ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES

ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

March 9, 2007

Mr. Scott Kyman Regency Centers 1850 Mt. Diablo Boulevard, Suite 225 Walnut Creek, CA 94596

Subject: SLIC Case No. RO0002738 and Geotracker Global ID SL0600132345, Bridgeside Shopping Center, 2523-2691 Blanding Avenue, Alameda, CA

Dear Mr. Kyman:

This letter confirms the completion of site investigation and remedial actions for the soil and groundwater investigation at the above referenced site. We are also transmitting the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported releases at the subject site with the provision that the information provided to this agency was accurate and representative of existing conditions. The subject Spill, Leaks, Investigation, and Cleanup (SLIC) case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- Soils in the area of the former UST contain residual total petroleum hydrocarbons (TPH) as gasoline at concentrations up to 440 parts per million and TPH as diesel at concentrations up to 310 ppm.
- Groundwater in the area of the former UST contains TPH as gasoline at concentrations up to 3,130 parts per billion (ppb). Groundwater in the area of the former dry cleaning facility contains trichloroethene at concentrations up to 37 ppb and cis 1,2-dichloroethene at concentrations up to 510 ppb.
- Soils along the former railroad right-of-way contain lead at concentrations up to 108 ppm.

If you have any questions, please call Jerry Wickham at (510) 567-6791. Thank you.

Sincerely-

Donna L. Drogos, P.E.

LOP and SLIC Program Manager

Enclosures: SLIC Case Closure Summary

Mr. Scott Kyman RO0002738 March 9, 2007 Page 2

cc: Cherie McCaulou (w/enc.)
San Francisco Bay Regional Water Quality Control Board
1515 Clay Street, Suite 1400
Oakland, CA 94612

City of Alameda (w/enc.)
Planning and Building Department
2263 Santa Clara Avenue
Alameda, CA 94501

Debra Stott (w/enc.) URS Corporation 915 Wilshire Boulevard, Suite 700 Los Angeles, CA 90017

Donna Drogos, ACEH (w/enc.)
Jerry Wickham, ACEH (w/ original enc)
File

CASE CLOSURE SUMMARY SPILLS, LEAKS, INVESTIGATION, AND CLEANUP PROGRAM

I. AGENCY INFORMATION

Date: November 30, 2006

Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6791
Responsible Staff Person: Jerry Wickham	Title: Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: Bridgeside Sh	nopping Center		
Site Facility Address: 2523-2691	Blanding Avenue, Alameda, CA 94501		
RB Case No.:	Local Case No.: LOP Case No.: RO0002738		
URF Filing Date: 08/18/2004	SWEEPS No.:	APN: 070-0196-044 and -045	
Responsible Parties	Addresses	Phone Numbers	
Scott Kyman	Regency Centers, 1850 Mt. Diablo Boulevard, Suite 225, Walnut Creek, CA 94596	925-279-1775	

Tank I.D. No	Size in Gallons	Contents	Closed In Place/Removed?	Date
1	Not reported	Fuel	Removed	1974
				<u>-</u>
	Piping	-	Removed	1974

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

area where an underground fuel tank was rem	curred at the site. Fuel was detected in soil and groundwater in an oved and volatile organic compounds (VOCs) were detected in soil eaning facility that operated between 1974 and 1993. The causes and
Site characterization complete? Yes	Date Approved By Oversight Agency:

Monitoring wells installed? Yes	Number: 3	Proper screened interval?	
Highest GW Depth Below Ground Surface: 4 feet below ground surface (bgs)	Lowest Depth: 13 feet bgs	Flow Direction: Northeast toward adjacent tidal canal	
Most Sensitive Current Use: Potential drinking water source.			

Summary of Production Wells in Vicinity: A well survey was completed for the Former Signal Oil Marine Terminal at 2332 Blanding Avenue. The closest water supply well to the site is an irrigation well of unknown depth that is approximately 900 feet south of the site. Based on the distance from the site and hydrogeology of the site, the irrigation well is not likely to be impacted by the site.			
Are drinking water wells affected? No Aquifer Name: East Bay Plain			
Is surface water affected? No	Nearest SW Name: Alameda Tidal Canal is adjacent to site		
Off-Site Beneficial Use Impacts (Addresses/Locations): No			
Reports on file? Yes	Where are reports filed? Alameda County Environmental Health		

	TREATMENT	AND DISPOSAL OF AFFECTED MATERIAL	
Material	Amount (Include Units)	Action (Treatment or Disposal w/Destination)	Date
Tank	Not reported	Not reported	1974
Piping		· 	**
Free Product			.
Soil	650 cubic yards	475 cubic yards disposed at Keller Canyon Landfill in Pittsburg, CA 175 cubic yards disposed at Kettleman Hills Landfill in Kettleman City, CA	October 2005
Groundwater		**	

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP (Please see Attachments 1 through 5 for additional information on contaminant locations and concentrations)

	Soil (ppm)		Water (ppb)		
Contaminant	Before	After	Before	After	
TPH (Gas)	1,120	440	3,130	3,130	
TPH (Diesel)	1,200	310	<63	<63	
TPH (Motor Oil)	816(1)	816(1)	Not Analyzed	Not Analyzed	
Oil & Grease	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	
Benzene	<1.0	<1.0	7.3	7.3	
Toluene	1.3	1.3	3.4	3.4	
Ethylbenzene	8.5	2.5	45	45	
Xylenes	3.7	1.2	6.5	6.5	
Lead	108	108	Not Analyzed	Not Analyzed	
Chromium	44	44	Not Analyzed	Not Analyzed	
Copper	146	146	Not Analyzed	Not Analyzed	
Zinc	132	132	Not Analyzed	Not Analyzed	
MTBE	<1.0(2)	<1.0(2)	2.2(2)	2.2(2)	
Tetrachloroethene (PCE)	0.037	0.037	1.7	1.7	
Trichloroethene (TCE)	0.15	0.15	37	37	
Cis 1,2-dichloroethene (cis 1,2-DCE)	7.9	0.14	510	510	
Other (8240/8270)	15(3)	1.7(4)	ND(5)	ND(5)	

⁽¹⁾ Total petroleum hydrocarbons in the carbon range from C22-C36 were detected at a maximum concentration of 816 ppm in a soil sample collected from the former railroad right-of-way. The maximum concentration of TPH as motor oil detected in soil from the former UST area was 42 ppm.

(2) MTBE was the only fuel oxygenate analyzed in soil and groundwater. EDB and 1,2-DCA were not detected in soil and were not analyzed in groundwater.

(3) Napthalene was detected at a maximum concentration of 15 ppm; 1,3,5-trimethylbenzene was detected at 9.7 ppm; butyl benzene was detected at 6.6 ppm, propylbenzene was detected at 6.8 ppm, and isopropylbenzene was detected at 2.8 ppm in soil. No other VOCs or PCBs detected.

(4) Napthalene was detected at a maximum concentration of 1.7 ppm; 1,3,5-trimethylbenzene detected at 0.19 ppm; butyl benzene detected at 1.4 ppm, propylbenzene detected at 0.85 ppm, and isopropylbenzene detected at 0.19 ppm in soil.

(5) No other VOCs were detected in groundwater; detection limits were variable.

Site History and Description of Corrective Actions:

The site is a commercial shopping center covering approximately 8.5 acres. All of the existing shopping center buildings were recently demolished and a new commercial shopping center is under construction. The site is bordered on the north by a dry dock and former boat repair yard, on the east by the Oakland Tidal Canal, on the west by Blanding Avenue, and on the south by Tilden Way. From the 1950s until 1974, the site was occupied by the Loop Lumber and Milling Company and a concrete plant. In 1974, the site was developed as the Ferndale shopping center. During development of the site in 1974, a fuel tank was reportedly removed from the site. No sampling was performed during the tank removal and no reports were prepared to document the removal.

In 1987, soil borings were advanced at the site to evaluate engineering properties of the foundation soils adjacent to an Alpha Beta Supermarket in the shopping center. Strong petroleum odors were observed between four and six feet bgs in one of the soil borings. An additional investigation consisting of five soil borings was conducted in October 1987. Moderate to strong petroleum hydrocarbon odors were observed in two of the soil borings and Total Extractable Hydrocarbons were detected in soil at concentrations up to 1,200 ppm. A thin, oily sheen was observed floating on groundwater in one of the borings. Seven soil borings were advanced at the site in April 1988 to delineate the extent of contamination; three of the borings were converted to monitoring wells. Fuel hydrocarbons were not detected in groundwater samples collected from the monitoring wells. The report dated June 19, 1988 (Additional Soil Testing and Preliminary Investigation of Groundwater Quality by Kaldveer Associates) recommended excavation of contaminated soil in the area of two soil borings.

A Phase I Environmental Site Assessment was conducted for the shopping center in 1995. The former UST and a dry cleaner were identified in the Phase I Environmental Site Assessment for further evaluation. A Phase II investigation was conducted in the former UST and dry cleaner areas in 2002. Seven soil borings were advanced in the area of the former UST (five borings outside and two borings inside the former Alpha Beta Supermarket building). TPHg was detected at a maximum concentration of 1,120 ppm in soil samples collected from the borings at depths of 7.5 and 11 feet bgs. BTEX were not detected or detected at concentrations less than 7.4 ppm and MTBE was not detected in the soil samples. Groundwater samples collected from the borings contained TPHg at a maximum concentration of 3,130 ppb, benzene at a maximum concentration of 7.3 ppb, toluene at a maximum concentration of 3.4 ppb, ethylbenzene at a maximum concentration of 45 ppb, and xylenes at a maximum concentration of 6.5 ppb. MTBE was not detected in groundwater samples collected from the borings. Groundwater samples collected from the three monitoring wells in the area of the former UST did not contain detectable concentrations of fuel hydrocarbons or MTBE.

Six soil borings were advanced in the area of the dry cleaner during the Phase II investigation in 2002. Tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (DCE) were detected in soil at maximum concentrations of 0.13 ppm, 0.15 ppm, and 7.4 ppm, respectively. However, the reporting limits for PCE and TCE were elevated (1.0 ppm) in two of the soil samples with elevated concentrations of cis-1,2-DCE. Groundwater samples collected from the soil borings in the area of the dry cleaner contained PCE, TCE, and cis-1,2-DCE at maximum concentrations of 1.7 ppb, 37 ppb, and 510 ppb, respectively.

Excavation and soil removal was conducted in the former UST and dry cleaner areas from October 12 through October 19, 2005. Within the former UST area excavation, the upper three to four feet of excavated soil was stockpiled and later used for backfill material. Approximately 475 cubic yards of petroleum hydrocarbon-impacted soil was excavated between depths of 3 to 8 feet bgs and was disposed off-site. A total of 17 confirmation soil samples were collected from the excavation. The maximum concentrations of TPHg and TPHd detected in confirmation soil samples collected from soil that was left in place were 440 ppm and 310 ppm, respectively.

Following removal of the building foundations, the excavation in the former dry cleaner extended to depths of four to five feet bgs. Approximately 175 cubic yards of soil was removed for off-site disposal from the former dry cleaner site. A total of 23 confirmation soil samples were collected from the bottom of the excavation. The maximum concentrations of PCE, TCE, and cis-1,2-DCE detected in confirmation soil samples collected from soil that was left in place were <0.001 ppm, 0.004 ppm, and 0.036 ppm, respectively.

A former railroad right-of-way is located within the southern portion of the site adjacent to Tilden Way. A total of four soil samples were collected from three locations within the former railroad right-of-way and analyzed for TPH, PCBs, and metals. TPH in the carbon chain interval from C22-C35 was detected in all soil samples at concentrations ranging from 17 to 816 ppm. No PCBs were detected in any soil samples. Metals were detected at concentrations within the ambient range with the exception of total lead. Lead was detected at a concentrations ranging from 7.5 to 108 ppm. The soils including railroad ballast were graded and covered by pavement or structures.

IV. CLOSURE

Does completed corrective action protect existing	ng beneficial uses per the Regional B	loard Basin Plan?
Does completed corrective action protect poten	tial beneficial uses per the Regional	Board Basin Plan?
Does corrective action protect public health for on the make specific determinations concerning pufiles to date, it does not appear that the release conditions.	blic health risk. However, based upor	the information available in our
Site Management Requirements: None		
Should corrective action be reviewed if land use	e changes? No	
Was a deed restriction or deed notification filed? No		Date Recorded:
Monitoring Wells Decommissioned: No	Number Decommissioned: 0	Number Retained: 3
List Enforcement Actions Taken: None		
List Enforcement Actions Rescinded: None		

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

Soil within a limited area beneath a water main in the area of the former UST contains residual TPH as gasoline. A soil sample collected at a depth of approximately 8 feet bgs in the area abutting the water main contained TPH as gasoline at a concentration of 440 ppm and TPH as diesel at a concentration of 120 ppm. Pavement or concrete currently covers the area. The limited residual contamination remaining in place in the area of the water main does not pose a current risk and is not expected to pose a potential future risk to human health or groundwater.

VOCs remain in groundwater at concentrations exceeding drinking water standards. Shallow groundwater in this area is not currently used as a drinking water source and no wells are likely to be receptors for the site. Based on the location of the site adjacent to the Alameda Tidal Canal, shallow groundwater is not likely to be used in the future as a drinking water source. VOC concentrations are expected to decrease over time due to natural attenuation.

No fuel oxygenates other than MTBE were analyzed in soil or groundwater. EDB and 1,1-DCA were analyzed in soil but were not analyzed in groundwater.

Conclusion:

Alameda County Environmental Health staff believe that the low levels of residual contamination at the site do not pose a significant threat to water resources, public health and safety, and the environment based upon the information in our files to date. No further investigation or cleanup is necessary. ACEH staff recommend case closure for this site.

VI. LOCAL AGENCY REPRESENTATIVE DATA

Prepared by: Jerry Wickham	Title: Hazardous Materials Specialist
Signature: Jerry Waisblann	Date: 11/28/06
Approved by: Qonna L. Drogos, P.E.	Title: Supervising Hazardous Materials Specialist
Signature: Jan Jaley 6	Date: 11/28/06

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherie McCaulou	Title: Engineering Geologist
RB Response: Concur, based solely upon information contained in this case closure summary.	Date Submitted to RB: 11/35/06
Signature: Min M. Caul	Date: 1/3/07

VIII. Monitoring Well Decommissioning

Date Requested by ACEH: 61 03	3107 Date of Well Decommission	ning Repo	ort: 03/ocle7	
All Monitoring Wells Decommissioned:	Number Decommissioned:	1	Number Retained:	
Reason Wells Retained: All was perly decomission Additional requirements for submittal of	nells were destroyed Led. Two wells were de of groundwater data from retained wells:	nO or lestro	e well was yed in construct to	n,
ACEH Concurrence - Signature:	ung Alielaleum		Date: 03/09/07	

Attachments:

- Site Location Map; Site Plan Kaldveer Associates; Site Plan Northgate; Site Plan URS (4 pages)
 Confirmation Soil Samples UST; Confirmation Soil Samples Former Dry Cleaner Area; Dry Cleaning Area 2. Map; Boring Locations (4 pages)
- Analytical Sampling Results for Soils (7 pages) 3.
- 4. Analytical Sampling Results for Groundwater (3 pages)
- 5. Boring Logs (30 pages)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.

Sep 07, 2006 - 9:19am J:\CADSHARED\regency alameda\Figure 2.dwg

ATTACHMENT 2

- Approximate Boring Location

) ^P

1.

northgate Brewironmental management, inc.

Bridgeside Shopping Center Alameda, California July 2003 Proj. No. 1057.05

TABLE 1

ANALYTICAL RESULTS FOR SOIL SAMPLING OF FORMER UST LOCATION

Regency Centers, Alameda

		R	esults (mg/kg)
	1	Total Pet	roleum Hydro	carbons
	ı	TPH-g	TPH-d	TPH-MO
	ESLs	400mg/kg	500mg/kg	
Former UST Site Sample ID				
SS-1-TB10		<0.99	<1.0	<5.0
SS-2-TB10		<0.98	<1.0	<5.0
SS-3-TB10		<1.0	<1.0	<5.0
*SS-4-SW9		240 Y J	160 L Y	<5.0
*SS-5-SW9		1,100 Y J	320 L Y	<10.0
*SS-6-SW9		<1.1	<0.99	. <5.0
SS-7-SW9		<1.1	<1.0	<5.0
SS-8-SW9		<0.98	<1.0	<5.0
SS-9-SW9		<1.1	<0.99	<5.0
SS-10-SW9		130 Y J	92 L Y	<5.0
*SS-11-SW9	1	190 Y J	120 L Y	<5.0
SS-12-TB9		88 Y J	100 L Y	<5.0
*SS-13-TB9		430 Y J	120 L Y	<5.0
SS-14-SW8 (actually from TB)		340 Y J	150 L Y	<5.0
\$S-15 - \$W8		38 H Y J	55 L.Y	<5.0
SS-16-SW8		440 Y J	120 L Y	<5.0
SS-17-SW8		110 Y	190 L Y	<5.0
SS-17-SW8DUP		190 Y J	88 L Y	<5.0
SS-18-SW8		< 0.96	310 L Y	<5.0
SS-19-SW8		250 H Y J	<1.0	<5.0
SS-20-SW8		<1.1	16 H L Y	42 L
SS-21-SW8		<1.1	<1.0	<5.0
SS-22-SW8		29 H Y J	4.5 L Y	<5.0
SS-23-SW8		36 Y J	13 L Y	<5.0
SS-24-SW8		<1.1	1.2 Y	<5.0
SS-25-SW8		31 Y J	130 L Y	<5.0
SS-26-SW8		2.1 Y	1.1 Y	<5.0

Note:

Y = Chromatogram doesn't resemble fuel standard

L = Lighter hydrcarbons contributed to quantitation

H = Heavier hydrocarbons contributed to quantitation

J = Estimated value

ND = Not detected above the reporting limit

*Confirmation sample location was removed during overexcavation

All sample depths are shown in sample ID in feet below ground surface

TABLE 4

Former UST Area Soil Analytical Results

Bridgeside Shopping Center Alameda, California

		· · · · · ·				S	ample Loc	ation and I	Pepth					RBSL for	RBSL for Direct	RBSL for	RBSL for
Analyte	Units	GP7-7.5	GP7-11.5	GP8-7.5	GP8-11.5	GP9-7.5	GP9-11.5	GP10-7.5	GP10-11.5	GP12-7.5	GP12-11.5	GP13-7.5	GP13-11.5	Indoor Air	Exposure	Groundwater Protection	Ceiling Value
TPH as Diesel - EPA 8015B	mg/kg	<63	0	<2	< <u>2</u>	<5.4	<2	<2.8	<2					NA	11,000	100	1,000
TPH as Gasoline - EPA 8015B	mg/kg	214	<0.1	<0.1	<0.1	1,120	263	170	32	<0.1	1.0>	53.4	<0.1	NA	11,000	100	1,000
Purgeable Aromatics - EPA 8021B															J	45	1.000
Benzene	μg/kg	<1000	<10	<10	<10	<1000	<1000	<1000	<1000	<10	<10	<500	<10	390	390	45	1,000
Toluene	μg/kg	<1000	<10	<10	<10	<1000	1,300	1,000	<1000	<10	<10	<500	<10	89,000	400,000	2,600	520,000
Ethylbenzene	μg/kg	4,400	<10	<10	<10	7.400	2,500	2,600	<1000	<10	<10	1,000	<10	220,000	230,000	2,500	230,000
Xvlenes	µg/kg	3,700	<10	<10	<10	2,500	1,200	1,400	<1000	<10	<10	1,800	<10	210,000	210,000	1,000	210,000
Methyl tert-Butly Ether - EPA 8201B	μg/kg	<1000	<10	<10	<10	<1000	<1000	<1000	<1000	<10	<10	<500	<10	12,000	79,000	28	500,000

NOTES

Results reported in mg/kg (parts per million) or ug/kg (parts per billion) as indicated

<: Not detected at or above the indicated laboratory method reporting limit

ND: Not detected at or above the laboratory method reporting limit; limits vary with compound

NA: Not applicable

--: Not analyzed

RBSL: Risk Based Screening Level for commercial land use surface soils; groundwater is considered to be a potential drinking water source

TABLE 2 Dry Cleaner Area Soil Analytical Results Bridgeside Shopping Center Alameda, California

Analyte	Units						Sample l	Location a	and Deptl	1				ı	RBSL for Indoor Air	RBSL for Direct	RBSL for Groundwater
Analyte	Onits	GP4-7	GP5-5	GP5-10	GP6-7.5	GP6-11.5	GP14-4.5	GP14-8.5	GP15-1	GP15-5	GP16-1.5	GP16-5	GP17-1	GP17-5	Quality	Exposure	Protection
Volatile Organic Compounds -	EPA 8260B														7.700	00.000	100
cis-1,2-DCE	μg/kg	<10	<10	<10	<10	<10	270	17	<10	140	7,900	94	2,900	52	7,700	29,000	190
Tetrachloroethene	μg/kg	<10	21	<10	<10	<10	<50	<10	120	130	<1000	13	<1000	37	530	2,100	800
Trichloroethene	μg/kg	<10	14	<10	<10	<10	<50	<10	46	84	<1000	<10	<1000	150	1,500	3,700	400
Other VOCs	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA

NOTES

Results reported in ug/kg (parts per billion)

<: Not detected at or above the indicated laboratory method reporting limit

ND: Not detected at or above the laboratory method reporting limit; limits vary with compound

NA: Not applicable

RBSL: Risk Based Screening Level for commercial land use surface soils; groundwater is considered to be a potential drinking water source

Analytical Results BRIDGESIDE CENTER Alameda, California December 2003

			Sa	mple	
Ana	lyte	BH-1-S (2 ft bgs)	BH-2-B (1.5 ft bgs)	BH-2-S (2.5 ft bgs)	BH-3-B (1.5 ft bgs)
	Antimony	ND	ND	ND	ND
	Arsenic	3.16	4.78	6.24	9.51
	Barium	37.3	89.1	91.5	87.3
	Beryllium	ND	ND	ND	ND
	Cadmium	ND	0.81	0.81	11
	Chromium	25.6	29.3	38.8	44.3
•	Cobalt	3,51	13.9	9.53	13.5
CAM Metals	Copper	7.87	62.5	41.8	146
(mg/kg)	Lead	10.6	42.7	34.4	108
(mg/kg)	Molybdenum	ND	1.04	ND	ND
	Nickel	7,47	31	46	38.9
	Selenium	ND	ND	ND	ND
	Silver	ND	ND	ND	ND
	Thallium	ND	ND	ND	ND
	Vanadium	19.2	62.2	40.7	75.6
	Zinc	16.1	84	86.9	132
Mercury (mg/k		ND	ND	ND	ND
	C06-C10	ND	ND	ND	ND
TPH Carbon	C40 C00	ND	ND	ND	50J
Chain (mg/kg	C22-C36	17	816	50	215
PCBs (mg/kg)		ND	ND_	ND	ND
Lead STLC (m	ng/L)	-	•		6.67

TABLE 2
ANALYTICAL RESULTS FOR SOIL SAMPLING AT FORMER UST LOCATION
Regency Centers Alameda, Bridgeside Center

	- .		99-5-1910	EE-3-7810	******	300		987-999	H-PF	23.4-EWI	25-16-2000		80,15,700		mara Tea	M-11-2000	35-11-EHR	99-17-EHR	-17-D/00L	39-10-2740	20-19-0901	13-87	E3-17-ENG	23-23-0000	90-25-00TB	14-34-DITE	12-31-MM	29-29-2990
	##LA	472.1	-19.0	-19.0	<1,000	4,000	-20	-10	*19	~13	<00	1900	-500	<100 °	<2.500	34	-300	41,400	e1,400	+1,000	47	м		~19	£18	- 240	~100	418
	44	43	449	. 44.7	<290	<2,000	-30	~4.0	-4.0	-4.8	<130	4120	*13 0	<130	430	+3.0	-130	- ONC	<380	400	44,9	<0.0	40	44.8	44.8	-4.0	*25	₩.7
	361	-4.0	-44	44.7	<290	42,000	<5.0	46	44.5	44.9	~130	1130	4520	<120	430	-410	-130	4380	<380	4790	4.9	<0.0	-50	4.5	44.8	-49	<25	-4.7
Properties and the second	=	-4.9	41	44.7	<250	-2,000	41.0	~0	44.8	4.0	₹720	-1720	*138	<130	-630	45.0	<130	<380	<## description:	<250 <250	4.9	<5.8	40	41	443	62F	-25 -25	47
	-	443	***	427	<250	<2,000	40	44	-4.8	44.0	4130 4130	*130 *130	<120	4130 4130	-430 -430	43.0 43.0	<130 <130	- 380	4960	- 450 - 450	40	420	4.0	44	443	43	45	44.7
	2,158	-4.0	44	-4.7	<250 4500	<2,000	<1.0 <10	43	41.5	48	425	430	<256	4250	41,300	130	930	4710	4710	4500	44	410	410	44	-94	73	-30	44.4
	24	40	43	48,4	- 4250 - 4250	44,000 <2,000	43.0	~4.9	44.6	48	4130	-130	4130	<130	400	45,0	4130	400	<380	-250	44.8	44	-3.0	-44	6.5	-4.9	45	-4.7
		40	44	-	400	4.00	10	43	4.1	ده	470	250	-290	<250	-1,200	<10	4250	4710	471 0	<500	22	12	410	44	48	49.5	<50	10.4
-04,0	-	-4.9	44	4.7	130	6,000	45.0	44.6	44.8	49	444	***	•	***	1,449	10	529	-2000	630	4250	16	12	41.0	44,0	14	43	79	44.7
	-	-45	44.5	44.7	230	2,440	45.0	44.5	4.8	-4.0	100	236	200	436	740	1.2	239	<380	486	<250	w	ស	≪.0	44.8	. 23	-43	61	44.7
Colon Shullde		419	44.8	44.7	439	<2,000	<50	4.8	~4.3	4.8	<130	<130	<130	<130	400	-52	~730	<380	<900	<250	449	40	43.0	4.8	44.0	-4.9	45	-4.7
Caulum Totaud North	×	44,9	-4.5	447	<250	<2,000	-3.0	44.8	-4.8	-4.8	4136	<136	<130	<130	≪30	45.0	4130 1130	<360 <360	4960	<250	49	<5.0	<5.0	44	44.8	43	49	4.7
Çişişekine Gerle	1,40	443	-43	417	<290	<2,000	440	-4.0	-4.5	44.0	4130 ·	<135	<130 <250	<130	*1.300	410	4130 4250	4710	<710 <710	4505	41	410	410	44	44	41	5 0	-9.4
Olmstern	963	-0.0	44	41.	<500	44,000	-10 -5.0	-43	4.0	43 45	<250 <120	<250 -130	4130	<130	400	45.0	130	4380	-3m0	-250 -250	-4.0	45.0	43.0	-4.5	44.5	49	- 25	-4.7
O	1,912	4.9	44.5 4.5	47	-250 I	<2,000 <4,000	-10	ربه	44	دو ا	<250	<250	4250	4250	41,200	<10	<250	<710	<710	-S00	44	<10	410	40.0	43	44	-50	44.4
Companyone 2/Sheekings	196	44.9	43	447	<250	<2.000	<5.0	448	-4.8	4.0	1130	4130	<130 ·	*130	-600	<10	1130	<360	<380	-250	44,9	-50	₹5.0	4.5	-4.0	-4.9	-25	44,7
4-Chlorokolusten		44,0	44.9	w	<250	<2,000	-3.0	44.8	44.8	-4.6	4136	4130	<130	<130	≈530	≪5.5	-130	<300	<360	<250	449	<5,0	-3.0	~4.8	44,8	43	<25	-4.7
Citizenseihens 2-Citizentalwere 4-Citizentolwere Ditrumechissemethens Observerseihens 1,1-Schlorostheise	24	44.0	449	u.r	<250	<2,000	<∞	-4.5	44.6	~4.0	4130	<130	<130	<130	-830	-3.0	<130	<∞∞	<360	<250	44.9	≪ ১১	<5.0	*4.5	44.8	4.9	≪25	44.7
Otherspecialisms	-	41	44.8	447	<210	<2,000	-30	فه	-4.8	-4.6	<130	<130	<130	<130	4600	≪.0	<130	<360	<380	<250	443	<.o	4.0	-4.6	44.8	44.9	- 25	44.7
1,1-dationostuse	201	~4.9	43	44.7	4200	<2000	45.0	4.5	4,0	-4.6	4130	1130	4130	4130	400	<5.0 <4.6	<130	<380	4360	<250 <250	44.9	40	<5.0 <5.0	44.8	48	49	<25 <25	44.7
1,1-Dichloroethene	1,831	469	-4.8	44.7	<250 250	<2,000	<5.0	4.5	41	44.0	<130 <130	<130 <130	<130 <130	<130 <136	-630	<5.0	<130 <130	<360	<360	-250 -250	449	450	4.0	44.3	44.8	4,5	25	44.7
1,2,-Dichleros/hans	4	44,9	449	47	<250 <250	<2,000	5.0	44.5	4.5	4.5	<130 <130	4130 4130	<130 <130	<130 <130	4630	45.0	<130	<380	-360	4250	403	≪0	4.0	44.3	444	-49	20	ai.
ds-1,3-Cichloroshere trass-1,3-Cichloroshere	167	44.9	41	443	<250	₹.000	-6.0	4.6	قبه ا	40	<12C	<130	<130	<130	4636	-6,6	<130	<300	<360	-250	44.9	<5.0	-5.0	44.8	44.8	4.30	<35	-4.7
rame 1,3-Dichloropropens		44.5	44	43	450	<2,000	<5.0	4.8	4.0	44,8	<130	<130	<130	-130	-630	<5,0	<130	->∞	-360	<250	-4.0	<5.0	<5.€	<4.6	44.8	44,9	<5	44,7
1,2-Obremo-3-Chlompropere	_	44.0	44.8	-4.7	<250	<2,000	<50	-48	વા	<4,0	<130	<130	<136	<130	4500	<5.0	<\$30	<360	<380	-250	<4.0	-5.0	<5.0	44,5	44,8	-4.5	<25 .	46.7
1,2-Obremonhune	-	-4.9	-45	4.7	<250	-2,000	≪5.0	44,6	٠	44,0	<130	<130	<130	<136	-630	ব্য	<130	<360	<360	<250	<4.9	-5.0	<\$.0	4.8	-4.0	-4.0	<25	44.7
1,2-Olchiprobenismo		44.9	44.0	4.7	<250	<2,000	<5.0	<4,8	<4.8	44.8	<130	<130	<130	<150	≪630	<5.0	<130	<360	<360	<250	44.9	<5.0	-5.0 -5.0	-4,8	4.8	44.9	45 45	44.7
1,5-Dichlorsbenzere		44.0	443	44.7	<250	<2,000	≪.0	-4.8	44.8	44.6	<130	<130	<130	<130	-630	-5.0	<130	<360 <360	<386 <380	<250 <250	-4,9	<5.0 <5.0	<3.0	*4.5	41	44.9	₹	44.7
1,4-Cicidoroberazene	٠ ا	44.9	4.8	44.7	<250	<2,000	≪5.0	નક નક	44,8	4.5	<130 <130	<130 <130	<130 <130	<130	-630 -630	-6.0 -6.0	<130 <130	<360	<380	-Q50	449	<.0	40	46	44,9	4.9	~ ×	4.7
1,3-Cichiompropose	123	-4.9	-4.5	44.7	<250 <250	<2,005 1,000	+5.0 -<5.0	48	4.0	4.5	190	140	<130	130	430	-5.0	280	<360	<380	-250	21	Lo	<5.0	44,0	-4.0	-4.9	<25	44.7
1,3,5-Trimphylbergene 1,3-Okthioropropuse		449	44.5	4,	230	17,000	<5.0	<4.6	41	-4.0	×130	<130	<130	<136	4030	<\$A	<130	<300	<360	<254	44.0	<5.0	- ≤5,0	44.8	44.8	<4.9	<25	-4.7
t.S-Cichiaropropere	-	44.9	-4.0	44.7	<250	<2,000	45.0	44.8	44.8	-4.6	<130	<136	<130	<130	-630	-5∆	<130	<380	<960	<250	-4,9	<5,0	<5.0	44.3	4.8	4.5	⊘ 28	-4.7
2,2-Clichtoropropens		-4.5	4.8	-4.7	<256	<2,000	<5.0	44.6	≺4.6	44.6	4136	<130	<130	<130	-630	<5.0	<130	<380	<365	<250	<4.9	~5.0	<5.0	44.8	44,8	4.0	<25	44.7
de-1,3-Olchloropropene		44.9	<4.E	-4.7	<250	-2,000	<\$4	44.8	<4.8	-4.5	<130	<130	~130	<130	-630	<5.0	<130	<360	<380	<250	-4.9	<5.0	<0	-4,8	44.8	44.9	<25	4.7
Chybenzane	3,275	<4.9	44,8	<4.7	390	1,500	45.0	44.5	4.0	-4.8	160	1,100 5130	<130 <130	490 <130	-630	<5.0 <5.0	130	<360	<360	<250 <250	2.6 <4.9	₹5.0	<5.0 . 45.0	<4.5 44.3	44,8	4.5	<25 <25	44.7
Frenk 113	1 -	-4.9	4.6	<4.7	<250	<2,000	<5.0 <19	44.5	-4.8 -4.0	<4.5 49.3	<130 <250	4130 4250	<130 <250	4250	41,300	<10	250	₹710	<710	-500	₹9,8	410	<10	19.6	49,5	4.5	<50	-0.4
Frame 12	•	44.9	49.5	49.4	<500 <500	-4,000 -4,000	<10	43	45	42	<250	-250	4250	<250	<1.000	<10	250	<710	4710	<500	41	410	<10	<9.6	-9.6	4,0>	450	19.4
2-Hazarone Hearthforobytediene	1,544	4.3	4,	44.7	250	42.000	45.0	40	4.6	44.6	<130	<130	<130	<130	4630	≪.0	<130	<360	<360	<250	<4.9	<5.0	-6.0	-4,8	4.1	-4,9	<25	*4.7
popropybenzene	""	-48	44.8	-4.7	280	2,800	<5,0	-4.6	4.6	48	160	260	Z79	450	4630	£7	130	<360	<360	-250	-4.5	<5.0	-5.0	<4.8	44.8	4.1	87	~4.7
Martinjana Chlorida*	77	HOMRO	ZMHRÞ	260 > LR b	<1,000	<8,000	73	250 ×LR b	160×LRb	170 >LR b	<500	<∞	<500	<500	<2,500	<20	<500	<1,400	<1,400	<1,000	100 >LR >	<∞	420	77	380>LR b	45	754 ×LR b	- 44
4Methyl-2-Pentanone		44.0	48,8	49.4	<∞	~4,000	<10	<3.2	<9,0	<9.3	<250	<250	≪50	<250	<1,300	<10	250	<710	-710	<500	<9.8	-10	<10	< 9.6	<0,6	49,8	<50 -~•	44.4
MTBE	, a	-4,9	44.9	4.7	<250	-2,900	<5.0	4.6	4.8	4.6	<520	<130	<130	<130	-630	<5.0	430 520	<360	<360 <360	<250 <250	4.9	<5.0 <5.0	<5,0 <5,0	44.0	-4.8 -4.8	-4.0 -4.9	-25 -25	44.3
PlopMistone	1,476	44.9	-4.0	4.7	1,200	15,090	-5,0	4.0	44.8	-4.5	766	1,700	386 <130	250	<630 ≪630	52 50	220	<360	<360	<50	111	45.0	45.0	44.8	43	44.9	8	44.7
pera-leopropyl Tokrene		449	44.8	-4.7 -4.7	360	4,200	<5.0 <5.0	4.5	44.6	<4.5	290 290	390	550	110	850	23	440	<360	450	<250	10	N.	450	44.5	44.8	<4.9	130	44.7
Propythenzene	1,459	449	<4.8 <4.8	44.7	<250	-2,000	<5.0	44.5	4.5	-4.8	<130	4730	<130	<130	-630	<5.0	<130	<360	<360	<250	<4.0	≪5.0	<5.0	4,5	4,8	4.9	<25	44,7
Styrene 1.2.3-Titchbrobenzene	1,409	449	4.5	44.7	-250	<2,000	<5D	4.8	-4,5	4.6	<136	<130	<130	<130	-630	-5.0	<130	<360	<360	<250	4.9	<5,0	<5.0	<4,6	<4,8	4.0	-25	44.7
1,2,3-Trichloropropune	1 :	44.9	4.8	44.7	<250	<2,000	<5.0	<4.5	44.8	44.6	4130	<130	<130	<130	<630	<5.0	<130	<360	<380	<250	વક	≺5. 0	*5.0	-4,8	-4.0	<4.8	<25	44.7
1.2.4-Trichlorobenzene	1 .	44.9	-41	-44.7	<250	<2,000	<5.0	4.0	4.6	44.6	<130	<130	<130	<\$300	-4530	<5.0	<130	<360	<360	-250	-4.0	45.0	<5,0	44.9	4.5	<4.9	725	44.7
1,2,4-TrimethyRenzene		-4.9	-4,8	<4.7	<250	<2,000	<3.0	4.0	4.5	44.5	329	<130	<130	<130	-630	<5.0	<130	<380	<380	<250	71	24	11	- C.B	<4.8	<4.9	425	44.7
1,1,1-Trichlorostherre	7,751	-4.0	44,6	<4.7	<250	<2,000	<20	~4.6	-4.0	<4.6	<130	<130	<130	<130	<630	<.0	<130 <130	<360 <360	<360 <350	<250 <250	-49	<5,0	<5,0 <5,0	<4.8 <4.5	44,8	43	<25 <25	44,7
1,1,1,2-Tetrachkoroethane	24	*4.9	<4.8	4.7	<250	<2,000	<5.0	~4,8	-48	<4.5	<130	<130	<130	<130 <130	-630 -630	<.0	<130	<380	4360	-250 -250	-49	450	45,0	45	4.5	4.0	425	4.7
1,5,2,2-Tetrachlorosthana	19	-4.9	-4.8	4.7	<250	<2,000	<5.0	4.6	<4.8	44.5	<130 <130	<130 <130	<130 <130	<130 <130	-630	45.0	<130 <130	<360	<360	- 250	4.9	₹5,0	<5.0	44,5	<4,8	44.0	425	-4.7
1,1,2-Trichloroethere	7,751	49	44	<4.7 <4.7	<250 <250	<2,000 <2,000	-5.0 -5.0	4.6	44.8	44,5	<130	<130	<130	<130	430	40	<130	<380	<360	-250	c4.9	45,0	<5,0	44,8	-4.8	44.0	425	-4.7
Tetrachicroethene	243 2,857	49	41	44.7	-250 -250	<2,000	-50	4,8	4.5	44.6	<130	<130	<130	<130	4630	45.0	<130	<360	<360	<250	20	7.1	<5.0	4.8	<4.8	-4,9	-25	44.7
Tokume Trichiorosthène	457	49	4.3	44.7	<250	<2,000	45.0	44.6	4.0	<4.6	<130	<130	<130	<130	-630	≪,0	<130	<360	<350	<250	-4.9	<5.0	<5.0	<4.8	-4.8	~4,0	<25	44.7
Tachioroflouromethane	1 7	-49	4.3	47	<250	<2,000	-50	4.5	44.8	₹4,6	<130	<130	<130	<190	-630	<5.0	<130	<360	<360	<250	-4.9	<5.0	<5.0	44.8	48	44,0	<25	4.7
Anyl Acetain		-49.0	448.0	47.0	<2,500	<20,000	<50,0	<45.0	<46.0	~46,0	<1,300	<1,300	<1,300	<1,300	-6,300	<50	<1,300		<7,000	<2.500	-49	<50	<50	~4E	48	~49	<250	<47
Veryl Chloride	19	<9.8	49.5	<9.4	<500	44,000	<10	<9.3	≪9.6	<9.3	<250	<∞	<250	<250	<1,300	<10	250	<710	<710	<500	49.8	<10	<10	<9.5	<9.5	49.5	-50	44
o-Xyleme	2,752	-4,9	~4,5	<4.7	<250	<2,000	<5.0	-4.6	44.8	-4,5	<136	<130	<130	<130	4630	<5.0.	<130	<360 <360	<360 4360	-250 -250	18	6.0	45.0 6.7	4.8	-4.8 -4.8	44.9	-25 -25	44.7
m.p.Xylenee	1	مه ا	44.8	44.7	<250	2,100	<5.0	<4.6	44.8	44,5	<130	200	<130	≺130	463Q	<5.0	<130	<360	4360	1 -200	1 24	14			1 8	,, y		74.7

...

A first discuss strates was extracted and not a confirmation sample

¹⁾ Multiylene chicalce detections were likely due to leboratory contamination

TABLE 3

ANALYTICAL RESULTS FOR SOIL SAMPLING AT FORMER DRY CLEANER LOCATION

Regency Centers Alameda, Bridgeside Center

													Results in s	19 /19										
Sample D	ESLs (mg/kg)	\$9-DC1-T85	\$5-002-185	SS-DC3-185	SS-DC30UP-T85				*SS-OC7-TB0	SS-DC#-TB5		SS-OC10-TB5	SS-DC10DUP-TB5				SS-0C14-TB5		5S-0C10-TES	\$5-DC17-TB5	SS-OC18-785	SS-OC19-TBS		SS-DC200UP
Actions	8.5	40.000	40,005	0.676 ≪0.005	4.047 <0.005	40005	4.12 <0.005	40,005	<0.050 <0.005	<0.050 <0.005	9,987 42,006	0.005 40.005	40,005	0.091 <0.005	6,058 40,006	40,005	0.14	8,078	4000	0.14	0.11	0.18	40,050	-0,005
Arayi Mushqi Ethar (TANE) Manazana	8,844	40,001	40,001	40.001	40.001	40.001	40,001	40,001	40.001	40.001	40.001	<0.001	40,001	49,001	40,001	40,000	<0.005 <0.001	<0.005 <0.001	40,001	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	-0.00s
Stromatorium:	8,294	40,005	40,006	₹0.005	40.005	49,005	40.008	40,005	49.005	40.005	₹,005	40,005	<0.005	49,005	<0.005	<0.005	4005	<0.001 <0.005	40.006	40,005	40.005	4005	<0.005	40,005
Brown-chieromathum	0.039	40,005	<0.005	₹0,005	40,005	40,005	<0.005	<0.005	40.005	40,005	<0.006	40,005	40.005	<0.005	<0.005	40.005	40.005	<0.005	4,005	40.005	40,005	4006	40,005	40.00
Promedicitions arthurs	0.039	<0.001	40.001	<0.001	<0.001	40,001	<0.001	49,001	<0.001	40.001	<0.001	40.001	<0.001	<0.001	<0.001	<0.001	40,001	40,001	<0.001	40,001	45.001	40.001	40.001	<0.001
thromoform.	22	<0.005	<0.005	<0.005	<0.005	<0.005	₹0.006	<0.005	≪0.005	<0.006	<0.005	<0.005	<0.005	<0.005	<0,006	<0.005	<0.005	<0,005	<0.005	<0.005	₹0.005	<0.005	<0.006	<0.005
(Arreno metherne	8,364	<0.005	<0.005	<0.005	<0.005	<0.005	≪0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	49.005	<0.005	(<0.005	<0.005	<0.005	<0.005	<1.005	<0.005	<0.005	<0.005	<0.00
terl-Bullerel (TEA)		<0.020	40.020	<0.020	<0.020	<0.020	40.020	<0.020	<0.020	<0.020	<0.020	40,020	<0.020	<0.020	<01050	<0.020	40.020	<0.020	<0.020	<0,020	<0.020	<0,020	-0.020	<0.02€
2-Butaness (MEIC)		40,010 40,007	<0.002 40.002	4.816	4.917	0.216	0.075	0.010	<0.010 <0.002	40.000	40,002	40,002	€.019 <0.002	0.019	<0.010	<0.010	0.821	0.012	0.014	0.038	0.024	6.638	<0.010	0,016
n-Butylbonzonn mc-Butylbonzonn		40,002	40,002	40,002	40.002 40.002	<0.002 <0.002	<0.002 <0.002	40,002	<0.002 √0.002	<0.002 <0.002	40.002	40.002	40.002	<0.002 <0.003	<0.002 <0.002	<0.005 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	≪0,002 ≪0,002	40,002	<0.002 <0.002	40.00 40.00
tert-Buty/Destrone	1 ;	40,002	40.002	40.002	<0.002	40.002	<0.002	<0.002	40.002	<0.002	≪0.002	40,002	√0.002	<0.002	40,002	≪0.002	40.002	40,002	40,002	<0.002	40.002	40,002	40.002	40.00
Carbon disulfida		40,010	<0.010	₹0.010	<0.010	<0.010	≪0.010	<0.010	<0.010	<0.010	40,010	<0.010	<0.010	<0,010	4010	40.010	40.010	<0,010	40,010	-0.010	<0.010	40,010	40.010	40,01
Carbon tetrachionide	6.834	<0.001	<0.001	<0.001	<0.001	≪0.001	<0.001	40.001	<0.001	<0.001	<0,001	40,001	<0.001	<0.001	100.0>	<0.001	≪0.001	<0.001	<0.001	<0.001	≪0.00 5	₹0,001	<0.001	<0.00
Chioroberoone	1,8	<0.001	<0.001	<0.021	<0.001	40,001	<0.001	<0.001	<0.001	<0,001	<0.001	40.001	<0.001	<0.001	<0.901	<0.001	40,001	<0.001	<0.001	40,001	<0.001	-40.001	<0.001	<0.00
Chloroethese	8.5	<0,005	<0,005	<0.005	<0.005	<0.005	<0,005	<0.005	<0.005	<0,005	<0.005	≪0.005	<0.005	<0.005	<0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.000
Chloroform	1.0	-0.002	<0.002	<0.002	≪0.002	40.002	<0.002	<0.002	40.003	<0.002	<0.002	40.002	<0.002	<0.002	40,002	<0.002	<0.002	<0.002	<0.002	<0.007	<0.002	<0.002	<0.002	<0.000
Chioromethane 2-Chiorotologne	4.2	40.001 40.002	<0.001 <0.002	<0.001 <0.002	+0.001 ≠0.002	40,001 40,002	<0.001 =0.002	<0.001 <0.002	<0.001 ≪0.002	<0.001 <0.002	<0.001 <0.002	<0.001 <0.002	<0.001 <0.002	<0.001 <0.002	<0.001 <0.002	≪0,001 ≪0,002	<0.001	≪0.001	40,001	<0.001	<0.001	<0.001	<0.001	<0.00*
Z-Chilorotoloene 4-Chilorotoloene	I :	40,002	<0.002	40,002	40.002 40.002	<0,002 <0,002	40,002	<0.002	40,002	40,002	<0.002 <0.002	40,002	40.002 40.002	40,002	40,002	<0.002 <0.002	<0.002 <0.002	4000	<0.003	40.002	<0.002 <0.002	<0.002	40.002	<0.00
4-carorousens Obromochioromethens	0.054	40,002	40.002	₹0.002	40.002	40.002	40.002	40.002	40.002	40,002	40.002	40.002	40.002	40.002	40,002	40.002	<0.002 <0.002	<0.002	<0.002 <0.002	<0.002 <0.002	40,002	₹0.002 1	<0.002 <0.002	40.00
1.2-Dibromosthene	1	40,002	40,002	40,002	40,002	40,002	40,002	40,002	40.002	49,902	40.002	≪0.002	-0.002	40,002	40.002	40,002	40,002	≪0.002	40,002	<0.002	<0.002	<0.002	40.002	40.00
Olbromo-3-chloropropene	i .	≪0.010	<0.010	<0.010	<0.016	<0.010	<0.010	<0.010	≪0.010	40.010	<0,010	<0.010	≪0.010	<0.010	<0.010	<0.010	40,010	49,010	₹0,010	<0.010	<0.010	<0.010	40,010	40.01
Dibromomethene		<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	40.001	<0,001	<0.001	<0.001	<0.001	<0.001	40.001	<0.001	<0,001	<0.001	<0.001	<0.001	₹0.001	<0.00
1,2-Dichlorobenzene	1 .	40,001	<0.001	<0,001	<0,001	<0.001	-0.00 1	<0,001	<0,001	<0.001	40.001	<0.001	<0.001	<0.001	40,001	<0.001	<0.001	<0,001	<0.001	<0.001	40.001	<0.001	<0.001	40.00
1,3-Dichlorobenzane	-	◆0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	≪0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	≪0.002	<0.002	≪0.00
1,4-Okthorobenzene	-	<0.002	<0.002	<0.002	40.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0,002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0,002	<0.002	<0.00
ichlorodificuremethene	1	40.005	<0.005	≪0.005	40.005	<0.005	<0.005	<0.005	<0.005	≪0.005	<0.006	<0.005	40.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0,00
1,1-Dichioroethene 1,2-Dichioroethene	9.2 0.004	40.001 40.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0,001 <0.001	40.001	<0.001	40.001	<0.001	<0.001	<0.001	40,001	< 0.00						
1,1-Dichioroethene	1.031	40,005	40.005	<0.005	-0.005	40005	₹0,005	40.005	40.005	₹0.005	<0.005	₹0,005	40.005	<0.005	<0.001 <0.005	<0.001 <0.005	<0,001 <0,005	<0.001 <0.005	<0.001 <0.005	<0.001 <0.005	<0.005	<0.001 <0.005	<0.001 <0.005	≪0.00
cts-1,2-Dichioroethene	9,187	8,004	6.823	0.036	0.029	9,025	0.000	9,004	<0.002	0.000	40.002	<0.002	-0.002	40,002	<0.002	49.002	40.002	<0.002	40,002	<0.002	¥0.002	40.002	40,002	40.00
rans-1,2-Dichloroethene	9.7	≪0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	40.002	<0.002	<0.002	<0.002	<0.002	4002	<0.002	40.00Z	<0.002	≪0.002	<0.002	40,002	<0.002	40.002	40.00
1.2-Dichleropropune	0.1	<0.001	<0,001	<0.001	≪0.001	40.001 ·	<0.001	<0.001	⊲0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	49.001	√0.001	<0.001	<0.001	<0.001	40.00
1.3-Dichloropropene	•	<0.001	<0.001	<0.001	<0.001	<0.00t	<0,001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	40.001	<0.001	<0.001	<0.001	<0.001	<0.001
2,2-Dichloropropens	0.069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	≪0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.00
1,1-Dichloropropone	0.069	<0.001	< 0.901	<0,001	<0,001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	40.001	<0,001	<0.001	<0.001	<0.001	<0.005	<0,001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.00
cls-1,3-Dichloropropene	-	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.00t	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 ≪0.001	<0.001 <0.001	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.00
Discourage Ether (DIPE)	1 :	40.005	-40.00S	<0.005	₹0.005	₹0,005	40.005	40.005	40.005	40,005	40.005	40,005	<0.005	<0.005	40.005	<0.001 <0.005	<0.001 <0.005	<0.001 <0.005	<0,001 <0,005	<0.001 <0.005	<0.001 <0.005	<0.001 <0.006	≪0.001	<0.00
Zihvibenzene	3.23	4000	40.001	40.001	40.001	4000	<0.001	<0.001	40.001	40.001	4000	40,001	40.001	<0.001	40.001	40.001	40,001	40,000	<0.005 <0.001	₹0.005	₹0.005 ₹0.001	40,00a 40,001	<0.005 <0.001	<0.00 <0.00
thyl test-Butyl Ether (EtBE)	1	40.005	<0.005	40,005	40,005	40.005	40.005	<0.005	<0.005	<0.005	40,005	<0.005	40.005	<0.005	9.005	40.005	40.005	<0.005	×0.002	₹0.005	<0.001	*0.005	<0.005	40.00
Hexachiorobutadiene	1.04	<0.001	40.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
2-Hexanone		<0.010	<0.010	<0,010	<0,010	<0.010	<0,010	<0.010	<0.010	<0.010	<0.010	≪0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0,010	<0,010	<0.010	49,010	<0.01
Inoprepy/benzane	-	40.001	<0.001	<0.00t	<0.001	<0.001	<0,001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0,001	<0.001	<0,001	<0.001	<0.001	<0.00
p-inopropyttoluene	-	40.002	-0.902	<0.002	≪0.002	<0.002	<0.002	<0.002	≪0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.00
Methylane Chloride	90.08	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0,050	<0.050	<0.05
4-Methyl-2-pentanone thyl tert-Butyl Ether (MtBE)	0.02	<0,010 <0,005	<0.010 <0.005	<0.010 <0.005	<0.010 <0.005	<0.010 <0.005	<0.010	<0.010	<0.010 <0.005	<0.010 <0.005	<0,010 <0,005	<0.005	<0.010 <0.005	<0.010 <0.005	<0.010 <0.005	<0.010 <0.005	<0.016 ≪0.005	<0.010 ×	<0.010	<0.010 <0.005	<0.010	<0.010	40.010	₹0,01
rny) varc-sutyl 2:2102 (MCSE.) Kashthalano	1.5	40,002	<0.002	<0.002	*0,005 *0,002	<0.005 <0.002	<0.005 <0.002	<0.000	40,005 40,002	40,000	40.000 40.000	9,000	<0.005	40,000	<0,005	<0.005 <0.002	40.005 40.002	<0.005 <0.002	<0.005 <0.002	<0.005 <0.002	40,005 40,002	<0.005 <0.002	<0,005 <0,002	<0.00 <0.00
n-Propythenzena	1 :	40,001	<0.002	<0.001	<0.002 40.001	40,001	<0.001	<0.001	<0.002	<0.001	<0.001	40,001	<0.001	40.001	40,001	40.001	<0.001	<0.002	<0.002	<0.002	≪0.001	40.002 40.001	<0.002	<0.00 <0.00
Styrene	1.5	€0,001	<0,001	<0.001	<0.001	<0.001	40,001	<0.001	₹0.005	₹0.001	<0,001	<0,001	<0.001	₹0,001	40,001	₹0,001	40.001	<0.001	<0.005 <0.005	<0.001	40.001	90.001	₹0.001	40.00
1,1,2-Tetrachioroethane	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	≪0.001	<0.001	√0.001	<0,001	40.00
1,2,2-Tetrachioroethune	0.02	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0
Tetrachioroethene	0.2	<0,001	40,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0,0
Toluene	2,9	<0.001	<0.001	<0,001	40,001	<0.001	<0.001	<0,001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	40,001	<0.001	<0,001	<0.001	<0,001	<0.001	<0.001	40.0
1,2,3-Trichiorobenzene	-	40,002 40,002	<0.002 40.002	<0.002 <0.002	<0.002	40.002	40.002	<0.002 <0.002	<0.002 <0.002	<0,002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	≪0.002	<0.002	40,002	<0.002	<0.002	40,002	<0.002	<0.002	<0.002	40.0
1,7,4-Trichiorobenzone 1,1,1-Trichiomethone	7.8	40,002	40.002 40.001	40,002	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	40,002	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	<0.002 <0.001	<0.002	H0.002	<0.002	<0.002	<0.002 +0.002	≪0.002	<0.0
1.1.2-Trichioroettune	72	40.003	<0.001 <0.003	×0.007	40.003	<0.007 <0.003	<0.001	40,003	40.003	40,003	<0.003	<0.003	₹0,007	40,007	<0.003	<0.003	40.001 ≪0.003	<0.003	<0,001 <0,003	<0.001 <0.003	<0,001 <0,003	<0.001 <0.003	40,001 40,003	≪0.0 ≪0.0
Trichloroethene	0.46	40,001	0.001	<0.001	0.006	0.063	0.004	<0,001	<0.001	<0.001	<0.001	40,001	<0.001	<0.001	40.001	<0.001	40,001	<0.001	40,001	<0.001	<0.003	<0.003	*0.003	<0.0
1,2,3-Trichloropropene	1 -	<0.003	40.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	40.003	<0.003	40.003	<0.003	<0.003	<0.003	-0.003	<0.0
Frichioroffuoromethene	-	≪0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0,001	<0.001	40.001	<0.001	<0.001	<0.001	<0.001	⊲0.001	<0.001	<0.001	≪0.001	<0,001	<0.001	<0.001	40,001	<0.0
Frichlorobithuoroethane	-	<0.005	<0.005	<0.001	40.001	<0.001	<0.001	<0.001	<0.005	<0.006	<0,005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.905	<0.005	40,005	<0.005	<0.005	<0.005	<0.005	- ₹0.0
1,2,4-Trimethy/benzene	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0,001	<0.00t	<0.00t	<0.001	<0.001	<0.001	≺0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0
1,3,5-Trimethylbenzene	i -	<0.001	<0.001	<0.002	<0.002	40.002	<0.002	<0.002	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0,001t	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
Vinyl Chloride	0.02	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0
Xylenes, m.p-	2.26	40,002	<0.002	<0.001	<0.001	<0.001	40.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0,002	<0.00
Xylene, o-		<0.001	<0.001	<0,003	<0.003	<0.003	<0.003	<0.003	<0.001	<0,001	<0,001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.00

SS OCATES denotes sample excavated and not a confirmation sample.

Taylor-Woodrow of California June 29, 1988, 11703 Page 8

ANALYTICAL TEST RESULTS AND DISCUSSION

No detectable amounts of petroleum hydrocarbons including BTXE, for soil samples in Exploratory Borings EB-1, EB-2, EB-3, EB-4 and Monitoring Wells MW-1, MW-2 and MW-3 were reported by the analytical laboratory. Additionally, no detectable amounts of petroleum hydrocarbons including BTXE in groundwater samples MW-1, MW-2 and MW-3 were reported by the analytical laboratory.

The following Table 2 presents cumulative analytical data reported from our current and previous investigations.

SUMMARY OF TEST RESULTS ABOVE
THE METHOD DETECTION LIMITS

			(in ppm)	<u></u>		
Matrix	Boring/ Well Number	Depth (Feet)	Volatile low to medium B.P. Hydrocarbons	Extractable High B.P. Hydrocarbons	Benzene	Toluene
Soil '	EB-1	115+615	ND	ND	110	·····
Soil	EB-2	315+715	ND		ND	סא
Soil	EB-3	315+815	ND	ND	ND	ND
Soil	EB-4	45+85	ND	ND	ND	ND
Soil	NW-1	21/2+51/2		ND	ND	ND
Soil	NW-2	3+8	ND	ИD	ИD	ND
Soil	NW-3		ND	ND	ND	ND
Water	MW-1	21/2+71/2	ND	ND	ND	ND
Water	-	и/л	ND	ND	ND	· ND
Water	MW-2	N/A	חא	ND	מא	ND
	MW-3	и/и	ND	ND	ИD	ND
Soil	PB-6	6	39	1,200	. 12	.08
Soil	PB-8	5 ¹ 5	ND	23	ND	
Soil	PB-9	5 ¹ 2+8	34	4	(I)	ND
Soil	PB-10	7	12	46	ND	ND

Notes:

B.P. = Boiling Point

EB = Exploratory Boring drilled in April 1988 MW = Monitoring Well drilled in April 1988

PB = Previous Boring drilled in December 1987

ND = Not Detected (above detection limit for test method)
-- = Not Applying

 $N/\Lambda = Not Analyzed$ N/A = Not Applicable

TABLE 1
Site-Wide Groundwater Sample Analytical Results
Bridgeside Shopping Center
Alameda, California

Analyte	Units	GP-1	GP-2	GP-3	GP-4	MCL	RBSL for Indoor Air Quality	RBSL for Aquatic Life Protection	RBSL for Ceiling Value (Taste and Odor)
TPH as Diesel - EPA 8015B	mg/L	<0.1		<0.189	<0.169	NA	NA	0.64	0.1
TPH as Gasoline - EPA 8015B	mg/L	<0.1	<0.1	<0.1		NA	NA	0.50	0.1
Purgeable Aromatics - EPA 8260B									
Benzene	μg/L	<1	<1	· <1	<1	1	84	46	170
Toluene	μg/L	<1	<1	<1	<1	150	76,000	130	40
Ethylbenzene	μg/L	<1	<1	<1	<1	700	170,000	290	30
Xylenes	μg/L	<1	<1	<1	<1	1,750	150,000	13	20
Methyl tert-Butyl Ether - EPA 8260B	μg/L	<1	2.2	<1	<1	5	50,000	8,000	5
Volatile Organic Compounds - EPA 8260B	μg/L	, ND	ND	ND	ND	NA	NA	NA	NA

NOTES

Results reported in mg/L (parts per million) or ug/L (parts per billion) as indicated

<: Not detected at or above the indicated laboratory method reporting limit

ND: Not detected at or above laboratory method reporting limit; limits vary with compound

--: Not analyzed

NA: Not applicable

MCL: Maximum Contaminant Level, primary drinking water standard

RBSL: Risk Based Screening Levels for groundwater; groundwater is considered to be a potential drinking water source

TABLE 3

Dry Cleaner Area Groundwater Analytical Results Bridgeside Shopping Center Alameda, California

Analyte	Units	GP-4	GP-5	GP-6	GP-14	GP-15	GP-17	MCL	RBSL for Indoor Air Quality		RBSL for Ceiling Value (Taste and Odor)
Volatile Organic Compounds - EPA 8260B							ļ			-	50,000
cis-1,2-DCE	μg/L	<1	98	<1	510	270	<2	6	.11,000	590	50,000
Tetrachloroethene	μg/L	<1	<5	<1	<10	<10	1.7	5	170	120	170
Trichloroethene	μg/L	<2	<5	<2	<21	37	<1	5	750	360	310
Other VOCs	μg/L μg/L	ND	ND	ND	ND	ND	ND	NA	NA	NA	ΝA

NOTES

Results reported in mg/L (parts per million) or ug/L (parts per billion) as indicated

<: Not detected at or above the indicated laboratory method reporting limit

ND: Not detected at or above laboratory method reporting limit; limits vary with compound

--: Not analyzed

NA: Not applicable

MCL: Maximum Contaminant Level, primary drinking water standard

RBSL: Risk Based Screening Levels for groundwater; groundwater is considered to be a potential drinking water source

TABLE 5 Former UST Area Groundwater Analytical Results Bridgeside Shopping Center Alameda, California

Analyte	Units	MW-1	MW-2	MW-3	GP-7	GP-8	GP-9	GP-10	GP-11	GP-12	GP-13	MCL	RBSL for Indoor Air Quality	RBSL for Aquatic Life Protection	RBSL for Ceiling Value (Taste and Odor)
TPH as Diesel - EPA 8015B	mg/L	<0.1	<0.1	<0.1	<0.2	-	<0.45	<0.2	<0.143			NA	NA	0.64	0.1
TPH as Gasoline - EPA 8015B	mg/L	<0.1	<0.1	<0.1	0.323	-	3.13	1.47	<0.1	<0.1	<0.1	NA	NA	0.50	0.1
Purgeable Aromatics - EPA 8260B															
Benzene	μg/L	<1	<1	<1	<1	1	7.3	2.2	<1	<1	<1_	1	84	46	170
Toluene	μg/L	<i< td=""><td><1</td><td><1</td><td>3.4</td><td></td><td><5</td><td><1</td><td><1</td><td><1</td><td><1</td><td>150</td><td>76,000</td><td>130</td><td>40</td></i<>	<1	<1	3.4		<5	<1	<1	<1	<1	150	76,000	130	40
Ethylbenzene	μg/L	<1	<i< td=""><td><1</td><td>1.8</td><td></td><td>45</td><td>8.8</td><td><1</td><td><1</td><td><1</td><td>700</td><td>170,000</td><td>290</td><td>30</td></i<>	<1	1.8		45	8.8	<1	<1	<1	700	170,000	290	30
Xylenes	μg/L	<1	<1	<1	2.2	-	6.5	1.5	<1	<1	<1	1,750	150,000	13	20
Methyl tert-Butyl Ether - EPA 8260B	μg/L	<1	<1	<1	<1		<1	<1	<1	<1	<1	5	50,000	8,000	5
Volatile Organic Compounds - EPA 8260															
1,3,5-Trimethylbenzene	μg/L	_		_			7.5	-	-	_		NA	NA	NA	NA
Isopropylbenzene	μg/L	_					9.4					NA	NA	NA	NA
Naphthalene	μg/L	-	-	-		_	57	-			_	NA	9,200	24	21
n-Propylbenzene	μg/L	-	_				17		-			NA	NA	NA	NA
Other VOCs	μg/L		_		_		ND		-			NA	NA	NA	NA

NOTES

Results reported in µg/L (parts per billion) or ug/L (parts per billion) as indicated

<: Not detected at or above the indicated laboratory method reporting limit

ND: Not detected at or above laboratory method reporting limit; limits vary with compound

--: Not analyzed (no groundwater sample collected at GP-8)

NA: Not applicable

MCL: Maximum Contaminant Level, primary drinking water standard

RBSL: Risk Based Screening Levels for groundwater; groundwater is considered to be a potential drinking water source

northgate environmental

3629 Grand Ave Oakland CA 94610 Telephone: (510) 839 0688

BORING NUMBER GP-1 PAGE 1 OF 1

ROJE	ECT NAM	/IE <u>Bi</u>	ridgesi	de			
ROJE	CT NUM	MBER	1057	.05_		PROJECT LOCATION Alamed	
ATE	STARTE	D <u>6/</u>	5/03		COMPLETED 6/5/03	GROUND ELEVATION	HOLE SIZE 3"
RILL	NG CON	ITRAC	TOR	-	AGENCY		
OGG	ED BY _	<u>DML</u>			CHECKED BY		
URF	ACE COI	NDITIO	NS _	VC		AFTER DRILLING	
	Й						
E. E.	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	
_		ļ			AC paving		
					Base Rock		
1 -	T	1			Silt, black, dry to damp		
2					strong vegetation odor		
	11	ML					
3 -				3,5			
4	- 	 		<u> </u>	Silty Clay, mottled grey and brown,		
					dry .		
5 _					Becoming damp @ 7'	•	
6					greenish grey in color no odor		
Ĭ					Same, grey brown in color		
7		CL			Same, grey brown in color		
8							
٠	1	1					
9 _					·		•
10				10.0	grading to Clayey Sand @ 11'		
11				1			
		sc			•		
12		-				•	
13 _				13.0	·		
		[-			same	•	
14 _				}	Silty Sand, brown		
15 _		SM]	saturated, no odor	•	
,, _							
16	\coprod	<u> </u>		16.0		Bottom of hole at 16.0 feet.	
					•	bottom of note at 16.0 feet.	• •
							ATTACHMENT 5

BORING NUMBER GP-2 northgate 3629 Grand Ave Oakland CA 94610 PAGE 1 OF 1 environmental Telephone: (510) 839 0688 management, inc. Fax: (510) 839 4350 BORING LOCATION Parking lot near Ride Aid PROJECT NAME Bridgeside PROJECT LOCATION Alameda, CA PROJECT NUMBER 1057.05 GROUND ELEVATION HOLE SIZE 3" COMPLETED 6/5/03 DATE STARTED 6/5/03 AGENCY _____ **GROUND WATER LEVELS:** DRILLING CONTRACTOR ___ AT TIME OF DRILLING _---DRILLING METHOD Geoprobe CHECKED BY _____ AT END OF DRILLING _--LOGGED BY DML AFTER DRILLING _--SURFACE CONDITIONS AC SAMPLE TYPE NUMBER GRAPHIC LOG DEPTH (ft) MATERIAL DESCRIPTION AC paving 7:15 A.M. start 1 Drill direct push to 16' insert slotted PVC to 10' 2 3 5 6 7 8 9 10 11 12 GENERAL NORTHUATE 1057.05 BRIDGESIDE.GPJ GINT US.GDT 7/18/03 13 14 15 16 Bottom of hole at 16.0 feet.

northgate environmental

3629 Grand Ave Oakland CA 94610 Telephone: (510) 839 0688

BORING NUMBER GP-3 PAGE 1 OF 1

O.IF	CT NU		ridges 1057				PROJECT LOCATI	N Parking lot south ON Alameda, CA		
	START				COMPLETED 6/	5/03		ON	HOLE SIZE 3"	
					AGENCY					
				orobe			4.7.7.1.6.0.7	DRILLING		
					CHECKED BY		AT END OF	ORILLING		
RFA	CE CC	NDITIO	ONS _	AC			AFTER DRIL	LING		
T	101	Τ								
	SAMPLE TYPE NUMBER	ျပ္								•
€	Œ.	GRAPHIC					MATERIAL DESCRI	PTION		
	AMP N	g						· .		
	ν)							,		
	H			AC paving						
+	 	╣.	1.0	direct push insert slotted l	· · · · · · · · · · · · · · · · · · ·					
				insert slotted l	PVC					
]				for water sam	ple					
4				no soil sample	es		* *			
										•
1										
\downarrow									*.	
			ĺ							
1					•					
4										,
						•			-	
'										
)						-				
	11									
۲'	Ш	1								
ı									•	
.		ŀ						•		
2 -	Ш									
3 📗					×	•				
	11							•		
4 -					•					
5]	Ш	-								
							•			
6 +	Ш	 -	16.0				Bottom of hole at	16.0 feet.		
l								•		
I		1	1							

DATE STAR' DRILLING CO DRILLING M LOGGED BY SURFACE C (1) 1 2 3 4 5 6 7	NUMBER NUMBER DIVOS	G/5. FRACTION ML DITION O'O'O'O' A	/03 TOR Geoprobe	AC paving Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand no odor	GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	HOLE SIZE 3"
DATE STAR DRILLING CONTINUES BY SURFACE BY SURFACE CONTINUES BY SURFACE BY S	NUMBER NUMBER DIVOS	G/5. FRACTION ML DITION O'O'O'O' A	/03 TOR Geoprobe	AC paving Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand	GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING	
DRILLING M LOGGED BY SURFACE C HLdad 1 2 3 4 5 6 7 6 7 6 7 8 9 10 11 1	NUMBER ON THE MET NUMBER	U.S.C.S.	Geoprobe	AC paving Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand	AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING	
LOGGED BY SURFACE C HLGH (#) 1 2 3 4 5 6 7 8 9 10 11	NUMBER CONI	ML C.S.C.S.	NS	AC paving Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand	AT END OF DRILLING AFTER DRILLING	
SURFACE C HLGEC HLGE HLGEC HLGE HLGEC HLGE HLGEC HLGE HLGEC HLGE HLGEC HLGEC HLGEC HLGEC HLGEC HLGEC HLGE HLGE HLGEC HLGEC HLGE HLGEC HLGE HLGE HLGE HLGE HLGE HLGE HLGE HLGE	NUMBER	U.S.C.S.	NS	AC paving Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand	AFTER DRILLING	
SURFACE C HLGEC HLGE HLGEC HLGE HLGEC HLGE HLGEC HLGE HLGEC HLGE HLGEC HLGEC HLGEC HLGEC HLGEC HLGEC HLGE HLGE HLGEC HLGEC HLGE HLGEC HLGE HLGE HLGE HLGE HLGE HLGE HLGE HLGE	NUMBER	U.S.C.S.	NS	AC paving Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand	AFTER DRILLING	
1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 3 - 3 - 9 - 10 - 11 - 11 - 11 - 11 - 11 - 11			GRAPHIC	Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand	MATERIAL DESCRIPTION	
1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 3 - 3 - 9 - 10 - 11 - 11 - 11 - 11 - 11 - 11			GRAPHI	Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand	MATERIAL DESCRIPTION	
1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 3 - 3 - 9 - 10 - 11 - 11 - 11 - 11 - 11 - 11			GRA	Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand		
1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 3 - 3 - 9 - 10 - 11 - 11 - 11 - 11 - 11 - 11				Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand		
3 -4 -5 -6 -7 - GP 8 -9 -10 -11 -	3P4-7			Fill mixed sand clay (dark brown) angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand		
3 -4 -5 -6 -7 - GP 8 -9 -10 -11 -	3P4-7			angular gravelly sand dry damp Sandy Clay (CL) dark brown damp, medium grained sand		
4 5 - 6 - 7	3P4-7			damp, medium grained sand		
5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	3P4-7					
6 - GP GP 8 - 10 - 11 - 11 - 11 - 11 - 11 - 11 -	3P4-7					
6 - GP GP 8 - 10 - 11 - 11 - 11 - 11 - 11 - 11 -	3P4-7					
7	3P4-7	<u> </u>				
9 10 11 1	3P4-7					
9 10 11 1	3P4-7	۱				
9 10 11 1		CL	(////			
9 10 11 1						•
10					•	
11						
_ 11 _				casing stuck inside campler		
				casing stuck inside sampler no recovery		
						•
L 12				possible slough		
.] 111				clayey sand, light grey brown,		
13				moist		
<u> </u> '			13.5			
14	ļ			Silty sand, greenish brown fine-medium grained		
				wet, no odor		
15		SM				
16	ļ		16.0		•	
} '° 			1.1.1.10.0		Bottom of hole at 16.0 feet.	
		!			•	
13 14 15 16						
3	Į.					•
<u>{</u>						
			1 1			•

ROJECT NUM ATE STARTI RILLING CO RILLING ME DGGED BY	MBER D 6/5				BORING LOCATION West side, Dry Cleaner			
ATE STARTI RILLING CO RILLING ME DGGED BY	D 6/5	1057.						
RILLING CO RILLING ME OGGED BY		5/03		COMPLETED 6/5/03	GROUND ELEVATION	HOLE SIZE 3"		
RILLING ME	NTRAC	TOR _		AGENCY	GROUND WATER LEVELS:			
	THOD	Geopi	obe		AT TIME OF DRILLING _	<u></u>		
JRFACE CO	DML			CHECKED BY	AT END OF DRILLING			
	NDITIC	NS _C	oncret	e sidewall	AFTER DRILLING			
SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			
1				Concrete Base Rock Silt, yellow-brownish black streaks y, moist, no odor				
3	ML.			Y, HOIST, HO OUGH				
4			4.0	Silty Clay, black, moist				
5				organic (vegetation) odor				
GP5	CL							
6 -					•			
7] .			7.0					
8				Silty Clay, grey brown damp, to moist				
9 -								
10	CL			-				
6P5	1							
11 -								
12			12.0					
13	00			grading to clayey sand, grading to green, increasing sand	w/ depth			
⁻	sc					•		
14 -		1//	14.0	Silty Sand, brown, saturated				
15 _	SM							
16			16.0					
7					Bottom of hole at 16.0 fee	et.		
				•		•		
						,		

} ;

BORING NUMBER GP-6 northgate 3629 Grand Ave Oakland CA 94610 environmental Telephone: (510) 839 0688 management, inc. Fax: (510) 839 4350 BORING LOCATION Behind cleaner, to west of sewer manhole PROJECT NAME Bridgeside PROJECT LOCATION Alameda, CA PROJECT NUMBER 1057.05 GROUND ELEVATION _ HOLE SIZE 3" COMPLETED 6/5/03 DATE STARTED 6/5/03 **GROUND WATER LEVELS:** DRILLING CONTRACTOR ___ AGENCY ___ AT TIME OF DRILLING ---DRILLING METHOD Geoprobe CHECKED BY _____ AT END OF DRILLING _---LOGGED BY DML SURFACE CONDITIONS Concrete AFTER DRILLING _---SAMPLE TYPE NUMBER U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION Concrete Sidewall Base Rock Silty Clay, grey-brown, damp, no odor 2 3 Silty Clay, grey-brown damp to moist 6 P6-7 Grades of dounward to Sandy Clay 9 to Clayed Sand, grey-brown moist 10 SC P6-11.5 12 SENERAL NORT: ... TE 1057.05 BRIDGESIDE.GPJ GINT US.GDT 7/18/03 13 Silty Sand w/ trace clay binder 14 saturated 15 16 Bottom of hole at 16.0 feet.

northgate **BORING NUMBER GP-7** 3629 Grand Ave Oakland CA 94610 environmental PAGE 1 OF 1 Telephone: (510) 839 0688 management, inc. Fax: (510) 839 4350 PROJECT NAME Bridgeside BORING LOCATION At grocery store PROJECT LOCATION Alameda, CA PROJECT NUMBER 1057.05 GROUND ELEVATION _____ HOLE SIZE _3* DATE STARTED 6/5/03 COMPLETED 6/5/03 **GROUND WATER LEVELS:** AGENCY _____ DRILLING CONTRACTOR ___ DRILLING METHOD Geoprobe LOGGED BY DML CHECKED BY _____ AT END OF DRILLING ---AFTER DRILLING ___ SURFACE CONDITIONS AC SAMPLE TYPE NUMBER U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION AC paving, Base Rock 1 Clayey Silt, black, damp hydorcarbon odor 2 3 Sandy Clay (CL) green-blue/grey, damp, hyrocarbon odor 5 mixed with layers of sand, medium grained, blue-green hydrocarbon odor P7-7.5 8 9

Bottom of hole at 16.0 feet.

10

11

12

13

14

15

16

....TE 1057.05 BRIDGESIDE.GPJ GINT US.GDT 7/18/03

GENERAL NORTI.

P7-11 5_{ML}

ŞM

Clayed Sand, brown

medium grained sand,

slight hydrocarbon odor, damp

Silty Sand, medium grained, brown wet, slight hydrocarbon odor, water @ 13'

dgeside 1057.05 /03	PROJECT LOCATION Alameds GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	a, CA
1057.05 //03 COMPLETED 6/5/03 TOR AGENCY Geoprobe CHECKED BY NS AC AC paving Base Rock	GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING	HOLE SIZE 3"
COMPLETED 6/5/03 TOR AGENCY Geoprobe CHECKED BY NS AC AC paving Base Rock	GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	
Geoprobe CHECKED BY OHAC OHAC AC paving Base Rock	AT TIME OF DRILLING AT END OF DRILLING	***************************************
CHECKED BY OF AC AC paving Base Rock	AT END OF DRILLING	***************************************
AC paving Base Rock	AFTER DRILLING	
AC paving Base Rock		
AC paving Base Rock	MATERIAL DESCRIPTION	
Base Rock		
Claved Silt. black. damn.		
moderate organic (vegetation) odor		
Sandy Clay w/ layers of clayey sand (damp to moist, possible slight hydroca	(SC), light grey brown, arbon odor	
Same to 12' damp, to moist, no hydrocarbon odor		
	Bottom of hole at 12.0 feet.	

northgate environmental

3629 Grand Ave mental Oakland CA 94610
Telephone: (510) 839 0688
Telephone: (510) 839 4350

BORING NUMBER GP-9 PAGE 1 OF 1

No.		iidi.	lay	CIIIC	SIIL, IIIC. Fax. (510) 659 4554					
PROJ	ECT NAM	1E <u>B</u>	<u>idgesi</u>	de	-					
PROJECT NUMBER 1057.05						PROJECT LOCATION _Alameda, (
4	STARTE					•	HOLE SIZE _	3"		
DRILLING CONTRACTOR AGENCY						_ GROUND WATER LEVELS:		·		
DRILLING METHOD Geoprobe						AT TIME OF DRILLING		 		
LOGGED BY DML CHECKED BY						AT END OF DRILLING				
SURFACE CONDITIONS AC										
ОЕРТН (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		·	MATERIAL DESCRIPTION		·		
					Concrete Base Rock			,		
2 _		ML			Clayey Silt, black, damp, slight hydrocarbon odor					
3 _				3.0	grading to Silty Clay, black	_				
4 -					same, becoming dark green-black @ hydrocarbon odor) 5'				
. 5 _										
- 6 -		CL								
7 -	P9-7	5								
- ⁸ -										
_ 10 _				<u> 10.0</u>	Silty Clay, Clayey Sand					
11 -					green, damp to moist, hydrocarbon odor					
12 -	P9-11	5SC			•		i			
13 -	<u> </u>			13.0	Sand with silt, green, grading to brow	vn w/ depth		-		
14			1		saturated, hydrocarbon odor					
15		SM								
	111									
16	Ш			16.0		Bottom of hole at 16.0 feet.				
					•					

northgate environmental management, inc. 3629 Grand Ave Oakland CA 94610 Telephone: (510) 839 0688 Fax: (510) 839 4350

BORING NUMBER GP-10

PAGE 1 OF 1

No. of Lot			_	<i></i>					
PROJE	ECT NAM	IE Br	idgesi	de	BORING LOCATION At grocery corner, sidewall				
PROJE	CT NUM	IBER	1057	.05	PROJECT LOCATION Alameda, CA				
DATE	STARTE	D <u>6/</u> 9	5/03	COMPLETED 6/5/03					
DRILL	ING CON	ITRAC	TOR	AGENCY	GROUND WATER LEVELS: $\underline{\nabla}$ AT TIME OF DRILLING 13.0 ft				
DRILL	ING MET	HOD	Geop	probe					
				CHECKED BY					
					AFTER DRILLING				
301(17		1							
	w a.]	4.						
l Œ _ Ì	Ä₹	S	وێ		MATERIAL DESCRIPTION				
DEPTH (ft)	A M	U.S.C.S.	GRAPHIC LOG		WATERIAL DESCRIPTION				
L	SAMPLE TYPE NUMBER	>	ত		•				
	- O	ļ		A					
				Asphalt Base Rock					
- 1 -				Clayey Silt, black, damp,					
				slight hydrocarbon odor					
- 2 -				to 4'					
3 _		MH							
L 4 _	Ш	L		4.0					
				Silty Clay, green, w/ brown, mottel hydrocarbon odor	ing damp,				
5 -				.,,					
١.									
- 6 -									
7									
├ ' -									
L 8 _	P10-	7]5							
		CL		Silty Clay (CL) to Sandy Caly (SC green damp,	'h				
9 -	<u> </u>			hydrocarbon odor					
١.,		ŀ							
10.	1]]								
11		1							
上 `` `	111								
12	P10-1].5							
3		ł							
€ 13 .	411	 	-////	13.0 \(\frac{\nabla}{\text{Silty Sand, greenish-brown,}}\)					
<u> </u>				. medium grained,					
14				saturated, hydrocarbon odor					
15		SM		7					
닭 '	111								
j 2 16				16.0					
					Bottom of hole at 16.0 feet.				
55									
Ş.									
NATE I									
뛽									
Ŏ.									
NERAL NORTHGATE 105/ 05 BRIDGESIDE GET JOHN US. CD. 7/1803	1			1	•				
ži	i	1							

northgate **BORING NUMBER GP-11** 3629 Grand Ave Oakland CA 94610 environmental PAGE 1 OF 1 Telephone: (510) 839 0688 management, inc. Fax: (510) 839 4350 BORING LOCATION In delivery ramp behind grocery, 60' west of bldg edge PROJECT NAME Bridgeside PROJECT LOCATION Alameda, CA PROJECT NUMBER 1057.05 GROUND ELEVATION HOLE SIZE 3" COMPLETED 6/5/03 DATE STARTED 6/5/03 AGENCY _____ **GROUND WATER LEVELS:** DRILLING CONTRACTOR _____ AT TIME OF DRILLING ____ DRILLING METHOD _Geoprobe CHECKED BY _____ AT END OF DRILLING _--LOGGED BY DML SURFACE CONDITIONS Concrete AFTER DRILLING _--SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. MATERIAL DESCRIPTION Concrete, Base Rock Silty Clay, black, grading downward to grey, 2 no odor 3 Sandy Clay, grey/brown mottled, 5 damp, no odor 6 7 8 9 10 11 12 Bottom of hole at 12.0 feet. GENERAL NORTHUATE 1057,05 BRIDGESIDE.GPJ GINT US.GDT 7/18/03

northgate environmental management, inc. 3629 Grand Ave Oakland CA 94610 Telephone: (510) 839 0688 Fax: (510) 839 4350

BORING NUMBER GP-12 PAGE 1 OF 1

4			. •		•	. •	
PROJ	ECT NAM	1E _B	ridges.	ide		BORING LOCATION Inside grocery	store - south corner
PROJ	ECT NUN	IBER	1057	.05		PROJECT LOCATION Alameda, CA	
DATE	STARTE	D			COMPLETED	_ GROUND ELEVATION	HOLE SIZE 3"
DRILL	ING CON	ITRA(CTOR	ECA	AGENCY	_ GROUND WATER LEVELS:	•
ī	ING MET					AT TIME OF BOILING	
1					CHECKED BY		
	ACE CO						
		· · · · ·	, <u></u>	1			
	SAMPLE TYPE NUMBER						
Ħ,	<u>`</u> ``₩	S.S.	볽			MATERIAL PROPRIETION	
DEPTH (ft)	P.E.	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	
	NAN	ر	ဗ				
	0,		ļ	ļ. <u></u>	D'		
					Direct push to 6' very hard layer @ 4'		
- 1 -					difficult to push through		
2							
- * -			ļ				
3		ļ	i				•
		1					•
4]				•	
					÷		
- 5 -						·	
6							
 		į	tana t		Silty Clay, mix of green & black,	•	
7 _		CL			damp, no odor		
]				•	
8 -	P12-7	5	para 1		Direct such to 10!		
					Direct push to 10'		
- 9 -							
_ 10 _				10.0			
`` -	П	 			Silty Sand, fine grained, brown grad	ing to green, damp, no odor	
_ 11 _		SM					
	Ш						•
- 12 -	P12-1	1.5			Direct push to 16'		
13					Direct pasit to 10	·	
					•		•
14 _					•		
14 _							
16 _		<u> </u>	 	16.0		Bottom of hole at 16.0 feet.	
				'		pottom of note at 10.0 feet.	
5							•
3							
<u> </u>							
5							
\$							
99				[
				_			•
ŭΙ	ŀ	1	1				

<u>_</u> e	nvi		mental Ca	29 Grand Ave kland CA 94610 lephone: (510) 83 x: (510) 839 4350	39 0688)		· E	BORING	I CIVID FI	PAGE 1 OF
ROJECT NAM	E Br	idgesid	e		_ BORING LO	CATION _I	nside sou	th comer of gr	ocery store	
ROJECT NUM	BER	1057.0	05		PROJECT					
				TED				HOLE	SIZE 3"	
RILLING CON	TRAC	TOR _	ECA AGENCY							
			CHECKE		_					
URFACE CON	DITIO	NS C	oncrete		AFTE	R DRILLING	<u> </u>			
SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIA	L DESCRIP	TION			
		-	Direct push to 6'		. 401	·				· · · · · · · · · · · · · · · · · · ·
1 .			rejected @ 3-4' firs	it try, moved away	/ ~ 10°			•		
										•
² -							•			
3	i									
.										
4 -								·		
5]										
6								•		•
7	SM		Silty Clay,light greed dry to damp, hydro	en w/ two black zo carbon odor @ 8'	ones (2" thick)	·				
8 P13-7	5	1222222	Direct push to 10'	·	•					
9			•							
1										
•										
1								-		
	SM .5		Silty Clay, mix of g	reen & brown, da	mp, no odor			· ·		
12 P13-1	J.3 		Direct push to 16' collected water sa						٠	
13]			collected water sai	mples				•		
				•				•		
14 -									•	
15										
]									•	
16			16.0		Bottom	of hole at 1	6.0 feet.			
								٠.		•
1	!	ı i						•		

northgate environmental management, inc: 3629 Grand Ave Oakland CA 94610 Telephone: (510) 839 0688 Fax: (510) 839 4350

BORING NUMBER GP-14

PAGE 1 OF 1

PROJECT N	AME B	ridaesia	de	BORING LOCATION Inside rear, dr	y cleaner
PROJECT N				PROJECT LOCATION Alameda CA	
DATE STAR				GROUND ELEVATION	HOLE SIZE 3"
DRILLING C				GROUND WATER LEVELS:	
DRILLING N				AT TIME OF DRILLING	
LOGGED B	OWL Y		CHECKED BY	AT END OF DRILLING	
SURFACE C	оирітіс	омs <u>т</u>	ile floor	AFTER DRILLING	
111					
DEPTH (ft) SAMPLE TYPE	ن ا	ဋ			
OEPTH (ft) APLE TY	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
D dwy		R.			•
VS.					
	,		Direct push to 3'		
_ 1 _				•	
2					
3			Olly areas doubt down @ 5!		•
			Silt, green, dry to damp @ 5'	•	•
- 4 -	ML				
5 P1	4-4 5				
			Silt, black, slight vegetation odd	or, damp	
6 -	ŀ		Direct Push to 5-8'		
7			•		
 	'				
8			O'A Olay Kabu wa an day to do	ama na adar	
	14.05		Silty Clay, light green, dry to da	imp, no ouoi	•
9 - 7	14-8 5 _{CL}		grading to		
10					
			Silty/ Clayey Sand, fine grained	I grey-brown, moist no odor	
11			Hydropunch to 16'	·	
12	İ			•	
<u> </u>		ŀ			
_ 13 _					
14					
15					
"					
16		 -	16.0	Bottom of hole at 16.0 feet.	
				Dottom of hala at rais .aast	
				•	
					•
ži	- 1	1	1		

BORING NUMBER GP-15 northgate 3629 Grand Ave Oakland CA 94610 PAGE 1 OF 1 environmental Telephone: (510) 839 0688 management, inc. Fax: (510) 839 4350 BORING LOCATION Rear, dry cleaner PROJECT NAME Bridgeside PROJECT LOCATION Alameda, CA PROJECT NUMBER _1057.05 GROUND ELEVATION HOLE SIZE 3" COMPLETED 7/7/03 DATE STARTED 7/7/03 GROUND WATER LEVELS: AGENCY _____ DRILLING CONTRACTOR ECA □ AT TIME OF DRILLING 8.9 ft DRILLING METHOD Direct Push AT END OF DRILLING _--CHECKED BY LOGGED BY THB AFTER DRILLING ____ SURFACE CONDITIONS _ SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION Concrete, Base Rock Gravelly silt (ML) greyish brown, dry, gravel up to 1/2" diameter, possible slough in 1-2' portion of sample interval 6P15-2 ML 3 Clay (CL-CH) v. dark greyish brown (10y r3/2) moist, soft, medium plasticity P15-3,5 color changes to black, same as above SP15-6 7 8 ∇ 9 10 11 Direct push to 16' 12 SENERAL NORTH TE 1057,05 BRIDGESIDE.GPJ GINT US.GDT 7/18/03 13 14 15 16 Bottom of hole at 16.0 feet.

northgate environmental

3629 Grand Ave Oakland CA 94610 Telephone: (510) 839 0688

BORING NUMBER GP-16 PAGE 1 OF 1

	ECT NAM						Inside, rear of Dry Clea	ener
	ECT NUM						N Alameda, CA	LE DIZE ON
							N HO	LE SIZE 3"
				ECA			rilling	
					CHECKED BY		RILLING	
					CHECKED BY		ING	
יואטנ								
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCR	RIPTION	
				C	oncrete, ase Rock			•
1 _	P16-1	ML 5		G dr 2.0 no	ravelly silt (ML) dark greyish browr y to damp, fine gravel to 1/4" diam	ı, eter, slough		
3]		CL- ML		i Si	ity Clay (CL) black, ight moist, medium stiff, no odor			
5				4.5 - G	rades to Clay (CL) black (10yr 2/1)	moist, soft, medium plas	sticity, slight organic odo	<u>r</u>
э <u> </u>	3P16-	CL		5.5				
					•	Bottom of hole a	at 5.5 feet.	
			i					
!								
								· .
						•		
							,	

northgate environmental

3629 Grand Ave Oakland CA 94610 Telephone: (510) 839 0688

BORING NUMBER GP-17 PAGE 1 OF 1

PROJE	CT NAM	E Br	<u>idgesi</u>	de				211
PROJE	CT NUM	BER	1057	.05	The state of the s	PROJECT LOCATION Alame		
DATE	STARTE	D <u>7/7</u>	7/03		COMPLETED 7/7/03		HOLE SIZE	3"
	NG CON							
	ING MET					_ AT TIME OF DRILLING		
					CHECKED BY			
SURFA	ACE CON	DITIC	NS _C	oncret	<u>e </u>	AFTER DRILLING		
	<u>я</u>					,		
DEPTH (#)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		
	MPL	U.S	GRA L				•	
	SA							
					Concrete, Base Rock (medium brown sand)			
. 1 🚽	SP17-		 	1	Gravelly silt (ML) greyish brown,			
2	P17-1	5			dry		. · · ·	
	6P17-	ML						
_ 3 _	P17-2	.5				•		
4		-		3.5	Silt (ML) brown, dry,			
- ~ -	Ш	ML.	Ш	4.5	grades to Clay (CL) black, soft to medium stiff, med plasticity, r	<u> </u>		<u></u>
5 _	6P17-	 						
6	pt 17-	ľ			·			
7 -								
8 _								
	1					÷		•
- 9 -				Ž	2			
10 _								
	1							
- 11 -	-							
12 _								*
г -	1							
13 -								۲.
14 _						,		
├ [']								
15 -					Direct push to 16'			
4.5				16.0		•		
16 -	1		1-	16.0		Bottom of hole at 16.0 fee	et.	
_ 13 _ _ 14 _ _ 15 _ _ 16 _								•
1	1	1	1		•			

DRILL RIO HOHOW Stem Auger	SURFACE	ELEVATION			100	GEDB	y Ki	
DEPTH TO GROUNDWATER 61 feet	BORING D	IAMETER	_8_lo	ches	DAT	E DAIL	LED 4/1	3/88
DESCRIPTION AND CLASSIFIC	CATION			DEPTH	A LO	E 5	1 L	SSING
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	(7887)	SAMPLER PERETABLION	SEC Overa	CONTENT;	COMCOMA COMPAGN STARM
2" A.C., 4" Baserock SAND((Ine-medium grained), silty, some clay, gravelly (FILL)	dark- brown black	medium dense- dense	SM	- 1 - 2 - 2	83/	9		
CLAY, silty, trace of sand(fine grained)	dark brown black	stiff	CL	- 3 -				
SAND(line-medium grained), silty, some clay	grey- brown	loose- medium dense	SM	- 5 - 6 - 7	1:	2 -5	7	
(grading less clay)				- 8 -	18			
SAND(fine-medium grained), some silt, moist	grey- brown	medium dense	SM	11 -				
				14	28		_	
Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 131 feet at time of drilling. Four hours after drilling, the groundwater level was measured at 61 feet.				16 - 17 - 18 - 19 -				
		EXPL	ORA	TORY	BORI	NG L	.OG	
Kaldveer Associates Geoscience Consultants	1	AN BETA		DUNDW. da, Ca			ИМИТ	MOITA
A California Corporation		JECT NO.	T	DATE				

PROJECT NO.	DATE	BORING
KE998-1B	June 1988	NO

DAILE AND THOMAS OF THE TOTAL	SUMMAGE	CLE + A + 1011			10000	UBT	15.1	
DEPTH TO GROUNDWATER 6 [88]	BORING DI	AMETER	. 8	inches	DATE	PILLED	4/1	3/88
DESCRIPTION AND CLASSIFIC	CATION			DEРТН	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5:	1 Kg	2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	15661)	SAUPLER PEHETRATION ACSISTANCE INCOMS/FT	WATER CONTENT IT.	ORY DEUSIT	100 mg 10
2" A.C., 4" Base SAND(fine-coarse grained), silty, gravelly (FILL) 4	brown	medium dense	SM					
CLAY, silty, sandy(line grained), trace of gravel	dark brown black	very stiff	CL	3 -	22			
CLAY, silty, sandy(line grained)	grey- brown	still	CL	- 6 - 7	13	-∇-		
SAND(fine-medium grained), some silt, moist	grey- browi:	still	SM	- 8 - - 9 -				
(occasional clay lenses)		٠		- 10	20			
			-	- 13 -	47		·	
Bottom of Boring = 151 Feet Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 11 feet at time of drilling. Three hours after drilling, the groundwater level was measured at 6 feet.				- 16				
		EXPL	ORA	TORY I	BORIN	G LO	G	\dashv
Kaldveer Associates	ALPI	A BETA	GRO	UNDWV	TER C	ONTA	MINA	TION

Kaldveer Associates
Geoscience Consultants
A Coffornia Corporation

PROJECT NO.	DATE	BORING	
KE998-1B	June 1988	NO	2

DAILLANG Hollow Stem Auger	SURFACE	SURFACE ELEVATION				LOGGE	D BY	KF	
DEPTH TO GROUNDWATER 9 Feet	BORING DI	AMETER	8 1	nches		DATE D	RILLED	4/13	/88
DESCRIPTION AND CLASSIFIC	CATION			OEPTH	¥3,	TANCE SANCE SFF)	(E.)	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	(FEET)	N W W	PEHETRATION RESISTANCE URLOWS/FT)	WATER COMFERS	ORY DENSITY (PCF)	COMPANY STAR
4" A.C., 6" Base									†
SAND(fine-coarse grained), gravelly, silty, some clay (FILL) { CLAY, silty, sandy(fine-medium grained)	dark- brown black dark- brown black	medium dense firm- stiff	SM	- 1 - - 2 - - 3 - - 4 -		12			
CLAY, silty, sandy(fine-medium grained)	grey- brown	still	CL- SC	- 5 3 3		18	Ψ.		
SAND(fime-medium grained), silty, trace of clay, moist	grey- brown	medium- dense	SM	- 10 -		13			
Bottom of Boring = 12 Teet Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 12 feet at time of drilling. Two hours later groundwater level was water level was measured at 9 feet.				- 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 -					
				-20-]
		EXP	LOR	ATORY	′ B	ORIN	G LO	G	
Kaldveer Associate Geoscience Consultant	3	ΙΛ ΒΕΤΛ		OUNDW eda, C				VMINV	TION
A California Corporation	}	DUECT NO.		DATE			ORING		

PROJECT NO.	DATE	BORING	
KE998-1B	June 1988	NO	3

DRILL AND Hoflow Stem Auger	SURFACE E	LEVATION		-		LOGGE) BY	KF	
	BORING DI	AMETER	8 in	ches		DATE D	RILED	4/13.	/88
DESCRIPTION AND CLASSIFIC	ATION			V DEPTH	SAMPLER	PENETALFION AESISTANCE (84,0WS/FT)	16A Hf [*.1	ORY OEMSITY	45517E
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	(FEET)	ž	PENET AES1S (84,0%	WATER COMTENT	9 Y E	00
3" A.C., 6" Base									
CLAY, silty, sandy(fine-medium grained)	dark browing black	stiff	CL	2 -					
				- 3 -		12			
CLAY, silty, sandy(line-medium grained), moist	grey- brown	stiff	CL- SC	- 6 -					
				- 8		17	<u> </u>		
•				10			-		
SAND(fine-medium grained), some silt, moist-wet	grey- brown	medium- dense	SM	- 11 -		25			
Bottom of Boring = 12½ Feet Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 12 feet at time of drilling. Half hour later the groundwater level measured 9 feet.				- 13 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 -					

Kaldveer Associates Geoscience Consultants A Catilornia Corporation

EXPLORATORY BORING LOG

PROJECT NO.	OATE	BORING
KE998-1B	June 1988	МО

DAILL RIG Hollow Stem Auger	SURFACE	ELEVATION	6.66'	(note 4)	Logo	ED 8Y	KI	•
DEPTH TO GROUNDWATER 51 (see note 3)	BORING D	NAMETER	8 inc	ches	DATE	DRILLED	4/12	/88
DESCRIPTION AND CLASSIFIC	CATION			DEPTH	ACIO#	5.	251177 2	Save
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL	(FEET)	PENETRATION PENETRATION PESISTANCE	WATER	PAY OFF	COMPRE STAR STAR
5" A.C., 4" Base CLAY, silty, sandy((line grained)),	black-	stiff	CI.	- 1				
very slight petroleum odor.				2 -2	17			
				- 3 -			-	
CLAY, silty, sandy((ine grained)	grey- brown	very	CL	_ 4 _				
				-5 - - 6 -	25	- \$-		
				- 0 - 123 - 7 - 1				
SAND(line-medium grained), silty, trace of clay, moist	grey- brown	loose	5M	- 8 -				
		dense		- 9 -				
			-	- 10 - 1	7 11			
		medium		11 -				
		dense		13 -				
		dense- very	-	14 -				
		dense		- 15	74			
			}- -	16 -				
			-	17 -				
			-	19				
·			-	20	61	i.		
	1	EXP	LORA	TORY (3ORIN	GLO	 3	

Kaldveer Associates Geoscience Consultants A California Corporation

EXPLORATORY BORING LOG

PROJECT NO.	DATE	Monitoring	٦
KE998-1B	June 1988	Well 1	

DAILL NG HONOW STEM AUGUL	SOM ACE	ecevarion	0.00	(note)	1)	CONGE	UHY	K I	
DEPTH TO GROUNDWATER 5 (eet (note 3)	BORING DI	AMETER	8 inc	hes	\int	DATE D	NILLED	4/1	2/88
DESCRIPTION AND CLASSIFIC	CATION		-	DEPTH	LEA	TANCE S/FT.)	TER NT ("e.	EHSITY FI	FINED ESSIVE MGTH
DESCRIPTION AND REMARKS	COLOR	CONSIST.	SOIL TYPE	र्रिक्का	SAMPLEA	PENETRATION RESISTANCE (BLOWS/FT.)	WATER CONTENT	DRY DEHSITY [PCF]	UMCOMFINED COMPRESSIVE STRENGTH IKSFI
SAND(fine-medium grained), silty, trace of clay	grey- brown	dense- very dense	SM	- 21 -					
CLAY, silty, trace of sand(line-coarse grained)	green- grey	very stiff	CL-	- 22 - - 23 -				:	
				- 24					
Bottom of Boring = 24 Feet Notes: 1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 12 feet at time of drilling. Five hours later groundwater evel was measured at 5 feet. 1. Location of reference datum is explained in Appendix A and shown in figure 3.				- 25 26 27 28 29 30 31 32 33 35 36 37 - 38 39 - 39 -					
				-40					
		EXPL	ORAT	TORY 1	80	RING	LOG		

Kaldveer Associates Geoscience Consultants A Collionia Corporation

EXPLORATORY BORING LOG

PROJECT NO.	DATE	Monitoring	1
KE998-1B	June 1988	Well No. 1	

Oakland, California

PROJECT NO.	DATE	Linus
KE998-1B	Jui:e 1988	Figure NW-1

DRILL RIG. Hollow Stem Auger	SURFACE	ELEVATION	4.82'	(note 4)	LOGGE	•		
DEPTH TO GROUNDWATER 9' (note 3)	BORING	DIAMETER	8 inc	ches	DATE	PILLED	3/1	2/88
DESCRIPTION AND CLASSIFI	CATION		·	DEPTH IFEETI	PENETAATION AESISTAMCE (BLOWS/FT)	IER ENT (*.)	1. E	M SSIVE M SSIVE M SSIVE M SIVE
DESCRIPTION AND REMARKS	COLOR	CONSIST	SOIL TYPE	17 5 6 71	A(3.13	CONTENT	ORY DENSIT	0) *** 0) *** 0) ***
CLAY, silty, sandy(line grained)	dark brown black		CL	2 - 3 - 4 - 1	7			
CLAY, silty, sandy(line grained)	grey- brown	stiff	CL	- 5 7 8 7 10 - 10 -	12	Δ		
SAND((ine-medium grained)	grey- brown	dense	SM	- 12 - 13 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20	44 56			
	AID	EXP		ATORY				TION
Kaldveer Associate Geoscience Consultan ACalifornia Corporation	ls PI		Mame	DATE June 198	(ornla		rliig	2

DEPTH TO GROUNDWATER 9' (note 3)	BORING DI	AMETER	8 inc	hes		DA1E D	AILLED	4/12/	/88
DESCRIPTION AND CLASSIFIC	CATION		· · · · ·	DEPTH	SAMPLEA	PENETRATION RESISTANCE (BLOWS/FT)	TER ENT 1-11	ORY DEMSITY	HCONFINED MAPRESSIVE STRENGEN (437)
DESCRIPTION AND REMARKS	COLOR	CONSIST.	SOIL TYPE	(FţET)	3	PENET RESIS (BLOW	WATER CONTENT!	9 7 9 7 9	COMPRESSIVE STRENGTH (RSF)
SAND(fine-medium grained), some silt	grey- brown	dense	SM	21 -					
CLAY, silty, trace of sand and gravel	green- grey	very stiff	CL	22 -					
	·			- 23 -					
				24					
				- 25					
Bottom of Boring = 25 Feet Notes:				_ 26 _	į				
1. The stratification lines represent the approximate boundaries between soil types and the transi-	·			- 27 - - 28 -					
tion may be gradual. 2. For an explanation of penetration resistance values, see				- 29 -					
Appendix A. 3. The groundwater level was measured at 111 feet at time of				30 -					
drilling. Twenty-four hours after drilling groundwater level was measured at 9 feet.			}	- 31 -					
 Location of reference datum is explained in Appendix A and shown on Figure 3. 			· [- 33 -				-	
		·	-	34					
			-	- 35 -					
				36 -					
			-	38					
				39 -		-			
			}-	-40					
		EXPL	ORA:	TORY E	30	RING	LOG		

Kaldveer Associates Geoscience Consultants A California Corporation

PROJECT NO.	DATE	Monitoring
KE998-1B	June 1988	Well No. 2

DAILL AND Hollow Stem Auger	SURFACE	ELEVATION	4.87	(note 4)	LOGG	ED BY	KF	
DEPTH TO GROUNDWATER6 (Hote 3)	BORING DI	AMETER	. 8 ti:	ches	 	DRILLED	4/13	788
DESCRIPTION AND CLASSIFI	CATION				- PAE	:	T :	\$ ¥ ;
DESCRIPTION AND REMARKS	COLOA	CONSIST	SOIL	DEPTH	PENETRATION ASSISTANCE (BLOWS/FT)	WATER CONTENT	ORY O ENSITY [PCF]	13 a a a a a a a a a a a a a a a a a a a
2}" A.C., 1" Base			 		-	1	δ	3 g
CLAY, silty, some sand(fine grained)	dark brown- black	stilf	CL	- 2 - 3 - 4	15			
CLAY, silty, sandy(fine grained)	grey- brown	stiff	CL- SC	7 - 8	18	₹.		
SAND(fine-medium grained), with silt		medium dense		11 - 12 - 13 - 15 - 16 - 17 - 18 - 9 - 0	32			
		EXPL	DRAT	ORY BO	I DRING	LOG	<u>L</u>	

Kaldveer Associales Geoscience Consultants ACOMONNA Corporation

PROJECT NO.	DATE	Monitoring	
KE998-1B		Well No.	.3

DAILL RIG Hollow Stem Auger	SURFACE	LEAVION 4	- 871 (note 1)	LOGGE) BY	<u> </u>	
DEPTH TO GROUNDWATER 6' (note 3)	BORING DI	AMETER	8 inc	hes	<u>.l</u>	DATE D	RILLED		3/88
DESCRIPTION AND CLASSIFIC	CATION		T-	DEŖŢĦ	SAMPLEA	PERETRATION RESISTANCE (BLOWS/FT)	WATER CONTENT 1".1	Y DENSITY (PCF)	UNCONFINED COMPRESSIVE STRENGTH IKSFI
DESCRIPTION AND REMARKS	COLOA	CONSIST.	SOIL TYPE	(FEET)	3	PENET RESI: (BLO)	₹ UNOD	× 0	COMP
SAND(fine-medium grained), some silt	grey-	dense	SM	- 21 - - 22 -	7/2	85			
				- 23 - - 24 - - 25 -	eau.				
1. The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. 2. For an explanation of penetration resistance values, see Appendix A. 3. The groundwater level was measured at 14½ feet at time of drilling. Six hours later groundwater level measured 6 feet. 4. Location of reference datum is explained in Appendix A and shown on figure 3.				- 26 27 28 29 30 31 32 34 35 36 37 38 39 40 39 40					
		EXPL	ORA	TORY	ВC	RING	LOG	}	
	AIDI	A BETA	CDO	TIMEDIA	ΛT	ED C	ONT	MAINIA	TION

РЛОЈЕСТ НО	DATE	Monitoring	······································
KE998-1B	June 1988	Well No.	3

Geoscience Consultants

A California Corporation

PROJECT NO	DATE	<u> </u>	
KE998-1B	June 1988	Figure	N:W-3