

RECEIVED

By dehloptoxic at 2:37 pm, Aug 01, 2006

July 14, 2006

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

RE: Response to Comments SLIC Case No. RO0002738

Dear Mr. Wickham:

Request for Information

The following reports were referenced in the "Phase II Environmental Investigation, Bridgeside Shopping Center, Alameda, California," prepared by Northgate and dated July 18, 2003.

- Phase I Environmental Site Assessment (E2C, April 10, 1995).
- Additional Soil Testing and Preliminary Investigation of Groundwater Quality, Alpha Beta #541, Alameda, California (Kaldveer, 1988).
- Letter Recommending that Soils be Excavated and Removed (Kaldveer, August 9, 1990).

All of the aforementioned reports including the Northgate report were prepared for previous owners. Regency recently provided a copy of the E2C report to URS. Several Kaldveer reports are included as an appendix to the 1995 E2C Phase I report. A copy of the E2C report and appendices is provided with this letter response.

Technical Comments

1. Previous Site Data

Previous site data was used to estimate the extents of excavation required. The actual amount of soil removed and the extents of the excavation during the corrective action were dependent on the results of the confirmation samples collected.

2. Other Potential Sources of Hydrocarbons

Additional background information on the "periodical dumping on the site" is not available. After review of the pre-1995 reports, URS finds no credible mention of onsite dumping. Furthermore, the reported "dumping" is hearsay from the 1980's. It is clear from review of the previous reports that an UST was removed in 1974. A

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612-1924 Tel: 510.893.3600 Fax: 510.874.3268

Alameda Bridgeside Shopping Center Response to Comments July 14, 2006 Page 2 of 4

proposed addition to the onsite grocery store required geotechnical borings in which petroleum impacted soils were found. There is no evidence that dumping actually occurred on what was a developed shopping center and paved parking lot. URS believes that the investigations performed to date have been adequate to investigate the known onsite concerns. The buildings have been demolished and the pavement removed in the past year. No evidence that dumping occurred and impaired soils uncovered was observed by either URS or Regency personnel.

3. Proposal Dated May 26, 2005

A Work Plan was not submitted to ACEH for the corrective action. The proposal dated May 26, 2005 was sent to Regency Centers only. However, please find attached a letter to Ms. Donna Drogos at ACEH dated May 12, 2004 outlining our recommendations and request for site closure. ACEH did not respond to this letter from Regency. The removal action taken by Regency was conducted on a voluntary basis.

4. Figure 4 in Corrective Action Report

Figure 4 has been modified in response to your request and is enclosed with this letter. Please note that sampling locations from previous site investigations or site features could not be identified on the figure because the site landmarks had been demolished by the time that excavation commenced. However, the areas represented by Northgate borings GP-7, GP-8, GP-9, GP-10, GP-12, and GP-13 were within the limits of the excavation.

5. Figure 5 in Corrective Action Report

Figure 5 has been modified in response to your request and is enclosed with this letter. Please note that sampling locations from previous site investigations or site features could not be identified on the figure because the site landmarks had been demolished by the time that excavation commenced. However, the areas represented by Northgate borings GP-14, GP-16, and GP-17 were within the limits of the excavation. As with most drycleaners, it can be assumed that the boiler room and drycleaning machine were located near the back (NE side) of the former business. The excavation was rather large and would have included at least a portion of the former sewer line.

6. Limits of Excavation

The excavation sidewalls were vertical.

7. UST Contents and Laboratory Analyses for Soil Samples in the UST Area

According to the Northgate report, the UST was identified in the "Phase I Environmental Site Assessment, Bridgeside Shopping Center, 2500-2691 Blanding Avenue, Alameda, California," prepared on April 10, 1995 by E2C. Northgate

Alameda Bridgeside Shopping Center Response to Comments July 14, 2006 Page 3 of 4

paraphrased E2C in stating that, "petroleum hydrocarbons were present in soil at the south corner of the existing grocery store, most likely related to an old underground diesel fuel storage tank that was reportedly removed from the site in 1974 during development of the existing shopping center." In addition, the Northgate report indicates that the subject site was listed as a fuel leak site by the Alameda County Health Services Agency. Consequently, the Northgate Phase II report focused on petroleum hydrocarbon compounds as gasoline and diesel, BTEX, and MTBE. Therefore, confirmation samples were analyzed for petroleum hydrocarbons as gasoline, diesel, and VOCs during the corrective action.

8. Site Grading in Railroad Right-of-way

Surficial soils (to approximately 2.5 feet) within the triangular railroad right-of way were removed and are stockpiled onsite with other onsite soils. Regency plans to sample the stockpiles for possible offsite disposition. As you know, the California Waste Extraction Test (WET) is conducted by leaching the sample with a citric acid solution. Therefore, under typical rainfall, less lead would be leached into the groundwater than the amount leached by the WET. Furthermore, the sample (BH-3-B) with the lead concentration of 108 mg/kg was collected at 1.5 feet. Lead concentrations in the other two borings at depths greater than 1.5 feet were significantly less, 10.5 mg/kg and 34.4 mg/kg, indicating that the surficial lead had not leached down. During the investigation, refusal was met at less than 2 feet in Boring BH-3-B, thus it was not possible to sample at a greater depth at this location. The site will be completely paved once the development is complete.

9. Site Plans

Figure 2 in the Corrective Action Report and Figure 2 in Appendix A of the Corrective Action Report have been modified in response to your request and are enclosed with this letter.

10. Geotracker EDF Submittals

Because no case number was issued for the site until recently, electronic submittals to Geotracker were not performed for the site. Now that a case number has been issued, all analytical data and copies of reports post July 1, 2005 will be uploaded to Geotracker once the report is finalized.

URS

Alameda Bridgeside Shopping Center Response to Comments July 14, 2006 Page 4 of 4

Thank you for the time and consideration. If you have any questions or concerns regarding the enclosed material, please call me at (510) 874-3043.

Sincerely,

URS CORPORATION

Jung Hwan Jeff Paik
Environmental Engin

Environmental Engineer

Attachments

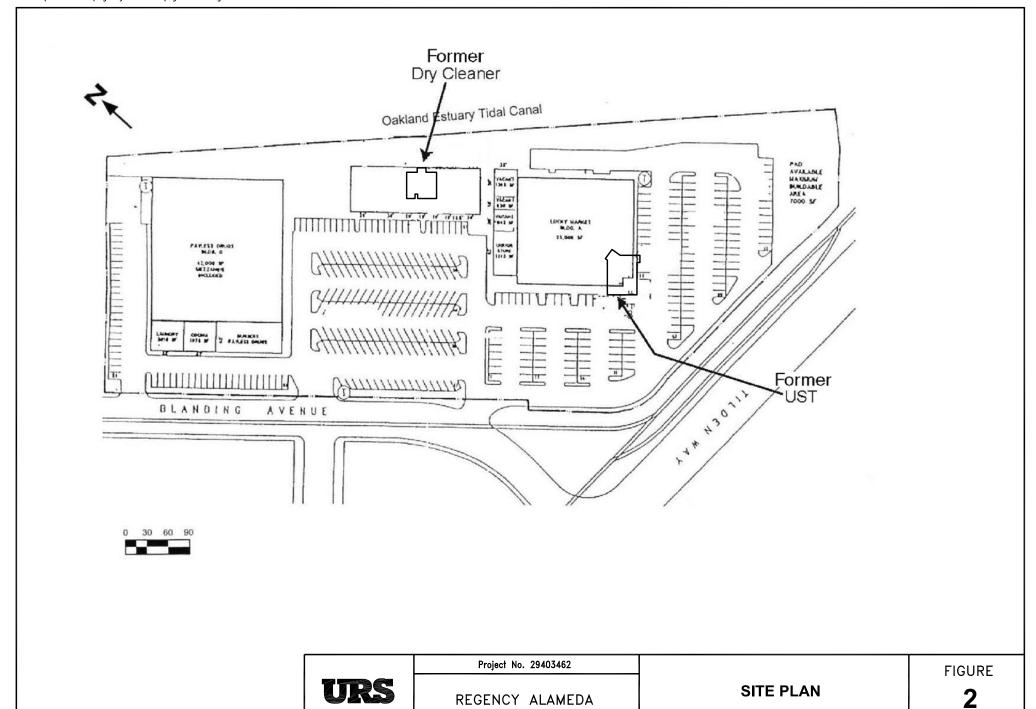
Figure 2, Corrective Action Report, URS, February 13, 2006

Figure 4, Corrective Action Report, URS, February 13, 2006

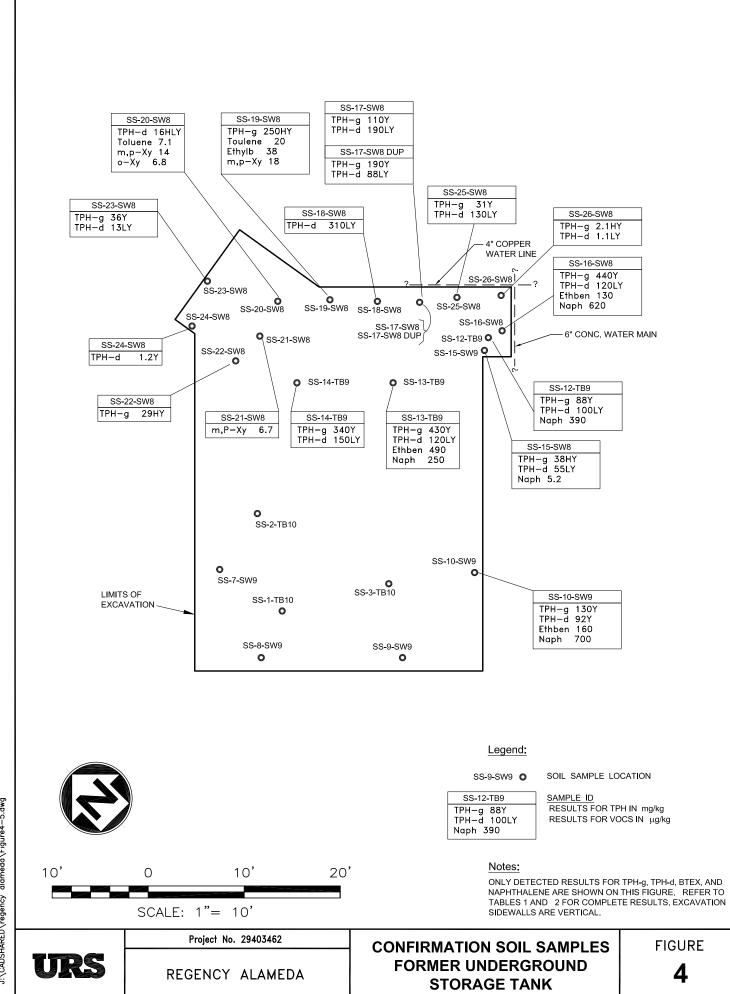
Figure 5, Corrective Action Report, URS, February 13, 2006

Figure 2, Appendix A, Corrective Action Report, URS, February 13, 2006

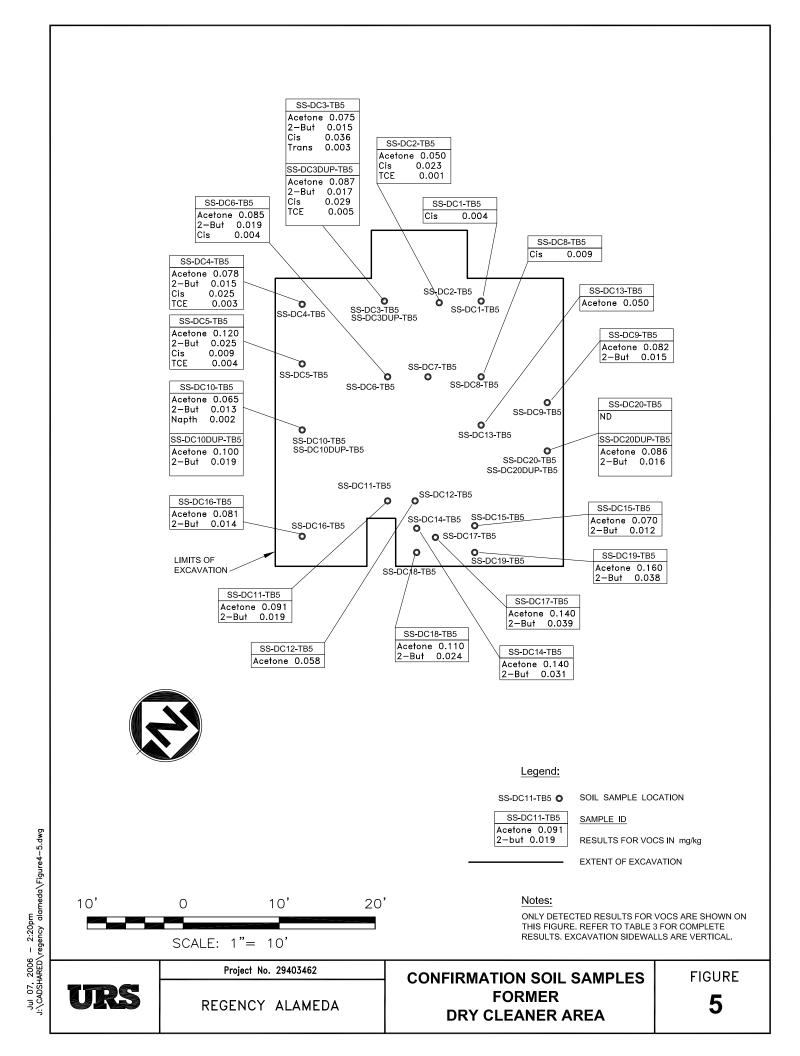
Letter to Ms. Donna Drogos, ACEH, URS, May 12, 2004

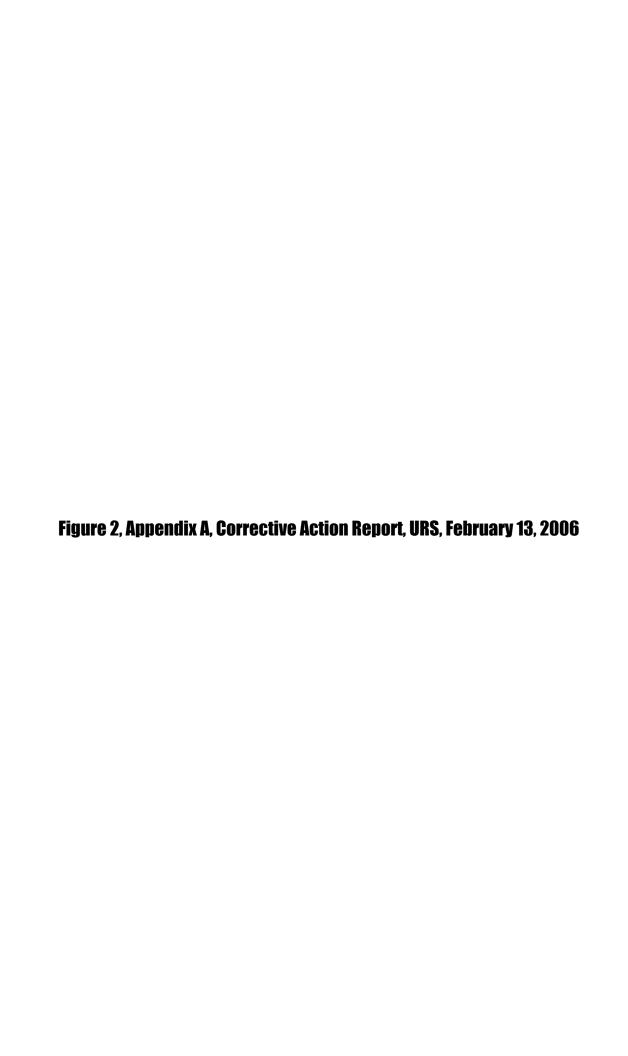

Phase 1 Environmental Site Assessment, E2C, April 10, 1995

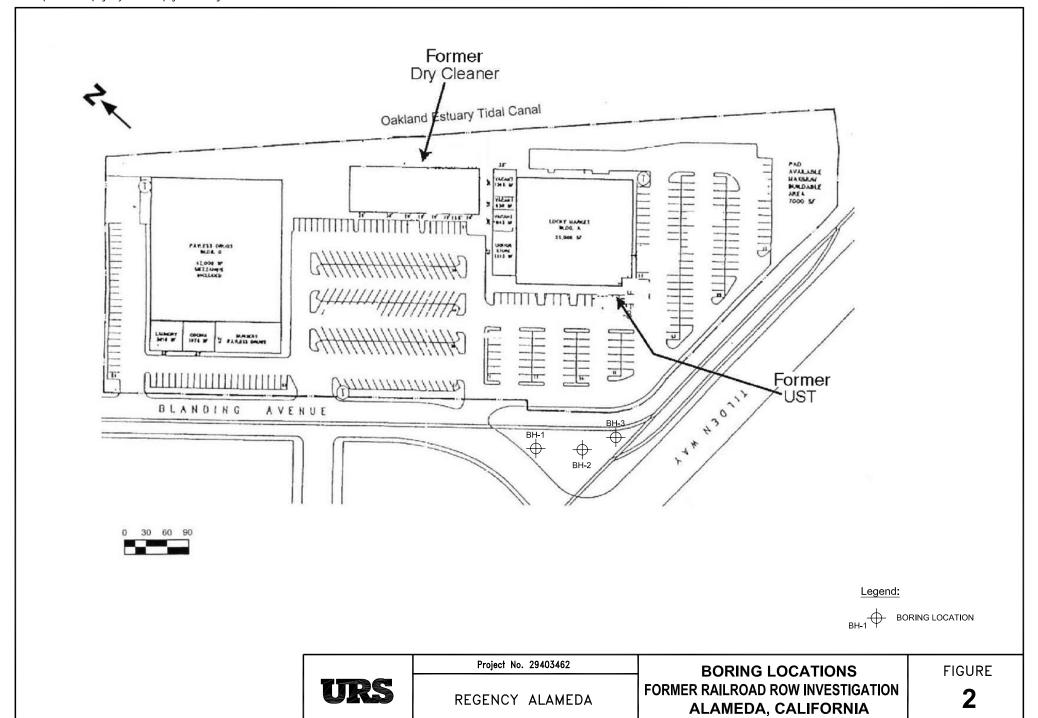
CC: Mr. Scott Kyman, Regency Centers


Ms. Debra Stott, URS

Ms. Lois Autie, URS







Jul 07, 2006 — 2:21pm J:\CADSHARED\regency alameda\Figure4—5.dwg

Letter to Ms. Donna Drogos, ACEH, URS, May 12, 2004

REGENCY CENTERS 555 South Flower Street, Suite 3500 Los Angeles, CA 90071 213-553-2241

May 12, 2004

Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Attention: Ms. Donna Drogos

Supervising Hazardous Materials Specialist

Subject: Request for Report Review and Site Closure Evaluation

Bridgeside Shopping Center 2523 – 2691 Blanding Avenue

Alameda, California

URS Project No. 29403030.00001

Introduction

This transmittal presents a summary of environmental investigations performed at the Bridgeside Shopping Center in Alameda, California (the "site"). The site consists of an approximate 8.5-acre parcel developed as a neighborhood shopping center. Regency Centers (Regency) and our environmental consultant URS Corporation (URS) are providing this summary and the attached environmental reports for ACEH's review and to solicit an opinion as to the completeness of the investigation to date and any further work necessary to obtain closure for the site. Regency understands that ACEH will coordinate with the Regional Water Quality Control Board in issuing an opinion on the project site status.

The approximately 8.5-acre parcel is developed as a neighborhood shopping center with three single-story buildings that range in size from about 12,300 to 49,980 square feet. Current and former businesses at the site include a grocery store, a drug store, a dry cleaner and laundry, a photo-processing shop, and other small shops. An underground fuel storage tank was reportedly removed from the site during construction of the shopping center in 1974. Regency Centers recently purchased the site. Some of the existing buildings will be demolished, and a new commercial development constructed at the site. Addresses at the site range from 2523 to 2691 Blanding Avenue.

ACEH Bridgeside Shopping Center May 12, 2004 Page 2 of 5

Background

The existing shopping center, originally named the Ferndale Shopping Center, was constructed in 1974. Prior to that time, the site was reportedly occupied by a lumberyard and a concrete batch plant. The site is bordered on the north by a dry dock and boat repair yard and on the east by the Oakland Estuary Tidal Canal. An easement and rail line for the Southern Pacific Transportation Company borders the site on the south.

Northgate Environmental Management, Inc. (Northgate), performed a subsurface investigation of the site, a limited asbestos survey, and conducted portions of a Phase I Environmental Site Assessment. Northgate's findings are presented in the attached report entitled *Phase II Environmental Investigation, Bridgeside Shopping Center, Alameda, California,* dated July 18, 2003. In its review of environmental reports from 1987, 1990, and 1995 and its own investigation, Northgate found that:

- Petroleum hydrocarbons were present in the soil beneath the southeastern portion of the site near the south corner of the grocery store. The presence of petroleum hydrocarbons was attributed to a UST that had reportedly been removed during development of the shopping center in 1974. Previous consultants found total petroleum hydrocarbons in the soils at concentrations up to 1,246 parts per million (ppm). TPH was not detected in groundwater at that time in three monitoring wells that were installed in 1988.
- Because of the former UST, the site was and is listed on the Cortese list for a leaking UST; however the LUST listing is old and the site is not found on current LUST lists. The case is considered closed by the Alameda County Health Services Agency (ACHSA); however no closure letter has been identified.
- A drycleaner operated onsite from 1974 through 1993 or 1995. The drycleaner is listed as a small quantity generator of a hazardous material; however no violations are listed in regulatory agency databases that were reviewed.
- A former onsite film processing business is also listed as a small quantity generator of metallic sludge and inorganic solid waste, also with no violations reported.

Based on Northgate's review of regulatory agency files and prior environmental and geotechnical reports, three areas of potential environmental concern were identified:

ACEH Bridgeside Shopping Center May 12, 2004 Page 3 of 5

- Sitewide Groundwater Quality
- Former Onsite Drycleaning Operations
- Former Onsite Fuel UST

Environmental Investigations

Northgate subsequently collected soil and groundwater samples from 17 direct push borings from depths of up to 16 feet below ground surface (bgs). Northgate also sampled three existing onsite monitoring wells. The results of this subsurface sampling found:

Sitewide Groundwater Impacts

- Groundwater levels ranging from 7 to 13 feet bgs.
- Groundwater samples were collected and analyzed for TPH using EPA 8015 and volatile organic compounds (VOCs) using EPA 8260B from three monitoring wells installed across the site in 1988. The only compound found in groundwater sampled from the three monitoring wells was a very low concentration of MTBE in groundwater from GP-2. Since the former onsite UST was removed in 1974, this constituent is unlikely to be from the onsite UST release.
- Based on these results, the investigation did not indicate the presence of a significant potential for the presence of undiscovered soil or groundwater contamination at the site.

<u>Drycleaner</u>

- Six borings were drilled in the vicinity of the drycleaner; two adjacent to the sewer line, one outside the back door, and three inside the building. Soil samples were collected at depths ranging from 1.5 to 11.5 feet bgs and analyzed for VOCs. Tetrachloroethene (PCE) was detected at a maximum concentration of 130 parts per billion (ppb), cis-1,2-Dichloroethene (1,2-DCE) at a maximum concentration of 7900 ppb, and trichloroethene (TCE) at a maximum concentration of 150 ppb in the soil. Concentrations were highest in the soil samples collected above 5 feet bgs.
- Groundwater samples were also collected from most of the borings in the vicinity of the drycleaner and also analyzed for VOCs. The data indicate the presence of VOCs in groundwater beneath the drycleaner and adjacent to the sewer line. The maximum concentrations detected in groundwater were cis-1,2 DCE at 510 ppb, PCE at 1.7 ppb, and TCE at 37 ppb.

ACEH Bridgeside Shopping Center May 12, 2004 Page 4 of 5

• The concentrations of VOCs measured in soil and groundwater at this location do not appear to represent a significant environmental concern.

Former UST

- The evaluation of the former UST area involved drilling five borings around the south corner of the grocery building and two borings inside the building to help define the lateral and vertical extent of impacted soil. Soil samples were collected from 7.5 and 11 feet bgs and analyzed for TPH, BTEX, and MTBE. TPH as gasoline was detected at a maximum concentration of 1,300 ppb, ethylbenzene was detected at a maximum concentration of 7,400 ppb, and xylenes were detected at a maximum concentration of 3,700 ppb.
- Groundwater samples were also collected from most of the borings near the former UST area and also analyzed for TPH, BTEX and MTBE. TPH as gasoline was detected at a maximum concentration of 3.13 ppm, benzene was detected at a maximum concentration of 6.3 ppb, toluene was detected at a maximum concentration of 3.4 ppb, ethylbenzene was detected at a maximum concentration of 45 ppb, and xylenes were detected at a maximum concentration of 6.4 ppb. One groundwater sample was also analyzed for VOCs with concentrations of 1,3,5-trimethylbenzene (7.5 ppb), isopropyl benzene (9.4 ppb), naphthalene (57 ppb), and n-propylbenzene (17 ppb) detected. The extent of impact in the former UST location has been delineated.
- Although the concentrations of gasoline hydrocarbons measured in soil and groundwater in the vicinity of the former UST locally exceed certain RBSLs or the primary drinking water standards, the general area of impact appears to be relatively limited. In addition, hydrocarbons do not appear to migrating to the Oakland Estuary Tidal Canal.

Recommendations

Based on the results of the soil and groundwater investigations conducted by Northgate, URS has already recommended to Regency Centers that the identified contaminated soil encountered during redevelopment of the site be excavated and removed from the site. None of the sources that supposedly created the impacted soils remain in operation, and in fact, have not operated onsite for at least eight years. It is also Regency's and URS' opinion that based on the results of the investigations performed to date and the type of development, that groundwater remediation is not necessary.

ACEH Bridgeside Shopping Center May 12, 2004 Page 5 of 5

Thank you for the time and consideration paid to this project. We look forward to your response.

Sincerely,

REGENCY CENTERS

Mr. Scott Kyman Senior Financial Analyist 213-553-2241

URS Corporation

Ms. Debra B. Stott, R.G. Principal Geologist 213-996-2441

Mitchell Zeemont

William L. Monheit

Eric S. Von Berg

Terri M. Slocombe

Michael D. Heagerty

John J. Rowder

VIA MESSENGER

January 29, 2002

Mr. Eric C. Starr Starr & Finley One California Street, Suite 2200 San Francisco, CA 94111

Re:

I.R.E.S. (California), Inc.

Bridgeside Shopping Center 2500-2691 Blanding Avenue

Alameda, California

Dear Eric:

Enclosed is a copy of the Phase I Environmental Site Assessment for the above referenced property.

Should you have any questions, please contact Mitch Zeemont at (415) 956-9885.

Sincerely,

NEWMARK REALTY CAPITAL, INC.

Jean Yee

Loan Portfolio Manager Direct: (415) 956-9876 E-mail: jyee@e-newmark.com

Starr_02.129 Enclosure

cc: Mitch Zeemont

RECEIVED

JAN 2 9 2002

STARR FINLEY LLP

PHASE 1 ENVIRONMENTAL SITE ASSESSMENT BRIDGESIDE SHOPPING CENTER 2500-2691 BLANDING AVENUE ALAMEDA, CALIFORNIA

FOR
USG ANNUITY & LIFE COMPANY,
ITS SUCCESSORS AND ASSIGNS
APRIL 10, 1995

PREPARED BY
E₂C, INC.
CIVIC CENTER TOWER
675 NORTH FIRST STREET, SUITE 500
SAN JOSE, CA 95112-5111

Environmental/Engineering Consultants

April 10, 1995 Job No: 6430100

Mr. Robert H. Kunnen
USG Annuity & Life Company, its successors and assigns
c/o Newmark Realty Capital, Inc.
100 Pine Street, Suite 1850
San Francisco, CA 94111

ATTN:

Ms. Mary K. Olson

SUBJECT:

PHASE 1 ENVIRONMENTAL SITE ASSESSMENT

Bridgeside Shopping Center 2500-2691 Blanding Avenue

Alameda, California

Dear Mr. Kunnen:

 E_2C , Inc. has prepared this Phase I Environmental Site Assessment (*ESA*) for the Bridgeside Shopping Center at the request of Newmark Realty Capital, Inc.

The accompanying report presents a description of the work performed by us to complete the ESA. As of the date of preparation of this report, the results of our studies indicate that there is no evidence to suggest that the subject site has been adversely impacted by past-or-present, on-site land uses, or by activities on neighboring properties. Additionally, our research of agency files did not reveal any evidence that the subject site has been adversely impacted by the migration of contaminants from known, agency-listed off-site sources. Appropriate Conclusions and Recommendations are presented on Page 39 of this report.

Should you have any questions or require supplemental information, please do not hesitate to contact us.

Sincerely,

Kendall W. Price, (

President

TABLE OF CONTENTS

1.0	INTRODUCTION		
2.0	SCOP	OF SERVICES	
3.0	SITE L	OCATION AND DESCRIPTION	
4.0	4.1 4.2 4.3 4.4 4.5	CONDITIONS	
5.0	PREVIO	DUS INVESTIGATIONS ON THE SITE	
6.0	6.1 6.2	Tenant History	
7.0	7.1 (7.2 (7.3) 7.4 (7.5) 1	MENT RESEARCH 27 On-and Off-Site Areas of Environmental Concern 27 State, County, and Local Agencies 29 nformation in Agency Files 29 Agency Files Reviewed 31 Landfills 35 7.5.1 Active 35 7.5.2 Inactive 35 Dil and Gas Fields 36	
3.0	ніѕтоя	RICAL AERIAL PHOTOGRAPHS	
9.0	CONCLUSIONS AND RECOMMENDATIONS 39		
10.0	LIMITATIONS 43		
11.0	REFERENCES 44		

FIGURES, TABLES, AND APPENDICES

FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5	SITE LOCATION MAP SITE PLAN TOXIC/FUEL LEAK CASE LOCATION MAP CALSITES/CERCLIS CASE LOCATION MAP AREA OF CONTAMINATED SOIL AND GROUNDWATER MONITORING WELLS ON THE SITE
TABLE I	LISTED TOXIC/FUEL LEAK CASES WITHIN A 1-MILE RADIUS OF 2500-2600 BLANDING AVENUE, ALAMEDA, CALIFORNIA
TABLE II	CALSITES LISTED CASES WITHIN A 1-MILE RADIUS OF 2500- 2600 BLANDING AVENUE, ALAMEDA, CALIFORNIA
APPENDIX A	SITE PHOTOGRAPHS
APPENDIX B	HISTORICAL AERIAL PHOTOGRAPHS
APPENDIX C	LABORATORY ANALYSES OF ASBESTOS SAMPLES, WITH CHAIN-OF-CUSTODY DOCUMENTATION
APPENDIX D	PREVIOUS ENVIRONMENTAL SITE INVESTIGATIONS 1) SUPPLEMENTAL FOUNDATION INVESTIGATION, OCTOBER 27, 1987 2) PRELIMINARY SOIL TESTING PROGRAM, DECEMBER 2, 1987 3) ADDITIONAL SOIL TESTING AND PRELIMINARY INVESTIGATION OF GROUNDWATER QUALITY,
	JUNE 29, 1988 4) SUMMARY OF CONTAMINATION STATUS, AUGUST 9, 1990
APPENDIX E	TENANT LIST
APPENDIX F	E₂C, INC. PERSONNEL RESUMES

1.0 INTRODUCTION

 E_2C , Inc. has completed a Phase 1 Environmental Site Assessment (*ESA*) of the subject property designated as the Bridgeside Shopping Center and located at 2500-2691 Blanding Avenue in the City of Alameda, California. The ESA was performed in accordance with the request of Newmark Realty Capital, Inc., following the guidelines prepared by Equitable Investment Services, Inc.

Mr. Dale H. Duley of E_2C , Inc. visited the subject site on March 31, 1995, at which time an investigation of the premises was performed and a survey was made of the adjacent activities and businesses to determine if any of these has the potential of adversely impacting the subject site. A review of agency publications and files related to known toxic and fuel leak sites also was carried out to determine the possibility of an adverse impact on the subject site from off-site sources located within a 1-mile radius.

Additionally, historical aerial photographs were reviewed to determine past activities on the site and in the vicinity (see Historical Aerial Photographs, Section 8, and Appendix B).

This investigation was performed for USG Annuity & Life Company, its successors and assigns, to evaluate the potential for site contamination resulting from past-or-present, on-site land uses, or from off-site sources of contamination. The intent of this report is to address real and potential environmental impairments, or risks of impairments, that may represent existing or potential financial and legal liabilities to USG Annuity & Life Company, its successors and assigns, and/or to its agents.

2.0 SCOPE OF SERVICES

The Scope of Services for the performance of this Phase 1 ESA included the following tasks:

- Site inspection of the subject property and surrounding land-use, and interviews with the owner or representatives.
- Research and review of available geologic and hydrologic information on the site vicinity.
- Review of regional, state, and federal publications for known contaminated sites currently under study or remediation that could adversely impact the subject site.
- Interviews with agency personnel and review of various agency files concerning the use and handling of hazardous materials at the subject site, and investigations of contamination at nearby sites.
- Study of aerial photographs of the site to evaluate past land uses for the last 40 + years.
- A review of past environmental investigations on the subject site.
- Collection of potential asbestos-containing building materials for possible laboratory analyses, if determined appropriate.
- Preparation of this formal report presenting the results of our environmental study. Appropriate conclusions and recommendations are presented, based on the results of our study.

Job No. 6430100 Page 3

3.0 SITE LOCATION AND DESCRIPTION

The subject site is the Bridgeside Shopping Center, located at 2500-2691 Blanding Avenue in the City of Alameda, California (see Site Location Map, Figure 1). The site covers an area of approximately 358,000-square feet (8.24 acres), and comprises three single-story commercial buildings, loading/unloading areas, parking facilities, and some landscaping (see Site Plan, Figure 2). A list of the current tenants is provided in Appendix E. Access to the site is via three driveways from Blanding Avenue.

Interior and exterior photographs of the site are presented in Appendix A, and representative historical aerial photographs are presented in Appendix B.

According to the United States Geological Survey Map, Oakland East Quadrangle, the subject site is located in the central part of Section 7, Township 2 South, Range 3 West of the Mount Diablo Base and Meridian. The site is relatively flat, lying at an approximate elevation of 10-feet above mean sea level; however, the local area slopes gently to the northeast towards the tidal canal.

The subject site is bound on the north by the Stone Boat Yard, which has a dry dock for the repair of small sea-going vessels. The Oakland Estuary (*Tidal Canal*) bounds the site on the east. An easement and main line of the Southern Pacific Transportation Company bound the site on the south, and Blanding Avenue bounds the site on the west.

The subject site is located within an area on Blanding Avenue zoned for business activities and light industry; however, residences are located on neighboring side streets.

Job No. 6430100 Page 4

4.0 SITE CONDITIONS

4.1 Regional and Local Geology

The site is located in the northeastern portion of the San Francisco Bay drainage basin, on a westward-sloping alluvial plain between the East Bay Hills and the San Francisco Bay. The Bay depression is a major structural depression in northwestern California that is located between the Diablo Range and the Santa Cruz Mountains. The Bay depression was created by the downwarping of the San Andreas rift zone, near the western side of the depression, and the Hayward fault, along the eastern side (*Department of Water Resources*, 1968). The Hayward Fault zone is a major local structural feature, trending northwest-southeast approximately three and one-half miles east of the subject site.

The surface soils in the general area of the subject site consist of alluvial terrace deposits of late Pleistocene Age (10,000-to 70,000-years old). These soils are underlain by a thick series of Tertiary sands and shales, which in turn are underlain by bedrock of the Franciscan Formation. The Franciscan is considered to be of Mesozoic Age (65-to 225-million years old). The alluvium was derived mainly from sedimentary rock in highland areas (i.e., the Berkeley Hills) that was deposited by flowing water on active stream channels, terraces, and on developing alluvial fans.

4.2 Soil Conditions

Geologic maps of the area indicate that the surface soils at the subject site and in the immediate vicinity are principally part of the Merritt Sand Series (see Radbruch: Areal and Engineering Geology of the Oakland East Quadrangle, California). These Pleistocene deposits comprise yellowish-brown to dark yellowish-orange, fine-grained, well-sorted, silty, clayey sands and sandy or silty clays. Borings on the site encountered up to three feet of sand overlying seven to 13 feet of stiff to very stiff, silty or sandy clay. Below the clay was

dense, to very dense, silty sand. The maximum thickness of the Merritt Sand Series approximately 65 feet. The artificial fill along the shore of the tidal canal consists principally of Merritt Sand dredged from the canal. These soils are generally suitable for the construction of light structures; however, the soils must be properly engineered if placed on top of Bay mud.

4.3 Major Regional Faults and Earthquake Hazards

The subject site is located in the seismically active San Francisco Bay Region, and three major faults in the region have a history of strong earth movement. Many other less-known and less-active faults exist in the region. Strong seismic activity on any of these three major faults could have an adverse impact on the subject site, with moderate to major structural damage. These faults are: 1) the Hayward Fault zone, located three and one-half miles to the northeast; 2) the Danville-Calaveras Fault zone, located approximately ten miles to the northeast; and 3) the San Andreas Fault zone, located 15.5 miles to the southwest.

Earthquakes are not predictable and can happen at any time, possibly resulting in an adverse environmental situation. A strong earthquake places hazardous materials on a site at serious risk if not properly stored, and such storage should ensure that the hazardous materials are protected against falling (i.e., from open shelves), crushing, breaking, and other potentially destructive forces. An earthquake could cause the accidental mixing of non-compatible chemicals, resulting in hazardous reactions such as explosions or fires. Non-compatible chemicals should be stored far enough apart to ensure that accidental mixing is not possible. Additionally, containers of hazardous chemicals should never be left open, even when in relatively continuous use.

Job No. 6430100 Page 6

4.4 Groundwater Conditions

The site lies within the northern part of the San Leandro alluvial cone, and groundwater generally is encountered in sands and gravel layers under confined

conditions. These aquifers are thinner and less extensive than those in the adjoining Niles cone subarea to the south. Correlations with aquifers in the Niles cone subarea are difficult; however, three aquifers in the area of the subject site are considered to be roughly "equivalent" to the Newark, Centerville, and Fremont aquifers to the south. Deeper aquifers are also encountered locally.

Our review of published and unpublished information in the area of the site indicates that shallow brackish groundwater locally exists in the site vicinity at approximately five-to eight-feet below the ground surface. Based on three groundwater monitoring wells installed in the vicinity of the Lucky's supermarket on the site in April 1988, the flow of groundwater at the site was calculated to be in a northeast direction, toward the adjacent Oakland Estuary.

4.5 Water Quality

According to the California Environmental Protection Agency (*CalEPA*), Office of Drinking Water, Small Water Systems, Assembly Bill 1803, there are no contaminated private or public water wells within a 1-mile radius that could have an adverse environmental impact on the subject site.

4.6 Meteorologic Setting

The site is located within the San Francisco Bay Area, which is considered a "Mediterranean" type climate. Warm, dry summers, along with cool, sometimes wet winters are typical for this area. Mean annual precipitation in the form of rainfall for the site was approximately 18-to-20 inches before the

recent 6-year drought. The prevailing wind at the site and the San Francisco Bay Area in general is from the northwest. At this time, climatic effects on the site show no evidence for environmental concern.

Job No. 6430100 Page 8

5.0 PREVIOUS INVESTIGATIONS ON THE SITE

Documents on the investigations listed below were supplied to E_2C , Inc. by Mr. Timothy Maechlin of Northwest Asset Management Company. Other investigations or studies may have been performed on the site; however, those have not been brought to the attention of E_2C , Inc.

May 4, 1972

A "Foundation Investigation" report on the subject site was submitted by Lowney/Kalveer Associates. At the time of this study, a lumber company occupied approximately the western one-half of the site, and a concrete mixing plant occupied the eastern part of the site. The purpose of the investigation was to determine the engineering characteristics of the foundation soils on the site preparatory to the construction of a proposed shopping center.

For this soil investigation, 13 borings were drilled on the site to a maximum depth of 24 feet below the ground surface. Groundwater was encountered at an average depth of seven-to-nine feet. No mention was made in this report of any soil or groundwater contamination having been encountered in any of the borings.

October 27, 1987

A "Supplemental Foundation Investigation" report was submitted by Kaldveer and Associates, Inc. This investigation was performed to determine the engineering characteristics of foundation soils adjacent to the eastern end of an Alpha Beta Supermarket for a proposed building extension. As a part of the study, five exploratory borings were drilled in the area of proposed construction. Strong petroleum odors were detected between four feet and six feet during the drilling of one boring (*Boring 5*). No mention was made in the report of any petroleum odors or sheen in the groundwater of that boring.

Groundwater was encountered in the borings at depths of ten-to 13-feet below the ground surface. No conclusions or recommendations were presented regarding the soil contamination encountered. A copy of this report is included in Appendix D.

December 2, 1987

Kaldveer Associates submitted a "Preliminary Soil Testing Program" for the proposed building addition to the Alpha Beta Supermarket. The purpose of this investigation "was to determine the presence and quantities, if any, of petroleum hydrocarbons in the subsurface soils, as noted in one exploratory boring during our recent supplemental foundation investigation at the site." This investigation included the drilling of five exploratory borings, located principally in the area around the previous Boring 5 which was drilled in October 1987. This 1987 report mentioned that one boring (*Boring 7*) drilled during the 1972 investigation also had encountered strong petroleum odors; however, there is no statement to that effect in the 1972 report (*see Figure 5*).

During the field investigation, moderate-to strong-petroleum odors were detected in one boring (*Boring 6*) between five and 11.5 feet, and in a second boring (*Boring 10*) at a depth of seven feet. Soil samples were collected in all five borings, and the laboratory analyses detected Total Extractable Hydrocarbons (*i.e.*, diesel) in samples from all five borings. A concentration of 1,200-parts per million (*ppm*) was detected in Boring 6, which was drilled immediately adjacent to the previous Boring 5. A thin, oily sheen also was observed floating on the groundwater in that boring (*Boring 6*).

This investigation did not evaluate the extent of contamination; however, a recommendation was made in the report that additional investigation be conducted. A copy of this 1987 report is included in Appendix D.

January 8, 1988

Kaldveer Associates submitted a letter report entitled "Site Characterization and Environmental Assessment." E_2C , Inc. was not able to review this letter; however, later correspondence states that a recommendation was made in the letter for a subsurface investigation to define the extent of any soil and/or groundwater contamination.

June 29, 1988

Kaldveer Associates submitted an "Additional Soil Testing and Preliminary Investigation of Groundwater Quality" report. This investigation was performed "to determine the presence, if any, of chemical compounds in the subsurface groundwater and to further evaluate the lateral extent of soil contamination." For this investigation, seven exploratory borings were drilled in April 1988 to a maximum depth of 20.5 feet, and three of the borings were converted to groundwater monitoring wells. None of these seven borings was drilled in the immediate vicinity of the previously-detected soil contamination.

Soil samples were collected in four of the borings, and groundwater samples were collected from the other three borings which had been converted to monitoring wells. The soil and groundwater samples were analyzed for gasoline and diesel, and for the constituents of benzene, toluene, ethylbenzene, and xylenes. None of these petroleum hydrocarbons were detected in the laboratory analyses.

Kaldveer recommended the excavation of the contaminated soils in an area around the previous Borings 5 and 6 where contamination levels exceeded 100 ppm. Excavation was proposed to an approximate depth of ten feet, and the lateral limits would be determined by the laboratory analyses of soil samples collected during excavation. A copy of this report is included in Appendix D,

and the estimated area of soil contamination and the monitoring well locations are indicated in Figure 5 of this current E_2C , Inc. report.

August 9, 1990

Kaldveer Associates submitted a letter entitled "Summary of Contamination Status." The letter summarized past investigations performed on the site, and proposed the excavation and removal of the contaminated material having greater than 100-ppm of Total Petroleum Hydrocarbons (see Figure 5).

The former underground storage tank (UST) was removed from the site in 1974. From the information we have obtained and reviewed, it appears that the UST was removed under the established protocol which existed at that time. Based on results obtained under the procedures and protocols in force at the time the tank was removed, no soil samples were collected. As a result of this procedure, we conclude that the site was most probably listed as a fuel leak site based on the submittal of the Kaldveer soil reports to the DEH. However, as indicated in the listing itself (see Section 7.4, Figure 3, and Table 1), further remedial action was deemed unnecessary. The latest groundwater test results, obtained in 1988, 14 years after the tank was removed, did not detect the presence of either gasoline, diesel, or their constituents. Since the groundwater at the site has not been impacted by the former UST, we can conclude that the detected soil contamination has not leached through the soil and impacted the near-surface ground water aquifer. Since the UST was removed under established 1974 protocol and the groundwater has not been impacted by its past usage, we concur with the agency in that further remedial activies are unnecessary.

Job No. 6430100 Page 12

6.0 SITE HISTORY

6.1 Tenant History

Our review of agency files, previous reports on the site, and historical aerial photographs revealed that the subject site was occupied by two commercial enterprises from at least the early 1950's until its development as a shopping center in 1974. Prior to this shopping-center development, the Loop Lumber and Milling Company had occupied approximately the western three-quarters of the site, and the California Rock and Gravel Company (a concrete-mixing plant) had occupied approximately the eastern one-quarter of the site. An aerial photograph of April 1973 shows that those two companies still occupied the subject site; however, some former buildings on the Loop Lumber part of the site have been demolished and the property appears deserted. On the rock and gravel property, several vehicles are parked adjacent to one of the buildings; however, there is no other evidence of activity on that site.

The present site was developed in 1974, and was named the Ferndale Shopping Center after the local Ferndale District of the City of Alameda. The name was changed to the Bridgeside Shopping Center in 1992.

6.2 Site Investigation

On March 31, 1995, an inspection of the subject site was carried out by Mr. Dale H. Duley of E_2C , Inc. At that time, the subject site was inspected for evidence of the storage, use or disposal of hazardous materials, and to identify any above-ground or underground storage tanks, chemical storage fluid dischargers, PCB-containing transformers, asbestos-containing building materials, or any other suspicious conditions.

At the time of our inspection, the subject site was occupied by the Bridgeside Shopping Center, and had three multi-tenant commercial buildings. The

inspection was assisted by Mr. Timothy Maechling, Property Manager of Northwest Asset Management Company, who provided a site plan, historical information on the site, and arranged for access to all of the premises. At the time of our site visit, a structural inspection of the buildings was also performed by Mr. George Dicu, E_2C , Inc's. Vice President of Engineering.

The subject site covers an approximate area of 359,000-square feet (8.24 acres), and includes three single-story, multi-tenant, concrete-block commercial buildings, loading/unloading areas, parking facilities, and some landscaping (see Site Plan, Figure 2). The buildings were constructed prior to the late 1970's/early 1980's major government regulations banning the use of asbestos-containing building materials (ACMs). During our investigation, therefore, particular concern was paid to potential ACMs, especially vinyl floor tiles. For the purposes of this report, the three buildings and the individual tenants are discussed separately below.

Building "A"

This building is located on the western end of the site, and has a total floor space of approximately 49,980-square feet. The major part of the building is occupied by a Payless Drug Store (*Payless*); a small space is occupied by Launderland, a self-service laundry. One of the spaces is vacant and had previously been occupied by a restaurant (*see Photographs No. 1-3*). The attached, covered, green nursery of Payless has an approximate floor space of 3,990-square feet.

Payless Drugstore occupies 42,000-square feet of Building A and consists of a large, open customer area at the front, a pharmacy, offices, and a long, relatively-narrow storage room located adjacent to the north and east walls of the building. A computer room, an employee relaxation room, and a small storage loft also were located in the northern part of the building. The long storage room had exposed, concrete floor slabs, as did the attached, 3,990-square foot nursery. Within the rest of the Payless premises, several types of

vinyl floor tiles (*VFTs*) were observed, and two samples of VFTs were collected and analyzed for the possible presence of asbestos (*see discussion in Subsection 6.2.4 on Page 21*). No asbestos was detected in the two samples. All areas of the Payless premises were very clean and well maintained, and nothing of environmental concern was observed at the time of our inspection (*see Photograph No. 4*).

The vacant space occupied by the former restaurant covers 1,974-square feet. The storage room had an exposed, concrete floor slab, whereas the remainder of the premises had two varieties of VFTs. No VFT samples were collected. All areas of the premises were very clean and well maintained, and nothing of environmental concern was observed.

The 2,016-square foot Launderland premises had a customer area at the front with 45 washing machines, 32 dryers, and several clothes-folding areas. At the rear of the premises were a store room and a rest room. The premises had VFTs throughout; however, the tiles were installed in 1993 and no samples were collected. The premises were very clean and well maintained, and nothing of environmental concern was observed.

Building "B"

This building covers an approximate area of 12,300-square feet and has eight tenants, plus a small room (about 185-square feet) at the rear of Winchell's Donut House used by the site-security staff. Each premise is accessed from the principal parking lot, and by a second door located at the rear or side of the premise. At the time of our inspection, the various tenant premises in the building varied in size from 875-square feet to 2,535-square feet, and the businesses listed on the following page were tenants in the building (see Site Plan, and Photographs No. 7 and 8).

Business	Size of Premises
Round Table Pizza	2,535 sq. ft.
Citibank Federal Savings Bank	2,470 sq. ft.
Subway Sandwiches and Salads	1,080 sq. ft.
Classic Cleaners	1,390 sq. ft.
Baskin-Robbins Ice Cream Store	1,235 sq. ft.
Presto Prints	1,235 sq. ft.
Hair Studio	875 sq. ft.
Winchell's Donut House	1,308 sq. ft.

All areas of each premise were inspected with the exception of several rear rooms and the vault at Citibank. All interior areas in the building were very clean and well maintained. No photographs were permitted in the interior of the Citibank premises; however, internal photographs were taken of all of the other premises. Representative photographs are presented in Appendix A.

The Roundtable Pizza premises had ceramic floor tiles and/or carpeting in the front customer and serving area, and ceramic floor tiles in the rest rooms (see Photograph No. 7). The kitchen had a concrete-exposed floor. All cleaning soaps and solutions at the Roundtable Pizza premises were stored on shelves in the kitchen. Citibank had ceramic tiles in the entrance way and in front of the teller counter; whereas the other observed areas were carpeted. The Subway had a parquet floor throughout. The Baskin-Robbins premises also had a parquet floor in the customer area and behind the service counter (see Photograph No. 9). However, an office, a store room, and a rest room had orange-colored vinyl floor tiles, and one sample was collected (see Subsection 6.2.4 on Page 21). No asbestos was detected in the sample. Nothing of environmental concern was observed on any of the premises discussed above.

The Classic Cleaners has occupied its premises since July 1993. This site was previously occupied by Ann's Cleaners & Coin-Op Laundry from 1974 to 1993. Dry cleaning is performed on the premises. A small customer area is at the front, and the remainder is comprised of the principal laundry room, and a small boiler room and loft at the rear. The floor of the customer area had vinyl floor

Job No. 6430100 Page 16

tiles; whereas the rest of the premises had an exposed concrete floor. The vinyl floor tiles were installed in July of 1993, and no sample was collected.

During our inspection of the Classic Cleaners' space, we noted that they use Perchlorothane in their dry-cleaning process (see Photograph No. 10). According to the present owner, Mr. Moon H. Kim, the solvent tank on the site has a capacity of approximately 25 pounds of solvent. The files of the Hazardous Materials Division of the Alameda Fire Department were reviewed, and these premises are further discussed in Subsection 6.2.1 on Page 18. There were no records of any citations or violations related to environmental issues (i.e., spills, discharges, or mishandling of solvents). We did not notice any staining or discolorations to the floor which would indicate the discharge of dry-cleaning solvents.

The Baskin-Robbins Ice Cream premises were immaculate throughout. The company has occupied this site for approximately nine years. The front of the premises has a parquet floor, whereas the rear office, storage room, and restroom have orange-colored vinyl floor tiles. One sample of these tiles was collected for laboratory analyses; however, no asbestos was detected (see Subsection 6.2.4 on Page 21).

The premises of Presto Prints comprised a customer service area at the front (see Photograph No. 10), a work area, storeroom and a restroom at the rear, and several small offices upstairs. Adjacent to a sink in the rear work area were several small containers of chemicals used in photograph development, and these included developers, stabilizers, and fixers. The containers were less than one gallon in size. Photograph development is performed in a self-contained developing machine. The front of the premises had ceramic floor tiles, whereas the rear, ground floor rooms had exposed concrete floors. The stairs and second-floor rooms were carpeted. Due to the small quantities of photographic chemicals used with the self-contained developing equipment, the developing operation does not appear to pose an environmental concern.

E₂C, Inc. April 10, 1995

The Hair Studio premises comprised the front hair-styling room (see Photograph No. 11), and a small office and a restroom in the rear. All floors were covered with beige vinyl-floor tiles, and one sample was collected for laboratory analyses. No asbestos was detected in the sample (see Subsection 6.2.4 on Page 21). Nothing of environmental concern was observed on the premises.

Winchell's Donut House comprised a front room with a serving area, a display cabinet, and six tables, a long rear kitchen/storage room, and a small office. The premises had ceramic floor tiles throughout. Nothing of environmental concern was observed during our inspection.

At the rear of the building, behind Winchell's premises, was a small room used by the security personnel for the site. The roof of the building can be accessed by a ladder in this room. Nothing of environmental concern was observed in this room.

Building "C"

This building covers an approximate area of 30,200-square feet, and comprises a Lucky Food Center (*Lucky's*), the E-Z Liquor Store, and three vacant premises located along the walkway adjacent to Building "B" (see Site Plan). The two occupied premises are accessed at the front from the principal parking lot (see Photograph No. 12). Lucky's also has two doors located on the loading/unloading dock area at the rear of the building, and E-Z Liquors has a side door leading from the rear storeroom.

The Lucky Food Center has occupied its premises since January 1990. These premises were formerly occupied by an Alpha Beta Supermarket from 1974 to 1989. Lucky's premises cover approximately 25,000-square feet, and comprised the main food hall (see Photograph No. 16), offices, storage rooms, freezer rooms, an employee change room, and rest rooms. A stairway in a rear storage room led to a mezzanine level which had air-conditioning ducts and was

also used for some storage (see Photograph No. 15). Access to the roof was via a ladder from this mezzanine. The food hall, offices, and rest rooms had vinyl floor tiles throughout; whereas the storage and freezer rooms had exposed-concrete floors. The principal floor tile was a mottled, dull yellow-brown color that had been patched in several areas with beige replacement tiles. A sample of each floor tile was collected; however, no asbestos was detected in either sample (see Subsection 6.2.4 on Page 21). At the time of our inspection, all areas of the premises were very clean and well maintained, and nothing of environmental concern was observed.

The E-Z Liquor premises covers 2,213-square feet, and comprised a customer area with a service counter, shelves of beverages and spirits, and a large refrigerator at the front (see Photograph No. 18), and a storage room at the rear. The floors were covered with alternating squares of beige and yellow-brown vinyl floor tiles. One sample of the yellow-brown tiles was collected; however, the laboratory analyses did not detect the presence of any asbestos in the sample (see Subsection 6.2.4 on Page 21). All areas of the premises were very clean and well maintained, and nothing of environmental concern was observed.

The three vacant premises cover a total area of 3,037-square feet (see Site Plan). One premise had only one room; whereas the other two premises each had two rooms. There was no litter or refuse on any of the three premises; however, a few building materials were being stored on one of the locations.

Site Exterior

The site exterior comprised parking facilities, storage areas, loading/unloading areas, landscaping, and a walkway located at the rear adjacent to the Oakland Estuary. In general, the exterior of the site was clean and well maintained with the exception of accumulated materials at the rear of the Payless premises in Building "A" and at the rear of the Lucky's premises in Building "C." These

materials consisted principally of wooden pallets, shopping carts, and cardboard containers which are periodically removed from the storage areas. Payless also has a locked, fenced-in area at the rear of the building for the storage of nursery materials such as bags of compost, potting soil, and lawn seed. Additionally, a recycling truck and associated receptacles for paper, glass, and aluminum were located at the rear of the Payless building.

6.2.1 Hazardous Materials on the Subject Site

State of California regulations mandate that a company using and/or storing hazardous materials on a site must file a Hazardous Materials Management Plan (*HMMP*) with the responsible, local governmental agency, which in this case is the Hazardous Materials Division of the Department of Environmental Health. A Short Form HMMP may be filed if the quantities used and/or stored per annum are less than 500-pounds for solids, less than 55-gallons for liquids, and less than 200-cubic feet for compressed gases.

From our observations, the Classic Cleaners is the only company on the subject site using, and/or storing, a quantity of hazardous materials. Our review of the files of the Hazardous Materials Division of the Alameda Fire Department revealed that there were no records of citations or violations related to environmental issues (i.e., spills, discharges, or mishandling of cleaning solvents). There is no evidence to suggest that the underlying soils on the premises may have been adversely impacted by past-or-present, on-site activities.

Several previous soil investigations were performed on the site, concentrating principally on the area adjacent to the south side of the Lucky's premises which were previously occupied by an Alpha Beta Supermarket. Those investigations were performed by Kaldveer Associates in anticipation of a proposed addition to the Alpha Beta

Supermarket (presently Lucky's), and the investigations are summarized in Section 5.0 on Page 7. Soil contamination was encountered in several borings between depths of four-and-ten feet; and Kaldveer proposed the excavation of all contaminated soils having contamination levels of petroleum hydrocarbons above 100-parts per million (ppm). This was to be determined by continuous sampling and laboratory analyses during excavation. Agency guidelines generally require the removal of all soils having contamination levels above 100 ppm; whereas soils with lesser levels may remain in-situ. For various reasons, the proposed building addition was never constructed. The August 9, 1990 letter report of Kaldveer Associates estimated that the amount of contaminated soils to be excavated would approximate 260-cubic yards (see Appendix D).

The former underground storage tank (UST) was removed from the site From the information we have obtained and reviewed, it in 1974. appears that the UST was removed under the established protocol which existed at that time. Based on results obtained under the procedures and protocols in force at the time the tank was removed, no soil samples were collected. As a result of this procedure, we conclude that the site was most probably listed as a fuel leak site based on the submittal of the Kaldveer soil reports to the DEH. However, as indicated in the listing itself, further remedial action was deemed unnecessary. The latest groundwater test results, obtained in 1988, 14 years after the tank was removed, did not detect the presence of either gasoline, diesel, or their constituents. Since the groundwater at the site has not been impacted by the former UST, we can conclude that the detected soil contamination has not leached through the soil and impacted the nearsurface ground water aquifer. Since the UST was removed under established 1974 protocol and the groundwater has not been impacted by its past usage, we concur with the agency in that further remedial activies are unnecessary.

6.2.2 Fuel Storage Tanks and Monitoring Wells

Soil investigations were performed on the site over a period of years by Kaldveer Associates of Oakland, California. An August 9, 1990 letter from Kaldveer stated that an underground fuel storage tank (*UST*) was excavated and removed from the site in 1974. There were no records of any former USTs in agency files. It should be noted that this tank removal occurred prior to the time when tank excavation soil samples were collected or when detailed tank inspection documentation was performed by the local fire department.

Our review of agency documents (Section 7.0) revealed that the site is listed as a fuel leak site. It appears that this listing is most likely the result of the submittal of one, or more, of the Kaldveer reports to the Alameda County Environmental Health Department. This is further discussed in Section 7.4.

Subsequent to encountering soil contamination on the site in 1987, three groundwater monitoring wells (*MWs*) were installed and sampled in June 1988 (see Section 5.0 on Page 7). Laboratory analyses of the groundwater samples did not detect the presence of any petroleum hydrocarbon compounds. The elevations of the three MWs were determined by a California-registered Civil Surveyor, and calculations from groundwater measurements in the three MWs established an eastward groundwater flow direction, towards the Oakland Estuary.

At the time of our investigation, the MWs still existed on the subject site, and their locations are indicated in Figure 5.

E2C, Inc.

6.2.3 Herbicides and Pesticides

Historically the subject site may have been used for agricultural purposes; however, the earliest aerial photograph of 1953 shows the subject site to be occupied by two commercial enterprises (a lumber company and a cement-mixing plant). The properties in the vicinity at that time were occupied principally by residences, with a few, relativelysmall commercial buildings. If the subject site was farmed at some time prior to the 1950's, it is possible that herbicides and pesticides were used. However, most of these would have eventually dissipated as a result of the passage of time and continuous cultivation. Any remaining chemicals in the shallow soils at the time of initial development would have been mixed with other soils or removed during initial grading operations, encapsulated under the building pads, the asphalt parking surface, or the landscaping. Additionally, the use of herbicides and pesticides was not widespread prior to the 1950's. Therefore, any possible past use of those chemicals is not considered to present an environmental impairment on the site.

6.2.4 Asbestos

The three buildings on the subject site were constructed in 1974, prior to the late 1970's/early 1980's major government regulations banning the use of asbestos in building materials. Based on the above, it was considered possible that asbestos-containing building materials existed on the site, although numerous alterations and renovations probably had been carried out over the years as tenancy changed.

In particular, old and/or worn vinyl tiles (*VFTs*) were observed on some of the premises, and a total of seven representative samples were collected during our initial site inspection. The samples were analyzed by AMER Labs in Sunnyvale, California; however, no asbestos was

E,C, Inc.

detected in any of the samples. The samples were collected on the following premises:

<u>Sample</u>	<u>Business</u>	Where Collected
AS-1 AS-2 AS-3	Lucky Food Center Lucky Food Center E-Z Liquors	Main food hall Main food hall Rear storeroom
AS-4	Payless Drug	Front of main store
AS-5	Payless Drug	Employee lunch room
AS-6	Baskin-Robbins	Rear storeroom
AS-7	Hair Studio	Rear of shop

NOTE: The following paragraphs describe the different types of asbestos-containing building materials (*ACMs*), and generally outline the chronology of the government regulations in regard to those ACMs.

Beginning in 1971, the U.S. EPA and the Consumer Product Safety Commission began banning the manufacture of asbestos-containing materials (ACMs). The first materials to be banned were sprayed-on pipe insulation, in 1971. In 1975, joint compound and spackling materials, used mostly in dry wall or sheetrock, related construction, were banned. Pitching compounds, such as those used in asphalt roofing materials, were banned in 1977, and all sprayed-on friable ACMs, such as the acoustical plaster used to treat the ceilings in many commercial and residential buildings, were banned in 1978.

Production and importation of flooring material, all roofing materials, and corrugated asbestos cement sheets was banned in August 1990. The distribution of these materials was also to end in August 1992, but the ban on distribution is currently being challenged legally. Based on the above factors, one can assume that the greater the age of the building, the greater the potential for ACMs being present.

Asbestos is not generally considered to be a health threat unless the individual fibers become airborne and are inhaled. This phenomena will occur if the more friable ACMs are disturbed. The airborne release of asbestos fibers is very rare in materials such as vinyl floor tiles, linoleum, and sheet rock joint compounds because the fibers in the floor tiles and linoleum are cemented together and, in the case of sheet rock joint compounds, the fibers are encapsulated by paint. If these materials are properly maintained (i.e., kept waxed or painted) and not disturbed through excessive wear or removal, they are not considered by the EPA or the Bay Area Air Quality Management Board to be an environmental or health threat.

Sprayed-on acoustical ceiling plaster (sometimes referred to as "cottage cheese" or "popcorn material" because of its textured appearance) has a greater potential to become friable because of its composition. However, if this material is property maintained, the potential for it to become friable is minimized.

As of the time of this investigation, we know of no laws which require the abatement of ACMs from buildings unless the building is to be demolished. Legislation exists (California Health and Safety Code

Sections 25915 - 25919.7) which requires that the owners of buildings with known ACMs inform the tenants or residents of the building that ACMs are present. Furthermore, California Health and Safety Code Section 25915 requires that the knowledge of ACMs on properties must be disclosed during real estate transactions.

According to two recently published documents, <u>Asbestos</u> by the Bay Area Air Quality Management District and <u>Asbestos in the Home</u> by the EPA's Consumer Product Safety Commission, the current recommendation regarding ACMs is that they be properly maintained and

Job No. 6430100 Page 25

are allowed to remain in place. This minimizes the release of asbestoscontaining materials into the atmosphere that would be created by the disturbance of the ACMs.

As stated above, these maintenance methods include sealing the ACMs with paint or other sealers. Or, in the case of vinyl floor tiles (*VFTs*) that would otherwise be removed, the EPA recommends that the old VFTs be left in place and covered with newer, non-asbestos containing VFTs.

6.2.5 Polychlorinated Biphenyls (*PCBs*)

At the time of our inspection, four pad-mounted transformers were located on the subject site. One was located at the rear, northeast corner of the Payless Drug Store, two were located near the rear, southeast corner of Lucky's, and one was located adjacent to Blanding Avenue, across from Broadway (see Site Plan, Figure 2).

According to the Pacific Gas & Electric Company (*PG&E*), which owns and maintains electrical transformers in the City of Alameda, PCB-abatement programs were initiated and completed in the early 1980's. In some areas, this abatement program targeted transformers located near waterways, schools, residential areas, food processing facilities, and government properties. The PG&E states that 99.9% of all state-wide transformers containing PCB-laden oil were changed-out, and the oil was replaced with mineral oil during those abatement programs. Allowable concentrations of residual PCBs remaining in the changed-out transformers is 50-parts per million (*ppm*).

Should there be a concern over the possible existence of PCBs in on-site or off-site transformers, the PG&E can be contacted to arrange for an inspection and sampling of the transformer oil. Should the transformer be found to contain PCBs above a concentration of 50 ppm, the PG&E

FOIDS

will change-out the unit at no cost. Should the transformer be found to contain PCBs below a concentration of 50 ppm, the PG&E will charge a fee for the inspection and sampling of transformers.

The buildings on the subject site were constructed prior to the 1979 federal government regulations banning the use of PCBs in the ballasts of fluorescent light fixtures. Numerous fluorescent light fixtures were being used in the buildings; however, no suspect ballasts were observed during our investigation.

6.3 Survey of Adjacent Properties

During our investigation, we also conducted a survey of the adjacent site activities and businesses to determine if any of these has the potential of adversely impacting the subject site. The property to the north is occupied by the Stone Boat Yard, and a houseboat. The site is bound on the east by the Oakland Estuary (*Tidal Canal*); and a railway and an easement of the Southern Pacific Transportation Company bound the site on the south. The easement is essentially a vacant lot. Across the railway is Tilden Way. Blanding Avenue bounds the site on the west, and across the avenue are three commercial properties and a vacant residence. The commercial properties include one building occupied by the Greer Family Mortuary, one building occupied by the American Title Insurance Company, one building occupied by 1) The Video Station; 2) Murphy's Pizza; and 3) Tradewind Nautical Supplies and a two-story, vacant residence which is for sale.

None of these adjacent properties is an agency-listed site, and there is no evidence to suggest that the subject site has been adversely impacted by past or present activities on any of these properties.

F C Inc

7.0 DOCUMENT RESEARCH

To further evaluate potential sources of contamination originating from on-or off-site sources, a review of relevant available information was performed by researching historical aerial photographs, published agency documents, agency files, and other pertinent documents available to E_2C , Inc.

7.1 On- and Off-Site Areas of Environmental Concern

Toxic and fuel leak cases, as published in the following documents, were reviewed to determine if any investigations of contamination, either on-site or off-site, have revealed cases in the area that could potentially impact the subject site.

U.S. Government Publications:

- United States Environmental Protection Agency, Region 9; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS); Site/Event Listing; including the National Priorities List (NPL), Region 9; March 3, 1994. Not updated.

State of California Publications:

- State of California, Department of Conservation, Division of Oil and Gas; Regional Wildcat Maps; September 1989. Not updated.
- State of California, Governor's Office, Office of Planning and Research,
 Office of Permit Assistance; Hazardous Waste and Substances Sites-List
 (CORTESE List); July 1992. Not updated.
- State of California, Regional Water Quality Control Board; North Bay Site
 Management System Milestone Report; January 31, 1994. Not updated.

<u>ለምግነተለ ተለሰር</u>

- State of California, Integrated Waste Management Board; Solid Waste Information System List (SWIS); Active, Inactive, and Closed Landfills in the State of California. May 27, 1992. Not updated.
- State of California, Regional Water Quality Control Board; San Francisco
 Bay Region Fuel Leak List; May 9, 1994.
- State of California, Regional Water Quality Control Board; San Francisco
 Bay Region Toxic Pits Cleanup Act (TPCA), Summary of Known Sites;
 November 1989. Not updated.

California Environmental Protection Agency Publications

- State of California, Environmental Protection Agency (CalEPA),
 Department of Toxic Substances Control; Abandoned Site Program
 Information System (CALSITES); February 10, 1994. Not updated.
- CalEPA, Department of Toxic Substances Control; Expenditure Plan for the Hazardous Substances Cleanup Bond Act of 1984 (BEP). Last updated January 1990.
- CalEPA/Santa Clara Valley Water District; Small Water Systems Program (AB 1803); Final Summary of Results, June 1990. Not updated.
- CalEPA, Water Resources Control Board; Report on Releases of Hazardous Substances from Underground Tanks (*LUFT list*); October 1993. Not updated.
- CalEPA, Water Resources Control Board San Francisco Bay Region,
 Well Investigation Program (WIP), Volatile Organic Chemicals in Public
 Water Supply Wells; September, 1991. Not updated.

E₂C. Inc. April 10, 1995

NOTE:

CERCLIS & CALSITES SITES: These sites often are listed only in the CERCLIS and/or CALSITES lists of contaminated sites. No specific information is presented regarding the contaminant, its extent, or any remediation. Most of these sites have only minor contamination and are classified as low priority or no further action required. According to the EPA, a site can also be placed on the CERCLIS list if hazardous materials are used, stored, or handled on the premises, even if no soil or groundwater contamination has occurred. Additionally, the CERCLIS list is considered as an historical document, and a listed site probably will never be removed from the list even if the site is considered "clean" by all other agencies. A copy of the CERCLIS and CALSITES fact sheets on listed sites can be obtained upon request. A site can be placed on the CALSITES list for such reasons as dirty house keeping or only suspected misuse or storage of hazardous materials, even if no contamination is known to exist. According to Mr. Sean Farrelli of the California EPA office in Sacramento, California, over two-thirds of the sites on the CALSITES list require no further action.

7.2 State, County, and Local Agencies

State/County Agencies:

- Regional Water Quality Control Board (RWQCB)
- Alameda County Department of Environmental Health (*DEH*)
- Alameda County Water District, Engineering Division

Local Agencies:

- City of Alameda Planning Department
- City of Alameda Building Permit Department
- City of Alameda Fire Department,
 Hazardous Materials Division (AFD)

7.3 Information in Agency Files

The various agencies generally maintain different records, according to the responsibilities and nature of each agency. On the following pages is a general description of the documents, records, reports, notes, and correspondence which may be on file with the different agencies.

E₂C, Inc. April 10, 1995

City Planning Department

- Building Plans and Proposed Site Development.
- Land usage constraints based on zoning.

City Building Permit Department

- Building Permits and Plans, which may include proposed fuel storage tanks, sumps, and hazardous material storage.
- Geotechnical Reports addressing subsurface soil characteristics and groundwater depth data.
- Demolition Permits.

City Fire Department

- Notes and records on visual site inspections.
- Notes and records of fuel storage tanks and hazardous material storage.
- Notes and records of citations and violations.
- Notes and records of fuel storage tank installations/removals.
- Reports and correspondence by consultants or other agencies regarding soil and/or groundwater contamination, and remediation.
- Facility Closure reports requested by the Fire Department.
- HMMP and MSDS documentation.

County Water Districts (Santa Clara and Alameda Counties)

- Notes and records of fuel storage tank leaks or spills.
- Fuel storage tank removal records and reports.
- Soil excavation reports.
- Soil and/or groundwater contamination reports.
- Notes, records, and reports on groundwater monitoring well installations.
- Groundwater monitoring reports; Quarterly and Annual.
- Correspondence with other agencies, with the property owner, and with consultants regarding potential or known groundwater contamination and remediation.
- Final Closure notification.

County Department of Public Health

- The lead agency in Contra Costa and San Mateo Counties, and in unincorporated areas of Alameda and Santa Clara Counties.
- Maintains essentially the same records as the County Water Districts and the Fire Departments, if it is the lead agency.

Regional Water Quality Control Board

- All reports obtained from the County Water Districts or from the County Health Departments if they are the lead agency.
- Correspondence with other agencies, the property owner, and consultants.
- Requests for additional studies.
- Results of RWQCB public meetings.
- Final Closure notification.

7.4 Agency Files Reviewed

Regulatory agency files for listed sites that appeared to have a potential of adversely impacting the subject site were reviewed at the Hazardous Materials Division (*HMD*) of the Alameda Fire Department (*AFD*) and the Regional Water Quality Control Board (*RWQCB*). The Alameda Fire Department has jurisdiction over the permitting, regulation, inspection, and maintenance of underground fuel storage tanks (USTs) within the city limits of Alameda; however, the Alameda County Department of Environmental Health (*DEH*) is the lead agency for all soil and/or groundwater contamination cases. The DEH maintains reports and files on all environmental investigations, especially if there is a potential or real adverse impact on the groundwater quality caused by leakage or spillage related to USTs. Additionally, the DEH oversees the installation and destruction of groundwater monitoring wells (*MWs*).

NOTE: For this investigation, the files of the RWQCB and the HMD of the Alameda Fire Department were reviewed; however, the files of the DEH had not been reviewed as of the date of this report. Upon receipt of a letter by the DEH requesting a file review of specific sites, the minimum waiting time for an appointment generally is four-to-six weeks. Reviewing the DEH files may have provided us with some additional information on agency-listed sites of concern; however, it is our professional judgment that we have obtained sufficient information on those sites from other agencies for this investigation.

 E_2C , Inc.

From the publications and documents listed in Section 6.1, lead agencies had identified a total of 30 listed fuel leak and toxic sites located within a 1-mile radius of the subject site. A summary of the location and current status of each site is included in Table 1, and Figure 3 shows the approximate locations of these sites, as well as the anticipated groundwater flow direction. An additional 19 sites were listed by CALSITES, however, a listing by that agency does not automatically indicate that any known soil or groundwater contamination has ever existed on a specific site (see NOTE on Page 30). The CALSITES-listed sites are shown in Figure 4, and the current status is included in Table 2. All of the CALSITES-listed cases are "No Further Action" cases, which generally indicates that the sites were listed only because of the company name or the type of business.

Our research revealed that one agency-listed site (*No. 27*) is located potentially up-gradient to the subject site, and one cross-gradient site (*No. 28*) is located relatively near the subject site (*see Figure 3*). These two sites are discussed below.

Alpha Beta (Now Lucky Food Center (*No. 26*) Blanding and Broadway Alameda, California

The agency listing is for the subject site. As indicated, only soil has been impacted by the petroleum product and remedial action is deemed unnecessary.

Based on the current agency oversight status of this site, it is highly unlikely that any further remedial action will be requested by the agency. Therefore, it is our professional opinion that the soil remediation, as discussed by Kaldveer Associates, does not need to be implemented.

E-C. Inc. April 10, 1995

Alameda Unified School District (*No. 27*) 2615 Eagle Avenue Alameda, California

This site is located west of the subject site, in an apparent up-gradient position. In December 1991, a 550-gallon underground gasoline storage tank (UST) was excavated and removed from the site. One soil sample was collected under the former tank, and the laboratory analyses did not detect the presence of any petroleum hydrocarbons. However, one composite sample was collected from the excavated soils, and the laboratory analyses detected 770-parts per million (ppm) of Total Petroleum Hydrocarbons as gasoline (TPHg). The excavation was backfilled with clean, imported soils. The contaminated soils were aerated on the site, and later transported to a sanitary landfill.

A June 1, 1993 letter from the DEH of the Alameda County Health Care Services Agency recommended that the site be granted "closure" status, and it is the professional judgment of E_2C , Inc. that the possibility of the subject site having been adversely impacted by this site is very remote.

King Petroleum (*No. 28*) 2001 Versailles Avenue Alameda, California

This nearby, cross-gradient site is located to the south, immediately across Tilden Way. The site was occupied for approximately 50 years by a succession of bulk-petroleum distributing companies. Past tenants included Chevron USA Inc., Exxon Company USA, and King Petroleum. In July and August of 1990, two 10,000-gallon gasoline USTs, two 8,000-gallon gasoline USTs, one 8,000-gallon diesel UST, and one 800-gallon waste oil UST were excavated and removed from the site. Also, above-ground storage tanks and 55-gallon drums of petroleum products existed on the site.

Soil samples were collected at the time of removal of the USTs in 1990, and the laboratory analyses detected high levels of TPH as gasoline, TPH as diesel, and Oil and Grease (*TOG*). Ten trenches were dug across the site, and the laboratory analyses of soil samples collected from the trenches also had high concentrations of TPHg, TPHd, and TOG.

No soil remediation was performed on the site; however, four groundwater monitoring wells (MWs) were recently installed on the site in June 1994. According to the Hazardous Materials Division of the Alameda Fire Department, there is ongoing litigation between the property owner and the former tenants regarding soil remediation on the site.

Based on an eastward groundwater flow direction toward the Oakland Estuary this site is cross-gradient to the subject site, and it is the professional judgment of E_2C , Inc. that the possibility of the subject site having adversely impacted the subject site is very remote.

In fuel-leak cases, preliminary research conducted by regulatory agencies in the San Francisco Bay Area indicates that attenuation and degradation of the product in groundwater play a major role in reducing the contamination to non-detectable levels within several hundred feet of the contaminant source. Moreover, their research indicates that in over 90% of the cases, groundwater contaminant plumes from hydrocarbon releases do not extend more than 100 feet from the source. However, we generally research all fuel leak sites located within a ¼-mile radius (i.e. 1,320 feet) of the subject site, which incorporates a significant safety factor regarding potential environmental threats to the site.

In the case of toxic substances in the groundwater, especially the more mobile Volatile Organic Compounds (*VOCs*), detectable levels may extend several thousand feet from the original source. However, in most groundwater plume cases involving VOCs, attenuation will act to reduce the contamination to non-detectable levels within a much shorter distance from the contaminant source. In determining if a particular site may have been adversely impacted by an agency-listed site, the most important factor generally is the relative locations of the contaminant source and the subject site in regards to the groundwater flow direction.

Those agency-listed fuel-leak or toxic-leak sites located in an up-gradient position to a particular site of concern pose an environmental threat by the migration of groundwater contaminants from those sites onto the particular site. Those agency-listed sites that are considered to be cross-gradient from a particular site in terms of groundwater-flow direction are considered to have a very low potential of impacting that particular site. Down-gradient sites generally are considered to have no potential of impacting a particular site because the groundwater is flowing downward toward these sites from the particular site of concern.

Based on our review of agency files and on the above factors, it is the professional judgment of E_2C , Inc. that there is only a remote possibility that the subject site has been adversely impacted by the migration of contaminated groundwater from either of the agency-listed sites previously discussed (*Nos. 27 and 28*). Because of their position in relation to the subject site and/or to distance, none of the other documented fuel or toxic leak sites located within a 1-mile radius appear to pose an environmental threat to the subject site.

7.5 Landfills

According to the California Solid Waste Management Board, there are no active or inactive landfills located upgradient or cross-gradient that could adversely impact the subject site.

7.5.1 Active

The closest active landfill is located down-gradient, approximately 20 miles south-southeast of the subject site.

Durham Road Sanitary Landfill West end of Durham Road Fremont, California.

Capacity:

1500 tons per day

Closure:

Scheduled for 2004

7.5.2 Inactive

The closest inactive landfill is located down-gradient, approximately four miles south of the subject site. The landfill was closed in 1980.

Davis Street Sanitary Landfill West end of Davis Street San Leandro, California

7.6 Oil and Gas Fields

According to the California Department of Conservation, Division of Oil and Gas Map W3-10, the nearest oil and gas field is the Half Moon Bay Oil and Gas Field, located near the Pacific Ocean, approximately 25 miles southwest of the subject site. The field was discovered in the 1890's, and is still producing from several wells. Additionally, the now-abandoned Moody Gulch Oil Field is located one-half mile south of Lexington Reservoir, approximately 43 miles south of the subject site. The field was discovered in 1878, and finally abandoned in the mid-to late-1970's.

The San Francisco Bay Region is not a significant petroleum producing area, and the few small accumulations discovered have not been of environmental concern.

E₂C, Inc. April 10, 1995

8.0 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs, available through Pacific Aerial Surveys in Oakland, California, and Air Flight Services in Santa Clara, California, were reviewed to help evaluate past land-uses of the subject site and surrounding area. In the San Francisco Bay region, the earliest available aerial photographs generally are from 1953 or 1954. Photographs during the period 1953 to 1992 were reviewed and are discussed below. Representative photographs during this period are included in Appendix B.

<u>1953</u>

This photograph shows the subject site to be occupied by two commercial enterprises. Approximately the western three quarters of the site is occupied by a lumber yard, and numerous buildings and stacks of lumber are apparent. The eastern one quarter is occupied by a sand and gravel plant, and the photograph shows several buildings and mounds of materials. Our review of the site history revealed that the lumber company was the Loop Lumber and Milling Company, and the other tenant was the California Rock and Gravel Company. Also, numerous stacks of lumber are apparent on the present Greer Family Mortuary site across Blanding Avenue, and Loop Lumber may also occupy this site. The present concrete retaining wall at the rear of the site adjacent to the Oakland Estuary does not exist, and the vehicle bridge across the estuary has only two lanes.

1963

This high altitude aerial photograph shows that the subject site is still occupied by the same two companies, and there are no apparent changes on the site. There are no apparent, significant changes in the site vicinity.

E₂C, Inc. April 10, 1995

1973

This photograph shows that several of the buildings on the western part of the subject site occupied by the Loop Lumber and Milling Company have been demolished, and this property appears to be deserted. There are no stacks of lumber on the site, and only several small stacks still exist on the present Greer Mortuary site across Blanding Avenue. There does not appear to be any activity on the eastern part of the site occupied by the California Rock and Gravel Company; however, several vehicles are parked next to one of the buildings. At the rear of the site, adjacent to the estuary, a retaining wall now exists. The only apparent changes in the site vicinity are that Tilden Way and the bridge across the estuary both have been widened to four lanes.

1983

The subject site has been developed as it appears today. In the vicinity, the intersection at the corner of Blanding Avenue and Tilden Way has been altered to its present location, and the Greer Family Mortuary site has been developed across Blanding Avenue. There are no other apparent, significant changes in the vicinity.

1992

There are no apparent changes on the subject site or in the vicinity since 1983.

E₂C, Inc. April 10, 1995

9.0 CONCLUSIONS AND RECOMMENDATIONS

From our review of agency files and an inspection of the subject site, it is the professional judgment of E_2C , Inc. that there is no evidence to suggest that the subject site has been adversely impacted by any of the past or present business activities since the development of the shopping center in 1974. Prior to 1974, the subject site was occupied by two commercial enterprises. The western three-quarters of the site was occupied by the Loop Lumber and Milling Company, and the eastern one-quarter was occupied by the California Rock and Gravel Company.

Previous environmental investigations were performed on the subject site, and copies of reports and correspondence regarding those investigations were provided to E₂C, Inc. The investigations were performed by Kaldveer Associates of Oakland, California, and copies of their reports and correspondence are included in Appendix D of this report. Those investigations are also summarized in Section 5.0 on Page 7. Our review of those reports and correspondence revealed that an area of soil contamination exists on the site. That area is located adjacent to the south side of Building "C," currently occupied by Lucky Supermarket; and the most likely source of the contamination was from a former underground diesel storage tank which was excavated and removed in 1974. At that time, the site was being developed for the existing shopping center.

The soil contamination was discovered during a 1987 geotechnical soil investigation performed in anticipation of a proposed addition to Building "C," occupied at that time by an Alpha Beta Supermarket. In a letter dated August 9, 1990, Kaldveer proposed the excavation of all contaminated soils having contamination levels exceeding 100-parts per million (ppm) (See Section 6.2.1). Subsequent to this, three groundwater monitoring wells (MWs) were installed and sampled on the site in June 1988. Laboratory analyses of groundwater samples from the three MWs did not detect the presence of any petroleum

Job No. 6430100 Page 40

hydrocarbon compounds. The samples were analyzed for gasoline, diesel, and the constituents of benzene, toluene, ethylbenzene, and xylenes. At the time of our investigation, the MWs still existed on the site, and their locations are indicated in Figure 5.

As indicated in Section 6.2.2 of this report, the former underground storage tank (UST) was removed from the site in 1974. From the information we have obtained and reviewed, it appears that the UST was removed under the established protocol which existed at that time. Based on results obtained under the procedures and protocols in force at the time the tank was removed, no soil samples were collected. As a result of this procedure, we conclude that the site was most probably listed as a fuel leak site based on the submittal of the Kaldveer soil reports to the DEH. However, as indicated in the listing itself, further remedial action was deemed unnecessary. The latest groundwater test results, obtained in 1988, 14 years after the tank was removed, did not detect the presence of either gasoline, diesel, or their constituents. groundwater at the site has not been impacted by the former UST, we can conclude that the detected soil contamination has not leached through the soil and impacted the near-surface ground water aquifer. Another factor contributing to the absence of hydrocarbon contamination in the groundwater is the natural biodegradation that will occur in contaminated soils. Since the UST was removed under established 1974 protocol and the groundwater has not been impacted by its past usage, we concur with the agency in that further remedial activies are unnecessary.

Our inspection of the subject site and review of historical information on the site since the development of the shopping center in 1974 revealed that the only current business activity that appears to be of environmental concern is the dry-cleaning establishment occupied by Classic Cleaners since July 1993.

The premises were previously occupied by Ann's Cleaners & Coin-Op Laundry from 1974 to 1993. Our review of the files of the Hazardous Materials Division

E₂C, Inc. April 10, 1995

of the Alameda Fire Department did not reveal any citations or violations regarding environmental issues on these premises (i.e., spills, discharges, or mishandling of solvents).

Dry-cleaning activities have been performed on-site for the last 20 years. These activities involve the use of dry-cleaning solvents such as perchloroethane. During our inspection of the facilities, we did not observe any evidence of staining or discoloration on the concrete floor slab that would suggest solvent spillage. Since the results of our studies did not identify conditions that could have created an environmental impairment as a result of the past dry-cleaning activities, it is our professional judgment that no further studies are required at this time.

Our review of available, published information on agency-listed sites located within a 1-mile radius revealed that only two sites appeared to be of potential environmental concern (*Nos. 27 and 28 in Figure 3*). However, our research revealed that the possibility of the subject site having been adversely impacted by either of these two sites is very remote. None of the other listed sites located within a 1-mile radius appears to have a potential of posing an environmental threat because of distance or position, in relation to the subject site.

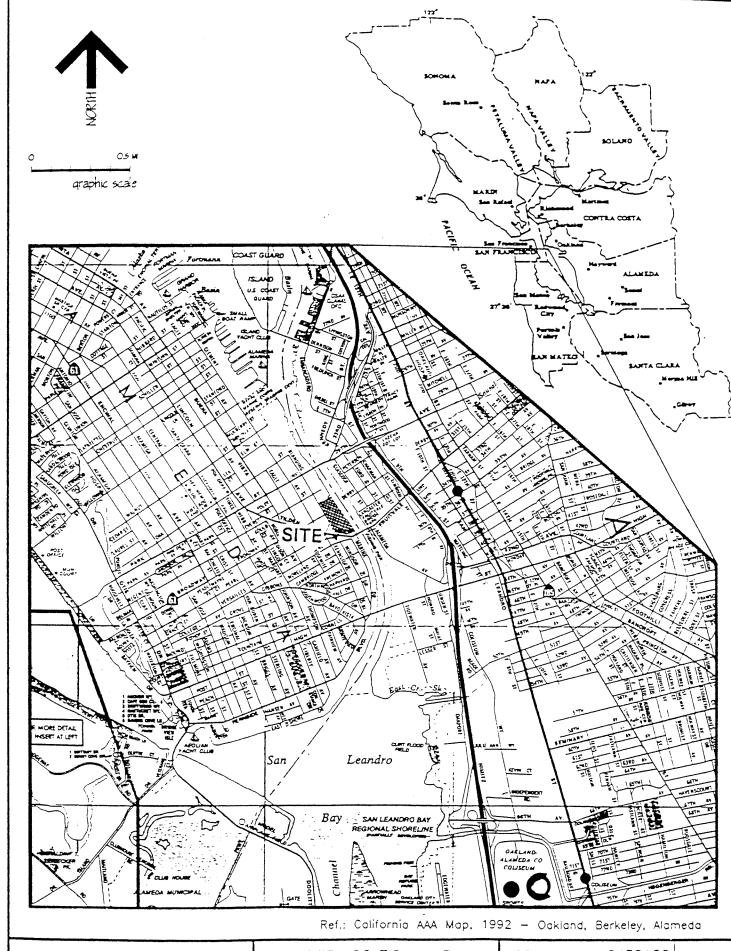
The three buildings on the subject site were constructed in 1974, prior to the late 1970's/early 1980's major regulations banning the use of asbestos-containing building materials (*ACMs*). We carefully inspected all premises during our inspection for the possible presence of any ACMs. The only suspect ACMs observed in the buildings were old, and/or worn, vinyl floor tiles (*VFTs*) located on some of the premises of the site. Seven representative samples of VFTs were collected; however, the laboratory analyses did not detect the presence of asbestos in any of the samples (*see Subsection 6.2.4 on Page 21*). Historically the subject site may have been used for agricultural purposes; however, the earliest available aerial photograph of the area, taken in 1953,

E₂C. Inc. April 10, 1995

shows the subject site to be occupied by two commercial enterprises (a lumber company and a cement-mixing plant). The properties in the vicinity at that time were occupied principally by residences, with a few, relatively-small commercial buildings. If the subject site were farmed at some time prior to the 1950's, it is possible that herbicides and pesticides were used. However, most of these would have eventually dissipated as a result of the passage of time and continuous cultivation. Any remaining chemicals in the shallow soils at the time of initial development would have been mixed with other soils or removed during grading operations, encapsulated under the building pads, the asphalt parking surfaces, or the landscaping. Additionally, the use of herbicides and pesticides was not widespread prior to the 1950's. Therefore, any possible past use of those chemicals is not considered to present an environmental impairment on the site.

E₂C, Inc. April 10, 1995

10.0 LIMITATIONS

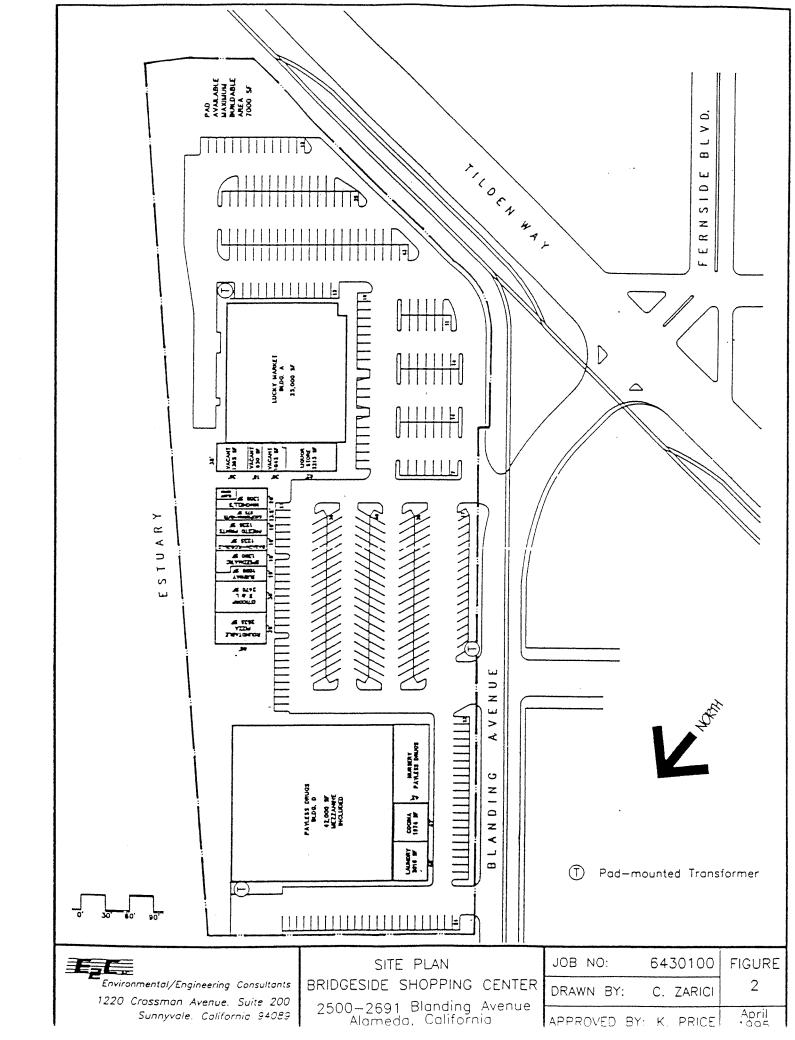

The Conclusions of this report are based solely on the Scope of Services outlined, and on the sources of information referenced in this report. No soil or groundwater sampling was performed during this investigation. Any additional information that becomes available concerning this study should be submitted to E_2C , Inc. so that our Conclusions may be reviewed and modified, if necessary. This report was prepared for the sole use of the USG Annuity & Life Company, its successors and assigns, and/or its agents.

E₂C, Inc.

11.0 REFERENCES

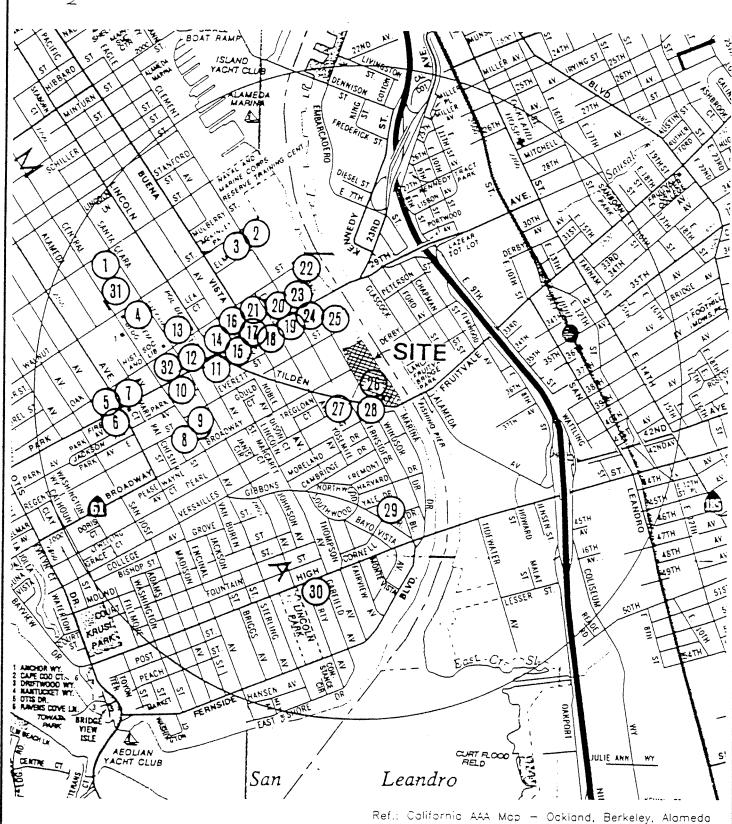
- Atwater, T. 1970. Implications of Plate Tectonics for Cenozoic Tectonic Evolution of Western North America. Geologic Society of America Bulletin 1981, pp. 3513-3535.
- Brabb, E. E., et. al.; 1981. Maps Showing Aeromagnetic Anomalies, Faults, Earthquake Epicenters, and Igneous Rocks in the Southern San Francisco Bay Region, California.
- California Division of Oil and Gas. 1989. Regional Wildcat Map Showing Wells Not On Division of Oil and Gas Field Maps. State of California Department of Conservation Map #W3-10, Alameda, San Mateo, Santa Clara, Santa Cruz Counties. September. Not updated.
- California Division of Oil and Gas. 1988. Oil, Gas, and Geothermal Fields in California. State of California Department of Conservation. Map S-1.
- Helley, E.J. and Lajoie, K.R. 1979. Flatland Deposits of the San Francisco Bay Region, California, U.S.G.S. Professional Paper 943.
- Kaldveer Associates. 1972-1990. See reports and correspondence in Section 5.0 on Page 7.
- Rantz, S.E. 1971. Mean Annual Precipitation and Precipitation Depth-Duration-Frequency Data for the San Francisco Bay Region, California.
- State of California, Department of Water Resources; Intrusion of Salt Water into Groundwater Basins of Southern Alameda County; Bulletin 81; December 1960.
- United States Geologic Survey. 1980. 7 1/2 Minute Series, Oakland East Quadrangle, California Topographic Map.
- United States Geologic Survey. 1969. Areal and Engineering Geology of the Oakland East Quadrangle, California by D.H. Radbruch. Map GQ-769.
- United States Government. May 1979. Code of Federal Regulations, 1979 PCB Final Rule (40 CFR, Part 761).
- United States Soil Conservation Service. March 1981. Soil Survey of Alameda County, Western Part, California.

- C Inc April 10, 1995


Environmental/Engineering Cons

Environmental/Engineering Consultants 1220 Crossman Avenue, Suite 200 Sunnyvaie, California 94089 SITE LOCATION MAP
BRIDGESIDE SHOPPING CENTER
2500-2691 Blanding Avenue
Alameda, California

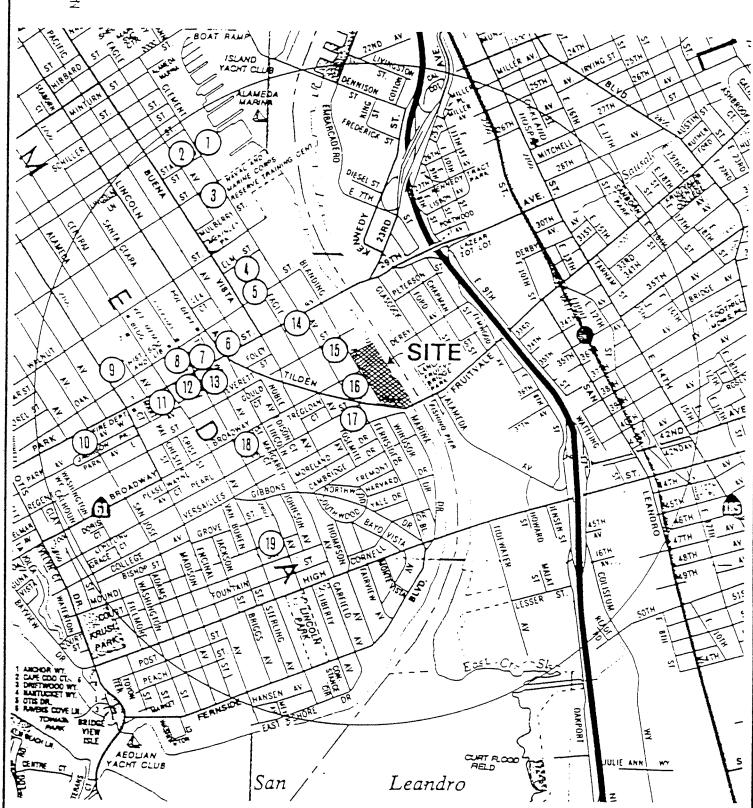
JOB NO: 6430100 FIGURE


DRAWN BY: C. ZARICI 1

APPROVED BY: K. PRICE April

指置

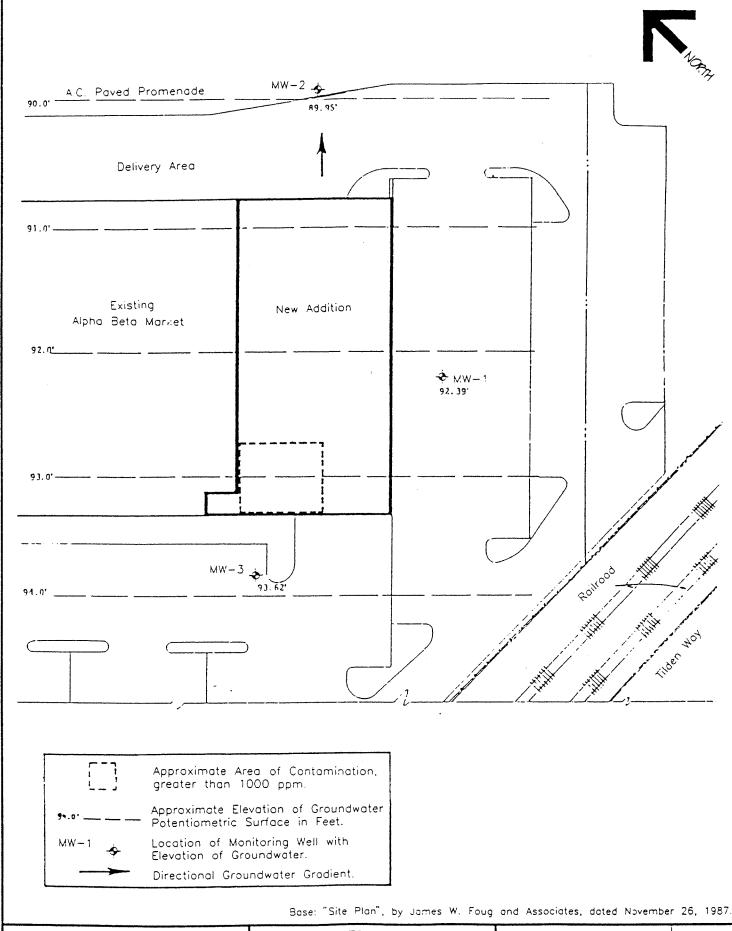
Environmental/Engineering Consultants 1220 Crossman Avenue. Suite 200 Sunnyvale. Californic 94039 TOXIC AND FUEL LEAK SITES
Located within a 1 mile radius of
BRIDGESIDE SHOPPING CENTER
2500—2691 Blanding Avenue
Alameda, California


JOB NO: 6430100 FIGURE

DRAWN BY: C. ZARICI

APPROVED BY: K. PRICE 1995

Environmental/Engineering Consultants
1220 Crossman Avenue Suite 200


CALSITES

Located within a 1 mile radius of BRIDGESIDE SHOPPING CENTER

2500—2691 Blanding Avenue

JOB NO: 6430100 FIGURE
DRAWN BY: C. ZARICI 4

Ref.: California AAA Map — Oakland, Berkeley, Alameda

Environmental/Engineering Consultants
1220 Crossman Avenue. Suite 200
Sunnyvale. California 94089

CONTAMINATED SOIL AREA & MONITORING WELL LOCATIONS BRIDGESIDE SHOPPING CENTER 2500-2691 Blanding Avenue Alameda, California

JOB NO: 6430100 FIGURE

DRAWN BY: C. ZARICI 5

APPROVED BY: K. PRICE April 1095

TABLE 1 LIST OF FUEL LEAK/TOXIC SITES WITHIN A 1-MILE RADIUS OF 2500-2691 BLANDING AVENUE, ALAMEDA, CALIFORNIA

NO	FACILITY/LOCATION	SUBSTANCE	CASE TYPE	STATUS	REMEDIAL ACTION	SOURCE LIST
1	Pacific Bell 2100 Central Avenue	Diesel	S	1	NT	CORTESE RWQCB SWRCB
2	Clement Avenue Project 2235 Clement Avenue	Gasoline	S	1	ED/ET	CORTESE RWQCB SWRCB
3	2229 Clement Avenue Site 2229/35 Clement Avenue	Gasoline	U	0	ED/ET	TOXICS
4	Fowler Anderson Mortuary 2244 Santa Clara Street	Waste Oil	S	9	ET/ED	CORTESE SWRCB
5	Alameda Cellars 2425 Encinal Avenue	Gasoline	0	1	ED	CORTESE RWQCB SWRCB
6	Alameda Fire Department 2410 Encinal Avenue	Diesel	S	9	ET	RWQCB SWRCB
7	Arco 1260 Park Street	Gasoline	S	3A	ED/ET	CORTESE RWQCB SWRCB
8	Celia Harris Trust 2521 Central Avenue	Diesel	0	9	ED	RWQCB SWRCB
9	Merritt Tire 2501 Santa Clara Street	Gasoline	0	1	ED	CORTESE RWQCB SWRCB
10	Automotive Auto Repari 2425 Central Avenue	Misc MVF	0	3B	NT	CORTESE RWQCB SWRCB
11	BP Oil/Mobil 1541 Park Street	Gasoline	0	5C	NT	CORTESE SWRCB
12	Chun Service Station 2301 Santa Clara Avenue	Gasoline	Q.	ЗА	NT	RWQCB SWRCB
13	Police Department 1555 Oak Street	Diesel	0	38	NT	CORTESE SWRCB
14	Alameda Auto Enhancers 2327 Lincoln Avenue	Unknown	U	U	UK	TOXICS
15	Cavanaugh Motors 1700 Park Street	Gasoline	0	5C	ED/ET	CORTESE RWQCB SWRCB
16	Good Chevrolet 1630 Park Street	Gasoline	0	3B	ED	CORTESE RWQCB SWRCB

NO	FACILITY/LOCATION	SUBSTANCE	CASE TYPE	STATUS	REMEDIAL ACTION	SOURCE LIST
17	Shell 1701 Park Street	Gasoline	U	1	NT	SWRCB
18	Exxon/Regal 1725 Park Street	Gasoline	0	5R	NT	CORTESE RWQCB SWRCB
19	Ron Goode Toyota 1825 Park Avenue	Waste Oil	0	3B	NT	SWRCB
20	Unknown 1800 Park Street	Gasoline	S	1	. NT	RWQCB SWRCB
21	Henry-Dare Property 1726 Park Street	Gasoline	0	3A	NT	RWQCB SWRCB
22	Park Street Landing 2301 Blanding Avenue	Waste Oil	S	1	NT	SWRCB
23	Alameda Collision 1911 Park Street	Gasoline	0	3A	NT	CORTESE RWQCB SWRCB
24	Alameda Electric 2420 Blanding Avenue	Gasoline	0	9	ED	RWQCB SWRCB
25	Allied Engineering and Product Corporation 2421 Blanding Avenue	Unknown	U	U	UK	TOXICS
26	Alpha Beta(Now Lucky Food Center) 2691 Blanding Avenue	Gasoline	0	3В	NT	CORTESE RWQCB SWRCB
27	Alameda Unified School District 2615 Eagle Avenue	Gasoline	S	9	ED	CORTESE RWQCB SWRCB
28	King Petroleum 2001 Versailles Avenue	Gasoline	S	1	NT	CORTESE RWQCB SWRCB
29	Chevron 3126 Fernside Boulevard	Gasoline	0	. 5R	ED	CORTESE RWQCB SWRCB
30	Alameda Texaco (Independent) 1357 High Street	Gasoline	0	3A	NT	CORTESE RWQCB SWRCB
31	Alameda Historical High School 2200 Central Avenue	Diesel	0	9	ED	SWRCB
32	Chevron 2428 Central Avenue	Diesel	0	3B	NT	SWRCB

CODES

SUBSTANCES ABBREVIATIONS

MVF = Motor Vehicle Fuels

CASE TYPE

G = Groundwater has been affected

O = Other

S = Soil only has been affected

U = Undefined

STATUS CODES

0 = No action taken after initial report of leak

1 = Leak suspected at site but has not been confirmed
 3A = Preliminary site assessment workplan submitted

3B = Preliminary site assessment under way

5C = Pollution characterization 5R = Remediation plan developed

9 = Remedial action completed or deemed unnecessary

U = Unknown

REMEDIAL ACTION CODES

ED = Excavate and dispose - remove contaminated soil and dispose inapproved site

ET = Excavate and Treat - remove contaminated soil and treat (includes spreading or land farming)

NT = No action taken - no indication that action was taken

UK = Unknown - action not known

SOURCE LIST

CORTESE = Hazardous Waste and Substances Sites List, July 1992; Governor's Office, Office of Planning and Research, Office of Permit Assistance.

RWQCB = Regional Water Quality Control Board, San Francisco Bay Region (2), July 03, 1994.

SWRCB = Report on Releases of Hazardous Substances from Underground Tanks, December 1994;

State Water Resources Control Board.

TOXICS = Nouth Bay Site Management System Quarterly Reports, January 27, 1994; Regional Water

Quality Control Board, San Francisco Bay Region.

TABLE 2 LIST OF CALSITES WITHIN A ONE-MILE RADIUS OF 2500-2691 BLANDING AVENUE, ALAMEDA, CALIFORNIA

NO	FACILITY/LOCATION	STATUS	SOURCE LIST
1	Cam Tool Company, Inc. 2005 Clement Avenue	NFA	CALSITES
2	inland Ladder Company 1914 Stanford Street	NFA	CALSITES
3	Thomas Wylie Design Group 1924 Willow Street	NFA	CALSITES
4	Seat Company Office Service 1816 Elm Street	NFA	CALSITES
5	US Steel Supply Division- Container Products 1849 Oak Street	NFA	CALSITES
6	Alameda Glass and Paint 2315 Lincoln Avenue	NFA	CALSITES
7	Luque's Upholstering 1532 Park Street	NFA	CALSITES
8	Bay Records 1516 Oak Street	NFA	CALSITES
9	Fugger Painting & Decorating 2309 Encinal Avenue	NFA	CALSITES
10	Bernardi Cleaners 1222 Park Street	NFA	CALSITES
11	Indian Arts Trading Company 1350 Park Street	NFA	CALSITES
12	John & Julia Eckert 2416 Central Avenue	NFA	CALSITES
13	JMA Coin-Op Dry Cleaners 2414 Santa Clara Avenue	NFA	CALSITES
14	Chalet Tool Company 2406 Eagle Avenue	NFA	CALSITES
15	GM Associates, Inc. 1912 Everett Street	NFA	CALSITES
16	Clamp Swing Pricing Company 2515 Blanding Avenue	NFA	CALSITES
17	North Coast Yachts 3100 Clement Avenue	NFA	CALSITES
18	NCA, Inc. 1415 Broadway	NFA	CALSITES
19	Dewco 2917 Central Avenue	NFA	CALSITES

CODES

STATUS CODES

NFA = No further action deemed necessary

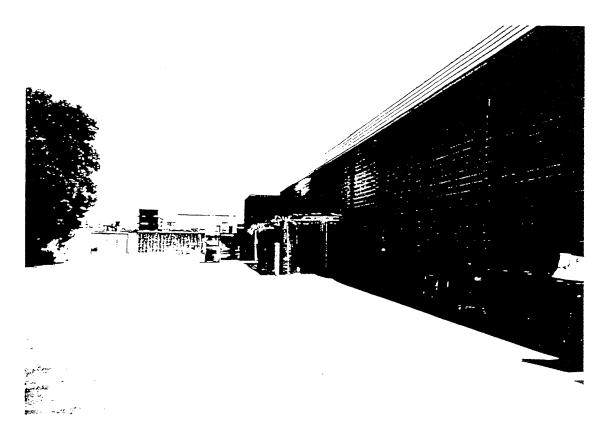
SOURCE LIST

CALSITES

State of California Environmental Protection Agency (CalEPA), Department of Toxic Substances Control; formerly known as Abandoned Site Program Information System(ASPIS); March 03, 1994.

	, ·		

APPENDIX A SITE PHOTOGRAPHS



Photograph No. 1

Front view of Building "A" from the main parking lot.

Photograph No. 2 $\label{eq:side_side} \mbox{Side view of Building "A" from the adjacent parking lot.}$

Photograph No. 3
Rear view of Building "A".

Photograph No. 4
Interior view of the Payless Drug Store.

Photograph No. 5
Front view of Building "B" from the main parking lot.

Photograph No. 6
Rear view of Building "B".

Photograph No. 7
Interior view of the Round Table Pizza premises.

Photograph No. 8

View of the dry-

View of the drycleaning machine at Classic Cleaners.

Photograph No. 9
Interior view of the Baskin-Robbins premises.

Photograph No. 10 Interior view of the Presto Prints premises.

Photograph No. 11
Interior view of the Hair Studio premises.

Photograph No. 12

Front view of Building "C" from the main parking lot.

Photograph No. 13

Rear view of Building "C" from the nearby railway bridge.

Photograph No. 14

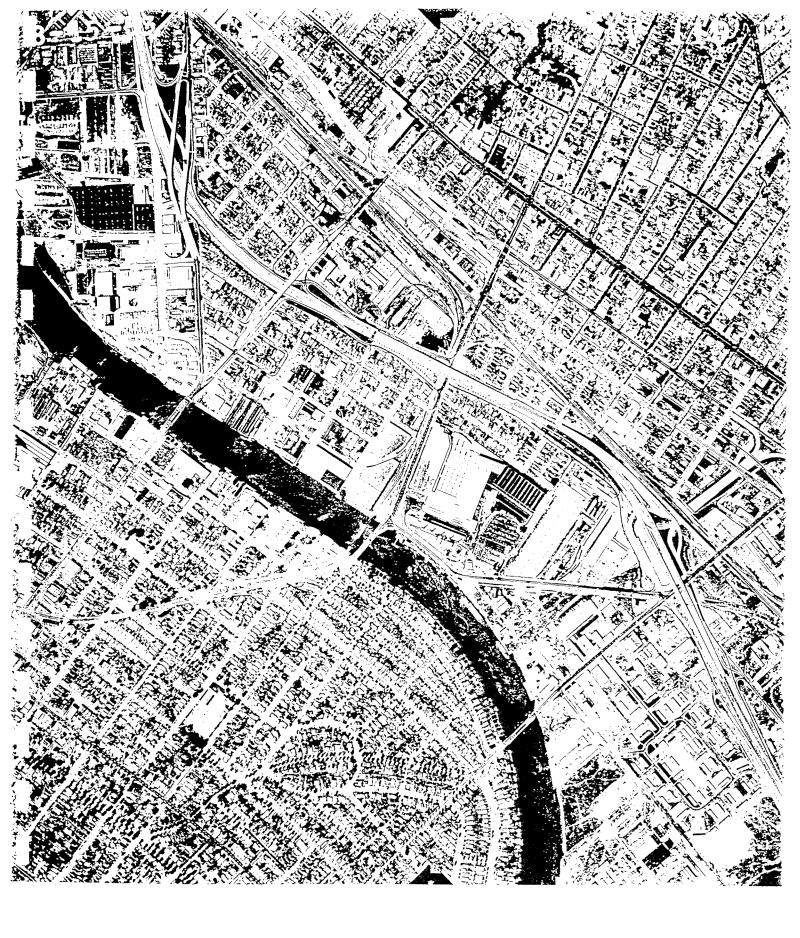
View of the rear loading/unloading ramp of Luckys.

Photograph No. 15

View of rear second-floor storage room of Luckys.

Photograph No. 16
Interior view of main food hall of Luckys.

Photograph No. 17


View of vinyl floor tiles in the main food hall of Luckys.

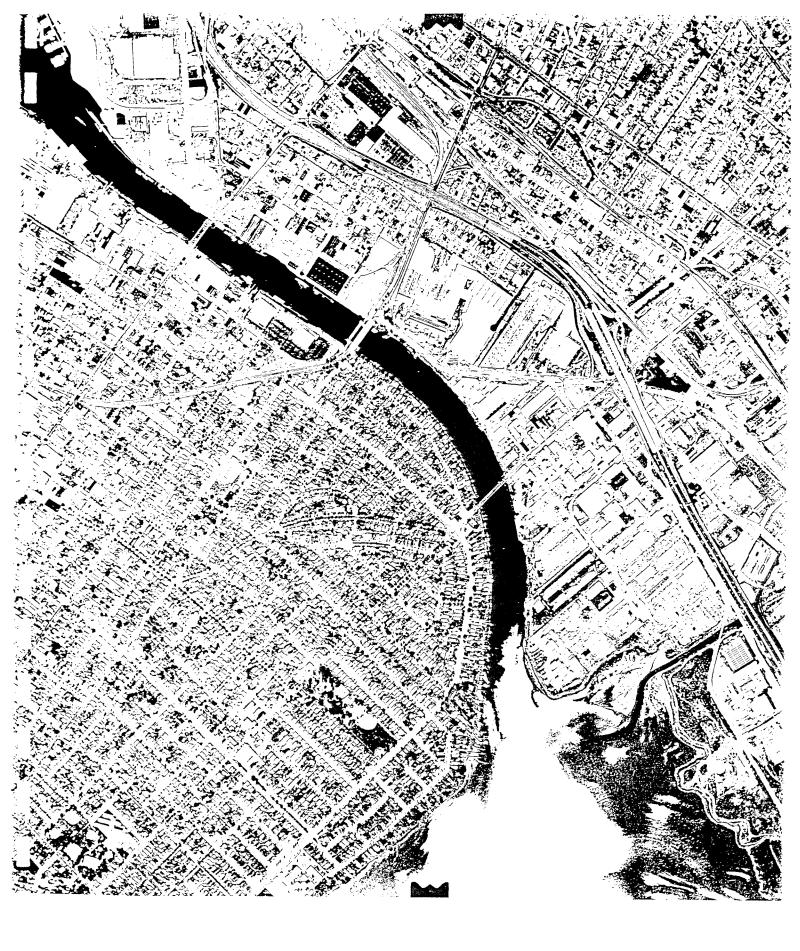
Photograph No. 18 Interior view of the E-Z Liquor premises.

		·

APPENDIX B HISTORICAL AERIAL PHOTOGRAPHS

AERIAL PHOTOGRAPH #AV-119-21-32
August 17, 1953

AERIAL PHOTOGRAPH #AV-550-12-30


July 26, 1963

AERIAL PHOTOGRAPH #AV-1193-06-45 May 19, 1973

AERIAL PHOTOGRAPH #AV-2640-06-49
May 15, 1983

AERIAL PHOTOGRAPH #AV-4230-19-45

June 17, 1992

	,	

APPENDIX C LABORATORY ANALYSES OF ASBESTOS SAMPLES BY AMER LABS, WITH CHAIN-OF-CUSTODY DOCUMENTATION

NVLAP*

Polarized Light Microscopy Asbestos Analytical Report

E2C, Inc.

1220 Crossman Ave., Ste. 200

Sunnyvale, CA 94089

Attn: Dale Duley

Date Received: 06/24/94 Date Analyzed: 06/27/94

Date Reported: 06/28/94

AMER No: A4062404-10

SAMPLE INFORMATION

Project:	# 6430100			
Client Sample ID:	AS-1	AS-2	AS-3	AS-4
AMER Sample ID:	A4062404	A4062405	A062406	A4062407
Description:	Floor Tile	Floor Tile	Floor Tile	Floor Tile
Sample Color:	Brown	Beige	Yellow	Off White
Sample Homogeous?	Yes	Yes	Yes	Yes
Sample Layered?	No	No	No	No

ASBESTOS CONTENT

Chrysotile %				
Amosite %				
Crocidolite %				
Tremolite %				
Total Asb. %	ND	ND	ND	ND

NON-ASBESTOS FIBROUS MATERIALS

Cellulose %		·
Fiber Glass %		
Synthetic Fiber %		

NON-FIBROUS MATERIALS

or Components Sand	d & Binder	Sand & Binder	Sand & Binder	Sand & Binder
Total Sample	100	100	100	100
arks:	100	100	100	

^{**} None Detected: Asbestos is not detected based on the PLM method described below, but the sample may contain more than 0.1% asbestos, which is considered to be positive according to the California Code of Regulation, "Title 8. Section 341.6 et seg."

Analysis by polarized light microscope per EPA Interim Method, 1984. This QA report only relates to this item tested.

Reviewed by:

Hang Kawayah:

Harry Kawayoshi

AMER

Advanced Materials Engineering Research, Inc.

NVLAP*

Polarized Light Microscopy Asbestos Analytical Report

E2C, Inc.

1220 Crossman Ave., Ste. 200

Sunnyvale, CA 94089

Attn: Dale Duley

Date Received: 06/24/94 Date Analyzed: 06/27/94

Date Reported: 06/28/94

AMER No: A4062404-10

SAMPLE INFORMATION

Project:	# 6430100			
Client Sample ID	AS-5 .	AS-6	AS-7	
AMER Sample ID	A4062408	A4062409	A4062410	
Description:	Floor Tile	Floor Tile	Floor Tile	
Samples Color:	Off White	Orange	Beige	
Sample Homogeous?	Yes	Yes	Yes	
Sample Layered?	No	No	No	

ASBESTOS CONTENT

Chrysotile %				
Amosite %				
Crocidolite %				
Tremolite %				
Total Asb. %	ND	ND	ND	

NON-ASBESTOS FIBROUS MATERIALS

Cellulose %	3	·
Fiber Glass %		
Synthetic Fiber %		

NON-FIBROUS MATERIALS

Major Components	Sand & Binder	Sand & Binder	Sand & Binder							
% of Total Sample	97	100	100							

Remarks:

Analysis by polarized light microscope per EPA Interim Method, 1984. This QA report only relates to this item tested.

Reviewed by: Hary Kawaysh:

Harry Kawayoshi

^{*} None Detected: Asbestos is not detected based on the PLM method described below, but the sample may contain more than 0.1% asbestos, which is considered to be positive according to the California Code of Regulation, "Title 8. Section 341.6 et seg."

LABORATOR				********	- X	*************		CIIA	IN OF CU										E ₂ C, Inc. Suite 20	./1220 (00/Sunt	Crossman Avenue lyvale, CA 94089 k: (408) 745-1089
Turnaround Project No.	i ime:	T							J	ов но	o	6	7 =	50.	10	0		Alle	ntion: (ALE	H, DULEY
					Addres		c/	· - C- +			<u> </u>		I	T	T	Anal	yses Re	ses Requested '		Per RWQCB Guidelines	
Sampler: (signature) Sampler: (signature) Company Company Company					No. of Con-	+ BTEX*	Diesel •	109/0	.0/624	809/0	\$29/0	0/602	Grease	reaso /ater	705						
Sample No.	Date	Tie	- 1	Soil	Waler			of Sample	Plastic	TPH 11 Cas	TPH & Diesel	EPA 3010/601	EPA \$240/624	EPA 30	EPA 82	EPA \$020/602	Oil and Grease 5520* Soil	Oil and (\$\$20° v	1585		Remarks
A5-1	6-22	A	M			Fran	t of	Luckys							 -				\overrightarrow{X}		
- <u>2</u> - 3						Fron 22	t of	Luckys Luckys Luckys Payless Payless estin-Robbin ir Studio													
-4						From	+ .f	Payless													
- 6						Rear	of B	shin-Robbin	(5					<u>.</u>							
- 7	V		V			Pear	of Ha	ir Studio	_ \					•					V		
Relinquished by: (signature) Date Time Received by: (signature) 24/11:104		nature)	re) Compa				1	y The following MUST be completed by the laboratory accepting samples for analysis:													
Relinquished by: (signature) Date Time Received by: (signature)		neture)		Company 1) Have all samples received been stored on ice? 2) Did any VOA samples received have any head space																	
Relinquished by: (s	ignature)					Date	Time	Received for LAB	ORATORY by:	(signat	urc)										d packaged

APPENDIX D

PREVIOUS ENVIRONMENTAL SITE INVESTIGATIONS

- 1) SUPPLEMENTAL FOUNDATION INVESTIGATION, OCTOBER 27, 1987
- 2) PRELIMINARY SOIL TESTING PROGRAM, DECEMBER 2, 1994
- 3) ADDITIONAL SOIL TESTING AND PRELIMINARY INVESTIGATION OF GROUNDWATER QUALITY, JUNE 29, 1994
- 4) SUMMARY OF CONTAMINATION STATUS, AUGUST 9, 1990

Peter Kaldveer and Associates, Inc.

Geotechnical Consultants

425 ROLAND WAY, OAKLAND, CALIFORNIA 94621, \$15/568-4001

President

Richard Short, P.E.

Executive Vice President

Ponald Bajunlami, P.E. Vice President Engineering

Patrick Stevens, P.E. Associate

Peler Kaldveer, P.E.

Michael McRan, PE.

Dawn Rinaldi, P.E.
John North, P.E.

October 27, 1987 K998-1, 10433

American Stores Propertiers, Inc. c/o FFKR Architects and Planners 132 Pierport Avenue, Suite 200 Salt Lake City, Utah 84101

JUN - 9 1994

Attention: Mr. Jeff Fisher

RE: SUPPLEMENTAL FOUNDATION INVESTIGATION ALPHA BETA MARKET EXPANSION ALAMEDA, CALIFORNIA

Gentlemen:

In accordance with your request, we have performed a supplemental foundation investigation for the proposed expansion of the Alpha Beta The accompanying report presents the results of our field Market. investigation, laboratory tests, and engineering analysis. The soil and foundation conditions are discussed and recommendations for the soil and foundation engineering aspects of the project are presented. conclusions and recommendations contained herein are based applicable standards of our profession at the time this report has been Copies of this report are furnished only to provide the factual data which were gathered and which were summarized in the report.

We refer you to the text of the report for detailed recommendations. If you have any questions concerning our findings, please call us.

PROFESSIONAL

OL BAILLA

EXPIRES
12-31-89

TO TECHNICA

OF CALIFORNIA

OF CALIFOR

RLB:pv Copies: Addressee (6) Very truly yours,

PETER KALDVEER AND ASSOC., INC.

Ronald L. Bajuniemi Vice President Engineering

SUPPLEMENTAL FOUNDATION INVESTIGATION

For ALPHA BETA MARKET EXPANSION ALAMEDA, CALIFORNIA

To American Stores Propertiers, Inc. c/o FFKR Architects and Planners 132 Pierport Avenue, Suite 200 Salt Lake City, Utah 84101

October 1987

TABLE OF CONTENTS

	Page No.
Letter of Transmittal	
TITLE PAGE	
TABLE OF CONTENTS	
INTRODUCTION	1
SCOPE	1
SITE INVESTIGATION A. Surface B. Subsurface C. Groundwater D. Geology and Seismicity	2 2 2 3 3
CONCLUSIONS AND RECOMMENDATIONS A. Earthwork 1. Clearing and Site Preparation 2. Subgrade Preparation 3. Material for Fill 4. Compaction 5. Trench Backfill 6. Drainage 7. Construction During Wet Weather Conditions 8. Guide Specifications B. Foundations 1. Footings 2. Interior Slabs-on-Grade 3. Lateral Loads C. Construction Observation	3 4 4 4 4 5 5 5 5 6 6 6
FIGURE 1 - SITE PLAN	
APPENDIX A - FIELD INVESTIGATION Figure A-1, Key to Exploratory Boring Logs Exploratory Boring Logs (1 through 5)	A-1
APPENDIX B - LABORATORY INVESTIGATION Figure B-1, Plasticity Chart and Data Figure B-2, Gradation Test Data	B-1
APPENDIX C - GUIDE SPECIFICATIONS - SITE EARTHWORK	C-1

SUPPLEMENTAL FOUNDATION INVESTIGATION FOR ALPHA BETA MARKET EXPANSION ALAMEDA, CALIFORNIA

INTRODUCTION

In this report, we present the results of our foundation investigation for the proposed expansion of the existing Alpha Beta Market located within the shopping center northeast of the intersection of Blanding Avenue and Broadway in Alameda, California, as shown on the Site Plan, Figure 1. The purpose of our investigation was to evaluate the foundation soils and provide recommendations concerning the soil and foundation engineering aspects of the project.

Our firm previously performed a foundation investigation for the existing shopping center and the results of our study were presented in our report titled "Foundation Investigation, Shopping Center, Alameda, California", dated May 4, 1972. In addition, our firm performed construction observation and testing services at the shopping center.

Based on the information indicated on the Site Plan as well as on our conversations with Mr. Dave Gilles, with FFKR Architects and Planners, it is our understanding that the expansion will be located on the southeast side of the existing Alpha Beta Market. The expansion will be of similar construction as the existing store and will have plan dimensions of approximately 70 by 150 feet. Building loads will be typical for this type of structure. Minimum grading will be required to develop the site for the subject project.

SCOPE

The scope of work performed in this investigation included a review of our previous work at the site, a site reconnaissance, subsurface exploration, laboratory testing, engineering analyses of the field and laboratory data and the preparation of this report. The data obtained and the analyses performed were for the purpose of providing design and construction criteria for site earthwork, building foundations, slab-on-grade floors, and lateral load resistance.

This report has been prepared for the exclusive use of American Stores Properties, Incorporated and their consultants for specific application to the proposed expansion of the existing Alpha Beta Market in accordance with generally accepted soil and foundation engineering practices. In the event that there are any changes in the nature, design or location of the building addition or if any future additions are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing.

:

SITE INVESTIGATION

A subsurface investigation was performed using a truck-mounted, 6-inch diameter continuous flight and a 7-inch diameter hollow stem auger to investigate and sample the subsurface soils. Five exploratory borings were drilled on October 13, 1987, to a maximum depth of 20½ feet. In addition, we have previously drilled thirteen exploratory borings at the shopping center on April 10 and 12, 1972 to a maximum depth of 24 feet. The approximate locations of the borings drilled for the present investigation and five of the thirteen previous borings are shown on the Site Plan, Figure 1. Logs of the borings and details regarding the field investigation are included in Appendix A, and the results of our laboratory tests are discussed in Appendix B.

A. Surface

The site for the proposed expansion is rectangular in shape, essentially level and has maximum plan dimensions of approximately 70 by 150 feet. At the time of our field investigation, the majority of the site was covered with pavement consisting of approximately 1} to 2 inches of asphaltic concrete over 6 to 8 inches of baserock. In addition, a concrete sidewalk and ramp was adjacent to the southeast side of the existing market. At the northern corner of the proposed new addition there was a transformer pad with high voltage electric lines. These electric lines and an additional gas line ran along the southeast side of the existing market. Other utility lines existed under the proposed new expansion area. Vegetation consisted of a planter area with a medium sized tree at the southern corner of the site.

B. Subsurface

The surface soils encountered in our exploratory borings generally consist of a fill material consisting of stiff to very stiff black sandy clay and medium dense clayey sand extending to depths of 2½ to 7 feet. However, in Boring 4 we encountered soft silty sandy clay within the first 2 feet. The surface clays display a low plasticity and a low expansion potential. Underlying the fill materials were stiff sandy and silty clays over medium dense to very dense clayey and silty sands which extended to the maximum depth explored of 20½ feet. It should be noted that in Boring 5 at depths of approximately 4 to 7 feet a strong gasoline odor was detected. Detailed descriptions of the soils encountered in each of the exploratory borings are presented in Appendix A.

The attached boring logs and related information depict subsurface conditions only at the specific locations shown on the Site Plan and on the particular date designated on the logs. Also, the passage of time may result in changes in the subsurface conditions due to environmental changes. The locations of the borings were approximately determined by pacing and should be considered accurate only to the degree implied by the method used.

C. Groundwater

Free groundwater was encountered in all five borings at depths of 9½ to 14 feet at the time of drilling. Borings 2, 3 and 4 were left open for periods of a½ to 1 hour at which time groundwater was measured at depths of 10 to 14 feet. All other borings were backfilled immediately after drilling. It should be noted that the borings may not have been left open for a sufficient period of time to establish equilibrium groundwater conditions. In addition, fluctuations in the groundwater level could occur due to change in seasons, variations in rainfall, and other factors.

D. Geology and Seismicity

The site is underlain by artificial fill consisting largely of Merritt Sand dredged from the bay along the shore of Alameda. Underlying the fills are the Merritt Sands.

The San Francisco Bay Area is located in one of the most seismically active regions in the United States. Significant earthquakes that have occurred in the Bay Area are believed to be associated with crustal movements along a system of subparallel fault zones that generally trend in a northwesterly direction. The site is located approximately 15 miles northeast and 31 miles southwest, respectively, of the active San Andreas and Hayward fault zones.

Earthquake intensities vary throughout the Bay Area, depending upon the magnitude of earthquake, the distance of the site from the causative fault, and the type of materials underlying the site. Nevertheless, the site will be subjected to at least one moderate to severe earthquake that will cause strong ground shaking. However, during such an earthquake, the hazard associated with surface ground rupture is considered to be low.

CONCLUSIONS AND RECOMMENDATIONS

From a soil and foundation engineering standpoint, it is our opinion that the site is suitable for the proposed development. However, all of the conclusions and recommendations presented in this report should be incorporated in the design and construction of the project to avoid possible soil and foundation problems. Detailed earthwork and foundation recommendations for use in design and construction of the project are presented below.

We recommend that our firm be provided the opportunity for a general review of the final design and specifications in order that the earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications. If our firm is not accorded the privilege of making this recommended review, we can assume no responsibility for misinterpretation of our recommendations.

1

A. Earthwork

1. Clearing and Site Preparation

The site should be cleared of all obstructions including the asphaltic concrete pavements, concrete sidewalk and ramp and the associated baserock, designated underground utility lines, tree and associated root system and debris. The removed asphaltic concrete can be used as fill material provided it is broken up to meet the size requirements presented under Item A.3, "Material for Fill". Holes resulting from the removal of underground obstructions that extend below the proposed finish grade should be cleared and backfilled with suitable material compacted to the requirements given below under Item A.4, "Compaction". We recommend that the backfilling operations for any excavations to remove deleterious material be carried out under the observation of the soil engineer, so that these excavations will be properly backfilled.

2. Subgrade Preparation

After the site has been properly cleared and any necessary excavations made, the exposed soils in those areas to receive structural fill or slabs-on-grade should be scarified to a depth of 6 inches, moisture conditioned to slightly above optimum water content and compacted to the requirements for structural fill.

3. Material for Fill

All on-site soils below the stripped layer and having an organic content of less than 3 percent by volume can be used as fill. However, all fill placed at the site including on-site soils should not contain rocks or lumps larger than 6 inches in greatest dimension with not more than 15 percent larger than 2.5 inches. In addition, any required import fill should be predominantly granular with a plasticity index of 12 or less.

4. Compaction

All structural fill less than 5 feet thick should be compacted to at least 90 percent relative compaction as determined by ASTM Test Designation D1557-78. Structural fill greater than 5 feet deep should be compacted to at least 95 percent relative compaction. Fill material should be spread and compacted in lifts not exceeding 8 inches in uncompacted thickness.

5. Trench Backfill

Pipeline trenches should be backfilled with fill placed in lifts of approximately 8 inches in uncompacted thickness. However, thicker lifts may be used provided the method of compaction is approved by the soil engineer and the required minimum degree of compaction is achieved. If on-site soil is used, the material should be compacted to at least 85 percent relative compaction by mechanical means only. Imported sand can also be used for backfilling trenches provided it is compacted to at least 90 percent relative compaction. If imported sand is used, sufficient water

should be added during the trench backfilling operations to prevent the soil from "bulking" during compaction. In slab areas, the upper 3 feet of trench backfill should be compacted to at least 90 percent relative compaction for on-site soils, and 95 percent where imported sand backfill is used.

6. Drainage

Positive surface gradients should be provided adjacent to the building so as to direct surface water away from foundations and slabs toward suitable discharge facilities. In addition, ponding of surface water should not be allowed adjacent to the structure.

7. Construction During Wet Weather Conditions

If construction proceeds during or shortly after wet weather conditions, the moisture content of the on-site soils may be appreciably above optimum. Consequently, subgrade preparation, placement and/or reworking of on-site soil as structural fill may not be possible. Alternative wet weather construction recommendations will be provided by the soil engineer in the field at the time of construction, if appropriate.

8. Guide Specifications

All earthwork should be performed in accordance with the Guide Specifications - Site Earthwork presented in Appendix C. It should be pointed out, however, that these specifications are only general in nature and the actual job specifications should also incorporate all requirements contained in this report.

B. Foundations

1. Footings

We recommend that the Alpha Beta Market expansion be supported on conventional continuous and isolated spread footings bearing on either undisturbed existing fills or new compacted fills. All footings should be founded at least 18 inches below lowest adjacent finished grade. However, where pockets of weak soft clay fills are encountered, such as in Exploratory Boring 4 at the northern corner of the proposed expansion, the footings should extend through these weak soils to competent materials. Footings adjacent the existing building should be founded at the same depth as the existing footings. The exact depth should be determined by the soil engineer in the field at the time of construction. In addition, footings located adjacent to other footings or utility trenches should have their bearing surfaces situated below an imaginary 1.5 horizontal to 1 vertical plane projected upward from the bottom edge of the adjacent footings or utility trench.

At the above depths, the footings can be designed for an allowable bearing pressure of 2000 pounds per square foot due to dead loads, 3000 pounds per square foot due to dead plus live loads and 4000 pounds per square

foot for all loads including wind or seismic. These allowable bearing pressures are net values; therefore, the weight of the footing can be neglected for design purposes. Footings should not, however, have a width of less than 12 inches.

All continuous footings should be designed with adequate top and bottom reinforcement to provide structural continuity and permit spanning of local irregularities. Any visible cracks in the bottoms of the footing excavations should be closed by wetting prior to construction of the foundations. To assure that footings are founded on appropriate material, we recommend that we observe the footing excavations prior to placing reinforcing steel or concrete.

Settlements under building loads are expected to be within tolerable limits for the proposed addition.

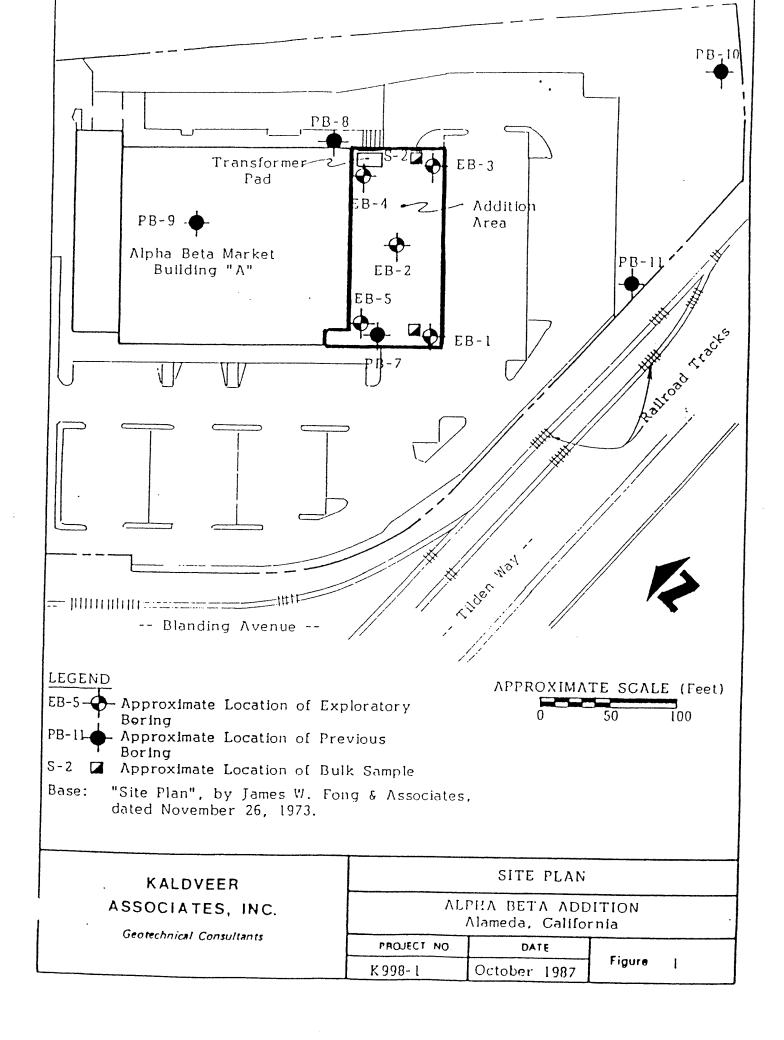
2. Interior Slabs-on-Grade

Interior slabs-on-grade can be supported directly on the properly prepared subgrade as previously described under Item $\Lambda.2$, "Subgrade Preparation". Prior to final construction of the slab, the subgrade surface should be proof-rolled to provide a smooth, firm surface for slab support. In addition, slab reinforcing should be provided in accordance with the anticipated use and loading of the slab.

In areas where floor wetness would be undesirable, a moisture barrier and/or capillary break should be provided between the slab and subgrade. If a moisture barrier is required, we recommend it consist of 4 inches of free draining gravel covered with an impermeable membrane placed between the subgrade soil and the slab. The membrane should be covered with 2 inches of sand to protect it during construction, and the sand should be lightly moistened just prior to placing the concrete. Alternatively, a capillary break can be provided by using 6 inches of free draining gravel to avoid floor wetness.

Lateral Loads

Lateral load resistance for the building and walls can be developed in friction between the foundation bottom and the supporting subgrade. A friction coefficient of 0.35 is considered applicable. As an alternative, a passive resistance equal to an equivalent fluid weighing 350 pounds per cubic foot acting against the foundations may be used. If the foundations are poured neat against the soil, friction and passive resistance can be used in combination.


C. Construction Observation

The analysis and recommendations submitted in this report are based partly upon the data obtained from the current five soil borings and partly from the thirteen soil borings from our previous report for the shopping center in 1972. The nature and extent of variations between the borings may not become evident until construction. If variations then become

apparent, it will be necessary to re-evaluate the recommendations of this report.

We recommend that our firm be retained to provide soil engineering services during the excavation and foundation construction phases of the work. This is to observe compliance with the design concepts, specifications and recommendations and to allow design changes in the event that subsurface conditions differ from that anticipated prior to the start of construction.

* * * * * * * * * * * * * * * * *

APPENDIX A - FIELD INVESTIGATION

The field investigation consisted of a surface reconnaissance and a subsurface exploration program using a truck-mounted, continuous flight and hollw stem augers. Five 7-inch diameter exploratory borings were drilled on October 13, 1987, to a maximum depth of $20\frac{1}{2}$ feet. The locations of the exploratory borings are shown on the Site Plan, Figure 1. The soils encountered in the borings were continuously logged in the field by our representative. The soils are described in accordance with the Unified Soil Classification System (ASTM D-2487). The logs of the borings as well as a key for the classification of the soil (Figure A-1) are included as part of this appendix.

Representative soil samples were obtained from the exploratory borings at selected depths appropriate to the soil investigation. Undisturbed samples were obtained using a 3-inch O.D. Modified California sampler and disturbed samples were obtained using the 2-inch O.D. split spoon sampler. All samples were transmitted to our laboratory for evaluation and appropriate testing. Both sampler types are indicated in the "Sampler" column of the boring logs as designated below:

Modified California

Resistance blow counts were obtained with the samplers by dropping a 140-pound hammer through a 30-inch free fall. The sampler was driven 18 inches, and the number of blows were recorded for each 6 inches of The blows per foot recorded on the boring logs represent the accumulated number of blows that were required to drive the last 12 When the split spoon sampler was used, these blow counts are the standard penetration resistance values. However, due to the larger diameter of the Modified California sampler, the blow counts recorded for sampler are not standard penetration resistance Consequently, these values are followed by an asterisk (*) on the boring In order to convert these values to standard penetration resistance values, the indicated blow counts should be multiplied by a factor of 0.56.

The attached boring logs and related information show our interpretation of the subsurface conditions at the dates and locations indicated, and it is not warranted that they are representative of subsurface conditions at other locations and times.

	Pr	MINIANT DIVISION	4.5	SYMBOL	3000140411 0141310143
		GRAVELS	CLEAN GRAVELS	GW	Well graded gravels gravel-sand mixtures little or no fines
SOILS	MA TERIAL). 200	MORE THAN HALF OF COARSE	(LESS THAN 5% FINES)	GP	Poorly graded gravels or gravel-sand mixtures little or no lines
	¥	FRACTION IS	GRAVEL	GM	Silty gravels gravel-sand-silt mixtures non-plastic fines
GRAINED	· ·	LARGER THAN	FINES	GC	Clayey gravels gravel-kand-clay mixtures plastic fines
PRSE THAN APGE	T -	SANDS	CLEAN SANDS	sw	Well graded sands gravelly sands little or no fines
	THA APG	MORE THAN HALF OF COARSE	(LESS THAN 5% FINES)	SP	Poorly graded sands or gravelly sands little or no lines
8	MORE IS L	FRACTION IS SMALLER THAN	SANDS WITH	SM	Silty sands, sand-silt mixtures, non-plastic fines
	ž	NO 4 SIEVE	FINES	s c	Clayey sands, sand-clay mixtures, plastic fines
ഗ	OF LER SIZE	SILTS AND	CLAYS	ML	Inorganic silts and very fine sands rock flour silty or clayey fine sands or clayey silts with slight plasticity
SOILS	HALF OF SMALLER SIEVE SI	LIQUID LIM	LIQUID LIMIT IS		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
Ë	- 1	LESS THAN	50%	οι	Organic silts and organic silty clays of low plasticity
₽ F	4 0 1	SILTS AND	CLAYS	МН	Inorganic silts micaceous or diatomaceous fine sandy or silty soils, elastic silts
FINE GRAINED	MORE TH MATERIAL HAN NO 2	LIQUID LIM	IT IS	СН	Inorganic clays of high plasticity, fat clays,
i.	MAT THAN	GREATER TH	N 50%	он	Organic clays of medium to high plasticity, organic silts.
	HI	GHLY ORGANIC SOIL	S	Pt	Peat and other highly organic soils

DEFINITION OF TERMS

	U.S. S	CLEAR SOUARE SIEVE OPENINGS					
	100 4	10 10	0	4 з	/4" ;	3" 1	2"
SILTS AND CLAYS		SAND			VEL	CORRIEC	BOULDERS
SICIS AND CENTS	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLES	boowens

GRAIN SIZES

SANDS AND GRAVELS	BLOWS/FOOT 1	SILTS
VERY LOOSE	0 - 4	∨E
LOOSE	4 - 10	
MEDIUM DENSE	10 - 30	•
DENSE	30 - 50	∨€
VERY DENSE	OVER 50	

STRENGTH *	BLOWS/FOOT
0 - 1/4	0 - 2
1/4 - 1/2	2 - 4
1/2 - 1	4 - 8
1 - 2	8 - 16
2 - 4	16 - 32
OVER 4	OVER 32
	0 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4

RELATIVE DENSITY

CONSISTENCY

Number of blows of 140 pound hammer falling 30 inches to drive a 2 in to 0.0 (1-3.78 inch 1.0.) solit spoor (ASTM D-1586)

 $^{\frac{1}{2}}$ Unconfined compressive strength in tons/sq ft as determined by laboratory testing or approximated by the standard penetration test (ASTM D=1586), pocket penetrometer, torvane, or visual observation

PETER KALDVEER
AND ASSOCIATES, INC.

Geotechnical Consultants

KEY TO EXPLORATORY BORING LOGS
Unified Soil Classification System (ASTM D-2487)

PROJECT NO	DATE		ř:		
K 998-1	October	1987	Figure	A - I	

DAILL AIG Hollow Stem Auger	SUPFACE	ELEVATION					LOGGED BY BK		
DEPTH TO GROUNDWATER91' (see note 3)	BORING C	DIAMETER	7 In	ches	DA	DATE DRILLED 10/13			/87
DESCRIPTION AND CLASSIFIC	CATION			DEPTH	1 E M	3/FT)	76.8 M7 (*.)	ENSITY 1	FinEO ESSIVE MGFH
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	(FEET)	T L	(BL Ows/	WATER CONTENT	DAY DENSITY (PCF)	COMPO COMPA STACK
2" AC over 8" Baserock									<u> </u>
SAND (fine-coarse grained), clayey, trace of gravel (fine grained) Passing #200 Sieve = 41%	black brown	medium dense	SC	2 -	2	5	13		
CLAY, silty, sandy (fine-medlum grained)	black	very stiff	CL	- 3 -					
(FILL) 1 SAND (fine-medium grained), clayey	light tan	medium dense	SC	4 -	1		15		
CLAY, sandy (fine-medium grained) Passing #200 Sieve = 60%	tan	stiff	CL	- 5 - 6 - - 7 -		2			
SAND (fine-medium grained), clayey	tan	medlum dense	SC SM	- 8 -		-	又	•	
(grading silty) Passing #200 Sieve = 30% Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values marked with an asterisk (*) see first page, Appendix A. 3. Groundwater level was measured at 9½ feet at time of drilling	•	dense		- 10 - X	45		1		
Bottom of Boring = 20½ Feet		very dense		-20	75	2	1		
DETER VALOUEER		EXF	LORA	TORY B	ORIN	GL	OG		
PETER KALDVEER AND ASSOCIATES, INC.		VΪ		BETA . eda, Ca					
Geotechnical Consultants	PRO	PROJECT NO.			11101				
	K	998-1	Oct	ober 19	BORING 87 NO. 1				

DAILL AIG Fiollow Stem Auger	SURFACE	ELEVATION			rocc	LOGGED BY BK			
DEPTH TO GROUNDWATER [0] (see note 3)	BORING D	IAMETER	7 In	ches	DATE DRILLED 10/13/8			3/87	
DESCRIPTION AND CLASSIFIC	CATION	.	·	DEPTH	PENETRATION AESISTANCE	TER Nf (*.)	6 x S 1 7 7	MCOMFINED During SSIVE STAR MGTH IASSI	
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	(FEET)	PENETRAT RESISTAN	WATER	DAY DENSI	COMPRES STRENGS STRENGS	
2" AC over 8" Baserock								† — — i	
CLAY, silty, some sand (fine- medium grained)	black	still	CL	- 2 -	9	20			
(grading sandy fine-medium grained)				3 -	25*	17	109	2.1	
(FILL) SAND (fine-medium grained), clayey Passing #200 Sieve = 47%	light tan	medium dense	SC	5 -	25*	14			
·				- 6 - - 7 - - 8 -			, ,		
SAND (fine-medium grained), silty Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values marked with an asterisk (*) see first page, Appendix A. Groundwater level was measured at 9½ feet at time of drilling. One hour after drilling, groundwater level was measured at 10½ feet. Bottom of Boring = 15½ Feet	tan	medium dense	SM	- 10 - 11 - 12 - 13 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	56	21			
			-	- 20					
PETER KALDVEER AND ASSOCIATES, INC.		٨L	РΗΛ	TORY BO	\DDIT	ION			
Geolechnical Consultants	<u>}</u>	JECT NO. 98-1	October 1987 No. 2						

	омицим iiollow Stem Auger	SURFACE	ELEVATION				LOGGED BY BK			
	DEPTH TO GROUNDWATER [1] (see note 3)	BORING D	IAMETER	7 Ir	nches	DATE	DRILLED	, 10/1	3/87	
	DESCRIPTION AND CLASSIFIC	CATION			DEPTH.	TANCE TANCE	3/8T)	MS1TY 1	SSIVE	
	DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	(FEET)	SEE SEE	WATER	ORY DENS	S TALLS	
	lł" AC over 6" Baserock									
r 1 1 Q H	CLAY, silty, sandy (fine-medium medium grained) Liquid Limit = 25% Plasticity Index = 14% Passing #200 Sieve = 50% (FILL) CLAY, sandy (fine-medium grained) Passing #200 Sieve = 57% Passing #200 Sieve = 76% grading less sandy)	black blue grey	very stiff	CL- SC	2 - 3 5 6 6	18				
N 1 so b til 2 til ai A 3. st in	AND (fine-medium grained), silty otes: The stratification lines represent the approximate boundaries etween soil types and the transion may be gradual. For an explanation of penetraon resistance values marked with a csterisk (*) see first page, ppendix A. Groundwater level was meaured at 9½ feet at time of drilling. After drilling, groundwater vel was measured at 11 feet.	blue grey tan	medium	SM .	- 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15	20	21			
В	ottom of Boring = 15½ Feet				16 -					
	PETER KALDVEER AND ASSOCIATES, INC.		EXPLORATORY BORING LOG ALPHA BETA ADDITION Alameda, California							
	Geotechnical Consultants		JECT NO. 98-1		DATE tober 19	В	ORING			

:

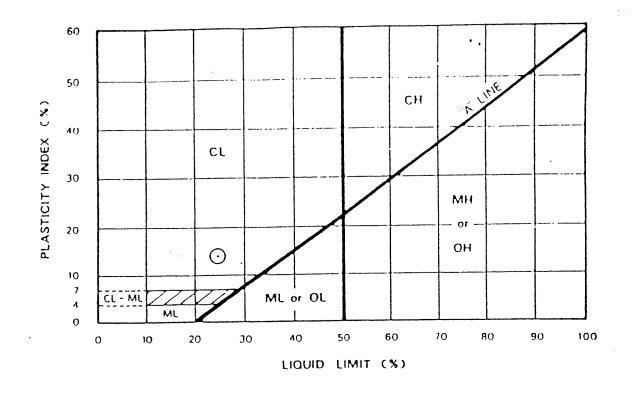
DAILL AIG Hollow Stem Auger	SURFACE	ELEVATION			ιο	LOGGED BY BK			
DEPTH TO GROUNDWATER[4" (see note 3)	BORING D	IAMETER	7 In	iches			AILLED	10/13	/87
DESCRIPTION AND CLASSIFIC	CATION			DEPTH.	SAMPLER HETRATION	AESISTANCE (BLOWS/FT)	TEN THE CALL	E + S T	45 1460 45 51 VE 45 51 VE 45 51 VE
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	IFEET)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A£ 315	WATER	ORY DENSI	0040 0000 0000 0000 0000
2" AC over 8" Baserock									1
CLAY, silty, sandy (fine-medium grained)	black	soft	CL	2 -		4	25		
		stiff		3 -	1	4	18		
(grading very sandy fine-medium grained) Passing #200 Sieve = 56% (FILL)	grey		CL- SC	-5 -	3	0*	15		
CLAY, sandy (fine-medium grained)	blue grey	stiff	CL- SC	7 -				.•	
SAND (fine-medium grained), clayey Passing #200 Sieve = 38%	light grey tan ,	medium dense	SC	- 10	2	6	15		
(grading silty)	tan		SM- SP	- 13 -	4(0	무		
Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values marked with an asterisk (*) see first page, Appendix A. 3. Groundwater level was measured at 14 feet at time of drilling.				- 16 - - 17 - - 18 - - 19 - - 20 -					
PETER KALDVEER AND ASSOCIATES, INC. Gentechnical Consultants		EXPLORATORY BORING LOG ALPHA BETA ADDITION Alameda, California							
Tanaca (Jordania)	L	NECT NO	Oc	DATE Clober l	987	4	ORING O. /	1	

DAILL AIG Hollow Stem Auger	SURFACE ELEVATION			rod	LOGGED BY BK				
DEPTH TO GROUNDWATER 12' (see note 3)	BORING D	IAMETER	7 In	iches	1	DATE DRILLED 10/13/87			/87
DESCRIPTION AND CLASSIFIC	CATION			DEPTH	SAMPLER	(BLOWS/FT)	TEA MT (*)	ORY DENSITY (PCF.)	SSIVE SSIVE
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	(FEET)	N N N N N N N N N N N N N N N N N N N		WATER COMFERT	\$ 5	UMCOMFINE COMPRESSIVE STRENGTH IN SE.
2" AC over 8" Baserock									:
SAND(fine-medium grained), silty	brown	inedium dense	SM	- 1 +	Н				
CLAY, silty, sandy (fine-medium grained)	black	stiff	CL	2] 13	3	21		
SAND (fine-medium grained), clayey (very strong gasoline odor) Passing #200 Sieve = 41%	black blue grey	medium dense	SC	3 -	2	1*	15		
recoming was bleve 710	9.07			5 -	17	7			
(FILL)				- 6 -					
SAND (fine-medium grained), silty	blue grey	medium dense	SM	- 8 -					
Passing #200 Sieve = 29% Notes: 1. The stratification lines repre-				- 10 -	22	?	18		
sent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetra-				- - 11 -					
tion resistance values marked with an asterisk (*) see first page, Appendix A.				- 12 -			¥	e e e e e e e e e e e e e e e e e e e	
3. Groundwater level was measured at 12 feet at time of drilling.				- 14				1	
ing.	tan	dense		- 15	44		22		
Bottom of Boring = 15½ Feet				- 16		1			
				- 17 -					
				- 18 -					
			F	19					
			-	- 20 -					
PETER KALDVEER		EXF	LOR/	ATORY E	ORIN	IG I	_0G		
AND ASSOCIATES, INC.		ΛΙ		BETA eda, Ca					
CHOICCHNICAL (ANSULTANTS	L	NECT NO 198-1	Oct	187	BORING 37 NO. 5				

APPENDIX B - LABORATORY INVESTIGATION

The Inboratory testing program was directed toward a quantitative and qualitative evaluation of the physical and mechanical properties of the soils underlying the site.

The natural water content was determined on twenty-two samples of the materials recovered from the borings in accordance with ASTM Test Designation D-2216. These water contents are recorded on the boring logs at the appropriate sample depths.


Dry density determinations were performed on one sample of the subsurface soils to evaluate their physical properties. The results of these tests are shown on the boring logs at the appropriate sample depths.

An Atterberg Limit determination was performed on one sample of the subsurface soils to determine the range of water content over which these materials exhibit plasticity. The Atterberg Limit was determined in accordance with ASTM Test Designations D-428 and D-424. These values are used to classify the soil in accordance with the Unified Soil Classification System and to indicate the soil's compressibility and expansion potentials. The results of this tests is presented on Figure B-1 and on the logs of the borings at the appropriate sample depths.

The percent passing the #200 sieve was determined on twelve samples of the subsurface soils to aid in the classification of these soils. These tests were performed in accordance with ASTM Test Designation D-1140. The results of these tests are shown on the boring logs at the appropriate sample depths.

Gradation tests were performed on three samples of the subsurface soils in accordance with California Test Method No. 202. These tests were performed to assist in the classification of the soils and to determine their grain size distribution. The results of these tests are presented on Figure B-2.

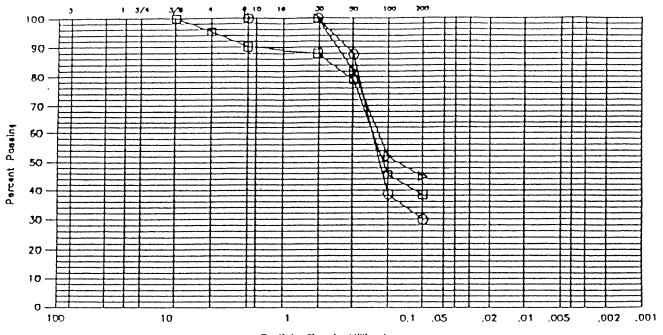
Unconfined compression tests were performed on one undisturbed sample of the clayey subsurface soils to evaluate the undrained shear strengths of these materials. The unconfined tests were performed in accordance with ASTM Test Designation D-2166 on samples having a diameter of 2.4 inches and a height-to-diameter ratio of at least two. Failure was taken as the peak normal stress. The results of these tests are presented on the boring logs at the appropriate sample depths.

				ATTE	RBERG L	IMITS		UNIFIED
KEY SYMBOL	BORING NO.	SAMPLE DEPTH	NATURAL WATER	FIONID	PLASTICITY INDEX	LIQUIDITY	PASSING NO. 200	SOIL CLASSIFICA
. STAIRUC	140.	(feet)	CONTENT	- %	7%	°a	SIEVE %	TION SYMBOL
. ①	S-2			25	14		50	CL

K 998- I

PE	TER	KAL	R		
AND	ASSC	CIA	TE	s,	INC.


Geotechnical Consultants


PLASTICITY CHART AND DATA ALPHA BETA ADDITION Alameda, California DATE PROJECT NO Figure B-1

October 1987

UNIFIED SOIL CLASSIFICATION SYSTEM

(ASTM 0 422-72)

Particle Size in Millimeters

gravel		₽and			
coarse	fine	C00F34	m <i>ed</i> i⊌m	fine	s∉R and clay

KEY Symbol	BORING NO.	SAMPLE DEPTH (I++1)	ELEV. (1001)	UNIFIED SOIL CLASSIFICATION SYMBOL	SAMPLE DESCRIPTION
0	1	10		SC	Tan Clayey SAND
U	4	10		SC	Grey Tan Clayey SAND
△	5	3 1		SC	Black Clayey SAND

PETER KALDVEER AND ASSOCIATES, INC.

Geotechnical Consultants

GRADATION TEST DATA

PROJECT NO.	DATE	F:
K 998-1	October 1987	Figure B-2

APPENDIX C GUIDE SPECIFICATIONS - SITE EARTHWORK FOR ALPHA BETA MARKET EXPANSION ALAMEDA, CALIFORNIA

1. GENERAL A. Scope of Work

These specifications and applicable plans pertain to and include all site earthwork including, but not limited to, the furnishing of all labor, tools, and equipment necessary for site clearing and stripping, disposal of excess materials, excavation, preparation of foundation materials for receiving fill, and placement and compaction of fill to the lines and grades shown on the project grading plans.

B. Performance

The Contractor warrants all work to be performed and all materials to be furnished under this contract against defects in materials or workmanship for a period of __years(s) from the date of written acceptance of the entire construction work by the Owner.

Upon written notice of any defect in materials or workmanship during said year period, the Contractor shall, at the option of the Owner, repair or replace said defect and any damage to other work caused by or resulting from such defect without cost to the Owner. This shall not limit any rights of the Owner under the "acceptance and inspection" clause of this contract.

The Contractor shall be responsible for the satisfactory completion of all site earthwork in accordance with the project plans and specifications. This work shall be observed and tested by a representative of Peter Kaldveer and Associates, Inc., hereinafter known as the Soil Engineer. Both the Soil Engineer and the Architect/Engineer are the Owner's representatives. If the Contractor should fail to meet the technical or design requirements embodied in this document and on the applicable plans, he shall make the necessary readjustments until all work is deemed satisfactory determined by the Soil Engineer 85 No deviation from the specifications shall be made Architect/Engineer. except upon written approval of the Soil Engineer or Architect/Engineer.

No site earthwork shall be performed without the physical presence or approval of the Soil Engineer. The Contractor shall notify the Soil Engineer at least twenty-four hours prior to commencement of any aspect of the site earthwork.

The Soil Engineer shall be the Owner's representative to observe the grading operations during the site preparation work and the placement and compaction of fills. He shall make enough visits to the site to familiarize himself generally with the progress and quality of the work. He shall make a sufficient number of tests and/or observations to enable him to

form an opinion regarding the adequacy of the site preparation, the acceptability of the fill material, and the extent to which the compaction of the fill, as placed, meets the specification requirements. Any fill that does not meet the specification requirements shall be removed and/or recompacted until the requirements are satisfied.

In accordance with generally accepted construction practices, the Contractor shall be solely and completely responsible for working conditions at the job site, including safety of all persons and property during performance of the work. This requirement shall apply continuously and shall not be limited to normal work hours.

Any construction review of the Contractor's performance conducted by the Soil Engineer is not intended to include review of the adequacy of the Contractor's safety measures in, on or near the construction site.

Upon completion of the construction work, the Contractor shall certify that all compacted fills and foundations are in place at the correct locations, have the correct dimensions, are plumb, and have been constructed in accordance with sound construction practice. In addition, he shall certify that the materials used are of the types, quantity and quality required by the plans and specifications.

C. Site and Foundation Conditions

The Contractor is presumed to have visited the site and to have familiarized himself with existing site conditions and the soil report titled, "Supplemental Foundation Investigation, Alpha Beta Market Expansion, Alameda, California", dated October 27, 1987. The Contractor shall not be relieved of liability under the contract for any loss sustained as a result of any variance between conditions indicated by or deduced from the soil report and the actual conditions encountered during the course of the work.

The Contractor shall, upon becoming aware of surface and/or subsurface conditions differing from those disclosed by the original soil investigation, promptly notify the Owner as to the nature and extent of the differing conditions, first verbally to permit verification of the conditions, and then in writing. No claim by the Contractor for any conditions differing from those anticipated in the plans and specifications and disclosed by the soil investigation will be allowed unless the Contractor has so notified the Owner, verbally and in writing, as required above, of such changed conditions.

D. Dust Control

The Contractor shall assume responsibility for the alleviation or prevention of any dust nuisance on or about the site or off-site borrow areas. The Contractor shall assume all liability, including court costs of codefendants, for all claims related to dust or windblown materials attributable to his work.

II. DEFINITION OF TERMS

STRUCTURAL FILL - All soil or soil-rock material placed at the site in order to raise grades or to backfill excavations, and upon which the Soil Engineer has made sufficient tests and/or observations to enable him to issue a written statement that, in his opinion, the fill has been placed and compacted in accordance with the specification requirements.

ON - SITE MATERIAL - Material obtained from the required site excavations.

IMPORT MATERIAL - Material obtained from off-site borrow areas.

ASTM SPECIFICATIONS - The 1980 edition of the American Society for Testing and Materials Standards.

DEGREE OF COMPACTION - The ratio, expressed as a percentage, of the in-place dry density of the compacted fill material to the maximum dry density of the same material as determined by ASTM Test Designation D 1557-78.

III. SITE PREPARATION A. Clearing and Grubbing

The Contractor shall accept the site in its present condition and shall remove from the area of the designated project earthwork all obstructions including the asphaltic concrete pavements, concrete sidewalk and ramp and the associated baserock, designated underground utility lines, tree and associated root system and any other matter determined by the Soil Engineer to be deleterious. Such material shall become the property of the Contractor and shall be removed from the site. Holes resulting from the removal of underground obstructions that extend below finish grades shall be cleared and backfilled with structural fill.

IV. EXCAVATION

All excavation shall be performed to the lines and grades and within the tolerances specified on the project grading plans. All overexcavation below the grades specified shall be backfilled at the Contractor's expense and shall be compacted in accordance with the specifications. The Contractor shall assume full responsibility for the stability of all temporary construction slopes at the site.

V. SUBGRADE PREPARATION

Surfaces to receive compacted fill, and those on which concrete slabs and pavements will be constructed, shall be scarified to a minimum depth of 6 inches and compacted. All ruts, hummocks, or other uneven surface features shall be removed by surface grading prior to placement of any fill materials. All areas which are to receive fill material shall be approved by the Soil Engineer prior to the placement of any fill material.

VI. GENERAL REQUIREMENTS FOR FILL MATERIAL

All fill material must be approved by the Soil Engineer. The material shall be a soil or soil-rock mixture which is free from organic matter or other deleterious substances. The fill material shall not contain rocks or rock fragments over 6 inches in greatest dimension and not more than 15 percent shall be over 2.5 inches in greatest dimension. On-site material having an organic content of less than 3 percent by volume is suitable for use as fill in all areas except where non-expansive import material is specified.

All imported fill material shall be nonexpansive with a plasticity index of 12 or less.

VII. PLACING AND COMPACTING FILL MATERIAL

All structural fill less than 5 feet thick shall be compacted by mechanical means to produce a minimum degree of compaction of 90 percent as determined by ASTM Test Designation D 1557-78. All structural fill greater than 5 feet in thickness shall be compacted to at least 95 percent relative compaction. Field density tests shall be performed in accordance with either ASTM Test Designation D 1556-64 (Sand-Cone Method) or ASTM Test Designation D 2922-71 and D 3017-72 (Nuclear Probe Method). The locations and number of field density tests shall be determined by the Soil Engineer. The results of these tests and compliance with these specifications shall be the basis upon which satisfactory completion of work shall be judged by the Soil Engineer.

VIII. TRENCH BACKFILL

Pipeline trenches shall be backfilled with compacted structural fill placed in lifts not exceeding 8 inches in uncompacted thickness. If onsite soil is used, the material shall be compacted by mechanical means to a minimum degree of compaction of 85 percent. Imported sand may also be used for backfilling trenches provided it is compacted to at least 90 percent. If imported sand backfilling is used, sufficient water shall be added during the trench backfilling operations to prevent the soil from bulking during compaction. In all building pad and pavement areas, the upper 3 feet of trench backfill shall be compacted to a minimum degree of compaction of 90 percent for onsite soils and 95 percent where imported sand backfill is used.

IX. TREATMENT AFTER COMPLETION OF EARTHWORK

After the earthwork operations have been completed and the Soil Engineer has finished his observation of the work, no further earthwork operations shall be performed except with the approval of and under the observation of the Soil Engineer.

It shall be the responsibility of the Contractor to prevent erosion of freshly graded areas during construction and until such time as permanent drainage and erosion control measures have been installed.

1000, 1, 10,000,

IX. TREATMENT AFTER COMPLETION OF EARTHWORK

After the earthwork operations have been completed and the Soil Engineer has finished his observation of the work, no further earthwork operations shall be performed except with the approval of and under the observation of the Soil Engineer.

It shall be the responsibility of the Contractor to prevent erosion of freshly graded areas during construction and until such time as permanent drainage and erosion control measures have been installed.

Kaldveer Associates Geoscience Consultants

Peter Koldveer P1 G1 President

Richard Short PE C.1 Executive Vice President

Ronald L Bajuniemi Fi , G I Vice President Engineding

Patrick Stevens, P.E. Associate

David F Hoerter C E G Associate

Michael McRae, PE

Down Ringldi, P.E.

December 2, 1987 KE998-1, 10593 TEC

American Store Properties, Inc. 1500 Anaheim Boulevard Anaheim, California 92805

Attention: Mr. Gordon Powers

RE: PRELIMINARY SOIL TESTING

PROGRAM

ALPHA BETA #541 ADDITION

ALAMEDA, CALIFORNIA

Gentlemen:

In this letter report, we present a summary of our preliminary soil testing program at the proposed location of the Alpha Beta Store \$541 addition. The addition will extend the southeastern end of the existing market as shown on Figure 1, Site Plan. The market is within the neighborhood shopping center located northeast of the intersection of Blanding Avenue and Broadway and northwest of Tilden Way in Alameda, California. The purpose of this preliminary soil testing program was to determine the presence and quantities, if any, of petroleum hydrocarbons in the subsurface soils, as noted in one exploratory boring during our recent supplemental foundation investigation at the site.

BACKGROUND

Kaldveer Associates has previously performed a foundation investigation for the market addition. The results of this investigation was presented in our report titled, "Supplemental Foundation Investigation, Alpha Beta Market Expansion, Alameda, California", dated October 27, 1987. During this investigation, a strong fuel-like odor was noted in the soil samples obtained from Boring 5, located at the western corner of the addition. Furthermore, our firm had conducted the initial foundation investigation for the shopping center and the results were presented in our report titled, "Foundation Investigation, Shopping Center, Alameda, California", dated May 4, 1972. We should note that in one of the borings drilled for this initial (1972) investigation, similar and unnatural coloration of the soil was noted in our Previous Boring 7, situated in the same general location as Boring 5.

SCOPE

The scope of work included a subsurface investigation, soil sampling, analytical testing of the obtained soil samples, and preparation of this report. The investigation was conducted by Dawn Y. Rinaldi, P.E., Senior Project Engineer.

SITE HISTORY

Based on the information presented in our initial foundation investigation, the majority of the shopping center site was formerly occupied by Loop Lumber Yard and the southeastern end of the site was occupied by California Rock and Gravel Company, a concrete mixing plant. The approximate boundaries between these two operations are unknown. In addition, details of the operations and locations of any underground tanks is unknown.

SITE INVESTIGATION

A. Subsurface Investigation

The subsurface investigation was performed using a trailer-mounted drill rig equipped with an 8-inch diameter, continuous flight, hollow stem augers to investigate and sample the subsurface soils. The augers were steam cleaned prior to the drilling operations.

Five exploratory borings, Borings 6 through 10, were drilled on November 4, 1987 to a maximum depth of 16 feet. The borings were generally located in the vicinity of our previous Boring 5, where contamination was originally observed. Previously, five borings were drilled for our supplemental foundation investigation study to a maximum depth of 20.5 feet on October 13, 1987. In addition, a total of thirteen borings, two of which were near the proposed addition site, were drilled on April 10 to 12, 1972 to a maximum depth of 24 feet. The approximate locations of the five borings drilled for this investigation, the five borings drilled for our previous supplemental foundation investigation and two previous borings drilled during our initial foundation investigation are shown on Figure 1. Logs of the borings drilled for this investigation and details regarding the field investigation are included in Appendix A.

B. Soil Sampling

Soil samples were generally obtained from each of the borings between depths of 4 to 16 feet. The sampling program was based on our field observations at the time of drilling.

The soil samples were obtained with a 2½-inch O.D. California sampler. Each sample was contained in 2-inch diameter, 6-inch long brass liners. The sampler and brass liners were decontaminated with a trisodium

phosphate (TSP) solution, rinsed with clear water and a final rinse of deionized water prior to each sampling. The obtained soil samples were stored using the following procedures: 1) the sample ends were covered with aluminum foil, fitted with rubber caps, and taped and 2) each sample was stored in a zip-lock plastic bag and refrigerated. The samples were delivered immediately after drilling under chain-of-custody control to Trace Analysis Laboratories in Hayward, California for testing.

C. Groundwater Sampling

A grab sample of the groundwater from Boring 6 was obtained approximately 3½ hours after the boring was drilled. The water sample was obtained with a teflon bailer which had been decontaminated as previously described above. Two 40-ml VOA vials and one 1-liter glass bottle were filled with the groundwater sample. The groundwater samples were refrigerated until delivery with the soil samples, under chain-of-custody control to Trace Analysis Laboratories. We should note that these samples were for visual observation and no analytical testing was performed.

SITE CONDITIONS

A. Surface

At the time of our field investigation, the majority of the market addition site was surfaced with approximately 2 inches of asphaltic concrete over 7 to 8 inches of baserock. In addition, a concrete sidewalk, ramp and curbing was adjacent the southeast side of the market.

B. Subsurface

The near surface soils encountered below the pavement were fill materials generally consisting of loose to medium dense silty, clayey or gravelly sands and stiff silty and sandy clays which extended to depths of 4 to 6½ feet. Underlying these fill materials were medium dense to dense silty and clayey sands and stiff sandy clays. These native materials extended to the maximum depth explored of 16 feet.

A moderate to strong fuel-like odor was noted in the soil samples from Boring 6 at depths of 5 to approximately 11.5 feet and in Boring 10 at a depth of 7 feet.

Detailed descriptions of the soils encountered in each of the exploratory borings drilled for this investigation are presented in Appendix A. The attached boring logs and related information depict subsurface conditions only at the specific locations shown on the Site Plans and on the particular date designated on the logs. Also, the passage of time may result in changes in the subsurface conditions due to environmental changes. The locations of the borings were approximately determined by pacing and

should be considered accurate only to the degree implied by the method

C. Groundwater

Groundwater was not encountered in any of the borings at the time of drilling. However, Borings 6 and 7 were left open for a period of 21 to 31 hours at which time the groundwater was measured at depths of 7 and 9 feet, respectively. The groundwater level was previously measured at depths of 91 to 14 feet. Fluctuations of the groundwater level could occur due to change in seasons, variations in rainfall, tidal action and other factors.

We should note that a very thin oily sheen was observed floating on the

ANALYTICAL TEST RESULTS

A total of five soil samples were analyzed for 1) total volatile hydrocarbons (low to medium boilers, primarily gasoline), 2) total extractable hydrocarbons (medium to high boilers, primarily diesel), and 3) benzene, toluene, and xylene. In addition, one sample from Boring 6 was tested for purgeable and aromatic volatile organics.

The following table (Table 1) presents a summary of the constituents which were identified at concentrations above the minimum detection limits. results are also summarized on Figure 1. The complete analytical results of the chemical laboratory tests are presented in the attached Appendix B in addition to the Chain-of-Custody records for the samples. analytical results are presented in concentrations of ug/kg or parts per billion in Appendix B, and have been converted to mg/kg or parts per

TABLE 1 SUMMARY OF TEST RESULTS ABOVE THE MINIMUM DETECTION LIMITS*

_										
Boring Number 6	Depth (Feet)	Volatile Hydrocarbons	Extractable Hydrocarbons	Benzene	Toluene					
. 8 9 9	6 5½ 5½ 8 7	39 ND 34 ND 12	1,200 23 4** 4**	.12 ND ND	. 08 ND ND					
Note: *	A71	•	40	ND	ND					

Note: * All concentrations in mg/kg or parts per million, ppm.

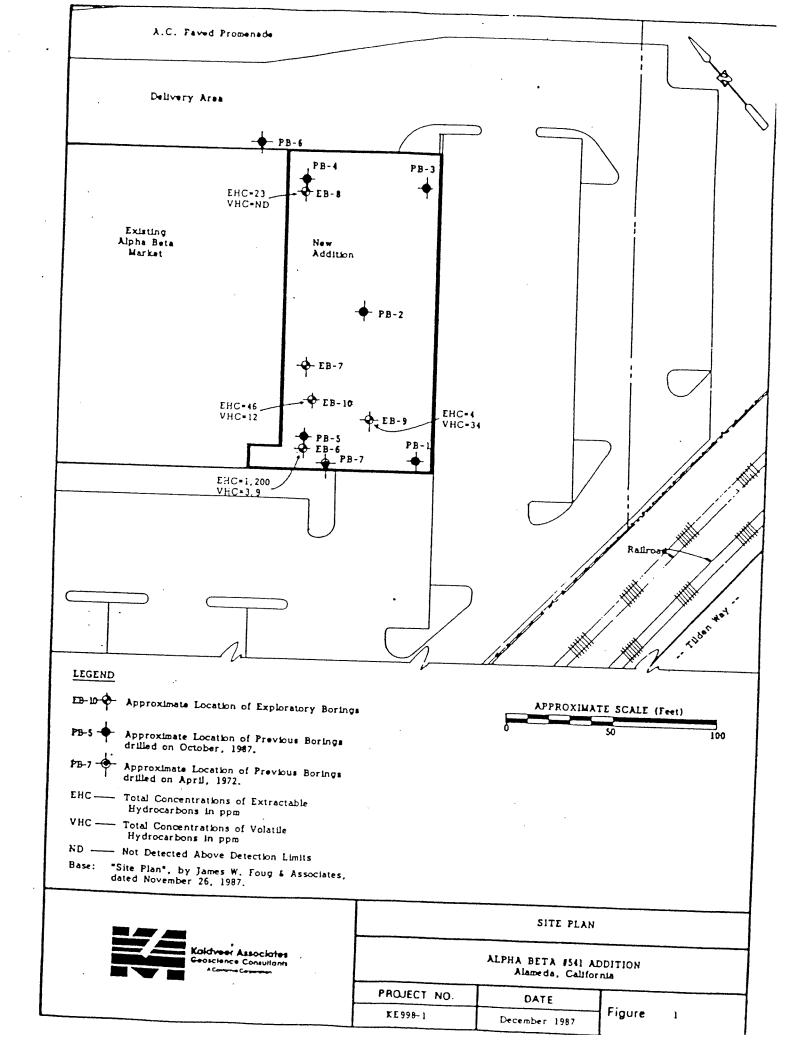
These two samples were composited into one analysis.

ND Not detected above detection limits.

The soil test procedures were performed in accordance with the Standard EPA Test Methods and Attachment 2 of the "Guidelines for Addressing Fuel Leaks" (September 1985) by the California State Regional Water Quality Control Board. The analysis for total volatile and extractable hydrocarbon testing on the soil samples were performed using a Modified 8015 test method. The benzene, toluene and xylene analysis was performed using a Modified 8020 test method. In addition, the purgeable and aromatic volatile organics analysis was performed using the 8010 test method and the aromatic volatile organics analysis was performed using the 8020 test method.

DISCUSSION AND CONCLUSIONS

This investigation was conducted to confirm the presence of petroleum hydrocarbons apparently encountered during our previous supplemental foundation investigation. Petroleum hydrocarbons were detected in all samples submitted for testing. All of the total concentrations (volatile and extractable, combined) detected were less than 100 parts per million, ppm, except those of a sample from Boring 6, in the southeast corner of the proposed addition. Hydrocarbon levels at this location were in excess of extent of contamination.


The San Francisco Bay Region California Water Quality Control Board has issued guidelines for fuel leak contamination of soil. These guidelines are contained in "Guidelines for Addressing Fuel Leaks", revised September, 1985. These guidelines generally require site remediation where hydrocarbon content in soil exceeds 1000 ppm, and further investigation of potential or existing groundwater contamination at levels exceeding 100 ppm in soil.

It is difficult to assess the significance of the hydrocarbon contamination due to the limited confirming investigation conducted to date. The extent of soil contamination throughout the site, possible groundwater contamination, and groundwater utilization have not been evaluated to date. After information on these factors is obtained, an overall evaluation of the contamination can be conducted, and recommendations for remediation, if any, can be developed.

RECOMMENDATIONS

We recommend that additional investigation be conducted, to further evaluate the lateral extent of soil contamination, as well as possible groundwater contamination. A copy of this letter should be sent to the California Regional Water Quality Board, San Francisco Bay Region, located in Oakland, California, with an appropriate cover letter describing proposed further investigation.

who sends? ASPT

APPENDIX A - FIELD INVESTIGATION

The soils encountered in the five exploratory borings drilled for this investigation were continuously logged in the field by our representative. The soils are described in accordance with the Unified Soil Classification System (ASTM D-2487). The logs of the borings as well as a key for the classification of the soil (Figure A-1) are included as part of this appendix.

Representative soil samples were obtained from the exploratory borings at selected depths appropriate to the soil testing program. The soil samples were obtained using a 2½-inch O.D. California sampler. The sampler type is indicated in the "Sampler" column of the boring logs as designated below:

California Sampler

Resistance blow counts were obtained with the sampler by dropping a 140-pound hammer through a 30-inch free fall. The sampler was driven 18 inches, and the number of blows were recorded for each 6 inches of penetration. The blows per foot recorded on the boring logs represent the accumulated number of blows that were required to drive the last 12 inches. Due to the larger diameter of the California sampler, the blow counts recorded for this sampler are not standard penetration resistance values. In order to convert these values to standard penetration resistance values, the indicated blow counts should be multiplied by a factor of 0.8.

The attached boring logs and related information show our interpretation of the subsurface conditions at the dates and locations indicated, and it is not warranted that they are representative of subsurface conditions at other locations and times.

	PRIMARY DIVISION	NS .	GROUP SYMBOL	SECONDARY DIVISIONS
	GRAVELS	CLEAN GRAVELS	GW	Well graded gravels gravel-sand mixtures little or no fines;
SOILS MATERIAL 3. 200	MORE THAN HALF OF COARSE	(LESS THAN 5 % FINES)	GP	Poorly graded gravels or gravel-sand mixtures little or no fines
	FRACTION IS	GRAVEL	GM	Silty gravets gravel-sand-silt mixtures non-plastic tines
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LARGER THAN NO. 4 SIEVE	WITH FINES	GC	Clayey gravels gravel-sand-clay mixtures plastic fines
GRAIN N HALF ER THAN	SANDS	CLEAN SANDS	sw	Well graded sands gravelly sands little or no fines
COARSE GRAINED RE THAN HALF OF IS LARGER THAN W SIEVE SIZE	MORE THAN HALF OF COARSE	(LESS THAN 5% FINES)	SP	Poorly graded sands or gravelly sands little or no fines
80 Kg 1 3 Si 1 3 Si 1 3 Si 1 3 Si 1	FRACTION IS	SANOS WITH FINES	SM	Silty sands sand-silt mixtures non-plastic fines
\$	SMALLER THAN NO 4 SIEVE		s c	Clayey sands sand-clay mixtures plastic fines
SJ * # 32.25	SILTS AND	CLAYS	ML	Inorganic silts and very fine sands rock flour silty or clayey fine sands or clayey silts with slight plasticity
1 × × ×	LIQUID LI	MIT IS	CL	Inorganic clays of low to medium plasticity, gravelly clays sandy clays silty clays, lean clays
		LESS THAN 50%		Organic silts and organic silty clays of low plasticity
	SILTS AND CLAYS		МН	Inorganic silts micaceous or diatomaceous fine sandy or silty soils, elastic silts
1 2 4 4	1 111111111 41	LIQUID LIMIT IS GREATER THAN 50%		Inorganic clays of high plasticity, fat clays.
HINE MOR MATE	GREATER TO			Organic clays of medium to high plasticity, organic silts.
	HIGHLY ORGANIC SO	LS	Pt	Peat and other highly organic soils

DEFINITION OF TERMS

U.S. STANDARD SERIES SIEVE CLEAR SQUAF							NINGS
	200	40 X	0 -	4 3.	/4 [*] 3	3" 1	2"
		SAND			VEL	CORRIES	BOULDERS
SILTS AND CLAYS	FINE	MEDIUM	COARSE	FINE	COARSE	COORES	

GRAIN SIZES

SANDS AND GRAVELS	BLOWS/FOOT
VERY LOOSE	0 - 4
LOOSE	4 - 10
MEDIUM DENSE	10 - 30
DENSE	30 - 50
VERY DENSE	OVER 50
1	

SILTS AND CLAYS	STRENGTH *	BLOWS/FOOT
VERY SOFT SOFT	0 - 1/4 1/4 - 1/2	0 - 2 2 - 4
FIRM	1/2 - 1	4 - 8
STIFF	1 - 2	8 - 16
VERY STIFF	2 - 4	16 - 32
HARD	OVER 4	OVER 32
[!	1

RELATIVE DENSITY

CONSISTENCY

Number of blows of 140 pound hammer falling 30 inches to drive a 2 inch 0.D (1-3./8 inch t.D.) split spoon (ASTM D-1586).

*Unconfined compressive strength in tons/sq ft as determined by laboratory testing or approximated by the standard penetration test (ASTM D=1586), pocket penetrometer, torvana, or visual observation

Kaldveer Associates
Geoscience Consultants
A Colifornia Corporation

KEY TO EXPLORATORY BORING LOGS Unified Soil Classification System (ASTM D-2487)

A-1

PROJECT NO	DATE	Figure
KE998-1	December 1987	rigore

DAKLAG Hollow Stem Auger	SURFACE	ELEVATION			Lo	GGEC) 8 Y	DYR	
DEPTH TO GROUNDWATER 71 (see note 3)	BORING DIAMETER 8			nches	DA	DATE DAILLED 11/4/87			87
DESCRIPTION AND CLASSIFIC	CATION			DEPTH	LATION	Ž į	F.B. 10-11	NEL TY	SELVE SELVE GTH
DESCRIPTION AND REMARKS	COLOM	CONSIST	SOIL	(FEET)	A Y	2 6 2	WATER CONTENT	98.Y 0.E	2000 2000 2000 2000 2000 2000 2000 200
2" AC over 8" Baserock									
SAND (fine grained), silty	black	medium dense	SM.						
SAND (fine grained), clayey, silty	black	medium dense	sc	3 -					
(grading to trace of clay) (FILL)			SM	<u> </u>	19				
SAND (fine grained), silty, trace of clay (moderate to strong fuellike odor) Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see first page Appendix A. 3. Groundwater water was not encountered at time of drilling. Three and one-half hours later, the groundwater level was measured at 7 feet. (light fuel-like odor) (grading no clay and to trace of silt)		medium dense	SM	- 5	25		₽.		•
		dense		- 15-	48				
Bottom of Boring = 16 Feet				- 16					
		EXF	PLOF	RATORY E	BORII	NG L	L _0G	I	
Kaldveer Associates Geoscience Consultant		ALPHA BETA #541 ADDITION Alameda, California							
A California Corporation	}	E 998-1	De	DATE	1987	◀	RING	6	

DARLAM Fiollow Stem Auger		ELEVATION			LOG	GED BY	DYR	
DEPTH TO GROUNDWATER NOT Encountere	DORING C	DIAMETER	8 In	ches		DAKLED		_
DESCRIPTION AND CLASSIF	CATION				, Šŏ	F :	È	ey,
DESCRIPTION AND REMARKS	COLOM	CONSIST	SOIL	DEPTH (FEET)	SAMPLE.	WATER CONTENT	7 O C 13	CONTINUES SE
2" AC over 8" Baserock					1		8	58-
SAND (fine grained), clayey	black	loose	sc	- 1 -				
CLAY, silty, with sand	black	stiff	CL	- 3				
				- 4 - - 5 -				
CLAY, silty, sandy (fine grained)	1 :	stiff	CL-	6	19			
	grey		sc [8 -				
AND (fine grained), clayey		medium dense	sc	3 -	25			
Notes: The stratification lines represent the approximate boundaries etween soil types and the transition may be gradual. For an explanation of penetrator resistance values, see first age, Appendix A. Groundwater level was not incountered at time of drilling, wo and one-half hours later, see groundwater level was not easureable.				11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 19 - 10 - 19 - 10 - 10 - 10				
		EXPL	ORAT	ORY BO	RING	06		\dashv
Kaldveer Associates		ALPHA						

PROJECT NO	DATE	DATE				
KE 998-1	December	1987	BORING NO. 8			

DANLERG Hollow Stem Auger DEPTH TO GROUNDWATER Not Fra-	SURFACE	ELEVATION		LOGGED BY DYR						
DEPTH TO GROUNDWATER Not Encounter		DIAMETER		DATE DRILLED 11/4/87						
DESCRIPTION AND CLASSIF	KATION			DEPTH	1:			Ì.	S.	
DESCRIPTION AND REMARKS	COLON	CONSIST	SOIL TYPE	(FRET)	3	PENETRATION RESISTANCE INCOME/FT	WATER COMPERT (*.)	PAY DENS		
2" AC over 7" Baserock						2 4 6	8	8	3 8	
SAND (fine grained), with some silt and gravel	orange tan	medium dense	SM	- 1 - - 1 -						
CLAY, sandy (fine grained)	black	stiff	CL	- 2						
SAND ((FILL)				3 -						
SAND (fine grained), some silt, trace of clay		medium dense	SM	4	_					
			F	-5 -		3				
		·		6	4					
			F	7 +	\prod_{i}					
Bottom of Boring = 8½ Feet			=	8	1	6				
otes:			F	9 -					,	
. The stratification lines repre- ent the approximate boundaries			-	10-						
etween soil types and the transion may be gradual. For an explanation of penetra-			-	11 -						
on resistance values, see first age, Appendix A.				2 -						
			<u> </u>	3 -						
			- 1 -	4						
			- 1: -	5-						
			- 16	5 -						
			F 17	4 1						
·			- 18 -							
			- 19 -	1						
			-20							
		EXPLO			RIN	G LOG			7	
Kaldveer Associates	1	LPHA B	TT A						. 1	

PROJECT NO				
KEOOO 1	DATE December 1987	BORING NO.	9	

DAILL RIG Hollow Stem, Auger		ELEVATION			+	toddeb tv D1K					
DEPTH TO GROUNDWATER Not Encountered	BORING DI	AMETER	8 In	ches		DATE DRILLED 11/4/87					
DESCRIPTION AND CLASSIFIC	ATION		1	DEPTH	SALES ER	PENETRATION NESSTANCE INCOME/FT	ITER ENT (**)	KRUTZ	M 351VE M 351VE I M 0 TH 37 I		
DESCRIPTION AND REMARKS	COLO#	CONSIST	SOIL TYPE	IFEET)	3	Y A O	WATER CONTENT	DRY DENS PCF)	11 111 1000 0000		
2" AC over 8" Baserock											
SAND, with some gravel, some silt	brown	medium dense	SM								
CLAY, sandy (fine grained)	black	stiff	CL								
/FILL)				4							
CLAY, sandγ (fine grained)	blue grey	stiff	CL- SC	-5 -		15					
				6		18					
(moderate fuel-like odor)				+ +	11						
Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see first page, Appendix A. 3. Groundwater level was not encountered at time of drilling.				- 8							
		F\	(PL O	RATORY		ORING	LOG	<u></u>			
		<i>ـ</i> /	.,								

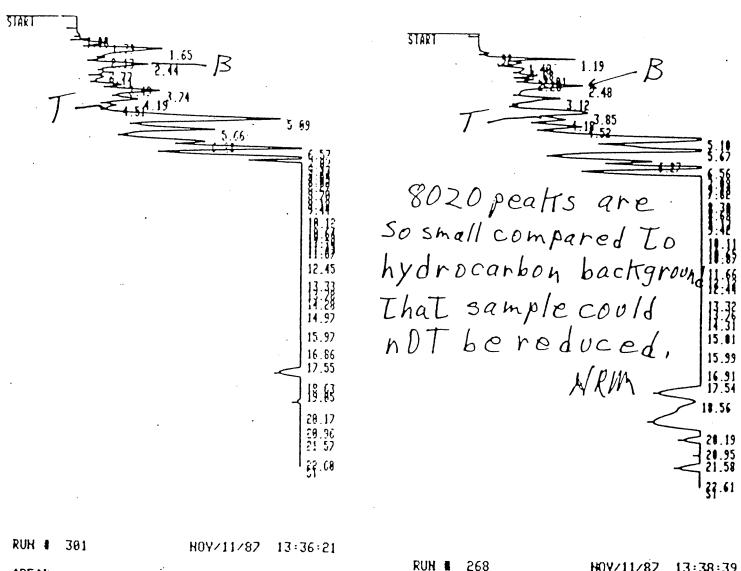
PROJECT NO.	DATE	BORING
KE 998-1	December 1987	NO. 10

							CHAIN OF CU	ISTODY REC	ORD								
Project Number KE998	· 1		ha I	Λ.	1541	Expansi	n	Number of Containers	K. **	7/	3/20/3						Remarks
Boring Number	Date	Time	Soti	Water	Sample	Location or De	pth	Con	/ 4	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/3		/ 4				-
	1 /	1:30 P		X	7'			2.40 al va	A .	M	\overline{X}	3	1		2 Carrel		se tests
9	11 - 4	11.20 F	ļ		-7			1. liter			\leq	A	XI) wila	on 1	1-6-87
6.		 		X								7					
		<u> </u>	ļ	<u> </u>													
	 	<u> </u>	<u> </u>		 					\vdash	-						
			<u> </u>	<u> </u>					 	 							
										 						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		1															
	1	1	<u> </u>													<u></u>	
<u> </u>		 	1	 	 												
		1	 	 	<u> </u>		<u> </u>						<u> </u>				
		+		 	1												
			 		 				1								
	_		 						1	1							
Kelinquish	:(5	Ignalure	,1	Date/	ime	Received by:	(Signature)		Relin	quish	ed by	: (8)	gnetu	re)	Date/Time	Received	by: (Signature)
											, ,				Date/Time	Received	by: (Signature)
Relinquish	wed by:(S	ignature		Date/		Received by	(Signature)		Kenn	quish	ed by	. (01	Quar.	,,			•
Relinquist	Mina	ldi	·) Nou	1001017 987 /	'ime 8:30	Received for (Stotherure)	Laboratory by:	est,	47	Date	7 19.	多	lomar 	ki:	and I	TO TOTO	
			1	2 0	vek	turna	Laboratory by: Figure 7 + Ound (m)	uest y change vsults the tests is	m I m I	er wk= ferm	hun	enou d	nd)			PETER KALDYEER AND ASSOCIATES, H

I week turneround

inj# 530/

page 1/2


CHAIN OF CUSTODY RECORD

Number KE 948	eignatura 107	tpha	Be	fa#E	41 Addition,	Alameda	Number of Containers	المحمد ال	F/	#/ /.s	//	/ Q/	\ 8/	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/	Remarks
Boring Number	Date	Time	Soti	Water	Sample Location :	or Depth	2 6 0	1	2		/d/		2/5 5/5			
6	11-4	8:15	×		5'						\neg				941 50	nd. Hud. Colon
		8:30	X		6'						XI)	X		20.11	مر العلم	ad Strong aday
	1	6:40	X	1	زع		ı)	
		8:50	*		71/2										, ;	
		9:10	X		11,		1									
7	11-4	9:50	×		5'		1							.731 A	d, son	d. No olla
		10:15	4		Ex.		1							To.	، عدد و	Larry Toro. No color
		0:30	×		10		1									
		10:40	۲		1172							_				tests to request an 11-6-87
ව	11 - 4	11:10	X		5%	HOLD	1				-		≥ 1			inen Kinn I have -
		11:24	X		8/2'									Tan	Blu	Trucy, sandy clay, he orlow
9	11.4	11 40	X		51/2		l			Δ	•		Δ		posife	
_		11:55	Χ		&.		1						$\angle \perp$	<u>) </u>	gion ton	ic city SAND, No ador
10	11-4	12:3	×		5/2 '		1								,	
		12:95	Х		7'											
Kelingulah	ed by (ISI	gnature)		Date/T	ime Received	by: (Signature)		Reling	uishe	d by:	(Sign	vatur	•)	Date	/Time	Received by: (Signature)
lelinguish	ed by:(Si	gnature)		Date/T	ime Received	by: (Signature)	allen op de groen de planske met de de la met	Reling	utshe	d by:	(Blgn	natur	r•)	Date	/T1===	Received by: (Signature)
Dawr (297.151 297.10	oneture)	Nov.	Pate/TI	Received (Signatur	for Laboratory by:	2	72	(8) T	1800 1830	Rec	mark	2		Q) /	!

results pan [at two naround tests are determined)

D 1 we turnaround

FID 500MC 5 365 (1.14)

AREA%				
RT	AREA	TYPE	AR/HT	AREAZ
1.00	9	PP	9.099	0.609
1.10	10898	PB	6.945	8.2142E-94
1.39	. 835139	BY	0.159	9.063
1.65	4694600	٧V	0.275	9.354
2.13	38 3 57 9	VΡ	0.117	0.023
2.44	2397200	PY	0.196	0.174
2.77	26213	VΒ	0.087	Ŭ. 0 92
3.11	171470	66	8.126	0.013
3.49	911340	P٧	8.151	0.063
3.74	3491490	٧V	0.245	8.263
4.19	2459900	٧٧	0.269	0.185
4.51	1082900	٧Y	0.224	0.092
5.89	1.3582E+97	44	0.335	1.024
5.66	7987698	٧٧	0.305	9.602
6.28	6689888	٧Y	0.278	8.504
6.57	1.2532E+07	٧٧	8.266	0.945
7.67	1.4886E+07	٧٧	Ø.279	- 1.122
7.43	1.6817E+87	٧V	9.212	1.207
7.64	2.3596E+87	٧٧	9.223	1.778
7.89	7187200	٧٧	0.131	0.542
8.82	1.8265F+A2	VV	B 192	Q Q11

RUH I	1 26	8		H0Y/11/87	13:38:39
AREA?	4				
RI		AREA	TYPE	AR/HT	AREAX
0.9	92	357190	PY		0.825
1.1	9	3066800	YV	0.143	0.216
1.4	18	1960300	77	9.299	8.138
1.6	8	2934500	VY		8.286
2.8	31	2716988	44		0.191
2.2	9	2094100	٧٧		0.147
2.4	18	8854689	77		8.623
3.1	2	5978890	VV		8.421
3.8		8444899	ŸŸ		8.594
4.1		5692500	ÝΫ		0.394
4.5		6755100	ŶΫ		6.475
5.1	0 2	3121E+07	ÝΫ		1.626
5.6		.2563E+87	ŸŸ		1.587
6.2		.0855E+07	ŸŸ		8.764
6.5	_	.7057E+07	YY		1.200
7.8	_	.6583E+87	VH		1.161
7.4		.4527E+87	SHH		2.429
7.6		.9984E+87	SHH		2.193
8.3	_	.4227E+87	SHH		3.814
8.6		.0586E+07	SHH	- •	4.261
9.1	_	.1595E+07	SHH		2.222
	, E	15000107	CINI	0.200	7 (22

DATE:

LOG NO.: DATE SAMPLED: 11/13/87 5365 11/4/87

PAGE:

DATE RECEIVED: 11/4/87 Three

Sample Type: Soil

		#6, 6'			
Method and Constituent	Units	Concentration	Detection Limit		
EPA Method 8020:					
Benzene	ug/kg	120	9		
Chlorobenzene	ug/kg	< 9	9		
.1,2-Dichlorobenzene	ug/kg	< 9	9		
1,3-Dichlorobenzene	ug/kg	< 9	9		
1,4-Dichlorobenzene	ug/kg	< 9	9		
Ethyl benzene	ug/kg	< 9	9		
Toluene	ug/kg	. 80	9		
Xylenes	ug/kg	< 9	9		

8020 peaks are so small compared to hydrocarbon background that sample could not be reduced.

Supervisory Chemist

1 6 1987

DATE:

11/13/87

LOG NO.:

5365

DATE SAMPLED:

11/4/87

DATE RECEIVED:

11/4/87

CUSTOMER:

Peter Kaldveer and Associates, Inc.

REQUESTER

Dawn Rinaldi

PROJECT:

No. KE998-1, 'Alpha Beta #541 Addition, Alameda

Sample Type: Soil

		#6	, 6'
Method and Constituent	<u>Units</u>	Concentration	Detection Limit
EPA Method 8010:			
Benzyl chloride	ug/kg	< 40	40
Bis (2-chloroethoxy) methane	ug/kg	< 40	40
Bis (2-chloroisopropyl) ether	ug/kg	< 40	40
Bromobenzene	ug/kg	< 40	40
Bromodichloromethane	ug/kg	< 40	40 🔍
Bromoform	ug/kg	< 40	40
Bromomethane	ug/kg	< 40	40
Carbon tetrachloride	ug/kg	< 40	40
Chloracetaldehyde	ug/kg	< 40	40
Chloral	ug/kg	< 40	40
Chlorobenzene	ug/kg	< 40	40
Chloroethane	ug/kg	< 40	40
Chloroform	ug/kg	< 40	40
1-Chlorohexane	ug/kg	< 40	40
2-Chloroethyl vinyl ether	ug/kg	< 40	40

DATE: LOG NO.:

DATE 'SAMPLED: DATE RECEIVED:

11/4/87 11/4/87

5365

11/13/87

PAGE:

Two

Sample Type: Soil

		Jampie Type. Join				
•		#6 , 6'				
Method and Constituent	<u>Units</u>	Concentration	Detection Limit			
EPA Method 8010 (Continu	ied):					
Chloromethane	ug/kg	< 40	40			
Chloromethyl methyl ether	`ug/kg	< 40	40			
Chlorotoluene	ug/kg	< 40	40			
Dibromochloromethane	ug/kg	< 40	40			
Dibromomethane	ug/kg	< 40	40			
1,2-Dichlorobenzene	ug/kg	< 40	40			
1,3-Dichlorobenzene	ug/kg	< 40	40			
1,4-Dichlorobenzene	ug/kg	< 40	40			
Dichlorodifluoromethane	ug/kg	< 40	40			
1,1-Dichloroethane	ug/kg	< 40	40			
1,2-Dichloroethane	ug/kg	< 40	40			
1,1-Dichloroethylene	ug/kg	< 40	40			
trans-1,2-Dichloro- ethylene	ug/kg	< 40	40			
Dichloromethane	ug/kg	< 40	40			
1,2-Dichloropropane	ug/kg	< 40	40			
1,3-Dichloropropylene	ug/kg	< 40	40			
1,1,2,2-Tetrachloro- ethane	ug/kg	< 40	40			
1,1,1,2-Tetrachloro- ethane	ug/kg	< 40	40			
Tetrachloroethylene	ug/kg	< 40	40			
1,1,1-Trichloroethane	ug/kg	< 40	40			
1,1,2-Trichloroethane	ug/kg	< 40	40			
Trichloroethylene	ug/kg	< 40	40			
Trichlorofluoro- methane	ug/kg	< 40	40			
Trichloropropane '	ug/kg	< 40	40			
Vinyl chloride	ug/kg	< 40	40			

Geoscience Consultants

Fractilian Vice President

Ponald 1 Rajuntemt, P.E., G.E.
Vice President Engineering

Patrick Stevens, PF

David F Heester, C.E.G.

Dawn Rinaldi, P.F.

June 29, 1988 KE998-1B, 11703

Taylor-Woodrow of California 333 Third Street San Francisco, California 94107

Attention: Mr. Robert Upton

Executive Vice President

RE: ADDITIONAL SOIL TESTING
AND PRELIMINARY
INVESTIGATION OF
GROUNDWATER QUALITY
ALPHA BETA #541
ALAMEDA, CALIFORNIA

Gentlemen:

In this letter report, we present the results of our additional soil testing and preliminary groundwater testing at the proposed location of the Alpha Beta Store #541 addition. The existing Alpha Beta market is located within the Fernside Shopping Center, situated northeast of the intersection of Blanding Avenue and Broadway and northwest of Tilden Way and the railroad tracks, as shown on the Site Vicinity Map, Figure 1. The purpose of this investigation was to obtain information on site hydrogeologic characteristics; determine the presence, if any, of chemical compounds in the subsurface groundwater and to further evaluate the lateral extent of soil contamination. The investigation was conducted by Ms. Polly L. Worrell, Senior Geologist/Environmental Specialist.

The soil material within the contaminated area contains petroleum hydrocarbons at concentrations greater than 100 parts per million (ppm). A possible source of the detected petroleum hydrocarbons in the subsurface soils at the southeast corner of the existing Alpha Beta market could have been the underground tank which was removed in 1974, as shown in Figure 2. Another source, which we were unable to verify, was indications from several sources that waste hydrocarbons may have periodically been dumped on the site.

425 Roland Way
Oakland, California 94621
(415) 568 4001
(A25) 568 2205

A California Corporation

June 29, 1988, 11703
Page 2

PREVIOUS WORK PERFORMED BY OUR FIRM

Kaldveer Associates (KA) has previously performed an environmental study, site characterization and environmental assessment, and two geotechnical engineering investigations at the site. Our firm conducted the original foundation investigation of the neighborhood shopping center and the results were presented in our report titled, "Foundation Investigation, Shopping Center, Alameda, California", dated May 4, 1972. More recently, our firm conducted a foundation investigation for the proposed addition to the Alpha Beta market. The results of this study presented in the report titled. "Supplemental Investigation, Alpha Beta Market Expansion, Alameda, California", dated October 27, 1987. During this supplemental investigation for the Alpha Beta addition, a strong fuel-like odor was noted in the soil samples obtained from Boring 5, which was located near the southeast corner of the existing market.

Subsequently, a preliminary soil testing program was performed to assess the presence and measure concentrations of petroleum hydrocarbons in the subsurface soils in this vicinity. The results of this investigation were presented in the letter report titled, "Preliminary Soil Testing Program, Alpha Beta #541 Addition, Alameda, California", dated December 2, 1987. More recently, our firm conducted a site characterization and environmental assessment for the market addition. The results of this investigation was presented in our letter report titled, "Site Characterization and Environmental Assessment, Alpha Beta #541, Alameda, California", dated January 8, 1988. In this letter report, we recommended a subsurface investigation to define the extent of both soil and groundwater contamination.

SCOPE OF WORK

The scope of work for this investigation included the following:

- 1. Review of applicable geologic information on the site and surrounding area. Review of our previous geotechnical and environmental investigations to determine optimum exploratory boring and monitoring well locations.
- 2. A field subsurface exploratory program consisting of drilling seven exploratory borings and screening soil and water samples for hydrocarbons and other organic compounds with a vapor detection instrument and a combustible gas indicator.

- 3. Installation of a groundwater monitoring well in three of the seven exploratory borings in accordance with Zone Seven, Alameda County Flood Control and Water Conservation District Guidelines.
- 4. Development and sampling of the new groundwater monitoring wells.
- 5. Analytical testing of the soil and groundwater samples including:
 1) low to medium boiling point ("gasoline") hydrocarbons with benzene, toluene, xylene and ethylbenzene (BTXE) and; 2) high boiling point hydrocarbons ("diesel").
- Surveying of well head elevations of the three installed monitoring wells.
- 7. Presentation of the analytical test results and discussion of conclusions concerning the concentration of contaminants, if any, detected in the soil groundwater samples.
- 8. Recommendations for excavation of contaminated soils at the southeast corner of the existing Alpha Beta market.
- 9. Preparation of this letter report.

SITE INVESTIGATION

A. Subsurface Investigation

During our October 13, 1987 supplemental foundation investigation study, five borings were drilled to a maximum depth of 20.5 feet. In addition, a total of thirteen borings, two of which were near the proposed addition site were drilled on April 10 to 12, 1972 to a maximum depth of 24 feet. The approximate locations of the seven borings drilled for this investigation (includes three monitoring wells), the five borings drilled for our December 2, 1987 investigation, the five borings drilled for our previous supplemental foundation investigation and two previous adjacent borings drilled during our initial investigation are shown on the Site Plan, Figure 2.

In our preliminary soil testing program, five exploratory borings, Boring 6 through 10 were drilled on November 4, 1987 to a maximum depth of 16 feet. The borings were generally located in the vicinity of our previous

Boring 5, where contamination was originally observed. Petroleum hydrocarbons were detected in all samples submitted for testing. All of the total concentrations (volatile and extractable combined) detected were less than 100 parts per million (ppm), except those of a sample from Boring 6, in the southwest corner of the proposed addition. Hydrocarbon levels at this location were in excess of 1,200 ppm. During our current investigation, Monitoring Well Three (MW-3) was drilled approximately 50 feet southwest of Boring 6.

The subsurface investigation was performed using truck mounted continuous flight hollow stem augers. Seven exploratory borings were drilled on April 12 and 13, 1988. The seven borings were drilled to a maximum depth of 25 feet. Subsequent to the drilling of three of the exploratory borings, the borings were converted into groundwater monitoring wells. The monitoring wells were permitted with Alameda County Flood Control and Water Conservation District (Zone Seven) prior to initiation of the field investigation.

Four of the seven borings drilled were located in the vicinity where contamination was originally observed, and surrounding areas where previous soil samples contained hydrocarbons. The three remaining exploratory borings were converted monitoring wells.

The observations performed during the drilling process showed that fuel-like odors noted in our previous soil testing program were not present in the current additional borings. The observations and later analytical laboratory results allowed approximate horizontal area of contaminated soil to be mapped.

Logs of the borings and monitoring wells and details of the field investigation, sampling methodology and well construction for this investigation are presented and discussed in Appendix A. The augers and equipment were steam-cleaned prior to the drilling operations. A photo log of the field investigation is also presented in Appendix A.

B. Soil Sampling

Soil samples were generally obtained from each of the borings between depths of 2 and 21 feet. The sampling program was based on our field observations at the time of drilling.

The soil samples were obtained with a 21-inch O.D. California sampler. Each sample was contained in 2-inch diameter, 6-inch long brass liners. The sampler and brass liners were decontaminated with a trisodium. phosphate (TSP) solution, rinsed with clear water and a final rinse of deionized water prior to each sampling. The obtained soil samples were stored using the following procedures: 1) the sample ends were covered with aluminum foil, fitted with rubber caps, and taped and 2) each sample was stored in a zip-lock plastic bag and refrigerated. Details of the sampling methodology for this investigation are presented and discussed in Λ. The samples delivered were after drilling chain-of-custody control to Fireman's Fund Environmental Laboratory in Petaluma, California for testing. Chain-of-custody records and analytical results are presented in Appendix B.

C. Groundwater Sampling

Initial groundwater sampling was conducted on Λ pril 21, 1988. Immediately prior to groundwater sampling, each of the three wells was developed and purged with a 2-inch well development pump. The pump and lines were decontaminated prior to and after each use. Well development logs and details concerning decontamination procedures are presented in Appendix Λ . Λ decontaminated Teflon bailer was utilized to sample each monitoring well.

Stabilized water levels were measured on May 10, 1988. At that time, a fuel-like odor was noted from monitoring well MW-3. In our previous groundwater sampling (April 21, 1988), no odors were noted. Analytical results indicated no presence of petroleum hydrocarbons. However, since fuel-like odors were noted on May 10, 1988, groundwater sampling was conducted again, on May 18, 1988. Immediately prior to this groundwater sampling, each of the three wells was purged with a decontaminated 2-inch Teflon bailer. Three well casing volumes were removed from each well immediately prior to sampling. A decontaminated Teflon bailer was utilized to sample each monitoring well.

The water samples were stored in the appropriate cleansed and preserved glass, plastic and VOA vial containers supplied by the laboratory. The groundwater samples were refrigerated and transported under chain-of-custody control to Fireman's Fund Environmental Laboratory for testing. Details of the groundwater sampling of the wells are also discussed in Appendix A. Chain-of-custody records and analytical results are presented in Appendix B.

Taylor-Woodrow of California June 29, 1988, 11703 Page 6

SITE CONDITIONS

A. Surface

At the time of our field investigation, the majority of the market addition site was surfaced with approximately two inches of asphaltic concrete over four to six inches of baserock. In addition, a concrete sidewalk, ramp and curbing was adjacent to the southeast side of the market.

B. Subsurface

The near surface soils encountered below the pavement were fill materials generally consisting of loose to medium dense silty, clayey or gravelly sands and stiff silty and sandy clays which extended to depths of 4 to 61 feet. Underlying these fill materials were medium dense to dense silty and clayey sands and stiff sandy clays. These native materials extended to the maximum depth explored of 25 feet.

A moderate to strong fuel-like odor was noted in our previous soil testing program for soil samples from Boring 6 at depths of 5 to approximately 11.5 feet and in Boring 10 at a depth of seven feet. No odors of any kind were noted in soil samples from the seven borings drilled for this investigation.

Detailed descriptions of the soils encountered in each of the exploratory borings drilled for this investigation are presented as boring logs in Appendix A. The attached boring logs and related information depict subsurface conditions only at the specific locations shown on the Site Plan, Figure 2, and on the particular date designated on the logs. Also, the passage of time may result in changes in the subsurface conditions due to environmental changes. The locations of the borings were approximately determined by pacing and should be considered accurate only to the degree implied by the method used.

B. Groundwater

First groundwater was encountered in Monitoring Wells 1, 2 and 3 at a depth of approximately 11 to 14½ feet at the time of drilling. Stabilized groundwater levels and elevations were established on May 10, 1988 for each monitoring well. These elevations were used to establish the general groundwater flow direction of the site. Directional groundwater gradient for the site flows in a northeasterly direction as shown on Figure 3, Groundwater Surface Map, May, 1988.

The following Table 1 presents the results of these measurements.

TABLE 1

MEASURED GROUNDWATER LEVELS

Monitoring Well	Assumed Datum	Relative Elevation of Top of Well (casing)	Depth of Groundwater	Relative Elevation of Groundwater	Date
MW-1	100 ft.	97.08 ft.	4.69 ft.	92.39	5/10/88
MW-2	100 ft.	99.15 ft.	9.20 ft.	89.95	5/10/88
MW-3	100 ft.	99.13 ft.	5.51 ft.	93.62	5/10/88

A permanent marker was used as a reference elevation at 100.00 feet. The permanent marker was a nail at the intersection of concrete slabs on the walkway along the estuary, approximately 15 feet from MW-2. The nail was encircled with blue spray paint. The permanent marker is shown in the Photo Log, part of Appendix Λ .

ANALYTICAL TESTING

United States Environmental Protection Agency (EPA) Test Methods were performed on seven soil and six groundwater samples, two from each of the wells. In addition to the groundwater samples, one quality assurance/quality control (QA/QC) travel blank sample was archived by the laboratory for volatile organic compounds. The samples were analyzed in accordance with the following EPA Test Methods.

Test Name	EPA Test Method
TPH(1)/Gasoline (volatile, low to medium boiling point hydrocarbons + BTXE(2)	Modified 615/8015 + 602/8020
TPH(1)/Diesel (extractable high boiling point hydrocarbons)	Modified 615/8015

Notes:

- (1) TPH Total Petroleum Hydrocarbons
- (2) BTXE Benzene, Toluene, Xylene and Ethylbenzene

Taylor-Woodrow of California June 29, 1988, 11703 Page 8

ANALYTICAL TEST RESULTS AND DISCUSSION

No detectable amounts of petroleum hydrocarbons including BTXE, for soil samples in Exploratory Borings EB-1, EB-2, EB-3, EB-4 and Monitoring Wells MW-1, MW-2 and MW-3 were reported by the analytical laboratory. Additionally, no detectable amounts of petroleum hydrocarbons including BTXE in groundwater samples MW-1, MW-2 and MW-3 were reported by the analytical laboratory.

The following Table 2 presents cumulative analytical data reported from our current and previous investigations.

TABLE 2
SUMMARY OF TEST RESULTS ABOVE
THE METHOD DETECTION LIMITS

Matrix	Boring/ Well Number	Depth (Feet)	(in ppm) Volatile low to medium B.P. llydrocarbons	Extractable	Benzene	Toluene
Soil Soil Soil Soil Soil Water Water Water Soil Soil Soil	EB-1 EB-2 EB-3 EB-4 MW-1 MW-2 MW-3 MW-1 MW-2 MW-3 PB-6 PB-8	1 1/2+61/2 3 1/2+81/2 3 1/2+81/2 4 1/2+81/2 2 1/2+51/2 3+8 2 1/2+71/2 N/A N/A N/A N/A 6 5 1/2 5 1/2+8	ND N	ND N	ND N	ND N
	PB-10	/	12	46	ND	ND

Notes:

B.P. = Boiling Point

EB = Exploratory Boring drilled in April 1988

MW = Monitoring Well drilled in April 1988

PB = Previous Boring drilled in December 1987

ND = Not Detected (above detection limit for test method)

 $N/\Lambda = Not \Lambda nnlyzed$ N/ $\Lambda = Not \Lambda pplicable$ Taylor-Woodrow of California June 29, 1988, 11703 Page 9

DISCUSSION AND CONCLUSIONS

The analytical data indicates groundwater quality of the subject property has not been impacted by contaminants found in our previous study. A down-gradient well within the footprint of the proposed addition has not been constructed, thus some groundwater contamination may be present at the southwest building corner. However, the previous exploration and sampling provided no indication of high concentrations of hydrocarbons in the groundwater.

In our previous investigation, petroleum hydrocarbons were detected in all samples submitted for testing. However, the total concentrations (volatile and extractable, combined) detected were less than 100 parts per million (ppm), except those of a sample from Boring 6, in the southwest corner of the proposed addition. Hydrocarbons levels at this location were in excess of 1,200 ppm.

As discussed in our previous report, the San Francisco Bay Region California Water Quality Control Board has issued guidelines for fuel leak contamination of soil. These guidelines are contained in "Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure", revised May, 1988. These guidelines generally require site remediation where hydrocarbons content in soil exceeds 1000 ppm, and further investigation of potential or existing groundwater contamination at levels exceeding 100 ppm in soil. At levels less than 100 ppm, the soil may be left in place. According to Appendix F in the referenced document, the following is stated: "If contaminated soil is to be treated at or removed from a site, a decision needs to be made regarding the waste classification of the soil. If the soil is classified as hazardous, it must be managed accordingly (i.e., manifested, licensed hauler, sent to a licensed facility). If it is treated on-site, the treatment system must have a permit or variance from Department of Health Services (DHS)".

Additionally, the leaching potential analysis for diesel using total petroleum hydrocarbons (TPH) and benzene, toluene, xylene and ethylbenzene (BTXE) was calculated from Table 2-2 of the referenced document. By following this table (attached Figure 4), we were able to establish the concentrations of TPH and BTXE that can be left in place without threatening groundwater which calculated to be 100ppm.

American Stores Properties, Inc. June 29, 1988, 11703 Page 10

RECOMMENDATIONS

Petroleum hydrocarbons are present at concentrations greater than 1000 ppm in the southwest corner of the proposed addition. We recommend that the contaminated soils be removed to the approximate depth of 10 feet (or less, depending upon precise contamination concentrations). "Proposed Excavation Limits of Hydrocarbon Contaminated Soil", delineates the approximate area which should be excavated. A concentration of 100 ppm should be used as a cut off. The precise depth and limits of excavation should be determined in the field. Soil contamination may be present under the existing building. As groundwater has not been impacted at the site, it is our opinion that removal of contaminated soil below the existing building, if it exists, would not be economically justified. A copy of this letter should be sent to the California Regional Water Quality Board, San Francisco Bay Region, located in Oakland, California, with an appropriate cover letter describing proposed further investigation/excavation.

Post-removal soil sampling and analytical testing should be conducted to verify that all the hydrocarbon contaminated soils have been removed to the required levels.

Following this letter report, a work plan will be provided by Kaldveer Associates including excavation limits, underpinning requirements, soil aeration/disposal, and post removal soil sampling/testing.

LIMITATIONS

Our services are performed in accordance with generally environmental principles and practices. Soil deposits and rock formation may vary in thickness, lithology, saturation, strength and other properties across any site. Our studies assume that the field and laboratory data are reasonably representative of actual field conditions. The analytical results of our testing program are only specific to the locations shown on the Site and the dates of sampling. The analytical results reflect concentrations detected above detection limits applicable to each test method requested. We make no warranty, expressed or implied, except that our services have been performed in accordance with those techniques and principles generally accepted at this time and location. information or data presented in this report change, we should be advised so that we can review our report in light of these changes.

Taylor-Woodrow of California June 29, 1988, 11703 Page 11

It has been a pleasure to provide our services to you. If you have any questions, please call our office.

Very truly yours,

KALDVEER ASSOCIATES, INC.

Prepared By:

Polly Worrell

Senior Geologist/Environmental

Specialist

D-27.11-

Reviewed By:

David F. Hoexter, C.E.G. 1158

Manager, Environmental/Geologist

Services

Reviewed By:

Ronald L. Bajuniemi(

Vice President Engineering

PW/DFH/RLB:pv

No. 1158 CERTIFIED ENGINEERING

Copies: Addressee (3)

Enclosures: Figure 1 - Site Vicinity Map

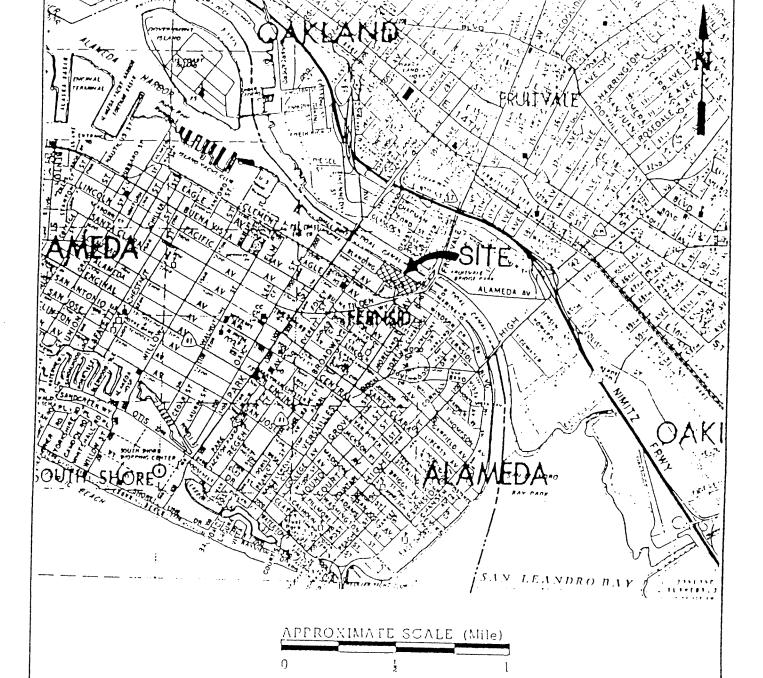
Figure 2 - Site Plan with Previous Structures

Figure 3 - Groundwater Surface Map, May 1988

Figure 4 - Table 2-2, "Leaching Potential Analysis

for Diesel"

Figure 5 - Proposed Excavation Limits of Petroleum

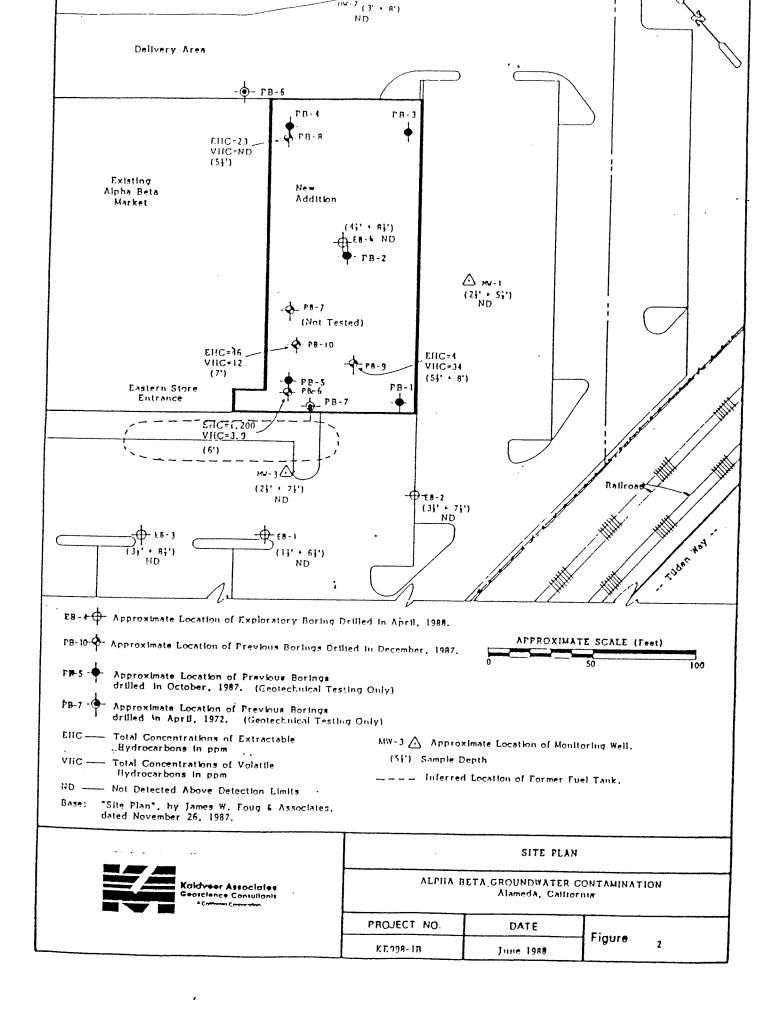

Hydrocarbon Contaminated Soil

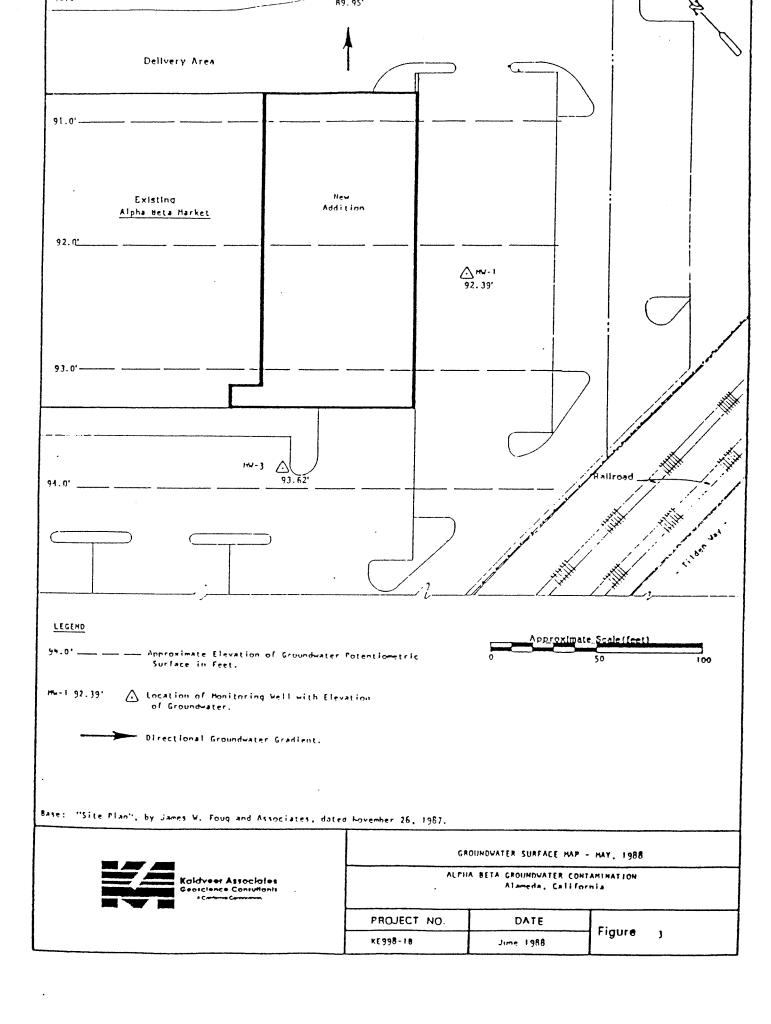
Appendix A - Environmental Field Investigation

Appendix B - Analytical Test Results and

Chain-of-Custody Records for MW-1, MW-2,

MW-3, Boring 1, 2, 3 and 4


Base: 1984 Alameda County Thomas Guide, by Thomas Bros. maps, 1983, pages 11 and 12.



SITE VICINITY MAP

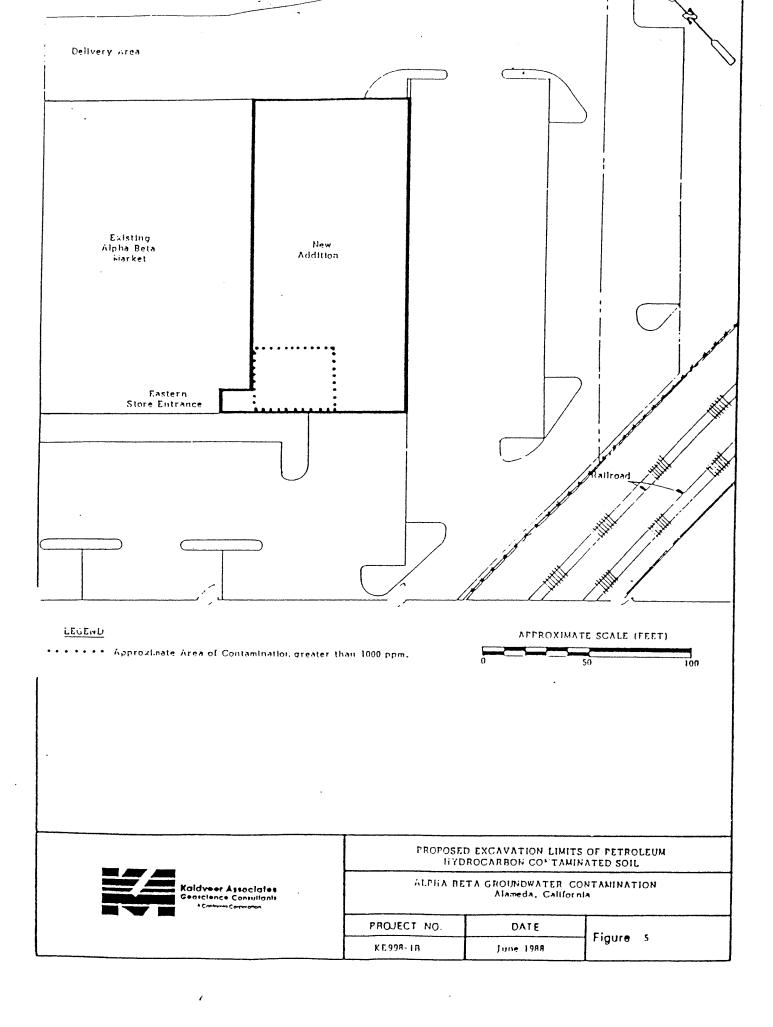
ALPHA BETA GROUNDWATER CONTAININATION
Alameda, California

PROJECT NO	DATE		
KE998-1B	June 1988	Figure	

Table 2-2

Leaching Potential Analysis for Diesel
Using Total Petroleum Hydrocarbons (TPH)
and Benzene, Toluene, Xylene and Ethylbenzene (BTX&E)

The following table was designed to permit estimating the concentrations of TPH and BTX&E that can be left in place without threatening ground water. Three levels of TPH and BTX&E concentrations were derived (from modeling) for sites which fall into catagories of low, medium or high leaching potential. To use the table, find the appropriate description for each of the features. Score each feature using the weighting system shown at the top of each column. Sum the points for each column and total them. Match the total points to the allowable BTX&E and TPH levels.

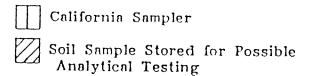

SITE FEATURE	SORE	SCORE 10 PTS IF CON- DITION IS MET	SCORE	SCORE 9 PTS IF CON- DITION IS MET	S C O R E	SCORE 5 PTS IF CON- DITION IS MET
Minimum Depth to Ground Water from the Soil Sample (feet)		>100		51-100		25-50\ <u>1</u>
Fractures in subsurface (applies to foothills or mountain areas)		None	Unknown			Present
Average Annual Precipitation (inches)		<10	10-25		26-40\ <u>2</u>	
Man-made conduits which increase vertical migration of leachate		None	Unknown Pre		Present	
Unique site features: recharge area, coarse soil, nearby wells, etc		None	At least one			More than one
COLUMN TOTALS-TOTAL PTS		+	+			=
RANGE OF TOTAL POINTS	49pt	ts or more	41 - 48 pts		40p	ts or less
MAXIMUM ALLOWABLE B/T/X/E LEVELS (PPM)	1/5	50/50/50	.3/.3/1/1		NA\ <u>з</u>	
MAXIMUM ALLOWABLE TPH LEVELS (PPM)	10000			1000	100	

[`]l If depth is greater than 5 ft. but less than 25 ft., score 0 points. If depth is 5 ft. or less, this table should not be used.

If precipitation is over 40 inches, score 0 points.

Table from "Leaking Underground Fuel Tank (LUFT) Field Manual", dated May 1988.

¹³ Levels for BTX&E are not applicable at a TPH concentration of 100ppm


APPENDIX A - ENVIRONMENTAL FIELD INVESTIGATION

SUBSURFACE SOIL SAMPLING

The subsurface investigation was performed using a truck-mounted, 8-inch diameter, continuous flight hollow stem augers to investigate and sample the subsurface soils. Seven exploratory borings were drilled on April 12 and 13, 1988, to depths of 12 to 25 feet below existing grade. The approximate locations of the borings are shown on the Site Plan, Figure 2. The augers and equipment were steam-cleaned prior to the drilling operations.

The soils encountered in the borings were continuously logged in the field by our engineer or geologist. The soils were described in accordance with the Unified Soil Classification System (ASTM D-2487). The logs of the borings as well as a key for the classification of the soil (Figure A-1) and the symbols utilized on the logs (Figure A-2) are included as part of this appendix.

Representative soils samples were obtained from the exploratory borings at selected depths based on our field observations at the time of drilling. The soil samples were obtained with the 2½-inch O.D. California sampler. The locations where each soil sample was obtained is indicated in the "Sample" column of the logs as designated below. In addition, the depth of the selected soil sample to be utilized for possible analytical testing is designated by the cross-hatched area within the "sampler" column.

Each sample was contained in 2-inch diameter, 6-inch long, brass liners. The sampler and brass liners were decontaminated with a trisodium phosphate (TSP) solution, rinsed with fresh water, and then a final rinse of deionized water prior to each sampling. The ends of the soil samples were covered with aluminum foil, rubber capped, sealed with tape, and placed in zip-lock, plastic bags. Each sample was labeled in such a manner as to maintain client confidentiality and immediately placed in refrigerated storage. A chain-of-custody form was completed by the sampler and accompanied the samples to Fireman's Fund Environmental Laboratory, in Petaluma, California, on April 11, and May 19, 1988 for testing.

Resistance blow counts were obtained with the samplers by dropping a 140-pound hammer through a 30-inch free fall. The sampler was driven 18 inches and the number of blows were recorded for each 6 inches of penetration. The blows per foot recorded on the boring logs represent the accumulated number of blows that were required to drive the last 12 inches. Due to the larger diameter of the California Sampler, the blow counts recorded with this sampler are not standard penetration resistance values. In order to convert these values to standard penetration resistance values, the indicated blow count should be multiplied by a factor of 0.8.

٠.

The attached boring/monitoring well logs and related information show our interpretation of the subsurface conditions at the dates and locations indicated, and it is not warranted that they are representative of subsurface conditions at other locations and times.

MONITORING WELL INSTALLATION

Subsequent to the drilling of Borings MW-1, MW-2, and MW-3, the borings were converted into 24 foot deep groundwater monitoring wells. The monitoring wells have been permitted with the Alameda County Flood Control and Water Conservation District under Permit Number 88131. Diagrams and descriptions of each well constructed is presented on the individual well logs.

Monitoring well construction consisted of installing a 2-inch diameter, threaded Schedule 40 PVC well casing. The lower 19 feet of the well casing was a factory slotted (slot size = .020 inches) to allow the inflow of the groundwater. The upper 5 feet of the well casing was solid casing consisting of threaded 10-foot sections. Number 3-sized Monterey sand was used to fill the annular seal up to 2 feet above the screened portion of each well. A 1 foot thick betonite pellet seal was placed over the sand pack and the remaining annular space was sealed with a lean concrete slurry to 2 feet below the existing ground surface. A steel locking well cover followed by a concrete Cristy box were placed over each well casing for protection. The construction details for each well is shown on the individual well logs.

WELL DEVELOPMENT

On April 19, 1988, the monitoring wells were developed using a well development pump sepcifically designed to develop 2 and 4 inch wells. The pump and hoses used for development were cleaned with a TSP solution, double rinsed with tap water, and the a final rinse of deionized water prior to each use. The attached well development logs list the number of gallons purged and provide a description of groundwater excavated.

June 29, 1988, 11703
Page 14

MONITORING WELL SAMPLING

The monitoring wells were sampled after development, following an initial groundwater level measurement. Prior to sample collection, the wells were purged such that a representative formation sample was collected. Purging of the wells consisted of removing 3 to 4 well volumes with a Teflon bailer. Temperature, specific conductivity and pH of the produced water were periodically measured. A Telfon bailer was used for sampling. The sampling equipment were cleaned with a TSP solution, rinsed with clear water, and then a final rinse of deionized water prior to sampling.

All groundwater samples were collected in laboratory prepared containers as appropriate for the type of analysis required. The containers were treated with any preservatives required per EPA approved sampling protocol. The samples were labeled and immediately placed in refrigerated storage until delivery, under chain-of-custody control, to Fireman's Fund Environmental Laboratory in Petaluma, California for testing.

The attached water sample logs present the field record of sample collection.

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

FOR APPLICANT TO COMPLETE

5997 PARKSIDE DRIVE | PLEASANTON, CALIFORNIA 94566 | (415) 484-2600

FOR OFFICE USE

GROUNDWATER PROTECTION ORDINANCE PERMIT APPLICATION

Hpin Geta Market	PERMIT NUMBER 88131 LOCATION NUMBER
CL INT Nome Monfrican Stores Properties IX. Address/500 Anahem Bloc Phone Jul-476-4400 21. Anahem CA 21p 92505	Approved Craig A. Mayfield Doto 8 Apr 88 Craig A. Mayfield
+ Kaldreet Assoc. *	PERMIT CONDITIONS
Http: Keic Ferrace Address 125 Kracy luny Phone 565-4001 The Callacd ZIP 44621	Circled Permit Requirements Apply
DE_URIPTION OF PROJECT Veter Well Construction \(\frac{\text{Y}}{\text{Geotechnical}} \) Tellow odic Protection \(\frac{\text{Well Destruction}}{\text{Well Destruction}} \)	(A) GEMERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date.
ROPPISED WATER WELL USE of le Industrial Irrigation fu cipal Monitoring X Other	 Notify this office (484-2600) at least one day prior to starting work on permitted work and before piecing well seals. Submit to Zone 7 within 60 days after completion of permitted work the animals.
ROPOSED CONSTRUCTION Or ling Method: Ou Rotery Air Rotery AugerX Other	of permitted work the original Department of Mater Resources Mater Well Drillers Report or equivalent for well projects, or bore hole logs and location sketch for geotechnical projects. Permitted work is completed when the last surface seal is placed or the last boring is completed.
ELL PROJECTS Drill Hole Dismeter (In. Depth(s) 25ft. Casing Dismeter 7/2 in. Number Surface Seal Depth 4 ft. of Wells 3 Driller's License No. 407379 EL ECHNICAL PROJECTS Number 2	 Permit is void if project not begun within 90 days of approval date. WATER WELLS, INCLUDING PIEZOMETERS Minimum surface seal thickness is two inches of cement grout pieced by tremie, or equivalent. Minimum seal dapth is 50 feet for municipal and industrial wells or 20 feet for domestic, irrigation, and monitoring wells unless a lesser depth is specially approved.
Diameter © in. Maximum Depth 30ft. STIMATED STARTING DATE 4-12-95 STIMATED COMPLETION DATE 1-13 95 Increase to comply with all requirements of	 C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. D. CATHODIC. Fill hole above anode zone with concrete placed by tremie, or equivalent. E. WELL DESTRUCTION. See attached.
T ICANT'S CONTROL TOLLE Date 4-6-55	* Kaldveer Associates' Representative:

				Jimock	
	A L	GRAVELS	CLEAN GRAVELS	GW	Well graded gravels, gravel-sand mixtures, little or no fines.
SOILS	MATERIAL). 200	MORE THAN HAUF OF COARSE	(LESS THAN 5% FINES)	GP	Poorly graded gravels or gravel-sand mixtures, little or no fines
	¥	FRACTION IS	GRAVEL WITH	GM	Silty gravets gravet-sand-silt mixtures non-plastic fines
GRAINED	IALF ÖF THAN N JE SIZE	LARGER THAN NO 4 SIEVE '	FINES	GC	Clayey gravels, gravel-sand-clay mixtures, plastic fines
	T 6. 1	SANDS	CLEAN SANDS	sw	Well graded sands, gravelly sands little or no lines
COAPSE	TH A ABG	MORE THAN HALF OF COARSE	(LESS THAN 5% FINES)	SP	Poorly graded sands or gravelly sands, little or no fines
8	MORE IS L	FRACTION IS SMALLER THAN	SANDS WITH FINES	SM	Silty sands sand-silt mixtures non-plastic fines
	2	NO 4 SIEVE		sc	Clayey sands, sand-clay mixtures, plastic fines
S	OF ER SIZE	SILTS AND CLAYS		ML	Inorganic silts and very fine sands rock flour, silty or clayey fine sands or clayey silts with slight plasticity
SOULS	7 K		LIOUID LIMIT IS LESS THAN 50%		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
NED	- 1	AAHT 823J			Organic silts and organic silty clays of low plasticity.
SRAII	4 0 1	SILTS AND	CLAYS	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
FINE GRAINED	MORE TH MATERIAL THAN NO. 2	LIQUID LIM	LIQUID LIMIT IS		Inorganic clays of high plasticity, fat clays,
Ē.	~ 2 支	GREATER THU	N 50%	он	Organic clays of medium to high plasticity, organic silts,
	HIC	SHLY ORGANIC SOIL	S	Pt	Peat and other highly organic soils.

DEFINITION OF TERMS

	U.S. S	STANDARD SERIES	SIEVE	CLE	AR SOUARE	SIEVE OPE	NINGS
2	00	40 10	0 .	4 3	/4" ;	3" 1	2"
SILTS AND CLAYS		SAND			VEL	CORRIEC	מכן וו הבמכ
SICIS AND CENTS	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLES	BOULDERS

GRAIN SIZES

SANDS AND GRAVELS	BLOWS/FOOT 1
VERY LOOSE	0 - 4
LOOSE	4 - 10
MEDIUM DENSE	10 - 30
DENSE	30 - 50
VERY DENSE	OVER 50
1	

SILTS AND CLAYS	STRENGTH 1	BLOWS/FOOT 1
VERY SOFT	0 - 1/4	0 - 2
SOFT	1/4 - 1/2	2 - 4
FIRM	1/2 - 1	4 - 8
STIFF	1 - 2	8 - 16
VERY STIFF	2 - 4	16 - 32
HARD	OVER 4	OVER 32

RELATIVE DENSITY

CONSISTENCY

Number of blows of 140 pound hammer falling 30 inches to drive a 2 inch 0.D (1-3/8 inch 1.D.) solit spoon (ASTM D-1586).

†Unconfined compressive strength in tons/sq ft as determined by laboratory testing or approximated by the standard penetration test (ASTM D=1586), pocket penetrometer, torvane, or visual observation.

KEY TO EXPLORATORY BORING LOGS
Unified Soil Classification System (ASTM D-2487)

ALPIIA BETA GROUNDWATER CONTAMINATION
Alameda, California

PROJECT NO.	DATE	5 :	
KE998-1B	June 1988	Figure	Λ-1

омистыю Hollow Stem Auger	SURFACE	ELEVATION		•••		LOGGE	D BY	KF	
DEPTH TO GROUNDWATER 61 feet	BORING D	IAMETER	8 in	ches_	I	DATE	PILLED	4/1	3/88
DESCRIPTION AND CLASSIF	ICATION			·. DEPTH	*	10 J		\$ 7	2 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	(FEET)	Z	PENETRATION RESISTANCE	CONTEN	1 0 × 1 0 ×	OMPRE STREM 18.51
2" A.C., 4" Baserock SAND(flue-medium grained), silty some clay, gravelly (FILL)	dark- brown black	medium dense- dense	1	_ 1	_ 才	83/9			
CLAY, silty, trace of sand(fine grained)	dark brown black	stiff	CL	- 3 - - 4 - - 4 -					
AND(fine-medium grained), silty come clay	. grey- brown	loose- medium dense	SM	-5 - - 6 - - 7 -		12	<u> </u>		
grading less clay)				- 8 3 10		18			
AND(fine-medium grained), some ilt, moist	grey- brown	medium dense	SM	11 -					
ottom of Boring = 14 feet				14	4	28			
Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 131 feet at time of drilling. Four hours after drilling, the groundwater level was measured at 61 feet.				16 -					
								-	

EXPLORATORY BORING LOG

ΛΙΡΗΛ ΒΕΤΛ GROUNDWATER CONTAMINATION Alameda, California

PROJECT NO.	DATE	BORING
KE998-1B	June 1988	NO

DAILL AND THOMAS OF THE PROPERTY OF THE PROPER	SUMPACE	ELEVATION			LOGGE	UBY		
DEPTH TO GROUNDWATER 6 [eet	BORING DI	AMETER	8_i	uches	DATE	PILLEC	4/1	3/88
DESCRIPTION AND CLASSIFIC	CATION			DEPTH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E. P	41.5	22.2
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	IFEETI	MENETRATION AESISTANCE (BLOWS/FT)	WATEN	04 06 E	COMPAG SSA STAC MG TO 14 SS1
2" A.C., 4" Base SAND(fine-coarse grained), silty, gravelly (FILL)	brown	medium dense	SM	_ 1 .				
CLAY, silty, sandy(fine grained), trace of gravel	dark brown black	very stiff	CL	- 3	22			
CLAY, silty, sandy(fine grained)	grey- brown	still	CL	-5 - -6 - -7 -	13	-∇-		
SAND(fine-medium grained), some silt, moist	grey- browi:	stiff	SM	- 8 - - 9 - 				
(occasional clay lenses)				- 10 11 13 14 15 15	20			
Bottom of Boring = 15½ Feet Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 11 feet at time of drilling. Three hours after drilling, the groundwater level was measured at 6 feet.				18 -				

Kaldveer Associates Geoscience Consultants A Cottornia Corporation

EXPLORATORY BORING LOG

ΛΙΡΗΛ ΒΕΤΛ GROUNDWATER CONTAMINATION Λlameda, California

<u> </u>				
PROJECT NO.	DATE	BORING		
KE998-1B	June 1988	NO	2	

рякь яю Hollow Stem Auger	SURFACE	ELEVATION		-	LOGG	ED BY	KF	
DEPTH TO GROUNDWATER 9 Feet	BORING D	IAMETER	8 i	nches	DATE	DRILLED	4/13	/88
DESCRIPTION AND CLASSIFIC	CATION			OEPTH	ATION AMCE	5.	¥3.17	\$\$\$.75 \$\$.75 \$7.75
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	(FEET)	PEHETRATIO RESISTANCE	WATER	OAY OEKSIT	18 18 18 18 18 18 18 18 18 18 18 18 18 1
4" A.C., 6" Base								
SAND(fine-coarse grained), gravelly, silty, some clay (FILL)	dark- brown black	medium dense	SM/	2 -				
CLAY, silty, sandy(fine-medium grained)	dark- brown black	firm- stiff	CL	3 - 4	12			
CLAY, silty, sandy (fine-medium grained)	grey- brown	stiff	CL- SC	- 5	18	4		
SAND(fime-medium grained), silty, trace of clay, moist	grey- brown	medium- dense	SM	- 10 -	7 13			
Bottom of Boring = 12 Feet Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 12 feet at time of drilling. Two hours later groundwater level was measured at 9 feet.				- 12 - 4 - 13				
		EXP	LORA	TORY	BORIN	IG LO	G.	
Kaldveer Associates Geoscience Consultants	' !	Λ ΒΕΤΛ	GRO	UNDWA	TER C	ОИТА		1017
A California Corporation	•							

PROJECT NO.	DATE	BORING	
KE998-1B	June 1988	NO	3

DRILL RIG Hollow Stem Auger	SURFACE	ELEVATION		-	L	OGGE	D BY	KF	
DEPTH TO GROUNDWATER 9 feet	BORING DI	AMETER	8 in	ches	D,	ATE D	RILLED	4/13	/88
DESCRIPTION AND CLASSIFI	CATION			DEPTH	£ 3	A)*CE A)*CE 5/FT)	6.A • f (• .)	x3177	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	IFEET)	SAUPLE	RESISTANCE (BLOWS/FT)	WATER COMIENT	047 06351	COMPANY COMPAN
3" A.C., 6" Base									
CLAY, silty, sandy(fine-medium grained)	dark browie black	stiff	CL	2 -					
				- 4 -					i
CLAY, silty, sandy(fine-medium grained), moist	grey- brown	stiff	CL- SC	_ 5 _ Z		12			
				7 -					
				- 3 - 2		17	₽		
SAND(fine-medium grained), some silt, moist-wet	grey- brown	medium- dense	SM	- 11 - - 12 -					
Bottom of Boring = 12½ Feet				- 4	7	25			
Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 12 feet at time of drilling. Half hour later the groundwater level measured 9 feet.				- 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 -					
		EXP	LORA	ATORY	во	RIN	G LO	G	
Kaldveer Associates Geoscience Consultants A Cotifornia Corporation EXPLORATORY BORING LOG ALPHA BETA GROUNDWATER CONTAMINATION Alameda, California							LION		

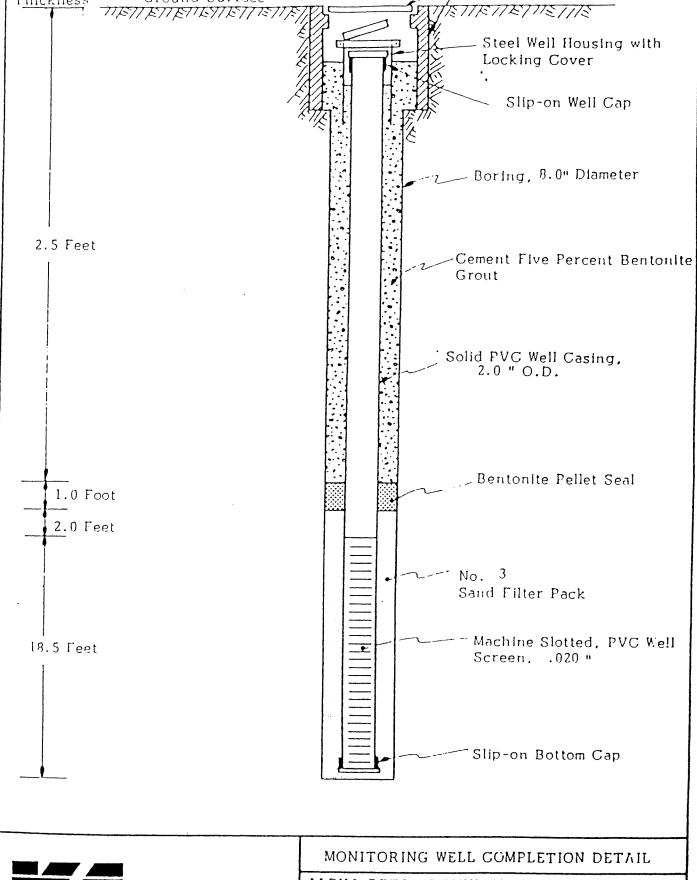
PROJECT NO.	DATE	BORING		
KE998-1B	June 1988	NO	4	

DAILLANG Hollow Stem Auger	SURFACE	ELEVATION	6.66'	(note 4	1)	LOGGE	DBY	KF	-
DEPTH TO GROUNDWATER 5' (see note 3)	BORING (DIAMETER	8 in	ches	+		RILLED		
DESCRIPTION AND CLASSIFIC	CATION			٠.	€	S Y E		>	0 5 2
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	DEPTH IFEET)	SAMPLER	PENETRATION RESISTANCE (BLOWS/FT)	WATER COMTENT	ORY OCUSIT	UNCOMES STARMS STARMS
SAND(fine-medium grained), silty, trace of clay, moist	grey- brown		SOIL			17	¥ co	0 X 40	O NO.
			- - - -	19 20		61			
	<u> </u>	FYDI		TORY		PING			_

EXPLORATORY BORING LOG

ALPHA BETA GROUNDWATER CONTAMINATION Alameda, California

PROJECT NO.	DATE	Monitoring	
KE998-1B	June 1988	Well	1


DESCRIPTION AND CLASSIFICATI DESCRIPTION AND REMARKS SAND(fine-medium grained), silty, grace of clay CLAY, silty, trace of sand(fine-grained)	COLOR Trey- Town	CONSIST. dense- very dense very	SOIL TYPE SM	DEPTH ((EET)	SAMPLEA	PEMETRATION Y RESISTANCE 1 SLOWS/FT.)	WATER CONTENT (*.)		COMPRESSIVE STRENGTH STRENGTH
DESCRIPTION AND REMARKS SAND(fine-medium grained), silty, grace of clay CLAY, silty, trace of sand(fine-grace)	COLOR Trey- Town	dense- very dense	TYPE		SAMPLER	PENETRATION RESISTANCE (BLOWS/FT.)	WATER	RY DENSITY (PCF)	PRESSIVE RENGTH RENGTH
SAND(fine-medium grained), silty, grace of clay CLAY, silty, trace of sand(fine- grained)	rey- Own	dense- very dense	TYPE		ž	PENETI RESIS (BLOW	WA	Ž 0	10 2 5 7
brocker of clay CLAY, silty, trace of sand((ine- gi	reen-	very dense	SM					٥	3 S R
		very	l/	- 21					
coarse grained) gi	1	stiff	CH CL-	- 22					
				- 23 - - - 24 -					
Notes: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. For an explanation of penetration esistance values, see Appendix A. The groundwater level was measured at 12 feet at time of drilling. Five hours later groundwater evel was measured at 5 feet. Location of reference datum is explained in Appendix A and shown in figure 3.				- 25 26 27 28 30 31 32 33 35 37 - 38 37 - 38 39 40 39 40 39 40 39 40 39 40 39 40 39 40					

EXPLORATORY BORING LOG

ALPHA BETA GROUNDWATER CONTAMINATION Alameda, California

PROJECT NO.	DATE	Monitoring
KE998-1B	June 1988	Well No. 1

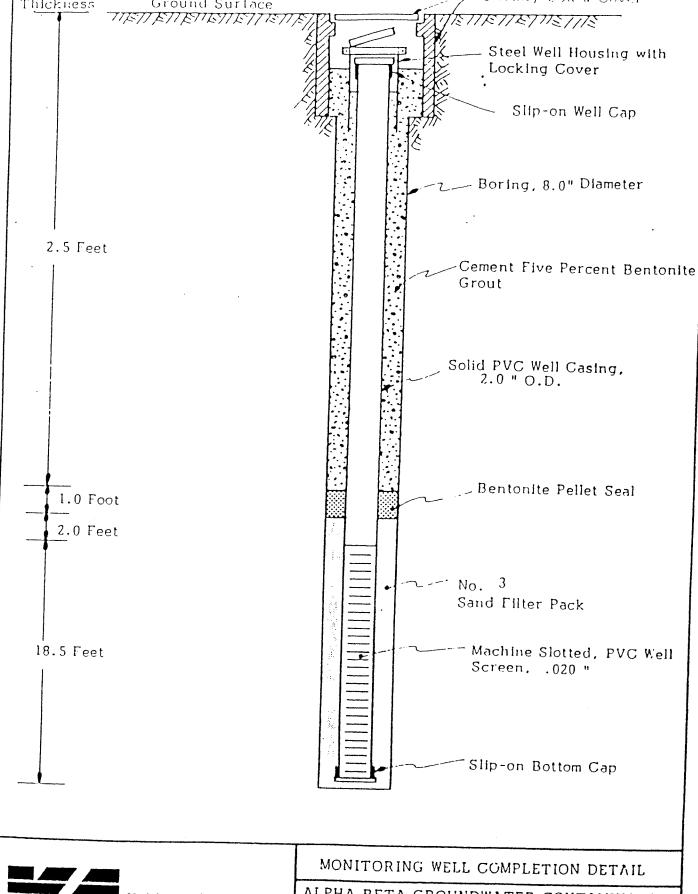
ALPHA BETA GROUNDWATER CONTAMINATION Oakland, California

PROJECT NO.	DATE	- ·
KE998-1B	Jui:e 1988	Figure NIW-1

DAILL AND Hollow Stem Auger	SURFACE	ELEVATION	4.82'	(note 4)	LC	GGE	D 8 Y	KF	
DEPTH TO GROUNDWATER 9' (note 3)	BORING DI	AMETER	8 inc	ches	0/	TE D	AILLED	4/1:	2/88
DESCRIPTION AND CLASSIFIC	ATION			; DEPTH	LEA ATION	S/FT	6.8 *F (*.1	¥ -	SSIVE SSIVE GEN
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	(FEET)	SAMPLEA	AESISTANCE	WATER COMTENT	DRY DEMSITY (PCF)	COMCON COMPA STAL STAL
CLAY, silty, sandy(fine grained)	dark brown- black	firm- stiff	CL	2 - 3 3		7			
CLAY, silty, sandy(fine grained)	grey- brown	stiff	CL	- 6 - 7 - 8 - 9 - 9		12	立		
	grey- brown	dense	SM	- 10	5	6			
		EXP	LORA	TORY	BOF	RINC	LO	 3	

ALPHA BETA GROUNDWATER CONTAMINATION
Alameda, California

PROJECT NO.	DATE	Monitoring	
KE998-1B	June 1988	Well No.	2.


	DEPTH TO GROUNDWATER 9' (note 3)	BORING DI	AMETER	8 inc	hes		DATE D	AILLED	4/12	/88
	DESCRIPTION AND CLASSIFIC	CATION		T	DEPTH	SAMPLEA	PENETRATION RESISTANCE (BLOWS/FT)	TER	ORY DENSITY (PCF)	ESSIVE NG FH
	DESCRIPTION AND REMARKS	COLOR	CONSIST.	SOIL TYPE	(FĘET)	3	PENET RESIS (BLOW	WATER CONTENT	φ γ γ	COMPRESSIV STRENGTH
	SAND(fine-medium grained), some silt	grey- brown	dense	SM	21 -					
	CLAY, silty, trace of sand and gravel	green- grey	very stiff	CL	- 22 -					
					 - 23 -					
					- - 24					
					- 25 -					
	Bottom of Boring = 25 Feet				- 26 -					
	Notes: 1. The stratification lines repre-									
	sent the approximate boundaries between soil types and the transi-				- 27 -	•				
	tion may be gradual. 2. For an explanation of penetra-									
	tion resistance values, see Appendix A. 3. The groundwater level was			-	29 -		***************************************			
	measured at 11½ feet at time of drilling. Twenty-four hours			-	- 30 -					
(after drilling groundwater level was measured at 9 feet.			}-	31 -					
	4. Location of reference datum is explained in Appendix A and shown			F	32 -					
(on Figure 3.			<u> </u>	33 -					
				- -	34 -					
				- -	- 35 -					
					36 -					
				<u> </u>	37 -					
				-	38 -					
				-	39 –					
				-	40					
		1								

EXPLORATORY BORING LOG

ΛΙΡΙΙΛ ΒΕΤΛ GROUNDWATER CONTAMINATION Alameda, California

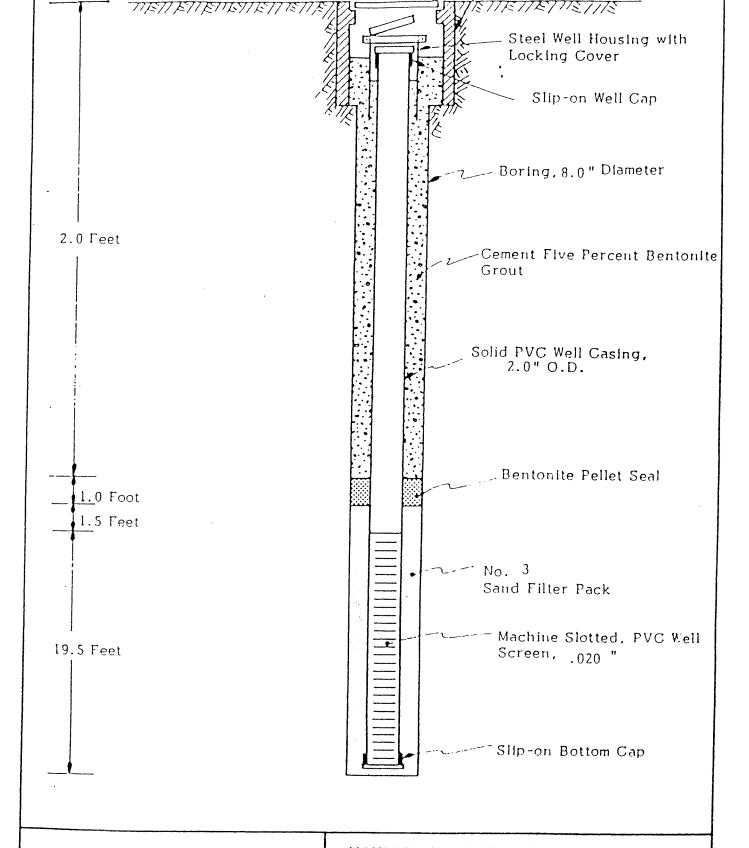
PROJECT NO.	DATE	Monitoring	
KE998-1B	June 1988	Well No.	2

ALPHA BETA GROUNDWATER CONTAMINATION Alameda, California.

PROJECT NO.	DATE	
KE998-1B	June 1988	Figure MW-2
110000 110	Julie 1988	MW - 2

DAILLANG Hollow Stem Auger	SURFACE	ELEVATION	4.87'	(note	1) (.0666	DRY	KF	
DEPTH TO GROUNDWATER6! (note 3)	BORING DI	AMETER	8 ii:	ches			RILLED		
DESCRIPTION AND CLASSIFI	CATION					ŞΫĒ	.:		0 x 1
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	DEPTH IFEET)	SAMPLER	PENETRATION RESISTANCE (BLOWS/FT)	WATER CONTENT 1-11	DAY OEMSITY IPCF)	COMPAGES STARMES
2]" A.C., 4" Base CLAY, silty, some sand(fine grained)	dark brown- black	still	CL	- 1		15			
CLAY, silty, sandy((ine grained)	grey- brown	stiff	CL-SC	7 - 8		18	7		
AND(fine-medium grained), with		nedium dense	-	10 - 11 - 12 - 13 - 14 - 14 -	2	4			
			H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		32				
		EXPLO	PAT	ORY B			LOG		\dashv

ΛΙΡΗΛ ΒΕΤΛ GROUNDWATER CONTAMINATION Alameda, California


PROJECT NO.	DATE	Monitoring	· · · · · · · · · · · · · · · · · · ·
KE998-1B		Well No.	.3
	*	L	

DAILL RIG Hollow Stem Auger	SUPFACE	ELEVATION /	1.875	(note 4)		LOGGE) BY	KF	
DEPTH TO GROUNDWATER 6' (note 3)	BORING DI	AMETER	8 inc	thes		DATE D	PILLED	4/1	3/88
DESCRIPTION AND CLASSIFIC	CATION		,	DERTH	SAMPLEA	PEMETRAFION RESISTANCE (BLOWS/FT)	WATER CONTENT (**)	Y DENSITY (PCF)	SONFINED IPRESSIVE RENGEN
DESCRIPTION AND REMARKS	COLOR	CONSIST.	SOIL TYPE	(FEET)	3	PEHET RESIS	CONT	0 % 0	UNCONFINE COMPRESSI STRENGTI
SAND(fine-medium grained), some silt	grey- brown	dense	SM	21 -		85			
				23 -					
l. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 14½ feet at time of drilling. Six hours later groundwater level measured 6 feet. 4. Location of reference datum is explained in Appendix A and shown on figure 3.				- 25 26 27 28 29 30 31 32 33 35 36 37 38 38 39 40					
				TORY E					
Valdyaar Assaniates	Kaldyear Associates ALPHA BETA GROUNDWATER CONTAMINATION						LION		

ALPHA BETA GROUNDWATER CONTAMINATION Alameda, California

PROJECT NO.	0.1.0	Monitoring	_
KE998-1B	June 1988	Well No.	3

MONITORING WELL COMPLETION DETAIL

ALPHA BETA GROUNDWATER CONTAMINATION:
Alameda, California

PROJECT NO	DATE	
KE998-1B	June 1988	Figure AIW-3

WELL DEVELOPMENT LOGS

ALPHA BETA GROUNDWATER CONTAMINATION

MW-1

Date	Gallons Purged	Comments	Time
4/19/88	Set Pump 20 gallons 40 gallons 10 gallons 40 gallons 45 gallons 5 gallons	Very, very turbid Very turbid Turbid Slightly turbid Slightly turbid to clear Clear	9:35 9:50 10:15 10:20 10:45 11:10
Total gallons purged	160 gallons		

Water Level 4.48' before pump 5.78' after pump

WELL DEVELOPMENT LOGS

ALPHA BETA GROUNDWATER CONTAMINATION

MW-2

Date	Gallons Purged	Comments	Time
4/19/88	Set Pump		12:00
	18 gallons	Very, very turbid with sulfur odor	12:10
	17 gallons	Very turbid with sulfur odor	12:20
	l5 gallons	Turbid with sulfur odor	12:30
	0 gallons	Turbid with sulfur odor	13:00
	15 gallons	Slightly turbid with sulfur odor	13:10
•	10 gallons	Slightly turbid with sulfur odor	13:20
	13 gallons	Slightly turbid with sulfur odor	13:30
	12 gallons	Slightly turbid with sulfur odor	13:41
	10 gallons	Slightly turbid with sulfur odor	13:49
	20 gallons	Slightly turbid	14:00
	25 gallons	Clear to Slightly turbid	14:30
Total gallons	· · · · ·		
purged	165 gallons	·	

Water level 8.78' before pump

WELL DEVELOPMENT LOGS

ALPHA BETA GROUNDWATER CONTAMINATION (continued)

MW-3

Date	Gallons Purged	Comments	Time
4/18/88	Set Pump	· <u>.</u>	13:00
	10 gallons	Very, very turbid	13:05
	8 gallons	Turbid	13:10
	37 gallons	Slightly turbid	13:35
	25 gallons	Slightly turbid	13:50
	35 gallons	Slightly turbid	14:20
	27 gallons	Clear to slightly turbid	15:00
	32 gallons	Clear	15:30
Total gallons			
purged	174 gallons		

Water level 5.73' before pump 6.12' after pump

	Project Well Nu	Name: Alpha Number: KE998 mber: MW-1 cation: MW-1.	Beta <u>G</u> 8-18		Sampler:	Date: P. Worrell/K Sunny, warm	eith Graig 70°F	
	Well Co	cacton. /iw-/					Alameda, C	a
	Well Co	nstruction:		_	Sa	mpling Equipr	ment & Clean	ing
	Date Co	mpleted: 4/21/	/88		Sa	mpler Type:	Teflon Baile	r
	Total Diamete	epth of Well:	24.0'		(16	ruod of Cleat	11D0: Tch	
		evation & Refe	rence		Ne	thod of Clear	ing: Ten	Bailer
					pH	Meter: <u>DSPH</u>	:3	
	Groundwa	ater Levels:			Cor	nductivity Me mments:	ter: <u>DSPH-3</u>	
						photo_vac_(PI	D) Tin 1	
	Initial: Final:	4.24	·			0:00 7.7 ppm	. Netected	
	Referenc	e Point: blac	k mark	on ton o	of casino			
	Well Vol	lume of Water:	3.22	gals.	vi casımi			
	M-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		······································		-			
				SAMPLING	MEASUREN	IENTS		
	Discha	rge (gal.)		I	Spec.	Conductance		T
Time	Per Time		рН	Temp	(umh	os/cm)	Color/	Odor
	Period			(°C)	Field	@ 25°C	Turbidity	
:00		_l_gal	7.3	16.9	110×1	0	clear tan	none
:15_	5 gals							
	5 gals							
	3 gals							
:50	l gal							
						 		
		 1					<u> </u>	
	Total Dis	scharge: 15 ga	allons		Com	nents: we	ather: sunny	warm (
'urge	d: Casing Vo	olumes Removed E Disposal: Rai	نوــــــــــــــــــــــــــــــــــــ	als (4 W	v)			
		. Disposai. Bai	rrelle	1				
_								
				م الم		ATER SAMPLE I GROUNDWATER (
		oldveer Associa		,,,,,		meda, Califo		и
		A California Corporation		200 15				
				PAQUE		DATE	Figure	
				KE998-1	В .	June 1988	MW.	- 1

	Project Project	Name: Alpha Number: KE998 nber: MW-1 cation: Alame	Beta GW -1B	/ Contam	Sampler:	·Date:_ Keith Hardt/E Sunny, warm	olly Warrel	1
	Well Nut Well Loc	ration: Alame	da, Cal	lfornia	weather	Sunny, warm	73 · F	
	Well Cor	struction:			Sa	ampling Equipm	ent & Cleani	ng
·	Total De	npleted: 4/21, epth of Well:_ c: 2" evation & Refe	24.0		ne Pu Me	ampler Type: Bethod of Clean imp or Bailer into the clean important of Clean important Meter: DSPH-	Ing: <u>TSP,TAP</u> Type: <u>Teflon</u> Ing: <u>TSP,TAP</u>	<u>,D.I,</u> D.)
	Groundwa	iter Levels:			C c	onductivity Me omments: Samples collec	ter: DSPH-	
	Final:	4.55 4.77 e Point: <u>black</u> ume of Water:		on top a	3	lx80 ox Amber 3x40 mi VOA w/ ample ID NO. 1	HCL: TPH "oa	solfne"
	WWV = 19	.5 x 0.163 x = 3 Purge vo	(2/2)	2		Time: 15:45	-1-Z	
Time		rge (gal.) Cummulative	pН	Temp (°C)		Conductance hos/cm) d @ 25°C	Color/ Turbidity	Odor
15:30	5 gal		7.4	9.2	1040		clear clear	None
15:40	5 gal		7.6	8.8	1020		clear clear	None
15:45	l gal		7.8	9.5	1000		tan	None
	Casing V	scharge: 11 olumes Remove f Disposal: b	d: 3	3	Co 	mments:		
		aldveer Associ	lates	AI		WATER SAMPLE I		ON
		eoscience Consu	llanis		٨	lameda, Califo		
				KE998-	IB	June 1988	Figure MW	-1

	Project Project	Name: Alpha Number: KE99 ber: MW-2-1 ation: Near	Beta G 8-1B	.W. Contar	m <u>inati</u> Sample	on r: Ke	Date:	4/21/88	
1	Well Num	ber: MW-2-1			Veathe	r: 0v	ercast, W	indy	
	Well Loc.	ation: Near	water,	back of	A.B. S	tore			
	Well Cons	struction:				Sampli	lng Equipm	ent & Clean	ing
	Total Der Diameter:		24'	• -		metnod Pump c	r of Clean or Bailer	Teflon Rai ing: TSP.TAP Type: 1 3/4	Deta.
•	Well Elev	vation & Refe	rence:		1	nechoo pH Met	er: Deni	ing: TSP. TAP	·DaI.D.
	Groundwat	er Levels:			(Commen	ts: 3.2%	on sniffer	
	Initial:_ Final:				-				
٠	Reference Well Volu	Pointblack me of Water:	mark o	on top cas	sing _				
		purge = 10.			-				
			:	SAMPLING	MEASUR	REMENT	S		
T1		Discharge (gal.) Per Time Cummulative pH		_			ductance		
Time	Per Time Period	Cummulative	рН	Temp (°C)		mhos/	cm) @ 25°C	Color/ Turbidity	Odor
15:30	0	0						clear to	NO
16:00	11.5	11.5	6.9	13.7	641	<u> </u>		Turbid bro	COXO
16:20	2.0	13.5	7.1	13.0 6		.0		Turbid hrown	NO
	:								
	Casing Vol	charge: 25 Lumes Removed	1: 9		C	omment	:5:		
	Method of	Disposal:	barrel	led					
						WATER	SAMPLE L	og	
		dveer Associo	lants	ALPI	HA BET	A GRO	UNDWATER (CONTAMINATIO Cnia	N
		A California Corporalion	ר	PROJEC	T NO.		DATE	Figure 3gr	

			_				
Project Name: Alpha	Beta (tamination · Date:	5/18/88			
Project Number: KE99	8-1B		Sampler: Polly Worrel	1/Keith Hard	<u>it</u>		
Well Number: MW-2			Weather: Sunny warm	. 75°F			
Well Location: Alame	da, Ca	llfornla					
Well Construction:			Sampling Equipm	ent & Clean	lng		
Date Completed: 4/21	/88		Sampler Type: T	eflon Bailer			
Total Depth of Well:			Method of Clean	ing: TSP,TAP	,D.I.D		
Diameter: 2"			Pump or Bailer	Type: Teflon			
Well Elevation & Refe	rence:		Method of Cleaning: TSP, TAP, D.I., D				
			pH Meter: DSPH-	-3			
			Conductivity Me	ter: DSPH-3			
Groundwater Levels:			Comments: Sample	s collected			
			1x80 oz Amber	- TPH "Dies	e1"		
Initial: 8.04			3x40 m1 VOAs -	TPH "gaslo	ine" +		
Final: 8.19.			•	BTXE			
Reference Point:							
Well Volume of Water:	2.76						
$WWV=16.96 \times 0.163 \times (2)$	/2) Z =	2 76					
2.76x3 = 3 purge voj	umes						
		SAMPLING	MEASUREMENTS				
Discharge (gal.)			Spec. Conductance		<u> </u>		
er Time Cummulative	pН	Temp	(umhos/cm)	Color/	Odor		

	Discharge (gal.)				Spec. Conductance			
Time	Per Time	Cummulative	pН	Temp (umhos/cm)		Color/	Odor	
	Period			(°C)	Field	@ 25°C	Turbidity	
16:07	5 gal		7.6	7.3	6380		clear.tan	None
16:12	5 gal		7.7	7.0	6350		clear.tan	None
16:15	l gal		7.6	6.6	6020		clear.tan	None
						- 1, W		
			<u> </u>		I			

Total Discharge: 11 gallons Comments:

Casing Volumes Removed: 3

Method of Disposal: barrel

Kaldveer Associates
Geoscience Consultants
A California Corporation

WATER SAMPLE LOG

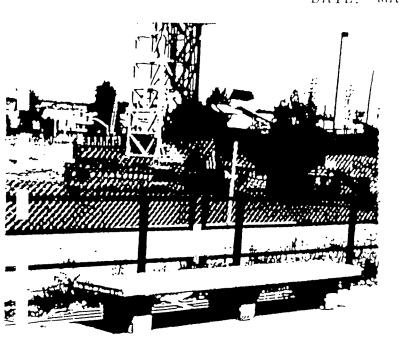
ALPHA BETA GROUNDWATER CONTAMINATION Alameda, California

	<u> </u>		
PROJECT NO.	DATE		
KE998-1B	June 1988	Figure	1W-2

Date: 4/21/88

	Project	Name: Alpha	Beta		Date: 4/21/88 Sampler: Keith R Craig				
	Project	Number: KE	998-1B	······································	Sampler	· Keith R Cra	1α		
		wher: $MW-3-1$ sation: Front		nha Pota	weather	Partly overc	ast, windy,	60°	
	Mett roc	ation: From	OL MI	pna beta					
	Well Con	struction:			S	ampling Equipm	ent & Cleani	ng	
		pleted: 4/2			S	ampler Type:_	Bailer (Tof	lon)	
	Total De	pth of Well:	24'		Me	ethod of Clean	INE: TOD TAR	D +	
	Diameter	: 2" vation & Refe			P	ump or baller	LYDE: 1 7//		
	MeII Die	ARCTON & VETE	Tellce.			ethod of Clean H Meter: <u>DSPH</u>	TSP, TAP	, D. I.,	
				<u></u> :_	Co	onductivity Me	ter: DSPH-	3	
	Groundwa	ter Levels:			Co	omments: 7.4 7	on sniffer		
	Initial:	5,36'							
	Final:								
•	Kererenc Wall Vol	e Point: <u>Dark</u> ume of Water:	hlue	mark on 1	top of—c	esing			
	WELL VOI	due or mattr.	1_114_	ed =					
			n tun 8	<u> </u>			**************************************		
				SAMPLING	MEASURE	EMENTS			
	Discharge (gal.)					Conductance			
Time	Per Time	1 1	pН	Temp		hos/cm)	Color/	Odor	
2 . 20	Period			(°c)	Fiel	.d @ 25°C	Turbidity		
3:20	0	0							
4:00	13	13	6.9	15_1_	590		Tan, tymbi		
4:05	10.1	13.1	6.9	15.1	590		Tan turbid		
4:35	1.0 .	14.1	7.5	14.5	570		Tap turbid		
	·	13.1			370				
								······································	
	7	•							
	Canina Va	scharge: 40 Dlumes Removed	gallon	c	Co	mments:		 	
	Method of	Disposal:	1.13						
			barral	104					
						WATER SAMPLE	LOG		
		aldveer Associa	nto.c	ΛLE	PHA BETA	GROUNDWATER	CONTAMINATIO	Ŋ	
	Geoscience Consultants				٨	lameda, Califo	ornia		
		A California Corporatio	n	PROJE	CT NO.	DATE	Figure Mi	1-3	
				KE998	-1R	June 1988	1	ر ,	

	ame: <u>Alpha</u> umber: KE99		.W. Cont	Sampler	Keith Hardt	5/18/88 5/PO11v Work	
	er: NW-3			Weather	Sunny, warm 1	75° F	+++
	tion: Alamed		Ifornia				
	-						
Well Const	ruction:			<u>S</u> :	ampling Equipm	sent & Cleans	ing
note Compl	11-1/	20		5	ampler Type:	Teflon Baile	• r
	leted: <u>4/21/8</u> th of Well:				ethod of Clean		
				P.	ump or Bailer	Tuna Tefle	, D.I.
Diameter:	2" stion & Refe	nca:			ethod of Clean		
Melt preve	.C10H & NELE	Lence.				PH-3	,0.1, -
					onductivity Me		1
Groundwate	' -vala:				omments:	rer, norm 2	
Groundwate	L PEASTO.				Samples collect		
T-1+1a1+					1x80 oz Amber-		11
	<u> </u>				3 - (1) - 1 110 A 1 110 -	TOU II	111 1
rinar.	5.8 Point: n:	_			DYACHT LOUISING	TTYP	ine +
Kelerence	Point Rine	mark pr	a_top_of	_casin g	Sample I.D.	BTXE	
Mell Anim	ne of Water:	-3- <u>1</u> 6-r	g=1		Time: 15:00	MW-J-Z	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\underline{WWV} = 19.$	4x0_163_x(2	2/2)~3_1	16 gal		11me: 13.00		
3.16x3 =	9.48 (3 pur	ge volu	nwes)				
		S	SAMPLING	MEASURF	EMENTS		
Discharge	e (gal.)		,	Spec	. Conductance		T
Per Time Co		pH	Temp		mhos/cm)	Color/	Odor
Period	diama za az	1 "	(°C)	Fiel		Turbidity	
5 gal	The section of the se	7.2	6.8	530		Tan	None
						Tan, clear	None
5 gal		7.5	7.0	517		,	
l gal		8.2	7.2	520		Tan.clear	None
						!	
							<u> </u>
		1		 			
				<u> </u>			
				1			
				1			
Total Disc!	harge: 11 ga			Cc	omments:	1	<u> </u>
Caaing Volu	umes Removed	llone		-	Ome area.		
Mathod of I	Disposal: b	arrel					
nethod on -)Ishosar.	0112	-	-			
					WATER SAMPLE	100	
		1	<u></u>				
Kak	dveer Associa	-1	1		BETA GROUNDWAT		ATION
	science Consul		ŀ		Λlameda, Calif		
	A Cattornia Corporation		PROJ	ECT NO.	DATE		
"		}			 	Figure M	W-3
		1	KE998-	-IB ,	June 1988		ر ۱۳۷


Time

14:30

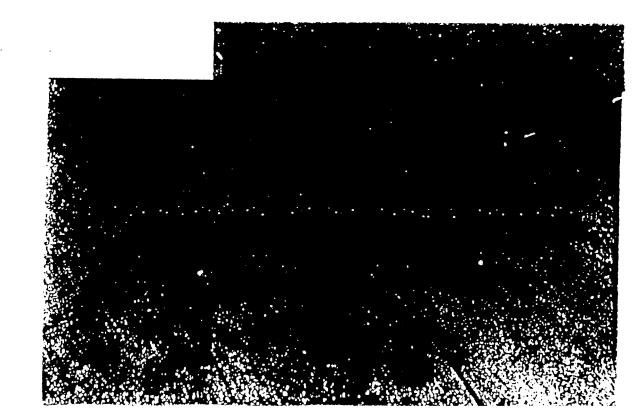
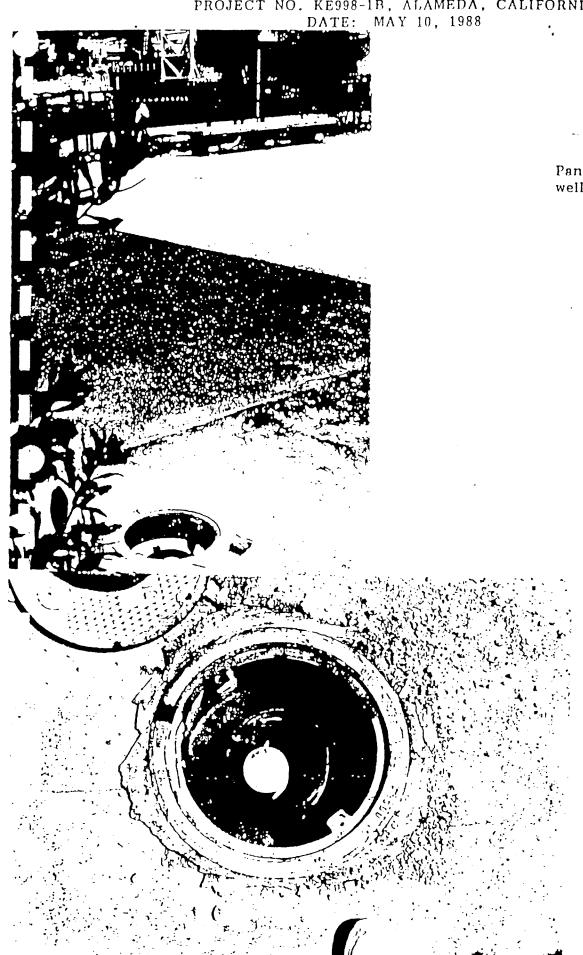

14:50 15:00 15:20

PHOTO LOG


ALPHA BETA G.W. CONTAMINATION PROJECT NO. KE998-1B, ALAMEDA, CALIFORNIA DATE: MAY 10, 1988

Permanent Marker was used as a reference elevation at 100.00 feet.

PHOTO LOG ALPHA BETA G.W. CONTAMINATION PROJECT NO. KE998-1B, ALAMEDA, CALIFORNIA

Pan views of monitoring well MW-2 and MW-3

A steel locking well cover which extends flush with existing grade was placed over each well casing for protection. A Christy box with lid was installed flush with the existing grade and grouted with a sloping concrete apron.

APPENDIX B

Chain-of-Custody Records and Analytical Test Results

		•			300	.` `	10fz
	ď	HAIN-OF-CUSTODY	RECORD	7	QXXX		10,0
Project Number Project Name VE 998-1B Alpha Sampler's Name (october)	Beta G.W. Conta	eminution =			7 7	7///	/
Project Number Project Name VE 998-1B Alpha Samplar's Name (printed) Ven Ferrone Boring Yr. 88		Number/Type	1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Remarks
reditiber Date Time Soil Water	Sample Location or Depth	Sample B	15/15/	19/			
MW-1 4-12 A.H. X	21/2' + 51/2'	2×25	4			Please c	ouzosite, then analyze
4W-2 4-12 P.M. x 1	3' + 8'	ZXZX				Perse	composite, than analyze
EB-1 4-13 A.M X	21/31 + 71/21	712"X				Please	composite, then analyze composite, then analyze composite, then analyze
EB-2 4-13 RM X	$\frac{1'/2' + 6'/2'}{3'/2' + 7'/2'}$	Zx 21/		-		Please	co-posite, then and you
EB-3 4-13 P.M. X	31/21 + 81/21	2 x 2 "x 2 x 2 "x		-	_	picase	composite, then analys composite, then analys composite, then analys
EB-4 4-13 1.14 x	4'/2' + 8//2'	2 1 2 1	1	} 		please	couposite, the analy;
		1		\		piease	Composite, then analyz
			\- 				
Relinguished by: (Signature) Date/Time	Received by: (Signa	ture	4			<u> </u>	
Relingering by: 15 gnatured Date/Time Tollyt. World 4-14:5-10	146 Fally f 1	Youll	Ship To:		elviro 1700 l	n mental AKEVILL	E HUY
Requested Turneround Reliquished by: (Signature) Date/Time 4/4-55 (C	(Signature)		_	Attention: Phone No:	Petalum ———	a, ca «	1495Z D-TINI L18
Time:	Kaldveer Assoc. Contact:	Bolly Worre	211	Please ad	idress corre	spondence to:	
Remarks: White - Kaldveer Associates Yellow - Ana	lytical Laboratory	-		Kaldver 125 Rol	er Associate land Way 1, California	. Inc.	Kokower Associ

Yellow - Analytical Laboratory

		٥	HAIN-OF-CUST	ODY REC	ORD .	
Project Number	Project Name	<i>c</i> , 0 1	,.			,
Sampler's Name (printed. Key Fewor	alpha Bet	a GIW Cont	aminativa	Number/Type of Containers	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Remarks
Boring Number Date Time	Soil Water Same	sle Location or Depth	Sample Number	2 x 611		<u>/</u>
UW-1 4-12 A.	$ x \times q' $	2, 14/2, 19/2	\3	- 713		
11W-2 4-12 P.A	1. × 1 131/3	11872		2.		
HW-3 4-13 A.A	4 × 127	1, 1712, 211/21 121, 131/21.	 	3-		
E6-2 4-13 P.		12,1512	T	2 - 7 - 1		
E8-3 4-13 P.A	. × 11	12'	·	1 -		
EB-4 4.13 P.A		1/2', /4/2'		2-1		·
		7		/		
	11 1 1 2			1		
-\ -\ -\ -		\				
			 }- 	-		
	 		 \- 			
	\ 		 			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			L \			
Relinquished by: (Signatu Relinquished by: (Signatu	4.13-43 1746	Received by: (Sign	orell mature)		Ship To: Fireh	ins' Fund - ENVION newta LAKEVILLE HWY
ToM- TUIL	1 414-8 10:2	Jon NES	t		Petali	ma, CA 94952
Relinquisted by: (Signatu	Date/Time	Received (or Labor (Signature)	atory by:	-	Attention: Ma	rk Valentini FFIC-LAB
Requested Turneround Time:	ormal.	Kaldveer Assoc.			Please address corre	
Remarks:	·	lor	n NS		Kaldveer Associate: 425 Roland Way Oakland, California (415)568-4001	Kodowa

White - Kaldveur Associates

Yullum - Analytical Laboratory

	<u></u>					c:	IAIN-OF-CUS	TODY REC	ORD		***************************************	7 7	: و		% 			
Project Nuc				ect Name	16 G	w. Cartain		ol	,	رفنور	10 30 S	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 7 / ¾	***			· · · · · · · · · · · · · · · · · · ·	
Sampler's A	lame (pr			,	Cai		Acron	Number / Type Containers	10 to the same of 10 to		1 X X X X X X X X X X X X X X X X X X X			//		R	emark:	.
Well Borning Number	44.88	Time	Soul	Water		ocation or Depth	Sample Number	ž	31	A V			//		/			
UW-1	4-21	11.00	\	X		uw -1	MW-1-1	IXIL		X					Pease	DK SKY	ی .	Sample
NW-1		11.00		×		NW-1	MW-1-1	3 x 40=1	> <							nx 10V		
NW-2		16:10		X		MW-2	MW-2-1	1116		X								
MW-2		16:10		X		MW-2	MW-2-1	3×40×1	> <									
MW·3		146		×		Mw-3	MW-3-1	ノメル		\bowtie								
MW-3	V	14:36		×		мч-3	NW-3-1	3×40m)	\times									
T-BLANK	4-18			×	L	AB PREPARED		1×40			\times					J		
\	1	1					Λ	\										
1																		
\						\				1								
		1										V						
	1												7					
		1 /]/					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	<u> </u>								
telinguished	. Wor	ul	4-	Date/Tu	7:15	Received by: (Sign Received by: (Sign	Tiper	817	Sh To			F	370	0	تلكاها	UD ENVIR	υY	ntal le
Relinquished	by: (Si	gnature)		Date/Tw	-	Received (or Labor (Signature)	atory by:				ttenti hone		Pel (4	4	+ CVE	CH 949 Wilbu		
Requested Turnaround Time: Remarks:	1	Jorn	AL		W-24	Kaldveer Assoc. Contact:	Pow	(L.W)0	rvel	 	Kale 425	dveer Rolan	Associ Associ Id Way Califor	ales,		to:	3	A ka

White - Kaldveer Associates Yellow - Analytical Laboratory

						CHAIN-OF-CUS	STODY RE	CORD			·····				
YEGQ Sampler's	B-LES Name (pr	inted)	<u> a</u>	•	eta G.W. Co		Number/Type of Containers	Ţ	2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		3/3/3/				
Boring Number	L. Wo	Time	Sou	eith water	Sample Location or	Sample Depth Number	Number	\$		7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				Remar	ks
MW-1	5/18			×	MW-I	HW-1-2		\geq					A YOAS	Pro Pro	of Le i
<u> </u>	12/18			<u> </u>	MW-1	14W:1-2	1X3L		X				- Proc	ente po	- l'us
MW-2	5/18			X	116-2	MW-2-2	3×40~		1				been	who can be seen	- VOI
MW-2	5/18		 	*	UW-Z	MW-2-2			X				7	The	
MW-3	5/18			×	NW-3	011.1.2.2	2 × 1/0		-	1		_			
$Mm \cdot 3$	5/18			X	MW-3	MW-3-2 MW-3-2			X	17	_				
															
									-			_			
										_	_				
$\overline{}$	-A														
lel/nguished	DY: 15/9	natures	\ }	,Date/Tin	Received by	r: (Signature)			11						
elinquished		nature	5/	Date/Tim	9:30 Received by	Hardener Hardener		Sh. To	Att	Fi 37 Pontion	1:	vans Lai Luma St	teve W	invironman twy 10495 1007	<u>kal Lab</u> <u>z</u>
equested urnaround lme; emarks;	Aldru	AL-	Ju.	<u>(e.2,1</u>	Kaldveer Contact:	Name. Polly 1	Jorre	4_		Kaldv 425 R	eer A	SECCIALS	spondence to:	4	Koldve

White - Kaldveer Associates Yellow - Analytical Laboratory

FIREMAN'S FUND INSURANCE COMPANIES Environmental Inharatory 3700 takeville Highway Pelaluma, CA 94952

800-FFIC-LAB

ENVIRONMENTAL LABORATORY

Polly Worrell Kaldveer Associates, Inc. 425 Roland Way Oakland, CA 94621

Page 1

LABORATORY RESULTS

Supply/Order No.: Laboratory Job No.: 881769

Client's Survey No.: Date Received: 04/14/88

Contract/PO No.: NO CONTRACT NUMBER Date Reported: 05/11/88

Release No.: KE998-1B Client Code: KALD3

ASSAY:TPH/DIESEL (EPA 3550/8015)

MATRIX: SOIL

LABNO SMPLNO-ID	RESULTS	DET.LIM
10316 MW1 DIESEL	<6.0 mg/kg	6.0 mg/kg
10317 MW2 DIESEL	<6.0 mg/kg	6.0 mg/kg
10318 MW3 DIESEL	<6.0 mg/kg	6.0 mg/kg
10319 EB1 DIESEL	<6.0 mg/kg	6.0 mg/kg
10320 EB2 DIESEL	<6.0 mg/kg	6.0 mg/kg
10321 EB3 DIESEL	<6.0 mg/kg	6.0 mg/kg
10322 EB4 DIESEL	<6.0 mg/kg	6.0 mg/kg

ANALYST: JEAN M. BONITE

APPROVED BY U.Y. JERRY TUMA, PH.D., CIH LABORATORY DIRECTOR

431844 1 M

ENVIRONMENTAL LABORATORY

Page 2

LABORATORY

RESULTS

Laboratory Job No.: 881769

ASSAY: TPH/GASOLINE (EPA 5020/8015)

MATRIX:SOIL

LABNO SMPLNO-ID	RESULTS	DET.LIM
10316 MW1 GASOLINE	<2.2 mg/kg	2.2 mg/kg
10317 MW2 GASOLINE	<2.2 mg/kg	2.2 mg/kg
10318 MW3 GASOLINE	<2.2 mg/kg	2.2 mg/kg
10319 EB1 FASOLINE	<2.2 mg/kg	2.2 mg/kg
10320 EB2 GASOLINE	<2.2 mg/kg	2.2 mg/kg
10321 EB3 GASOLINE	<2.2 mg/kg	2.2 mg/kg
10322 EB4 GASOLINE	<2.2 mg/kg	2.2 mg/kg

ANALYST: JEAN M. BONITE

FIREMANS FUND
INSURANCE COMPANIES
Environmental Laboratory
3700 Lakaville Highway
Palaluma, CA 94952
800-FFIC-LAB

ENVIRONMENTAL LABORATORY

Page 3

LABORATORY

RESULTS

Laboratory Job No.: 881769

PURGEABLE AROMATICS IN SOIL (EPA8020)

COMPOUNDS:	. LAB#10320 SMP#EB2	LAB#10321 SMP#EB3	LAB#10322 SMP#EB4
PURGEABLES	PPM	PPM	PPM
BENZENE	<0.1	<0.1	<0.1
TOLUENE.	<0.1	<0.1	<0.1
ETHYL BENZENE	<0.1	<0.1	<0.1
XYLENES	<0.1	< 0.1	< 0.1

ANALYST: MARK VALENTINI

FIREMAN'S FUND
INSURANCE COMPANIES
Environmental Laboratory
3700 Lakavilla Highway
Pataluma, CA 94952

800-FFIC-LAB

ENVIRONMENTAL LABORATORY

Page 4

LABORATORY

RESULTS

Laboratory Job No.: 881769

PURGEABLE AROMATICS IN SOIL (EPA8020)

COMPOUNDS:	LAB#10316 SMP#MW1	LAB#10317 SMP#MW2	LAB#10318 SMP#MW3	LAB#10319 SMP#EB1
PURGEABLES	PPM	PPM	PPM	PPM
BENZENE	<0.1	<0.1	<0.1	<0.1
TOLUENE	<0.1	<0.1	<0.1	<0.1
ETHYL BENZENE	<0.1	<0.1	<0.1	<0.1
XYLENES	<0.1	<0.1	<0.1	<0.1

ANALYST: MARK VALENTINI

FIREMANS FUND INSURANCE COMPANIES Environmental Laboratory 3700 Lokeville Highway Petaluma, CA 94952

800-FFIC-LAB

ENVIRONMENTAL LABORATORY

Polly Worrell Kaldveer Associates, Inc. 425 Roland Way Oakland, CA 94621

Page 1

LABORATORY RESULTS

Supply/Order No.:

Laboratory Job No.: 881942

Client's Survey No.:

Date Received: 04/22/88

Contract/PO No.: NO CONTRACT NUMBER

Date Reported: 05/11/88

Release No.: KE-998-1B

Client Code: KALD3

ASSAY: TPH/GASOLINE (EPA 5030/8015)

MATRIX: WATER

LABNO SMPLNO-ID	RESULTS (PPM)	DET.LIM (PPM)
11241 MW11 GASOLINE	<0.1 ug/1	0.1 ug/l
11242 MW21 GASOLINE	<0.1 ug/l	0.1 ug/l
11243 MW31 GASOLINE	<0.1 ug/1	0.1 ug/1

\NALYST:JEAN M.BONITE

APPROVED BY U.Y. JERRY TUMA, PH.D., CIH LABORATORY DIRECTOR

FIREMANS FUND INSURANCE COMPANIES

Environmental laboratory 3700 lakeville Highway Petaluma, CA 94952 800-FFIC-LAB

ENVIRONMENTAL LABORATORY

Page 2

LABORATORY RESULTS

Laboratory Job No.: 881942

ASSAY: TPH/DIESEL (EPA 3510/8015)

MATRIX: WATER

LABNO SMPLNO-ID	RESULTS		DET.LI	M -
11241 MW11 DIESEL	<300.0	ug/l	300.0	ug/l
11242 MW21 DIESEL	<300.0	ug/1 .	300.0	ug/l
11243 MW31 DIESEL	<300.0	ug/l	300.0	ug/l

NALYST: JEAN M. BONITE

FIREMAN'S FUND INSURANCE COMPANIES Environmental Laboratory 3700 Lakeville Highway Palaluma, CA 94952 800-FFIC-LAB

ENVIRONMENTAL LABORATORY

Page 3

LABORATORY

RESULTS

Laboratory Job No.: 881942

PURGEABLE AROMATICS IN WATER (EPA602)

COMPOUNDS:	LAB#11241 SMP#MW1-1		LAB#11243 SMP#MW3-1
PURGEABLES	PPB	РРВ	PPB
BENZENE	<0.50	<0.50	<0.50
TOLUENE	<0.50	<0.50	<0.50
ETHYL BENZENE	<0.50	<0.50	<0.50
XYLENES	<0.50	<0.50	<0.50

ANALYST: MARK VALENTINI

BOO-FFIC-LAB

JUN 1 4 1988

ENVIRONMENTAL LABORATORY

Polly Worrell Kaldveer Associates, Inc. 425 Roland Way Oakland, CA 94621

Page 1

LABORATORY RESULTS

Supply/Order No.: Laboratory Job No.: 882446

Client's Survey No.: Date Received: 05/19/88
Contract/PO No.: NO CONTRACT NUMBER Date Reported: 06/10/88

Release No.: KE998-1B Client Code: KALD3

ASSAY:TPH/DIESEL EPA 3510/8015

MATRIX: WATER

LABNO SMPLNO-ID	RESULTS		DET.LIM
14016 MW12 DIESEL	<300.0	ug/l	300.0 ug/l
14017 MW22 DIESEL	<300.0	ug/l	300.0 ug/l
14018 MW32 DIESEL	<300.0	ug/l	300.0 ug/l

ANALYST: JEAN M. BONITE

APPROVED BY UT JEEL CHARLESTOR

FIREMAN'S FUND

Environmental Laboratory 3700 Lakeville Highway Telaluma, CA 94952 800-FFIC-LAB

ENVIRONMENTAL LABORATORY

Page 2

LABORATORY RESULTS

Laboratory Job No.: 882446

ASSAY:TPH/GAS & BTEX EPA 5030/8015/8020

MATRIX:WATR

LABNO SMPLNO-ID	RESULTS	DET.LIM
14016 MW12 BENZENE TOLUENE XYLENE ETHYLBENZENE GASOLINE	<0.5 ug/l <0.5 ug/l <0.5 ug/l <0.5 ug/l <0.5 ug/l <50 ug/l	0.5 ug/l 0.5 ug/l 0.5 ug/l 0.5 ug/l 50 ug/l
14017 MW22 BENZENE TOLUENE XYLENE TTHYLBENZENE GASOLINE	<0.5 ug/1 <0.5 ug/1 <0.5 ug/1 <0.5 <50 ug/1	0.5 ug/l 0.5 ug/l 0.5 ug/l 0.5 50 ug/l
14018 MW32 BENZENE TOLUENE XYLENE ETHYLBENZENE GASOLINE	<0.5 ug/l <0.5 ug/l <0.5 ug/l <0.5 ug/l <50 ug/l	0.5 ug/l 0.5 ug/l 0.5 ug/l 0.5 ug/l 50 ug/l

ANALYST: JEAN M. BONITE

4518 44 1 M

Kaldveer Associates Geoscience Consultants

Richard Short, P.E., G.F. Fraculive Vice President

Ronald L. Balunierni, P.F., G.F. Vice President Engineering

Patrick Stevens, P.E., G.E. Associate

David Honzler, C.E.G., R.E.A. Associate

Michael McRae, PF

William Bender PE, SE, ATA
Associate

Dawn Rinaldi, PE

Rarbara L Potter, P.E.

Randy P. Rowley, R.E.A.
Polly E. Worrell, R.E.A.

August 9, 1990 KE1248-1-278, 16828

Taylor Woodrow 333 Third Street San Francisco, California 94107

Attention: Ms. Cynthia Rock

RE: SUMMARY OF CONTAMINATION

STATUS

"ALPHA BETA ADDITION" SITE AT FERNSIDE SHOPPING CENTER BLANDING AVENUE AND PEARL STREET

11/6 1 0 1090

ALAMEDA, CALIFORNIA

Dear Ms. Rock:

This letter is a summary of the current status of a soil contamination occurrence at the above-referenced location. At your request, we have also provided an estimate of costs for remediation at the site. This letter follows a telephone conversation with David Hoexter on July 24, 1990.

BACKGROUND

Kaldveer Associates initially provided geotechnical engineering services in May, 1972 for the (then proposed) Fernside Shopping Center, which was constructed during 1974. Our firm subsequently provided geotechnical engineering services for an addition to the existing Alpha Beta (now Luckys) store in October, 1987. One of these borings encountered soil with a "gasoline-like" odor. A subsequent environmental investigation (Kaldveer Associates, December 2, 1987) confirmed the presence of 1,200 parts per million (ppm) total petroleum hydrocarbons (TPH) as diesel in one boring, and from non-detect to 46 ppm TPH as gasoline and diesel in other borings. The contamination was generally limited to samples collected from four to 10 feet below ground level.

We performed a limited-scope characterization/assessment study of the site to evaluate potential sources of the diesel contamination (Kaldveer Associates, January 8, 1988). We were not able to definitively identify the origin of the diesel contamination, although the most likely source was the underground fuel tank that was removed from near the contaminated area during the 1974 construction.

[] 425 Roland Way, Oakland, CA 94621 (415) 568-4001 FAX: 415-568-2205 [] 1737 North First Street, Suite 300, San Jose, CA 95112 (408) 436-5703 FAX: 408-436-5735

Following that study, we conducted additional soil testing and a ground water quality investigation (Kaldveer Associates, June 29, Ground water contamination was not indicated. monitoring wells were placed beyond the limits of the proposed building footprint, and thus the ground water immediately adjacent to the most highly contaminated soil was not directly tested. recommended removal of hydrocarbon contaminated soil down to a ppm total 100 petroleum hydrocarbons of (TPH), notification of the occurrence to the Regional Water Quality Control Board (RWQCB). A remediation work plan was then drafted (Kaldveer Associates, August 1, 1988). This work plan provided our best estimate of the area to be remediated, and the procedures to accomplish this task.

At this time, you have not provided comments on the work plan, nor requested us to finalize it. Also, we understand that you have not notified the RWQCB of the contamination, as we recommended.

REMEDIATION PLAN

previously recommended excavation and removal of the contaminated material having greater than 100 ppm TPH. The anticipated excavation would occur in an area of approximately 1200 ft2 at the front (southwest corner) of the proposed Alpha Beta addition, from four to 10 feet below the ground surface. The upper four feet which did not appear to be contaminated would need to be initially excavated and temporarily stored. This would be followed excavation of the contaminated material. The volume of contaminated material would be on the order of 260 yd3. contaminated material would have to be left in place adjacent to the existing building, to avoid loss of support to the building foundations. Some of the deeper lying material might be below the ground water table, and excavation might not be feasible at these As we stated in the work plan, this diesel-contaminated is not amenable to aeration, similarly, space for bioremediation may be a problem. Offsite disposal at a licensed facility was thus recommended.

The most significant item of this remediation plan is the acceptable concentration of contamination which can be left in the ground. While the remediation plan has been based on 100 ppm of TPH, there are no regulations or agency guidelines to justify this limit. In some cases, remediation to "non-detect" has been required, while in other cases as much as 1,000 ppm has been acceptable. This project must have its specific remediation limits negotiated, typically with the Alameda County Health Department, in advance of site work.

The approval to leave some of the contaminated soil in place (so that existing building foundation stability is not impacted) should also be a part of this agency negotiation. Recommendations on

August 9, 1990, 16828 Page 3

limits of encroachment of excavations into existing foundation support areas were provided in Section 2 of the (draft)work plan.

COST ESTIMATE

The remediation will essentially comprise excavation of the "clean" soil in the upper four feet, and temporary storage; excavation of the zone between four and ten feet depth, and its disposal. After sampling and analysis of samples from the excavation sides and bottom to show that the agreed levels have been attained, the hole will be backfilled as an engineered fill, and, if the building addition is to be further delayed, reinstatement of the pavement surface.

Excavation and disposal of diesel contaminated soil in the Bay Area typically costs \$200 to \$250 per cubic yard (yd 3). This presumes no additional excavation support is needed. Backfilling and testing will cost about \$30 to \$35 per yd 3 . With excavation, disposal and reinstatement, including testing, the total project cost, based on 260 yd 3 is expected to range \$65,000 to \$90,000.

RECOMMENDATIONS

The next step towards remediation should be finalization of the work plan and negotiation with the agencies. To provide greater negotiating power, the three ground water monitoring wells should also be resampled. The previous sampling was in our June 29, 1988 report, i.e. 2 years ago. A recent sampling, again showing "non-detect" on all parameters, will justify the proposed cleanup levels.

Kaldveer would be happy to assist you with the recommended agency negotiations, sampling, selection and engagement of remediation and disposal contractors. It has been a pleasure to provide our consultation services to you. Please call if you have any questions.

Very truly yours,

KALDVEER ASSOCIATES, INC.

John R. Sutton, P.E./G.E.

Mahager, Environmental/Hazardous

Waste Services

Associate

JRS:pv

Copies: Addressee (1)
Enclosures: References

Proposed Excavation Limit (Figure 1)

August 9, 1990, 16828 Page 4

REFERENCES

- Kaldveer Associates, Inc., "Foundation Investigation, Shopping Center, Alameda, California", May, 1972.
-, "Supplemental Foundation Investigation, Alpha Beta Market Expansion, Alameda, California", dated September 3, 1987.
-, "Preliminary Soil Testing Program, Alpha Beta #541 Addition, Alameda, California", dated December 2, 1987.
-, "Site Characterization and Environmental Assessment, Alpha Beta #541, Alameda, California", dated January 8, 1988.
-, "Additional Soil Testing and Preliminary Investigation of Ground Water Quality, Alpha Beta #541, Alameda, California", dated June 29, 1988.
-, "Draft Submittal, Work Plan for Soil Excavation, Alpha Beta #541, Alameda, California", dated August 1, 1988.

	•			
	,			

APPENDIX E CURRENT TENANT LIST

	r	•		•	_	•	,				C				E			c		L		,		_ >	r			Ň		_		_				-			
			ľ	1	_	,	•	J	11			×	i.	v.		88	×		ó		S	Ů.	13			٠.	٠.		ç.	13	•	٠	1	•	¥				

TENANT NAME	ADDRESS	SIZE OF PREMISES
	BUILDING A	
Pay Less Drug Store	2531 Blanding Avenue	42,000 ft. ²
Vacant	2525 Blanding Avenue	1,974 ft. ²
Launderland		2,016 ft. ²
	BUILDING B	
Round Table Pizza	2611 Blanding Avenue	2,533 ft. ²
Citibank Federal Savings Bank	2619 Blanding Avenue	2,470 ft. ²
Subway Sandwiches and Salads	2627 Blanding Avenue	1,080 ft. ²
Classic Cleaners	2631 Blanding Avenue	1,390 ft. ²
Baskin-Robbins Ice Cream Store	2635 Blanding Avenue	1,235 ft. ²
Presto Prints	2639 Blanding Avenue	1,235 ft. ²
Hair Studio	2643 Blanding Avenue	875 ft. ²
Winchell's Donut House	2647 Blanding Avenue	1,308 ft. ²
	BUILDING C	
E-Z Liquor & Check Cashing	2671 Blanding Avenue	2,213 ft. ²
Lucky Food Center	2691 Blanding Avenue	25,000 ft. ²
Three Vacant Premises		3,037 ft. ²

CONVERSE CONSULTANTS ORANGE COUNTY

E.C.S DESK COFY

ASBESTOS SAMPLING/ ASSESSMENT REPORT LUCKY STORE #370 ALAMEDA, CALIFORNIA

CONFIDENTIAL

RECEIVED

AUS 1 5 1994 ASPI-DRUG WEST

RECEIVED

CCOC Project No.94-42-966-01 August 10, 1994

AUG 2 9 1994

North Construction Dept.

ASBESTOS SAMPLING/ ASSESSMENT REPORT LUCKY STORE #370 ALAMEDA, CALIFORNIA

Prepared For:

Mr. George Wouwenaar American Stores Properties, Inc. 6565 Knott Ave. Buena Park, CA 90620

CONFIDENTIAL

CONVERSE CONSULTANTS ORANGE COUNTY

Consulting Engineering and Applied Sciences

15245 Alton Parkway, Suite 100 Irvine, CA 92718-2307

Telephone (714) 453-2880 Facsimile (714) 453-2888

August 10, 1994

Mr. George Wouwenaar American Stores Properties, Inc. 6565 Knott Ave. Buena Park, CA 90620

SUBJECT: ASBESTOS SAMPLING/ASSESSMENT REPORT

Lucky Store #370 2691 Blanding Avenue Alameda, California

Converse Project No. 94-42-966-01

Dear Mr. Wouwenaar:

On June 7, 1994, Converse Consultants Orange County (Converse) conducted an asbestos inspection and survey to confirm the presence of asbestos-containing materials (ACM) at the above referenced property. Accessible areas were sampled for the presence of ACMs. Samples of general building components (i.e. visually identical flooring material and ceiling tiles) are assumed to be representative of materials used throughout the building.

The strategy for the collection of samples was in accordance with EPA guidance document "Asbestos in Buildings: Simplified Sampling Scheme for Friable Surfacing Materials", EPA 560/5-85-030a, October 1985, 40 CFR 763 (AHERA), and SCAQMD Rule 1403 which refers to 40 CFR 763.107 for a sampling protocol.

The samples were submitted to Environmental Management Consultants, Inc., an accredited laboratory, for analysis. Bulk samples were analyzed according to Environmental Protection Agency (EPA) analytical method 600/M-82-020 for Polarized Light Microscopy (PLM) Analysis of Bulk Materials for Asbestos.

Definition of asbestos-containing building materials according to EPA 40 CFR Part 61 Subpart M, 11/20/90, is as follows:

Asbestos-containing building materials are those that contain more than 1% asbestos by weight.

- Friable materials- these are materials that may be crumbled, pulverized, or reduced 1) to powder by hand pressure;
- 2) Non-friable- Non-friable material are divided into two categories.

Category I materials are packings, gaskets, resilient floor coverings, and asphalt roofing products. If these materials are to be disturbed during renovation/demolition activities, they must be treated as <u>friable</u> asbestos-containing materials. Category II materials are non-friable materials that are intact and have little or no potential for becoming friable.

RESULTS OF SURVEY

FRIABLE MATERIALS

Converse personnel collected a sample of drywall mud at the stock room, and the laboratory analysis detected asbestos in this sample.

NON-FRIABLE MATERIALS

Converse personnel collected samples of brown mottled floor tile and mastic at aisle #9, aisle #10, and the produce area. Laboratory analysis detected the presence of asbestos in all of these samples with an exception of the floor tile mastic sample that was taken at aisle #10. Linoleum flooring of the Men's restroom was sampled and was found to contain asbestos. Samples of white floor tile taken at aisle #1 and 2'x4' ceiling tile taken from the replacement stock area did not detect asbestos content. Transite panels were observed at the coolers and are assumed to be asbestos-containing building materials. At the time of the inspection, roof access was not available to Converse personnel.

Copies of the bulk sample log and laboratory analysis are enclosed.

FURTHER ACTIONS

This report, alone, is not intended for abatement purposes. If you choose to have the asbestos-containing materials removed, we recommend that removal plans and specifications be prepared, a bid walk (with pre-qualified abatement contractors) be conducted, and third party project management services be retained.

Federal, State, and local regulations require that building owners, prior to any demolition or renovation activities that may disturb any asbestos-containing materials, meet the following requirements:

- a) Notification;
- b) Proper removal techniques for abatement;
- c) Clean-up procedures; and
- d) Waste storage and disposal requirements.

CONFIDENTIAL

LIMITATIONS

Converse is not responsible for any claims or damages associated with interpretation of available information. This assessment should not be regarded as a guarantee that no further asbestos, beyond that which was suspected to be present and sampled during our investigation, is present at the property. In addition, asbestos is usually not distributed uniformly throughout a material and Converse cannot guarantee that all areas sampled are exactly as represented throughout the entire facility. In the event that changes in the nature of the property occur, or additional relevant information about the property is brought to our attention, the recommendations contained in this assessment may not be valid unless these changes and additional relevant information are reviewed and the recommendations of this assessment are modified or verified in writing.

CLOSURE

We appreciate the opportunity to provide our inspection service for you. If you have any questions concerning this report or about other services we can provide for you, please call us.

Respectfully submitted,

CONVERSÉ CONSULTANTS ORANGE COUNTY

Norm Kramer

Certified Asbestos Consultant

92-0582

President

Enclosed:

Sample Log, Bulk Sample Log, Chain of Custody, and Laboratory Analysis

Results

TP:GSS:NEK/

SAMPLE LOG -LUCKY STORE #370

SAMPLE #	MATERIAL	LOCATION	% ASBESTOS	QUANTITY SQ.FT.
370-01	Brown Mottled Floor Tile	Aisle #10	2	6,000
370-02	Mastic underneath Brown Mottled Floor Tile	Aisle #10	0	NA
370-03	2'x4' Ceiling Tile	Replacement stock	0	NA
370-04	Drywall Mud	Stock room	2	4,000
370-05	Brown Mottled Floor Tile	Aisle #9	2	6,000
370-06	Mastic underneath Brown Mottled Floor Tile	Aisle #9	10	6,000
370-07	White Floor Tile	Aisle #1	0	NA
370-08	Brown Mottled Floor Tile	Produce	2	4,000
370-09	Mastic underneath Brown Mottled Floor Tile	Produce	10	4,000
370-10	Linoleum Flooring	Men's restroom	40	150

ate:			7600		CONVERSE CONSULTANTS ORANGE COUNTY 15245 Alton Parkway, Suite 100 Irvine, California 92718 Telephone: 714/453-2880 FAX: 714/453-2888		
SAMPLES #	PHOTO #	MATERIAL SAMPLED	10	CATION	AREA SQ. FT.	CONDITION	COMMENTS
370-01		Floor tile brown nottled	Aile 10		2:16,000	9000(pronthe truntte in ling world (willing)
J7C-02		Mastic block	Aiste 10	The state of the s		good	paper insulation
170-03		2x4 cailing the	taken from	- ryslacement		zool	other color till
370-04		Dynall med	Stock PI	'n.		30001	replacement
770-05		F.T. brown mottled	Aile 9			good	
770-06		Hack Mastic	Aile 9			good	
70-07		F.T. white	Arile 1		?		ceranic-like possible 2 nd layer
370-04		F.T. brown muttled	Airla - Pro.	duce		good	Under Freizer Wock
370-09		black mastic	Aisle-Prod	luce		Sord	
370-10		Timeoloum Paper	Meh's room	1	150		no roof allen
HAIN OF Collinquished By coived By: coived By: coived By:	:	Michael Batta	Time: //	OV GRECI		Date: 6/4/ Date: Date:	CONFIDENTIA

Page

LAB: 6873

REPORT Laboratory Analysis: Methodology: EPA 600/M4-82-020

Client: Converse - Irvine P/O#:

Reported to: Norm Kramer Proj: 94-42-966-01

Sampled from: Lucky #370 By: Client

Federal Express Shipped via: Received: 6/08/94 Reported: 6/09/94

SAMPLE	IDENTIFICATION	PARAMETER	TEST RESULTS
01	370-1 Floor Tile Brown	Asbestos	Positive. This sample contains approx. 2% Chrysotile, 70% CaCC, and 25% Binder.
02	370-2 Mastic Black	Asbestos	None detected. This sample contains approx. 20% Cellulose, and 75% Binder.
03	370-3 Ceiling Tile Tan	Asbestos	None detected. This sample contains approx. 40% Cellulose, 45% Fiberglass, and 10% Perlite.
04	370-4 Drywall Mud White	Asbestos	Positive. This sample contains approx. 2% Chrysotile, 65% CaCC, and 30% CaSO.
05	370-5 Floor Tile Brown	Asbestos	Positive. This sample contains approx. 2% Chrysotile, 70% CaCC, and 25% Binder.

CONFIDENTIAL

THE REPORT APPLIES TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE SAMPLE(S) TESTED. THE TEST RESULTS ARE NOT NECESSARILY INDIC-KTIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OR OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS. FOR DO THEY REPRESENT AN ENGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED ILIENT AND ARE RENDERED UPON THE CONDITION THAT THEY WILL NOT BE REPRODUCED WHOLLY OR IN PART FOR ADVERTISING OR OTHER PURPOSES DIVER BUR SIGNATURE OR IN CONNECTION WITH OUR NAME WITHOUT SPECIAL WRITTEN PERMISSION SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A MAX-MUM OF THIRTY DAYS.

COREDITED BY THE NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY, VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHODS OR ASBESTOS. ALL ANALYSES ARE DERIVED FROM CALIBRATED VISUAL ESTIMATE UNLESS OTHERWISE NOTED.

hnalyst(s): Kenneth Hokanson

Russell Nassof

PD

NVLAP Accreditation #1926, CA ELAP #1913, NY ELAP #11445, TX DOH #30~0094

4455 BAST CAMBLBACK ROAD, SUITS D-155 PROBNIX, ARIZONA 35018 PHONB: (602) 840-8012 FAX: (602) 990-8468

6/09/94

ENVIRONMENTAL MANAGEMENT CONSULTANTS EULK MATERIAL REPORT

Page 1

REPORT Laboratory Analysis: BULK

6873

Client: Converse - Irvine

P/O#:

Methodology: EPA 600/M4-82-020

Reported to: Norm Kramer

Proj: 94-42-966-01

Sampled from: Lucky #370

By: Client

Shipped via: Federal Express

Received:

LAB:

6/08/94 Reported: 6/09/94

SAMPLE	IDENTIFICATION	PARAMETER	TEST RESULTS
06	370-6 Mastic Black	Asbestos	Positive. This sample contains approx. 10% Chrysotile, 10% CaCO, and 75% Binder.
07	370-7 Floor Tile Tan	Asbestos	None detected. This sample contains approx. 10% Cellulose, and 85% Binder.
0.8	370-8 Floor Tile Brown	Asbestos	Positive. This sample contains approx. 2% Chrysotile, 70% CaCO, and 25% Binder.
09	370-9 Mastic Black	Asbestos	Positive. This sample contains approx. 10% Chrysotile, 10% CaCO, and 75% Binder.
10	370-10 Linoleum Paper White	Asbestos	Positive. This sample contains approx. 40% Chrysotile, and 55% Binder. CONFIDENTIAL

L1054

THE REPORT APPLIES TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE SAMPLE(S) TESTED. THE TEST RESULTS ARE NOT NECESSARILY INDIO-ATIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OR OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS. NOR DO THEY REPRESENT AN ENGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE RENDERED UPON THE CONDITION THAT THEY WILL NOT BE REPRODUCED WHOLLY OR IN PART FOR ADVERTISING OR OTHER PURPOSES IVER OUR SIGNATURS OR IN CONNECTION WITH OUR NAME WITHOUT SPECIAL WRITTEN PERMISSION SAMPLES NOT DESTROYED IN TESTING ARE REJECTADO A MAXI-IMUM OF THIRTY DAYS.

ACCREDITED BY THE NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY, VOLUNTARY LABORATORY ACCREDITATION PROGRAM FOR SELECTED TEST METHODS FOR ASSESTED. ALL ANALYSES ARE DERIVED FROM CALIBRATED VISUAL ESTIMATE UNLESS OTHERWISE NOTED.

Analyst(s): Kenneth Hokanson

By: Russell Nassof

NVLAP Accreditation #1926, CA ELAP #1913, NY ELAP #11445, TX DOH #30-0094

ULK SAMPLE LOG 120 CONVERSE CONSULTANTS b Name: Luchy 270 Notes: **ORANGE COUNTY** W Job Number: 94-41. 966-01 15245 Alton Parkway, Suite 100 120 Irvine, California 92718 Telephone: 714/453-2880 ollected By: _ FAX: 714/453-2888 SAMPLES PHOTO AREA LOCATION CONDITION COMMENTS MATERIAL SAMPLED SQ. FT. pronthe tunte Floor Lile in they work (wiling) Aiste 10 216,000 370-01 brown nottlest zapa insulation 20001 Acila 10 Mastic 770-02 black other color tile 2x4 wiling the taken from regulacement 30011. 70-03 in small wies. steel replacement Degual med 50001 Stock rm. 370-04 2000 FT. Aile 9 770-05 brown mottled Aile 9 good Hack 770-06 mastic Ceranic-like Arile 1 FT. 2 770-07 possible 2 24 layer white Under Freizer Work good Airle - Produce F. T. 770-0F brown mottled Sord black mustice Acila - Produce 370-09 no roof access lineoleum Paper neb's room 370-10 150 HAIN OF CUSTODY Michael Batta Date: 6/7/94. Date: (Charles) eceived By:

elinquished By: .

tecoived By:

L1055

CONFIDENTIAL

Date:

ENVIRONMENTAL MANAGEMENT CONSULTANTS

CHAIN OF CUSTODY FOR	RM TAXED CARICILL
•	
CLIENT (CIVILIE)	LAB#
PROJECT NAME / (1000) #370	•
NUMBER OF SAMPLES	PAGE OF
CLIENT SAMPLE ID 370 (1-10)	
LAB SAMPLE ID (CETTO (1-10)	
REC'D ((1)) DATE REC'D FLE (E	KILL TIME 130 AM / PM
DELIVERED BY FG	SHIPPING BILL RETAINED YES / NO
CONDITION OF PACKAGE GEOD	
PACKAGE OPENED BY	DATE / /E/C/L/
SAMPLE CONDITION EXAMINED BY	DATE 18/44
CONDITION OF INDIVIDUAL SAMPLES	
SAMPLE ACCEPTED YES / NO	, 1 i
ASSIGNED FOR PREP ANALYSIS BY	DATE 1/6 /C/L/
PREPARED FOR ANALYSIS BY	
ANALYZED BY 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	DATE 36-07-74
SUBMITTED FOR Q.C.	DATE
QUALITY CONTROL CHECKED BY 45	DATE 0.9-97
ACTION TAKEN N	
INITIAL BY ALL PARTIES INVOLVED	
SUBMITTED FOR REPORT BY	DATE 6-9-99
REPORT CHECKED BY	DATE <u> </u>
REPORT ISSUED TO CLIENT BY	DATE
SAMPLES RETURNED YES / NO	DATE
SAMPLES STORED	DATE
OTHER	CONFIDE

Account #	IENTAL MANAGE	EMENT	, -	
			Page	ol <u>/(`</u>
LABORATORY ANALYSIS OF BULK		Method Interim EPA 600/M4-82-020		
Clant (CNUCISE - IRUI	kif:	Purc	nasa Order = <u>14 474</u>	Spice 1
=aported To KICRIN KRHI			rder OI (11777+	
Sampled From LUCLY #271				- , 7 (11)
Offent Sample ID # 370-1	Lat	Sample ID#	1c67:3-1	
Sample Description				
STEREOSCOPIC ANALYSIS				
White Yellow Tan	Brown Black	Green	Blue Other	
riable Solid Paper _	Tile Plaster	Point	Cub	
GEOUS MATERIAL O %	NOVELECONG	raint	Other	
GROUS MATERIAL	אטארופווטטא	<u>/CZ_</u> %	_ ~ ~	
STIMATED FIBROUS CONSTITUEN			TEXTURE: Switch	· .
Sign of Elongation (+) Parallel Extinction Perpendicular Extinction Birefringence - L.M.H. DIST II Mag I Blue Becke Line Used II	Sign of Elongation (Parallel Extinction Perpendicular Extinc Sirefringence - LM, I w blue & yellow D.St II Gold - 1 pleochroic @ 40X Secke Line Used n IIn _ I Mineral Woolimagular shapes	tion 1. _ Blue	Straight Fibers Sign of Elongation Parallel Extinction Perpendicular Ext Birefringence - L.A w Tan Elu D.St II Yellow - pleochroic @ 40X Becke Line Used n II Perlite Ouanz	nction 1.H. re IYellow
Synthetics%	isotropia		Wollastonite CaCO 70	
even edges	Glass Fibersstaight fibers	_~′3	CaSO	
high birefringence	isotropio	ŧ	lMica	
Comments / Special Treatment			Other(CONFIDENTI
INAL ANALYSIS 7-1 (1/p)	Y - 70 - C (0 ·	7~ 64	<i>D</i>	
nalyst The Hall	7; 70 - GCO; Date 05 10	20 1511, 07, 74	2nd Party	L1057
			ノヘイ ニョベリ	

	NTAL MANAGEMENT	CONSULTANTS
123 = 16873 Account = 2	20-11-17	Paga of
LABORATORY ANALYSIS OF BULK AS	BESTOS: Method Interim S	EPA 600/1.14-82-020
Converse-IRVILI	<u>C</u> Purch	nase Order # 94 4296601
==ported To NORM KRANIE	. i ′ 8y C	order 01 CliEnt
		† Dale 10 1 7 1911
		Date Received 10 18 194
Client Sample ID# 370-2	Lab Sample ID #	lc873- Z-
Sample Description		
STEREOSCOPIC ANALYSIS White Yellow Tan	Brown Black Green	Blue Other
Friable Solid Paper		
FIEROUS MATERIAL 5 %		
ESTIMATED FIBROUS CONSTITUENTS	57. cou	TEXTORE.
FLM ANALYSIS		
Chrysotile%	Amosite%	Crocidalite%
Wavy Fibers	Straight Fibers	Straight Fibers
Sign of Elongation (+) Parallel Extinction	Sign of Elongation (+)Parallel Extinction	Sign of Elongation (-)
Perpendicular Extinction	======================================	Parailel ExtinctionPerpendicular Extinction
Sirefringence - LM.H.	Sirefringence - LM.H.	Birefringence - L.M.H.
ω blue ∈ yellow	ω blue € yellow	ω Γαπ ε Blue
D.St II Mag I Blue	D.St II Gold1 Blue	D.St II YellowIYellow
Secke Line Used	pleochroic @ 40X	pleochroic @ 40X
η ΙΙ η	Secke Line Used	Becke Line Used
Pleochroic @ 40X -	η ΙΙ η	η Ι Ι η Ι
Cellulose 20 % Fiat Twisted fibers	Mineral Wool%	Periite
Anisotropic	irregular shapes isotropio	Quartz
·	:S5ii Opic	Wollastonite
Synthetics%	Giass Fibers%	CaCO CaSO
even edges	staight fibers	Mica
high birefringence	isetropie	Other
Comments / Special Treatment		CONFIDENTIA
FINAL ANALYSIS 20, CA	-LL: 75 BOR	
inalyst Hollow	Date 06 1091 94	2nd Party
4455 EAST CAMPI BACK FOAD	CONTE DUISE . PHOENIX ARIZONA 85018	

ENVIRONME	NTAL MANAG	EMENT (CONSULTANTS	
.30 # 1573 Account # 2			Page	10
LABORATORY ANALYSIS OF BULK AS	BESTOS:	dethod Interim S	EPA 600/M4-52-020	
Cheni Converse - IRVILI	<u>e</u>	Purch	ase Oider = 94 479610	01
Feponed To KICRM KRAME	r		ider CI <u>CliEN</u> +	<u> </u>
Sampled From LUCKU #270				7 , Gil
Shipped Via For	•		Date	
			Cala Received _[O]_	0 1944
Client Sample IO # <u>370- 3</u>	·	ab Sample ID #1	lB73-3	
Sample Description				
STEREOSCOPIC ANALYSIS	•			
White Yellow Tan	Brown Black	Ġreen	Side Other	
FriableSolid Paper	Tile Plaster	Paint		
FIEROUS MATERIAL 60 %	NCNFIEROUS 1	7.2 %	HOMOGENEOUS: V	.
		/	TEXTURE: F	14
ESTIMATED FIBROUS CONSTITUENTS	402	CELL: 40%		
FLM ANALYSIS				
Chrysotile%	Amosite	°⁄á	Crosidolite	%
Wavy Fibers	Straight Fibers		Straight Fibers	. / •
Sign of Eiongation (+)	Sign of Elongation		Sign of Elongation (-)	
Parallel Extinction	Parallel Extinction		Parallel Extinction	
Perpendicular Extinction Birefringence - L.M.H.	Perpendicular Exti		Perpendicular Extinctio	n
— oblue ∈ yellow	Birefringence - LN		Birefringence - L.M.H.	
D.St II Mag I Blue	ω blue ∈ yeilo		o Tan ∈ Blue	
Secke Line Used	D.St II Gold	l slue	D.St. • II Yellow •I_	Yellow
η II ηI	pleochroid @ 40X Becke Line Used		pleochroid @ 40X	
Pleochroic @ 40X	Tecke Tile Ossa		Becke Line Used	
Seilulose 40 %	Mineral Wool		1	
Fiat Twisted fibers	inegular shapes	/ 0	Periita	
Anisotropia	isotropic		Ouarz	
			Wolfastonite	
Synthetics%	Glass Fibers	%	CaCO	
even edges	staight fibers		CaSO Mica	
high birefringence	isotropic	:	Other	
Comments / Special Treatment		<i>*</i>		DENTIAL
FINAL ANALYSIS 40 + CELL	1117			
inches to the	1,45°F6;			L1059
1707	Date <u>OS</u>)	09,74	2nd Party (il needed)	
5454 2564 WINES VIEW VOICE .				

FNVIRONMEI	NTAL MANAGEMENT C	CONSULTANTS
135 # 16573 Account # 2	0-1617	Paga <u>(</u>
,L450RATCRY ANALYSIS OF BULK ASE		PA 600/M4-82-020
CONVEYSE - IRVILI	Purch:	ase C:der # 94 42961001
Client College Property	FUCIN	Alient
Paported To NORM KRAME	r By Or	der C: <u>(2) (2) (1)</u>
Sampled From LUCEU #370	Sampled By <u>UNDAM</u>	Date 10 1 7 1911
Shipped Via FG		Date Received 10 18 1941
Client Sample ID# 376 - U	Lab Sample ID # (6973 - L
Sample Description		
	. 5-11 San	
STEREOSCOPIC ANALYSIS		Slue Other
FriableSolid Paper		
FIBROUS MATERIAL%	NONFIBROUS 100 %	HOMOGENEOUS: Y N
		TEXTURE:
ESTIMATED FIBROUS CONSTITUENTS		
ELM ANALYSIS		
. Chrysotile%	Amosite%	Crosidolite%
Wavy Fibers	Straight Fibers	Straight Fibers
Sign of Eiongation (-)	Sign of Elongation (+)	Sign of Elongation (-)
Parailel Extinction	Farallel Extinction	Parallel Extinction
Perpendicular Extinction	Perpendicular Extinction	Perpendicular Extinction
Birefringence - LM.H.	Birefringence - LM.H.	Birefringence - L.M.H.
ω blue € yellow	ω blue ε yellow	o Tan ∈ Blue
	D.St IIGoldI Sive	D.St II Yellow IYellow
Becke Line Used	pleochroic @ 40X	pleochroic @ 40X
	Secke Line Used	Becke Line Used
Pleochroic @ 40X -	η [] η[η ΙΙ η[
Celluiose%	Mineral Wool%	Periita
Flat Twisted fibers	irregular shapes	Quarz
Anisotropic	isotropic	Wollastonite
Synthetics%	Glass Fibers%	
even edges	staight fibers	Mica
high birefringence	isotropic	Other
Comments / Special Treatment	<u> </u>	
FINAL ANALYSIS 7 5 (1/41	1; 55 G CO; 70' C	CONFIDENTIA
	1, 3 D (R W, 30 (
Analyst	Date 05,09,94	2nd Party (if needed)
4455 EAST CAMELBACK POAD	ÓSUITE D-155 + PHOENIX ARIZONA 8501:	

ENVIRONME	NTAL MANAGEMEN		
30 # / 613 Account # 2	20-147	Page	5 01 10
LEORATORY ANALYSIS OF BULK AS	BESTOS: Method In	sterim EPA 600/M4-82-0	
Converse-IRVIL		Purchase Order = <u>QL</u>	142961001
eponed To <u>NORM</u> KRAME	Ý	By Order Ol <u>C//</u>	ent
ampled From LUCKU #270	Sampled By	iont	Date 10 1 7 194
nipped Via From Location	Jampies of	Data S	eceived 10 18 194
nipped Via		Oate.	eserved <u>Ip J O J ta</u>
ient Sample 10 # 370-5	Lab Samo	ole 10 #(6973 - 5	
ample Description			
TEREOSCOPIC ANALYSIS Thite Yellow Tan		2 1	Other
iable Solid Paper	Tile Plaster F	Paint Other	
BROUS MATERIAL%	NONFIEROUS 99	% HOMOGEN	EOUS: Y
	•		S.A.
STIMATED FIBROUS CONSTITUENTS	i 1 ½ chy?	•	
_M ANALYSIS			
Chryscille%	Amosite	Cros	idolite%
Wavy Fibers	Straight Fibers	Strai	-
Sign of Elongation (+)	Sign of Elongation (+)		of Elongation (-)
Parailal Extinction	Parallel Extinction		iel Extinction endicular Extinction
Perpendicular Extinction	Perpendicular Extinction		ringence - LM.H.
Birefringence - LM.H.	Sirefringence · LM.H.		
ω blue ε yellow	ω blue ε yellow		Tan ∈ Blue
	D.St II Gold Slu		- IT Yellow - I Yellow
Becke Line Used	pleochroic @ 40X		throid @ 40X
η ΙΙ / 17 η 1 /.57	Becke Line Used	-	e Line Used
Pleochroid @ 40X	η ΙΙ η		n!
Cellulose%	Mineral Wool%		9
Flat Twisted floers	irregular shapes		
Anisotropia	isotropio		estonite
Synthetics%	Glass Fibers%		0 <u>/2</u>
even edges	staight fibers		
high birefringence	isotropic	:Mica	
Comments / Special Treatment			CONFIDENT
			CONTIDENT
FINAL ANALYSIS 2 : (//R	V; 70° G G; Z	- KAF	
analysi 22	Date 06 09	194 3-	L106
	Uale <u>20 j. / </u>	(if i	seeded)
4455 EAST CAMELBACK FOA	.D. SUITE D-155 + PHOENIX, ARIZON	NA 85018	

ENVIRONME	ENTAL MANAGEMENT	CONSULTANTS
. 35 # 6513 Account # _	30-147	Pageof
LABORATORY ANALYSIS OF EULK A		
1-350RATUAY ANALTSIS OF BOLKA	: O	•
Slient Converse-IRVIL	Purc	hase Order # <u>94 47961001</u>
Feponed To KIORM KIRANI	<u>2</u>	Order OI <u>CILENT</u>
	Sampled By Cliph	t Date 10 1 7 94
	•	
Shipped Via F9		Date Received 10 18 194
775 /		10-0
Dilent Sample ID # <u>3 10 - 10</u>	Lab Sample ID #	(d) 13- G
Sample Description	<u>`</u>	
STEREOSCOPIC ANALYSIS		
White Yellow Tan	Brown Slack Green _	Slue Other
	Tile Plaster Paint _	
FEEGUS MATERIAL 5 %	NONFIBROUS 9 %	HOMOGENEOUS, ON N
	70	_
j		TEXTURE:SW.
ESTIMATED FIBROUS CONSTITUENTS	3	
FLM ANALYSIS		
Chrysotile 19 %	Amosite	Crocidolite%
	Straight Fibers	
Sign of Elongation (+)	Sign of Elongation (+)	Straight Fibers
Parallel Extinction	Parallel Extinction	Sign of Elongation (-)
Perpendicular Extinction	Perpendicular Extinction	Parallel Extinction
Sirefringence - LM.H.	Sirefringence - LM.H.	Perpendicular Extinction
— ω biua € yellow	ω blue ε yellow	Birefringence - LM.H.
D.St II Mag Blue		ω Tan ∈ Slue
Secke Line Used	D.St - IIGoldI Sive	O.St if YellowI_Yellow
111/11 1 / M	pleochroic @ 40X	pleochroic @ 40X
Pleochroic @ 40X	Becke Line Used	Becke Line Used
Cellulose%	η II η[η I I η
Fiat Twisted fibers	Mineral Wool%	Periite
Anisotropio	irregular shapes	Ouzrz
	isotropic	Wollastonite
Synthetics%	Giass Fibers%	
even edges	staight fibers	CaSO
high birefringence	isotropia	Mica
Comments/Special Treatment	;	Other CONFIDENTI
SINAL AND A	1/ 1:00	
inalysi 2/1/4	4; 10° Ca Co; 75 FDK	L1062
	Date <u>06,07,94</u>	2nd Party
//57 =		(if needed)
1433 EAST CAMEL BACK BOAD	באוודה ה.וכם . שמחבשים בפוזרת שבחום	

FNVIRONME	NTAL MANAGEMEN	IT CONSULTANTS
135 # (6913 Account # 6		Paga
LABORATORY ANALYSIS OF BULK AS		
Charles Converse - IRVINI	e	Purchase Order = 94 47961001
Reported To KIDRM KRAME		By Order CI NIEM+
		ent Date 10 1 7 1911
	•	
Shipped Via		Date Received 10 19 19 19 19
Client Sample ID # 370-7	Lab Sample	= 10 #C873 - 7
Sample Description		
STEREOSCOPIC ANALYSIS		- U Signe
White Yellow Tan	Brown Black Gre	en Biue Other
Friable Solid Paper	Tile Plaster Pa	aintOther
		_% HOMOGENEOUS: Y N
	,	TEXTURE: Santur
ESTIMATED FIBROUS CONSTITUENTS	21/2 CET	
PLM ANALYSIS		
Chrysotile%	Amosite%	Cracidalite%
Wavy Fibers	Straight Fibers	Straight Fibers
Sign of Eiongation (+) Parallel Extinction	Sign of Elongation (+)Parallel Extinction	Sign of Elongation (-)
Perpendicular Extinction	Perpendicular Extinction	Parallel ExtinctionPerpendicular Extinction
Birefringence - LM.H.	Sirefringence - LM.H.	Birefringence - L.M.H.
o biue € yellow	ω blue € yellow	v Tan € Blue
D.St II Mag!_ Elue	D.St II GoldI Sive	D.St II YellowIYellow
Becks Line Used	pleochroic @ 40X	pleochroid @ 40X
η η _	Becke Line Used	Becke Line Used
— Pleochroic @ 40X €elluiose <u>/ 0</u> %	η η _	η II η
Fiat Twisted fibers	Mineral Wool%	Periite
Anisotropia	irregular shapes isotropic	Quanz
,		Woilastonite
Synthetics%	Glass Fibers%	CaCO CaSO
even edges high birefringence	staight fibers	Mica
mgn daeinngence	isotropic	Other
Comments / Special Treatment		CONFIDENTIA
FINAL ANALYSIS /0 CEC	L; 25 BOR	
	Date <u>0610917</u>	7 1/ 2nd Party L106
		(if needed)
4455 EAST CAMELBACK ROAD.	SUITE D-155 + PHOENIX, ARIZONA S	250:3

ENVIRONMEN	TAL MANAGEMENT	CONSUL: ANTS
35 # 16513 Account # 20	- [[]	Page <u> </u>
SORATORY ANALYSIS OF BULK ASBE	STOS: Method Interim	
ien Converse - IRVILIE	. Purc	hasə Order = <u>94 42961001</u>
eported to <u>KIORM</u> KRAMEY	By C	order OI <u>CliEN</u> +
ampled From LUCKU #270	Samuel Airon	
Empled From LUCUL # A 10	Sampled By 1711 Paris	Date 10 1 1914
nipped Via		Data Received 10 18 194
ient Sample ID # <u>376- 2</u>	Lab Sample IO i	:16973-S
ample Description		
TEREOSCOPIC ANALYSIS		
hite Yellow Tan B	rown Black Green _	Glue Other
able Soiid Paper	Tile Plaster Paint	Other
BROUS MATERIAL%	NCNFIBROUS	
		TEXTURE:
STIMATED FIBROUS CONSTITUENTS	17 ch ?	
Parallel Extinction Perpendicular Extinction Birefringence - L.M.H.	Amosite	Crocidolite
Comments / Special Treatment		CONFIDENT
FINAL ANALYSIS 25 CITAY	; 70° G CO; 25°	* ARR
chalvs: 22	Date 08 109,99	, L106
175	Uate	2nd Party

ENVIRONME	NTAL MANAGEMENT (CONSULTANTS
25 # (613 Account = 6	80-1L17	Page
_430RATCRY ANALYSIS OF BULK AS	8ESTOS: Method Interim 8	
CONTRACT TRILLI	<u>C</u> Purch	
C.C. LUEISP PROINT	Purer	Aluma I
eponed to <u>KIORMI KIKAME</u>	<u>У</u> Ву С	rder OI (XIEIT
Sampled From LUCLU #270	Sampled BySampled By	t Date
hipped Via		Date Received 10 18 1911
Stant Sample ID# 370-9	Lab Sample ID #	10873-9
ample Description	i	
ample Description		
TEREOSCOPIC ANALYSIS		·
Tan	Brown Slack Green	Blue Other
fable Solid Paper	Tile Paint	Other
	NONFIEROUS 95 %	
		TEXTURE: SAC.
STIMATED FIBROUS CONSTITUENTS .	5? chy	
LM ANALYSIS		
/ Chrysotile%	Amosite%	Crocidolite%
Wavy Fibers	Straight Fibers	Straight Fibers
Sign of Elongation (+)	Sign of Elongation (+)	Sign of Elongation (-)
Parallel Extinction	Parallel Extinction	Parallel Extinction
Perpendicular Extinction Birefringence - L.M.H.	Perpendicular Extinction	Perpendicular Extinction
✓ w blue ∈ yellow	Sirefringence - LM.H.	Birefringence - L.M.H.
D.St II Mag i Blue	ω blue ε yellow	w Ten ∈ Slue
Becke Line Used	D.St I1Goid1 Blue pleochroid @ 40X	D.St II Yellow - I - Yellow
n11/17 1 / Jt	Secke Line Used	pleochroid @ 40X
Pleochroic @ 40X	η II ηI	Becks Line Used
Cellulose%	Mineral Wool	η Ι η <u></u> Periita
Fiat Twisted fibers	irregular shapes	Quanz
Anisotropia	isotropic	Wolfastopite
Synthetics%		
even edges	Glass Fibers%	CaSO
high birefringence	staight fibers isotropic	Mic3
Comments / Special Treatment	souopid	Other
		CONFIDENTI
FINAL ANALYSIS 10 TO CHIEV	: 107 CO175 BM	c
inalyst 12 grade	Date 05 109 194	2nd Party L1065
,		(if needed)
4455 \$457 61461 7164 75	SUITE D-155 + PHCENIX, ARIZONA 85018	

Sampled From LUCKY #270 Sampled By CILD	Date Received 10 18 1944 #16973 - 10 Blue Other HOMOGENEOUS: N TEXTURE: F.
ABORATORY ANALYSIS OF BULK ASSESTOS: Method Interin Converse - IRUILIE Pur Exported To NORM KRAMEY Sampled From LUCKU #270 Sampled By NID Shipped Via Fo Client Sample ID # 370 - /C Lab Sample ID Sample Description / LIT. //LACI TEREOSCOPIC ANALYSIS Valte Yellow Tan Brown Stack Green Viable Solid Paper Tile Plaster Paint EROUS MATERIAL 45 % NONFIBROUS 5 % STIMATED FIBROUS CONSTITUENTS 45 7 CM Wavy Fibers Straight Fibers V Sign of Elongation (+) Parallel Extinction Parallel Extinction Perpendicular Extinction Ferpendicular Extinction Perpendicular Extinction Ferpendicular Extinction	Chase Order # 94 4790001 Order OI
CONULYSE - IRULAIE Reported To MORM KRAMEY By Sampled By MID Sampled By MID Lab Sample ID Ample Description / CITE MAP(I) TEREOSCOPIC ANALYSIS Tan Brown Stack Green Paint Facus MATERIAL 45 % NONFIBROUS 5 % STIMATED FIBROUS CONSTITUENTS 457 CA Wavy Fibers Straight Fibers May Fibers Sign of Elongation (+) Parallel Extinction Perpendicular Extinction Perpendicular Extinction Ferpendicular Extinction	Order OI
Sampled From LUCUL #270 Sampled By OLD Sample ID Sa	Order OI
ampled From LUCKU #270 Sampled By Old Sampled By Ol	Date 10 1 7 1911 Date 70 1 8 1911 #16873 - 10 Blue Other HOMOGENEOUS: N TEXTURE: F.
tient Sample ID # 370 - K Lab Sample ID ample Description	Date Received 10 18 1944 #16973 - 10 Blue Other HOMOGENEOUS: N TEXTURE: F.
Lab Sample ID # 370 - K Lab Sample ID ample Description / LVT. / MACV TEREOSCOPIC ANALYSIS Thite Yellow Tan Brown Stack Green liable Solid Paper Tile Plaster Paint BROUS MATERIAL 45 % NONFIBROUS % STIMATED FIBROUS CONSTITUENTS 477 CM Wavy Fibers Straight Fibers / Sign of Elongation (+) Sign of Elongation (+) Parallel Extinction Perpendicular Extinction	#(6)73- /C Blue Other Other HOMOGENEOUS: N TEXTURE: F.
TEREOSCOPIC ANALYSIS Tan	Blue Other Other HOMOGENEOUS: \(\omega \) N TEXTURE: \(\omega \).
TEREOSCOPIC ANALYSIS Tan	Blue Other Other HOMOGENEOUS: \(\omega \) N TEXTURE: \(\omega \).
Tan Brown Slack Green riable Solid Paper Tile Plaster Paint BROUS MATERIAL % NONFIBROUS 5 % STIMATED FIBROUS CONSTITUENTS 4 7 6	Other Other N
Tan Srown Slack Green Fiable Solid Paper Tile Plaster Paint BROUS MATERIAL W NONFIBROUS STIMATED FIBROUS CONSTITUENTS Wavy Fibers Straight Fibers	Other Other N
Paper Tile Plaster Paint BROUS MATERIAL 45 % NONFIBROUS 5 % STIMATED FIBROUS CONSTITUENTS 457 CM Chrysotile 6 % Amosite % Wavy Fibers Sign of Elongation (+) Parailel Extinction Perpendicular Extinction Perpendicular Extinction Perpendicular Extinction	Other Other N
STIMATED FIBROUS CONSTITUENTS Wavy Fibers Sign of Elongation (+) Parailel Extinction Perpendicular Extinction STIMATED FIBROUS CONSTITUENTS 457 Ch MANALYSIS Amosite Straight Fibers Sign of Elongation (+) Parailel Extinction Perpendicular Extinction Perpendicular Extinction	HOMOGENEOUS: D N . TEXTURE: F.
STIMATED FIBROUS CONSTITUENTS 457 CM MANALYSIS Chrysotile 9 % Amosite 9 % Wavy Fibers Straight Fibers Sign of Elongation (+) Sign of Elongation (+) Parailel Extinction Parallel Extinction Perpendicular Extinction Perpendicular Extinction	TEXTURE:
MANALYSIS Chrysotile // % Amosite // % Wavy Fibers Straight Fibers Sign of Elongation (+) Sign of Elongation (+) Parallel Extinction Parallel Extinction Perpendicular Extinction Ferpendicular Extinction	
MANALYSIS Chrysotile	^ <u>_</u>
Chrysotile% Wavy Fibers Straight Fibers Sign of Elongation (+) Parallel Extinction Perpendicular Extinction	Ú.
	Cracidalite%
	Straight Fibers
	Sign of Elongation (-)
/ Perpendicular Extinction Perpendicular Extinction / Birefringence - L.M.H. Sirefringence - L.M.H.	Parallel Extinction
Birefringence - L.M.H Birefringence - L.M.H	Perpendicular Extinction
	Siretringence - LM.H.
ω blue ε yellow ω blue ε yellow	— w Tan ∈ Blue
D.St II Mag Blue D.St II Gold Blue	D.St 11 YellowYellow
✓ Secke Line Usedpleochroid @ 40X	pleochroid @ 40X
n II / J j _ I / J / Becke Line Used	Secretine Used
Pleochroic @ 40X	
Cellulose% Mineral Wool%	η η _
Flat Twisted fibersirregular shapes	Periita
Anisotropicisotropic	Quarz
- The state of the	Woilastonita
Synthetics% Glass Fibers%	CaCO
even edgesstaignt fibers	CaSO
high birefringenceisotropic .	Mica Other
omments / Special Treatment	CONFIDENT
	CONTIDUITA
- 10 CHRI I SUR	
Date 06 107 194	I 1066
MEMMETH W. HOKALLOUL	, L1066