

RECEIVED By Alameda County Environmental Health 1:29 pm, Aug 18, 2015

Transmittal

Date:	August 14, 2015	Reference No .:	240467
То:	Keith Nowell Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250	•	
	Alameda, California 94502-6577		
Subject:	Shell-branded Service Station, 1601 Webster Stre	eet, Alameda, Ca	lifornia

No. of Copies	Description/Title	B			Drawing N Documen		Issue
1	Updated Site Conceptual Model a	and Closure Request					
Issued for	□ Your information ☑ Your approval/comments	As requestedReturned to you		Construct For re-su		🗆 Qı	uotation
Sent by:	Overnight courier	day courier 🗌 Mailed	lunde	r senarate	cover 🕅	Mail er	closed

☑ Other: GeoTracker and Alameda County FTP

Remarks:

If you have any questions regarding the contents of this document, please call the GHD project manager Peter Schaefer at (510) 420-3319 or the Shell program manager Perry Pineda at (425) 413-1164.

Copy to:

Perry Pineda, Shell Oil Products US

Thomas H. Kosel, ConocoPhillips Risk Management & Remediation

James C. Kirschner, ATC Associates, Inc.

Ed C. Ralston, ConocoPhillips Company (electronic copy)

Completed by: Peter Schaefer [Please Print] Signed:

en School

Filing: Correspondence File

Mr. Keith Nowell Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Shell Oil Products US Soil and Groundwater Focus Delivery Group 20945 S. Wilmington Avenue Carson, CA 90810 Tel (425) 413 1164 Fax (425) 413 0988 Email perry.pineda@shell.com Internet http://www.shell.com

Re: <u>1601 Webster Street, Alameda, California</u> PlaNet Site ID 10007774 PlaNet Project ID 33072 Agency No. RO0002745

Dear Mr. Nowell:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

As always, please feel free to contact me directly at (425) 413-1164 with any questions or concerns.

Sincerely, Shell Oil Products US

13 Pir

Perry Pineda Senior Environmental Program Manager

Updated Site Conceptual Model and Closure Request

Shell-branded Service Station 1601 Webster Street Alameda, California

PlaNet Site ID10007774PlaNet Project ID33072Agency No.RO0002745

Shell Oil Products US

August 14, 2015 5900 Hollis Street Suite A Emeryville California 94608 USA 240467 | 15.10 | Report No 16

Executive Summary

- This updated SCM and closure request was prepared to demonstrate that site data meet State Water Regulatory Control Board's (SWRCB's) *Low-Threat Underground Storage Tank Case Closure Policy*.
- The site has been adequately investigated and remediated.
- Historical groundwater monitoring data adequately define TPHg, BTEX, and MTBE impacts horizontally and vertically in groundwater to below applicable RWQCB ESLs, demonstrating that the plume is not migrating and that COC trends are declining.
- Site data satisfy all general criteria in the Policy. Two irrigation wells located 525 and 800 feet northwest of the site are the only identified potential receptors.
- Groundwater conditions satisfy Class 1 of the Policy media-specific requirements. The TPHg and BTEX plume exceeding ESLs is less than 100 feet long when measured from the UST complex. The irrigation wells discussed above are more than 250 feet from the plume boundary. The maximum MTBE concentration during the last groundwater sampling event in March 2013 was 1.4 µg/L, so there is no MTBE plume exceeding ESLs and there is no significant comingling of the Shell plume with the plume from the former Unocal station located north of the site.
- The site is an active fueling facility, and there is no reasonable concern that subsurface contamination poses unacceptable indoor vapor inhalation health risk.
- Soil data meet the Policy media-specific direct contact and outdoor air exposure criteria. No benzene or ethylbenzene has been detected in soil samples collected at a depth less than 5 fbg and soil samples collected from 5 to 10 fbg have contained up to 2.4 mg/kg benzene and 90 mg/kg ethylbenzene and meet the criteria for scenario 1 in the Policy.
- On behalf of Shell, we respectfully request closure of this case. GHD requests that SCCDEH suspend the groundwater monitoring program during the closure review.

Table of Contents

1.	Intro	duction		. 1
2.	Upda	ated Site C	onceptual Model (SCM)	. 1
3.	Low-	Threat Clo	sure Evaluation	. 7
	3.1	General	Criteria	. 7
		3.1.1	The Unauthorized Release is Located within the Service Area of a Public Water System	.7
		3.1.2	The Unauthorized Release Consists only of Petroleum	. 7
		3.1.3	The Unauthorized ("Primary") Release from the UST System Has Been Stopped	
		3.1.4	Free Product Has Been Removed to the Maximum Extent Practicable	
		3.1.5	A Conceptual Site Model that Assesses the Nature, Extent, and Mobility of the Release Has Been Developed	. 7
		3.1.6	Secondary Source Has Been Removed to the Extent Practicable	
		3.1.7	Soil and Groundwater Has Been Tested for MTBE	
		3.1.8	Nuisance as Defined by Water Code Section 13050 Does Not Exist at the Site	. 8
	3.2	Media-S	pecific Criteria	. 8
		3.2.1 3.2.2	Groundwater Vapor	. 8
		3.2.3	Direct Contact and Outdoor Air Exposure	. 8
4.	Clos	ure Reque	st	. 9

Figure Index

Figure 1	Vicinity Map
Figure 2	Site Plan
Figure 3	Groundwater Contour and Chemical Concentration Map
Figure 4	S-6: TPHg and Benzene Concentrations and Groundwater Elevations vs. Time
Figure 5	S-7: TPHg and Benzene Concentrations and Groundwater Elevations vs. Time
Figure 6	S-8: TPHg and Benzene Concentrations and Groundwater Elevations vs. Time
Figure 7	S-9: TPHg and Benzene Concentrations and Groundwater Elevations vs. Time
Figure 8	TBW-N: TPHg and Benzene Concentrations and Groundwater Elevations vs. Time
Figure 9	TBW-N: Ethylbenzene and Total Xylenes Concentrations and Groundwater Elevations vs. Time

Table Index

- Table 1Historical Soil Analytical Data
- Table 2 Groundwater Data
- Table 3Historical Grab Groundwater Analytical Data

Appendices

- Appendix A Site History
- Appendix B Groundwater and Product Removal Data
- Appendix C Groundwater Data for Environmental Case RO0001042
- Appendix D Arcadis U.S., Inc. 2014 Joint Investigation Data
- Appendix E Boring Logs
- Appendix F Well Survey Results
- Appendix G Low-Threat Closure Checklist

1. Introduction

GHD Services Inc. (GHD) prepared this request on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to demonstrate that this site meets the criteria in State Water Resources Control Board's (SWRCB's) *Low-Threat Underground Storage Tank Case Closure Policy* (the Policy).

The site is a Shell-branded service station located on the northwestern corner of Webster Street and Lincoln Avenue in a mixed commercial and residential area of Alameda, California (Figure 1). The site layout includes a station building, three gasoline underground storage tanks (USTs), and two dispenser islands (Figure 2).

A summary of previous work performed at the site is contained in Appendix A.

2. Updated Site Conceptual Model (SCM)

ltem	Evaluation Criteria	Comments/Discussion
2.1	Hydrocarbon Source	
2.1.1	Identify/Describe Release Source and Volume (if known)	During station upgrades in August 2004, a net loss of 2,084 gallons of gasoline was discovered by manual tank gauging following re-installation of a fuel pump into a 10,000-gallon UST.
2.1.2	Discuss Steps Taken to Stop Release	Following the August 2004 product release, remaining fuel was removed from the damaged UST, and groundwater extraction (GWE) was conducted from the northernmost tank backfill well (TBW-N). From August 2004 through February 2006, approximately 196,130 gallons of groundwater were removed by GWE along with an estimated 1,982 gallons of separate-phase hydrocarbons (SPHs) and 21.7 gallons of dissolved total petroleum hydrocarbons as gasoline (TPHg), resulting in the recovery of 96 percent (%) of the product released. Appendix B presents GWE data. During UST and dispenser replacement in 2014, approximately 225,000 tons of soil and pea gravel and approximately 28,850 gallons of groundwater were removed from the excavation for off-site disposal. In addition, the second-generation waste oil UST was removed in May 2006.
2.2	Site Characterization	
2.2.1	Current Site Use/Status	The site is a Shell-branded service station.
2.2.2	Soil Definition Status	For the current environmental case opened in August 2004, 18 vadose zone (less than 5 feet below grade [fbg], depth to groundwater is typically 5 to 8 fbg) soil samples have been collected. All detections of TPHg, benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tertiary-butyl ether (MTBE) in these soil samples are below the San Francisco Bay Regional Water

Item	Evaluation Criteria	Comments/Discussion
		Quality Control Board (RWQCB) environmental screening level (ESL) ¹ for soils at sites with commercial land use, where groundwater is a potential source of drinking water, with the exception of 1,300 milligrams per kilogram (mg/kg) TPHg and 49 mg/kg total xylenes in 2004 soil sample P-3 at 3 fbg. Vadose-zone soil impacts are defined horizontally by the 17 other soil samples. Table 1 presents historical soil data.
2.2.3	SPH Definition Status	SPHs have not been observed since November 2007.
2.2.4	Groundwater Definition Status (TPHg/BTEX)	For this environmental case, groundwater has been monitored at the site since the fourth quarter of 2004. TPHg and BTEX concentrations in the shallow zone are defined on-site down gradient by wells S-2 through S-5 and vertically by well S-4B. The first quarter 2013 groundwater contour and chemical concentration map is included as Figure 3. Historical monitoring well groundwater data for the current environmental case (Alameda County Environmental Health [ACEH] No. RO0002745) are included in Table 2, and grab groundwater sampling data are presented in Table 3. Groundwater monitoring data from the previous environmental case (ACEH No. RO0001042) are included in Appendix C.
2.2.5	TPHg/BTEX Plume Stability and Concentration Trends	Groundwater monitoring data indicate that constituent of concern (COC) concentrations are declining. Trend graphs for COCs presented on Figures 4 through 9 predict that all COCs will reach ESLs by 2031.
2.2.6	Groundwater Definition Status (Oxygenates)	Fuel oxygenates were not detected at concentrations above ESLs in groundwater samples collected from on-site groundwater monitoring wells in first quarter 2013. The maximum MTBE concentration during the last groundwater sampling event in March 2013 was 1.4 micrograms per liter (µg/L), so there is no MTBE plume exceeding ESLs and there is no significant comingling of the Shell plume with the plume from the former Unocal station located north of the site. Off-site grab groundwater samples for a joint investigation conducted by Shell and former Unocal Station No. 0843 located at 1629 Webster Street, Alameda, California in September and November 2014 contained up to 450 µg/L MTBE. Grab groundwater data from this investigation adequately defined the extent of MTBE in groundwater horizontally and vertically. The grab groundwater result from CPT-1 represents a

¹ User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final 2013.

Item	Evaluation Criteria	Comments/Discussion
		detached plume separated from the former Unocal MTBE plume. This separation is demonstrated by data from Unocal's down-gradient wells MW-6 and MW-8. Sampling locations, an analytical data table, and available boring logs from this investigation are presented in Appendix D.
2.2.7	Oxygenate Plume Stability and Concentration Trends	Oxygenates are consistently not detected or detected at concentrations below ESLs in on-site wells.
2.2.8	Groundwater Flow Direction, Depth Trends and Gradient	Static groundwater depth has ranged from 3.49 to 9.20 fbg. Groundwater flow direction is generally northerly with a variable but generally shallow groundwater gradient. Groundwater depths are presented in the historical groundwater monitoring data table (Table 2).
2.2.9	Stratigraphy and Hydrogeology	Based on 34 site borings, the site is underlain by up to 3 feet of variable fill below which is predominately clayey sand, silty sand, sand with gravel, and sand with occasional, minor (up to 3-feet-thick) silt and clay lenses, to a depth of approximately 40 fbg. Site boring logs are presented in Appendix E.
2.2.10	Preferential Pathways Analysis	 In November 2004, Cambria Environmental Technology, Inc. (Cambria) submitted a preferential pathway analysis in their November 30, 2004 Soil & Groundwater Investigation Work Plan and Agency Response. Cambria reviewed: City of Alameda Public Works sanitary sewer and storm drain maps, Alameda Power & Telecom electricity and telephone utility maps, and East Bay Municipal Utility District (EBMUD) water mains maps. Several utility lines were noted in the area of the site at depths of up to 9 fbg. Currently known or identified utilities are shown on Figure 2. Based on the available utility information, Cambria concluded that due to the range of historical groundwater depths, the potential exists for the water table to rise into certain sanitary sewer, storm drain and water main piping trenches. They noted that it appears that the north-flowing 8-inch sanitary sewer beneath Webster Street, adjacent to the site, is likely regularly submerged and that groundwater flow might be affected by the trench for this pipe. In addition, Cambria observed that during very high groundwater episodes, groundwater could rise into trenches for other sanitary sewers, storm drains, and water mains. As a result, they stated that there is a potential that the identified utilities may act occasionally as preferential pathways for groundwater flow. Grab groundwater data from subsequent borings SB-12 through SB-14 defined the petroleum hydrocarbon plume to the east and the southeastern edge of the MTBE plume. As stated above,

Item	Evaluation Criteria	Comments/Discussion
		groundwater grab sampling data from the Shell's joint investigation with the adjacent former Unocal station (Appendix D) defines the down-gradient extent of the detached MTBE plume.
2.2.11	Other Pertinent Issues	In November 2004, Cambria conducted a sensitive receptor survey (SRS). The SRS targeted the following as potential sensitive receptors: basements within 200 feet, surface water and sensitive habitats within 500 feet, hospitals, educational, residential care and childcare facilities within 1,000 feet, and water-producing wells within one-half mile. Two possible partial basements were visually observed at residences at 628 Lincoln Avenue (across Lincoln Avenue, southwest of the site) and 632 Pacific Avenue (northwest of the site) at a distance of approximately 200 feet from the site. Cambria stated that the basements did not appear to be finished for living space, but rather may be used for storage or utility space. The existence of basements was not confirmed by contacting the residents. No surface waters or sensitive habitats were observed within 500 feet. No hospitals, schools, or childcare facilities were observed within 1,000 feet; however, one residential nursing home (Elders Inn) was identified at 1721 Webster Street, approximately 350 feet from the site.
2.3	Remediation Status	
2.3.1	Remedial Actions Taken	From March 1995 until March 1996 groundwater was remediated by injecting air into MW-2. Following the August 2004 product release, remaining fuel was removed from the damaged UST and GWE was conducted from the northern-most tank backfill well (TBW-N). Initially, groundwater was extracted several times per day from August 19 until August 23, 2004. Then, daily GWE was conducted from August 24 until September 10, 2004. From September 13 through November 16, 2004, GWE was conducted weekly and GWE was subsequently conducted monthly through February 2006. Approximately 196,130 gallons of groundwater were removed by GWE along with an estimated 1,982 gallons of SPHs and 21.7 gallons of dissolved TPHg. Appendix B presents GWE data. During UST and dispenser replacement in 2014, approximately 225,000 tons of soil and pea gravel and approximately 28,850 gallons of groundwater were removed from the excavation for off-site disposal. In addition, the dispensers and product piping were upgraded in August 1997, and the site's waste oil system was upgraded in November 1998 and subsequently removed in May 2006.

ltem	Evaluation Criteria	Comments/Discussion
2.3.2	Area Remediated	The area south of the dispensers and the UST complex.
2.3.3	Remediation Effectiveness	A reported volume of 2,084 gallons of product was released during the August 2004 spill. An estimated 2,004 gallons of product were recovered through remedial extraction efforts. Following this source removal, the plume is shrinking and declining trends are demonstrated for COCs. Excavation during UST replacement provided additional secondary source removal.
2.4	Well and Sensitive Receptor Survey	
2.4.1	Designated Beneficial Water Use	The SWRCB's Geotracker website file for the environmental case at this site states that the "Groundwater at the site is considered suitable, or potentially suitable for municipal and domestic water supply (MUN) as designated in the San Francisco Bay Region Water Quality Control Board Basin Plan. However, the municipal and domestic water supply beneficial use is not currently being utilized in the area of the site." Groundwater in this area cannot be precluded from being a potential future source of drinking water.
2.4.2	Well Survey Results	In March 2004, Cambria performed a search of California Department of Water Resources (DWR) records and the SWRCB's Geotracker database to identify water-producing wells within one-half mile of the site. No public water-supply wells were identified from DWR records or the Geotracker database. Cambria found DWR records for one domestic well, four agricultural wells, one industrial well, and one well of unknown use within one-half mile of the site. The nearest identified well was located by address approximately 150 feet south of the site. The DWR well record was undated and did not record the well's intended use. The address is currently occupied by a café, and Cambria could not find the well; therefore, the well is presumed to be destroyed or abandoned. The next closest wells, irrigation wells installed in 1977, are estimated to be about 525 and 800 feet northwest of the site, and drilled to 25 and 32 fbg, respectively. Cambria concluded that since groundwater is known to flow generally northward, these wells are cross gradient from the site and are therefore unlikely to be affected by impacted groundwater from the site. All other identified wells were located more than 1,000 feet to the southeast, south, and southwest (up gradient) of the site. The locations of the identified wells are shown on Figure 1, and well details are presented in Appendix F.
2.4.3	Likelihood of Impact to Wells	Due to the distance and direction to the identified water-producing wells and declining trends observed for COCs, it is unlikely they would be impacted by residual hydrocarbons from the site.

Item	Evaluation Criteria	Comments/Discussion
2.4.4	Likelihood of Impact to Surface Water	San Francisco Bay is located approximately 2,100 feet southwest. Due to the distance and up- gradient direction to the bay, it is unlikely that surface water would be impacted.
2.5	Risk Assessment	
2.5.1	Site Conceptual Exposure Model (current and future uses)	The site is an active Shell-branded service. The site is surrounded by mixed residential and commercial properties.
2.5.2	Exposure Pathways	Potential exposure pathways include ingestion of impacted groundwater, exposure of on-site workers to impacted shallow soils, and intrusion of vapor to indoor air. Groundwater ingestion does not appear to be a completed pathway because there are no down-gradient water-producing wells or surface water in close proximity to the site. As discussed above, impacted soil is limited on site. Any work at this site would require contractors to have appropriate health and safety training. Workers doing trenching or excavating at an active gasoline station would be properly trained and prepared for encountering potentially impacted soil, and would follow appropriate safety procedures. Therefore, the residual impacted soils do not appear to pose a significant threat to construction workers who may occasionally come in contact with any residual impacted soils on site. At this time, no further investigation associated with the residual soil impact is recommended. Furthermore, the site is an active fueling facility, and there is no reasonable concern that subsurface contamination poses unacceptable indoor inhalation health risk.
2.5.3	Risk Assessment Status	Cambria's May 17, 2006 <i>Risk Evaluation and Work</i> <i>Plan</i> evaluated potential risks to human health or the environment posed by impacted soil and groundwater beneath the site. Cambria concluded that the residual impacts do not pose a risk to human health or the environment and will not in the foreseeable future.
2.5.4	Identified Human Exceedances	None
2.2.5	Identified Ecological Exceedances	None
2.6	Additional Recommended Data or Tasks	
2.6.1	Case Closure and Well Destructions	

3. Low-Threat Closure Evaluation

Site data demonstrate that the site conditions meet the low threat UST case closure criteria outlined in the SWRCB's *Low-Threat Underground Storage Tank Case Closure Policy* (the Policy). These criteria are addressed below.

3.1 General Criteria

3.1.1 The Unauthorized Release is Located within the Service Area of a Public Water System

East Bay Municipal Utility District is the public water system for the site and the surrounding area.

3.1.2 The Unauthorized Release Consists only of Petroleum

The site is Shell-branded service station. Soil and groundwater impacts identified in site investigations since 2004 consist only of petroleum hydrocarbons and fuel additives.

3.1.3 The Unauthorized ("Primary") Release from the UST System Has Been Stopped

As stated above, a gasoline UST was repaired during station upgrades in August 2004, USTs and dispensers were replaced in 2014, and the site's waste oil system was removed in May 2006.

3.1.4 Free Product Has Been Removed to the Maximum Extent Practicable

Remedial efforts were successful in recovering 96% of the product released in August 2004. No SPHs have been detected in site groundwater monitoring wells since November 2007.

3.1.5 A Conceptual Site Model that Assesses the Nature, Extent, and Mobility of the Release Has Been Developed

An SCM, which identifies potential receptors, is presented in Section 2 above.

3.1.6 Secondary Source Has Been Removed to the Extent Practicable

As stated above, GWE removed approximately 1,982 gallons of SPHs and 22.7 gallons of dissolved TPHg. Appendix B presents GWE data. In addition, during UST and dispenser replacement in 2014, approximately 225,000 tons of soil and pea gravel and approximately 28,850 gallons of groundwater were removed from the excavation for off-site disposal.

3.1.7 Soil and Groundwater Has Been Tested for MTBE

Soil samples have been analyzed for MTBE in all investigations from August 1997 to the present. Groundwater samples have been analyzed for MTBE since April 1996. Analytical data have been reported to ACEH in investigation reports and periodic groundwater monitoring reports.

3.1.8 Nuisance as Defined by Water Code Section 13050 Does Not Exist at the Site

Site conditions do not interfere with enjoyment of life or property, affect an entire community or neighborhood, or present a nuisance during or as a result of the treatment or disposal of wastes.

3.2 Media-Specific Criteria

3.2.1 Groundwater

The contaminant plume that exceeds water quality objectives is stable or decreasing in areal extent and this site meets the groundwater requirements specified for class 1 in the Policy:

- The plume is less than 100 feet long: The north-south length of the plume is less than 90 feet. As discussed above, there is no significant MTBE plume from the Shell site, so there is no comingling with the Unocal MTBE plume or the detached MTBE plume identified during the joint off-site investigation. Data from wells S-2, S-3, and S-4 demonstrate that the Shell's TPHg and BTEX plume is also separate from the Unocal plume, so on-site data for these COCs are used for calculating the plume length.
- *There is no free product:* As stated above, no free product has been observed in site groundwater monitoring wells since November 2007.
- The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary: As stated above, the nearest water-supply wells that appear to currently exist are at least 525 feet northwest of the site.

3.2.2 Vapor

The site is an active fueling facility, and there is no reasonable concern that subsurface contamination poses unacceptable indoor inhalation health risk.

3.2.3 Direct Contact and Outdoor Air Exposure

This site meets the direct contact and outdoor air requirements for benzene and ethylbenzene in commercial soil specified in scenario 1 in the Policy:

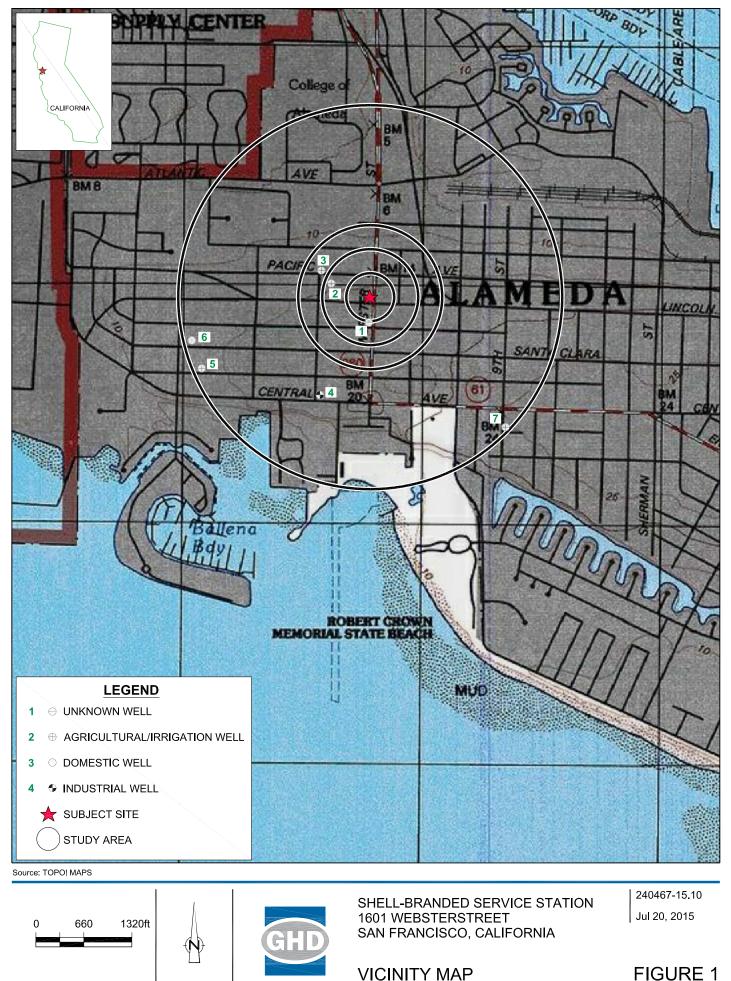
- Benzene and ethylbenzene concentrations at 0 to 5 fbg are less than 8.2 mg/kg and 89 mg/kg, respectively: No benzene or ethylbenzene has been detected in soil samples collected at a depth less than 5 fbg. Note that samples listed at 5 fbg in Table 1 were collected from 5 to 5.5 fbg and are considered below.
- Benzene and ethylbenzene concentrations at 5 to 10 fbg are less than 12 mg/kg and 134 mg/kg, respectively: Soil samples collected from 5 to 10 fbg have contained up to 2.4 mg/kg benzene and 90 mg/kg ethylbenzene. Soil sample D-2 collected at 5 fbg in 1997 is not considered because this location was subsequently excavated, so these detections do not represent residual soil conditions.

4. Closure Request

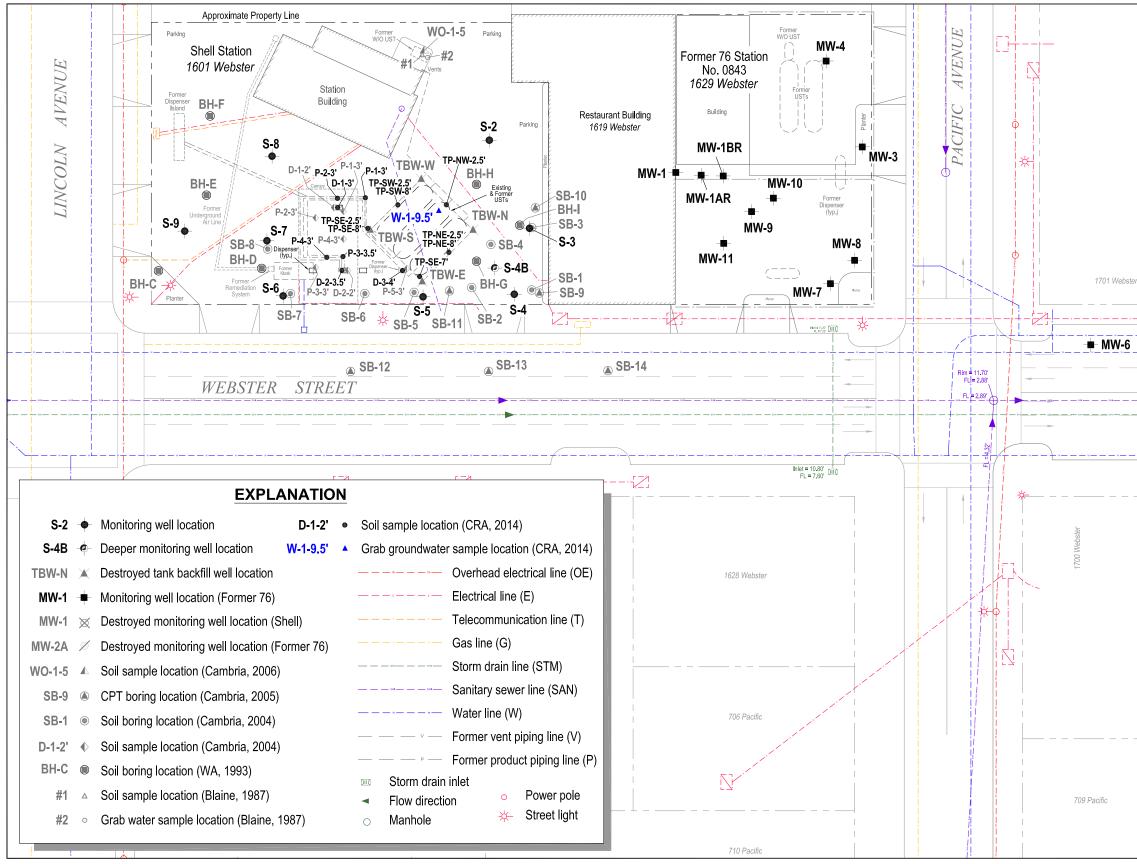
This site has been adequately assessed and remediation has been effective in reducing COC concentrations. Given the concentrations of COCs in site soil and groundwater compared Policy criteria as presented above, GHD concludes that the residual petroleum and fuel oxygenate impacts at this site pose very little or no risk to human health or the environment.

This site meets the SWRCB's Policy requirements. Therefore, on behalf of Shell, we respectfully request closure of this case. A Policy checklist is included in Appendix G. GHD requests that ACEH suspend the groundwater monitoring program requirement during the closure review.

All of Which is Respectfully Submitted,


GHD

Kelin Sor


Peter Schaefer, CEG, CHG

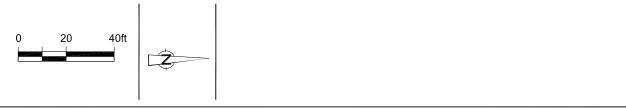
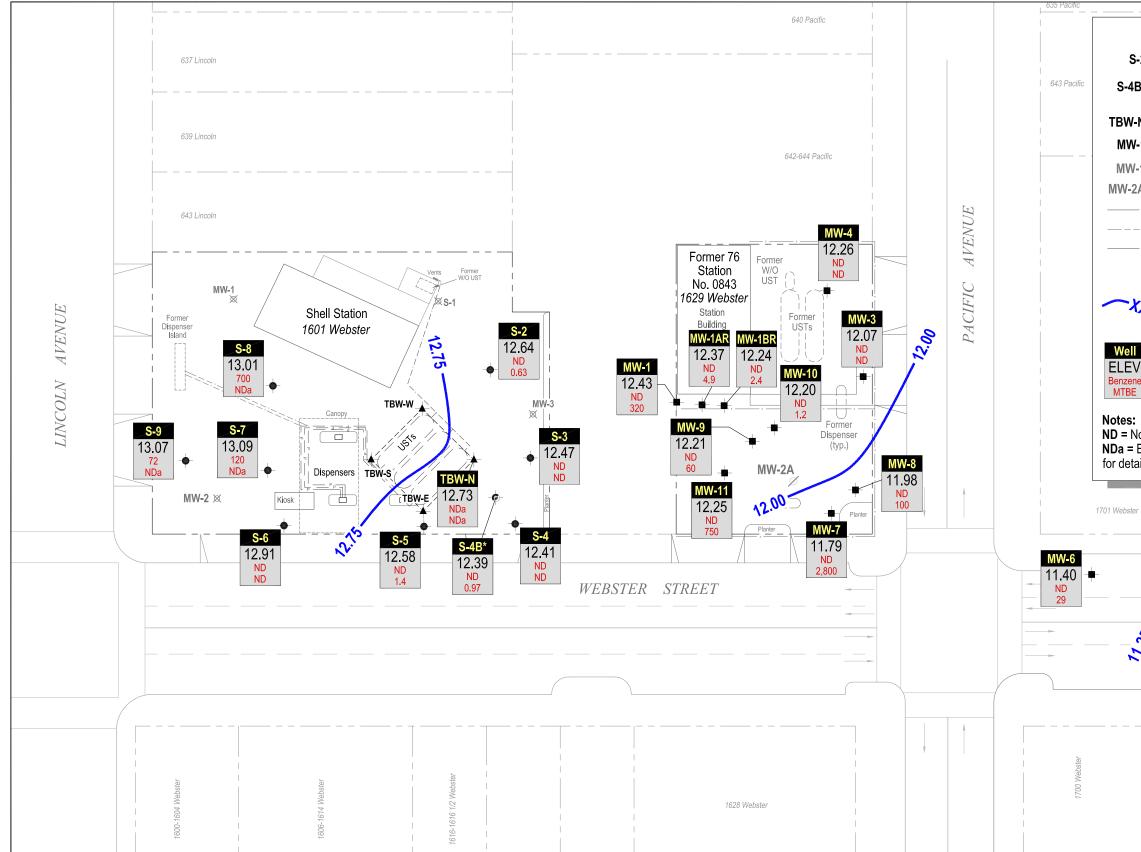

Aubrey K. Cool, PG

FIGURE 1



SHELL-BRANDED SERVICE STATION 1601 WEBSTER STREET ALAMEDA, CALIFORNIA

SITE PLAN

r 	1715 Webster	1719 Webster
MW-5	1712 Webster	1776 Webster
		17
	706 Bue	na Vista 240467-15.10 Jul 20, 2015

SHELL-BRANDED SERVICE STATION 1601 WEBSTER STREET ALAMEDA, CALIFORNIA GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP - MARCH 5, 2013

CAD File: I:\Shelli6-chars\2404–\240467-Alameda 1601 Webster SI\240467-FIGURES\240467-16-FIGURES\240467-15.10(016)GN-EM003.dwg

	EXPLANATION			
-	Monitoring well location (She	ell)		
-¢-	Deeper monitoring well locat (not used in contouring)	ion (Shell)		
+	Tank backfill well location (S	hell)		
	Monitoring well location (For	mer 76)		
\boxtimes	Destroyed monitoring well lo	cation (Shell)		
\boxtimes	Destroyed monitoring well lo	cation (Former 76)		
	Product piping line			
	Former product pi			
	- ∝ ——— Vent piping line (V	()		
XX	Groundwater elevation contor feet above mean sea level (ft	ur, in MSL)		
	Well designation			
	Groundwater elevation, in ft N	ISL		
	Benzene and MTBE concentrare in micrograms per liter	ations		
	cted ed reporting limit, see laborato	ry report	ebster	ebster
			1715 Webster	1719 Webster
			·	
	NV			
_				
/	N ¹			
/				
		10.95		
		10.95		
	· · · · · · · · · · · · · · · · · · ·	10.95 ND 2.6	ster	ster
	· · · · · · · · · · · · · · · · · · ·	10.95 ND 2.6	12 Webster	6 Webster
		10.95 ND 2.6	1712 Webster	1716 Webster
	· · · · · · · · · · · · · · · · · · ·	10.95 ND 2.6	1712 Webster	1716 Webster

FIGURE 3

Figure 4: Predicted Time to Water Quality Objectives in Well S-6

 $y = b e^{ax}$ $x = \ln(y/b) / a$ ===> a = decay constant where: $y = concentration in \mu g/L$ b = concentration at time (x)x = time(x) in days**Total Petroleum** Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 1.0 y Constant: 1.76E+25 2.01E+17 b Constant: -9.85E-04 а -1.27E-03 Starting date for current trend: 8/30/2006 8/30/2006 Calculate Attenuation Half Life (years): (-ln(2)/a)/365.25 1.49 1.93 Mar 2015 Estimated Date to Reach WQO: $(x = \ln(y/b) / a)$ Sep 2010 TPHg ---Benzene Groundwater Elevation 100,000.0 19 TPHg: y = 2E + 25e - 0.001x10,000.0 17 Groundwater Elevation (ft MSL) 1,000.0 15 Concentration (µg/L) 100.0 13 10.0 11 Benzene: y = 2E+17e-1E-03x 9 1.0 0.1 7 Jan.09 Jan 10 Janob Jan-06 Jan.08 Jan 12 Jania Janna JanoT Jann Date S-6: Shell-branded Service Station **TPHg and Benzene Concentrations** 1601 Webster Street and Groundwater Elevation vs. Time Alameda, California

Shell-branded Service Station, 1601 Webster Street, Alameda, California

Figure 5: Predicted Time to Water Quality Objectives in Well S-7

 $y = b e^{ax}$ $x = \ln(y/b) / a$ ===> a = decay constant where: $y = concentration in \mu g/L$ b = concentration at time (x)x = time(x) in days**Total Petroleum** Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): y 100 1.0 Constant: b 1.30E+22 2.28E+35 -1.05E-03 -1.85E-03 Constant: а Starting date for current trend: 8/30/2006 8/15/2008 Calculate Attenuation Half Life (years): (-ln(2)/a)/365.25 1.80 1.03 Mar 2020 Estimated Date to Reach WQO: $(x = \ln(y/b) / a)$ Oct 2020 TPHg Benzene Groundwater Elevation 15 100,000 TPHg: y = 1E+22e-0.001xGroundwater Elevation (ft MSL) 10,000 13 Concentration (µg/L) 1,000 11 9 100 Benzene: y = 2E+35e-0.002x 7 10 Janos Janos Jania Janos 181.00 Janno Jan 12 Janins JanoT Janni Date S-7: Shell-branded Service Station **TPHg and Benzene Concentrations** 1601 Webster Street and Groundwater Elevation vs. Time Alameda, California

Shell-branded Service Station, 1601 Webster Street, Alameda, California

Figure 6: Predicted Time to Water Quality Objectives in Well S-8

 $y = b e^{ax}$ $x = \ln(y/b) / a$ ===> a = decay constant where: $y = concentration in \mu g/L$ b = concentration at time (x)x = time(x) in days**Total Petroleum** Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 1.0 у Constant: 1.48E+21 1.73E+19 b -9.87E-04 -9.26E-04 Constant: а Starting date for current trend: 8/30/2006 8/30/2006 Calculate Attenuation Half Life (years): (-ln(2)/a)/365.25 1.92 2.05 Estimated Date to Reach WQO: $(x = \ln(y/b) / a)$ Jun 2022 Jan 2031 - TPHg ---Benzene **Groundwater Elevation** 100,000 15 TPHg: y = 1E+21e-1E-03x Groundwater Elevation (ft MSL) 13 10,000 Concentration (µg/L) 1,000 11 Benzene: y = 2E+19e-9E-04x9 100 7 10 Jania Jan-09 220,10 Jan.06 JanoT Janos Jan 12 Janins Jann

Shell-branded Service Station, 1601 Webster Street, Alameda, California

S-8: Shell-branded Service Station **TPHg and Benzene Concentrations** 1601 Webster Street and Groundwater Elevation vs. Time Alameda, California

Date

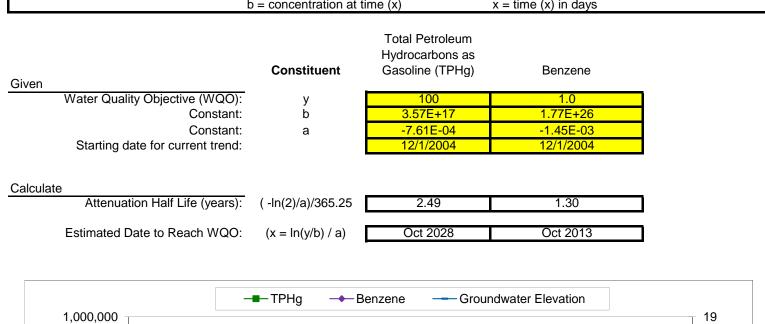
Figure 7: Predicted Time to Water Quality Objectives in Well S-9

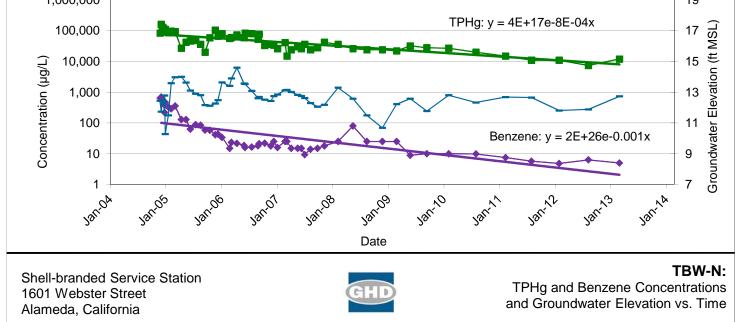
 $v = b e^{ax}$ $x = \ln(y/b) / a$ ===> a = decay constant where: $y = concentration in \mu g/L$ b = concentration at time (x)x = time(x) in days**Total Petroleum** Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 1.0 у Constant: b 2.18E+33 1.99E+26-1.69E-03 Constant: -1.36E-03 а Starting date for current trend: 8/30/2006 8/30/2006 Calculate Attenuation Half Life (years): (-ln(2)/a)/365.25 1.40 1.12 Estimated Date to Reach WQO: $(x = \ln(y/b) / a)$ Oct 2016 Mar 2022 TPHg ----Benzene Groundwater Elevation 17 1,000,000 Groundwater Elevation (ft MSL) 15 100,000 TPHg: y = 2E+33e-0.002xConcentration (µg/L) 13 10,000 1,000 11 9 100 Benzene: y = 2E+26e-0.001x 7 10 Jania Janoo JanoT Janos Jan.09 Janno 121-12 Janna Janna

Date

Shell-branded Service Station

1601 Webster Street

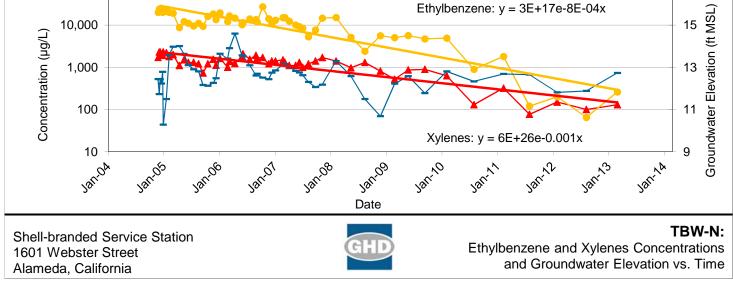

Alameda, California


Shell-branded Service Station, 1601 Webster Street, Alameda, California

S-9: TPHg and Benzene Concentrations and Groundwater Elevation vs. Time

Figure 8: Predicted Time to Water Quality Objectives in Well TBW-N

 $y = b e^{ax}$ $x = \ln(y/b) / a$ ===> a = decay constant where: $y = concentration in \mu g/L$ b = concentration at time (x)x = time(x) in days**Total Petroleum** Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 1.0 100 y 3.57E+17 1.77E+26 Constant: b -7.61E-04 -1.45E-03 Constant: а Starting date for current trend: 12/1/2004 12/1/2004 Calculate Attenuation Half Life (years): (-ln(2)/a)/365.25 2.49 1.30 Estimated Date to Reach WQO: Oct 2028 Oct 2013 $(x = \ln(y/b) / a)$



Shell-branded Service Station, 1601 Webster Street, Alameda, California

Figure 9: Predicted Time to Water Quality Objectives in Well TBW-N

 $y = b e^{ax}$ $x = \ln(y/b) / a$ ===> where: $y = concentration in \mu g/L$ a = decay constant b = concentration at time (x)x = time(x) in days Constituent Ethylbenzene **Xylenes** Given Water Quality Objective (WQO): 20 30 У 2.75E+17 Constant: b 6.38E+26 Constant: а -8.47E-04 -1.35E-03 Starting date for current trend: 12/7/2004 12/7/2004 Calculate Attenuation Half Life (years): (-ln(2)/a)/365.25 2.24 1.41 Oct 2018 Jul 2019 Estimated Date to Reach WQO: (x = ln(y/b) / a)Ethylbenzene **Xylenes** Groundwater Elevation 100,000 17 Ethylbenzene: y = 3E+17e-8E-04x10,000 15 13 1,000

Shell-branded Service Station, 1601 Webster Street, Alameda, California

Historical Soil Analytical Data Shell-branded Service Station 1601 Webster Street, Alameda, California

Sample ID	Date	Depth (fbg)	O&G (mg/kg)	Non- Polar O&G (mg/kg)	TPHmo (mg/kg)	(mg/kg)	TPHg (mg/kg)				E (mg/kg)		MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	(mg/kg)	Ethanol (mg/kg)	1,1,1- Trichloro- ethane (mg/kg)	VOCs (mg/kg)	HVOCs (mg/kg)	Chlorinated Hydro- carbons (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Ni (mg/kg)	Zn (mg/kg)	,	Creosote (mg/kg)	(mg/kg)
#1	06/26/1987	9.5	133				14 c		<0.05	<0.05	<0.05					 				29.4			ND h,i							 	
S-1	09/04/1987	3.5-5	130		50 a	<10		<10								 														 	
S-1	09/04/1987	9-10.5	30		<10 a	<10		<10	<0.005 b	<0.005 b	<0.005 b	<0.005 b				 	<0.005 b				ND									 	
S-1	09/04/1987	14-15.5	13		<10 a	<10		<10																						 	
BH-A (MW-1)	04/03/1990	4.8					<1 c		<0.0025	0.0032	<0.0025	0.0030				 														 	
BH-A (MW-1)	04/03/1990	7.8	<50	<100	<10	<1 c	<1 c		<0.0025	0.0029	<0.0025	<0.0025				 							ND							 	
BH-A (MW-1)	04/03/1990	10.8					<1 c		0.0026	0.010	<0.0025	0.0037				 														 	
BH-B (MW-2)	04/03/1990	5.2					<1 c		< 0.0025	0.0048	< 0.0025	0.013				 														 	
BH-B (MW-2) BH-B (MW-2)	04/03/1990 04/03/1990	6.8 10.2	<50 	<100	<10 	<1 c	1.3 с 20 с		0.0034 0.53	0.017 3.8	0.010 0.75	0.079 4.0				 						ND								 	
BH-B (MW-2) BH-B (MW-2)	04/03/1990	15.2					20 C 32 C		0.55	3.8 1.8	0.67	4.0 2.6				 														 	
BH-B (MW-2)	04/03/1990	20.2					<1 c		0.0049	0.023	0.0047	0.029				 														 	
~ /																															
BH-C-5.5'	10/12/1992	5.5	<30 d				<0.5		<0.005	< 0.005	<0.005	<0.005				 						ND								 	
BH-C-11'	10/12/1992	11	<30 d				<0.5		<0.005	<0.005	<0.005	<0.005				 						е								 	
BH-D-5.5'	10/12/1992	5.5	<30 d				100		<0.005	< 0.005	1.8	5.4				 						ND								 	
BH-D-10.5'	10/12/1992	10.5	<30 d				<0.5		<0.005	<0.005	0.007	0.032				 						ND								 	
BH-E-5.5'	10/22/1992	5.5	<30 d				14		0.026	0.4	0.2	1.2				 						f								 	
BH-E-10.5'	10/22/1992	10.5	110 d				170		<0.005	3.0	3.6	22				 						ND								 	
BH-E-13.5'	10/22/1992	13.5	<30 d				0.87		0.11	0.097	0.019	0.089				 						ND								 	
BH-F-5.5'	10/22/1992	5.5	<30 d				<0.5		<0.005	<0.005	<0.005	<0.005				 						ND								 	
BH-F-10.5'	10/22/1992	10.5	47 d				26		0.065	0.27	0.65	3.6				 						g								 	
BH-G-5.5'	10/22/1992	5.5	<30 d				<0.5		<0.005	<0.005	<0.005	<0.005										ND									
BH-G-10'	10/22/1992	10	<30 d				<0.5 <0.5		<0.005	<0.005	<0.005	<0.005				 						ND								 	
BH-H-5.5'	10/22/1992	5.5	<30 d				<0.5		<0.005	<0.005	<0.005	<0.005				 						ND								 	
BH-H-10'	10/22/1992	10	<30 d				<0.5		<0.005	<0.005	<0.005	<0.005				 						ND								 	
BH-I-5.5'	10/22/1992	5.5	<30 d				<0.5		< 0.005	< 0.005	< 0.005	< 0.005				 						ND								 	
BH-I-10.5'	10/22/1992	10.5	<30 d				<0.5		<0.005	<0.005	<0.005	<0.005				 						ND								 	
BH-J-5.5' (MW-3	3 02/19/1993	5.5	<30 d				<0.5		<0.005	<0.005	<0.005	<0.005				 						ND								 	
BH-J-10' (MW-3			<30 d				<0.5			< 0.005						 						ND								 	
D-1	08/27/1997	5					10,000		<5.0	12	81	700	<25			 														 	
D-2	08/27/1997	E					11.000		6.3	7.8	06	440	<25																		
D-2 D-2	08/27/1997	5 10					760		2.4	4.1	96 10	66	<25			 														 	
02	00/21/1001	10					100		2.4	4.1	10	00	NO.2																		
P-1	08/27/1997	5					140		<0.25	0.91	0.82	5.9	<1.2			 														 	
P-2	08/27/1997	5					3,600		1.9	1.9	36	220	<6.2			 														 	
D 2	08/27/1997	5					1 700		-10	-1.0	4	22	-6.2																		
P-3	00/21/1991	Э					1,700		<1.2	<1.2	4	23	<6.2			 														 	
P-4	08/27/1997	5					230		<0.25	<0.25	1.2	3.4	<1.2			 														 	
									-	-																					
P-1-3'	08/11/2004	3					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050			 														 	
P-2-3'	08/10/2004	3					<1.0					<0.0050	<0.0050			 														 	
P-3-3'	08/10/2004	3					1,300		<0.50	<0.50	<0.50	49	<0.50			 														 	
P-4-3'	08/10/2004	3					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050			 														 	

Historical Soil Analytical Data Shell-branded Service Station 1601 Webster Street, Alameda, California

Sample ID	Date	Depth (fbg)	O&G (mg/kg)	Non- Polar O&G (mg/kg)	TPHmo (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	TPH Jet Fuel (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Ethanol (mg/kg)	1,1,1- Trichloro- ethane (mg/kg)	VOCs (mg/kg)	HVOCs (mg/kg)	Chlorinated Hydro- carbons (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Ni (mg/kg)	Zn (mg/kg)	PNAs (mg/kg)	PCP (mg/kg)	Creosote (mg/kg)	PCBs (mg/kg)
P-5-3'	08/10/2004	3					<1.0		<0.0050	<0.0050	<0.0050	0.045	<0.0050																				
D-1-2' D-2-2'	08/10/2004 08/10/2004	2 2					<1.0 <1.0		<0.0050 <0.0050		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050																				
SB-1-5' SB-1-6.5'	11/30/2004 11/30/2004	5 6.5					<1.0 <1.0		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.010 <0.010	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.1 <0.1													
SB-2-5'	12/01/2004	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.1													
SB-2-6.5'	12/01/2004	6.5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	0.011	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.1													
SB-3-5' SB-3-6.5'	12/01/2004 12/01/2004	5 6.5					<1.0 <1.0		<0.0050 <0.0050		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.010 <0.010	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.1 <0.1													
SB-4-5'	12/02/2004	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.1													
SB-4-6.5'	12/02/2004	6.5					<50		<0.50	<0.50	<0.50	<0.50	1.5	<2.5	<1.0	<0.50	<0.50	<0.50	<0.50	<25													
SB-5-5'	11/30/2004	5					<1.0		<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.1													
SB-5-6.5'	11/30/2004	6.5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.1													
SB-6-5' SB-6-6.5'	11/30/2004 11/30/2004	5 6.5					<1.0 <1.0		<0.0050 <0.0050		<0.0050 <0.0050		<0.0050 0.0099	<0.010 <0.010	<0.010 <0.010	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.1 <0.1													
SB-7-5' SB-7-6.5'	11/30/2004 11/30/2004	5 6.5					<1.0 6.2		<0.0050 <0.0050		<0.0050 <0.0050		<0.0050 <0.0050	<0.010 <0.010	<0.010 <0.010	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.1 <0.1													
SB-8-5'	12/02/2004	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.1													
SB-8-6.5'	12/02/2004	6.5					740		<1.0	5.9	17	83	<1.0	<5.0	<2.0	<1.0	<1.0	<1.0	<1.0	53													
S-2-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
S-3-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
S-4-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
S-5-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
S-6-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
S-7-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
SB-9-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
SB-10-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
SB-11-5.0	10/31/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
SB-12-5.0	11/02/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
SB-13-5.0	11/02/2005	5					<1.0		<0.0050	<0.0050	<0.0050	0.0080	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
SB-14-5.0	11/02/2005	5					<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050																
WO-1-5	05/25/2006	5	61 i			5.4 k	<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050					ND I	<0.500	26.4	2.24	18.1	16.6	ND	<2.5	<0.40	<0.50
S-4B-6.0	07/17/2006						<1.0		<0.0050				<0.0050			<0.0050		<0.0050	<0.0050														
S-4B-11.0 S-4B-16.0	07/17/2006 07/17/2006						<1.0 <1.0		<0.0050 <0.0050		<0.0050 <0.0050	<0.010 <0.010	<0.0050 <0.0050	0.56 0.30 m		<0.0050 <0.0050		<0.0050 <0.0050	<0.0050 <0.0050														

Historical Soil Analytical Data Shell-branded Service Station 1601 Webster Street, Alameda, California

Sample ID	Date	Depth (fbg)	O&G (mg/kg)	Non- Polar O&G (mg/kg)	TPHmo (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	TPH Jet Fuel (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Ethanol (mg/kg)	1,1,1- Trichloro- ethane (mg/kg)	VOCs (mg/kg)	HVOCs (mg/kg)	Chlorinated Hydro- carbons (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Ni (mg/kg)	Zn (mg/kg)	PNAs (mg/kg)	PCP (mg/kg)	Creosote (mg/kg)	
S-4B-19.5	07/17/2006	19.5					<1.0		<0.0050	<0.0050	<0.0050	<0.010	0.31 m	0.13 m	<0.010	<0.0050	<0.0050	<0.0050	<0.0050														
S-8-8.0 S-8-11.5	07/17/2006 07/17/2006	8 11.5					3,700 <50		1.0 <0.25	<0.25 <0.25	90 0.89	310 m 2.5	<0.25 <0.25	<2.5 <2.5	<0.50 <0.50	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25														
S-9-5.0 S-9-11.5	07/17/2006 07/17/2006						110 <1.0		<0.25 <0.0050	<0.25 <0.0050	2.0 <0.0050	3.5 0.010	<0.25 <0.0050	<2.5 <0.0050	<0.50 <0.010	<0.25 <0.0050	<0.25 <0.0050	<0.25 <0.0050	<0.25 <0.0050														
TP-NE-2.5 TP-NE-8	05/16/2014 05/16/2014	2.5 8					<0.10 <0.10		<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010			<0.050 <0.050																			
TP-NW-2.5	05/16/2014	2.5					<0.10		<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.050																			
TP-SW-2.5 TP-SW-8	05/16/2014 05/16/2014	2.5 8					<0.10 <0.099			<0.0010 <0.00099				<0.050 <0.050																			
TP-SE-2.5 TP-SE-7 TP-SE-8	05/16/2014 05/16/2014 05/16/2014	2.5 7 8				 	<0.10 <0.099 <0.10		<0.0010 <0.00099 <0.0010	<0.0010 <0.00099 <0.0010	<0.00099	<0.0020	<0.0020	<0.050 <0.050 <0.050	 	 	 		 	 	 				 		 	 	 	 	 	 	
P-1-3 P-2-3 P-3-3.5 P-4-3	05/16/2014 05/16/2014 05/16/2014 05/16/2014	3 3 3.5 3	 	 	 	 	<0.10 <0.099 <0.099 <0.099	 		<0.0010 <0.00099 <0.00099 <0.00099	<0.00099 <0.00099	<0.0020 <0.0020		<0.050 <0.050 <0.050 <0.050	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
D-1-3 D-2-3.5 D-3-4	05/16/2014 05/16/2014 05/16/2014	3 3.5 4	 			 	<0.099 <0.10 <0.10		<0.00099 <0.0010 <0.0010		<0.0010		<0.0020 <0.0020 <0.0020	<0.050 <0.050 <0.050	 	 	 	 	 	 	 	 	 		 		 	 	 	 			
Shallow Soil Deep Soil (>1		ⁿ :	NA NA	NA NA	500 1,000	110 110	500 770	NA NA	0.044 0.044	2.9 2.9	3.3 3.3	2.3 2.3	0.023 0.023	0.075 0.075	NA NA	NA NA	NA NA	0.0045 0.0045	0.00033 0.00033	NA NA	7.8 7.8	Various Various	Various Various	Various Various	12 1,000	2,500 5,000	320 320	150 5,000	600 5,000	Various Various	5.0 9.0	NA NA	0.74 0.74

Notes:

O&G = Total oil and grease analyzed by EPA Method 3550 unless otherwise noted

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015 unless otherwise noted

TPHmo = Total petroleum hydrocarbons as oil analyzed by EPA Method 3550 unless otherwise noted

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B: before 8/10/2004, analyzed by EPA Method 8015 unless otherwise noted.

TPH Jet Fuel = Total petroleum hydrocarbons as jet fuel analyzed by EPA Method 8015

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; before 8/10/2004, analyzed by EPA Method 8020 unless otherwise noted

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B; before 8/10/2004, analyzed by EPA Method 8020.

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane analyzed by EPA Method 8260B unless otherwise noted.

EDB = 1,2-Dibromoethane analyzed by EPA Method 8260B

Ethanol by EPA Method 6010B

1,1,1-Trichloroethane analyzed by EPA Method 8010

VOCs = Volatile organic compounds. See analytical report for specific constituents. Analytical method unknown.

HVOCs = Halogenated volatile organic compounds analyzed by EPA Method 8010. See analytical report for specific constituents. All detections noted.

Chlorinated hydrocarbons analyzed by EPA Method 8010 unless otherwise noted. See analytical report for specific constituents. All detections tabulated.

Cd = Cadmium analyzed by EPA Method 6010B

Cr = Chromium analyzed by EPA Method 6010B

Pb = Lead analyzed by EPA Method 6010B

Ni = Nickel analyzed by EPA Method 6010B

Zn = Zinc analyzed by EPA Method 6010B

PNAs = Polynuclear aromatics analyzed by EPA Method 8270C; see laboratory analytical report for a complete list of specific constituents

PCP = Pentachlorophenol analyzed by EPA Method 8270C

Historical Soil Analytical Data Shell-branded Service Station 1601 Webster Street, Alameda, California

	Sample ID	Date	Depth (fbg)	O&G (mg/kg)	Non- Polar O&G (mg/kg)	TPHmo (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	TPH Jet Fuel (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Ethanol (mg/kg)	1,1,1- Trichloro- ethane (mg/kg)	VOCs (mg/kg)	HVOCs (mg/kg)	Chlorinated Hydro- carbons (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Ni (mg/kg)	Zn (mg/kg)	PNAs (mg/kg)	PCP (mg/kg)	Creosote (mg/kg)	PCBs (mg/kg)
(Creosote analyzed	by EPA M	lethod 8270	C. It is repo	rted as a co	ombination of	of naphthale	ene, acena	phthylene,	fluorene, pł	henanthrene	, anthracer	ne, fluoranth	hene, pyren	e, 1-methyl	naphthalen	e, and 2-me	ethylnaphth	alene.															
	CBs = Polychlori												,		,	•	,	, ,																
f	og = Feet below g	rade		-				-																										
r	ng/kg = Milligrams	s per kilogra	am																															
	x = Not detected																																	
-	= Not analyzed																																	
1	ID = Not detected																																	
E	SL = Environmer	ntal screeni	ing level																															
1	IA = No applicable	e ESL																																
F	Results in bold eq	ual or exce	ed applicat	ole ESL																														
S	Shading indicates	that soil sa	ample locati	ion was subs	sequently e	xcavated; re	esults are no	ot represer	ntative of rea	sidual soil.																								
	= Analyzed by E																																	
	= Analytical meth																																	
	= Analyzed by El																																	
	= Analyzed by A																																	
	= Methylene chlo																																	
	= Methylene chlo																																	
	= Methylene chlo																																	
	= Only chlorober			zene, 1,3-d	ichlorobenz	ene, and 1,	,4-dichlorob	benzene ar	alyzed.																									
	= Analyzed by EF																																	
	= Analyzed by EF			,																														
	= Hydrocarbons			not exhibit a	typical Dies	sel chromato	ographic pa	attern. The	se hydrocar	bons are hi	igher boiling	than typica	al diesel fue	el.																				
	 Applyzed by ED 	0 Mothod	9260B																															

I = Analyzed by EPA Method 8260B

m = The concentration indicated for this analyte is an estimated value above the calibration range on the instrument.

n = San Francisco Bay Regional Water Quality Control Board (RWQCB) commercial/industrial ESL for soil where groundwater is a potential source of drinking water (Tables A and C of User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final - 2013).

Well ID	Date	TPHg	В	т	E	X	MTBE	тва	DIPE	ETBE	TAME	1,2- DCA	EDB	Ethanol	тос		SPH Thickness	GW Elevation
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
S-2	11/14/2005														19.73	7.60		12.13
S-2	11/22/2005	996	0.630	0.500	0.500	3.10	406	18.0	<0.500	<0.500	0.570				19.73	7.70		12.03
S-2	02/24/2006	<50 b	<0.50	<0.50	<0.50	<0.50	2.0	<5.0	<0.50	<0.50	<0.50				19.73	6.29		13.44
S-2	05/30/2006	<50.0	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500				19.73	6.14		13.59
S-2	08/30/2006	420	<0.500	<0.500	<0.500	<0.500	4.42	<10.0	<0.500	<0.500	<0.500				19.73	7.18		12.55
S-2	11/22/2006	110	<0.50	<0.50	<0.50	<1.0	62	<5.0	<2.0	<2.0	<2.0				19.73	7.55		12.18
S-2	02/23/2007	140	<0.50	<0.50	<0.50	<1.0	110	<5.0	<2.0	<2.0	<2.0				19.73	6.77		12.96
S-2	05/18/2007	<50 h	<0.50	<1.0	<1.0	<1.0	18	<10	<2.0	<2.0	<2.0				19.73	7.02		12.71
S-2	08/10/2007	<50 h	<0.50	<1.0	<1.0	<1.0	40	<10	<2.0	<2.0	<2.0				19.73	7.65		12.08
S-2	11/09/2007	130 h,i	<0.50	<1.0	<1.0	<1.0	190	<10	<2.0	<2.0	<2.0				19.73	7.87		11.86
S-2	02/08/2008	83 h,i	<1.0	<2.0	<2.0	<2.0	180	<20	<4.0	<4.0	<4.0				19.73	6.52		13.21
S-2	05/16/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				19.73	7.30		12.43
S-2	08/15/2008	<50	<0.50	<1.0	<1.0	<1.0	7.1	<10	<2.0	<2.0	<2.0				19.73	8.38		11.35
S-2	11/26/2008	<50	<0.50	<1.0	<1.0	<1.0	32	<10	<2.0	<2.0	<2.0				19.73	9.13		10.60
S-2	02/27/2009	90	<0.50	<1.0	<1.0	<1.0	85	<10	<2.0	<2.0	<2.0				19.73	7.05		12.68
S-2	05/28/2009	<50	<0.50	<1.0	<1.0	<1.0	8.0	<10	<2.0	<2.0	<2.0				19.73	6.93		12.80
S-2	09/14/2009	<50	<0.50	<1.0	<1.0	<1.0	17	<10	<2.0	<2.0	<2.0				19.73	8.20		11.53
S-2	02/05/2010	68	<0.50	<1.0	<1.0	<1.0	52	<10	<2.0	<2.0	<2.0				19.73	7.12		12.61
S-2	08/03/2010	<50	<0.50	<1.0	<1.0	<1.0	1.7	<10	<2.0	<2.0	<2.0				19.73	7.59		12.14
S-2	02/14/2011	<50	2.6	3.5	1.2	5.7	<1.0	<10	<1.0	<1.0	<1.0				19.73	7.16		12.57
S-2	08/04/2011	<50	<0.50	<0.50	<0.50	<1.0	<1.0	<10	<1.0	<1.0	<1.0				19.73	7.20		12.53
S-2	02/02/2012	<50	<0.50	<0.50	<0.50	<1.0	3.8	<10	<0.50	<0.50	<0.50	<0.50	<0.50		19.73	8.00		11.73
S-2	08/13/2012	<50	<0.50	<0.50	<0.50	<1.0	1.1	<10							19.73	7.85		11.88
S-2	03/05/2013	<50	<0.50	<0.50	<0.50	<1.0	0.63	<10							19.73	7.09		12.64
S-3	11/14/2005														19.14	7.01		12.13
S-3	11/22/2005	3,900	<0.500	<0.500	<0.500	0.900	3,730	26.0	<0.500	<0.500	3.44				19.14	7.15		11.99
S-3	02/24/2006	580 b	< 0.50	<0.50	< 0.50	< 0.50	360	<5.0	< 0.50	<0.50	<0.50				19.14	5.95		13.19
S-3	05/30/2006	<50.0	< 0.500	< 0.500	<0.500	0.510	52.2	<10.0		< 0.500					19.14	5.85		13.29
S-3	08/30/2006	2,910	<0.500	<0.500	<0.500	< 0.500	882	<10.0	<0.500						19.14	6.71		12.43
S-3	11/22/2006	240	< 0.50	<0.50	<0.50	<1.0	150	30	<2.0	<2.0	<2.0				19.14	7.05		12.09
S-3	02/23/2007	78	<0.50	<0.50	<0.50	<1.0	78	5.4	<2.0	<2.0	<2.0				19.14	6.30		12.84
S-3	05/18/2007	120 h,i	<0.50	<1.0	<1.0	<1.0	150	73	<2.0	<2.0	<2.0				19.14	6.58		12.56
		,.																

Well ID	Date	TPHg	В	т	Е	x	MTBE	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	Ethanol	тос	Depth to Water	SPH Thickness	GW Elevation
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
S-3	08/10/2007	<50 h	<1.0	<2.0	<2.0	<2.0	200	21	<4.0	<4.0	<4.0				19.14	7.09		12.05
S-3	11/09/2007	69 h,i	<0.50	<1.0	<1.0	<1.0	100	<10	<2.0	<2.0	<2.0				19.14	7.28		11.86
S-3	02/08/2008	<50 h	<0.50	<1.0	<1.0	<1.0	8.5	<10	<2.0	<2.0	<2.0				19.14	6.06		13.08
S-3	05/16/2008	71	<0.50	<1.0	<1.0	<1.0	100	<10	<2.0	<2.0	<2.0				19.14	6.84		12.30
S-3	08/15/2008	<50	<0.50	<1.0	<1.0	<1.0	9.0	<10	<2.0	<2.0	<2.0				19.14	7.83		11.31
S-3	11/26/2008	<50	0.53	<1.0	<1.0	1.5	12	<10	<2.0	<2.0	<2.0				19.14	8.70		10.44
S-3	02/27/2009	<50	<0.50	<1.0	<1.0	<1.0	3.2	<10	<2.0	<2.0	<2.0				19.14	6.97		12.17
S-3	05/28/2009	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				19.14	6.41		12.73
S-3	09/14/2009	<50	<0.50	<1.0	<1.0	<1.0	6.1	<10	<2.0	<2.0	<2.0				19.14	7.60		11.54
S-3	02/05/2010	<50	<0.50	<1.0	<1.0	<1.0	1.8	<10	<2.0	<2.0	<2.0				19.14	6.63		12.51
S-3	08/03/2010	<50	<0.50	<1.0	<1.0	<1.0	5.4	<10	<2.0	<2.0	<2.0				19.14	7.05		12.09
S-3	02/14/2011	<50	1.7	2.6	0.95	4.6	<1.0	<10	<1.0	<1.0	<1.0				19.14	6.71		12.43
S-3	08/04/2011	<50	<0.50	<0.50	<0.50	<1.0	<1.0	<10	<1.0	<1.0	<1.0				19.14	6.75		12.39
S-3	02/02/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50		19.14	7.53		11.61
S-3	08/13/2012	<50	<0.50	<0.50	<0.50	<1.0	0.51	<10							19.14	7.35		11.79
S-3	03/05/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10							19.14	6.67		12.47
S-4	11/14/2005														18.16	6.00		12.16
S-4	11/22/2005	4,570	<0.500	<0.500	<0.500	0.660	3,450	26.0	<0.500	<0.500	3.57				18.16	6.10		12.06
S-4	02/24/2006	2,200 b	< 0.50	< 0.50	<0.50	<0.50	1,400	13 c	< 0.50	< 0.50	1.4				18.16	5.09		13.07
S-4	05/30/2006	1,100	< 0.500	< 0.500	<0.500	< 0.500	1,060	87.5		< 0.500	1.04				18.16	5.00		13.16
S-4	08/30/2006	3,170		<0.500	<0.500	<0.500	1,000	120		< 0.500	0.850				18.16	5.81		12.35
S-4	11/22/2006	520	< 0.50	<0.50	<0.50	<1.0	480	5.2	<2.0	<2.0	<2.0				18.16	5.93		12.23
S-4	02/23/2007	180	< 0.50	<0.50	<0.50	<1.0	130	9.6	<2.0	<2.0	<2.0				18.16	5.40		12.76
S-4	05/18/2007	220 h,i	<2.5	<5.0	<5.0	2.5 j	420	<50	<10	<10	<10				18.16	5.62		12.54
S-4	08/10/2007	98 h,i	<2.5	<5.0	<5.0	, <5.0	540	29 j	<10	<10	<10				18.16	6.00		12.16
S-4	11/09/2007	190 h,i	<2.5	<5.0	<5.0	<5.0	350	<50	<10	<10	<10				18.16	6.20		11.96
S-4	02/08/2008	<50 h	<0.50	<1.0	<1.0	<1.0	13	<10	<2.0	<2.0	<2.0				18.16	5.47		12.69
S-4	05/16/2008	87	<0.50	<1.0	<1.0	<1.0	120	<10	<2.0	<2.0	<2.0				18.16	6.00		12.16
S-4	08/15/2008	<50	<0.50	<1.0	<1.0	<1.0	42	<10	<2.0	<2.0	<2.0				18.16	6.85		11.31
S-4	11/26/2008	140	<0.50	<1.0	<1.0	<1.0	140	<10	<2.0	<2.0	<2.0				18.16	7.62		10.54
S-4	02/27/2009	56	<0.50	<1.0	<1.0	<1.0	43	<10	<2.0	<2.0	<2.0				18.16	5.35		12.81
S-4	05/28/2009	<50	<0.50	<1.0	<1.0	<1.0	12	<10	<2.0	<2.0	<2.0				18.16	5.40		12.76

Well ID	Date	TPHg	В	т	Е	x	MTBE	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	Ethanol	тос			GW Elevation
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
S-4	09/14/2009	<50	<0.50	<1.0	<1.0	<1.0	6.7	<10	<2.0	<2.0	<2.0				18.16	6.55		11.61
S-4	02/05/2010	<50	<0.50	<1.0	<1.0	<1.0	4.3	<10	<2.0	<2.0	<2.0				18.16	5.62		12.54
S-4	08/03/2010	<50	<0.50	<1.0	<1.0	<1.0	10	<10	<2.0	<2.0	<2.0				18.16	6.09		12.07
S-4	02/14/2011	<50	1.3	2.2	0.91	4.4	1.6	<10	<1.0	<1.0	<1.0				18.16	5.80		12.36
S-4	08/04/2011	<50	<0.50	<0.50	<0.50	<1.0	<1.0	<10	<1.0	<1.0	<1.0				18.16	5.79		12.37
S-4	02/02/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50		18.16	6.56		11.60
S-4	08/13/2012	<50	<0.50	<0.50	<0.50	<1.0	0.68	<10	<0.50	<0.50	<0.50				18.16	6.35		11.81
S-4	03/05/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10							18.16	5.75		12.41
0.45	00/04/0000														40.70	0.4.4		40.04
S-4B	08/21/2006														18.78	6.14		12.64
S-4B	08/30/2006	3,630	<0.500		5.32	<0.500	1,130	643		<0.500	1.47				18.78	6.32		12.46
S-4B	11/22/2006	620	<0.50	< 0.50	0.66	<1.0	580	680	<2.0 <4.0	<2.0	<2.0				18.78	6.46 6.64		12.32
S-4B	02/23/2007	230	<1.0 <0.50	<1.0	<1.0	<2.0	190	450	<4.0 <2.0	<4.0	<4.0				18.78	6.64 6.19		12.14 12.59
S-4B S-4B	05/18/2007	200 h		<1.0	<1.0	<1.0	130 67	360	<2.0 <2.0	<2.0 <2.0	<2.0				18.78	6.19 6.48		12.59
	08/10/2007	150 h	0.47 j	<1.0	<1.0	<1.0	67 22	230			<2.0				18.78			
S-4B S-4B	11/09/2007	<50 h <50 h	<0.50 <0.50	<1.0	<1.0	<1.0	32 5.3	67 10	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0				18.78 18.78	6.59 6.12		12.19 12.66
	02/08/2008			<1.0 <1.0	<1.0	<1.0		<10		<2.0 <2.0						6.12 6.45		12.00
S-4B S-4B	05/16/2008 08/15/2008	<50 <50	<0.50 <0.50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.2 1.4	15 <10	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0				18.78 18.78	6.45 6.90		12.33
S-4В S-4В	11/26/2008	<50 <50	<0.50 <0.50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.5	<10 <10	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0				18.78	8.90 8.19		10.59
3-4B S-4B	02/27/2009	<50 <50	<0.50 <0.50	<1.0 <1.0	<1.0	<1.0 <1.0	2.5 1.4	<10	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0				18.78	6.03		12.75
S-4B S-4B	05/28/2009	<50 <50	<0.50 <0.50	<1.0 <1.0	<1.0	<1.0 <1.0	2.0	<10	<2.0	<2.0	<2.0				18.78	6.01		12.75
S-4B S-4B	09/14/2009	<50 <50	<0.50 <0.50	<1.0 <1.0	<1.0	<1.0 <1.0	2.0 3.7	<10	<2.0	<2.0	<2.0				18.78	6.90		12.77
S-4B	02/05/2010	<50	<0.50 <0.50	<1.0 <1.0	<1.0	<1.0 <1.0	2.0	<10	<2.0	<2.0	<2.0				18.78	7.23		11.55
S-4B	08/03/2010	<50 <50	<0.50 <0.50	<1.0 <1.0	<1.0	<1.0 <1.0	1.2	25	<2.0	<2.0	<2.0				18.78	6.64		12.14
S-4B	02/14/2011	<50	1.3	2.1	0.82	3.9	<1.0	<10	< <u>2.0</u>	<2.0	<2.0				18.78	6.70		12.08
S-4B	08/04/2011	<50	< 0.50	<0.50	< 0.50	<1.0	1.1	22	<1.0	<1.0	<1.0				18.78	7.13		11.65
S-4B	02/02/2012	<50	<0.50	<0.50	<0.50	<1.0	1.1	<10	<0.50	< 0.50	<0.50	<0.50	<0.50		18.78	6.57		12.21
S-4B	08/13/2012	<50	<0.50	<0.50	<0.50	<1.0	0.95	<10							18.78	7.83		10.95
S-4B	03/05/2013	<50	<0.50	<0.50	<0.50	<1.0	0.97	<10							18.78	6.39		12.39
S-5	11/14/2005														18.68	6.33		12.35
S-5	11/22/2005	1,010	0.900	<0.500	1.79	4.91	302	397	<0.500	<0.500	<0.500				18.68	6.44		12.24

Well ID	Date	TPHg	в	т	Е	х	MTBE	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	Ethanol	тос	Depth to Water		GW Elevation
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
S-5	02/24/2006	<50 b	<0.50	<0.50	<0.50	<0.50	19	<5.0	<0.50	<0.50	<0.50				18.68	5.44		13.24
S-5	05/30/2006	2,000	4.13	0.670	<0.500	3.28	143	<10.0	<0.500	<0.500	<0.500				18.68	5.33		13.35
S-5	08/30/2006	1,380	<0.500	<0.500	1.43	<0.500	211	106	<0.500	<0.500	<0.500				18.68	6.16		12.52
S-5	11/22/2006	82	<0.50	<0.50	<0.50	<1.0	28	13	<2.0	<2.0	<2.0				18.68	6.28		12.40
S-5	02/23/2007	<50	<0.50	<0.50	<0.50	<1.0	1.2	<5.0	<2.0	<2.0	<2.0				18.68	5.68		13.00
S-5	05/18/2007	<50 h,i	<0.50	<1.0	<1.0	<1.0	2.6	<10	<2.0	<2.0	<2.0				18.68	5.91		12.77
S-5	08/10/2007	<50 h	<0.50	<1.0	<1.0	<1.0	1.0	<10	<2.0	<2.0	<2.0				18.68	6.36		12.32
S-5	11/09/2007	<50 h	<0.50	<1.0	<1.0	<1.0	<10	<10	<2.0	<2.0	<2.0				18.68	6.47		12.21
S-5	02/08/2008	<50 h	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	5.52		13.16
S-5	05/16/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	6.22		12.46
S-5	08/15/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	7.26		11.42
S-5	11/26/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	8.03		10.65
S-5	02/27/2009	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	5.83		12.85
S-5	05/28/2009	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	5.73		12.95
S-5	09/14/2009	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	6.95		11.73
S-5	02/05/2010	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	6.01		12.67
S-5	08/03/2010	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0				18.68	6.46		12.22
S-5	02/14/2011	<50	3.9	3.8	1.2	5.3	1.8	<10	<1.0	<1.0	<1.0				18.68	6.20		12.48
S-5	08/04/2011	<50	<0.50	<0.50	<0.50	<1.0	1.8	<10	<1.0	<1.0	<1.0				18.68	6.15		12.53
S-5	02/02/2012	<50	<0.50	<0.50	<0.50	<1.0	0.75	<10	<0.50	<0.50	<0.50	<0.50	<0.50		18.68	6.87		11.81
S-5	08/13/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10							18.68	6.70		11.98
S-5	03/05/2013	<50	<0.50	<0.50	<0.50	<1.0	1.4	<10							18.68	6.10		12.58
S-6	11/14/2005														19.32	6.36		12.96
S-6	11/22/2005	15,800	5.14	0.690	32.1	934	<0.500	14.2	<0.500	<0.500	<0.500				19.32	6.53		12.79
S-6	01/19/2006														19.32	5.50		13.82
S-6	02/24/2006	7,900 b	4.4	<1.5	260	380	<1.5	<7.0	<1.5	<1.5	<1.5				19.32	5.76		13.56
S-6	05/30/2006	4,170	4.98	<0.500	76.6	44.2	<0.500	<10.0	<0.500	<0.500	<0.500				19.32	5.68		13.64
S-6	08/30/2006	16,400	10.7	<0.500	353	292	<0.500	<10.0	<0.500	<0.500	<0.500				19.32	6.38		12.94
S-6	11/22/2006	6,900	7.7	<2.5	250	450	<2.5	<25	<10	<10	<10				19.32	6.62		12.70
S-6	02/23/2007	7,900	4.4	<2.5	400	940	<2.5	<25	<10	<10	<10				19.32	6.06		13.26
S-6	05/18/2007	2,600 h	3.1	<1.0	85	147.3	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.12		13.20
S-6	08/10/2007	3,100 h	3.5	0.28 j	110	202	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.60		12.72

Well ID	Date	TPHg	в	т	Е	x	MTBE	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	Ethanol	тос	Depth to Water	SPH Thickness	GW Elevation
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
S-6	11/09/2007	3,700 h	2.1	0.34 j	160	335	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.80		12.52
S-6	02/08/2008	2,600 h	2.7	<1.0	72	156.0	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.11		13.21
S-6	05/16/2008	350	<0.50	<1.0	8.4	5.3	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.60		12.72
S-6	08/15/2008	3,600	0.99	<1.0	100	164.9	<1.0	<10	<2.0	<2.0	<2.0				19.32	7.70		11.62
S-6	11/26/2008	1,500	2.9	<1.0	13	3.1	<1.0	<10	<2.0	<2.0	<2.0				19.32	8.41		10.91
S-6	02/27/2009	2,800	4.3	<1.0	17	23	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.22		13.10
S-6	05/28/2009	570	0.74	<1.0	3.1	1.3	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.10		13.22
S-6	09/14/2009	440	0.55	<1.0	1.5	2.3	<1.0	<10	<2.0	<2.0	<2.0				19.32	7.43		11.89
S-6	02/05/2010	2,200	1.7	<1.0	5.2	8.3	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.34		12.98
S-6	08/03/2010	340	<0.50	<1.0	<1.0	1.0	<1.0	<10	<2.0	<2.0	<2.0				19.32	6.85		12.47
S-6	02/14/2011	590	1.0	1.0	1.4	3.7	<1.0	<10	<1.0	<1.0	<1.0				19.32	6.50		12.82
S-6	08/04/2011	820	1.2	<0.50	1.7	1.2	<1.0	<10	<1.0	<1.0	<1.0				19.32	6.52		12.80
S-6	02/02/2012	1,500	1.4	<0.50	2.4	1.4	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50		19.32	7.30		12.02
S-6	08/13/2012	320	<0.50	<0.50	<0.50	<1.0	<0.50	<10							19.32	7.16		12.16
S-6	03/05/2013	530	<0.50	<0.50	<0.50	<1.0	<0.50	<10							19.32	6.41		12.91
S-7	11/14/2005														19.44	6.76		12.68
S-7	11/22/2005	51,100	2,680	2,980	969	6,360	1.49	53.3	<0.500	<0.500	<0.500				19.44	6.88		12.56
S-7	02/24/2006	22,000 b/25,000 d	1,700	1,200	1,200	2,800	<2.5	58	<2.5	<2.5	<2.5				19.44	5.73		13.71
S-7	05/30/2006	35,600	1,720	641	1,600	3,630	2.83	<10.0	-	-	-				19.44	5.61		13.83
S-7	08/30/2006	83,900	5,060	62.5	1,640	4,010	2.38	43.4							19.44	6.43		13.01
S-7	11/22/2006	13,000	4,300	27	710	1,900	<2.5	54	<10	<10	<10				19.44	6.68		12.76
S-7	02/23/2007	15,000	2,000	43	1,100	3,300	<12	<120	<50	<50	<50				19.44	5.82		13.62
S-7	05/18/2007	6,100 h	3,900	22 j	520	2,010	<50	<500	<100	<100	<100				19.44	6.20		13.24
S-7	08/10/2007	14,000 h	4,900	, 19 j	670	2,046 j	<50	<500	<100	<100	<100				19.44	6.74		12.70
S-7	11/09/2007	16,000 h	4,400	, 21 j	550	2,052	<50	<500	<100	<100	<100				19.44	6.93		12.51
S-7	02/08/2008	2,400 h	160	<2.0	70	160	<2.0	<20	<4.0	<4.0	<4.0				19.44	6.23		13.21
S-7	05/16/2008	6,200	1,200	21	320	736.9	<2.0	<20	<4.0	<4.0	<4.0				19.44	6.62		12.82
S-7	08/15/2008	15,000	4,500	19	450	1,300	<10	<100	<20	<20	<20				19.44	7.81		11.63
S-7	11/26/2008	9,300	3,200	<25	77	250	<25	<250	<50	<50	<50				19.44	8.53		10.91
S-7	02/27/2009	3,900	900	<25	49	160	<25	<250	<50	<50	<50				19.44	6.27		13.17
S-7	05/28/2009	7,100	1,200	<10	81	600	<10	<100	<20	<20	<20				19.44	6.18		13.26
S-7	09/14/2009	11,000	4,000	19	73	66	<10	<100	<20	<20	<20				19.44	7.58		11.86

Well ID	Date	TPHg	в	т	Е	x	MTBE	тва	DIPE	ETBE	TAME	1,2- DCA	EDB	Ethanol	тос	Depth to Water	SPH Thickness	GW Elevation
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
S-7	02/05/2010	4,700	1,200	<10	33	17	<10	<100	<20	<20	<20				19.44	6.36		13.08
S-7	08/03/2010	7,600	2,600	14	15	10	<10	<100	<20	<20	<20				19.44	6.90		12.54
S-7	02/14/2011	2,200	800	<10	<10	<20	<20	<200	<20	<20	<20				19.44	6.53		12.91
S-7	08/04/2011	4,600	1,200	16	<10	<20	<20	<200	<20	<20	<20				19.44	6.53		12.91
S-7	02/02/2012	1,600	93	4.7	4.0	7.4	<1.0	<20	<1.0	<1.0	<1.0	<1.0	<1.0		19.44	7.39		12.05
S-7	08/13/2012	3,000	220	14	8.9	15	<2.0	<40	<2.0	<2.0	<2.0				19.44	7.14		12.30
S-7	03/05/2013	2,000	120	6.2	6.1	10	<1.0	<20							19.44	6.35		13.09
S-8	08/21/2006														20.11	7.02		13.09
S-8	08/30/2006	90,600	5,150	28.2	3,230	4,450	4.30	<10.0	<0.500	<0.500	<0.500				20.11	7.19		12.92
S-8	11/22/2006	41,000	4,900	58	3,300	7,200	2.6	<25	<10	<10	<10				20.11	7.48		12.63
S-8	02/23/2007	28,000	2,900	28	2,900	4,900	<25	<250	<100	<100	<100				20.11	6.73		13.38
S-8	05/18/2007	24,000 h	4,400	33 j	3,800	4,470	<50	<500	<100	<100	<100				20.11	6.98		13.13
S-8	08/10/2007	22,000 h	5,000	30 j	3,100	3,660	<50	<500	<100	<100	<100				20.11	7.57		12.54
S-8	11/09/2007	22,000 h	4,600	24 j	3,000	2,770	<50	<500	<100	<100	<100				20.11	7.80		12.31
S-8	02/08/2008	11,000 h	5,900	<50	410	310	<50	<500	<100	<100	<100				20.11	6.55		13.56
S-8	05/16/2008	20,000	1,600	32	2,300	2,136	<20	<200	<40	<40	<40				20.11	7.30		12.81
S-8	08/15/2008	26,000	2,400	20	4,900	2,432	<20	<200	<40	<40	<40				20.11	8.60		11.51
S-8	11/26/2008	10,000	890	6.6	790	302	<5.0	<50	<10	<10	<10				20.11	9.20		10.91
S-8	02/27/2009	770	30	<1.0	9.9	6.0	<1.0	12	<2.0	<2.0	<2.0				20.11	7.04		13.07
S-8	05/28/2009	5,800	620	3.1	390	380	<1.0	40	<2.0	<2.0	<2.0				20.11	6.91		13.20
S-8	09/14/2009	7,700	1,600	<10	110	750	<10	<100	<20	<20	<20				20.11	8.32		11.79
S-8	02/05/2010	10,000	2,000	<10	150	260	<10	<100	<20	<20	<20				20.11	7.08		13.03
S-8	08/03/2010	12,000	2,000	<20	47	82	<20	<200	<40	<40	<40				20.11	7.64		12.47
S-8	02/14/2011	4,900	960	<10	89	78	<20	<200	<20	<20	<20				20.11	7.20		12.91
S-8	08/04/2011	7,200	830	<5.0	26	13	<10	<100	<10	<10	<10				20.11	7.24		12.87
S-8	02/02/2012	12,000	1,400	4.0	29	9.8	<2.5	<50	<2.5	<2.5	<2.5	<2.5	<2.5		20.11	8.08		12.03
S-8	08/13/2012	7,100	1,100	<5.0	55	21	<5.0	<100	<5.0	<5.0	<5.0				20.11	7.84		12.27
S-8	03/05/2013	3,600	700	<5.0	18	<10	<5.0	<100							20.11	7.10		13.01
S-9	08/21/2006														19.60	6.93		12.67
S-9	08/30/2006	162,000	3,620	5,040	3,810	22,500	<0.500	<10.0	<0.500	<0.500	<0.500				19.60	6.52		13.08
S-9	11/22/2006	47,000	2,100	840	3,000	12,000	<2.5	<25	<10	<10	<10				19.60	6.78		12.82

Well ID	Date	TPHg	в	т	Е	x	МТВЕ	ТВА	DIPE		ТАМЕ	1,2- DCA	EDB	Ethanol	тос			
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
S-9	02/23/2007	18,000	890	120	1,800	3,600	<12	<120	<50	<50	<50				19.60	6.13		13.47
S-9	05/18/2007	22,000 h	1,300	630	2,400	7,300	<50	<500	<100	<100	<100				19.60	6.35		13.25
S-9	08/10/2007	36,000 h	2,600	920	4,200	14,900	<50	<500	<100	<100	<100				19.60	6.86		12.74
S-9	11/09/2007	34,000 h	2,100	320	3,700	12,000	<50	<500	<100	<100	<100				19.60	7.09		12.51
S-9	02/08/2008	7,400 h	410	51	1,100	1,620	<10	<100	<20	<20	<20				19.60	6.00		13.60
S-9	05/16/2008	19,000	910	230	1,600	4,200	<10	<100	<20	<20	<20				19.60	6.67		12.93
S-9	08/15/2008	65,000	2,600	540	5,200	19,000	<10	<100	<20	<20	<20				19.60	7.93		11.67
S-9	11/26/2008	18,000	910	<100	2,000	3,340	<100	<1,000	<200	<200	<200				19.60	8.60		11.00
S-9	02/27/2009	1,000	55	2.3	100	61	<1.0	<10	<2.0	<2.0	<2.0				19.60	6.35		13.25
S-9	05/28/2009	9,700	410	120	810	1,400	<10	<100	<20	<20	<20				19.60	6.22		13.38
S-9	09/14/2009	24,000	960	120	2,200	6,500	<5.0	<50	<10	<10	<10				19.60	7.73		11.87
S-9	02/05/2010	4,900	310	6.2	180	240	<5.0	<50	<10	<10	<10				19.60	6.51		13.09
S-9	08/03/2010	17,000	940	25	500	2,800	<2.0	29	<4.0	<4.0	<4.0				19.60	7.02		12.58
S-9	02/14/2011	1,500	190	3.6	11	38	<4.0	<40	<4.0	<4.0	<4.0				19.60	6.60		13.00
S-9	08/04/2011	5,300	370	18	53	370	<5.0	<50	<5.0	<5.0	<5.0				19.60	6.62		12.98
S-9	02/02/2012	1,100	85	2.1	3.4	2.9	<1.0	<20	<1.0	<1.0	<1.0	<1.0	<1.0		19.60	7.48		12.12
S-9	08/13/2012	4,200	370	18	48	66	<2.5	<50							19.60	7.27		12.33
S-9	03/05/2013	1,800	72	2.8	4.9	6.4	<1.0	<20							19.60	6.53		13.07
TBW-E	11/23/2004															6.31		
TBW-E	12/01/2004															7.01		
TBW-E	12/07/2004															6.32		
TBW-E	12/15/2004															6.55		
TBW-E	12/23/2004															5.95		
TBW-E	12/27/2004															8.47		
TBW-N	11/23/2004	83,000	640	27,000	1,700	20,000	2,300	1,300	<400	<400	<400	<100	<100	<10,000		5.64		
TBW-N	12/01/2004	160,000	700	31,000	2,300	24,000	2,900	1,200	<400	<400	<400	<100	<100	<10,000		6.35		
TBW-N	12/07/2004	130,000	590	29,000	2,300	24,000	2,700	1,300	<400	<400	<400	<100	<100	<10,000		5.65		
TBW-N	12/15/2004	120,000	420	26,000	2,000	22,000		<1,000	<400	<400	<400	<100	<100	<10,000		5.85		
TBW-N	12/23/2004	100,000	220	23,000	1,900	20,000		<1,000	<400	<400	<400	<100	<100	<10,000		5.30		
TBW-N	12/27/2004	110,000	470	26,000	2,300	22,000	1,800	<1,000	<400	<400	<400	<100	<100	<10,000		7.80		
TBW-N	01/17/2005	86,000	330	22,000	2,200	21,000	1,600	1,600	<400	<400	<400	<100	<100	<10,000		6.59		

Well ID	Date	TPHg	в	т	Е	x	MTBE	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	Ethanol	тос	Depth to Water		GW Elevation
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)
TBW-N	02/04/2005	97,000	290	23,000	1,800	20,000	1,900	<1,000	<400	<400	<400	<100	<100	<10,000		4.50		
TBW-N	03/02/2005	94,000	360	24,000	2,000	19,000	1,200	<1,000	<400	<400	<400	<100	<100	<10,000		4.11		
TBW-N	04/12/2005	27,000	130	9,300	1,100	8,700	1,400	390	<100	<100	<20	<25	<25	<2,500		4.08		
TBW-N	05/13/2005	42,000	130	8,700	1,500	12,000	1,400	440	<100	<100	<100	<25	<25	<2,500		4.45		
TBW-N	06/10/2005	46,000	63	5,500	1,300	11,000	500	<250	<100	<100	<100	<25	<25	<2,500		4.97		
TBW-N	07/15/2005	48,000	88	8,400	1,300	9,500	660	310	<100	<100	<100	<25	<25	<2,500		5.18		
TBW-N	08/17/2005	36,000 a	85 a	8,500 a	1,200 a	11,000 a	510 a	<500 a	<200 a	<200 a	<200 a	<50 a	<50 a	<5,000 a	18.08	5.28		12.80
TBW-N	09/15/2005	20,000	59	2,400	730	9,300	600	500	<40	<40	<40			<1,000	18.08	5.92		12.16
TBW-N	10/17/2005	59,000	58	4,900	1,200	16,000	490	<250	<100	<100	<100	<25	<25	<2,500	18.08	5.96		12.12
TBW-N	11/22/2005	105,000	41.3	8,750	1,550	18,300	443	248	<0.500	< 0.500	<0.500	< 0.500	<0.500	<50.0	18.08	5.82		12.26
TBW-N	12/09/2005	65,900	43.4	5,110	1,110	13,500	493	259	<0.500	< 0.500	<0.500	< 0.500	<0.500	<50.0	18.08	5.60		12.48
TBW-N	01/05/2006	80,100	33.8	4,910	1,620	19,400	410	<10.0	<0.500	< 0.500	<0.500	< 0.500	<0.500	<50.0	18.08	4.44		13.64
TBW-N	02/24/2006	56,000 b/60,000 d	15	2,700	1,000	12,000	270	180	<15	<15	<15	<15	<15	<150	18.08	4.67		13.41
TBW-N	03/08/2006	60,200	23.4	3,820	1,370	16,500	293	93.8	<0.500	<0.500	<0.500	<0.500	<0.500	<50.0	18.08	4.18		13.90
TBW-N	04/13/2006	73,000	21.8	2,900	1,220	14,600	277	68.5	<0.500	< 0.500	<0.500	< 0.500	<0.500	<500	18.08	3.49		14.59
TBW-N	05/30/2006	59,300	18.7	1,170	1,800	10,200	119 e	<10.0	<0.500	< 0.500	<0.500	0.860	<0.500	<50.0	18.08	4.52		13.56
TBW-N	06/05/2006	83,700	16.0	1,510	2,090	11,400	146 e	<10.0	<0.500	< 0.500	<0.500	<0.500	<0.500	<50.0	18.08	4.55		13.53
TBW-N	07/19/2006	80,100	16.4	632	1,550	13,900	85.7	<10.0	<0.500	< 0.500	<0.500	< 0.500	<0.500	<50.0	18.08	4.99		13.09
TBW-N	08/30/2006	52,700	18.2	747	1,900	13,400	82.9	<100	<5.00	<5.00	<5.00	<5.00	<5.00	<500	18.08	5.47		12.61
TBW-N	09/06/2006	77,500	21.3	1,100	1,650	11,800	116	12.4	<0.500	<0.500	<0.500	<0.500	<0.500	<50.0	18.08	5.39		12.69
TBW-N	10/13/2006	33,000	22	1,300	1,700	27,000	160	<50	<20	<20	<20	<5.0	<5.0	<500	18.08	5.57		12.51
TBW-N	11/22/2006	36,000	18	680	1,200	14,000	110	<50	<20	<20	<20	<5.0	<5.0	<500	18.08	5.65		12.43
TBW-N	12/12/2006	34,000	<25	330	1,400	11,000	89	<1,000	<25	<25	<25	<25	<25	<5,000	18.08	5.34		12.74
TBW-N	01/05/2007	26,000 g	16	450	1,400	13,000 f	96	<50	<20	<20	<20	<5.0	<5.0	<500	18.08	5.23		12.85
TBW-N	02/23/2007	41,000	<25	400	1,500	15,000	120	<250	<100	<100	<100	<25	<25	<2,500	18.08	4.96		13.12
TBW-N	03/08/2007	15,000	<25	320	1,300	15,000	110	<250	<100	<100	<100	<25	<25	<2,500	18.08	4.93		13.15
TBW-N	04/06/2007	24,000 h	15	360	1,100	12,300	130	<50	<10	<10	<10	<2.5		<500	18.08	5.07		13.01
TBW-N	05/18/2007	30,000 h	15 j	140	1,100	9,960	100	<50	<100	<100	<100	<25	<50	<5,000	18.08	5.25		12.83
TBW-N	06/11/2007	26,000 h	15 j	160	1,300	9,150	120	<500	<100	<100	<100	<25	<50	<5,000	18.08	5.33		12.75
TBW-N	07/03/2007	36,000 h	9.3 j	150	990	8,400	130	<500	<100	<100	<100	<25	<50	<5,000	18.08	5.46		12.62
TBW-N	08/10/2007	24,000 h	14	200	1,200	5,240	120	<200	<40	<40	<40	<10	<20	<2,000	18.08	5.78		12.30
TBW-N	09/25/2007	28,000 h	15	560	1,400	7,600	<20	160 j	<40	<40	<40	<10	<20	<2,000	18.08	6.02		12.06
TBW-N	11/09/2007	42,000 h	18	610	1,700	14,500	140	<250	<50	<50	<50	<12	<25	<2,500	18.08	5.91	0.01	12.18

Groundwater Data Shell-branded Service Station 1601 Webster Street, Alameda, California

Well ID	Date	TPHg (µg/L)	Β (μg/L)	T (µg/L)	E (µg/L)	X (µg/L)	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2- DCA (µg/L)	EDB (µg/L)	Ethanol (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	SPH Thickness (ft)	GW Elevation (ft MSL)
TBW-N	02/08/2008	36,000 h	<25	450	1,400	15,100	97	<500	<100	<100	<100	<25	<50	<5,000	18.08	4.79		13.29
TBW-N	05/16/2008	26,000	80	99	970	5,130	130	<500	<100	<100	<100				18.08	5.50		12.58
TBW-N	08/15/2008	24,000	<25	1,300	1,300	2,400	90	<500	<100	<100	<100	<25	<50	<5,000	18.08	6.59		11.49
TBW-N	11/26/2008	24,000	<25	140	810	5,580	52	<500	<100	<100	<100	<25	<50	<5,000	18.08	7.40		10.68
TBW-N	02/27/2009	22,000	<25	110	520	5,000	<50	<500	<100	<100	<100	<25	<50	<5,000	18.08	5.86		12.22
TBW-N	05/28/2009	32,000	8.9	160	860	5,600	53	160	<10	<10	<10				18.08	5.50		12.58
TBW-N	09/14/2009	28,000	10	110	890	4,700	60	<200	<40	<40	<40	<10	<20	<2000	18.08	6.31		11.77
TBW-N	02/05/2010	27,000	<10	71	630	4,900	28	<200	<40	<40	<40	<10	<20	<2000	18.08	5.28		12.80
TBW-N	08/03/2010	20,000	9.8	46	130	890	64	<100	<20	<20	<20	<5.0	<10	<1000	18.08	5.75		12.33
TBW-N	02/14/2011	15,000	7.5	38	320	1,800	18	<10	<10	<10	<10	<5.0	<5.0	<1500	18.08	5.40		12.68
TBW-N	08/04/2011	11,000	5.7	26	77	120	21	12	<1.0	<1.0	<1.0	<0.50	<0.50	<150	18.08	5.43		12.65
TBW-N	02/02/2012	11,000	4.8	15	150	200	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<150	18.08	6.27		11.81
TBW-N	08/13/2012	7,400	6.3	8.5	100	65	<0.50	17				<0.50	<0.50	<150	18.08	6.20		11.88
TBW-N	03/05/2013	12,000	<5.0	9.0	130	260	<5.0	<100				<5.0	<5.0	<1,500	18.08	5.35		12.73
TBW-S	11/23/2004															6.18		
TBW-S	12/01/2004															6.87		
TBW-S	12/07/2004															6.15		
TBW-S	12/15/2004															6.38		
TBW-S	12/23/2004															5.81		
TBW-S	12/27/2004															8.35		
TBW-W	11/23/2004															6.14		
TBW-W	12/01/2004															6.86		
TBW-W	12/07/2004															6.13		
TBW-W	12/15/2004															6.37		
TBW-W	12/23/2004															5.79		
TBW-W	12/27/2004															8.32		

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B unless otherwise noted.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B

GHD | 240467 (16)

Groundwater Data Shell-branded Service Station 1601 Webster Street, Alameda, California

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Т (µg/L)	E (µg/L)	Χ (μg/L)	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	1,2- DCA (μg/L)	EDB (µg/L)	Ethanol (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	SPH Thickness (ft)	GW Elevation (ft MSL)
TBA – Ter	tiary-hutyl alcoh	ol analyzed by E		1 8260B														
		analyzed by EPA																
		l ether analyzed			50B													
		thyl ether analyze	-															
		nane analyzed by	•															
EDB = Eth	ylene dibromide	analyzed by EP	A Method	8260B														
Ethanol ar	alyzed by EPA	Method 8260B																
TOC = To	p of casing eleva	ation, in feet rela	tive to mea	in sea le	/el													
SPH = Se	parate-phase hy	drocarbon																
GW = Gro																		
	rograms per lite																	
	etected at repor	-																
= Not a	nalyzed or avail	able																
a = Extrac	ted out of holdir	g time.																
		ange of C4-C12.																
c = Result	may be biased	slightly high. Se	e lab repor	t case na	arrative.													
d = Result	with a carbon ra	ange of C6-C12.																
e = Secon	dary ion abunda	ances were outsid	de method	requirem	nents. Ide	entificatio	n based	on analy	/tical jud	gment.								
f = Concer	ntration estimate	ed. Analyte exce	eded calibi	ration rar	nge. Rea	nalysis n	ot perforr	ned due	to holdi	ng time	requirem	nents.						
g = Labora	atory Control Sa	mple and/or Lab	oratory Cor	ntrol San	nple Dupl	icate reco	overy was	s below	the acce	eptance l	limits. A	low bias	s to sam	ple results	s is indicat	ed.		
h = Analyz	ed by EPA Met	hod 8015B (M).																
		raphic pattern fo				•	• •		•	cified sta	ndard.							
		nknown hydroca	. ,	•		•	•											
j = Analyte	was detected a	at a concentratior	n below the	reportin	g limit an	d above t	he labora	atory me	ethod de	tection li	mit. Rep	ported va	alue is e	stimated.				
Well TBW	-N surveved Se	otember 1, 2005	by Virail C	havez I a	nd Surve	vina												
			~,			99												

Wells S-2 through S-7 surveyed on November 30, 2005 by Virgil Chavez Land Surveying Wells S-4B and S-7 through S-9 surveyed on August 17, 2006 by Virgil Chavez Land Surveying

Historical Grab Groundwater Analytical Data Shell-branded Service Station 1601 Webster Street, Alameda, California

Sample ID	Date	Depth (fbg)	Total O&G (μg/L)	TPHd (µg/L)	TPHg (µg/L)	TPH (µg/L)	B (µg/L)	Т (µg/L)	Е (µg/L)	X (µg/L)	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2- DCA (µg/L)	EDB (µg/L)	Ethanol (µg/L)	1,1,1- Trichloro- ethane (µg/L)	Methylene Chloride (µg/L)	HVOCs (µg/L)	Chlorinated Hydro- carbons (µg/L)	PNAs (µg/L)	PCP (µg/L)	Creosote (µg/L)	PCBs (µg/L)
#2	06/26/1987	9.75	244,000		1,600	132,000	3.7	45		200									10,550	58,730						
BH-C	10/12/1992	9.5			74		0.5	<0.5	<0.5	<0.5											ND					
BH-D	10/12/1992	9.5			24,000		4,200	<0.5	4,400	2,800											ND					
BH-E	10/22/1992	10	<7,000		26,000		6,900	13,000	2,200	12,000											ND					
BH-F	10/22/1992	10.5	<14,000		3,100		170	110	310	550											ND					
BH-G	10/22/1992	10.5	<6,000		150		3.9	9.8	3.8	13											ND					
BH-H	10/22/1992	10.5	<6,000		26,000		1,600	280	1,900	2,800											ND					
BH-I	10/22/1992	10.5	<6,000		53		1.4	1.3	3.1	3											ND					
05 (14)							~ -	~-					100		100											
SB-1W	11/30/2004 11/30/2004	6.51 c			<2,500		<25	<25	<25	<50	6,000	<250	<100	<100	<100	<25	<25	<2,500								
SB-1W-10' SB-1W-15'	11/30/2004	10 15			<250 <13,000		<2.5 <130	<2.5 <130	<2.5 <130	<5.0 <250	300 24,000	<25 1 700	<10 <500	<10 <500	<10 <500	<2.5 <130	<2.5 <130	<250 <13,000								
30-10-13	11/30/2004	15			<13,000		<100	<100	150	~200	24,000	1,700	~300	-300	-300	\$150	\$150	<13,000								
SB-2W	12/01/2004	6.95 c			<1,000		<10	<10	<10	<20	3,000	500	<40	<40	<40	<10	<10	<1,000								
SB-2W-15'	12/01/2004	15			<1,300		<13	<13	<13	<25	2,000	420	<50	<50	<50	<13	<13	<13,000								
					,																					
SB-3W	12/01/2004	7.01 c			<5,000		<50	<50	<50	<100	9,000	<500	<200	<200	<200	<50	<50	<5,000								
SB-4W	12/02/2004	7.85 c			<500		<5.0	<5.0	<5.0	<10	4,400	1,100	<20	<20	<20	<5.0	<5.0	<500								
SB-4W-15'	12/02/2004	15			520		1.7	5.3	14	62	2,900	2,000	<2.0	<2.0	4.0	<0.50	<0.50	<50								
SB-5W	11/30/2004	7.21 c			<1,000		<10	<10	<10	<20	1,900	190	<40	<40	<40	<10	<10	<1,000								
SB-5W SB-5W-15'	11/30/2004	15			<1,000 <1,000		<10	<10	<10	<20 <20	2,000	340	<40 <40	<40 <40	<40 <40	<10	<10 <10	<1,000 <1,000								
	11/00/2004	10			1,000		10	10	10	-20	2,000	040	-40	-40	-40	10	10	1,000								
SB-6W	11/30/2004	7.01 c			2,000		0.61	0.88	59	57	14	5.5	<2.0	<2.0	<2.0	<0.50	<0.50	<50								
SB-6W-15'	11/30/2004	15			<250		<2.5	<2.5	<2.5	<5.0	540	92	<10	<10	<10	<2.5	<2.5	<250								
SB-7W	11/30/2004	8.0 c			<500		<5.0	<5.0	<5.0	<10	990	180	<20	<20	<20	<5.0	<5.0	<500								
SB-7W-15'	11/30/2004	15			920		0.54	1.1	28	19	13	<5.0	<2.0	<2.0	<2.0	<0.50	<0.50	<50								
SB-8W	12/02/2004	7.09 c			17,000		250	660	840	3,700	<10	<100	<40	<40	<40	<10	<10	<1,000								
SB-8W-15'	12/02/2004	15			270		2.30 5.3	13	12	47	11	<5.0	<2.0	<2.0	<2.0	<0.50	<0.50	<50								
					-			-	·				-	-	-											
SB-9-6.5W	11/03/2005	6-10			<1,300		<13	<13	<13	<25	3,500	<130	<50	<50	<50											
SB-9-15W	11/03/2005	14-18			<2,500		<25	<25	<25	<50	9,200	<250	<100	<100	<100											
GHD 24046	7 (16)																									

Historical Grab Groundwater Analytical Data Shell-branded Service Station 1601 Webster Street, Alameda, California

																1,2-			1,1,1- Trichloro-	Methylene		Chlorinated Hydro-				
Sample ID	Date	Depth	Total O&G	TPHd	TPHg	ТРН	в	т	Е	Х	MTBE	ТВА	DIPE	ETBE	TAME	DCA	EDB	Ethanol	ethane	Chloride	HVOCs	carbons	PNAs	РСР	Creosote	PCBs
		(fbg)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SB-9-27W	11/03/2005	24-28			<2,500		<25	<25	<25	<50	7,800	<250	<100	<100	<100											
SB-9-36W	11/03/2005	35-39			<50		<0.50	<0.50	<0.50	<1.0	87	21	<2.0	<2.0	<2.0											
SB-10-7W	11/02/2005	6-10			53		<0.50	<0.50	<0.50	<1.0	3,000	1,300	<2.0	<2.0	3.7											
SB-10-15W	11/02/2005	14-18			500		<5.0	<5.0	<5.0	<10	690	2,200	<20	<20	<20											
SB-10-25W	11/02/2005	24-28			<1,300		<13	<13	<13	<25	2,700	<130	<50	<50	<50											
SB-10-36W	11/02/2005	35-39			70		<0.50	<0.50	<0.50	<1.0	76	68	<2.0	<2.0	<2.0											
SB-11-7W	11/03/2005	7-11			<1,300		<13	<13	<13	<25	4,800	290	<50	<50	<50											
SB-11-15W	11/03/2005	14-18			<2,000		<20	<20	<20	<40	2,200	740	<80	<80	<80											
SB-11-27W	11/03/2005	24-28			<1,000		<10	<10	<10	<20	2,300	<100	<40	<40	<40	<10	<10	<1,000								
SB-11-36W	11/03/2005	35-39			67		<0.50	<0.50	<0.50	<1.0	23	22	<2.0	<2.0	<2.0											
SB-12-6.5W	11/02/2005	6-10			<50		<0.50	<0.50	<0.50	<1.0	0.55	<5.0	<2.0	<2.0	<2.0											
SB-12-15W	11/02/2005	14-18			<50		<0.50	<0.50	<0.50	<1.0	<0.50	<5.0	<2.0	<2.0	<2.0											
SB-12-25W	11/02/2005	24-28			<50		<0.50	<0.50	<0.50	<1.0	<0.50	<5.0	<2.0	<2.0	<2.0											
SB-12-36W	11/02/2005	35-39			<50		<0.50	<0.50	<0.50	<1.0	<0.50	<5.0	<2.0	<2.0	<2.0											
SB-13-6.25W	11/02/2005	6-10			<2,500		<25	<25	<25	<50	4,100	<250	<100	<100	<100											
SB-13-15W	11/02/2005	14-18			<50		<0.50	<0.50	<0.50	<1.0	4.6	<5.0	<2.0	<2.0	<2.0											
SB-13-25W	11/02/2005	24-28			<50		<0.50	<0.50	<0.50	<1.0	1.1	<5.0	<2.0	<2.0	<2.0											
SB-13-36W	11/02/2005	35-39			64		<0.50	<0.50	<0.50	<1.0	1.0	<5.0	<2.0	<2.0	<2.0											
SB-14-5.75W	11/03/2005	6-10			<1,300		<13	<13	<13	<25	2,700	<130	<50	<50	<50											
SB-14-15W	11/03/2005	14-18			<2,500		<25	<25	<25	<50	5,900	<250	<100	<100	<100											
SB-14-27W	11/03/2005	24-28			<50		<0.50	<0.50	<0.50	<1.0	2.5	<5.0	<2.0	<2.0	<2.0											
SB-14-36W	11/03/2005	35-39			<50		<0.50	<0.50	<0.50	<1.0	3.7	<5.0	<2.0	<2.0	<2.0											
WO-1-5	05/25/2006	5	2,600 d	350 e	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50					ND	ND	<10	<10	<1.0
W-1-9,5'	05/16/2014	9.5			8,400		35	650	100	1,100	<5.0	<100														
Groundwater	r ESL [†] :		NA	100	100	NA	1.0	40	30	20	5.0	12	NA	NA	NA	0.50	0.050	NA	62	5.0	Various	Various	Various	1	NA	0.014

Notes:

Total O&G = Total oil and grease analyzed by EPA Method 3550 unless otherwise noted

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015 (Modified)

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before 11/30/2004, analyzed by EPA Method 8015B unless otherwise indicated

TPH = Total petroleum hydrocarbons. Analytical method unknown

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; before 11/30/2004, analyzed by EPA Method 8020 unless otherwise indicated

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

Historical Grab Groundwater Analytical Data Shell-branded Service Station 1601 Webster Street, Alameda, California

Sample ID	Date	Depth	Total O&G	TPHd	TPHg	ТРН	в	т	Е	x	МТВЕ	ТВА	DIPE	ETBE	ТАМЕ	1,2- DCA	EDB	Ethanol	1,1,1- Trichloro- ethane	Methylene Chloride		Chlorinated Hydro- carbons	PNAs	РСР	Creosote	PCBs
		(fbg)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DIPE = Di-isop	ropyl ether	analyzed by	y EPA Metho	d 8260B																						
ETBE = Ethyl t	ertiary-buty	l ether anal	yzed by EPA	Method	8260B																					
TAME = Tertia	ry-amyl met	thyl ether ar	nalyzed by E	PA Metho	od 8260B																					
1,2-DCA = 1,2-		-	-																							
EDB = 1,2-Dibi		-	•	od 8260E	3																					
Ethanol analyz	2																									
1,1,1-Trichloro		-																								
HVOCs = Halo	-	-	-	-	-			-	-	-		nts. All de	etections	noted.												
Chlorinated hy		-			-			-	-																	
PNAs = Polynu					laboratory	/ analytica	I report to	r a comple	ete list of	specific c	onstituen	ts														
PCP = Pentach	•									<i>a</i>			4	0			(
Creosote analy				•			•	•	•		•			, fluorani	inene, py	rene, 1-n	netnyina	pntnalene,	and 2-meti	nyinaphthale	ne.					
PCBs = Polych		pnenyis ana	alyzed by EP	'A Method	1 8082; se	e laborato	ry analytic	cal report	for a com	piete list d	or specific	constitu	ients													
fbg = Feet belo µg/L = Microgra	•	r																								
<pre>x = Not detec</pre>	-																									
= Not analyz	•																									
ND = Not deter																										
ESL =																										
NA = No applic	able ESL																									
Results in bold		ceed applic	cable ESL																							
a = Analyzed b	•																									
b = Analyzed b	y APHA Sta	andard Met	hod 5030D&I	E																						
c = Sample col	lected at fire	st-encounte	ered groundw	/ater/piezi	iometric su	urface																				
d = Analyzed b	y EPA Meth	nod 1664 A	(Modified)																							
e = Hydrocarbo	ons reported	d as TPHd o	do not exhibi	t a typical	diesel chr	romatogra	phic patte	rn. These	hydrocar	bons are	higher bo	oiling tha	n typical	diesel fue	el.											
f = San Francis Screening		-	r Quality Cor rim Final - 20		d (RWQC	B) ESL foi	^r groundw	ater where	e groundv	vater is a	source o	f drinking	g water (⊺	Tables A	and C of	User's G	uide: De	erivation ar	nd Applicatio	on of Enviror	nmental					

Appendix A Site History

Site History

1987 Waste Oil Underground Storage Tank (UST) Removal: In June 1987, a 550-gallon waste oil UST that was installed in 1962 was removed. Blaine Tech Services, Inc. (Blaine) of San Jose, California observed more than 77 holes in the tank and noted hydrocarbon sheen on the water in the excavation. Soil samples collected from 9.5 feet below grade (fbg) in the excavation contained 133 milligrams per kilogram (mg/kg) total oil and grease (O&G), 14 mg/kg total petroleum hydrocarbons (TPH), and 0.0294 mg/kg 1,1,1-trichloroethane (TCA). A grab water sample collected from the water surface at about 12.5 fbg contained 244,000 micrograms per liter (µg/L) O&G, 132,000 µg/L TPH, 1,600 µg/L total petroleum hydrocarbons as gasoline (TPHg), 3.7 µg/L benzene, 45 µg/L toluene, 200 µg/L total xylenes, 10.55 µg/L TCA, and 58.73 µg/L methyl chloride. These results are reported in Blaine's July 16, 1987 *Field Sampling at Shell Station* letter report and in Blaine's June 26, 1989 letter report summarizing previously unpublished notes.

1987 Subsurface Investigation: In September 1987, Pacific Environmental Group (PEG) of Santa Clara, California installed one groundwater monitoring well (S-1) immediately down gradient of the former waste oil tank. Soil samples collected from the well boring contained up to 130 mg/kg O&G and 50 mg/kg total petroleum hydrocarbons as oil. PEG's October 23, 1987 letter report presents investigation results.

1990 Subsurface Investigation: In April 1990, Weiss Associates (WA) of Emeryville, California installed two groundwater monitoring wells (MW-1 [BH-A] and MW-2 [BH-B]). Soil samples from the well borings contained up to 32 mg/kg TPHg, 0.53 mg/kg benzene, 3.8 mg/kg toluene, 0.75 mg/kg ethylbenzene, and 4.0 mg/kg total xylenes. WA's July 6, 1990 *Subsurface Investigation at Shell Service Station* report presents investigation details.

1992-1993 Subsurface Investigation: In October 1992 and February 1993, WA drilled eight soil borings (BH-C through BH-J) and one groundwater monitoring well (MW-3). Soil samples from the borings contained up to 110 mg/kg O&G, 170 mg/kg TPHg, 0.11 mg/kg benzene, 3.0 mg/kg toluene, 3.6 mg/kg ethylbenzene, and 22 mg/kg total xylenes. Grab groundwater samples contained up to 26,000 μg/L TPHg, 6,900 μg/L benzene, 13,000 μg/L toluene, 4,400 μg/L ethylbenzene, and 12,000 μg/L total xylenes. WA's April 16, 1993 *Subsurface Investigation Report* provides investigation details.

1995 and 1996 Groundwater Remediation: From March 1995 until March 1996 groundwater was remediated by injecting air into MW-2.

1997 Piping and Dispenser Upgrades: In August 1997, Cambria Environmental Technology, Inc. (Cambria) of Oakland, California conducted soil sampling under the product piping and below dispenser locations approximately 5 fbg. The soil samples contained up to 11,000 mg/kg TPHg, 6.3 mg/kg benzene, 7.8 mg/kg toluene, 96 mg/kg ethylbenzene and 700 mg/kg total xylenes. Cambria's October 8, 1997 *Pipeline and Dispenser Soil Sampling Report* presents the soil sampling results.

1998 Waste Oil Remote Fill Pipe Removal: In November 1998, Paradiso Mechanical Inc. (Paradiso) of San Leandro, California upgraded the site's waste oil system and removed the remote fill pipe associated with the waste oil tank. No soil samples were collected. Cambria's December 1, 1998 *1998 Upgrade Site Inspection Report* presented the findings.

1999 Monitoring Well Destruction and Case Closure: In January 1999, Cambria oversaw the destruction of all four on-site monitoring wells (S-1 and MW-1 through MW-3) as a condition of case closure. Cambria's February 26, 1999 *Monitoring Well Abandonment Report* documents the well destructions. Alameda County Environmental Health's (ACEH's) March 15, 1999 *Remedial Action Completion Certification and Fuel Leak Site Case Closure* letter confirmed completion of site investigation and remedial action and granted leaking UST case closure for the site.

2004 Well Survey: In March 2004, Cambria performed a search of California Department of Water Resources (DWR) records and the California State Water Resources Control Board's Geotracker database for water-producing wells within one-half mile of the site. No public water supply wells were identified from DWR records or from the Geotracker database. Cambria found DWR records for one domestic well, four agricultural wells, one industrial well, and one well of unknown use within one-half mile of the site.

The nearest identified well was located by address approximately 150 feet south of the site. The DWR well record was undated, and did not record the well's intended use. The address is currently occupied by a café, and Cambria could not field-verify the presence of the well; therefore, the well is presumed to be abandoned. The next closest wells, irrigation wells installed in 1977, are estimated to be about 525 and 800 feet northwest of the site, and drilled to 25 and 32 fbg, respectively. Since groundwater is known to flow generally northward, these wells are cross gradient from the site, and are therefore unlikely to be affected by impacted groundwater from the site. All other identified wells are located more than 1,000 feet to the southeast, south, and southwest (up gradient) of the site and therefore would not likely be affected by impacted groundwater from the site.

2004 Fuel System Upgrades: In August 2004, S.J. Weaver Contracting, Inc. (Weaver) of Signal Hill, California upgraded the station's fuel dispensers, piping, and vapor recovery system. Due to the high water table, groundwater from the UST excavation was pumped into a storage tank periodically and off-hauled as non-hazardous waste to Shell's Martinez refinery for treatment. Cambria collected soil samples beneath removed dispensers and piping. Soil sample P-3-3' contained 1,300 mg/kg TPHg and 49 mg/kg total xylenes, and soil sample P-5-3' contained 0.045 mg/kg total xylenes. Based on these concentrations, Equilon Enterprises LLC dba Shell Oil Products US (Shell) submitted an Underground Storage Tank Unauthorized Release (Leak)/Site Contamination Report (Unauthorized Release Report) on August 11, 2004.

Following re-installation of a fuel pump into a 10,000-gallon UST, Weaver identified a product loss in one 10,000-gallon UST by manual tank gauging. This loss was estimated to be a volume of 2,084 gallons. Weaver pumped water from the tank excavation into an open-top storage tank on site. As fuel had leaked out of the damaged UST, the pumped water contained free product. The resulting gasoline vapor concentrations warranted site evacuation, cessation of work, and emergency response. As a result, Shell's contractors conducted emergency response and remediation. The remaining fuel in the damaged UST was removed by a tanker truck. As detailed below, Cambria initiated groundwater extraction (GWE) from tank backfill well TBW-N. The product loss, emergency response activities, and emergency remediation efforts associated with this event are presented in further detail in Cambria's November 30, 2004 *Soil & Groundwater Investigation Work Plan and Agency Response*. As a result of the product loss, Shell filed a second Unauthorized Release Report on August 19, 2004. In addition, the Alameda Fire Department filed a report with the California Governor's Office of Emergency Services. ACEH subsequently opened a new environmental case for the site on September 3, 2004.

2004-2006 GWE: Following the August 2004 product release at the site, Cambria initiated GWE from the northern-most tank backfill well (TBW-N) initially by pumping to a Baker tank and later using a vacuum truck. Groundwater was extracted several times per day from August 19 until August 23, 2004. Then, daily GWE was conducted from August 24 until September 10, 2004. GWE was conducted weekly from September 13 through November 16, 2004, and GWE was subsequently conducted monthly through February 2006. Approximately 196,130 gallons of groundwater were removed by GWE along with an estimated 1,982 gallons of separate-phase hydrocarbons and 21.7 gallons of dissolved TPHg. Product removal and GWE data are also presented in Cambria's November 30, 2004 *Soil & Groundwater Investigation Work Plan and Agency Response*. GWE was discontinued in February 2006.

2004 Subsurface Investigation: In November and December 2004, Cambria drilled eight soil borings (SB-1 through SB-8) to further assess the impacts of the August 2004 product loss event. Soil samples from the borings contained up to 740 mg/kg TPHg, 5.9 mg/kg toluene, 17 mg/kg ethylbenzene, 83 mg/kg total xylenes, 1.2 mg/kg methyl tertiary-butyl ether (MTBE), and 53 mg/kg ethanol. Grab groundwater samples from the borings contained up to 17,000 µg/L TPHg, 250 µg/L benzene, 660 µg/L toluene, 840 µg/L ethylbenzene, 3,700 µg/L total xylenes, 24,000 µg/L MTBE, 2,000 µg/L tertiary-butyl alcohol (TBA), and 4.0 µg/L tertiary-amyl methyl ether (TAME). Cambria's February 18, 2005 *Soil and Groundwater Investigation Report* provides investigation details.

2005 Subsurface Investigation: In October and November 2005 Cambria installed six wells (S-2 through S-7) and drilled six cone penetrometer testing (CPT) borings (SB-9 through SB-14). The only constituent of concern detected in soil samples collected from the wells and soil borings was 0.0080 mg/kg total xylenes in boring SB-13 at 5 fbg. Four grab groundwater samples were collected from each of the CPT borings. The grab groundwater samples contained up to 500g/L TPHg, 9,200 µg/L MTBE, 2,200 µg/L TBA and 3.7 µg/L TAME. The results from this investigation are presented in Cambria's January 31, 2006 *Soil and Groundwater Investigation Report*.

2006 *Risk Evaluation:* Cambria's May 17, 2006 *Risk Evaluation and Work Plan* evaluated potential risks to human health or the environment posed by impacted soil and groundwater beneath the site. Cambria concluded that the residual impacts do not pose a risk to human health or the environment currently and will not in the foreseeable future, particularly given that the property use is anticipated to remain as a retail gasoline service station.

2006 Waste Oil UST Removal: In May 2006, Wayne Perry, Inc. (Wayne Perry) of Sacramento, California removed one 550-gallon dual-wall fiberglass waste oil UST. Cambria observed no cracks, holes, or corrosion in the UST upon removal. Cambria collected a soil sample (WO-1-5) from the sidewall of the UST excavation and a grab groundwater sample from the base of the excavation. The soil sample contained 61 mg/kg oil and grease, 5.4 mg/kg TPH as diesel (TPHd), 26.4 mg/kg chromium, 2.24 mg/kg lead, 18.1 mg/kg nickel, and 16.6 mg/kg zinc. The grab groundwater sample contained 2,600 µg/L O&G and 350 µg/L TPHd. Based on these concentrations, Shell submitted an Unauthorized Release Report on June 6, 2006. Cambria's August 2, 2006 *Underground Storage Tank Removal Report* provides the waste oil UST removal details.

2006 Subsurface Investigation: In July 2006, Cambria installed three groundwater monitoring wells (S-4B, S-8, and S-9). Soil samples collected from the well borings contained up to 3,700 mg/kg TPHg, 1.0 mg/kg benzene, 90 mg/kg ethylbenzene, 310 mg/kg total xylenes, 0.31 mg/kg MTBE, and 0.56 mg/kg TBA. Cambria's October 6, 2006 *Site Investigation Report* provides well installation details.

2014 UST Removal: In May 2014, Paradiso removed three 10,000-gallon gasoline USTs, product dispensers, and piping. CRA observed no cracks, holes, or corrosion in the USTs upon removal. CRA collected eight soil samples from the sidewalls of the UST excavation at depths of 2.5 to 8 fbg and one grab groundwater sample from the water in the excavation. No constituents of concern were detected in soil or pea gravel samples.

The grab groundwater sample from the UST excavation contained 8,400 µg/L TPHg, 35 µg/L benzene, 650 µg/L toluene, 100 µg/L ethylbenzene, and 1,100 µg/L total xylenes. No MTBE or TBA was detected in the grab groundwater sample. Approximately 225,000 tons of soil and pea gravel and approximately 28,850 gallons of groundwater were removed from the excavation for off-site disposal. CRA's October 1, 2014 *Underground Storage Tank Removal Report* provides UST removal and sampling details.

2014 Subsurface Investigation: In September and November 2014, Arcadis U.S., Inc. (Arcadis) drilled six off-site down-gradient soil borings (CPT-1 through CPT-4, CPT-6, and CPT-7) to collect grab groundwater samples for a joint investigation conducted by Shell and former Unocal Station No. 0843 located at 1629 Webster Street, Alameda, California. Grab groundwater samples contained up to 290 μ g/L TPHg, 0.62 μ g/L benzene, 1.0 μ g/L toluene, and 450 μ g/L MTBE. Grab groundwater data from this investigation adequately defined the extent of MTBE in groundwater horizontally and vertically in the area down gradient from the Shell and former Unocal sites. Arcadis's December 29, 2014 *Off-site Groundwater Investigation Report* presents results from the investigation.

Groundwater Monitoring: Groundwater was monitored in well S-1 starting in September 1987 and later from wells MW-1 through MW-3 until April 1998 when ACEH granted case closure. For the current environmental case, groundwater has been monitored since October 2005. Groundwater gradient is consistently north-northwesterly to north-easterly. Depth to water has ranged from approximately 4.5 to 10.5 fbg at the site.

Appendix B Groundwater and Product Removal Data

Table 4. Groundwater and Product Removal Data, Shell-branded Service Station, 1601 Webster Street, Alameda, California.

	Total Volume Hauled	Cumulati ve Volume	Measured Product Thickness in Vacuum	Dissolved TPHg Conc.	Est pounds TPHg removed in Dissolved	Estimated Volume of Product Removed as	Estimated Volume of Product Removed as dissolved	
Date	(gals)	(gals)	Truck (ft)	(ppm)	Phase (lbs)	SPH (gal)	phase (gal)	Comments
								FUEL RELEASE ESTIMATE: UST gaging by SJ Weaver on 8/18 read
								71.5 inches = 8,340 gallons, per tank chart. On 8/19 gaging by SJ Weaver read 55 inches = 6,256 gallons, per tank chart. Net est. Loss = 8,340-6,256 = 2,084 gallons.
8/19/2004	2,168	2,168	NM	120	2.17		0.36	Pumped from well into open Baker tank. Then tank emptied by PSC vacuum truck
8/19/2004	2,535	4,703	NM	120	2.54	915	0.42	Pumped from well into open Baker tank. Also pumped directly into Vacuum Truck. Then open Baker tank emptied by PSC
8/20/2004	0	4,703	NM	120	0.00		0.00	Pumped into closed Baker tank - none hauled.
8/21/2004	4,369	9,072	NM	120	4.37	50	0.72	Pumped into closed Baker tank, then began emptying closed tank by vacuum truck. Estimated SPH volume from similar data.
8/21/2004	3,654	12,726	0.67	120	3.66	773	0.60	From closed Baker tank and well. Volumes based on verbal report - missing bills of lading
8/21/2004	2,091	14,817	0.04	120	2.09	57	0.34	From well and baker tank. Volumes based on verbal report - missing bills of lading
8/22/2004	319	15,136	NM	120	0.32	NM	0.05	Baker Tank cleaning water.
8/22/2004	2,285	17,421	0.11	120	2.29	150	0.38	
8/23/2004	1,947	19,368	0.01	120 120	1.95 1.01	13	0.32	
8/24/2004 8/25/2004	1,013 4,026	20,381 24,407	0.01	120	4.03	12	0.17	
8/26/2004	3,839	28,246		82	2.63		0.43	
8/27/2004	3,882	32,128	-	82	2.66		0.44	
8/28/2004	2,770	34,898		100	2.31		0.38	
8/29/2004	3,834	38,732		100	3.20		0.53	
8/30/2004	3,376	42,108		91	2.56	12	0.42	Half UST cleaning water and half groundwater from well. SPH amount estimated from 0.02' SPH in UST gaged on 8/21/04
8/31/2004	3,249	45,357		91	2.47		0.41	
9/1/2004	3,832	49,189		110	3.52		0.58	
9/2/2004	2,151	51,340		110	1.97		0.32	
9/3/2004	3,136	54,476		99 99	2.59 3.03		0.43	
9/4/2004 9/5/2004	3,671 3,395	58,147 61,542	-	99 66	1.87		0.50 0.31	
9/6/2004	2,948	64,490		66	1.62		0.27	
9/7/2004	3,285	67,775	-	66	1.81		0.30	
9/8/2004	3,128	70,903		66	1.72		0.28	
9/9/2004	3,902	74,805		67	2.18		0.36	water from TBW-N. TBW-S, & TBW-E
9/10/2004	2,989	77,794		67	1.67		0.27	water from TBW-N. TBW-S, & TBW-E
9/13/2004	2,807	80,601		61	1.43		0.23	70-barrel truck
9/20/2004	4,266	84,867		120	4.27		0.70	
9/28/2004 10/4/2004	4,691 4,050	89,558 93,608		99 80	3.88 2.70		0.64	
10/11/2004	3,121	95,608		57	1.48		0.24	
10/18/2004	3,597	100,326		68	2.04		0.34	2,641 additional gallons from tank cleaning were disposed of on
10/25/2004 11/1/2004	4,127 5,047	104,453 109,500		81 86	2.79 3.62		0.59	10/25/04
11/8/2004		111,678		100	1.82		0.39	
11/16/2004		116,569		83	3.39		0.56	concentration based on 11/23/04 sample
11/29/2004		121,100		160	6.05		0.99	concentration based on 11/30/04 sample
12/13/2004	5,208	126,308		120	5.21		0.86	concentration based on 12/15/04 sample
12/27/2004	4,800	131,108		100	4.01		0.66	concentration based on 12/27/04 sample
1/17/2005	3,580	134,688		86	2.57		0.42	concentration based on 1/17/05 sample
2/7/2005	2,389	137,077		97	1.93		0.32	concentration based on 2/4/05 sample
3/8/2005 4/6/2005	4,843	141,920		94	3.80		0.62	concentration based on 3/3/05 sample
4/6/2005 5/2/2005	4,711 4,706	146,631 151,337		27 42	1.06 1.65		0.17 0.27	concentration based on 4/12/05 sample concentration based on 5/13/05 sample
6/6/2005	5,011	156,348		42	1.65	<u> </u>	0.27	concentration based on 6/10/05 sample
7/11/2005	4,627	160,975		48	1.85		0.32	concentration based on 7/15/05 sample
8/8/2005	4,785	165,760		36	1.44		0.24	concentration based on 8/17/05 sample
9/12/2005	4,992	170,752		20	0.83		0.14	concentration based on 9/15/05 sample
10/10/2005	5,181	175,933		59	2.55		0.42	concentration based on 10/17/05 sample
11/7/2005	4,821	180,754		105	4.22		0.69	concentration based on 11/22/05 sample

TOTALS 180,754 (gallons) Total Estimate d Volume of Liquid Removed

128.8	1,982.1	20.7
(pounds) Total	(gallons) Total	(gallons) Total
estimated	Estimated	estimated
mass based	Volume	equivalent
on dissolved	accounted for	volume based
TPHg	as liquid SPH	on dissolved
concentrations		TPHg
		concentrations

NOTES:

Mass removal values are approximate only.

Pounds of TPHg/benzene/MTBE removal based on the calculation: (TPHg/benzene/MTBE concentration* (ppb)) x gallons pumped x (8.3x10⁻⁹ (liters/galxpounds/µg))

L\Shell\6-chars\2404--\240467-Alameda 1601 Webster St\240467-PRE SEPTEMBER 2008\Tables\[GWE Data Tables.xls]Table 4-GW+Product Removal Data

Appendix C Groundwater Data for Environmental Case RO0001042

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft below TOC)	Ground Water Elevation (ft above msl)
MW-1	04/11/90	13.80	8.22	5.58
	07/18/90		9.14	4.66
	10/18/90		10.37	3.43
	01/25/91		10.41	3.39
	04/11/91		7.37	6.43
	07/18/91		8.86	4.94
	10/17/91		10.47	3.33
	01/24/92		9.18	4.62
	04/23/92		6.95	6.85
	07/22/92		8.01	5.79
	10/02/92		9.81	3.99
	01/05/93		7.26	6.54
	04/08/93	13.80 ^a	5.85	7.95
		15.80		
	07/20/93		6.83	6.97 5.72
	10/15/93		8.07	5.73
	01/07/94		7.82	5.98
	04/13/94		6.91	6.89
	07/26/94		7.51	6.29
	10/06/94		8.71	5.09
	01/26/95		5.43	8.37
	04/20/95		5.50	8.30
	07/12/95		6.48	7.32
	10/12/95		7.44	6.36
	01/11/96		6.95	6.85
	04/10/96		5.78	8.02
	07/12/96		6.65	7.15
	10/17/96		7.48	6.32
	04/08/97		6.16	7.64
	10/16/97		8.56	5.24
	04/17/98		5.10	8.70
MW-2	04/11/90	13.20	7.69	5.51
	07/18/90		8.56	4.64
	10/18/90		9.76	3.44
	01/25/91		9.78	3.42
	04/11/91		6.87	6.33
	07/18/91		8.27	4.93
	10/17/91		9.89	3.31
	01/24/92		8.60	4.60
	04/23/92		6.48	6.72
	07/02/92		7.37	5.83
	10/02/92		9.20	4.00
	01/05/93		6.80	6.40
	04/08/93	13.20 ^a	5.40	7.80

Table 1.Ground Water Elevations - Shell Service Station WIC #204-0072-0403, 1601
Webster Street, Alameda, California

i:\shell\6-chars\2404--\240467-alameda 1601 webster st\240467-pre september 2008\qm\0434qmt1.doc

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft below TOC)	Ground Water Elevation (ft above msl)
wen iD	Date	(It above hist)	(It below TOC)	(It above hist)
	07/20/93		6.05	7.15
	10/15/93		7.04	6.16
	01/07/94		6.99	6.21
	04/13/94		6.20	7.00
	07/26/94		6.63	6.57
	10/06/94		7.75	5.45
	01/26/95		4.49	8.71
	04/20/95		5.28	7.92
	07/12/95		5.84	7.36
	10/12/95		6.68	6.52
	01/11/96		6.29	6.91
	04/10/96		5.48	7.72
	07/12/96		6.02	7.18
	10/17/96		6.95	6.25
	04/08/97		5.83	7.37
	10/16/97		7.98	5.22
	04/17/98		4.71	8.49
	0 11 11 / 0			0017
MW-3	04/08/93	12.80	5.48	7.32
	07/20/93		6.38	6.42
	10/15/93		7.53	5.27
	01/07/94		7.38	5.42
	04/13/94		6.50	6.30
	07/26/94		7.00	5.80
	10/06/94		8.10	4.70
	01/26/95		5.00	7.80
	04/20/95		5.24	7.56
	07/12/95		6.10	6.70
	10/12/95		6.98	5.82
	01/11/96		6.48	6.32
	04/10/96		5.57	7.23
	07/12/96		6.23	6.57
	10/17/96		7.18	5.62
	04/08/97		5.75	7.05
	10/16/97		7.76	5.04
	04/17/98		4.47	8.33
S-1	09/11/89	13.77	9.82	3.95
	04/11/90		8.41	5.36
	07/18/90		9.31	4.46
	10/18/90		10.43	3.34
	01/25/91		10.49	3.28
	04/11/91		7.68	6.09
	07/18/91		8.95	4.82

Table 1.Ground Water Elevations - Shell Service Station WIC #204-0072-0403, 1601
Webster Street, Alameda, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft below TOC)	Ground Water Elevation (ft above msl)
	10/17/91		10.62	3.15
	01/24/92		9.32	4.45
	04/23/92		7.27	6.50
	07/02/92		8.19	5.58
	10/02/92		9.95	3.82
	01/05/93		7.64	6.13
	04/08/93	13.74 ^a	6.10	7.64
	07/20/93		7.18	6.56
	10/15/93		8.39	5.35
	01/07/94		8.19	5.55
	04/13/94		7.22	6.52
	07/26/94		7.82	5.92
	10/06/94		9.01	4.73
	01/26/95		5.65	8.09
	04/20/95		6.82	6.92
	07/12/95		6.74	7.00
	10/12/95		7.76	5.98
	01/11/96		7.24	6.50
	04/10/96		5.80	7.94
	07/12/96		6.60	7.14
	10/17/96		7.63	6.11
	04/08/97		6.00	7.74
	10/16/97		8.28	5.46
	04/17/98		4.62	9.12

Ground Water Elevations - Shell Service Station WIC #204-0072-0403, 1601 Table 1. Webster Street, Alameda, California (continued)

Abbreviations and Notes:

Top of casing resurveyed on March 30, 1993Feet а

ft

msl = Mean sea level TOC = Top-of-casing

	·					,							
Well ID									c-1,2-	1,2-			
(Sampling	Date	Depth to	TPH-G	TPH-D	В	Т	E	Х	DCE	DCA	TOG	MTBE	DO
Frequency)	Sampled	Water (ft)	←			(Conce		in µg/L)	<u> </u>			>	(mg/L)
	1					(× 0 /
MW-1	04/11/90	8.22	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10,000		
(2nd Qtr)	07/18/90	9.14	<50		< 0.5	< 0.5	< 0.5	< 0.5	3	< 0.5	<5,000		
	10/18/90	10.37	<50		< 0.5	< 0.5	< 0.5	< 0.5	7.9	< 0.5	<5,000		
	01/25/91	10.41	<50		< 0.5	< 0.5	< 0.5	< 0.5	5.6	< 0.5			
	04/11/91	7.37	<50		< 0.5	< 0.5	< 0.5	< 0.5	0.9	< 0.5			
	07/18/91	8.86	<50		< 0.5	< 0.5	< 0.5	< 0.5	4.4	< 0.5			
	10/17/91	10.47	<50		< 0.5	< 0.5	< 0.5	< 0.5	7.2	< 0.5			
	01/24/92	9.18	<50		< 0.5	< 0.5	< 0.5	< 0.5	1.4	< 0.5			
	04/23/92	6.95	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	07/02/92	8.01	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	10/02/92	9.81	<50		< 0.5	< 0.5	< 0.5	< 0.5	2	< 0.5			
	01/05/93	7.26	<50		< 0.5	< 0.5	< 0.5	< 0.5	2	< 0.5			
	04/08/93 ^a	5.85	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	07/20/93 ^b	6.83	<50		< 0.5	< 0.5	< 0.5	< 0.5	0.76	< 0.5			
	10/15/93	8.07	<50		< 0.5	< 0.5	< 0.5	< 0.5	0.71	< 0.5			
	01/07/94	7.82	<50		< 0.5	< 0.5	< 0.5	< 0.5	3.1	0.85			5.5
	04/13/94	6.91	<50		< 0.5	< 0.5	< 0.5	< 0.5	3.6	0.95			
	07/26/94	7.51	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4			2.8
	10/06/94 ^c	8.71	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4			4.0
	04/20/95	5.50	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4			
	04/10/96	5.78	<50		< 0.5	< 0.5	< 0.5	< 0.5				<2.5	
	07/12/96	6.65											
	10/17/96	7.48											
	04/08/97	6.16	<1,000		<10	<10	<10	<10	<1.2	<1.2		3,000	2.6
	04/17/98	5.10	<50		<0.50	< 0.50	<0.50	1.3	< 0.50	<0.50		<2.5(<2.0)	7.8
MW-2	04/11/90	7.69	580	430	20	4.9	1.2	73	< 0.5	1.1	<10,000		
(2nd & 4th Qtr)	07/18/90	8.56	1,400		110	310	71	310	< 0.5	0.7	<5,000		
	10/18/90	9.76	1,900	1,300 ^d	110	470	89	400	< 0.5	0.9	<5,000		
	01/25/91	9.78	8,100		430	1,200	480	2,600	< 0.5	0.8			
	04/11/91	6.87	2,600		130	150	250	330	< 0.5	< 0.5			
	07/15/91	8.27	1,300		100	59	84	120	< 0.5	0.8			
	10/17/91	9.89	2,100		180	260	150	520	< 0.5	0.6			
	01/24/92	8.60	7,100		450	450	960	1,600	110	< 0.5			
	04/23/92	6.48	16,000		320	740	650	2,600	<2.5	<2.5			
	07/02/92	7.37	33,000		2,500	3,700	2,000	9,600	<50	<50			

 Table 2.
 Analytical Results for Ground Water - Shell Service Station, WIC #204-0072-0403, 1601 Webster Street, Alameda, California

 $i:\label{eq:label_labe$

Well ID (Sampling	Date	Depth to	TPH-G	TPH-D	В	Т	Е	Х	c-1,2- DCE	1,2- DCA	TOG	MTBE	DO
Frequency)	Sampled	Water (ft)	←			(Conce	entrations	in $\mu g/L$)				\longrightarrow	(mg/L
	10/02/92	9.20	7,000		960	650	570	1,200	<50	<50			
	01/05/93	6.80	8,900		550	500	600	1,900	<2	<2			
	04/08/93	5.40	13,000		670	580	900	2,900	0.68	< 0.5			
	04/08/93 ^{dup}	5.40	13,000		830	740	1,100	3,700	0.64	< 0.5			
	07/20/93	6.05	10,000		1,200	630	1,100	4,000	0.87	< 0.5			
	07/20/93 ^{dup}	6.05	12,000		1,200	600	1,100	3,800	0.80	< 0.5			
	10/15/93	7.04	24,000		1,400	3,400	1,200	5,200	< 0.5	< 0.5			
	10/15/93 ^{dup}	7.04	19,000		1,200	2,800	1,000	4,400	< 0.5	< 0.5			
	01/07/94	6.99	27,000		1,300	2,700	1,900	7,900	<10	<10			3.6
	01/07/94 ^{dup}	6.99	33,000		1,100	2,300	1,700	6,900	<10	<10			3.6
	04/13/94	6.20	16,000		460	93	820	2,700	<25	<25			
	04/13/94 ^{dup}	6.20	18,000		500	100	880	3,000	<25	<25			
	07/26/94	6.63	25,000		1,600	1,500	1,500	6,800	< 0.4	< 0.4			3.2
	07/26/94 ^{dup}	6.63	28,000		1,700	1,600	1,600	7,300	< 0.4	< 0.4			3.
	10/06/94	7.75	15,000		850	650	1,000	4,000	< 0.4	< 0.4			2.4
	10/06/94 ^{dup}	7.75	17,000		1000	630	1,200	4,500	<0.4	<0.4			2.4
	01/26/95	4.49	3,200		63	14	300	1,000	<0.4	<0.4			2.
	$01/26/95^{dup}$				31		300 140	820	<0.4	<0.4 <0.4			
		4.49	3,100			13							1.0
	04/20/95	5.28	<50		4.4	< 0.5	1.3	3.3	< 0.4	< 0.4			
	04/20/95 ^{dup}	5.28	<50		0.5	< 0.5	0.6	3.3	<0.4	< 0.4			
	07/12/95	5.84	<50		1.1	1.1	< 0.5	< 0.5					10.4
	07/12/95 ^{dup}	5.84	<50		0.9	0.8	< 0.5	< 0.5					10.4
	10/12/95	6.68	370		20	3.0	8.2	92	< 0.5	< 0.4			6.4
	01/11/96	6.29	90		3.8	< 0.5	3.5	3.0	0.6	< 0.4			5.8
	04/10/96	5.48	61		9.9	< 0.5	3.6	1.8				<2.5	
	04/10/96 ^{dup}	5.48	54		10	< 0.5	4.0	1.7				<2.5	
	07/12/96	6.02	510		25	1.9	39	61	<1.0	<1.0		3.3	2.3
	07/12/96 ^{dup}	6.02	510		24	2.0	38	59	<1.0	<1.0		5.5	2.3
	10/17/96	6.95	4,100		130	13	280	590	0.52	< 0.5		26	2.2
	10/17/96 ^{dup}	6.95	3,500		120	12	230	510	0.58	< 0.5		(<20)	2.2
	04/08/97	5.83	1,500		77	19	120	32	0.59	< 0.50		5.7	2.0
	10/16/97	7.98	4,000		160	< 5.0	250	140	<2.5	<2.5		44	2.4
	10/16/97 ^{dup}	7.98	4,000		170	< 5.0	270	98	<1.0	<1.0		<2.5	2.4

 Table 2.
 Analytical Results for Ground Water - Shell Service Station, WIC #204-0072-0403, 1601 Webster Street, Alameda, California (continued)

i: \shell\6-chars\2404--\240467-alameda 1601 webster st\240467-pre september 2008 \qm\0434qmt2.doc

Table 2.	Analytical Results for Ground Water - Shell Service Station, WIC #204-0072-0403, 1601 Webster Street, Alameda, California (continued)													
Well ID (Sampling Frequency)	Date Sampled	Depth to Water (ft)	TPH-G ←───	TPH-D	В	T — (Conce	E ntrations	X in µg/L)	c-1,2- DCE	1,2- DCA	TOG	MTBE	DO (mg/L)	
	04/17/98 04/17/98 ^{dup}	4.71 4.71	3,800 310		190 16	5.0 ^j <0.50	260 <0.50	340 7.4	<0.50 	<0.50 		<25(8.3) <2.5	1.8 1.8	
MW-3	02/25/93	5.37	58	140	<0.5	< 0.5	2.5	6.4	< 0.5	1.5	<5,000			
(2nd & 4th Qtr)	04/08/93	5.48	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				
	07/20/93 ^e	6.38	<50		1.2	< 0.5	< 0.5	< 0.5	< 0.5	2.8				
	10/15/93 ^f	7.53	60		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.55				
	01/07/94	7.38	74		< 0.5	< 0.5	< 0.5	0.76	< 0.5	0.91			4.6	
	04/13/94	6.50	<50		< 0.5	< 0.5	< 0.5	< 0.5	<1.3	<1.3				
	07/26/94	7.00	750 ^g		< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4			1.7	
	10/06/94	8.10	1,900 ^g		< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4			3.0	
	01/26/95	5.00	580^{g}		< 0.5	< 0.5	< 0.5	1.3	< 0.4	< 0.4			1.3	
	04/20/95	5.24	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4				
	07/12/95	6.10	50		4.2	2.9	< 0.5	0.9					7.2	
	10/12/95	6.98	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.4			7.1	
	10/12/95 ^{dup}	6.98	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.4			7.1	
	01/11/96	6.48	50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.4			6.4	
	01/11/96 ^{dup}	6.48	50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.4				
	04/10/96	5.57	200		<2.0	<2.0	<2.0	<2.0				670		
	07/12/96	6.23	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		230	3.5	
	10/17/96	7.18	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		<2.5	3.0	
	04/08/97	5.75	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		240	3.0	
	10/16/97	7.76	<50		< 0.50	< 0.50	< 0.50	< 0.50	<1.0	<1.0		100	2.2	
	04/17/98	4.47	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<2.5	6.4	
S-1	09/04/87 ^h				<5	<5	<5	<5	< 0.5	< 0.5				
(2nd Qtr)	09/11/89 ⁱ	9.82	<50	<100	< 0.5	<1	<1	<3	< 0.5	< 0.5	<1,000			
	04/11/90	8.41	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10,000			
	07/18/90	9.31	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5,000			
	10/18/90	10.43	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5,000			
	01/25/91	10.49	<50		< 0.5	< 0.5	< 0.5	< 0.5						
	04/11/91	7.68	<50		< 0.5	< 0.5	< 0.5	< 0.5						
	07/18/91	8.95	<50		< 0.5	< 0.5	< 0.5	< 0.5						
	10/17/91	10.62	<50		< 0.5	< 0.5	< 0.5	<5						

Well ID (Sampling	Date	Depth to	TPH-G	TPH-D	В	Т	Е	Х	c-1,2- DCE	1,2- DCA	TOG	MTBE	DO
Frequency)	Sampled	Water (ft)	←			-(Concer	ntrations	in µg/L)				>	(mg/L)
	01/24/92	9.32	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	04/23/92	7.27	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	07/02/92	8.19	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	10/02/92	9.95	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	01/05/93	7.64	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	04/08/93	6.10	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	07/20/93	7.18	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	10/15/93	8.39	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	01/07/94	8.19	<50		< 0.5	< 0.5	< 0.5	< 0.5					6.8
	04/13/94	7.22	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	07/26/94	7.82	<50		< 0.5	< 0.5	< 0.5	< 0.5					2.6
	10/06/94	9.01	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4			6.0
	04/20/95	6.82	<50		< 0.5	< 0.5	< 0.5	< 0.5					
	04/10/96	5.80	<50		< 0.5	< 0.5	< 0.5	< 0.5				<2.5	
	07/12/96	6.60											
	10/17/96	7.63											
	04/08/97	6.00	<50		0.73	< 0.50	< 0.50	1.7				3.8	2.8
	04/08/97 ^{dup}	6.00	<50		1.0	0.64	0.65	2.4				<2.5	2.8
	04/17/98	4.62	86		3.2	3.8 ^j	2.0	13				<2.5	7.1
т ·	07/19/00		.50		.0.5	-0.5	-0.5	-0.5					
Trip	07/18/90		<50		<0.5	<0.5	< 0.5	<0.5					
Blank	10/18/90		<50		< 0.5	<0.5	< 0.5	< 0.5					
	01/25/91		<50		< 0.5	<0.5	< 0.5	0.8					
	04/11/91		<50		< 0.5	<0.5	< 0.5	< 0.5					
	07/18/91		<50		< 0.5	<0.5	< 0.5	< 0.5					
	10/17/91		<50		< 0.5	<0.5	< 0.5	< 0.5					
	01/24/92		<50		< 0.5	<0.5	< 0.5	< 0.5					
	04/23/92		<50		<0.5	<0.5	<0.5	< 0.5					
	07/02/92		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	10/02/92		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	01/05/93		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	04/08/93		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	07/20/93		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	10/15/93		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	01/07/94		<50		< 0.5	< 0.5	< 0.5	< 0.5					

 Table 2.
 Analytical Results for Ground Water - Shell Service Station, WIC #204-0072-0403, 1601 Webster Street, Alameda, California (continued)

i: \shell\6-chars\2404--\240467-alameda 1601 webster st\240467-pre september 2008 \qm\0434qmt2.doc

Well ID	Data	Denth to			р	т	Б	V	c-1,2-	1,2-	TOC	MTDE	DO
(Sampling	Date	Depth to	TPH-G	TPH-D	В	Т	E	Х	DCE	DCA	TOG	MTBE	DO
Frequency)	Sampled	Water (ft)	←		(Concentrations in µg/L)						>	(mg/L)	
	04/12/04		50		0.5	0.5	0.5	0.5					
	04/13/94		<50		< 0.5	< 0.5	< 0.5	<0.5					
	07/26/94		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	10/06/94		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	01/26/95		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	04/20/95		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	07/12/95		<50		< 0.5	< 0.5	< 0.5	< 0.5					
	10/12/95		<50		< 0.5	< 0.5	< 0.5						
	07/12/96		<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		<2.5	
	10/17/96		<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		<2.5	
MCLs			NE	NE	1	150	700	1,750	6.0	0.5	NE	NE	

Table 2. Analytical Results for Ground Water - Shell Service Station, WIC #204-0072-0403, 1601 Webster Street, Alameda, California (continued)

Abbreviations:

- TPH-G = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015
- TPH-D = Total petroleum hydrocarbons as diesel by modified EPA Method 8015
- B = Benzene by EPA Method 8020
- T = Toluene by EPA Method 8020
- E = Ethylbenzene by EPA Method 8020
- X = Xy lenes by EPA Method 8020
- c-1,2-DCE = cis-1,2-dichloroethene by EPA Method 601
- 1,2-DCA = 1,2-dichloroethane by EPA Method 601
- TOG = Total non-polar oil and grease by American Public Health Association Standard Method 503E
- MTBE = Methyl tert-butyl ether by EPA Method 8020. Result in parentheses indicates MTBE by EPA Method 8260
- DO = Dissolved oxygen
- dup= Duplicate sample
- ft = Feet
- $\mu g/L = Micrograms per liter$
- mg/L = Milligrams per liter
- MCLs= California primary maximum contaminant level for drinking water (22 CCR 64444)
- NE = MCLs not established

Notes:

- a = Chloroform detected at 0.71 μ g/L by EPA Method 8010
- b = Chloroform detected at 1.1 μ g/L by EPA Method 8010
- $c = Trichloroethylene detected at 1.7 \mu g/L$
- d = Compounds detected and calculated as diesel appear to be the less volatile constituents of gasoline
- e = Chloroform detected at 1.5 μ g/L by EPA Method 8010
- f = Chloroform detected at 3.6 μ g/L by EPA Method 8010
- g = The result for gasoline is an unknown hydrocarbon which consists of a single peak
- h = 0.12 mg/L acetone detected by EPA Method 624; no other volatile organic compounds detected
- i = Metals detected by EPA Method 6010; 0.020 mg/L chromium, 0.060 mg/L lead and 0.030 mg/L zinc; no cadmium detected above detection limit of 0.010 mg/L; no PCBs or semi-volatile compounds detected by EPA Method 625
- $j = 0.51 \ \mu g/L$ toluene detected in equipment blank
- <**n** = Not detected at detection limit of **n** μ g/L
- --- = Not analyzed/measured

i:\shell\6-chars\2404--\240467-alameda 1601 webster st\240467-pre september 2008\qm\0434qmt2.doc

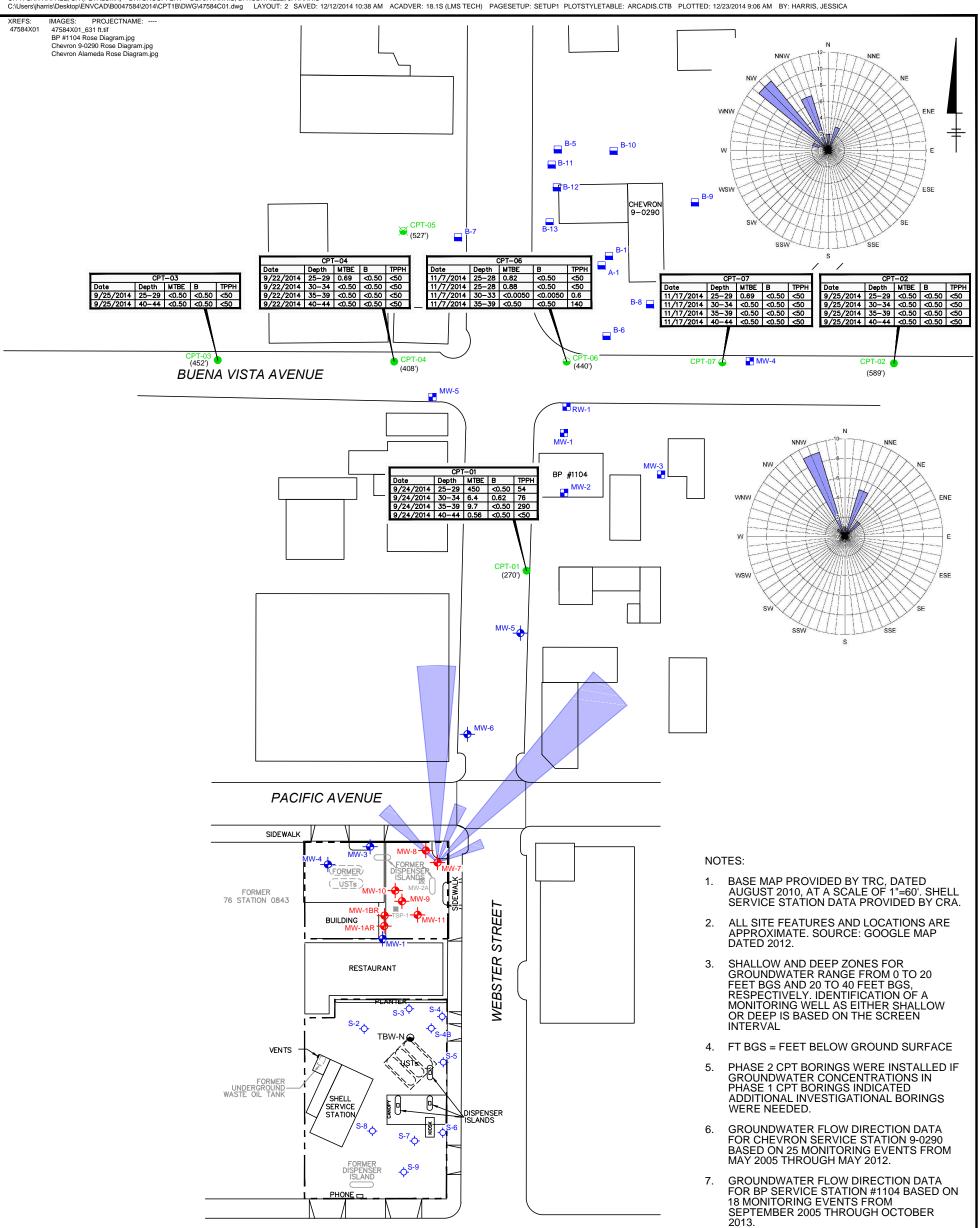
Appendix D Arcadis U.S., Inc. – 2015 Joint Investigation Data

Table 1 CPT Groundwater Grab Sample Analytical Results Unocal Service Station No. 0843 1629 Webster Street Alameda, California

Well ID	Date Sampled	Screen Interval (feet bgs)	TPPH (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µq/L)	MTBE (µg/L)	TBA (µg/L)	Comments
ESL		100*	1	40	30	20	5	12		
CPT-01	9/24/2014	25-29	54	< 0.50	< 0.50	<0.50	<1.0	450	<10	
CPT-01	9/24/2014	30-34	76	0.62	< 0.50	<0.50	<1.0	6.4	<10	
CPT-01	9/24/2014	35-39	290	<0.50	<0.50	<0.50	<1.0	9.7	<10	Chromatograph is dominated by a single peak at about 3.5 minutes which is atypical of gasoline.
CPT-01	9/24/2014	40-44	<50	<0.50	<0.50	< 0.50	<1.0	0.56	<10	
CPT-02	9/25/2014	25-29	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	
CPT-02	9/25/2014	30-34	<50	< 0.50	<0.50	<0.50	<1.0	<0.50	<10	
CPT-02	9/25/2014	35-39	<50	< 0.50	< 0.50	<0.50	<1.0	< 0.50	<10	
CPT-02	9/25/2014	40-44	<50	< 0.50	< 0.50	<0.50	<1.0	< 0.50	<10	
CPT-03	9/25/2014	25-29	<50	< 0.50	< 0.50	<0.50	<1.0	< 0.50	<10	
CPT-03	9/25/2014	40-44	<50	< 0.50	<0.50	<0.50	<1.0	<0.50	<10	
CPT-04	9/22/2014	25-29	<50	< 0.50	< 0.50	<0.50	<1.0	0.69	<10	
CPT-04	9/22/2014	30-34	<50	< 0.50	<0.50	<0.50	<1.0	< 0.50	<10	
CPT-04	9/22/2014	35-39	<50	< 0.50	<0.50	<0.50	<1.0	< 0.50	<10	
CPT-04	9/22/2014	40-44	<50	<0.50	< 0.50	<0.50	<1.0	< 0.50	<10	
CPT-05						Not instal	led. Not ne	eded based	d on Phas	e 1 data
CPT-06	11/7/2014	25-28	<50	< 0.50	<0.50	<0.50	<1.0	0.82	<10	
CPT-06-D	11/7/2014	25-28	<50	<0.50	< 0.50	< 0.50	<1.0	0.88	<10	Blind Duplicate
CPT-06	11/7/2014	30-33	0.6	<0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	< 0.050	Ran as soil due to the presence of silt in the VOAs. Data in mg/kg
CPT-06	11/7/2014	35-39	140	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	
CPT-07	11/17/2014	25-29	<50	<0.50	<0.50	<0.50	<1.0	0.69	<10	
CPT-07	11/17/2014	30-34	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	
CPT-07	11/17/2014	35-39	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	
CPT-07	11/17/2014	40-44	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	
EB-1	9/25/2014		<50	<0.50	0.97	<0.50	<1.0	<0.50	<10	
TB-1	9/25/2014		<50	<0.50	1.0	<0.50	<1.0	<0.50	<10	
TB-1	11/7/2014		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	

Standard Abbreviations

* ESL is for total petroleum hydrocarbons as gasoline


-- not applicable

- < not detected at or above laboratory detection limit
- μg/L micrograms per liter (approx. equivalent to parts per billion, ppb)

bgs feet below ground surface

- ESL San Francisco Regional Water Quality Control Board's Environmental Screening Limit (December 2013)
- MTBE methyl tertiary butyl ether
- TBA tertiary butyl alcohol

CITY: SAN RAFAEL, CA (PETALUMA) DIV/GROUP: ENV DB: J. HARRIS, B. ROBITAILLE, J. HARRIS C:\Users\jharris\Desktop\ENVCAD\B0047584\2014\CPT1B\DWG\47584C01.dwg LAYOUT: 2 SAVED:

LEGEND

 PROPERTY BOUNDARY

MW-1 - SITE MONITORING WELL (SHALLOW)

MW-1 + SITE MONITORING WELL (DEEP)

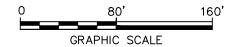
TSP-1 SPARGE WELL

- S-9 ♦ SHELL SERVICE STATION MONITORING WELL (SHALLOW)
- B-1 CHEVRON SERVICE STATION MONITORING WELL (SHALLOW)
- MW-1
 BP SERVICE STATION MONITORING WELL (SHALLOW)
- TBW-N
 SHELL TANK BACKFILL MONITORING WELL

MW-2A X ABANDONED WELL

CPT-01 PHASE 1 CPT BORING LOCATION

CPT-04
PHASE 2 CPT BORING LOCATION

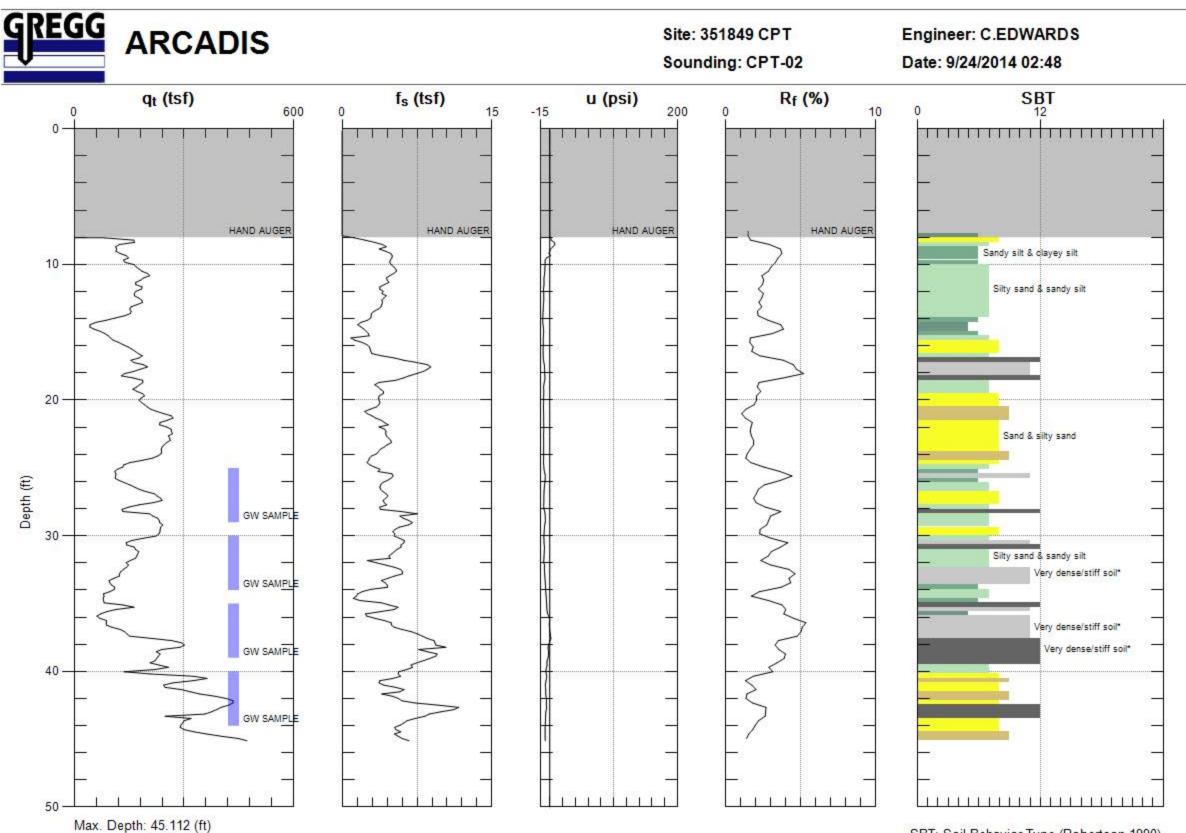

CPT-05 💓 BORING LOCATION NOT INSTALLED

- (527) RADIAL DISTANCE OF PROPOSED CPT BORING LOCATION FROM SITE MONITORING WELL MW-7
 - GROUNDWATER FLOW DIRECTION
- MTBE METHYL TERTIARY BUTYL ETHER
 - **B** BENZENE
- TPPH TOTAL PURGEABLE PETROLEUM HYDROCARBONS
 - < LESS THAN LABORATORY REPORTING LIMIT SHOWN
 - -- NOT APPLICABLE

DEPTHS ARE IN FEET BELOW GROUND SURFACE (FT BGS)

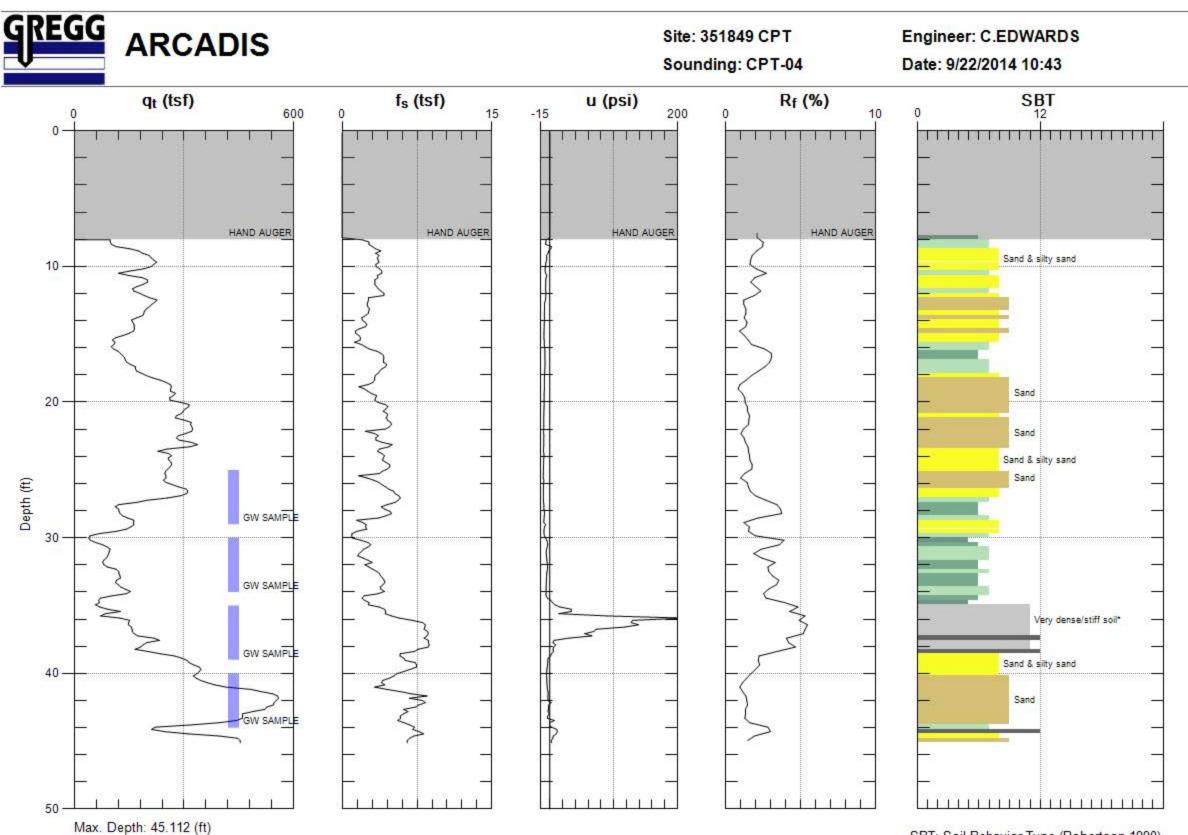
ALL ANALYTICAL RESULTS ARE IN MICROGRAMS PER LITER ($\mu g/L)$

- 2013.
- SITE GROUNDWATER FLOW DIRECTION DATA IS BASED ON APPROXIMATELY 60 MONITORING EVENTS FROM 1999 8. THROUGH 2014.


UNION OIL COMPANY OF CALIFORNIA FORMER FACILITY NO. 0843 1629 WEBSTER STREET ALAMEDA, CALIFORNIA

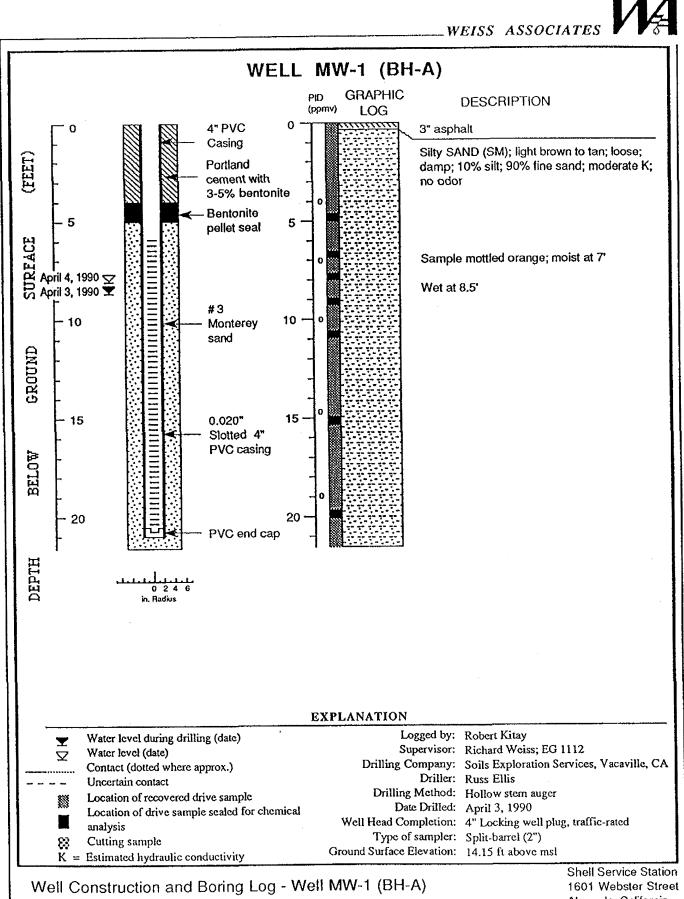
CPT BORING LOCATIONS AND **GROUNDWATER ANALYTICAL DATA**

FIGURE

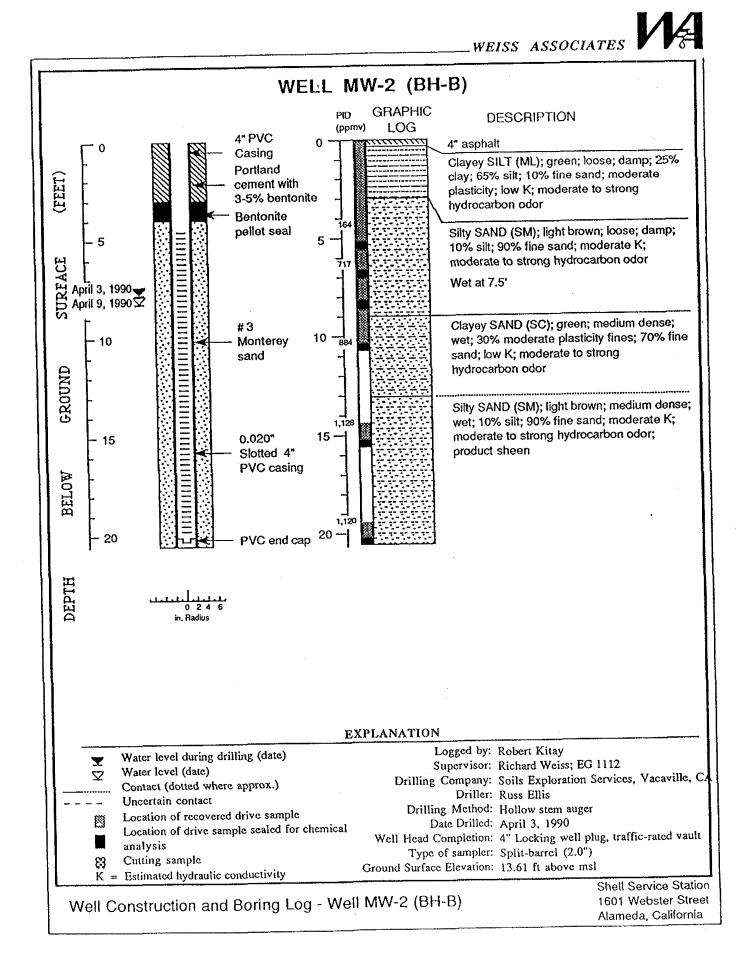

2

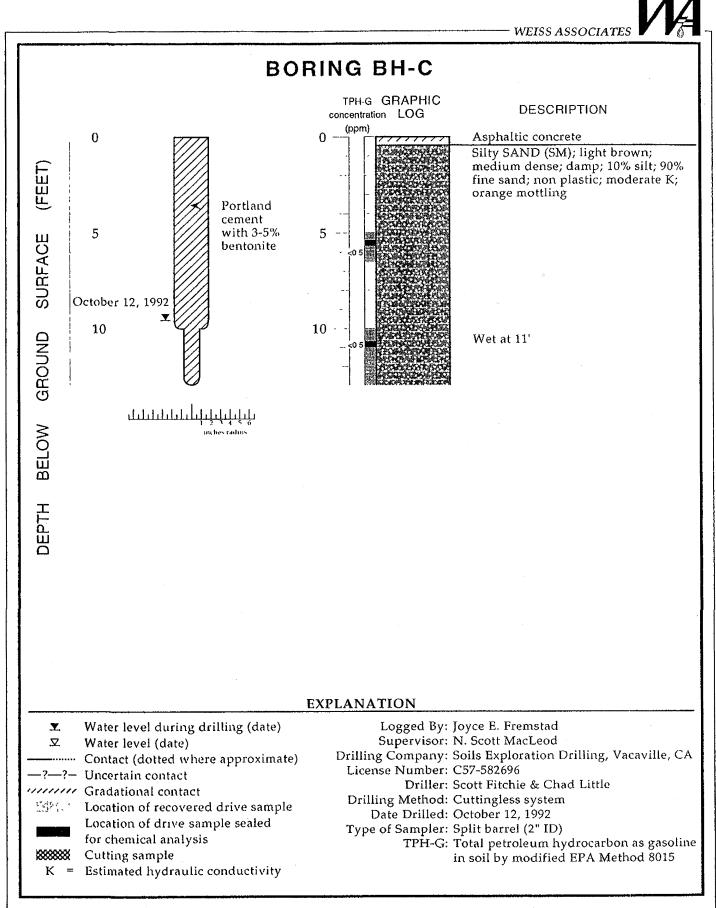
Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

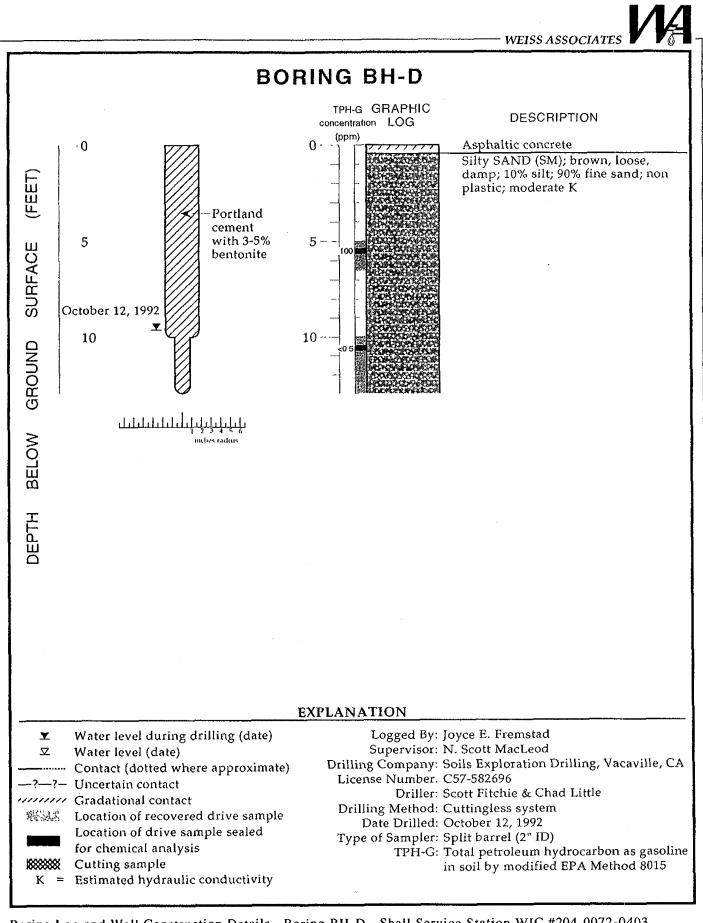

Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

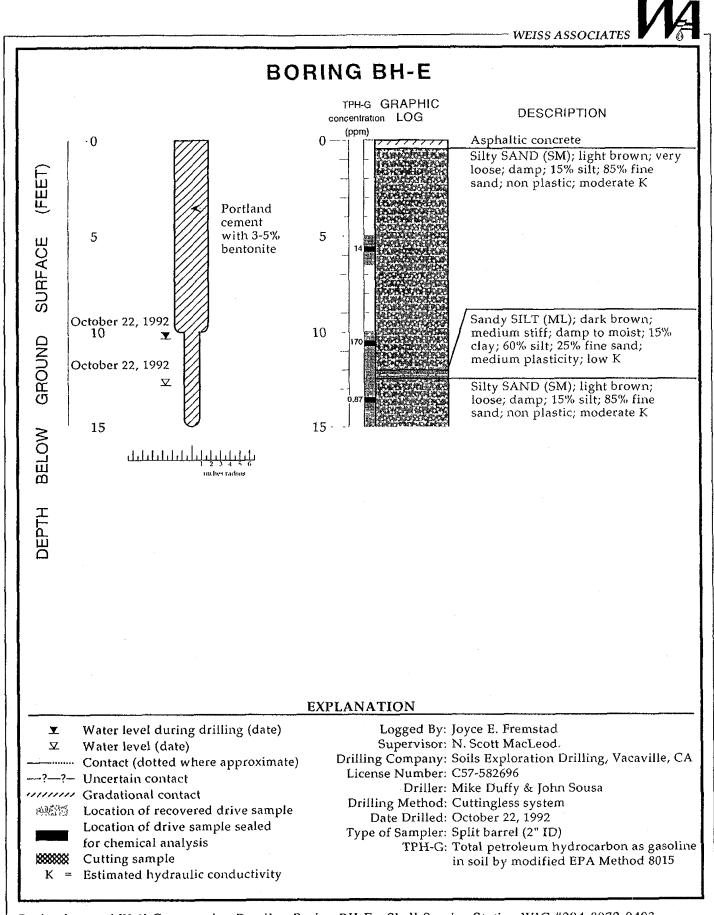


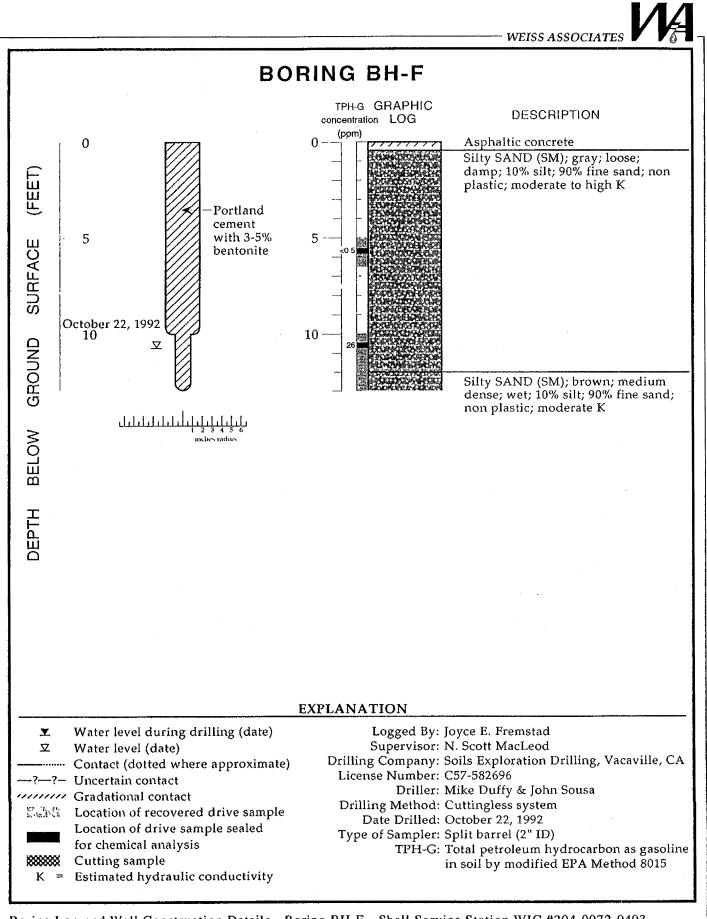

LOCATION MAP PACIFIC ENVIRONMENTAL GROUP, INC. PAGE OF LINCOLN WELL/BORING NO. S-1 PROJECT NO. 100-84.01 N----CLIMME G.R. SHELL LOCCED BY: E.L. DATE DELLED: 9-4-87 DRILLED BY BAYLAND a HOLE DEATH 20 1/2 WEBSTE 8 DRILLING METHOD HSA SAMPLING METHOD CAL MOD CASING TYPE SCH 40 PVC WELL DEPTH 20' $\hat{\omega}$ HLANK INTERVAL: 0-5' GRAVEL PACK: 12×20 SEAL: BENT-CONC. W-0 TANK SCREEN INTERVAL: 5-20' SCREEN DLAMETER: 3" SLOT SIZE: 0.020" TANK S-1 CPX FLEVATION Licatives 7123100 ACOVD34 ž WEII. НQ COLM DC LITHOLOGY / REMARKS COMPLETION 녎 ASPHALT & GRAVEL-FILL CLAY-FILL; MODERATE PLASTICITY; 20-30% CL -2 FINE SAND TO FINE GRAVEL; NPO. SM SILTY SAND; DARK BROWN; 15-20% SILTY FINES; FINE GRAINED; NPO. Tρ MSt 350 e 31/2 : AS ABOVE ; NPO-6 V 8 CL C 812 ; DRILLER FELT CONTACT WITH CLAY. Mst VD SC-10 CLAY; YELLOWISH BROWN; LOW PLASTICITY; SP 20-307. FINE TO MEDIVIN SAND; NPO. 12 CLAYEY SAND TO SAND; REDOISH BROWN;-10-15% L.P. FINES; FINE TO MEDIUM 13 D WE GRAINED; FEO STAINING; NPO. 16 C14': AS ABOVE; MOTTLED GREYINPO. SP 18 SAND; REPOISHBROWN ; 5-107% L.P. FINES; SATIVD FINE TO MEDIUM GRAINED; NPO. 20 123 -22 BOTTOM OF BORING AT 201/2 FEET. 24 -26 ·28 -30 32 34 36 -38 40

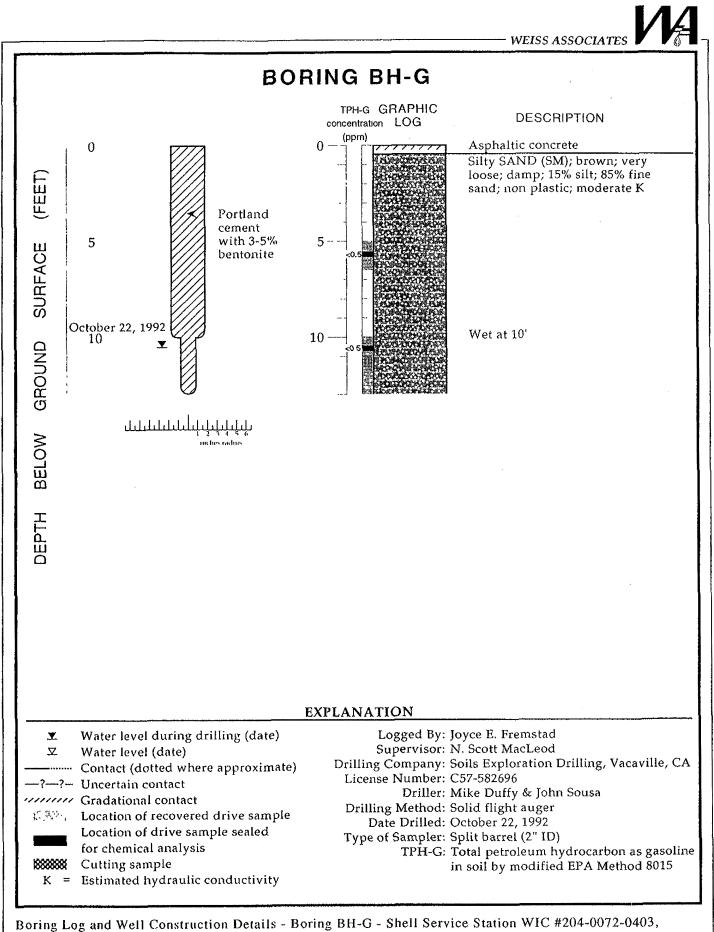
11

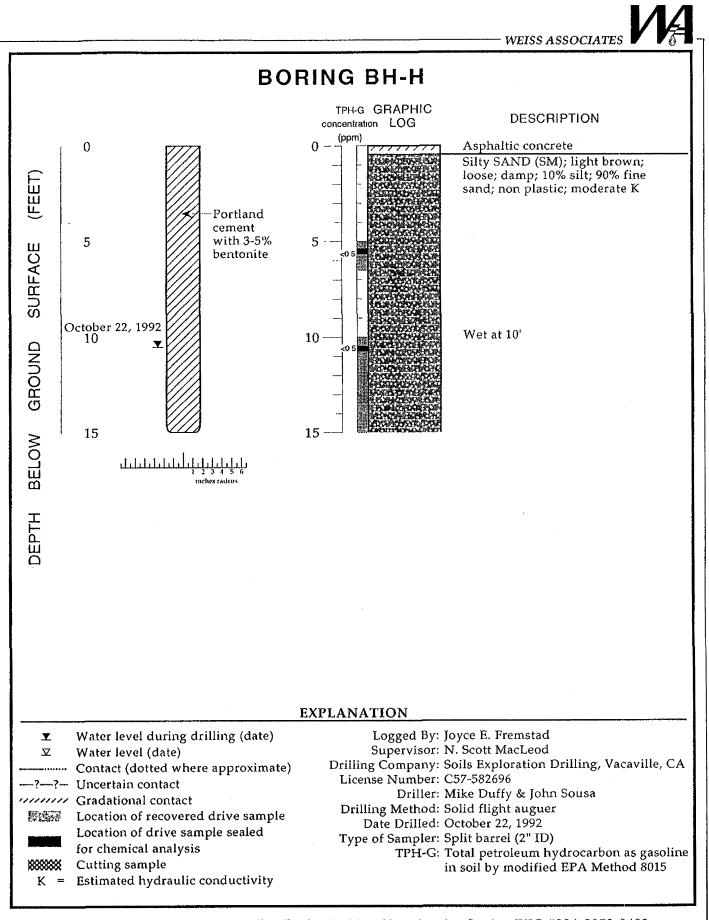


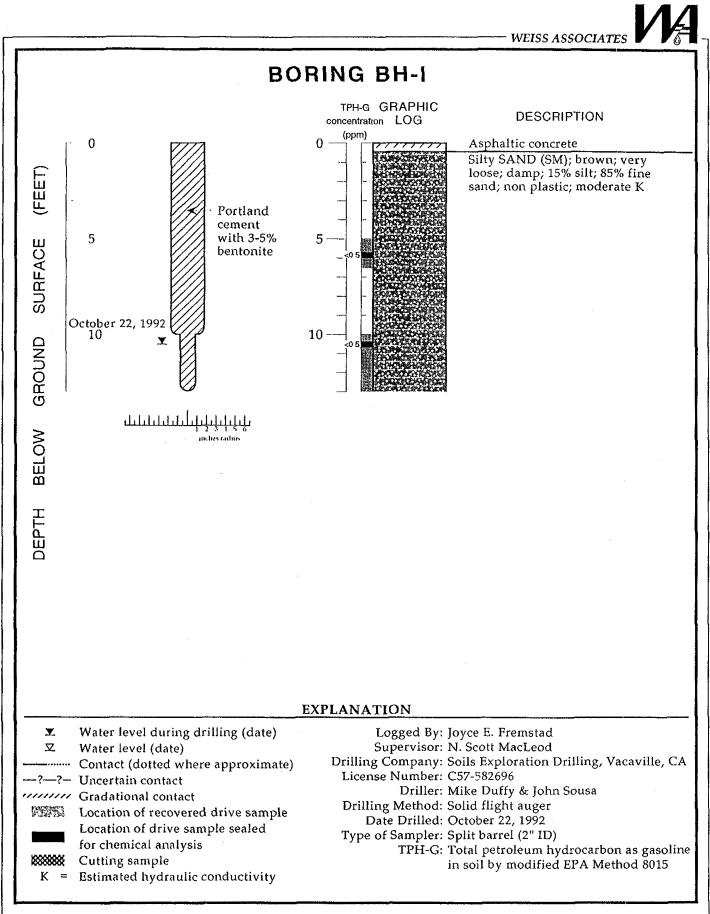
Alameda, California

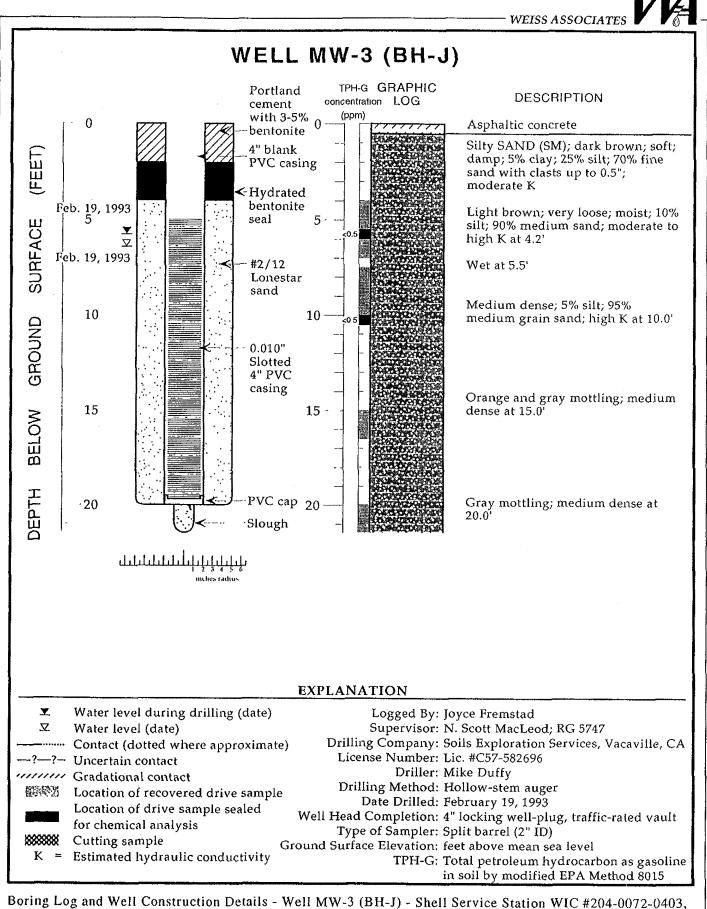



Boring Log and Well Construction Details - Boring BH-C - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

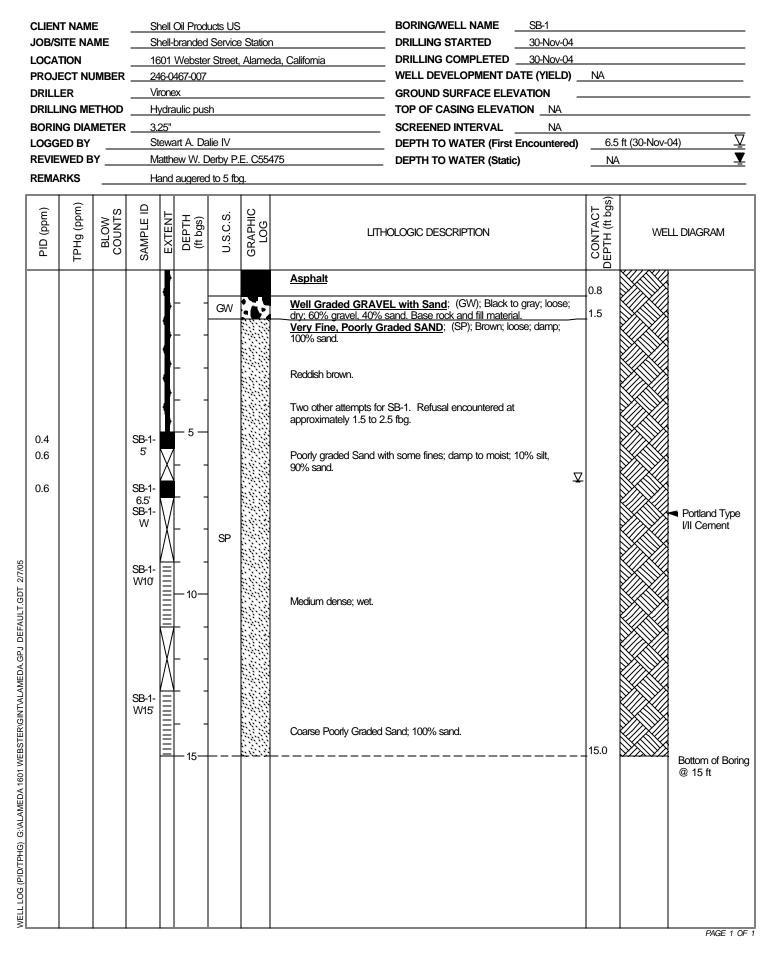

Boring Log and Well Construction Details - Boring BH-D - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California


Boring Log and Well Construction Details - Boring BH-E - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

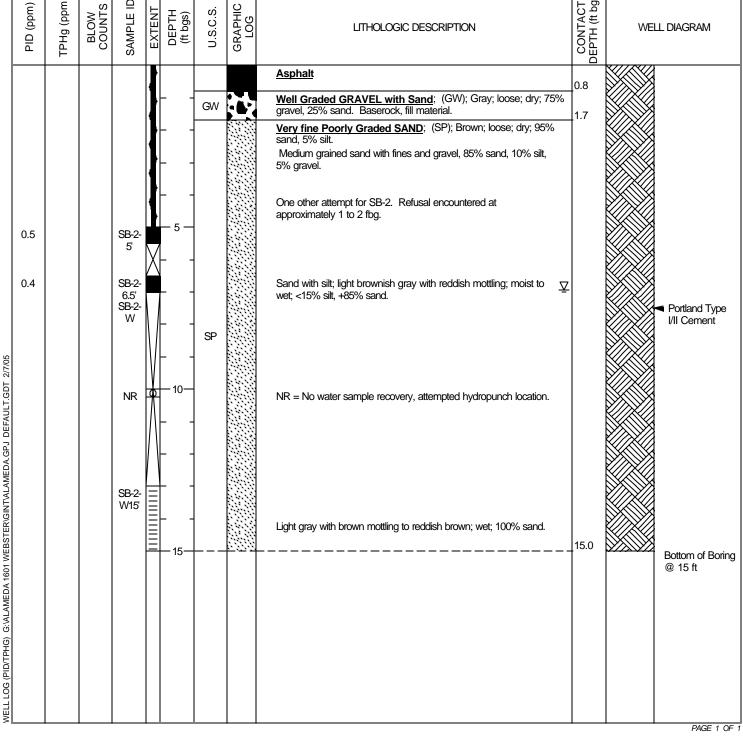

Boring Log and Well Construction Details - Boring BH-F - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

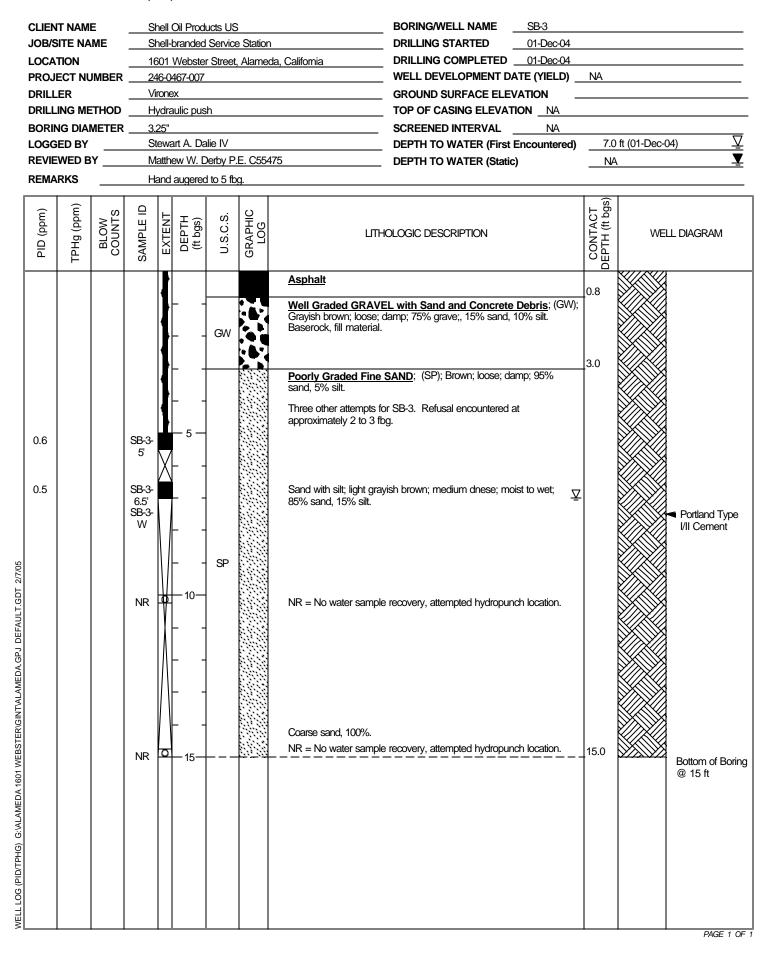

1601 Webster Street, Alameda, California

Boring Log and Well Construction Details - Boring BH-H - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California


Boring Log and Well Construction Details - Boring BH-I - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

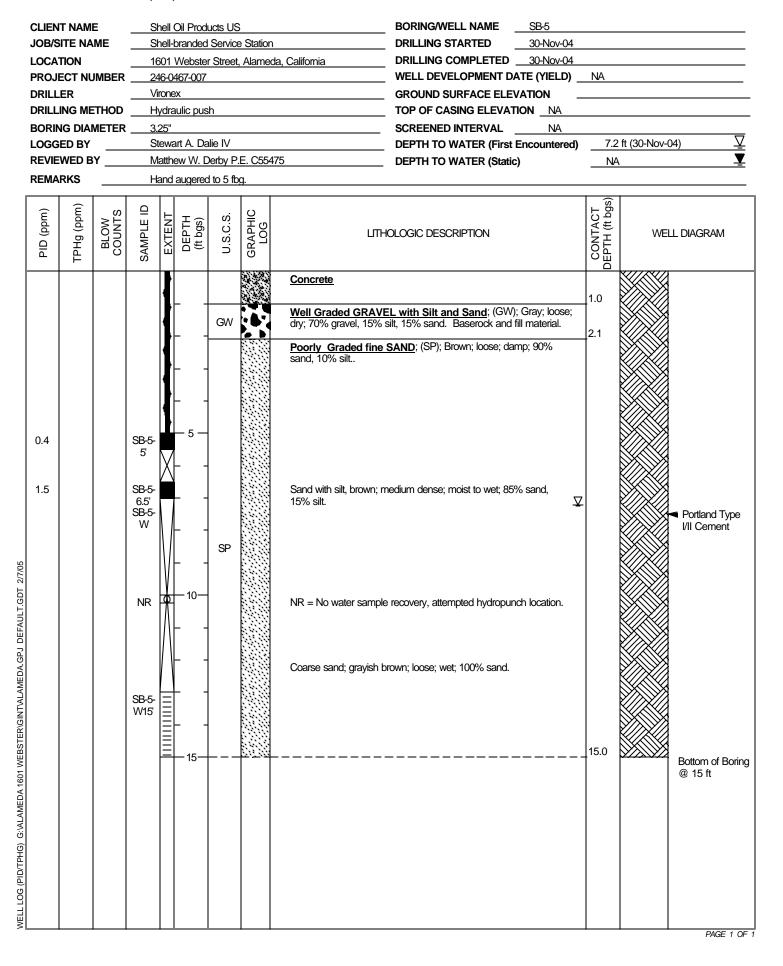
1601 Webster Street, Alameda, California


3/31/93

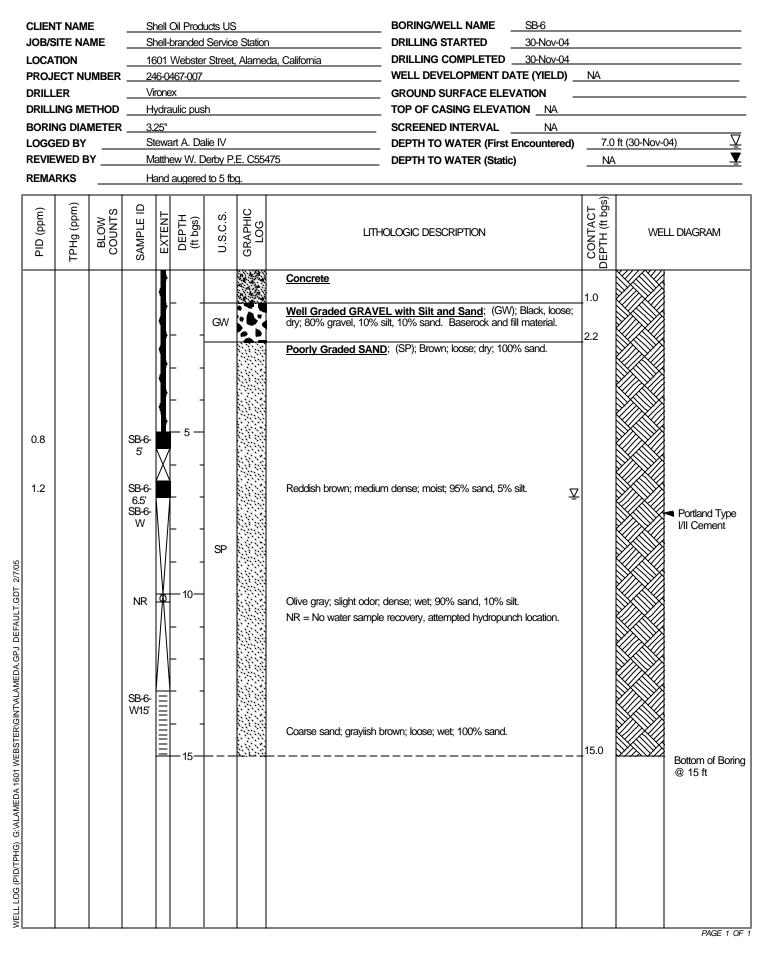


CLIENT NAME	Shell Oil Products US	BORING/WELL NAME SB-2
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 01-Dec-04
LOCATION	1601 Webster Street, Alameda, California	DRILLING COMPLETED 01-Dec-04
PROJECT NUMBER	246-0467-007	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Vironex	GROUND SURFACE ELEVATION
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION NA
BORING DIAMETER	3.25"	SCREENED INTERVAL NA
LOGGED BY	Stewart A. Dalie IV	DEPTH TO WATER (First Encountered)7.0 ft (01-Dec-04)
REVIEWED BY	Matthew W. Derby P.E. C55475	DEPTH TO WATER (Static) NA
REMARKS	Hand augered to 5 fbg.	
ppm) WW		ACT ft bgs)

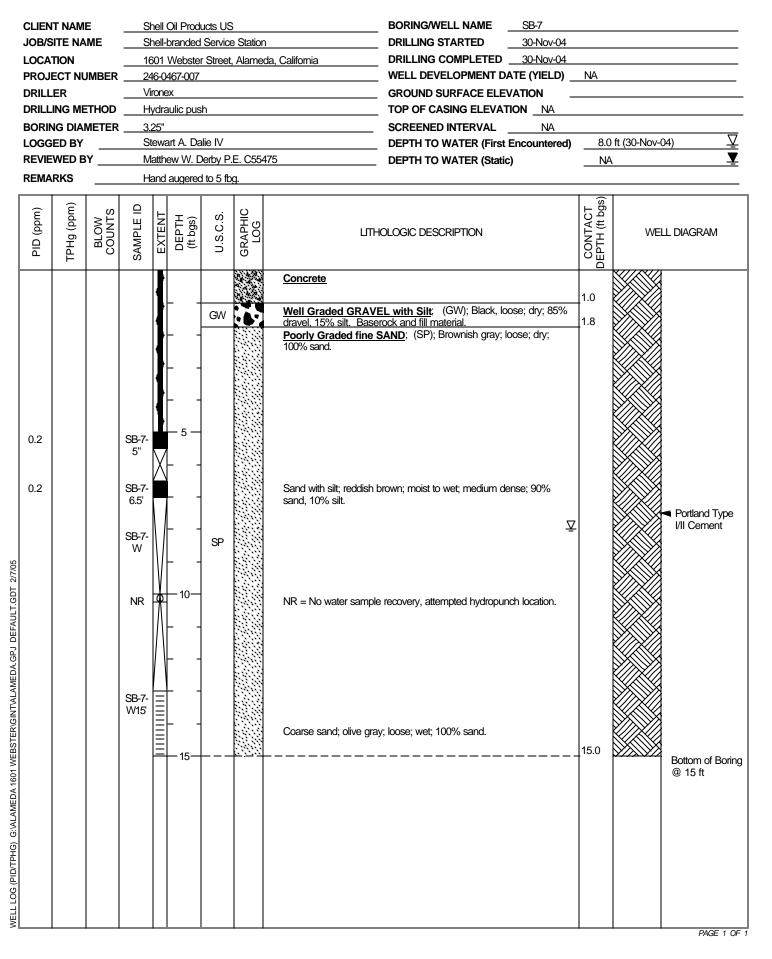
WELL LOG (PID/TPHG) G:\ALAMEDA 1601 WEBSTER\GINT\ALAMEDA.GPJ DEFAULT.GDT 2/7/05

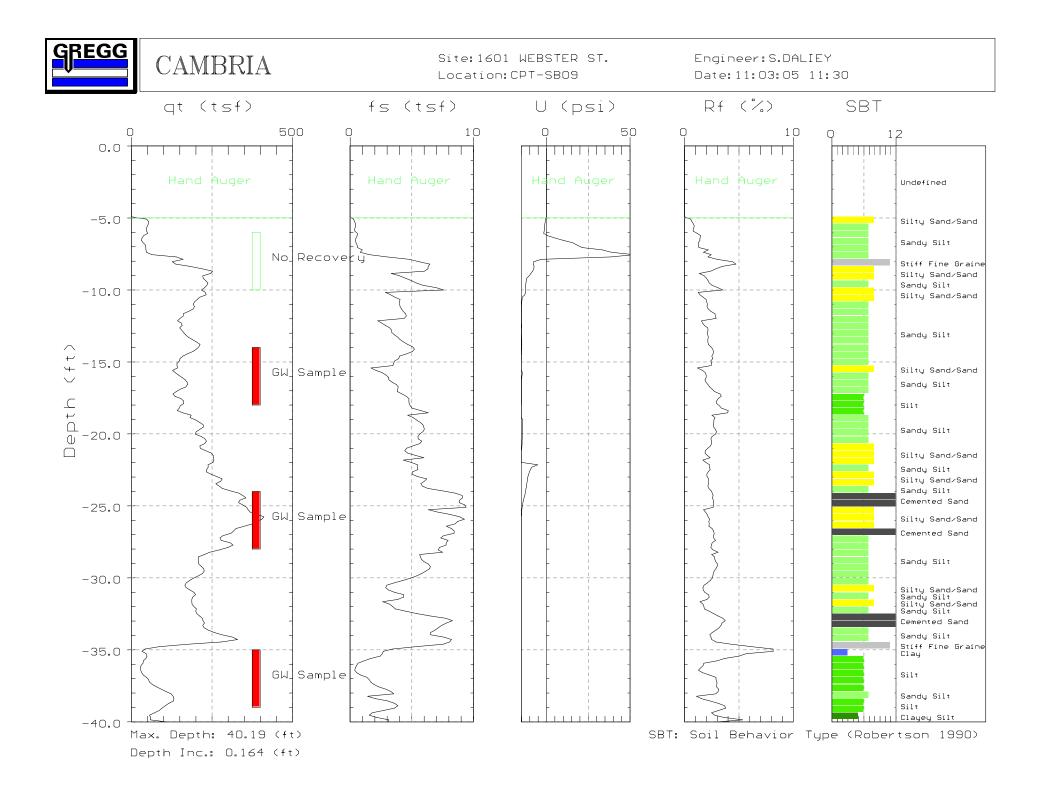

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

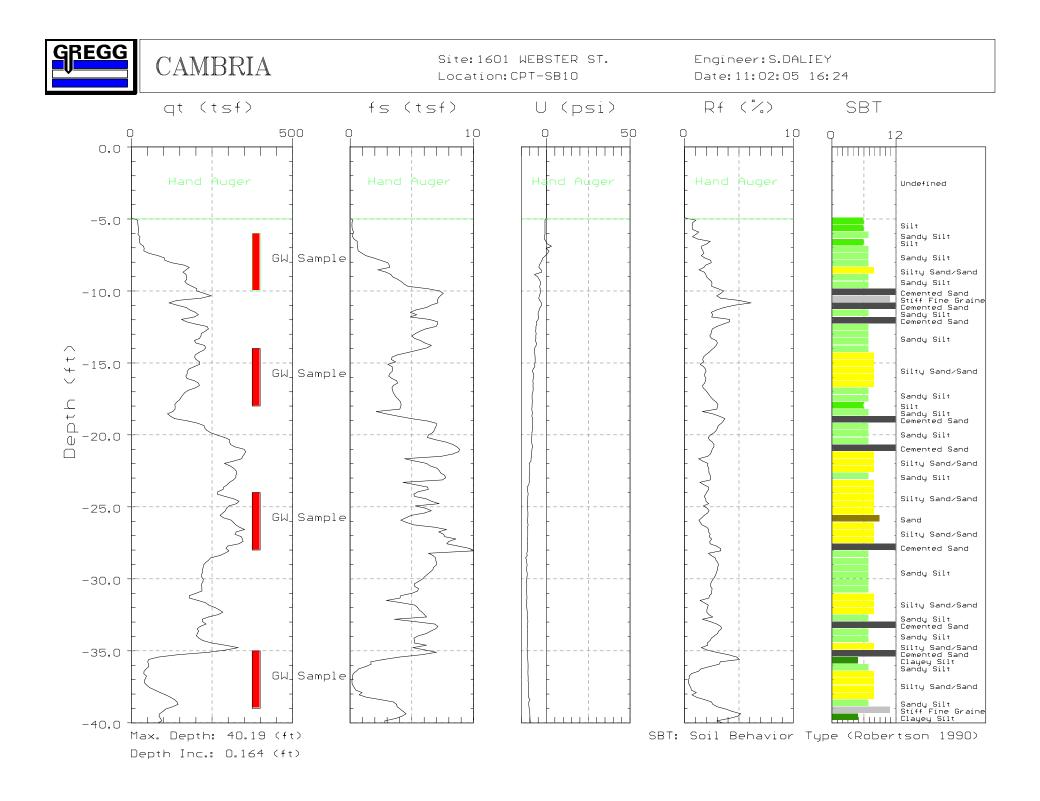
BORING/WELL LOG

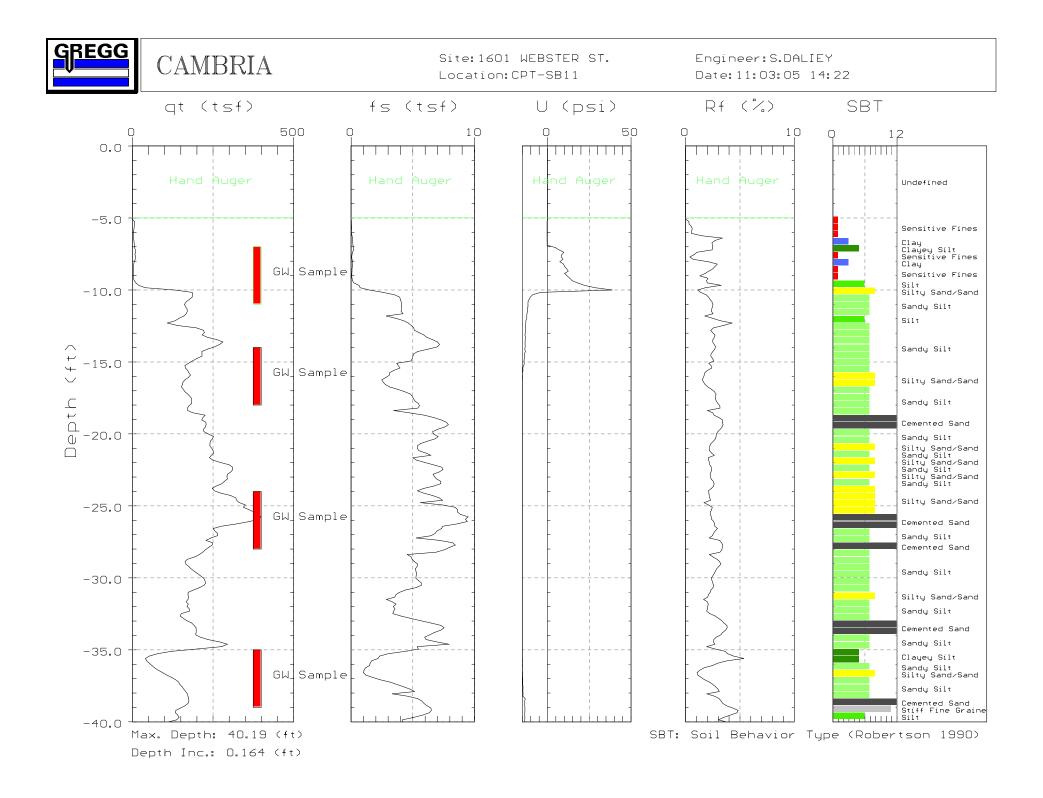

Job/s Loca ⁻ Proji Drill Drill Borin Logg Revie Rema	ECT NU ER ING ME IG DIAN ED BY WED B RKS	ME MBER THOD METER Y	St 16 24 Vii Hy 3.2 St	nell-t 601 \ 16-04 rone: /dra 25" ewa atthe and	Webster 167-007 x ulic pus ut A. Da	service r Street, h alie IV Derby P.	E. C554	da, Califomia	WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION					
PID (ppm)	TPHg (ppm)	BLOW COUNTS	SAMPLE	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITH	OLOGIC DESCRIPTION			CONTACT DEPTH (ft bgs)	WE	LL DIAGRAM
0.8			SB4- 55 SB4- 65 SB4- W NR SB4- W15		 	GW		silt, 10% sand, 10% gr Poorly Graded Fine sand. Three other attempts for approximately 1 to 2 fb Medium dense; damp,	90% sand, 10% siit.	; 100%	⊻	0.8 1.7 15.0		 Portland Type I/II Cement Bottom of Boring @ 15 ft

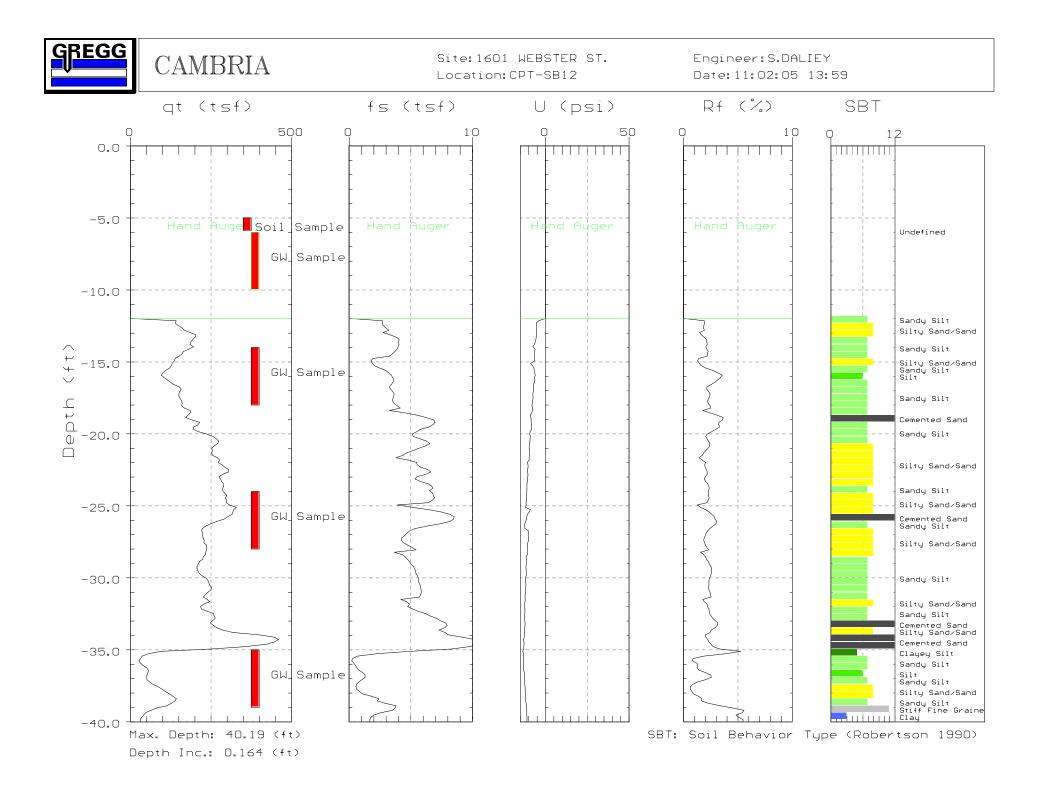
PAGE 1 OF 1

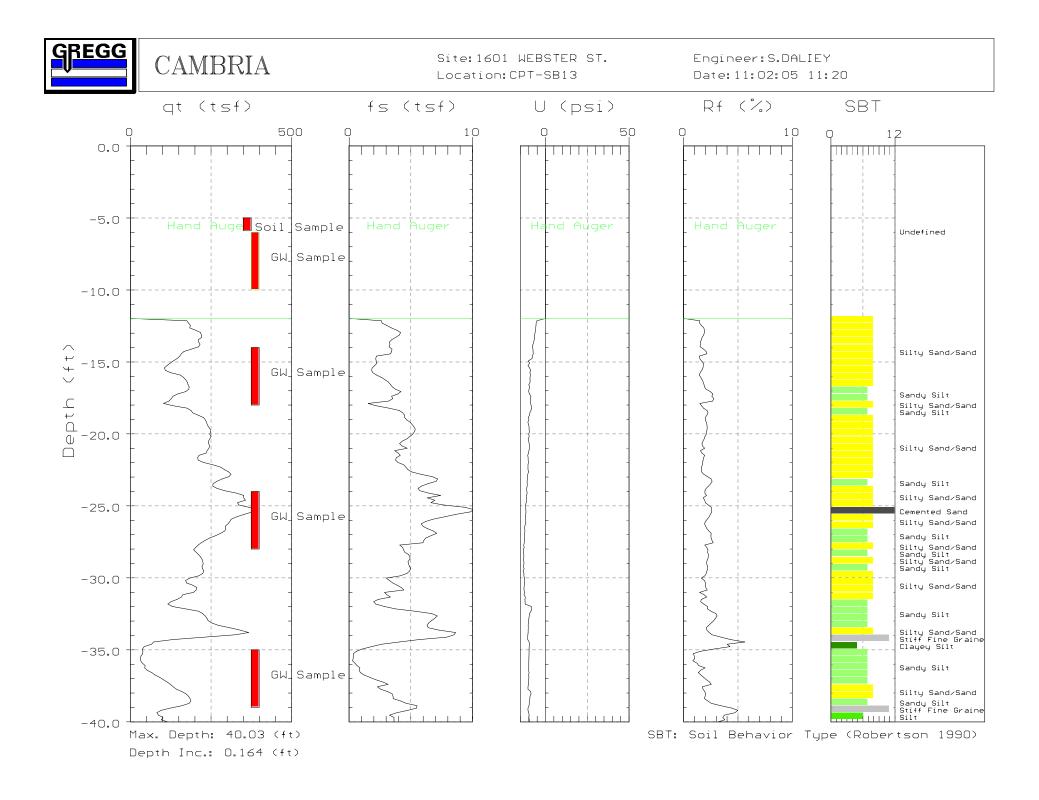


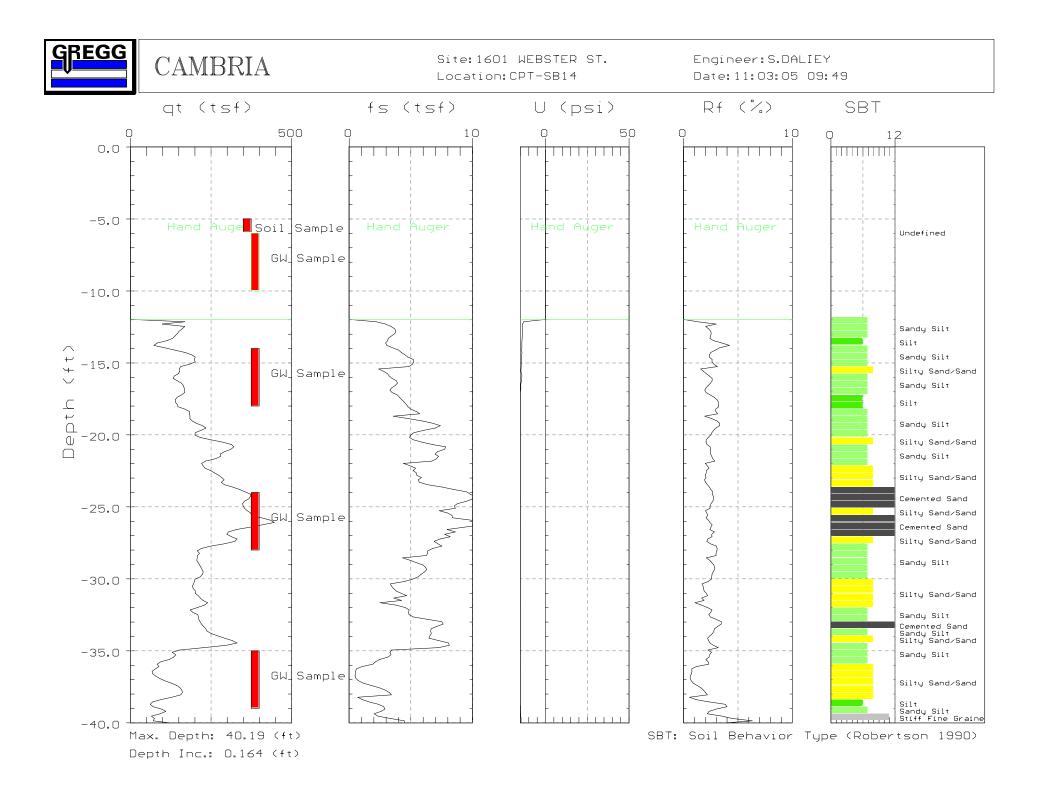




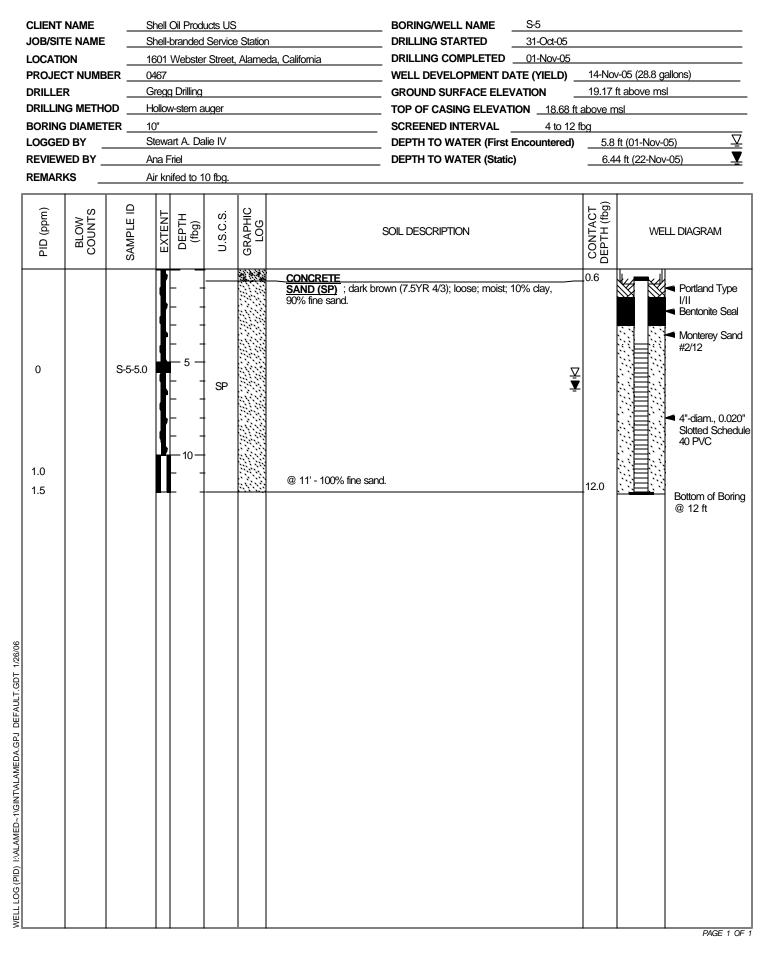





	Job/s Loca Proji Drill Drill Borin Logg	ect Nu .er Ing Me Ng Diai Sed By Swed B	ME IMBER THOD METER	SI 10 24 M H 3. SI SI	hell-l 601 46-04 irone ydra 25" tewa latthe	Webste 467-007 ex aulic pus art A. Da ew W. D augerec	service r Street h alie IV Derby P	e Station , Alamed	la, Califomia	WELL DEVELOPMENT D/ GROUND SURFACE ELEV TOP OF CASING ELEVAT SCREENED INTERVAL DEPTH TO WATER (First DEPTH TO WATER (Statio	ATE (YIELD) _ /ATION _ ION <u>NA</u> NA Encountered)	NA	ft (02-Dec-(
WELL LOG (PID/TPHG) G:VALAMEDA 1601 WEBSTER\GINTYALAMEDA.GPJ DEFAULT.GDT 2/7/05	0.5 859			SB-8-5 SB-8-5 SB-8- SB-8- W NR SB-8- ₩15			GW		dry; 70% gravel, 15% s Poorly Graded SANE sand, 10% silt. One other attempt for S approximately 1 to 2 fb Sand with silt, olive gra silt, +85% sand.	y, hydrocarbon odor; moist to v recovery, attempted hydropun nd; medium dense to loose; we	ill material. damp; 90% wet; <15% ⊻ ch location.	0.9		 Portland Type I/II Cement Bottom of Boring @ 15 ft



CLIENT NA JOB/SITE I LOCATION PROJECT DRILLER DRILLING BORING D LOGGED E REVIEWED REMARKS	NAME NUMBER METHOD IAMETER BY D BY	Shell-bra 1601 We 0467 Gregg D Hollow-s 10" Stewart Ana Frie	Drilling stem auger A. Dalie IV	ice Sta	ation meda, California	BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA SCREENED INTERVAL DEPTH TO WATER (First DEPTH TO WATER (Stat	31-Oct-05 01-Nov-05 OATE (YIELD) EVATION TION 19.73 ft 4 to 12 t Encountered	<u>19.99</u> above fbg d) 6.0	9 ft above msl msl
PID (ppm)	COUNTS SAMPLE ID	EXTENT	(fbg) U.S.C.S.	GRAPHIC LOG	S	OIL DESCRIPTION		CONTACT DEPTH (fbg)	WELL DIAGRAM
Well LOG (PID) I: NLAMED-1/GINTALAMEDA.GPJ DEFAULT.GDT 12/19/05	S-2-5	5.0	5 - SP		15% clay, 85% fine s	own (7.5YR 6/3); loose; moi		0.6 2.0	 Portland Type <i>I</i>/II Bentonite Sea Monterey Sand #2/12 4"-diam., 0.020" Slotted Schedule 40 PVC Bottom of Boring @ 12 ft



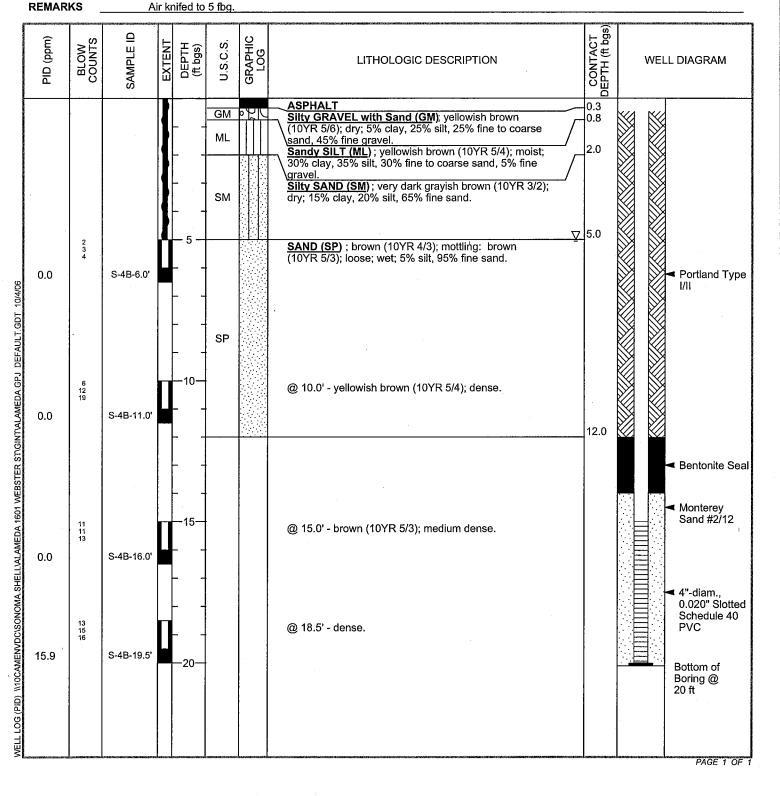
JOB/SI LOCAT PROJE DRILLE DRILLE BORINE LOGGE	CT NUM R NG METH G DIAME D BY _ NED BY_	E	l67 regg Drilli ollow-sten	ed Ser ter Stre ng n auger Dalie IV	vice Sta eet, Alar	neda, California DRILLING COMPLETED01-Nov-05 WELL DEVELOPMENT DATE (YIELD GROUND SURFACE ELEVATION TOP OF CASING ELEVATION SCREENED INTERVAL 4 to 12 DEPTH TO WATER (First Encountered)) 14-N 19.43 It above fbg ed) 6.1 7.	3 ft above msl e msl 2 ft (01-Nov-05) 15 ft (22-Nov-05) ▼
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
WELL LOG (PID) I:MLAMED-1/GINTALAMEDA.GPJ DEFAULT.GDT 12/19/05 8'0 8'0		S-3-5.0		SP		ASPHALT FILL : brown (7.5YR 4/3); loose; moist; 50% silt, 20% sand, 30% gravel; misc brick & debris. SAND (EP) ; light brown (7.5YR 3/2); loose; moist; 10% clay, 90% fine sand.		 Portland Type I/II Bentonite Seal Monterey Sand #2/12 4"-diam., 0.020" Slotted Schedule 40 PVC Bottom of Boring @ 12 ft

J L D D L R	OCATIO ROJEC DRILLEF DRILLIN BORING	E NAME DN CT NUMB G METH G METH D BY _ ED BY _ (S _	SI SER 04 GI DD He TER 10 St Ar Ai	nell- 301 167 167 0110 0110 0110 0110 0110 0110		Service r Street, iuger	Station	da, California DRILLING da, California DRILLING WELL DE GROUND TOP OF C SCREENE DEPTH TO DEPTH TO	VELL NAME	TE (YIELD)	<u>18.94</u> above m bg <u>6.0</u> <u>6.1</u>	v-05 (35 gall ft above ms nsl ft (01-Nov-(0 ft (22-Nov	ı D5) <u>⊻</u>
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCR	IPTION		CONTACT DEPTH (fbg)	WE	LL DIAGRAM
	0 0.1 0.8		S-4-5.0			SP		<u>ASPHALT</u> <u>SAND (SP)</u> ; dark brown (7.5YR 2 90% fine sand @ 7' - 100% fine sand.	.5/3); loose; moist;	10% clay,	.12.0		 Portland Type I/II Bentonite Seal Monterey Sand #2/12 4"-diam., 0.020" Slotted Schedule 40 PVC Bottom of Boring @ 12 ft

WELL LOG (PID) 1:ALAMED~1\GINTVALAMEDA.GPJ DEFAULT.GDT 1/26/06

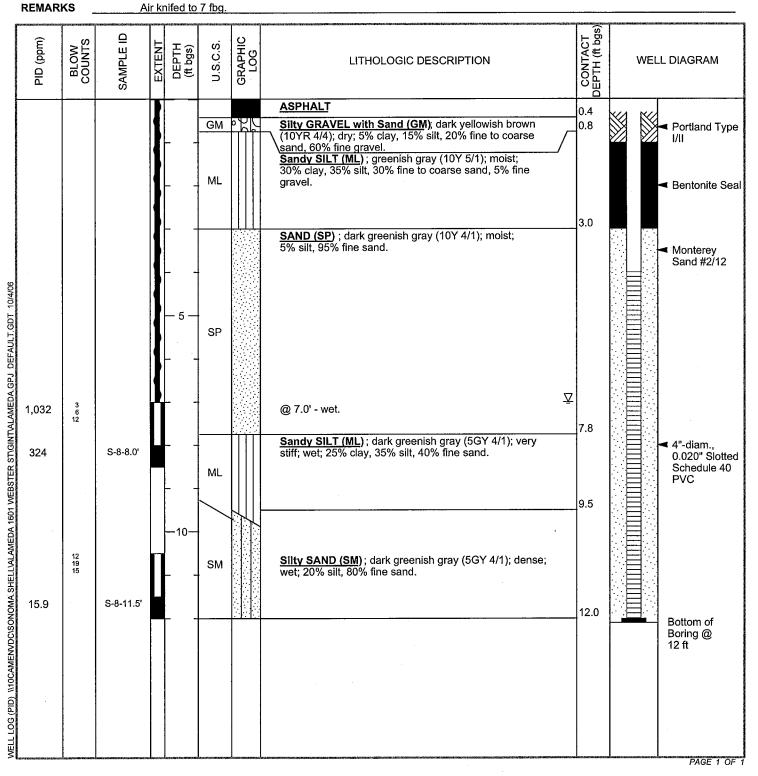
Cambria Environmental Technology, Inc. 270 Perkins Street Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

Locatio Projec Driller Drillin Boring Logger	E NAME ON CT NUMB G METHO DIAMET D BY _ ED BY _	ER 04 G DD He ER 10 Si Ar	nell-l 601 167 rego ollov ollov ollov	branded Webste Drilling v-stem a art A. Da	auger alie IV	Station	a, Califomia DRILL a, Califomia DRILL WELL GROU TOP C SCREI DEPTI	NG/WELL NAME ING STARTED DEVELOPMENT DA IND SURFACE ELEVATION F CASING ELEVATION ENED INTERVAL H TO WATER (First E H TO WATER (Static) amaged. Replaced on 1	TE (YIELD) ATION ON	<u>19.56</u> above m og <u>6.8</u>	r-06 (24 gallo ft above ms nsl ft (01-Nov-(0 ft (19-Jan-	ı >5) <u>₹</u>
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DE	SCRIPTION		CONTACT DEPTH (fbg)	WE	LL DIAGRAM
1.2 0.8 31		S-6-5.0			SP		ASPHALT Clayey SAND (SC) ; light brow day; 85% fine to coarse sand. SAND (SP) ; light brown (10YI 90% fine sand. @ 8' - grayish brown (10YR 5/2) @ 11' - dark gray (7.5YR 4/1); '	R 4/3); loose; moist; 10); 100% fine sand; odor.	noist; 15%)% clay, ▼ 又	0.4 1.5		 Portland Type I/II Bentonite Seal Monterey Sand #2/12 4"-diam., 0.020" Slotted Schedule 40 PVC Bottom of Boring @ 12 ft


JC	LIENT OB/SIT	E NAME	S	hell-	<u>Oil Prod</u> branded Webste	Service	e Statior	n da, Califomia	BORING/WELL NAME	S-7 31-Oct-05 01-Nov-05			
Pf Di	ROJEC RILLEF	T NUMB २	ERG	167					WELL DEVELOPMENT DA GROUND SURFACE ELEV	ATION	19.90	v-05 (19 gall ft above ms	
					w-stem a	uger						nsl	
	ORING	i DIAMET D BY			art A. Da	alie IV			SCREENED INTERVAL DEPTH TO WATER (First E			ft (01-Nov-(D5) <u>V</u>
RI	EVIEW	ED BY	A	na F	-riel				DEPTH TO WATER (Static)	-		8 ft (22-Nov	
RI	EMAR	<s _<="" th=""><th>Ai</th><th>ir kr</th><th>nifed to 5</th><th>i fbg.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></s>	Ai	ir kr	nifed to 5	i fbg.							
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		SOIL DESCRIPTION		CONTACT DEPTH (fbg)	WE	LL DIAGRAM
2	20 94 1/15		S-7-5.0			SP		ASPHALT SAND (SP) ; greenis 5% silt, 90% fine sand	h gray (5GY 5/1); loose; moist; :	5% clay,	0.6		 Portland Type //II Bentonite Seal Monterey Sand #2/12 4"-diam., 0.020" Slotted Schedule 40 PVC Bottom of Boring @ 12 ft

BORING/WELL LOG

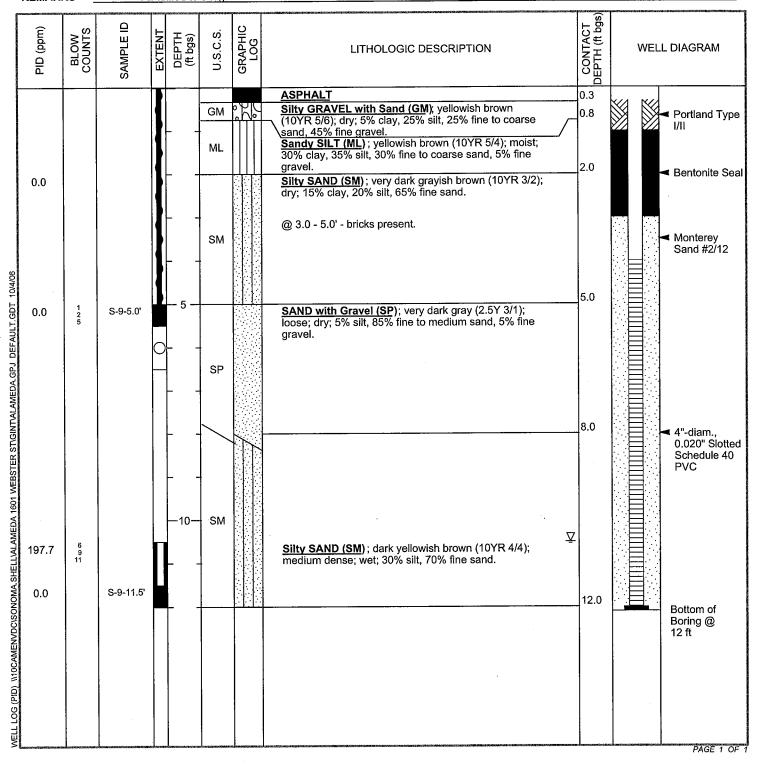
AND DESCRIPTION OF A DE


CLIENT NAME Shell Oil Products US JOB/SITE NAME Shell-branded Service Station 1601 Webster Street, Alameda, California LOCATION PROJECT NUMBER 0467 Gregg Drilling DRILLER DRILLING METHOD Hollow-stem auger BORING DIAMETER 10" LOGGED BY J. Gerbrandt **REVIEWED BY_** A. Friel, PG 6452

BORING/WELL NAME	S-4B/S-4B		<u></u>
DRILLING STARTED	17-Jul-06		
DRILLING COMPLETED	17-Jul-06		
WELL DEVELOPMENT	ATE (YIELD)	NA	
GROUND SURFACE ELE		Not Surveyed	
TOP OF CASING ELEVA	TION NA		
SCREENED INTERVAL	15 to 20 f	bgs	
DEPTH TO WATER (Firs	t Encountered)	5.0 ft (17-Jul-06)	Ţ
DEPTH TO WATER (Stat		NA	V
	· -		

BORING/WELL LOG

Shell Oil Products US **CLIENT NAME** 17-Jul-06 JOB/SITE NAME Shell-branded Service Station DRILLING STARTED DRILLING COMPLETED 17-Jul-06 1601 Webster Street, Alameda, California LOCATION WELL DEVELOPMENT DATE (YIELD) NA PROJECT NUMBER 0467 Gregg Drilling **GROUND SURFACE ELEVATION** Not Surveyed DRILLER DRILLING METHOD Hollow-stem auger TOP OF CASING ELEVATION NA 4 to 12 ft bas BORING DIAMETER 10" SCREENED INTERVAL ∇ DEPTH TO WATER (First Encountered) 7.0 ft (17-Jul-06) J. Gerbrandt LOGGED BY V **REVIEWED BY** A. Friel, PG 6452 **DEPTH TO WATER (Static)** NA



BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME S-9/S-9
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 17-Jul-06
LOCATION	1601 Webster Street, Alameda, California	DRILLING COMPLETED 17-Jul-06
PROJECT NUMBER	0467	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION NA
BORING DIAMETER	10"	SCREENED INTERVAL 4 to 12 ft bgs
LOGGED BY	J. Gerbrandt	DEPTH TO WATER (First Encountered) 10.5 ft (17-Jul-06)
REVIEWED BY	A. Friel, PG 6452	DEPTH TO WATER (Static) NA

REMARKS

Air knifed to 5 fbg

Appendix F Well Survey Results

Table 1. Well Survey Results - Shell-branded Service Station, 1601 Webster Street, Alamaeda, California

Map ID	State Well ID	Owner Well ID	Distance from Site (feet)	Direction From Site	Use	Well Status	Installation Date	Depth (fbg)	Screened Interval (fbg)	Sealed Interval (fbg)	Comments
1	02S/04W-011M01		150	S	Unk*	Unknown	UNK	200	150-200	NA	*No well found during site recon - destroyed
2	02S/04W-011E01		525	NW	AG	Unknown	6/19/1977	25	15-25	3 inches	
3	02S/04W-011D01		800	NW	AG	Unknown	7/11/1977	32	16-31	0-10	
4	02S/04W-011M01		1,450	SW	IND	Unknown	10/26/1977	88	40-84	0-28	
5	02S/04W-010H01		2,450	SW	AG	Unknown	5/12/1977	35.8	20.8-35.8	0-21	
6	02S/04W-010H02		2,475	SW	DOM	Unknown	5/1/1977	30	23-30	0-20	
7	02S/04W-011M02		2,500	SE	AG	Unknown	10/19/1987	70	24-70	0-20	

Notes and Abbreviations:

Well information provided by the California Department of Water Resources (DWR).

Map ID number refers to map location on Figure 1.

State Well ID = California State well identification number as recorded by the Department of Water Resources in Sacramento, California

Well locations are approximate and have not been field verified unless otherwise noted. The well locations are plotted on Figure 1 based on the information provided on the DWR form.

Well use is based on the information on the DWR form. This information may not be current. Unless otherwise noted, this information has not been confirmed by a field visit.

Monitoring wells were not included in the table or mapped.

fbg = feet below grade

AG = Agricultural

DOM = Domestic

GEO = Geotechnical

IND = Industrial

UNK = Unknown

NA = Not Available

G:\Alameda 1601 Webster\2004 Investigation\2004 Investigation Workplan\Tables\[Well Survey Template - v4.xls]Well Survey Table

Appendix G Low-Threat Site Closure Checklist

APPENDIX G: COMPLIANCE WITH STATE WATER BOARD POLICIES AND STATE LAW

The site complies with the State Water Resources Control Board policies and state law. Section 25296.10 of the Health and Safety Code requires that sites be cleaned up to protect human health, safety, and the environment. Based on available information, any residual petroleum constituents at the site do not pose significant risk to human health, safety, or the environment.

The site complies with the requirements of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.

Is corrective action consistent with Chapter 6.7 of the Health and Safety Code and implementing regulations? The corrective action provisions contained in Chapter 6.7 of the Health and Safety Code and the implementing regulations govern the entire corrective action process at leaking UST site. If it is determined, at any stage in the corrective action process, that UST case closure is appropriate, further compliance with corrective action requirements is not necessary. Corrective action at this site has been consistent with Chapter 6.7 of the Health and Safety Code and implementing regulations and, since this case meets applicable case-closure requirements, further corrective action is not necessary, unless the activity is necessary for case closure.	Ves	No		
Have waste discharge requirements or any other orders issued pursuant to Division 7 of the Water Code been issued at this site?	Yes	✓ No		
If so, was the corrective action performed consistent with any order? There was an order issued for this site. The corrective action performed in the past is consistent with that order. Since this case meets applicable case-closure requirements, further corrective action under the order that is not necessary, unless the activity is necessary for case closure.	Tes	No		
<u>General Criteria</u> General criteria that must be satisfied by all candidate sites:				
Is the unauthorized release located within the service area of a public water system?	✓ Yes	No		
Does the unauthorized release consist only of petroleum?	✓ Yes	No		
Has the unauthorized ("primary") release from the UST system been stopped?	√ Yes	No		
Has free product been removed to the maximum extent practicable?	✓ Yes	No		
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	√ Yes	No		
Has secondary source been removed to the extent practicable?	√ Yes	No		
Has the soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15?	√ Yes	No		
Nuisance as defined by Water Code section 13050 does not exist at the site?	✓ Yes	No		
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?	Yes	√ No		
Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria:				
1. Groundwater To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites:				
Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent?	√ Yes	No	🗌 NA	
Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites?	√ Yes	No	🗌 NA	

If YES, check applicable class: 1 2 3 4 5 Do site soils contain insufficient mobile constituents (leachate, vapors, or light non-aqueous phase liquids) to threaten groundwater?	Yes	No No	✓ NA
2. Petroleum Vapor Intrusion to Indoor Air: The site considered low-threat for vapor intrusion to indoor air if site-specific conditions satisfy all of the characteristics of one of the three classes of sites (a through c) or if the exception for active commercial fueling facilities applies.			
Is the site an active commercial petroleum fueling facility? Exception: Satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk.	√ Yes	No No	
 a. Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of scenarios 1 through 3 or all of applicable characteristics and criteria of scenario 4? If YES, check applicable scenarios: I I I I 	Yes	No No	✓ NA
b. Has a site-specific risk assessment for the vapor intrusion pathway been conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency?	Yes	No No	V NA
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	Yes	No No	✓ NA
3. Direct Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air exposure if site-specific conditions satisfy one of the three classes of sites (a through c).			
a. Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs?)	✓ Yes	No No	🗌 NA
b. Are maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	Yes	No No	V NA
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum constituents in soil will have no significant risk of adversely affecting human health?	Yes	No No	✓ NA