RECEIVED

By Alameda County Environmental Health 9:11 am, Sep 29, 2017

SECOND SEMIANNUAL 2017 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

BRIDGEWATER APARTMENTS PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION EMERYVILLE, CA 94608

September 2017

SECOND SEMI-ANNUAL 2017 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

BRIDGEWATER APARTMENTS PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION 6475 CHRISTIE AVENUE, SUITE 550 EMERYVILLE, CA 94608

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

September 28, 2017

Project No. 2007-65

GEOSCIENCE & ENGINEERING CONSULTING

September 28, 2017

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Department of Environmental Health Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Semiannual 2017 Groundwater Monitoring & Product Extraction Report

EmeryBay Commercial Association Phase I Condo Parking Garage

6400 Christie Avenue, Emeryville, California.

Dear Mr. Detterman:

Enclosed is the Stellar Environmental Solutions, Inc. report summarizing the site activities conducted in September 2017 at the referenced site. This report is being submitted on behalf of the owner and Responsible Party, Emerybay Commercial Association. Subject site activities since the first semiannual monitoring event of 2017 include collecting and analyzing groundwater samples from the three trench well arrays to evaluate the viability of previous 2015 and 2016 Nutrisulfate® injections, a product extraction event and the second semiannual 2017 groundwater monitoring event.

This report summarizes the 29th sampling event conducted at the site since 1988. The bulk of the residual contamination beneath the site remains concentrated around wells MW-8, MW-10, MW-12, MW-13, MW-14, MW-15, MW-E, RW-1, and the plume underlying the parking garage. In accordance with regulatory requirements, an electronic copy of this report has been uploaded to ACEH and to the State Water Resources Control Board's GeoTracker system.

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Richard S. Makdisi, P.G.

Brustle S. Mikdin

Principal Geochemist & President

Ms. Katherine Collins Emerybay Commercial Assoc.

TABLE OF CONTENTS

Section	on	Page
1.0	INTRODUCTION	1
	Project Background	1
	Site and Vicinity Description	1
	Previous Investigations	1
	Objectives and Scope of Work	6
	Regulatory Oversight	7
2.0	PHYSICAL SETTING	8
	Topography and Drainage	8
	Geology	
	Groundwater Hydrology	9
3.0	SEPTEMBER 2017 GROUNDWATER MONITORING AND SAMPLING	
	ACTIVITIES	11
	Sampling Methods and Activities	11
	September 2017 Trench Well Sampling	
	Current September 2017 Monitoring Event	12
4.0	REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND	
DISC	USSION OF FINDINGS	14
	Regulatory Considerations	14
	Groundwater Sample Results	15
5.0	FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM	26
	LNAPL Remediation System Construction	26
	Historical Free Product Extraction	27
	2013-2016 surfactant injections	27
	Bioremediation Compound Injection 2015-2016	
	Hydrochemical Analyses to Monitor Nutrisulfate® Viablity	31
	September 2017 Product Removal Event	32
	Discussion of Free Product Removal and limitations	33

TABLE OF CONTENTS (continued)

Sectio	n		Page
6.0	SUMN	MARY, CONCLUSIONS, AND PROPOSED ACTIONS	36
		ngs and Conclusions. Error! Bookmark n	
7.0	REFE	RENCES AND BIBLIOGRAPHY	42
8.0	LIMIT	ΓATIONS	48
Appei	ndices		
Apper	ndix A	Historical Groundwater Well Analytical Results	
Apper	ndix B	Groundwater Monitoring Field Data Sheets	
Apper	ndix C	Analytical Laboratory Report and Chain-of-Custody Record	
Apper	ndix D	Historical Groundwater Elevation Data	
Apper	ndix E	Historical Product Extraction Data Table	

TABLES AND FIGURES

Tables	Page
Table 1	September 4 and 5, 2017 Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California
Table 2	Groundwater Sample Analytical Results – September 4 and 5, 2017, 6400 Christie Avenue, Emeryville, California
Table 3	Trench Well Hydrocarbon Analytical Results – 6400 Christie Avenue, Emeryville, California
Table 4	Trench Well Groundwater Hydrochemical Analytical Results – September 1, 2017, 6400 Christie Avenue, Emeryville, California
Table 5	Active Product Extraction – August 31 and September 1, 2017, 6400 Christie Avenue, Emeryville, California

Figures	
Figure 1 Site Location Map	
Figure 2 Site Plan	
Figure 3 Monitoring Well and Trench Locations	
Figure 4 Groundwater Elevation Map – September 4, 2017 10	
Figure 5 Groundwater Monitoring Well Analytical Results – September 4, 2017 19	
Figure 6 Total Petroleum Hydrocarbon Plume as Gasoline – September 4, 2017 21	
Figure 7 Total Petroleum Hydrocarbon Plume as Diesel – September 4, 2017	
Figure 8 Historical Total Petroleum Hydrocarbons as Diesel – Wells MW-5 and MW-6 23 $$	
Figure 9 Historical Total Petroleum Hydrocarbons as Diesel – Wells MW-11 and MW-12. 24	

TABLE OF CONTENTS (continued)

Section	Page
Figure 10 Historical Total Petroleum Hydrocarbons as Diesel – Wells MW-3 and MW	7-18.25
Figure 11 Total Free Product Extracted per Year	28

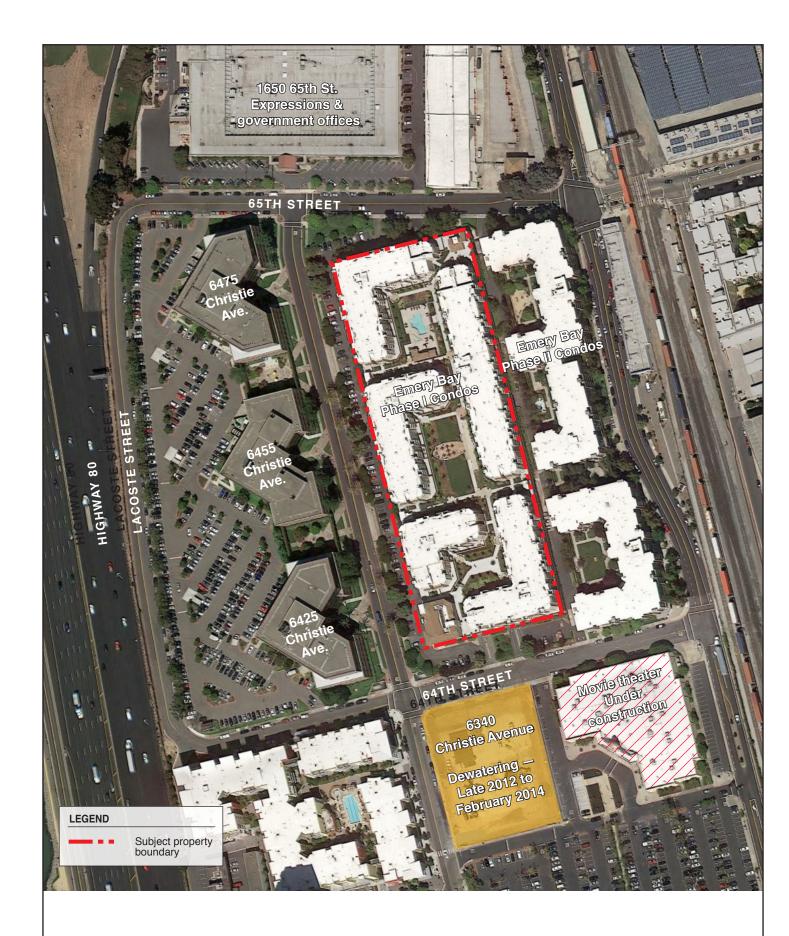
1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 6400 Christie Avenue in Emeryville, California, is owned by the Emerybay Commercial Association, for which Stellar Environmental Solutions, Inc. (Stellar Environmental) provides environmental consulting services. The site has undergone fuel tank-related investigations and remediation since 1988 (by Stellar Environmental since 2007). All known environmental documents for the subject property are listed in the References and Bibliography section (Section 7.0) of this report. Previous remediation and investigation activities are outlined in the final subsection of this chapter.

SITE AND VICINITY DESCRIPTION

The project site is located at 6400 Christie Avenue in Emeryville, California (see Figure 1). The project site, which slopes to the south, is wholly developed with an open ground-floor parking area and apartment complex known as the Bridgewater Phase I Condos and parking garage. The area of monitoring and product extraction is primarily located in the northeastern portion of the parking garage. Figure 2 is a site plan. The site is bordered to the east by the Emery Bay Phase II Condos and parking garage, to the north by 65th Street, beyond Christie Avenue and to the west by the Bay Center Offices, and to the south by 64th Street with new commercial developments beyond. The surrounding area is developed with apartment complexes, offices, and commercial stores.


PREVIOUS INVESTIGATIONS

Historical groundwater well analytical results are presented in Appendix A, and are discussed in detail in Section 5.0 of this report.

The subject property parcel was developed as early as 1958 with the Garrett Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. The building remained on the property until 1986, when it was demolished to build the present-day structures. Twelve underground fuel storage tanks (UFSTs) containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels in 1987, at which time soil and groundwater contamination was discovered.

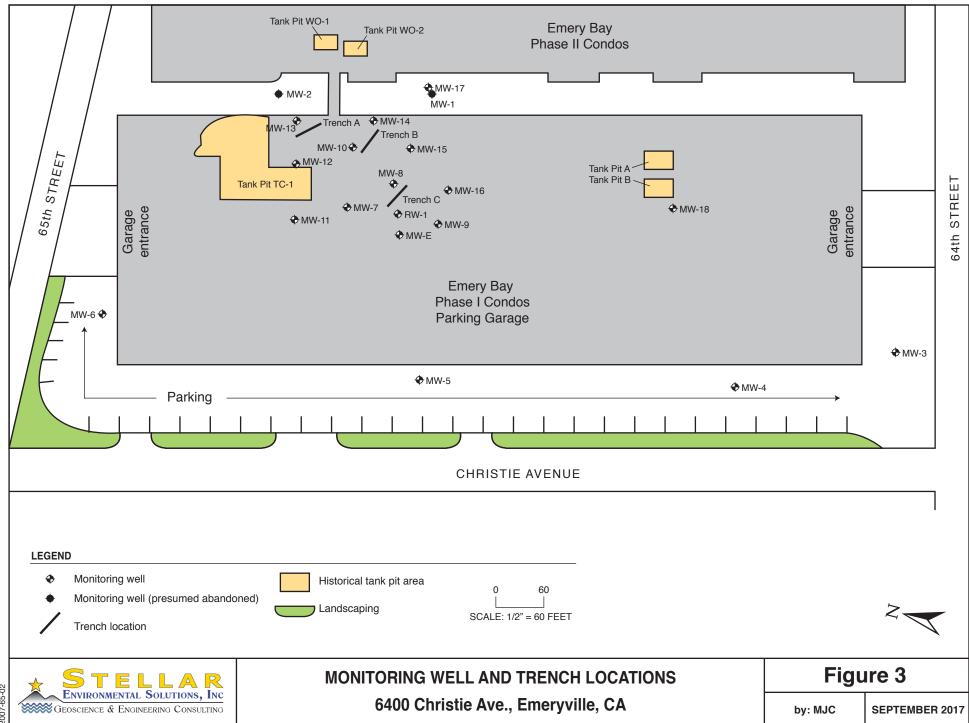
2007-65-01

SITE PLAN AND ADJACENT LAND USE

6400 Christie Ave. Emeryville, CA

By: MJC SEPTEMBER 2017

Figure 2



The subsurface contamination originated from the trucking terminal that was operated by the Garrett Freight Line and Delta Lines, and existed at the site of the Bay Center Apartments before its development in the late 1980s. Site investigations identified a total of 12 UFSTs in three areas of the trucking terminal. These UFST areas were referred to as: 1) Tank Pits A and B (each containing one 10,000-gallon diesel tank); 2) Tank Pit TC-1 (four 12,000-gallon diesel tanks, two 10,000-gallon diesel tanks, and one 6,000-gallon gasoline tank); and 3) Tank Pit WO-1 and WO-2 (one 6,000-gallon tank, one 4,000-gallon tank, and one 1,000-gallon tank). Nine UFSTs were located beneath the current footprint of the Emery Bay Phase I Condo complex, while three were beneath the Emery Bay Phase II Condo complex. Figure 2 shows the historical locations where the tanks were removed.

To remediate the hydrocarbon contamination beneath the garage area of the Emery Bay Phase I Condo complex, a light non-aqueous phase liquid (LNAPL) groundwater pump-and-treat system was installed by Groundwater Technology, Inc. (GTI) in 1989. The system extracted approximately one million gallons of groundwater, yielding approximately 100 gallons of LNAPL from recovery well RW-1 from July 1990 to March 1991. Three monitoring wells had previously been installed in 1985. GTI installed (and repaired) several more monitoring wells between 1987 and 1990, for a total of seven monitoring wells and one extraction well by 1990. The system and groundwater monitoring wells were designed and monitored as a condition of discharge permits granted by the East Bay Municipal Utility District (EBMUD) and the Bay Area Air Quality Management District (BAAQMD). The first groundwater monitoring event for MW-1 through MW-6 occurred in December 1988. The second monitoring event, which also included MW-E and RW-1, was conducted in March 1989. Subsequently, the groundwater extraction system operated by GTI was closed in late 1990 when corrosion and other mechanical problems caused the system to fail. Recovery of LNAPL continued manually on RW-1 until 1991, and a third groundwater sampling event occurred in February 1991. In 1994, the GTI system was abandoned. Appendix A contains the historical analytical results. Figure 3 shows the locations of the monitoring wells and trenches.

No groundwater monitoring events had occurred at the site between 1991 and 2004, when PES Environmental, Inc. (PES) was retained to evaluate and implement remediation of the residual contamination at the TC-1 in the Emery Bay Phase I Condo complex area. (Note: Harding Lawson Associates conducted soil and groundwater sampling on the Phase II Apartment complex area during this time, but not for the purpose of product extraction or remediation.) In 2004, PES installed an additional 10 groundwater monitoring wells (monitoring wells MW-1 and MW-2 were either abandoned or paved over with asphalt during construction), bringing the current total to 17 monitoring wells and one extraction well in the Phase I parking garage area.

The first groundwater monitoring event for the current wells was conducted in March 2004 and the second event conducted in December 2006. A previous Stellar Environmental report (Stellar

Environmental, 2007) discusses previous site remediation and investigations, site geology and hydrogeology, and residual site contamination. Tabular summaries of historical groundwater well water elevations and analytical results are included in Appendices D and A, respectively.

In March 2014, Stellar Environmental Solutions conducted a groundwater investigation that consisted of advancing five soil borings in the areas between wells MW-3 on the southern edge of the site and MW-18 in the garage and downgradient of MW-3, with the goal to locate a suspected source of residual subsurface hydrocarbons. The reason for this additional work was based on the recent uptrend in diesel concentration noted in well MW-3 since the late 2012 initiation of construction de-watering at the 6340 Christie Avenue (ACHCSA Case # RO0000057) property across 64th Street, south of the subject property garage area.

The impact the dewatering had on the subject site was apparent in terms of both the changes to the site hydrology—with the change in the groundwater flow regime from west/northwest to having a southern component—as well as a hydrochemical impact. The hydochemical impact, as documented in the Y2013 and Y2014 site monitoring reports, was to draw the hydrocarbon plume southward, increasing the concentrations of TEHd by orders of magnitude at well MW-3 near the subject property south border, compared to the previous 5 years of monitoring that showed stable results. The TEHd concentration at MW-3 increased from 15,000 µg/L TEHd in April 2013 to 250,000 µg/L TEHd in September 2013. The relatively stable TEHd concentration present in well MW-18 since 2012, suggested a possible undiscovered source between these two wells impacting well MW-3. However, the plume appears to have stabilized since the cessation of construction dewatering at the site across 64th Street along with the product recovery efforts in the garage area. The groundwater flow direction and plume geometry has now reverted to the pre-pumping groundwater regime. The TVHg and TEHd concentrations in well MW-3 have substantially decreased with March 2015 through the current September 2017 monitoring events since the highest concentrations of 2013.

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental in the current semiannual monitoring period:

■ Collect groundwater samples from the central trench wells (TA-M, TB-M and TC-M) in each of the three arrays on September 1, 2017 and laboratory analyze the samples for dissolved iron, nitrates, sulfates, pH, dissolved oxygen, oxidation reduction potential and for hydrocarbons. The goal of this work is to track the viability of the Nutrisulfate[®] product injected into trench well arrays A and C in 2015 and 2016. Nutrisulfate[®] is a high sulfate metabolic supplement designed to enhance the kinetics and efficiency of microbial systems

specifically related to bioremediation of BTEX, MTBE, and other petroleum hydrocarbons. The wells in trench array B are not receiving the product and act as control wells.

- Active extraction on all groundwater monitoring wells and recovery well RW-1 on August 31, 2017 and September 1, 2017.
- Record water levels in site wells to determine groundwater flow direction.
- Sampling of site monitoring wells for contaminant analysis on September 4 and 5, 2017.
- Evaluation of hydrochemical and groundwater elevation trends in the context of plume stability and case closure assessment.

REGULATORY OVERSIGHT

Alameda Department of Environmental Health (ACEH) is the lead regulatory agency for the case, acting as a Local Oversight Program for the Regional Water Quality Control Board (Water Board). There are currently no ACEH or Water Board cleanup orders for the site; however, all site work has been conducted under the oversight of ACEH. ACEH assigned the site to its fuel leak case system (RO #2799), currently overseen by Mr. Mark Detterman. In a November 2008 meeting with the Responsible Party (represented by Ms. Sarah Irving), Stellar Environmental (represented by Ms. Teal Glass and Mr. Richard Makdisi), and ACEH (represented by Ms. Jakub and Ms. Donna Drogas), it was agreed that quarterly sampling could be reduced to a semiannual schedule with the stipulation that an indoor air and preferential pathway study be completed. Stellar Environmental submitted a letter on November 24, 2008 to ACEH documenting the change in sampling frequency. The Indoor Air Survey and Preferential Pathway Report (Stellar Environmental, 2009b) was submitted to ACEH on April 6, 2009. Stellar Environmental conducted an additional indoor air survey in the ground floor office area on March 22, 2010. The results were presented in a separate report, submitted to ACEH on April 6, 2010 (Stellar Environmental, 2010). The case has been assigned No. SLT2O05561 in the Water Board's GeoTracker system. Electronic uploads of required data/reports are submitted to both agencies. The November 2012 and March 2013 monitoring reports warned ACEH of impacts from the adjacent site dewatering at 6340 Christie Avenue and tracked the pull of the hydrocarbon plume to the southern property boundaries. The cessation of dewatering from the adjacent southern development, along with selected well purging at Bay Center, resulted in a re-equilibration of the plume back closer to its former geometry since the 2014 monitoring events.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, drainage, and geologic and hydrogeologic conditions—is based on previous (1986 through 2006) site investigations conducted by others, and site inspections and subsurface data collection by Stellar Environmental in 2007, 2008 and 2014.

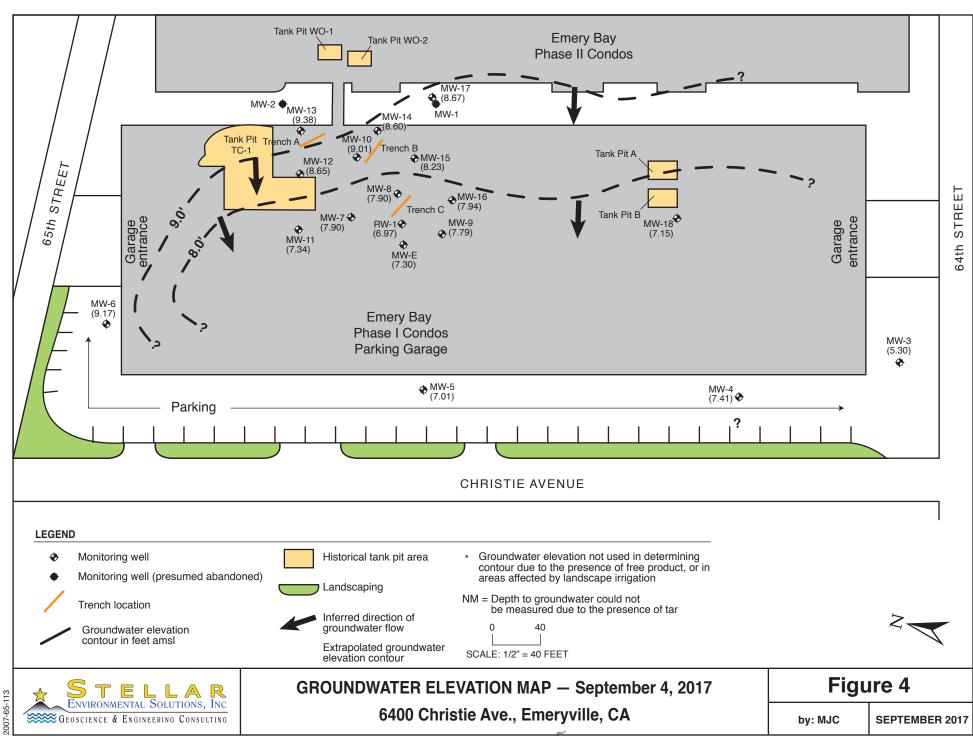
TOPOGRAPHY AND DRAINAGE

The mean elevation of the property is about 13 feet above mean sea level, and the general topographic gradient in the vicinity of the property is to the southwest, although the regional gradient is to the west-southwest.

The nearest receiving water body is San Francisco Bay, located approximately 700 feet to the west of the subject property. East of the site lies the Oakland Hills, which rise to an elevation of approximately 1,000 feet and are situated 2.5 miles east of the subject property. The subject property is not listed within a 100- or 500-year flood zone.

Storm drains from the roof collect storm runoff for discharge onto the asphalt-paved parking lots. Drainage collected in storm sewers from the parking lot and from Christie, 64th, and 65th Streets discharges into San Francisco Bay. Stellar Environmental noted several storm drains, in the parking lot area and on the surrounding streets.

GEOLOGY


The subject property area is underlain with material mapped "Qhbm," designated early Pleistocene alluvium, that is moderately consolidated, deeply weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel. A geotechnical survey conducted in 1985 revealed that the upper 15 to 20 feet of soil consists of a combination of fill and soft bay sediment. The upper 1 to 2 feet of soil is generally pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense, silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay lies a depth of approximately 40 feet and extends to the depth of the borings, approximately 101.5 feet (Geomatrix, 1988).

The closest major fault, the Hayward Fault, is located about 3 miles east of the property. While the site is located in a seismically active area, it is not within an Alquist-Priolo Special Studies active fault zone, the legislatively defined zone of restricted land use 200 feet around an active fault due to the high probability of ground rupture.

GROUNDWATER HYDROLOGY

Regulatory agency records indicate that the direction of shallow groundwater flow in the site vicinity is to the west-northwest, toward San Francisco Bay. However, water levels and flow direction in this area are influenced by tidal patterns, natural topography modifications and the historical LNAPL, resulting in a relatively slow moving and stable plume pattern.

The groundwater flow direction measured during the September 2017 monitoring event was generally towards the west. The localized, approximately southerly direction to groundwater flow in the area of MW-3 noted in the 2013 monitoring events, thought to be the result of construction dewatering that had been occurring during 2013 at the re-development site across 64th Street, appears to have dissipated for the current event, since that de-watering has been discontinued since February of 2014. According to current and historical water level data obtained from onsite monitoring wells, depth to groundwater beneath the site ranges from approximately 7.75 to 11.01 feet below ground surface (bgs). Groundwater elevations recorded during the previous Fall monitoring event in September 2016, ranged from 5.69 feet (MW-3) to 9.77 feet (MW-6) above mean sea level (amsl). For this Fall monitoring event of September 2017, groundwater elevations ranged from 5.30 feet (MW-3) to 9.38 feet (MW-13) above mean sea level, with the average groundwater gradient for the current monitoring event being 0.007 foot/foot. Figure 4 is a groundwater elevation map from the recent groundwater-monitoring event (activities discussed in Section 4.0).

3.0 SEPTEMBER 2017 GROUNDWATER MONITORING AND SAMPLING ACTIVITIES

This section presents the groundwater sampling and analytical methods for the most recent event. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are summarized in Section 4.0.

SAMPLING METHODS AND ACTIVITIES

Activities for this event include:

- Measuring static water levels in 18 site wells.
- Collecting post-purge groundwater samples from the 18 wells for laboratory analysis of the following contaminants:
 - benzene, toluene, ethyl benzene, and xylenes (BTEX)
 - methyl tertiary-butyl ether (MTBE)
 - total petroleum hydrocarbons as gasoline (TPHg)
 - total petroleum hydrocarbons as diesel (TPHd)

The site monitoring well sampling locations are shown on Figure 3. Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records.

SEPTEMBER 2017 TRENCH WELL SAMPLING

Stellar Environmental collected groundwater samples from the central trench wells (TAM, TBM and TCM) in each of the three arrays on September 1, 2017 and submitted the samples for laboratory analysis for dissolved iron, nitrates, sulfates, pH, dissolved oxygen, oxidation reduction potential and for hydrocarbons. The goal of this work is to track the viability of the Nutrisulfate[®] product injected into trench well arrays A and C in 2015 and 2016. Nutrisulfate[®] is a high sulfate metabolic supplement designed to enhance the kinetics and efficiency of microbial systems specifically related to bioremediation of BTEX, MTBE, and other petroleum hydrocarbons. The wells in trench array B are not receiving the product and act as control wells.

CURRENT SEPTEMBER 2017 MONITORING EVENT

Blaine Tech Services conducted groundwater monitoring well level measurements, purging, sampling, and field analyses on September 4 and 5, 2017 under the supervision of Stellar Environmental personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs. As the first task of the monitoring event, static water levels and free product levels were measured in the 18 wells using an electric water level indicator. The depth of free product was recorded, and the water level was adjusted to reflect the groundwater elevation. Table 1 summarizes the September 2017 groundwater level data.

Approximately 600 gallons of water and a trace of product (0.008 gallons or about 1 oz) of product were removed/purged from wells during the active product removal on August 31, 2017 and September 1, 2017. The water generated during the active product and water removal was stored in a 1,100 gallon above ground storage tank located in a fenced compound onsite pending removal by Belshire Environmental Services, Inc..

Table 1
September 4 and 5, 2017
Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California

Well Depth (feet bgs)		Screened Interval	Top of Well Casing Elevation ^(a)	Depth to Free Product (TOC) Thickness of Free Product (feet)		Groundwater Elevation (September 4-5, 2017)	
MW-3	25	5 to 20	16.65	11.35	Can't Measure	5.30	
MW-4	25	5 to 20	16.29	NP	NP	7.41	
MW-5	25	5 to 20	16.72	NP	NP	7.07	
MW-6	25	5 to 20	16.82	NP	NP	9.17	
MW-7	20	5 to 20	17.73	NP	NP	7.01	
MW-8	16	5 to 16	17.84	9.70	0.24	7.90	
MW-9	20	5 to 20	17.84	NP	NP	7.79	
MW-10	20	5 to 20	17.83	8.80	0.02	9.01	
MW-11	20	5 to 20	17.76	NP	NP	7.34	
MW-12	20	5 to 20	17.83	NP	NP	8.65	
MW-13	20	5 to 20	17.66	NP	NP	9.38	
MW-14	20	5 to 20	17.60	NP	NP	8.60	
MW-15	20	5 to 20	17.80	9.55	0.02	8.23	
MW-16	20	5 to 20	17.74	NP	NP	7.94	
MW-17	20	5 to 20	18.17	NP	NP	8.67	
MW-18	20	5 to 20	16.35	NP	NP	7.15	
MW-E	47	7 to 40	17.47	NP	NP	7.30	
RW-1	30	unknown	16.70	NP	NP	6.99	
ТА-Е	11-13	6-8 to 11-13	17.20	NM	NM	NM	
TA-M	11-13	6-8 to 11-13	17.21	NM	NM	NM	
TA-W	11-13	6-8 to 11-13	17.28	NM	NM	NM	
ТВ-Е	11-13	6-8 to 11-13	17.24	NM	NM	NM	
TB-M	11-13	6-8 to 11-13	17.30	NM	NM	NM	
TB-W	11-13	6-8 to 11-13	17.33	NM	NM	NM	
ТС-Е	11-13	6-8 to 11-13	17.07	NM	NM	NM	
TC-M	11-13	6-8 to 11-13	17.37	NM	NM	NM	
TC-W	11-13	6-8 to 11-13	17.32	NM	NM	NM	

Notes:

bgs = below ground surface

TOC = below top of casing

NP = no free product in well)

NM = depth to groundwater and/or free product could not be determined due to the presence of product

MW-3 through MW-6 and MW-E are 2-inch PVC. MW-7 through MW-18 are ¾-inch PVC. RW-1 is 10-inch steel.

⁽a) Relative to mean sea level.

⁽b) Depth to groundwater and/or of free product could not be determined because free product density would not allow a clear delineation.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND DISCUSSION OF FINDINGS

This section presents analytical results of the current monitoring event and summarizes relevant regulatory considerations. Appendix C contains the certified analytical laboratory report.

REGULATORY CONSIDERATIONS

As specified in the East Bay Plain Groundwater beneficial Use Evaluation Report by the San Francisco Bay Region Water Board (Water Board, 1999), all groundwater is considered a potential source of drinking water unless otherwise indicated by the Water Board, and is assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. The subject property is listed as occurring within Zone B, designated as groundwater that is unlikely to be used as a drinking water resource. This western area of Emeryville is also generally known as a brownfield area where ubiquitous groundwater contamination makes groundwater use problematic. The basin is shallow in this area, with depths of less than 300 feet. Groundwater in this area has been used for backyard irrigation, industrial supply, and commercial irrigation. There is a low likelihood that this water will be used as a public water supply in the near future.

The Water Board publishes Environmental Screening Levels (ESLs) for residential and commercial/industrial properties where groundwater is/is not a likely drinking water resource. As stipulated in the ESL document (Water Board, 2016), ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments. The groundwater ESLs are composed of one or more components—including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation (e.g., monitoring plume stability to demonstrate no risk to sensitive receptors where drinking water is not threatened) may be warranted. Because the subject property is a residential property where groundwater is not a likely drinking water resource, the contaminant levels at the site will be compared to the ESLs for these criteria.

Contaminants detected above the ESLs during this sampling event include gasoline, diesel, benzene, toluene, ethylbenzene, and total xylenes. In general, concentrations of gasoline and diesel have decreased as compared to both the previous quarter and the same quarter last year.

GROUNDWATER SAMPLE RESULTS

Table 2 and Figure 5 summarize the analytical results for the site monitoring wells for the current sampling event that occurred September 4 and 5, 2017.

Table 2
Groundwater Sample Analytical Results – September 4 and 5, 2017
6400 Christie Avenue, Emeryville, California

	Analytical Results						
Well ID	ТРНд	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
MW-3	380	5,000	17	< 0.5	< 0.5	0.64	< 2.0
MW-4	<50	290	< 0.5	< 0.5	< 0.5	< 0.5	2.8
MW-5	< 50	1,400	< 0.5	< 0.5	< 0.5	< 0.5	2.7
MW-6	<50	570	0.83	<0.5	< 0.5	< 0.5	< 2.0
MW-7	1,200	3,800	320	11	14	45.2	< 10
MW-8	24,000	7,100	6,400	82	550	170	< 170
MW-9	510	3,800	6.1	< 2.5	< 2.5	< 2.5	< 10
MW-10	8,700	1,800	1,900	65	<25	42	< 10
MW-11	2,100	3,800	210	34	18	60	< 10
MW-12	6,200	2,100	1,400	36	<13	< 13	< 50
MW-13	13,000	7,200	3,100	58	340	120	< 100
MW-14	8,600	3,900	2,200	97	120	62	< 100
MW-15	15,000	2,900	4,900	68	43	46	< 100
MW-16	< 250	3,200	13	<2.5	< 2.5	< 2.5	< 10
MW-17	6,700	3,100	840	170	59	137	< 50
MW-18	< 250	1,900	< 2.5	< 2.5	< 2.5	< 2.5	< 10
MW-E	16,000	3,200	4,400	120	410	359	< 100
RW-1	660	680	86	<0.5	3.0	3.4	< 2.0
ESLs (a)	100 / 440	100 / 640	1.0 / 1.1	40 / 130	13 / 13	20 / 100	5.0 / 180

Notes:

MTBE = methyl tertiary-butyl ether

TPHd = total petroleum hydrocarbons – diesel range (equivalent to total extractable hydrocarbons – diesel range)

TPHg = total petroleum hydrocarbons - gasoline range (equivalent to total volatile hydrocarbons - gasoline range)

⁽a) Water Board Environmental Screening Levels for residential sites where groundwater <u>is/is not</u> a likely drinking water resource (Water Board, 2016).

All concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion (ppb). Results listed in **bold-face type** are at or above the ESLs where groundwater *is not* a likely drinking water resource.

Table 3 below, summarizes the analytical results for TPHg/d and MBTEX for the trench wells. In order to begin tracking the effectiveness of the Nutrisulfate[®] product that was introduced into trench well arrays A and C in 2015 and 2016, sampling of the central wells (TAM, TBM and TCM) in all three trench well arrays was conducted on June 24, 2016, February 8, 2017 and most recently on September 1, 2017. Trench well TBM has not received the Nutrisulfate[®] product and is a control well. Although the ratios of TVHg, to TEHd and MBTEX concentrations in the trench wells after the introduction of the Nutrisulfate[®] product shifted towards TEHd, the most recent September 2017 results show that TEHd concentrations have decreased substantially, with little change to TVHg concentrations. Laboratory analyses of samples collected in September 2017 for dissolved iron, nitrates, sulfates, pH, dissolved oxygen, oxidation reduction potential is discussed in Section 5.

Table 3
Trench Well Groundwater Samples Hydrocarbon Analytical Results
6400 Christie Avenue, Emeryville, California

	Analytical Results									
Well ID	ТРНд	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ			
	June 24, 2016									
TAM	22,000	23,000	4,400	160	1,000	128	< 20			
TBM	3,400	8,100	820	18	< 0.50	14.4	< 2.0			
TCM	5,200	62,000	830	7.2	14	10.2	< 2.0			
			Fe	ebruary 8, 201	17					
TAM	15,000	31,000	3,200	75	410	140	< 10			
TBM	5,100	3,400	750	22	48	32	< 2			
TCM	5,600	65,000	1,300	< 2.5	23	3.5	< 10			
September 1, 2017										
TAM	16,000	9,800	3,100	74	750	111	< 40			
TBM	2,600	1,900	690	13	2.4	11.3	< 5			
TCM	6,600	6,600	1,600	< 4.2	25	13.9	< 17			
ESLs (a)	100 / 440	100 / 640	1.0 / 1.1	40 / 130	13 / 13	20 / 100	5.0 / 180			

<u>Notes</u>

a) Water Board Environmental Screening Levels for residential sites where groundwater *is/is not* a drinking water resource (Water Board, 2016). MTBE = methyl tertiary-butyl ether; TPHd = total petroleum hydrocarbons – diesel range (equivalent to total extractable hydrocarbons – diesel range); TPHg = total petroleum hydrocarbons – gasoline range (equivalent to total volatile hydrocarbons – gasoline range)

All concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion (ppb). Results listed in **bold-face type** are at or above the ESLs where groundwater *is not* a drinking water resource.

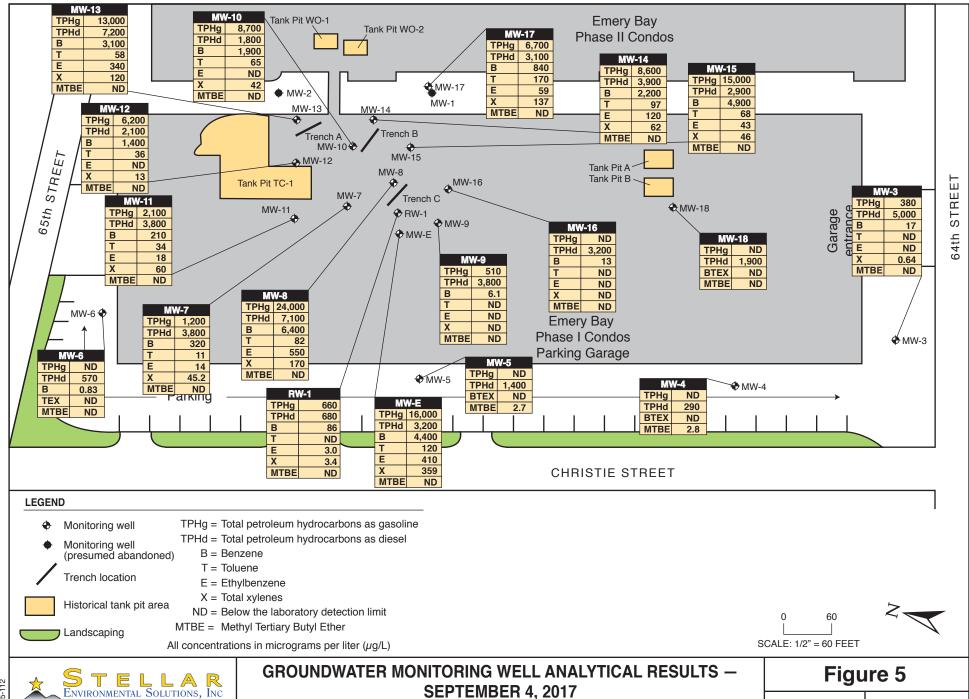
Distribution of Hydrocarbon Contaminants

For the current sampling event, several wells have hydrocarbon concentrations significantly above Water Board ESLs. However, hydrocarbon concentrations in wells can be significantly affected by the purging of accumulated hydrocarbons product, so large swings in concentration (both reductions and increases) are possible due to this occurrence. In addition, the introduction of surfactant since 2013 and Nutrisulfate® since 2015 (see Section 5) into the trench and/or selected monitoring wells with the aim of reducing accumulated LNAPL and to enhance the kinetics and efficiency of microbial systems in site groundwater is likely to affect dissolved concentrations.

Increases in September 2017 TVHg concentrations compared to the September 2016 monitoring event were observed at wells MW-7 and MW-11. This represents two wells exhibiting an increase in TVHg as compared to eight wells reporting an increase in TVHg in September 2016. Decreases in TVHg concentrations for September 2017 was observed in 9 wells, with 7 wells showing little change compared to the September 2016 monitoring event.

TVHg was detected above the ESL where groundwater is not a likely drinking water resource (440 micrograms per liter $[\mu g/L]$) in all wells except wells MW-3, MW-4, MW-5, MW-6, MW-16 and MW-18 where TVHg was also detected, but at concentrations below the ESL.

Diesel was detected in all site wells above the ESL of $640 \,\mu\text{g/L}$ (where groundwater is not a likely drinking water resource) for the September 2017 monitoring event except for wells MW-4 and MW-6, but showed a decrease in concentration in 17 of the 18 wells sampled as compared to 12 of 18 wells when compared to the September 2016 sampling event.


The highest concentrations of TVHg (24,000 μ g/L in MW-8) and TEHd (7,200 μ g/L in MW-13) for the current event compares to concentrations of 29,000 μ g/L TVHg in MW-E and 15,000 μ g/L TEHd in wells MW-13 in September 2016. Concentrations of hydrocarbons in well MW-8 that had been on the increase, showed little change since the September 2016 sampling event with TVHg remaining at 24,000 μ g/L and with TEHd decreasing from 9,200 μ g/L in 2016 to the current 7,100 μ g/L. Concentrations of hydrocarbons in well MW-E also showed a marked decrease in hydrocarbon concentrations compared to the September 2016 sampling event, with TVHg decreasing from 29,000 μ g/L in to 16,000 μ g/L for the current event, and TEHd decreasing from 9,400 μ g/L in 2016 to the current 3,200 μ g/L.

Multiple applications of surfactant in wells MW-3, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and into all nine trench wells between 2013 and 2016 have had the primary effect of reducing the amount of recoverable oily product during the pumping activities that occur before each semi-annual monitoring event. Fluctuating concentrations of TVHg and TEHd in these wells

may be attributed to seasonal groundwater level, reduction of LNAPL and the reduced volume of groundwater being pumped from the trench wells. Since the application of the Nutrisulfate[®] product into trench well arrays A and C, no pumping of those trench wells has occurred while the Nutrisulfate[®] product is releasing into the shallow water bearing zone. Based on current sulfate levels in trench well arrays A and C, favorable conditions still exist for continued biodegradation of hydrocarbon.

Overall, the total detected concentrations of TVHg in all 18 monitored wells (excluding the trench wells) decreased (approximately 25%) from 138,860 μ g/L TVHg detected in September 2016 to 102,670 μ g/L TVHg in September 2017. TEHd concentrations also decreased significantly (approximately 50%) from 105,200 μ g/L in September 2016 to 55,740 μ g/L for the current monitoring event.

Observed fluctuations in hydrocarbon concentrations may be attributed to seasonal groundwater level, reduction of LNAPL and reduced volume of groundwater being pumped from the trench wells. Since the application of the Nutrisulfate[®] into trench well arrays A and C, no pumping of those wells has occurred. Figure 5 shows the TVHg MBTEX and TEHd concentrations for the September 2017 monitoring event.

6400 Christie Ave., Emeryville, CA

by: MJC

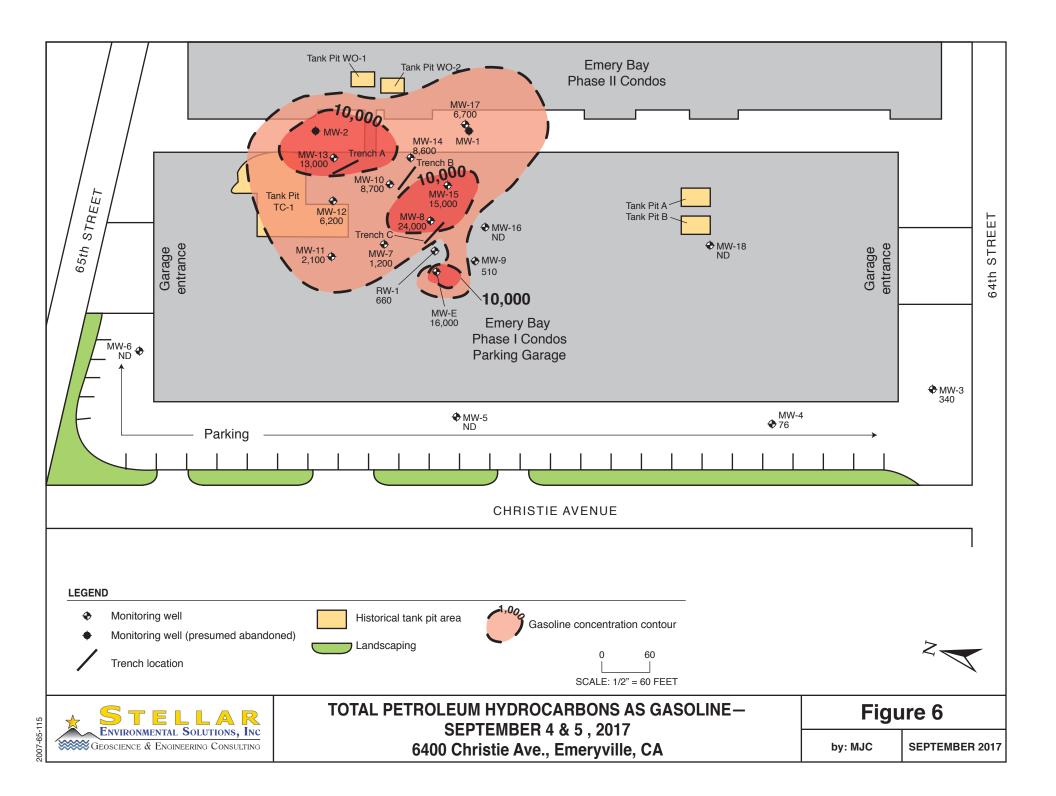
SEPTEMBER 2017

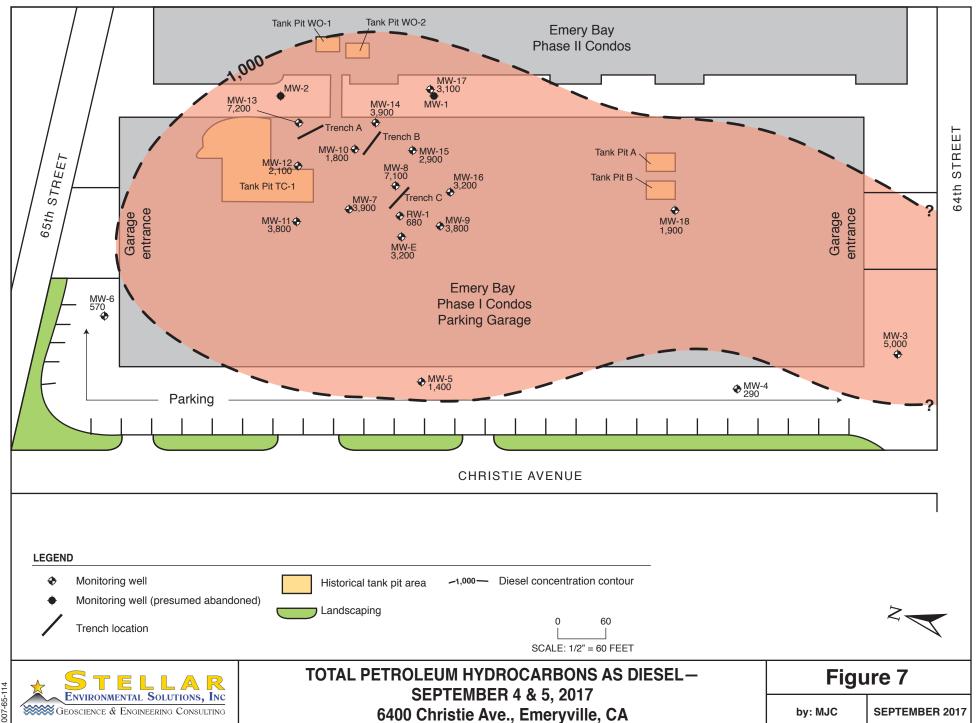
SEE GEOSCIENCE & ENGINEERING CONSULTING

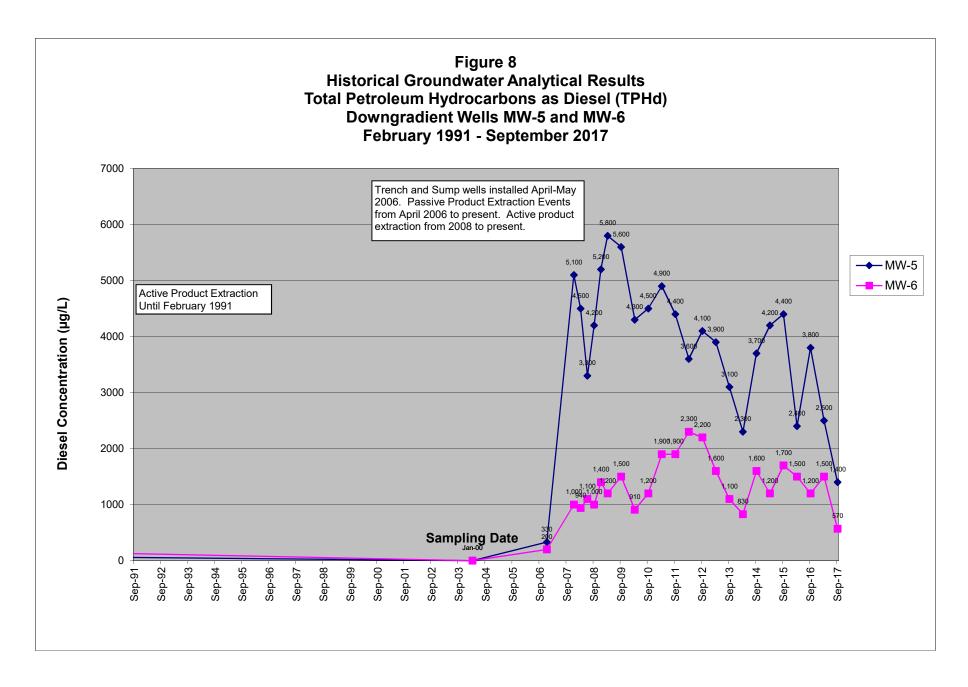
In monitoring wells MW-3, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, MW-17, MW-E and RW-1, concentrations of benzene exceeded the ESL of 1.0 µg/L for residential property where groundwater is not a drinking water resource. Comparing September 2016 results to the current 2017 results showed an increase in benzene in 11 of the 18 site wells sampled. Benzene was detected in well MW-6 but at a concentration below the ESL. Perimeter wells MW-4 and MW-5 remain stable at concentrations below laboratory reporting limits for the current event.

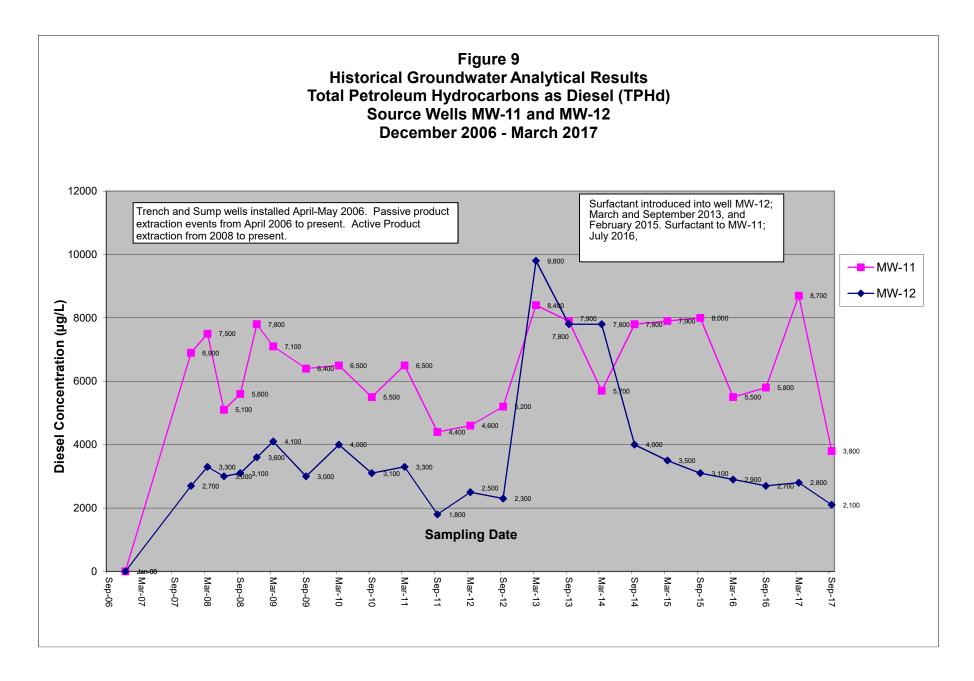
Figures 6 and 7 are isoconcentration maps of TVHg and TEHd concentrations in groundwater based on the September 4 and 5, 2017 analytical results.

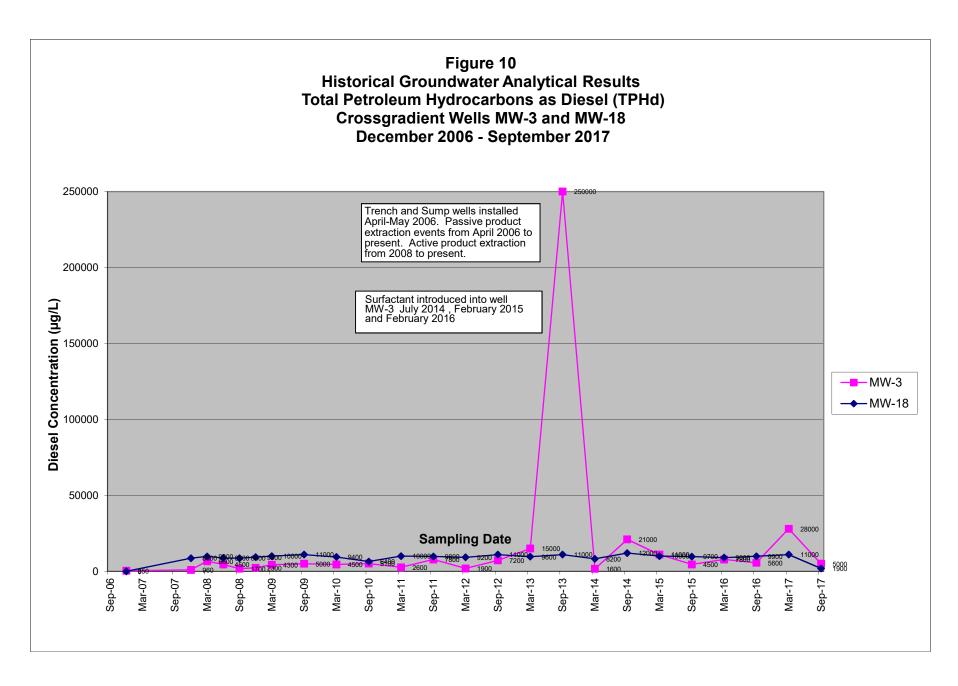
Toluene was detected above the ESL of $130 \mu g/L$ in monitoring well MW-17. Toluene was also detected in wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-E but at levels below the ESL.


Ethylbenzene was detected above the 13 μ g/L ESL in monitoring wells MW-7, MW-8, MW-11, MW-13, MW-14, MW-15, MW-17 and MW-E. Ethylbenzene was also detected in well RW-1 but at levels below the ESL.


Total xylene concentrations in wells MW-8, MW-13, MW-17 and MW-E were above the 100-µg/L ESL where groundwater is not a likely drinking water resource. Total xylenes were detected in MW-3, MW-7, MW-10, MW-11, MW-14, MW-15 and RW-1 but below the ESL.


MTBE was not detected above the reporting limit in any monitored site well except for wells MW-4 and MW-5 which contained 2.8 μ g/L and 2.7 μ g/L MTBE respectively.


Laboratory analytical and quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the in accordance with the requirements of each analytical method. All laboratory QC results and sample holding times were within method limits (Appendix C).


Figure 8 depicts groundwater analytical trends for TPHd in downgradient wells MW-5 and MW-6. Figure 9 depicts groundwater analytical trends for TPHd in source wells MW-11 and MW-12. Figure 10 depicts groundwater analytical trends for TPHd in crossgradient wells MW-3 and MW-18.

5.0 FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM

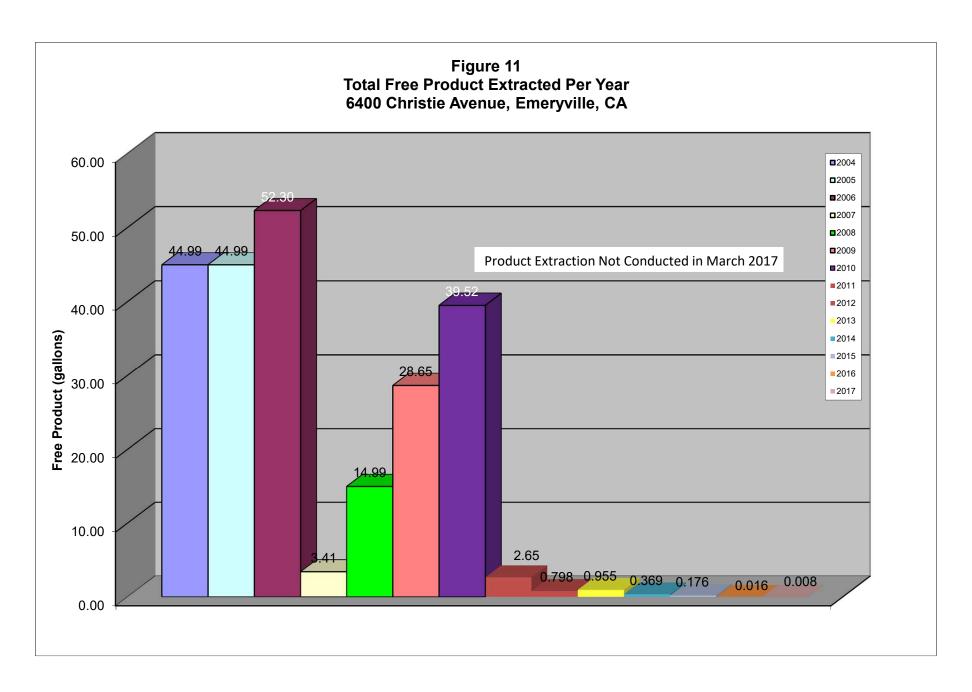
This section describes the historical extraction of the free product from the Emery Bay/Bridgewater Phase I Condo parking garage, the construction details of the current LNAPL remediation system located on the northeastern portion of the garage, and the most recent product removal activities conducted on August 31, 2017 and September 1, 2017 (prior to the sampling event on September 4 and 5, 2017). Appendix E summarizes historical product removal.

LNAPL REMEDIATION SYSTEM CONSTRUCTION

In an attempt to maximize free product removal, PES constructed three trenches, each containing three sump wells, in the northeastern area of the parking garage. Historically, this area has had the highest concentrations of contamination and accumulation of free product. The trenches (TA, TB, and TC) extend to depths of approximately 12.5 to 13 feet bgs, while the collection sumps in the trenches (TAW, TAM, TAE, TBW, TBM, TBE, TCW, TCM, and TCE) extend to approximately 11 to 13 feet bgs. The sumps were constructed using 10-inch-diameter schedule 40 polyvinyl chloride (PVC) casing. Blank casing was used from approximately 0.5 feet bgs to between 6 and 8 feet bgs. Slotted 0.06-inch PVC was used from between 6 and 8 feet bgs to 6 inches from the total depth of the trench. The trenches were then backfilled with high-porosity, high-permeability gravel designed to promote LNAPL migration (PES, 2007). Passive skimmers were then placed in each of the sumps in Trench A and in one of the sumps (TCE) in Trench C.

Skimmers operate on the principal of floating on the surface of the water. Water and free product collect in a filtration reservoir, which allows water to pass through. A tube connected to the reservoir then filters the free product into a collection reservoir located below the water surface. The reservoir can be emptied by opening a valve located on the bottom of the cylindrical shaped reservoir. Each of these skimmers were attached to the sump lid by a rope, and could be removed and transferred to another sump as needed. However, the skimmers were never particularly effective at capturing the petroleum product as designed, and by 2013, they contained nearly no free oil. Because the skimmers were no longer effective as of 2014, and because the skimmer equipment was covered with oily residue, possibly contributing to the hydrocarbon impacts to site groundwater, the skimmers were removed from the wells in trenches A (six skimmers) and C (one skimmer) on September 4, 2014.

HISTORICAL FREE PRODUCT EXTRACTION


As mentioned under the "Previous Investigations" subsection in Section 1.0, in approximately 1986, contaminated soil and groundwater were discovered during the removal of 12 UFSTs from the Emery Bay Phase I and Phase II parcels. To dewater the excavation during the Phase I and Phase II Condo construction, a groundwater extraction and remediation system was installed by GTI in 1988. Approximately 1 million gallons of water yielding 100 gallons of hydrocarbon product was removed from RW-1 during its operation (PES, 2007). However, corrosion and other mechanical problems caused the system to fail in 1991, and it was decommissioned in 1994. In February 2008, Stellar Environmental removed all of the old parts of the system from the well and vault.

In 2004, PES began manual extraction from well RW-1, and was reported to have removed approximately 48 gallons of LNAPL (PES, 2004a)—although it is unclear whether the removed material was pure product or product mixed with water. To accelerate free product removal, PES constructed a new LNAPL hydrocarbon remediation system (described previously) between April and May 2004 (PES, 2007). Several extraction events were conducted by PES from May 2004 through March 2007; the extraction events yielded a total of approximately 51 gallons of LNAPL. No extraction events were conducted by PES in 2005; approximately 50 gallons of hydrocarbons was removed in 2006; and approximately 0.6 gallon of hydrocarbons was removed by PES between January and November 2007. In November and December 2007, after Stellar Environmental was retained for the project, the skimmer system yielded 2.82 gallons. Figure 11 graphs the comparison of free product extraction on a yearly basis.

No historical product extraction reports were provided to Stellar Environmental by the previous owner or by PES. Therefore, there is little to no information on how active product extraction occurred during 2004 and 2006. Based on better defined recovery in 2008 through 2011 the volume of free product indicated to have been recovered during 2004 and 2006 appears unrealistically high, suggesting that free-phase project mixed with water was reported as free-phase product recovery.

2013-2016 SURFACTANT INJECTIONS

Some of the centrally located wells, and perimeter well MW-3 have contained a molasses-like, degraded product that has made well purging and sampling difficult. Equipment lowered down into the well casings come back out coated with a tar like substance that is difficult or impossible to clean, and may account for low water yield in some wells due to sand pack and well screen fouling. Six of the worst wells in this regard have been MW-3, MW-8, MW-10, MW-12, MW-13 and MW-17. With the exception of MW-3 which is constructed with 2-inch diameter PVC well casing, all these wells are constructed with $\frac{3}{4}$ -inch diameter PVC casing, and are screened to total depth across

the same interval of 5 to 20 feet bgs, except for MW-8 which is screened from 5 to 16 feet bgs. In order to attempt to clean the well casings and emulsify the tar thought to exist in the well pack, a surfactant was chosen as a solution.

Surfactants are designed to change the interfacial tension between the water and NAPL and desorb the residual LNAPLs entrained in the soil matrix by micro-emulsifying the organic particles, and forming a micelle. In the case of weathered LNAPLs, surfactants have been used to decrease the viscosity of the material, resulting in increased and more efficient recovery. Surfactants can also be considered bioremediation enhancing and vapor suppression agents. The use of mobile multi-phase extraction that has been occurring at the site twice-yearly since 2008, allows a focused remediation effort at a targeted area of the site, and increases the effective radius of influence of the pumping. This combined approach involves the in-situ application of a surfactant mixture, under pressure, into the site subsurface. The injection is followed by high-vacuum induced multi-phase recovery from the injected wells as well as surrounding wells via a mobile vacuum truck.

In March and September 2013 wells MW-8, MW-12, MW-13 and MW-14 were injected with EnviroClean[®] supplied by Enviro Clean Services, LLC. EnviroClean[®] is a non-flammable, nontoxic, water-based blend of non-toxic, non-ionic ethoxylated octylphenolic surfactants that has been engineered as a cleanup/mitigation agent for a wide range of hydrocarbon products. EnviroClean[®] product information is included in Appendix F. A 4% solution of EnviroClean[®] was mixed per manufacturer recommendations using clean water. Approximately 5 gallons of the solution was introduced into each well. The well casing and screen in each well were then scrubbed using a stiff bristle brush attached to an extension. After the scrubbing, approximately 15 gallons of the working EnviroClean[®] solution was injected under pressure into each well using a dual-diaphragm pump.

Based on the positive results of the non-hazardous surfactant injection into wells MW-8, MW-12, MW-13 and MW-14 in 2013 which resulted in reduced or eliminated oil residue, the same surfactant was introduced into well MW-3 which has historically been difficult to gauge and sample due to the thick oil in the well. On July 2, 2014, approximately 10 gallons of a 5% mixture of the surfactant was introduced into MW-3 and the well casing scrubbed. On September 4, 2014, approximately 20 gallons of the 5% surfactant mixture was introduced into each of the nine trench wells onsite after the skimmers had been removed from the wells in trenches A and C, to test the ability of the surfactant to re-dissolve the viscous hydrocarbon buildup in those wells.

Additional surfactant application occurred on February 3, 2015. Approximately 1 gallon of an 8% surfactant mixture was introduced into wells MW-8, MW-12, MW-13, MW-18 and MW-E. Each well was swabbed as described above. Two gallons of a 10% mixture and 5 gallons of a 15% solution was introduced into wells MW-10 and MW-3 respectively, and swabbed.

Further surfactant application occurred on January 14, 2016. Approximately 1 gallon of a 5% surfactant mixture was introduced into wells MW-8 and MW-10. Each well was swabbed as described above. Three gallons of a 5% solution was introduced into MW-3, then swabbed.

The most recent surfactant application occurred on June 24, 2016 informed by the observation of LNAPL in site wells by Blaine Tech Services during sampling activities conducted on March 31, 2016. Approximately 1 gallon of a 5% surfactant mixture was introduced into wells MW-8, MW-10, MW-11, MW-13 and MW-15. Each well was swabbed after the introduction of surfactant.

BIOREMEDIATION COMPOUND INJECTION 2015-2016

Surfactant injection efforts between 2013 and 2016 have reduced free-floating product phase in the area of the trench wells and other nearby monitoring well hotspots such as MW-8, MW-10 and MW-13. Based on the very low volumes of free product being recovered from site monitoring and extraction wells, introduction of a bioremediation compound into the trench wells was considered as a method of reducing the hydrocarbon plume hotspot.

After reviewing the various options for in-situ bioremediation Stellar Environmental concluded that for this particular site, with the apparent concentration and type of hydrocarbons evident, the most promising remedy is to use a product designed to degrade the petroleum hydrocarbons anaerobically. The proposed remedial design accomplishes this through enhanced natural attenuation/biodegradation and *in situ* chemical reduction induced via the use of a sulfate delivery bioremediation compound. The method relies on sulfate utilization, since the majority of petroleum hydrocarbon sites are sulfate depleted. Sulfate is readily soluble therefore large amounts of it can quickly dissolve into groundwater. Sulfate reducing bacteria will use the petroleum hydrocarbons as a food source and the sulfate as the terminal electron acceptor. The result is rapid bioremediation of dissolved petroleum hydrocarbons. The product chosen for the remedial injection is Nutrisulfate. The metabolites in Nutrisulfate are designed to enhance microbial growth. Advantages include:

- Improved bioremediation kinetics
- Thinner (parallel to groundwater flow) bio-barriers
- Faster remedies
- Reduced costs

For the proposed 14,400 cubic feet treatment volume (60ft x 60ft x 4ft) one, 500 lb. drum (55-gallons) of Nutrisulfate® was introduced into trench Well arrays A and C on September 3, 2015. An additional 110 gallons of the product was introduced into the trench well arrays A and C on February 17, 2016 and again on August 3, 2016. The product loading is based on the averaging the concentrations in the six monitoring wells MW-8, MW-10, and MW-12-through MW-15 collected in

Y-2014. The product is engineered for the slow release of sulfate and nutrients to stimulate the bioremediation of the hydrocarbon groundwater environment at the site. The injected product has no known harmful products or byproducts associated with it.

HYDROCHEMICAL ANALYSES TO MONITOR NUTRISULFATE® VIABLITY

Nutrisulfate® is a high sulfate, yeast based product that stimulates biodegradation by providing a soluble, readily available electron acceptor solution. In the presence of elevated sulfate, anaerobic groundwater bacteria use BTEX compounds and other petroleum hydrocarbons for carbon and energy while mineralizing the hydrocarbons to carbon dioxide and water.

In order to track the hydrochemical conditions in the trench well arrays, samples were collected in on September 1, 2017 from the central well in each array with the goal to track the conditions that are being created by the Nutrisulfate[®] product introduced into trench well arrays A and C in 2015 and 2016. The product has not been introduced into trench well array B. Table 4 summarizes dissolved Iron (Fe), Nitrates, Sulfates, pH, dissolved oxygen (O₂) and oxidation reduction potential.

Table 4
Trench Well Groundwater Hydrochemical Analytical Results
6400 Christie Avenue, Emeryville, California

XX7.11			Analyt	ical Resu	ılts February 8,	2017		
Well ID	Dissolved Fe (µg/L)	Nitrates (mg/L)	Sulfates (mg/L)	pH (Su)	Dissolved O ₂ (mg/L)	ORP (Eh)	TVHg (µg/L)	TEHd (µg/L)
TAM	< 100	< 0.5	5,100	6.8	0.61	- 260	15,000	31,000
TBM	< 100	< 0.05	9.1	7.1	3.5	- 16	5,100	3,400
TCM	270	< 0.5	7,800	6.6	0.38	- 300	5,600	65,000
			Analytic	al Result	ts August 31, 201	17		
TAM	< 100	< 1	3,400	7.1	<1	- 180	16,000	9,800
TBM	< 100	< 0.1	< 1	7.1	3.4	- 29	2,600	1,900
TCM	< 100	< 2.5	6,500	7.0	<1	- 260	6,500	6,600

Notes:

ORP = Oxidation Reduction Potential

(TPHd = total petroleum hydrocarbons – diesel range (equivalent to total extractable hydrocarbons – diesel range)

TPHg = total petroleum hydrocarbons - gasoline range (equivalent to total volatile hydrocarbons - gasoline range)

As can be seen in Table 4, the dissolved oxygen is lower in the amended wells, suggesting that the desired anaerobic conditions are being created. Sulfate has increased in the amended wells and pH is within desirable bioremediation range limits. Oxidation-reduction potential (ORP), is a measurement that in this case, indicates the degree to which the Nutrisulfate[®] is capable of oxidizing or reducing the hydrocarbon contaminants. The negative ORP values in wells TAM and TCM indicate that the desired reducing conditions are being created in trench well arrays A and C.

The biggest reduction in dissolved hydrocarbon concentrations can be seen in the August 2017 TEHd concentrations as compared to February 2017, with a 90% reduction observed in TEHd concentrations noted in well TCM. Very little change in TVHg concentrations was observed. Overall, the Nutrisulfate® product appears to be creating the conditions needed to support natural bioremediation. Since the theoretical sulfate demand is not likely to be met, reapplication of the Nutrisulfate® product may be required when sulfate depletes.

SEPTEMBER 2017 PRODUCT REMOVAL EVENT

Product yield from the trench recovery system has been unproductive and inconsistent, with the passive skimmer collection reservoirs not filling up completely, or filling up with water rather than product. As mentioned above, due to their ineffectiveness at collecting free product over the past several monitoring events, and due to the oily residue on the skimmers, the skimmers were removed from the wells in trenches A and C prior to the first surfactant injection into those trench wells on September 4, 2014. As described above, the bioremediation product, Nutrisulfate[®] was introduced into trench well arrays A and C on September 3, 2015, February 17, 2016 and most recently on June 24, 2016. No product recovery was conducted from trench well arrays A and C for the March 2017 monitoring event or for the current monitoring event so as to not remove the Nutrisulfate[®] product.

Stellar Environmental conducted active product/dissolved hydrocarbon removal from all site wells (except the wells in Trenches A and C) during the 2 days prior to the groundwater sampling event that occurred on September 4 and 5, 2017. Approximately 600 gallons of groundwater along with less than an ounce of free product were removed during the current active product removal event.

The removal activities for August 31 and September 1, 2017 can be summarized as follows:

- Stellar Environmental removed a total of 150 gallons of water from trench wells TB-W, TB-E and TB-M with no measurable free product. No removal has been attempted from trench wells TA-W, TA-E TA-M, TC-W, TC-E or TC-M since the Nutrisulfate[®] product introduction into those wells that occurred most recently on June 24, 2016.
- Stellar Environmental removed a total of 140 gallons of groundwater from recovery well RW-1 along with an estimated 0.0078 gallons of product or less.
- No measurable quantity of petroleum product was removed along with the 600 gallons of liquid that was pumped from the monitoring wells during the extraction event.
- All of the water for the purging event was contained onsite in the 1,100-gallon AST located in the northeastern gated area of the garage.

Table 5
Active Product Extraction – August 31 and September 1, 2017
6400 Christie Avenue, Emeryville, California

Well	Total Gallons of Product Removed	Well	Total Gallons of Product Removed
MW-3	0	MW-17	0
MW-4	0	MW-18	0
MW-5	0	MW-E	0
MW-6	0	RW-1	0.0078
MW-7	0	TA-E	Not Pumped
MW-8	0	TA-M	Not Pumped
MW-9	0	TA-W	Not Pumped
MW-10	0	ТВ-Е	0
MW-11	0	TB-M	0
MW-12	0	TB-W	0
MW-13	0	TC-E	Not Pumped
MW-14	0	TC-M	Not Pumped
MW-15	0	TC-W	Not Pumped
MW-16	0		
	•	Second 2017 Event Total	0.0078

Notes:

Product removal estimates are based on the total amount of free product measured in the purge drum after pumping each well

DISCUSSION OF FREE PRODUCT REMOVAL AND LIMITATIONS

As mentioned under the "Historical Free Product Extraction" subsection of this chapter, no product extraction was conducted by PES in 2005. "Product" removal in 2006 was reported at a significant 52 gallons by PES; however, it was not achieved through collection from the trench hydrocarbon skimmers, but rather through active pumping; in addition, the "product" referred to by PES appears to actually have been a mixture of petroleum product and water. The PES report provides no documentation (e.g., manifests) of the removal of actual recovered petroleum product. The recovery by PES from the start of 2007 through October 2007 (when Stellar Environmental assumed environmental consulting activities) was limited to 0.6 gallon collected from the skimmers. In addition, there had been no removal of free product from well RW-1 since 2004, at which time approximately 50 gallons of free-floating product was reportedly (PES, 2004c) removed by active pumping although antidotal evidence suggests that much of this was purge water versus free product. The majority of petroleum product is indicated to have been removed by active pumping and removal activities rather than from the trench well skimmers, the petroleum product recovery being in the form of a mixture of water and hydrocarbons. In 2007, passive extraction of free product

through trench well skimmers removed only 3.41 gallons. Stellar Environmental removed approximately 5.65 gallons of free product from these passive skimmers during the 2008 removal events. From 2011 until they were removed in 2014, the skimmers contained only water and a trace of oil when checked. Approximately 14.99 gallons of product were removed by active pumping on wells during 2008, 28.65 gallons in 2009, 39.52 gallons in 2010, 2.65 gallons in 2011, 0.798 gallons in 2012, 0.955 gallons in 2013, 0.369 gallons in 2014, 0.176 gallons in 2015 and 0.016 in 2016, indicating that the active pumping of site wells to be an effective means of product removal as compared to the passive skimmer system. With only about 0.016 gallons of product removed in 2017 (about 2 ounces) it would appear that going forward, the reduction of recoverable LNAPL volume is likely to continue to decrease. Active pumping however will continue to be an effective method of removing groundwater with high dissolved hydrocarbon concentrations which will act as migration control.

For the current monitoring event, 2 of 15 wells in which TVHg is historically detected showed an increase of that compound as compared to 8 of 15 wells for September 2016. One of the 18 wells that have historically contained TEHd showed an increase in TEHd concentrations compared to 12 of 18 wells that showed an increase in TEHd for September 2016.

The marked overall decrease in hydrocarbon concentrations in site groundwater for the current monitoring event may be attributable to dilution from record rainfall in the Bay Area that occurred for the 2016/2017 season. Based on the greater decrease in TEHd concentrations (50%) as compared to TVHg concentrations (25%) in groundwater observed for September 2017, some of the observed decrease may be due to the Nutrisulfate® product introduced into Trench Well Arrays A and C in 2015 and 2016. The high sulfate conditions being created is conducive to beneficial microbial growth in groundwater which generally can more easily break down TEHd compounds than TVHg.

The reduction of LNAPL by active extraction, which has since 2013 been combined with surfactant injections in selected wells, was a necessary step prior to current in-situ bio-remedial efforts, the first application of which occurred on September 3, 2015. Inconsistent trends in the hydrocarbon concentrations, particularly the upward spike in gasoline and diesel concentrations observed in wells since the surfactant injection in and/or near that wells may show more consistent trend lines after additional bio-remedial efforts are conducted (see Section 6). Based on observations made during the August/September 2017 field work, wells MW-8, MW-10 and MW-15 would benefit from additional surfactant application into those wells.

In general, residual hydrocarbons left in the soil after the USTs were removed from the site in the 1980's, is likely to continue to be a source of contamination to groundwater at the site. Additional surfactant applications at the site are expected to continue to reduce the degraded product present.

Additional Nutrisulfate® application into the trench wells as necessary as determined by tracking sulfate concentrations in the trench wells, are expected to be useful to speed the reduction of the dissolved hydrocarbon concentrations to levels acceptable to the regulatory agency and to achieve eventual closure. The outward effect of the surfactant injections based on observations made during recent product removal efforts has been a marked reduction in the viscous hydrocarbon substance in site wells. A significant increase in water yield from wells that received surfactant has not been observed.

6.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

FINDINGS AND CONCLUSIONS.

- The subject property parcel was developed as early as 1958 with the Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. In 1986, the building was demolished, and 12 UFSTs containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels. Soil and groundwater contamination was discovered.
- In response to the contamination, a LNAPL groundwater pump-and-treat system was installed in 1989, but failed in 1991. Active pumping of free product began again in 2004, and a product extraction system consisting of passive product removal was installed in 2006. Groundwater monitoring events have been sporadically conducted since 1988; quarterly groundwater monitoring events were conducted for the first time in 2008. The quarterly sampling was reduced to a semi-annual frequency in 2009.
- The site currently contains 17 monitoring wells, 1 recovery well, and 9 product extraction trench wells. The current event is the 29th sampling event conducted since 1988.
- Site geological conditions consist of a combination of fill and soft bay sediment to between 15 and 20 feet bgs, covered by approximately 1 to 2 feet of pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay extends from a depth of approximately 40 feet to approximately 102 feet.
- The groundwater flow direction calculated during this monitoring event was found to be generally to the west.
- September 2017 groundwater elevations ranged from 5.30 feet (MW-3) to 9.38 feet (MW-13) above mean sea level, with the average groundwater gradient for the current monitoring event being 0.007 foot/foot.

- The injection of a (non-hazardous) surfactant into selected site monitoring wells and into the nine trench wells over six separate occasions since 2013 has been successfully used to emulsify the viscous hydrocarbon buildup in the injected wells and nearby wells. Based on field observations of site wells, 11 of 27 monitoring and trench wells had detectable LNAPL prior to the first surfactant injection in March 2013 compared to 4 of 27 for the current September 2017 monitoring period.
- Surfactant injections into the A and C trench well arrays and wells MW-3, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-18 and MW-E have reduced or eliminated LNAPL in those wells, and may have contributed to an increase in concentrations of dissolved BTEX in those wells as compared to the September 2016 monitoring event.
- Current contaminants of concern include TVHg, TEHd, and BTEX. Current groundwater concentrations exceeded the ESLs for these contaminants.
- MTBE was not detected above the reporting limit in any monitored site well except for wells MW-4 and MW-5 which contained 2.8 µg/L and 2.7 µg/L MTBE respectively.
- The highest concentrations of TVHg (24,000 μg/L in MW-8) and TEHd (7,200 μg/L in MW-13) for the current event compares to concentrations of 29,000 μg/L TVHg in MW-E and 15,000 μg/L TEHd in wells MW-13 in September 2016. Concentrations of hydrocarbons in well MW-8 that had been on the increase, showed little change since the September 2016 sampling event with TVHg remaining at 24,000 μg/L and with TEHd decreasing from 9,200 μg/L in 2016 to the current 7,100 μg/L. Concentrations of hydrocarbons in well MW-E showed a marked decrease in hydrocarbon concentrations compared to the September 2016 sampling event, with TVHg decreasing from 29,000 μg/L in to 16,000 μg/L for the current event, and TEHd decreasing from 9,400 μg/L in 2016 to the current 3,200 μg/L.
- Increases in September 2017 TVHg concentrations compared to the September 2016 monitoring event were observed at wells MW-7 and MW-11. This represents two wells exhibiting an increase in TVHg as compared to eight wells reporting an increase in TVHg in September 2016. Decreases in TVHg concentrations for September 2017 was observed in 9 wells, with 7 wells showing little change compared to the September 2016 monitoring event.
- TVHg was detected above the ESL where groundwater is not a likely drinking water resource (440 micrograms per liter [µg/L]) in all wells except wells MW-3, MW-4, MW-5, MW-6, MW-16 and MW-18 where TVHg was also detected, but at concentrations below the ESL.
- Diesel was detected in all site wells above the ESL of 640 µg/L (where groundwater is not a likely drinking water resource) for the September 2017 monitoring event except for wells

- MW-4 and MW-6, but showed a decrease in concentration in 17 of the 18 wells sampled as compared to 12 of 18 wells for the September 2016 sampling event.
- In monitoring wells MW-3, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, MW-17, MW-E and RW-1, concentrations of benzene exceeded the ESL of 1.0 μg/L for residential property where groundwater is not a drinking water resource. Comparing September 2016 results to the current 2017 results showed an increase in benzene in 11 of the 18 site wells sampled. Benzene was detected in well MW-6 but at a concentration below the ESL. Perimeter wells MW-4 and MW-5 remain stable at concentrations below laboratory reporting limits for the current event.
- Toluene was detected above the ESL of 130 µg/L in monitoring well MW-17. Toluene was also detected in wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-E but at levels below the ESL.
- Ethylbenzene was detected above the 13 μg/L ESL in monitoring wells MW-7, MW-8, MW-11, MW-13, MW-14, MW-15, MW-17 and MW-E. Ethylbenzene was also detected in well RW-1 but at levels below the ESL.
- Total xylene concentrations in wells MW-8, MW-13, MW-17 and MW-E were above the 100-µg/L ESL where groundwater is not a likely drinking water resource. Total xylenes were detected in MW-3, MW-7, MW-10, MW-11, MW-14, MW-15 and RW-1 but below the ESL.
- Due to the ineffectiveness of the product skimmers that were in wells in recovery trenches A and C, the skimmers were removed from the wells in September 2014. The other reason for removal of the skimmers was that they were coated with oil, and thought to be contributing to dissolved hydrocarbon groundwater contamination. Lack of LNAPL allowed for the introduction of the Nutrisulfate® bioremediation product into the trench well arrays A and C in September 2105, February 2016 and August 2016.
- The near elimination of viscous LNAPL from site wells has allowed introduction of the product Nutrisulfate® which encourages natural attenuation/biodegradation and *in situ* chemical reduction via a sulfate delivery bioremediation compound. The metabolites in Nutrisulfate® are designed to enhance microbial growth. An initial application of 500 lbs. of Nutrisulfate® trench well arrays A and C was conducted on September 3, 2015. 1,000 lbs of the product was introduced into trench well arrays A and C on February 17, 2016 and an additional application of 1,000 lbs of the product was introduced into trench wells A and C on August 3, 2016.
- Based on samples collected from trench wells TAM, TBM and TCM collected August 31, 2017, dissolved oxygen remains lower in the amended wells, suggesting that the desired anaerobic conditions are being created. Sulfate has remained high in the amended wells and

pH is within desirable bioremediation range limits. Oxidation-reduction potential (ORP), is a measurement that in this case, indicates the degree to which the Nutrisulfate[®] is capable of oxidizing or reducing the hydrocarbon contaminants. The negative ORP values in wells TAM and TCM indicate that the desired reducing conditions are still present in trench well arrays A and C. Overall, the Nutrisulfate[®] product appears to be creating the conditions needed to support natural bioremediation.

- The central well (wells TAM, TBM and TCM) in each of the three trench well arrays was sampled June 14, 2016, February 8, 2017 and most recently on September 1, 2017 for the purpose of tracking hydrocarbon concentrations in the trench well arrays and to monitor differences in hydrocarbon concentrations in trenches A and C which have been receiving the Nutrisulfate[®] injections, versus the well in trench B which has not received the Nutrisulfate[®]. Ratios of TVHg to TEHd concentrations in the amended trench wells appear to have shifted towards TVHg since the February 8 sampling event with marked reductions of TEHd concentrations noted in well TAM and TCM as comparted to control well TBM. This is likely due to the microbial preference towards TEHd reduction as compared to TVHg. TVHg, TEHd and BTEX concentrations in the trench wells currently exceed ESLs with up to 16,000 μg/L TVHg detected in well TAM.
- Stellar Environmental conducted active product/dissolved hydrocarbon removal from all site wells (except the wells in Trenches A and C) during the two days prior to the groundwater sampling event that occurred on September 4 and 5, 2017. Approximately 600 gallons of groundwater along with less than an ounce of free product were removed during the current active product removal event. Although free product was noted by Blaine Tech Services in wells MW-3, MW-8, MW-10, MW-15 and RW-1, the only well noted to actually yield free product during the extraction process for the current event was wells MW-8, MW-13 and RW-1. The current volume of 0.0078 gallons (about 1 ounce) of recovered product indicates a continued reduction of recoverable product from site wells.
- TVHg and TEHd concentrations in the central area of the site where historically, wells MW-8, MW-10, MW-12, MW-13, MW-14 and MW-16 have shown the highest concentrations of residual fuel, generally trended towards higher TVHg concentrations for the current monitoring event and towards lower concentrations of TVHd. This represents an apparent reversal of a previous trend noted in 2016 towards higher TEHd concentrations.
- The marked overall decrease in hydrocarbon concentrations in site groundwater for the current monitoring event may be attributable to dilution from record rainfall in the Bay Area that occurred for the 2016/2017 season. Based on the greater decrease in TEHd concentrations (50%) as compared to TVHg concentrations (25%) in groundwater observed for September 2017, some of the observed decrease may be due to the Nutrisulfate® product introduced into Trench Well Arrays A and C in 2015 and 2016. The high sulfate conditions

being created is conducive to beneficial microbial growth in groundwater which generally can more easily break down TEHd compounds than TVHg.

PROPOSED ACTIONS

- Based on observations made during the September 2017 purging/gauging activities conducted by Blaine Tech Services, surfactant injections into wells MW-3, MW-8, MW-10, MW-15 and RW-1 should be conducted in mid-December 2017, prior to the next scheduled semiannual monitoring event scheduled for late March 2018. These monitoring wells and the recovery well RW-1 are the only wells currently onsite that contain enough detectable free product that can be expected to benefit from the surfactant.
- Based on observations of conditions in the trench wells in arrays A and C that indicate the settling of the higher specific gravity Nutrisulfate[®] to the bottom of the well columns, it is recommended to pump from well to well within the trench well arrays A and C in order to create a more even distribution of the Nutrisulfate[®] product, and to encourage its movement through the shallow water bearing zone. This work would be conducted at the same time of the surfactant injections into selected wells scheduled for December 2017.
- As part of the next recommended groundwater sampling event that would occur in March 2018, it is recommended that groundwater samples be collected from the central wells in each of the three trench well arrays. Laboratory analyses would include TVHg/TEHd/MBTEX and dissolved iron, nitrates, sulfates, pH, dissolved oxygen, oxidation reduction potential. The goal of this work is to continue to track hydrochemical trends in wells TAM and TCM receiving the Nutrisulfate[®] product and to compare trends against the trench well TBM which is not receiving the Nutrisulfate[®].
- Active groundwater/dissolved product removal events should be continued to ascertain their effectiveness in reducing the plume size over time. Active product removal is currently being conducted on a semiannual basis immediately prior to the sampling event. For the next scheduled monitoring event in March 2018, it is recommended that the product removal be focused on wells MW-3, MW-8, MW-10, MW-15, RW-1 and trench wells TBE, TBM and TBW.
- Groundwater monitoring should be continued on a semiannual basis to document contaminant concentrations over time. This monitoring of site wells will allow follow-on evaluation of the Nutrisulfate[®] injection and its efficacy for scaling upward to move the site toward full regulatory site closure.
- An indoor air sampling event is recommended in the ground floor sales office building with an outside control based on the findings for the last such monitoring event in June 2017 which showed some risk of exposure from vapor intrusion by benzene to commercial Sales Office occupants of the ground floor. The indoor air survey would be scheduled for June

2018 and will seek to determine if reductions in vapor intrusion have occurred along with the reduction in the groundwater concentrations.

■ Electronic uploads to ACEH's ftp system and the State Water Board's GeoTracker system should be continued as required.

7.0 REFERENCES AND BIBLIOGRAPHY

- Aqua Science Engineers (Aqua), 1986a. Hydrocarbon Contamination Abatement Plan for Bay Center, Emeryville, CA. May 23.
- Aqua Science Engineers (Aqua), 1986b. Report Soil Sampling and Determination of Hydrocarbon Contamination from Tank Removal at the Bay Port Development, 64th and Lacoste Street, Emeryville, CA. May 27.
- Aqua Science Engineers (Aqua), 1986c. A Proposal for Installing a Fuel Contamination and Recovery System. August 27.
- Aqua Science Engineers (Aqua), 1986d. Phase II Extent of Groundwater Contamination Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986e. Project Report Soils Gas Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986f. Request for Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. Information addressed to the Alameda County Health Care Services, Hazardous Materials Unit. July 28.
- Aqua Science Engineers (Aqua), 1986g. Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. July 11.
- Bay Area Air Quality Management District (BAAQMD), 1987. Letter to the Martin Company authorizing the contaminated groundwater and oil recovery system. April 13.
- Chan, Barney, 2007. Project Officer, Alameda County Department of Environmental Health. Personal communication to Richard Makdisi of Stellar Environmental Solutions, Inc. April 10.
- Creps, Rob, 2007. PES Environmental, Inc. Project Manager for the Phase I Apartment Complex Remediation. Personal communication to Teal Glass and Richard Makdisi of Stellar Environmental Solutions, Inc. April 19.

- Earth Metrics, Inc., 1986a. Draft Soils Contamination Characterization for Garret Freight Lines Emeryville Site, 64th Street and Lacoste, Emeryville, CA. March 14.
- Earth Metrics, Inc., 1986b. Environmental Assessment for the Proposed Bay Center Apartment Complex in the Redevelopment Project Area of the City of Emeryville. May.
- Earth Metrics, Inc., 1986c. Draft Work Plan for Soils Contamination Characterization of Bay Center Site, Emeryville, CA. May 19.
- Earth Metrics, Inc., 1986d. Soils and Groundwater Contamination Characterization of Bay Center Site, Emeryville, CA. August 20.
- Earth Metrics, Inc., 1987. Safety Plan for Bay Center Offices and Apartments in Emeryville, CA. September 15.
- Geomatrix, 1988. Observation and Testing of Earthwork Construction, Bay Center Apartments. May 20.
- Groundwater Technology, Inc. (GTI), 1987a. Letter to Alameda County Health Department Hazardous Materials Division citing irregularities in the Aqua Science Laboratory Results. August 19.
- Groundwater Technology, Inc. (GTI), 1987b. Report of Further Subsurface Hydrocarbon Investigation, Emeryville, CA, Bay Center Project. September 8.
- Groundwater Technology, Inc. (GTI), 1989a. Well Replacement and Groundwater Assessment Report, Bay Center Project, Emeryville, CA. June.
- Groundwater Technology, Inc. (GTI), 1989b. Water Treatment System Start-Up Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. April 10.
- Groundwater Technology, Inc. (GTI), 1990a. First Quarter Sampling Event. Laboratory Analyses at the Bay Center Project. July 24.
- Groundwater Technology, Inc. (GTI), 1990b. Letter to the Bay Center Apartment Associates detailing problems with the groundwater extraction system. August 14.
- Groundwater Technology, Inc. (GTI), 1990c. Quarterly Report, Bay Center Apartment Associates, Bay Center Project, Christie and 64th Streets, Emeryville, CA. October 31.
- Groundwater Technology, Inc. (GTI), 1991a. Quarterly Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. January.

- Groundwater Technology, Inc. (GTI), 1991b. Quarterly Status Report. April 15.
- Harding Lawson Associates (HLA), 1991. Preliminary Hazardous Materials Site Assessment. December 16.
- Harding Lawson Associates (HLA), 1992a. Results of Soil and Groundwater Investigation. May 6.
- Harding Lawson Associates (HLA), 1992b. Hazardous Waste Management Plan. May 26.
- Harding Lawson Associates (HLA), 1992c. Conceptual Design of Venting System, Emerybay II Apartments. November 24.
- Harding Lawson Associates (HLA), 1993. Results of Soil Sampling, Emerybay II Apartments. April 21.
- Harding Lawson Associates (HLA), 1994. Results of Services During Construction, Emerybay Apartments Phase II. May 19.
- Johnson, Mark, 2007. Project Officer, Regional Water Quality Control Board. Personal communication to Teal Glass of Stellar Environmental Solutions, Inc. April 11.
- Martin Company, 1986a. Letter to Lowell Miller of Alameda County Health Care Services documenting agreements for the construction workplan involving contaminated soil. June 5.
- Martin Company, 1986b. Letter to Tom Owens of Emeryville Community Developers, Inc. documenting recognized contamination issues. May 21.
- Martin Company, 1986c. Letter to Rafat Shahid of Alameda County Health Care Services documenting agreement of drum removal. May 16.
- Martin Company, 1986d. Letter to the State Water Resources Control Board documenting unused underground storage tanks. December 11.
- PES Environmental, Inc. (PES), 2004a. Status Report, Investigation of Subsurface Petroleum Hydrocarbon Residuals. Bay Center Apartments, Christie Avenue and 64th Street, Emeryville, CA. April 5.
- PES Environmental, Inc. (PES), 2004b. Investigation for Missing Wells. April 5.
- PES Environmental, Inc. (PES), 2004c. Status Report. August 30.

- PES Environmental, Inc. (PES), 2007. Construction Implementation and Semi-Annual Operations Report. Free-Phase Hydrocarbon Product Remediation System. EmeryBay Commercial Association, Christie Avenue and 64th Street, Emeryville, CA. March 30.
- Regional Water Quality Control Board (Water Board), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report.
- Regional Water Quality Control Board (Water Board), 2008. Environmental Screening Levels for residential properties on shallow soils where groundwater is a drinking water resource / is not a drinking water resource. Written February 2005, revised May 2008.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007. Phase I Environmental Site Assessment 6425-6475 Christie Avenue, Emeryville, CA. April 17.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008a. 2007 Annual Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008b. Quarter One 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. May 7.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008c. Second Quarter 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. July 18.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008d. Third Quarter 2008
 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking
 Garage 6400 Christie Avenue, Emeryville, CA. October 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009a. Fourth Quarter 2008 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. January 16.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009b. Indoor Air and Preferential Pathway Survey Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. April 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009c. First Semiannual 2009 Groundwater Monitoring Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. April 29.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009d. Second Semiannual 2009 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. December 31.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Indoor Air Sampling Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. April 6, 2010.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. First Semiannual 2010 Groundwater Monitoring Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. Second Semiannual 2010 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. First Semiannual 2011 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. May 6.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. Second Semiannual 2011 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. October 27.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012. First Semiannual 2012 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. June 11.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012. Second Semiannual 2012 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. November 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. June 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. Second Semiannual 2013 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. December 6.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. First Semiannual 2014 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. May 14.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. Second Semiannual 2014 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. December 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2015. First Semiannual 2015 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. June 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2016. First Semiannual 2016 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. June 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2016. Second Semiannual 2016 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. November 29.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of Emerybay Commercial Association, their authorized representatives and assigns, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on a review of previous investigators' findings at the site, as well as site investigations conducted by SES in 2007, 2008, and 2009. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the date of this report. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the activities completed.

APPENDIX A

Historical Groundwater Well Analytical Results

TABLE A Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L) 6400 Christic Avenue, Emeryville, California

				MW	/-1				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	380	17,000	NA	8,600	940	250	570	NA
2	May-89	130	24,000	NA	16,000	2,100	300	1,200	NA
3	Feb-91	<10	22,000	NA	6,800	3,500	410	2,000	NA
		•	Monitori	ng well abanc	loned - date u	nelear			

MW-2												
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE			
1	Dec-88	72	22	NA	< 0.5	< 0.5	<0.5	< 0.5	NA			
2	May-89	40	18	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA			
3	Feb-91	83	<10	NA	< 0.3	< 0.3	< 0.3	<0.6	NA			

				MW	-3				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
1	Dec-88	<10	4,200	NA	77	1,400	140	560	NA
2	May-89	110	1,800	NA	64	250	61	110	NA
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	3,400	440	3,900	< 0.5	< 0.5	1.5	<1.0	9.7
5	Dec-06	350	280	230	< 0.5	< 0.5	< 0.5	< 0.5	2.0
6	Dec-07	960	150	NA	0.54	0.54	< 0.5	< 0.5	< 2.0
7	Mar-08	6,600	450	NA	<0.5	< 0.5	1.8	2.0	4.3
8	Jun-08	4,500	440	NA	<0.5	< 0.5	4.0	2.0	9.5
9	Sep-08	1,700	280	NA	<0.5	< 0.5	1.0	< 0.5	<2.0
10	Dec-08	2,300	240	NA	<0.5	< 0.5	1.1	< 0.5	<2.0
11	Mar-09	4,300	260	NA	1.3	< 0.5	1.8	0.5	2.9
12	Sep-09	5,000	300	NA	2.5	< 0.5	<0.5	< 0.5	<2.0
13	Mar-10	4,500	230	670	1.7	< 0.5	1.0	< 0.5	2.7
14	Sep-10	5,100	470	NA	<0.5	0.64	<0.5	1.6	2.9
15	Mar-11	2,600	540	NA	47	28	7.6	11.8	17
16	Sep-11	7,800	290	NA	13	1.5	< 0.50	2.0	9.5
17	Mar-12	1,900	430	NA	3.3	< 0.5	<0.5	2.5	2.7
18	Sep-12	7,200	380	NA	18	14	6.0	25.3	<2.0
19	Mar-13	15,000	470	NA	1.3	0.68	2.1	2.1	8.6
20	Sep-13	250,000	530	NA	<0.5	< 0.5	<0.5	2.4	5.6
21	Mar-14	1,600	270	NA	1.4	< 0.5	<0.5	< 0.5	<2.0
22	Sep-14	21,000	530	NA	0	0	0.0	0.0	0
23	Mar-15	11,000	580	NA	29	2.7	12.0	4.4	<2.0
24	Sep-15	4,500	330	NA	0.71	0	0.0	3.2	0
25	Mar-16	7,800	610	NA	2	2.3	< 0.50	< 0.50	2.6
26	Sep-16	5,600	<250	NA	<2.5	<2.5	<2.5	<2.5	13
27	Mar-17	28,000	340	NA	5.0	< 0.5	< 0.5	< 0.5	<2.0

				MW	-4				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	100	NA	2.0	1.0	<0.5	2.0	NA
2	May-89	60	18	NA	1.0	< 0.5	< 0.5	< 0.5	NA
3	Feb-91	<10	<10	NA	< 0.3	< 0.3	< 0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	<50	50	<200	< 0.5	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	710	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
7	Mar-08	680	57	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
8	Jun-08	620	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
9	Sep-08	440	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
10	Dec-08	730	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
11	Mar-09	940	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
12	Sep-09	660	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
13	Mar-10	680	<50	380	<0.5	< 0.5	<0.5	< 0.5	< 2.0
14	Sep-10	770	71	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
15	Mar-11	590	<50	NA	<0.5	< 0.5	<0.5	< 0.5	2.4
16	Sep-11	380	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
17	Mar-12	340	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
18	Sep-12	350	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
19	Mar-13	390	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
20	Sep-13	250	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
21	Mar-14	380	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
22	Sep-14	380	0	NA	0	0	0	0	0
23	Mar-15	NA	NA	NA	NA	NA	NA	NA	NA
24	Sep-15	370	120	NA	0	0	0	0	0
25	Mar-16	NA	NA	NA	NA	NA	NA	NA	NA
26	Sep-16	350	<50	NA	< 0.50	< 0.50	<0.50	< 0.50	< 2.0
27	Mar-17	390	76	NA	< 0.50	< 0.50	< 0.50	< 0.50	<2.0

				MW	-5				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВ
1	Dec-88	530	890	NA	<1.0	<1.0	1.0	3.0	NA
2	May-89	90	5.0	NA	1.0	< 0.5	< 0.5	< 0.5	NA
3	Feb-91	58	<10	NA	0.6	< 0.3	< 0.3	<0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	330	<25	<200	0.6	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	5,100	1.3	NA	1.3	< 0.5	< 0.5	1.23	<2.0
7	Mar-08	4,500	<50	NA	0.53	< 0.5	<0.5	< 0.5	<2.0
8	Jun-08	3,300	<50	NA	0.64	< 0.5	<0.5	< 0.5	<2.0
9	Sep-08	4,200	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
10	Dec-08	5,200	<50	NA	0.61	< 0.5	<0.5	< 0.5	<2.0
11	Mar-09	5,800	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
12	Sep-09	5,600	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
13	Mar-10	4,300	<50	5,400	4.9	< 0.5	<0.5	< 0.5	<2.0
14	Sep-10	4,500	<50	NA	0.58	< 0.5	<0.5	< 0.5	2.0
15	Mar-11	4,900	<50	NA	1.3	< 0.5	<0.5	< 0.5	5.9
16	Sep-11	4,400	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
17	Mar-12	3,600	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
18	Sep-12	4,100	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
19	Mar-13	3,900	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
20	Sep-13	3,100	<50	NA	0.65	< 0.5	<0.5	< 0.5	<2.0
21	Mar-14	2,300	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
22	Sep-14	3,700	0	NA	0	0	0	0	0.0
23	Mar-15	4,200	0	NA	0	0	0	0	0.0
24	Sep-15	4,400	60	NA	0	0	0	0	0.0
25	Mar-16	2,400	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
26	Sep-16	3,800	<250	NA	<2.5	<2.5	<2.5	<2.5	<10
27	Mar-17	2,500	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0

				MW	-6				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВ
1	Dec-88	<10	52	NA	1.0	< 0.5	<0.5	< 0.5	NA
2	May-89	140	31	NA	1.0	< 0.5	<0.5	< 0.5	NA
3	Feb-91	130	40	NA	0.8	< 0.3	<0.3	<0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	200	43	<200	1.1	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	1,000	<50	NA	0.98	0.81	< 0.5	0.5	<2.0
7	Mar-08	940	<50	NA	0.87	1.0	<0.5	< 0.5	<2.0
8	Jun-08	1,100	56	NA	0.92	< 0.5	<0.5	< 0.5	2.9
9	Sep-08	1,000	<50	NA	0.91	< 0.5	<0.5	< 0.5	<2.0
10	Dec-08	1,400	<50	NA	1	< 0.5	<0.5	< 0.5	<2.0
11	Mar-09	1,200	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
12	Sep-09	1,500	<50	NA	0.79	< 0.5	<0.5	< 0.5	<2.0
13	Mar-10	910	<50	1,500	1.9	< 0.5	<0.5	< 0.5	<2.0
14	Sep-10	1,200	72	NA	1.0	< 0.5	<0.5	< 0.5	<2.0
15	Mar-11	1,900	<50	NA	1.3	< 0.5	<0.5	< 0.5	3.9
16	Sep-11	1,900	<50	NA	1.8	< 0.5	<0.5	< 0.5	<2.0
17	Mar-12	2,300	<50	NA	0.82	< 0.5	<0.5	< 0.5	<2.0
18	Sep-12	2,200	<50	NA	0.85	< 0.5	<0.5	< 0.5	<2.0
19	Mar-13	1,600	<50	NA	0.83	< 0.5	<0.5	< 0.5	<2.0
20	Sep-13	1,100	<50	NA	1.70	< 0.5	<0.5	< 0.5	<2.0
21	Mar-14	830	65	NA	0.81	< 0.5	<0.5	< 0.5	<2.0
22	Sep-14	1,600	0	NA	0.79	< 0.5	<0.5	< 0.5	<2.0
23	Mar-15	1,200	61	NA	0.87	0.62	<0.5	< 0.5	<2.0
24	Sep-15	1,700	65	NA	0.88	0	0	0	0
25	Mar-16	1,500	<50	NA	1.10	< 0.50	< 0.50	< 0.50	<2.0
26	Sep-16	1,200	<50	NA	1.00	< 0.50	< 0.50	< 0.50	<2.0
27	Mar-17	1,500	<50	NA	0.8	< 0.50	< 0.50	< 0.50	<2.0

Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				Installed in N	Iarch 2004				
1	Mar-04	1,600	490	1,900	240	100	14	56	<2.5
2	Dec-06	420	<25	470	< 0.5	< 0.5	< 0.5	< 0.5	<1.0
3	Dec-07	6,300	3,100	NA	640	28	48	231	<10
4	Mar-08	7,000	360	NA	140	5.8	- 11	58	< 2.0
5	Jun-08	5,400	1,700	NA	480	15	28	139	< 2.0
6	Sep-08	9,400	1,200	NA	330	12	21	88	< 2.0
7	Dec-08	8,700	2,200	NA	640	100	43	185	<4.0
8	Mar-09	8,700	1,700	NA	510	33	47	220	<10
9	Sep-09	6,800	620	NA	310	9.5	27	117	<10
10	Mar-10	8,700	330	6,800	68	2.2	10	31.6	< 2.0
11	Sep-10	10,000	1,300	NA	580	54	35	163	<20
12	Mar-11	8,100	630	NA	160	5.3	14	65	< 2.0
13	Sep-11	8,000	2,900	NA	900	46	51	284	< 2.0
14	Mar-12	7,900	740	NA	220	150	14	140	< 2.0
15	Sep-12	10,000	1,700	NA	660	35	32	137	< 2.0
16	Mar-13	8,600	3,000	NA	950	39	30	149	<33
17	Sep-13	12,000	2,100	NA	540	29	17	89	<29
18	Mar-14	8,200	1,900	NA	440	22	14	63	<29
19	Sep-14	11,000	1,200	NA	330	21	5.8	68	<29
20	Mar-15	7,700	900	NA	260	13	8.8	47.8	7.1
21	Sep-15	10,000	1,000	NA	280	16	10	52.9	21
22	Mar-16	9,900	1,000	NA	280	15	7.9	35.7	< 2.0
23	Sep-16	10,000	860	NA	170	8.6	5.1	23.7	<10
24	Mar-17	12,000	1,500	NA	560	25	10.0	62.0	<50

				MW	-8				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				Installed in N	Iarch 2004				
1	Mar-04	140,000	51,000	56,000	19,000	720	2,400	3,300	<50
2	Dec-06	2,400	29,000	<380	13,000	<100	640	500	<200
3	Dec-07	5,900	30,000	NA	11,000	180	650	561	<100
4	Mar-08	21,000	47,000	NA	10,000	260	1,200	458	< 2.0
5	Jun-08	7,300	27,000	NA	9,300	140	790	290	< 2.0
6	Sep-08	13,000	35,000	NA	11,000	190	900	402	<100
7	Dec-08	7,600	19,000	NA	6,800	110	380	236	<50
8	Mar-09	10,000	22,000	NA	9,400	200	640	358	<50
9	Sep-09	9,200	26,000	NA	8,600	100	630	230	170
10	Mar-10	11,000	19,000	1,900	6,200	120	830	149	<2.0
11	Sep-10	7,600	7,800	NA	8,800	110	620	212	<100
12	Mar-11	8,800	19,000	NA	8,100	130	890	149	<2.0
13	Sep-11	18,000	13,000	NA	8,000	140	860	178	<2.0
14	Mar-12	9,800	380	NA	100	3	5.9	20	<2.0
15	Sep-12	24,000	73,000	NA	18,000	520	2,300	670	<2.0
16	Mar-13	38,000	39,000	NA	9,400	160	1,600	255	<50
17	Sep-13	2,100	14,000	NA	3,800	140	35	86	440
18	Mar-14	13,000	23,000	NA	6,800	96	620	200	<200
19	Sep-14	13,000	15,000	NA	4,100	65	300	100	0
20	Mar-15	20,000	36,000	NA	8,200	150	910	160	< 170
21	Sep-15	9,400	23,000	NA	7,100	100	510	267	0
22	Mar-16	1,200	23,000	NA	5,400	140	570	294	<170
23	Sep-16	8,600	24,000	NA	5,300	77	400	180	<170
24	Mar-17	6,400	34,000	NA	9,200	140	950	301	<170

				MW	-9				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВ
				Installed in M	Iarch 2004				
1	Mar-04	1,300	95	1,500	4.7	0.68	< 0.5	<1.0	< 0.5
2	Dec-06	<50	92	<200	2.8	< 0.5	< 0.5	<0.5	<1.0
3	Dec-07	8,400	84	NA	4.7	1.1	< 0.5	1.9	< 2.0
4	Mar-08	8,600	100	NA	4.1	1.1	<0.5	< 0.5	2.0
5	Jun-08	5,900	98	NA	4.9	< 0.5	<0.5	< 0.5	2.3
6	Sep-08	9,300	130	NA	4.6	< 0.5	<0.5	< 0.5	<50
7	Dec-08	7,800	95	NA	4.0	0.54	<0.5	< 0.5	<2.0
8	Mar-09	9,400	130	NA	4.6	< 0.5	<0.5	< 0.5	<2.0
9	Sep-09	8,200	98	NA	4.0	< 0.5	<0.5	< 0.5	< 2.0
10	Mar-10	6,500	140	4,000	5.2	< 0.5	<0.5	< 0.5	< 2.0
11	Sep-10	6,400	170	NA	4.8	0.77	<0.5	< 0.5	< 2.0
12	Mar-11	11,000	150	NA	5.9	0.61	<0.5	0.5	< 2.0
13	Sep-11	9,400	62	NA	4.2	< 0.5	<0.5	< 0.5	< 2.0
14	Mar-12	9,400	140	NA	6.2	0.61	<0.5	0.51	<2.0
15	Sep-12	10,000	130	NA	7.2	< 0.5	0.53	0.92	<2.0
16	Mar-13	8,500	170	NA	14.0	0.73	0.7	0.63	<2.0
17	Sep-13	11,000	130	NA	12.0	< 0.5	0.92	< 0.5	4.9
18	Mar-14	7,300	140	NA	9.8	2	<0.5	< 0.5	< 2.0
19	Sep-14	10,000	120	NA	8.6	2	0.55	0	0
20	Mar-15	9,000	310	NA	8.7	0.75	<0.5	1.25	< 2.0
21	Sep-15	11,000	190	NA	8.0	0.71	0	0.87	0
22	Mar-16	9,300	230	NA	7.7	0.82	< 0.50	< 0.50	<2.0
23	Sep-16	9,200	<500	NA	<5.0	<5.0	<5.0	<5.0	<20
24	Mar-17	11,000	<250	NA	- 11	<2.5	<2.5	<2.5	<10

				MW	-10				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВІ
				Installed in N	Iarch 2004				
1	Mar-04	840,000	14,000	<100,000	4,000	77	200	120	<50
2	Dec-06	19,000	12,000	<4,000	4,600	42	90	52	<50
3	Dec-07	4,700	13,000	NA	5,300	96	42	86	<50
4	Mar-08	280,000	10,000	NA	2,600	50	37	58.7	22
5	Jun-08	4,800	10,000	NA	3,800	62	24	61	< 2.0
6	Sep-08	4,700	1,200	NA	350	11	3.4	11	<2.0
7	Dec-08	3,200	2,900	NA	550	45	15	56	<20
8	Mar-09	6,200	8,200	NA	890	46	78	130	<20
9	Sep-09	6,100	1,400	NA	1.200	35	19	31	<20
10	Mar-10	3,900	7,800	960	1.200	46	34	56	54
11	Sep-10	3,500	3,400	NA	1.500	47	18	44	<40
12	Mar-11	4,500	3,700	NA	1,200	81	25	46.4	<2.0
13	Sep-11	3,800	4,600	NA	720	49	26	52.4	<2.0
14	Mar-12	3,500	2,400	NA	240	27	10	33.6	<2.0
15	Sep-12	13,000	6,600	NA	1,800	89	130	46	<2.0
16	Mar-13	24,000	15,000	NA	1,300	66	130	94	<50
17	Sep-13	3,800	4,600	NA	900	87	29	56	<42
18	Mar-14	3,300	6,200	NA	940	43	< 0.5	53	<40
19	Sep-14	42,000	7,000	NA	1.500	68	28	36	0
20	Mar-15	7,300	6,500	NA	640	53	44	22	<67
21	Sep-15	11,000	190	NA	8	1	0	0.87	0
22	Mar-16	6,000	12,000	NA	2,600	87	91	50	<67
23	Sep-16	2,100	19,000	NA	1,200	<170	<170	<170	<670
24	Mar.17	2,900	7,000	NA	1400	59	29.0	42.8	<10

				MW	-11				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				Installed in	May 2004	•			
1	Dec-06	<50	920	<200	26	4.5	1.8	5.4	<1.0
2	Dec-07	6,900	1,500	NA	320	44	53	140	< 2.0
3	Mar-08	7,500	1,200	NA	120	7.6	10	24.9	3.0
4	Jun-08	5,100	2,000	NA	190	11	7.7	16.3	< 2.0
5	Sep-08	5,600	2,200	NA	260	20	34	60	< 2.0
6	Dec-08	7,800	2,100	NA	270	14	7.6	15.6	< 2.0
7	Mar-09	7,100	1,400	NA	200	6.4	7.3	10.4	< 2.0
8	Sep-09	6,400	1,900	NA	320	13	9.8	15.2	2.0
9	Mar-10	6,500	1,600	6,900	150	< 0.5	3.9	12.8	2.9
10	Sep-10	5,500	1,300	NA	330	15	9.2	17.3	< 2.0
11	Mar-11	6,500	3,400	NA	1300	22	9.6	19.9	<2.0
12	Sep-11	4,400	3,600	NA	1200	36	16	39.1	<2.0
13	Mar-12	4,600	5,700	NA	2100	27	12	16.7	<2.0
14	Sep-12	5,200	4,100	NA	1,500	33	< 0.5	18	< 2.0
15	Mar-13	8,400	1,800	NA	97	18	19	30	<2.0
16	Sep-13	7,900	1,900	NA	60	< 0.5	3.6	13	27.0
17	Mar-14	5,700	2,000	NA	60	< 0.5	3.8	14.2	<2.0
18	Sep-14	7,800	2,000	NA	89	0	6	14.4	0.0
19	Mar-15	7,900	1,600	NA	140	14	5.3	15.5	61.0
20	Sep-15	8,000	1,300	NA	110	16	2.1	20.4	0.0
21	Mar-16	5,500	1,900	NA	91	14	6.4	12.7	<2.0
22	Sep-16	5,800	1,300	NA	130	6.2	3.3	6.2	<10
23	Mar-17	8,700	5,000	NA	1200	70	45.0	116.0	<10

				MW	-12				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				Installed in	May 2004	•			
1	Dec-06	<50	19,000	<200	9,100	51	<50	110	<100
2	Dec-07	2,700	17,000	NA	8,000	110	25	115	<40
3	Mar-08	3,300	33,000	NA	9,200	140	85	116	<2.0
4	Jun-08	3,000	17,000	NA	6,600	95	50	110	<2.0
5	Sep-08	3,100	14,000	NA	6,200	79	18	83	<10
6	Dec-08	3,600	19,000	NA	7,900	140	72	124	<50
7	Mar-09	4,100	14,000	NA	6,100	150	130	111	<40
8	Sep-09	3,000	1,900	NA	4,500	80	14	51	<40
9	Mar-10	4,000	15,000	1,900	6,200	110	73	101	< 2.0
10	Sep-10	3,100	4,900	NA	5,900	97	47	73	<100
11	Mar-11	3,300	15,000	NA	7,900	180	200	127	<2.0
12	Sep-11	1,800	8,600	NA	2,700	85	31	63	<2.0
13	Mar-12	2,500	17,000	NA	6,300	160	180	124	<2.0
14	Sep-12	2,300	10,000	NA	4,600	160	210	85	<2.0
15	Mar-13	9,800	9,100	NA	2,600	110	170	111	< 2.0
16	Sep-13	7,800	9,400	NA	2,400	130	130	125	520
17	Mar-14	7,800	10,000	NA	2,500	89	68	55	<100
18	Sep-14	4,000	6,500	NA	1,500	110	26	59.9	0
19	Mar-15	3,500	14,000	NA	3,800	120	82	73	66
20	Sep-15	3,100	13,000	NA	4,300	110	52	71	0
21	Mar-16	2,900	13,000	NA	2,600	74	83	30	<50
22	Sep-16	2,700	7,800	NA	1,300	25	19	<13	<50
23	Mar-17	2.800	6,200	NA	1.200	28	16	<13	<50

				MW	-13				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВ
				Installed in .	April 2004				
1	Dec-06	12,000	87,000	2,100	18,000	470	2,400	3,500	<400
2	Dec-07	NA	68,000	NA	19,000	650	1,700	2,440	<100
3	Mar-08	1,100,000	98,000	NA	19,000	820	2,300	3,190	<100
4	Jun-08	71,000	44,000	NA	12,000	510	1,600	1,950	< 2.0
5	Sep-08	440,000	52,000	NA	<100	500	1,600	1,500	<100
6	Dec-08	1,100,000	2,700,000	NA	23,000	<250	40,000	45,000	<1,00
7	Mar-09	2,000,000	330,000	NA	25,000	1,300	6,400	8,500	<1,00
8	Sep-09	38,000	1,400,000	NA	19,000	2,500	19,000	21,300	<1,00
9	Mar-10	15,000	43,000	670	12,000	310	1,600	1,140	<2,50
10	Sep-10	3,100,000	1,700,000	NA	21,000	2,300	30,000	17,200	7,000
11	Mar-11	13,000	86,000	NA	7,900	180	200	127	<2.0
12	Sep-11	15,000	49,000	NA	16,000	380	1900	850	<2.0
13	Mar-12	1,100,000	260,000	NA	23,000	1500	5700	4100	<2.0
14	Sep-12	7,200,000	60,000	NA	22,000	580	2,100	1,700	<2.0
15	Mar-13	23,000	27,000	NA	5,600	260	1,300	1,080	<200
16	Sep-13	39,000	19,000	NA	3,400	180	760	515	<200
17	Mar-14	19,000	20,000	NA	3,700	120	710	361	<200
18	Sep-14	11,000	16,000	NA	2,400	70	460	253	0
19	Mar-15	11,000	14,000	NA	2,200	76	430	160	<100
20	Sep-15	8,300	13,000	NA	3,100	78	440	255	0
21	Mar-16	11,000	18,000	NA	4,000	100	510	252	<100
22	Sep-16	15,000	20,000	NA	3,700	66	480	205	<100
23	Mar-17	13,000	14,000	NA	3,100	60	350	130	<100

				MW	-14				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВІ
				Installed in	April 2004				
1	Dec-06	<50	8,300	<200	3,700	240	230	260	<50
2	Dec-07	2,600	6,800	NA	3,100	150	220	168	<20
3	Mar-08	4,400	18,000	NA	4,400	330	340	245	< 2.0
4	Jun-08	2,600	7,700	NA	2,600	180	200	141	<2.0
5	Sep-08	2,500	4,100	NA	1,300	50	80	61	<10
6	Dec-08	2,800	2,300	NA	830	27	45	30.7	<10
7	Mar-09	3,200	13,000	NA	4,300	870	260	283	<50
8	Sep-09	2,100	550	NA	630	14	28	17	<20
9	Mar-10	3,900	6,700	3,100	2,400	400	140	185	<20
10	Sep-10	2,500	2,000	NA	1,700	44	98	89	<40
11	Mar-11	2,800	16,000	NA	6,600	1600	450	600	<2.0
12	Sep-11	5,900	20,000	NA	6,600	690	550	740	< 2.0
13	Mar-12	4,400	13,000	NA	3,000	1400	340	870	<2.0
14	Sep-12	9,900	31,000	NA	4,800	2400	740	2,450	<2.0
15	Mar-13	21,000	11,000	NA	2,300	340	280	371	<50
16	Sep-13	24,000	7,200	NA	1,900	200	160	197	<83
17	Mar-14	8,200	6,900	NA	2,100	220	170	155	<110
18	Sep-14	8,500	7,100	NA	1,600	220	120	180	0
19	Mar-15	11,000	14,000	NA	2,900	390	210	222	<100
20	Sep-15	5,500	9,500	NA	2,600	250	190	237	0
21	Mar-16	7,300	12,000	NA	3,100	250	220	223	<100
22	Sep-16	4,700	9,900	NA	2,100	100	150	77	180
23	Mar.17	6.200	16,000	NA	4,100	370	360	191	<100

				MW	-15				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in .	April 2004				
1	Dec-06	<50	9,200	<200	3,700	<25	60	57	<50
2	Dec-07	3,300	8,100	NA	3,000	48	28	44.5	<20
3	Mar-08	3,000	13,000	NA	3,600	66	210	59.5	<64
4	Jun-08	2,900	15,000	NA	5,800	61	230	56.4	< 2.0
5	Sep-08	3,400	18,000	NA	7,800	73	270	59.9	<10
6	Dec-08	3,000	20,000	NA	7,600	95	300	84.2	<50
7	Mar-09	3,400	17,000	NA	7,200	91	170	60	<50
8	Sep-09	2,700	2,300	NA	6,200	71	68	42	<50
9	Mar-10	3,700	14,000	910	5,900	74	170	69	< 2.0
10	Sep-10	3,500	5,800	NA	8,100	95	170	71	<100
11	Mar-11	3,200	11,000	NA	5,600	88	110	66.1	< 2.0
12	Sep-11	2,200	15,000	NA	6,400	100	71	77.7	< 2.0
13	Mar-12	3,500	16,000	NA	7,200	110	160	177	< 2.0
14	Sep-12	3,500	28,000	NA	12,000	300	380	297	< 2.0
15	Mar-13	3,100	15,000	NA	6,100	170	360	266	<67
16	Sep-13	2,800	17,000	NA	4,100	92	76	144	<200
17	Mar-14	2,200	12,000	NA	3,900	75	30	54	< 2.0
18	Sep-14	3,300	9,500	NA	2,600	110	22	46.7	0
19	Mar-15	8,500	16,000	NA	3,400	66	93	29	<100
20	Sep-15	3,100	10,000	NA	3,100	63	33	48	0
21	Mar-16	3,200	19,000	NA	3,800	96	44	41	<100
22	Sep-16	5,300	18,000	NA	5,000	66	<25	49	<100
23	Mar-17	3,700	7,100	NA	1.300	31	72.0	40	<100

				MW	-16				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				Installed in .	April 2004				
1	Dec-06	<50	190	<200	11.0	1.4	< 0.5	< 0.5	<1.0
2	Dec-07	8,500	71	NA	13	2.6	< 0.5	1.46	<2.0
3	Mar-08	12,000	60	NA	- 11	0.73	< 0.5	< 0.5	<2.0
4	Jun-08	10,000	120	NA	13	2.2	< 0.5	< 0.5	2
5	Sep-08	8,200	64	NA	9.9	1.9	< 0.5	< 0.5	<2.0
6	Dec-08	8,800	60	NA	- 11	2.8	< 0.5	0.53	<2.0
7	Mar-09	14,000	78	NA	12	2.3	< 0.5	<0.5	<2.0
8	Sep-09	10,000	51	NA	9.3	1.6	<0.5	<0.5	2.2
9	Mar-10	12,000	70	4,700	12	2.1	0.56	1.35	<2.0
10	Sep-10	9,800	77	NA	12	1.9	< 0.5	0.55	2
11	Mar-11	9,900	64	NA	13	1.6	< 0.5	2.3	16
12	Sep-11	10,000	74	NA	17	2.3	< 0.5	1.33	<2.0
13	Mar-12	8,400	66	NA	12	1.8	<0.5	1.07	<2.0
14	Sep-12	7,700	84	NA	17	1.5	0.57	0.69	<2.0
15	Mar-13	8,100	80	NA	15	1.4	<0.5	0.75	<2.0
16	Sep-13	9,800	66	NA	13	1.7	<0.5	1.38	<2.0
17	Mar-14	5,900	76	NA	- 11	1.2	< 0.5	0.94	< 2.0
18	Sep-14	10,000	110	NA	14	1.5	0	0	0
19	Mar-15	9,500	200	NA	34	2.4	2.5	1.82	<2
20	Sep-15	6,200	110	NA	10	1.1	0	0	0
21	Mar-16	8,200	80	NA	12	1.9	< 0.50	1.46	< 2.0
22	Sep-16	8,500	330	NA	7.9	<2.5	<2.5	<2.5	<10
23	Mar-17	8.400	<250	NA	27	3.4	<2.5	<2.5	<10

Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				Installed in .	April 2004	•			
1	Dec-06	<50	14,000	<200	3,400	1,100	480	<0.5	<1.0
2	Dec-07	2,900	5,000	NA	1,100	260	110	206	<10
3	Mar-08	3,100	6,800	NA	1,200	110	91	94	21
4	Jun-08	2,900	7,200	NA	1,100	45	75	66	< 2.0
5	Sep-08	3,300	5,500	NA	900	63	69	69	<10
6	Dec-08	3,200	7,100	NA	1,100	530	190	390	<10
7	Mar-09	3,000	5,400	NA	770	150	87	161	< 2.0
8	Sep-09	3,000	2,200	NA	120	3.1	11	1.6	<2.0
9	Mar-10	3,400	5,000	1,900	910	66	73	93	<2.0
10	Sep-10	2,800	3,500	NA	1,400	62	46	76	<40
11	Mar-11	3,900	6,100	NA	1,100	44	55	70	<2.0
12	Sep-11	2,400	4,600	NA	850	49	51	64	< 2.0
13	Mar-12	2,200	5,800	NA	1,500	57	58	67	< 2.0
14	Sep-12	1,400	4,800	NA	1,300	45	100	41	<2.0
15	Mar-13	2,900	7,200	NA	1,200	89	220	110	<25
16	Sep-13	2,100	8,000	NA	1,400	150	220	122	<67
17	Mar-14	2,600	8,600	NA	1,800	150	320	118	<67
18	Sep-14	3,000	7,900	NA	1,500	160	130	91	0
19	Mar-15	3,200	9,800	NA	1,600	220	120	136	57
20	Sep-15	3,700	8,100	NA	1,800	160	90	143	0
21	Mar-16	2,900	10,000	NA	1,100	75	42	90	<50
22	Sep-16	1,900	7,900	NA	1,200	230	81	146	<50
23	Mar-17	3,700	27,000	NA	2.100	<13	93.0	167	<50

				MW	-18				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВІ
				Installed in	May 2004				
1	Dec-06	<50	120	<200	22	6.2	3.2	6.2	< 2.0
2	Dec-07	8,600	<50	NA	0.98	< 0.5	< 0.5	< 0.5	< 2.0
3	Mar-08	9,800	<50	NA	0.52	< 0.5	< 0.5	< 0.5	2.0
4	Jun-08	8,800	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	3.1
5	Sep-08	8,600	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
6	Dec-08	9,300	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
7	Mar-09	10,000	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
8	Sep-09	11,000	<50	NA	<0.5	< 0.5	<0.5	< 0.5	< 2.0
9	Mar-10	9,400	<50	2,700	<0.5	< 0.5	<0.5	< 0.5	<2.0
10	Sep-10	6,400	1,800	NA	2200	45	64.0	78.0	<50
11	Mar-11	10,000	68	NA	5.5	1.1	<0.5	1.3	17
12	Sep-11	9,800	<50	NA	0.58	< 0.5	<0.5	< 0.5	<2.0
13	Mar-12	9,200	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
14	Sep-12	11,000	160	NA	5.1	< 0.5	5.7	0.6	<2.0
15	Mar-13	9,600	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
16	Sep-13	11,000	<50	NA	0.52	< 0.5	<0.5	< 0.5	<2.0
17	Mar-14	8,200	<50	NA	0.52	< 0.5	<0.5	< 0.5	<2.0
18	Sep-14	12,000	0	NA	0	0	0.0	0.0	0
19	Mar-15	10,000	69	NA	6	< 0.5	<0.5	< 0.5	0
20	Sep-15	9,700	0	NA	0	0	0.0	0.0	0
21	Mar-16	9,000	<50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<2.0
22	Sep-16	9,900	<250	NA	<2.5	<2.5	<2.5	<2.5	<10
23	Mar-17	11,000	<250	NA	<2.5	<2.5	<2.5	<2.5	<10

				MW	-E				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВІ
1	Dec-88	100	5,400	NA	3,200	690	97	330	NA
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	470	810	<500	340	6.1	2.2	7.7	<1.0
5	Dec-06	280	1,900	<200	910	<10	10	<10	<20
6	Dec-07	6,900	7,000	NA	3,300	50	51	80	<20
7	Mar-08	6,300	2,700	NA	780	17	20	20.9	12
8	Jun-08	5,200	7,400	NA	2,900	43	85	50	<2.0
9	Sep-08	7,800	11,000	NA	3,800	170	130	257	<50
10	Dec-08	9,400	9,100	NA	3,400	110	180	182	<50
11	Mar-09	5,600	850	NA	270	7.5	13	17.5	< 2.0
12	Sep-09	6,200	540	NA	1,200	22	37	37.2	<2.0
13	Mar-10	3,800	2,400	5,100	1,000	20	37	26.9	4.9
14	Sep-10	6,600	1,800	NA	2,200	45	64	78	<50
15	Mar-11	5,900	4,400	NA	2,600	46	64	90	<50
16	Sep-11	7,600	3,600	NA	4,500	150	340	402	<2.0
17	Mar-12	5,800	6,500	NA	2,600	50	52	84	<2.0
18	Sep-12	8,300	7,800	NA	5,500	190	430	431	<2.0
19	Mar-13	7,700	21,000	NA	5,900	210	850	970	<50
20	Sep-13	9,400	15,000	NA	3,800	120	470	351	200
21	Mar-14	5,600	9,500	NA	3,200	110	240	178	<140
22	Sep-14	7,800	6,800	NA	1,800	55	86	87	0
23	Mar-15	12,000	6,800	NA	2,200	70	140	131	<67
24	Sep-15	11,000	22,000	NA	6,400	230	750	810	120
25	Mar-16	4,200	9,000	NA	1,700	55	130	181	<67
26	Sep-16	9,400	29,000	NA	3,500	190	360	370	<670
27	Mar-17	6,700	2.200	NA	6,700	32	43	57	<2

				RW	-1				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTB
1	Dec-88	NS	NS	NS	NS	NS	NS	NS	NS
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	<50	640	<200	100	1.3	2	1.6	<1.0
6	Dec-07	2,100	770	NA	110	< 0.5	3.8	1.96	< 2.0
7	Mar-08	11,000	890	NA	100	4.2	4.4	2.0	<2.0
8	Jun-08	1,500	1,200	NA	290	4.8	10	4.8	<2.0
9	Sep-08	1,900	1,400	NA	280	9.8	10	6.7	<2.0
10	Dec-08	54,000	1,100,000	NA	500	<250	3,200	530	<1,00
11	Mar-09	2,800	950	NA	180	3.6	13	3	<2.0
12	Sep-09	770	350	NA	120	3.1	11	2	<2.0
13	Mar-10	810	200	<300	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
14	Sep-10	980	860	NA	170	4.0	5.6	2.8	8.0
15	Mar-11	810	310	NA	15	4.4	2.5	3.9	8.8
16	Sep-11	440	230	NA	28	2.7	1.7	1.5	<2.0
17	Mar-12	1,900	502	NA	70	2.0	2.2	2.1	<2.0
18	Sep-12	890	790	NA	150	9.6	5.5	12.0	<2.0
19	Mar-13	2,800	280	NA	2.7	1.7	2.5	1.9	<2.0
20	Sep-13	1,500	420	NA	10.2	6.0	< 0.5	5.7	8.2
21	Mar-14	4,700	410	NA	1.3	1.0	2.4	3.4	2.8
22	Sep-14	1,000	440	NA	41	0.9	1.5	2.2	2.8
23	Mar-15	2,300	710	NA	100	3.8	6.6	131.0	<2
24	Sep-15	660	450	NA	75	4.2	1.4	0.0	0.0
25	Mar-16	830	260	NA	7.3	< 0.540	1.9	1.1	<2.0
26	Sep-16	1,500	1,100	NA	49	4.6	6.5	8.9	<2.0
27	Mar.17	2.800	910	NA	130	6.2	4.9	5.9	<2.0

Natio.
The 1988, 1989, and 1991 sampling creats were conducted by Groundwater Technology, Inc.
The 2004 and 2006 sampling creats were conducted by PES Environmental.
NS = Not sampled
AN = Vota sampled for this considerer
All concentrations shown in pgl L.

APPENDIX B

Groundwater Monitoring Field Data Sheets

WELL GAUGING DATA

Project #	170905-8A1	Date	09/05/17	Client _	Stelloe Env.	
		video		•		

Site 6400 Christie Ave. Emergville, com

		Well		Depth to	Thickness of	Volume of Immiscibles		Depth to	Survey Point:	
Well ID	Time	Size (in.)	Sheen / Odor	Immiscible Liquid (ft.)	Immiscible Liquid (ft.)	Removed (ml)	Depth to water (ft.)	well bottom (ft.)	TOB or	Notes
			alor						<u> </u>	sticky, T
MM-3	(000)						11.35			product-
14 W-4	1010	2					8.88	24.80		
иw-5	0950	2					9.65	24.90		
MW-6	0948	2					4.65	23.45		
mw-7	1016	3/4					10-72	19.85		
MW-8	1100	3/4	dol	9.70	0.24		9.94	a gille kansan kiril Kansa kana yang ge		
ww-g	1025	3/4		199			10.05	19.68		
AW-10	1032	3/4	dol	8.80	:02		8.82			
mw-11	1035	3/4	odogwe				10.42	19.72		
mw-12	1042	3/4	odor				9.18	18.98		
uw-13	1034	3/4					8.78	19.50		
MW-14	038	3/4					9.00	19.50		
mw-15	1040	3/4	ofor	9.55	.02		9.57			
mw-16	1050	3/4					9.80	19.08	a di dina del monte del del del del del del del del del de	
MW-17	1052	3/4					9.50	19,50		
WW-18	1054	3/4					9.20	19.57		
mw-E	1055	2					10.17	47.42		
RW-1	0.70	10 1	Standard Standard System (1980)	9.30	0.01	mediatitishmiposalyesiset siljing mengungang his storm bystick	9.31	ngt (Sgrå ginn år ng bif norr), mår ti skilling til tillich)	VI	egegative i i djenitiv jeti drijeg biji tilj neve žitilišnij benjetili provinci

W.LL MONITORING DATA SHA

r							
Project #:	170905-I	PA1	,	Client: Stellar Env Solutions @ Bay Center Apts			
Sampler:	DA/BA	/		Date: 9/5/2017			
Well I.D.:	MW- E	/		Well Diameter: (2) 3 4 6 8			
Total Well	Depth (TI)): 47	.42	Depth to Water (DTW): (0.17			
Depth to Fr	ee Produc	t:		Thickness of F	ree Product (fe	et):	
Referenced	to: (PVC	Grade	D.O. Meter (if	req'd):	YST HACH	
DTW with	80% Rech	arge [(H	Height of Water	Column x 0.20) + DTW]: 17	.67	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump Well Diamet	Sampling Method Other	: Bailer Disposable Bailer Extraction Port Dedicated Tubing : בי	
1 Case Volume	Gals.) X Speci	ろ fied Volum	$\frac{1}{\text{nes}} = \frac{\sqrt{8}}{\text{Calculated Vo}}$	Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 r radius ² * 0.163	
Time	Temp (°F or 🏷	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations	
1335	20.5	8-17	2936	540	6		
	-de	war	eved Q	9 gals.			
				0			
1359	20.4	7.96	2890	41			
Did well dev	water? (Yés	No	Gallons actuall	y evacuated:	•	
Sampling D	ate: 9/5/	17	Sampling Time	:1400	Depth to Wate	r: 16.50	
Sample I.D.	Sample I.D.: MW- E Laboratory: Enthalpy						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С	
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. ((if applicable):		
Analyzed fo	r: трн-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'	d): Pr	e-purge:		mg/ _L Po	ost-purge:	mg/L	
O.R.P. (if re	a'd)· Pr	e-nurge:		mV P	ost_nurge·	mV	

FIELL MONITORING DATA SHFFT

		1				1 to			
Project #:	Project #: 120905-PA1					Client: Stellar Env Solutions@ Bay Cen			
Sampler:	PA			Date: 9-6-17					
Well I.D.:	MW-7			Well Diameter: (2) 3 4 6 8					
					to Wate	er (DTW):	1.35		
Depth to Free Product:					Thickness of Free Product (feet):				
Referenced to: PVC Grade					Meter (if		YSI HACH		
DTW with	80% Rech	arge [(I	Height of Water	. 					
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Other Waterra Sampling Method: Bailer Disposable Bailer Extraction Pump Dedicated Tubing Other Other Well Diameter Multiplier Well Diameter Multiplier Well Diameter Multiplier Well Diameter Multiplier									
Time	Temp (°F or 🕙	pН	Cond. (mS or μS)		bidity ΓUs)	Gals. Removed	Observations		
1110	Sour	reel	DUYOLO, O	0 / O	Owl	MIN	sph is tar		
ii 16	Stopp	ed	purajues		e11.		like i used 1/2 tubing		
			100				as drop lube Gor		
~				······································		***************************************	perri tubing-		
				V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			V		
Did well dev	vater?	Yes (No) (Gallons	actually	evacuated:	00 y L		
Sampling Da	ate: 4/6/	17	Sampling Time:		7	Depth to Wate	r:		
Sample I.D.:	mw	-3	I	_aborat	ory:				
Analyzed for	т: ТРН-G	BTEX	мтве трн-р С)xygena	tes (5)	Other:			
EB I.D. (if ap	oplicable):		@ Time I	Duplica	te I.D. (i	if applicable):			
Analyzed for	:: ТРН-G	BTEX	мтве трн-d О	xygenat	tes (5)	Other:			
O.O. (if req'o	l): Pre	-purge:		$^{ m mg}/_{ m L}$	Po	st-purge:	mg/L		
R.P. (if rec	ı'd): Pre	-purge:		mV	Po	st-purge:	mV		

W LL MONITORING DATA SH T

		V \		OKING DATA	COLL			
Project #:	Project #: 170905-PA1				Client: Stellar Env Solutions @ Bay Center Apts			
Sampler:	(PA)/ BA /_			Date:	9/_5/2017			
Well I.D.:	Well I.D.: MW-				: (2) 3 4	6 8		
Total Well	Depth (TD):	24	.80	Depth to Wate	r (DTW): 8	.88		
Depth to Fr	ee Product:			Thickness of F	ree Product (fe	et):		
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with	80% Rechar	ge [(H	leight of Water	Column x 0.20) + DTW]: [건 ·	.064		
Purge Method: Bailer Disposable Bailer				Waterra Peristaltic tion Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
$\frac{2.5}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{7.5}{\text{Calculated Volumes}}$				Gals. Jume	er Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius² * 0.163		
Time	Temp (°F or Ĉ)	pН	Cond. (mS or \(\mu \text{S} \)	Turbidity (NTUs)	Gals. Removed	Observations		
1127	20.57.	.57	1562	<1000	7.5			
1130	20.7 7	. 34	1521	121	5.0			
1134	20.77.	.27	1475	34	7.5			
				2				
				WAS TANDARD STATE OF THE STATE				
Did well de	water? Y	es (No)	Gallons actuall	y evacuated: 7	.5		
Sampling D	ate: 9 / / 1	.7	Sampling Time	: 1/35	Depth to Water	r: 11.92		
Sample I.D.: MW- 4				Laboratory:	Enthalpy			
Analyzed fo	or: TPH-G B	зтех	MTBE TPH-D	Oxygenates (5)	Other: See CO	С		
EB I.D. (if a	pplicable):		@ . Time .	Duplicate I.D. ((if applicable):			
Analyzed fo	r: TPH-G B	втех	MTBE TPH-D	• • • • • • • • • • • • • • • • • • • •	Other:			
D.O. (if req'	d): Pre-J	purge:		mg/ _L Po	ost-purge:	$mg_{/_{{L}}}$		

mV

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

LL MONITORING DATA SHOT

				OTTAL O				
Project #:	170905-F	PA1		Client: Stellar Env Solutions @ Bay Center Apts				
Sampler:	(PA) BA	/		Date:	9/ <u>5</u> /2017			
Well I.D.:	MW- z	5		Well Diame	eter: (2) 3 4	6 8		
Total Well	Depth (TE)): ひ	4.90	Depth to W	Vater (DTW):	,45		
Depth to Fr	ee Produc	t:		Thickness of	Thickness of Free Product (feet):			
Referenced	to:	PVC	Grade	D.O. Meter	(if req'd):	YSI HACH		
DTW with	80% Rech		Height of Water			2.7		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Sailer Displaceme		Waterra Peristaltic ction Pump	Sampling Method	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing		
$ \frac{3 \cdot \cancel{0.5} \text{ (Gals.) X}}{1 \text{ Case Volume}} = \frac{9 \cdot \cancel{0.04}}{1 \text{ Calculated Volume}} = \frac{9 \cdot \cancel{0.04}}{1 $								
	Temp		Cond.	Turbidity				
Time	(°F or °C)	pН	(mS or μ S)	(NTUs)	Gals. Removed	l Observations		
1200	20.5	8.06	2341	7100	0 3.5			
1205	20.4	8.04	2297	721	6.5			
	- h	ell	den aser cå	P 60	Sgallons			
1235	20.4	7.12	2035	340	grab			
Did well dev	water? (Yes	No	<u> </u>	ually evacuated: (5.5		
Sampling Da	ate: 9/5/	/ 17	Sampling Time	:1236	Depth to Wate	er:6.3 12.62		
Sample I.D.:	: MW-	5		Laboratory:	Enthalpy			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5	5) Other: See CO	OC		
EB I.D. (if a	pplicable)		@ Time	Duplicate I.	D. (if applicable):			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5	5) Other:	% >%		
D.O. (if req'o	d): Pr	e-purge:		$^{\mathrm{mg}}/_{\mathrm{L}}$	Post-purge:	**(mg/L		
O.R.P. (if re	q'd): Pr	e-purge:		mV	Post-purge:	mV		

W_LL MONITORING DATA SHI T

						<u> </u>	
Project #:	170905-I	PA1		Client: Stellar Env Solutions @ Bay Center Apts			
Sampler:	(A) BA	/		Date:	9/ <u>5</u> /2017		
Well I.D.:	MW-	6		Well Diameter	r: 2 3 4	6 8	
Total Well	Depth (TI)): 2	3. 45	Depth to Wate	er (DTW): 7.	<i>٤</i> 5	
Depth to Fr	ee Produc	t:		Thickness of I	Free Product (fe	et):	
Referenced	to: (PVC	Grade	D.O. Meter (if	req'd):	YSI HACH	
DTW with	80% Rech	arge [(F	Ieight of Water	Column x 0.20) + DTW]:		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	
2 · 5 1 Case Volume	Gals.) X Speci	了 fied Volun	$\frac{1}{1} = \frac{1}{1} \cdot \frac{1}{1}$ Calculated Vo	Well Diames Well Diames 1" 2" 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius² * 0.163	
Time	Temp	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations	
1240	19.8	11.96	1460	104	2.5	ي ^{ان} .	
1245	19.8	11.94	1425	96	5.0	章 : 東丘 v : 中	
1250	19.7	11.90	13 11	82	7.5.	:	
·							
			÷				
Did well de	water?	Yes (No	Gallons actual	y evacuated:	1.5	
Sampling D	ate: 9/5/	['] 17	Sampling Time	:1251	Depth to Wate	r: 7 · 7 O	
Sample I.D.	: MW- (0		Laboratory:	Enthalpy		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С	
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'	d): Pr	e-purge:		^{mg} / _L P	ost-purge:	mg/L	
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV	

			V TOTAL	OKING DATA	A SIII /I			
Project #:	170905-I	PA1		Client: Stellar Env Solutions @ Bay Center Apts				
Sampler:	PA/BA	/		Date:	9/ <u>&\$</u> /2017			
Well I.D.:	MW- 7			Well Diameter	:: 2 3 4	6 8 3/4		
Total Well	Depth (TD)): 19.8	35	Depth to Wate	r (DTW): 10 · 7	2 (9.13)		
Depth to Fr	ee Product	t:		Thickness of F	Thickness of Free Product (feet):			
Referenced	to: (PVC	Grade	D.O. Meter (if	D.O. Meter (if req'd): YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	12.55		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Waterra Waterra Sampling Method: Bailer Disposable Bailer Extraction Pump Electric Submersible Other 3/4 = 0.02 Other: Dedicated Tubing New 4-vbing								
0.18 (0 1 Case Volume	Gals.) X Speci	3 fied Volum	= 0.54 nes Calculated Vo	Gals. Gulden Gul	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47		
Time	Temp (°F or °©)	рН	Cond. (mS or μ \$)	Turbidity (NTUs)	Gals. Removed	Observations		
1126	20.0	8.31	1339	31	0.18	Brown		
1/29	20.1	8.27	1381	29	0.36			
	WEL	LD	ewatered Q	~ 0.4 0	213			
1330	19.8	8.32	1313	40		Brown		
Did well dev	water?	Yes	No	Gallons actuall	y evacuated:	0.4		
Sampling D	ate: 9 /05/	17	Sampling Time	e: 1330	Depth to Wate	r: 11.91		
Sample I.D.	: MW- 9			Laboratory:	Enthalpy			
Analyzed fo	r: TPH-G	втех	МТВЕ ТРН-D	Oxygenates (5)	Other: See CO	C		
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. ((if applicable):			
Analyzed fo	r: трн-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	•		
D.O. (if req'	d): Pr	e-purge:		mg/ _L Po	ost-purge:	$mg_{/_L}$		
O.R.P. (if re	q'd): Pr	e-purge:		mV Po	ost-purge:	mV		

W. LL MONITORING DATA SHA

		*	TELL MOTER			T OZZZ I		
Project #:	170905-F	PA1		Client: Stellar Env Solutions @ Bay Center Apts				
Sampler:	PA/BA	/		Date:		9/ <u>&</u> /20)17	
Well I.D.:	MW- 4	5		Well Dian	neter	r: 2 3	4	6 8 3/4
Total Well	Depth to V	Depth to Water (DTW): 9.94						
Depth to Fr	ee Product	t:	1.70			***************************************		et): 0.24
Referenced	to: (PVC	Grade	D.O. Mete	r (if	req'd):		YSI HACH
DTW with	80% Rech	arge [(F	Height of Water	······································			:	
Purge Method:		Waterra Peristaltic ction Pump		Sampling N	Method:	Disposable Bailer Extraction Port Dedicated Tubing		
1 Case Volume		ified Volum		Gals.		0.04 0.16 0.37	Well 3 4" 6" Other	Diameter Multiplier 0.65 1.47 r radius ² * 0.163
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	Turbidity (NTUs)	•	Gals. Ren	noved	Observations
0740	Start	ed pu	0/50	mi.				1/- 6
07 46	Stoppe	pol pu	es 0150					water levels during
Did well de	water?	Yes (No.	Gallons act	tuall	y evacuate	ed: 9	00ml
Sampling D	ate: 9/6/	/ 17	Sampling Time	:: 074	7	Depth to	Water	r: 12.24
Sample I.D.	: MW- ∈	3		Laboratory		Enthalpy		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates ((5)	Other: Se	ee CO	C
EB I.D. (if a	pplicable)):	@ Time	Duplicate I	.D. ((if applica	ble):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates ((5)	Other:	**************	
D.O. (if req'	d): Pr	re-purge:		$^{ m mg}/_{ m L}$	Po	ost-purge:		mg/ _L
O.R.P. (if re	q'd): Pr	re-purge:	İ	mV	Po	ost-purge:		mV

W_LL MONITORING DATA SH. I

		,	V TIT MONII	OKING DAT	A SHA I			
Project #:	Project #: 170905-PA1				Client: Stellar Env Solutions @ Bay Center Apts			
Sampler:	PA / BA	/		Date:	9/_5/2017			
Well I.D.:	MW- 9			Well Diamete	er: 2 3 4	6 8 <u>3/4</u>		
Total Well	Depth (TD	D): /	9.68	Depth to Wat	er (DTW): 10.0	5 [9.63		
Depth to Fr		t:		Thickness of	Free Product (fee	t):		
Referenced	to: (PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH		
DTW with	80% Rech	arge [(ŀ	Height of Water	Column x 0.20	0) + DTW]: 11.	98		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible			0.1	Waterra Peristaltic ction Pump	Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
				£	Other:	new Tubing		
0.2 (I Case Volume	Gals.) X Speci	3 fied Volur	= O. b	Gals. Solume Well Diame	eter Multiplier Well D 0.04 4" 0.16 6" 0.37 Other	iameter Multiplier 0.65 1.47 radius² * 0.163		
	Temp		Cond.	Turbidity		***************************************		
Time	(°F or (°C)	pН	(mS or (nS)	(NTUs)	Gals. Removed	Observations		
1143	18.6	9.27	2818	117	0.2	light Brown		
1144	18.9	9.30	2873	110	0.4	***************************************		
1145	19.0	9.28	2901	116	0.6			
Did well de	water?	Yes	6	Gallons actual	ly evacuated:	0.6		
Sampling Date: 9/5/17 Sampling Time				e: 1150	Depth to Water	: 11.116		
Sample I.D.	: MW- 9			Laboratory:	Enthalpy			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See COC	,		
EB I.D. (if a	ipplicable)	:	@ Time	Duplicate I.D.	(if applicable):			
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other:			

mV

Post-purge:

Post-purge:

mV

D.O. (if req'd):

O.R.P. (if req'd):

Pre-purge:

Pre-purge:

W_LL MONITORING DATA SH. I

		·	VELL MONIT	ORING DAT	A SHA T	
Project #:	170905-I	PA1		Client: Stellar	Env Solutions @ F	Bay Center Apts
Sampler:	PA/BA	/		Date:	9/ <u>6</u> /2017	
Well I.D.:	MŴ- į ()		Well Diamete	er: 2 3 4	6 8 3/4
Total Well	Depth (TD	D):		Depth to Wate	er (DTW): 🔞	8 Z
Depth to Fr	ee Produc	t: ່ ່ ່ ່ ່ `	ુ ૦	Thickness of	Free Product (fe	et): , 0 Z
Referenced	to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20	D) + DTW]:	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displacemo	ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X Speci	fied Volur	= nes Calculated Vo	Gals. Jume	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	<u>Diameter Multiplier</u> 0.65 1.47 r radius ² * 0.163
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
0317	Star	10	PUYCLES	@100ml/	min	-unable to
0823	Stop		Dures			record water cevels diving
						1ºurge
Did well de	water?	Yes (No)	Gallons actual	ly evacuated: (2	OOnal
Sampling D	ate: 9/6/	17	Sampling Time	:0824	Depth to Wate	r: 9.02
Sample I.D.	: MW- 1	0		Laboratory:	Enthalpy	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	Υ
D.O. (if req'	d): Pr	e-purge:		mg/L	Post-purge:	mg/L

mV

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

WELL MONITORING DATA SHA T

Project #:	Client	Client: Stellar Env Solutions @ Bay Center Apts								
Sampler:	PA / BA	"/			Date:		9/_5/2	2017		
Well I.D.:	MW- (Well l	Diamete	r: 2	3 4	6 8 (3/4)
Total Well	Depth (TI)): 19	1.72		Depth	to Wate	er (DTW): 10.4	12	9.30
Depth to Fr	ee Produc	t: He	avy Sh	un	Thick	ness of I	Free Proc	luct (fe	et):	
Referenced	to: (PVC	> (Grade	D.O. 1	Meter (it	req'd):		YSI	НАСН
DTW with	80% Rech	arge [(F	leight	of Wate	r Colum	n x 0.20) + DTV	/]: 1 ⁻	2.28	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Other	Waterra Peristakio action Pump	c o -	0.0	g Method:	Dispos Extra Dedica	Bailer sable Bailer action Port ated Tubing w Tubing
$\frac{0.\mathcal{V}}{1 \text{ Case Volume}}$	Gals.) X	ら fied Volum	=	ط. 0 alculated V	Gals.	Well Diame 1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.6: 1.4	i i
Time	Temp (°F or °C)	pН		ond. or μS)	(N	bidity TUs)	Gals. Ro		}	ervations
1220	ster	t purg	r 0	100 m	almin		0.0		10.69	Heavy Shee
1226	eno	Porg					0-4	B F	+6	D 13.00
Did well dev	 water?	Yes ((No)		Gallon	s actual	 y evacua	nted: (600mL	
Sampling D	ate: 9/5/	′ 17	Sampl	ing Tim	ie: 12	30	Depth to	o Watei	r: 11.23	}
Sample I.D.	: MW- 11				Labora	tory:	Enthalp	y		
Analyzed fo	r: TPH-G	BTEX	МТВЕ	TPH-D	Oxygen	ates (5)	Other:	S& C00	С	
EB I.D. (if a	pplicable)	•	@	Time	Duplic	ate I.D.	(if applic	able):		
Analyzed fo	r: TPH-G	BTEX	МТВЕ	TPH-D	Oxygena	ates (5)	Other:			
D.O. (if req'	d): Pr	e-purge:			$^{ m mg}/_{ m L}$	P	ost-purge:			mg/ _L
O.R.P. (if re	q'd): Pr	e-purge:			mV	P	ost-purge:			mV

W_LL MONITORING DATA SH. T

Project #:	170905-P	PA1		Client:	Stellar E	nv Solu	ıtions @ I	Зау С	enter	Apts	
Sampler:	PA / BA	/		Date:		9/_5/	/2017				
Well I.D.:	MW-12			Well D)iameter:	: 2	3 4	6	8	3/4	/
Total Well	Depth (TD)): 18	8.98	Depth 1	to Water	r (DTV	V): 9.1	18			19.80
Depth to Fr	ee Product	t:		Thickn	ess of F	ree Pro	oduct (fe	eet):	MPANIA		
Referenced	to: (PVC	Grade	D.O. M	leter (if	req'd):		YSI		НАС	H
DTW with	80% Rech	arge [(F	Height of Water	Columr	1 x 0.20)) + DT	W]: 1(.	14			
Purge Method:	Bailer Disposable Bailer Positive Air E Electric Subm	Displaceme		Waterra Peristattic ction Pump		0.02			Ext Dedi	Bailer osable E raction I cated Ti sew T	Bailer Port
0.2 ((1 Case Volume	Specif	3 ified Volum	= 0.5 nes Calculated Vo	Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Othe		0. 1.	.65 .47 adius ² * 0.	.163
Time	Temp (°F or 🕝	рН	Cond. (mS or (S)	Turb (NT	oidity (TUs)	Gals. I	Removed		Obs	servati	ons
1247	(7-0	7.91	1177	37	7	{	0-2			·	
1248	16-9	7.90	1200	35	9	t	5.4				
1249	16-9	7.90	1202	4/		C	0.6				

Did well dev	water?	Yes	160	Gallons	s actually	y evacı	uated:	0.6	, ,		
Sampling Da	ate: 9/5/	17	Sampling Time	e: 17	55	Depth	to Wate	er: 9	.18		
Sample I.D.:	: MW- 1	2		Laborate	ory:	Enthal	py				
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenat	tes (5)	Other:	See QO	<u></u>			
EB I.D. (if a	pplicable)		@ Time	Duplica	nte I.D. (if appl	icable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenat	• ,	Other:					
D.O. (if req'o	d): Pr	e-purge:		$^{ m mg}/_{ m L}$	Pc	ost-purge	je:				$^{mg}\!/_{\mathrm{L}}$
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge	e:				mV

		V	\ \LL MONI	TORING DATA	A SH. T			
Project #:	170905-F	PA1		Client: Stellar	Client: Stellar Env Solutions @ Bay Center Apts			
Sampler:	PA/BA	/		Date:	9/ <u>6</u> /2017			
Well I.D.:	MW- (3	3		Well Diameter	r: 2 3 4	6 8 3/4		
Total Well	Depth (TD)): 19 - 1	50	Depth to Wate	er (DTW): 8	28		
Depth to Fr	ee Product	t:			Free Product (fe	×		
Referenced	to: (PVC	Grade	D.O. Meter (if	f req'd):	YSI HACH		
DTW with	80% Rech	arge [(F	Height of Wate	r Column x 0.20)) + DTW]: {	0.52		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extra Other 1 · 2	Waterra Peristaltic action Pump Well Diame	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing		
Case Volume	Gals.) XSpeci	Z- ified Volum	= 0:6	Gals. 1"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47		
Time	Temp (°F or Ĉ)	р Н	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations		
0915	16.4	8.03	1944	67	0.2			
0916		8.02		54	0.4			
0917	16.5	7.97	1906	39	0.6			
Did well dev	water?	Yes ((No)	Gallons actual	ly evacuated:	5.6		
Sampling D	ate: 9 / 👸	/ 17	Sampling Tim	ie: 0918	Depth to Water	r: 9.37		
Sample I.D.	: MW- 1	3		Laboratory:	Enthalpy			
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: See CO	С		
EB I.D. (if a	pplicable)):	@ Time	Duplicate I.D.	(if applicable):			
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other:			
D.O. (if reg'	d). Pr	e-nurge:		mg/ _t F	ost-nurge	mg/I		

O.R.P. (if req'd):

Pre-purge:

mV

Post-purge:

W LL MONITORING DATA SH T

Project #: 170905-PA1	Client: Stellar Env Solutions @ Bay Center Apts						
Sampler: PAY BA /	Date: 9/ <u>6</u> /2017						
Well I.D.: MW-14	Well Diameter: 2 3 4 6 8 3 14						
Total Well Depth (TD): 19.50	Depth to Water (DTW): 9.60						
Depth to Free Product:	Thickness of Free Product (feet):						
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH						
DTW with 80% Recharge [(Height of Wa	8						
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltie Disposable Bailer Extraction Pump Extraction Port Dedicated Tubing Other New Pointer Multiplier						
$\frac{0.21}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{0.6}{\text{Calculated}}$	1"						
Time Cond (mS or uS)	Turbidity (NTUs) Gals. Removed Observations						
0955 16.5 8.44 1146	27 0.21						
0956 16.5 837 1 34	25 0.42						
0937 6.6 8.22 1127	72 0.63						
Did well dewater? Yes							
Sampling Date: 9 / 6/17 Sampling Ti	me: 0958 Depth to Water: 10.30						
Sample I.D.: MW- 1 4	Laboratory: Enthalpy						
Analyzed for: трн-G втех мтве трн-D	Oxygenates (5) Other: See COC						
EB I.D. (if applicable):	Duplicate I.D. (if applicable):						
Analyzed for: трн-G втех мтве трн-D	••						
O.O. (if req'd): Pre-purge:	mg/L Post-purge: mg/						

mV

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

V. LL MONITORING DATA SH. T

						4		
Project #:	170905-F	' A1		Client:	: Stellar	Env Solutions @ F	Bay Center Apts	
Sampler:	PA/BA	/	,	Date:		9/ <u>b</u> /2017		
Well I.D.:	MW-15)		Well D)iamete	er: 2 3 4	6 8 1/4	
Total Well)):		Depth	to Wate	er (DTW): 9-5	57		
Depth to Fro	ee Product	: 4,5	35	Thickn	Thickness of Free Product (feet): . 0 Z			
Referenced		PVC	Grade			f req'd):	YSI HACH	
DTW with 8	80% Rech	arge [(F	leight of Water	Columi	n x 0.20	D) + DTW]:		
Purge Method:	Bailer Disposable Bailer Positive Air E Electric Subm	Displaceme		Waterra Peristatic etion Pump	Well Diame		Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier	
1 Case Volume	Gals.) XSpecif	fied Volun	= nes Calculated Vo	_ Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 er radius ² * 0.163	
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	1 .	oidity ΓUs)	Gals. Removed	Observations	
1025	Start	eal	pirgo @	1000	n L		-unable to recor	
1031	54011 86001	او 2	purge				water levels five to well street	
			, 0					
Did well dev	water?	Yes ((No)	Gallons	s actual	ly evacuated:	600ml	
Sampling Da	ate: 9/6/	17	Sampling Time	e: /o3	3 2	Depth to Wate		
Sample I.D.:	: MW- /	5		Laborat	tory:	Enthalpy		
Analyzed for	r: TPH-G	втех	MTBE TPH-D	Oxygena	ites (5)	Other: See CO	C	
EB I.D. (if a	pplicable)	•	@ Time	Duplica	ate I.D.	(if applicable):		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:		
D.O. (if req'o	d): Pro	e-purge:		$^{ m mg}/_{ m L}$	F	Post-purge:	mg/ _L	

mV

Post-purge:

mV

O.R.P. (if req'd): Pre-purge:

W.LL MONITORING DATA SH. T

Project #:	170905-P	PA1		Client: Stel	llar Env Solutions @ F	Bay Center Apts
Sampler:	PA/BA	/		Date:	9/ <u>5</u> /2017	
Well I.D.:				Well Diam	neter: 2 3 4	6 8 3/4
Total Well	Depth (TD)): 19.(08	Depth to V	Vater (DTW): 9.	80 [9.28
Depth to Fr	ee Product	t:		Thickness	of Free Product (fe	
Referenced		PVC	Grade	D.O. Mete	r (if req'd):	YSI HACH
DTW with	80% Rech	arge [(F	leight of Water	Column x (0.20) + DTW]: 11	.66
Purge Method:	Bailer Disposable Bailer Positive Air E Electric Subm	Displaceme		Well I		Disposable Bailer Extraction Port Dedicated Tubing The Tubing Diameter Multiplier
1 Case Volume	Gals.) XSpeci	3 fied Volun	mes Calculated Vo	1"	" 0.04 4" " 0.16 6"	0.65 1.47
Time	Temp	pН	Cond. (mS or (LS)	Turbidity (NTUs)	' j	
1311	16.5	9,93	3212	121	0.2	Brown color, octor
1312	16.6	9.95	3223	101	0.4	
1313	16.8	9.99	3241	72	0.6	
Did well de	water?	Yes (No	Gallons act	tually evacuated:	0.6
Sampling D	ate: 9/5/	/ 17	Sampling Time	e: 1315	Depth to Wate	er: <i>¶98</i>
Sample I.D.	: MW- 14	?		Laboratory:	: Enthalpy	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (:	5) Other: See CO	<u> </u>
EB I.D. (if a	pplicable)	ı:	@ Time	Duplicate I	.D. (if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (:	5) Other:	
D.O. (if req'	d): Pr	e-purge:		mg/L	Post-purge:	mg/L
O.R.P. (if re	q'd): Pr	e-purge:		mV	Post-purge:	mV

Wall MONITORING DATA SHALI

					*2	
Project #:	170905-F	PA1		Client: Stellar I	Env Solutions @ F	Bay Center Apts
Sampler:	PA/BA	/		Date:	9/5_/2017	
Well I.D.:	MW-	17		Well Diameter	r: 2 3 4	6 8 3/4
Total Well	Depth (TE)): ^C	1.50	Depth to Wate	er (DTW):	5 <i>D</i>
Depth to Fr	ee Product	t:		Thickness of I	Free Product (fe	eet):
Referenced	to: (PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20)) + DTW]:	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltie ction Pump Well Diamet	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
6.25 (Constitution of the Constitution of the	Gals.) X Speci	3 ified Volum	$\frac{1}{\text{nes}} = \frac{6.75}{\text{Calculated Vo}}$	Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47
Time	Temp (°F or °C)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations
1325	20.3	8.84	1025	96	0.25	
1326	20.3	3.72	975	84	0.50	
1327	20.4	8.69	923	72	0.75	
			_			
Did well de	water?	Yes (No	Gallons actuall	ly evacuated: ¿	2-75
Sampling D	ate: 9/5/	′ 17	Sampling Time	: 1328	Depth to Wate	r: 9.50
Sample I.D.	: MW- i	7		Laboratory:	Enthalpy	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'	d): Pro	e-purge:		mg/ _L P	ost-purge:	$^{ m mg}/_{ m L}$

mV

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

W.LL MONITORING DATA SH. T

	WEEL MONTONING DATA SIL1									
Project #:	170905-I	PA1		Client: Stellar I	Env Solutions @ B	ay Center Apts				
Sampler:	PA/BA	/		Date:	9/ <u>5</u> /2017					
Well I.D.:	MW- 18			Well Diameter	r: 2 3 4	6 8 <u>3/4</u>				
Total Well	Depth (TD): 194	57	Depth to Wate	er (DTW): 9,2	0 [10.37				
Depth to Fr	ee Product	t: -		Thickness of I	Free Product (fee	et): —				
Referenced	to:	PVC	Grade	D.O. Meter (if	freq'd):	YSI HACH				
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20	0) + DTW]:					
Purge Method:	Bailer Disposable B Positive Air I Electric Subst	Displaceme	ent Extrac Other	Waterra Peristatic ction Pump Well Diame	Sampling Method: OT Other: ter Multiplier Well I	Disposable Bailer Extraction Port Dedicated Tubing				
9.20 (0 1 Case Volume	Gals.) X Speci	ි fied Volun	$\frac{1}{1000} = \frac{0.16}{\text{Calculated Vol}}$	Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163				
	Temp		Cond.	Turbidity	·					
Time	(°F or CC)	pН	(mS or µS)	(NTUs)	Gals. Removed	Observations				
1345	16.0	7.11	6612	210	0.2	Gray				
1346	16.1	7.13	6572	438	6.4	J				
1347	16.1	7.13	6513	689	0.6					
Did well dev	water?	Yes (No	Gallons actually evacuated: v. b						
Sampling D	ate: 9/5/	′ 17	Sampling Time	e: 1350	Depth to Water	: 10.09				
Sample I.D.	: MW- 18	3		Laboratory:	Enthalpy					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See Co	C				
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):					
Analyzed fo	r: TPH-G	ВТЕХ	MTBE TPH-D	Oxygenates (5)	Other:	-				

mV

Post-purge:

Post-purge:

mV

D.O. (if req'd):

O.R.P. (if req'd):

Pre-purge:

Pre-purge:

FELL MONITORING DATA SHFFT

			<u>: </u>				
Project #:	170905	-PK)		Client: Sue	lan Env PB	ny Cower Apts	
Sampler:	PA			Date: 9-1	6-17	3	
Well I.D.:	ew-01			Well Diameter: 2 3 4 6 8 10			
Total Well				Depth to Water (DTW): 9.7			
Depth to Fi	ree Product	: 9.7	0		of Free Product (f		
Referenced	to:	PVC	Grade	D.O. Meter	(if req'd):	YSI HACH	
DTW with	80% Recha	arge [(F	Height of Water	Column x 0.	20) + DTW]:		
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm Gals.) X Specif	Displaceme	ent Extract Other	Waterra Peristaffic tion Pump Gals. Well Dis 1" 2" 3"	Sampling Metho Other Multiplier Wel 0.04 4" 0.16 6" 0.37 Oth	Disposable Bailer Extraction Port Dedicated Tubing 7: Year Arbitage 1 Diameter Multiplier 0.65 1.47	
	I speen		I I				
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations	
1150	Starte	od p	vrege QZ	oomlym	iv		
1156	Stopp	ed	purge				
			. 0		·		
:							
Did well dev	vater?	res (No) (Gallons actua	ally evacuated: /	700ml	
Sampling Da	ite 10-1	5-17	Sampling Time:	1157	Depth to Wate	r: 9.7	
ample I.D.:		**************************************	I	_aboratory:			
nalyzed for	:: ТРН-G	BTEX	мтве трн-d С)xygenates (5)	Other:		
B I.D. (if ap	plicable):		@ Time I	Duplicate I.D	. (if applicable):		
nalyzed for	: TPH-G	BTEX I	мтве трн-р О)xygenates (5)	Other:		
O.O. (if req'd): Pre-	purge:		mg/L	Post-purge:	$^{ m mg}/_{ m L}$	
R.P. (if req	'd): Pre-	purge:		mV	Post-purge:	mV	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAME	ME Stelle, c	Q	Cember A.	PROJECT NUN	Bang Cember L. PROJECT NUMBER 1709 05 - P.K.	7	
	EQUIPMENT NUMBER	ATE/TI F TES	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	LEMD	O V
154 Papus	(2810H2)		4 0.0 4.0 7.0 7.0	4.0 4.9 233,9 9.9	les	23.4	WILLIALS
7	→	9/6 9/20	->	0.01 .452 1.7)/e s	23.3	£ 2
							-
1							
					17		
·							

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Enthalpy Analytical

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 292132 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2007-65

Location : Bay Center Apts

Date: <u>09/14/2017</u>

Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-17	292132-001
MW-6	292132-002
MW-5	292132-003
MW-4	292132-004
MW-E	292132-005
MW-18	292132-006
MW-16	292132-007
MW-12	292132-008
MW-11	292132-009
MW-9	292132-010
MW-7	292132-011

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Patrick McCarthy Project Manager

 $\verb"patrick.mccarthy@enthalpy.com"$

(510) 204-2236

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: 292132

Client: Stellar Environmental Solutions

Project: 2007-65

Location: Bay Center Apts

Request Date: 09/05/17 Samples Received: 09/05/17

This data package contains sample and QC results for eleven water samples, requested for the above referenced project on 09/05/17. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Many samples were diluted due to client history of high non-target or organic acid interference. MW-7 (lab # 292132-011) had pH greater than 2. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

292137

Chain of Custody Record	Method of Shipment HAS DRIVERY or LAS COLPUSAL REPRESENTATION OF PAGE OF PAGE OF LAS COLPUSAL REPRESENTATION OF PAGE OF PAGE OF LAS COLPUSAL REPRESENTATION OF PAGE O	A Malysis Required		Project Manager K. WAK OW!	Telephone No. (510) 644-3123	(510) 644-3859	
EN THE PY	MPKNS	Airbill No. –	Project Owner Cooler No.	HOO CHRISTIE AVE		Project Name BAY COUTER APACEMENTE No.	

BERKELY,	4			Airhill No						-		September 1		
				Cooler No.					<u></u>	(F		8	///	
Project Owner		- [1	Project Manager R. WAK Dik!	R. WA	K OK		`	SJO.	2 S	Se CO	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>'</u>	·
Site Address 10400 CHRISTIE STRKELEY, CA	545	Anc		Telephone No. (510) 644-3123	510) 644-3	123		Peleved	VIEJUOS	6/6	المالية			
Project Name 844 COUTER APACETMENTERNO.	×	PACI	Zen Z	Fax No.	(510) 644-3859	859		*	10 OA	DE TO	なが		/ Remarks	
Project Number 2007 - 65	W			Samplers: (Signature)	ture)			<u>/</u>	7-14					
Field Sample Number Location/	-	Date T	Time Sample	ple Type/Size of Container e		Pres	Preservation r Chemical	<u> </u>	SE		_ []		_	
M W - 17	9	8 251/1-1-6	1	VOA/AMBER					×	×	Ļ			
9-mm		2!	1251						\ \		×			
mw. 5		21	9521						>	×				
7 - MVi			355			<u> </u>			· ~					
Mw. E		-	coll						×	\				
81 - mm		-	1350						X	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-			
21 - Wm.			1315						 \	1 +				
21-M2		12	1255						×	×				
11 - 32		21	1230						×	🗸	,			
M. U. A.			1150						\ \	~				
トーツズ		<u> </u>	1330						×	X	_			
		>												
Relinquished by:	Date	æ	Received by: Signature	Tray Ba	K.	Date 9/	Relinquished by:	<u>.</u>			Date	Received by: Signature		Date
Printed Phillip Alons	1		Printed	Coll Bs	5,5	2 emit					Time	Printed		a <u>H</u>
company Blains Tech Service 1500	751 Salves		Company	Enthelpy	7	12.50	Company —				_ 	Company		
Turnaround Time: 57400ACD	Ą			\$			Relinquished by:				Date	Received by:		Date
	1						Signature					Signature		

Janua & Print

2198 Sixth Street #201, Berkeley, CA 94710

Company -

Signature _

Signature

Comments: EDF REGUIRED

10.00000s

Printed

Printed ___

Time

Time

* Stellar Environmental Solutions

COOLER RECEIPT CHECKLIST

Login # 292132 Date Received 09/05/17 Number of coole	ers 1 ENTHALP
Client Siellar Environmental Solutions Project 2007-65	Berkeley
Date Opened 09/15/17 By (print) Dls (sign)	ghr
Date Logged in By (print) (sign)	mo
Date Logged in By (print) (sign) Date Labelled By (print) (sign)	
Bute Euconed By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc)Shipping info	YES NO
2A. Were custody seals present? YES (circle) on cooler How many Name	on samples X NO Date
2B. Were custody seals intact upon arrival?	YES NO NA
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received?	YES NO
4. Were custody papers filled out properly (ink, signed, etc)?	MES NO
5. Is the project identifiable from custody papers? (If so fill out top of	form) (YES NO
☐ Bubble Wrap ☐ Foam blocks ☐ Bags	□None
☐ Cloth material ☐ Cardboard ☐ Styrofoam	☐ Paper towels
7. Temperature documentation: * Notify PM if temperature excee	eds 6°C
Type of ice used: ☐ Wet ☐ Blue/Gel ☐ None Te	emp(°C)3_0
☐ Temperature blank(s) included? ☐ Thermometer#	
☐ Samples received on ice directly from the field. Cooling proce	•
0 W M 1 1 2007 11	. •
8. Were Method 5035 sampling containers present?	YES \newline
If YES, what time were they transferred to freezer?	
9. Did all bottles arrive unbroken/unopened?	KES NO
(19) Are there any missing / extra samples?	XFS) XXX ES
11. Are samples in the appropriate containers for indicated tests?	YES NO
2. Are sample labels present, in good condition and complete?	YES NO
Ly. Do the sample labels agree with custody papers?	YES ATO
14. Was sufficient amount of sample sent for tests requested?	XES NO
15. Are the samples appropriately preserved?	YES NO MA
16. Did you check preservatives for all bottles for each sample?	YES NO NO
17. Did you document your preservative check? (pH strip lot#	YES NO NA
18. Did you change the hold time in LIMS for unpreserved VOAs?	YES NO WA
19. Did you change the hold time in LIMS for preserved terracores?	YES NO 🗖
20. Are bubbles > 6mm absent in VOA samples?	YES NO N/A
21. Was the client contacted concerning this sample delivery?	YES NO
If YES, Who was called?By	Date:
COMMENTS (13) COC loss semple 5 as "MW-E" but are la	belled as "MW-8" simpled time
and date makeds	•
(10) COC lists tembers for TEH but no bodyles acroved , [or sample 8 940 Mbr 11
(20) 2/3 VOAs arried with bulble, in sample	6

Detections Summary for 292132

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions

Project : 2007-65

Location : Bay Center Apts

Client Sample ID: MW-17 Laboratory Sample ID: 292132-001

Analyte	Result		RL							_	Method
Gasoline C7-C12	6,700		1,300						8015B		
Benzene	840		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Toluene	170		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Ethylbenzene	59		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
m,p-Xylenes	96		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
o-Xylene	41		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Diesel C10-C24	3,100	Y	50	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-6 Laboratory Sample ID: 292132-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
MTBE	3.1		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Benzene	0.83		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	570	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-5 Laboratory Sample ID: 292132-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
MTBE	2.7		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	1,400	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-4 Laboratory Sample ID: 292132-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
MTBE	2.8		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	290	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-E Laboratory Sample ID: 292132-005

Analyte	Result	Flags	RL	Units	Ва	asis	IDF	Met	hod	Prep	Method
Gasoline C7-C12	16,000		2,500	ug/L	As	Recd	50.00	EPA	8015B	EPA	5030B
Benzene	4,400		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Toluene	120		25						8021B		
Ethylbenzene	410		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
m,p-Xylenes	290		25	ug/L							
o-Xylene	69		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Diesel C10-C24	3,200	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Page 1 of 3

Client Sample ID: MW-18 Laboratory Sample ID: 292132-006

Analyte	Result	Flags F	ΣL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	1,900	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-16 Laboratory Sample ID: 292132-007

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Benzene	13		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Diesel C10-C24	3,200	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-12 Laboratory Sample ID: 292132-008

_	Result	_									Method
Gasoline C7-C12	6,200		1,300								
Benzene	1,400						25.00				
Toluene	36						25.00				
m,p-Xylenes	13						25.00				
Diesel C10-C24	2,100		49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-11 Laboratory Sample ID: 292132-009

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	2,100		250	ug/L	As Recd	5.000	EPA 8015B	EPA 5030B
Benzene	210		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Toluene	34		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Ethylbenzene	18		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
m,p-Xylenes	43		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
o-Xylene	17		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Diesel C10-C24	3,800		49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-9 Laboratory Sample ID: 292132-010

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	510	Y	250	ug/L	As Recd	5.000	EPA 8015B	EPA 5030B
Benzene	6.1		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Diesel C10-C24	3,800	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Page 2 of 3

6 of 43

Client Sample ID : MW-7 Laboratory Sample ID : 292132-011

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	1,200		250	ug/L	As Recd	5.000	EPA 8015B	EPA 5030B
Benzene	320		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Toluene	11		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Ethylbenzene	14		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
m,p-Xylenes	37		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
o-Xylene	8.2		2.5	ug/L	As Recd	5.000	EPA 8021B	EPA 5030B
Diesel C10-C24	3,800	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Y = Sample exhibits chromatographic pattern which does not resemble standard Page 3 of 3

Enthalpy Analytical - Berkeley Analytical Report Bay Center Apts EPA 5030B Lab #: 292132 Location: Stellar Environmental Solutions Client: Prep: Project#: 2007-65 09/05/17 09/05/17 Sampled: Matrix: Water Units: ug/L Received:

 Field ID:
 MW-17
 Diln Fac:
 25.00

 Type:
 SAMPLE
 Batch#:
 251335

 Lab ID:
 292132-001
 Analyzed:
 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	6,700	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	840	13	EPA 8021B
Toluene	170	13	EPA 8021B
Ethylbenzene	59	13	EPA 8021B
m,p-Xylenes	96	13	EPA 8021B
o-Xylene	41	13	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	102	80-121	EPA 8015B	
Bromofluorobenzene (PID)	103	74-135	EPA 8021B	

Field ID: MW-6 Diln Fac: 1.000 Type: SAMPLE Batch#: 251335 Lab ID: 292132-002 Analyzed: 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	3.1	2.0	EPA 8021B
Benzene	0.83	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	95	80-121	EPA 8015B	
Bromofluorobenzene (PID)	98	74-135	EPA 8021B	

Field ID: MW-5 Diln Fac: 1.000
Type: SAMPLE Batch#: 251335
Lab ID: 292132-003 Analyzed: 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	2.7	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate		%REC	Limits	Analysi	s
Bromofluorobenzene	(FID)	107	80-121	EPA 8015B	
Bromofluorobenzene	(PID)	105	74-135	EPA 8021B	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 5

Enthalpy Analytical - Berkeley Analytical Report 292132 Lab #: Location: Bay Center Apts EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Water Matrix: Sampled: 09/05/17 Units: ug/L Received: 09/05/17

 Field ID:
 MW-4
 Diln Fac:
 1.000

 Type:
 SAMPLE
 Batch#:
 251335

 Lab ID:
 292132-004
 Analyzed:
 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	2.8	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	86	80-121	EPA 8015B	
Bromofluorobenzene (PID)	85	74-135	EPA 8021B	

Field ID: MW-E Diln Fac: 50.00
Type: SAMPLE Batch#: 251390
Lab ID: 292132-005 Analyzed: 09/08/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	16,000	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	4,400	25	EPA 8021B
Toluene	120	25	EPA 8021B
Ethylbenzene	410	25	EPA 8021B
m,p-Xylenes	290	25	EPA 8021B
o-Xylene	69	25	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (1	FID) 105	80-121	EPA 8015B	
Bromofluorobenzene (1	PID) 104	74-135	EPA 8021B	

 Field ID:
 MW-18
 Diln Fac:
 5.000

 Type:
 SAMPLE
 Batch#:
 251335

 Lab ID:
 292132-006
 Analyzed:
 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	250	EPA 8015B
MTBE	ND	10	EPA 8021B
Benzene	ND	2.5	EPA 8021B
Toluene	ND	2.5	EPA 8021B
Ethylbenzene	ND	2.5	EPA 8021B
m,p-Xylenes	ND	2.5	EPA 8021B
o-Xylene	ND	2.5	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	96	80-121	EPA 8015B	
Bromofluorobenzene (PID)	98	74-135	EPA 8021B	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 5

Enthalpy Analytical - Berkeley Analytical Report 292132 Lab #: Location: Bay Center Apts EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Water Matrix: Sampled: 09/05/17 Units: ug/L Received: 09/05/17

 Field ID:
 MW-16
 Diln Fac:
 5.000

 Type:
 SAMPLE
 Batch#:
 251335

 Lab ID:
 292132-007
 Analyzed:
 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	250	EPA 8015B
MTBE	ND	10	EPA 8021B
Benzene	13	2.5	EPA 8021B
Toluene	ND	2.5	EPA 8021B
Ethylbenzene	ND	2.5	EPA 8021B
m,p-Xylenes	ND	2.5	EPA 8021B
o-Xylene	ND	2.5	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	110	80-121	EPA 8015B	
Bromofluorobenzene (PID)	112	74-135	EPA 8021B	

Field ID: MW-12 Diln Fac: 25.00 Type: SAMPLE Batch#: 251335 Lab ID: 292132-008 Analyzed: 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	6,200	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	1,400	13	EPA 8021B
Toluene	36	13	EPA 8021B
Ethylbenzene	ND	13	EPA 8021B
m,p-Xylenes	13	13	EPA 8021B
o-Xylene	ND	13	EPA 8021B

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene ((FID)	105	80-121	EPA 8015B	
Bromofluorobenzene ((PID)	106	74-135	EPA 8021B	

Field ID: MW-11 Diln Fac: 5.000
Type: SAMPLE Batch#: 251335
Lab ID: 292132-009 Analyzed: 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,100	250	EPA 8015B
MTBE	ND	10	EPA 8021B
Benzene	210	2.5	EPA 8021B
Toluene	34	2.5	EPA 8021B
Ethylbenzene	18	2.5	EPA 8021B
m,p-Xylenes	43	2.5	EPA 8021B
o-Xylene	17	2.5	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	106	80-121	EPA 8015B	
Bromofluorobenzene (PID)	108	74-135	EPA 8021B	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 5

Enthalpy Analytical - Berkeley Analytical Report 292132 Lab #: Location: Bay Center Apts EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Water Matrix: Sampled: 09/05/17 Units: ug/L Received: 09/05/17

Field ID: MW-9 Diln Fac: 5.000
Type: SAMPLE Batch#: 251335
Lab ID: 292132-010 Analyzed: 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	510 Y	250	EPA 8015B
MTBE	ND	10	EPA 8021B
Benzene	6.1	2.5	EPA 8021B
Toluene	ND	2.5	EPA 8021B
Ethylbenzene	ND	2.5	EPA 8021B
m,p-Xylenes	ND	2.5	EPA 8021B
o-Xylene	ND	2.5	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	106	80-121	EPA 8015B	
Bromofluorobenzene (PID)	105	74-135	EPA 8021B	

Field ID: MW-7 Diln Fac: 5.000
Type: SAMPLE Batch#: 251335
Lab ID: 292132-011 Analyzed: 09/06/17

Analyte	Result	RL	Analysis	
Gasoline C7-C12	1,200	250	EPA 8015B	
MTBE	ND	10	EPA 8021B	
Benzene	320	2.5	EPA 8021B	
Toluene	11	2.5	EPA 8021B	
Ethylbenzene	14	2.5	EPA 8021B	
m,p-Xylenes	37	2.5	EPA 8021B	
o-Xylene	8.2	2.5	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	86	80-121	EPA 8015B	
Bromofluorobenzene (PID)	87	74-135	EPA 8021B	

Type: BLANK Batch#: 251335 Lab ID: QC899664 Analyzed: 09/06/17 Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	82	80-121	EPA 8015B	
Bromofluorobenzene (PID)	85	74-135	EPA 8021B	

Y= Sample exhibits chromatographic pattern which does not resemble standard

Page 4 of 5

ND= Not Detected

RL= Reporting Limit

	Enthalpy Analytical	- Berkeley Analy	tical Report	
	292132 Stellar Environmental Solutions 2007-65	Location: Prep:	Bay Center Apts EPA 5030B	
Matrix: Units:	Water ug/L	Sampled: Received:	09/05/17 09/05/17	

Type: Lab ID: Diln Fac: 251390 09/07/17 BLANK Batch#: Analyzed: OC899872 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	88	80-121	EPA 8015B	
Bromofluorobenzene (PID)	88	74-135	EPA 8021B	

Page 5 of 5

 $[\]mbox{\sc Y=}$ Sample exhibits chromatographic pattern which does not resemble standard $\mbox{\sc ND=}$ Not Detected

RL= Reporting Limit

	Enthalpy Analytical	- Berkeley Anal	ytical Report
Lab #:	292132	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC899659	Batch#:	251335
Matrix:	Water	Analyzed:	09/06/17
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	968.0	97	80-122

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	110	80-121

Page 1 of 1 4.0

	Enthalpy Analytical -	- Berkeley Anal	ytical Report
Lab #:	292132	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	251335
Units:	ug/L	Analyzed:	09/06/17
Diln Fac:	1.000		

Type: BS Lab ID: QC899660

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.14	101	45-130
Benzene	10.00	9.093	91	80-120
Toluene	10.00	8.668	87	80-120
Ethylbenzene	10.00	9.114	91	78-120
m,p-Xylenes	10.00	8.636	86	78-120
o-Xylene	10.00	8.695	87	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	93	74-135

Type: BSD Lab ID: QC899661

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	21.93	110	45-130	8	58
Benzene	20.00	19.86	99	80-120	9	20
Toluene	20.00	18.89	94	80-120	9	20
Ethylbenzene	20.00	19.10	96	78-120	5	28
m,p-Xylenes	20.00	19.37	97	78-120	11	26
o-Xylene	20.00	19.14	96	80-120	10	20

	Enthalpy Analytical -	Berkeley Anal	ytical Report
Lab #: 29213:	2	Location:	Bay Center Apts
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-	65	Analysis:	EPA 8015B
Field ID:	MW-6	Batch#:	251335
MSS Lab ID:	292132-002	Sampled:	09/05/17
Matrix:	Water	Received:	09/05/17
Units:	ug/L	Analyzed:	09/07/17
Diln Fac:	1.000		

Type: MS Lab ID: QC899662

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	29.62	2,000	1,903	94	78-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	106	80-121

Type: MSD Lab ID: QC899663

Analyte	Spiked	Result	%REC	Limits	RPD Lir
Gasoline C7-C12	2,000	1,906	94	78-120	0 20

Surrogat	%REC	Limits
Bromofluorobenzene	106	80-121

	Enthalpy Analytical	- Berkeley Anal	ytical Report
Lab #:	292132	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC899867	Batch#:	251390
Matrix:	Water	Analyzed:	09/07/17
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	970.7	97	80-122

Surrogate %RE		Limits
Bromofluorobenzene (FID)	106	80-121

Page 1 of 1 7.0

	Enthalpy Analytical -	· Berkeley Anal	ytical Report
Lab #:	292132	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	251390
Units:	ug/L	Analyzed:	09/07/17
Diln Fac:	1.000		

Type: BS Lab ID: QC899868

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.34	103	45-130
Benzene	10.00	9.624	96	80-120
Toluene	10.00	9.278	93	80-120
Ethylbenzene	10.00	9.467	95	78-120
m,p-Xylenes	10.00	9.395	94	78-120
o-Xylene	10.00	9.316	93	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	100	74-135

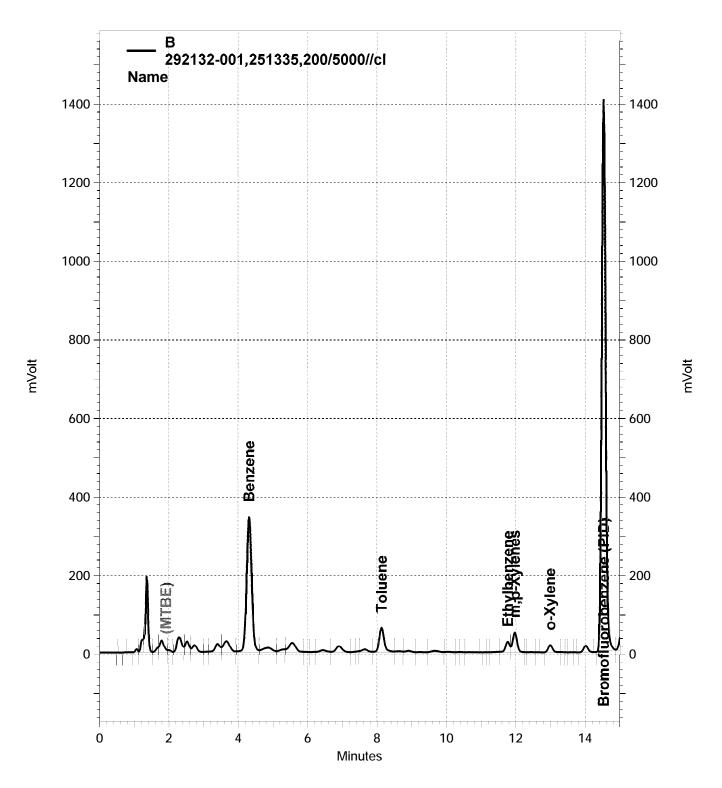
Type: BSD Lab ID: QC899869

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	10.46	105	45-130	1	58
Benzene	10.00	9.496	95	80-120	1	20
Toluene	10.00	9.010	90	80-120	3	20
Ethylbenzene	10.00	9.330	93	78-120	1	28
m,p-Xylenes	10.00	9.041	90	78-120	4	26
o-Xylene	10.00	9.019	90	80-120	3	20

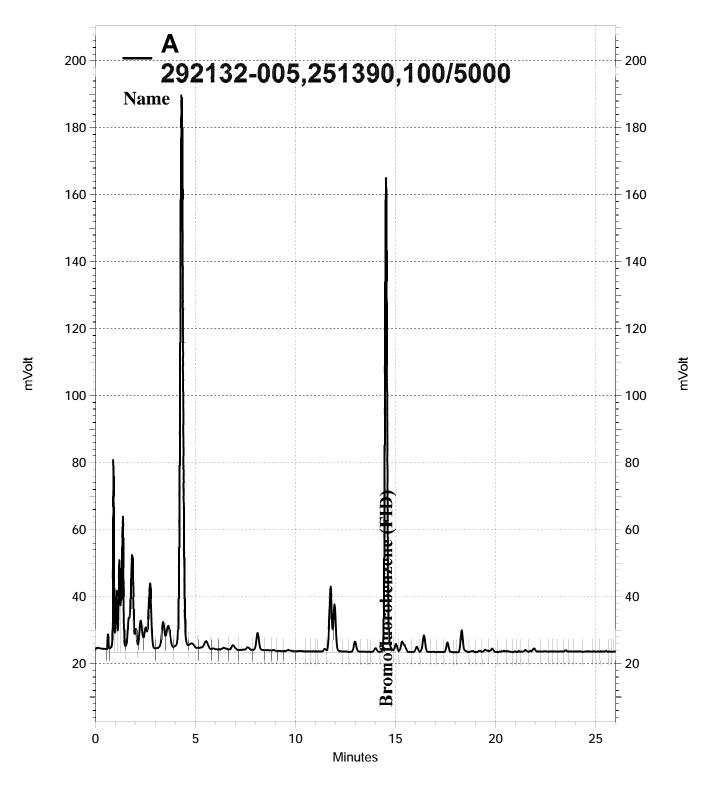
Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	94	74-135	

	Enthalpy Analytical -	Berkeley Analy	tical Report
Lab #: 292132		Location:	Bay Center Apts
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-6	55	Analysis:	EPA 8015B
Field ID:	RW-1	Batch#:	251390
MSS Lab ID:	292162-001	Sampled:	09/06/17
Matrix:	Water	Received:	09/06/17
Units:	ug/L	Analyzed:	09/08/17
Diln Fac:	1.000		

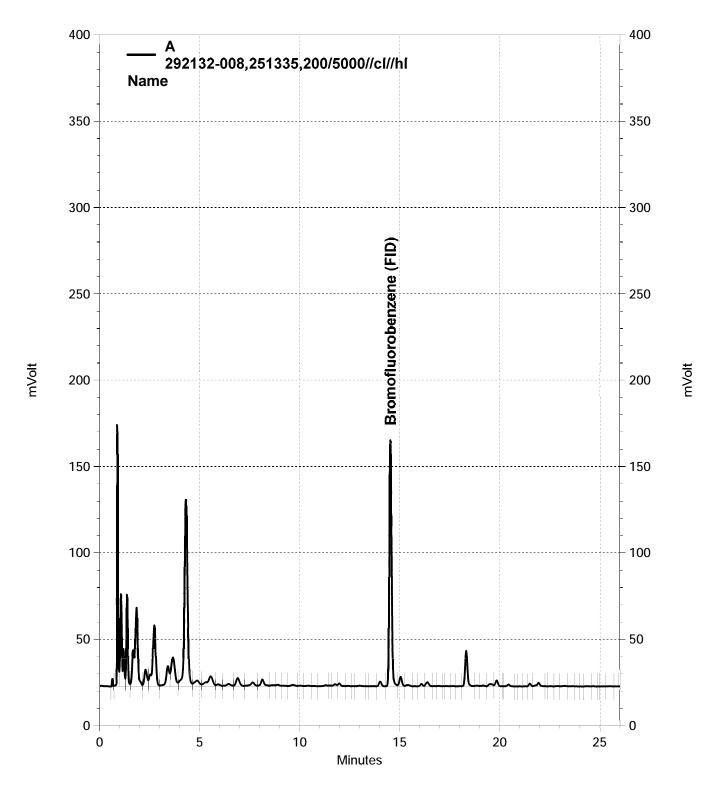
Type: MS Lab ID: QC899870

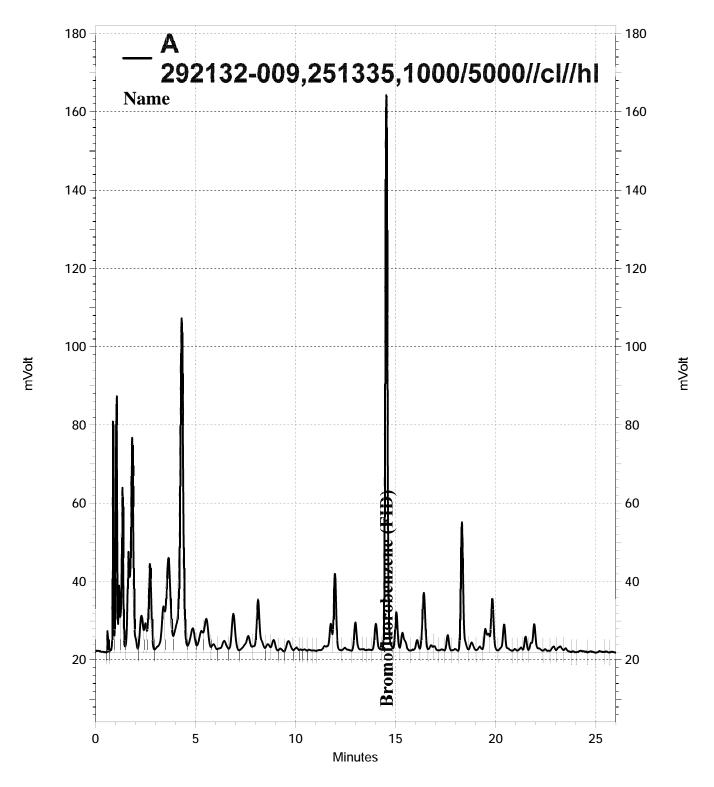

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	656.4	2,000	2,368	86	78-120

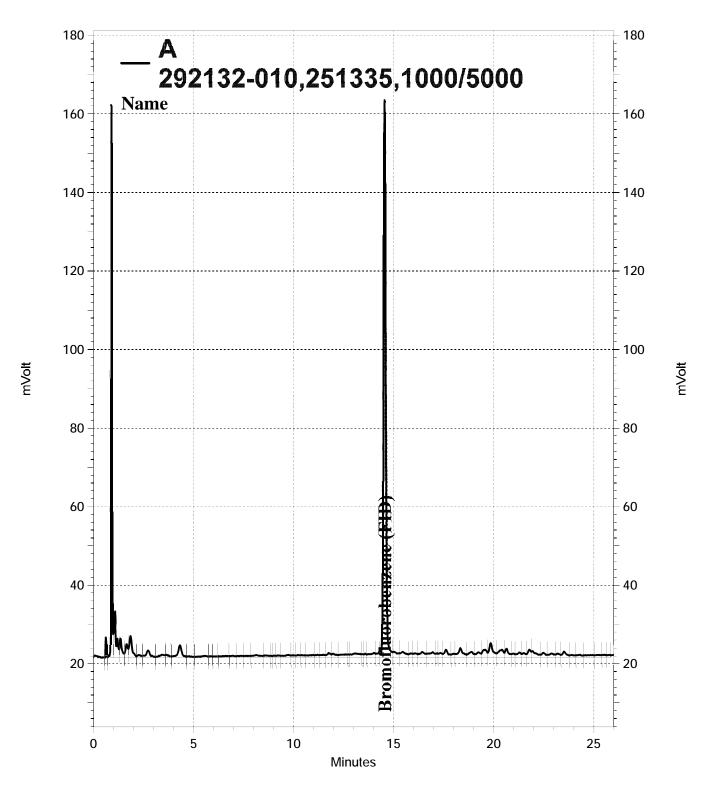
Surrogate	%REC	Limits
Bromofluorobenzene (FID)	109	80-121

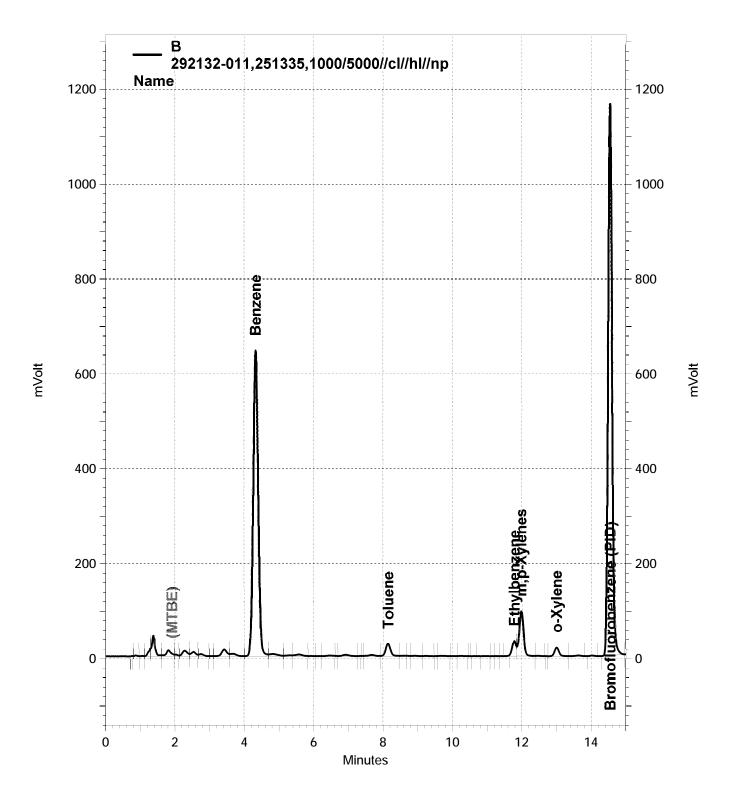

Type: MSD Lab ID: QC899871

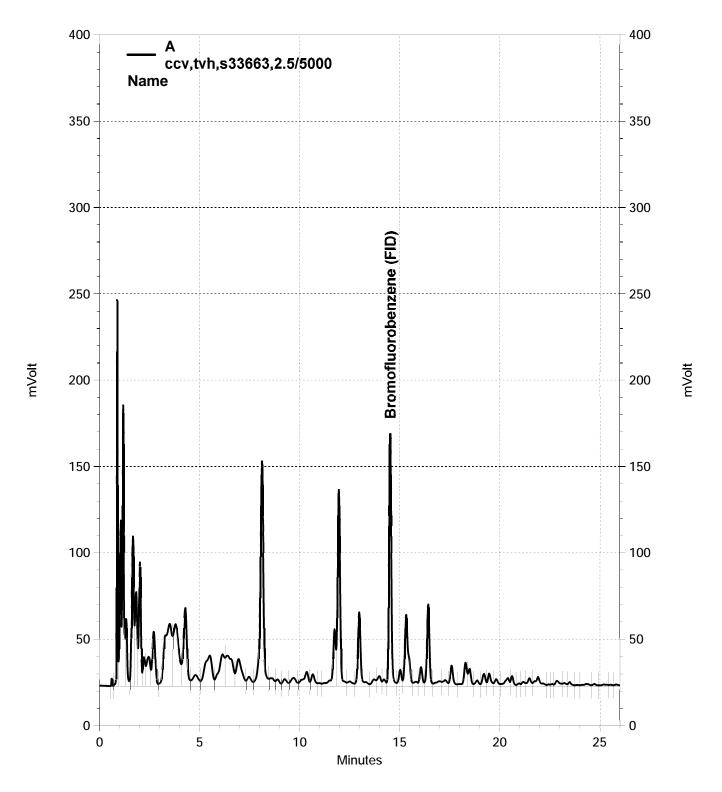
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,459	90	78-120	4	20


Surrogate	%REC	Limits
Bromofluorobenzene (FID)	110	80-121


\Lims\gdrive\ezchrom\Projects\GC19\Data\249-012, B


\Lims\gdrive\ezchrom\Projects\GC19\Data\250-029, A


\Lims\gdrive\ezchrom\Projects\GC19\Data\249-011, A


\Lims\gdrive\ezchrom\Projects\GC19\Data\249-021, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\249-022, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\249-013, B

\Lims\gdrive\ezchrom\Projects\GC19\Data\249-002, A

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C Lab #: 292132 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Analysis: EPA 8015B 09/05/17 Matrix: Water Sampled: 09/05/17 Units: ug/L Received:

Field ID: MW-17 Batch#: 251348
Type: SAMPLE Prepared: 09/06/17
Lab ID: 292132-001 Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 3,100 Y
 50

Surrogate %REC Limits
o-Terphenyl 121 51-134

Field ID: MW-6 Batch#: 251348
Type: SAMPLE Prepared: 09/06/17
Lab ID: 292132-002 Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 570 Y
 49

Surrogate %REC Limits
o-Terphenyl 130 51-134

1.000

Field ID: MW-5 Batch#: 251348
Type: SAMPLE Prepared: 09/06/17
Lab ID: 292132-003 Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 1,400 Y
 50

Surrogate %REC Limits
o-Terphenyl 89 51-134

Field ID: MW-4 Batch#: 251348
Type: SAMPLE Prepared: 09/06/17
Lab ID: 292132-004 Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 290 Y
 50

Surrogate %REC Limits
o-Terphenyl 89 51-134

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 4

Diln Fac:

Total Extractable Hydrocarbons

Lab #: 292132 Location: Bay Center Apts Client: Stellar Environmental Solutions Prep: EPA 3520C

Diln Fac: ug/L

Field ID: MW-E Batch#: 251348
Type: SAMPLE Prepared: 09/06/17
Lab ID: 292132-005 Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 3,200 Y
 49

Surrogate %REC Limits
o-Terphenyl 96 51-134

Field ID: MW-18 Batch#: 251348
Type: SAMPLE Prepared: 09/06/17
Lab ID: 292132-006 Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 1,900 Y
 49

Surrogate %REC Limits
o-Terphenyl 88 51-134

Field ID: MW-16 Batch#: 251348
Type: SAMPLE Prepared: 09/06/17
Lab ID: 292132-007 Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 3,200 Y
 49

Surrogate %REC Limits
o-Terphenyl 84 51-134

Field ID: MW-12 Batch#: 251389
Type: SAMPLE Prepared: 09/07/17
Lab ID: 292132-008 Analyzed: 09/12/17

 Analyte
 Result
 RL

 Diesel C10-C24
 2,100
 49

Surrogate %REC Limits
o-Terphenyl 103 51-134

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 4

Total Extractable Hydrocarbons

Lab #: 292132 Location: Bay Center Apts Client: Stellar Environmental Solutions EPA 3520C Prep:

51-134

Analysis: Sampled: Project#: 2007-65 EPA 8015B 09/05/17 Matrix: Water Units: ug/L Received: 09/05/17

Diln Fac: 1.000

o-Terphenyl

Field ID: MW-11Type: SAMPLE Lab ID: 292132-009 Batch#: 251389 Prepared: 09/07/17 Analyzed: 09/12/17

Result Analyte Diesel C10-C24 3,800 49

109

Limits Surrogate %REC

Field ID: MW-9Batch#: 251389 SAMPLE 09/07/17 Type: Prepared: Lab ID: 292132-010 09/13/17 Analyzed:

Analyte Result RLDiesel C10-C24 3,800 Y 49

%REC Limits Surrogate 100 51-134 o-Terphenyl

Field ID: MW-7Batch#: 251389 SAMPLE 09/07/17 Type: Prepared: Lab ID: 09/12/17 292132-011 Analyzed:

Result Analyte RLDiesel C10-C24 3,800 Y 49

%REC Limits Surrogate o-Terphenyl

09/06/17 Type: BLANK Prepared: Lab ID: QC899712 Analyzed: 09/07/17

Batch#: 251348

Result Analyte RLDiesel C10-C24 ND 50

%REC Limits Surrogate o-Terphenyl 51-134

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 4

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C Lab #: 292132 Location: Stellar Environmental Solutions Client: Prep: Analysis: Sampled: EPA 8015B 09/05/17 Project#: 2007-65 Water Matrix: 09/05/17 Units: ug/L Received: Diln Fac: 1.000

Type: BLANK Prepared: 09/07/17 Lab ID: QC899863 Prepared: 09/08/17

Batch#: 251389

·			
Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate %REC Limits
o-Terphenyl 99 51-134

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected

RL= Reporting Limit

Page 4 of 4

QC899713

Batch QC Report

	Total Extract	able Hydroca:	rbons
Lab #:	292132	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2007-65	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	251348
Units:	ug/L	Prepared:	09/06/17
Diln Fac:	1.000	Analyzed:	09/07/17

Type: BS

 Analyte
 Spiked
 Result
 %REC
 Limits

 Diesel C10-C24
 2,500
 1,893
 76
 50-123

Lab ID:

Surrogate	%REC	Limits
o-Terphenyl	86	51-134

Type: BSD Lab ID: QC899714

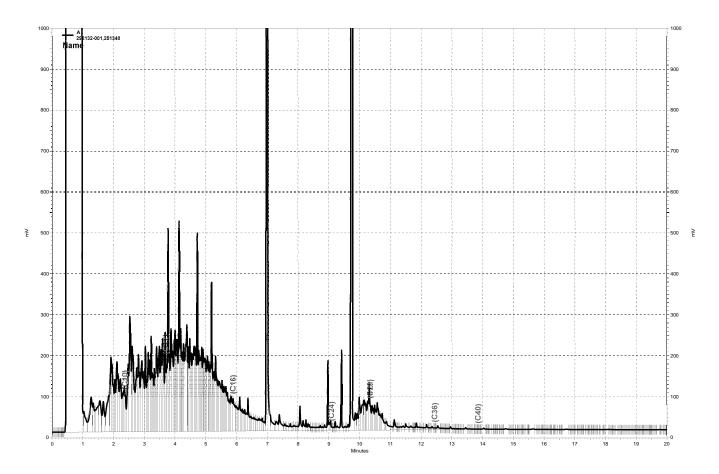
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,055	82	50-123	8	34

Surrogate	%REC	Limits
o-Terphenyl	90	51-134

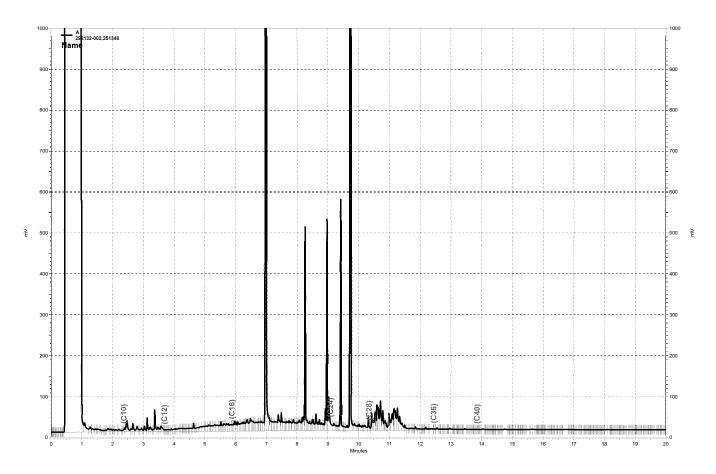
	Total Extract	able Hydroca:	rbons
Lab #:	292132	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2007-65	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	251389
Units:	ug/L	Prepared:	09/07/17
Diln Fac:	1.000	Analyzed:	09/08/17

Type: BS

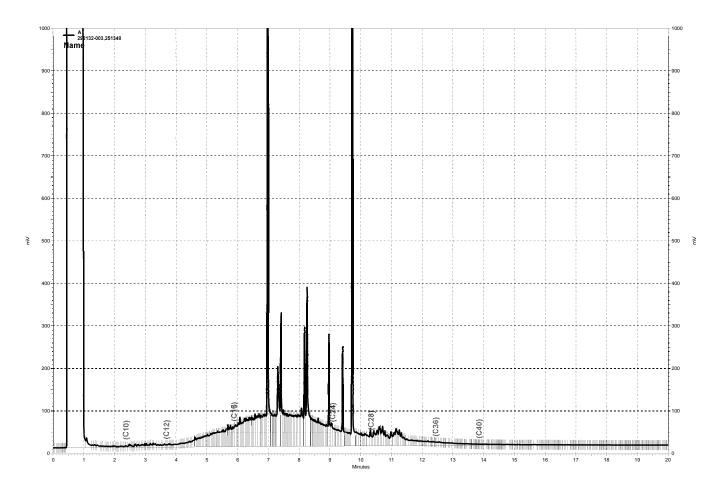
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,192	88	50-123

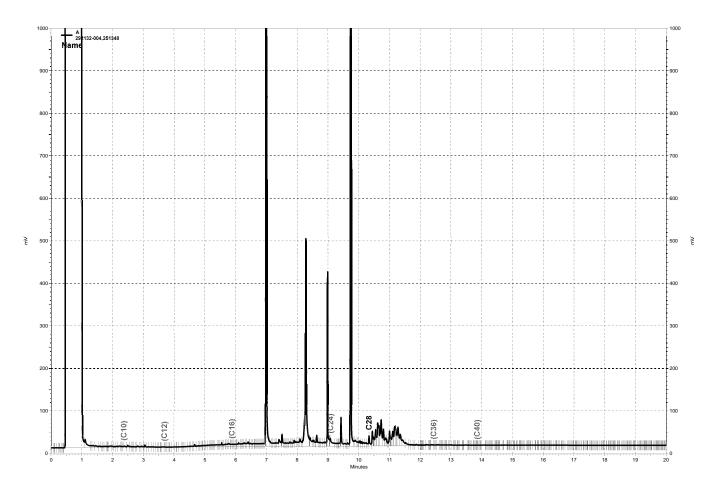

Lab ID: QC899865

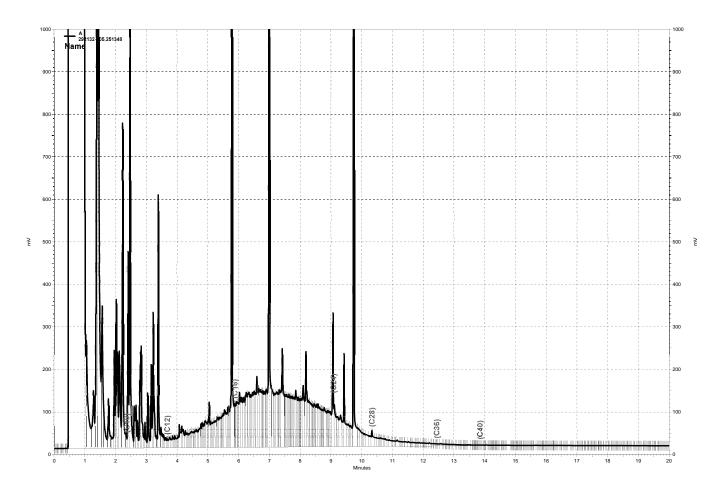
Surrogate	%REC	Limits	
o-Terphenvl	110	51-134	

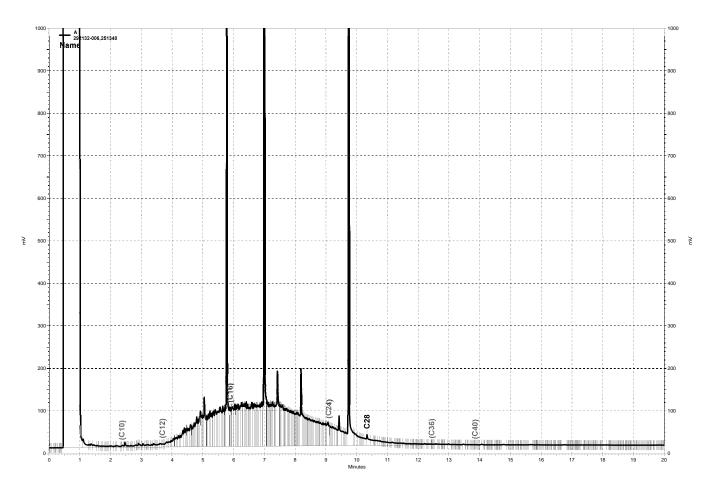

Type: BSD Lab ID: QC899866

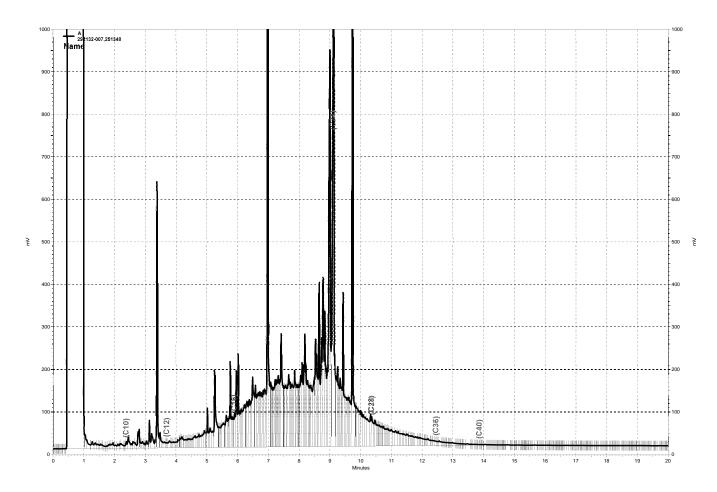
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,277	91	50-123	4	34

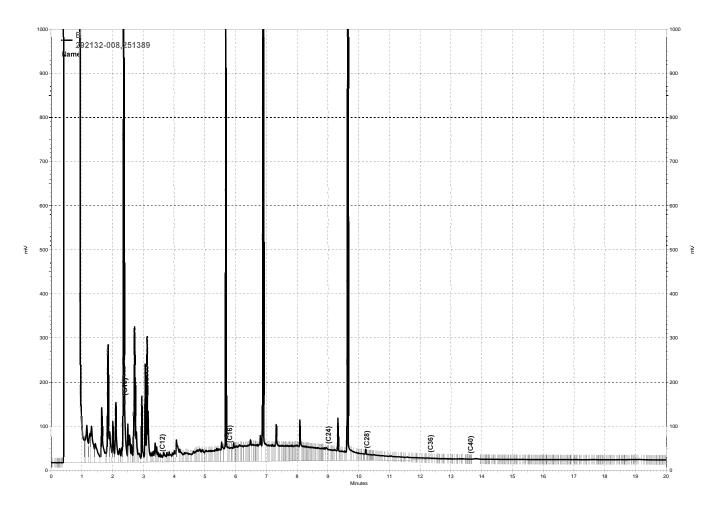

Surrogate	%REC	Limits
o-Terphenyl	109	51-134

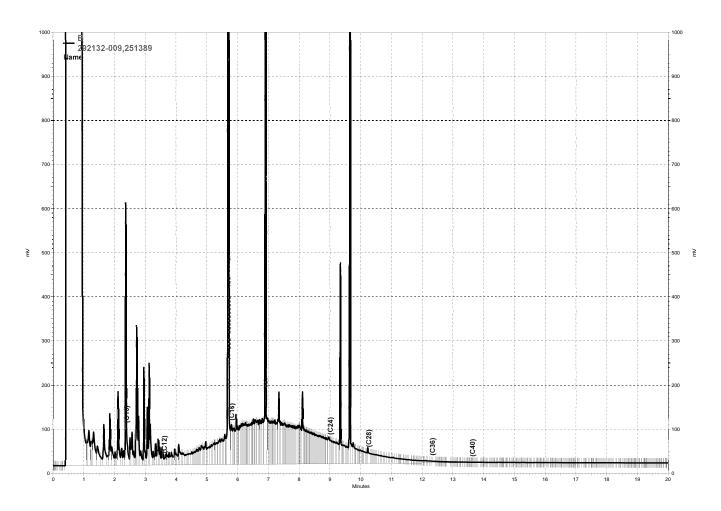

\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a023, A

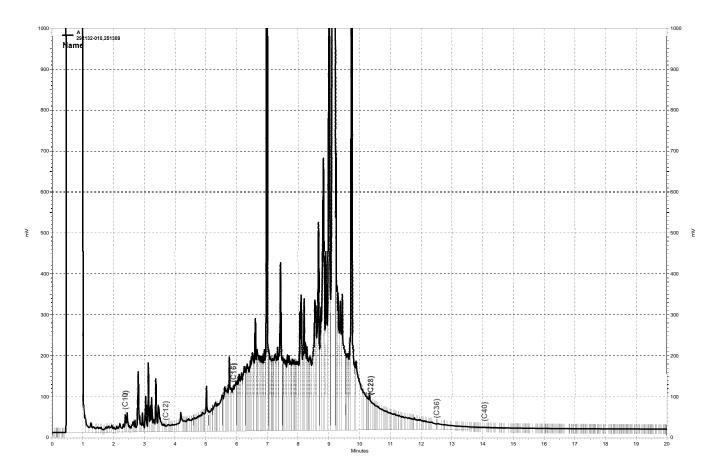

\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a024, A

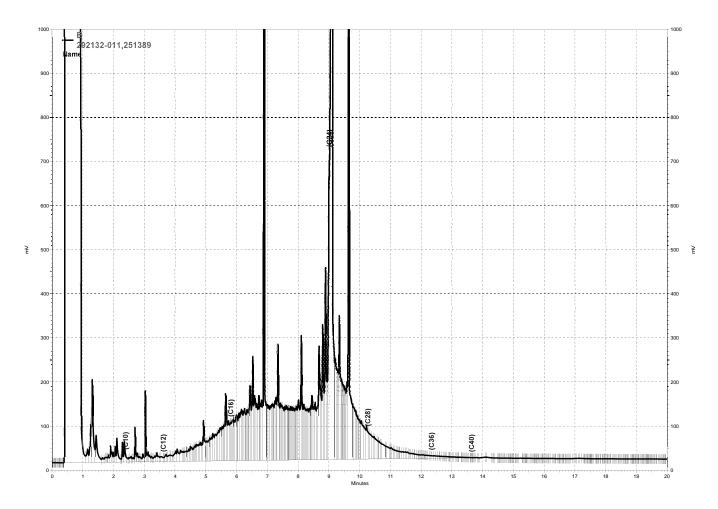

\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a025, A

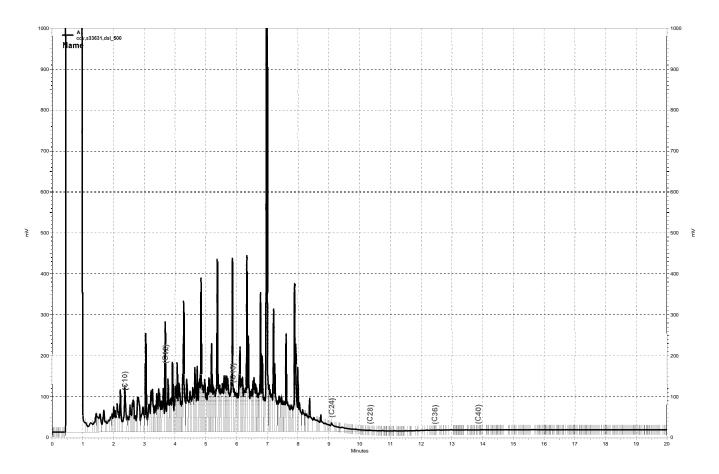

\\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a026, A


\\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a027, A


\\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a028, A


\\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a029, A


\kraken\gdrive\ezchrom\Projects\GC14B\Data\2017\254a049, B


\kraken\gdrive\ezchrom\Projects\GC14B\Data\2017\254a050, B

\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\254a119, A

\kraken\gdrive\ezchrom\Projects\GC14B\Data\2017\254a052, B

\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\251a021, A

Enthalpy Analytical

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 292071 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2007-65

Location : Bay Center Apts

Date: <u>09/11/2017</u>

Level : II

Sample ID	<u>Lab ID</u>
TAM	292071-001
TBM	292071-002
TCM	292071-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Patrick McCarthy
Project Manager

patrick.mccarthy@enthalpy.com

(510) 204-2236

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: 292071

Client: Stellar Environmental Solutions

Project: 2007-65

Location: Bay Center Apts

Request Date: 09/01/17 Samples Received: 09/01/17

This data package contains sample and QC results for three water samples, requested for the above referenced project on 09/01/17. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

TAM (lab # 292071-001), TBM (lab # 292071-002), and TCM (lab # 292071-003) were diluted due to client history of high non-target or organic acid interference. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Metals (EPA 6010B):

Iron was detected above the RL in the method blank for batch 251360; this analyte was not detected in samples at or above the RL. No other analytical problems were encountered.

Ion Chromatography (EPA 300.0):

TAM (lab # 292071-001), TBM (lab # 292071-002), and TCM (lab # 292071-003) were diluted due to problematic matrix. No other analytical problems were encountered.

Dissolved Oxygen (SM45000-G):

No analytical problems were encountered.

Oxidation-Reduction Potential (SM2580B):

No analytical problems were encountered.

pH (EPA 9040C):

No analytical problems were encountered.

292 o 7 l Chain of Custody Record

		Chain	Chain of Custody Record	ecord		Lab job no. ——	
Laboratory En Maloy		Method of Shipment Do 100vc	Se Bueved	,		-	-
Address 23 23 F/4	phst	Shipment No.		. 1		Page	of .
for help	3	Airbill No.			Analysi	Analysis Required	
		Cooler No.			/ / /		
7	Leretto Aug	nager	R. Makdloi	SJOUJ	<i> </i>		. 21. 11. 11. 11.
1	5	Telephone No. 510. 644-313	44-3123	Contain Contain	70		
Project Name Bay Co	Contex	Fax No.		0		\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Remarks
Ļ	55	Samplers: (Signature)	Bellua	DID.	Zono Vop	7/95	
Field Sample Number	Location/ Date Time	Sample Type/Size of Container	Preservation Cooler Chemical	/d//5/8/ / /	8×	// / / / / / / / / / / / / / / / / / /	
TAM	L)//b	8 1 Cta Bly	ł	× × ×			
TAM	6	W 250 ml abox	0		×		
TAM		W 500 m(a fast	6	2	×		
TAM		W us wideh	#C1	3	×		
TAM	/	W 250 m1 Poly	1			×	
78M		w I titer Pay	10	<i>></i> <i>></i> <i>></i> <i>></i> <i>></i> <i>1</i>			
TOM		W 250 ml slosr	1		X		
13M		W 500 ml glass	7	2	×		
TBM	>	Ud 40 mi UDB	/ K(3	×		
TOM	4-1-6	W 250 ml poly	7			×	
		-					
		,	├				
Relinquished by: Her Bod	Date Received	Received by:	Date Relinquished by: Signature	y:	Date Received by:	W. Liter	Date
Stern Straw		A. 2.	—		T	teens Su	9-1-6
4	4.7		- lime - rimited -		Time	E. a. la low	- Ime
Company OL		Company CAFT	Company -		Company	マージャング	3
Turnaround Time: //Ov/mcd	nd 8 Day		Relinquished by:	у:	Date Received by:	y:	Date
Comments:			Signature		Signature		
1/ote-	Filter Disolval	vol Fe Sample	Printed		Time Printed		Time
			Company -		Company	, v	

29207 (Chain of Custody Record

Lab job no. —

Laboratory Enthalow	oment /	elium			Date
1	Shipment No.				
1	Airbill No.			Analysis Required	_
Project Owner	Cooler No.				
Site Address 6400 Christic ST Emary, 116 CA	Project Manager R Markist Telephone No. \$10 - 644 - 3(23)	14 -3123	Sienieiners Containers	(2)/II/ \\ \C\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
13	Fax No.		1500 / ST / SO /		/ Remarks
-2002	Samplers: (Signature)	Botton	10 TO	20/22 PASS 20/23 POP	_
Field Sample Number Location Date	Time Sample Type/Size of Container	Preservation Cooler Chemical	オグター	TOTAL TOTA	
7CM 9-147	w 1 the Poly		X		
TCM /	W BE MI A best	3		×	
tcm /	W SOCH GOR	4	2	×	
TCM	400 M 07	1 #C	m	×	
TCM 8-1-17	W 250 m (Adj.	8		*	
	8				
Relinquished by: Company Signature Signature State And S	Received by:	Date Relinquished by: Signature		Date Received by:	Date
*	X Fra X			-	(C)
4-12	Company	Time Printed ——		Time Frinted Company Calked A.	750 Time
Timescaled Time		Relinquished by:		Date Received by:	Date
10te - Filter 1	solved the Souph 1	Signature		Signature	
		Printed		Time Printed	Time
		Company —		Company	***************************************

COOLER RECEIPT CHECKLIST

Login # 292071 Date Received 00/1/17 Number of coolers Client Stellar Environmental Project 2007-65	Berkeley
Date Opened 69/1/17 By (print) EUS (sign) Date Logged in By (print) (sign) Date Labelled By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc)YES Shipping info	<u>(0)</u>
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival? YES 3. Were custody papers dry and intact when received? Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) Hes 6. Indicate the packing in cooler: (if other, describe)	NO NO
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper to 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	wels
Type of ice used: ☐ Wet ☐ Blue/Gel ☐ None Temp(°C)	
☐ Temperature blank(s) included? ☐ Thermometer#	Α
☐ Samples received on ice directly from the field. Cooling process had begun	
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved te	NO (N/A) NO (N/A) NO (N/A) NO N/A
COMMENTS	

Detections Summary for 292071

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions

Project : 2007-65

Location : Bay Center Apts

Client Sample ID: TAM Laboratory Sample ID: 292071-001

Analyte	Result	Flags RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	16,000	1,000	ug/L	As Recd	20.00	EPA 8015B	EPA 5030B
Benzene	3,100	10	ug/L	As Recd	20.00	EPA 8021B	EPA 5030B
Toluene	74	10	ug/L	As Recd	20.00	EPA 8021B	EPA 5030B
Ethylbenzene	750	10	ug/L	As Recd	20.00	EPA 8021B	EPA 5030B
m,p-Xylenes	82	10	ug/L	As Recd	20.00	EPA 8021B	EPA 5030B
o-Xylene	29	10	ug/L	As Recd	20.00	EPA 8021B	EPA 5030B
Diesel C10-C24	9,800	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	3,400	500	mg/L	TOTAL	1000	EPA 300.0	METHOD
рН	7.1	1.0	SU	TOTAL	1.000	EPA 9040C	METHOD

Client Sample ID: TBM Laboratory Sample ID: 292071-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	2,600		130	ug/L	As Recd	2.500	EPA 8015B	EPA 5030B
Benzene	690		1.3	ug/L	As Recd	2.500	EPA 8021B	EPA 5030B
Toluene	13		1.3	ug/L	As Recd	2.500	EPA 8021B	EPA 5030B
Ethylbenzene	2.4		1.3	ug/L	As Recd	2.500	EPA 8021B	EPA 5030B
m,p-Xylenes	7.4		1.3	ug/L	As Recd	2.500	EPA 8021B	EPA 5030B
o-Xylene	3.9	С	1.3	ug/L	As Recd	2.500	EPA 8021B	EPA 5030B
Diesel C10-C24	1,900		49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Dissolved Oxygen	3.4		1.0	mg/L	TOTAL	1.000	SM45000-G	
рН	7.1		1.0	SU	TOTAL	1.000	EPA 9040C	METHOD

Client Sample ID: TCM Laboratory Sample ID: 292071-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	6,500		420	ug/L	As Recd	8.333	EPA 8015B	EPA 5030B
Benzene	1,600		4.2	ug/L	As Recd	8.333	EPA 8021B	EPA 5030B
Ethylbenzene	25		4.2	ug/L	As Recd	8.333	EPA 8021B	EPA 5030B
m,p-Xylenes	7.4	С	4.2	ug/L	As Recd	8.333	EPA 8021B	EPA 5030B
o-Xylene	6.5	С	4.2	ug/L	As Recd	8.333	EPA 8021B	EPA 5030B
Diesel C10-C24	6,600		49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	6,500		500	mg/L	TOTAL	1000	EPA 300.0	METHOD
рН	7.0		1.0	SU	TOTAL	1.000	EPA 9040C	METHOD

C = Presence confirmed, but RPD between columns exceeds 40% Page 1 of 1

Enthalpy Analytical - Berkeley Analytical Report Lab #: 292071 Bay Center Apts Location: Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2007-65 Sampled: 09/01/17 Matrix: Water Units: Received: 09/01/17 ug/L Batch#: 251335

Field ID: TAM Diln Fac: 20.00
Type: SAMPLE Analyzed: 09/07/17

Lab ID: 292071-001

Analyte	Result	RL	Analysis
Gasoline C7-C12	16,000	1,000	EPA 8015B
MTBE	ND	40	EPA 8021B
Benzene	3,100	10	EPA 8021B
Toluene	74	10	EPA 8021B
Ethylbenzene	750	10	EPA 8021B
m,p-Xylenes	82	10	EPA 8021B
o-Xylene	29	10	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	84	80-122	EPA 8015B	
Bromofluorobenzene (PID)	83	80-124	EPA 8021B	

Field ID: TBM Diln Fac: 2.500 Type: SAMPLE Analyzed: 09/07/17

Lab ID: 292071-002

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,600	130	EPA 8015B
MTBE	ND	5.0	EPA 8021B
Benzene	690	1.3	EPA 8021B
Toluene	13	1.3	EPA 8021B
Ethylbenzene	2.4	1.3	EPA 8021B
m,p-Xylenes	7.4	1.3	EPA 8021B
o-Xylene	3.9 C	1.3	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	104	80-122	EPA 8015B	
Bromofluorobenzene (PID)	105	80-124	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

-

Page 1 of 2

	Enthalpy Analytical -	Berkeley Anal	ytical Report
Lab #:	292071	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65		
Matrix:	Water	Sampled:	09/01/17
Units:	ug/L	Received:	09/01/17
Batch#:	251335		

Field ID: TCM Diln Fac: 8.333 Type: SAMPLE Analyzed: 09/07/17

Lab ID: 292071-003

Analyte	Result	RL	Analysis
Gasoline C7-C12	6,500	420	EPA 8015B
MTBE	ND	17	EPA 8021B
Benzene	1,600	4.2	EPA 8021B
Toluene	ND	4.2	EPA 8021B
Ethylbenzene	25	4.2	EPA 8021B
m,p-Xylenes	7.4 C	4.2	EPA 8021B
o-Xylene	6.5 C	4.2	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	105	80-122	EPA 8015B	
Bromofluorobenzene (PID)	105	80-124	EPA 8021B	

Type: BLANK Diln Fac: 1.000 Lab ID: QC899664 Analyzed: 09/06/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	82	80-122	EPA 8015B	
Bromofluorobenzene (PID)	85	80-124	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Enthalpy Analytical	- Berkeley Anal	ytical Report
Lab #:	292071	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC899659	Batch#:	251335
Matrix:	Water	Analyzed:	09/06/17
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	968.0	97	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	110	80-122

Page 1 of 1

	Enthalpy Analytical -	Berkeley Anal	ytical Report
Lab #:	292071	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	251335
Units:	ug/L	Analyzed:	09/06/17
Diln Fac:	1.000		

Type: BS Lab ID: QC899660

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.14	101	62-131
Benzene	10.00	9.093	91	80-120
Toluene	10.00	8.668	87	80-120
Ethylbenzene	10.00	9.114	91	79-120
m,p-Xylenes	10.00	8.636	86	80-120
o-Xylene	10.00	8.695	87	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	93	80-124

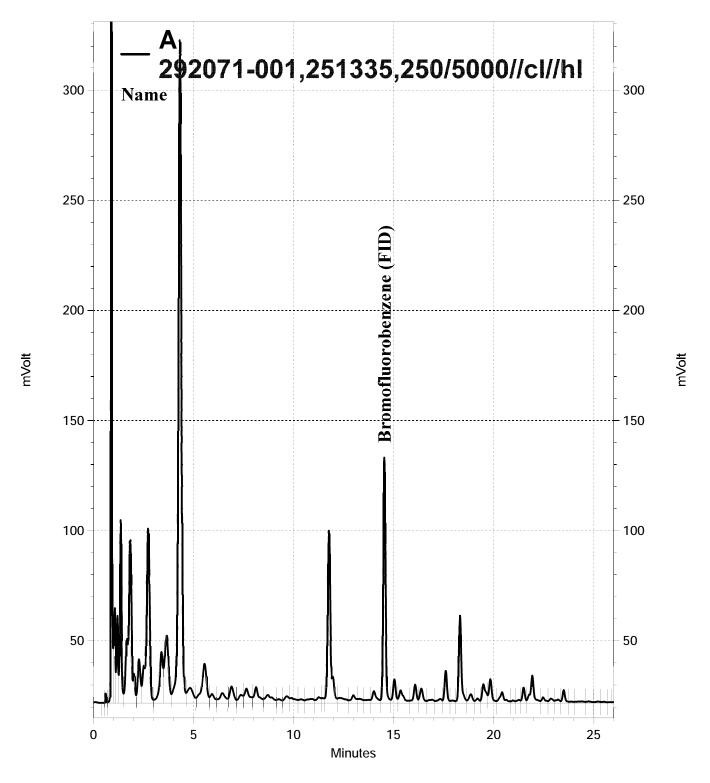
Type: BSD Lab ID: QC899661

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	21.93	110	62-131	8	38
Benzene	20.00	19.86	99	80-120	9	20
Toluene	20.00	18.89	94	80-120	9	20
Ethylbenzene	20.00	19.10	96	79-120	5	27
m,p-Xylenes	20.00	19.37	97	80-120	11	26
o-Xylene	20.00	19.14	96	80-120	10	20

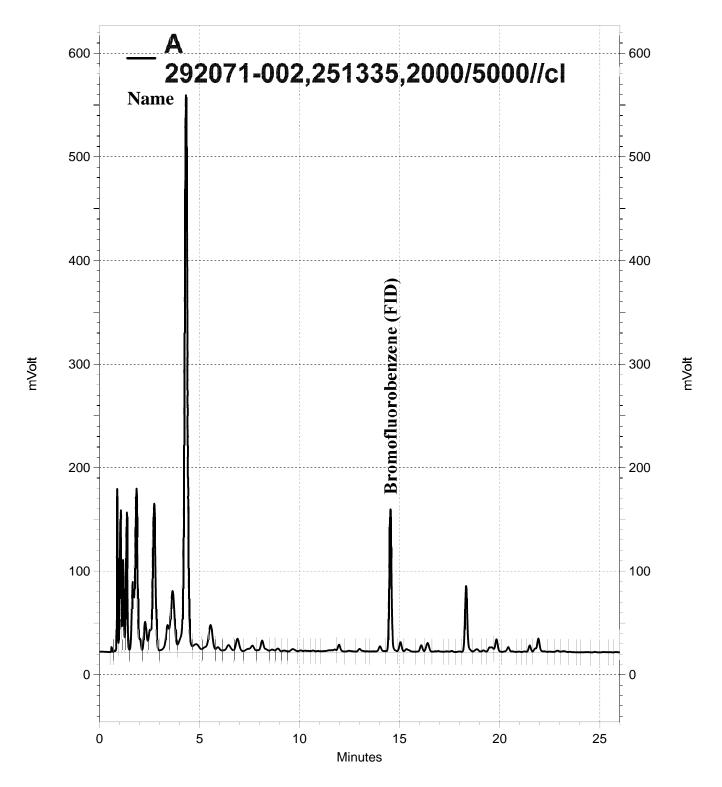
S	Surrogate %F	EC	Limits
romofluoro	robenzene (PID) 108		80-124

	Enthalpy Analytical -	Berkeley Anal	ytical Report
Lab #: 292071		Location:	Bay Center Apts
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-6	55	Analysis:	EPA 8015B
Field ID:	MW-6	Batch#:	251335
MSS Lab ID:	292132-002	Sampled:	09/05/17
Matrix:	Water	Received:	09/05/17
Units:	ug/L	Analyzed:	09/07/17
Diln Fac:	1.000		

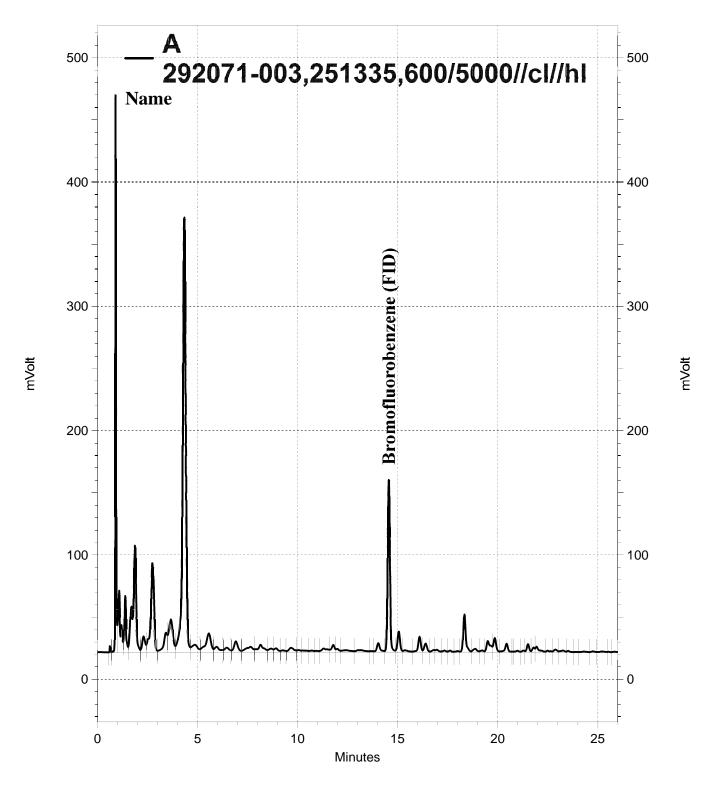
Type: MS Lab ID: QC899662

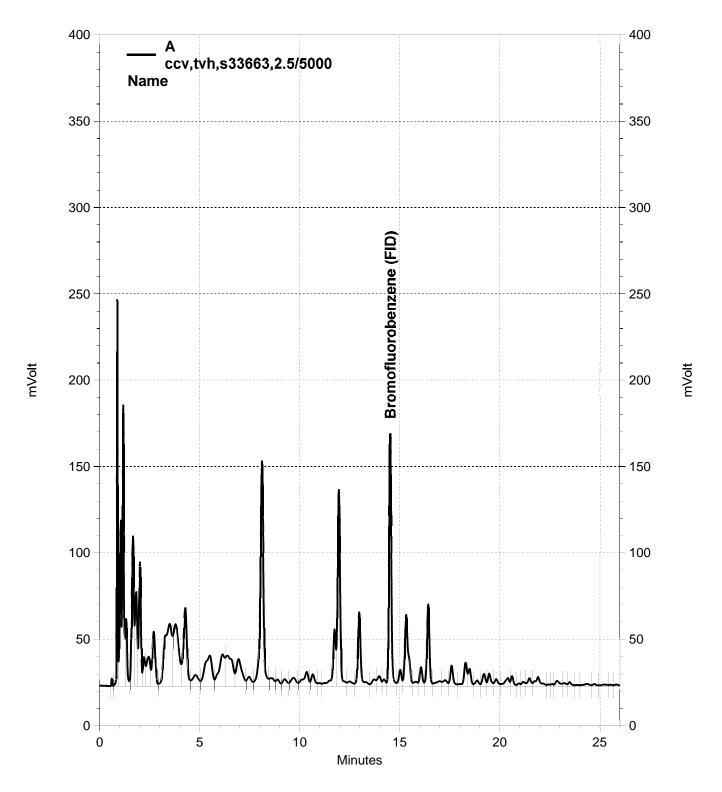

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	29.62	2,000	1,903	94	79-120

Surrogate %REC Limits
Bromofluorobenzene (FID) 106 80-122


Type: MSD Lab ID: QC899663

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,906	94	79-120	0	20


Surrogate	%REC	Limits
Bromofluorobenzene (FID)	106	80-122


\Lims\gdrive\ezchrom\Projects\GC19\Data\249-023, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\249-024, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\249-025, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\249-002, A

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C Lab #: 292071 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Analysis: EPA 8015B 09/01/17 09/01/17 Matrix: Water Sampled: ug/L Units: Received: Prepared: Diln Fac: 1.000 09/05/17 Batch#: 251299

Field ID: TAM Lab ID: 292071-001 Type: SAMPLE Analyzed: 09/07/17

 Analyte
 Result
 RL

 Diesel C10-C24
 9,800
 49

Surrogate %REC Limits
o-Terphenyl 97 52-138

Field ID: TBM Lab ID: 292071-002 Type: SAMPLE Analyzed: 09/07/17

AnalyteResultRLDiesel C10-C241,90049

Surrogate %REC Limits
o-Terphenyl 100 52-138

Field ID: TCM Lab ID: 292071-003 Type: SAMPLE Analyzed: 09/08/17

 Analyte
 Result
 RL

 Diesel C10-C24
 6,600
 49

Surrogate %REC Limits
o-Terphenyl 90 52-138

Type: BLANK Analyzed: 09/06/17

Lab ID: QC899539

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

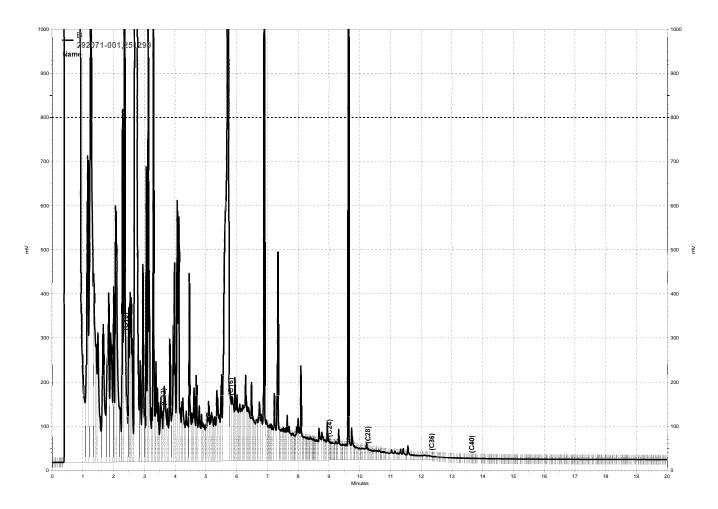
Surrogate %REC Limits
o-Terphenyl 108 52-138

ND= Not Detected RL= Reporting Limit Page 1 of 1

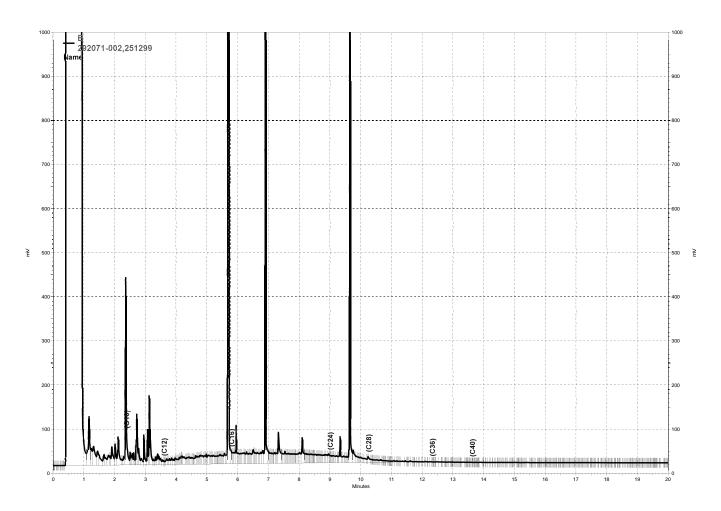
Total Extractable Hydrocarbons				
Lab #:	292071	Location:	Bay Center Apts	
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C	
Project#:	2007-65	Analysis:	EPA 8015B	
Matrix:	Water	Batch#:	251299	
Units:	ug/L	Prepared:	09/05/17	
Diln Fac:	1.000	Analyzed:	09/06/17	

Type: BS

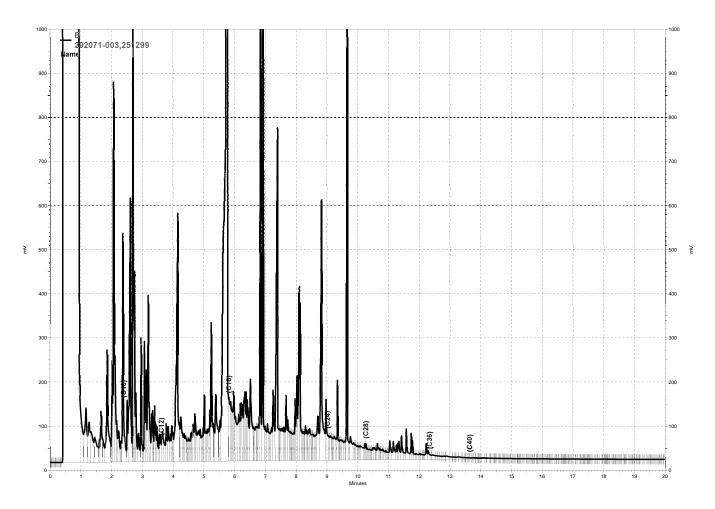
Lab ID: QC899540

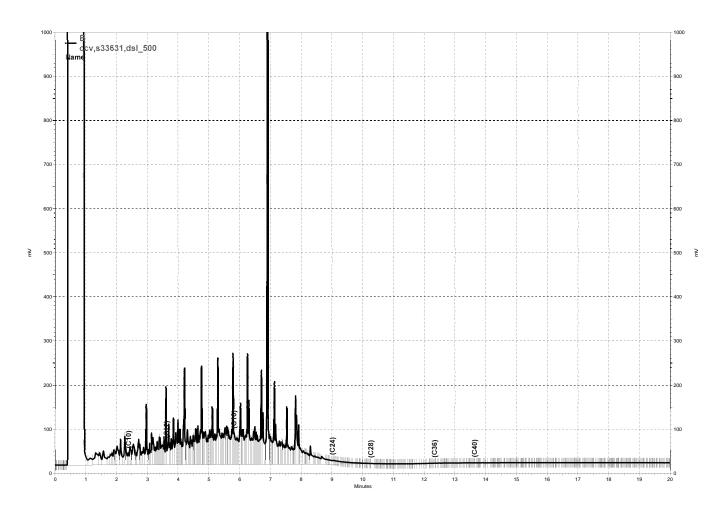

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,584	103	52-124

Surrogate	%REC	Limits
o-Terphenyl	109	52-138


Type: BSD Lab ID: QC899541

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,640	106	52-124	2	34


Surrogate	%REC	Limits
o-Terphenyl	112	52-138


\kraken\gdrive\ezchrom\Projects\GC14B\Data\2017\250b032, B

\kraken\gdrive\ezchrom\Projects\GC14B\Data\2017\250b033, B

\kraken\gdrive\ezchrom\Projects\GC14B\Data\2017\250b034, B

\kraken\gdrive\ezchrom\Projects\GC14B\Data\2017\250b020, B

Dissolved Iron					
Lab #:	292071	Location:	Bay Center Apts		
Client:	Stellar Environmental Solutions	Prep:	METHOD		
Project#:	2007-65	Analysis:	EPA 6010B		
Analyte:	Iron	Sampled:	09/01/17		
Matrix:	Filtrate	Received:	09/01/17		
Units:	ug/L	Prepared:	09/06/17		
Diln Fac:	1.000	Analyzed:	09/06/17		
Batch#:	251360				

	Field ID Typ	e Lab ID	Result	RL	
TAM	SAMI	PLE 292071-001	l ND	100	
TBM	SAMI	PLE 292071-002	2 ND	100	
TCM	SAMI	PLE 292071-003	3 ND	100	
	BLA	NK QC899761	250 b	100	

b= See narrative

ND= Not Detected

RL= Reporting Limit

Dissolved Iron					
Lab #: 292071		Location:	Bay Center Apts		
Client: Stellar En	vironmental Solutions	Prep:	METHOD		
Project#: 2007-65		Analysis:	EPA 6010B		
Analyte: Iro	n	Batch#:	251360		
Field ID: ZZZ	ZZZZZZZ	Sampled:	08/31/17		
MSS Lab ID: 292	050-001	Received:	08/31/17		
Matrix: Fil	trate	Prepared:	09/06/17		
Units: ug/	L	Analyzed:	09/06/17		
Diln Fac: 1.0	00				

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC899762		10,000	9,880	99	80-125		
BSD	QC899763		10,000	9,862	99	80-125	0	34
MS	QC899764	24.50	10,000	9,990	100	72-135		
MSD	QC899765		10,000	10,180	102	72-135	2	20

Enthalpy Analytical - Berkeley Analytical Report Bay Center Apts Lab #: 292071 Location: Client: Stellar Environmental Solutions METHOD Prep: Project#: 2007-65 EPA 300.0 Analysis: 09/01/17 Matrix: Water Sampled: Units: mg/L Received: 09/01/17 Batch#: 251245

Field ID: TAM Lab ID: 292071-001

Type: SAMPLE

Analyte	Result	RL	Diln Fac	Analyzed
Nitrogen, Nitrate	ND	1.0	20.00	09/01/17 15:16
Sulfate	3,400	500	1,000	09/01/17 21:10

Field ID: TBM Diln Fac: 2.000

Type: SAMPLE Analyzed: 09/01/17 15:50

Lab ID: 292071-002

Analyte	Result	RL	
Nitrogen, Nitrate	ND	0.10	
Sulfate	ND	1.0	

Field ID: TCM Lab ID: 292071-003

Type: SAMPLE

Analyte	Result	RL	Diln Fac	Analyzed
Nitrogen, Nitrate	ND	2.5	50.00	09/01/17 16:25
Sulfate	6,500	500	1,000	09/01/17 21:27

Type: BLANK Diln Fac: 1.000

Lab ID: QC899342 Analyzed: 09/01/17 10:26

Analyte	Result	RL	
Nitrogen, Nitrate	ND	0.05	
Sulfate	ND	0.50	

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Enthalpy Analytical	- Berkeley Anal	ytical Report
Lab #:	292071	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	2007-65	Analysis:	EPA 300.0
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC899343	Batch#:	251245
Matrix:	Water	Analyzed:	09/01/17 10:43
Units:	mg/L		

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	0.5000	0.4748	95	80-120
Sulfate	5.000	5.104	102	80-120

		Enthalpy Analytical	- Berkeley Anal	ytical Report
Lab #:	292071		Location:	Bay Center Apts
Client:	Stella:	r Environmental Solutions	Prep:	METHOD
Project#:	2007-6	5	Analysis:	EPA 300.0
Field ID:		ZZZZZZZZZZ	Diln Fac:	25.00
MSS Lab II	D:	292085-001	Batch#:	251245
Matrix:		Water	Sampled:	09/01/17 09:05
Units:		mg/L	Received:	09/01/17

Type: MS Analyzed: 09/01/17 23:29

Lab ID: QC899344

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	0.05469	6.250	6.151	98	80-120
Sulfate	7.478	62.50	71.43	102	80-120

Type: MSD Analyzed: 09/01/17 23:46

Lab ID: QC899345

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Nitrogen, Nitrate	6.250	5.921	94	80-120	4	21
Sulfate	62.50	73.51	106	80-120	3	20

	Enthalpy Analytical - 1	Berkeley Analyt	ical Report
Lab #: 292071		Location:	Bay Center Apts
Client: Stellar	Environmental Solutions	Prep:	METHOD
Project#: 2007-65	5	Analysis:	EPA 300.0
Field ID:	ZZZZZZZZZ	Diln Fac:	25.00
Type:	SSPIKE	Batch#:	251245
MSS Lab ID:	292085-002	Sampled:	09/01/17 10:15
Lab ID:	QC899346	Received:	09/01/17
Matrix:	Water	Analyzed:	09/02/17 00:21
Units:	mg/L		

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	0.05174	6.250	6.035	96	80-120
Sulfate	8.950	62.50	73.02	103	80-120

Page 1 of 1 15.0

	Dissolved Oxygen				
Lab #:	292071	Location:	Bay Center Apts		
Client:	Stellar Environmental Solutions	Analysis:	SM45000-G		
Project#:	2007-65				
Analyte:	Dissolved Oxygen	Batch#:	251239		
Matrix:	Water	Sampled:	09/01/17		
Units:	mg/L	Received:	09/01/17		
Diln Fac:	1.000	Analyzed:	09/01/17 13:45		

	Field ID	Lab ID	Result	RL	
TAM		292071-001	ND	1.0	
TBM		292071-002	3.4	1.0	
TCM		292071-003	ND	1.0	

ND= Not Detected RL= Reporting Limit

Dissolved Oxygen				
Lab #: 29207	L	Location:	Bay Center Apts	
Client: Stella	ar Environmental Solutions	Analysis:	SM45000-G	
Project#: 2007-0	55			
Analyte:	Dissolved Oxygen	Units:	mg/L	
Field ID:	TAM	Diln Fac:	1.000	
Type:	SDUP	Batch#:	251239	
MSS Lab ID:	292071-001	Sampled:	09/01/17	
Lab ID:	QC899328	Received:	09/01/17	
Matrix:	Water	Analyzed:	09/01/17 13:45	

MSS Result	Result	RL	RPD	Lim
<1.000	<1.000	1.000	NC	20

NC= Not Calculated RL= Reporting Limit

RPD= Relative Percent Difference

		рH	
Lab #:	292071	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	2007-65	Analysis:	EPA 9040C
Analyte:	рН	Batch#:	251238
Matrix:	Water	Sampled:	09/01/17
Units:	SU	Received:	09/01/17
Diln Fac:	1.000	Analyzed:	09/01/17 13:49

	Field ID	Lab ID	Result	RL	
TAM		292071-001	7.1	1.0	
TBM		292071-002	7.1	1.0	
TCM		292071-003	7.0	1.0	

		Нд	
Lab #: 292071	-	Location:	Bay Center Apts
Client: Stella	r Environmental Solutions	Prep:	METHOD
Project#: 2007-6	55	Analysis:	EPA 9040C
Analyte:	рН	Units:	SU
Field ID:	TAM	Diln Fac:	1.000
Type:	SDUP	Batch#:	251238
MSS Lab ID:	292071-001	Sampled:	09/01/17
Lab ID:	QC899327	Received:	09/01/17
Matrix:	Water	Analyzed:	09/01/17 13:49

MSS Result	Result	RL	RPD	Lim	
7.06	7.060		0 0 0	20	

RL= Reporting Limit

RPD= Relative Percent Difference

	Oxidation-Red	uction Potentia	al
Lab #:	292071	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Analysis:	SM2580B
Project#:	2007-65		
Analyte:	Oxidation-Reduction Potential	Batch#:	251241
Matrix:	Water	Sampled:	09/01/17
Units:	Eh	Received:	09/01/17
Diln Fac:	1.000	Analyzed:	09/01/17

	Field ID	Lab ID	Result	RL	
TAM		292071-001	-180	1.0	
TBM		292071-002	-29	1.0	
TCM		292071-003	-260	1.0	

	Oxidation-Redu	ction Potentia	1		
Lab #: 2	92071	Location:	Bay Center Apts		
Client: S	tellar Environmental Solutions	Analysis:	SM2580B		
Project#: 2007-65					
Analyte:	Oxidation-Reduction Potential	Units:	Eh		
Field ID:	TAM	Diln Fac:	1.000		
Type:	SDUP	Batch#:	251241		
MSS Lab ID:	292071-001	Sampled:	09/01/17		
Lab ID:	QC899330	Received:	09/01/17		
Matrix:	Water	Analyzed:	09/01/17		

MSS Result	Result	RL	RPD	Lim
-183.7	-182.0	1.000	1	20

RL= Reporting Limit

RPD= Relative Percent Difference

Enthalpy Analytical

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 292162 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2007-65

Location : Bay Center Apts

Date: <u>09/13/2017</u>

Level : II

Sample ID	<u>Lab ID</u>
RW-1	292162-001
MW-3	292162-002
MW-15	292162-003
MW-14	292162-004
MW-13	292162-005
MW-10	292162-006
MW-8	292162-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar
Project Manager
tracy.babjar@enthalpy.com
(510) 204-2226 Ext 13107

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: 292162

Client: Stellar Environmental Solutions

Project: 2007-65

Location: Bay Center Apts

Request Date: 09/06/17 Samples Received: 09/06/17

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 09/06/17. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

A number of samples were diluted due to client history of high non-target or organic acid interference. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

ENTARPY	ha				Chain o	f Cus	Chain of Custody Record	cord				Lab job no. 24	79/
Laboratory CuRTS	4 70	TOMPKWS	Y	Meth	Method of Shipment HAY DRIVERY OF LAS CONRUEY	स् _र	DRIVER	201 LAS	g	- 1	•	Date]-
Address 2323 FIFTH	TH ST.			- Ship	Shipment No.						X;	Pageof	
עב ולבליבל	.1			- Airbi	Airbill No.				/	6	A alysis Required		
				1 00 1	Cooler No.			\	1	7/39			
Site Address 6400 CHRISTI Site Address 6700 CHRISTI	CHRISTIE	W	AVE	- Proje	Project Manager R. WAK D'K i Telenhone No. (510) 644-3123	4K Di		pelel	S 108	SJAI JOS	w		
Project Name BAY COUTER	JTER .	APA	ZIME	APACTMENTERNO.	No. (510) 644-3859	-3859		15 ON ON		5/4/C		/ Remarks	9
Project Number 2007 - 65	68			Sam	Samplers: (Signature)			/		F			
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	Preservation ir Chemical	3 (1)	45/3/	ąį	<i> </i>		
16 m - (1	4-6-i7	1157		USA/SCONTAND	-		>					
N W L			7111					\searrow		X			
51-144			1032		·			×		X			
4 - mm			2358					>		X			
Mw-13			811.0					\times		X			
10 N W W			4280					X		X			
mu - 8		>	r yea		>			X					
													·
				1									
Relinquished by:	1	Date 7-6-[]	Received by: Signature		4 Jourgh	Date Date	Relinquished by:		-	Date	Received by:		Date
Printed Phil A LONZ U	-	Time	Printed	Printed CT	(Sonzalez	E .	Printed			Time	Printed		Time
Company Blains Tach Felvices		Ϋ́,Ϋ́	Compa	$\omega_{\mathbb{A}}$	company Enrthalpy	5,5	Company –			1	Company		
Turnaround Time: STAUDAZD	420									Date	Received by:		Date
Comments: EDF RE	REGUIPED	Ĉ					Signature				Signature		
\$ 4.08AL ID #	SLT2005561	12.5	205	561			Printed			Time	Printed		Time
S000-C							Company				Company		

COOLER RECEIPT CHECKLIST

Login # 292/62 Date Received 09/06/17 Number of coolers	ENTHA
Client Stellar Environmental Solumnis Project 2007 - 65	Berkele
Date Opened 09/66/17 By (print) Lets (sign)	
Date Logged in By (print) (sign)	
Date Labelled By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc) YES Shipping info	6
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date	NO 💢
2B. Were custody seals intact upon arrival? YES	NO NA
3. Were custody papers dry and intact when received?	NO
4. Were custody papers filled out properly (ink, signed, etc)?	NO
5. Is the project identifiable from custody papers? (If so fill out top of form)	NO
6. Indicate the packing in cooler: (if other, describe)	110
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper tow 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	⁄els
Type of ice used: \mbox{Wet} Wet $\mbox{Blue/Gel}$ None $\mbox{Temp(°C)}$.2
☐ Temperature blank(s) included? ☐ Thermometer# IR Gun#	
☐ Samples received on ice directly from the field. Cooling process had begun	
0 W M I 15005	ES NO
9. Did all bottles arrive unbroken/unopened?	ES) NO
10 4 11	ES XO
	ES NO
10 1 1 1 1	ES NO
10 T) /1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
14 117 000	ES NO
1 " 1 1	NO OVIDA
1 C D' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO (N/A
17 D'1 1	VO (N/A
10 7011	10 M/A
10 D11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> <
20. Are bubbles > 6mm absent in VOA samples?	
11 W 41 1' 4 4 - 1 1 1 1	IO IVA
TCX/TDC XXII	es No
COMMENTS (20) 1/3 VOAs agried with hubble in sample 5	

Detections Summary for 292162

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions

Project : 2007-65

Location : Bay Center Apts

Client Sample ID : RW-1 Laboratory Sample ID : 292162-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	660		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	86		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	3.0		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	1.6	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	1.8	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	680		50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-3 Laboratory Sample ID: 292162-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	380		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	6.3		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Benzene	17		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	0.64	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	5,000		50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-15 Laboratory Sample ID: 292162-003

Analyte	Result	Flags								_	Method
Gasoline C7-C12	16,000		2,500	ug/L	As	Recd	50.00	EPA	8015B	EPA	5030B
Benzene	4,900		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Toluene	68		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Ethylbenzene	43	C	25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
m,p-Xylenes	46	С	25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Diesel C10-C24	2,900		50	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-14 Laboratory Sample ID: 292162-004

Analyte	Result	Flags	RL	Units	Ва	asis	IDF	Met	thod	Prep	Method
Gasoline C7-C12	8,600		2,500								
Benzene	2,200		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Toluene	97			ug/L							
Ethylbenzene	120		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
m,p-Xylenes	62			ug/L							
Diesel C10-C24	3,900		50	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Page 1 of 2

5 of 31

Client Sample ID: MW-13 Laboratory Sample ID: 292162-005

Analyte	Result	Flags									Method
Gasoline C7-C12	13,000		2,500	ug/L	As	Recd	50.00	EPA	8015B	EPA	5030B
Benzene	3,100		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Toluene	58	С					50.00				
Ethylbenzene	340		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
m,p-Xylenes	120		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Diesel C10-C24	7,200		50	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID : MW-10 Laboratory Sample ID : 292162-006

Analyte	Result	Flags						Prep Method
Gasoline C7-C12	8,700							EPA 5030B
Benzene	1,900							EPA 5030B
Toluene	65		25	ug/L	As Recd	50.00	EPA 8021B	EPA 5030B
m,p-Xylenes	42		25	ug/L	As Recd	50.00	EPA 8021B	EPA 5030B
Diesel C10-C24	1,800		50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-8 Laboratory Sample ID: 292162-007

	Result									Method
Gasoline C7-C12	24,000					83.33				
Benzene	6,400					83.33				
Toluene	82					83.33				
Ethylbenzene	550					83.33				
m,p-Xylenes	170	42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
Diesel C10-C24	7,100	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

C = Presence confirmed, but RPD between columns exceeds 40% Page 2 of 2

EPA 8021B

Enthalpy Analytical - Berkeley Analytical Report Lab #: 292162 Location: Bay Center Apts EPA 5030B Stellar Environmental Solutions Client: Prep: Project#: 2007-65 Sampled: Matrix: Water 09/06/17 09/06/17 Units: ug/L Received: Batch#: 251390

Field ID: RW-1 Diln Fac: 1.000
Type: SAMPLE Analyzed: 09/08/17
Lab ID: 292162-001

Result Analysis Analyte RLGasoline C7-C12 660 50 EPA 8015B 2.0 EPA 8021B MTBE ND 0.50 Benzene 86 EPA 8021B Toluene ND 0.50 EPA 8021B 3.0 0.50 Ethylbenzene EPA 8021B m,p-Xylenes 1.6 C 0.50 EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	94	80-121	EPA 8015B	
Bromofluorobenzene (PID)	92	74-135	EPA 8021B	

0.50

1.8 C

Field ID: MW-3 Diln Fac: 1.000
Type: SAMPLE Analyzed: 09/08/17
Lab ID: 292162-002

Analyte Result RL Analysis Gasoline C7-C12 380 50 EPA 8015B MTBE 6.3 2.0 EPA 8021B 17 0.50 EPA 8021B Benzene Toluene ND 0.50 EPA 8021B EPA 8021B Ethylbenzene ND 0.50 0.64 C m,p-Xylenes 0.50 EPA 8021B o-Xylene ND 0.50 EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	110	80-121	EPA 8015B	
Bromofluorobenzene (PID)	102	74-135	EPA 8021B	

Field ID: MW-15 Diln Fac: 50.00 Type: SAMPLE Analyzed: 09/08/17 Lab ID: 292162-003

Analyte	Result	RL	Analysis
Gasoline C7-C12	16,000	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	4,900	25	EPA 8021B
Toluene	68	25	EPA 8021B
Ethylbenzene	43 C	25	EPA 8021B
m,p-Xylenes	46 C	25	EPA 8021B
o-Xylene	ND	25	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	99	80-121	EPA 8015B	
Bromofluorobenzene (PID)	98	74-135	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 1 of 3

o-Xylene

Enthalpy Analytical - Berkeley Analytical Report Bay Center Apts Lab #: 292162 Location: EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Matrix: 09/06/17 Water Sampled: Units: ug/L Received: 09/06/17 Batch#: 251390

Field ID: MW-14 Type: SAMPLE Lab ID: 292162-004 Diln Fac: 50.00 Analyzed: 09/08/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	8,600	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	2,200	25	EPA 8021B
Toluene	97	25	EPA 8021B
Ethylbenzene	120	25	EPA 8021B
m,p-Xylenes	62	25	EPA 8021B
o-Xylene	ND	25	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	98	80-121	EPA 8015B	
Bromofluorobenzene (PID)	99	74-135	EPA 8021B	

Field ID: MW-13 Diln Fac: 50.00 Type: SAMPLE Analyzed: 09/08/17 Lab ID: 292162-005

Analyte	Result	RL	Analysis
Gasoline C7-C12	13,000	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	3,100	25	EPA 8021B
Toluene	58 C	25	EPA 8021B
Ethylbenzene	340	25	EPA 8021B
m,p-Xylenes	120	25	EPA 8021B
o-Xylene	ND	25	EPA 8021B

Surrogate	9	&REC	Limits	Analysis	
Bromofluorobenzene (FID) 10	01	80-121	EPA 8015B	
Bromofluorobenzene (PID) 10	02	74-135	EPA 8021B	

Field ID: MW-10 Diln Fac: 50.00 Type: SAMPLE Analyzed: 09/08/17 Lab ID: 292162-006

Analyte	Result	RL	Analysis
Gasoline C7-C12	8,700	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	1,900	25	EPA 8021B
Toluene	65	25	EPA 8021B
Ethylbenzene	ND	25	EPA 8021B
m,p-Xylenes	42	25	EPA 8021B
o-Xylene	ND	25	EPA 8021B

Surrogate	%RE	C Li	mits	Analy	sis
Bromofluorobenzene (FID) 99	80)-121 E	PA 8015B	
Bromofluorobenzene (PID) 101	74	l-135 E	PA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

Enthalpy Analytical - Berkeley Analytical Report Bay Center Apts EPA 5030B Lab #: 292162 Location: Stellar Environmental Solutions Client: Prep: Project#: 2007-65 Matrix: 09/06/17 Water Sampled: Units: ug/L Received: 09/06/17 Batch#: 251390

Field ID: MW-8 Type: SAMPLE Lab ID: 292162-007 Diln Fac: 83.33 Analyzed: 09/08/17

Analyte	Result	RL	Analysis
Gasoline C7-C12	24,000	4,200	EPA 8015B
MTBE	ND	170	EPA 8021B
Benzene	6,400	42	EPA 8021B
Toluene	82	42	EPA 8021B
Ethylbenzene	550	42	EPA 8021B
m,p-Xylenes	170	42	EPA 8021B
o-Xylene	ND	42	EPA 8021B

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene	(FID)	97	80-121	EPA 8015B	
Bromofluorobenzene	(PID)	97	74-135	EPA 8021B	

Type: BLANK Diln Fac: 1.000 Lab ID: QC899872 Analyzed: 09/07/17

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	88	80-121	EPA 8015B	
Bromofluorobenzene (PID)	88	74-135	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 3 of 3

	Enthalpy Analytical	- Berkeley Anal	ytical Report
Lab #:	292162	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC899867	Batch#:	251390
Matrix:	Water	Analyzed:	09/07/17
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	970.7	97	80-122

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	106	80-121

Page 1 of 1 4.0

	Enthalpy Analytical -	- Berkeley Anal	ytical Report
Lab #:	292162	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	251390
Units:	ug/L	Analyzed:	09/07/17
Diln Fac:	1.000		

Type: BS Lab ID: QC899868

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.34	103	45-130
Benzene	10.00	9.624	96	80-120
Toluene	10.00	9.278	93	80-120
Ethylbenzene	10.00	9.467	95	78-120
m,p-Xylenes	10.00	9.395	94	78-120
o-Xylene	10.00	9.316	93	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	100	74-135

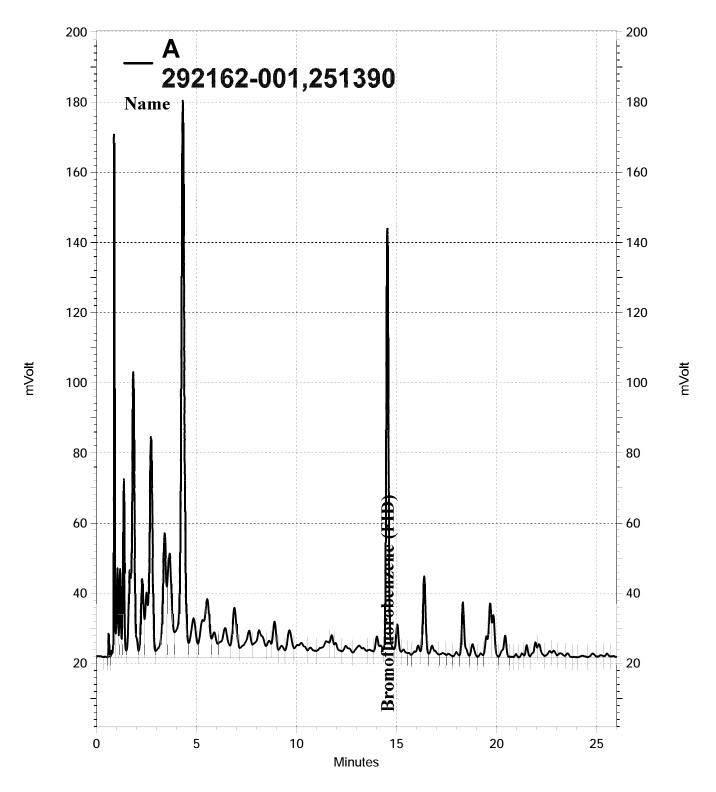
Type: BSD Lab ID: QC899869

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	10.46	105	45-130	1	58
Benzene	10.00	9.496	95	80-120	1	20
Toluene	10.00	9.010	90	80-120	3	20
Ethylbenzene	10.00	9.330	93	78-120	1	28
m,p-Xylenes	10.00	9.041	90	78-120	4	26
o-Xylene	10.00	9.019	90	80-120	3	20

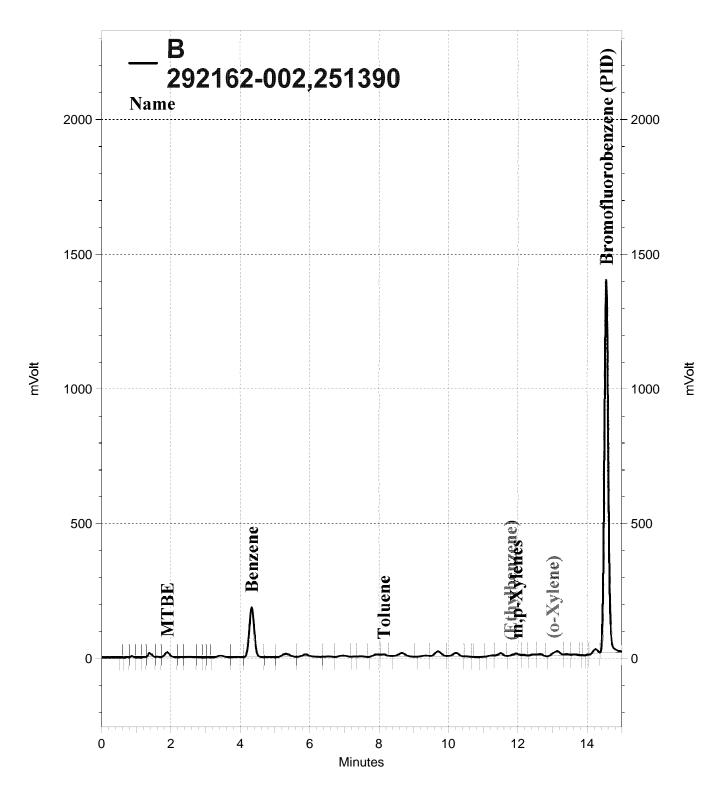
Surrogate	%REC	Limits
Bromofluorobenzene (PID)	94	74-135

	Enthalpy Analytical -	Berkeley Anal	ytical Report
Lab #: 29216	2	Location:	Bay Center Apts
Client: Stell	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-	65	Analysis:	EPA 8015B
Field ID:	RW-1	Batch#:	251390
MSS Lab ID:	292162-001	Sampled:	09/06/17
Matrix:	Water	Received:	09/06/17
Units:	ug/L	Analyzed:	09/08/17
Diln Fac:	1.000		

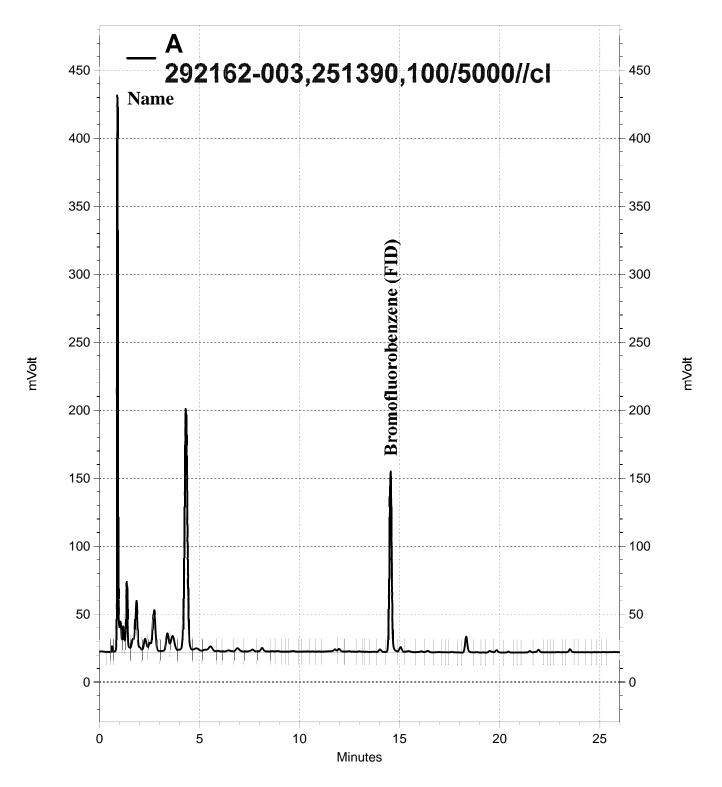
Type: MS Lab ID: QC899870

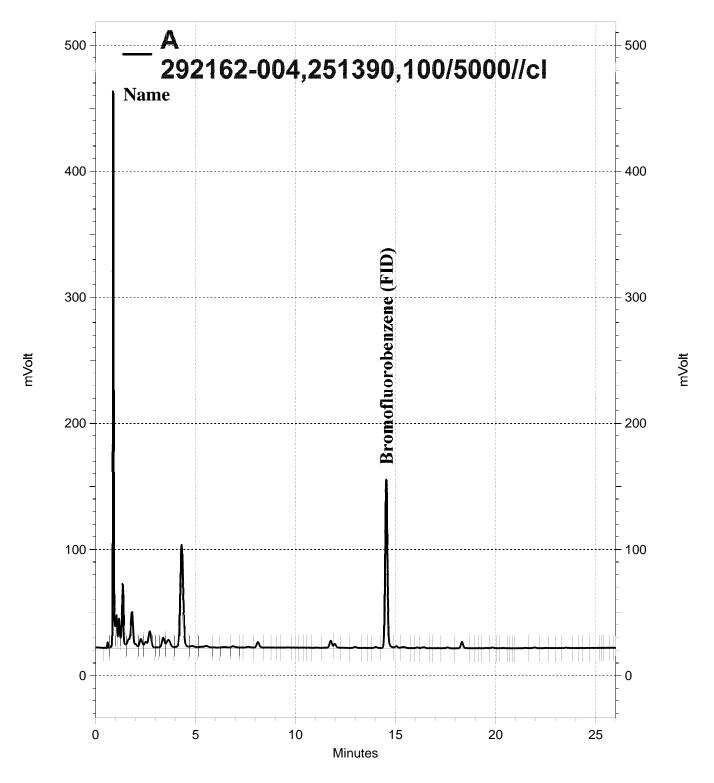

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	656.4	2,000	2,368	86	78-120

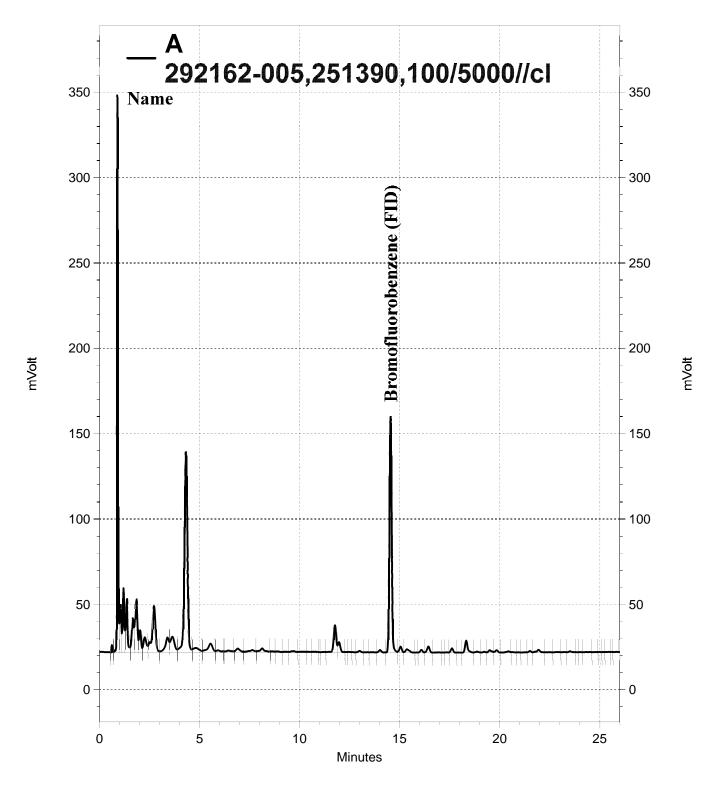
Surrogate	%REC	Limits
Bromofluorobenzene (FID)	109	80-121

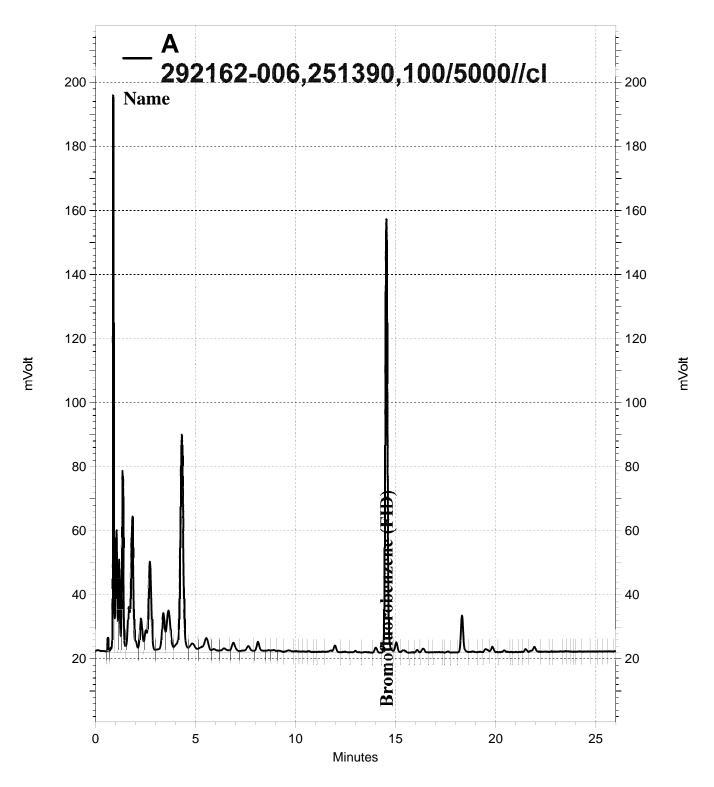

Type: MSD Lab ID: QC899871

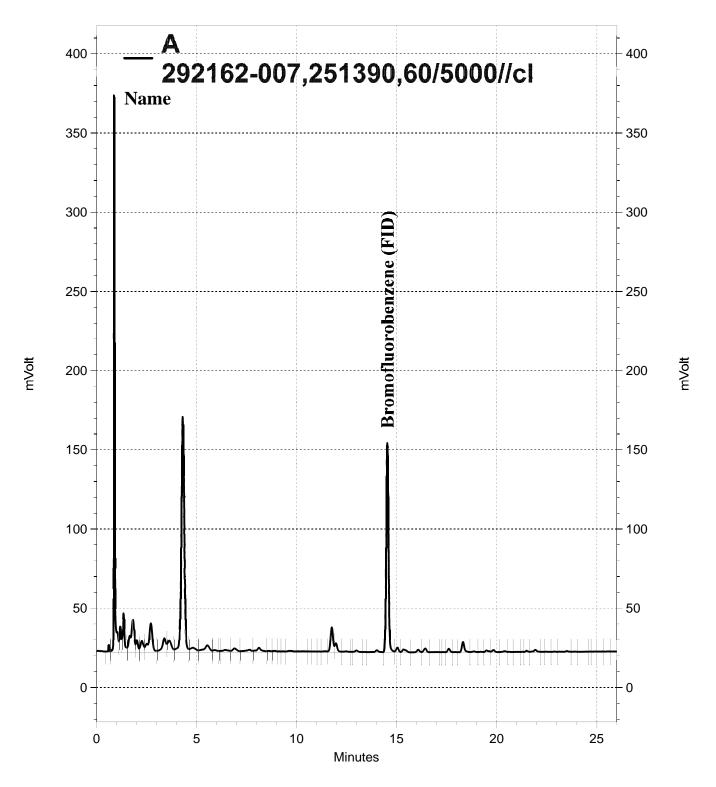
Analyte	Spiked	Result	%REC	Limits	RPD I	Lim
Gasoline C7-C12	2,000	2,459	90	78-120		20

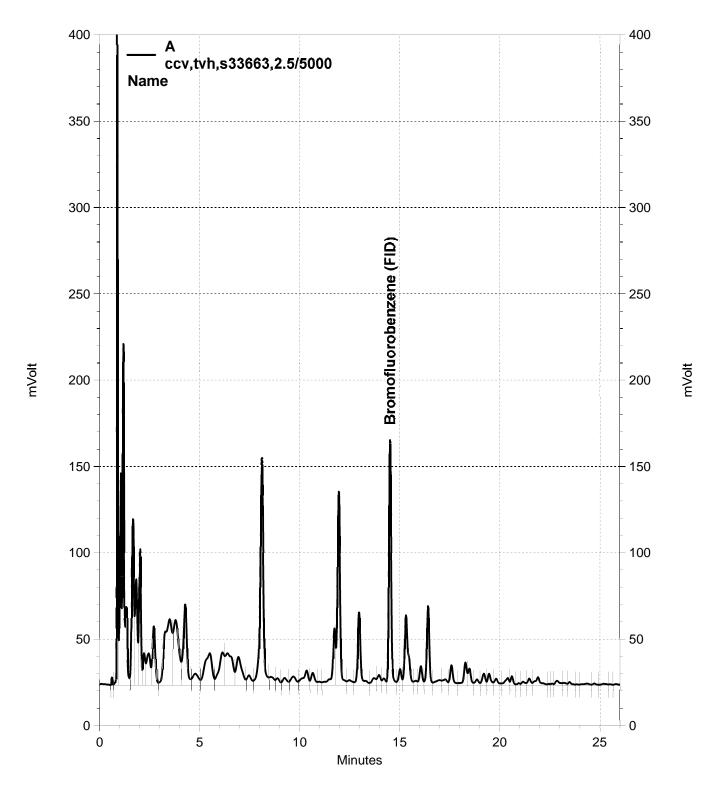

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	110	80-121


\Lims\gdrive\ezchrom\Projects\GC19\Data\250-019, A


\Lims\gdrive\ezchrom\Projects\GC19\Data\250-020, B


\Lims\gdrive\ezchrom\Projects\GC19\Data\250-021, A


\Lims\gdrive\ezchrom\Projects\GC19\Data\250-022, A


\Lims\gdrive\ezchrom\Projects\GC19\Data\250-023, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\250-025, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\250-024, A

\Lims\gdrive\ezchrom\Projects\GC19\Data\250-001, A

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C Lab #: 292162 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Analysis: EPA 8015B 09/06/17 Matrix: Water Sampled: 09/06/17 Units: ug/L Received: Diln Fac: 1.000 09/07/17 Prepared: Batch#: 251389

Field ID: RW-1 Lab ID: 292162-001 Type: SAMPLE Analyzed: 09/11/17

 Analyte
 Result
 RL

 Diesel C10-C24
 680
 50

Surrogate %REC Limits
o-Terphenyl 108 51-134

Field ID: MW-3 Lab ID: 292162-002 Type: SAMPLE Analyzed: 09/11/17

Analyte Result RL
Diesel C10-C24 5,000 50

Surrogate %REC Limits
o-Terphenyl 110 51-134

Field ID: MW-15 Lab ID: 292162-003 Type: SAMPLE Analyzed: 09/11/17

 Analyte
 Result
 RL

 Diesel C10-C24
 2,900
 50

Surrogate %REC Limits

Field ID: MW-14 Lab ID: 292162-004 Type: SAMPLE Analyzed: 09/11/17

 Analyte
 Result
 RL

 Diesel C10-C24
 3,900
 50

Surrogate %REC Limits
o-Terphenyl 102 51-134

Field ID: MW-13 Lab ID: 292162-005 Type: SAMPLE Analyzed: 09/11/17

 Analyte
 Result
 RL

 Diesel C10-C24
 7,200
 50

Surrogate %REC Limits
o-Terphenyl 108 51-134

ND= Not Detected RL= Reporting Limit

Page 1 of 2

8.5

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C 292162 Lab #: Location: Stellar Environmental Solutions Client: Prep: Analysis: Sampled: Project#: 2007-65 EPA 8015B 09/06/17 Matrix: Water Received: 09/06/17 Units: ug/L 1.000 Diln Fac: Prepared: 09/07/17 251389 Batch#:

Field ID: MW - 10Lab ID: 292162-006 Type: SAMPLE Analyzed: 09/11/17

Analyte Result Diesel C10-C24 1,800 50

%REC Limits Surrogate 108 51-134 o-Terphenyl

Field ID: MW-8Lab ID: 292162-007 SAMPLE Analyzed: 09/11/17 Type:

Analyte Result RL49 Diesel C10-C24 7,100

Surrogate Limits o-Terphenyl 111 51-134

Type: Lab ID: BLANK 09/08/17 Analyzed:

QC899863

Analyte Result RLDiesel C10-C24 ND

Surrogate %REC Limits o-Terphenyl

ND= Not Detected RL= Reporting Limit

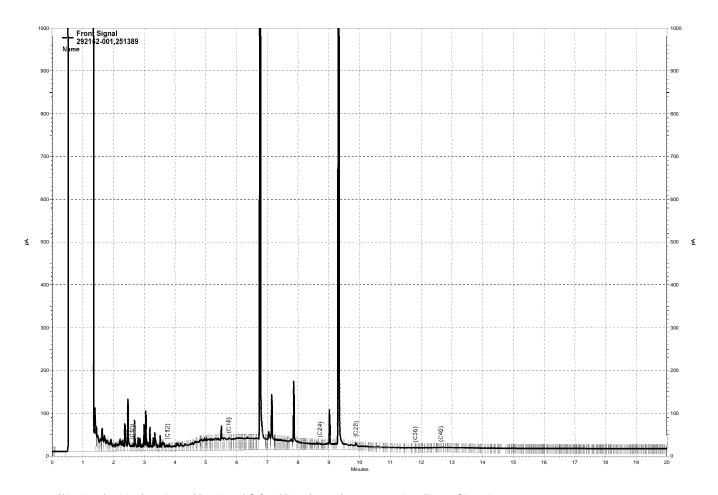
Page 2 of 2

Batch QC Report

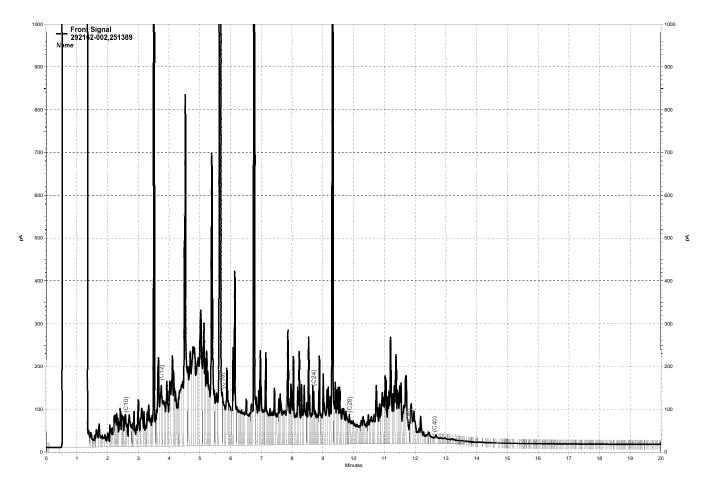
	Total Extractable Hydrocarbons						
Lab #:	292162	Location:	Bay Center Apts				
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C				
Project#:	2007-65	Analysis:	EPA 8015B				
Matrix:	Water	Batch#:	251389				
Units:	ug/L	Prepared:	09/07/17				
Diln Fac:	1.000	Analyzed:	09/08/17				

Type: BS

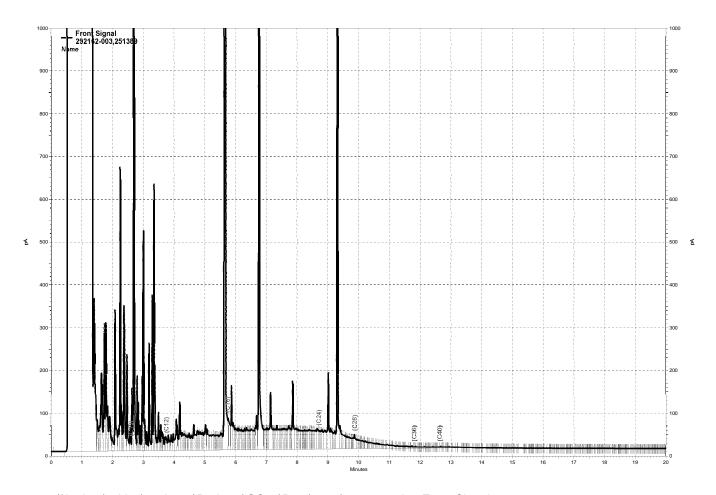
Lab ID: QC899865

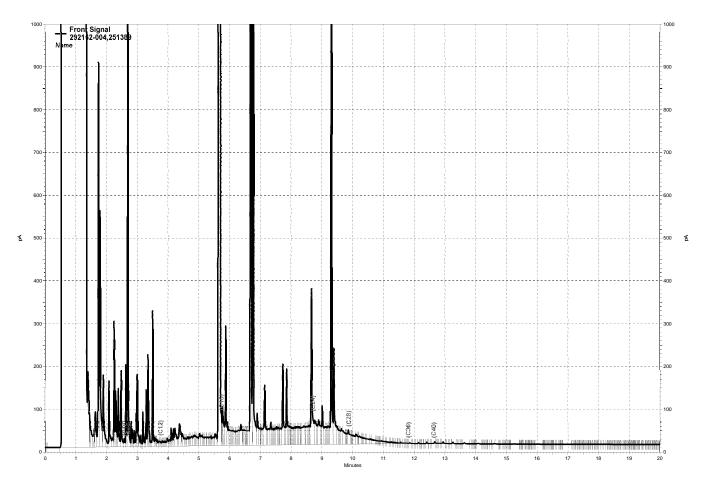

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,192	88	50-123

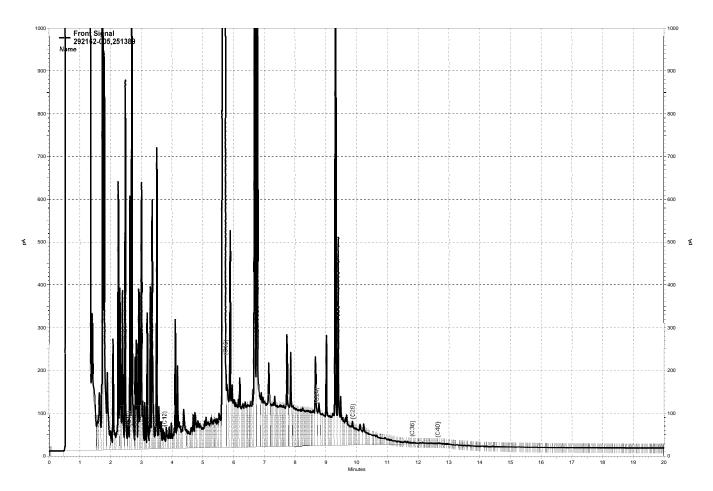
Surrogate	%REC	Limits
o-Terphenyl	110	51-134

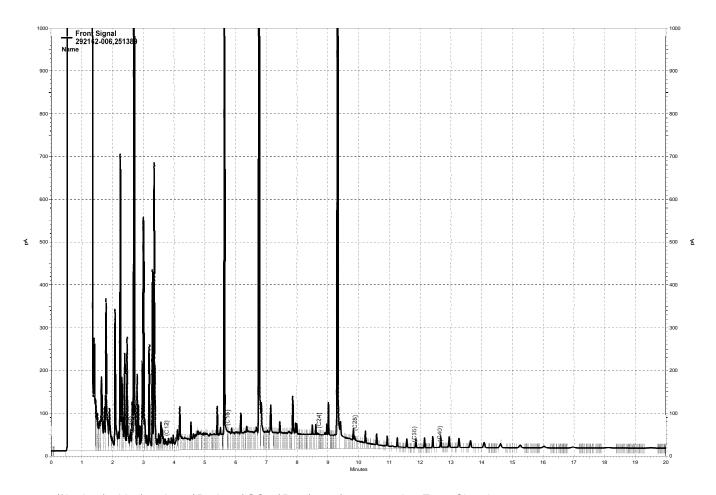

Type: BSD Lab ID: QC899866

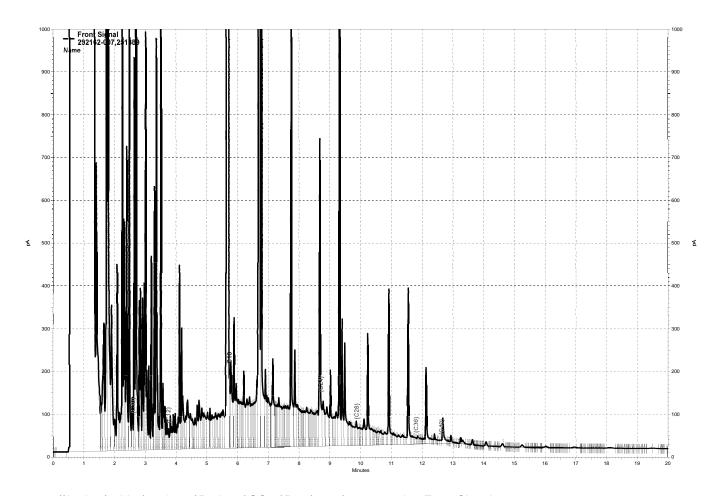
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,277	91	50-123	4	34

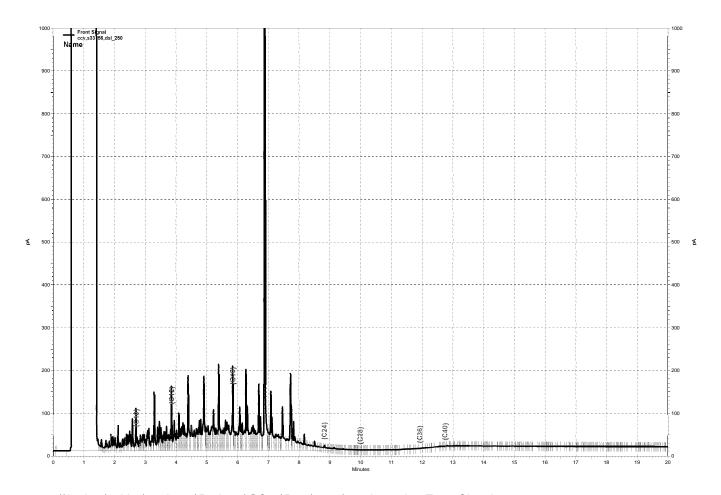

Surrogate	%REC	Limits
o-Terphenyl	109	51-134


\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\254a017.dat, Front Signal


\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\254a018.dat, Front Signal


\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\254a019.dat, Front Signal


\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\254a020.dat, Front Signal


\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\254a021.dat, Front Signal

\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\254a022.dat, Front Signal

\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\254a023.dat, Front Signal

\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\251A013.dat, Front Signal

APPENDIX D

Historical Groundwater Elevation Data

TABLE B
Historical Monitoring, Extraction, and Trench Well Elevations
6400 Christie Avenue, Emeryville, California

MW-1							
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation		
1	Dec-88	14.39	9.60	NP	4.79		
2	May-89	14.31 ^(a)	8.73	NP	5.58		
3	Feb-91	14.31	9.18	NP	5.13		
	Monitoring well abandoned - date unclear						

MW-2							
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation		
1	Dec-88	14.36	9.64	NP	4.72		
2	May-89	14.28 ^(a)	8.78	NP	5.50		
3	Feb-91	14.28	9.61	NP	4.67		
Monitoring well abandoned - date unclear							

			MW-3		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	14.53	8.93	trace	5.60
2	May-89	14.43 ^(a)	8.69	NP	5.74
3	Feb-91	14.43	8.31	NP	6.12
4	Mar-04	16.96 ^(b)	9.47	NP	7.49
5	Dec-06	NA	NA	NA	NA
6	Dec-07	16.65 ^(c)	7.76 ^(e)	7.76	8.89
7	Mar-08	16.65	8.72	8.70	7.93
8	Jun-08	16.65	8.56	NP	8.09
9	Sep-08	16.65	9.27	7.95	7.38
10	Dec-08	16.65	8.36	7.49	8.29
11	Mar-09	16.65	7.94	NP	8.71
12	Sep-09	16.65	8.58	NP	8.07
13	Mar-10	16.65	8.08 ^(e)	8.08	8.57
14	Sep-10	16.65	8.68 ^(e)	8.68	7.97
15	Mar-11	16.65	10.40	NM	6.25
16	Sep-11	16.65	10.84	10.83	6.17
17	Mar-12	16.65	8.21	NM	8.44
18	Sep-12	16.65	10.77	NM	5.88

19	Mar-13	16.65	11.27	NM	5.38
20	Sep-13	16.65	11.50	NM	5.15
21	Mar-14	16.65	9.64	9.61	7.01
22	Sep-14	16.65	NM	10.85	NM
23	Mar-15	16.65	9.40	9.35	7.25
24	Sep-15	16.65	9.00	7.22	7.65
25	Mar-16	16.65	11.35	NM	5.30
26	Sep-16	16.65	11.01	NM	5.64
27	Mar-17	16.65	10.60	10.59	6.05
28	Sep-17	16.65	11.35	NM	5.30

*Thick pro

MW-4							
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation		
1	Dec-88	14.21	8.29	NP	5.92		
2	May-89	14.12 ^(a)	7.75	NP	6.37		
3	Feb-91	14.12	8.04	NP	6.08		
4	Mar-04	16.74 ^(b)	6.90	NP	7.49		
5	Dec-06	NA	NA	NA	NA		
6	Dec-07	16.29 ^(c)	6.61	NP	9.68		
7	Mar-08	16.29	7.24	NP	9.05		
8	Jun-08	16.29	6.94	NP	9.35		
9	Sep-08	16.29	6.85	NP	6.85		
10	Dec-08	16.29	7.42	NP	8.87		
11	Mar-09	16.29	6.90	NP	9.39		
12	Sep-09	16.29	7.40	NP	8.89		
13	Mar-10	16.29	7.08	NP	9.21		
14	Sep-10	16.29	7.08	NP	9.21		
15	Mar-11	16.29	7.02	NP	9.27		
16	Sep-11	16.29	7.83	NP	8.46		
17	Mar-12	16.29	7.01	NP	9.28		
18	Sep-12	16.29	7.82	NP	8.45		
19	Mar-13	16.29	9.15	NP	7.14		
20	Sep-13	16.29	8.00	NP	8.29		
21	Mar-14	16.29	7.72	NP	8.57		
22	Sep-14	16.29	8.23	NP	8.06		
23	Mar-15	16.29	8.42	NP	7.87		
24	Sep-15	16.29	7.68	NP	8.61		
25	Mar-16	16.29	NM	NM			
26	Sep-16	16.29	8.48	NP	7.81		
27	Mar-17	16.29	7.27	NP	9.02		
28	Sep-17	16.29	8.88	NP	7.41		

MW-5							
Sampling	Doto	TOC Florestion	DTW	DTD	CW Flavotion		

Event No.	Date	100 Licyation	D1 11	"11	GW Elevation
1	Dec-88	14.65	10.23	NP	4.42
2	May-89	14.56 ^(a)	9.29	NP	5.27
3	Feb-91	14.56	10.04	NP	4.52
4	Mar-04	17.11 ^(b)	9.10	NP	8.01
5	Dec-06	NA	NA	NA	NA
6	Dec-07	16.72 ^(c)	9.66	NA	7.06
7	Mar-08	16.72	9.72	NP	7.00
8	Jun-08	16.72	9.72	NP	7.00
9	Sep-08	16.72	8.56	NP	8.16
10	Dec-08	16.72	9.75	NP	6.97
11	Mar-09	16.72	9.31	NP	7.41
12	Sep-09	16.72	9.79	NP	6.93
13	Mar-10	16.72	9.48	NP	7.24
14	Sep-10	16.72	9.90	NP	6.82
15	Mar-11	16.72	9.29	NP	7.43
16	Sep-11	16.72	9.77	NP	6.95
17	Mar-12	16.72	9.19	NP	7.53
18	Sep-12	16.72	9.70	NP	7.02
19	Mar-13	16.72	10.63	NP	6.09
20	Sep-13	16.72	10.20	NP	6.52
21	Mar-14	16.72	9.68	NP	7.04
22	Sep-14	16.72	9.73	NP	6.99
23	Mar-15	16.72	9.59	NP	7.13
24	Sep-15	16.72	9.78	NP	6.94
25	Mar-16	16.72	8.03	NP	8.69
27	Mar-17	16.72	7.27	NP	9.45
28	Sep-17	16.72	9.65	NP	7.07

MW-6								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
1	Dec-88	14.75	8.10	NP	6.65			
2	May-89	14.67 ^(a)	7.58	NP	7.09			
3	Feb-91	14.67	7.05	NP	7.62			
4	Mar-04	17.22 ^(b)	6.51	NP	10.71			
5	Dec-06	NA	NA	NA	NA			
6	Dec-07	16.82 ^(c)	6.61	NP	10.21			
7	Mar-08	16.82	7.02	NP	9.80			
8	Jun-08	16.82	7.55	NP	9.27			
9	Sep-08	16.82	6.06	NP	10.76			
10	Dec-08	16.82	6.91	NP	9.91			
11	Mar-09	16.82	6.45	NP	10.37			
12	Sep-09	16.82	8.05	NP	8.77			
13	Mar-10	16.82	6.66	NP	10.16			
14	Sep-10	16.82	7.98	NP	8.84			

15	Mar-11	16.82	5.91	NP	10.91
16	Sep-11	16.82	7.66	NP	9.16
17	Mar-12	16.82	5.65	NP	11.17
18	Sep-12	16.82	7.51	NP	9.31
19	Mar-13	16.82	7.60	NP	9.22
20	Sep-13	16.82	5.65	NP	11.17
21	Mar-14	16.82	6.33	NP	10.49
22	Sep-14	16.82	8.13	NP	8.69
23	Mar-15	16.82	7.63	NP	9.19
24	Sep-15	16.82	9.09	NP	7.73
25	Mar-16	16.82	6.39	NP	10.43
26	Sep-16	16.82	7.75	NP	9.07
27	Mar-17	16.82	5.73	NP	11.09
28	Sep-17	16.82	7.65	NP	9.17

	MW-7									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
Installed March 2004										
1	Mar-04	18.09	9.93	NP	8.16					
2	Dec-06	NA	NA	NA	NA					
3	Dec-07	17.73 ^(c)	10.30	NP	7.43					
4	Mar-08	17.73	10.51	NP	7.22					
5	Jun-08	17.73	10.50	NP	7.23					
6	Sep-08	17.73	10.37	NP	7.36					
7	Dec-08	17.73	10.60	NP	7.13					
8	Mar-09	17.73	10.13	NP	7.60					
9	Sep-09	17.73	10.61	NP	7.12					
10	Mar-10	17.73	10.02	NP	7.71					
11	Sep-10	17.73	10.59	NP	7.14					
12	Mar-11	17.73	10.14	NP	7.59					
13	Sep-11	17.73	10.58	NP	7.15					
14	Mar-12	17.73	10.12	NP	7.61					
15	Sep-12	17.73	10.50	NP	7.23					
16	Mar-13	17.73	11.30	NP	6.43					
17	Sep-13	17.73	5.50	NP	12.23					
18	Mar-14	17.73	10.82	NP	6.91					
19	Sep-14	17.73	10.61`	NP	7.02					
20	Mar-15	17.73	10.57	NP	7.16					
21	Sep-15	17.73	10.54	NP	7.19					
22	Mar-16	17.73	10.51	NP	7.22					
24	Mar-17	17.73	10.10	NP	7.63					
25	Sep-17	17.73	10.72	NP	7.01					

	MW-8										
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation						
	Installed March 2004										
1	Mar-04	18.25	9.32	8.15	8.93						
2	Nov-06 ^(d)	16.96	10.59	NP	6.37						
3	Dec-07	17.84 ^(c)	9.42	NP	8.42						
4	Mar-08	17.84	10.50	9.18	7.34						
5	Jun-08	17.84	9.68	9.10	8.16						
6	Sep-08	17.84	9.63	8.89	8.21						
7	Dec-08	17.84	9.58	8.89	8.26						
8	Mar-09	17.84	9.62	8.89	8.22						
9	Sep-09	17.84	8.55 ^(e)	8.55	9.29						
10	Mar-10	17.84	9.02 ^(e)	9.02	8.82						
11	Sep-10	17.84	9.75	9.89	7.95						
12	Mar-11	17.84	8.89	8.99	8.85						
13	Sep-11	17.84	9.87	9.55	7.97						
14	Mar-12	17.84	9.29	9.01	8.55						
15	Sep-12	17.84	9.25	8.46	8.59						
16	Mar-13	17.84	9.95	9.59	7.89						
17	Sep-13	17.84	10.32	10.28	7.52						
18	Mar-14	17.84	10.22	10.28	7.62						
19	Sep-14	17.84	9.91	9.85	7.93						
20	Mar-15	17.84	9.71	9.47	8.13						
21	Sep-15	17.84	9.88	9.93	7.96						
22	Mar-16	17.84	9.51	9.46	8.33						
23	Sep-16	17.84	9.90	9.89	7.94						
24	Mar-17	17.84	9.42	9.15	8.42						
25	Sep-17	17.84	9.94	9.70	7.90						

MW-9									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
•		Installe	d March 2004	•					
1	Mar-04	18.27	9.38	NP	8.89				
2	Dec-06	NA	NA	NA	NA				
3	Dec-07	17.84 ^(c)	9.54	NP	8.30				
4	Mar-08	17.84	9.77	NP	8.07				
5	Jun-08	17.84	9.68	NP	9.27				
6	Sep-08	17.84	9.30	NP	8.54				
7	Dec-08	17.84	9.83	NP	8.01				
8	Mar-09	17.84	9.37	NP	8.47				
9	Sep-09	17.84	9.70	NP	8.14				
10	Mar-10	17.84	9.46	NP	8.38				
11	Sep-10	17.84	9.75	NP	8.09				

12	Mar-11	17.84	9.52	NP	8.32
13	Sep-11	17.84	9.80	NP	8.04
14	Mar-12	17.84	9.54	NP	8.30
15	Sep-12	17.84	9.54	NP	8.30
16	Mar-13	17.84	10.08	NP	7.76
17	Sep-13	17.84	10.13	NP	7.71
18	Mar-14	17.84	10.01	NP	7.83
19	Mar-15	17.84	9.98	NP	7.86
20	Sep-15	17.84	10.05	NP	7.79
21	Mar-16	17.84	9.72	NP	8.12
22	Sep-16	17.84	10.02	NP	7.82
23	Mar-17	17.84	9.65	NP	8.19
24	Sep-17	17.84	10.05	NP	7.79

MW-10											
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation						
	Installed March 2004										
1	Mar-04	18.21	9.87	8.24	8.34						
2	Dec-06	18.21	9.30	8.86	8.91						
3	Dec-07	17.83 ^(c)	8.98 ^(e)	8.98	8.85						
4	Mar-08	17.83	9.28	8.98	8.55						
5	Jun-08	17.83	8.86	8.78	7.23						
6	Sep-08	17.83	8.95	8.84	8.88						
7	Dec-08	17.83	8.97	8.74	8.86						
8	Mar-09	17.83	9.25	8.54	9.25						
9	Sep-09	17.83	8.63	8.52	9.20						
10	Mar-10	17.83	10.30	8.58	7.53						
11	Sep-10	17.83	8.76	8.82	9.01						
12	Mar-11	17.83	8.15	8.14	9.68						
13	Sep-11	17.83	8.83	8.78	9.00						
14	Mar-12	17.83	7.89	7.75	9.94						
15	Sep-12	17.83	7.48	7.40	10.35						
16	Mar-13	17.83	10.30	9.33	7.53						
17	Sep-13	17.83	10.02	9.65	7.81						
18	Mar-14	17.83	9.92	9.65	7.91						
19	Sep-14	17.83	9.74	9.36	8.09						
20	Mar-15	17.83	9.19	9.16	8.64						
21	Sep-15	17.83	9.69	9.34	8.14						
22	Mar-16	17.83	9.30	9.29	8.53						
23	Sep-16	17.83	9.28	9.27	8.55						
24	Mar-17	17.83	8.73	9.27	9.10						
25	Sep-17	17.83	8.82	8.80	9.01						

	MW-11										
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation						
•	Installed May 2004										
1	Nov-06 ^(d)	17.76 ^(c)	10.33	NP	7.43						
2	Dec-07	17.76	10.27	NP	7.49						
3	Mar-08	17.76	10.34	NP	7.42						
4	Jun-08	17.76	10.20	NP	8.16						
5	Sep-08	17.76	10.03	NP	7.73						
6	Dec-08	17.76	10.34	NP	7.42						
7	Mar-09	17.76	10.20	NP	7.56						
8	Sep-10	17.76	10.25	NP	7.51						
9	Mar-10	17.76	10.23	NP	7.53						
10	Sep-10	17.76	10.24	NP	7.52						
11	Mar-11	17.76	10.10	NP	7.66						
12	Sep-11	17.76	10.30	NP	7.46						
13	Mar-12	17.76	10.18	NP	7.58						
14	Sep-12	17.76	10.24	NP	7.52						
15	Mar-13	17.76	10.62	NP	7.14						
16	Sep-13	17.76	10.21	NP	7.55						
17	Mar-14	17.76	10.33	NP	7.43						
18	Sep-14	17.76	10.40	NP	7.36						
19	Mar-15	17.76	10.40	NP	7.36						
20	Sep-15	17.76	10.48	NP	7.28						
21	Mar-16	17.76	10.35	10.34	7.41						
22	Sep-16	17.76	10.39	NP	7.37						
23	Mar-17	17.76	10.19	NP	7.57						
24	Sep-17	17.76	10.42	NP	7.34						

MW-12								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
· ·		Installed be	etween 2004-20	006				
1	Nov-06 ^(d)	17.83 ^(c)	9.37	NP	8.46			
2	Dec-07	17.83	9.15	NP	8.68			
3	Mar-08	17.83	9.11	NP	8.72			
4	Jun-08	17.83	8.86	NP	8.97			
5	Sep-08	17.83	8.76	NP	9.07			
6	Dec-08	17.83	8.98	NP	8.85			
7	Mar-09	17.83	8.50	NP	9.33			
8	Sep-09	17.83	8.95	NP	8.88			
9	Mar-10	17.83	8.66	NP	9.17			
10	Sep-10	17.83	8.89	NP	8.94			
11	Mar-11	17.83	8.18	NP	9.65			
12	Sep-11	17.83	8.80	NP	9.03			

13	Mar-12	17.83	7.79	NP	10.04
14	Sep-12	17.83	7.44	NP	10.39
15	Mar-13	17.83	9.39	NP	8.44
16	Sep-13	17.83	9.72	NP	8.11
17	Mar-14	17.83	9.55	NP	8.26
18	Sep-14	17.83	9.46	NP	8.37
19	Mar-15	17.83	9.18	NP	8.65
20	Sep-15	17.83	10.48	NP	7.35
21	Mar-16	17.83	9.19	NP	8.64
22	Sep-16	17.83	9.28	NP	8.55
23	Mar-17	17.83	8.75	NP	9.08
24	Sep-17	17.83	9.18	NP	8.65

	MW-13										
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation						
•	Installed between 2004-2006										
1	Dec-06	17.66 ^(c)	9.81	9.44	7.85						
2	Dec-07	17.66	9.95	9.39	7.71						
3	Mar-08	17.66	10.02	9.54	7.64						
4	Jun-08	17.66	9.86	9.45	7.80						
5	Sep-08	17.66	10.34	9.54	7.32						
6	Dec-08	17.66	10.54	9.65	7.12						
7	Mar-09	17.66	9.26	9.14	8.40						
8	Sep-09	17.66	9.91 ^(e)	9.72	7.75						
9	Mar-10	17.66	9.22 ^(e)	9.22	8.44						
10	Sep-10	17.66	9.40	10.18	7.48						
11	Mar-11	17.66	9.90	NM	NM						
12	Sep-11	17.66	10.41	9.64	7.25						
13	Mar-12	17.66	10.09	9.02	7.57						
14	Sep-12	17.66	9.54	9.23	8.12						
15	Mar-13	17.66	9.36	9.35	8.30						
16	Sep-13	17.66	9.48	9.45	8.18						
17	Mar-14	17.66	9.58	9.45	8.08						
18	Sep-14	17.66	8.89	8.87	8.77						
19	Mar-15	17.66	9.13	9.12	8.53						
20	Sep-15	17.66	9.59	9.57	8.07						
21	Mar-16	17.66	9.24	9.23	8.42						
22	Sep-16	17.66	9.36	9.35	8.30						
23	Mar-17	17.66	8.70	8.45	8.96						
24	Sep-17	17.66	8.28	8.45	9.38						

	MW-14										
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation						
-	Installed between 2004-2006										
1	Nov-06 ^(d)	17.60 ^(c)	9.11	9.11(sheen)	8.49						
2	Dec-07	17.60	8.86	8.84	8.74						
3	Mar-08	17.60	8.91	8.88	8.69						
4	Jun-08	17.60	8.66	8.62	8.94						
5	Sep-08	17.60	8.64	NP	8.96						
6	Dec-08	17.60	8.70	NP	8.90						
7	Mar-09	17.60	9.25	NP	9.25						
8	Sep-09	17.60	8.80	NP	8.80						
9	Mar-10	17.60	8.42	NP	9.18						
10	Sep-10	17.60	8.56	8.62	8.98						
11	Mar-11	17.60	7.93	7.92	9.67						
12	Sep-11	17.60	8.60	8.55	9.00						
13	Mar-12	17.60	7.71	7.61	9.89						
14	Sep-12	17.60	7.22	7.20	10.38						
15	Mar-13	17.60	9.18	9.17	8.42						
16	Sep-13	17.60	9.49	9.47	8.11						
17	Mar-14	17.60	9.48	9.47	8.12						
18	Sep-14	17.60	9.16	NP	8.44						
19	Mar-15	17.60	8.93	NP	8.67						
20	Sep-15	17.60	8.41	NP	8.19						
21	Mar-16	17.60	9.40	NP	8.20						
22	Sep-16	17.60	9.05	NP	8.55						
23	Mar-17	17.60	8.53	NP	9.07						
24	Sep-17	17.60	9.00	NP	9.38						

			MW-15			
Sampling Event No.	Date	Date TOC Elevation DTW DTP				
•		Installed b	etween 2004-20	006		
1	Dec-06	17.80 ^(c)	9.15	NP	8.65	
2	Dec-07	17.80	9.30	NP	8.50	
3	Mar-08	17.80	9.20	9.18	8.60	
4	Jun-08	17.80	9.60	9.63	8.20	
5	Sep-08	17.80	8.84	8.84 ^(f)	8.96	
6	Dec-08	17.80	9.19	8.36	8.61	
7	Mar-09	17.80	8.70	NP	9.10	
8	Sep-09	17.80	9.40 ^(e)	9.22	8.08	
9	Mar-10	17.80	8.81 ^(e)	8.81	8.99	
10	Sep-10	17.80	9.42	9.45	8.35	
11	Mar-11	17.80	8.50	NM	9.30	
12	Sep-11	17.80	9.32	NP	8.48	

13	Mar-12	17.80	8.55	NP	9.25
14	Sep-12	17.80	8.03	NP	9.77
15	Mar-13	17.80	9.45	NP	8.35
16	Sep-13	17.80	10.01	NP	7.79
17	Mar-14	17.80	10.18	NP	7.62
18	Sep-14	17.80	9.74	NP	8.06
19	Mar-15	17.80	9.34	NP	8.46
20	Sep-15	17.80	9.85	NP	7.95
21	Mar-16	17.80	9.36	9.35	8.44
22	Sep-16	17.80	9.76	9.75	8.04
23	Mar-17	17.80	8.97	9.75	8.83
24	Sep-17	17.80	9.57	9.55	8.23

]	MW-16								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation						
•		Installed b	etween 2004-20	006							
1	Dec-06	NA	NA	NA	NA						
2	Dec-07	17.74 ^(c)	9.36	NP	8.38						
3	Mar-08	17.74	9.88	NP	7.86						
4	Jun-08	17.74	NP	7.80							
5	Sep-08	17.74	9.07	NP	8.67						
6	Dec-08	17.74	9.45	NP	8.29						
7	Mar-09	17.74	8.88	NP	8.86						
8	Sep-09	17.74	9.51	NP	8.23						
9	Mar-10	17.74	8.92	NP	8.82						
10	Sep-10	17.74	9.40	NP	8.34						
11	Mar-11	17.74	9.16	NP	8.57						
12	Sep-11	17.74	9.56	NP	8.18						
13	Mar-12	17.74	9.38	NP	8.36						
14	Sep-12	17.74	9.15	NP	8.59						
15	Mar-13	17.74	9.60	NP	8.14						
16	Sep-13	17.74	10.03	NP	7.71						
17	Mar-14	17.74	9.81	NP	7.93						
18	Sep-14	17.74	9.80	NP	7.94						
19	Mar-15	17.74	9.56	NP	8.18						
20	Sep-15	17.74	8.50	NP	9.24						
21	Mar-16	17.74	9.46	NP	8.28						
22	Sep-16	17.74	10.31	NP	7.43						
23	Mar-17	17.74	9.33	NP	8.41						
24	Sep-17	17.74	9.80	NP	7.94						

			MW-17		
Sampling Event No.	Date	TOC Elevation	DTP	GW Elevation	
•		Installed b	etween 2004-20	06	
1	Dec-06	NA	NA	NA	NA
2	Dec-07	18.17 ^(c)	9.40	9.32	8.77
3	Mar-08	18.17	9.34	9.18	8.83
4	Jun-08	18.17	8.98	8.97	9.19
5	Sep-08	18.17	9.21	7.92	8.96
6	Dec-08	18.17	9.25	9.11	8.92
7	Mar-09	18.17	8.89	NP	9.28
8	Sep-09	18.17	9.31	NP	8.86
9	Mar-10	18.17	8.93	NP	9.24
10	Sep-10	18.17	9.15	NP	9.02
11	Mar-11	18.17	8.52	8.50	9.65
12	Sep-11	18.17	9.15	NP	9.02
13	Mar-12	18.17	8.17	NP	10.00
14	Sep-12	18.17	7.77	NP	10.40
15	Mar-13	18.17	9.17	NP	9.00
16	Sep-13	18.17	10.00	NP	8.17
17	Mar-14	18.17	10.00	NP	8.17
18	Sep-14	18.17	9.72	NP	8.45
19	Mar-15	18.17	9.51	NP	8.86
20	Sep-15	18.17	10.00	NP	8.17
21	Mar-16	18.17	9.98	NP	8.19
22	Sep-16	18.17	9.62	NP	8.55
23	Mar-17	18.17	9.06	9.05	9.11
24	Sep-17	18.17	9.50	NP	8.67

		I	MW-18		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
•		Installed be	etween 2004-20	006	
1	Dec-06	NA	NA	NA	NA
2	Dec-07	16.35 ^(c)	8.30	NP	8.05
3	Mar-04	16.35	8.34	NP	8.01
4	Jun-08	16.35	8.34	NP	8.20
5	Sep-08	16.35	8.48	NP	7.87
6	Dec-08	16.35	8.61	NP	7.74
7	Mar-09	16.35	7.75	NP	8.60
8	Sep-09	16.35	8.50	NP	7.85
9	Mar-10	16.35	7.97	NP	8.38
10	Sep-10	16.35	8.28	NP	8.07
11	Mar-11	16.35	8.63	NP	7.72
12	Sep-11	16.35	8.90	NP	7.45

13	Mar-12	16.35	8.56	NP	7.79
14	Sep-12	16.35	8.59	NP	7.76
15	Mar-13	16.35	9.92	NP	6.43
16	Sep-13	16.35	9.81	NP	6.54
17	Mar-14	16.35	9.19	NP	7.16
18	Sep-14	16.35	9.56	NP	6.79
19	Mar-15	16.35	8.51	NP	6.84
20	Sep-15	16.35	8.69	NP	7.66
21	Mar-16	16.35	8.66	NP	7.69
22	Sep-16	16.35	9.61	NP	6.74
23	Mar-17	16.35	7.64	NP	8.71
24	Sep-17	16.35	9.20	NP	7.15

			MW-E						
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	NM	NM	NM	NM				
2	May-89	15.32	10.39	NP	4.93				
3	Feb-91	NM	NM	NM	NM				
4	Mar-04	17.80	9.92	NP	7.88				
5	Nov-06 ^(d)	17.80	10.22	NP	7.58				
6	Dec-07	17.47 ^(c)	10.03	NP	7.44				
7	Mar-08	17.47	10.21	NP	7.26				
8	Jun-08	17.47	10.20	NP	7.27				
9	Sep-08	17.47	9.55	NP	7.92				
10	Dec-08	17.47	10.32	NP	7.15				
11	Mar-09	17.47	NP	7.68					
12	Sep-09	17.47	10.22	NP	7.25				
13	Mar-10	17.47	NP	7.65					
14	Sep-10	17.47	10.11	NP	7.36				
15	Mar-11	17.47	9.10	NP	8.37				
16	Sep-11	17.47	8.41	NP	9.06				
17	Mar-12	17.47	9.86	NP	7.61				
18	Sep-12	17.47	9.95	NP	7.52				
19	Mar-13	17.47	10.41	NP	7.06				
20	Sep-13	17.47	10.21	NP	7.26				
21	Mar-14	17.47	10.15	NP	7.32				
22	Sep-14	17.47	9.98	NP	7.49				
23	Mar-15	17.47	10.15	NP	7.32				
24	Sep-15	17.47	10.07	NP	7.40				
25	Mar-16	17.47	10.00	NP	7.47				
26	Sep-16	17.47	10.15	NP	7.32				
27	Mar-17	17.47	9.86	NP	7.61				
28	Sep-17	17.47	10.17	NP	7.30				

			RW-1						
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	NM	NM	NM	NM				
2	May-89	14.54	10.17	10.14	4.37				
3	Feb-91	14.54	11.46	10.85	3.57				
4	Mar-04	18.32	7.20	5.62	11.12				
5	Nov-06 ^(d)	18.32	9.15	9.11	9.17				
6	Dec-07	16.70 ^(c)	9.53 ^(e)	9.53	7.17				
7	Mar-08	16.70	8.99	8.92	7.71				
8	Jun-08	16.70	8.95	8.87	7.75				
9	Sep-08	16.70	NM ^(c)	NM ^(c)	NM ^(c)				
10	Dec-08	16.70	NM	NM	NM				
11	Mar-09	16.70	9.06 ^(e)	9.06	7.64				
12	Sep-09	16.70	9.45 ^(e)	9.45	7.25				
13	Mar-10	16.70	8.93 ^(e)	8.93	7.77				
14	Sep-10	16.70	9.50	9.65	7.05				
15	Mar-11	16.70	9.05	9.04	7.65				
16	Sep-11	16.70	9.75	9.74	6.95				
17	Mar-12	16.70	9.33	NP	7.35				
18	Sep-12	16.70	NM	9.69	NM				
19	Mar-13	16.70	NM	9.99	NM				
20	Sep-13	16.70	11.60	9.99	5.10				
21	Mar-14	16.70	9.13	9.99	7.57				
22	Sep-14	16.70	11.10	11.09	5.60				
23	Mar-15	16.70	9.67	11.09	7.03				
24	Sep-15	16.70	9.69	11.09	7.01				
25	Mar-16	16.70	9.29	9.29	7.41				
26	Sep-16	16.70	9.90	NA	6.80				
27	Mar-17	16.70	8.81	8.80	7.89				
28	Sep-17	16.70	9.71	NP	6.99				

Notes:

The 1988, 1989, and 1991 water elevations were measured by Groundwater Technology, Inc.

The 2004 and 2006 water elevations were measured by PES Environmental.

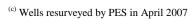
NS = Not sampled

NP = No product

NM - Not measured/Could Not Measure

NA = data not available from the previous consultant for this event

TOC Elevation = Top of Casing Elevation


DTW = Depth to water from the top of the casing

DTP - Depth to product from the top of the casing

GW Elevation - Groundwater elevation as compared to mean sea level

^(a) Wells resurveyed in May 1989

⁽b) New elevation recorded by PES. Date of survey unclear.

 $^{^{(}d)}$ no water level data available for the December 2006 sampling event

⁽e) Thickness of product interfered with determining oil/water interface.

^(f)Depth to groundwater = depth to free product as difference could not be determined

APPENDIX E

Historical Product Extraction Data Table

I	Iistorica	al Treno	h and M	Ionitori	ng Wel	l Produ	ct Reco	very, 64	00 Christi	ie Aveni	ie, Eme	ryville,	CA

								11StO11Ca	ai i i en	en and r	VIOIIIIOI	ing wei	ell Product Recovery, 6400 Christie Avenue, Emeryville,						CA								Total	
Extraction Date	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	NOW 11	MW-12	MW 12	MW 14	MW-15	MW 16	MW-17	MW-18	MW-E	RW-1	TA-E	TA-M	TA-W	тв-е	тв-м	TB-W	тс-е	тс-м	TC-W	Extracted
	MW-3	WI W-4	MW-5	W1 W - 0	N1 W-/	1.00	WI W-9	1.00		WIW-12	MW-13	WW-14	MW-15	W1W-10	W1 W-17	N1 W-18	WIW-E		IA-E	I A-M	1A-W	ID-E	I D-M	1 D- W	IC-E	IC-M	TC-W	
Apr-04						1.00		1.00										19.75										21.75 22.50
May-04																		22.5										
Sep-04																		0.74										0.74
Oct-04																		5.22										0.00
2004 Total		_		_	_		_	_	_	_	_		_	_			1	_						_				44.99
Jan-05																												0.00
Apr-06																					3.3							3.30
Jun-06																			8.9	9.2	10.3							28.40
Jul-06																			3.6	5	5.3							13.90
Aug-06						0.8		0.8			1	0.2	0.2						0.2	0.2	0.4							3.80
Sep-06								0.8			0.2	0.3							0.6		0.6							2.50
Nov-06																			0.2									0.20
Dec-06																			0.2									0.20
2006 Total																												52.30
Jan-07																			0.2									0.20
Feb-07																			0.2									0.20
Mar-07																			0.2									0.20
Nov-07																				0.81	0.68				0.63			2.12
Dec-07																			0.01	0.61	0.07				0.002			0.69
2007 Total																												3.41
Feb-08	0.03																	0.45	0.08	0.06	0.18	0.04	0.06	0.06	0.08	0.05	0.05	1.14
Feb-08			0.05															0.45	0.15	0.15	0.30							1.10
Mar-08				0.02	0.002	0.02	0.001	0.04	0.02	0.03	0.004	0.01	0.02	0.01	0.01	0.003	0.012	0.3	0.09	0.06	0.09				0.06			0.80
Mar-08																				0.002	0.008							0.01
May-08	0.09							0.075		0.075	0.019	0.009			0.13			1.397	0.866	1.466	1.431							5.56
Jun-08																			0.15	0.11	0.57							0.83
Aug-08	0.12							0.048		0.024	0.009							0.75	0.9	1.6	0.7	0.3	0.3		0.15			4.90
Sep-08																			0.03	0.09	0.048							0.17
Nov-08	0.078					0.009				0.06	0.009			0.003	0.06			0.6	0.1	0.03		0.06	0.06	0.06	0.06	0.09	0.09	1.37
Dec-08																			0.0003	0.08					0.03			0.11
2008 Total																												14.99
Mar-09	0.279					0.378		0.369		0.261	0.007	0.023	0.117		0.342		0.023	1.800	0.750	0.950	1.010	0.153	0.153	0.153	0.653	0.153	0.153	7.73
Jun-09																			0.5									0.50
Sep-09	0.286				0.022	0.418		0.176	0.308	0.176	0.088	0.007	0.176	0.088	0.176	0.022	0.066	7.15	1.4	1.1	1.2	1.1	1.1	1.1	1.1	1.1	1.1	19.46
Dec-09																			0	0.9	0.06				0			0.96
2009 Total																												28.65
Mar-10	0.14				0.01	0.18	0.02	0.60		0.60	0.03	0.10	0.69	0.04	0.30	0.02		8.00	1.30	1.00	1.00	0.50	1.00	0.50	1.00	1.00	1.00	19.03
Jun-10																				0.75								0.75
Sep-10	0.3	0.2	0.4	0.5	0.01	0.5	0.01	0.5		1.6	0.02	0.01	1.5	0.02	1.0	0.02	0.1	6.9	1.00	1.00	1.00	0.3	0.3	0.4	1.00	0.5	0.5	19.59
Dec-10																			0.10	0.00	0.05				0.00			0.15
2010 Total																												39.52
Mar-11						0.002		0.002				0.002			0.003			0.002	0.06	0.06	0.02				0			0.15
Sep-11	0.2					0.3					0.2			0.1				0.5	-	0.45	0.25	0.1	0.1	0.1		0.1	0.1	2.50
2011 Total																												2.65
Mar-12	0.015					0.015					0.06	-			0.01			0.06	0.13	0.03	0.015		0.01			0.015	0.015	0.375
Sep-12						0.03	-	0.023			0.08	-					0.015	0.06	0.045	0.08	0.09							0.423
2012 Total																												0.798
Mar-13	0.06	-				0.08		0.015			0.08	-					0.01	0.06	0.05	0.12	0.07		-	-	0.03	0.03	0.03	0.635
Sep-13	0.06					0.02		0.05				-					0.02	0.06	0.02	0.02	0.02		-		0.01	0.02	0.02	0.320
2013 Total																												0.955
Mar-14	0.08	-	-				-	0.023				-	-	0.015			0.01	0.09	0.03	0.03	0.015		_	-	0.015	0.015	0.015	0.338
Sep-14		-						0.031				-	-						_		-		_	-		-		0.031
2014 Total																												0.369
Mar-15		-	-	-			-	0.031				_	_	-			0.0078	0.0078	0.031	0.0228	0.0228		_	-		_		0.123
Sep-15	0.015	-	-			0.015	-	0.0078				_	-					0.015	_				_	-		_		0.053
2015 Total																												0.176
Mar-16			-				_	0.008		-		_	_	_		_		_								_		0.008
Sep-16								0.000										0.008										0.008
																		0.008										0.008
2016 Total Mar-17																												0.000
		-					-	-				-	-				-		-				-	-		-		
Sep-17								-				_	-	-				0.008	-				-			-		0.008
2017 Total	1.77	0.06	0.40	0.50	0.01	2.75	0.07	1.0	0.21	2.72	0.61	0.16	2.50	0.20	1.00	0.06	0.26	77.05	22.02	25.06	20.00	2.51	2.02	2.21	4.02	2.00	2.00	0.008
Total Extracted		0.00	0.40	0.50	0.04	3.75	0.03	4.62	0.31	2.72	0.61	0.16	2.50	0.28	1.89	0.06	0.26		22.03	•	28.80	2.51	3.02	2.31	4.83	3.08	3.08	194.94
Note: All free product		resented in													46 gallons i	removed from	trench wells			006 and Ma								