3	50	87.72 11		141			
Benzene Toluene	53.3	1.3	50	0 10		130			
Ethylbenzene	49.8 49.6	1.3 1.3	50 50	0 99. 0 99		130 130			
m.p-Xylene	55	1.3	50	0 11		130			
o-Xylene	49.2	1.3	50	0 98		130			
Surr: 1,2-Dichloroethane-d4	50.4		50	10	1 70	130			
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	48.7		50	97		130			
	48.2		50	96		130			
Sample Matrix Spike Duplicate File ID: 10080514.D		Type MSD		st Code: EPA N ch ID: MS12W			Data: 00)(DE/2040 42.E0	
Sample ID: 10080444-01AMSD	Units : µg/L	D						3/05/2010 13:50	
Analyte	Result			D_12_100805 E SpkRefVal %RI		Prep Da UCL(ME) R		3/05/2010 13:50 %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	142	1.3	50	87.72 10	·····	141	142.7	0.2(20)	
Benzene	52.1	1.3	50	0 10		130	53.32	2.3(20)	
Toluene	47.9	1.3	50	0 96		130	49.76	3.8(20)	
Ethylbenzene	47.6	1.3	50	0 95	68	130	49.63	4.2(20)	
m,p-Xylene	53.5	1.3	50	0 10		130	55.02	2.8(20)	
o-Xylene	47.3	1.3	50	0 95		130	49.19	3.9(20)	
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	48.7 48.2		50 50	97 96		130			
Surr: 4-Bromofluorobenzene	48.8		50 50	98		130 130			
a accept the control of the control	70.0		30	30	, 10	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:
09-Aug-10

QC Summary Report

Work Order: 10080347

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

CALIFORNIA LABORATORY SERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

August 09, 2010

CLS Work Order #: CTH0103 COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Name: STR10080347

Enclosed are the results of analyses for samples received by the laboratory on 08/03/10 14:15. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

California Laboratory Services

Page 2 of 4

08/09/10 14:08

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project: STR10080347

Project Number: STR10080347 Project Manager: Reyna Vallejo CLS Work Order #: CTH0103

COC #:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
STR10080347-01A (DW-1) (CTH0103-01) Wa	ter Sam	pled: 08/03/	0 09:53	Receive	ed: 08/03/1	0 14:15			
Hexavalent Chromium	ND	1.0	μg/L	1	CT05668	08/04/10	08/04/10	EPA 7199	
STR10080347-03A (DW-3) (CTH0103-02) Wa	ter Sam	pled: 08/03/	10 10:17	7 Receive	ed: 08/03/1	0 14:15			
Hexavalent Chromium	ND	1.0	μg/L	1	CT05668	08/04/10	08/04/10	EPA 7199	
STR10080347-05A (DW-5) (CTH0103-03) Wa	ter Sam	pled: 08/03/	10 09:00	Receive	ed: 08/03/1	0 14:15			
Hexavalent Chromium	ND	1.0	μg/L	1	CT05668	08/04/10	08/04/10	EPA 7199	
STR10080347-07A (DW-7) (CTH0103-04) Wa	ter Sam	pled: 08/03/	10 08:23	3 Receive	ed: 08/03/1	0 14:15			
Hexavalent Chromium	ND	1.0	μg/L	1	CT05668	08/04/10	08/04/10	EPA 7199	

Fax: 916-638-4510

CALIFORNIA LABORATORY SERVICES

Page 3 of 4

08/09/10 14:08

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project: STR10080347

Project Number: STR10080347 Project Manager: Reyna Vallejo CLS Work Order #: CTH0103

COC#:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CT05668 - General Prep										-
Blank (CT05668-BLK1)	Prepared & Analyzed: 08/04/10									
Hexavalent Chromium	ND	1.0	μg/L			THE STATE OF STREET STATE OF STREET		THE REPORTED AND ALL THE		
LCS (CT05668-BS1)				Prepared	& Analyz	ed: 08/04/	10			
Hexavalent Chromium	4.72	1.0	μg/L	5.00	·-···	94	80-120		V - 200000 G 4 5	,
LCS Dup (CT05668-BSD1)				Prepared	& Analyz	ed: 08/04/	10			
Hexavalent Chromium	4.93	1.0	μg/L	5.00		99	80-120	4	20	
Matrix Spike (CT05668-MS1)	So	urce: CTH01	03-01	Prepared & Analyzed: 08/04/10						
Hexavalent Chromium	ND	1.0	μg/L	5.00	ND		75-125			QM-5
Matrix Spike Dup (CT05668-MSD1)	So	urce: CTH01	03-01	Prepared	& Analyz	ed: 08/04/	10			
Hexavalent Chromium	ND	1.0	μg/L	5.00	ND		75-125		25	QM-5

CALIFORNIA LABORATORY SERVICES

Page 4 of 4

08/09/10 14:08

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project: STR10080347 Project Number: STR10080347

CLS Work Order #: CTH0103

Project Manager: Reyna Vallejo

COC #:

Notes and Definitions

QM-5 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Billing Information:

CHAIN-OF-CUSTODY RECORD

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Alpha Analytical, Inc.

Page: 1 of 1

WorkOrder: STR10080347

Report Due By: 5:00 PM On: 12-Aug-10

Client:

Stratus Environmental 3330 Cameron Park Drive Suite 550

Cameron Park, CA 95682-8861

Report Attention

Steve Carter

Phone Number

EMail Address

(530) 676-6008 x

scarter@stratusinc.net

EDD Required : Yes

Sampled by: Vince Z

PO:

Client's COC #: 27833

lob: Bay Counties Petroleum

Cooler Temp

Samples Received 03-Aug-10 Date Printed 04-Aug-10

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

	Client Sample ID		Requested Tests					!			
		Collection	No. of Bottles				METALS_D	TPH/E_W	VOC_W	Name of the Art Teach of Teach	
		Matrix Date	Alpha	Sub	TAT	R6_SUB_W	S	W			Sample Remarks
STR10080347-01A	DW-1	AQ 08/03/10 09:53	12	1	6	Cr6+ by 7199	As, Ba, Cd, Cu	Cr, Fe, Pb, Se	ТРН/Е_С	BTXE/M/Naps hthalene_C	
STR10080347-02A	DW-2	AQ 08/03/10 07:06	8	0	6				TPH/E_C	BTXE/M_C	i i
STR10080347-03A	DW-3	AQ 08/03/10 10:17	12	1	6	Cr6+ by 7199	As, Ba, Cd, Cu	Cr. Fe, Pb. Se	TPH/E_C	BTXE/M/Nap hthalene_C	
STR10080347-04A	DW-4	AQ 08/03/10 09:27	8	0	6				TPH/E_C	BTXE/M_C	
STR10080347-05A	DW-5	AQ 08/03/10 09:00	12	1	6	Cr6+ by 7199	As, Ba, Cd, Cu	Cr. Fe, Pb, Se	TPH/E_C	BTXE/M/Nap hthalene_C	
STR10080347-06A	DW-6	AQ 08/03/10 08:11	8	0	6				TPH/E_C	BTXE/M_C	
STR10080347-07A	DW-7	AQ 08/03/10 08:23	12	1	6	Cr6+ by 7199	As, Ba, Cd, Cu	Cr. Fe. Pb, Se	TPH/E_C	BTXE/M/Nap hthalene_C	

Comments:

Chain prelogged 8/3/10 in order for Sac office to sub Low Level Cr6+ to CLS. Rest of samples received 8/4/10. Security seals intact. Frozen ice. OK to analyze Cr6+ by Method 7199, per Lisa's

conversation with Marty Morgan @ Stratus.:

Logged in by:

Signature

ae 1 Chanson

Company

Alpha Analytical, Inc.

Date/Time 8/4/10 95

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information: Name <u>Stratus</u> <u>Environmento</u> Address <u>3330</u> <u>Cameron</u> <u>Park</u> D City, State, Zip <u>Cameron</u> <u>Park</u> , <u>CA</u>	//EMEDIA	Alpha Analytica 255 Glendale Avenue, Sparks, Nevada 8943 Phone (775) 355-104	Suite 21 1-5778	AZ	CA 📈 OR	NV	WA Pag	27833 ge#_lof_l_
Phone Number 530-676-6005 Fax 530-676-	6004	Fax (775) 355-0406		/	Analy	/ses Requ	rired	
Client Name Bay Counties Petroleum Address City, State, Zip Dublin, (A Time Date Matrix' Sampled by Vince Z Scandad Sampled See Key	Phone # Report Attention Steve Co	Job# Fax#	Total and type of containers	Diesel Bersa	BTEK BYER MIBE BYERS		EDD / EL	quired QC Level? II III IV DF? YES X NO
Sampled Sampled 300 Below Lab ID Number (Use Only) 0 953 08 03 AQ 51210080247-0 1017 -02 0927 -04 088// 7 7 -06 0823 08 03 AQ -07	\(\langle -2 \\ \rangle -3 \\ \rangle -5 \\ \rangle -6 \\	std (See below I O y 3 p R y I O y 3 p R y I O y 3 p R y I O y 3 p R y I O y 3 p	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X	X	Analy For Dw-: Dissolu total or chrow E218 dissolu total i seleni E200-	EMARKS Ses Required DW-1, DW-3 S, & DW-7 Ved arsenic M, cadmium nd hexavalent rium by 8.6 and for ed copper, ron, lead, um by 8 and
							Naph Subt	nthalene
ADDITIONAL INSTRUCTIONS:							79 Jun 1	o LCS
Received by Received by Received by Received by Relinquished by Relinquisher by	Print Name Vince Zalut ISS GS LISS GS Tace IICK	Ka Silve Ilia MSOL	stratu: AL Oly	Compar S E P WA LP WA DMC			Date 8-3-10 8-3-10 23-10 8/4/0	Time 1320 1320 1500 1000
*Key: AQ - Aqueous SO - Soil WA - Was NOTE: Samples are discarded 60 days after results at of the above samples is applicable only to those samp	e reported unless other arrangeme	nts are made. Hazardo	-Voa S-Soil Jar us samples will be re the laboratory is lim	O-Orbo eturned to c ited to the a	lient or dispos	sed of at clie	nt expense. The re	OT-Other eport for the analysis

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - Monitoring Report - Quarterly

Submittal Title:

Analytical 8-3-10

Facility Global ID:

T0600113164

Facility Name:

BAY COUNTIES PETROLEUM

File Name:

10080347.zip

12.186.106.98

Organization Name:

Stratus Environmental, Inc.

Username:

STRATUS NOCAL

IP Address:
Submittal Date/Time:

10/1/2010 7:16:09 AM

Confirmation Number:

2956601738

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO_WELL

Submittal Title:

Analytical 8-3-10

Facility Global ID:

T0600113164

Facility Name:

BAY COUNTIES PETROLEUM

File Name:

GEO_WELL.zip

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:
Submittal Date/Time:

10/1/2010 7:19:28 AM

Confirmation Number:

2454804420

12.186.106.98

Copyright © 2008 State of California