

RECEIVED

2:17 pm, Mar 17, 2009

Alameda County Environmental Health

March 13, 2009

Paresh C. Khatri ALAMEDA COUNTY ENVIRONMENTAL HEALTH 131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Project No. 33108-0086470.00

Subject:

Additional Soil and Groundwater Investigation at Former Quest Laboratory

6511 Golden Gate Drive

Dublin, California (Fuel Leak Case No. RO0002860)

Dear Mr. Khatri:

Bureau Veritas North America, Inc. is pleased to present the attached *Additional Soil and Groundwater Investigation* report for the above site in Dublin, California. The report summarizes the findings of our investigation.

Bureau Veritas is pleased to be of service to Alameda County Environmental Health and Safeway Inc. Please contact me at 925.426.2679 or by email at don.ashton@us.bureauveritas.com, if you have any questions or comments.

Sincerely,

Donald Ashton Senior Geologist

Environmental Services

cc: Kevin Thompson – Safeway Inc.

Jeff Brown - Safeway Inc.

Bureau Veritas North America, Inc.

Additional Soil and Groundwater Investigation (Fuel Leak Case No. RO0002860)

Former Quest Laboratory 6511 Golden Gate Drive Dublin, California

> March 13, 2009 Project No. 33108-008647.00

> > Prepared for Safeway Inc. Pleasanton, California

For the benefit of business and people

Bureau Veritas North America, Inc. 2430 Camino Ramon, Suite 122 San Ramon, California 94583 925.426.2600

www.us.bureauveritas.com

CONTENTS

Sect	<u>ction</u>	<u>Page</u>
1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	SCOPE OF WORK	1
	3.1 PRE-FIELD ACTIVITIES	2
	3.2 FIELD ACTIVITIES	2
	3.2.1 Preferential Pathway Study	2
	3.2.2 Soil Borings	3
	3.2.3 Monitoring Well Installation	4
	3.2.4 Well Development, Monitoring and Sampling	
	3.2.5 Land Survey of Monitoring Well Locations	5
4.0	LABORATORY ANALYSIS	5
5.0	FINDINGS	6
	5.1 PREFERENTIAL PATHWAYS SURVEY	6
	5.2 SOIL BORING OBSERVATIONS	6
	5.3 GROUNDWATER ELEVATION MONITORING	7
	5.4 SUBSURFACE SOIL RESULTS	
	5.5 GROUNDWATER	7
6.0	CONCLUSION	8
7.0	RECOMMENDATIONS	8
8.0	LIMITATIONS	8
<u>Tabl</u>	<u>bles</u>	
1	Groundwater Elevation Data	
2	Summary of Soil Analytical Results	
3	Summary of Groundwater Analytical Results	

Contents (Continued)

Figures

- 1 Site Location Map
- 2 Site Plan with Sample Locations
- 3 Groundwater Elevation Map 1-15-09
- 4 Groundwater Results January 15, 2009

Appendices

- A Drilling Permit
- B Radius Well Records
- C Boring Logs with Well Details
- D Groundwater Development and Sampling Data Sheets
- E Land Survey Data
- F Laboratory Analytical Data Sheets and Chain-of-Custody Records

1.0 <u>INTRODUCTION</u>

Safeway Inc. (Safeway) retained Bureau Veritas North America, Inc. (Bureau Veritas) to perform an additional soil and groundwater investigation at the former Quest Laboratory property located at 6511 Golden Gate Drive in Dublin, California (The Site, Figure 1). This work was performed regarding Alameda County Environmental Health (ACEH) Fuel Leak Case No. RO0002860 in response to a letter from the ACEH dated September 16, 2008.

2.0 BACKGROUND

In 2003, prior to purchasing the subject property, Safeway retained Clayton Group Services, Inc. (now Bureau Veritas) to conduct Phase I and II Environmental Site Assessments. Clayton's *Phase II Environmental Investigation at the Former Quest Laboratory 6511 Golden Gate Drive, Dublin, California*, dated April 26, 2004 (Clayton 2004) reports the finding of petroleum hydrocarbons in groundwater in a limited number of samples collected below and downgradient of a former UST that was removed from the property in 1989. Based on the analytical results of a limited sampling conducted by others as part of the UST removal, ACEH closed the case in 1990. On October 7, 2004, Clayton submitted a copy of its 2004 Phase II report to ACEH requesting to know if the UST case would be re-opened.

In its letter dated July 3, 2008, ACEH notified Safeway that the subject property has been re-opened as a Fuel Leak Case (Geotracker Global ID: T06019799610). On September 16, 2008, ACEH requested a preferential pathway study and technical comments addressing soil and groundwater characterization for the petroleum hydrocarbons found in groundwater. Bureau Veritas submitted a *Workplan for Additional Environmental Investigation*, dated November 19, 2008. ACEH approved the workplan with three technical comments in a letter dated December 5, 2008. The findings from the additional investigation are summarized below.

3.0 SCOPE OF WORK

Bureau Veritas performed the following scope of work:

- Obtained the required drilling permit (Permit Number: 28182 Appendix A), marked the site for utility clearance and notified Underground Service Alert of Northern California (USAN) at least 48 hours prior to conducting subsurface work, as required by law.
- Conducted a subsurface utility survey of the northern portion of the subject property prior to drilling and installing three groundwater monitoring wells downgradient of the former UST where petroleum hydrocarbons previously had been detected in groundwater.

- Conducted a Preferential Pathway study by surveying the vicinity of the former UST site for subsurface utilities and requesting that Zone 7 Water District research their records for all wells within a one-quarter mile radius of the subject property.
- Advanced three (3) soil borings at the subject property using direct-push technology, collected soil samples, installed groundwater monitoring wells, and collected groundwater samples. The wells were surveyed and monitored to determine a site specific groundwater gradient.
- Analyzed soil and groundwater samples for petroleum hydrocarbons and volatile organic compounds.
- Prepared this technical report that documents the field activities, findings, with conclusions, and recommendations.
- Submitted data to the State Water Resources Control Board (SWRCB) GeoTracker program (following completion of final report).

3.1 PRE-FIELD ACTIVITIES

Pre-field activities included a site visit to coordinate with the on-site operations staff, mark the site boundaries with white paint, and notify Underground Service Alert of Northern California (USAN) at least 48 hours prior to subsurface work, as required by law. USAN issued work order ticket No. 002346 on January 5, 2009 for three soil boring locations.

On January 6, 2009, Bureau Veritas directed California Utility Surveys (CUS), a subsurface utility locating subcontractor, during the on-site survey. CUS cleared the proposed well locations of underground utilities prior to drilling the three proposed boreholes.

3.2 FIELD ACTIVITIES

3.2.1 <u>Preferential Pathway Study</u>

The preferential pathway survey included a general subsurface utility survey by CUS under the direction of Bureau Veritas of the area around the former UST location (adjacent to the mid-north property boundary) extending to the east (downgradient) property boundary. Two parking lot storm water drop inlets were observed in the survey area. CUS opened the storm drain inlet covers and the drainage pipeline connecting the storm water inlets was found to be at a depth of approximately 4.75 feet below grade surface (bgs). The pipeline run was traced using a snake with a signal generator which was traced to the east and then to the north at the northeast corner of the property where it left the property (see Figure 2). No other suspect utilities or pathways were identified during this survey.

On January 20, 2009, Bureau Veritas also submitted a written request to Zone 7 Water District for a records search of wells located within a one-quarter mile radius of the subject property. Zone 7 forwarded the results of their search on January 29, 2009, which included a table listing 37 wells and a

map of their plotted locations (Appendix B). The list included supply, monitoring, cathodic, destroyed, abandoned, and unknown use wells. The list included the three newly installed on-site wells. Bureau Veritas also conducted a visual survey of the adjoining commercial properties from public areas within a block radius of the subject property and no active wells were observed.

3.2.2 <u>Soil Borings</u>

On January 8, 2009, Vironex Environmental Field Services of Pacheco, California provided direct-push, dual-wall (Geoprobe) equipment and labor, and advanced three soil borings under Bureau Veritas' supervision. Borehole MW-1 was advanced to a total depth of 25 feet bgs while evaluating the depth of groundwater. After a short observation period, the bottom depth of all well screens was selected at 20 feet bgs for all three wells. Borings MW-2 and MW-3 where only drilled to a total depth of 20 feet bgs. The boreholes were installed per Zone 7 Permit No. 28182, which is presented as Appendix A.

The three boring locations were selected to further evaluate the finding of residual petroleum hydrocarbons in groundwater at and east of the former UST location (Clayton 2004). Boring MW-1 was placed adjacent to the east of the former UST pit, MW-2 was placed at the northeast corner of the property in the proximity of the storm water pipeline where it leaves the property, and MW-3 was placed near a prior soil boring (Q-11) where a grab-groundwater sample collected in 2004 was found to have fuel ranged petroleum hydrocarbon concentrations, presumed to have been released to groundwater from the former UST system (see Figure 2).

The soil borings were continuously cored and logged to the total depth drilled. Soil samples were collected in a Geoprobe core sampler using plastic liners, and six-inch sections were cut from the bottom of each liner at four- to five-foot intervals. The liners with the soil samples were sealed with Teflon tape and plastic end caps. Each sample was uniquely labeled, placed in a pre-chilled cooler, and entered on a formal chain-of-custody document for transport to a state-certified laboratory for analysis. The remaining soil core liners were then opened and the core sections were visually assessed for indications of contamination and for soil lithology using the Universal Soil Classification System as a guideline. The logs are presented as Appendix C.

Field screening of borehole cores was conducted by collecting a small amount of soil from the bottom of each core liner and or at select depths and placing the sample into a sealed plastic bag. A photo-ionization detector (PID) was used to screen the headspace in each sealed plastic bag for ionizable organic substances. Headspace analysis for ionizable or volatile substances was used to evaluate the soil cores to select vadose zone soil samples for laboratory analysis. PID readings were recorded onto the boring logs, which are presented in Appendix C.

Soil cuttings and decontamination water were containerized in sealed buckets and or a 55-gallon drum and stored onsite pending a review of the analytical data for proper disposal.

3.2.3 <u>Monitoring Well Installation</u>

Upon completion of drilling to the desired depths, monitoring wells were installed in each of the three borings. The wells were constructed of GeoProbe® Prepacked Well Screen sections between approximately 10 and 20 feet bgs using one-inch diameter PVC Schedule 40 materials with 0.010 inch cut slots. The prepacked sand (20/40 grade) is contained in stainless steel mesh with an outer diameter of 2.5 inches. The screened well casing was inserted through the center of the outer dual tube (while still in place in the borehole), which extended from the bottom of the boring to above the groundwater level. A two foot long casing section made as a 'PrePack' bentonite seal (consisting of powdered bentonite clay in a porous material wrap) was installed above the well screen, which was then connected to blank PVC casing that extended to the ground surface. Since boring MW-1 extended to a total depth of 25 feet bgs, a five-foot blank section of PVC casing with a threaded end cap was added below the screened section of the well between 20 and 25 feet bgs. To complete the surface seal, approximately one foot of granular bentonite was placed in the annular space and hydrated to seal the well pack prior to sealing the remainder of the annular space to the surface with cement grout. A flush traffic-rated well box was installed in concrete to cover the top of the well casing. A lockable expanding well cap was used to secure and seal the wellhead. A mark was placed on the top of the well casing, north side, for use as a depth to water measurement reference point. The well construction details are depicted on the boring logs (Appendix C).

3.2.4 Well Development, Monitoring and Sampling

The annular grout seals for the new wells were allowed to cure for a minimum of three days prior to development per state well regulations. Well development was performed to help stabilize the filter pack sand and aquifer material surrounding the well screen and to remove sediment that had accumulated in the well casing and filter pack sand during well construction. The depths to groundwater and total depth of the monitoring well casings were then measured to determine the quantity of water within each well casing. Monitoring well development included the use of a surge block to agitate water and settle well construction materials. An inertial pump (check valve on a section of tubing) and or a new disposable bailer were used to purge groundwater and sediment from within the well casings. Well development continued until each of the wells dried, which occurred after removing between four and seven well volumes of water. The wells were then allowed to recharge. Water quality parameters (pH, temperature, specific conductivity, and turbidity) were monitored until the wells dried. Groundwater quality parameters were recorded on well development data sheets and are presented in Appendix D.

The wells were allowed to stabilize for an additional two days prior to sampling. Groundwater monitoring was conducted prior to sampling by measuring and recording the stabilized depth to groundwater in each well relative to the top of casing reference point. The depth to water was later used to determine the groundwater elevation. On the day of sampling (January 15, 2009), the depth to water and the total depth of the water column were measured in each casing, and the volume of the water columns calculated. The well casings were then purged of three or more well-casing volumes of water and water quality parameters where monitored indicating stabilization. A peristaltic pump with new tubing was used to

purge groundwater from each monitoring well at 'low flow' rates of about 300 to 400 milliliters per minute and for sample collection. Water quality parameters (pH, specific conductivity, temperature and visual turbidity) were recorded onto well monitoring data sheets after each well casing volume of water was removed, which was recorded onto sampling data sheets (Appendix D).

Upon purging sufficient water from the monitoring wells and allowing for sufficient recovery, groundwater for laboratory analysis was retrieved. The sample container size, type, and sample preservative corresponded to the requested analytical method. Sample containers were sealed, labeled with identifying information, logged onto the chain-of custody, and temporarily stored in a chilled ice-chest for transportation to the laboratory. Groundwater purged from monitoring wells during development and sampling was stored onsite in a sealed and labeled 55-gallon drum meeting DOT transportation requirements, pending proper disposal.

3.2.5 Land Survey of Monitoring Well Locations

On January 28, 2009, Virgil Chavez Land Surveying, a State of California Licensed Land Surveyor, surveyed the three newly installed groundwater monitoring wells for location and elevation as required by state regulations. The survey included the top of well casing elevation (north top of casing) and well box rim elevation. The elevation data was surveyed to an accuracy of 0.01 foot. The northing and easting coordinates were surveyed to 0.1-foot accuracy and referenced to a recognized survey monument. The surveyed coordinates are presented in Appendix E. The survey data was submitted to the GeoTracker database program maintained by the California Water Resource Control Board.

The surveyed well casing elevation was used to calculate the groundwater elevation for all three groundwater monitoring wells. This was done by subtracting the depth to water measurements collected on January 15, 2009 from the top of casing elevations.

4.0 LABORATORY ANALYSIS

Bureau Veritas submitted six (6) soil and three (3) groundwater samples for laboratory analysis by the following United States Environmental Protection Agency (USEPA) approved methods:

- USEPA Method 8015C Modified for Total Extractable Petroleum Hydrocarbons as gasoline, diesel and motor oil (TPH-G, TPH-D and TPH-O, respectively).
- USEPA Method 8260B for Volatile Organic Compounds (VOCs), which include fuel aromatic
 hydrocarbons as Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), and fuel oxygenates (OXY).

Soil and groundwater samples were analyzed by McCampbell Analytical, Inc. of Pittsburg, California, a state certified laboratory. The laboratory prepared the generated data in the required electronic deliverable data (EDD) format for uploading into GeoTracker database.

5.0 FINDINGS

A summary of the findings from this investigation is presented below.

5.1 PREFERENTIAL PATHWAYS SURVEY

The subsurface utility survey and a visual surface features survey of the northeastern portion of the subject property identified only a storm drain pipeline with two drop inlets in the vicinity and down gradient of the historic UST system. Since the depth to groundwater was found to be greater than 15 feet bgs and the observed depth of the storm drain pipeline trench was only about 5 feet bgs, the utility does not appear to present a preferential pathway for the historic release of fuels.

The radius well search did not identify drinking water or other types of production wells within one-quarter mile of the subject property. In addition, no downgradient groundwater monitoring wells were identified within the same search radius. Three upgradient monitor wells (3S/1W M1, 3S/1W M2, and 3S/1W M3) were located to the west and southwest, between 470 and 800 feet upgradient of the former UST location, on the vacant lot across Golden Gate Drive.

Bedford Properties was listed as the owner of well 3S/W 1M1, which was installed in 1991. The state Geotracker database (established in 2004) lists a fuel leak case (Case #T0600100823) for Bedford Properties at the 6700 Golden Gate Drive property. This case was closed in 1993 and no other records were in the online file. Winstar Communities is listed as the owners of wells 3S/1W 1M2 and 1M3. Geotracker lists a leak case (Case #T06019769979) for Dublin Retail Center at 7900 Dublin Boulevard, which is an upgradient address that may be related to these two wells. The database listed a leak discovered in 1998, which required action in 2003 and was closed in 2005. No records were found regarding the current status of these wells; they are assumed to be closed. Based on available information, it would appear that a release at the subject property would not have affected these wells. Other identified wells within the radius search pattern do not present a concern to the subject property because they have been destroyed or are cross-gradient and are too distant to be of concern.

5.2 SOIL BORING OBSERVATIONS

Soils encountered in the soil borings generally consisted of brown to black silty clay, silt, and clayey silt to the total depth drilled of 25 feet bgs. Soil boring logs are presented as Appendix C. During core liner inspections, Bureau Veritas noted some soil staining and slight petroleum hydrocarbon odors in borings MW-1 and MW-3 between approximately 17 and 18 feet bgs, which were found to be below the current groundwater table. No staining or hydrocarbon odors were noted in boring MW-2. No other indications of petroleum hydrocarbons or other chemical impacts were identified during field screening. No significantly elevated PID readings were recorded for soil samples collected in the borings.

5.3 GROUNDWATER ELEVATION MONITORING

Groundwater elevation monitoring of the three new monitoring wells on January 15, 2009 found the depth to groundwater to range between 15.59 and 16.21 feet bgs. The elevation at each well was calculated by subtracting the depth to water from the surveyed elevation point at the top of each respective casing. The groundwater elevations for January 15, 2009 are presented in Table 1. This data was used to produce a groundwater elevation map with contours, depicted on Figure 3. Groundwater flow interpreted from this map is to the north at a very gentle gradient of 0.003 feet per foot. It should be noted that the prior site investigation conducted by Clayton (2004) found that the groundwater flow was easterly, approximately in line with the regional topographic gradient.

5.4 SUBSURFACE SOIL RESULTS

Two soil samples from each soil boring, one from the vadose zone and one from near the groundwater level or fringe zone were analyzed by the laboratory for TPH and VOCs. A summary of the findings is presented in Table 2. No TPH ranged compounds were reported above the laboratory reporting limits, except for soil sample MW-2 at 4.5 to 5.0 feet bgs, which contained 1.5 milligrams per kilogram (mg/Kg) of TPH-d and 6.9 mg/Kg of TPH-mo ranged compounds. These low detections are well below the Environmental Screening Levels (ESLs) established by the California Regional Water Quality Control Board (Source: *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Interim Final – May 2008) that have been established for commercial land use.

No VOC concentrations were reported above the laboratory reporting levels in any of the analyzed soil samples.

5.5 GROUNDWATER

Groundwater samples results were found to have low concentrations of TPH ranged compounds in samples MW-1 and MW-3, but not in MW-2. Sample MW-1 was found with a TPH-g concentration of 99 micrograms per liter (ug/L) and TPH-d at 89 ug/L. Sample, MW-3 was reported to have a TPH-g concentration of 140 ug/L and TPH-d at 85 ug/L. The TPH-g concentration in sample MW-3 was the only result that exceeded an established ESL level (gasoline ESL is 100 ug/L for a potential source of drinking water). The laboratory reported the results as aged and with no recognizable pattern. No TPH-mo ranged compounds were reported in any of the water samples.

No VOCs were detected in the analyzed samples, except for MW-1, which had a sec-Butyl benzene concentration of 0.53 ug/L and MW-2 had 4-an isopropyl toluene concentration of 0.62 ug/L. The detected VOCs are at very low concentrations and no ESLs have been established for these compounds. Analytical results for the groundwater samples are summarized in Table 3 and are presented in Figure 4.

6.0 CONCLUSION

The finding of low TPH concentrations in one of six soil samples is considered to be de minimis. The finding of low concentrations of aged gasoline and diesel concentrations is also considered to be de minimis since the concentrations are below the ESLs for petroleum as gasoline and middle distillates, except for the finding of TPH-g at MW-3 just slightly in excess of the drinking water ESL for this compound. Current soil and groundwater results appear to be generally consistent with findings of the 2004 investigation, which indicated a localized groundwater plume that extended to the east.

The northerly groundwater gradient measured for this monitoring event differs from the regional topography, which is easterly. The calculated groundwater gradient measured in 2004 (to the east) essentially followed the topographic gradient. Additional groundwater monitoring will be required to confirm the local groundwater gradient. The current indicated northerly groundwater gradient could be a seasonal variation, an unstablized well, or a result of changes since 2004 in local groundwater conditions, such as those that may result from recharge from landscaping irrigation, or changes in local water uses.

7.0 RECOMMENDATIONS

Bureau Veritas recommends continued groundwater monitoring to comply with ACEHs request for technical information to further evaluate the local groundwater quality and to confirm the groundwater gradient(s) to better characterize the petroleum hydrocarbon groundwater plume.

8.0 <u>LIMITATIONS</u>

The information and opinions included in this report were given in response to a specific scope of work and should be considered and implemented only in light of that particular scope of work. The services provided by Clayton in completing this project have been provided in a manner consistent with the normal standards of the profession. No other warranty, expressed or implied, is made.

This report was prepared by:

Donald A. Ashton, P.G., R.E.A.

NO. 5993

Senior Geologist

Environmental Services

This report was reviewed by:

Jon A. Rosso, P.E.

Director

Environmental Services
San Francisco Regional Office

March 13, 2009

TABLES

TABLE 1
Groundwater Elevation Data
6511 Golden Gate Drive, Dublin, CA

Project No. 33108-0086470.00

_	Monitoring Well	Measurement Date	Top of Casing (TOC) Elevation * (ft) NGVD 29	Depth to Groundwater (ft) from TOC	Groundwater Elevation (ft)
	MW-1	1/15/2009	342.68	15.59	327.09
	MW-2	1/15/2009	342.53	15.79	326.74
	MW-3	1/15/2009	342.99	16.21	326.78

Legend

Well Screen intervals: 10' to 20' bgs (installed January 8, 2009).

^{* =} Well Casing survey conducted on January 28, 2009 by Virgil Chavez Land Surveying (Geotracker ID: T06019799610) NGVD 29 = National Geodetic Vertical Datum - 1929

TABLE 2 Summary of Soil Analytical Results - TPH and VOCs 6511 Golden Gate Drive, Dublin, CA

Project No. 33108-008647.00

Analytical Method	Units	Sample ID, Dep MW-1 -7.5'-8.0' 1/8/2009	th (ft.), and Date MW-1 -11.5'-12.0' 1/8/2009	MW-2 -4.5'-5.0' 1/8/2009	MW-2 - 14.5'-15.0' 1/8/2009	MW-3 - 4.5'-5.0' 1/8/2009	MW-3 -14.5'-15.0' 1/8/2009	ESLs Commercial Table A
Total Petroleum Hydrocarbons Method 8015C								
TPH as gasoline	mg/Kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	83
TPH as diesel with SGCU	mg/Kg	< 1.0	< 1.0	1.5**	< 1.0	< 1.0	< 1.0	83
TPH as motor oil with SGCU	mg/Kg	<5.0	<5.0	6.9**	<5.0	<5.0	<5.0	2500
VOCs and Oxygenates Method 8260B								
VOCs including BTEX, EDB & 1-2 DCA	mg/Kg	ND	ND	ND	ND	ND	ND	Varies
Oxygenates: MTBE, TAME, DIPE, ETBE			< 0.005	< 0.005	<0.005	< 0.050	< 0.005	Varies
Oxygenate: TBA	mg/Kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.075

Legend

mg/Kg = Milligrams per kilogram

SGCU = Silica Gel Clean Up, performed by laboratory during sample preparation, removes polar hydrocarbons, typical for animal fats

ESLs = Environmental Screening Level: Screening For Environmental Concerns At Sites with

Contaminated Soil and Groundwater, RWQCB Interim Final - November 2007

Table A: Industrial Land Use - Soil <3 meters bgs - Groundwater is a potential source of drinking water

BTEX = Benzene, Toluene, Ethylbenzene, and total Xylenes; EDB = 1,2-dibromoethane; 1,2-DCA = 1,2-dichloroethane

Oxygenates = methyl tert-butyl ether (MTBE), tert-Amyl methyl ether (TAME), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), & t-Butyl alcohol (TBA)

< 50 = Less than laboratory detection limit as indicated

^{** =} Laboratory noted stongly aged gasoline or diesel ranged compounds are significant, no recognizable pattern

TABLE 3 Summary of Groundwater Analytical Results - TPH and VOCs 6511 Golden Gate Drive, Dublin, CA

Project No. 33108-008647.00

		Sample ID and Date			
Analytical Method		MW-1	MW-2	MW-3	ESLs
	Units	1/15/2009	1/15/2009	1/15/2009	Table A
Total Petroleum Hydrocarbons					
Method 8015C					
TPH as gasoline	ug/L	99⁺	<50	140 ⁺	100
TPH as diesel	ug/L	89**	<50	85**	100
TPH as motor oil	ug/L	<250	<250	<250	100
BTEX & Oxygenates					
Method 8260B					
BTEX, EDB, & 1,2-DCA	ug/L	<0.5	<0.5	<0.5	Varies
sec-Butyl benzene	ug/L	0.53	<0.5	<0.5	NE
4-Isopropyl toluene	ug/L	<0.5	0.62	<0.5	NE
Oxygenates: MTBE, TAME, DIPE, ETBE	ug/L	<0.5	<0.5	<0.5	Varies
Oxygenate: t-Butyl alcohol (TBA)	ug/L	<2.0	<2.0	<2.0	NE

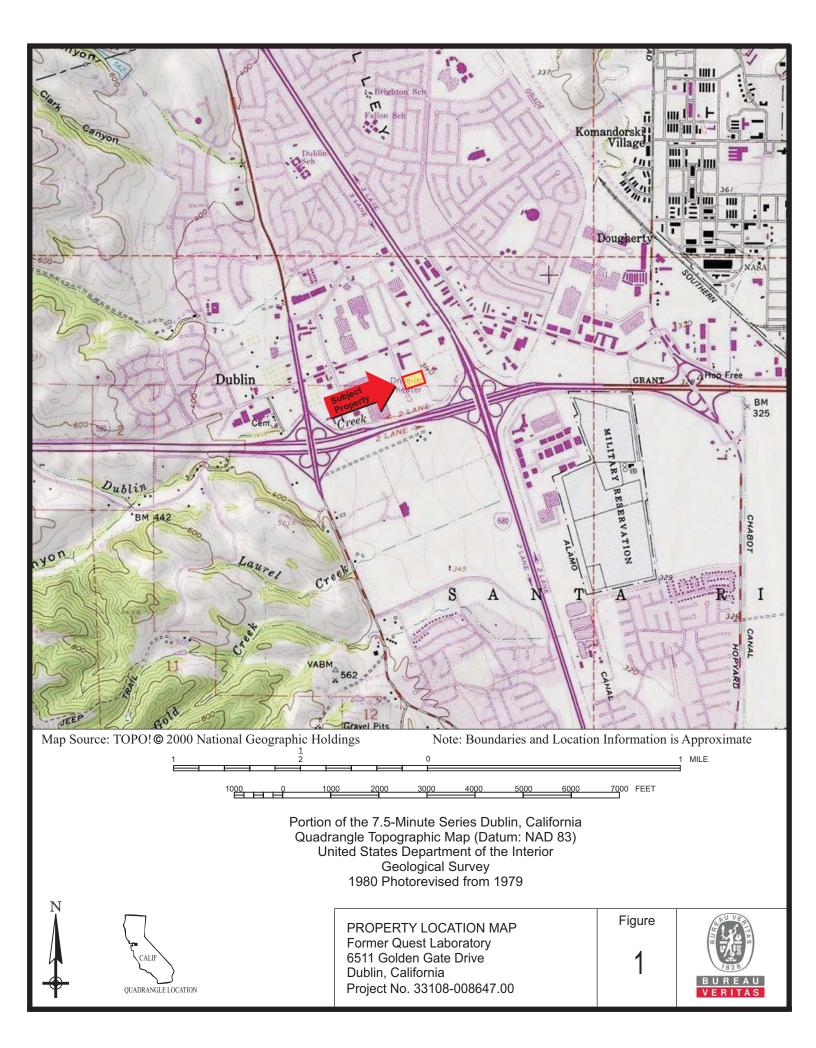
Legend

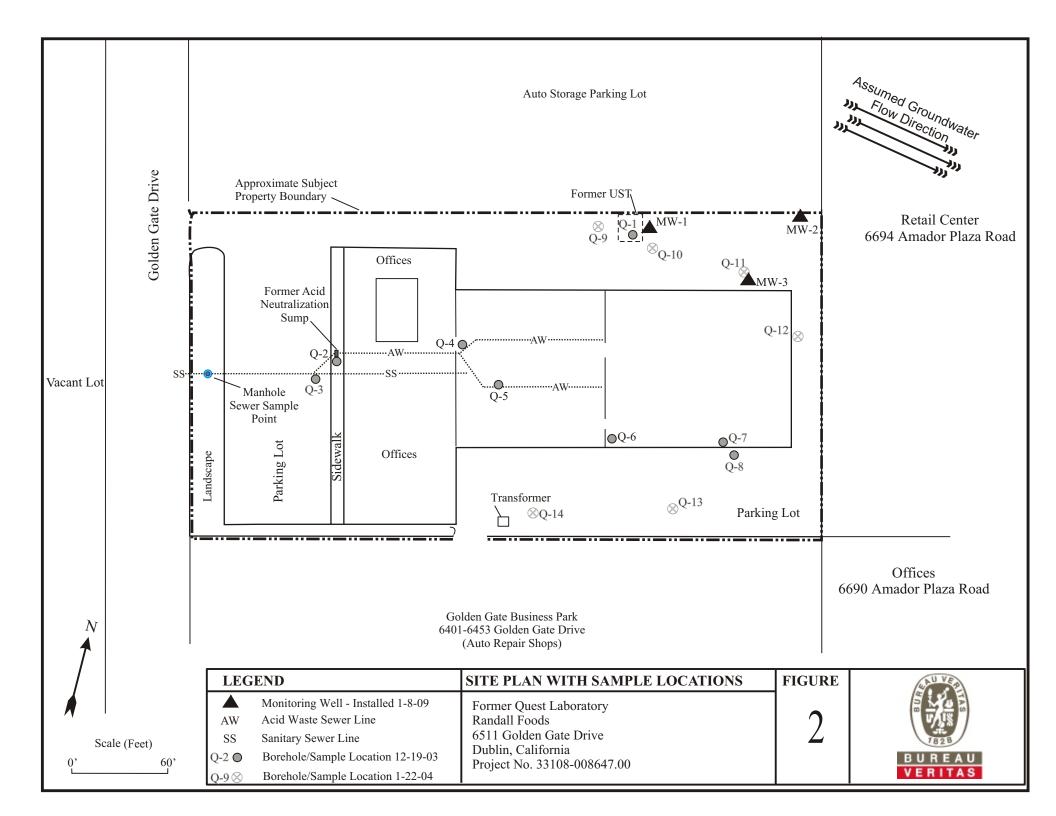
ug/L = Micrograms per liter

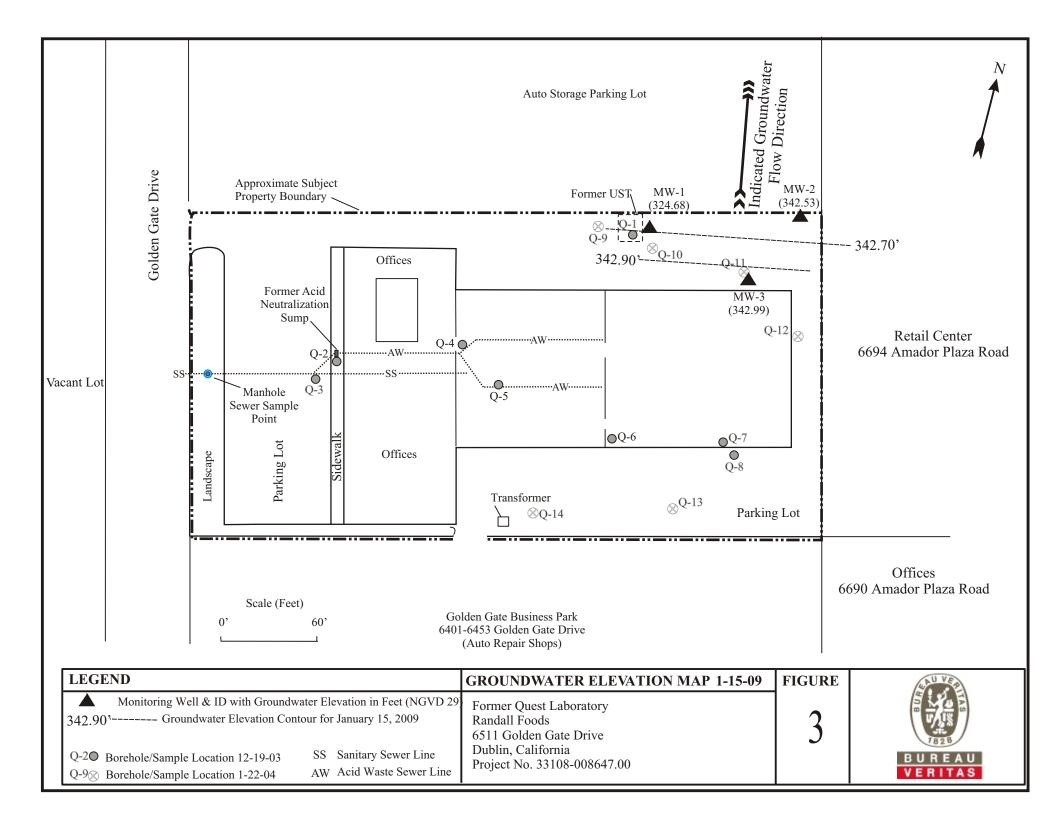
ESLs = Environmental Screening Level: Screening For Environmental Concerns At Sites with Contaminated Soil and Groundwater, RWQCB Interim Final - November 2007; Table A: Groundwater (<3 meter bgs) is a potential source of drinking water

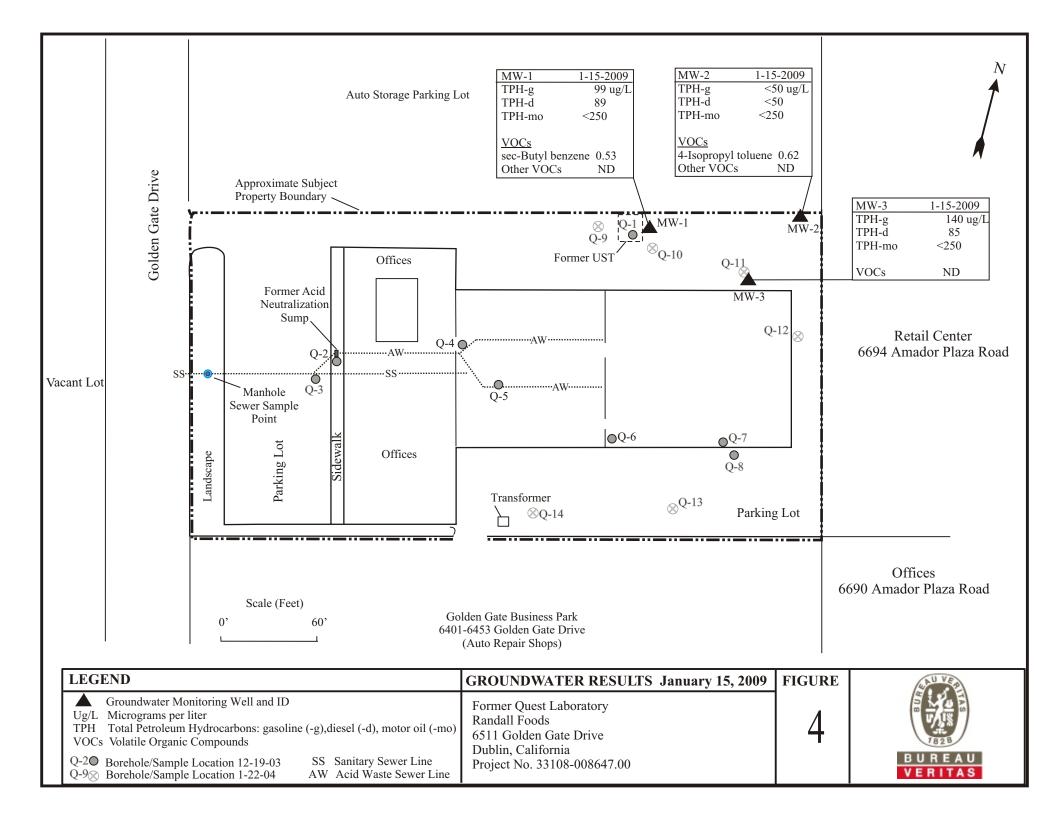
NE = Not established

BTEX = Benzene, Toluene, Ethylbenzene, and total Xylenes; EDB = 1,2-dibromoethane; 1,2-DCA = 1,2-dichloroethane


Oxygenates = methyl tert-butyl ether (MTBE), tert-Amyl methyl ether (TAME), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), & t-Butyl alcohol (TBA)


⁺ = Laboratory reports strongly aged gasoline and diesel ranged compounds are significant, no recognizable pattern


^{** =} Laboratory reports diesel and gasoline range coumpounds are significant, no recognizable pattern



FIGURES

APPENDIX A DRILLING PERMIT

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

	FOR APPLICANT TO COMPLETE			FOR OFFICE USE	
LOCATION OF F	PROJECT 6511 GOLDEN GAT DUBLIN, CH 9456	TE DR	i		
AC FUEL LA	WK CASE RO-0002860	P		NUMBER 28182	
Coordinates Sou	irce Google RANTH ft. Accuracy	√ 100 ft. A	ÆLL N PN	UMBER 3S/1W-1F33 to 1F35 (MW-1 t 941-1500-033-00	o MW-3)
LAT: 37.70	524 ft LONG: 721, 927 - 1500 - 033 - 00	ftft		PERMIT CONDITIONS	
<u> </u>				(Circled Permit Requirements Apply)	
Address 59/6 City PLEASA		5-226- <u>58</u> 45 -88) G 1. 2.	Zone 7 office five days prior to your proposed sta	arting date. In of permitted
Name Dow ALC Email Dow, Ash Address 6920 A	ASHTON — BUREAU VERIT FON OUS BUREAUVERITAS FAX 92 KGU CHTIR PHUH #216 Comme 92	<u>5-426-01</u> 06 25-426-2679	3.	<u>Drillers Report (DWR Form 188), signed by the</u> Permit is void if project not begun within 90 day date.	e driller.
TYPE OF PROJECTION Well Construction Well Destruction Cathodic Protection PROPOSED WE Domestic Municipal Industrial Dewatering	ECT: 9 Geotechnical Investiga 9 Contamination Investiga ion 9 Other ELL USE: 9 Imigation 9 Remediation 9 Groundwater Monitoria 9 Other	ation 9 pation 9 9 9 9	1. 2. 3. 4. 5. G	MATER SUPPLY WELLS Minimum surface seal diameter is four inches grewell casing diameter. Minimum seal depth is 50 feet for municipal and ir or 20 feet for domestic and irrigation wells unless a is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is ron the wellhead for water level measurements. A sample port is required on the discharge pipe n wellhead.	ndustrial wells a lesser depth required ear the
DRILLER'S LICE	9 Air Rotary 9 Hollow Stem Au Direct Push 9 Other PANY Ullow EX, PACHECO, 521-7490 INSE NO. 705927	9	1. 2. 3.	the well or piezometer casing diameter. Minimum seal depth for monitoring wells is the depth practicable or 20 feet.	
Casing Dian Surface Sea	rameter 3.5 in. Maximum aneter 1.0 in. Depth 2 al Depth ft. Number	D. 5ft. -3 11W-1, MW-2, MW-3	he ar	EOTECHNICAL. Backfill bore hole with compacted eavy bentonite and upper two feet with compacted eas of known or suspected contamination, tren out shall be used in place of compacted cuttings.	I material. In nied cement
Number of E Hole Diamet	Borings Maximum	E.	C,	ATHODIC. Fill hole above anode zone with concre emie.	ete placed by
ESTIMATED STA	ARTING DATE/-12- Zeをタ MPLETION DATE/-17- 2のり	F.	W	ELL DESTRUCTION. See attached.	
	comply with all requirements of this per	G	CC	PECIAL CONDITIONS, Submit to Zone 7 within to mpletion of permitted work the well install cluding all soil and water laboratory analysis	ation report
APPLICANTS SIGNATURE	honde atta Date	1-238-2008 AI	prove	od Wantan Hone Date	12/29/08

ATTACH SITE PLAN OR SKETCH

Revised: April 23, 2008

Wyman Hong

APPENDIX B RADIUS WELL RECORDS

"Hong, Wyman" <WHong@zone7water.com> 01/28/2009 04:31 PM To Don Ashton/USA/VERITAS@VERITAS
cc
bcc

Subject Well Search

Ref

Don,

Attached is a well location map for the area near (1/4 mile radius) 6511 Golden Gate Drive in Dublin and a well data file you requested.

LEGEND

Blue triangle – water supply well

Red diamond – monitoring well

Blue dot – unknown or cathodic protection well

Yellow cross - abandoned well

All open symbols - destroyed well

Wyman Hong

Water Resources Specialist

Zone 7 Water Agency

100 North Canyons Parkway

Livermore, CA 94551

Direct Phone: (925) 454-5056

Mobile Phone: (925) 998-2350

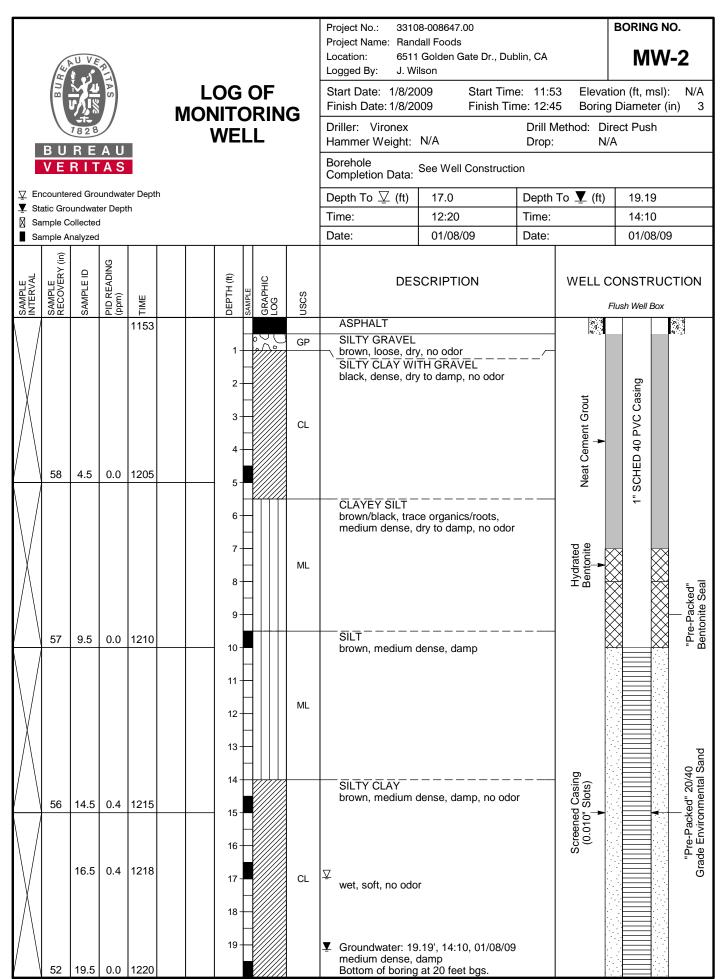
6511 Golden Gate.xls 6511 Golden Gate.pdf

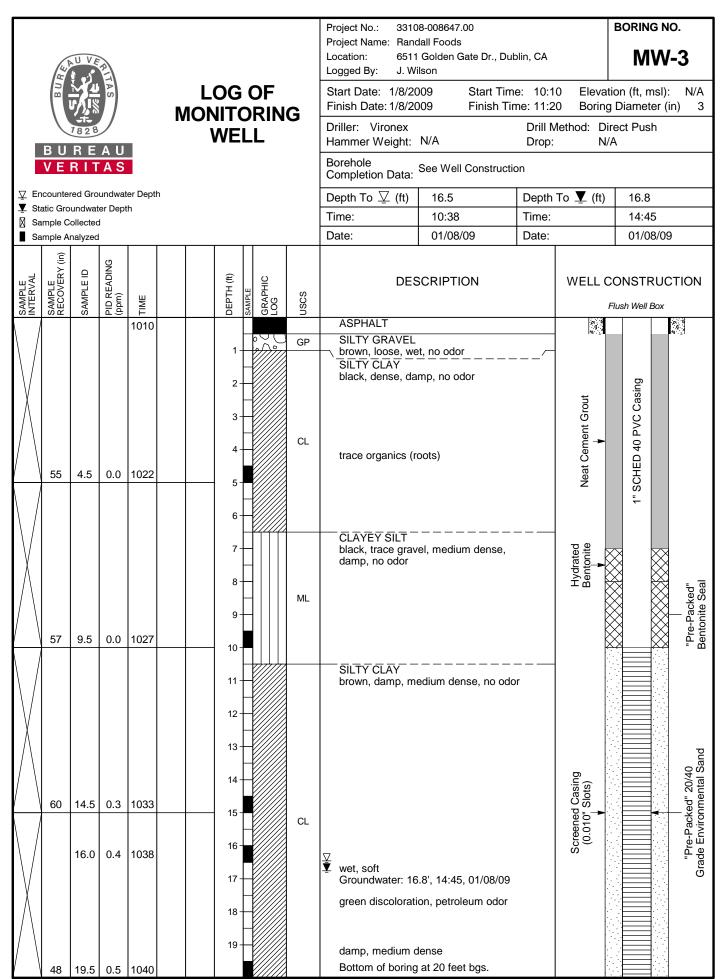
	<u>USE</u>	ADDRESS	CITY	OWNER	PERMIT	DRILLER	COMPLETED	DESTROYED STATUS		LATITUDE
	unknown		DUBLIN			0 MCLAREN		00000000	-121.929725000	
3S/1W 1E 2 r		DUBLIN BLVD NR GOLDEN GATE DR		MONTGOMERY WARD		0 A.D. SELDITCH	2/8/1989			
		DUBLIN BLVD NR GOLDEN GATE DR		MONTGOMERY WARD		0 A.D. SELDITCH		•	-121.929383000	
		DUBLIN BLVD NR GOLDEN GATE DR		MONTGOMERY WARD		0 A.D. SELDITCH		00000000	-121.929451000	
		DUBLIN BLVD NR GOLDEN GATE DR		MONTGOMERY WARD		0 A.D. SELDITCH		00000000	-121.929416000	
3S/1W 1E 6 r		DUBLIN BLVD NR GOLDEN GATE DR		MONTGOMERY WARD		0 A.D. SELDITCH	2/8/1989	•	-121.929248000	
3S/1W 1E 7 r		DUBLIN BLVD NR GOLDEN GATE DR		MONTGOMERY WARD		0 A.D. SELDITCH	2/8/1989			
3S/1W 1E 8 r	monitor	DUBLIN BLVD NR GOLDEN GATE DR	DUBLIN	MONTGOMERY WARD	0.00000000	0 A.D. SELDITCH	2/8/1989	00000000	-121.929350000	37.704421000
3S/1W 1E 9 r	monitor	DUBLIN BLVD NR GOLDEN GATE DR	DUBLIN	MONTGOMERY WARD	0.00000000	0 A.D. SELDITCH	8/15/1989		-121.929528000	37.704670000
3S/1W 1E10 r	monitor	DUBLIN BLVD NR GOLDEN GATE DR	DUBLIN	MONTGOMERY WARD	0.00000000	0 A.D. SELDITCH	8/15/1989	4/27/1998 destroyed	-121.929102000	37.704563000
3S/1W 1E11 r	monitor	AMADOR PLAZA RD & DUBLIN BLVD	DUBLIN	ENEA PROPERTIES	93636.00000000	0 EPIGENE	12/13/1993	4/27/1998 destroyed	-121.927012000	37.704458000
3S/1W 1E12 r	monitor	AMADOR PLAZA RD & DUBLIN BLVD	DUBLIN	ENEA PROPERTIES	94068.00000000	0 EPIGENE	2/4/1994	4/27/1998 destroyed	-121.927530000	37.704476000
3S/1W 1E13 r		AMADOR PLAZA RD & DUBLIN BLVD	-	ENEA PROPERTIES	94068.00000000	0 EPIGENE	2/4/1994	4/27/1998 destroyed	-121.927505000	37.704442000
3S/1W 1E14 r		7575 DUBLIN BLVD	DUBLIN	MONTGOMERY WARD	93205.00000000	0 ENVIRON. AUDIT	5/4/1993		-121.928698000	37.704354000
3S/1W 1E15 r	monitor	7575 DUBLIN BLVD	DUBLIN	MONTGOMERY WARD	93205.00000000	0 ENVIRON. AUDIT	5/4/1993			
3S/1W 1E16 r		7575 DUBLIN BLVD	DUBLIN	MONTGOMERY WARD	93205.00000000	0 ENVIRON. AUDIT	5/4/1993	4/27/1998 destroyed	-121.928972000	37.704217000
3S/1W 1F 7 r	monitor	6670 AMADOR PLAZA RD	DUBLIN	ENEA PROPERTIES	93003.00000000	0 HARDING LAWSON	1/29/1993	4/27/1998 destroyed	-121.927479000	37.704403000
3S/1W 1F8 r	monitor	6670 AMADOR PLAZA RD	DUBLIN	ENEA PROPERTIES	93003.00000000	0 HARDING LAWSON	1/29/1993		-121.927435000	37.703556000
3S/1W 1F 9 r	monitor	6670 AMADOR PLAZA RD	DUBLIN	ENEA PROPERTIES	93003.00000000	0 HARDING LAWSON	1/29/1993		-121.927889000	37.704351000
3S/1W 1F10 r		7499 DUBLIN BLVD.	DUBLIN	SHAMROCK FORD		0 GEOSTRATEGIES	12/17/1993		-121.927413000	37.705206000
3S/1W 1F11 r	monitor	7499 DUBLIN BLVD.	DUBLIN	SHAMROCK FORD	93667.00000000	0 GEOSTRATEGIES	12/17/1993	9/1/1995 destroyed	-121.927538000	37.705202000
3S/1W 1F12 r		7499 DUBLIN BLVD.	DUBLIN	SHAMROCK FORD	93667.00000000	0 GEOSTRATEGIES	12/17/1993	9/1/1995 destroyed	-121.927398000	37.705071000
3S/1W 1F19 r		DUBLIN BLVD & I-680	DUBLIN	CALTRANS	93463.00000000	0 WOODWARD	8/26/1993	1/28/1999 destroyed	-121.925487000	37.704979000
3S/1W 1G 1 s				NEVIN	0.00000000		00000000	7/1/1964 destroyed	-121.923423000	37.703475000
3S/1W 1K 3 (I-580 & I-680 SW OFF RAMP	PLEASANTON		0.00000000	0 PITCHER DRILLING	1/29/1979		-121.924690000	37.699697000
		I-580 & I-680	PLEASANTON	CALTRANS	93463.00000000	0 WOODWARD	8/23/1993	00000000	-121.924866000	37.699908000
		7468 MURPHY LANE		WESTERN TITLE	0.00000000		00000000	5/24/1985 destroyed		
3S/1W 1L 2 s		I-580 & I-680		DIVISION OF FORESTRY	0.00000000		00000000		-121.925295000	
3S/1W 1L 4		I-580 & I-680		MOZART DEVELOPMENT	0.00000000		00000000	5/25/1985 destroyed	-121.925147000	37.699507000
3S/1W 1L5 r		6100 STONERIDGE MALL RD		WINDSTAR COMMUNITIES	27126.00000000	0 TREADWELL & ROLLO		00000000	-121.927511000	37.699122000
3S/1W 1M1 r		6700 GOLDEN GATE DR, DUBLIN	DUBLIN	BEDFORD PROPERTIES	0.00000000	0 MITTELHAUSER	11/20/1991		-121.930079000	37.701831000
3S/1W 1M2 r		6600 GOLDEN GATE DR	DUBLIN	WINDSTAR COMMUNITIES	0.00000000	0 TREADWELL & ROLLO	00000000	00000000	-121.929828000	37.701859000
3S/1W 1M3 r	monitor	6600 GOLDEN GATE DR	DUBLIN	WINDSTAR COMMUNITIES	0.00000000	0 TREADWELL & ROLLO	00000000	00000000	-121.928524000	37.701486000
DUBC_AC s	surface				0.00000000		00000000	00000000	-121.924182000	37.702560000
3S/1W 1F33 r	monitor	6511 GOLDEN GATE DR	DUBLIN	RANDALL'S FOOD & DRUG	28182.00000000	0 BUREAU VERITAS	00000000	00000000	0.000000000	0.000000000
3S/1W 1F34 r	monitor	6511 GOLDEN GATE DR	DUBLIN	RANDALL'S FOOD & DRUG	28182.00000000	0 BUREAU VERITAS	00000000	00000000	0.000000000	
3S/1W 1F35 r	monitor	6511 GOLDEN GATE DR	DUBLIN	RANDALL'S FOOD & DRUG	28182.00000000	0 BUREAU VERITAS	00000000	00000000	0.000000000	0.000000000

ZONE 7 WATER AGENCY 100 NORTH CANYONS PARKWAY LIVERMORE, CA 94551

WELL LOCATION MAP

DATE: 1/28/09


6511 GOLDEN GATE DR



APPENDIX C BORING LOGS WITH WELL DETAILS

								,	08-008647.00			BORING	NO.
	(W)	U VE	B					Project Name: Rand Location: 6511 Logged By: J. W	Golden Gate Dr., Dul	olin, CA		MV	V-1
	BUT	֓֞֞֓֞֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	TAS			OF ORIN	IG	Start Date: 1/8/20 Finish Date: 1/8/20				ion (ft, ms Diameter	
١.	ВU	7828 R E	A U		WE			Driller: Vironex Hammer Weight:	N/A	Drill N Drop:	/lethod: Dir N//		
	VΕ	RIT	AS					Borehole Completion Data:	See Well Construction	on			
	ncounter atic Gro			ter Depth				Depth To $\overline{\subseteq}$ (ft)	18.0	Depth	To 👤 (ft)	15.21	
	alic Gio imple C			uı				Time:	09:32	Time:		12:55	
■ Sa	mple A	nalyzed						Date:	01/08/09	Date:		01/08/	09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	DEPTH (ft)	SAMPLE GRAPHIC LOG	nscs	DES	SCRIPTION			ONSTRU	
\ /				0820				ASPHALT			9 5		A & A
					1-		GP	SILTY GRAVEL brown, loose, dry	y, no odor	_			
\setminus						H////		SILTY CLAY	dium dense, damp, r				
\bigvee					2-	H////		odor (Fill?)	чин ченье, чатр, г	Ю		SCHED 40 PVC Casing	
I											Neat Cement Grout	O a	
$/\setminus$					3-						ut G	N	
/ \		3.5		0834	4 -						ewe	40	
/ \	55		0.0			H////					at C	육	
	55		0.0		5	H////	CL	trace gravel and	rust-colored sand		Š	80	
\ /												-	
$ \rangle /$					6-								
$ \setminus $					7-						g.g.		
X		7.5		0845							Hydrated Sentonite	\otimes	8
$ \ / \ $		7.5		0645	8 -			increasing grave	I content		Šā		d"
/ \													"Pre-Packed" Bentonite Seal
/ \					9-			L					tonii
\	55		0.0		10-			SILTY CLAY brown, medium	dense, damp, no odo	or			Per P
\ /						H////		(Native?)	,				
\ /					11 -	H/////							
$\setminus /$		11.5		0900									
\bigvee					12 -								
\setminus					13 -						 		:
/ \						H////) Sand
/ \					14 -	H////					sing s)		20/4(Ital 5
\backslash	60		0.0			H////	CL				Slot		ed" 2
					15 -			▼ Groundwater: 15	5.21', 12:55, 01/08/09)	ned 110"		acke
\ /					16-						Screened Casing (0.010" Slots)		re-P En
\		16.0		0910							σ :		"Pre-Packed" 20/40 Grade Environmental Sand
$ \ \ $					17 -	H/////		wet. soft. with an	een discoloration and	d			$\bar{\mathbf{o}}$
X						H////		slight petroleum	odor				
/\					18 -	T/////							4
/ \					19-								
/ \					13			no discoloration,	damp, medium dens	se			
	48	19.5	1.3	0912			1						<u> </u>

	/P	3									Project No.: 33108-008647.00		BORING NO.
	圆)	LO	G OF	F MC	NITO	ORIN	IG	WEL	L	Project Name: Randall Foods Location: 6511 Golden Gate Dr., Dublin, CA		MW-1
E	eruna z Va ⊃inbe	MIE NSI									Logged By: J. Wilson		IAIAA-I
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	w			ОЕРТН (п)	PLE	GRAPHIC LOG	SS	DESCRIPTION	WELL (CONSTRUCTION
SAN	SAN	SAN	Ord (ppr	TIME			iii D	SAMPLE	<u> </u>	nscs			
	48	24.5		0915			21 - 22 - 23 - 24 -			CL	SILTY CLAY brown, medium dense, damp, no odor		Blank Casing
							26-		***************************************		Bottom of boring at 25 feet bgs.		
							27 -						
							28-						
							29-						
				***************************************			30-						
							31 -						
							32 -		***************************************				
		NEATH-CONTRACTOR OF THE TOTAL O		}			33 - 34 -						
							35~						•
							36-						
							37 -	H	week to the control of the control o				
							38-	H					
		***************************************					39 -						
		***************************************					40-						~
				***************************************			41-						
				***************************************			42-						
							43 -	H				***************************************	
							44 -	H					

APPENDIX D

GROUNDWATER DEVELOPMENT AND SAMPLING DATA SHEETS

WELL DEVELOPMENT .Groundwater Field Gauging Data Sheet Notes: TOC = Top of Well Casing Elevation (feet) 33108-108647.00 Dublin. CA Project Site: DTP = Depth to Free Phase by discarbons below TOC (feet) Project Number: DIA - Well Diameter (inches) Location: DTW = Depth to Water Surface below TQC (feet) Field Personnel: A.ABEGG DTB = Depth to Well Bottom below TOC (feet) Gauging Date: DTWB - Depth to Well Bottom (feet) Gallons per from 17-0.04, 27-0.17/ft, 37-0.37/ft, 47-0.66 ft, 67-1.5 ft, other- 12 x 0.163 GW = Groundwater (feet) TOC Well ID DTW Date Time DIA DTP GW Elevation Comments 1/12/09 15.47 MUI 14:10 Well is brand new 15.73 14:15 MW-7 mW-3 14:13 16.10 ŧ

			WELL D	EVELD FMEN!	1			
	GRO	DUNDWATE	R -Samp	HNG DAT	A SHEE	T		
Project Name:	FORMER QIF	ST LAB.		Well ID Numl	ber: MV) -		
Project No.: 3	33108-008647	7.60		Sample ID Nu	mber: N	ηw-		
	on: DUBLIFL, (Α	···········	Date Gauged:	1/12/	09	 	
***************************************	ian: A-ABE65			Date Purged:		79		
Weather Cond	litions: zunny, clo	us, vam		Date Sampled	: NIA			·
	(Elevation (ft, msl);			Casing Diame		 		······································
 	Elevation (ft, btoc)	15.47		Wellhead Con		600d		
	Elevation (ft, msl):			Presence of W				· ·
	Bottom (ft, btoc):	25.13		Vapor Reading	**********	N/4		
Water Column		9.46		Presence of SI		No ·		
	rge Volume (gal):	0.39		Thickness of S		Ν̈́A	* *	-,,,
	Volume (gal): 04, 27=0 17, 37=0,37, 47=0 66, 67	3.5"		Comments: Ve	mysilty	water, becau	we less.	5,114 6-14N
			GING ME	ASUREMENT	rs			
Time	Volume Removed (gal)	Specific A		Dissolved Oxygen (mg/L)	рH	Turbidity (ppn(A)TUs)	ORP (mV)	Odor
10:09	O	1227	19.7		7.15	615		. No :
10:10	.5	1242	19.3		7.11	619		11
16:12	1.0	1239)	19.3		7.11	618		. 13
10:14	1.5	1203	19.3		7.11	604		1.
10:16	2.0	1185	19.4		7.08	594		N :
10:18	2.5	1180	19.4		7.10	598		Ч
10:19	2.7	1184	19.3	 -	9.11	596		11
11:20	3.2.	1185	19.7		7.68	597_		slight p.
11:25	3.5	1202	17.7	<u> </u>	7.11	601		t)
		,						
			•					
		~~~~					,	
				<u> </u>			· · · · · · · · · · · · · · · · · · ·	
	idicator Model & No		···-			-ball +tub	oiry	
	p Meter Model: मेळ	nnn Hi 99	1300	Purge Equipme		1 " " "	· ·	
Turbidity Mete	er Model: —			Purge Rate (gp	m): <b>N /</b> A			2
	tion Time:	, <del>"</del>		Chemical Labo	******** *			
lamala Callac	tion Time: N/A			Chemical Anal		7A		
Sample Collec	tion Method: N/A				(vaia. K/			



WELL DEVELOPMENT

	GRO	UNDWATE		DEVELOPMEN LEDIG DAT		T		· · · · · · · · · · · · · · · · · · ·
Project Name	FORMER WES			Well ID Numi				
	3108-00864			Sample ID Nu				
	on: DUBLIFE C			Date Gauged:				· · · · · · · · · · · · · · · · · · ·
	an: A ABEGG			Date Purged:				· · · · · · · · · · · · · · · · · · ·
	itions: / Jun Su	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<del></del>	Date Sampled		<i>f</i>		***************************************
	721.00	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1						
	Elevation (ft, msl):	75,248		Casing Diame	<del></del>			
	r Elevation (ft, btoc)	: 15.73	***************************************	Wellhead Con		620d		
<del></del>	levation (ft, msl):			Presence of W		<del></del>		
	Bottom (ft, btoc):	19.06		Vapor Reading		<u>V/A</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Vater Column	Height (ft):	3.33		Presence of SI		<b>№</b>		
	ge Volume (gal):	0.13		Thickness of S		NIA	<del><u>.</u></del>	
Actual Purge V	/olume (gal):	1.75		Comments: L/	nter origi	<u>ballyvery sik</u>	y become	mich clea
iallana Per Foot, 1**0 0	34, 27+0 17, 37+0.37, 4*+0 66, 67-		CINC ME	ASUREMENT	· · ·	<i>)</i>		
		Specifiqus)		Dissolved	. <u>a</u>	1	· ·	1
Time	Volume Removed	Conductivity	լւբար	Oxygen	pН	Turbidity	ORP	Odor
1 11112	(gal)	(mmhos/cm)	(°C)	(mg/L)	(units)	(NTUs)	(mV)	"
9:15	Ø	958	14-8		7.37	437		No
917	.75	926	17.0	<u>.</u>	7.14	463		u
प : चे _र	1	931 °	16.9		7.06	446		u
9:25	1-5	930	110.5		6.99	464		ls.
9:27	1,75	922	lb 5		6.97	462	]	IX.
							20,	
				<u> </u>	<u> </u>		<del> </del>	<b></b>
				<u></u>				<u> </u>
						-		
				<del> </del>	·	1		
				<u></u>	ļ		<u> </u>	
						<u> </u>	İ	
								: :
				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Vater Level In	dicator Model & No	Asto land in	Dienter	Pures Method	ا م میا ہے۔	Lball +twi		
		launa HI 9		Purge Equipm			<u>^g</u>	· · · · · ·
urbidity Mete		iunia iii j	71.500	Purge Rate (gr				
moining prete	1 14(0:304)			range Nate (2)	244): N.J.	М		
Sample Collect	tion Time: ALPA	·**x		Chemical Labo	oratora	Lr 7 A		
	· · · · · · · · · · · · · · · · · · ·		<del></del>			MM	<del></del>	
<del></del>	tion Method: N/A			Chemical Ana	tysis: N	Α		
Sample Contair	ners Used: N/A		· · · · · · · · · · · · · · · · · · ·			***************************************		
1.1	servations: Well	ر ا ا ا	1	5th purp	event			···-



WELL DEVELOPMENT

			A CCC	DEAFORME	,				
	GRO	DUNDWATE				T :		***************************************	1
Project Name: :	FORMER OUF	T (AB.		Well ID Numb	oer: Male)	mw-3		\$ ₂ .	1
	33108-0086		•	Sample ID Nu		w-3		•	1
	n: Dururi (			Date Gauged:					1
	in: A. ABEGS			Date Purged:		<del></del>	3/09		1
	tions: SMny, Cl	110 60'5		Date Sampled:			<del>3,7 Q_7</del>		1
	7	<del> </del>		74					1
Top of Casing !	Elevation (ft, msl):			Casing Diame	ter (inches)	): (			1
	Elevation (ft, btoc)	: <del>-15.93</del> .11	. No	Wellhead Con		good			1
<del> </del>	levation (ft, msl):		BALLY	Presence of W		ses: No			1
	Bottom (ft, btoc):	19.29		Vapor Reading		NIA			1
Water Column		3.13		Presence of SF	<del></del>	ГЬ			1
<del> </del>	ge Volume (gal):	0 - 13		Thickness of S					1
		<del> </del>	3.00	Comments: Si	reced from	14:25-14	- 35 33	nieven ei	1 -
	4, 2"=0 17, 3"=0 37, 4"=0 66, 6":		0		919(PC 11011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· 1370m Si	17:
		PUR	GING ME.	ASUREMENT	`S ·				1~~
	Volume Removed	Specific	Temp	Dissolved	pH	Turbidity	ORP		1
Time	(gal)	Conductivity	(°C)	Oxygen	(units)	(NTUs)	(mV)	Odor	
	· · · · · · · · · · · · · · · · · · ·	(mmhos/cm)		(mg/L)	124.5				4
i 14:57	0	929	18.2	,	<b>B</b>	∞ 40 <del>1/</del>			
JS':09	1/20gai	916	16.8		7.15	୳ଽୡ		pH.ode	-56
. 15:54	1/10	≈ 856 ·	15.8		7.15	427		1)	. 1
15:04	15 our	841	15 F	***************************************	7,30	414		<b>"</b> "	
10:38	5.十经年	67)	16.21		7.05	330		عله ١٤١٩	
10:49	7 1.0	479	l l.3	:	6.76	238		િ અ	
10151	, 7.5	458	ا ما		650	227		1,	40,440
10:57	° + .5	35ጉ	16.0		6.75	174		١,	] .
11:10	ં ને . જ	354	15.8		6.75	177		ty	1
3. 1	3.09	<u> </u>						ļ	
	0								1
78 /	\$					······································			
					J				1
Water Level Inc	dicator Model & No		et two	Purge Method:	· ch	\	و المتناء		
H/Cond/Temp			91300	Purge Equipme	V-2	- DIATULTIVISC	n n		1
Furbidity, Meter	······································	IN WATER	1 1 700	Purge Rate (gp					1
			<del></del>	. a. z. mac (2)		· · · · · · · · · · · · · · · · · · ·			
Sample Collecti	ion Time-	ſ		Chemical Lake	aratory. A	1c CAMPBEL	رب		
Sample Collecti	·····	<i>(</i>		Chemical Anal			<del> </del>		1
Sample Contain		<del></del>		Chambal Allal	17313.				1
antible south	rera Oscur /			• • • • • • • • • • • • • • • • • • • •	(15:54	n			1
- 10 May 1 - 10 M		ed dry div	11/12 4th	١	nt. Alla		 محسوب.	1/13/69	1.
Other Field Obs	COPUSTIONES AZINA			· ourse 1.Ve					

1/13

SAMPLING

			Gi	round	vater Field	d Gauging	Data Sheet	
Project Site Project Nur Location: Field Persor Gauging Da Gallons per foot:	mber: nnel: / ate:	FORMER 33108-0 DUDIN 1.ABEG 1/15/0° 74,3°-0.3711	, Грырд , , <u>(Д</u> )	00	~ r2 x 0.163·	Notes	DTP = Depth to Free DIA = Well Diamete DTW = Depth to W:	ster Surface below TOC (feet)  Il Bottom below TOC (feet)  Vell Bottom (feet)
Well ID	Date	Time	тос	DIA	DTP	DTW	GW Elevation	Comments
mu-1	1/15/69	10:27		1	н≀∆	15.59		
MW-2	/1	10:26		1	NΙΑ	15.79		
mw-3	11	10:25		1	NJA	16.21		
				<u> </u>				
								-
					<u> </u>			<b>—————————————————————————————————————</b>
							<u> </u>	
			······································	····			<u> </u> 	
·								
	······							· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·		·
								——————————————————————————————————————
						—		



	GRO	DUNDWATE	R SAMP	LING DAI	A SHEE	<u> </u>		
Project Name:	Former Quest Labor	ratory		Well ID Numb	oer:	MW-1		
Project No.:	33108-008647.00			Sample ID Nu	mber:	MW-1		
Project Location	c Dublin, CA		·····	Date Gauged:		1/15/2009		
Field Technici		Alyssa Abegg		Date Purged:	<u></u>	1/15/2009		
Weather Cond	litions: Clear, Su	<u>nny, 60°</u>	5	Date Sampled:	<u>:</u>	1/15/109		
Top of Casing	Elevation (ft, msl):			Casing Diame	ter (inches	1		
Depth to Wate	er Elevation (ft, btoc)	15.5	5°7	Wellhead Con		6200		
Groundwater F	Elevation (ft, msl):			Presence of W	ellhead Ga	ises: No		
Depth to Well	Bottom (ft, btoc):	25.13		Vapor Reading	g (ppm):	N/4		
Water Column	Height (ft):	9.54		Presence of SI	?H:	K] 3		
Dalculated Pur	rge Volume (gal):	9,38		Thickness of S	SPH (ft):	NA		
Actual Purge \		1. 2.		Comments:				
allers Per Focu 15-00	64, 2*×0 17, 3*×0 37, 4*×0 66, 6*×	<del></del>	GING ME	ASUREMENT	`S			
	17-1 P	Specific 45		Dissolved	T	Table	ODS	
Time	Volume Removed (gal)	Conductivity	Temp (°C)	Oxygen	pH (units)	Turbidity びかいている	ORP (mV)	Odor
	(841)	(mmhos/cm)	( 0)	(mg/L)	(611113)	PONTUS)	(441 7 )	
11:268	1	950	19.6		7.0	475		Ŋί
11:30	. 26	928	19.8		6.88	463		н
11:34	. 8	928	20.0		6.85	462	~-	ii cw
11:35	1.0	914	20.0		6-86	457	<del></del>	Slight LE
11:37	1.2	896	20.1		6.84	448		ч
							***************************************	
			_					<b> </b>
				<del> </del>				<u> </u>
	***************************************							
			- I -			lil. b.c.		
	ndicator Model & No			Purge Method			<u>~γ</u>	*****
-	p Meter Model: 14	annu HI 971	290	Purge Equipm		f• 11	<del>~~</del>	
Furbidity Meto	er Model:			Purge Rate (gr	om):	····		
Sample Collec	tion Time:	10		Chemical Lab	oratory:	McCampbell Ar	alytical	
Sample Collec		· punp	<del></del>	Chemical Ana		<del></del>		
Sample Contai		e. 3 VOA	5					
<u></u>		I	/	b	49	t, 2nd	·····	
Other Field Ob	oservations: Fist w	nitially	Silty in	edium brown	a. Inc	I plus solum	<u> ( st.11</u>	dadni

18 P. C.

Project Name:	Former Quest Labor	ratory		Well ID Numb	er:	14114-5	MW	2
Project No.:	33108-008647.00			Sample ID Nu	mber:	MW-3	- mW	12
Project Locati	c Dublin, CA			Date Gauged:		1/15/2009		
Field Technici	an:	Alyssa Abegg	\	Date Purged:		1/15/2009		
Weather Cond	itions: clear, sun	14,60'S		Date Sampled:	1/1	5(2,509)		
····	······································	<u>.</u>						
	Elevation (ft, msl):			Casing Diame		<u> </u>	<del></del>	
<del></del>	r Elevation (ft, btoc):	15.7	9 	Wellhead Con-		6000		
<del></del>	Elevation (ft, msl):			Presence of W	<del></del>			
	Bottom (ft, btoc):	<del>-19.20</del>		Vapor Reading		N/A		
Water Column		<del>3</del> \$	4 3.27	Presence of SP		Λ6		
<del></del>	ge Volume (gal):	0.13		Thickness of S	PH (ft):	N/A		
Actual Purge V	/olume (gal): 04, 27-0 17, 37-0 37, 47-0 68, 67	0.5		Comments:				
CONTRACTOR OF THE			GING ME	ASUREMENT	S			
<del></del>		Specific	T	Dissolved	<u> </u>	T		T
Time	Volume Removed	Conductivity	Temp	Oxygen	pН	Turbidity	ORP	Odo
	(gal)	(mmhos/cm)	(°C)	(mg/L)	(units)	DS(NTUs)	(mV)	<u> </u>
12:15	0.125	927	20.5	_	7.10	462	_	No
12:16	0.256	920	20.5		6-89	460		No
12:19	0.375	920	20-4		6.89	459		Nib
12:21	v. 5°	918	20.5		6.88	459	-	NO
<u> </u>	0.30	116	1 2 3		0.00			100
			ļ					
							~	
								<u> </u>
		······						
								············
				<del> </del>				ļ
***************************************		· · · · · · · · · · · · · · · · · · ·						
			:					
						<del></del>	······································	· · · · · · · · · · · · · · · · · · ·
	dicator Model & No.			Purge Method:	elt	istactic pu	no	
pH/Cond/Temp	Meter Model: Aan	ma HI 9913.	2)	Purge Equipme	nt Used:	1) 11	<b>u</b>	
Turbidity Mete	r Model: —			Purge Rate (gp	m):			
		_						
Sample Collect		25		Chemical Labo	ratory:	McCampbell An	alytical	
Sample Collect	ion Method: peri- ners Used: 1 Lite	static pr	<u>~~</u>	Chemical Anal	ysis: 5ea	260		
Sample Contain	ners Used: 1' Lite	r 3 vods		***************************************				
**** <u>*********************************</u>	····			1777//////				مناء
Other Field Ob	servations: 1 51	pline sill	ty, redia	بر ایسانس ر	bely.	2nd pure	volume	ري د ج <u>د</u>
digart.	' 0		J.	/ -	U .	. 0		7

	GRO	DUNDWATE	R SAMP	LING DATA	A SHEE	T	<b></b>	
Project Name:	Former Quest Labor	ratory	<u></u>	Well ID Numb	er:	MW-3		
Project No.:	33108-008647.00	, , , , , , , , , , , , , , , , , , , ,		Sample ID Nu		MW-3		
Project Locati	c Dublin, CA			Date Gauged:		1/15/2009		
Field Technici	ian:	Alyssa Abegg		Date Purged:		1/15/2009		
Weather Cond	litions: Clear sur			Date Sampled	1/19	5/2009		
	· · · · · · · · · · · · · · · · · · ·	)'						
	Elevation (ft, msl):		<u></u>	Casing Diame		<del></del>		
<del></del>	er Elevation (ft, btoc):	٦٠٠٦	21	Wellhead Con		<u>6 ood</u>		
<del></del>	Elevation (ft, msl):			Presence of W		ises: No		
-	Bottom (ft, btoc):	19.29		Vapor Reading		N/A		
Water Column		3.08	<u> </u>	Presence of SI		<u> </u>		
	rge Volume (gal):	0.12		Thickness of S	SPH (ft):	N/A		
	Volume (gal): 0	375		Comments:				
TRUE LEL LOCE 1 ct	(44, 2, 50 17, 3, 54 37, 4, 50 65, 6)		GING ME	ASUREMENT	· C			
	T	Specificals		Dissolved	i			
Time	Volume Removed	Conductivity	Temp	Oxygen	pH	Turbidity	ORP	Odor
	(gal)	(mmhos/cm)	(°C)	(mg/L)	(units)	105(NTUS)	(mV)	<u> </u>
10:58	80.125	636	18.7	_	7.15	318		no
11:01	1.25	629	19.0	-	6.80	313		-1
11:04	0.375	なしす	19.3		6.67	333		17
<del></del>				1				<u> </u>
							<del></del>	1
			****		<u> </u>			
				***************************************				***************************************
					1			
			····		<del> </del>			
					<u> </u>		•	
<u> </u>								-
			,	ļ				<u> </u>
						•		
Vater Level In	ndicator Model & No.	: Water wells	ndimber	Purge Method:	peris	taltic bix	na.	
H/Cond/Tem	p Meter Model: 🔣 🚓	MIX 1119913	<u> </u>	Purge Equipmo	ent Used:	11 L	*	
urbidity Mete	er Model: -			Purge Rate (gp	m):			
								•
ample Collect	tion Time: [2:	45		Chemical Labo	ratory:	McCampbell An	alytical	
ample Collect	······	***************************************	€	Chemical Anal	ysis: 5-	ee coc.		
Sample Contai	ners Used: 1 나다	r, VOUS	1					
Other Field Ob	servations: Walter	is slightly c	Josela r	rene claw	c. Wel	1 day durin	4 3"d	Nice_
event.	Albred to	u-chang.	to 0'8	0% of water	colum	in DTW Q		Samplin
		0						1 (.



# APPENDIX E LAND SURVEY DATA

### Virgil Chavez Land Surveying

721 Tuolumne Street Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

February 6, 2009 Project No.: 2879-04

Don Ashton Bureau Veritas North America, Inc. 6920 Koll Center Parkway, Suite 216 Pleasanton, CA 94566

Subject:

Monitoring Well Survey

6511 Golden Gate Drive

Dublin, CA

### Dear Don:

This is to confirm that we have proceeded at your request to survey the ground water monitoring well at the above referenced location. The survey was completed on January 28, 2009. The benchmark for this survey was an Alameda County benchmark "DUB-680", a cut "T" in the top of curb above a catch basin on the northerly side of Dublin Blvd., approx 122 feet westerly of the centerline of I-680. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83).

Benchmark Elevation = 331.60 feet (NGVD 29).

<u>Latitude</u>	Longitude	Northing	<u>Easting</u>	Elev.	Desc.
37.7024117	-121.9273725	2081375.24	6148738.32	343.00 ** 342.68	RIM MW-1 TOC MW-1
37.7025263	-121.9270694	2081415.64	6148826.65	342.95 342.53 343./43	RIM MW-2 TOC MW-2 RIM MW-3
37.7023859	-121.9271301	2081364.77	6148808.29	342.99	TOC MW-3

No. 6323
Exp. 18-31-10

OF CALIFORNIA

Sincerely

Virgil D. Chavez, PLS 6328



### APPENDIX F

LABORATORY ANALYTICAL DATA SHEETS AND CHAIN-OF-CUSTODY RECORDS

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
Pleasanton, CA 94566	Client Contact: Jeremy Wilson	Date Reported: 01/22/09
Treasumon, err 7 13 00	Client P.O.:	Date Completed: 01/22/09

WorkOrder: 0901244

January 22, 2009

ıy:
ıy

#### Enclosed within are:

- 5 analyzed samples from your project: #33108-008647.00; Safeway, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

# 0901244

## **CHAIN OF CUSTODY**

Page 1 of 2

Lab: 1	MCCAM	PBFLL

VOAS | 0 & G | METALS OTHER

PRESERVATION

VERITAS .													IAI: Standard		
Report results to:											12		127		
Name	Jeremy W											ect Infor			
Company	The second secon	eritas NA, I										ect No.	33108-008647.00		e
Mailing Address		Center Par		216							Nan		Safeway		
City, State, Zip		n, Californi	ia 94566								Loca	ation	6511 Golden Gate Dr		
Telephone No.	(925) 426-			1			A I-	F	2	41			Dublin, CA		
Fax No.	(925) 426- jeremy.wilso				7		Anaiy	ses r	Reques	tea	$\overline{}$				
	don.ashton(				10	so.									
	don.asmon	wus.burea	uventas.co		59CH	ate									
Special instructions and/or speci	ific regulatory red	quirements:				oxygenates									
GEOTRACK (EDD) 1	FORMAT R	KQUIRK	0		NS SM	l x									
GEO TIMEN ( POO)			100		8015M	ŧ									
					P	8260B with					10		5 2		1
					TPH-d	280								ty.	
			NAME OF STREET OF STREET		φi.	80					HOL	0	- 0 1::10	Na Na	
0 1 11 15 15	Date	Time	Matrix/	No. of	TPH-g,	VOCs	ш				1	Sampi	e Condition/Comments	Preservative	
Sample Identification	Sampled 08-Jan-09	Sampled 834	Media SOIL	Conts.	-	>	H		+	+	1 X	PPC	eived. The	ICE	
		845		-	V	1	$\vdash$	_	+	_	++^		Received 1/10	ICE	1
mw-1-1.5'-8.0'	08-Jan-09	900	SOIL	1	1	1	H	-	+	_	+	-IMORRE.	reacher 110	ICE	1
mu-1-16.0'-16.5'	08-Jan-09 08-Jan-09	910	SOIL	1	1	~	H		+	+			- 3	ICE	1
	1	912		1		$\vdash$	$\vdash$	-	+		1	17.000	erved the	ICE	1
mu -1 - 19.5'-20.0'	08-Jan-09	915	SOIL	1				_	+	-	1	Rece	100. 10	ICE	1
MW-2-4.5'-25.0'	08-Jan-09	1205		1	V	X	$\vdash$	+	++	+				ICE	1
mw-2-9.5-10,0		1210	SOIL	1	1			+	+	+	<b>X</b>			ICE	-
MW-2-14.5'-15.0'		1215	SOIL	1	X	×		+		$\top$	1	14		102	1
mw-2-16.5'-17.0'	08-Jan-09	1218	SOIL	1		1	$\Box$	$\top$	$\top$		$\times$				111
Collected by:	Jeremy Wi	_		in			Coll	lector	's Sign	ature:	: /4	M	Date/Time	1/8/09/	N. C
Relinquished by:	1. 11 H		Date/Time		16:00			eived			17	ENV	1 +	-14.09/	11:1
	non control	40	Date/Time								0				
San	=WI/Ke	116	Date/Time	1.7	-///	7					way	Pho	Date/Time _		
Method of Shipment:							San	nple C	Conditi	on on	Rcpt:				-
	,	21-	1	-14-	n9 1		Cn	14.0				_	100		/
Q	Luy S. Blur	nan	7 70 7	[ (	1	0.0	24.	100				ICE/to_	CONDITION APPROPRI	ATE 1	3
<b>}</b>	5. Blur	Vo	1-14-	09								HEAD S	CONTA	INFRS	
	,			1				1				DECHLO	PACE ABSENT CONTA	OTHER	

# **CHAIN OF CUSTODY**

Page 2 of 2

Labor	MACCAMADDELL	
Lab:	MCCAMPBELL	

BUREAU VERITAS														TA.	: Standa	rd	
Report results to:																	
Name	Jeremy V	Vilson										Proi	ect Inforn	nation			
Company		eritas NA, I	nc.										ect No.		008647.00	)	
Mailing Address		Center Par		216								Nam		Safewa			
City, State, Zip		on, Californi										Loca	ation		olden Gat	e Dr	
Telephone No.	(925) 426	-2670												Dublin,			
Fax No.	(925) 426	-0106				3.9	Anal	yses l	Reque	sted	71090-1-3	e= ==					
	jeremy.wilse				3	2											
	don.ashton	@us.burea	uveritas.co	m	Secu	y a	3					1 1					
					Ü	2 4						1 1					
Special instructions and/or spec	ific regulatory re	quirements:				oxygenates	n n										
					i i	VXO With OXY	5					1 1					
					6	with ou						1 1					
					1	E											7 at 7
												13					tive
	Date	Time	Matrix/	No. of		5 0	ć l					3	Cample	Condition	Camman	40	200
Sample Identification	Sampled	Sampled	Media	Conts.	3	VOCs 8260B	3					~	Sample	Condition	Commen	ts	Preservative
mw-2-19.5-20.0'	08-Jan-09	1220	SOIL	1	1	+		$\vdash$	+			V					ICE
MW-3-4.5'-5.0'	08-Jan-09	1022	SOIL	1	\	-	(					1					
MW-3-9.5'-10.0'				-		1			+		_	V					ICE
MW-3-14.5'-15.0'	08-Jan-09	1027	SOIL	1		1	(	$\vdash$	+	-		1					ICE
MW-3-16,0'-16,5'	08-Jan-09		SOIL	1	+	4/	1				-	1					ICE
MW-3-19.5'-20.0'	08-Jan-09	1038	SOIL	1	$\vdash$			$\vdash$		-	+	7					ICE
Jum-2-14'2-10'0	08-Jan-09	1040	SOIL	1	_	+		$\vdash$	-								ICE
	<b>198/Jah-0</b> 9		<b>BOJY</b>	ma	$\vdash$	+	+	$\vdash$	+		-	$\vdash$					ICE
	<b>√08/Jan-</b> 69		ACOUL	W					-			-					ICE
	08-Jan-09		BOK	N.	$\vdash$	_	+	$\vdash$	_			$\perp$					
	08 Jan-09		SOIL	M													
			AN AGE	TIM			Co	llector	's Sig			16	un		Date/Tin	ne 1/8/	09
Collected by:	Jeremy Wi	ison 🗲 (	200 11 210							7.1	- //	1 70	=-1-+	-)	_		. 11
Collected by: Relinquished by:	deremy Wi	7	Date/Time		7 16	100	Ree	ceivea	by:		IVE	016	een t	6	Date/Tin	10 / 1/4	-09/
Relinquished by:		to		1-14-0							Q	0 f 6	Phan	L-	Date/Tin Date/Tin	ne <u> /8/0</u> ne <u>/ ·/</u> /-	-04/,

K. Burks 1-14-09

# 1534 Willow Pass Rd

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 2-9262					Work	Order	: 09012	244	(	ClientC	ode: B	VP				
			WriteOn	<b>✓</b> EDF		Excel		Fax	[	<b>✓</b> Email		Hard	Сору	Thir	dParty	☐J-f	lag
Report to: Jeremy Wilson Email: jeremy.wilson@us.bureauveritas					Bill to: Requested as.com Joan Miller					uested	TAT:	5 0	days				
Bureau Verita 6920 Koll Ce Pleasanton, (925) 426-260	nter Pkwy, Ste. 216 CA 94566	cc: PO: ProjectNo:	# 33108-0086	Bureau Veritas 6920 Koll Center Pkwy, Ste. 216 33108-008647.00; Safeway Pleasanton, CA 94566 joan.miller@us.bureauveritas.co						Date Printed: 01/22/200							
					_												
	O!: ID			0 11 11 5 1					Req	uested	Tests (	See le	Ĭ .	T	1.0		
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	Req 4	uested 5	Tests (	See leg	gend b	elow)	10	11	12
<b>Lab ID</b> 0901244-002	Client ID MW-1-7.5'-8.0'		<b>Matrix</b> Soil	Collection Date 1/8/2009 8:45	Hold	1 A	<b>2</b>	3 A	Req 4	1	Tests (	See le	Ĭ .	T	10	11	12
				1	Hold	1 A A	1		Req 4	1	Tests (	See leg	Ĭ .	T	10	11	12
0901244-002	MW-1-7.5'-8.0'		Soil	1/8/2009 8:45	Hold		1	A	Req 4	1	Tests (	See leg	Ĭ .	T	10	11	12
0901244-002 0901244-003	MW-1-7.5'-8.0' MW-1-11.5'-12.0		Soil Soil	1/8/2009 8:45 1/8/2009 9:00	Hold	Α	1	A	Req 4	1	Tests (	See leg	Ĭ .	T	10	11	12
0901244-002 0901244-003 0901244-007	MW-1-7.5'-8.0' MW-1-11.5'-12.0 MW-2-4.5'-5.0'		Soil Soil Soil	1/8/2009 8:45 1/8/2009 9:00 1/8/2009 12:05	Hold	A A	1	A A A	Req 4	1	Tests (	See leg	Ĭ .	T	10	11	12

### Test Legend:

1	8260B_S	2 PREDF REPORT	3	TPH(DMO)WSG_S	4		5
6		7	8		9	]	10
11		12					
The	following SampIDs: 002A. 00	03A. 007A. 009A. 014A contain testgroup.				Prena	ared by: Kimberly Burks

### **Comments:**

### **Sample Receipt Checklist**

Client Name:	Bureau Veritas				Date	and Time Received:	1/14/2009	6:18:00 PM
Project Name:	# 33108-008647.00; Sa	feway			Chec	cklist completed and	reviewed by:	Kimberly Burks
WorkOrder N°:	<b>0901244</b> Matrix	<u>Soil</u>			Carri	er: <u>EnviroTech</u>		
		<u>Chain</u>	of Cu	stody (C	OC) Inform	<u>nation</u>		
Chain of custody	present?		Yes	<b>V</b>	No 🗆			
Chain of custody	signed when relinquished ar	nd received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample labels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆			
Date and Time of	collection noted by Client on C	COC?	Yes	<b>✓</b>	No 🗆			
Sampler's name r	noted on COC?		Yes	<b>✓</b>	No 🗆			
		<u>Sa</u>	mple	Receipt	Informatio	<u>n</u>		
Custody seals int	tact on shipping container/coo	oler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good condition?		Yes	<b>V</b>	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	<b>✓</b>	No 🗌			
	<u>S</u> :	ample Preserv	vatior	n and Ho	ld Time (H	T) Information		
All samples recei	ved within holding time?		Yes	<b>✓</b>	No 🗆			
Container/Temp E	Blank temperature		Coole	er Temp:	7.2°C		NA $\square$	
Water - VOA vial	ls have zero headspace / no	bubbles?	Yes		No 🗆	No VOA vials subn	nitted 🗹	
Sample labels ch	necked for correct preservation	n?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Type	: WE	TICE	)			
* NOTE: If the "No" box is checked, see comments below.								
				===		=====		
Client contacted:		Date contacte	ed:			Contacted	d by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
0920 Kon Center I kwy, Stc. 210	Client Contact: Jeremy Wilson	Date Extracted: 01/16/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/21/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0901244

Extraction Method: SW 5030B	Analytical Method: Sw8200B work Order: 0901244						
Lab ID		0901244-002A					
Client ID		MW-1-7.5'-8.0'					
Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surr	ogate Re	ecoveries (%)			
%SS1:	9:	5		%SS2:	9	9	
%SS3:	10					-	

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
0920 Kon Center I kwy, Stc. 210	Client Contact: Jeremy Wilson	Date Extracted: 01/14/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/16/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Extraction Method: SW5030B Work Order: 0901244

Extraction Method: SW5030B	Analytical Method: SW8260B Work Order: 0901244						
Lab ID	0901244-003A						
Client ID				MW-1-11.5'-12.0'			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surro	gate Re	coveries (%)			
%SS1:	86			%SS2:	8	9	
%SS3:	92			1 0 00 00 00 00			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
0920 Kon Center I kwy, Stc. 210	Client Contact: Jeremy Wilson	Date Extracted: 01/14/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/16/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Extraction Method: SW5030B Work Order: 0901244

Compound   Concentration	Extraction Method: SW5030B	Analytical Method: SW8260B Work Order: 0901244						
Matrix	Lab ID		0901244-007A					
Compound   Concentration * DF   Rignary   Compound   Concentration * DF   Rignary	Client ID		MW-2-4.5'-5.0'					
Compound   Concentration	Matrix				Soil			
Benzene	Compound	Concentration *	DF		Compound	Concentration *	DF	Reporting Limit
Bromochoromethane	Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Bromoform	Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
2-Butanone (MEK)	Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
n-Butyl benzene	Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
tert-Butvl benzene         ND         1.0         0.005         Carbon Disulfide         ND         1.0         0.00           Carbon Tetrachloride         ND         1.0         0.005         Chlorochenzene         ND         1.0         0.00           Chlorochane         ND         1.0         0.005         Chloroform         ND         1.0         0.00           Chloromethane         ND         1.0         0.005         2-Chlorotoluene         ND         1.0         0.00           4-Chlorostoluene         ND         1.0         0.005         2-Chlorotoluene         ND         1.0         0.00           1,2-Dibromostoluene         ND         1.0         0.005         1.2-Dibromochlane (EDB)         ND         1.0         0.00           1,3-Dichlorobenzene         ND         1.0         0.005         1,2-Dichlorobenzene         ND         1.0         0.00           1,2-Dichloroethane         ND         1.0         0.005         1,1-Dichloroethane         ND         1.0         0.00           1,2-Dichloroethane         ND         1.0         0.004         1,1-Dichloroethane         ND         1.0         0.00           1,2-Dichloroptopane         ND         1.0         0.005 </td <td>2-Butanone (MEK)</td> <td>ND</td> <td>1.0</td> <td>0.02</td> <td>t-Butyl alcohol (TBA)</td> <td>ND</td> <td>1.0</td> <td>0.05</td>	2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
Carbon Tetrachloride	n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
Chloroethane	tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Chloromethane	Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
4-Chlorotoluene	Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
1,2-Dibromo-3-chloropropane   ND   1.0   0.004   1,2-Dibromoethane (EDB)   ND   1.0   0.00	Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
Dibromomethane	4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1.3-Dichlorobenzene	1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dichlorodifluoromethane	Dibromomethane	ND	1.0	0.005		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
cis-1,2-Dichloroethene         ND         1.0         0.005         trans-1,2-Dichloroethene         ND         1.0         0.00           1,2-Dichloropropane         ND         1.0         0.005         1,3-Dichloropropane         ND         1.0         0.00           2,2-Dichloropropane         ND         1.0         0.005         1,1-Dichloropropene         ND         1.0         0.00           cis-1,3-Dichloropropene         ND         1.0         0.005         trans-1,3-Dichloropropene         ND         1.0         0.00           Diisopropyl ether (DIPE)         ND         1.0         0.005         tethylbenzene         ND         1.0         0.00           Ethyl tert-butyl ether (ETBE)         ND         1.0         0.005         Freon 113         ND         1.0         0.0           Hexachlorobutadiene         ND         1.0         0.005         Hexachloroethane         ND         1.0         0.0           2-Hexanone         ND         1.0         0.005         Isopropylbenzene         ND         1.0         0.0           4-Isopropyl toluene         ND         1.0         0.005         Isopropylbenzene         ND         1.0         0.0           Methylene chloride         ND	Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloropropane	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
2,2-Dichloropropane         ND         1.0         0.005         1,1-Dichloropropene         ND         1.0         0.00           cis-1,3-Dichloropropene         ND         1.0         0.005         trans-1,3-Dichloropropene         ND         1.0         0.00           Diisopropyl ether (DIPE)         ND         1.0         0.005         Ethylbenzene         ND         1.0         0.00           Ethyl tert-butyl ether (ETBE)         ND         1.0         0.005         Freon 113         ND         1.0         0.00           Hexachlorobutadiene         ND         1.0         0.005         Hexachloroethane         ND         1.0         0.00           2-Hexanone         ND         1.0         0.005         Isopropylbenzene         ND         1.0         0.00           4-Isopropyl toluene         ND         1.0         0.005         Methyl-t-butyl ether (MTBE)         ND         1.0         0.00           Methylene chloride         ND         1.0         0.005         Methyl-t-butyl ether (MTBE)         ND         1.0         0.00           Styrene         ND         1.0         0.005         4-Methyl-t-butyl ether (MTBE)         ND         1.0         0.00           Styrene         ND	cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
cis-1,3-Dichloropropene         ND         1.0         0.005         trans-1,3-Dichloropropene         ND         1.0         0.00           Diisopropyl ether (DIPE)         ND         1.0         0.005         Ethylbenzene         ND         1.0         0.00           Ethyl tert-butyl ether (ETBE)         ND         1.0         0.005         Freon 113         ND         1.0         0.0           Hexachlorobutadiene         ND         1.0         0.005         Hexachloroethane         ND         1.0         0.0           2-Hexanone         ND         1.0         0.005         Isopropylbenzene         ND         1.0         0.0           4-Isopropyl toluene         ND         1.0         0.005         Methyl-t-butyl ether (MTBE)         ND         1.0         0.0           Methylene chloride         ND         1.0         0.005         4-Methyl-2-pentanone (MIBK)         ND         1.0         0.0           Naphthalene         ND         1.0         0.005         n-Propyl benzene         ND         1.0         0.0           Styrene         ND         1.0         0.005         1.1,1,2-Tetrachloroethane         ND         1.0         0.0           Toluene         ND         1.0	1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
Diisopropyl ether (DIPE)   ND	2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Hexachlorobutadiene	Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
2-Hexanone         ND         1.0         0.005         Isopropylbenzene         ND         1.0         0.00           4-Isopropyl toluene         ND         1.0         0.005         Methyl-t-butyl ether (MTBE)         ND         1.0         0.00           Methylene chloride         ND         1.0         0.005         4-Methyl-2-pentanone (MIBK)         ND         1.0         0.00           Naphthalene         ND         1.0         0.005         n-Propyl benzene         ND         1.0         0.00           Styrene         ND         1.0         0.005         1,1,1,2-Tetrachloroethane         ND         1.0         0.00           1,1,2,2-Tetrachloroethane         ND         1.0         0.005         Tetrachloroethane         ND         1.0         0.00           Toluene         ND         1.0         0.005         1,2,3-Trichloroethane         ND         1.0         0.00           1,2,4-Trichloroethane         ND         1.0         0.005         Trichloroethane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           Vinyl Chloride         ND         1.0 <td>Ethyl tert-butyl ether (ETBE)</td> <td>ND</td> <td>1.0</td> <td>0.005</td> <td>Freon 113</td> <td>ND</td> <td>1.0</td> <td>0.1</td>	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
4-Isopropyl toluene         ND         1.0         0.005         Methyl-t-butyl ether (MTBE)         ND         1.0         0.00           Methylene chloride         ND         1.0         0.005         4-Methyl-2-pentanone (MIBK)         ND         1.0         0.00           Naphthalene         ND         1.0         0.005         n-Propyl benzene         ND         1.0         0.00           Styrene         ND         1.0         0.005         1,1,1,2-Tetrachloroethane         ND         1.0         0.00           1,1,2,2-Tetrachloroethane         ND         1.0         0.005         Tetrachloroethane         ND         1.0         0.00           Toluene         ND         1.0         0.005         1,2,3-Trichloroethane         ND         1.0         0.00           1,2,4-Trichloroethane         ND         1.0         0.005         1,1,1-Trichloroethane         ND         1.0         0.00           1,1,2-Trichloroethane         ND         1.0         0.005         Trichloroethane         ND         1.0         0.00           Trichlorofluoromethane         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           Vinvl Chloride         ND	Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
Methylene chloride         ND         1.0         0.005         4-Methyl-2-pentanone (MIBK)         ND         1.0         0.00           Naphthalene         ND         1.0         0.005         n-Propyl benzene         ND         1.0         0.00           Styrene         ND         1.0         0.005         1,1,1,2-Tetrachloroethane         ND         1.0         0.00           1,1,2,2-Tetrachloroethane         ND         1.0         0.005         Tetrachloroethane         ND         1.0         0.00           Toluene         ND         1.0         0.005         1,2,3-Trichloroethane         ND         1.0         0.00           1,2,4-Trichloroethane         ND         1.0         0.005         Trichloroethane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           Vinvl Chloride         ND         1.0         0.005         Xvlenes         ND         1.0         0.00           Surrogate Recoveries (%)	2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
Naphthalene         ND         1.0         0.005         n-Propyl benzene         ND         1.0         0.00           Styrene         ND         1.0         0.005         1,1,1,2-Tetrachloroethane         ND         1.0         0.00           1,1,2,2-Tetrachloroethane         ND         1.0         0.005         Tetrachloroethane         ND         1.0         0.00           Toluene         ND         1.0         0.005         1,2,3-Trichloroethane         ND         1.0         0.00           1,2,4-Trichloroethane         ND         1.0         0.005         Trichloroethane         ND         1.0         0.00           1,1,2-Trichloroethane         ND         1.0         0.005         Trichloroethane         ND         1.0         0.00           Trichlorofluoromethane         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         Xylenes         ND         1.0         0.00           Vinyl Chloride         ND         1.0         0.005         Xylenes         ND         1.0         0.00           Surrogate Recoveries (%)	4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Styrene         ND         1.0         0.005         1,1,1,2-Tetrachloroethane         ND         1.0         0.00           1,1,2,2-Tetrachloroethane         ND         1.0         0.005         Tetrachloroethane         ND         1.0         0.00           Toluene         ND         1.0         0.005         1,2,3-Trichlorobenzene         ND         1.0         0.00           1,2,4-Trichloroethane         ND         1.0         0.005         1,1,1-Trichloroethane         ND         1.0         0.00           1,1,2-Trichloroethane         ND         1.0         0.005         Trichloroethane         ND         1.0         0.00           Trichlorofluoromethane         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         1,3,5-Trimethylbenzene         ND         1.0         0.00           Vinvl Chloride         ND         1.0         0.005         Xvlenes         ND         1.0         0.00           Surrogate Recoveries (%)	Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
1,1,2,2-Tetrachloroethane         ND         1.0         0.005         Tetrachloroethene         ND         1.0         0.00           Toluene         ND         1.0         0.005         1,2,3-Trichlorobenzene         ND         1.0         0.00           1,2,4-Trichlorobenzene         ND         1.0         0.005         1,1,1-Trichloroethane         ND         1.0         0.00           1,1,2-Trichloroethane         ND         1.0         0.005         Trichloroethane         ND         1.0         0.00           Trichlorofluoromethane         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         1,3,5-Trimethylbenzene         ND         1.0         0.00           Vinvl Chloride         ND         1.0         0.005         Xvlenes         ND         1.0         0.00           Surrogate Recoveries (%)	Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Toluene	Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,2,4-Trichlorobenzene         ND         1.0         0.005         1,1,1-Trichloroethane         ND         1.0         0.00           1,1,2-Trichloroethane         ND         1.0         0.005         Trichloroethene         ND         1.0         0.00           Trichlorofluoromethane         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         1,3,5-Trimethylbenzene         ND         1.0         0.00           Vinvl Chloride         ND         1.0         0.005         Xvlenes         ND         1.0         0.00           Surrogate Recoveries (%)           %SS1:         86         %SS2:         90	1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
1,1,2-Trichloroethane         ND         1.0         0.005         Trichloroethene         ND         1.0         0.00           Trichlorofluoromethane         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         1,3,5-Trimethylbenzene         ND         1.0         0.00           Vinvl Chloride         ND         1.0         0.005         Xvlenes         ND         1.0         0.00           Surrogate Recoveries (%)           %SS1:         86         %SS2:         90	Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
Trichlorofluoromethane         ND         1.0         0.005         1,2,3-Trichloropropane         ND         1.0         0.00           1,2,4-Trimethylbenzene         ND         1.0         0.005         1,3,5-Trimethylbenzene         ND         1.0         0.00           Vinvl Chloride         ND         1.0         0.005         Xvlenes         ND         1.0         0.00           Surrogate Recoveries (%)           %SS1:         86         %SS2:         90	1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,2,4-Trimethylbenzene         ND         1.0         0.005         1,3,5-Trimethylbenzene         ND         1.0         0.00           Vinvl Chloride         ND         1.0         0.005         Xvlenes         ND         1.0         0.00           Surrogate Recoveries (%)           %SS1:         86         %SS2:         90	1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Vinvl Chloride         ND         1.0         0.005         Xylenes         ND         1.0         0.00           Surrogate Recoveries (%)           %SS1:         86         %SS2:         90	Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
Vinvl Chloride         ND         1.0         0.005         Xylenes         ND         1.0         0.00           Surrogate Recoveries (%)           %SS1:         86         %SS2:         90		ND	1.0		1,3,5-Trimethylbenzene	ND	1.0	0.005
%SS1: 86 %SS2: 90		ND	1.0	0.005	Xvlenes	ND	1.0	0.005
			Surr	ogate Re	coveries (%)			
	%SS1:	86	6		%SS2:	90	)	
/UGGS: /V	%SS3:	9(	00					

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
0920 Kon Center I kwy, Stc. 210	Client Contact: Jeremy Wilson	Date Extracted: 01/14/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/16/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Extraction Method: SW5030B Work Order: 0901244

Extraction Method: SW5030B	Analytical Method: SW8260B Work Order: 0901244						
Lab ID	0901244-009A						
Client ID				MW-2-14.5'-15.0'			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surro	gate Re	coveries (%)			
%SS1:	8	7		%SS2:	89	)	
%SS3:	9(	0					

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
0920 Kon Center I kwy, Stc. 210	Client Contact: Jeremy Wilson	Date Extracted: 01/14/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/16/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Extraction Method: SW5030R Work Order: 0901244

Extraction Method: SW5030B		Analytical Method: SW8260B Work Order: 09									
Lab ID				0901244-014A							
Client ID				MW-3-14.5'-15.0'							
Matrix				Soil							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit				
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005				
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005				
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005				
Bromoform	ND	1.0		Bromomethane	ND	1.0	0.005				
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05				
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005				
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005				
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005				
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005				
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005				
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005				
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004				
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005				
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005				
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005				
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005				
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005				
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005				
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005				
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005				
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005				
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1				
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005				
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005				
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005				
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005				
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005				
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005				
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005				
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005				
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005				
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005				
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005				
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005				
Vinvl Chloride	ND	1.0	0.005		ND	1.0	0.005				
		Surre	ogate Re	ecoveries (%)							
%SS1:	8	6	-	%SS2: 89							
%SS3:	9			1. 10. 100 to 100 4							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Bureau Veritas	Client Project ID: #33108-008647.00; Safeway	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Saleway	Date Received: 01/14/09
•	Client Contact: Jeremy Wilson	Date Extracted: 01/14/09-01/16/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/15/09-01/20/09

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

Extraction method: SW5030B Analytical methods: SW8015Bm Work Order: 0901244

extraction method: S'	W 5030B	Analytical methods:	SW8015Bm	Work Order: 090	)1244
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS
002A	MW-1-7.5'-8.0'	S	ND	1	85
003A	MW-1-11.5'-12.0'	S	ND	1	81
007A	MW-2-4.5'-5.0'	S	ND	1	88
009A	MW-2-14.5'-15.0'	S	ND	1	84
014A	014A MW-3-14.5'-15.0'	S	ND	1	83
	orting Limit for DF =1;	W	NA	N	A
	neans not detected at or	S	1.0	mg	/Kg

175	1	1111	1111
ND means not detected at or	C	1.0	ma/Va
above the reporting limit	S	1.0	mg/Kg
* water and vapor samples and all TCLP & SPLP extrac	ts are reported	in μg/L, soil/sludge/solid samples in mg/kg, wipe samples	in μg/wipe,

product/oil/non-aqueous liquid samples in mg/L.



[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701  $Web: www.mccampbell.com \qquad E-mail: main@mccampbell.com\\$ Telephone: 877-252-9262 Fax: 925-252-9269

	Client Project ID: # 33108-008647.00;	Date Sampled: 01/08/09	
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09	
	Client Contact: Jeremy Wilson	Date Extracted: 01/14/09-01/16/09	
Pleasanton, CA 94566	Client P.O.:	Date Analyzed: 01/15/09-01/17/09	

	Total Extractable P	etroleum H	Hydrocarbons with Silica	Gel Clean-Up*		
Extraction method:	SW3550C/3630C	Analytica	al methods: SW8015B	Wo	rk Order: 0	901244
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0901244-002A	MW-1-7.5'-8.0'	S	ND	ND	1	96
0901244-003A	MW-1-11.5'-12.0'	S	ND	ND	1	101
0901244-007A	MW-2-4.5'-5.0'	S	1.5,e7,e2	6.9	1	101
0901244-009A	MW-2-14.5'-15.0'	S	ND	ND	1	106
0901244-014A	MW-3-14.5'-15.0'	S	ND	ND	1	105
				•		

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

- e2) diesel range compounds are significant; no recognizable pattern
- e7) oil range compounds are significant



[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

### QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40784 WorkOrder: 0901244

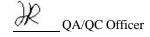
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0901171-0	)12A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	)
7	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	76.4	77.2	0.981	78.3	77.7	0.806	60 - 130	30	60 - 130	30
Benzene	ND	0.050	108	108	0	109	110	1.09	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	76.8	82.4	7.02	82.4	76.3	7.59	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	102	100	1.23	102	102	0	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	98.1	97	1.10	98.7	96.2	2.52	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	99.3	99	0.367	99.3	99.2	0.117	60 - 130	30	60 - 130	30
1,1-Dichloroethene	ND	0.050	74.8	75.3	0.611	76.3	75.9	0.556	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	95.4	95.5	0.0200	94.6	95	0.421	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	99.5	99.9	0.453	100	100	0	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	88	88.9	1.05	90.5	88.4	2.30	60 - 130	30	60 - 130	30
Toluene	ND	0.050	119	118	0.622	120	120	0	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	108	107	0.830	108	111	2.37	60 - 130	30	60 - 130	30
%SS1:	86	0.12	92	93	1.70	93	92	0.227	70 - 130	30	70 - 130	30
%SS2:	95	0.12	92	92	0	93	92	0.326	70 - 130	30	70 - 130	30
%SS3:	106	0.012	82	83	1.12	83	84	0.708	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 40784 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901244-003A	01/08/09 9:00 AM	01/14/09	01/16/09 3:51 AM	0901244-007A	01/08/09 12:05 PM	01/14/09	01/16/09 4:35 AM
0901244-009A	01/08/09 12:15 PM	01/14/09	01/16/09 5:18 AM	0901244-014A	01/08/09 10:33 AM	01/14/09	01/16/09 6:02 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



QC SUMMARY REPORT FOR SW8260B

## W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40809 WorkOrder: 0901244

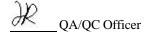
EPA Method SW8260B	Extrac	tion SW	5030B					S	Spiked San	nple ID	: 0901222-0	)23A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Tillalyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	82.6	82.2	0.487	88.3	77.8	12.6	60 - 130	30	60 - 130	30
Benzene	ND	0.050	108	107	1.15	115	95.6	18.1	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	93.6	79.8	15.9	97.9	74.1	27.7	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	104	103	1.40	111	94.1	16.4	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	103	102	0.974	111	90.9	19.9	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	105	103	1.79	110	95.3	14.8	60 - 130	30	60 - 130	30
1,1-Dichloroethene	ND	0.050	77.7	75.6	2.81	81	72.7	10.8	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	97.9	97.9	0	105	82.8	23.3	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	106	105	0.751	112	90.7	20.6	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	97	93.7	3.54	101	78	25.9	60 - 130	30	60 - 130	30
Toluene	ND	0.050	122	120	1.83	128	107	17.7	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	111	110	1.41	119	104	13.5	60 - 130	30	60 - 130	30
%SS1:	87	0.12	97	97	0	98	92	6.32	70 - 130	30	70 - 130	30
% SS2:	88	0.12	98	96	1.28	97	97	0	70 - 130	30	70 - 130	30
%SS3:	91	0.012	86	86	0	83	78	6.06	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 40809 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901244-002A	01/08/09 8:45 AM	1 01/16/09	01/21/09 7:51 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



QC SUMMARY REPORT FOR SW8015B

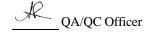
W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40754 WorkOrder: 0901244

EPA Method SW8015B	S	Spiked Sar	nple ID:	: 0901171-0	A800							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	ND	20	77.1	77	0.176	93.6	88.3	5.77	70 - 130	30	70 - 130	30
%SS:	98	50	90	90	0	98	91	7.39	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 40754 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901244-002A	01/08/09 8:45 AM	01/16/09	01/17/09 2:37 PM	0901244-003A	01/08/09 9:00 AM	01/14/09	01/15/09 7:40 AM
0901244-007A	01/08/09 12:05 PM	01/14/09	01/15/09 5:26 PM	0901244-009A	01/08/09 12:15 PM	01/14/09	01/15/09 2:08 PM
0901244-014A	01/08/09 10:33 AM	01/14/09	01/15/09 1:00 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



QC SUMMARY REPORT FOR SW8021B/8015Cm

## W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40770 WorkOrder: 0901244

EPA Method SW8015Bm	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0901181-0	05A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	102	104	1.96	97.1	111	13.1	70 - 130	20	70 - 130	20
МТВЕ	ND	0.10	97.9	101	2.98	99.6	94.6	5.19	70 - 130	20	70 - 130	20
Benzene	ND	0.10	90.6	87.1	3.98	101	101	0	70 - 130	20	70 - 130	20
Toluene	ND	0.10	89.2	88.1	1.15	113	115	1.77	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	95.1	96.4	1.31	111	112	1.29	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	104	106	2.05	120	123	2.15	70 - 130	20	70 - 130	20
%SS:	105	0.10	93	81	14.2	104	102	2.06	70 - 130	20	70 - 130	20

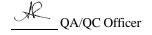
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 40770 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901244-003A	01/08/09 9:00 AM	01/14/09	01/15/09 10:35 PM	0901244-007A	01/08/09 12:05 PM	01/14/09	01/15/09 11:05 PM
0901244-009A	01/08/09 12:15 PM	01/14/09	01/15/09 11:36 PM	0901244-014A	01/08/09 10:33 AM	01/14/09	01/16/09 12:06 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



QC SUMMARY REPORT FOR SW8021B/8015Cm

## W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40813 WorkOrder: 0901244

EPA Method SW8015Bm	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0901225-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	92.5	103	10.6	92	93.8	1.97	70 - 130	20	70 - 130	20
MTBE	ND	0.10	87.4	105	18.2	114	94.9	18.0	70 - 130	20	70 - 130	20
Benzene	ND	0.10	88.2	98	10.5	107	101	5.80	70 - 130	20	70 - 130	20
Toluene	ND	0.10	78.9	88.3	11.2	93.5	90.7	3.02	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	87.6	98.7	12.0	98.9	103	3.64	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	81.1	96	16.8	90.4	98.6	8.67	70 - 130	20	70 - 130	20
%SS:	74	0.10	92	85	8.53	96	80	18.5	70 - 130	20	70 - 130	20

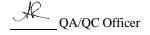
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 40813 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901244-002A	01/08/09 8:45 AM	<b>1</b> 01/16/09	01/20/09 4:09 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
Pleasanton, CA 94566	Client Contact: Jeremy Wilson	Date Reported: 01/22/09
Treasumon, err 7 13 00	Client P.O.:	Date Completed: 01/26/09

WorkOrder: 0901244

January 28, 2009

#### Enclosed within are:

- 1 analyzed sample from your project: #33108-008647.00; Safeway, 1) The results of the
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

## **CHAIN OF CUSTODY**

Page 2 of 2

1828	
BUREAU	J
VERITA:	S

C001244

Lab: MCCAMPBELL

1828										040	1271			
BUREAU VERITAS												TAT: Stan	dard	
Report results to:														
Name	Jeremy V	Vilson								Pro	ject Infor	mation		
Company		eritas NA, I	nc.								ject No.	33108-008647	.00	
Mailing Address		Center Par		216						Na		Safeway		
City, State, Zip		on, Californ								Loc	ation	6511 Golden C	Sate Dr	
elephone No.	(925) 426											Dublin, CA		
ax No.	(925) 426	-0106		[		-	Analyses	Reque	ested		]			
	jeremy.wilso	on@us.bur	eauveritas.	com	2						1			
	don.ashton	@us.burea	uveritas.co	m_	Sacu	es es								
	•				5	nat				1 1				
Special instructions and/or speci	fic regulatory re	quirements:			-	oxygenates				1 1	8			
					8015M	ő								
					8	8260B with								
				e	TPH-d	8							•	
					유	326				1 3				ative
	Date	Time	Matrix/	No. of	- çñ	SS				19	Sample	e Condition/Comm	onte	ez-
ample Identification	Sampled	Sampled	Media	Conts.	TPH-g.	VOCs				~	Sample	e condition/comm	ents	Preservative
NW-2-19.5-20.0'	08-Jan-09	1220	SOIL	1						X				ICE
NW-3-4.5'-5.0'	08-Jan-09	1022	SOIL	1	X	X				+	off h	old 1/23/05 per	prail 50 a	ICE
14-3-9.5'-10.0'	08-Jan-09	1027	SOIL	1						X				ICE
MW-3-14.5'-15.0'	08-Jan-09	1033	SOIL	1	X	X								ICE
mw-3-16.0'-16.5'	08-Jan-09	1038	SOIL	1		<i>'</i> .				X				ICE
nw-3-19.5-20,0'	08-Jan-09	1040	SOIL	1						X				ICE
	<b>198/Jahr-0</b> 9		<b>BONY</b>	mal										ICE
	<b>ï8/3a</b> n-69		ALOG	W										ICE
	08\Jan-09		BOH	tu										
	VP Water 03													1
	08 Jan-09		SOIL	W		_					2			- 11/
Collected by:	T .	Ison ≰ 7	Dow Asn				Collecto	r's Sig			un	Date/	Time <u>1/8/0</u>	7 world
Collected by: Relinquished by:	08 Jan-09	to	Date/Time	TUN 1-14-5		-	Receive	d by:			een T	Date/	Time <u>   8/0</u> Time <u>  •/4</u> -0	1/16:4
Relinquished by:	da Jan-09 Jeremy Wi	to	Dew Asn	TUN 1-14-5		-	Receive	d by:				Date/ Date/ Date/	Time <u>    8   0</u> Time	9/16:4

Ruy Phan 1-14-09 6:05pm H.Burks 1-14-09

1534 Willow Pass Rd

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	g, CA 94565-1701 52-9262				Work	Order:	090124	<b>A</b>	Clier	tCode	: BVP				
			Write	On 🗹 EDF	Exc	el	Fax	<b>✓</b> E	mail	□⊦	lardCopy	Thi	rdParty	☐ J-f	lag
Report to: Jeremy Wils Bureau Verit 6920 Koll Ce Pleasanton, (925) 426-260	as enter Pkwy, Ste. 216 CA 94566	cc: PO:		i@us.bureauverita 647.00; Safeway	as.com	Bu 69 Ple	an Mille Ireau Ve 20 Koll ( easanto		66		Da Da	quested te Rec te Add te Prin	eived: -On:		/2009
								Reques	ted Test	s (See	legend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold 1	2	3	•	ted Test	s (See	legend b	elow)	10	11	12
<b>Lab ID</b> 0901244-012	Client ID MW-3-4.5'-5.0'		<b>Matrix</b> Soil	<b>Collection Date</b> 1/8/2009 10:22	Hold 1	<b>2</b>	3 A	•		s (See	Ť	· ·	10	11	12

### Test Legend:

1 8260B_S	2 G-MBTEX_S	3 TPH(DMO)WSG_S	4	5
6	7	8	9	10
11	12			

Prepared by: Kimberly Burks

**Comments:** Sample 012 off hold 1/23/09

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
0920 Kon Center Fkwy, Ste. 210	Client Contact: Jeremy Wilson	Date Extracted: 01/23/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/23/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B	Analytical Method: SW8260B	Work Order: 0901244
----------------------------	----------------------------	---------------------

Extraction Method: SW5030B		Analytical Method: SW8260B Work Order: 0901244										
Lab ID		0901244-012A										
Client ID				MW-3-4.5'-5.0'								
Matrix				Soil								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit					
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005					
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005					
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005					
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005					
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05					
n-Butyl benzene	ND	1.0	ND	1.0	0.005							
tert-Butyl benzene	ND	ND         1.0         0.005         sec-Butyl benzene           ND         1.0         0.005         Carbon Disulfide					0.005					
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005					
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005					
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005					
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005					
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004					
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005					
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005					
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005					
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005					
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005					
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005					
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005					
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005					
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005					
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1					
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005					
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005					
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005					
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005					
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005					
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005					
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005					
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005					
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005					
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005					
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005					
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005					
Vinvl Chloride	ND	1.0	0.005		ND	1.0	0.005					
		Surr	ogate Re	coveries (%)								
%SS1:	94			%SS2: 96								
%SS3:	86			70002.								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Bureau Veritas	Client Project ID: #33108-008647.00; Safeway	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Saleway	Date Received: 01/14/09
	Client Contact: Jeremy Wilson	Date Extracted: 01/23/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/24/09

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline *

Analytical methods SW8015Bm Extraction method SW5030B Work Order: 0901244

extraction method Sv	V 3030B	Anaryticai men	Alialytical methods Sw 8013Biii w			
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	
012A	MW-3-4.5'-5.0'	s	ND	1	78	
Repor	rting Limit for DF =1;	W	NA	N	A	
ND m	eans not detected at or	<u> </u>				

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	3	Date Sampled: 01/08/09
6920 Koll Center Pkwy, Ste. 216	Safeway	Date Received: 01/14/09
0/20 Kon Center I kwy, Ste. 210	Client Contact: Jeremy Wilson	Date Extracted: 01/23/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed: 01/24/09

### Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW3550C/3630C Analytical methods: SW8015B Work Order: 0901244 TPH-Diesel TPH-Motor Oil DF % SS Lab ID Client ID Matrix (C18-C36) (C10-C23) 0901244-012A MW-3-4.5'-5.0' 105 S ND ND 1

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in  $\mu$ g/L, wipe samples in  $\mu$ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu$ g/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:



[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40867 WorkOrder 0901244

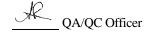
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0901335-001A												01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
rinaryto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	81.7	83.6	2.28	79.9	79.5	0.512	60 - 130	30	60 - 130	30
Benzene	ND	0.050	108	111	2.43	105	105	0	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	82.2	87.4	6.11	88.3	92.4	4.53	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	111	113	1.67	101	103	1.06	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	105	107	1.87	100	99.4	0.906	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	92.4	94.2	1.94	101	101	0	60 - 130	30	60 - 130	30
1,1-Dichloroethene	ND	0.050	87	88	1.12	85	85.2	0.257	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	86.7	88.5	2.06	91.7	92.8	1.23	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	98.5	101	2.90	101	101	0	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	88.9	91.4	2.80	91.1	92	1.05	60 - 130	30	60 - 130	30
Toluene	ND	0.050	127	130	2.12	120	119	1.29	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	113	118	3.69	110	110	0	60 - 130	30	60 - 130	30
%SS1:	94	0.12	85	86	0.983	92	91	0.818	70 - 130	30	70 - 130	30
%SS2:	96	0.12	95	95	0	97	98	0.484	70 - 130	30	70 - 130	30
%SS3:	79	0.012	96	92	5.18	87	88	1.29	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 40867 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901244-012A	01/08/09 10:22 AM	01/23/09	01/23/09 8:54 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40894 WorkOrder 0901244

EPA Method SW8015B Extraction SW3550C/3630C								8	Spiked Sar	nple ID	: 0901335-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD Acceptance Criteria				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	19	20	126	126	0	90.4	91.2	0.866	70 - 130	30	70 - 130	30
%SS:	99	50	100	103	2.75	103	104	0.891	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 40894 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0901244-012A	01/08/09 10:22 AM	01/23/09	01/24/09 6:21 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 40895 WorkOrder 0901244

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0901335-001A												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
y.c	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	109	108	0.360	115	98.6	15.5	70 - 130	20	70 - 130	20
MTBE	ND	0.10	92.2	91	1.24	89.6	83.1	7.53	70 - 130	20	70 - 130	20
Benzene	ND	0.10	83.5	83.3	0.174	100	108	7.41	70 - 130	20	70 - 130	20
Toluene	ND	0.10	82.4	83.8	1.64	113	122	7.66	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	87.1	89.3	2.55	113	121	7.11	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	101	102	1.58	119	129	7.50	70 - 130	20	70 - 130	20
%SS:	89	0.10	104	94	9.69	101	112	10.2	70 - 130	20	70 - 130	20

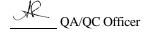
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 40895 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901244-012A	01/08/09 10:22 AM	I 01/23/09	01/24/09 7:50 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/15/09
6920 Koll Center Pkwy, Ste. 216	Former Quest Laboratory	Date Received: 01/15/09
Pleasanton, CA 94566	Client Contact: Alyssa Abegg	Date Reported: 01/21/09
Treasument, err 7 1300	Client P.O.:	Date Completed: 01/21/09

WorkOrder: 0901271

January 21, 2009

Dear	Aly	/SS	a:
------	-----	-----	----

#### Enclosed within are:

- 3 analyzed samples from your project: #33108-008647.00; Former Quest L 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

## **CHAIN OF CUSTODY**



Page I of I.

Lab: McCampbell Analytical

							1	N:WI	H: H: H	AU						TAT:	Standard	
lament recults to:							ij	VΕ	RIT	AS	i							
eport results to:	A1 A1													ъ.		4!		
ame	Alyssa Al														oject Inform		0.47.00	
ompany	Bureau V			010											oject No.	33108-0086		
lailing Address			rkway, Ste.	216	_										ame		est Laborator	y
ity, State, Zip		on, Californ	ia 94566											Lo	ocation	Dublin, CA		
elephone No.	(925) 426		-												_			
ax No.	(925) 426		_		$\perp$			Anal	yses	Req	uest	ed						
mail:	alyssa.ab	egg@us.b	ureauverita	s.com		an												
	•				401	2												
					ate	F	1											
pecial instructions and/or	specific regulat	ory requireme	ents:		and Oxygenates	SGCU for THP-d an										13		
Seotracker Global ID	= T0601979	9610			X	13												
					P										EDD Form	at for Geotrack	ker	
						5	1									(YesX) N	0	
					BTEX	8015C Multi-Scan,												9
						N N	1											Preservative
	Date	Time	Matrix/	No. of	8260 w/	55							-		Sample	Condition/Cor	mments	ser
ample Identification	Sampled	Sampled	Media	Conts.	826	801												Pre
MW-1	1/12/2009	11:40	Water	4	χ	と												ice
MW-2	1/12/2009	12:25	Water	4	X	x												ice
MW-3	1/12/2009	12:45	Water	4	x	×					Т		Т	$\top$				ice
						1			$\neg$	$\neg$	$\top$	$\top$	$\top$	$\top$			7	
					$\vdash$		$\vdash$		$\vdash$	_	+	5	0	)				_
				+	$\vdash$	+	$\vdash$	$\vdash$		+	ICE	OD CC	-		APPRO	PRIATE		_
					-	-	-			_	60	OD CC	ONDI	ABSI	NT CO	NTAINERS		_
											DE	CHLC	RINA	TEDI	NTCO N LABPF OKS   O & G   ME	ESERVED IN LAB	_	
												ESER!		V	OAS OS G ME			
9						+	$\vdash$	$\vdash$		_	PR	ESER	V/9 1 (1					+
				-	-	-	+			_	+	+	+	+	_			+
Collected by:	Alyssa Al	oegg		1/15/0	9			Col	lecto	r's S	igna	ture	: _/	th	son the	con		-/
Relinquished by:	Allers	- Moor	Date/Time	415/09	14	:50	_			d by:			n	V18	sten-	CAL D	ate/Time / 1/5	9/16
Relinquished by:	virofect	7.200	Date/Time					Rec	eive	d by:			4	es	k land	D	ate/Time / 1/5	69/12.
lethod of Shipment			70.70	,			-	San	nple	Cond	litio	n on	Rc	pt:				
6	Dale Ca	1	1-15-6	99 1	75	3	133		/	1	,	1/	4	8	A			
	enew		, .			-			1)	10	W	V	(	)				

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

## CHAIN-OF-CUSTODY RECORD

ClientCode: BVP

Page 1 of 1

Prepared by: Samantha Arbuckle

WriteOn **✓** EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag

WorkOrder: 0901271

Bill to: Report to: Requested TAT: 5 days

alyssa.abegg@us.bureauveritas.com Joan Miller Alyssa Abegg Email: Bureau Veritas cc:

Bureau Veritas

Date Received: 01/15/2009 PO: 6920 Koll Center Pkwy, Ste. 216 6920 Koll Center Pkwy, Ste. 216 ProjectNo: #33108-008647.00; Former Quest Date Printed: Pleasanton, CA 94566 Pleasanton, CA 94566 01/21/2009

(925) 426-2600 FAX (925) 426-0106 Laboratory joan.miller@us.bureauveritas.com

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0901271-001	MW-1	Water	1/15/2009 11:40		В	Α	А									
0901271-002	MW-2	Water	1/15/2009 12:25		В	Α										
0901271-003	MW-3	Water	1/15/2009 12:45		В	Α										

### Test Legend:

1 8260B_W	2 G-MBTEX_W	3 PREDF REPORT	4	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A, 003A contain testgroup.

#### **Comments:**

### **Sample Receipt Checklist**

Client Name:	Bureau Veritas				Date a	and Time Received:	1/15/09 7:	18:03 PM
Project Name:	#33108-008647.00; For	mer Quest L	abor	atory	Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	<b>0901271</b> Matrix	<u>Water</u>			Carrie	r: <u>Derik Cartan (I</u>	MAI Courier)	
		<u>Chain</u>	of Cu	stody (C	OC) Informa	tion		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinquished ar	nd received?	Yes	V	No 🗆			
Chain of custody	agrees with sample labels?		Yes	<b>✓</b>	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	<b>V</b>	No 🗆			
Date and Time of	f collection noted by Client on 0	COC?	Yes	<b>✓</b>	No 🗆			
Sampler's name r	noted on COC?		Yes	<b>✓</b>	No 🗆			
		<u>Sa</u>	mple	Receipt	Information			
Custody seals in	tact on shipping container/coo	oler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good condition?		Yes	<b>✓</b>	No 🗆			
Samples in prope	er containers/bottles?		Yes	<b>V</b>	No 🗆			
Sample containe	ers intact?		Yes	<b>✓</b>	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	<b>✓</b>	No 🗌			
	<u>s</u>	ample Preser	vatior	n and Ho	old Time (HT)	<u>Information</u>		
All samples recei	ived within holding time?		Yes	<b>✓</b>	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:	5°C		NA 🗆	
Water - VOA via	Is have zero headspace / no	bubbles?	Yes	<b>V</b>	No 🗆	No VOA vials subm	itted $\square$	
Sample labels ch	necked for correct preservation	n?	Yes	<b>✓</b>	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	<b>✓</b>	No 🗆			
		(Ice Type	: WE	TICE	)			
* NOTE: If the "N	No" box is checked, see com	ments below.						
	=======			===				======
Client contacted:		Date contacte	ed:			Contacted	by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/15/09
6920 Koll Center Pkwy, Ste. 216	Former Quest Laboratory	Date Received: 01/15/09
0920 Koli Celitei Fkwy, Ste. 210	Client Contact: Alyssa Abegg	Date Extracted: 01/20/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/20/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0901271

Extraction Method. 5 W 5250B Work Older. 5701271								
Lab ID				0901271-001B				
Client ID				MW-1				
Matrix				Water				
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	0.53	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5	
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5	
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5	
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5	
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5	
1.3-Dichlorobenzene	ND	1.0	0.5	1.4-Dichlorobenzene	ND	1.0	0.5	
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5	
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5	
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5	
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5	
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5	
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10	
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5	
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5	
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroethane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5	
		Surr	ogate Re	ecoveries (%)				
%SS1:	94			%SS2:	Q	94		
%SS3: 98				/0502.				
a a a a a a a a a a a a a a a a a a a				•				

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g$ /wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/15/09
6920 Koll Center Pkwy, Ste. 216	Former Quest Laboratory	Date Received: 01/15/09
0920 Kon Center I kwy, Stc. 210	Client Contact: Alyssa Abegg	Date Extracted: 01/20/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/20/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0901271

Lab ID 0901271-002B							
Client ID				MW-2			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit		Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1.4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1.1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	0.62	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
	* 1 <del>*</del> *			ecoveries (%)	* * * *	***	
%SS1:	۵			%SS2:	9:	5	
%SS1: 98 %SS3: 103				/0002.		<i>J</i>	
70555							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g$ /wipe.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33108-008647.00;	Date Sampled: 01/15/09
6920 Koll Center Pkwy, Ste. 216	Former Quest Laboratory	Date Received: 01/15/09
0920 Kon Center Fkwy, Ste. 210	Client Contact: Alyssa Abegg	Date Extracted: 01/20/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/20/09

### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0901271

Lab ID				0901271-003B					
Client ID				MW-3					
Matrix				Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5		
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5		
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5		
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5		
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5		
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5		
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1.1-Dichloroethene	ND	1.0	0.5		
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5		
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5		
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5		
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5		
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10		
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5		
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5		
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5		
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5		
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroethane	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5		
Vinyl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5		
		Surr	ogate Re	ecoveries (%)					
%SS1:	9			%SS2: 94					
%SS3:		)6		/0552.	<u> </u>	т			
		/ (/		1					

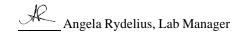
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g$ /wipe.

Bureau Veritas	•	Date Sampled: 01/15/09
6920 Koll Center Pkwy, Ste. 216	Former Quest Laboratory	Date Received: 01/15/09
•	Client Contact: Alyssa Abegg	Date Extracted: 01/16/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed 01/16/09

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*


Analytical methods SW8015Bm Extraction method SW5030B Work Order: 0901271 TPH(g) Lab ID Client ID Matrix DF % SS 001A MW-1 W 99,d7,d9 108 101 002A W 1 MW-2 ND 003A W 1 112 MW-3 140,d7,d9

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or	S	NA	NA
above the reporting limit		- ·•••	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu$ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- $d7) \ strongly \ aged \ gasoline \ or \ diesel \ range \ compounds \ are \ significant \ in \ the \ TPH(g) \ chromatogram$
- d9) no recognizable pattern



1534 Willow Pass Road, Pittsburg, CA 94565-1701  $Web: www.mccampbell.com \qquad E-mail: main@mccampbell.com\\$ Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	3	Date Sampled: 01/15/09
6920 Koll Center Pkwy, Ste. 216	Former Quest Laboratory	Date Received: 01/15/09
0720 Kon Centel I kwy, Stc. 210	Client Contact: Alyssa Abegg	Date Extracted: 01/15/09
Pleasanton, CA 94566	Client P.O.:	Date Analyzed: 01/16/09-01/20/09

	Total Extracta	ble Petroleum Hy	drocarbons with Silica	a Gel Clean-Up*		
Extraction method: SW3.	510C/3630C	Analytical m	nethods: SW8015B	Wo	ork Order: 0	901271
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0901271-001A	MW-1	W	89,e4,e2	ND	1	83
0901271-002A	MW-2	W	ND	ND	1	116
0901271-003A	MW-3	W	85,e4,e2	ND	1	118
Reportin	g Limit for DF =1;	W	50	250	μ	g/L

250	μg/L
NA	mg/Kg
	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.



^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40859 WorkOrder: 0901271

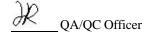
EPA Method SW8260B	Extra	ction SW	5030B					8	piked Sar	nple ID	: 0901300-0	)01C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCS LCSD LCS-LCSD Acceptance Criteria				Criteria (%)	)
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	96.7	99.1	2.48	96.7	94.6	2.12	70 - 130	30	70 - 130	30
Benzene	ND	10	109	109	0	105	111	5.55	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	85.8	89.3	3.99	78.1	87.8	11.6	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	108	105	2.71	95.7	101	5.69	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	116	115	1.09	105	112	6.26	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	92.3	93.6	1.36	106	107	1.13	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	83.2	81.2	2.40	77.7	84.1	7.90	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	98.8	97.9	0.974	92.5	103	10.2	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	109	110	1.21	107	113	5.76	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	99.1	102	2.92	92	102	10.2	70 - 130	30	70 - 130	30
Toluene	ND	10	129	122	5.22	104	112	6.68	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	111	108	2.94	108	111	2.55	70 - 130	30	70 - 130	30
%SS1:	96	25	86	87	1.39	98	97	0.483	70 - 130	30	70 - 130	30
%SS2:	92	25	97	96	1.29	91	90	0.431	70 - 130	30	70 - 130	30
%SS3:	99	2.5	77	76	2.01	80	80	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 40859 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901271-001B	01/15/09 11:40 AM	01/20/09	01/20/09 12:09 PM	0901271-002B	01/15/09 12:25 PM	01/20/09	01/20/09 12:47 PM
0901271-003B	01/15/09 12:45 PM	01/20/09	01/20/09 1:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



QC SUMMARY REPORT FOR SW8021B/8015Cm

## W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40843 WorkOrder 0901271

EPA Method SW8015Bm	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0901266-0	06B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	94.2	96.8	2.72	113	116	2.75	70 - 130	20	70 - 130	20
MTBE	ND	10	92.3	94.5	2.44	98.4	102	3.67	70 - 130	20	70 - 130	20
Benzene	ND	10	87.4	89.2	1.99	92.9	94.8	2.02	70 - 130	20	70 - 130	20
Toluene	ND	10	86.8	88	1.45	96.5	97	0.548	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	90	93.2	3.57	98.6	98.2	0.454	70 - 130	20	70 - 130	20
Xylenes	ND	30	99.8	103	3.50	111	111	0	70 - 130	20	70 - 130	20
%SS:	99	10	92	93	0.451	101	102	0.917	70 - 130	20	70 - 130	20

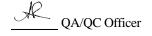
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 40843 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901271-001A	01/15/09 11:40 AM	01/16/09	01/16/09 6:25 PM	0901271-002A	01/15/09 12:25 PM	01/16/09	01/16/09 6:55 PM
0901271-003A	01/15/09 12:45 PM	01/16/09	01/16/09 7:26 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.



QC SUMMARY REPORT FOR SW8015B

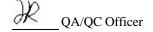
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40845 WorkOrder: 0901271

EPA Method SW8015B Extraction SW3510C/3630C								Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	95.3	96.8	1.55	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	98	102	3.85	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 40845 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901271-001A	01/15/09 11:40 AM	01/15/09	01/20/09 6:23 PM	0901271-002A	01/15/09 12:25 PM	01/15/09	01/16/09 3:49 PM
0901271-003A	01/15/09 12:45 PM	01/15/09	01/16/09 2:41 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

