RECEIVED

By Alameda County Environmental Health at 9:37 am, Dec 30, 2014

SECOUND SEMIANNUAL 2014 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

BRIDGEWATER APARTMENTS PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION EMERYVILLE, CA 94608

December 2014

SECOND SEMI-ANNUAL 2014 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

BRIDGEWATER APARTMENTS PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION 6475 CHRISTIE AVENUE, SUITE 550 EMERYVILLE, CA 94608

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

December 22, 2014

Project No. 2007-65

GEOSCIENCE & ENGINEERING CONSULTING

December 22, 2014

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Department of Environmental Health Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Semiannual 2013 Groundwater Monitoring & Product Extraction Report

EmeryBay Commercial Association Phase I Condo Parking Garage

6400 Christie Avenue, Emeryville, California

Dear Mr. Detterman:

Enclosed is the Stellar Environmental Solutions, Inc. report summarizing the site activities conducted in September 2014 at the referenced site. This report is being submitted on behalf of the owner and Responsible Party, Emerybay Commercial Association. The subject site activities included a surfactant injection into selected wells, a product extraction event and the second semiannual 2014 groundwater monitoring event.

This report summarizes the 22nd sampling event conducted at the site since 1988. The bulk of the residual contamination beneath the site remains concentrated around wells MW-8, MM-10, MW-12, MW-13, MW-14 and MW-15, and the plume underlying the parking garage appears to be stabilizing since the cessation of construction dewatering at the construction site across 64th Street during 2013. That dewatering had been influencing groundwater flow direction, and was suspected to have mobilized contaminants towards MW-3. In accordance with regulatory requirements, an electronic copy of this report has been uploaded to ACEH and to the State Water Resources Control Board's GeoTracker system.

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of our knowledge. If you have any questions regarding this report, please contact us at (510) 644-3123

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of our knowledge. If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Richard S. Makdisi, P.G., R.E.A. Principal Geochemist & President

Januar S. Mildin

Ms. Katherine Collins Emerybay Commercial Assoc.

TABLE OF CONTENTS

Section	on Carlos Ca	Page
1.0	INTRODUCTION	1
	Project Background	1
	Site and Vicinity Description	
	Previous Investigations	
	Objectives and Scope of Work	
	Regulatory Oversight	
2.0	PHYSICAL SETTING	8
	Topography and Drainage	8
	Geology	8
	Groundwater Hydrology	9
3.0 ACTI	SEPTEMBER 2014 GROUNDWATER MONITORING AND SAMPLING VITIES	11
71011	*11E0	1 1
	Sampling Methods and Activities	11
	Current Monitoring Event	
4.0	REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND	
DISC	USSION OF FINDINGS	14
	Regulatory Considerations	14
	Groundwater Sample Results	
5.0	FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM	24
	LNAPL Remediation System Construction	24
	Historical Free Product Extraction	25
	2013 and 2014 surfactant injection	25
	september 2014 Product Removal Event	28
	Discussion of Free product removal and limitations	30
6.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS	32
	Findings and Conclusions.	32
	Recommendations	35

TABLE OF CONTENTS (continued)

Section	Pag	e
7.0 REFE	RENCES AND BIBLIOGRAPHY	6
8.0 LIMIT	CATIONS4	2
Appendices		
Appendix A	Historical Groundwater Well Analytical Results	
Appendix B	Groundwater Monitoring Field Data Sheets	
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record	
Appendix D	Historical Groundwater Elevation Data	
Appendix E	Historical Product Extraction Data Table	
Appendix F	Groundwater Disposal Documentation and EnviroClean® MSDS	

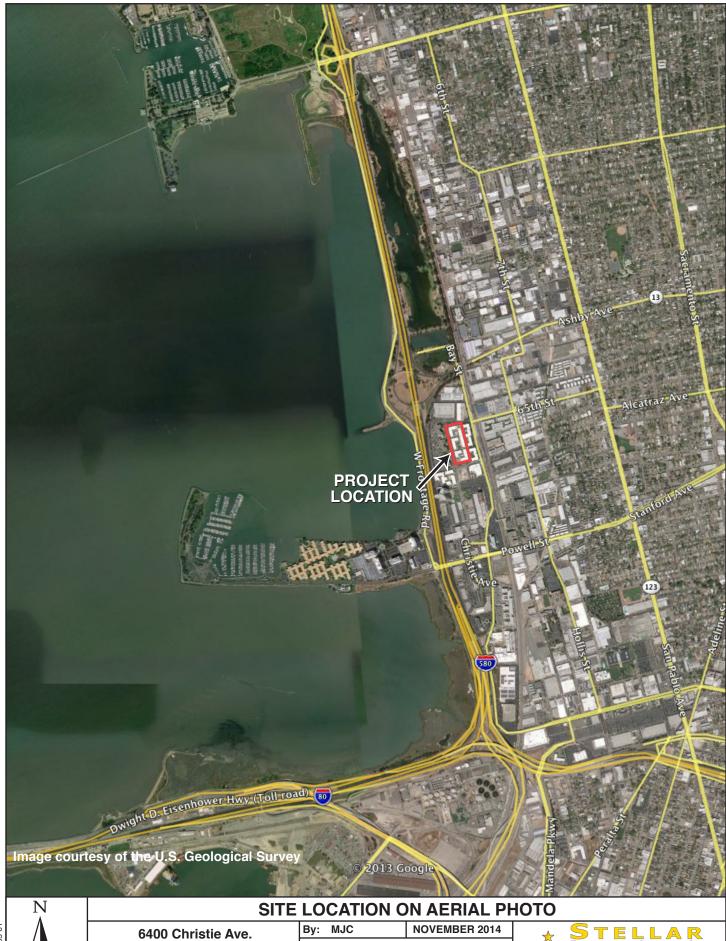
TABLES AND FIGURES

Tables Page
Table 1 September 30, 2014 Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California
Table 2 Groundwater Sample Analytical Results – September 30, 2014 6400 Christie Avenue, Emeryville, California 15
Table 3 Passive Skimmer Product Extraction in Trenches— September 25 and 26, 2014 6400 Christie Avenue, Emeryville, California 28
Table 4 Active Product Extraction – 6400 Christie Avenue, Emeryville, California, September 25 and 26, 2014
Figures Page
Figure 1 Site Location Map
Figure 2 Site Plan
Figure 3 Monitoring Well and Trench Locations
Figure 4 Groundwater Elevation Map – September 2014
Figure 5 Groundwater Monitoring Well Analytical Results – September 2014 16
Figure 6 Total Petroleum Hydrocarbon Plume as Gasoline – September 2014
Figure 7 Total Petroleum Hydrocarbon Plume as Diesel – September 2014

1.0 INTRODUCTION

PROJECT BACKGROUND

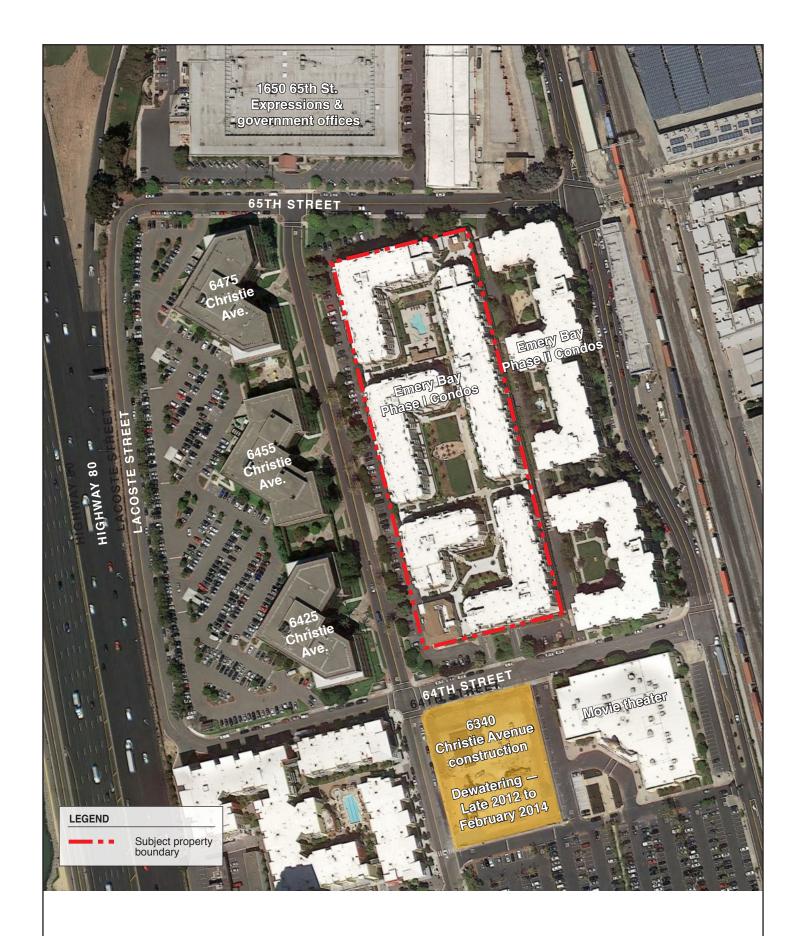
The subject property, located at 6400 Christie Avenue in Emeryville, California, is owned by the Emerybay Commercial Association, for which Stellar Environmental Solutions, Inc. (Stellar Environmental) provides environmental consulting services. The site has undergone fuel tank-related investigations and remediation since 1988 (by Stellar Environmental since 2007). All known environmental documents for the subject property are listed in the References and Bibliography section (Section 7.0) of this report. Previous remediation and investigation activities are outlined in the final subsection of this chapter.


SITE AND VICINITY DESCRIPTION

The project site is located at 6400 Christie Avenue in Emeryville, California (see Figure 1). The project site, which slopes to the south, is wholly developed with an open ground-floor parking area and apartment complex known as the Bridgewater Phase I Condos and parking garage. The area of monitoring and product extraction is primarily located in the northeastern portion of the parking garage. Figure 2 is a site plan. The site is bordered to the east by the Emery Bay Phase II Condos and parking garage, to the north by 65th Street, beyond Christie Avenue and to the west by the Bay Center Offices, and to the south by 64th Street. The surrounding area is developed with apartment complexes, offices, and commercial stores.

PREVIOUS INVESTIGATIONS

Historical groundwater well analytical results are presented in Appendix A, and are discussed in detail in Section 5.0 of this report.


The subject property parcel was developed as early as 1958 with the Garrett Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. The building remained on the property until 1986, when it was demolished to build the present-day structures. Twelve underground fuel storage tanks (UFSTs) containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels in 1987, at which time soil and groundwater contamination was discovered.

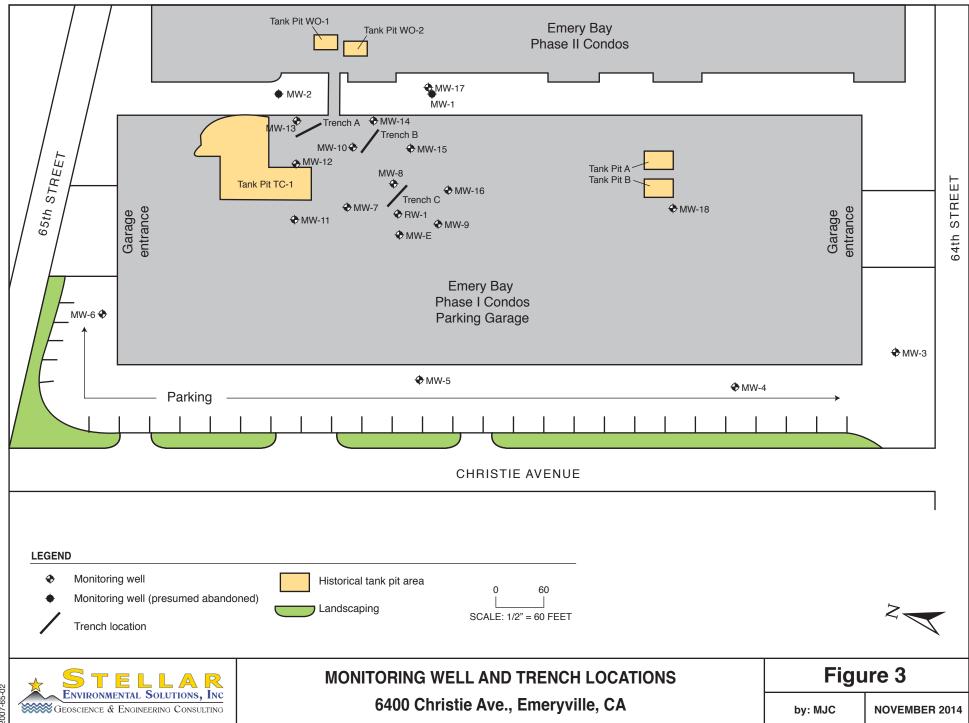
2007-65-01

6400 Christie Ave. Emeryville, CA Figure 1

STELLAR ENVIRONMENTAL SOLUTIONS, INC

SITE PLAN AND ADJACENT LAND USE

6400 Christie Ave. Emeryville, CA By: MJC NOVEMBER 2014


Figure 2

The subsurface contamination originated from the trucking terminal that was operated by the Garrett Freight Line and Delta Lines, and existed at the site of the Bay Center Apartments before its development in the late 1980s. Site investigations identified a total of 12 UFSTs in three areas of the trucking terminal. These UFST areas were referred to as: 1) Tank Pits A and B (each containing one 10,000-gallon diesel tank); 2) Tank Pit TC-1 (four 12,000-gallon diesel tanks, two 10,000-gallon diesel tanks, and one 6,000-gallon gasoline tank); and 3) Tank Pit WO-1 and WO-2 (one 6,000-gallon tank, one 4,000-gallon tank, and one 1,000-gallon tank). Nine UFSTs were located beneath the current footprint of the Emery Bay Phase I Condo complex, while three were beneath the Emery Bay Phase II Condo complex. Figure 2 shows the historical locations where the tanks were removed.

To remediate the hydrocarbon contamination beneath the garage area of the Emery Bay Phase I Condo complex, a light non-aqueous phase liquid (LNAPL) groundwater pump-and-treat system was installed by Groundwater Technology, Inc. (GTI) in 1989. The system extracted approximately one million gallons of groundwater, yielding approximately 100 gallons of LNAPL from recovery well RW-1 from July 1990 to March 1991. Three monitoring wells had previously been installed in 1985. GTI installed (and repaired) several more monitoring wells between 1987 and 1990, for a total of seven monitoring wells and one extraction well by 1990. The system and groundwater monitoring wells were designed and monitored as a condition of discharge permits granted by the East Bay Municipal Utility District (EBMUD) and the Bay Area Air Quality Management District (BAAQMD). The first groundwater monitoring event for MW-1 through MW-6 occurred in December 1988. The second monitoring event, which also included MW-E and RW-1, was conducted in March 1989. Subsequently, the groundwater extraction system operated by GTI was closed in late 1990 when corrosion and other mechanical problems caused the system to fail. Recovery of LNAPL continued manually on RW-1 until 1991, and a third groundwater sampling event occurred in February 1991. In 1994, the GTI system was abandoned. Appendix A contains the historical analytical results. Figure 3 shows the locations of the monitoring wells and trenches.

No groundwater monitoring events had occurred at the site between 1991 and 2004, when PES Environmental, Inc. (PES) was retained to evaluate and implement remediation of the residual contamination at the TC-1 (former location of seven UFSTs) Emery Bay Phase I Condo complex area. (Note: Harding Lawson Associates conducted soil and groundwater sampling on the Phase II Apartment complex area during this time, but not for the purpose of product extraction or remediation.) In 2004, PES installed an additional 10 groundwater monitoring wells (monitoring wells MW-1 and MW-2 were either abandoned or paved over with asphalt during construction), bringing the current total to 17 monitoring wells and one extraction well in the Phase I parking garage area. The first groundwater monitoring event for the current wells was conducted in March 2004 and the second event conducted in December 2006. A previous Stellar Environmental report

(Stellar Environmental, 2007) discusses previous site remediation and investigations, site geology and hydrogeology, and residual site contamination. Tabular summaries of historical groundwater well water elevations and analytical results are included in Appendices D and A, respectively.

In March 2014, Stellar Environmental Solutions conducted a groundwater investigation that consisted of advancing five soil borings in the areas between wells MW-3 on the southern edge of the site and MW-18 in the garage and downgradient of MW-3, with the goal to locate a suspected source of residual subsurface hydrocarbons. The reason for this additional work was based on the recent uptrend in diesel concentration noted in well MW-3 since the late 2012 initiation of construction de-watering at the 6340 Christie Avenue (ACHCSA Case # RO0000057) property across 64th Street, south of the subject property garage area.

The apparent impact of the dewatering had on the subject site was apparent in terms of both the changes to the site hydrology—with the change in the groundwater flow regime from west/northwest to having a southern component—as well as a hydrochemical impact. The hydochemical impact, as documented in well data described in later sections had been to draw the hydrocarbon plume southward, increasing the concentrations of TEHd by orders of magnitude at well MW-3 near the subject property south border, compared to the previous 5 years of monitoring that showed stable results. The TEHd concentration at MW-3 on the southern property line increased from 15,000 μ g/L TEHd in April 2013 to 250,000 μ g/L TEHd in September 2013. The relatively stable TEHd concentration present in well MW-18 since 2012, suggested a possible undiscovered source between these two wells that was impacting well MW-3.

Although no obvious source for the heavy oil accumulating in well MW-3 was found to be located between wells MW-3 and MW-18 during the advancement of the soil borings, this apparent lack of another hydrocarbon source near that area where an historical source was indicated supports the idea that the increase in TEHd observed in well MW-3 was associated with the dewatering of the construction site. The recent spike in TEHd concentrations in MW-3, which have again decreased for the current monitoring event to near historic lows, strongly suggests the construction dewatering across 64th Street during 2013 was responsible, with the southward pull of the hydrocarbon plume offsite resulting in the observed fluctuations in TEHd concentrations in well MW-3.

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental in the current annual monitoring period:

- Removal of the oil skimmers from trench well arrays A and C. Due to the current lack of LNAPL present in these wells, the skimmers were removed for the reason that the coating of oil on the skimmers may be contributing to groundwater contamination at the site.
- Introduction of a hydrocarbon dissolving surfactant in all nine trench wells and in MW-3 with the goal of capturing the viscous hydrocarbon layer around these wells and cleaning the wells screens to reduce the accumulated heavy product fraction.
- Active extraction on all groundwater monitoring wells, trench sump wells, and recovery well RW-1.
- Record water levels in site wells to determine groundwater flow direction.
- Sampling of site wells for contaminant analysis.
- Evaluation of hydrochemical and groundwater elevation trends in the context of plume stability and case closure assessment

REGULATORY OVERSIGHT

Alameda Department of Environmental Health (ACEH) is the lead regulatory agency for the case, acting as a Local Oversight Program for the Regional Water Quality Control Board (Water Board). There are currently no ACEH or Water Board cleanup orders for the site; however, all site work has been conducted under the oversight of ACEH. ACEH assigned the site to its fuel leak case system (RO #2799), currently overseen by Mr. Mark Detterman. In a November 2008 meeting with the Responsible Party (represented by Ms. Sarah Irving), Stellar Environmental (represented by Ms. Teal Glass and Mr. Richard Makdisi), and ACEH (represented by Ms. Jakub and Ms. Donna Drogas), it was agreed that quarterly sampling could be reduced to a semiannual schedule with the stipulation that an indoor air and preferential pathway study be completed. Stellar Environmental submitted a letter on November 24, 2008 to ACEH documenting the change in sampling frequency. The Indoor Air Survey and Preferential Pathway Report (Stellar Environmental, 2009b) was submitted to ACEH on April 6, 2009. Stellar Environmental conducted an additional indoor air survey in the ground floor office area on March 22, 2010. The results were presented in a separate report, submitted to ACEH on April 6, 2010 (Stellar Environmental, 2010). The case has been assigned No. SLT2O05561 in the Water Board's GeoTracker system. Electronic uploads of required data/reports are submitted to both agencies. The November 2012 and March 2013 monitoring reports warned ACEH of impacts from the adjacent site dewatering at 6340 Christie Avenue.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, drainage, and geologic and hydrogeologic conditions—is based on previous (1986 through 2006) site investigations conducted by others, and site inspections and subsurface data collection by Stellar Environmental in 2007 and 2008.

TOPOGRAPHY AND DRAINAGE

The mean elevation of the property is about 13 feet above mean sea level, and the general topographic gradient in the vicinity of the property is to the southwest, although the regional gradient is to the west-southwest.

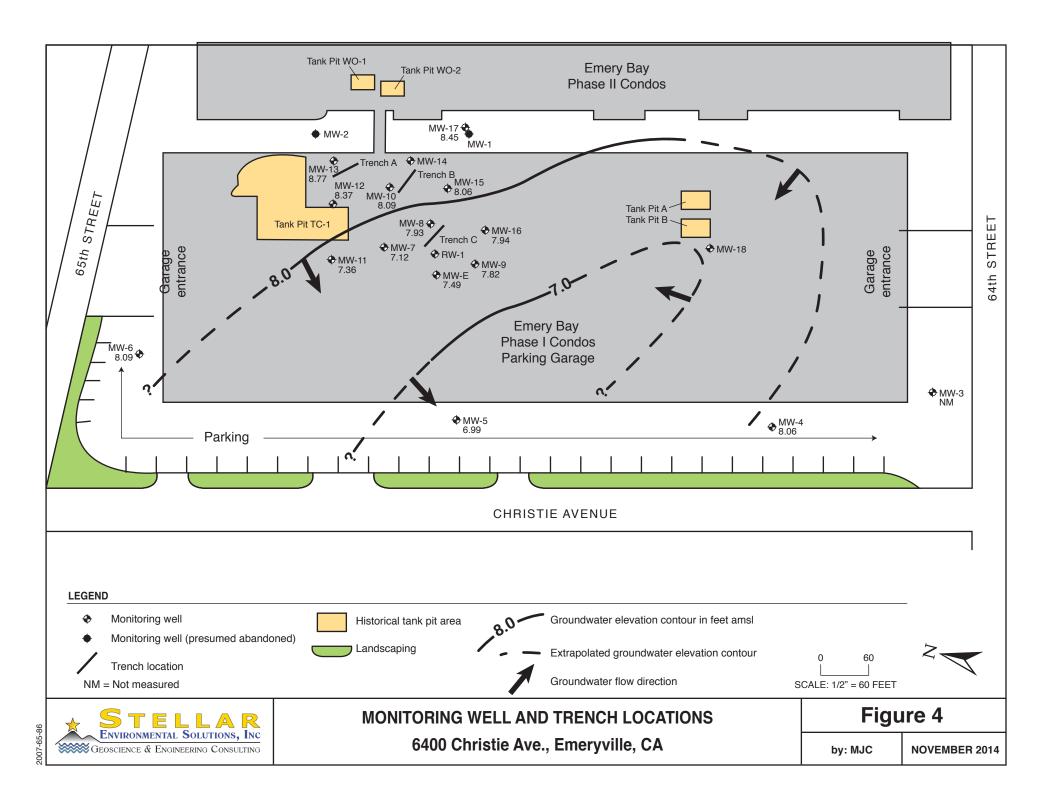
The nearest receiving water body is San Francisco Bay, located approximately 700 feet to the west of the subject property. East of the site lies the Oakland Hills, which rise to an elevation of approximately 1,000 feet and are situated 2.5 miles east of the subject property. The subject property is not listed within a 100- or 500-year flood zone.

Storm drains from the roof collect storm runoff for discharge onto the asphalt-paved parking lots. Drainage collected in storm sewers from the parking lot and from Christie, 64th, and 65th Streets discharges into San Francisco Bay. Stellar Environmental noted several storm drains, in the parking lot area and on the surrounding streets.

GEOLOGY

The subject property area is underlain with material mapped "Qhbm," designated early pleistocene alluvium, that is moderately consolidated, deeply weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel. A geotechnical survey conducted in 1985 revealed that the upper 15 to 20 feet of soil consists of a combination of fill and soft bay sediment. The upper 1 to 2 feet of soil is generally pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense, silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay lies a depth of approximately 40 feet and extends to the depth of the borings, approximately 101.5 feet (Geomatrix, 1988).

The closest major fault, the Hayward Fault, is located about 3 miles east of the property. While the site is located in a seismically active area, it is not within an Alquist-Priolo Special Studies active


fault zone, the legislatively defined zone of restricted land use 200 feet around an active fault due to the high probability of ground rupture.

GROUNDWATER HYDROLOGY

Regulatory agency records indicate that the direction of shallow groundwater flow in the site vicinity is to the west-northwest, toward San Francisco Bay. However, water levels and flow direction in this area are influenced by tidal patterns, natural topography modifications and the historical LNAPL, resulting in a relatively slow moving and stable plume pattern.

The groundwater flow direction measured during the September 2014 monitoring event was generally towards the southwest. The localized, approximately southerly direction to groundwater flow in the area of MW-3 noted in the 2013 monitoring events, thought to be the result of construction dewatering that had been occurring during 2013 at the re-development site across 64th Street, was not as pronounced for the current event, since that de-watering has been discontinued since February of 2014. According to current and historical water level data obtained from onsite monitoring wells, depth to groundwater beneath the site ranges from approximately 6 to 11 feet below ground surface (bgs). Groundwater elevations recorded during the September 2014 sampling event ranged from 5.6 feet (RW-1) to 10.79 feet (MW-18) above mean sea level. Some groundwater mounding may be occurring in area of MW-4 due to contributions from irrigation since the well box of MW-4 was filled with water. The average groundwater gradient for the current monitoring event was 0.003 foot/foot.

Figure 4 is a groundwater elevation map from the recent groundwater-monitoring event (activities discussed in Section 4.0).

3.0 SEPTEMBER 2014 GROUNDWATER MONITORING AND SAMPLING ACTIVITIES

This section presents the groundwater sampling and analytical methods for the most recent event. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are summarized in Section 4.0.

SAMPLING METHODS AND ACTIVITIES

Activities for this event include:

- Measuring static water levels in all 18 wells
- Collecting post-purge groundwater samples from the 18 wells for laboratory analysis of the following contaminants:
 - benzene, toluene, ethyl benzene, and xylenes (BTEX)
 - methyl tertiary-butyl ether (MTBE)
 - total petroleum hydrocarbons as gasoline (TPHg)
 - total petroleum hydrocarbons as diesel (TPHd)

The site monitoring well sampling locations are shown on Figure 3. Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records.

CURRENT MONITORING EVENT

Blaine Tech Services conducted groundwater monitoring well level measurements, purging, sampling, and field analyses on September 30, 2014 under the supervision of Stellar Environmental personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs. As the first task of the monitoring event, static water levels and free product levels were measured in the 18 wells using an electric water level indicator. The depth of free product was recorded, and the water level was adjusted to reflect the groundwater elevation.

Table 1
September 30, 2014
Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California

Well	Well Depth (feet bgs)	Screened Interval	Top of Well Casing Elevation (a)	Depth to Free Product (TOC)	Thickness of Free Product (feet)	Groundwater Elevation (September 30, 2014)
MW-3	25	5 to 20	16.65	10.85	NM	NM
MW-4	25	5 to 20	16.29	NP	NP	8.06
MW-5	25	5 to 20	16.72	NP	NP	6.99
MW-6	25	5 to 20	16.82	NP	NP	8.69
MW-7	20	5 to 20	17.73	NP	NP	7.12
MW-8	16	5 to 16	17.84	9.85	0.06	7.93
MW-9	20	5 to 20	17.84	NP	NP	7.82
MW-10	20	5 to 20	17.83	9.36	0.38	8.09
MW-11	20	5 to 20	17.76	NP	NP	7.36
MW-12	20	5 to 20	17.83	NP	NP	8.37
MW-13	20	5 to 20	17.66	8.87	0.02	8.77
MW-14	20	5 to 20	17.60	NP	NP	8.44
MW-15	20	5 to 20	17.80	NP	NP	8.06
MW-16	20	5 to 20	17.74	NP	NP	7.94
MW-17	20	5 to 20	18.17	NP	NP	8.45
MW-18	20	5 to 20	16.35	NP	NP	10.79
MW-E	47	7 to 40	17.47	NP	NP	7.49
RW-1	30	unknown	16.70	NM	NM	5.60
ТА-Е	11-13	6-8 to 11-13	17.20	NM	NM	NM
TA-M	11-13	6-8 to 11-13	17.21	NM	NM	NM
TA-W	11-13	6-8 to 11-13	17.28	NM	NM	NM
ТВ-Е	11-13	6-8 to 11-13	17.24	NM	NM	NM
TB-M	11-13	6-8 to 11-13	17.30	NM	NM	NM
TB-W	11-13	6-8 to 11-13	17.33	NM	NM	NM
ТС-Е	11-13	6-8 to 11-13	17.07	NM	NM	NM
TC-M	11-13	6-8 to 11-13	17.37	NM	NM	NM
TC-W	11-13	6-8 to 11-13	17.32	NM	NM	NM

Notes:

bgs = below ground surface

TOC = below top of casing

NP = no free product in well)

NM = depth to groundwater and/or free product could not be determined due to the presence of product

MW-3 through MW-6 and MW-E are 2-inch PVC. MW-7 through MW-18 are 3/4-inch PVC. RW-1 is 10-inch steel.

⁽a) Relative to mean sea level.

⁽b) Depth to groundwater and/or of free product could not be determined because free product density would not allow a clear delineation.

Approximately 50 gallons of purge water and equipment decontamination rinse water from the current groundwater sampling event was placed in a dedicated 55-gallon drum located in a locked fenced area on the northeast corner of the property. In addition, approximately 1,100 gallons of water and 0.031 gallons of product were removed/purged from wells during the active product removal; no measureable product volume was removed by passive product skimmers in the trench wells. The water generated during the active product and water removal was stored in a 1,100 gallon, plastic above ground storage tank locate in the fenced compound.

On November 7, 2014, Safety Kleen Corporation vacuumed and transported the 1,150 gallons of water to Seaport Refining and Environmental, LLC under manifest number 21882 (EPA ID No. CAL000374146). Appendix F contains copies of the manifest and recycling certificate.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND DISCUSSION OF FINDINGS

This section presents the analytical results of the most recent monitoring event and summarizes the relevant regulatory considerations. Appendix C contains the certified analytical laboratory report and chain-of-custody record.

REGULATORY CONSIDERATIONS

As specified in the East Bay Plain Groundwater beneficial Use Evaluation Report by the San Francisco Bay Region Water Board (Water Board, 1999), all groundwater is considered a potential source of drinking water unless otherwise indicated by the Water Board, and is assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. The subject property is listed as occurring within Zone B, designated as groundwater that is unlikely to be used as a drinking water resource. The basin is shallow in this area, with depths of less than 300 feet. Groundwater in this area is used for backyard irrigation, industrial supply, and commercial irrigation. There is a low likelihood that this water will be used as a public water supply in the near future.

The Water Board publishes Environmental Screening Levels (ESLs) for residential and commercial/industrial properties where groundwater <u>is/is not</u> a likely drinking water resource. As stipulated in the ESL document (Water Board, 2013), ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments. The groundwater ESLs are composed of one or more components—including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation (e.g., monitoring plume stability to demonstrate no risk to sensitive receptors where drinking water is not threatened) may be warranted. Because the subject property is a residential property where groundwater is not a likely drinking water resource, the contaminant levels at the site will be compared to the ESLs for these criteria.

Contaminants detected above the ESLs during this sampling event include gasoline, diesel, benzene, toluene, ethylbenzene, and total xylenes. In general, concentrations of gasoline and diesel have decreased as compared to both the previous quarter and the same quarter last year.

GROUNDWATER SAMPLE RESULTS

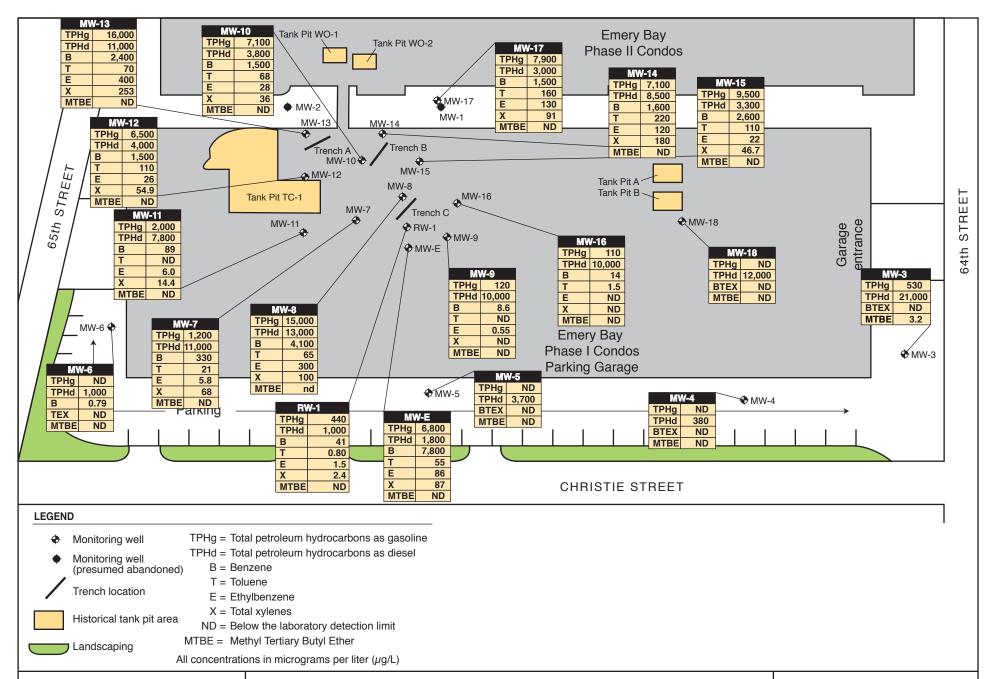
Table 2 and Figure 5 summarize the contaminant analytical results of the current monitoring event samples.

Table 2
Groundwater Sample Analytical Results – September 30, 2014
6400 Christie Avenue, Emeryville, California

	Analytical Results						
Well ID	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
MW-3	530	21,000	<0.5	< 0.5	<0.5	< 0.5	3.2
MW-4	<50	380	<0.5	< 0.5	<0.5	<0.5	< 2.0
MW-5	< 50	3,700	< 0.5	< 0.5	<0.5	< 0.5	<2.0
MW-6	< 50	1,600	0.79	< 0.5	<0.5	<0.5	< 2.0
MW-7	1,200	11,000	330	21	5.8	68	<2.0
MW-8	15,000	13,000	4,100	65	300	100	<170
MW-9	120	10,000	8.6	< 0.5	0.55	<0.5	<2.0
MW-10	7,100	3,800	1,500	68	28	36	<67
MW-11	2,000	7,800	89	< 0.5	6.0	14.4	<2.0
MW-12	6,500	4,000	1,500	110	26	59.9	<2.0
MW-13	16,000	11,000	2,400	70	460	253	<100
MW-14	7,100	8,500	1,600	220	120	180	<100
MW-15	9,500	3,300	2,600	110	22	46.7	<100
MW-16	110	10,000	14	1.5	<0.5	<0.5	<2.0
MW-17	7.900	3,000	1,500	160	130	91	<2.0
MW-18	<50	12,000	<0.5	< 0.5	<0.5	<0.5	<2.0
MW-E	6,800	7,800	1,800	55	86	87	<67
RW-1	440	1,000	41	0.86	1.5	2.4	<2.0
ESLs (a)	100 / 500	100 / 640	1.0 / 46	40 / 130	30 / 43	20 / 100	5.0 / 1,800

Notes:

MTBE = methyl tertiary-butyl ether


TPHd = total petroleum hydrocarbons – diesel range (equivalent to total extractable hydrocarbons – diesel range)

TPHg = total petroleum hydrocarbons – gasoline range (equivalent to total volatile hydrocarbons – gasoline range)

All concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion (ppb).

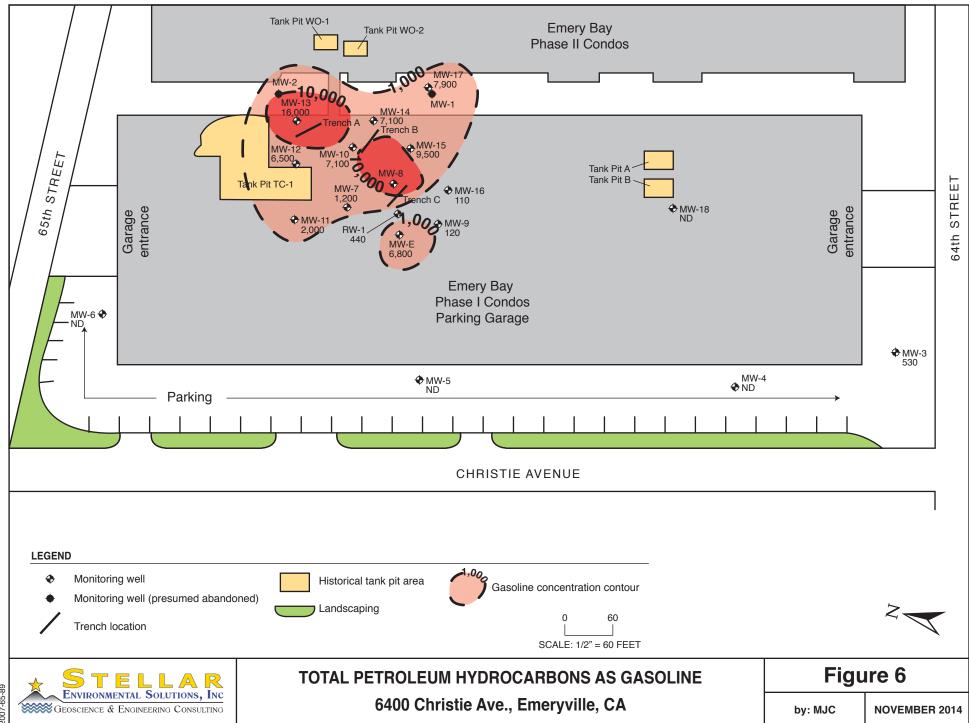
Results listed in **bold-face type** are at or above the ESLs where groundwater *is not* a drinking water resource.

⁽a) Water Board Environmental Screening Levels for residential sites where groundwater <u>is/is not</u> a drinking water resource (Water Board, 2013).

Distribution of Hydrocarbon Contaminants

During the September 2014 sampling event, several wells have hydrocarbon concentrations greatly in excess of the Water Board ESLs. However, hydrocarbon concentrations in wells can be significantly affected by the purging of accumulated hydrocarbons product, so large swings in concentration (both reductions and increases) are possible due to this occurrence. In addition, the introduction of surfactant (see Section 5) into the trench wells with the aim of reducing accumulated LNAPL in those wells is likely to affect dissolved concentrations.

Increases in September 2014 TVHg concentrations compared to the September 2013 monitoring event were observed in wells MW-8, MW-10, MW-11, MW-16 and RW-1. This represents five wells exhibiting an increase in TVHg as compared to four wells for the September 2013 sampling event. The remaining wells either remained below laboratory detection limits (in wells MW-4, MW-5, MW-6 and MW-18) or exhibited a decrease in TVHg concentrations.


Gasoline was detected in MW-3, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, and MW-E above the ESL where groundwater is not a likely drinking water resource (500 micrograms per liter [μ g/L]). Gasoline was also detected in MW-9, MW-16 and RW-1, but at concentrations below the ESL.

Diesel was detected in all site wells (except MW-4) above the ESL of $640 \,\mu\text{g/L}$ (where groundwater is not a likely drinking water resource), but showed a decrease in concentration in 9 of the 18 wells sampled as compared to 7 of 18 wells in the September 2013 sampling event.

The highest concentrations of TVHg (16,000 μ g/L in MW-13) and TEHd (21,000 μ g/L in MW-3) for the current event can be compared to concentrations of 19,000 μ g/L TVHg in MW-13 and 250,000 μ g/L TEHd observed in well MW-13 in September 2013. Concentrations of hydrocarbons in well MW-13 have decreased steadily since the September 2012 sampling event, with TVHg decreasing from 60,000 μ g/L to 16,000 μ g/L, and TEHd decreasing from 7,200,000 μ g/L in 2012 to the current 11,000 μ g/L.

Since the introduction of the surfactant in wells MW-8, MW-12, MW-13 and MW-14 in March and September 2013, into well MW-3 in July 2014 and into all nine trench wells in September 2014, hydrocarbon concentrations in site wells have decreased overall, while well MW-8 have shown increases in overall hydrocarbon concentration. Fluctuating concentrations of TVHg and TEHd in these wells may be attributed to LNAPL recovery and introduction of surfactant since March 2013.

Figures 6 and 7 are isoconcentration maps of TPHg and TEHd concentrations in groundwater based on the September 2014 analytical results.

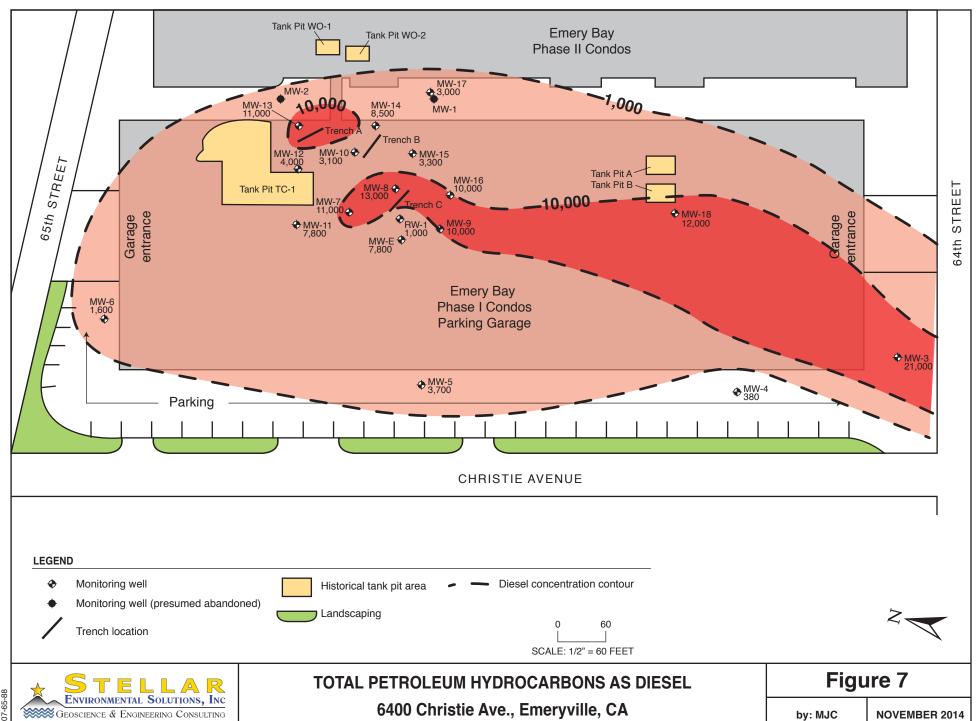
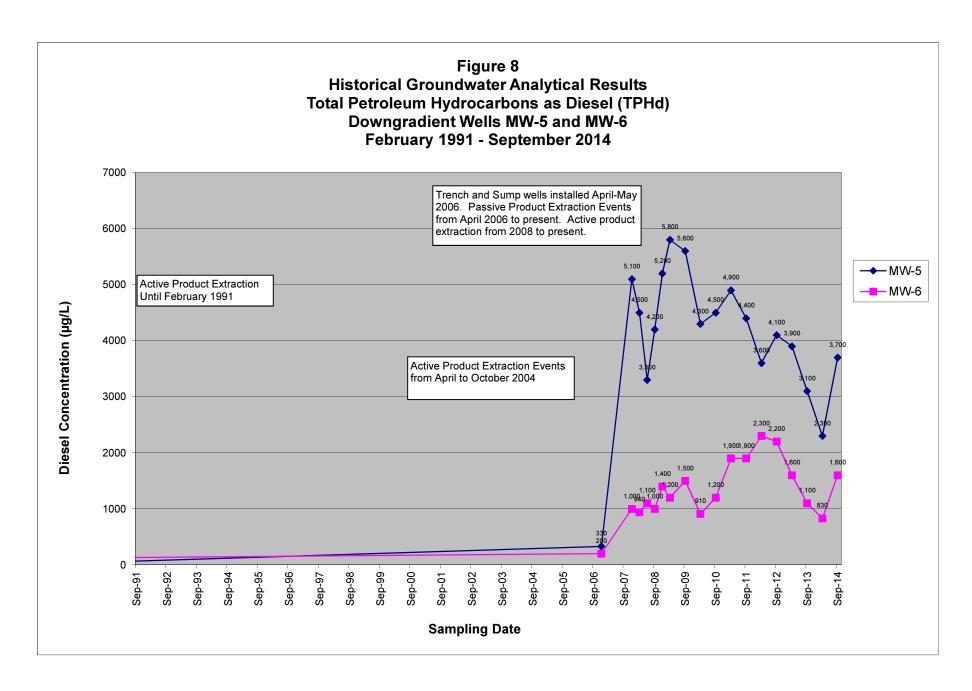
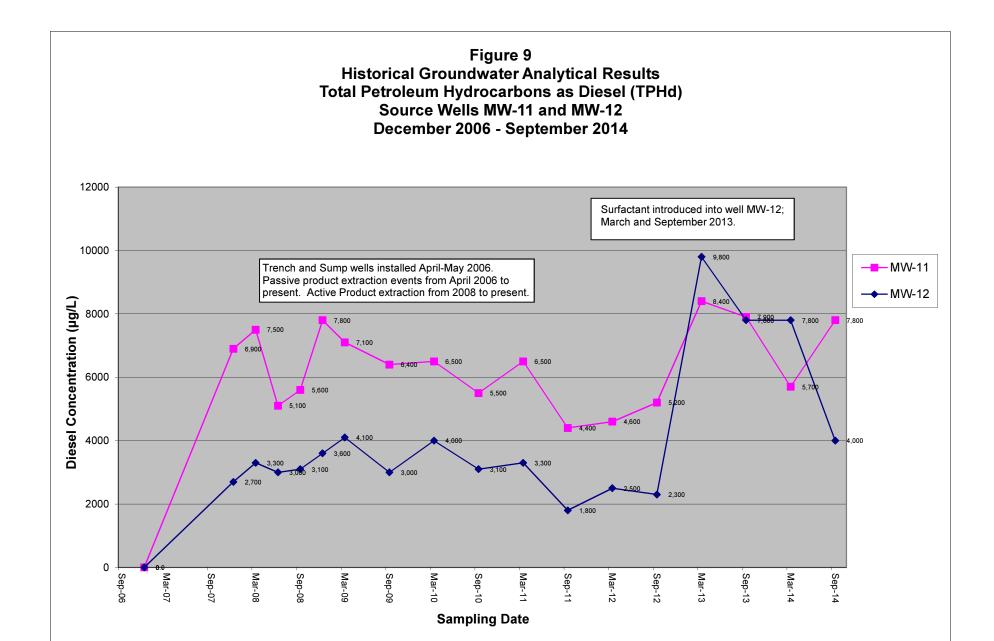


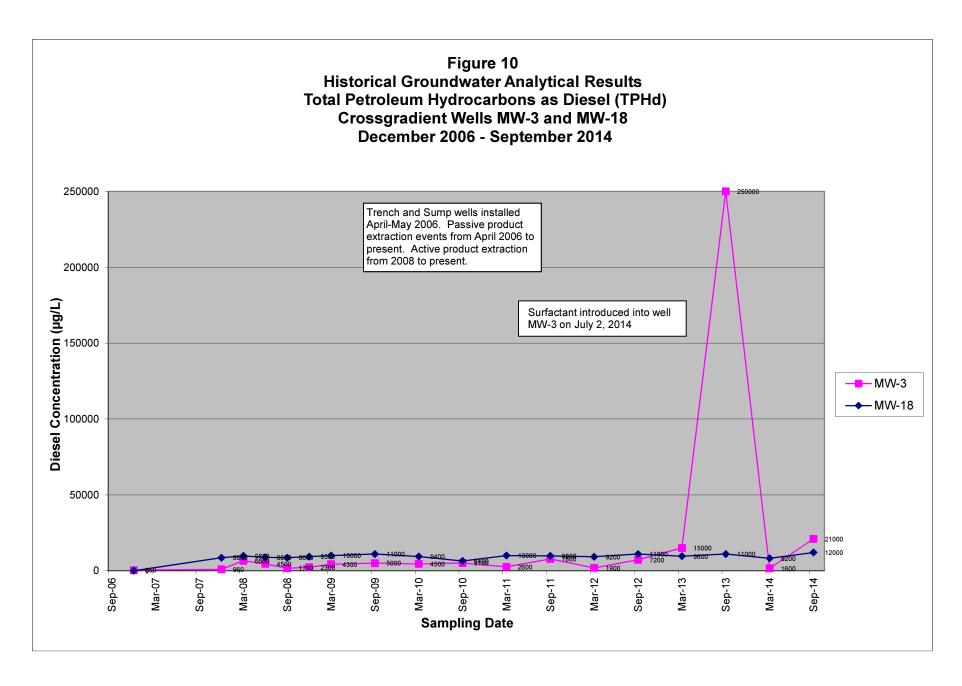
Figure 8 depicts historical groundwater analytical trends for TPHd in downgradient wells MW-5 and MW-6. Figure 9 depicts historical groundwater analytical trends for TPHd in source wells MW-11 and MW-12. Figure 10 depicts historical groundwater analytical trends for TPHd in crossgradient wells MW-3 and MW-18.

In monitoring wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, and MW-E concentrations of benzene exceeded the ESL of 46 μ g/L where groundwater is not a drinking water resource. Comparing September 2013 results to September 2014 results showed a decrease in benzene in 8 of the 18 site wells sampled. An increase in benzene was detected in 7 of the 18 wells. Benzene was detected in wells MW-6, MW-9, MW-16 and RW-1, but at concentrations below the ESL. The biggest changes in benzene concentrations were in wells MW-13 (decrease from 3,400 μ g/L to 2,400 μ g/L), and in well MW-15 with benzene dropping from 4,100 μ g/L to 2,600 μ g/L. Perimeter wells MW-5 and MW-6, which in September 2013 contained concentrations of benzene at 0.65 μ g/L and 1.7 μ g/L benzene respectively, dropped to < 0.5 μ g/L and 0.79 μ g/L respectively for the current event.

Toluene was detected at or above the ESL of 130 μ g/L in monitoring wells MW-14 and MW-17. Toluene was also detected in wells MW-7, MW-8, MW-10, MW-12, MW-13, MW-15, MW-16, MW-E and RW-1 but at levels below the ESL.


Ethylbenzene was detected above the 43 μ g/L ESL in monitoring wells MW-8, MW-13, MW-14, MW-17 and MW-E. Ethylbenzene was also detected in MW-7, MW-9, MW-10, MW-11, MW-12, MW-15 and RW-1 but at levels below the ESL.


Total xylene concentrations in wells MW-8 and MW-14 were above the 100- μ g/L ESL where groundwater is not a likely drinking water resource. Total xylenes were detected in MW-7, MW-8, MW-10, MW-11, MW-15, MW-17, MW-E and RW-1 but below the ESL.


MTBE was not detected above the ESL of 1,800 μ g/L in any of the monitoring wells. MTBE was detected in MW-3, but below the ESL. This represents six fewer wells containing MTBE compared to the September 2013 monitoring event.

Quality Control Sample Analytical Results

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with the requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix C).

5.0 FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM

This section describes the historical extraction of the free product from the Emery Bay/Bridgewater Phase I Condo parking garage, the construction details of the current LNAPL remediation system located on the northeastern portion of the garage, and the most recent product removal activities conducted on September 25 and 26, 2014 (prior to the sampling event on September 30). Appendix E summarizes historical product removal.

LNAPL REMEDIATION SYSTEM CONSTRUCTION

In an attempt to maximize free product removal, PES constructed three trenches, each containing three sump wells, in the northeastern area of the parking garage. Historically, this area has had the highest concentrations of contamination and accumulation of free product. The trenches (TA, TB, and TC) extend to depths of approximately 12.5 to 13 feet bgs, while the collection sumps (TA-W, TA-M, TA-E, TB-W, TB-M, TB-E, TC-W, TC-M, and TC-E) extend to approximately 11 to 13 feet bgs. The sumps were constructed using 10-inch-diameter schedule 40 polyvinyl chloride (PVC) casing. Blank casing was used from approximately 0.5 feet bgs to between 6 and 8 feet bgs. Slotted 0.06-inch PVC was used from between 6 and 8 feet bgs to 6 inches from the total depth of the trench. The trenches were then backfilled with high-porosity, high-permeability gravel designed to promote LNAPL migration (PES, 2007). Passive skimmers, manufactured by QED Environmental Systems were then placed in each of the sumps in Trench A and in one of the sumps (TC-E) in Trench C.

The skimmers operate in principal by floating on the surface of the water. Water and free product collect in a filtration reservoir, which allows water to pass through. A tube connected to the reservoir then filters the free product into a collection reservoir located below the water surface. The reservoir can be emptied by opening a valve located on the bottom of the cylindrical shaped reservoir. Each of these skimmers is attached to the sump lid by a rope, and can be removed and transferred to another sump as needed. However, the skimmers were never particularly effective at capturing the petroleum product as designed, and as of the past several monitoring events, have contained nearly no free oil. Because the skimmers are no longer effective, and because the skimmer equipment was covered with oily residue, possibly contributing to the hydrocarbon impacts to site groundwater, the skimmers were removed from the wells in trenches A (six skimmers) and C (one skimmer) on September 4, 2014.

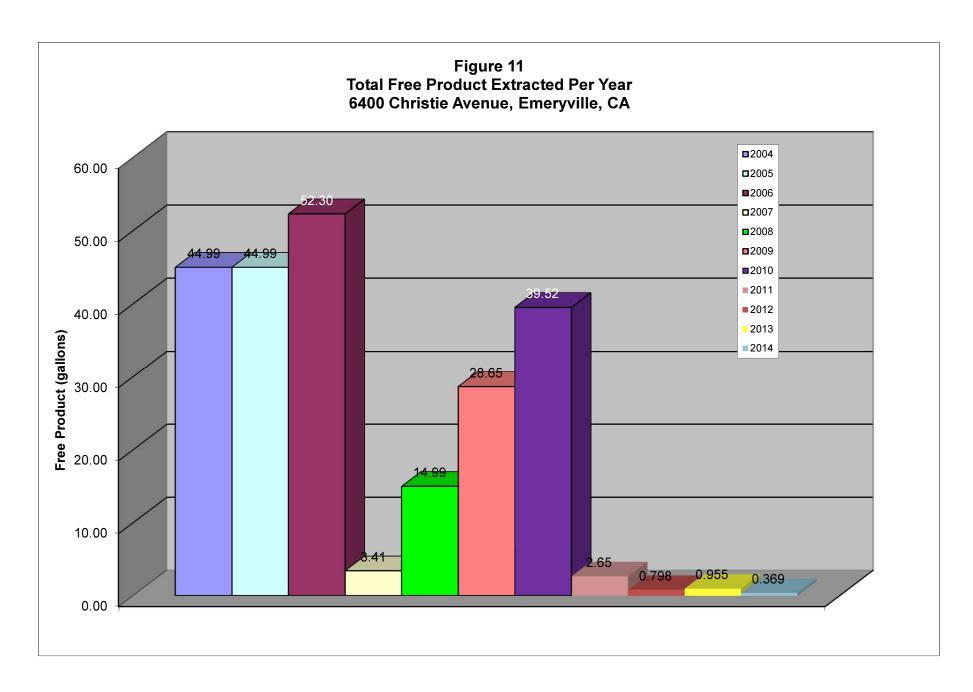
HISTORICAL FREE PRODUCT EXTRACTION

As mentioned under the "Previous Investigations" subsection in Section 1.0, in approximately 1986, contaminated soil and groundwater were discovered during the removal of 12 UFSTs from the Emery Bay Phase I and Phase II parcels. To dewater the excavation during the Phase I and Phase II Condo construction, a groundwater extraction and remediation system was installed by GTI in 1988. Approximately 1 million gallons of water yielding 100 gallons of hydrocarbon product was removed from RW-1 during its operation (PES, 2007). However, corrosion and other mechanical problems caused the system to fail in 1991, and it was decommissioned in 1994. In February 2008, Stellar Environmental removed all of the old parts of the system from the well and vault.

In 2004, PES began manual extraction on RW-1, and was reported to have removed approximately 48 gallons of LNAPL (PES, 2004a)—although it is unclear whether the removed material was pure product or product mixed with water. To accelerate free product removal, PES constructed a new LNAPL hydrocarbon remediation system (described previously) between April and May 2004 (PES, 2007). Several extraction events were conducted by PES from May 2004 through March 2007; the extraction events yielded a total of approximately 51 gallons of LNAPL. No extraction events were conducted by PES in 2005; approximately 50 gallons of hydrocarbons was removed in 2006; and approximately 0.6 gallon of hydrocarbons was removed by PES between January and November 2007. In November and December 2007, after Stellar Environmental was retained for the project, the skimmer system yielded 2.82 gallons. Figure 11 graphs the comparison of free product extraction on a yearly basis.

No historical product extraction reports were provided to Stellar Environmental by the previous owner or by PES. Therefore, there is little to no information on how active product extraction occurred during 2004 and 2006. Based on better defined recovery in 2008 through 2011 the volume of free product indicated to have been recovered during 2004 and 2006 appears unrealistically high, suggesting that free-phase project mixed with water was reported as free-phase product recovery.

2013 AND 2014 SURFACTANT INJECTION


Many of the centrally located wells and well MW-3 contain a molasses like, degraded product that has made well purging and sampling increasingly difficult. Equipment lowered down into the well casings come back out coated with a tar like substance that is difficult or impossible to clean, and may account for low water yield in some wells due to sand pack and well screen fouling. Four of the worst wells in this regard are MW-3, MW-8, MW-10, MW-12, MW-13 and MW-14. All these wells are constructed with ¾-inch diameter PVC casing, and are screened to total depth across the same interval of 5 to 20 feet bgs, except for MW-8 which is screened from 5 to 16 feet bgs. In order to

attempt to clean the well casings and emulsify the tar thought to exist in the well pack, a surfactant was chosen as a solution.

Surfactants are designed to change the interfacial tension between the water and NAPL and desorb the residual LNAPLs entrained in the soil matrix by micro-emulsifying the organic particles, and forming a micelle. In the case of weathered LNAPLs, surfactants have been used to decrease the viscosity of the material, resulting in increased and more efficient recovery. Surfactants can also be considered bioremediation enhancing and vapor suppression agents. The use of mobile multi-phase extraction that has been occurring at the site twice-yearly since 2008, allows a focused remediation effort at a targeted area of the site, and increases the effective radius of influence of the pumping. This combined approach involves the in-situ application of a surfactant mixture, under pressure, into the site subsurface. The injection is followed by high-vacuum induced multi-phase recovery from the injected wells as well as surrounding wells via a mobile vacuum truck.

In March and September 2013 wells MW-8, MW-12, MW-13 and MW-14 were injected with EnviroClean® supplied by Enviro Clean Services, LLC. EnviroClean® is described the manufacturer as a non-flammable, non-toxic, water-based, proprietary blend of non-toxic, non-ionic ethoxylated octylphenolic surfactants that has been specifically engineered as a cleanup/mitigation agent for a wide range of hydrocarbon products. EnviroClean® product information is included in Appendix F. A working solution of 4% EnviroClean® was mixed per manufacturer recommendations using clean water. Approximately 5 gallons of the solution was introduced each well using a funnel. The well casing and screen in each well were then scrubbed using a stiff bristle brush attached to an extension. After the scrubbing, approximately 15 gallons of the working EnviroClean® solution was injected under pressure into each well using a dual-diaphragm pump.

Based on the positive results of the non-hazardous surfactant injection into wells MW-8, MW-12, MW-13 and MW-14 in 2013 which resulted in reduced or eliminated oil residue, the same surfactant was introduced into well MW-3 which has historically been difficult to gauge and sample due to the thick oil in the well. On July 2, 2014, approximately 10 gallons of a 5% mixture of the surfactant was introduced into MW-3 and the well casing scrubbed. On September 4, 2014, approximately 20 gallons of the 5% surfactant mixture was introduced into each of the nine trench wells onsite after the skimmers had been removed from the wells in trenches A and C, to test the ability of the surfactant to re-dissolve the viscous hydrocarbon buildup in those wells. The wells were then undisturbed until the product removal phase of the current monitoring event took place on September 25 and 26, 2014.

SEPTEMBER 2014 PRODUCT REMOVAL EVENT

Historical product yield from the trench recovery system has been unproductive and inconsistent, with the 2-liter passive skimmer collection reservoirs not filling up completely, or filling up with water rather than product. As mentioned above, due to their ineffectiveness at collecting free product over the past several monitoring events, and due to the oily residue on the skimmers, the skimmers were removed from the wells in trenches A and C prior to the surfactant injection in early September. Table 3 shows the allocation of free product removed from the collection skimmers in Trenches A and C.

Table 3
Passive Skimmer Product Extraction in Trenches—September 25 and 26, 2014
6400 Christie Avenue, Emeryville, California

Trench ID	Number of Skimmers in Well	Total Product Removed (gallons)
TA-E	2	0.0
TA-M	2	0.0
TA-W	2	0.0
ТВ-Е	0	NM
TB-M	0	NM
TB-W	0	NM
ТС-Е	1	0.0
TC-M	0	NM
TC-W	0	NM
Total Product Remov	ed	0.0

Note:

NM = Not measured. No skimmer installed in the well.

Stellar Environmental conducted both passive and active product removal events during the 4 days prior (September 25 and 26) to the groundwater sampling event (September 30) to determine the recharge rate of free product in wells. A total of approximately 1,100 gallons of groundwater yielding approximately 0.031 gallons (Table 4) of free product were removed during the September 2014 active product removal event.

Table 4
Active Product Extraction – September 25 and 26, 2014
6400 Christie Avenue, Emeryville, California

Well	Total Gallons of Product Removed	Well	Total Gallons of Product Removed
MW-3	0	MW-17	0
MW-4	0	MW-18	0
MW-5	0	MW-E	0
MW-6	0	RW-1	0
MW-7	0	ТА-Е	0
MW-8	0	TA-M	0
MW-9	0	TA-W	0
MW-10	0.031	ТВ-Е	0
MW-11	0	TB-M	0
MW-12	0	TB-W	0
MW-13	0	тс-е	0
MW-14	0	TC-M	0
MW-15	0	TC-W	0
MW-16	0		
		Total	0.031

Notes:

NP = not purged

Product removal estimates are based on the total amount of free product measured in the purge drum after pumping each well

The removal activities for September 25 and 26 2014 can be summarized as follows:

- Stellar Environmental removed a total 150 gallons of groundwater from TA-W, TA-E and TA-M along with about 0.0 gallons of product. The skimmers were filled with water with little or no free product. Stellar Environmental removed a total of 150 gallons of water from trench wells TB-W, TB-E and TB-M with no measurable free product. Wells TC-W, TC-E and TC-M were not pumped.
- Stellar Environmental removed a total of 400 gallons of groundwater from recovery well RW-1 along with a trace of product.

- A total of approximately 0.031 gallons (4 oz) of petroleum product was removed along with the 400 gallons of liquid that was pumped from all of the monitoring wells. Well MW-10 yielded the free product, with some of the remaining wells containing a trace of free product that was not measurable.
- All of the purge water and free product extracted during these events was contained onsite in the 1,100-gallon AST located in the northeastern gated area of the garage. On November 7, 2014, Safety Kleen Corporation, Inc. vacuumed and transported the water to a recycling facility in Redwood City, California. The waste manifest and recycling certificate are included in Appendix F.

DISCUSSION OF FREE PRODUCT REMOVAL AND LIMITATIONS

As mentioned under the "Historical Free Product Extraction" subsection of this chapter, no product extraction was conducted by PES in 2005. "Product" removal in 2006 was reported at a significant 52 gallons by PES; however, it was not achieved through collection from the trench hydrocarbon skimmers, but rather through active pumping; in addition, the "product" referred to by PES appears to actually have been a mixture of petroleum product and water. The PES report provides no documentation (e.g., manifests) of the removal of actual recovered petroleum product. The recovery by PES from the start of 2007 through October 2007 (when Stellar Environmental assumed environmental consulting activities) was limited to 0.6 gallon collected from the skimmers. In addition, there had been no removal of free product from well RW-1 since 2004, at which time approximately 50 gallons of free-floating product was reportedly (PES, 2004c) removed by active pumping although antidotal evince suggests that much of this was purge water versus pure free product. The majority of petroleum product appears in fact to have been removed by active pumping and removal activities rather than from the trench well skimmers. Much of this may also have been a mixture of water and hydrocarbons. In 2007, passive extraction of free product through trench well skimmers removed only 3.41 gallons. Stellar Environmental removed approximately 5.65 gallons of free product from these passive skimmers during the 2008 removal events. Since 2011, the skimmers have contained only water and a trace of oil when checked. Approximately 14.99 gallons of product were removed by active pumping on wells during 2008, 28.65 gallons in 2009, 39.52 gallons in 2010, 2.65 gallons in 2011, 0.798 gallons in 2012, 0.955 gallons in 2013 and 0.369 gallons in 2014 indicating that the active pumping of site wells to be an effective means of product removal as compared to the passive skimmer system. Differences in recovery can be attributed to fluctuations in groundwater levels and to an overall reduction of free product as active pumping continues year to year.

As demonstrated by the analytical data, active pumping on the wells has generally reduced gasoline concentrations. 8 of 14 wells in which TVHg is detected, contained less of that compound as compared to September 2013. 9 of 18 wells showed a decrease in TEHd concentrations compared to September 2013. The very high hydrocarbon concentrations detected in well MW-13 and MW-3 in former monitoring events compared to the September 2104 sampling events is likely due to those wells containing LNAPL which was likely at least partially emulsified with the surfactant injection, reducing the possibility that the sample would contain LNAPL. Inconsistent trends in the hydrocarbon concentrations, particularly the upward spike in diesel concentration observed in well MW-8 and the downward spike in well MW-14 after the surfactant injection in and/or near those wells may show more consistent trend lines after subsequent sampling events. About 1/3 of the wells showed hydrocarbon concentrations with very little change as compared to 2013 results.

In addition to the above factors, the decrease of diesel concentrations observed in well MW-3 after seeing increases over the past three monitoring events, is very likely due to the cessation of dewatering activities that had been on-going at the construction site across 64th Street during 2013 until early 2014 which had affected the groundwater flow direction and magnitude. In addition, the surfactant introduced into MW-3 in September 2104, likely reduced LNAPL and dissolved hydrocarbon concentrations in that well. Well MW-18, which is the closest upgradient well to MW-3, has shown a relatively stable TEHd concentration over the past four monitoring events, suggesting that an undiscovered area of residual hydrocarbon contamination may exist between MW-3 and MW-18. In general, residual hydrocarbons left in the soil after the USTs were removed from the site in the 1980's, is likely to continue to be a source of contamination to groundwater at the site. More active remediation, including introduction of bio-remedial enhancing products into selected wells may be useful to reduce the concentrations to levels acceptable to the regulatory community and to achieve eventual regulatory closure. If the surfactant applications at the site can continue to reduce the degraded product present, particularly in wells MW-3, NMW-8, MW-9, MW-10, MW-12, MW-13 and MW-14, then application of such bio-remedial remedies can better be considered.

The outward effect of the surfactant injection based on observations made during product removal for the current monitoring event, has been a marked reduction in the viscous hydrocarbon substance in site wells. A significant increase in water yield from wells that received surfactant was not observed. The total measured recovery volume of product (in gallons) from the 18 wells for the September 2013 monitoring event, compared to the current monitoring event, decreased from 0.32 gallons to 0.031 gallons which is likely attributable to the emulsification of LNAPL in the wells receiving the surfactant.

6.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

FINDINGS AND CONCLUSIONS.

- The subject property parcel was developed as early as 1958 with the Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. In 1986, the building was demolished, and 12 UFSTs containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels. Soil and groundwater contamination was discovered.
- In response to the contamination, a LNAPL groundwater pump-and-treat system was installed in 1989, but failed in 1991. Active pumping of free product began again in 2004, and a product extraction system consisting of passive product removal was installed in 2006. Groundwater monitoring events have been sporadically conducted since 1988; quarterly groundwater monitoring events were conducted for the first time in 2008. The quarterly sampling was reduced to a semiannual frequency in 2009.
- The site currently contains 17 monitoring wells, 1 recovery well, and 9 product extraction trench wells. The current event is the 22nd sampling event conducted since 1988.
- Site geological conditions consist of a combination of fill and soft bay sediment to between 15 and 20 feet bgs, covered by approximately 1 to 2 feet of pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay extends from a depth of approximately 40 feet to approximately 102 feet.
- The groundwater flow direction calculated during this monitoring event was found to be generally to the southwest. Some mounding is evident in the area of MW-4 which is likely due to water accumulating from landscape irrigation leaks (MW-4 well box full of water).
- Construction dewatering that had occurred since 2012 at the construction site across 64th Street that was influencing the groundwater flow direction towards that site, was discontinued in February 2014.
- Groundwater elevations during the September 2014 event ranged from 5.60 feet amsl (RW-1) to 10.78 (MW-18) feet amsl. The average groundwater gradient was 0.001 foot/foot.

- The injection of a (non-hazardous) surfactant into wells MW-8, MW-12, MW-13 and MW-14 in 2013 and into the nine trench wells and well MW-3 in July and September 2014 was used to test the ability of the surfactant to emulsify the viscous hydrocarbon buildup in the injected wells and nearby wells. This was also being done to determine if the surfactant would result in significant decreases in the dissolved hydrocarbon concentrations in surrounding wells and if better recovery and water flow could be observed in site wells. The most significant decrease in TVHg and TEHd concentrations were observed in wells MW-3 and MW-13.
- Surfactant injections into wells MW-8, MW-12, MW-13 and MW-14 in 2013 have reduced or eliminated LNAPL in those wells, and may have contributed to a decrease in concentrations of dissolved hydrocarbons and MBTEX in those wells and other site wells as compared to the September 2013 monitoring event.
- Current contaminants of concern include TPHg, TPHd, and BTEX. Current groundwater concentrations exceeded the ESLs for these contaminants.
- MTBE was detected only in MW-3 during the current monitoring event compared to six wells with detected MTBE concentrations for the September 2013 sampling. The concentration of MTBE in well MW-3 is below the applicable ESL.
- The highest concentrations of TVHg (16,000 μg/L in MW-13) and TEHd (21,000 μg/L in MW-3) for the current event can be compared to concentrations of 19,000 μg/L TVHg in MW-13 and 250,000 μg/L TEHd observed in well MW-3 in September 2013. The concentration of hydrocarbons in wells MW-13 and MW-14 continue to decrease since September 2012 concentrations. Since the introduction of the surfactant in wells MW-8, MW-12, MW-13 and MW-14 in March and September 2013, hydrocarbon concentrations in surrounding wells MW-11, MW-15 have decreased overall while wells MW-8, MW-16 and MW-17 have shown increases in overall hydrocarbon concentration. Fluctuating concentrations of TVHg and TEHd in these wells may be attributed to LNAPL recovery and introduction of surfactant since March 2013.
- Increases in September 2014 TVHg concentrations compared to the September 2013 monitoring event were observed in wells MW-8, MW-10, MW-11, MW-16 and RW-1. This represents five wells exhibiting an increase in TVHg as compared to four wells for the September 2013 sampling event. The remaining wells either remained below laboratory detection limits (in wells MW-4, MW-5, MW-6 and MW-18) or exhibited a decrease in TVHg concentrations.

- Gasoline was detected in MW-3, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, and MW-E above the ESL where groundwater is not a likely drinking water resource (500 micrograms per liter [µg/L]). Gasoline was also detected in MW-9, MW-16 and RW-1, but at concentrations below the ESL.
- Diesel was detected in all site wells (except MW-4) above the ESL of 640 μg/L (where groundwater is not a likely drinking water resource), but showed a decrease in concentration in 9 of the 18 wells sampled as compared to 7 of 18 wells in the September 2013 sampling event.
- In monitoring wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, and MW-E concentrations of benzene exceeded the ESL of 46 μg/L where groundwater is not a drinking water resource. Comparing September 2013 results to September 2014 results showed a decrease in benzene in 8 of the 18 site wells sampled. An increase in benzene was detected in 7 of the 18 wells. Benzene was detected in wells MW-6, MW-9, MW-16 and RW-1, but at concentrations below the ESL. The biggest changes in benzene concentrations were in wells MW-13 (decrease from 3,400 μg/L to 2,400 μg/L), and in well MW-15 with benzene dropping from 4,100 μg/L to 2,600 μg/L. Perimeter wells MW-5 and MW-6, which in September 2013 contained concentrations of benzene at 0.65 μg/L and 1.7 μg/L benzene respectively, dropped to < 0.5 μg/L and 0.79 μg/L respectively for the current event.
- Toluene was detected at or above the ESL of 130 µg/L in monitoring wells MW-14 and MW-17. Toluene was also detected in wells MW-7, MW-8, MW-10, MW-12, MW-13, MW-15, MW-16, MW-E and RW-1 but at levels below the ESL.
- Ethylbenzene was detected above the 43 μg/L ESL in monitoring wells MW-8, MW-13, MW-14, MW-17 and MW-E. Ethylbenzene was also detected in MW-7, MW-9, MW-10, MW-11, MW-12, MW-15 and RW-1 but at levels below the ESL.
- Total xylene concentrations in wells MW-8 and MW-14 were above the 100-µg/L ESL where groundwater is not a likely drinking water resource. Total xylenes were detected in MW-7, MW-8, MW-10, MW-11, MW-15, MW-17, MW-E and RW-1 but below the ESL.
- Based on the March 2014 site investigation conducted by Stellar Environmental, no obvious source for the heavy oil that has accumulated in well MW-3 was found to be located between wells MW-3 and MW-18. This apparent lack of another hydrocarbon source near that area where an historical source was indicated, supports the idea that the spike in TEHd concentrations observed in MW-3 during 2013, which have again decreased for the current monitoring event to near historic lows, strongly suggests the construction dewatering across 64th Street during 2013 was responsible, with the southward pull of the hydrocarbon plume offsite resulting in the observed fluctuations in TEHd concentrations in well MW-3 in 2013.

- Due to the ineffectiveness of the product skimmers that were in wells in recovery trenches A and C, the skimmers were removed from the wells. No oil was recovered from the nine skimmers for the September 2014 monitoring event. The other reason for removal of the skimmers was that they were coated with oil, and thought to be contributing to dissolved hydrocarbon groundwater contamination.
- Stellar Environmental conducted active product removal on the trench wells, source area wells, recovery well, and select monitoring wells during the March 2013 event. A total of approximately 1,100 gallons of groundwater that includes approximately 0.031 gallons of free-floating petroleum product from all the wells was removed with the estimate based on free-product accumulation in the extraction drum after pumping each well.

RECOMMENDATIONS

- Inject surfactant into well MW-10 and in well MW-3 where free-floating product is still apparent to dissolve the product and allow better recovery of remnant hydrocarbons. This work would best be accomplished in January or early February 2015.
- Conduct a field test for the application of a to-be-selected bioremediation product (both aerobic and anaerobic delivery systems are under review) into the three recovery wells in Trench A. The two other Trenches will not have bioremediation product introduced, acting as controls. The nearby wells to Trench A where the bioremediation product is to be introduced will also be monitored. This will allow for a bioremediation effectiveness evaluation. The timing of this work would occur after the surfactant application into MW-10, and directly following the next semi-annual monitoring event scheduled for late March 2015. Wells MW-10 and MW-12 (at minimum) would be used for data tracking points.
- Groundwater monitoring should be continued on a semiannual basis to document contaminant concentrations over time.
- Active groundwater/dissolved product removal events should be continued to ascertain their effectiveness in reducing the plume size over time. Active product removal is currently being conducted on a semiannual basis immediately prior to the sampling event.
- Continue to evaluate emergent best available technologies to cost-effectively remediate the site to move it toward full regulatory site closure.
- Electronic uploads to ACEH's ftp system and the State Water Board's GeoTracker system should be continued as required.

7.0 REFERENCES AND BIBLIOGRAPHY

- Aqua Science Engineers (Aqua), 1986a. Hydrocarbon Contamination Abatement Plan for Bay Center, Emeryville, CA. May 23.
- Aqua Science Engineers (Aqua), 1986b. Report Soil Sampling and Determination of Hydrocarbon Contamination from Tank Removal at the Bay Port Development, 64th and Lacoste Street, Emeryville, CA. May 27.
- Aqua Science Engineers (Aqua), 1986c. A Proposal for Installing a Fuel Contamination and Recovery System. August 27.
- Aqua Science Engineers (Aqua), 1986d. Phase II Extent of Groundwater Contamination Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986e. Project Report Soils Gas Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986f. Request for Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. Information addressed to the Alameda County Health Care Services, Hazardous Materials Unit. July 28.
- Aqua Science Engineers (Aqua), 1986g. Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. July 11.
- Bay Area Air Quality Management District (BAAQMD), 1987. Letter to the Martin Company authorizing the contaminated groundwater and oil recovery system. April 13.
- Chan, Barney, 2007. Project Officer, Alameda County Department of Environmental Health. Personal communication to Richard Makdisi of Stellar Environmental Solutions, Inc. April 10.
- Creps, Rob, 2007. PES Environmental, Inc. Project Manager for the Phase I Apartment Complex Remediation. Personal communication to Teal Glass and Richard Makdisi of Stellar Environmental Solutions, Inc. April 19.

- Earth Metrics, Inc., 1986a. Draft Soils Contamination Characterization for Garret Freight Lines Emeryville Site, 64th Street and Lacoste, Emeryville, CA. March 14.
- Earth Metrics, Inc., 1986b. Environmental Assessment for the Proposed Bay Center Apartment Complex in the Redevelopment Project Area of the City of Emeryville. May.
- Earth Metrics, Inc., 1986c. Draft Work Plan for Soils Contamination Characterization of Bay Center Site, Emeryville, CA. May 19.
- Earth Metrics, Inc., 1986d. Soils and Groundwater Contamination Characterization of Bay Center Site, Emeryville, CA. August 20.
- Earth Metrics, Inc., 1987. Safety Plan for Bay Center Offices and Apartments in Emeryville, CA. September 15.
- Geomatrix, 1988. Observation and Testing of Earthwork Construction, Bay Center Apartments. May 20.
- Groundwater Technology, Inc. (GTI), 1987a. Letter to Alameda County Health Department Hazardous Materials Division citing irregularities in the Aqua Science Laboratory Results. August 19.
- Groundwater Technology, Inc. (GTI), 1987b. Report of Further Subsurface Hydrocarbon Investigation, Emeryville, CA, Bay Center Project. September 8.
- Groundwater Technology, Inc. (GTI), 1989a. Well Replacement and Groundwater Assessment Report, Bay Center Project, Emeryville, CA. June.
- Groundwater Technology, Inc. (GTI), 1989b. Water Treatment System Start-Up Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. April 10.
- Groundwater Technology, Inc. (GTI), 1990a. First Quarter Sampling Event. Laboratory Analyses at the Bay Center Project. July 24.
- Groundwater Technology, Inc. (GTI), 1990b. Letter to the Bay Center Apartment Associates detailing problems with the groundwater extraction system. August 14.
- Groundwater Technology, Inc. (GTI), 1990c. Quarterly Report, Bay Center Apartment Associates, Bay Center Project, Christie and 64th Streets, Emeryville, CA. October 31.
- Groundwater Technology, Inc. (GTI), 1991a. Quarterly Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. January.

- Groundwater Technology, Inc. (GTI), 1991b. Quarterly Status Report. April 15.
- Harding Lawson Associates (HLA), 1991. Preliminary Hazardous Materials Site Assessment. December 16.
- Harding Lawson Associates (HLA), 1992a. Results of Soil and Groundwater Investigation. May 6.
- Harding Lawson Associates (HLA), 1992b. Hazardous Waste Management Plan. May 26.
- Harding Lawson Associates (HLA), 1992c. Conceptual Design of Venting System, Emerybay II Apartments. November 24.
- Harding Lawson Associates (HLA), 1993. Results of Soil Sampling, Emerybay II Apartments. April 21.
- Harding Lawson Associates (HLA), 1994. Results of Services During Construction, Emerybay Apartments Phase II. May 19.
- Johnson, Mark, 2007. Project Officer, Regional Water Quality Control Board. Personal communication to Teal Glass of Stellar Environmental Solutions, Inc. April 11.
- Martin Company, 1986a. Letter to Lowell Miller of Alameda County Health Care Services documenting agreements for the construction workplan involving contaminated soil. June 5.
- Martin Company, 1986b. Letter to Tom Owens of Emeryville Community Developers, Inc. documenting recognized contamination issues. May 21.
- Martin Company, 1986c. Letter to Rafat Shahid of Alameda County Health Care Services documenting agreement of drum removal. May 16.
- Martin Company, 1986d. Letter to the State Water Resources Control Board documenting unused underground storage tanks. December 11.
- PES Environmental, Inc. (PES), 2004a. Status Report, Investigation of Subsurface Petroleum Hydrocarbon Residuals. Bay Center Apartments, Christie Avenue and 64th Street, Emeryville, CA. April 5.
- PES Environmental, Inc. (PES), 2004b. Investigation for Missing Wells. April 5.
- PES Environmental, Inc. (PES), 2004c. Status Report. August 30.

- PES Environmental, Inc. (PES), 2007. Construction Implementation and Semi-Annual Operations Report. Free-Phase Hydrocarbon Product Remediation System. EmeryBay Commercial Association, Christie Avenue and 64th Street, Emeryville, CA. March 30.
- Regional Water Quality Control Board (Water Board), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report.
- Regional Water Quality Control Board (Water Board), 2008. Environmental Screening Levels for residential properties on shallow soils where groundwater is a drinking water resource / is not a drinking water resource. Written February 2005, revised May 2008.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007. Phase I Environmental Site Assessment 6425-6475 Christie Avenue, Emeryville, CA. April 17.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008a. 2007 Annual Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008b. Quarter One 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. May 7.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008c. Second Quarter 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. July 18.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008d. Third Quarter 2008
 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking
 Garage 6400 Christie Avenue, Emeryville, CA. October 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009a. Fourth Quarter 2008 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. January 16.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009b. Indoor Air and Preferential Pathway Survey Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. April 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009c. First Semiannual 2009 Groundwater Monitoring Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. April 29.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009d. Second Semiannual 2009 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. December 31.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Indoor Air Sampling Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. April 6, 2010.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. First Semiannual 2010 Groundwater Monitoring Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. Second Semiannual 2010 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. First Semiannual 2011 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. May 6.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. Second Semiannual 2011 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. October 27.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012. First Semiannual 2012 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. June 11.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012. Second Semiannual 2012 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. November 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. June 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. Second Semiannual 2013 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. December 6.

Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. First Semiannual 2014 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. May 14.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of Emerybay Commercial Association, their authorized representatives and assigns, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on a review of previous investigators' findings at the site, as well as site investigations conducted by SES in 2007, 2008, and 2009. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the date of this report. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the activities completed.

APPENDIX A

Historical Groundwater Well Analytical Results

TABLE A Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L) 6400 Christie Avenue, Emeryville, California

				MW	-1				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	380	17,000	NA	8,600	940	250	570	NA
2	May-89	130	24,000	NA	16,000	2,100	300	1,200	NA
3	Feb-91	<10	22,000	NA	6,800	3,500	410	2,000	NA
			Monitori	ing well abane	loned - date t	ınclear			

				MW	-2				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	72	22	NA	< 0.5	<0.5	<0.5	< 0.5	NA
2	May-89	40	18	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	Feb-91	83	<10	NA	< 0.3	< 0.3	< 0.3	< 0.6	NA
			Monitori	ing well abane	loned - date t	ınclear			

				MW	7-3				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	4,200	NA	77	1,400	140	560	NA
2	May-89	110	1,800	NA	64	250	61	110	NA
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	3,400	440	3,900	< 0.5	<0.5	1.5	<1.0	9.7
5	Dec-06	350	280	230	< 0.5	<0.5	< 0.5	< 0.5	2.0
6	Dec-07	960	150	NA	0.54	0.54	< 0.5	< 0.5	< 2.0
7	Mar-08	6,600	450	NA	< 0.5	< 0.5	1.8	2.0	4.3
8	Jun-08	4,500	440	NA	< 0.5	< 0.5	4.0	2.0	9.5
9	Sep-08	1,700	280	NA	< 0.5	< 0.5	1.0	<0.5	< 2.0
10	Dec-08	2,300	240	NA	< 0.5	< 0.5	1.1	<0.5	< 2.0
11	Mar-09	4,300	260	NA	1.3	< 0.5	1.8	0.5	2.9
12	Sep-09	5,000	300	NA	2.5	< 0.5	<0.5	<0.5	< 2.0
13	Mar-10	4,500	230	670	1.7	< 0.5	1.0	<0.5	2.7
14	Sep-10	5,100	470	NA	< 0.5	0.64	<0.5	1.6	2.9
15	Mar-11	2,600	540	NA	47	28	7.6	11.8	17
16	Sep-11	7,800	290	NA	13	1.5	< 0.50	2.0	9.5
17	Mar-12	1,900	430	NA	3.3	< 0.5	<0.5	2.5	2.7
18	Sep-12	7,200	380	NA	18	14	6.0	25.3	< 2.0
19	Mar-13	15,000	470	NA	1.3	0.68	2.1	2.1	8.6
20	Sep-13	250,000	530	NA	< 0.5	< 0.5	<0.5	2.4	5.6
21	Mar-14	1,600	270	NA	1.4	< 0.5	<0.5	<0.5	< 2.0
22	Sep-14	21,000	530	NA	0	0	0.0	0.0	0

				MW	-4				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	100	NA	2.0	1.0	< 0.5	2.0	NA
2	May-89	60	18	NA	1.0	< 0.5	< 0.5	< 0.5	NA
3	Feb-91	<10	<10	NA	< 0.3	< 0.3	<0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	< 50	50	<200	< 0.5	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	710	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
7	Mar-08	680	57	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
8	Jun-08	620	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
9	Sep-08	440	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
10	Dec-08	730	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
11	Mar-09	940	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
12	Sep-09	660	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
13	Mar-10	680	<50	380	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
14	Sep-10	770	71	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
15	Mar-11	590	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	2.4
16	Sep-11	380	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
17	Mar-12	340	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
18	Sep-12	350	<50	NA	< 0.5	<0.5	<0.5	<0.5	< 2.0
19	Mar-13	390	<50	NA	< 0.5	<0.5	<0.5	<0.5	< 2.0
20	Sep-13	250	<50	NA	< 0.5	<0.5	<0.5	<0.5	< 2.0
21	Mar-14	380	<50	NA	< 0.5	<0.5	<0.5	<0.5	< 2.0
22	Sep-14	380	0	NA	0	0	0	0	0

				MW	7-5				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	530	890	NA	<1.0	<1.0	1.0	3.0	NA
2	May-89	90	5.0	NA	1.0	<0.5	< 0.5	< 0.5	NA
3	Feb-91	58	<10	NA	0.6	< 0.3	< 0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	330	<25	<200	0.6	<0.5	< 0.5	< 0.5	<1.0
6	Dec-07	5,100	1.3	NA	1.3	< 0.5	< 0.5	1.23	< 2.0
7	Mar-08	4,500	<50	NA	0.53	< 0.5	<0.5	< 0.5	< 2.0
8	Jun-08	3,300	<50	NA	0.64	< 0.5	<0.5	< 0.5	< 2.0
9	Sep-08	4,200	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
10	Dec-08	5,200	<50	NA	0.61	< 0.5	<0.5	< 0.5	< 2.0
11	Mar-09	5,800	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
12	Sep-09	5,600	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
13	Mar-10	4,300	<50	5,400	4.9	< 0.5	< 0.5	< 0.5	< 2.0
14	Sep-10	4,500	<50	NA	0.58	< 0.5	<0.5	< 0.5	2.0
15	Mar-11	4,900	<50	NA	1.3	< 0.5	<0.5	< 0.5	5.9
16	Sep-11	4,400	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
17	Mar-12	3,600	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
18	Sep-12	4,100	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Mar-13	3,900	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
20	Sep-13	3,100	<50	NA	0.65	< 0.5	< 0.5	< 0.5	< 2.0
21	Mar-14	2,300	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Sep-14	3,700	0	NA	0	0	0	0	0.0

				MW	-6				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	52	NA	1.0	< 0.5	< 0.5	< 0.5	NA
2	May-89	140	31	NA	1.0	<0.5	< 0.5	< 0.5	NA
3	Feb-91	130	40	NA	0.8	< 0.3	< 0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	200	43	<200	1.1	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	1,000	<50	NA	0.98	0.81	< 0.5	0.5	< 2.0
7	Mar-08	940	<50	NA	0.87	1.0	<0.5	< 0.5	< 2.0
8	Jun-08	1,100	56	NA	0.92	< 0.5	<0.5	< 0.5	2.9
9	Sep-08	1,000	<50	NA	0.91	< 0.5	<0.5	< 0.5	<2.0
10	Dec-08	1,400	<50	NA	1	< 0.5	<0.5	< 0.5	<2.0
11	Mar-09	1,200	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
12	Sep-09	1,500	<50	NA	0.79	< 0.5	<0.5	< 0.5	< 2.0
13	Mar-10	910	<50	1,500	1.9	< 0.5	<0.5	< 0.5	< 2.0
14	Sep-10	1,200	72	NA	1.0	< 0.5	<0.5	< 0.5	< 2.0
15	Mar-11	1,900	<50	NA	1.3	< 0.5	<0.5	< 0.5	3.9
16	Sep-11	1,900	<50	NA	1.8	< 0.5	<0.5	< 0.5	< 2.0
17	Mar-12	2,300	<50	NA	0.82	< 0.5	<0.5	<0.5	< 2.0
18	Sep-12	2,200	<50	NA	0.85	< 0.5	<0.5	<0.5	< 2.0
19	Mar-13	1,600	<50	NA	0.83	< 0.5	<0.5	<0.5	< 2.0
20	Sep-13	1,100	<50	NA	1.70	< 0.5	<0.5	<0.5	< 2.0
21	Mar-14	830	65	NA	0.81	< 0.5	<0.5	<0.5	< 2.0
22	Sep-14	1,600	0	NA	0.79	0	0	0	0

				MW	7-7				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in M	farch 2004				
1	Mar-04	1,600	490	1,900	240	100	14	56	<2.5
2	Dec-06	420	<25	470	< 0.5	<0.5	< 0.5	< 0.5	<1.0
3	Dec-07	6,300	3,100	NA	640	28	48	231	<10
4	Mar-08	7,000	360	NA	140	5.8	11	58	< 2.0
5	Jun-08	5,400	1,700	NA	480	15	28	139	< 2.0
6	Sep-08	9,400	1,200	NA	330	12	21	88	< 2.0
7	Dec-08	8,700	2,200	NA	640	100	43	185	<4.0
8	Mar-09	8,700	1,700	NA	510	33	47	220	<10
9	Sep-09	6,800	620	NA	310	9.5	27	117	<10
10	Mar-10	8,700	330	6,800	68	2.2	10	31.6	< 2.0
11	Sep-10	10,000	1,300	NA	580	54	35	163	<20
12	Mar-11	8,100	630	NA	160	5.3	14	65	< 2.0
13	Sep-11	8,000	2,900	NA	900	46	51	284	< 2.0
14	Mar-12	7,900	740	NA	220	150	14	140	< 2.0
15	Sep-12	10,000	1,700	NA	660	35	32	137	< 2.0
16	Mar-13	8,600	3,000	NA	950	39	30	149	<33
17	Sep-13	12,000	2,100	NA	540	29	17	89	<29
18	Mar-14	8,200	1,900	NA	440	22	14	63	<29
19	Sep-14	11,000	1,200	NA	330	21	5.8	68	0

				MW	-8				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in M	farch 2004				
1	Mar-04	140,000	51,000	56,000	19,000	720	2,400	3,300	< 50
2	Dec-06	2,400	29,000	<380	13,000	<100	640	500	<200
3	Dec-07	5,900	30,000	NA	11,000	180	650	561	<100
4	Mar-08	21,000	47,000	NA	10,000	260	1,200	458	< 2.0
5	Jun-08	7,300	27,000	NA	9,300	140	790	290	< 2.0
6	Sep-08	13,000	35,000	NA	11,000	190	900	402	<100
7	Dec-08	7,600	19,000	NA	6,800	110	380	236	<50
8	Mar-09	10,000	22,000	NA	9,400	200	640	358	<50
9	Sep-09	9,200	26,000	NA	8,600	100	630	230	170
10	Mar-10	11,000	19,000	1,900	6,200	120	830	149	< 2.0
11	Sep-10	7,600	7,800	NA	8,800	110	620	212	<100
12	Mar-11	8,800	19,000	NA	8,100	130	890	149	< 2.0
13	Sep-11	18,000	13,000	NA	8,000	140	860	178	< 2.0
14	Mar-12	9,800	380	NA	100	3	5.9	20	< 2.0
15	Sep-12	24,000	73,000	NA	18,000	520	2,300	670	< 2.0
16	Mar-13	38,000	39,000	NA	9,400	160	1,600	255	<50
17	Sep-13	2,100	14,000	NA	3,800	140	35	86	440
18	Mar-14	13,000	23,000	NA	6,800	96	620	200	<200
19	Sep-14	13,000	15,000	NA	4,100	65	300	100	0

				MW	7-9				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in N	farch 2004				
1	Mar-04	1,300	95	1,500	4.7	0.68	< 0.5	<1.0	< 0.5
2	Dec-06	<50	92	<200	2.8	<0.5	< 0.5	< 0.5	<1.0
3	Dec-07	8,400	84	NA	4.7	1.1	< 0.5	1.9	< 2.0
4	Mar-08	8,600	100	NA	4.1	1.1	<0.5	< 0.5	2.0
5	Jun-08	5,900	98	NA	4.9	< 0.5	<0.5	< 0.5	2.3
6	Sep-08	9,300	130	NA	4.6	< 0.5	<0.5	< 0.5	< 50
7	Dec-08	7,800	95	NA	4.0	0.54	<0.5	< 0.5	<2.0
8	Mar-09	9,400	130	NA	4.6	< 0.5	<0.5	< 0.5	<2.0
9	Sep-09	8,200	98	NA	4.0	< 0.5	<0.5	< 0.5	<2.0
10	Mar-10	6,500	140	4,000	5.2	< 0.5	< 0.5	< 0.5	<2.0
11	Sep-10	6,400	170	NA	4.8	0.77	<0.5	< 0.5	<2.0
12	Mar-11	11,000	150	NA	5.9	0.61	<0.5	0.5	<2.0
13	Sep-11	9,400	62	NA	4.2	< 0.5	< 0.5	<0.5	< 2.0
14	Mar-12	9,400	140	NA	6.2	0.61	< 0.5	0.51	< 2.0
15	Sep-12	10,000	130	NA	7.2	< 0.5	0.53	0.92	< 2.0
16	Mar-13	8,500	170	NA	14.0	0.73	0.7	0.63	< 2.0
17	Sep-13	11,000	130	NA	12.0	< 0.5	0.92	<0.5	4.9
18	Mar-14	7,300	140	NA	9.8	2	<0.5	<0.5	< 2.0
19	Sep-14	10,000	120	NA	8.6	2	0.55	0	0

				MW-	-10				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in M	farch 2004				
1	Mar-04	840,000	14,000	<100,000	4,000	77	200	120	< 50
2	Dec-06	19,000	12,000	<4,000	4,600	42	90	52	< 50
3	Dec-07	4,700	13,000	NA	5,300	96	42	86	< 50
4	Mar-08	280,000	10,000	NA	2,600	50	37	58.7	22
5	Jun-08	4,800	10,000	NA	3,800	62	24	61	<2.0
6	Sep-08	4,700	1,200	NA	350	11	3.4	11	< 2.0
7	Dec-08	3,200	2,900	NA	550	45	15	56	<20
8	Mar-09	6,200	8,200	NA	890	46	78	130	<20
9	Sep-09	6,100	1,400	NA	1,200	35	19	31	<20
10	Mar-10	3,900	7,800	960	1,200	46	34	56	54
11	Sep-10	3,500	3,400	NA	1,500	47	18	44	<40
12	Mar-11	4,500	3,700	NA	1,200	81	25	46.4	< 2.0
13	Sep-11	3,800	4,600	NA	720	49	26	52.4	< 2.0
14	Mar-12	3,500	2,400	NA	240	27	10	33.6	<2.0
15	Sep-12	13,000	6,600	NA	1,800	89	130	46	< 2.0
16	Mar-13	24,000	15,000	NA	1,300	66	130	94	< 50
17	Sep-13	3,800	4,600	NA	900	87	29	56	<42
18	Mar-14	3,300	6,200	NA	940	43	< 0.5	53	<40
19	Sep-14	42,000	7,000	NA	1.500	68	28	36	0

				MW	-11				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	May 2004				
1	Dec-06	< 50	920	<200	26	4.5	1.8	5.4	<1.0
2	Dec-07	6,900	1,500	NA	320	44	53	140	< 2.0
3	Mar-08	7,500	1,200	NA	120	7.6	10	24.9	3.0
4	Jun-08	5,100	2,000	NA	190	11	7.7	16.3	< 2.0
5	Sep-08	5,600	2,200	NA	260	20	34	60	< 2.0
6	Dec-08	7,800	2,100	NA	270	14	7.6	15.6	< 2.0
7	Mar-09	7,100	1,400	NA	200	6.4	7.3	10.4	< 2.0
8	Sep-09	6,400	1,900	NA	320	13	9.8	15.2	2.0
9	Mar-10	6,500	1,600	6,900	150	< 0.5	3.9	12.8	2.9
10	Sep-10	5,500	1,300	NA	330	15	9.2	17.3	< 2.0
11	Mar-11	6,500	3,400	NA	1300	22	9.6	19.9	< 2.0
12	Sep-11	4,400	3,600	NA	1200	36	16	39.1	< 2.0
13	Mar-12	4,600	5,700	NA	2100	27	12	16.7	< 2.0
14	Sep-12	5,200	4,100	NA	1,500	33	< 0.5	18	< 2.0
15	Mar-13	8,400	1,800	NA	97	18	19	30	< 2.0
16	Sep-13	7,900	1,900	NA	60	< 0.5	3.6	13	27.0
17	Mar-14	5,700	2,000	NA	60	<0.5	3.8	14.2	< 2.0
18	Sep-14	7,800	2,000	NA	89	0	6	14.4	0.0

				MW	-12				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBI
				Installed in	May 2004				
1	Dec-06	<50	19,000	<200	9,100	51	<50	110	<100
2	Dec-07	2,700	17,000	NA	8,000	110	25	115	<40
3	Mar-08	3,300	33,000	NA	9,200	140	85	116	<2.0
4	Jun-08	3,000	17,000	NA	6,600	95	50	110	< 2.0
5	Sep-08	3,100	14,000	NA	6,200	79	18	83	<10
6	Dec-08	3,600	19,000	NA	7,900	140	72	124	< 50
7	Mar-09	4,100	14,000	NA	6,100	150	130	111	<40
8	Sep-09	3,000	1,900	NA	4,500	80	14	51	<40
9	Mar-10	4,000	15,000	1.900	6,200	110	73	101	< 2.0
10	Sep-10	3,100	4,900	NA	5,900	97	47	73	<100
11	Mar-11	3,300	15,000	NA	7,900	180	200	127	< 2.0
12	Sep-11	1,800	8,600	NA	2,700	85	31	63	< 2.0
13	Mar-12	2,500	17,000	NA	6,300	160	180	124	< 2.0
14	Sep-12	2,300	10,000	NA	4,600	160	210	85	< 2.0
15	Mar-13	9,800	9,100	NA	2,600	110	170	111	< 2.0
16	Sep-13	7,800	9,400	NA	2,400	130	130	125	520
17	Mar-14	7,800	10,000	NA	2,500	89	68	55	<100
18	Sep-14	4,000	6,500	NA	1,500	110	26	59.9	0

				MW-	-13				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	12,000	87,000	2,100	18,000	470	2,400	3,500	<400
2	Dec-07	NA	68,000	NA	19,000	650	1,700	2,440	<100
3	Mar-08	1,100,000	98,000	NA	19,000	820	2,300	3,190	<100
4	Jun-08	71,000	44,000	NA	12,000	510	1,600	1,950	< 2.0
5	Sep-08	440,000	52,000	NA	<100	500	1,600	1,500	<100
6	Dec-08	1,100,000	2,700,000	NA	23,000	<250	40,000	45,000	<1,000
7	Mar-09	2,000,000	330,000	NA	25,000	1,300	6,400	8,500	<1,000
8	Sep-09	38,000	1,400,000	NA	19,000	2,500	19,000	21,300	<1,000
9	Mar-10	15,000	43,000	670	12,000	310	1,600	1,140	<2,500
10	Sep-10	3,100,000	1,700,000	NA	21,000	2,300	30,000	17,200	7,000
11	Mar-11	13,000	86,000	NA	7,900	180	200	127	< 2.0
12	Sep-11	15,000	49,000	NA	16,000	380	1900	850	< 2.0
13	Mar-12	1,100,000	260,000	NA	23,000	1500	5700	4100	< 2.0
14	Sep-12	7,200,000	60,000	NA	22,000	580	2,100	1,700	< 2.0
15	Mar-13	23,000	27,000	NA	5,600	260	1,300	1,080	<200
16	Sep-13	39,000	19,000	NA	3,400	180	760	515	<200
17	Mar-14	19,000	20,000	NA	3,700	120	710	361	<200
18	Sep-14	11,000	16,000	NA	2,400	70	460	253	0

				MW	-14				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	< 50	8,300	<200	3,700	240	230	260	< 50
2	Dec-07	2,600	6,800	NA	3,100	150	220	168	<20
3	Mar-08	4,400	18,000	NA	4,400	330	340	245	< 2.0
4	Jun-08	2,600	7,700	NA	2,600	180	200	141	< 2.0
5	Sep-08	2,500	4,100	NA	1,300	50	80	61	<10
6	Dec-08	2,800	2,300	NA	830	27	45	30.7	<10
7	Mar-09	3,200	13,000	NA	4,300	870	260	283	< 50
8	Sep-09	2,100	550	NA	630	14	28	17	<20
9	Mar-10	3,900	6,700	3,100	2,400	400	140	185	<20
10	Sep-10	2,500	2,000	NA	1,700	44	98	89	<40
11	Mar-11	2,800	16,000	NA	6,600	1600	450	600	<2.0
12	Sep-11	5,900	20,000	NA	6,600	690	550	740	<2.0
13	Mar-12	4,400	13,000	NA	3,000	1400	340	870	<2.0
14	Sep-12	9,900	31,000	NA	4,800	2400	740	2,450	<2.0
15	Mar-13	21,000	11,000	NA	2,300	340	280	371	< 50
16	Sep-13	24,000	7,200	NA	1,900	200	160	197	<83
17	Mar-14	8,200	6,900	NA	2,100	220	170	155	<110
18	Sep-14	8,500	7,100	NA	1,600	220	120	180	0

				MW	15				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	<50	9,200	<200	3,700	<25	60	57	< 50
2	Dec-07	3,300	8,100	NA	3,000	48	28	44.5	<20
3	Mar-08	3,000	13,000	NA	3,600	66	210	59.5	<64
4	Jun-08	2,900	15,000	NA	5,800	61	230	56.4	<2.0
5	Sep-08	3,400	18,000	NA	7,800	73	270	59.9	<10
6	Dec-08	3,000	20,000	NA	7,600	95	300	84.2	< 50
7	Mar-09	3,400	17,000	NA	7,200	91	170	60	< 50
8	Sep-09	2,700	2,300	NA	6,200	71	68	42	< 50
9	Mar-10	3,700	14,000	910	5,900	74	170	69	< 2.0
10	Sep-10	3,500	5,800	NA	8,100	95	170	71	<100
11	Mar-11	3,200	11,000	NA	5,600	88	110	66.1	< 2.0
12	Sep-11	2,200	15,000	NA	6,400	100	71	77.7	< 2.0
13	Mar-12	3,500	16,000	NA	7,200	110	160	177	< 2.0
14	Sep-12	3,500	28,000	NA	12,000	300	380	297	< 2.0
15	Mar-13	3,100	15,000	NA	6,100	170	360	266	<67
16	Sep-13	2,800	17,000	NA	4,100	92	76	144	<200
17	Mar-14	2,200	12,000	NA	3,900	75	30	54	< 2.0
18	Sep-14	3,300	9,500	NA	2,600	110	22	46.7	0

				MW-	-16				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	< 50	190	<200	11.0	1.4	< 0.5	< 0.5	<1.0
2	Dec-07	8,500	71	NA	13	2.6	< 0.5	1.46	< 2.0
3	Mar-08	12,000	60	NA	11	0.73	< 0.5	< 0.5	< 2.0
4	Jun-08	10,000	120	NA	13	2.2	< 0.5	< 0.5	2
5	Sep-08	8,200	64	NA	9.9	1.9	< 0.5	< 0.5	< 2.0
6	Dec-08	8,800	60	NA	11	2.8	< 0.5	0.53	< 2.0
7	Mar-09	14,000	78	NA	12	2.3	< 0.5	< 0.5	< 2.0
8	Sep-09	10,000	51	NA	9.3	1.6	< 0.5	< 0.5	2.2
9	Mar-10	12,000	70	4,700	12	2.1	0.56	1.35	< 2.0
10	Sep-10	9,800	77	NA	12	1.9	< 0.5	0.55	2
11	Mar-11	9,900	64	NA	13	1.6	< 0.5	2.3	16
12	Sep-11	10,000	74	NA	17	2.3	< 0.5	1.33	< 2.0
13	Mar-12	8,400	66	NA	12	1.8	< 0.5	1.07	< 2.0
14	Sep-12	7,700	84	NA	17	1.5	0.57	0.69	< 2.0
15	Mar-13	8,100	80	NA	15	1.4	< 0.5	0.75	< 2.0
16	Sep-13	9,800	66	NA	13	1.7	< 0.5	1.38	< 2.0
17	Mar-14	5,900	76	NA	11	1.2	< 0.5	0.94	< 2.0
18	Sep-14	10,000	110	NA	14	1.5	0	0	0

				MW-	-17				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	<50	14,000	<200	3,400	1,100	480	< 0.5	<1.0
2	Dec-07	2,900	5,000	NA	1,100	260	110	206	<10
3	Mar-08	3,100	6,800	NA	1,200	110	91	94	21
4	Jun-08	2,900	7,200	NA	1,100	45	75	66	< 2.0
5	Sep-08	3,300	5,500	NA	900	63	69	69	<10
6	Dec-08	3,200	7,100	NA	1,100	530	190	390	<10
7	Mar-09	3,000	5,400	NA	770	150	87	161	<2.0
8	Sep-09	3,000	2,200	NA	120	3.1	11	1.6	<2.0
9	Mar-10	3,400	5,000	1,900	910	66	73	93	<2.0
10	Sep-10	2,800	3,500	NA	1,400	62	46	76	<40
11	Mar-11	3,900	6,100	NA	1,100	44	55	70	< 2.0
12	Sep-11	2,400	4,600	NA	850	49	51	64	< 2.0
13	Mar-12	2,200	5,800	NA	1,500	57	58	67	<2.0
14	Sep-12	1,400	4,800	NA	1,300	45	100	41	< 2.0
15	Mar-13	2,900	7,200	NA	1,200	89	220	110	<25
16	Sep-13	2,100	8,000	NA	1,400	150	220	122	<67
17	Mar-14	2,600	8,600	NA	1,800	150	320	118	<67
18	Sep-14	3,000	7,900	NA	1,500	160	130	91	0

				MW	-18				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	May 2004				
1	Dec-06	<50	120	<200	22	6.2	3.2	6.2	< 2.0
2	Dec-07	8,600	< 50	NA	0.98	<0.5	< 0.5	< 0.5	< 2.0
3	Mar-08	9,800	< 50	NA	0.52	<0.5	< 0.5	< 0.5	2.0
4	Jun-08	8,800	< 50	NA	< 0.5	<0.5	< 0.5	< 0.5	3.1
5	Sep-08	8,600	< 50	NA	<0.5	< 0.5	< 0.5	< 0.5	< 2.0
6	Dec-08	9,300	< 50	NA	<0.5	< 0.5	< 0.5	< 0.5	< 2.0
7	Mar-09	10,000	< 50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
8	Sep-09	11,000	< 50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
9	Mar-10	9,400	< 50	2,700	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
10	Sep-10	6,400	1,800	NA	2200	45	64.0	78.0	<50
11	Mar-11	10,000	68	NA	5.5	1.1	<0.5	1.3	17
12	Sep-11	9,800	< 50	NA	0.58	< 0.5	<0.5	< 0.5	< 2.0
13	Mar-12	9,200	< 50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
14	Sep-12	11,000	160	NA	5.1	< 0.5	5.7	0.6	< 2.0
15	Mar-13	9,600	< 50	NA	< 0.5	< 0.5	<0.5	< 0.5	< 2.0
16	Sep-13	11,000	< 50	NA	0.52	< 0.5	<0.5	< 0.5	< 2.0
17	Mar-14	8,200	< 50	NA	0.52	< 0.5	<0.5	<0.5	< 2.0
18	Sep-14	12,000	0	NA	0	0	0.0	0.0	0

				MW	-E				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	100	5,400	NA	3,200	690	97	330	NA
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	470	810	< 500	340	6.1	2.2	7.7	<1.0
5	Dec-06	280	1,900	<200	910	<10	10	<10	<20
6	Dec-07	6,900	7,000	NA	3,300	50	51	80	<20
7	Mar-08	6,300	2,700	NA	780	17	20	20.9	12
8	Jun-08	5,200	7,400	NA	2,900	43	85	50	< 2.0
9	Sep-08	7,800	11,000	NA	3,800	170	130	257	<50
10	Dec-08	9,400	9,100	NA	3,400	110	180	182	<50
11	Mar-09	5,600	850	NA	270	7.5	13	17.5	< 2.0
12	Sep-09	6,200	540	NA	1,200	22	37	37.2	< 2.0
13	Mar-10	3,800	2,400	5,100	1,000	20	37	26.9	4.9
14	Sep-10	6,600	1,800	NA	2,200	45	64	78	<50
15	Mar-11	5,900	4,400	NA	2,600	46	64	90	<50
16	Sep-11	7,600	3,600	NA	4,500	150	340	402	< 2.0
17	Mar-12	5,800	6,500	NA	2,600	50	52	84	< 2.0
18	Sep-12	8,300	7,800	NA	5,500	190	430	431	< 2.0
19	Mar-13	7,700	21,000	NA	5,900	210	850	970	< 50
20	Sep-13	9,400	15,000	NA	3,800	120	470	351	200
21	Mar-14	5,600	9,500	NA	3,200	110	240	178	<140
22	Sep-14	7,800	6,800	NA	1,800	55	86	87	0

				RW	-1				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	NS	NS	NS	NS	NS	NS	NS	NS
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	< 50	640	<200	100	1.3	2	1.6	<1.0
6	Dec-07	2,100	770	NA	110	< 0.5	3.8	1.96	< 2.0
7	Mar-08	11,000	890	NA	100	4.2	4.4	2.0	< 2.0
8	Jun-08	1,500	1,200	NA	290	4.8	10	4.8	< 2.0
9	Sep-08	1,900	1,400	NA	280	9.8	10	6.7	< 2.0
10	Dec-08	54,000	1,100,000	NA	500	<250	3,200	530	<1,000
11	Mar-09	2,800	950	NA	180	3.6	13	3	< 2.0
12	Sep-09	770	350	NA	120	3.1	11	2	< 2.0
13	Mar-10	810	200	<300	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
14	Sep-10	980	860	NA	170	4.0	5.6	2.8	8.0
15	Mar-11	810	310	NA	15	4.4	2.5	3.9	8.8
16	Sep-11	440	230	NA	28	2.7	1.7	1.5	< 2.0
17	Mar-12	1,900	502	NA	70	2.0	2.2	2.1	< 2.0
18	Sep-12	890	790	NA	150	9.6	5.5	12.0	< 2.0
19	Mar-13	2,800	280	NA	2.7	1.7	2.5	1.9	< 2.0
20	Sep-13	1,500	420	NA	10.2	6.0	< 0.5	5.7	8.2
21	Mar-14	4,700	410	NA	1.3	1.0	2.4	3.4	2.8
22	Sep-14	1,000	440	NA	41	0.9	1.5	2.2	2.8

Notes:
The 1988, 1989, and 1991 sampling events were conducted by Groundwater Technology, Inc.
The 2004 and 2006 sampling events were conducted by FES Environmental.
NS = Not sampled
NA = Not analyzed for this constituent
All concentrations shown in 1gg L.

APPENDIX B

Groundwater Monitoring Field Data Sheets

WELL GAUGING DATA

Project # 140930-www	ate 9/30/04	Clients 16UAR
		Zigatetek kanala ka ₹

Site 65th 4 BAY ST, EMERYVILLE, CA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
MW-3	1010	2	oclor	10,85			UNABLE	Defendance of the state of the		THICK
MW-4	DG40	2					8.23	24.94		
MW-5	0947	2_					9.73	24.90		
23-6 23-6	0953	2					8.13	23.35		
MW-7	0926	3/4					10.6(19.80		
mw-8	U938	3/4	ODOR	9.85	0.06		9.91	Pegangan and American		
MW_9	0933	3/4					10.02	19.68		
MW-10	0944	3/4	000R	9.36	0.38		9.74	ganoningg		
MW-11	0929	3/4	ODOR				10.40	19.58		19
MW-12	0932	3/4	ODOR				9.46	18.94		
mu-13	1003	3/4		8.87	0.02		9-89			
MW -14	0948	3/4	OOUR				9.16	19.51		
MW-15	0952	3/4					9,74	18.82	2000	
MW-16	০৭३%	3/4					9.80	19.02		
Mw-17	ARTEROLOGICA	AREA TO THE	anor-				9.72	19.50	i de la companya de l	
Mw-18	经济的社会的关系						5.56	19.56		
MM-8	0947	2					9.98	4672	J.	

WELL GAUGING DATA

Project # 1409	30-4evi	Date	9/30/		Client	STRUM	
Site 65-4 4 1	BAY ST	. EMER	en viu	E, CA			

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	 To the state of th	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
Rw-1	1011	10	SHEEN	11.09	0.01		11.10	Employee and the second	1	GLIBULE OF SPH
*	Pw	- (: THU	GE BI	ACK	SPH_	GLOBUL	is on	PROBI	2

WELLHEAD INSPECTION CHECKLIST

Page 1 of 2

Date 9/30/14		Client	STEUR	<u> </u>				
Date 9/30(14) Site Address 65	h o BAn	ST, cm	ERYVU	u <u>e</u> "W	4			
Job Number <u>14</u>			······································	. Ted	chnician	law [GR/DO	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	d Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
MW-3	P	·						
MW-4	×							
Mw-5	Ø							
MW-6	8							
Mw-7							R	
mw-8							×	
MW-9	*						'po	
MW-10	٠						·	
4W -11	X					-		
NW-12	P							
MW-13								
1W-14	\sim							
1W-15							<u>بح</u>	
4W-16							صر	
1w-17							\sim	
NW-18	P							
NOTES: MW	-9 = 1/h	BOUTS ?	7/66"). A	1w-16:	-1/2 B	ours (4/1	6") ~ M	W-15: -2/2B
NOTES: MW-7	solfa Boi	σ , σ	-8:-4	2 BOLTS	. mu	-17:	2/2 Box	75
		: '						
								*.
· · · · · · · · · · · · · · · · · · ·								

WELLHEAD INSPECTION CHECKLIST

Page 2 of

Client STEUR	R			Date	9/30/4			
Site Address 65	m & BAY	ST, EM	ERY VII	LE CA				
Job Number /4			. •		nician	un /GR	loc	,
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
Mw-E					·	Q		
Mw-E Rw-1	70			·		X		
	:							
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					·	
		·						

							-	
NOTES: MIL	1-6 -21						Brute	3/."\
NOTES: M	<u> </u>	2 S CRE	WS MI	ss ing .	KW"	1. 12		14 J VINUC
· ·			•					
				•				

SEATTLE

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	MESTELLAR C	EMERY VILLE	157	PROJECT NUMBER 140930-WW1						
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME	STANDARDS	EQUIPMENT	CALIBRATED TO:	TEMP.	INITIALS			
MURONI	6214213	7/30/14	USED PH:4.7,00 word: 3000 m (Substelance)	pH:7.00510.00	yes	20.78	nn			
MUJIRAE DWS	095-53274	9130/14 1032	(substellare	150buselee	Yes	· Andrewson of the second	in			
			•	49						
·										
			,							

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Stellar	Env. Solution	25	PROJECT NUMBER 140930-WWI					
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS		
Myron L Ultrameter	6219985	9/30/2014 @ 1050	3400ms Conf	3901	YPS	21.3%	GR		
			7.0 10.0 4.0 pH	7.00 10.00 3.99	4,25	20.9%	GR		
							·		

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	MESTELLAR C	AY CENTER APACT EMERYVILLE, CA	MENTS	PROJECT NUMBER 140930-WW1						
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS			
MYRON L ULTRAMETER	6223841	9/30/14 0900	PH 7,10,4	7.01, 10.01,4.00	y	1800	DC			
<u> </u>	1	V	COND 3900 a Stern	3895uS/cm	У	18°C	De			
			,							

Vall monitoring data shat

					O I KAI I C					
Project #:	140930-V	VW1			Client:		Stellar	Enviror	nmental	Solutions
Sampler:	GR			-	Date:		9 / 30/	14		
Well I.D.:	мw- 3				Well D	iamete	er: (2)	3 4	6 8	
Total Well D	Depth (TD):	***************************************		Depth	to Wate	er (DTW): * SP4	1 both	ick
Depth to Fre	e Product	: 10	. 85		Thickn	ess of l	Free Proc	duct (fee	et): —	
Referenced t	to: C	PVC	>	Grade	D.O. M	leter (i	f req'd):		YSI	HACH
DTW with 8	0% Recha	arge [(H	leight o	of Water	Columi	1 x 0.20	0) + DTV	V]:		
	Bailer Disposable B Positive Air I Electric Subm	Displaceme		Extrac Other	Waterra Peristaltic ction Pump)		g Method:	Ex Ded	Bailer posable Bailer traction Port icated Tubing
(G 1 Case Volume	als.) XSpeci	fied Volun	= nes Ca	alculated Vo	Gals.	Well Diame 1" 2" 3"	0.04 0.16 0.37	er Well I 4" 6" Other	1	Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (°F or °C)	pН	1	ond. or μS)	1	oidity ΓUs)	Gals. R	emoved	Ob	eservations
1402	Starked	Purg	e at	N 0.	5 00	1/min	for	6 min		
140%		purge	1	in sar	mplim	j				ible to recove
			<i></i>						clue to	o Mickness of
										
Did well dev	vater?	Yes (No)		Gallon	s actual	lly evacu	ated:	2.0	2
Sampling Da	nte: 9/301	/ 14	Sampl	ling Tim	e: 14	10	Depth 1	to Water	** ***********************************	
Sample I.D.:	мw- 3				Labora	tory:	Curtis	& Tomp	kins	
Analyzed for	r: TPH-G	BTEX	МТВЕ	TPH-D	Oxygena	ates (5)	Other:	See CO	С	
EB I.D. (if a	pplicable)):	@	Time	Duplic	ate I.D.	. (if appli	cable):	***************************************	
Analyzed for		BTEX	MTBE	TPH-D	Oxygena	ates (5)	Other:			
D.O. (if req'o	d): Pr	e-purge:		**************************************	$^{ m mg}\!/_{ m L}$		Post-purge	e:		$^{\mathrm{mg}}/_{\mathrm{L}}$
O.R.P. (if red	q'd): Pr	e-purge:			mV		Post-purge	e:		mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Vall monitoring data shart

		V.	LL MONIT	ORING DATA	SHLET	
Project #:	140930-V	VW1		Client:	Stellar Enviror	nmental Solutions
Sampler:	GR			Date:	9/30/14	
Well I.D.:	MW- 4			Well Diameter	:(2) 3 4	6 8
Total Well	Depth (TD): 24.	94	Depth to Water	r (DTW): g.	23
Depth to Fro	ee Product	•		Thickness of F	ree Product (fee	et):
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with 8	80% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: //,	57
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing New tubing
2.7 (0 1 Case Volume	Gals.) X Speci	3 fied Volum	$\frac{1}{\text{les}} = \frac{8 i l}{\text{Calculated Vo}}$	Gals. Well Diamete 1" 2" 3"	er Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (°F or C	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations
1105	19.8	7.25	1266	2	3.0	
1109	19-9	7.32	1295	(6.0	ь
1112	19.8	7-32	1285	j	9.0	DTW - 8,28
						·
Did well de	water?	Yes (No)	Gallons actuall	y evacuated:	9.0
Sampling D	ate: 9/30/	/ 14	Sampling Time	e: 1115	Depth to Water	r: 8,28
Sample I.D.	: MW- 4			Laboratory:	Curtis & Tomp	okins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req	'd): P1	e-purge:	AND REPORT OF THE PARTY OF THE	mg/ _L P	ost-purge:	mg _{/I}

mV

Post-purge:

O.R.P. (if req'd):

Vall MONITORING DATA SHOT

		V	LL I	MONIT	ORING	G DATA	A SH.	ŁT				
Project #:	140930-V	VW1			Client:		Stella	r En	viro	nmer	ıtal	Solutions
Sampler:	GR				Date:		9/30	/ 14				
Well I.D.:	MW- 5				Well D	iametei	r: <u>②</u>	3	4	6	8	
Total Well	Depth (TD): 24	-90		Depth	to Wate	er (DTV	V):	9.	73		
Depth to Fr	ee Product	•			Thickn	ess of F	Free Pro	oduct	t (fe	et):		
Referenced	to: 🔇	PVC) G	irade	D.O. M	leter (if	req'd):			YSI		НАСН
DTW with	80% Rech	arge [(H	leight o	of Water	Columi	n x 0.20) + DT	W]:	1	2.7	6	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme			Waterra Peristaltic ction Pump		Sampl	ling Me	ethod:		Ext	Bailer osable Bailer raction Port cated Tubing fubily
						Well Diame	ter Multi	plier	Well	Diamete	r M	ultiplier
2.4 (Case Volume	Gals.) X Speci	3 fied Volum	= nes Ca	7. 2 alculated V	Gals. olume	1" 2" 3"	0.04 0.16 0.37		4" 6" Other		0. 1.	65 47 adius ² * 0.163
	Temp			ond.	Tual	oidity	I					
Time	(°F or C)	pН		or(µS)	1	ΓUs)	Gals.	Remo	ved		Ob	servations
1223	19.7	8.02	2	087	1	6	[2.5	•	<u>ن</u>	ler	Sheen
1226		well	di	ewaterce	10		4	1.5	•			

1245	1920	7.81	21	88	2	25	G	ras				
Did well de	water?	Tes)	No	****	Gallon	s actual	ly evac	uate	d: 4	1.5	•	
Sampling D	ate: 9/30	/ 14	Sampl	ing Tim	e: 124	15	Depth	to V	Vate	r:	12.	71 (wasted)
Sample I.D.: MW- 5					Labora	tory:	Curtis	s & T	omp	kins	3	
Analyzed for: TPH-G BTEX MTBE TPH-D					Oxygenates (5) Other: See COC							
EB I.D. (if a	EB I.D. (if applicable):					Duplicate I.D. (if applicable):						

MTBE TPH-D

Oxygenates (5)

mV

Other:

Post-purge:

Post-purge:

mV

Analyzed for:

D.O. (if req'd):

O.R.P. (if req'd):

TPH-G BTEX

Pre-purge:

		W	LL MONIT	ORING DATA	SHLLT	
Project #:	140930-V	VW1		Client:	Stellar Enviror	nmental Solutions
Sampler:	GR			Date:	9/30/14	
Well I.D.:	MW- C			Well Diameter	: ② 3 4	6 8
Total Well	Depth (TD): 23.	35	Depth to Wate	r (DTW): <i>8.1.</i>	3
Depth to Fr	ee Product	•		Thickness of F	ree Product (fee	et):
Referenced	to: 🕻	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: <i>1</i> /	.17
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	***************************************	Waterra Peristaltic ction Pump	Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing MEW taling
Z. 4 (0 1 Case Volume	Gals.) XSpeci	3 fied Volum	= 7.2 es Calculated Vo	Gals. Well Diamete 1" 2" 3"	er Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (°F or C)	рН	Cond. (mS or (LS))	Turbidity (NTUs)	Gals. Removed	Observations
1254	18.7	11.40	1583	19	2.5	
1257	18.8	11.43	1602	4	5.0	
1259	18.8	11.44	1588	10	7.5	DTW- 8.14
Did well de	water?	Yes (N6)	Gallons actuall	y evacuated:	7.5
Sampling D	ate: 9/30/	14	Sampling Time	e: 13 <i>05</i>	Depth to Water	r: 8.14
Sample I.D.	: MW-6			Laboratory:	Curtis & Tomp	okins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С
EB I.D. (if a	applicable)	1:	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	8
D.O. (if req	'd): P1	e-purge:		mg/ _L P	ost-purge:	mg/L

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd):

		I.	LLL MONIT	ORING DATA	SHLLT	
Project #:	140930-V	VW1		Client:	Stellar Environ	nmental Solutions
Sampler:	DC			Date:	9/30/14	
Well I.D.:	MW- 7			Well Diameter	: 2 3 4	6 8 (3/4)
Total Well	Depth (TD): 19,8	0	Depth to Water	r (DTW): /0, 6	· (
Depth to Fr	ee Product	•		Thickness of F	ree Product (fee	et):
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Recha	arge [(H	leight of Water	Column x 0.20)) + DTW]: 12	.44
Purge Method:	Bailer Disposable Bailer Positive Air E Electric Subm	Displaceme	•	Waterra Peristaltic tion Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing NEW TUBING
O · 2(1 Case Volume	Gals.) XSpeci	3 fied Volun	= O.6 nes Calculated Vo	_Gals. lume	er Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (°F of °C)	pН	Cond.	Turbidity (NTUs)	Gals. Removed	Observations
1020	16.9	8.14	10.97	36	0.2	CLEAR, YELLOWISH
1023	16.6	8.13	10.12	42	0.4	CLEAR, YELLOWISH
1026	16.5	8.11	10.11	45	0.6	CLEAR, YELLOWISH
Did well de	water?	Yes (No)	Gallons actuall	y evacuated: (0.6
Sampling D	ate: 9/30	/ 14	Sampling Time	e: <i>1030</i>	Depth to Water	r: 12.18
Sample I.D.	: MW- 7	•		Laboratory:	Curtis & Tomp	okins
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C
EB I.D. (if	applicable)):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req	'd): P1	re-purge:		mg/ _L P	Post-purge:	mg/L

mV

Post-purge:

Pre-purge:

O.R.P. (if req'd):

W.LL MONITORING DATA SH.LT

Project #:	140930-V	VW1			Client:		Stellar	Enviro	ımenta	al Solution	S
Sampler:	DC				Date:		9 /30 /	14			
Well I.D.:	MW- 8				Well D	iameter	r: 2	3 4	6 8	8 (3/4)	
Total Well 1	Depth (TD): —		,	Depth	to Wate	er (DTW): 9,	91		***************************************
Depth to Fr	ee Product	: 9,	85		Thickn	ess of F	ree Proc	duct (fee	et): 0	.06	
Referenced	to:	PVC	Gr	ade	D.O. M	leter (if	req'd):		YSI	НАСН	
DTW with 8	30% Recha	arge [(H	leight o	f Water	Columi	n x 0.20) + DTV	V]: —	er.		
Purge Method:	Bailer Disposable Bailer Positive Air E Electric Subm	Displaceme nersible	(Other)		g Method: Other:	D.	Bailer isposable Baile Extraction Port edicated Tubin EW TUBING	go.
	Gals.) X	fied Volum	=	culated V	_ Gals.	Well Diamet 1" 2" 3"	0.04 0.16 0.37	er Well 1 4" 6" Other	Diameter	Multiplier 0.65 1.47 radius ² * 0.163	
m.	Temp		İ	ond.	B	oidity		1		~*	
Time	(°F or °C)	pH	 	or μS)	(N.	rUs)	Gals. R	emoved	(Observations	
1228	START	PURG	6	***************************************				-			
1234	STOP	PURGE									
Did well de	water?	Yes ((No)		Gallon	s actual	ly evacu	ated:	1800 1	nL	
Sampling D	ate: 9/30/	/ 14	Sampli	ng Tim	ie: 124	D	Depth 1	to Wate	r: <i>10</i> ,	.17	
Sample I.D.	: MW- 8				Labora	tory:	Curtis	& Tomp	kins		
Analyzed for	or: TPH-G	BTEX	МТВЕ	TPH-D	Oxygena	ates (5)	Other:	See CO	С		
EB I.D. (if a	applicable)):	@ T	ime :	Duplic	ate I.D.	(if appli	cable):			***************************************
Analyzed for	or: TPH-G	BTEX	MTBE	TPH-D	Oxygena	ates (5)	Other:				,
D.O. (if req	'd): Pr	re-purge:		TAN TENER DE LE CONTRACTOR DE LA CONTRAC	$^{ m mg}\!/_{ m L}$	F	Post-purge):			$^{ m mg}/_{ m L}$
O.R.P. (if re	eq'd): Pi	re-purge:			mV	F	Post-purge	e:			mV

WLL MONITORING DATA SHOT

		W	LLL MONIT	ORING DATA	SHEET				
Project #:	140930-V	WW1		Client:	Stellar Enviror	nmental Solutions			
Sampler:	WW			Date:	9 /2 <i>0</i> / 14				
Well I.D.:	MW- 🥎			Well Diameter	: 2 3 4	6 8 (3/4)			
Total Well	Depth (TD)): 19-	68	Depth to Water	r (DTW): 10.	02			
Depth to Fr	ee Product	t:		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: //.	95			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	nt Extrac	Waterra Peristaltic ction Pump Thing 3/vio.01 Well Diamet	er Multiplier Well I	Disposable Bailer Extraction Port Dedicated Tubing new Jubing Diameter Multiplier			
0.2 ₍₀ 1 Case Volume	Gals.) X Speci	fied Volun	$\frac{1}{10000000000000000000000000000000000$	_ Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius² * 0.163			
Time	Temp (°F or °C)	рН	Cond. (mS oras)	Turbidity (NTUs)	Gals. Removed	Observations			
1051	17.3	9.60	2465	58	0.2	light yellow/			
1052	17.0	9,63	25/6	56	0,4	ts i			
1053	16.9	9.66	2543	42	0.6	ic tr			
					,				
		É		**					
Did well de	water?	Yes (Ñ)	Gallons actual	y evacuated:	ن. ل			
Sampling D	ate: 9 Bo	/ 14	Sampling Tim	e: 1055	Depth to Water	r: [1,90			
Sample I.D.	: MW-9			Laboratory:	Curtis & Tomp	okins			
Analyzed fo	or: TPH-G	втех	МТВЕ ТРН-D	Oxygenates (5)	Other: See CO	C			
EB I.D. (if applicable):				Duplicate I.D. (if applicable):					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	:			

mV

Post-purge:

Post-purge:

D.O. (if req'd):

O.R.P. (if req'd):

Pre-purge:

Vall monitoring data shat

		* *	SEEDED IVEOUVER	ORGETT			
Project #: 140930-WW1				Client: Stellar Enviror		Stellar Enviro	nmental Solutions
Sampler:	npler: DC			Date:		9/30/14	
Well I.D.: MW- /0				Well I	Diameter	: 2 3 4	6 8 (3/4)
Total Well I	Depth (TD):	•	Depth to Water (DTW): 9, 74			
Depth to Fro	ee Product	: 9.3	36	Thickr	ness of F	ree Product (fe	et): 0,38
Referenced	to:	PVC	Grade	D.O. N	Aeter (if	req'd):	YSI HACH
DTW with 8	80% Recha	arge [(H	leight of Water	Colum	n x 0.20) + DTW]:	Value de la constante de la co
Purge Method:	Bailer Disposable Bailer Positive Air E Electric Subm	Displaceme Persible	nt Extrac Other	Waterra Peristaltic tion Pump		Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
<u>(a</u>	MINUTE PU	RGE C	300 ml/min	j	Well Diamet	er Multiplier Well 0.04 4"	Diameter Multiplier 0.65
1 Case Volume	Gals.) XSpeci	fied Volum	es Calculated Vo	_Gals. lume	2" 3"	0.16 6" 0.37 Othe	1.47
	Temp		Cond.	Tur	bidity		
Time	(°F or °C)	pН	(mS or μS)	(N	TUs)	Gals. Removed	Observations
/306	START	PUR	LE				
1312	STOP	PURG	Emma				
Did well de	water?	Yes (No)	Gallon	s actual	ly evacuated:	1800 mL
Sampling D	ate: 9/30/	′ 14	Sampling Time	e: 132	<u>L</u> O	Depth to Wate	er: 10.06
Sample I.D.: MW- 10				Labora	itory:	Curtis & Tom	pkins
Analyzed for: TPH-G BTEX MTBE TPH-D				Oxygen	ates (5)	Other: See CC	OC .
EB I.D. (if a	applicable)	•	@ Time	Duplic	ate I.D.	(if applicable):	
Analyzed for	or: TPH-G	ВТЕХ	MTBE TPH-D	Oxygen	ates (5)	Other:	
D.O. (if req	'd): Pr	e-purge:		mg/L	F	Post-purge:	mg/ _L

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd):

WLL MONITORING DATA SHELT

Project #: 140930-WW1	Client:	Stellar Environmental Solutions			
Sampler: DC	Date:	9 / 30/ 14			
Well I.D.: MW-	Well Diamete	er: 2 3 4 6 8 (3/4)			
Total Well Depth (TD): 19,58	Depth to Water (DTW): /0,40				
Depth to Free Product:	Thickness of	Free Product (feet):			
Referenced to: PVC Grade	D.O. Meter (i	f req'd): YSI HACH			
DTW with 80% Recharge [(Height of Wate	r Column x 0.2	0) + DTW]: 12.23			

Purge Method: Bailer Waterra Sampling Method: Bailer
Disposable Bailer Peristaltic Disposable Bailer
Positive Air Displacement Extraction Pump Electric Submersible Other Dedicated Tubing
Other: Dedicated Tubing

		Well Diameter	Multiplier	Well Diameter	Multiplier
		1"	0.04	4"	0.65
0.2 (Gals.) \times 3	= 10,6 Gals.	2"	0.16	6"	1.47
		3"	0.37	Other	radius ² * 0.163
1 Case Volume Specified Volumes	Calculated Volume				

	Temp		Cond.	Turbidity				
Time	(°F 01(°C))	pН	(mS or(uS)	(NTUs)	Gals. Removed	Observations		
1055	16.9	8,02	2353	9	0.2	CLEAR		
1059	16.6	7.91	2294	7	0,4	CLEAR		
1103	16.5	7.90	2292	6	0.6	CLEAR		
·								
Did well dev	Did well dewater? Yes No Gallons actually evacuated: O. 6							
Sampling D	Sampling Date: 9/30/14 Sampling Time: ///O Depth to Water: 11,97							
Sample I.D.	: MW- //			Laboratory:	Curtis & Tomp	okins		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C		
EB I.D. (if applicable): © Time Duplicate I.D. (if applicable):								
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	<u> </u>		
D.O. (if req'	d): Pr	e-purge:		mg/ _L P	ost-purge:	$^{mg}\!/_{L}$		
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Vall monitoring data shart

Project #: 140930-WW1	Client:	Stellar Environmental Solutions					
Sampler: X	Date:	9/30/14					
Well I.D.: MW- (2_	Well Diameter	: 2 3 4 6 8 (3/4)					
Total Well Depth (TD): 18.94	Depth to Water (DTW): 9,46						
Depth to Free Product:	Thickness of Free Product (feet):						
Referenced to: PVC Grade	D.O. Meter (if	req'd): YSI HACH					
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: //,35							

Purge Method: Bailer Waterra Sampling Method: Bailer (Peristaltic) Disposable Bailer Disposable Bailer **Extraction Pump Extraction Port** Positive Air Displacement Electric Submersible Dedicated Tubing Other NEW TUBING Other:

		Well Diameter	Multiplier	Well Diameter	Multiplier	
		1"	0.04	4"	0.65	- 1
$0.7 \text{ (Gals)} \times 0.6$	Colo	2"	0.16	6"	1.47	
1 012 (Gais.) A	_Gals.	3"	0.37	Other	radius ² * 0.163	
1 Case Volume Specified Volumes Calculated V	olume					

Time	Temp (°F or C)	рН	Cond. (mS or (μS)	Turbidity (NTUs)	Gals. Removed	Observations	
1118	16.6	8.11	1260	5	0.2	CLEAR	
1122	16.3	8,00	1239	8	0.4	CLEAR	
1126	16.2	7.94	1238	4	0.6	CLEAR	
Did well dev	Did well dewater? Yes No Gallons actually evacuated: O.6						
Sampling D	ate: 9/30/	¹ 14	Sampling Time	e: <i>1130</i>	Depth to Water	r: 10.91	
Sample I.D.	Sample I.D.: MW- 12_				Laboratory: Curtis & Tompkins		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C	
EB I.D. (if a	EB I.D. (if applicable): © Time Duplicate I.D. (if applicable):						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'	d): Pr	e-purge:		$^{ m mg}/_{ m L}$ P	ost-purge:	mg/L	
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV	

WLL MONITORING DATA SHOT

		V	LL MONIT	ORING DATA	N SHLLT	
Project #:	140930-1	WW1		Client:	Stellar Enviro	nmental Solutions
Sampler:	GR			Date:	9 / 30/ 14	
Well I.D.:	MW- /3			Well Diameter	: 2 3 4	6 8 3/4"
Total Well	Depth (TD)): ·····		Depth to Wate	r (DTW): 8. 8	39
Depth to Fr	ee Product	t: 8.8	37	Thickness of F	ree Product (fe	et): 0.02
Referenced	to: 🕻	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method:	Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) XSpeci	fied Volum	= Calculated Vo	Gals. Slume	er Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius² * 0.163
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
1338	Starte	d per	u at 1	500 ml/mi	n, for 6 m	1 c)1
1344	Stop	purge	. Begin Sa			* Uhable to record depth to SPH due to diameter of
				-		well
Did well de	water?	Yes (No)	Gallons actuall	y evacuated:	0.5
Sampling D	ate: 9/30	/ 14	Sampling Time	e: <i>1345</i>	Depth to Wate	
Sample I.D.	: MW- /	3		Laboratory:	Curtis & Tomp	okins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req	'd): P1	re-purge:	AND CONTROL OF THE PROPERTY AND AND THE PROPERTY AND	mg/ _L P	ost-purge:	mg/I

mV

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

		v.	LL MONI	FORING	G DATA	SHLLT				
Project #:	140930-V	VW1		Client	•	Stellar E	nviror	nmental S	Solutions	
Sampler:	DC			Date:		9 /30/ 14	4			
Well I.D.:	MW- 14			Well I	Diameter	: 2 3	4	68(3/4)	
Total Well	Depth (TD): 19.	51	Depth	to Water	r (DTW):	9.1	6		
Depth to Fr	ee Product	• •		Thick	ness of F	ree Produ	ct (fee	et): —		
Referenced	eferenced to: PVC Grade D.O. Meter (if req'd): YSI HACH									
DTW with	DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: //, 2.3									
Purge Method:	Bailer Disposable Bailer Positive Air Electric Subm	Displaceme	nt Extr Other	Waterra Peristaltic action Pump		Sampling l	Method: Other:	Extr Dedie	Bailer osable Bailer raction Port pated Tubing	
O, 2 1 Case Volume										
Time	Temp	рН	Cond. (mS or (uS))	1	bidity TUs)	Gals. Ren	noved	Obs	servations	
12/12	1171	025	1294	1 2	1	02		0, -	.00	

Time	Temp (°F or (°C)	рН	Cond. (mS or (µS))	Turbidity (NTUs)	Gals. Removed	Observations			
1343	17.1	8.35	1394	31	0.2	CLEAR			
1347	16.7	8.18	1206	18	0.4	CLEAR			
1351	16.6	8.12	1189	15	0.6	CLEAR			
			`						
Did well dewater? Yes No Gallons actually evacuated: 0.6									
Sampling D	ate: 9 /30/	14	Sampling Time	e: 1400	Depth to Water	r: 10.74			
Sample I.D.	: MW-14			Laboratory:	Curtis & Tomp	okins			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С			
EB I.D. (if a	pplicable)	:	@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:		$^{ m mg}/_{ m L}$ P	ost-purge:	$^{mg}\!/_{L}$			
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV			

		W	LLL MONIT	ORIN	G DATA	SHLLT	•		
Project #:	140930-V	VW1		Client	•	Stellar E	Environ	mental Solutions	
Sampler:	W			Date:		9130/1	4		
Well I.D.:	MW- 15			Well I	Diameter	: 2 3	4	6 8 3/4	
Total Well	Depth (TD): 18.	82	Depth	to Wate	r (DTW):	9.74	1	
Depth to Fr	Depth to Free Product: Thickness of Free Product (feet):								
Referenced	Referenced to: PVC Grade D.O. Meter (if req'd): YSI HACH								
DTW with	DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 1/56								
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme		Waterra Peristaltie etion Pump)	Sampling	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing New Tobics 1/4	
0.2 ₍₁	$\frac{0.2_{\text{(Gals.)} X}}{1 \text{ Case Volume}} = \frac{0.6}{\text{Calculated Volumes}}$					0.04 0.16 0.37	4" 6" Other	iameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp	рН	Cond. (mS or AS)	ı	bidity TUs)	Gals. Rei	moved	Observations	

	Temp		Cond.	Turbidity						
Time	(°F or %)	pН	(mS or as)	(NTUs)	Gals. Removed	Observations				
1325	16.7	7.68	1958	10	0.2	odor				
1326	16.5	7.49	1076	5	0.4	ic				
1327	16.5	7.43	1088	5	p. 6					
	у.			i.						
Did well dev	Did well dewater? Yes (Sallons actually evacuated: 0.6									
Sampling D	ate: 9 🎉 /	14	Sampling Time	e: 1330	Depth to Water	r:9.74				
Sample I.D.	: MW- 15	>		Laboratory:	Curtis & Tomp	okins				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С				
EB I.D. (if a	pplicable)	:	@ Time	Duplicate I.D.	(if applicable):					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:					
D.O. (if req'	d): Pr	e-purge:		mg/L I	Post-purge:	mg/L				
O.R.P. (if re	q'd): Pr	e-purge:		mV I	Post-purge:	mV				

		N	LL MONIT	ORING DATA	SHLZT			
Project #:	140930-1	WW1		Client:	Stellar Environ	nmental Solutions		
Sampler:	w			Date:	9 130 / 14			
Well I.D.:	MW- (()		Well Diameter	: 2 3 4	6 8 (3/4)		
Total Well	Depth (TD): 19.	02	Depth to Water	r (DTW): 9.	3 0		
Depth to Fr	ee Product	t:		Thickness of F	ree Product (fe	et):		
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]: //	1.64		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic Peristaltic Peristaltic Well Diameter	Other:	Disposable Bailer Extraction Port Dedicated Tubing		
0.2 (0) 1 Case Volume	$\frac{\text{O.O.}}{\text{Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{\text{O.6}}{\text{Calculated Volume}} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Time	Temp (°F or °C)	pН	Cond. (mS or (nS))	Turbidity (NTUs)	Gals. Removed	Observations		
1111	16.9	10.23	3237	32	0.2	bown; clear		
1112	16.7	10,25	3274	28	0.4	4 11		
1(13	16.7	10,25	3290	23	0.6	., .,		
Did well de	water?	Yes (No)	Gallons actuall	y evacuated:	0.6		
Sampling D	ate: 9 Bo	/ 14	Sampling Time	e: 1115	Depth to Wate	r: 10.04		
Sample I.D.	: MW-6			Laboratory:	Curtis & Tomp	okins		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C		
EB I.D. (if a	applicable):	@ Time	Duplicate I.D.	(if applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req	'd): P	re-purge:		mg/L P	ost-purge:	$^{ m mg}/_{ m L}$		

mV

Post-purge:

Pre-purge:

O.R.P. (if req'd):

WLL MONITORING DATA SHLET

		V	ELL MONIT	ORING DATA	SHLAT	
Project #:	140930-1	WW1		Client:	Stellar Enviro	nmental Solutions
Sampler:	GR			Date:	9/30/14	
Well I.D.:	MW- /7	7		Well Diameter	: 2 3 4	6 8 3/4"
Total Well	Depth (TE)): 19.	50	Depth to Water	r (DTW): 9.7	72
Depth to Fr	ee Product	t:		Thickness of F	ree Product (fee	et):
Referenced	to:	PVC	Grade	D.O. Meter (if	reg'd):	YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20	12	. 68
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltica tion Pump	Sampling Method:	Disposable Bailer Extraction Port Dedicated Tubing
0.2 (1) 1 Case Volume	Gals.) XSpeci	ろ fied Volum	= O-6 Calculated Vo	Gals. Well Diameter 1" 2" 3" 3" 3"4"	0.04 4" 0.16 6"	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp	рН	Cond. (mS or (µS))	Turbidity (NTUs)	Gals. Removed	Observations
1320	18.1	7.80	965	57	0.2	
1321	18.0	7.62	937	38	0.4	
1322	18,0	7.67	921	24	0.6	DTW- 9.89

Did well de	water?	Yes (No	Gallons actuall	y evacuated:	0.6
Sampling D	ate: 9/30	/ 14	Sampling Time	e: <i>1</i> 32 <i>5</i>	Depth to Water	r: 9.89
Sample I.D.	: MW- /	7		Laboratory:	Curtis & Tomp	okins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req	'd): P1	e-purge:		mg/L P	ost-purge:	mg/I

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

		V	LL MONIT	ORING I	DATA	SHLLT			
Project #:	140930-W	VW1		Client:		Stellar E	nviror	nmenta	al Solutions
Sampler: L	w			Date:		9/30/1	4		
Well I.D.:	MW-18			Well Dia	meter:	: 2 3	4	6 8	8 (3/4)
Total Well	Depth (TD)	Depth (TD): (9.5) Depth to Water (DTW): 5.56							
Depth to Free Product: Thickness of Free Product (feet):									
Referenced to: PVC Grade D.O. Meter (if req'd): YSI HACH									
DTW with	80% Recha	ırge [(H	leight of Water	Column 2	< 0.20)	+ DTW]	: 8.5	36	
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	isplaceme		Waterra Peristaltic ction Pump	")	Sampling	Method:	D I D	Bailer isposable Bailer Extraction Port edicated Tubing which (4)
0.3 1 Case Volume	Gals.) X 3 Specif	ied Volum	es Calculated Vo	_Gals.	ell Diamete 1" 2" 3"	0.04 0.16 0.37	Well I 4" 6" Other	Diameter	Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (°F or ©) pH	Cond. (mS or/µS)	Turbid (NTU		Gals. Rer	noved	(Observations
1221	1115	720	1775	754		02		do	ariot.

Time	Temp (°F or C)) _{pH}	Cond. (mS or/µS)	Turbidity (NTUs)	Gals. Removed	Observations					
1231	167	7,32	6752	254	0.3	cloudy					
1232	16.5	7.21	6874	477	0.6	15					
1235	16.5	7.24	7153	794	0.9	í (
		-									
·						*					
Did well dev	Did well dewater? Yes (No) Gallons actually evacuated: 0,9										
Sampling D	ate: 9 30 /	′ 14	Sampling Tim	e: 1240	Depth to Water	r: 8.12					
Sample I.D.	: MW- 17	>		Laboratory:	Curtis & Tomp	okins					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C					
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	**************************************					
D.O. (if req'	d): Pr	e-purge:		mg/ _L F	Post-purge:	mg/L					
O.R.P. (if re	q'd): Pr	e-purge:		mV F	Post-purge:	mV					

		N	LL MONIT	ORING DATA	SHLET	
Project #:	140930-V	VW1		Client:	Stellar Enviro	nmental Solutions
Sampler:	M			Date:	9/30/14	
Well I.D.:	MW- E		Υφ	Well Diameter	: (2) 3 4	6 8
Total Well 1	Depth (TD): 46;	72	Depth to Wate	r (DTW): 9.9	8
Depth to Fro				Thickness of F	ree Product (fe	et):
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with 8	30% Rech	arge [(H	leight of Water	Column x 0.20	_£	.16
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ont Extrac Other	Waterra Peristaltic etion Pump Well Diamet 1"	er Multiplier Well 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing New Jubing Diameter Multiplier 0.65
5-9 (Case Volume	Gals.) X Speci	> fied Volun	$\frac{1}{\text{nes}} = \frac{V (\cdot)}{\text{Calculated Vo}}$	Gals. 2" 3"	0.16 6" 0.37 Other	1.47 r radius ² * 0.163
Time	Temp (°F op C)	pH Q.09	Cond. (mS or ns)	Turbidity (NTUs)	Gals. Removed	Observations cloudy
WEU	, V	VA	16060		5.9 ALS	Circuy
1420	17.3	7.76	2807	>,000		odor
Did well de	water?	Yes	No	Gallons actuall	y evacuated: C	7
Sampling D	ate: 9 30	/ 14	Sampling Time	e: 1420	Depth to Wate	r: //.06
Sample I.D.	: MW-9			Laboratory:	Curtis & Tomp	okins 10.05
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C
EB I.D. (if a	pplicable)	:	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'	d): P1	e-purge:		^{mg} / _L P	ost-purge:	$^{ m mg}/_{ m L}$

mV

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

		•	TELL MUNII	ORING DATA	ASHLUI	
Project #:	140930-V	WW1		Client:	Stellar Enviro	nmental Solutions
Sampler: [M			Date:	9Bo/14	
Well I.D.:	Rw- 1			Well Diamete	r: 2 3 4	6 8 (10)
Total Well	Depth (TD)):	MAN	Depth to Wate	er (DTW): //./	0
Depth to Fr	ree Product	: //.	09	Thickness of I	Free Product (fe	et): 0.01
Referenced	to:	PVC	Grade	D.O. Meter (it	f req'd):	YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac	Waterra Peristaltic ction Pump Well Diame	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X Speci	fied Volun	es Calculated Vo	_Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
1342	Purg	ed	wells (b MINS	@ Zoom C/	min i
1348	510F	FED PV	RGE		/	
Did well de	ewater?	Yes (No .	Gallons actual	ly evacuated:	1200 mL
Sampling D			Sampling Time	a : C200m	Depth to Wate	
Sample I.D				Laboratory:	Curtis & Tomp	
Analyzed for		BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	
EB I.D. (if	applicable)):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	>
D.O. (if req	<u> </u> 'd): Pi	re-purge:		mg/L	Post-purge:	mg/L

mV

Post-purge:

mV

Pre-purge:

O.R.P. (if req'd):

S. H or Purge Water Drum Le.,

Client: Stellar Site Address: Bay Center Apts.

STATUS OF DRUM(S) UPON	ARRIVAL					
Date	3/20/12	9/27/12	3-24-13	9/26/13	3la 7liu	930/14
Number of drum(s) empty:	4	4	4	6	H	3-Devins
Number of drum(s) 1/4 full:	•					
Number of drum(s) 1/2 full:			5 -/0 - A			
Number of drum(s) 3/4 full:	AST of Front	1-AST 1050gals	1-48st 10sugals		1 AST	90
Number of drum(s) full:			U	((AST)		1-tank
	4+ AST	4+ (455)) atust	6+1(481)	4+1455	1-TANK 3-DRUMS
Are the drum(s) properly labeled?	No Faled	NO FADEO	-2	MR (HAH)	<u> </u>	YES FROED
Drum ID & Contents:	-		-	Pulse Heo.	<u> </u>	purgetteo
If any drum(s) are partially or totally filled, what is the first use date:		-)	-		

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.
- -If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

-All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPARTL	JRE				
Date	3/29/12	9/28/12	3-12-17	9/21/3	3/25/14	9130/14
Number of drums empty:	4	<u>'</u>	4	5	4	
Number of drum(s) 1/4 full:						
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:	1 mli Ironte				1 Ast	1 - 2 - 2
Number of drum(s) full:			Ast Muss	1 (NST)		(-three
Total drum(s) on site:	U+NST	4+ 6100gm	ケラ	6+1(155)	4+1 ATT	3-DANK
Are the drum(s) properly labeled?	N			UES	7	yes
Drum ID & Contents:	-		-		Courage Water	pursellhio

LOCATION OF DRUM(S)

Describe location of drum(s): North End of Garage - Ferred areas

FINAL STATUS						
Number of new drum(s) left on site this event		0	O	0	0	0
Date of inspection:	3/29/12	9/28/12	3-29-13	912-113	3/28/4	138/H
Drum(s) labelled properly:	N	FA060	Feder	Pharappelo	У	Y 100
Logged by BTS Field Tech:	80	MW	99	Cv	PU	I am
Office reviewed by:	h	n	W	10	10/	96

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 261309 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2007-65

Location : Bay Center Apts

Date: <u>10/07/2014</u>

Level : II

Sample ID	<u>Lab ID</u>
MW-3	261309-001
MW-4	261309-002
MW-5	261309-003
MW-6	261309-004
MW-7	261309-005
MW-8	261309-006
MW-9	261309-007
MW-10	261309-008
MW-11	261309-009
MW-121	261309-010
MW-13	261309-011
MW-14	261309-012
MW-15	261309-013
MW-16	261309-014
MW-17	261309-015
MW-18	261309-016
MW-E	261309-017
RW-1	261309-018

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar
Project Manager
tracy.babjar@ctberk.com
(510) 204-2226

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: 261309

Client: Stellar Environmental Solutions

Project: 2007-65

Location: Bay Center Apts

Request Date: 09/30/14 Samples Received: 09/30/14

This data package contains sample and QC results for eighteen water samples, requested for the above referenced project on 09/30/14. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

MW-7 (lab # 261309-005) and MW-18 (lab # 261309-016) had pH greater than 2. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

MW-3 (lab # 261309-001) and MW-10 (lab # 261309-008) were diluted due to the dark and viscous nature of the sample extracts. No other analytical problems were encountered.

261309

Lab job no.

Chain of Custody Record

7 Time ᄪ Date Date Remarks 9/30/14 Page ___ ysis Required Received by: Received by: Signature Company Signature Printed _ Printed Time Date Time Date Method of Shipment Has DRIVERY or LAS Confuse Relinquished by: Relinquished by: Signature Company Signature Preservation the Chemical Printed _ Printed . 2 Project Manager R. MAK Dis 1/22/6 Time Cooler Telephone No. (510) 644-3123 (510) 644-3859 ACI VOA'S / 2 x 500 ML AMBERS Type/Size of Container Samplers: (Signature) Printed Will Rice Shipment No. Cooler No. . Airbill No. Project Name BAY COUTER APARTMENTFax No. Received by: ///// Sample Type 4103AL ID # SLT 200556 930/4 HIO W 1240 W V | SS01 (320 W 1345 W 115 V 7 00H 1030 W 12HS | W 1385 V 301 1130 W 9B3/14 Signature Laboratory Cuens of Tompkins Time Site Address 6460 CARISTIE AVE BERKELEY, CA Date 1512 Date EDF REQUIRED Address 2323 FIFTH ST BERKELEY, CA Location/ Depth BUTINE TECH Project Number 2007 - 65 Turnaround Time: STAUDARD Signature OCULO Printed WH 104 ACD MW-12 4-MM MW-10 MW-3 MW-6 8-MW 6-MW MW-13 M-MM 11-MW MW MW-IN Field Sample Number Project Owner ... Relinquished by: Comments: __ Company

Stellar Environmental Solutions

2000-00-01

2198 Sixth Street #201, Berkeley, CA 94710

Company

Company

					Chain	of C	Chain of Custody Record	ecord				261309	60%	Lab job no.	
Address 2323 FIFTH Address RERECEY	TOMPKINS 1 ST.	KM	11	Method of Shi Shipment No.	ShipmentNo.	द ्यम	Method of Shipment HAYD DRIVERY or LAS COLPLEX Shipment No.	70 /	3	gro	*	3	•	Date 9/30/14	914
				Airbill No				,	\	1	(lysis	lysis Required		
Project Owner		'		Cooler No	Cooler No.	7 7 7 4	Nic i	ı	\ <u>\</u>	\\ \ \ \	70/2	Y	\ \	/	
Site Address 10400 CHRISTIE	345	A	+	rioject Mi	Telephone No. (510) 644-3123	544-3123		_	bele enisino	5/0	Se long	m	<i>\</i>	<u></u>	
Project Name 844 COUTER	N .	ACTA	18	APACTMENTER NO.	(510)	(510) 644-3859		13	0 o ol	SI SI		\ \ X	<u></u>	\	
Project Number 2007 - 65	i			Samplers:	Samplers: (Signature)				V 7						nemarks
Field Sample Number Location/	1	Time	Sam	P _E	Type/Size of Container		Se	\ _	भन्न	19 /s	વ	<u></u>	\	_	
13 MW-15	1/2/4	1330		× 4C	VOA'S/				Z ×						
14 MW-16		11.5	3	5	2	2	Ž -		\ \\ >	+					
F1-MM 5]		1325	3			-			< <>		,				
81-MW di		1240	3						 ×	\\					
17 MM-E		H20	3						\ \	7					
18 RW-1	>	1350	3		>				- - -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
							>		٤						
		_													
Relinquietred by:			_ ;			\perp	-								
Signature July	-4/23/E		Signature	X		C Date	Date Relinquished by:				Date	Received by:			Date
Printed WHY (KAM)				0	101	(2)	14					anjada			
Company SERVICES	- 5121		4 \ \ \			- Time	1				Time	Printed			Time
**************************************		3	Company				Company					Company _			
Comments: CDF CENTER	6						Helinquished by: Signature				Date	Received by:			Date
4103AL 1D #	SLT2005561	C	350	-			1								
							paulu				Time	Printed			Time
							Company				'	Company _			
* Stellar Environmental Solutions												0070	10 10		

COOLER RECEIPT CHECKLIST

Login#_	26130°	Date R	eceived _	9/30/14	Number	of coolers	_3_
Client _			Pro	ject	W 12	<u> </u>	
Date Ope Date Log	ened 930 gged in V	By (print) By (print)	n Du	(sig	n)(n] 1	
	ooler come with a	a shipping slip				YES	110
2A. Wer	e custody seals p	oresent?	YES (ci	ircle) on co	oler on sa Date	amples	□ - N0
2B. Wer 3. Were 4. Were 5. Is the	How manye custody seals in custody papers decustody papers for project identifiante the packing in	ntact upon arriv lry and intact w illed out proper able from custon	/al? hen receively (ink, sindy papers?	yed?gned, etc)? ? (If so fill out	top of form	YES YES YES YES	NO N/A NO NO NO
Г	∃Bubble Wrap ∃Cloth material erature documen	☐ Cardboa	ard	Styrotoat	n [wels
J	Гуре of ice used:	□ Wet [] Blue/Ge	l □ None	Temp(°C)	
	☐ Samples Rece						with IR gur
	Samples recei						
	Method 5035 sa	mnling contait	ners nresei	nt?		7	YES - NO
8. were	f YES, what tim	ampinig contain e were they tra	nsferred to	freezer?			
	Il bottles arrive u						YES NO
10 Are	there any missing	g / extra sample	es?				YES NO
11 1 1	samples in the ap	nnronriate cont	ainers for	indicated tests	s?	-	YES NO
11. AIC	samples in the apsample labels pro	esent in good	condition a	and complete?)	3	YES NO
12. Are	the sample labels	corne with our	tody nane	rs?			
13. D0 t	ne sample laucis	nt of comple se	tody pape	10.			YES NO
14. was	, sumcient amou	HI OI SAHUDIC SC		requested?			
15. Are	the complete cons	consistely prese	nt for tests	s requested? _			YES NO
1 C D'1	the samples appr	ropriately prese	erved?	s requested? _		YES	Y ES NO NO N/A
16. Did	you check presen	ropriately prese rvatives for all	erved? bottles for	s requested? _		YES YES	YES NO NO N/A NO N/A
16. Did 17. Did	you check preservou document you	ropriately prese rvatives for all our preservativ	erved? bottles for e check?	s requested? _	?	YES YES YES	YES NO NO N/A NO N/A NO N/A
16. Did 17. Did 18. Did	you check present you document you change the h	ropriately prese rvatives for all our preservativ hold time in LII	erved? bottles for e check? MS for un	s requested? each sample' preserved VO	As?	YES YES YES YES	YES NO NO N/A NO N/A NO N/A
16. Did 17. Did 18. Did 19. Did	you check presery you document you you change the l	ropriately prese rvatives for all our preservativ hold time in LII hold time in LII	erved? bottles for e check? MS for un MS for pre	s requested?	As?ores?	YES YES YES YES YES YES	YES NO NO N/A NO N/A NO N/A NO N/A NO N/A
16. Did 17. Did 18. Did 19. Did 20. Are	you check present you document you change the hand you change the hand hubbles > 6mm	ropriately preservatives for all our preservative hold time in LII hold time in LII absent in VOA	bottles for e check? MS for un MS for pro- samples?	s requested?	As? ores?	YES YES YES YES YES YES YES	YES NO NO N/A NO N/A NO N/A NO N/A NO N/A NO N/A
16. Did 17. Did 18. Did 19. Did 20. Are 21. Was	you check present you document you change the lange the lange the lange the change the client contact the client contact you change the client contact you change the client contact you check you change the client contact you change the client contact you check you change the client contact you check you change the client you change the client you can be seen to contact	ropriately preservatives for all our preservative hold time in LII hold time in LII absent in VOA cted concerning	bottles for e check? MS for un MS for pro- samples? g this samp	reach sample' preserved VO eserved terrac ple delivery?	As?ores?	YES YES YES YES YES YES YES	YES NO NO N/A
16. Did 17. Did 18. Did 19. Did 20. Are 21. Was	you check present you document you change the hand you change the hand hubbles > 6mm	ropriately preservatives for all our preservative hold time in LII hold time in LII absent in VOA cted concerning	bottles for e check? MS for un MS for pro- samples? g this samp	reach sample' preserved VO eserved terrac ple delivery?	As?ores?	YES YES YES YES YES YES YES	YES NO NO N/A NO N/A NO N/A NO N/A NO N/A NO N/A
16. Did 17. Did 18. Did 19. Did 20. Are 21. Was	you check present you document you change the had you change the had bubbles > 6mm as the client contact of YES, Who was	ropriately preservatives for all our preservative hold time in LII hold time in LII absent in VOA cted concerning	bottles for e check? MS for un MS for pro- samples? g this samp	reach sample' preserved VO eserved terrac ple delivery?	As?	YES YES YES YES YES YES YES TO Date:	YES NO NO N/A YES NO
16. Did 17. Did 18. Did 19. Did 20. Are 21. Was	you check present you document you change the had you change the had bubbles > 6mm at the client contact of YES, Who was	ropriately preservatives for all our preservative hold time in LII absent in VOA cted concerning s called?	bottles for e check? MS for un MS for pro- samples? g this samp	reach sample preserved VO eserved terrac ple delivery?	As?	YES YES YES YES YES YES YES TO Date:	YES NO NO N/A YES NO
16. Did 17. Did 18. Did 19. Did 20. Are 21. Was	you check present you document you change the had you change the had bubbles > 6mm at the client contact of YES, Who was	ropriately preservatives for all our preservative hold time in LII absent in VOA cted concerning s called?	bottles for e check? MS for un MS for pro- samples? g this samp	reach sample preserved VO eserved terrac ple delivery?	As?	YES YES YES YES YES YES YES TO Date:	YES NO NO N/A YES NO

Rev 10, 9/12

Detections Summary for 261309

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions

Project : 2007-65

Location : Bay Center Apts

Client Sample ID : MW-3

Laboratory Sample ID: 261309-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	530	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	3.2		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	21,000		490	ug/L	As Recd	10.00	EPA 8015B	EPA 3520C

Client Sample ID: MW-4 Laboratory Sample ID: 261309-002

Analyte	Result	Flags			Basis	IDF		Prep Method
Diesel C10-C24	380	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-5 Laboratory Sample ID: 261309-003

Analyte	Result Flags		nits Basis	IDF		Prep Method
Diesel C10-C24	3,700	49 ug	g/L As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-6 Laboratory Sample ID: 261309-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Benzene	0.79		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	1,600		49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-7 Laboratory Sample ID: 261309-005

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	1,200		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	330		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	21		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	5.8		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	58		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	10		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	11,000		50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Page 1 of 4 24.0

Client Sample ID: MW-8 Laboratory Sample ID: 261309-006

Analyte	Result	Flags									Method
Gasoline C7-C12	15,000			ug/L							
Benzene	4,100		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
Toluene	65						83.33				
Ethylbenzene	300		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
m,p-Xylenes	100		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
Diesel C10-C24	13,000		51	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-9 Laboratory Sample ID: 261309-007

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	120		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	8.6		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	0.55		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	10,000		51	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-10 Laboratory Sample ID: 261309-008

	Result									Method
Gasoline C7-C12	7,000	1,700								
Benzene	1,500		ug/L							
Toluene	68		ug/L							
Ethylbenzene	28	17	ug/L							
m,p-Xylenes	36	17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
Diesel C10-C24	42,000	510	ug/L	As	Recd	10.00	EPA	8015B	EPA	3520C

Client Sample ID: MW-11 Laboratory Sample ID: 261309-009

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	2,000		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	89		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	6.0		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	10		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	4.4		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	7,800		51	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-121 Laboratory Sample ID: 261309-010

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	6,500	Y	1,700	ug/L	As Recd	33.33	EPA 8015B	EPA 5030B
Benzene	1,500		17	ug/L	As Recd	33.33	EPA 8021B	EPA 5030B
Toluene	110	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	26		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	50		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	9.9		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	4,000		51	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Page 2 of 4 24.0

Client Sample ID: MW-13 Laboratory Sample ID: 261309-011

Analyte	Result	Flags	RL								Method
Gasoline C7-C12	16,000		2,500	ug/L	As	Recd	50.00	EPA	8015B	EPA	5030B
Benzene	2,400		25	ug/L							
Toluene	70		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Ethylbenzene	460		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
m,p-Xylenes	220		25						8021B		
o-Xylene	33		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Diesel C10-C24	11,000		49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-14 Laboratory Sample ID: 261309-012

Analyte	Result	Flags RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	7,100	2,500	ug/L	As Recd	50.00	EPA 8015B	EPA 5030B
Benzene	1,600	25	ug/L	As Recd	50.00	EPA 8021B	EPA 5030B
Toluene	220	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	120	25	ug/L	As Recd	50.00	EPA 8021B	EPA 5030B
m,p-Xylenes	140	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	40	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	8,500	51	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-15 Laboratory Sample ID: 261309-013

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	9,500	Y	2,500	ug/L	As Recd	50.00	EPA 8015B	EPA 5030B
Benzene	2,600		25	ug/L	As Recd	50.00	EPA 8021B	EPA 5030B
Toluene	110	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	22		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	39		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	7.7		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	3,300		49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-16 Laboratory Sample ID: 261309-014

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	110		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	14		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	1.5		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	10,000		50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Page 3 of 4 24.0

8 of 70

Client Sample ID: MW-17 Laboratory Sample ID: 261309-015

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	7,900		1,700	ug/L	As Recd	33.33	EPA 8015B	EPA 5030B
Benzene	1,500		17	ug/L	As Recd	33.33	EPA 8021B	EPA 5030B
Toluene	160	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	130		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	68		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	23		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	3,000		49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-18 Laboratory Sample ID: 261309-016

Analyte	Result I	Flags					Method	_	
Diesel C10-C24	12,000		51	ug/L	As Recd	1.000	EPA 8015B	EPA 35	520C

Client Sample ID: MW-E Laboratory Sample ID: 261309-017

Analyte	Result									Method
Gasoline C7-C12	6,800		ug/L							
Benzene	1,800	17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
Toluene	55	17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
Ethylbenzene	86	17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
m,p-Xylenes	68	17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
o-Xylene	19	17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
Diesel C10-C24	7,800	51	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: RW-1 Laboratory Sample ID: 261309-018

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	440		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	41		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	0.86	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	1.5		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	1.3	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	0.92		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	1,000		50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Page 4 of 4

C = Presence confirmed, but RPD between columns exceeds 40%

Y = Sample exhibits chromatographic pattern which does not resemble standard

Curtis & Tompkins Laboratories Analytical Report Bay Center Apts EPA 5030B Lab #: 261309 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 09/30/14 09/30/14 Sampled: Matrix: Water Units: ug/L Received:

Field ID: MW-3 Diln Fac: 1.000
Type: SAMPLE Batch#: 215987
Lab ID: 261309-001 Analyzed: 10/01/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	530 Y	50	EPA 8015B
MTBE	3.2	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	122	77-128	EPA 8015B	
Bromofluorobenzene (PID)	110	75-132	EPA 8021B	

Field ID: MW-4 Diln Fac: 1.000
Type: SAMPLE Batch#: 215987
Lab ID: 261309-002 Analyzed: 10/01/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	102	77-128	EPA 8015B	
Bromofluorobenzene (PID)	105	75-132	EPA 8021B	

Field ID: MW-5 Diln Fac: 1.000
Type: SAMPLE Batch#: 215987
Lab ID: 261309-003 Analyzed: 10/01/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	101	77-128	EPA 8015B	
Bromofluorobenzene (PID)	94	75-132	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Page 1 of 8

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Bay Center Apts EPA 5030B Lab #: 261309 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Water 09/30/14 Matrix: Sampled: Units: ug/L Received: 09/30/14

Field ID: MW-6 Diln Fac: 1.000
Type: SAMPLE Batch#: 215987
Lab ID: 261309-004 Analyzed: 10/01/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	0.79	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	99	77-128	EPA 8015B	
Bromofluorobenzene (PID)	93	75-132	EPA 8021B	

Field ID: MW-7 Lab ID: 261309-005 Type: SAMPLE Diln Fac: 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	1,200	50	216022 10/02/14	EPA 8015B
MTBE	ND	2.0	215987 10/01/14	EPA 8021B
Benzene	330	0.50	216022 10/02/14	EPA 8021B
Toluene	21	0.50	216022 10/02/14	EPA 8021B
Ethylbenzene	5.8	0.50	216022 10/02/14	EPA 8021B
m,p-Xylenes	58	0.50	216022 10/02/14	EPA 8021B
o-Xylene	10	0.50	216022 10/02/14	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	82	77-128	216022 10/02/14	EPA 8015B
Bromofluorobenzene (PID)	84	75-132	216022 10/02/14	EPA 8021B

Field ID: MW-8 Diln Fac: 83.33 Type: SAMPLE Batch#: 216021 Lab ID: 261309-006 Analyzed: 10/03/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	15,000	4,200	EPA 8015B
MTBE	ND	170	EPA 8021B
Benzene	4,100	42	EPA 8021B
Toluene	65	42	EPA 8021B
Ethylbenzene	300	42	EPA 8021B
m,p-Xylenes	100	42	EPA 8021B
o-Xylene	ND	42	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	114	77-128	EPA 8015B	
Bromofluorobenzene (PID)	91	75-132	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Page 2 of 8

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report 261309 Lab #: Location: Bay Center Apts EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Water 09/30/14 Matrix: Sampled: Units: ug/L Received: 09/30/14

Field ID: MW-9 Diln Fac: 1.000
Type: SAMPLE Batch#: 215987
Lab ID: 261309-007 Analyzed: 10/01/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	120	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	8.6	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	0.55	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	88	77-128	EPA 8015B	
Bromofluorobenzene (PID)	79	75-132	EPA 8021B	

 Field ID:
 MW-10
 Diln Fac:
 33.33

 Type:
 SAMPLE
 Batch#:
 216100

 Lab ID:
 261309-008
 Analyzed:
 10/05/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	7,000	1,700	EPA 8015B
MTBE	ND	67	EPA 8021B
Benzene	1,500	17	EPA 8021B
Toluene	68	17	EPA 8021B
Ethylbenzene	28	17	EPA 8021B
m,p-Xylenes	36	17	EPA 8021B
o-Xylene	ND	17	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	105	77-128	EPA 8015B	
Bromofluorobenzene (PID)	103	75-132	EPA 8021B	

Field ID: MW-11 Diln Fac: 1.000
Type: SAMPLE Batch#: 215987
Lab ID: 261309-009 Analyzed: 10/02/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,000	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	89	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	6.0	0.50	EPA 8021B
m,p-Xylenes	10	0.50	EPA 8021B
o-Xylene	4.4	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	99	77-128	EPA 8015B	
Bromofluorobenzene (PID)	90	75-132	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Page 3 of 8

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Bay Center Apts EPA 5030B Lab #: 261309 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 09/30/14 Matrix: Water Sampled: Units: ug/L Received: 09/30/14

Field ID: MW-121 Lab ID: 261309-010

Type: SAMPLE

Analyte	Result	RL	Diln Fac	Batch# Analyzed Analysis	
Gasoline C7-C12	6,500 Y	1,700	33.33	216022 10/03/14 EPA 8015B	
MTBE	ND	2.0	1.000	215987 10/02/14 EPA 8021B	ļ
Benzene	1,500	17	33.33	216022 10/03/14 EPA 8021B	ļ
Toluene	110 C	0.50	1.000	215987 10/02/14 EPA 8021B	ļ
Ethylbenzene	26	0.50	1.000	215987 10/02/14 EPA 8021B	ļ
m,p-Xylenes	50	0.50	1.000	215987 10/02/14 EPA 8021B	ļ
o-Xylene	9.9	0.50	1.000	215987 10/02/14 EPA 8021B	

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	106	77-128	33.33	216022 10/03/14	EPA 8015B
Bromofluorobenzene (PID)	89	75-132	1.000	215987 10/02/14	EPA 8021B

Field ID: MW-13 Diln Fac: 50.00 Type: SAMPLE Batch#: 216021 Lab ID: 261309-011 Analyzed: 10/03/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	16,000	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	2,400	25	EPA 8021B
Toluene	70	25	EPA 8021B
Ethylbenzene	460	25	EPA 8021B
m,p-Xylenes	220	25	EPA 8021B
o-Xylene	33	25	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	114	77-128	EPA 8015B	
Bromofluorobenzene (PID)	92	75-132	EPA 8021B	

Field ID: MW-14 Lab ID: 261309-012 Type: SAMPLE Analyzed: 10/02/14

Analyte	Result	RL	Diln Fac	Batch#	Analysis
Gasoline C7-C12	7,100	2,500	50.00	216022 EP <i>I</i>	A 8015B
MTBE	ND	100	50.00	216022 EPA	A 8021B
Benzene	1,600	25	50.00	216022 EPA	A 8021B
Toluene	220	0.50	1.000	215987 EPA	A 8021B
Ethylbenzene	120	25	50.00	216022 EPA	A 8021B
m,p-Xylenes	140	0.50	1.000	215987 EPA	A 8021B
o-Xylene	40	0.50	1.000	215987 EPA	A 8021B

Surrogate	%REC	Limits	Diln Fac	Batch#	Analysis	
Bromofluorobenzene (FID)	110	77-128	50.00	216022 EP	A 8015B	
Bromofluorobenzene (PID)	99	75-132	1.000	215987 EP	A 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Page 4 of 8

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Bay Center Apts EPA 5030B Lab #: 261309 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 09/30/14 Matrix: Water Sampled: Units: ug/L Received: 09/30/14

Field ID: MW-15 Lab ID: 261309-013 Type: SAMPLE Analyzed: 10/02/14

Analyte	Result	RL	Diln Fac	Batch#	Analysis
Gasoline C7-C12	9,500 Y	2,500	50.00	216022 EPA	8015B
MTBE	ND	100	50.00	216022 EPA	8021B
Benzene	2,600	25	50.00	216022 EPA	8021B
Toluene	110 C	0.50	1.000	215987 EPA	8021B
Ethylbenzene	22	0.50	1.000	215987 EPA	8021B
m,p-Xylenes	39	0.50	1.000	215987 EPA	8021B
o-Xylene	7.7	0.50	1.000	215987 EPA	8021B

Surrogate	%REC	Limits	Diln Fac	Batch#	Analysis
Bromofluorobenzene (FID)	111	77-128	50.00	216022 EPA	A 8015B
Bromofluorobenzene (PID)	81	75-132	1.000	215987 EPA	A 8021B

Field ID: MW-16 Diln Fac: 1.000
Type: SAMPLE Batch#: 215987
Lab ID: 261309-014 Analyzed: 10/02/14

Analyte	Result	RL	Analysis	
Gasoline C7-C12	110	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	14	0.50	EPA 8021B	
Toluene	1.5	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	100	77-128	EPA 8015B	
Bromofluorobenzene (PID)	86	75-132	EPA 8021B	

Field ID: MW-17 Lab ID: 261309-015 Type: SAMPLE Analyzed: 10/02/14

Analyte	Result	RL	Diln Fac	Batch#	Analysis
Gasoline C7-C12	7,900	1,700	33.33	216022 EPA	A 8015B
MTBE	ND	2.0	1.000	215987 EPA	A 8021B
Benzene	1,500	17	33.33	216022 EPA	A 8021B
Toluene	160 C	0.50	1.000	215987 EPA	A 8021B
Ethylbenzene	130	0.50	1.000	215987 EPA	A 8021B
m,p-Xylenes	68	0.50	1.000	215987 EPA	A 8021B
o-Xylene	23	0.50	1.000	215987 EPA	A 8021B

Surrogate	%REC	Limits	Diln Fac	Batch#	Analysis
Bromofluorobenzene (FID)	101	77-128	33.33	216022 EP	A 8015B
Bromofluorobenzene (PID)	89	75-132	1.000	215987 EP	A 8021B

C= Presence confirmed, but RPD between columns exceeds 40%

Page 5 of 8

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Bay Center Apts EPA 5030B Lab #: 261309 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Matrix: 09/30/14 Water Sampled: Units: ug/L Received: 09/30/14

1.000 216022 MW-18 Diln Fac: Field ID: Type: SAMPLE Batch#:

Lab ID: 261309-016

Analyte	Result	RL	Analyzed	Analysis
Gasoline C7-C12	ND	50	10/02/14	EPA 8015B
MTBE	ND	2.0	10/02/14	EPA 8021B
Benzene	ND	0.50	10/03/14	EPA 8021B
Toluene	ND	0.50	10/02/14	EPA 8021B
Ethylbenzene	ND	0.50	10/02/14	EPA 8021B
m,p-Xylenes	ND	0.50	10/02/14	EPA 8021B
o-Xylene	ND	0.50	10/02/14	EPA 8021B

Surrogate	%REC	Limits	Analyzed	Analysis
Bromofluorobenzene (FID)	92	77-128	10/02/14	EPA 8015B
Bromofluorobenzene (PID)	86	75-132	10/02/14	EPA 8021B

Field ID: MW-ELab ID: 261309-017 Diln Fac: SAMPLE 33.33 Type:

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	6,800	1,700	216021 10/03/14	EPA 8015B
MTBE	ND	67	216022 10/02/14	EPA 8021B
Benzene	1,800	17	216022 10/02/14	EPA 8021B
Toluene	55	17	216022 10/02/14	EPA 8021B
Ethylbenzene	86	17	216021 10/03/14	EPA 8021B
m,p-Xylenes	68	17	216021 10/03/14	EPA 8021B
o-Xylene	19	17	216022 10/02/14	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	112	77-128	216021 10/03/14	EPA 8015B
Bromofluorobenzene (PID)	91	75-132	216021 10/03/14	EPA 8021B

Field ID: RW-1Lab ID: 261309-018 Diln Fac: Type: SAMPLE 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	440	50	216022 10/03/14	EPA 8015B
MTBE	ND	2.0	216022 10/03/14	EPA 8021B
Benzene	41	0.50	216022 10/03/14	EPA 8021B
Toluene	0.86 C	0.50	216022 10/03/14	EPA 8021B
Ethylbenzene	1.5	0.50	216022 10/03/14	EPA 8021B
m,p-Xylenes	1.3 C	0.50	216022 10/03/14	EPA 8021B
o-Xylene	0.92	0.50	215987 10/02/14	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	113	77-128	216022 10/03/14	EPA 8015B
Bromofluorobenzene (PID)	106	75-132	216022 10/03/14	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40%

Page 6 of 8

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Bay Center Apts EPA 5030B Lab #: 261309 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Matrix: 09/30/14 Water Sampled: Units: ug/L Received: 09/30/14

Type: BLANK Batch#: 215987 Lab ID: QC759940 Analyzed: 10/01/14 Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	106	77-128	EPA 8015B	
Bromofluorobenzene (PID)	101	75-132	EPA 8021B	

Type: BLANK Batch#: 216021 Lab ID: QC760071 Analyzed: 10/03/14 Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate		%REC	Limits	Analysis
Bromofluorobenzene ((FID)	112	77-128	EPA 8015B
Bromofluorobenzene ((PID)	89	75-132	EPA 8021B

Type: BLANK Batch#: 216022 Lab ID: QC760077 Analyzed: 10/02/14 Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FI	D) 97	77-128	EPA 8015B	
Bromofluorobenzene (PI	D) 102	75-132	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Page 7 of 8

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report						
Lab #: Client: Project#:	261309 Stellar Environmental Solutions 2007-65	Location: Prep:	Bay Center Apts EPA 5030B			
Matrix: Units:	Water ug/L	Sampled: Received:	09/30/14 09/30/14			

Type: Lab ID: Diln Fac: BLANK QC760386 1.000 216100 10/05/14 Batch#: Analyzed:

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	97	77-128	EPA 8015B	
Bromofluorobenzene (PID)	110	75-132	EPA 8021B	

Page 8 of 8

C= Presence confirmed, but RPD between columns exceeds 40%
Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	261309	Location:	Bay Center Apts				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2007-65	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	215987				
Units:	ug/L	Analyzed:	10/01/14				
Diln Fac:	1.000						

Type: BS Lab ID: QC759937

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.333	93	74-132
Benzene	10.00	9.926	99	80-120
Toluene	10.00	10.16	102	80-120
Ethylbenzene	10.00	10.43	104	80-120
m,p-Xylenes	10.00	10.51	105	80-120
o-Xylene	10.00	10.72	107	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	99	75-132

Type: BSD Lab ID: QC759938

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	18.18	91	74-132	3	36
Benzene	20.00	17.91	90	80-120	10	20
Toluene	20.00	16.88	84	80-120	19	20
Ethylbenzene	20.00	17.65	88	80-120	17	20
m,p-Xylenes	20.00	18.00	90	80-120	15	20
o-Xylene	20.00	18.42	92	80-120	15	20

S	Surrogate	%REC	Limits
Bromofluoro	orobenzene (PID)	96	75-132

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	261309	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC759939	Batch#:	215987
Matrix:	Water	Analyzed:	10/01/14
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,040	104	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	105	77-128

Page 1 of 1 5.0

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: 26130	9	Location:	Bay Center Apts
Client: Stell	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-	65	Analysis:	EPA 8015B
Field ID:	MW-3	Batch#:	215987
MSS Lab ID:	261309-001	Sampled:	09/30/14
Matrix:	Water	Received:	09/30/14
Units:	ug/L	Analyzed:	10/01/14
Diln Fac:	1.000		

Type: MS Lab ID: QC759941

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	528.3	2,000	2,589	103	74-120

Surrogate	%REC	Surrogate	Limit
Bromofluorobenzene	122	orobenzene (FID)	77-12

Type: MSD Lab ID: QC759942

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,514	99	74-120	3	27

	Surrogate	%REC	Limits
Bromofluoi	orobenzene (FID)	119	77-128

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	261309	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC760070	Batch#:	216021
Matrix:	Water	Analyzed:	10/03/14
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,103	110	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	112	77-128

Page 1 of 1 7.0

Curtis & Tompkins Laboratories Analytical Report							
Lab #: 26130	9	Location:	Bay Center Apts				
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B				
Project#: 2007-	65	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZ	Batch#:	216021				
MSS Lab ID:	261360-001	Sampled:	10/01/14				
Matrix:	Water	Received:	10/01/14				
Units:	ug/L	Analyzed:	10/04/14				
Diln Fac:	1.000						

Type: MS

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	24.78	2.000	1.850	91	74-120

Lab ID: QC760072

Surrogate %REC Limits
Bromofluorobenzene (FID) 115 77-128

Type: MSD Lab ID: QC760073

Analyte	Spiked	Result	%REC	Limits	RPD I	Lim
Gasoline C7-C12	2,000	1,853	91	74-120	0 2	27

	Surrogate	%REC	Limits
Bromofluor	robenzene (FID)	116	77-128

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	261309	Location:	Bay Center Apts					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2007-65	Analysis:	EPA 8021B					
Matrix:	Water	Batch#:	216022					
Units:	ug/L	Analyzed:	10/02/14					
Diln Fac:	1.000							

Type: BS Lab ID: QC760074

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.192	92	74-132
Benzene	10.00	8.544	85	80-120
Toluene	10.00	8.564	86	80-120
Ethylbenzene	10.00	8.759	88	80-120
m,p-Xylenes	10.00	9.200	92	80-120
o-Xylene	10.00	9.262	93	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	101	75-132

Type: BSD Lab ID: QC760075

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	9.276	93	74-132	1	36
Benzene	10.00	8.853	89	80-120	4	20
Toluene	10.00	8.936	89	80-120	4	20
Ethylbenzene	10.00	8.903	89	80-120	2	20
m,p-Xylenes	10.00	9.805	98	80-120	6	20
o-Xylene	10.00	9.604	96	80-120	4	20

Surrog	%REC	Limits
Bromofluorobenze	(PID) 101	75-132

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	261309	Location:	Bay Center Apts					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2007-65	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC760076	Batch#:	216022					
Matrix:	Water	Analyzed:	10/02/14					
Units:	ug/L							

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,069	107	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	111	77-128

Page 1 of 1

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: 261309	9	Location:	Bay Center Apts
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-6	65	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	216022
MSS Lab ID:	261319-004	Sampled:	09/30/14
Matrix:	Water	Received:	09/30/14
Units:	ug/L	Analyzed:	10/03/14
Diln Fac:	1.000		

Type: MS

Lab ID: QC760078

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	42.06	2,000	1,928	94	74-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	106	77-128

Type: MSD Lab ID: QC760079

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,986	97	74-120	3	27

	Surrogate	%REC	Limits
Bromofluor	robenzene (FID)	113	77-128

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	261309	Location:	Bay Center Apts					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2007-65	Analysis:	EPA 8021B					
Matrix:	Water	Batch#:	216021					
Units:	ug/L	Analyzed:	10/03/14					
Diln Fac:	1.000							

Type: BS Lab ID: QC760265

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.00	100	74-132
Benzene	10.00	9.037	90	80-120
Toluene	10.00	9.279	93	80-120
Ethylbenzene	10.00	9.266	93	80-120
m,p-Xylenes	10.00	9.394	94	80-120
o-Xylene	10.00	9.207	92	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	86	75-132

Type: BSD Lab ID: QC760266

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	19.65	98	74-132	2	36
Benzene	20.00	18.07	90	80-120	0	20
Toluene	20.00	18.14	91	80-120	2	20
Ethylbenzene	20.00	17.90	90	80-120	3	20
m,p-Xylenes	20.00	18.03	90	80-120	4	20
o-Xylene	20.00	18.06	90	80-120	2	20

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	93	75-132

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	261309	Location:	Bay Center Apts					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2007-65	Analysis:	EPA 8021B					
Matrix:	Water	Batch#:	216100					
Units:	ug/L	Analyzed:	10/05/14					
Diln Fac:	1.000							

Type: BS Lab ID: QC760383

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.308	93	74-132
Benzene	10.00	10.70	107	80-120
Toluene	10.00	10.53	105	80-120
Ethylbenzene	10.00	10.50	105	80-120
m,p-Xylenes	10.00	10.33	103	80-120
o-Xylene	10.00	9.867	99	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	104	75-132

Type: BSD Lab ID: QC760384

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	11.12	111	74-132	18	36
Benzene	10.00	11.94	119	80-120	11	20
Toluene	10.00	12.01	120	80-120	13	20
Ethylbenzene	10.00	11.75	117	80-120	11	20
m,p-Xylenes	10.00	11.65	117	80-120	12	20
o-Xylene	10.00	11.12	111	80-120	12	20

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	111	75-132

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	261309	Location:	Bay Center Apts					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2007-65	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC760385	Batch#:	216100					
Matrix:	Water	Analyzed:	10/05/14					
Units:	ug/L							

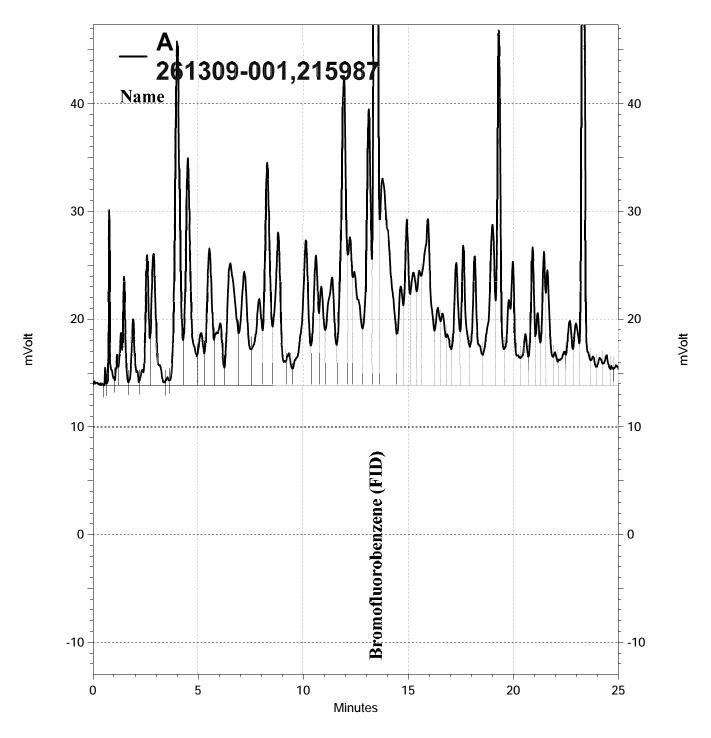
Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,049	105	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	107	77-128

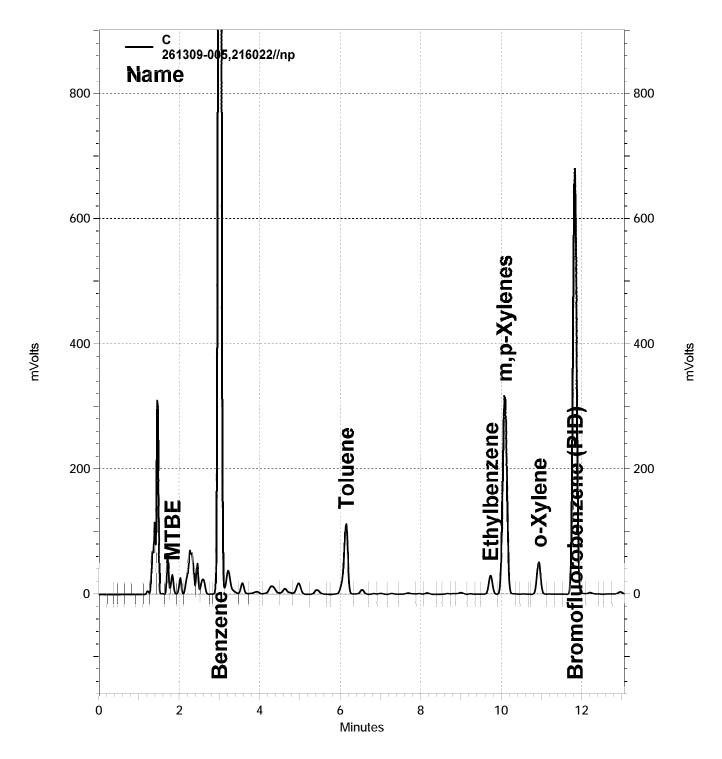
Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report							
Lab #: 261309		Location:	Bay Center Apts				
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B				
Project#: 2007-6	55	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZZ	Batch#:	216100				
MSS Lab ID:	261421-001	Sampled:	10/03/14				
Matrix:	Water	Received:	10/03/14				
Units:	ug/L	Analyzed:	10/06/14				
Diln Fac:	1.000						

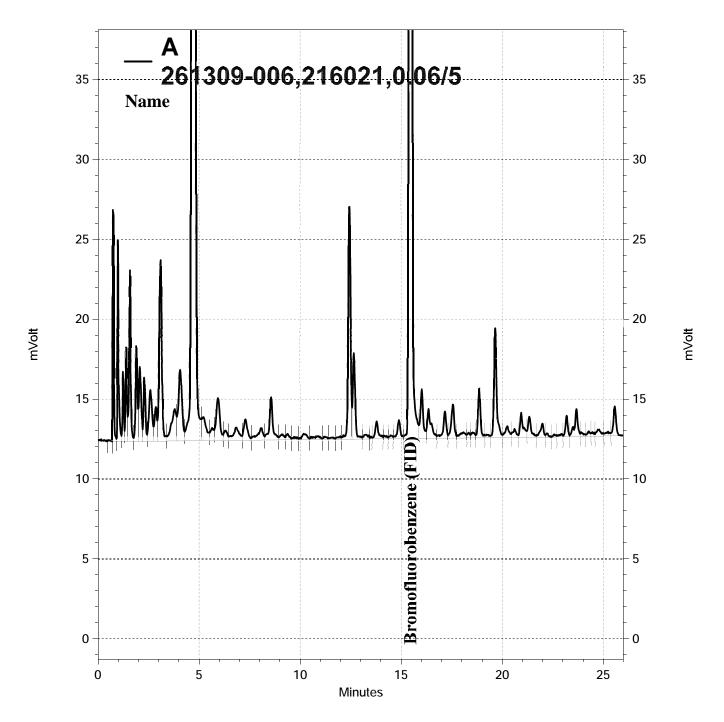
Type: MS Lab ID: QC760387

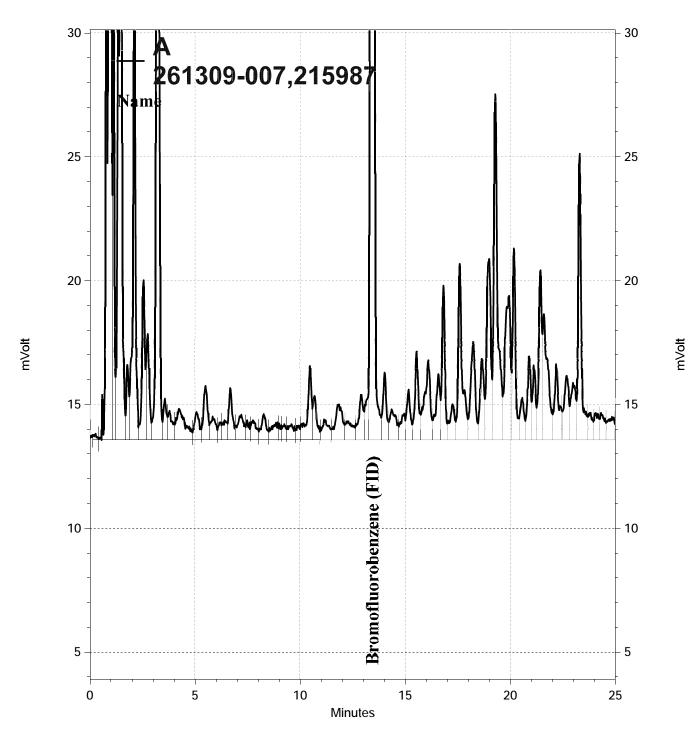

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	27.51	2,000	1,806	89	74-120

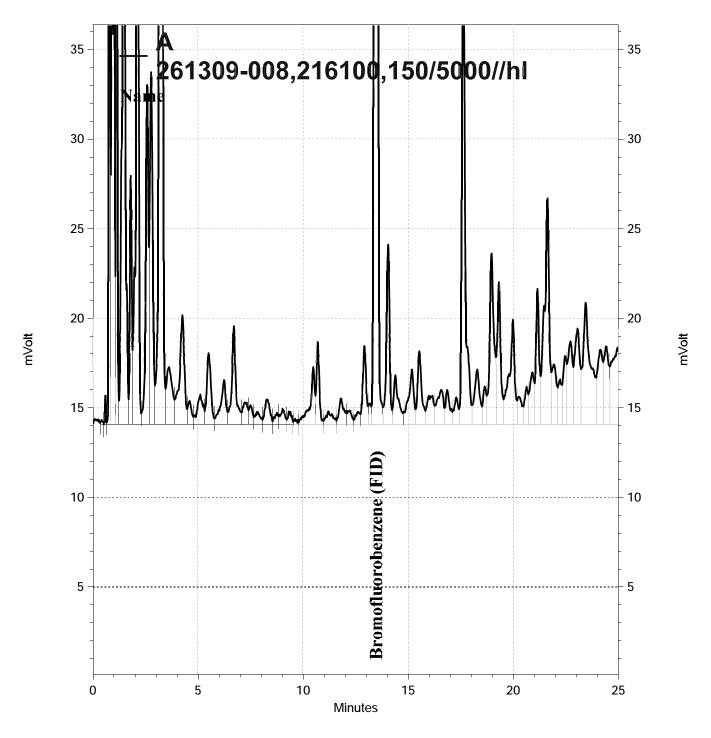
Surrogate	%REC	Limits
Bromofluorobenzene (F	85	77-128

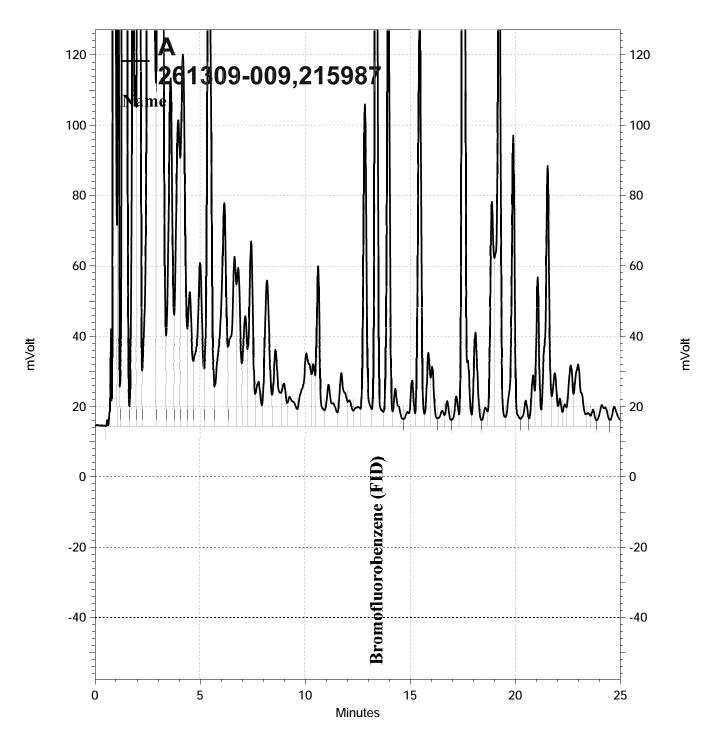

Type: MSD Lab ID: QC760388

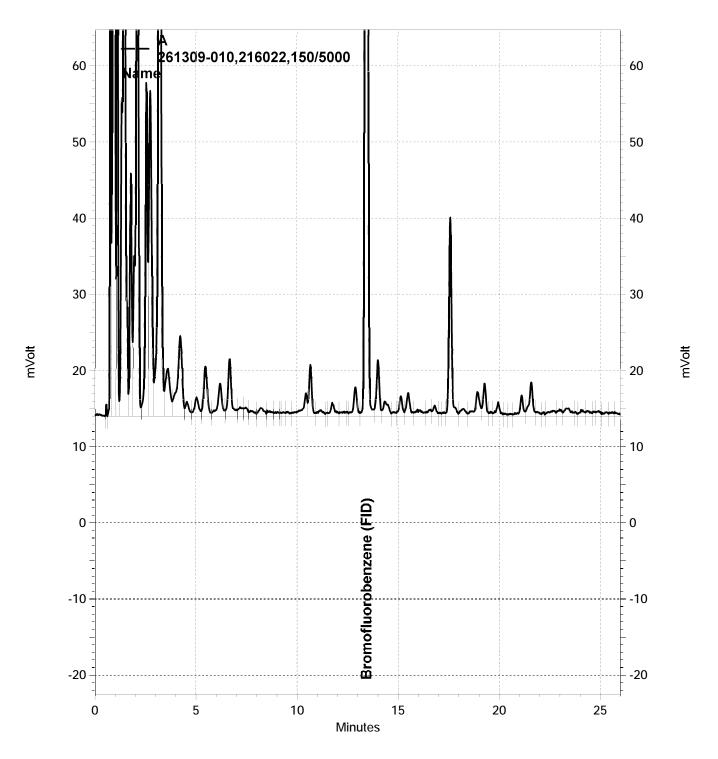
Analyte	Spiked	Result	%REC	Limits	RPD L	Lim
Gasoline C7-C12	2,000	1,644	81	74-120	9 2	27

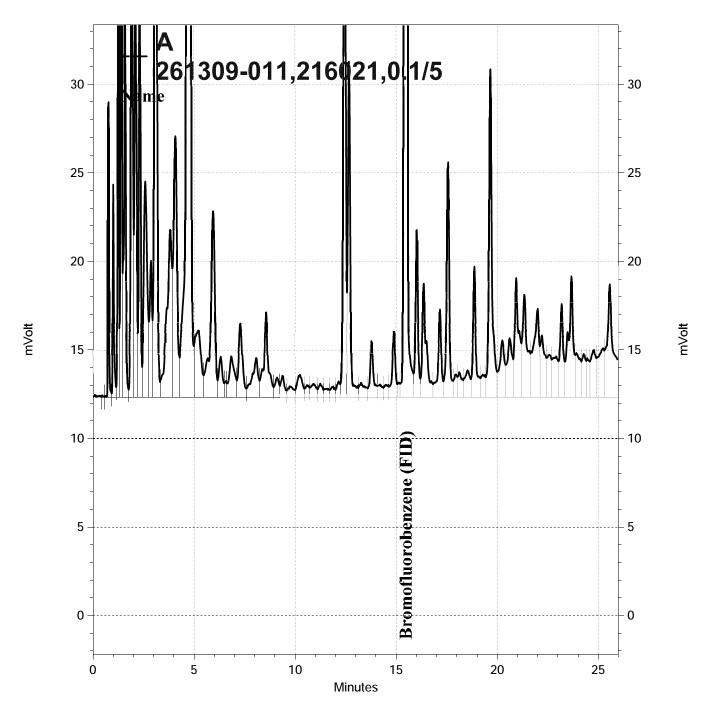

Surrogate	%REC	Limits
Bromofluorobenzene (80	77-128

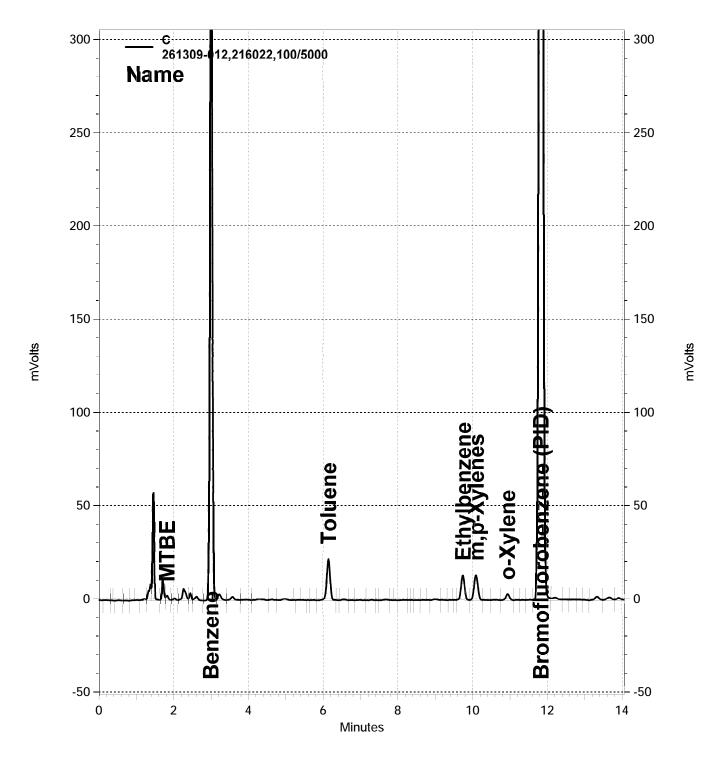

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-011, A

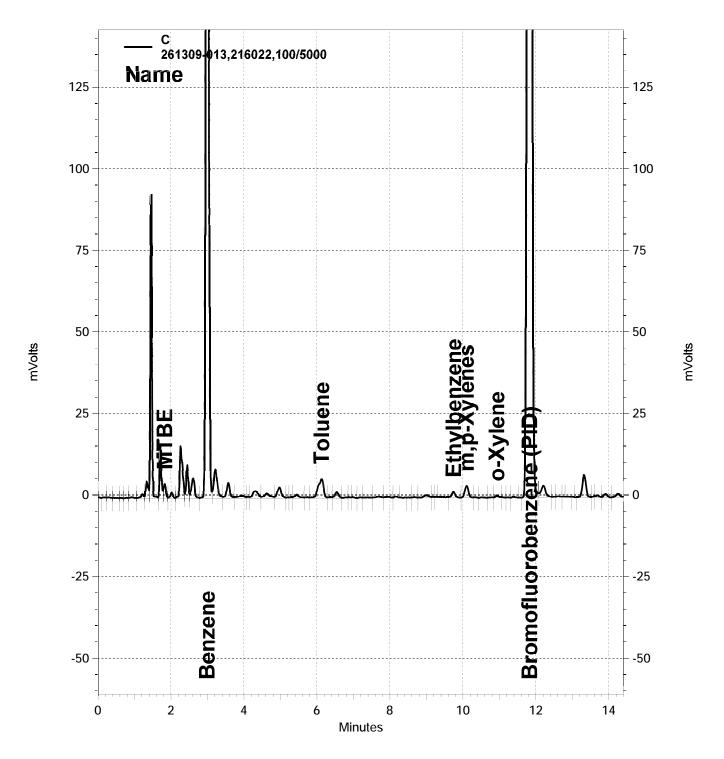

\Lims\gdrive\ezchrom\Projects\GC05\Data\275-007, C

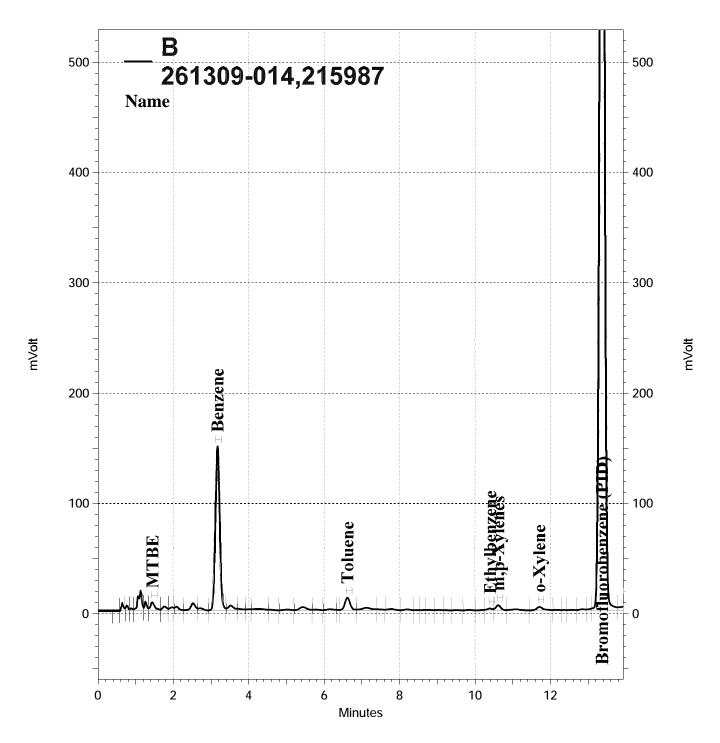

\Lims\gdrive\ezchrom\Projects\GC07\Data\276-005, A

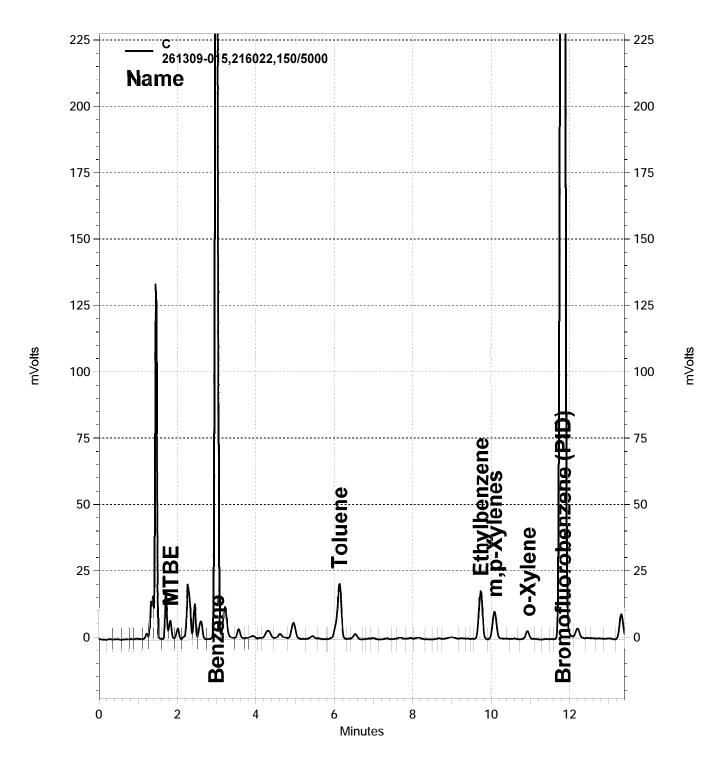

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-018, A

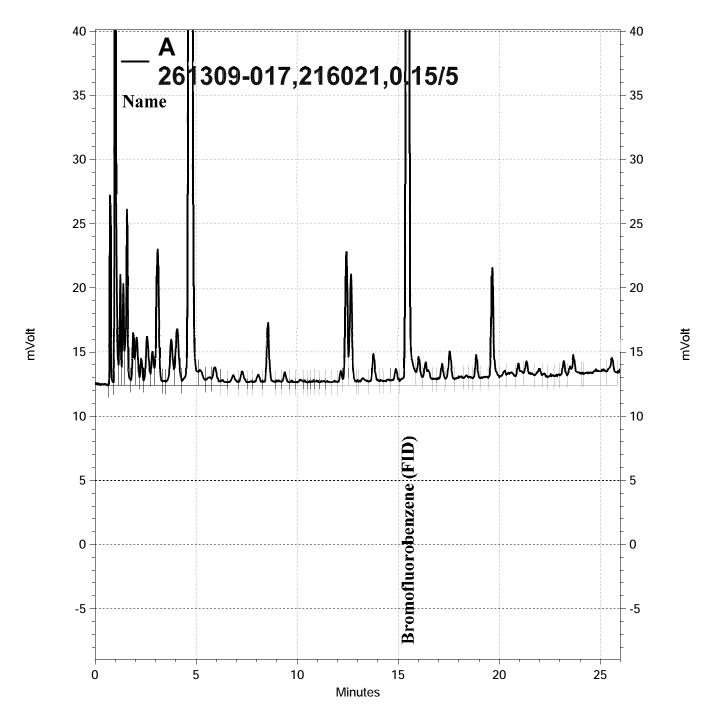

\Lims\gdrive\ezchrom\Projects\GC05\Data\278-007, A

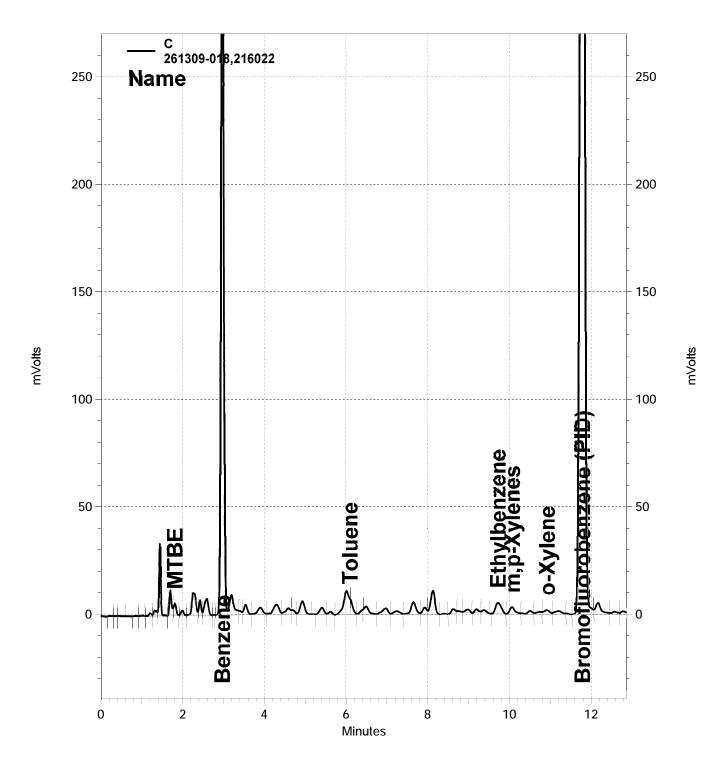

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-026, A

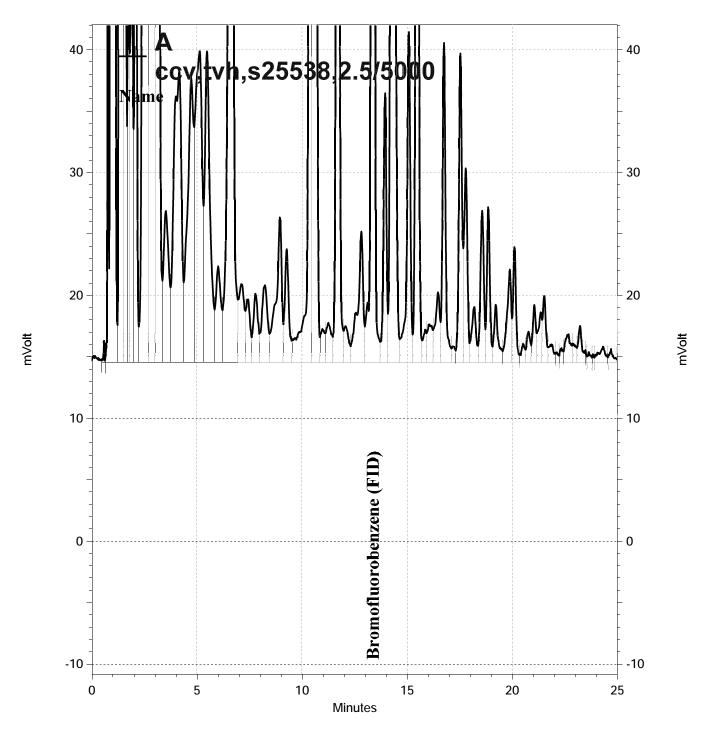

\Lims\gdrive\ezchrom\Projects\GC05\Data\275-022, A


\Lims\gdrive\ezchrom\Projects\GC07\Data\276-007, A


\Lims\gdrive\ezchrom\Projects\GC05\Data\275-012, C


\Lims\gdrive\ezchrom\Projects\GC05\Data\275-013, C


\Lims\gdrive\ezchrom\Projects\GC05\Data\274-031, B


\Lims\gdrive\ezchrom\Projects\GC05\Data\275-014, C

\Lims\gdrive\ezchrom\Projects\GC07\Data\276-008, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\275-021, C

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-003, A

Total Extractable Hydrocarbons

Lab #: 261309 Location: Bay Center Apts Client: Stellar Environmental Solutions Prep: EPA 3520C

Result

21,000

 Project#:
 2007-65
 Analysis:
 EPA 8015B

 Matrix:
 Water
 Sampled:
 09/30/14

 Units:
 ug/L
 Received:
 09/30/14

Field ID: MW-3 Batch#: 215985 Type: SAMPLE Prepared: 10/01/14 Lab ID: 261309-001 Analyzed: 10/02/14

Diln Fac: 10.00

Surrogate %REC Limits
o-Terphenyl DO 66-129

RL

490

Field ID: MW-4 Batch#: 215985
Type: SAMPLE Prepared: 10/01/14
Lab ID: 261309-002 Analyzed: 10/02/14

Diln Fac: 1.000

Diesel C10-C24

Analyte

 Analyte
 Result
 RL

 Diesel C10-C24
 380 Y
 49

Surrogate %REC Limits
o-Terphenyl 114 66-129

Field ID: MW-5 Batch#: 215985
Type: SAMPLE Prepared: 10/01/14
Lab ID: 261309-003 Analyzed: 10/02/14

Diln Fac: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 3,700
 49

Surrogate %REC Limits
o-Terphenyl 115 66-129

Field ID: MW-6 Batch#: 215985
Type: SAMPLE Prepared: 10/01/14
Lab ID: 261309-004 Analyzed: 10/02/14

Diln Fac: 1.000

AnalyteResultRLDiesel C10-C241,60049

Surrogate %REC Limits
o-Terphenyl 105 66-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 1 of 5

Total Extractable Hydrocarbons Lab #: 261309 Location: Bay Center Apts Client: Stellar Environmental Solutions EPA 3520C Prep: Analysis: Sampled: EPA 8015B 09/30/14 Project#: 2007-65 Matrix: Water Units: ug/L Received: 09/30/14

Field ID: MW - 7Batch#: 215985 Type: SAMPLE Prepared: 10/01/14 10/02/14 Lab ID: 261309-005 Analyzed: Diln Fac: 1.000

Analyte Result RLDiesel C10-C24 11,000 50

Limits Surrogate %REC o-Terphenyl 101 66-129

Field ID: 8-WMBatch#: 215985 Type: SAMPLE Prepared: 10/01/14 Lab ID: 261309-006 10/02/14 Analyzed: Diln Fac: 1.000

Analyte Result RL Diesel C10-C24 13,000

%REC Limits Surrogate o-Terphenyl 114 66-129

Field ID: MW-9Batch#: 215985 10/01/14 Type: SAMPLE Prepared: Lab ID: 261309-007 Analyzed: 10/02/14

Diln Fac: 1.000

Result Analyte RL Diesel C10-C24 10,000 51

%REC Limits Surrogate o-Terphenyl 103 66-129

215985 Field ID: MW-10Batch#: Type: SAMPLE Prepared: 10/01/14 Lab ID: 261309-008 Analyzed: 10/02/14 Diln Fac: 10.00

Analyte Result RL Diesel C10-C24 42,000 510

Surrogate Limits 66-129 o-Terphenyl DO

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected RL= Reporting Limit

Page 2 of 5

Total Extractable Hydrocarbons

Lab #: 261309 Location: Bay Center Apts Client: Stellar Environmental Solutions Prep: EPA 3520C Project#: 2007-65 Analysis: EPA 8015B

 Project#: 2007-65
 Analysis:
 EPA 8015B

 Matrix:
 Water
 Sampled:
 09/30/14

 Units:
 ug/L
 Received:
 09/30/14

Field ID: MW-11 Batch#: 215985 Type: SAMPLE Prepared: 10/01/14 Lab ID: 261309-009 Analyzed: 10/02/14

Diln Fac: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 7,800
 51

Surrogate %REC Limits
o-Terphenyl 114 66-129

- -

Field ID: MW-121 Batch#: 215985
Type: SAMPLE Prepared: 10/01/14
Lab ID: 261309-010 Analyzed: 10/02/14
Diln Fac: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 4,000
 51

Surrogate %REC Limits
o-Terphenyl 118 66-129

Field ID: MW-13 Batch#: 215985 Type: SAMPLE Prepared: 10/01/14 Lab ID: 261309-011 Analyzed: 10/02/14

Diln Fac: 1.000

1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 11,000
 49

Surrogate %REC Limits
o-Terphenyl 119 66-129

Field ID: MW-14 Batch#: 215985
Type: SAMPLE Prepared: 10/01/14
Lab ID: 261309-012 Analyzed: 10/02/14

 Analyte
 Result
 RL

 Diesel C10-C24
 8,500
 51

Surrogate %REC Limits
o-Terphenyl 97 66-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out
ND= Not Detected
DI= Deposition Limit

RL= Reporting Limit

Page 3 of 5

Diln Fac:

Total Extractable Hydrocarbons

Lab #: 261309 Location: Bay Center Apts
Client: Stellar Environmental Solutions Prep: EPA 3520C

 Project#:
 2007-65
 Analysis:
 EPA 8015B

 Matrix:
 Water
 Sampled:
 09/30/14

 Units:
 ug/L
 Received:
 09/30/14

Field ID: MW-15 Batch#: 215985 Type: SAMPLE Prepared: 10/01/14 Lab ID: 261309-013 Analyzed: 10/02/14

Diln Fac: 1.000

Analyte Result RL

Diesel C10-C24 3,300 49

Surrogate %REC Limits

66-129

Field ID: MW-16 Batch#: 215985

115

Type: SAMPLE Prepared: 10/01/14
Lab ID: 261309-014 Analyzed: 10/03/14
Diln Fac: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 10,000
 50

Surrogate %REC Limits
o-Terphenyl 110 66-129

Field ID: MW-17 Batch#: 215985
Type: SAMPLE Prepared: 10/01/14
Lab ID: 261309-015 Analyzed: 10/03/14

Diln Fac: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 3,000
 49

Surrogate %REC Limits
o-Terphenyl 106 66-129

Field ID: MW-18 Batch#: 216027
Type: SAMPLE Prepared: 10/02/14
Lab ID: 261309-016 Analyzed: 10/04/14
Diln Fac: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 12,000
 51

Surrogate %REC Limits
o-Terphenyl 116 66-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out
ND= Not Detected
PL- Penorting Limit

o-Terphenyl

RL= Reporting Limit

Page 4 of 5

09/30/14

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C 261309 Lab #: Location: Client: Stellar Environmental Solutions Prep: Analysis: Sampled: EPA 8015B 09/30/14 Project#: 2007-65 Matrix: Water

Received:

Field ID: MW - FBatch#: 216027 10/02/14 Type: SAMPLE Prepared: Lab ID: 261309-017 10/04/14 Analyzed: Diln Fac: 1.000

Analyte Result $\overline{\mathtt{RL}}$ Diesel C10-C24 7,800

ug/L

Limits Surrogate %REC 109 o-Terphenyl 66-129

Field ID: RW-1Batch#: 216027 10/02/14 Type: SAMPLE Prepared: Lab ID: 261309-018 10/04/14 Analyzed: Diln Fac: 1.000

Analyte Result RL Diesel C10-C24 1,000 50

Limits Surrogate %REC o-Terphenyl 119 66-129

Batch#: 215985 Type: BLANK QC759925 Lab ID: 10/01/14 Prepared: Diln Fac: 1.000 Analyzed: 10/02/14

Analyte Result RL

Surrogate Limits o-Terphenyl 122

66-129

BLANK Batch#: 216027 Type: QC760094 Lab ID: 10/02/14 Prepared: Diln Fac: 1.000 Analyzed: 10/03/14

Result Analyte RL Diesel C10-C24 ND 50

Surrogate %REC Limits o-Terphenyl 66-129 115

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

Diesel C10-C24

RL= Reporting Limit

Page 5 of 5

Units:

QC759926

Batch QC Report

	Total Extractable Hydrocarbons							
Lab #:	261309	Location:	Bay Center Apts					
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C					
Project#:	2007-65	Analysis:	EPA 8015B					
Matrix:	Water	Batch#:	215985					
Units:	ug/L	Prepared:	10/01/14					
Diln Fac:	1.000	Analyzed:	10/02/14					

Type: BS

Lab ID:

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,588	104	61-120

Surrogate	%REC	Limits
o-Terphenyl	109	66-129

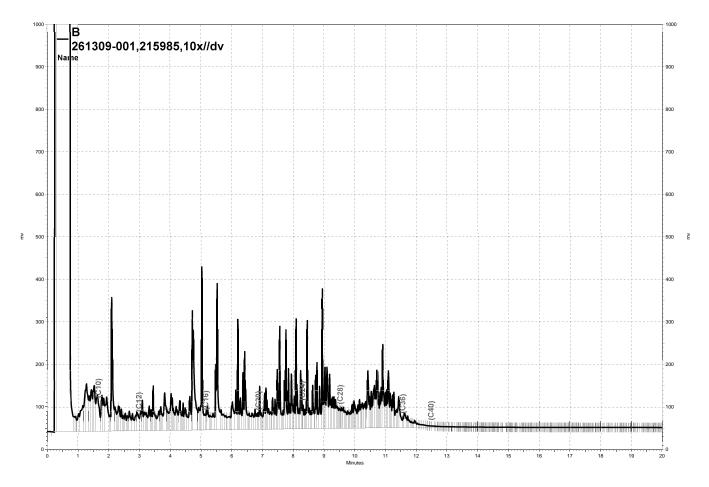
BSD Lab ID: QC759927 Type:

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,731	109	61-120	5	45

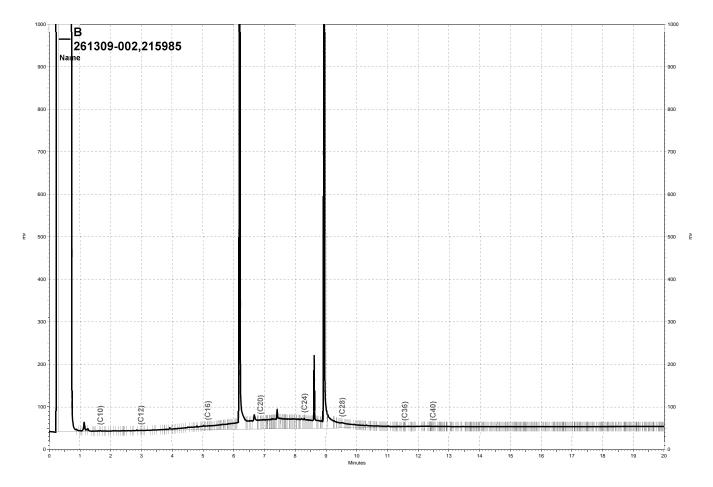
Surrogate	%REC	imits	
o-Terphenyl	112	6-129	

Total Extractable Hydrocarbons							
Lab #:	261309	Location:	Bay Center Apts				
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C				
Project#:	2007-65	Analysis:	EPA 8015B				
Matrix:	Water	Batch#:	216027				
Units:	ug/L	Prepared:	10/02/14				
Diln Fac:	1.000	Analyzed:	10/03/14				

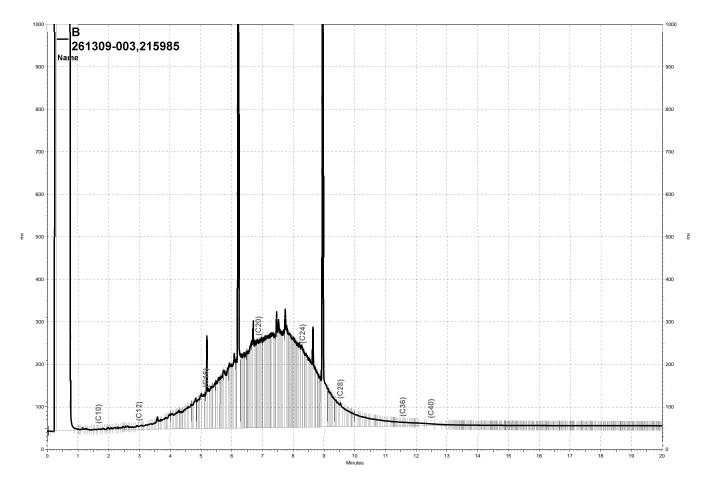
Type: BS Lab ID: QC760095

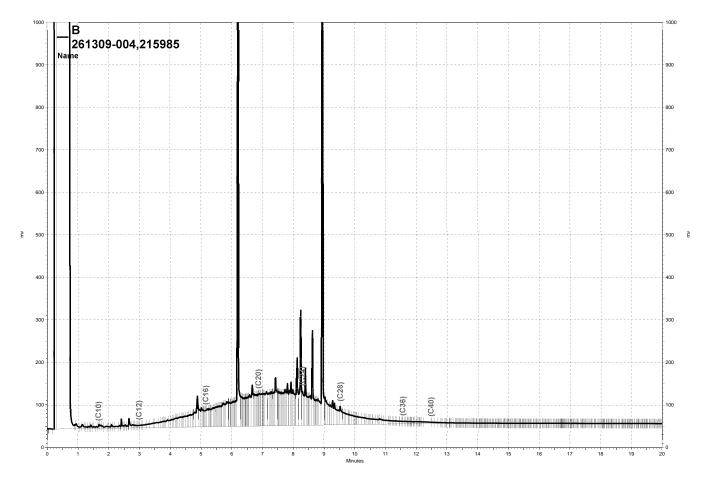

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,493	100	61-120

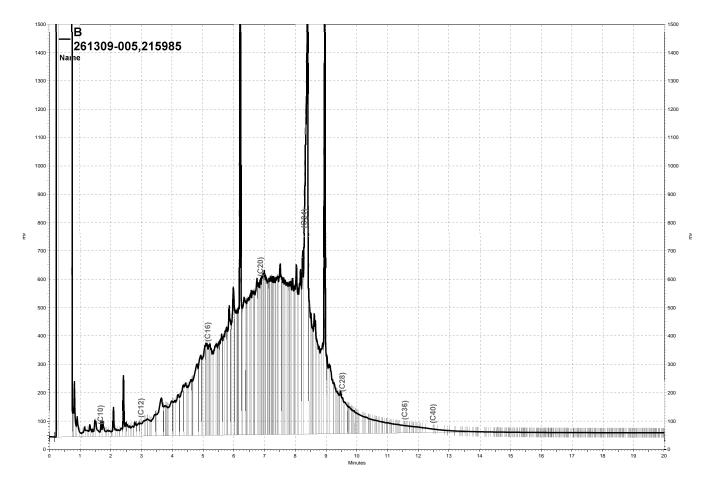
Surrogate	%REC	imits	
o-Terphenyl	105	6-129	

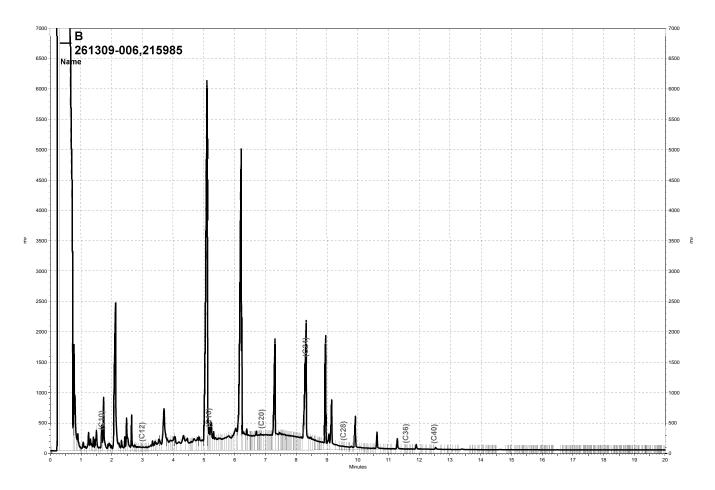

Type: BSD Lab ID: QC760096

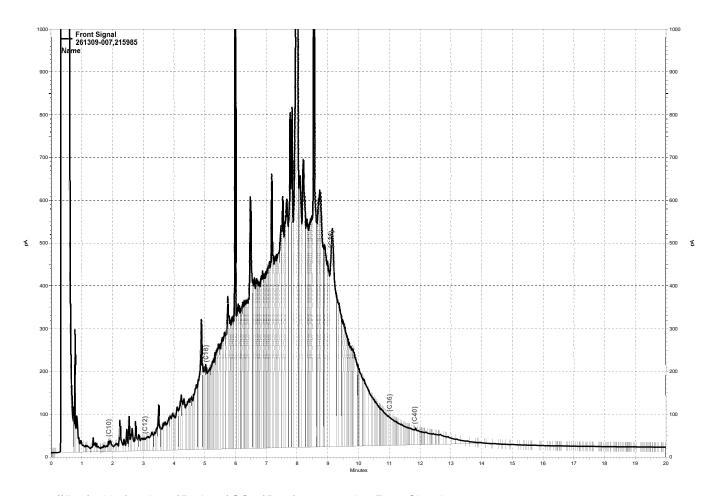
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,641	106	61-120	6	45

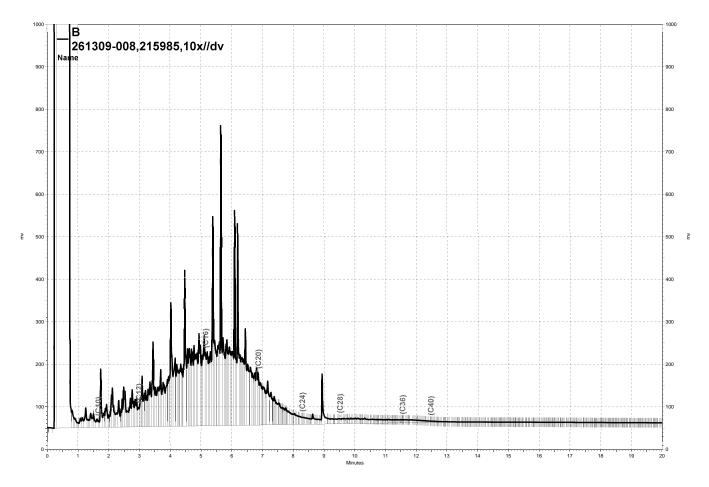

Surrogate	%REC	Limits
o-Terphenyl	111	66-129

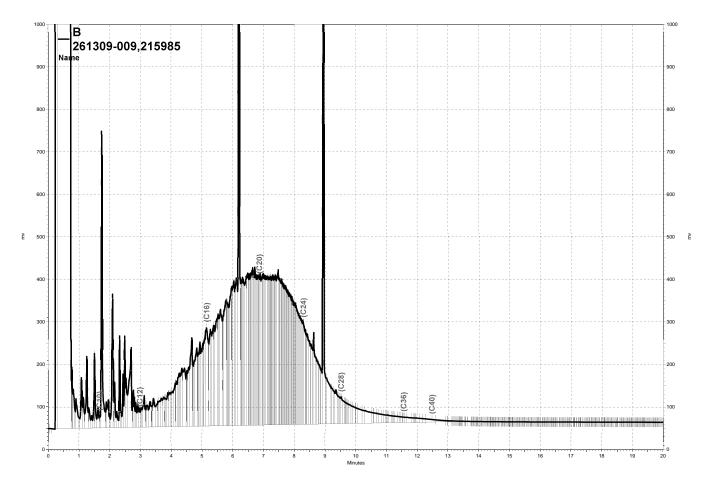

\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b017, B

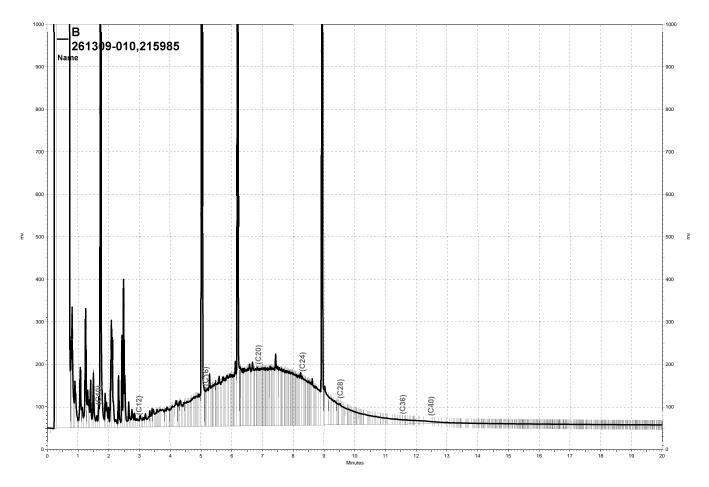

\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b019, B

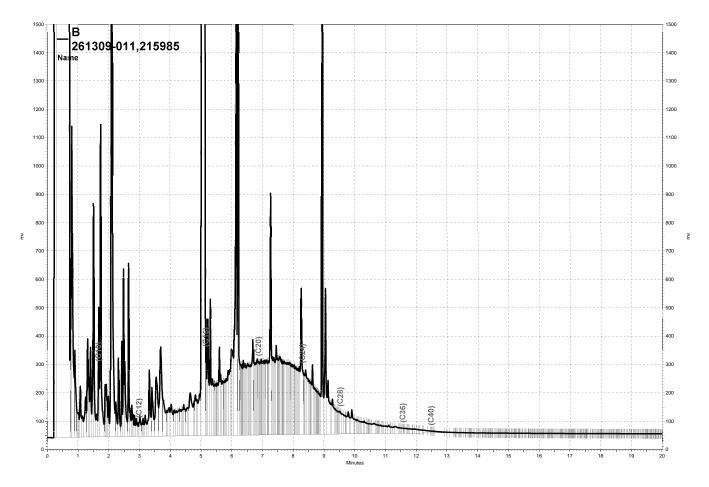

\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b020, B

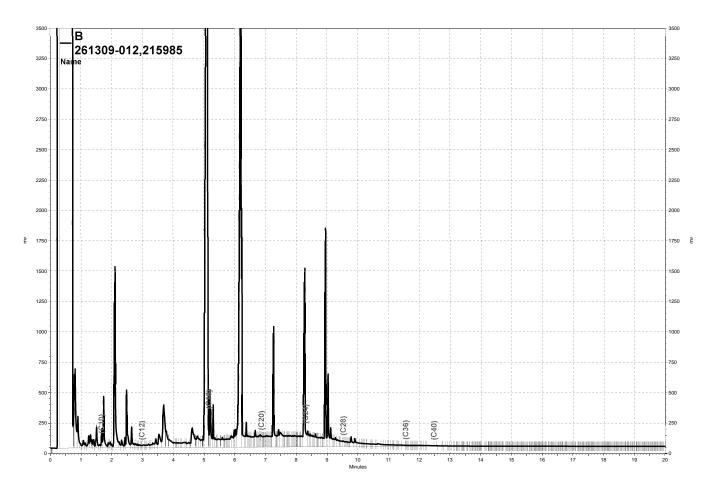

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b021, B

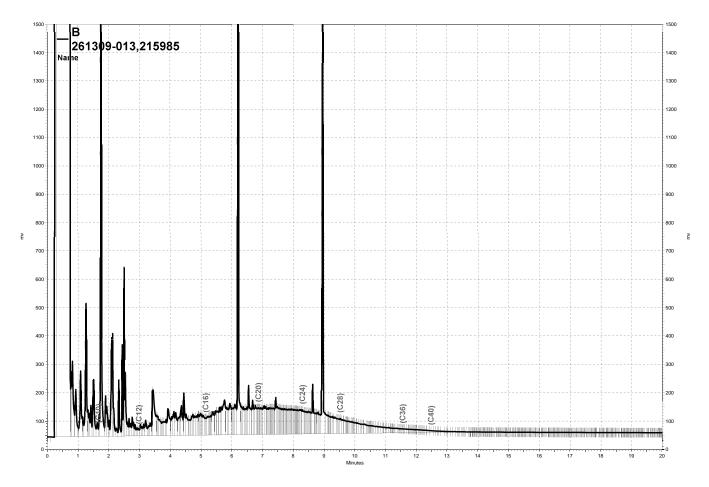

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b022, B

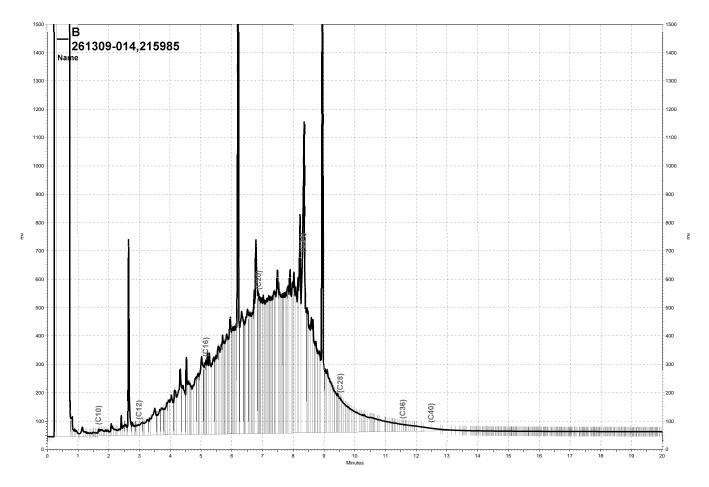

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b023, B

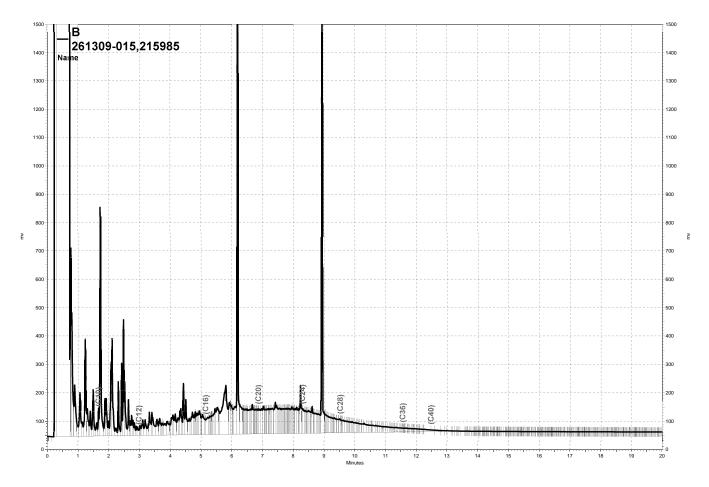

\\lims\gdrive\ezchrom\Projects\GC27\Data\275a017.dat, Front Signal

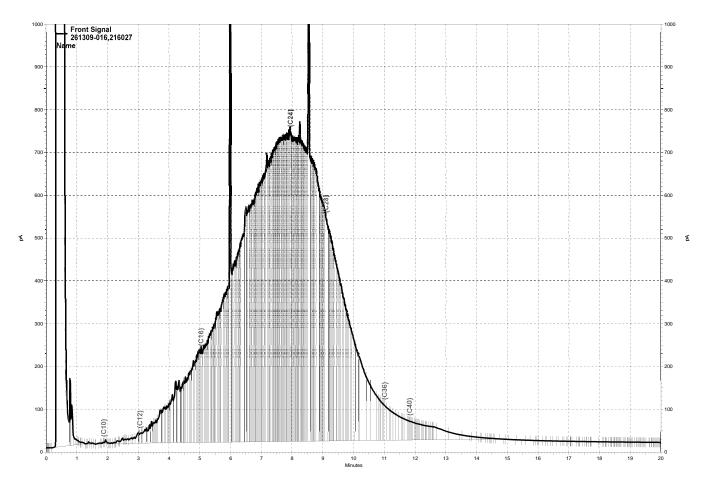

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b029, B

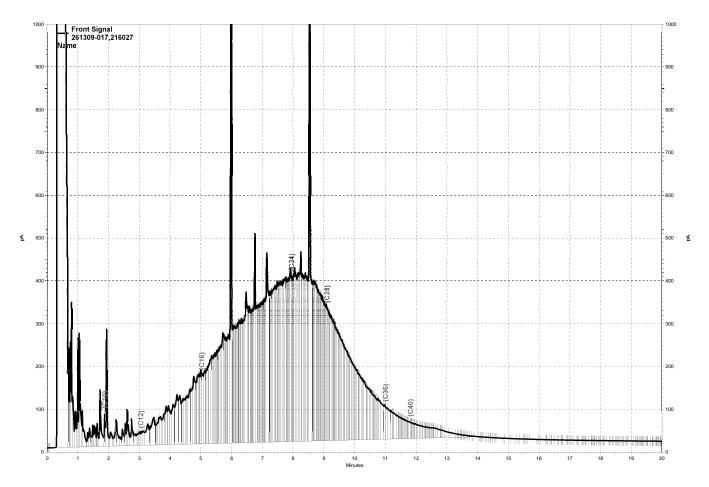

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b031, B

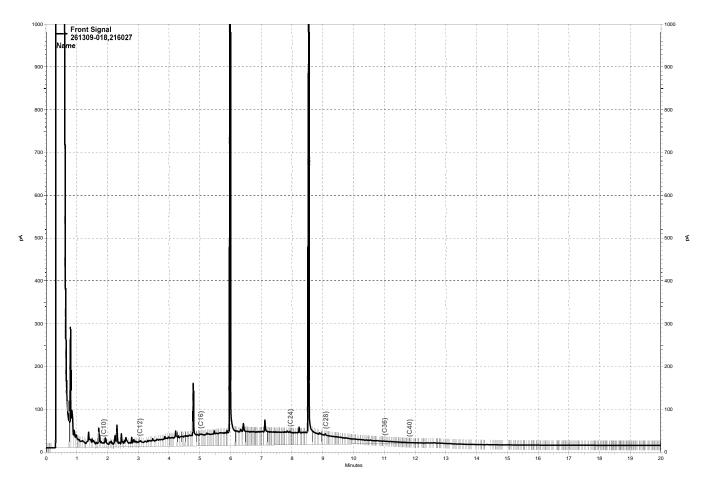

\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b032, B

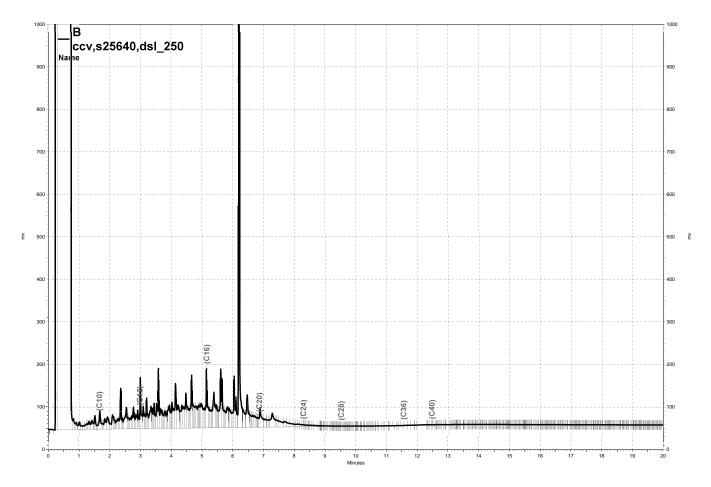

\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b033, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b034, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b035, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b036, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b037, B


\\lims\gdrive\ezchrom\Projects\GC27\Data\277a028.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\277a029.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\277a027.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC15B\Data\275b010, B

APPENDIX D

Historical Groundwater Elevation Data

TABLE B
Historical Monitoring, Extraction, and Trench Well Elevations
6400 Christie Avenue, Emeryville, California

	MW-1								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	14.39	9.60	NP	4.79				
2	May-89	14.31 ^(a)	8.73	NP	5.58				
3	Feb-91	14.31	9.18	NP	5.13				
		Monitoring well	abandoned - dat	e unclear					

	MW-2								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	14.36	9.64	NP	4.72				
2	May-89	14.28 ^(a)	8.78	NP	5.50				
3	Feb-91	14.28	9.61	NP	4.67				
		Monitoring well	abandoned - dat	e unclear					

			MW-3		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	14.53	8.93	trace	5.60
2	May-89	14.43 ^(a)	8.69	NP	5.74
3	Feb-91	14.43	8.31	NP	6.12
4	Mar-04	16.96 ^(b)	9.47	NP	7.49
5	Dec-06	NA	NA	NA	NA
6	Dec-07	16.65 ^(c)	7.76 ^(e)	7.76	8.89
7	Mar-08	16.65	8.72	8.70	7.93
8	Jun-08	16.65	8.56	NP	8.09
9	Sep-08	16.65	9.27	7.95	7.38
10	Dec-08	16.65	8.36	7.49	8.29
11	Mar-09	16.65	7.94	NP	8.71
12	Sep-09	16.65	8.58	NP	8.07
13	Mar-10	16.65	8.08 (e)	8.08	8.57
14	Sep-10	16.65	8.68 (e)	8.68	7.97
15	Mar-11	16.65	10.40	NM	6.25
16	Sep-11	16.65	10.84	10.83	6.17
17	Mar-12	16.65	8.21	NM	8.44
18	Sep-12	16.65	10.77	NM	5.88
19	Mar-13	16.65	11.27	NM	5.38
20	Sep-13	16.65	11.50	NM	5.15
21	Mar-14	16.65	9.64	9.61	7.01
22	Sep-14	16.65	NM	10.85	NM

			MW-4		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	14.21	8.29	NP	5.92
2	May-89	14.12 ^(a)	7.75	NP	6.37
3	Feb-91	14.12	8.04	NP	6.08
4	Mar-04	16.74 ^(b)	6.90	NP	7.49
5	Dec-06	NA	NA	NA	NA
6	Dec-07	16.29 ^(c)	6.61	NP	9.68
7	Mar-08	16.29	7.24	NP	9.05
8	Jun-08	16.29	6.94	NP	9.35
9	Sep-08	16.29	6.85	NP	6.85
10	Dec-08	16.29	7.42	NP	8.87
11	Mar-09	16.29	6.90	NP	9.39
12	Sep-09	16.29	7.40	NP	8.89
13	Mar-10	16.29	7.08	NP	9.21
14	Sep-10	16.29	7.08	NP	9.21
15	Mar-11	16.29	7.02	NP	9.27
16	Sep-11	16.29	7.83	NP	8.46
17	Mar-12	16.29	7.01	NP	9.28
18	Sep-12	16.29	7.82	NP	8.45
19	Mar-13	16.29	9.15	NP	7.14
20	Sep-13	16.29	8.00	NP	8.29
21	Mar-14	16.29	7.72	NP	8.57
22	Sep-14	16.29	8.23	NP	8.06

			MW-5		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	14.65	10.23	NP	4.42
2	May-89	14.56 ^(a)	9.29	NP	5.27
3	Feb-91	14.56	10.04	NP	4.52
4	Mar-04	17.11 ^(b)	9.10	NP	8.01
5	Dec-06	NA	NA	NA	NA
6	Dec-07	16.72 ^(c)	9.66	NA	7.06
7	Mar-08	16.72	9.72	NP	7.00
8	Jun-08	16.72	9.72	NP	7.00
9	Sep-08	16.72	8.56	NP	8.16
10	Dec-08	16.72	9.75	NP	6.97
11	Mar-09	16.72	9.31	NP	7.41
12	Sep-09	16.72	9.79	NP	6.93
13	Mar-10	16.72	9.48	NP	7.24
14	Sep-10	16.72	9.90	NP	6.82
15	Mar-11	16.72	9.29	NP	7.43
16	Sep-11	16.72	9.77	NP	6.95
17	Mar-12	16.72	9.19	NP	7.53
18	Sep-12	16.72	9.70	NP	7.02
19	Mar-13	16.72	10.63	NP	6.09
19	Sep-13	16.72	10.20	NP	6.52
20	Mar-14	16.72	9.68	NP	7.04
21	Sep-14	16,72	9.73	NP	6.99

			MW-6		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	14.75	8.10	NP	6.65
2	May-89	14.67 ^(a)	7.58	NP	7.09
3	Feb-91	14.67	7.05	NP	7.62
4	Mar-04	17.22 ^(b)	6.51	NP	10.71
5	Dec-06	NA	NA	NA	NA
6	Dec-07	16.82 ^(c)	6.61	NP	10.21
7	Mar-08	16.82	7.02	NP	9.80
8	Jun-08	16.82	7.55	NP	9.27
9	Sep-08	16.82	6.06	NP	10.76
10	Dec-08	16.82	6.91	NP	9.91
11	Mar-09	16.82	6.45	NP	10.37
12	Sep-09	16.82	8.05	NP	8.77
13	Mar-10	16.82	6.66	NP	10.16
14	Sep-10	16.82	7.98	NP	8.84
15	Mar-11	16.82	5.91	NP	10.91
16	Sep-11	16.82	7.66	NP	9.16
17	Mar-12	16.82	5.65	NP	11.17
18	Sep-12	16.82	7.51	NP	9.31
19	Mar-13	16.82	7.60	NP	9.22
20	Sep-13	16.82	5.65	NP	11.17
21	Mar-14	16.82	6.33	NP	10.49
22	Sep-14	16.82	8.13	NP	8.69

MW-7								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
		Installe	d March 2004					
1	Mar-04	18.09	9.93	NP	8.16			
2	Dec-06	NA	NA	NA	NA			
3	Dec-07	17.73 ^(c)	10.30	NP	7.43			
4	Mar-08	17.73	10.51	NP	7.22			
5	Jun-08	17.73	10.50	NP	7.23			
6	Sep-08	17.73	10.37	NP	7.36			
7	Dec-08	17.73	10.60	NP	7.13			
8	Mar-09	17.73	10.13	NP	7.60			
9	Sep-09	17.73	10.61	NP	7.12			
10	Mar-10	17.73	10.02	NP	7.71			
11	Sep-10	17.73	10.59	NP	7.14			
12	Mar-11	17.73	10.14	NP	7.59			
13	Sep-11	17.73	10.58	NP	7.15			
14	Mar-12	17.73	10.12	NP	7.61			
15	Sep-12	17.73	10.50	NP	7.23			
16	Mar-13	17.73	11.30	NP	6.43			
17	Sep-13	17.73	5.50	NP	12.23			
18	Mar-14	17.73	10.82	NP	6.91			
19	Sep-14	17.73	10.61`	NP	7.02			

			MW-8		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Install	ed March 2004		
1	Mar-04	18.25	9.32	8.15	8.93
2	Nov-06 ^(d)	16.96	10.59	NP	6.37
3	Dec-07	17.84 ^(c)	9.42	NP	8.42
4	Mar-08	17.84	10.50	9.18	7.34
5	Jun-08	17.84	9.68	9.10	8.16
6	Sep-08	17.84	9.63	8.89	8.21
7	Dec-08	17.84	9.58	8.89	8.26
8	Mar-09	17.84	9.62	8.89	8.22
9	Sep-09	17.84	8,55 ^(e)	8.55	9.29
10	Mar-10	17.84	9.02 ^(e)	9.02	8.82
11	Sep-10	17.84	9.75	9.89	7.95
12	Mar-11	17.84	8.89	8.99	8.85
13	Sep-11	17.84	9.87	9.55	7.97
14	Mar-12	17.84	9.29	9.01	8.55
15	Sep-12	17.84	9.25	8.46	8.59
16	Mar-13	17.84	9.95	9.59	7.89
17	Sep-13	17.84	10.32	10.28	7.52
18	Mar-14	17.84	10.22	10.28	7.62
19	Sep-14	17.84	9.91	9.85	7.93

			MW-9		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installe	ed March 2004		
1	Mar-04	18.27	9.38	NP	8.89
2	Dec-06	NA	NA	NA	NA
3	Dec-07	17.84 ^(c)	9.54	NP	8.30
4	Mar-08	17.84	9.77	NP	8.07
5	Jun-08	17.84	9.68	NP	9.27
6	Sep-08	17.84	9.30	NP	8.54
7	Dec-08	17.84	9.83	NP	8.01
8	Mar-09	17.84	9.37	NP	8.47
9	Sep-09	17.84	9.70	NP	8.14
10	Mar-10	17.84	9.46	NP	8.38
11	Sep-10	17.84	9.75	NP	8.09
12	Mar-11	17.84	9.52	NP	8.32
13	Sep-11	17.84	9.80	NP	8.04
14	Mar-12	17.84	9.54	NP	8.30
15	Sep-12	17.84	9.54	NP	8.30
16	Mar-13	17.84	10.08	NP	7.76
17	Sep-13	17.84	10.13	NP	7.71
18	Mar-14	17.84	10.01	NP	7.83
18	Sep-14	17.84	10.02	NP	7.82

	MW-10								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
		Installe	ed March 2004						
1	Mar-04	18.21	9.87	8.24	8.34				
2	Dec-06	18.21	9.30	8.86	8.91				
3	Dec-07	17.83 ^(c)	8.98 ^(e)	8.98	8.85				
4	Mar-08	17.83	9.28	8.98	8.55				
5	Jun-08	17.83	8.86	8.78	7.23				
6	Sep-08	17.83	8.95	8.84	8.88				
7	Dec-08	17.83	8.97	8.74	8.86				
8	Mar-09	17.83	9.25	8.54	9.25				
9	Sep-09	17.83	8.63	8.52	9.20				
10	Mar-10	17.83	10.30	8.58	7.53				
11	Sep-10	17.83	8.76	8.82	9.01				
12	Mar-11	17.83	8.15	8.14	9.68				
13	Sep-11	17.83	8.83	8.78	9.00				
14	Mar-12	17.83	7.89	7.75	9.94				
15	Sep-12	17.83	7.48	7.40	10.35				
16	Mar-13	17.83	10.30	9.33	7.53				
17	Sep-13	17.83	10.02	9.65	7.81				
18	Mar-14	17.83	9.92	9.65	7.91				
19	Sep-14	17.83	9.74	9.36	8.09				

		1	MW-11							
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
		Install	ed May 2004							
1	Nov-06 ^(d)	17.76 ^(c)	10.33	NP	7.43					
2	Dec-07	17.76	10.27	NP	7.49					
3	Mar-08	17.76	10.34	NP	7.42					
4	Jun-08	17.76	10.20	NP	8.16					
5	Sep-08	17.76	10.03	NP	7.73					
6	Dec-08	17.76	10.34	NP	7.42					
7	Mar-09	17.76	10.20	NP	7.56					
8	Sep-10	17.76	10.25	NP	7.51					
9	Mar-10	17.76	10.23	NP	7.53					
10	Sep-10	17.76	10.24	NP	7.52					
11	Mar-11	17.76	10.10	NP	7.66					
12	Sep-11	17.76	10.30	NP	7.46					
13	Mar-12	17.76	10.18	NP	7.58					
14	Sep-12	17.76	10.24	NP	7.52					
15	Mar-13	17.76	10.62	NP	7.14					
16	Sep-13	17.76	10.21	NP	7.55					
17	Mar-14	17.76	10.33	NP	7.43					

MW-12								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
		Installed be	etween 2004-20	06				
1	Nov-06 ^(d)	17.83 ^(c)	9.37	NP	8.46			
2	Dec-07	17.83	9.15	NP	8.68			
3	Mar-08	17.83	9.11	NP	8.72			
4	Jun-08	17.83	8.86	NP	8.97			
5	Sep-08	17.83	8.76	NP	9.07			
6	Dec-08	17.83	8.98	NP	8.85			
7	Mar-09	17.83	8.50	NP	9.33			
8	Sep-09	17.83	8.95	NP	8.88			
9	Mar-10	17.83	8.66	NP	9.17			
10	Sep-10	17.83	8.89	NP	8.94			
11	Mar-11	17.83	8.18	NP	9.65			
12	Sep-11	17.83	8.80	NP	9.03			
13	Mar-12	17.83	7.79	NP	10.04			
14	Sep-12	17.83	7.44	NP	10.39			
15	Mar-13	17.83	9.39	NP	8.44			
16	Sep-13	17.83	9.72	NP	8.11			
17	Mar-14	17.83	9.55	NP	8.26			
18	Sep-14	17.83	9.46	NP	8.37			

MW-13									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
		Installed be	etween 2004-20	06					
1	Dec-06	17.66 ^(c)	9.81	9.44	7.85				
2	Dec-07	17.66	9.95	9.39	7.71				
3	Mar-08	17.66	10.02	9.54	7.64				
4	Jun-08	17.66	9.86	9.45	7.80				
5	Sep-08	17.66	10.34	9.54	7.32				
6	Dec-08	17.66	10.54	9.65	7.12				
7	Mar-09	17.66	9.26	9.14	8.40				
8	Sep-09	17.66	9.91 ^(e)	9.72	7.75				
9	Mar-10	17.66	9.22 ^(e)	9.22	8.44				
10	Sep-10	17.66	9.40	10.18	7.48				
11	Mar-11	17.66	9.90	NM	NM				
12	Sep-11	17.66	10.41	9.64	7.25				
13	Mar-12	17.66	10.09	9.02	7.57				
14	Sep-12	17.66	9.54	9.23	8.12				
15	Mar-13	17.66	9.36	9.35	8.30				
16	Sep-13	17.66	9.48	9.45	8.18				
17	Mar-14	17.66	9.58	9.45	8.08				
18	Sep-14	17.66	8.89	8.87	8.77				

		N	MW-14		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed be	etween 2004-2	2006	
1	Nov-06 ^(d)	17.60 ^(c)	9.11	9.11(sheen)	8.49
2	Dec-07	17.60	8.86	8.84	8.74
3	Mar-08	17.60	8.91	8.88	8.69
4	Jun-08	17.60	8.66	8.62	8.94
5	Sep-08	17.60	8.64	NP	8.96
6	Dec-08	17.60	8.70	NP	8.90
7	Mar-09	17.60	9.25	NP	9.25
8	Sep-09	17.60	8.80	NP	8.80
9	Mar-10	17.60	8.42	NP	9.18
10	Sep-10	17.60	8.56	8.62	8.98
11	Mar-11	17.60	7.93	7.92	9.67
12	Sep-11	17.60	8.60	8.55	9.00
13	Mar-12	17.60	7.71	7.61	9.89
14	Sep-12	17.60	7.22	7.20	10.38
15	Mar-13	17.60	9.18	9.17	8.42
16	Sep-13	17.60	9.49	9.47	8.11
18	Mar-14	17.60	9.48	9.47	8.12
19	Mar-14	17.60	9.16	NP	8.44

	MW-15									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
		Installed b	etween 2004-20	06						
1	Dec-06	17.80 ^(c)	9.15	NP	8.65					
2	Dec-07	17.80	9.30	NP	8.50					
3	Mar-08	17.80	9.20	9.18	8.60					
4	Jun-08	17.80	9.60	9.63	8.20					
5	Sep-08	17.80	8.84	8.84 ^(f)	8.96					
6	Dec-08	17.80	9.19	8.36	8.61					
7	Mar-09	17.80	8.70	NP	9.10					
8	Sep-09	17.80	9.40 ^(e)	9.22	8.08					
9	Mar-10	17.80	8.81 ^(e)	8.81	8.99					
10	Sep-10	17.80	9.42	9.45	8.35					
11	Mar-11	17.80	8.50	NM	9.30					
12	Sep-11	17.80	9.32	NP	8.48					
13	Mar-12	17.80	8.55	NP	9.25					
14	Sep-12	17.80	8.03	NP	9.77					
15	Mar-13	17.80	9.45	NP	8.35					
16	Sep-13	17.80	10.01	NP	7.79					
17	Mar-14	17.80	10.18	NP	7.62					
18	Sep-14	17.80	9.74	NP	8.06					

MW-16										
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
	Installed between 2004-2006									
1	Dec-06	NA	NA	NA	NA					
2	Dec-07	17.74 ^(c)	9.36	NP	8.38					
3	Mar-08	17.74	9.88	NP	7.86					
4	Jun-08	17.74	9.25	NP	7.80					
5	Sep-08	17.74	9.07	NP	8.67					
6	Dec-08	17.74	9.45	NP	8.29					
7	Mar-09	17.74	8.88	NP	8.86					
8	Sep-09	17.74	9.51	NP	8.23					
9	Mar-10	17.74	8.92	NP	8.82					
10	Sep-10	17.74	9.40	NP	8.34					
11	Mar-11	17.74	9.16	NP	8.57					
12	Sep-11	17.74	9.56	NP	8.18					
13	Mar-12	17.74	9.38	NP	8.36					
14	Sep-12	17.74	9.15	NP	8.59					
15	Mar-13	17.74	9.60	NP	8.14					
16	Sep-13	17.74	10.03	NP	7.71					
17	Mar-14	17.74	9.81	NP	7.93					
18	Sep-14	17.74	9.80	NP	7.94					

		N	MW-17		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed be	etween 2004-20	06	
1	Dec-06	NA	NA	NA	NA
2	Dec-07	18.17 ^(c)	9.40	9.32	8.77
3	Mar-08	18.17	9.34	9.18	8.83
4	Jun-08	18.17	8.98	8.97	9.19
5	Sep-08	18.17	9.21	7.92	8.96
6	Dec-08	18.17	9.25	9.11	8.92
7	Mar-09	18.17	8.89	NP	9.28
8	Sep-09	18.17	9.31	NP	8.86
9	Mar-10	18.17	8.93	NP	9.24
10	Sep-10	18.17	9.15	NP	9.02
11	Mar-11	18.17	8.52	8.50	9.65
12	Sep-11	18.17	9.15	NP	9.02
13	Mar-12	18.17	8.17	NP	10.00
14	Sep-12	18.17	7.77	NP	10.40
15	Mar-13	18.17	9.17	NP	9.00
16	Sep-13	18.17	10.00	NP	8.17
17	Mar-14	18.17	10.00	NP	8.17
18	Sep-14	18.17	9.72	NP	8.45

		N	MW-18		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed be	etween 2004-20	06	
1	Dec-06	NA	NA	NA	NA
2	Dec-07	16.35 ^(c)	8.30	NP	8.05
3	Mar-04	16,35	8.34	NP	8.01
4	Jun-08	16,35	8.34	NP	8.20
5	Sep-08	16.35	8.48	NP	7.87
6	Dec-08	16,35	8.61	NP	7.74
7	Mar-09	16.35	7.75	NP	8.60
8	Sep-09	16.35	8.50	NP	7.85
9	Mar-10	16.35	7.97	NP	8.38
10	Sep-10	16.35	8.28	NP	8.07
11	Mar-11	16.35	8.63	NP	7.72
12	Sep-11	16.35	8.90	NP	7.45
13	Mar-12	16,35	8.56	NP	7.79
14	Sep-12	16.35	8.59	NP	7.76
15	Mar-13	16.35	9.92	NP	6.43
16	Sep-13	16.35	9.81	NP	6.54
17	Mar-14	16.35	9.19	NP	7.16
18	Sep-14	16,35	9.56	NP	6.79

MW-E										
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
1	Dec-88	NM	NM	NM	NM					
2	May-89	15.32	10.39	NP	4.93					
3	Feb-91	NM	NM	NM	NM					
4	Mar-04	17.80	9.92	NP	7.88					
5	Nov-06 ^(d)	17.80	10.22	NP	7.58					
6	Dec-07	17.47 ^(c)	10.03	NP	7.44					
7	Mar-08	17.47	10.21	NP	7.26					
8	Jun-08	17.47	10.20	NP	7.27					
9	Sep-08	17.47	9.55	NP	7.92					
10	Dec-08	17.47	10.32	NP	7.15					
11	Mar-09	17.47	9.79	NP	7.68					
12	Sep-09	17.47	10.22	NP	7.25					
13	Mar-10	17.47	9.82	NP	7.65					
14	Sep-10	17.47	10.11	NP	7.36					
15	Mar-11	17.47	9.10	NP	8.37					
16	Sep-11	17.47	8.41	NP	9.06					
17	Mar-12	17.47	9.86	NP	7.61					
18	Sep-12	17.47	9.95	NP	7.52					
19	Mar-13	17.47	10.41	NP	7.06					
20	Sep-13	17.47	10.21	NP	7.26					
21	Mar-14	17.47	10.15	NP	7.32					
22	Sep-14	17.47	9.98	NP	7.49					

RW-1								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
1	Dec-88	NM	NM	NM	NM			
2	May-89	14.54	10.17	10.14	4.37			
3	Feb-91	14.54	11.46	10.85	3.57			
4	Mar-04	18.32	7.20	5.62	11.12			
5	Nov-06 ^(d)	18.32	9.15	9.11	9.17			
6	Dec-07	16.70 ^(c)	9.53 ^(e)	9.53	7.17			
7	Mar-08	16.70	8.99	8.92	7.71			
8	Jun-08	16.70	8.95	8.87	7.75			
9	Sep-08	16.70	NM ^(c)	NM ^(c)	NM ^(c)			
10	Dec-08	16.70	NM	NM	NM			
11	Mar-09	16.70	9.06 ^(e)	9.06	7.64			
12	Sep-09	16.70	9.45 ^(e)	9.45	7.25			
13	Mar-10	16.70	8.93 ^(e)	8.93	7.77			
14	Sep-10	16.70	9.50	9.65	7.05			
15	Mar-11	16.70	9.05	9.04	7.65			
16	Sep-11	16.70	9.75	9.74	6.95			
17	Mar-12	16.70	9.33	NP	7.35			
18	Sep-12	16.70	NM	9.69	NM			
19	Mar-13	16.70	NM	9.99	NM			
20	Sep-13	16.70	11.60	9.99	5.10			
21	Mar-14	16.70	9.13	9.99	7.57			
22	Sep-14	16.70	11.10	11.09	5.60			

Notes:

The 1988, 1989, and 1991 water elevations were measured by Groundwater Technology, Inc.

The 2004 and 2006 water elevations were measured by PES Environmental.

NS = Not sampled

NP = No product

NM - Not measured/Could Not Measure

NA = data not available from the previous consultant for this event

TOC Elevation = Top of Casing Elevation

DTW = Depth to water from the top of the casing

DTP - Depth to product from the top of the casing

GW Elevation - Groundwater elevation as compared to mean sea level

^(a) Wells resurveyed in May 1989

(b) New elevation recorded by PES. Date of survey unclear.

^(c) Wells resurveyed by PES in April 2007

 $^{\rm (d)}$ no water level data available for the December 2006 sampling event

(e) Thickness of product interfered with determining oil/water interface.

(f)Depth to groundwater = depth to free product as difference could not be determined

APPENDIX E

Historical Product Extraction Data Table

Table D Historical Trench and Monitoring Well Product Recovery 6400 Christie Avenue, Emeryville, CA

												W	ell or T	rench L	ocation	1												
																												Total
Extraction Date	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-E	RW-1	TA-E	TA-M	TA-W	TB-E	TB-M	TB-W	TC-E	TC-M	TC-W	Extracted
Apr-04						1.00		1.00										19.75										21.75
May-04																		22.5										22.50
Sep-04																		0.74										0.74
Oct-04																		5.22										0.00
2004 Total	004 Total 44.99																											
Jan-05																												0.00
Apr-06																					3.3							3.30
Jun-06																			8.9	9.2	10.3							28.40
Jul-06																			3.6	5	5.3							13.90
Aug-06						0.8		0.8			1	0.2	0.2						0.2	0.2	0.4							3.80
Sep-06								0.8			0.2	0.3							0.6		0.6							2.50
Nov-06																			0.2									0.20
Dec-06																			0.2									0.20
2006 Total																												52.30
Jan-07																			0.2									0.20
Feb-07																			0.2									0.20
Mar-07																			0.2									0.20
Nov-07																				0.81	0.68				0.63			2.12
Dec-07																			0.01	0.61	0.07				0.002			0.69
2007 Total																												3.41
Feb-08	0.03																	0.45	0.08	0.06	0.18	0.04	0.06	0.06	0.08	0.05	0.05	1.14
Feb-08			0.05															0.45	0.15	0.15	0.30							1.10
Mar-08				0.02	0.002	0.02	0.001	0.04	0.02	0.03	0.004	0.01	0.02	0.01	0.01	0.003	0.012	0.3	0.09	0.06	0.09				0.06			0.80
Mar-08																				0.002	0.008							0.01
May-08	0.09							0.075		0.075	0.019	0.009			0.13			1.397	0.866	1.466	1.431							5.56
Jun-08																			0.15	0.11	0.57							0.83
Aug-08	0.12							0.048		0.024	0.009							0.75	0.9	1.6	0.7	0.3	0.3		0.15			4.90
Sep-08																			0.03	0.09	0.048							0.17
Nov-08	0.078					0.009				0.06	0.009			0.003	0.06			0.6	0.1	0.03		0.06	0.06	0.06	0.06	0.09	0.09	1.37
Dec-08																			0.0003	0.08					0.03			0.11
2008 Total																												14.99
Mar-09	0.279					0.378		0.369		0.261	0.007	0.023	0.117		0.342		0.023	1.800	0.750	0.950	1.010	0.153	0.153	0.153	0.653	0.153	0.153	7.73
Jun-09																			0.5									0.50
Sep-09	0.286				0.022	0.418		0.176	0.308	0.176	0.088	0.007	0.176	0.088	0.176	0.022	0.066	7.15	1.4	1.1	1.2	1.1	1.1	1.1	1.1	1.1	1.1	19.46
Dec-09	0.200																		0	0.9	0.06				0			0.96
2009 Total																			- U	0.5	0.00							28.65
Mar-10	0.14				0.01	0.18	0.02	0.60		0.60	0.03	0.10	0.69	0.04	0.30	0.02		8.00	1.30	1.00	1.00	0.50	1.00	0.50	1.00	1.00	1.00	19.03
Jun-10	0.14				0.01	0.18	0.02	0.60		0.60	0.03	0.10	0.09	0.04	0.30	0.02		8.00	1.30	0.75	1.00	0.30	1.00	0.30	1.00	1.00	1.00	0.75
Sep-10	0.3	0.2	0.4	0.5	0.01	0.5	0.01	0.5		1.6	0.02	0.01	1.5	0.02	1.0	0.02	0.1	6.9	1.00	1.00	1.00	0.3	0.3	0.4	1.00	0.5	0.5	19.59
Dec-10	0.3	0.2	0.4	0.3	0.01	0.3	0.01	0.3		1.0	0.02	0.01	1.3	0.02	1.0	0.02	0.1	0.9	0.10	0.00	0.05	0.3	0.3	0.4	0.00	0.3	0.3	0.15
2010 Total																			0.10	0.00	0.03				0.00			39.52
Mar-11						0.002		0.002				0.002			0.003			0.002	0.06	0.06	0.02				0			0.15
											0.2											0.1						
Sep-11	0.2					0.3					0.2			0.1				0.5		0.45	0.25	0.1	0.1	0.1		0.1	0.1	2.50
2011 Total	0.015					0.015					0.07				0.01			0.00	0.12	0.00	0.015		0.01			0.015	0.015	2.65
Mar-12	0.015					0.015					0.06				0.01			0.06	0.13	0.03	0.015	-	0.01			0.015	0.015	0.375
Sep-12						0.03		0.023			0.08						0.015	0.06	0.045	0.08	0.09							0.423
2012 Total																_												0.798
Mar-13	0.06					0.08		0.015			0.08						0.01	0.06	0.05	0.12	0.07				0.03	0.03	0.03	0.635
Sep-13	0.06					0.02		0.05	-		-	-					0.02	0.06	0.02	0.02	0.02				0.01	0.02	0.02	0.320
2013 Total																												0.955
Mar-14	0.08							0.023						0.015			0.01	0.09	0.03	0.03	0.015				0.015	0.015	0.015	0.338
Sep-14	-							0.031	-		-	-																0.031
2014 Total																												0.369
Total Extracted	1.74	0.20	0.45	0.52	0.04	3.75	0.03	4.61	0.33	2.83	1.81	0,66	2,70	0.28	2.03	0.07	0.26	76.84	22.03	25,96	28.80	2.55	3.08	2.37	4.83	3.08	3.08	194.91
Total Extracted	1,/4	0,20	0,43	0,52	0.04	3,73	0.03	7.01	0,55	2,03	1,01	0.00	2.70	0,20	2,03	0.07	0.20	/0.04	22,03	23,70	20,00	2,00	3,00	2,37	7.03	3,00	3.00	177.71

APPENDIX F

Groundwater Disposal Documentation EnviroClean MSDS

	BILL OF LADING/MANIFEST	. Shipper's US EPA ID No. (If Applicable)	Document No. 2.1882	2. Page 1 of			
A	Emeryv	MISTIE HVE	CA 9460	8-1009			
1	4. Shipper's Phone (5.10.)594.2050 5. Transporter 1 Company Name	6. US EPA ID	Number	A. Transporter's Ph	ione		30.0
			/	220	050	-2000	
	7. Transporter 2 Company Name	8. I X RUS EPA ID	Number	B. Transporter's Ph	one	-2000	
	SEAPORT REFINING & ENV	10. US EPA ID RONMENTAL, LLC 263 CAL000311		C. Facility's Phone	-354	-1024	
	11. Shipping Name and Description			12. Conta	_	13.	14.
	HM			No.	Туре	Total Quantity	Unit Wt/Vol
	NON-REGULATED LIQUIS SLUDGE) (NOT USDOT/NO (NOT CA REGULATED)	(VAC-DIL, WATER, OT USEPA REGULATED)		50.1	TT	01050	G
SH	b.						
PPE	C.						
R					-		
	15. Special Handling Instruction and Additional Information	SK SHIP# 2146		BA2800			
	24 HR EMERGENCY #1- SK AUTHORIZED TO RE DOT/PRFL A. 3299/15 A) NONE B) C) D)	800-468-1760 (SAFET TAIN LICENSED SUBSE	Y-KLEEN)			ESSARY	
	16a. US DOT HAZARDOUS MATERIALS SHIPPER'S	CERTIFICATION: "This is to certify that the above- condition for transportation acco	named materials are properly	y classified, described, packa	ged, mark	ed and labeled and are in p	proper
	Printed/Typed Name	Signature requirement for the signat	ed	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Month Day	Year .
	16b. NON-REGULATED SHIPPER'S CERTIFICATIO		rm are not subject to fee	deral regulations for Tran	sportation		
V	Printed/Typed Name Stere Bit	Sign here if material is not DOT regulated	9	Der		Month Day	Year
RANS	17. Transporter 1-Acknowledgement of Receipt of Mat Printed/Typed Name	erials Signature			173	Month Day	Veer
NS	Clark Loter	/ 1	1			Month Day	Year
POR	18. Transporter 2 Acknowledgement of Receipt of Mat						
RTE	Printed/Typed Name	Signature				Month Day	Year
R	19. Discrepancy Indication Space		NUT TO THE				
FACI							
LIT	20. I domy Owner or Operator. Certification of receipt	of materials covered by this form except as n	oted in Item 19.				
	Printed/Typed Name	Signature					-

EnviroClean Degassing/Hydrocarbon Removal/Remediation Chemistry

Contents	Page
SUMMARY	1
FLUID DESIGN	1
FIELD MIXING PROCEDURES Mixing Concentrates Quality Control Testing	2 2 2
MATERIAL REQUIREMENTS Equipment Cleaning & Parts Washing Soil Remediation Emergency Response & Spill Cleanup Degassing & Cleaning of Tanks &	2
Equipment	3
Tank Bed Remediation	4
Chemical Pipeline Pigging	4
VOC Vapor Mitigation & Odor Control Hard Surface Cleaning &	4
Decontamination Insitu Free Product Recovery	4
Enhancement	4
Soil Flushing & Recovery	5
Surface Washing & Shoreline Cleanup	
Fire Fighting for Class A & B Fires Contaminated Soil Excavation	5 5

PHYSICAL PROPERTIES

Product Name		EnviroClean
Physical Form		Clear Liquid
Color	Colorle	ess unless dyed
Specific Gravity (Water	er = 1)	1.028 +/01
Solubility in Water		100%
Freezing/Melting Poin	ıt	NE
Flash Point (°F)		>200 ⁰ F
рН		8.5 +/25
Reportable Quantity (RQ)	None

Complete information on health hazards, protective equipment, handling precautions, environmental hazards and disposal is listed in the current EnviroClean Material Safety Data Sheet (MSDS) for this product.

SUMMARY

EnviroClean is a non-flammable, non-toxic, water-based, proprietary blend of non-ionic ethoxylated octylphenolic surfactants that has been specifically engineered as a cleanup/mitigation agent for a wide range of hydrocarbon products. EnviroClean has been shown to be effective for quickly and effectively suppressing or completely eliminating VOCs, LEL's, benzene and low levels of H₂S and mercaptans in open or confined spaces.

EnviroClean has been used for cleanup of hydrocarbon spills and soil remediation. In these applications, EnviroClean effectively conditions (physically) the hydrocarbon such that the microbes that naturally occur can more readily consume it. It turns hydrocarbons into a nutrient source for the microbes. When sufficiently mixed with hydrocarbon and water, the EnviroClean forms a homogeneous solution of hydrocarbon, EnviroClean and water, which is very stable.

EnviroClean is a concentrated product that readily biodegrades.

EnviroClean is commercially available in 5-gallon units, 55-gallon drums, 275 and 330-gallon totes and bulk from Oklahoma City, Oklahoma, Wappingers Falls, New York, and Houston, Texas.

FLUID DESIGN

EnviroClean is a proprietary blend of surfactants that needs to be diluted to be effective and it is very safe to workers and the environment. EnviroClean does not contain caustic, therefore does not have the common harmful side effects associated with caustic based products. The product is designed for use as a degassing agent and a cleaner/degreaser for remediation. The product does not contain any enzymes or biomass itself. It works by conditioning the hydrocarbon so that the naturally occurring microbes (bacteria) are able to readily consume it. Through the application of the appropriate dilution and mixing, the EnviroClean will capture the hydrocarbon and tie it up in a solution that is very stable. The formation of this solution results extremely small particles that will not It is important to note that if recoalesce. EnviroClean reaches its saturation point the oversaturated hydrocarbon will breakout of solution very quickly. This will allow for easy removal or reclamation of any hydrocarbon that is not preconditioned for remediation.

In addition to tying up the hydrocarbon in solution, the product is very effective when contacted with hydrocarbon vapors at suppressing volatile organic vapors, gases, and odors. Once combustible and flammable hydrocarbon vapors are tied up in the resultant solution, the solution will be very difficult to ignite. It also accelerates the biodegradation process of the hydrocarbon, thereby enhancing recycling or reclamation of water.

EnviroClean has been demonstrated to be effective on gas, oil, lube oil, hydraulic oil, most petroleum-based products, animal and vegetable oils, fats, and tallow oils. EnviroClean cleans the heavy tar build-up, asphaltenes or oily residue from inside of tanks and vessels. Furthermore, once a surface has been cleaned with EnviroClean, the cleaned surface will resist the deposition of oily materials.

EnviroClean can be used to cleanup oil spills whether in/on soil or hard surfaces. The first step in this process is to remove as much of the free oil as possible. This step is followed by contacting contaminated the surface appropriately with the proper dilution of EnviroClean and water. The treatment solution will contact the hydrocarbon molecules and change their behavior such that they are now essentially water soluble. The large increase in interfacial surface area creates conditions that are favorable to degradation and consumption by bacteria and microbes. The product converts hydrocarbons into a very good nutrient source for bacteria and microbes.

EnviroClean is typically fed at concentrations between 1% and 6%, depending on the nature of the hydrocarbon contamination problem. It can be diluted with most types of water – hard, soft or brackish water. The product has an unlimited shelf life when unopened. EnviroClean is effective at ambient temperatures. However, the effectiveness will increase as the temperature of the application is increased. EnviroClean does not require the use of steam, but has been shown to be very effective when injected into the steam (vapor) phase.

FIELD MIXING PROCEDURES

Mixing Concentrates

EnviroClean is usually delivered as a concentrate and <u>must</u> be diluted with water to work properly. Cleaning solutions can be formulated by premixing or eduction. It is not necessary to provide high shear agitation when preparing a batch of cleaning solution since EnviroClean is

100% soluble in water. It is recommended that when preparing the cleaning solution you first add the water into the mix container and then follow by the addition of EnviroClean. This will minimize foaming as the EnviroClean and water form a homogeneous solution.

For premixing, the following procedure may be used:

- Add the correct amount of water to the container.
- Depending on the desired strength, add the correct amount of EnviroClean to the container.
- If the final solution is not a consistent pink color, mild agitation may be required until a consistent pink color is achieved.

Quality Control Testing

There is no easy field testing procedure to monitor the concentration of active ingredients in the EnviroClean formulation. Visually the color changes from rose color to lighter pink as the product is further diluted. Effectiveness can also be predicted by quantifying the amount of hydrocarbon that is to be picked up. By observing the effluent from the use of EnviroClean, an adjustment in the cleaning solution concentration can be made. If it is observed that free oil is floating on the effluent solution, then the concentration should be increased.

MATERIAL REQUIREMENTS

For specific protocols and application rates, please refer to the available **Product Usage Guide**, product label, or consult with the manufacturer or authorized distributor for additional guidance.

Equipment Cleaning & Parts Washing

EnviroClean is very effective for equipment cleaning applications. EnviroClean is used at light dilutions and has a significant "life of batch" as well as low foaming tendencies. The surfactants in EnviroClean desorb and microemulsify grease and oil contamination and separate it from solids (metal shavings, grit, etc.) allowing them to settle without accumulating oily sludges. These factors make EnviroClean ideal for spray wash systems as well as dip/agitating equipment. Some agitation or circulation of the fluid is required for thorough cleaning. For

equipment cleaning applications, EnviroClean is normally diluted to a 3% - 6% solution with water.

Soil Remediation

Calculate the volume of hydrocarbon contained in the contaminated area. It is important to determine accurately the depth of oil penetration into the soil. It will be important to agitate the soil to just below the depth of penetration. Once the estimate of hydrocarbon is known, the amount of the normal dilution of EnviroClean for soil remediation is 32 parts water to 1 part EnviroClean (3% solution). The EnviroClean solution will use the naturally occurring bacteria in the soil and begin to consume the hydrocarbon, which has been put into a form that can be quickly consumed. The remediation process normally occurs over 4 to 12 weeks.

The following step-by-step procedure can be used for soil remediation using EnviroClean:

- If contaminated soil is deeper than 12", excavate the soil and spread at the surface to a depth of 10" – 12" and then proceed with this protocol. If contaminated soil is 12" in depth or less, thoroughly mix and aerate the soil in place utilizing a roto-tiller or similar equipment. If soil is extremely oily or gummy, mix clean soil with oily soil to expedite clean up and to make it easier to work with.
- Utilizing local soil or rock, build a small berm surrounding the treatment area to prevent rain water run off from the site.
- 3. To determine treatment volumes of EnviroClean, measure the square footage area of the treatment cell and divide that number by 27 to find cubic yards per foot of depth (i.e. treatment area is 100' x 50': 100 x 50 ÷ 27 = 185). Multiply that number x .06 to determine the amount of EnviroClean to utilize in the treatment (i.e. 185 x .06 = 11 gallons EnviroClean). Dilute the EnviroClean to approximately a 3% solution (32 to 1 or 352 gallons water to 11 gallons EnviroClean). Spray the 3% EnviroClean solution over the entire treatment cell.
- If, after a week, little to no rainfall has fallen, water the site thoroughly.
- Wait another week and repeat steps 1 and 3, if needed.
- 6. Monitor and continue the treatment protocol until desired clean up levels are reached.

Samples can be taken and analyzed for Total Petroleum Hydrocarbons (TPH) to track the progress of the remediation. If the TPH were to appear to stabilize and not continue to decline, a second application of EnviroClean may be required.

Note: It can be helpful, but not required, to add a highly soluble, high nitrogen fertilizer such as Miracle Grow or Sam's Choice to the first 3% EnviroClean solution.

The addition of bacteria is not typically required. The EnviroClean solution will stimulate the activity level of the naturally occurring bacteria.

In the fall and winter, it helps to expedite the job if the treatment cell is covered with plastic between treatments. This tends to hold in heat and generate additional moisture.

Keeping the soil moist is an integral part of the clean up.

Emergency Response & Spill Cleanup

Small Spill Cleanup: Dilute EnviroClean to a 10% solution. On small spills apply with 2 ½ gallon pressure sprayer or similar device. Cover the entire spill working in a circular motion from outside perimeter toward the center of the spill. After application of EnviroClean has been completed, agitate spill area with forcible stream of water or broom and rinse thoroughly. EnviroClean helps to reduce or eliminate any VOC concerns associated with the cleanup by micro-emulsifying the hydrocarbon on contact drastically reducing the LEL levels in a very short time frame. EnviroClean also eliminates sheens.

On Roadways & Pavement: EnviroClean can be applied with a pressure sprayer or applied through a foam eductor at a 6% setting. EnviroClean will instantly stop the deterioration of asphalt by diesel or gas and eliminate slippery conditions. Dispose in accordance with local rules and regulations.

Note: For use with absorbents, EnviroClean will increase effectiveness by allowing the contaminate to more easily penetrate into the absorbent.

Degassing & Cleaning of Tanks & Equipment

EnviroClean is effective for the degassing and cleaning of all types of petroleum storage tanks. For small tanks of less than 50,000 gallons,

EnviroClean should be utilized through a power washer at dilutions between 2% and 6% depending on the type of product within the vessel and the degree of contamination. Typically for flammables, a 6% solution is utilized to completely agitate the tank residue and to scour the wall of the vessel prior to and during pump out. Lower dilutions may be utilized for products not representing a vapor hazard. EnviroClean is also effective for reducing H2S, Benzene and other VOC's.

Tank Bed Remediation

A common and effective means of mitigating the vapor hazard and remediating the tank bedding is to utilize a "flushing and recovery" technique with a diluted solution of EnviroClean. Typically a 3% to 6% solution of EnviroClean and water is utilized in a batch process to treat the impacted portions of the tank floor area. Simply perforating the affected area with a "buster" or hole saw and allowing the EnviroClean solution to flood the affected bedding will eliminate immediate, and future, recurrences of vapor generation. The process also serves to remediate contamination by flushing entrained hydrocarbon out of the bedding for recovery and disposal, or re-processing. If necessary, the entire sub-floor area may be treated by saturating the zone of contamination and flushing the fluid to the sump, or other collection point, and recovering the rinsate for disposal. Depending upon the severity of the leak, and the resultant degree of subfloor contamination, the EnviroClean solution can be applied so as to simply saturate the bedding material, or it can be injected so as to flush and recover gross quantities of hydrocarbon.

Chemical Pipeline Pigging

As a general guideline, pump a slug of 3% to 6% solution and chase with water.

VOC Vapor Mitigation & Odor Control

EnviroClean is typically applied at a concentration of 3 – 6% for vapor and/or odor control. Circulate the solution through a manway cannon or other device in order to provide sufficient saturation of the vapor space of the vessel that is being degassed. Check the vapor level of the tank before circulation begins. Circulate for about 2 hours and let the tank settle for about 2 hours. Check the vapor level in the tank. More than one circulation may be required for complete vapor suppression. The holding capacity of EnviroClean may require sweetening

or circulation with a fresh batch of product, depending on the amount of hydrocarbon vapors originally contained in the vessel.

Dilute EnviroClean to a 3% to 6% solution. Coverage is normally at 3 to 4 square yards of surface area per gallon. Heavy contamination or mercaptan type odors may require a stronger solution of EnviroClean.

Typically, 1 gallon of EnviroClean concentrate diluted to a 3% to 6% solution will render up to 6 gallons of petroleum product nonflammable when properly applied.

Hard Surface Cleaning & Decontamination

For heavy soiled oil and grease on hard surfaces: Mix a 6% solution of concentrate with clean water in quantity sufficient to cover contaminated area. Apply generous amounts with spray applicator, or equivalent and allow reasonable time for the surfactants in EnviroClean to penetrate and break down the hydrocarbon and grime. Once applied, solution may be scrubbed or brushed in for stubborn soiling. Next, apply EnviroClean at a 1% - 2% solution through a power washer (heated power wash system will expedite the process). Flush residue to containment and dispose of as local rules apply.

For lightly soiled or freshly oiled surfaces:

EnviroClean may be used through any power washer or steam jenny currently available. Operating temperatures of 140 degrees F. will maximize effectiveness. Solution strengths of 1 – 2% may be used for lighter decontamination duties. For small applications, a 5% solution (16 oz. EnviroClean concentrate to 2.5 gallons water) may be applied with a small pump sprayer and scrubbed or brushed into surface.

Insitu Free Product Recovery Enhancement

EnviroClean is effective for the insitu solubilization and recovery enhancement of entrained Free Product Hydrocarbon in the subsurface to facilitate recovery or biodegradation. Dilutions of 2% v/v are typical for light ends (i.e. gasoline) while concentrations of 3% to 6% are effective for Diesel Range Organic (DRO's) and heavier oils. Applications vary, however the EnviroClean solution is injected into the contaminated zone followed typically by a recovery event.

Soil Flushing and Recovery

EnviroClean is effective for the insitu solubilization and recovery enhancement of entrained Free Product Hydrocarbon in surface and sub-surface soil to facilitate recovery or biodegradation. Dilutions of 2% v/v are typical for light ends (i.e. gasoline) while concentrations of 3% to 6% are effective for Diesel Range Organic (DRO's) and heavier oils. Applications vary, however the EnviroClean solution is injected into or flushed through the contaminated zone.

Surface Washing & Shoreline Cleanup

Dilute EnviroClean to a 2% solution. On small spills apply with 2.5 gallon pressure sprayer or similar device. Cover entire spill, working in a circular motion, from outside perimeter toward the center of the spill. After application of EnviroClean has been completed, agitate spill area with forcible stream of water or broom and rinse thoroughly.

On larger spills, specific applications and protocols should be developed taking into account local risks and considerations.

Note: EnviroClean is listed on the U.S. E.P.A. NCP Product Schedule as a Surface Washing Agent (listed SW #31). This listing does *not* mean that U.S. E.P.A. approves, licenses, certifies, or authorizes the use of EnviroClean on an oil discharge. This listing means only that data have been submitted to EPA as required by subpart J of the National Contingency Plan § 300.915.

Fire Fighting for Class A & B Fires

Proportioning Rate: 6%
GPM Flow Rate: 95 – 110
PSI at Eductor: 200 or MFG's

recommendations

Hose Length: As per MFG's suggestion Nozzle Type: Standard adjustable or

automatic

Coverage: 0.2 gpm per square foot Nozzle Pattern: Hard cone to coarse

stream

Application: Starting from the outside

perimeter, using a stirring,

mixing action.

Contaminated Soil Excavation

In most cases a 3% solution of EnviroClean will be adequate to keep vapor emissions within acceptable limits. Dilute EnviroClean concentrate with water at a ratio of 1 part EnviroClean to 32 parts water to make a 3% solution. The EnviroClean solution should be applied evenly to the soil surface in sufficient quantity to dampen the surface well. As a general rule, 1 gallon of solution will cover approximately 4 sq. yd. of soil surface area.

MATERIAL SAFETY DATA SHEET

Product Name: ENVIROCLEAN SECTION 1 MATERIAL IDENTIFICATION PRODUCT NAME/DESCRIPTION: **ENVIROCLEAN** DISTRIBUTED / MANUFACTURED BY: ENVIRO CLEAN SERVICES, L.L.C. DATE: 5/27/2008 PO BOX 721090 PHONE: 405-373-4545 EMERGENCY PHONE: 405-373-4548 OKLAHOMA CITY, OK 73172 **SECTION 2 HAZARDOUS COMPONENTS** OSHA (ACGIH) EXPOSURE LIMIT TLVs(ACGIH) TWA STEEL CHEMICAL NAME %W/W CAS NUMBER Other1 ppm mg/m3 ppm mg/m3 Proprietary Blend Of Ethoxylated Octylphenolic Surfactants Non-ionic water based liquid blend, concentrate This product does not contain any hazardous ingredients as defined by CERCLA, and California's Prop. 65. **SECTION 3 HEALTH HAZARDS ✓** MODERATE ✓ SKIN SEVERE **IRRITATION** ✓ EYE SEVERE ✓ MODERATE MILD (TRANSIENT) CORROSIVITY SKIN 4HRS. (DOT) 24 HRS. (CPSC EYE MAY CAUSE BLINDNESS **SENSITIZATION** SKIN RESPIRATORY ALLERGEN OTHER: None Known ■ NARCOTIC CYANOSIS **INHALATION EFFECTS** ASPHYXIANT OTHER: None Known **EFFECT LUNG EFFECTS (SPECIFY):** None Known OTHER (SPECIFY): ☐ REPEATED CONTACT OTHER SKIN DEFATTER (SPECIFY): Pre-existing skin and eye disorders may be aggravated by contact with this product. **SECTION 4 FIRST AID INGESTION** DON'T INDUCE INDUCE GIVE PLENTY ✓ GET MEDICAL VOMITING **ATTENTION** VOMITING OF WATER ✓ NEVER GIVE ANYTHING TO AN UNCONSCIOUS PERSON

Product Name:	ENVIROCLE	AN					
DERMAL							
FLUSH WITH AND WATER	SOAP [GET MEDICAL ATTENTION	_	INATED CLOTHING D AND LAUNDER	- CONTAMINATE SHOE - DESTR		
OTHER (SPECIF	Y):						
None Known							
EYE CONTACT							
FOR 15 MINU		GET MEDICAL ATTENTION	OTHER (SF Life and sep	PECIFY): parate eyelids to aid	in rinsing		
INHALATION							
REMOVE TO FRESH AIR		IF NOT BREATH ARTIFICIAL RES		GIVE OXYGEN	GET MEDIO ATTENTIO		
OTHER (SPECIF	Y):						
None considered	necessary.						
SECTION 5			FIRE A	ND EXPLOSION DA	ATA		
CHARACTERIST	ICS:						
FLASH POINT			>200 de	g F			
FLASH POINT METHOD(S)			NA	•			
UPPER EXPLOS	ION LIMIT (U	IEL)	NA				
LOWER EXPLOSION LIMIT (UEL)							
AUTOIGNITION TEMPERATURE NA							
FIRE HAZARD CLASSIFICATION (OSHA/NFPA) 0							
EXTINGUISHING	MEDIA						
☐ WATER SPRAY	☐ WAT FOG		TER EAM	☐ CO2	☐ DRY CHEMICAL	ALCOHOL FOAM	
FOAM	☐ EAR	☐ EARTH OR SAND ✓ AS REQUIRED FOR FIRE BEING FOUGHT					
SPECIAL FIRE F		_			DON'T USE	USE SELF-	
□ DON'T ENTER □ ALLOW FIRE BUILDING TO BURN			✓ WATE FROTI	R MAY CAUSE HING	CONTAINED BREATHING APPRATUS		
OTHER (SPECIF	Y): None k	Known					
SPECIAL FIRE F	IGHTING PR	OCEDURES					
☐ DUST EXPLOSION ☐ SENSITI SHOCK				☐ CONT.	☐ TEMPERATURE		
OTHER (SPECIF	Y): None K	nown					
SECTION 6			ACCIDENT	TAL RELEASE MEA	SURES		
STEP TO BE TAP	KEN IF MATE	ERIAL IS RELEASED	OR SPILLED				
FLUSH WITH ABSORB WITH SAND INERT MATERIAL			ND OF	☐ NEUTRALIZE		SWEEP OR SCOOP UP AND REMOVE	
☐ KEEP UPWIND ☑ PREVENT SPILLS				✓ DISPO	OSE OF PROMTLY		
OTHER (SPECIE)	Y): Remove	e with vacuum truck o	r numn to stora	ne/salvage vessel			

Product Name: ENVIROCLEAN SECTION 7 HANDLING AND STORAGE PRECAUTIONARY LABELING ✓ DON'T BREATHE ✓ KEEP CONTAINTER **✓** WASH AFTER ✓ DON'T GET IN EYES, SKIN, **HANDLING** CLOTHING DUST, VAPOR, GAS CLOSED ✓ KEEP FROM ☐ KEEP AWAY FROM ✓ STORE IN TIGHTLY DON'T STORE NEAR CLOSED CONTAINERS **COMBUSTIBLES CONTACT WITH** HEAT, SPARKS, AND **OPEN FLAMES** CLOTHING OTHER (SPECIFY): ☐ EMPTY CONTAINER MAY USE EXPLOSION PROOF **CONTAIN HAZARDOUS EQUIPMENT** Keep this and all chemicals out of reach of children. **RESIDUE** OTHER HANDLING AND STORAGE CONDITIONS Storage: 35 - 120 deg F Shelf Life: Unlimited unopened **SECTION 8** PERSONAL PROTECTION/EXPOSURE CONTROLS **VENTILATION REQUIREMENTS - ALWAYS KEEP EXPOSURE BELOW PERMISSIBLE EXPOSURE LIMITS** ✓ LOCAL EXHAUST ☐ USE ADEQUATE CHECK FOR AIR CONSULT AN **VENTILATION INDUSTRIAL** CONTAMINANT **HYGIENIST** OTHER (SPECIFY): Not Known **EYE** FACE SHIELD ✓ SAFTEY GLASSES GOGGLES AND GOGGLES BUTYL **✓** POLYVINYL **✓** POLYVINYL POLY-✓ NATURAL **HAND RUBBER** ALCHOHOL CHLORIDE **ETHYLENE** RUBBER ■ NEOPRENE OTHER (SPECIFY): None Known SUPPLIED CAN OR CARTRIDGE FILTER-DUST, RESPIRATORY SELF-AIR GAS OR VAPOR FUME, MIST CONTAINED OTHER (SPECIFY): Not required for normal use OTHER PROTECTIVE EQUIPMENT RUBBER BOOTS ☐ APRON OTHER (SPECIFY): Eve wash PERSONAL PROTECTION/EXPOSURE CONTROLS **SECTION 9 PHYSICAL FORM** Clear Liquid COLOR Colorless unless dyed **ODOR** Nil (unless fragranced) PH 8.5 +/- .25 **VAPOR PRESSURE (mm Hg)** NA **VAPOR DENSITY (AIR = 1)** NA **BOILING POINT** NE FREEZING/MELTING POINT NE **SOLUBILITY IN WATER** 100% **SPECIFIC GRAVITY (WATER = 1)** 1.028 +/- .01 **EVAPORATION RATE (BUTYLACETATE = 1)** >1 as compared to water

9 CP

NE

VISCOSITY (CPS)

MOLECULAR WEIGHT

Product Name: EN\	/IROCLEAN								
NA = NOT APPLIC	ABLE NE =	NOT ESTABLIS							
SECTION 10		STABILITY							
STABILITY	✓ STABLE	STABLE UNSTABLE							
CONDITIONS CONTRI	BUTING TO INSTABILITY								
THERMAL DECOMPOSITION	☐ PHOTO DEGRADA	TION	POLYMERIZATION	CONTAMINATION					
OTHER (SPECIFY):	None known								
INCOMPATIBILITY - A	VOID CONTACT WITH								
☐ STRONG ACIDS	RONG ACIDS STRONG ALKALIS STRONG OXIDIZERS								
OTHER (SPECIFY):	THER (SPECIFY): None Known								
HAZARDOUS DECOM None Known	POSITION PRODUCTS - TH	ERMAL AND O	THER (LIST)						
CONDITIONS TO AVO	ID								
HEAT	OPEN FLAMES		SPARKS	☐ IGNITION SOURCES					
OTHER (SPECIFY):	None Known								
SECTION 11 TOXICOLOGICAL PROPERTIES									
ACUTE TOXICITY EF	FECTS DATA								
Eyes: Moderate irritati	on								
Skin: May aggravate p	ore-existing skin and/or eye di	sorders or cond	litions.						
Ingestion: Moderate Irritation									
Inhalation: None know	vn								
IRRITATION EFFECTS	S DATA								
None Known									
OTHER ACUTE EFFE	ECTS								
None Known									
CHRONIC/SUBCHRO	NIC DATA								
None Known									
SECTION 12		ECOLOGIC	AL INFORMATION						
ECOTOXICITY									
None Known									
ENVIRONMENTAL FA	TE								
Not Known									
ADDITION INFORMAT	ION								

None Known

Product Name: ENVIROCLEAN

SECTION 13

DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD

IN ACCORDANCE WITH FEDERAL, STATE AND LOCAL REGULATIONS.

SECTION 14

TRANSPORT INFORMATION

NON-HAZARDOUS

SECTION 15

REGULATORY INFORMATION

SARA (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT):

SARA 302 EXTREMELY HAZARDOUS SUBSTANCES LIST:

NA

SARA 312 HAZARD CATEGORY:

NA

SARA 313 TOXIC CHEMICALS LIST:

NA

CERCLA (COMPREHENSIVE ENVIROMENTAL RESPONSE, COMPENSATION AND LIABILITY ACT:

NA

RCRA (RESOURCE CONSERVATION AND RECOVERY ACT) LISTED HAZARDOUS WASTES:

NA

CWA (CLEAN WATER ACT) LISTED SUBSTANCES:

NA

FDA (FOOD AND DRUG ADMINISTRATION):

NA

TOXIC SUBSTANCES CONTROL ACT (TSCA):

All ingredients are listed

NFPA HAZARD INFORMATION SIGN

0 HEALTH HAZARD (BLUE DIAMOND)

- 4 DEADLY
- 3 EXTREME DANGER
- 2 HAZARDOUS
- 1 SLIGHTLY HAZARDOUS
- 0 NORMAL MATERIAL

0 FIRE HAZARD (RED DIAMOND)

FLASH POINTS:

4 - BELOW 73 F

3 - BELOW 100 F

2 - BELOW 200 F

1 - ABOVE 200 F

0 - WILL NOT BURN

0 REACTIVITY HAZARD (YELLOW DIAMOND)

- 4 MAY DETONATE
- 3 SHOCK AND HEAT MY DETONATE
- 2 VIOLENT CHEMICAL CHANGE
- 1 UNSTABLE IF HEATED
- 0 STABLE

SPECIFIC HAZARD (WHITE DIAMOND)

OXY OXIDIZER

ACID ACID
ALK ALKALI

COR CORROSIVE

W USE NO WATER

Product Name: ENVIROCLEAN

SECTION 16

INTERNATIONAL REGULATIONS

CANADA

DSL:

NA

WHMIS HAZARD CLASSIFICATIONS:

NA

WHMIS TRADE SECRET REGISTRY NUMBER(S):

NΑ

WHMIS HAZARDOUS INGREDIENTS:

NΑ

WHMIS SYMBOLS:

NA

EUROPEAN ECONOMIC COMMUNITY (EEC)

EINECS MASTER INVENTORY:

NA

EEC PRIMARY RISK SYMBOL:

NΑ

EEC RISK AND SAFETY PHRASES:

NA

THIS INFORMATION IS OFFERED IN GOOD FAITH AS TYPICAL VALUES AND NOT AS A PRODUCT SPECIFICATION. NO WARRANTY, EXPRESSED OR IMPLIED, IS HEREBY MADE. THE RECOMMENDED INDUSTRIAL HYGIENE AND SAFE HOLDING PROCEDURES ARE BELIEVED TO BE GENERALLY APPLICABLE. HOWEVER, EACH USER SHOULD REVIEW THESE RECOMMENDATIONS IN THE SPECIFIC CONTEXT OF THE INTENDED USE AND DETERMINE WHETHER THEY ARE APPROPRIATE.

PREPARED BY: Jeff Schulhoff