RECEIVED

June 12, 2009

1:36 pm, Jun 16, 2009

Alameda County Environmental Health

Paresh C. Khatri Alameda County Health Care Services Agency 1131 Harbor Way Parkway, Suite 250 Alameda, California 94502

Subject: Site Investigation Report, Fuel Leak Case RO0002735, EBMUD South Area Service Center 589 East Lewelling Boulevard San Lorenzo, California

Dear Paresh Khatri;

Attached is our Site Investigation Report for the South Area Service Center Located at 589 East Lewelling Boulevard in San Lorenzo. This report addresses all of the concerns that you expressed in your letter dated March 16, 2009.

This report documents that none of the target analytes were present in groundwater or soil samples collected at the site. The report also summarizes previous remediation activities and findings that are consistent with these results.

Please review our technical report and consider our request for No Further Action Required at this site.

I declare, under penalty of perjury, that the information and recommendations contained in the attached report are true and correct to the best of my knowledge.

Sincerely,

JOHN H. SCHROETER Environmental Compliance Manager East Bay Municipal Utility District

JHS.jw

Attachments

June 4, 2009

Mr. John Walter East Bay Municipal Utility District 375 11th Street; M.S. 704 Oakland, California 94607

10-654-42

Subject: Site Investigation Report EBMUD South Area Service Center 589 East Lewelling Boulevard San Lorenzo, California

Dear Mr. Walter:

Alisto Engineering Group is pleased to submit this site investigation report for the abovereferenced site.

Please call if you have questions or comments.

Sincerely,

ALISTO ENGINEERING GROUP

Chris Reinheimer Senior Project Manager

Enclosure

SITE INVESTIGATION REPORT

East Bay Municipal Utility District South Area Service Center 589 East Lewelling Boulevard San Lorenzo, California Alameda County Fuel Leak Case No. RO0002735

Project No. 10-654-42

Prepared for:

Mr. John Walter East Bay Municipal Utility District 375 11th Street; M.S. 704 Oakland, California 94607

Prepared by:

Alisto Engineering Group 2737 N. Main Street, Suite 100 Walnut Creek, California

June 5, 2009

Al Sevilla, P.E.

Principal

Chris Reinheimer Senior Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SCOPE OF WORK	2
3.0	FIELD PROCEDURES	2
	3.1 Drining of Son Dorings	2
4.0	ANALYTICAL METHODS	3
5.0	SITE GEOLOGY AND HYDROGEOLOGY	3
6.0	DISCUSSION OF RESULTS	4
7.0	CONCLUSIONS AND RECOMMENDATIONS	4

REFERENCES

TABLES

- 1 Summary of Results of Soil Sampling
- 2 Summary of Results of Groundwater Sampling

FIGURES

- 1 Site Vicinity Map
- 2 Site Plan

APPENDICES

- A Historical Analytical Data
- B Soil Boring Permit
- C Boring Logs
- D Field Procedures for Soil and Grab Groundwater Sampling
- E Field Procedures for Chain of Custody Documentation, Laboratory Reports and Chain of Custody Records

SITE INVESTIGATION REPORT

East Bay Municipal Utility District South Area Service Center 589 East Lewelling Boulevard San Lorenzo, California Alameda County Fuel Leak Case No. RO0002735

Alisto Project No. 10-654-42

1.0 INTRODUCTION

This report presents the procedures, results and findings of the site investigation performed at the East Bay Municipal Utility District (EBMUD) South Area Service Center at 589 East Lewelling Boulevard, San Lorenzo, California. The site investigation was performed in accordance with the requirements of the Alameda County Health Care Services Agency (ACHCSA) as set forth in a letter dated March 16, 2009. A site vicinity map is shown on Figure 1.

In August 1990, Minter & Fahy Construction Company removed two underground storage tanks from the site: a 2,000 gallon for unleaded gasoline and a 2,050 gallon for diesel fuel storage. Information on the ACDEH tank removal inspection form indicates that both tanks were in good condition and no holes were observed in either tank. The inspection form also noted that there was no visible staining or odor within the gasoline tank excavation. Some soil staining was noted near the fill end of the diesel tank excavation. Soil samples were collected at both ends of the tanks from the bottom of each excavation. Analytical results for the soil samples were all below the laboratory reporting limits for total petroleum hydrocarbons as diesel (TPH-D), total petroleum hydrocarbons as motor oil (TPH-MO), total petroleum hydrocarbons as gasoline (TPH-G), and benzene. Only toluene was detected in three of the four samples with the highest concentration of 0.1 milligrams/kilogram (mg/kg) detected in the sample collected from the south end of the gasoline tank excavation. Based on the analytical results obtained during tank excavation activities, ACDEH requested additional investigation to evaluate the extent of contamination.

In October 1990, additional soil was removed from the diesel tank excavation and soil samples were collected from the sidewalls and excavation bottom of both tank pits. The samples were analyzed for volatile organic compounds, none of which was detected above the laboratory reporting limits in any of the samples.

During upgrading of the secondary containment systems under the two fuel dispensers (one diesel and one gasoline) at the EBMUD South Area Service Center in May 2004, soil samples were collected to comply with current regulations and in accordance with ACHCSA guidelines and requirements. An ACHSA representative was present to observe the upgrading and soil sampling. On May 5, 2004 soil samples were collected at approximately 3 feet below ground surface (bgs) and 2 feet bgs beneath the diesel dispenser and gasoline dispenser. The soil samples were analyzed for TPH-D, TPH-MO, TPH-G, benzene, toluene, ethyl benzene, and xylenes, (BTEX), volatile organic compounds (VOCs), and lead.

As described in the report documenting the work and submitted by EBMUD to the ACHCSA, (Gettler-Ryan Inc., 2004), TPH-D concentrations detected in the samples ranged from 11 mg/kg in Sample L112151-2 at 2 feet bgs beneath the gasoline dispenser to 1,400 mg/kg in Sample L112151-1 at 3 feet bgs beneath the diesel dispenser. No TPH-G, TPH-MO, and BTEX constituents were detected above the reporting limits in any of the samples. The concentrations of lead detected were below the Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for industrial sites. Based on the analytical results, additional soil was excavated to a depth of 5.5 feet beneath the diesel dispenser. A confirmation sample collected beneath the diesel dispenser contained 3.5 mg/kg of TPH-D. Historical analytical results for the soil samples are summarized in Table 1 and Appendix A.

2.0 PURPOSE AND SCOPE OF WORK

The purpose of the site investigation was to address the concerns of the ACHCSA in a letter dated December 5, 2008; and determine if groundwater beneath the site has been impacted by TPH-D and napthalene. The scope of work as approved by the ACHCSA was conducted in accordance with the guidelines and requirements of the RWQCB, San Francisco Bay Region and the ACHCSA and included the following tasks:

- Obtained drilling permits from Alameda County Public Works Agency for the drilling of soil borings.
- Drilled two soil borings using direct push technology to a total depth of 24 feet on EBMUD property and collected soil and grab groundwater samples for analysis.
- Prepare a report presenting the results and findings of the site investigation.

3.0 FIELD PROCEDURES

The field procedures used during drilling of soil borings and collection of soil and grab groundwater samples are described in the following sections.

3.1 Drilling of Soil Borings

To assess the potential vertical and lateral extent of impact from petroleum hydrocarbons onsite, two soil borings were drilled using direct push technique (Geoprobe) at locations shown on Figure 2. Drilling permits were obtained from the ACPWA, copies of which are included in Appendix B. The methods and procedures used during field activities are described below.

On April 17, 2009, two borings were hand-augured to five feet and then drilled to the maximum depth of 24 feet on site using coring/hydropunch methods. The boreholes were drilled by Enprob of Oroville, California, a C-57 licensed driller, using a Geoprobe direct-push truck-mounted drilling rig. Soil samples were collected using a 2-1/4-inch-diameter continuous sampling tool.

3.2 Soil and Grab Groundwater Sampling

Soil samples were collected from the vadose zone and other discrete depths using a sampler lined with clean Lexan sleeves. The soil cores were described in the field by a qualified geologist as to sediment type, qualitative moisture content, density and observed for the presence of hydrocarbon staining. Soil samples were also screened in the field using and organic vapor meter.

After the soil samples were collected and groundwater was encountered the Geoprobe tool was retrieved from the borehole and clean factory slotted temporary casing was pushed to the desired depth by the drill rig. The borehole was then purged until an adequate volume of sample was collected in clean laboratory-supplied containers. After collection of sufficient sample volume for analysis of COC, the borings were backfilled from the bottom to the surface using tremied neat cement grout and the surface repaired to match existing.

Boring logs are included in Appendix C and procedures for collection of soil and grab groundwater samples are described in Appendix D.

4.0 ANALYTICAL METHODS

Soil and groundwater samples collected during the investigation were submitted to the EBMUD Laboratory Services Division (California Environmental Laboratory Accreditation Program Certificate No 1060) for analysis of the following constituents using standard test methods of U.S. EPA and the California Department of Health Services:

- Total petroleum hydrocarbons as Diesel (TPH-D)
- Total petroleum hydrocarbons as Motor Oil (TPH-MO)
- Naphthalene using EPA Method 8270C

The laboratory results for the soil and grab groundwater samples are summarized in Tables 1 and 2. The field procedures for chain of custody documentation, the laboratory reports, and chain of custody records are included in Appendix E.

5.0 SITE GEOLOGY AND HYDROGEOLOGY

Shallow sediments at the site consist mainly of silty clays, silts and silty sands with some gravel lenses. Sandy silt was observed during drilling of the two borings from the surface to approximately 17 feet bgs. A distinct silty sand/silty gravel lens was encountered in the borings at a depth of 17 feet extending to 22 feet bgs. Dark brown silty clay was observed in both borings at 22 feet bgs and extended to the total depth of investigation at 24 feet. The depth to first saturated sediments encountered in the borings was approximately 18 to 19 feet.

The site is within the East Bay Plain Sub Basin, which is bounded to the west by San Francisco Bay and in the northern portion of the San Lorenzo groundwater sub area. The East Bay Plain is an elongated, northwest trending flat alluvial plain encompassing approximately 115 square miles. As defined by DWR (1980), the East Bay Plain is bounded on the West by San Francisco Bay, by San Pablo Bay to the north, and the Hayward Fault to the east.

San Lorenzo and San Leandro Sub-Areas are very similar in hydrogeologic characteristics, but can be separated based on the surface trace of the junction between the San Leandro and San Lorenzo alluvial fans. The sub-areas are primarily filled with alluvial fans, but unlike the subareas to the north, the Yerba Buena Mud extends west into the San Lorenzo and San Leandro Sub-Areas. It has been proposed that a clay layer forms an extensive east-west aquitard across the basin. Historically there were municipal supply wells in these sub-areas that produced from the upper Alameda gravels. The City of Hayward has emergency supply wells in the San Lorenzo Sub-Area. The San Lorenzo Creek is the nearest surface body of water at approximately 150 feet south of the site. The creek lies within an approximately 20-foot deep concrete channel.

6.0 DISCUSSION OF RESULTS

The results of the soil and groundwater sampling and analysis performed during the April 2009 site investigation by Alisto are discussed in the following sections.

In April 2009, two soil borings were drilled adjacent to the fuel dispensers and existing USTs. A total of 2 grab water samples and 6 soil samples were collected and submitted for laboratory analysis. Soil samples collected from depths of 6, 11, and 17 feet were submitted for laboratory analysis for the constituents of concern as directed by the ACHCSA. Grab water samples were collected from the two borings from first saturated sediment, encountered at approximately 18 feet bgs. Laboratory analysis of the six soil samples and two water samples did not detect TPH-D, TPH-MO or naphthalene above the laboratory detection limits.

Soil types encountered in the borings consisted predominantly of sandy silts to sandy clay, with a distinct silty sand/silty gravel unit from 17 to 22 feet bgs. A silty clay layer was encountered at depths of between 22 and 24 feet. Saturated soil conditions were typically encountered in the borings between approximately 18 and 19 feet bgs.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations of the site investigation based on the results of the field activities and laboratory analysis of samples are discussed below:

• Groundwater samples were collected in the shallow water bearing unit encountered between 17 and 22 feet bgs in the borings drilled immediately west and northwest of the former UST locations and existing pump island. Boring logs from previous investigations and soils encountered during the April 2009 investigation indicate the presence of a laterally continuous silty clay unit beneath the site from approximately 19 to 51 feet bgs. The thickness of the silty clay unit would limit the potential for any vertical migration of petroleum hydrocarbons beneath the site. The San Lorenzo Creek, approximately 150 feet west of the site, is contained in a concrete channel.

- VOCs were not detected above the laboratory reporting limits in all of the soil samples analyzed during the UST over excavation sampling and dispenser upgrades. Benzene was not detected above the laboratory detection limits in any of the soil samples, including those collected during the August 1990 UST removal. Analysis of soil and groundwater samples collected from both borings in April 2009 did not detect any constituents of concern above the laboratory reporting limit.
- The bulk of petroleum hydrocarbon mass in the soil had been effectively removed during previous over-excavation and remedial activities. Therefore, no further soil investigation or remedial excavation is warranted or recommended at this time.
- Based on the results of the grab groundwater sampling and analysis, it does not appear that the limited petroleum release from the UST system has impacted the groundwater at the site to warrant further investigation or assessment. As such no additional groundwater assessment, sampling or monitoring is recommended.
- Since no significant mass of petroleum hydrocarbon is present in soil or groundwater beneath the site, a well search and preferential pathway study are not warranted and the site should be approved for regulatory closure and designated "No Further Action Required" status.

REFERENCES

East Bay Municipal Utility District, 1990. EBMUD South Area Service Center – Final Tank Removal Report. September 21.

East Bay Municipal Utility District, 1990. Soil Contamination Investigation at 589 East Lewelling Boulevard, San Lorenzo, CA 94580. December 12.

Gettler-Ryan, 2004. Soil Sampling Report, EBMUD South Area Service Center, 375(sic) East Lewelling Boulevard, San Lorenzo. June 15.

Alisto Engineering Group, 2009. Site Investigation Workplan, EBMUD South Area Service Center, 589 East Lewelling Boulevard, San Lorenzo, California. February 6.

TABLES

FIGURES

Pointer 37°41'11.02" N 122°06'43.64" W elev 55 ft Streaming ||||||||| 100%

Eye alt 1606 ft

APPENDIX A

Historical Analytical Data

ENVIRONMENTAL LABORATORIES, INC.

> Northwest Region 4080 Pike Lane Concord, CA 94520 (415) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California

Cilent Number: SFB-566-0069.72 Project ID: 589 E. Lewelling San Lorenzo, CA Work Order Number: C0-08-660

September 11, 1990

John Fahy Minter & Fahy Construction 411 N. Buchanan Circle, #2 Pacheco, CA 94553

Enclosed please find the analytical results report prepared by GTEL for samples received on 08/23/90.

GTEL is certified by the California State Department of Health Services to perform analyses for drinking water, wastewater, and hazardous waste materials according to EPA protocols.

A formal quality control/quality assurance program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project was performed in strict adherence to our QA/QC program to ensure sample integrity and to meet quality control criteria.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

You

Emma P. Popek Laboratory Director

(800) 544-342 (800) 423-714	22 from Inside Cal 43 from outside C	lifornia elifornia	LOCATION: SAMPLED: RECEIVED: ANALYZED: MATRIX:	08/23/90 08/23/90 08/23/90 08/28/90 Soil	BY:	K. Jay F. Kha	, Сп	
•			UNITS:	mg/Kg (ppm)			

Total Petroleum Hydrocarbons as Diesel 10

(10 (10

(10

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 8015

EMMA P. POPEK, Laboratory Director

- 09/11/1990 12:59 FROM GTEL CONCOPD

(1

<1

1

P.01

LABORATORIES, INC. Northwest Region 4080 Fike Lane Concord. CA 94520 (415) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California			PROJECT# LOCATION SAMPLED	Minter & F 411 N. Buc Pacheco, C 5FP-566-00 589 E. Len 08/23/90	alıy Const hanan Cir A 94553 89.72 Meling, Sa COC#:	ruction cle, #2 un Lorenzo		
				RECEIVED	88/23/90	BV.	OVD	
				ANALYZED	: 08/31/90	DI I	нкв	
				MATRIX: UNITS:	50i1 mg/Kg (ppm	n)	HKB	

2 1

Total Petroleum Hydrocarbons as Gasoline

MDL = Method Detection Limit; compound below this level would not be detected.

Results rounded to two significant figures.

1

METHOD: Modified EPA 3550/8015

Comma P. Popen-

FLOW IN DUNDER A N A TO

P.03

Client Number: SFB-566-0039.72 Project ID: 589 E. Lewelling San Lorenzo, CA Work Order Number: CD-08-660

Table 1

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil

EPA Methods 5030 and 8020a

GTEL Sample Number		01	02	03	04
Client Identification		TD-South	TD-North	Soil-Gas Tank	Soil-Diesel Tank
Date Sampled		08/23/90	08/23/90	08/23/90	08/23/90
Date Extracted		08/31/90	08/31/90	08/31/90	08/31/90
Date Analyzed		08/31/90	08/31/90	08/31/90	08/31/90
Analyte	Detection Limit, mg/Kg		Concentrat	ion, mg/Kg	
Benzene	0.005	< 0.005	< 0.005	< 0.005	< 0.005
Toluene	0.005	< 0.005	0.05	< 0.005	<0.005
Ethylbenzene	0.005	<0.005	<0.005	<0.005	< 0.005
Xviene, total	0.015	< 0.015	< 0.015	< 0.015	< 0.015
BTEX, total	-		0.05	-	
Detection Limit Multiplier		1	1	1	1

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986.

 $\mathcal{F}_{i,j}$

Client Number: SFB-568-0089.72 Project ID: 589 E. Lewelling San Lorenzo, CA Work Order Number: C0-08-660

Table 1 (Continued)

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil

EPA Methods 5030 and 8020a

GTEL Sample Number		05	06		
Client Identification		Tank-Gas- South	Tank-Gas- North		
Date Sampled		08/23/90	08/23/90		
Date Extracted		08/31/90	08/31/90		
Date Analyzed		08/31/90	09/07/90		
Analyte	Detection Limit, mg/Kg		Concentratio	n, mg/Kg	
Benzene	0.005	< 0.005	< 0.005		
Toluene	0.005	0.1	0.015		
Ethylbenzene	0.005	< 0.005	< 0.005		
Xylene, total	0.015	< 0.015	0.019		
BTEX, total	-	0.1	0.034		
Detection Limit Multiplier		1	1	<u> </u>	

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986.

🐉 ak e his 2000 o 👘 Tableta antionen on e substance and an eriker of the second of the second s

					СНАТ	N DF	CL	JSTOD	ľY	RE	EC	OR	D	DI	P	_	۰,
780J. MJ.	SRIP!	entri (1		Ď	2 12	au			AN	ALYS	15		/.	K E J			
PROJECT HAN	e and ad	DRE 53:			$-\bigcirc$				RE	OUES	TED		(عمر	/ /	//.		1
58	9 5	. L.F	IV)	Z	LING				{	·		AN A	/		/ 🚽	1.01	۲
GA	NO 2		-K	DZ	2. C	24 !]			\$	/_	6	8 ⁹ / 3 ⁸ /		
CROSS				æ	7								\$¥7/,	54	*	9	
OFFERENCE			IL	ΞL						JA.	₹¥/	5	5.W		RJ-		כ
HUMBER	DATE	TIME	so	ЫR	STRTION I	OCATION		. <u>.</u>	K	Z	Z	\angle	Z	Ľ	<u> </u>	RENHRKS	¥.
TANK-DESE-	Sant Pro	10504	X		UNDER	DIESEL T	ANK	-South Ep	X	\mathbf{X}						•	<u>ک</u>
ANK-DIEST-N	8-3570	11:051	X		UNDER!	NESE TH	<u>41×</u>	NOK# EX	\times	X							· · · ·
SOIL GAS TALY	8/22/90	11:25A	×		SOIL PI	LE FRO	MG	95 TAK		x		1		<u>.</u> ×			:
Sou-DIESET	9/27/0	12:00	\mathbf{x}^{*}		SOIL M	LE FROM	DIES	R TANK	X	X							
TANK GAS-SO	8-23-90	12:25	x		UDDR (ASOLIDE	TAUK	South EN	2	X				\times			
TANK GAS-KA	8-23-90	17:20	K	•	LINDERG	ACOLINE	TANK	- North Es	6	X	-			X			<u>ز ۲</u>
									<u> </u>			1		}	<u> </u>		•
							فيرادون ويروزون		1							ويترج والمتحالي والمتحالي والمتحال	
				}					<u> </u>	1			!	ļ			
									<u> </u>					-	ł		
						·		()ab	1	1, 7	/	\mathbb{Z}]	<u> </u>			
	{						í	UH1	11		1		<u> /</u>		<u> </u>		3
1									1	1			L	!	!		
RELINDUTAH	ED BY:	Stens 10	►= 3{	Ĺ	de	DATES	23-90	RECEIVED B	ri (8	igneti	1843					DATE	** = = *
Pe	N	-		X,	<u>M</u>	TINE	1706					****				TIME	
RELINGUISH	ED BY: (Biens 1u	*•¥/	$^{\prime}($		DATE		RECEIVED P	r: (3	11201	964)					DALE	،
			~			TIME								:		1171	
RELINGUISH	ED DY: (Flane 14	**)			DATE		REFEIVED T	TI (S	18841	\$* 4 3			•		DRIE	
		~ •				TINE		eceraten et				N: (1			<u></u>	I TIRE	Pino
HEITROHETER	LED BY: C	Fignolu	**]			CRIL ~			0) (10	****	•	TINE	Hat -
						1 1 1 116		Sour	K,	\. \	<u></u>	<u>N.</u>				c	<u>H-/ \</u>
·	-				-			-		\mathcal{L}	U						. k .

ī.

MINTER + FAHY CONSTRUCTION

Account No.: - Lab Number : 90 10 12 195 Sample Type: Grab	Station Name: Side Sewer :	MISC South Yard \
ACROLEIN		.050 ma/Kaw
ACRYLONITRILE	2	
BENZENE		010 mg/KgW
BROMODICHLOROMETHANE_CC /MS		
BROMOFROM-GC/MS		
BROMOETHANE		
CARBON TETRACHLORIDE		
CHLOROBENZENE		
CHLOROFTHANE		
2-CHLOROFTHYLVINYL FTHER		
CHLOROFORM		
CHLOROMETHANE		
DIBROMOCHLOROMETHANE		
		010 mg/KgW
1,2-DICHLOROETHENE		
1.1-DICHLOROFTHENE		
TRANS-1 2-DICHIOPOFTHENE		
1.2-DICHLOROPROPANE		
CIS-1.3-DICHLOROPROPENTE		
TRANS-1, 3-DICHLOROPROPENTE		
ETHYL RENZENE		
METHYLENE CHIORIDE		
1.1.2.2-TETRACHLOROFTHANE		
TETRACHLOROFTHENE		
TOLUENE		
1.1.1-TRICHLOROFTHANE		
1.1.2-TRICHLOROFTHANE		
TRICHLOROETHENE	~	
VINYL CHLORIDE	~	
ACETONE		
DIBROMOCHLOROPROPANE	ì	
ETHYLENE DIBROMIDE	~	
METHYLETHYL KETONE	~	100 mg/KgW
METHYL ISOBUTYL KETONE	è	$\frac{1}{100} \frac{1}{100} \frac{1}$
STYRENE	č	010 mg/KgW
TETRAHYDROFURAN	~	
FREON 113	~	
SATURATED HYDROCARBONS		
UNSATURATED HYDROCARBONS	i i i i i i i i i i i i i i i i i i i	
AROMATIC HYDROCARBONS	č	
XYLENES		
1,2,4-TRICHLOROBENZENE	~	
FLUOROTRICHLOROMETHANE	<	050 mg/KgW
DICHLORODIFLUOROMETHANE	, ,	050 mg/KgW
M-CHLOROTOLUENE	<	
DIBROMOMETHANE	<	
1,3-DICHLOROPROPANE	, ,	
BROMOCHLOROMETHANE	<	010 mg/KgW
1,2,3-TRICHLOROPROPANE	<	.010 mg/KaW

Account No.: - Lab Number : 90 10 12 195 Sample Type: Grab	Station Name: Side Sewer :	MISC Sou	th Yard 1
1,2,3-TRICHLOROBENZENE	K 1	.010	mg/KgW
N-PROPYLBENZENE	<	.010	mg/KgW
1,1,1,2-TETRACHLOROETHANE	Κ.	.010	mg/KgW
PENTACHLOROETHANE	<	.010	mg/KgW
BIS (2-CHLOROISOPROPYL) ETHER	<	.020	mg/KgW
SEC-DICHLOROPROPANE	<	.010	mg/KgW
1,2,4-TRIMETHYLBENZENE	<	.010	mg∕Kg₩
N-BUTYLBENZENE	<	.010	mg/KgW
NAPHTHALENE	<	.010	mg/KgW
HEXACHLOROBUTADIENE	<	.020	mg/KgW
P-CHLOROTOLUENE	<	.010	mg/KgW
1,3,5-TRIMETHYLBENZENE	<	.010	mg/KgW
P-ISOPROPYLTOLUENE	<	.010	mg/KgW
1,1-DICHLOROPROPANE	<	.010	mg/KgW
ISOPROPYLBENZENE	<	.010	mg∕KgW
TERT-BUTYLBENZENE	<	.010	mg/KgW
SEC-BUTYLBENZENE	<	.010	mg∕Kg₩
BROMOBENZENE	<	.010	mg/KgW
CIS-1,2-DICHLOROETHENE	<	.010	MG/KGW
O-CHOLOROTOLUENE	 	.010	MG/KGW
CARBON DISULFIDE	<	.010	mg/KgW
1,1-DICHLOROPROPENE	<	.010	mg/KgW
ETHYL ACETATE	<	.010	mg/KG
2-HEXANONE	<	.010	MG/KGW
VINYL ACETATE	<	.010	MG/KGW
1,3-BUTADIENE	<	.010	MG/KGW
1,3-BUTADIENE	<	10.000	MG/KGW

- ----

Account No.: - Lab Number : 90 10 12 196 Sample Type: Grab	Station Name: Side Sewer :	MISC South Yard?	2
ACPOLETN	1	050 mg /Kow	
ACTOURTIN ACTOUR CALIFORNI F			
BRANDICHLORUMEINHUE-GC/MS		020 mg/KgW	
CADECNI (FEFEDACUT ODIDE			
CHLOROBENDER			
		050 mg/KgW	
CHIODOBINIDVINID DINEK			
CHLOROMETHANE			
DI BOMOCUI ODOMETUNIE			
1 2 - D1 CHOLOKDENZENE		010 mg/KgW	
$1 A_{\text{DICHLOROBENTZENE}}$		010 mg/KgW	
1, 2-DICHLOROETHENE			
		010 mg/Kgw	
EITIL DENGENE METULVIENE CULORIDE			
1 1 2 2 METRICAL OPOEMIANE		.010 mg/Kgw	
T, T, Z, Z-TETRACHLOROETHANE		.010 mg/Kgw	
TETRACHLORUETHENE MOLUETHENE			
		.010 mg/Kgw	
I, I, Z-TRICHLORUEIHANE			
IRICHLOROETHENE MINNE CHIOPIDE			
VINIL CREOKIDE		.020 mg/Kgw	
		.050 mg/Kgw	
DIDRUMULILURUPRUPANE EMELUI ENE DIBDONIDE			
ETHILENE DIBROMIDE		.050 mg/Kgw	
METRILEIRIL KEIONE METRILI I CODIMUNI METONIE	<		
MEINIL ISOBUTIL REIONE	<		
JIICENE WEWDALKODOFIDAN	<		
TETRAHIDROFURAN	<	.040 mg/Kgw	
CAMERANCE ANDROGADROAD			
SATURATED HIDROCARBONS	< .	.200 mg/Kgw	
UNSATURATED HIDROCARBONS	<	.200 mg/Kgw	
AROMATIC HIDROCARBONS	< .	.200 mg/Kgw	
	<	.UIU mg/KgW	
I, Z, 4-TRICHLOROBENZENE	<	.010 mg/Kgw	
F LUURUIRI CHLURUMETHANE		.USU mg/KgW	
DICHLORODIFLOOKUMETHANE	<	.USU mg/KgW	
	<	.UIU mg/KgW	
DIBRUMUMETHANE	<	.UIU mg/KgW	
L, J-DICHLOKUPKUPANE	<	.UIU mg/KgW	
BROMOCHLOROMETHANE	<	.010 mg/KgW	
1,2,3-TRICHLOROPROPANE	Κ	.010 mg/KgW	

Account No.: -	Station Name:	MISC So	uth Yavel 2
Lab Number : 90 10 12 196	Side Sewer :		
Sample Type: Grab			
1,2,3-TRICHLOROBENZENE	<	.010	mg/KgW
N-PROPYLBENZENE	Κ.	.010	mq/KqW
1,1,1,2-TETRACHLOROETHANE	<	.010	mq/KqW
PENTACHLOROETHANE	<	.010	mq/KqW
BIS (2-CHLOROISOPROPYL) ETHER	κ.	.020	mq/KqW
SEC-DICHLOROPROPANE	<	.010	mq/KaW
1,2,4-TRIMETHYLBENZENE	K	.010	mq/KqW
N-BUTYLBENZENE	<	.010	mq/KaW
NAPHTHALENE	<	.010	mq/KaW
HEXACHLOROBUTADI ENE	<	.020	mq/KqW
PCHLOROTOLUENE	<	.010	mg/KgW
1,3,5-TRIMETHYLBENZENE	<	.010	mq/KaW
P-ISOPROPYLTOLUENE	<	.010	mq/KqW
1,1-DICHLOROPROPANE	<	.010	ma/Kaw
ISOPROPYLBENZENE	<	.010	mg/KgW
TERT-BUTYLBENZENE	<	.010	mq/KqW
SEC-BUTYLBENZENE	<	.010	mq/KqW
BROMOBENZENE	<	.010	mg/KgW
CIS-1,2-DICHLOROETHENE	<	.010	MG/KGW
O-CHOLOROTOLUENE	<	.010	MG/KGW
CARBON DISULFIDE	<	.010	mq/KqW
1,1-DICHLOROPROPENE	<	.010	mg/KgW
ETHYL ACETATE	<	.010	mq/KG
2-HEXANONE	<	.010	MG/KGW
VINYL ACETATE	<	.010	MG/KGW
1,3-BUTADIENE	<	.010	MG/KGW
1,3-BUTADIENE	<	10.000	MG/KGW

.

Account No.: - Lab Number : 90 10 12 197 Sample Type: Grab	Station Name: Side Sewer :	MISC Sa	outh Yard 3
ACROLEIN	<	.050	mq/KqW
ACRYLONTTRILE	ì	.050	ma/KaW
BENTZENE		010	ma/KaW
		010	mar /Kaw
BRONODICHLOROMEINANE-GC/MS		.010	mg/Ngh mg/Katil
BROMOFROM-GC/MS		.020	mg/r.gw
BROMOETHANE	<	.030	mg/Kgw
CARBON TETRACHLORIDE	K	.010	mg/Kgw
CHLOROBENZENE	<	.010	mg/KgW
CHLOROETHANE	<	.020	mg/KgW
2-CHLOROETHYLVINYL ETHER	<	.050	mg/KgW
CHLOROFORM	<	.010	mg∕KgW
CHLOROMETHANE	<	.020	mg/KgW
DIBROMOCHLOROMETHANE	<	.010	mg/KgW
1,2-DICHOLORBENZENE	<	.010	mq/KqW
1.3-DICHLOROBENZENE	< Contraction of the second se	.010	ma/KaW
1.4-DICHLOROBENZENE	ć	.010	ma/KaW
1 1-DICHLOROFTHANE	ì	.010	ma/KaŴ
1 2-DICHLOPOFITHENE		010	ma /Kaw
		010	
		010	
1, 2, DICHEORDEME		.010	mg/KgW
1, 2-DICHLOROPROPANE		.010	
CIS-1, 3-DICHLOROPROPENE	<	.010	mg/Kgw
TRANS-1, 3-DICHLOROPROPENE	<	.010	mg/kgw
ETHYL BENZENE	<	.010	mg/KgW
METHYLENE CHLORIDE	<	.010	mg/KgW
1, 1, 2, 2-TETRACHLOROETHANE	<	.010	mg/KgW
TETRACHLOROETHENE	<	.010	mg∕Kg₩
TOLUENE	<	.010	mg/KgW
1,1,1-TRICHLOROETHANE	<	.010	mg/KgW
1,1,2-TRICHLOROETHANE	<	.010	mg/KgW
TRICHLOROETHENE	Κ	.010	mg/KgW
VINYL CHLORIDE	<	.020	mg/KgW
ACETONE	<	.050	mq/KqW
DIBROMOCHLOROPROPANE	<	.030	mg/KgW
ETHYLENE DIBROMIDE	<	.050	ma/KaW
METHYLETHYL KETONE	<	.100	ma/Kaw
METHYL ISOBUTYL KETONE		.020	mar/Kaw
STYRENE	i i i i i i i i i i i i i i i i i i i	.010	mar/KaW
TETRAHYDROFTIRAN	ì	040	ma /KaW
FREON 113		010	ma/Kaw
		200	mg/KgN
		200	mg/KgW
		.200	mg/Kgw
		.200	mg/Kgw
	<	.010	IIIG/KGW
1, 2, 4-TRICHLOROBENZENE	<	.010	mg/Kgw
FLOOROTRICHLOROMETHANE	< .	.050	mg/kgw
DICHLORODIFLUOROMETHANE	<	.050	mg/kgW
M-CHLOROTOLUENE	<	.010	mg/KgW
DIBROMOMETHANE	<	.010	mg∕Kg₩
1,3-DICHLOROPROPANE	<	.010	mg/KgW
BROMOCHLOROMETHANE	<	.010	mg∕Kg₩
1,2,3-TRICHLOROPROPANE	<	.010	mg/KgW

•

.

23-Oct-1990 Page 2

Account No.: - Lab Number : 90 10 12 197 Sample Type: Grab	Station Name: Side Sewer :	MISC South Yard 3
1,2,3-TRICHLOROBENZENE	<	.010 mg/KgW
N-PROPYLBENZENE	<	.010 mg/KgW
1,1,1,2-TETRACHLOROETHANE	<	.010 mg/KgW
PENTACHLOROETHANE	<	.010 mg/KgW
BIS (2-CHLOROISOPROPYL) ETHER	Κ.	.020 mg/KgW
SEC-DICHLOROPROPANE	<	.010 mg/KgW
1,2,4-TRIMETHYLBENZENE	<	.010 mg/KgW
N-BUTYLBENZENE	<	.010 mg/KgW
NAPHTHALENE	<	.010 mg/KgW
HEXACHLOROBUTADIENE	<	.020 mg/KgW
P-CHLOROTOLUENE	Κ.	.010 mg/KgW
1,3,5-TRIMETHYLBENZENE	<	.010 mg/KgW
P-ISOPROPYLTOLUENE	<	.010 mg/KgW
1,1-DICHLOROPROPANE	<	.010 mg/KgW
ISOPROPYLBENZENE	<	.010 mg/KgW
TERT-BUTYLBENZENE	<	.010 mg/KgW
SEC-BUTYLBENZENE	<	.010 mg/KgW
BROMOBENZENE	<	.010 mg/KgW
CIS-1,2-DICHLOROETHENE	Κ ΄	.010 MG/KGW
O-CHOLOROTOLUENE	<	.010 MG/KGW
CARBON DISULFIDE	<	.010 mg/KgW
1,1-DICHLOROPROPENE	<	.010 mg/KgW
ETHYL ACETATE	<	.010 mg/KG
2-HEXANONE	<	.010 MG/KGW
VINYL ACETATE	<	.010 MG/KGW
1,3-BUTADIENE	<	.010 MG/KGW
1,3-BUTADIENE	<	10.000 MG/KGW

Account No.: - Lab Number : 90 10 12 198 Sample Ture: Grab	Station Name: Side Sewer :	MISC So	oth Yard 4			
bampre Type. Grab						
ACROLEIN		.050	mg/KgW			
ACRYLONITRILE	<	.050 mg/KgW				
BENZENE	<	.010 mg/KgW				
BROMODICHLOROMETHANE-GC/MS	<	.010 mg/KaW				
BROMOFROM-GC/MS	č	.020	ma/KaW			
BROMOETHANE	č	.030 mg/Kow				
CARBON TETRACHLORIDE	è	.010	ma/KaW			
CHI OROBENZENE	č	.010	ma/KaW			
CHLOROFTHANE	è	.020	ma/Kaw			
2-CHLOROFTHYLVINYL FTHER		.050	ma/KaŴ			
CHLOROFORM		010	ma/Kaw			
CHILOROMETHANE		020	mar/Kaw			
		010				
		.010				
		.010	mg/KgW			
1, 5-DICHLOROBENZENE	< compared with the second sec	.010				
1,4-DICHLOROBENZENE	< c	.010				
1, 1-DICHLOKOETHANE	Č,	.010				
1,2-DICHLOKOETHENE	<	.010	mg/Kgw			
1,1-DICHLOROETHENE	<	.010	mg/Kgw			
TRANS-1, 2-DICHLOROETHENE	<	.010	mg/kgw			
1,2-DICHLOROPROPANE	<	.010	mg/KgW			
CIS-1, 3-DICHLOROPROPENE	<	.010	mg/KgW			
TRANS-1, 3-DICHLOROPROPENE	<	.010	mg/KgW			
ETHYL BENZENE	<	.010	mg/KgW			
METHYLENE CHLORIDE	<	.010	mg/KgW			
1, 1, 2, 2-TETRACHLOROETHANE	<	.010	mg/KgW			
TETRACHLOROETHENE	<	.010	mg/KgW			
TOLUENE	<	.010	mg/KgW			
1, 1, 1-TRICHLOROETHANE	<	.010	mg/KgW			
1,1,2-TRICHLOROETHANE	<	.010	mg∕Kg₩			
TRICHLOROETHENE	<	.010	mg∕Kg₩			
VINYL CHLORIDE	<	.020	mg/KgW			
ACETONE	<	.050	mg/KgW			
DIBROMOCHLOROPROPANE	<	.030	mg/KgW			
ETHYLENE DIBROMIDE	<	.050	mq/KqW			
METHYLETHYL KETONE	<	.100	mq/KqW			
METHYL ISOBUTYL KETONE	<	.020	mq/KqW			
STYRENE	<	.010	ma/KaW			
TETRAHYDROFURAN	<	.040	ma/KaW			
FREON 113	<	.010	ma/KaW			
SATURATED HYDROCARBONS	č	.200	ma/Kaw			
UNSATURATED HYDROCARBONS	è	200				
AROMATIC HYDROCARBONS	i i i i i i i i i i i i i i i i i i i	200	mg/KgW			
XYLENES		010	ma/Kaw			
1.2 A -TRICHIOROBENZENE		010				
FLIDROTRICHLOROMETHANE		050				
		.050				
M_CHI ODOROI LIENE M_CHI ODOROI LIENE		.050				
II-CILLOROLOLUCINE		.010				
		.010				
		.010	mg/KgW			
		.010	mg/KgW			
1, 2, S-IRICHLOKOPKOPANE	<	.010	mg/kgw			

Account No.: - Lab Number : 90 10 12 198 Sample Type: Grab	Station Name: Side Sewer :	MISC South Yard	4
1,2,3-TRICHLOROBENZENE	<	.010 mg/KgW	
N-PROPYLBENZENE	<	.010 mg/KgW	
1,1,1,2-TETRACHLOROETHANE	<	.010 mg/KgW	
PENTACHLOROETHANE	<	.010 mg/KgW	
BIS (2-CHLOROISOPROPYL) ETHER	<	.020 mg/KgW	
SECDICHLOROPROPANE	<	.010 mg/KgW	
1,2,4-TRIMETHYLBENZENE		.010 mg/KgW	
N-BUTYLBENZENE	<	.010 mg/KgW	
NAPHTHALENE	<	.010 mg/KgW	
HEXACHLOROBUTADIENE	ζ.	.020 mg/KgW	
P-CHLOROTOLUENE	<	.010 mg/KgW	
1,3,5-TRIMETHYLBENZENE	< · ·	.010 mg/KgW	
P-ISOPROPYLTOLUENE	<	.010 mg/KgW	
1,1-DICHLOROPROPANE	< .	.010 mg/KgW	
ISOPROPYLBENZENE	<	.010 mg/KgW	
TERT-BUTYLBENZENE	<	.010 mg/KgW	
SEC-BUTYLBENZENE	· K	.010 mg/KgW	
BROMOBENZENE	<	.010 mg/KgW	
CIS-1,2-DICHLOROETHENE	<	.010 MG/KGW	
O-CHOLOROTOLUENE	<	.010 MG/KGW	
CARBON DISULFIDE	<	.010 mg/KgW	
1,1-DICHLOROPROPENE	<	.010 mg/KgW	
ETHYL ACETATE	<	.010 mg/KG	
2-HEXANONE	<	.010 MG/KGW	
VINYL ACETATE	<	.010 MG/KGW	
1,3-BUTADIENE	<	.010 MG/KGW	
1,3-BUTADIENE	<	10.000 MG/KGW	

- 1

Account No.: - Lab Number : 90 10 12 199 Sample Type: Grab	Station Name: Side Sewer :	MISC South Yard 5		
ACROLEIN	e e e e e e e e e e e e e e e e e e e	.050	നവ/KaW	
ACEVIONITETLE		050	mar /Kaw	
BENZENE		010	mar/Kawi	
		010		
BRONOFROM_CC/MC		.010	mg/KgW	
		.020	mg/r.gw	
CARRON MEMORANE		.030	llg/Rgw	
CARBON TETRACHLORIDE		.010		
CHLOROBEINZEINE	< c	.010	mg/Kgw	
CHLOROETHANE	K	.020	mg/kgw	
Z-CHLOROETHYLVINYL ETHER	<	.050	mg/kgw	
CHLOROFORM	, K	.010	mg/kgw	
CHLOROMETHANE	<	.020	mg/KgW	
DIBROMOCHLOROMETHANE	<	.010	ng/kgw	
1,2-DICHOLORBENZENE	<	.010	mg∕Kg₩	
1, 3-DICHLOROBENZENE	<	.010	mg∕Kg₩	
1,4-DICHLOROBENZENE	<	.010	mg∕Kg₩	
1,1-DICHLOROETHANE	<	.010	mg∕Kg₩	
1,2-DICHLOROETHENE	<	.010	mg/KgW	
1,1-DICHLOROETHENE	<	.010	mg/KgW	
TRANS-1, 2-DICHLOROETHENE	<	.010	mg∕Kg₩	
1,2-DICHLOROPROPANE	< 1	.010	mg∕Kg₩	
CIS-1, 3-DICHLOROPROPENE	<	.010	mg/KgW	
TRANS-1, 3-DICHLOROPROPENE	<	.010	mq/KqW	
ETHYL BENZENE	<	.010	mg/KgW	
METHYLENE CHLORIDE	<	.010	mq/KqW	
1,1,2,2-TETRACHLOROETHANE	<	.010	mg/KgW	
TETRACHLOROETHENE	<	.010	ma/Kaw	
TOLUENE	<	.010	mar/Kaw	
1,1,1-TRICHLOROETHANE	<	.010	mai/KaW	
1.1.2-TRICHLOROETHANE	<	.010	ma/KaŴ	
TRICHLOROETHENE	è	.010	ma/KaW	
VINYL CHLORIDE	è	.020	ma/KaW	
ACETONE	è	050	ma/Kaw	
DIBROMOCHLOROPROPANE	ì	030	ma/Kaw	
ETHYLENE DIBROMIDE		050	mar /Kaw	
METHYLETHYL, KETONE		100	mg/KgN mg/KgN	
METHYL, I SOBI FLYL, KETYONE		020	mg/KgN mg/KgN	
STVRENE		.020	mg/Rgw mg/Kgwl	
TETTO A HVIDO ET TO AN		.010	mg/r.gw	
EDECNI 112		.040		
		.010	ng/kgw ma/Katil	
INGATED HIDROCARDONS		.200	mg/Kgw	
ADOMATICATED HIDROCARDONS	< c	.200	mg/kgw	
AROMATIC HIDROCARBONS		.200	mg/Kgw	
	<	.010	mg/KgW	
1,2,4-TRICHLOROBENZENE	<	.010	mg/KgW	
FLOOROTRICHLOROMETHANE	<	.050	mg/KgW	
DICHLORODIFLUOROMETHANE	<	.050	mg∕Kg₩	
M-CHLOROTOLUENE	<	.010	mg/KgW	
DIBROMOMETHANE	<	.010	mg∕Kg₩	
1, 3-DICHLOROPROPANE	<	.010	mg∕KgW	
BROMOCHLOROMETHANE	<	.010	mg∕KgW	
1,2,3-TRICHLOROPROPANE	<	.010	mg/KgW	

Station Name:	MISC Sou	th Yard 5
Side Sewer :		
,	010	ma /Kalil
	.010	
<	.010	
< c	.010	mg/Kgw
<	.010	mg/kgw
<	.020	mg/KgW
. <	.010	mg/KgW
< .	.010	mg/KgW
<	.010	mg/KgW
<	.010	ng/KgW
<	.020	mg/KgW
<	.010	mg/KgW
< · · · ·	.010	mg/KgW
<	.010	mq/KqW
<	.010	mq/KqW
<	.010	mq/KqW
<	.010	MG/KGW
· · · · · · · · · · · · · · · · · · ·	.010	MG/KGW
<	.010	ma/KaW
. <	.010	ma/KaW
<	.010	ma/KG
K	.010	MG/KGW
č	.010	MG/KGW
ì	.010	MG /KGW
ì	10,000	MG/KGW
	Station Name: Side Sewer : < < < < < < < < < < < < < < < < < < <	Station Name: Misc 200 Side Sewer : .010 <

.

Account No.: - Lab Number : 90 10 12 200 Sample Type: Grab	Station Name: Side Sewer :	MISC South Yard 6
ACROLEIN	<	.050 mg/KgW
ACRYLONITRILE	ì	
BENZENE	ì	.010 mg/KgW
BROMODICHLOROMETHANE_CC/MS		
BROMOFROM-GC/MS		
BROMOETHANE		
CARBON TETRACHIORIDE		
CHLOROBENZENE		
CHLOROFTHANE	2	
2-CHLOROETHYLVINYL ETHER	i i i i i i i i i i i i i i i i i i i	
CHLOROFORM		
CHLOROMETHANE		
DIBROMOCHLOROMETHANE		
1 2-DICHOLORBENZENE		
1.3-DICHLOBOBENZENE		
1 A-DICHLOROBENZENE		
1 1-DICHLOROFTHANE		
1 2 - DTCHIOROBILIANE		
TRANS_1 2_DICHIOROFTHENE		
		010 mg/RgW
CIS_1 3_DICHLOPODDODENE		010 mg/RgW
TRANS_1 3_DICHLOROPORT		
FTHVI. BENZENE		010 mg/KgW
METTEVIENE CUI ODIDE		
1 1 2 2 TETREPACTION CUT OPPOPULATE		
T, Z, Z-ISINAUNUSINANE TETRACUI ODOETUENE		010 mg/RgW
TOTIENE		010 mg/RgW
1 1 2 TRECHLOROFTHANE		
TRICHLOROFTHENE		
VINVI. CHLORIDE		
ACETONE		
DIBROMOCHIOROPROPANE		
ETHVIENE DIBOMIDE		
METHUL FULL KENNE		
METHUT. ISOBITEVI. KETIONE		020 mg/KgW
STYRENE		010 mg/KgW
TETRAHVDROFTRAN		
FREDN 113		010 mg/KgW
SATTRATED HYDROCARBONS		
INSATIRATED HYDROCARBONS		200 mg/KgW
AROMATIC HYDROCARBONS		200 mg/KgW
XVI.ENES		010 mg/KgW
1,2,4-TRICHLOROBENZENE		010 mg/KgW
FLUOROTRICHLOROMETHANE	ì	
DICHLORODIFLIOROMETHANE	$\mathbf{\hat{z}}$	
M-CHLOROTOLIENE	$\mathbf{\tilde{c}}$	$\begin{array}{c} 0.00 \text{mg/rgw} \\ 0.10 \text{marger} \end{array}$
DIBROMOMETHANE		
1 3-DICHIOROPROPANE	2	
BROMOCHLOROMETHANIE		$\begin{array}{c} 010 \text{mg/kgw} \\ 010 \text{mg/kgw} \end{array}$
1.2.3-TRICHIARAPROPANE	$\mathbf{\tilde{c}}$	
	•	• UIU MY/NYW

Account No.: - Lab Number : 90 10 12 200 Sample Type: Grab	Station Name: Side Sewer :	MISC Sa	buth Yard 6
1,2,3-TRICHLOROBENZENE	<	.010	mg/KgW
N-PROPYLBENZENE	<	.010	mg/KgW
1,1,1,2-TETRACHLOROETHANE	<	.010	mg/KgW
PENTACHLOROETHANE	Κ	.010	mg/KgW
BIS (2-CHLOROISOPROPYL) ETHER	<	.020	mg/KgW
SEC-DICHLOROPROPANE	<	.010	mg/KgW
1,2,4-TRIMETHYLBENZENE	<	.010	mg/KgW
N-BUTYLBENZENE	<	.010	mg/KgW
NAPHTHALENE	<	.010	mg/KgW
HEXACHLOROBUTADIENE	<	.020	mg/KgW
P-CHLOROTOLUENE	<	.010	mg/KgW
1,3,5-TRIMETHYLBENZENE	<	.010	mg/KgW
P-ISOPROPYLTOLUENE	<	.010	mg/KgW
1,1-DICHLOROPROPANE	<	.010	mg/KgW
ISOPROPYLBENZENE	<	.010	mg/KgW
TERT-BUTYLBENZENE	<	.010	mg/KgW
SEC-BUTYLBENZENE	<	.010	mg/KgW
BROMOBENZENE	<	.010	mg/KgW
CIS-1,2-DICHLOROETHENE	<	.010	MG/KGW
O-CHOLOROTOLUENE	<	.010	MG/KGW
CARBON DISULFIDE	<	.010	mg/KgW
1,1-DICHLOROPROPENE	<	.010	mg/KgW
ETHYL ACETATE	<	.010	mg/KG
2-HEXANONE	<	.010	MG/KGW
VINYL ACETATE	<	.010	MG/KGW
1,3-BUTADIENE	<	010	MG/KGW
1,3-BUTADIENE	Κ	10.000	MG/KGW

•

۰ ۱

Account No.: - Lab Number : 90 10 12 201 Sample Type: Grab	Station Name: Side Sewer :	MISC South Yard 7
ACROLETN		050 mg /Kow
Denverne Drovorigut orowerting ag ag	Č,	
BROMODICHLOROMETHANE-GC/MS	<	.010 mg/Kgw
BROMOFROM-GC/MS	< c	.UZU mg/Kgw
BROMOETHANE	<	.030 mg/Kgw
CARBON TETRACHLORIDE	<	.010 mg/KgW
CHLOROBENZENE	<	.010 mg/KgW
CHLOROETHANE	<	.020 mg/KgW
2CHLOROETHYLVINYL ETHER	<	.050 mg/KgW
CHLOROFORM	· <	.010 mg/KgW
CHLOROMETHANE	<	.020 mg/KgW
DIBROMOCHLOROMETHANE	<	.010 mg/KgW
1,2-DICHOLORBENZENE	<	.010 mg/KgW
1,3-DICHLOROBENZENE	<	.010 mg/KgW
1,4-DICHLOROBENZENE	<	.010 mg/KgW
1,1-DICHLOROETHANE	<	.010 mg/KgW
1,2-DICHLOROETHENE	<	.010 mg/KgW
1,1-DICHLOROETHENE	<	.010 mg/KgW
TRANS-1,2-DICHLOROETHENE	<	.010 mg/KgW
1,2-DICHLOROPROPANE	< '	.010 mg/KgW
CIS-1, 3-DICHLOROPROPENE	<	.010 mg/KgW
TRANS-1, 3-DICHLOROPROPENE	< [.]	.010 mg/KgW
ETHYL BENZENE	<	.010 mg/KgW
METHYLENE CHLORIDE	<	.010 mg/KgW
1,1,2,2-TETRACHLOROETHANE	<	.010 mg/KgW
TETRACHLOROETHENE	<	.010 mg/Kaw
TOLUENE	<	.010 mg/KgW
1,1,1-TRICHLOROETHANE	<	.010 mg/Kaw
1,1,2-TRICHLOROETHANE	<	.010 mg/KgW
TRICHLOROETHENE	<	.010 mg/KgW
VINYL CHLORIDE	<	
ACETONE	č	.050 mg/KgW
DIBROMOCHLOROPROPANE	č	
ETHYLENE DIBROMIDE	ζ.	050 mg/KgW
METHYLETHYL KETONE	è	
METHYL ISOBUTYL KETONE		020 mg/K GW
STYRENE	č	
TETRAHYDROFURAN	2	
FREON 113	i i i i i i i i i i i i i i i i i i i	
SATURATED HYDROCARBONS		200 mg/KgW
INSATURATED HYDROCARBONS		
AROMATIC HYDROCARBONS		200 mg/KgW
XVLENES		
FLUOROTELCHLORODENZENE		
LICHT UDULT ET TRUDUMENTEN FORMUNTET CITENTALIET EN TRUDUCTULT		
M-CRI UDURUI I IEMIE NT CITOLOUI I IEMIE NT CITOLOUI I IEMIE		
		.UIU mg/Kgw
	<	.UIU mg/KgW
T, J-DICHLOROPKUPANE	< .	.UIU mg/KgW
1 2 2 MDT CHILOROVIE THANE	<	.010 mg/KgW
1,2,3-TRICHLOROPROPANE	<	.010 mg/KgW

Account No.: -	Station Name:	MISC South	oth Yavel 7
Lab Number : 90 10 12 201	Side Sewer :		·
Sample Type: Grab			
1,2,3-TRICHLOROBENZENE	<	.010	mg/KgW
N-PROPYLBENZENE	<	.010	mg/KgW
1, 1, 1, 2-TETRACHLOROETHANE	<	.010	mg/KgW
PENTACHLOROETHANE	<	.010	mg/KgW
BIS (2-CHLOROISOPROPYL) ETHER	<	.020	mg/KgW
SEC-DICHLOROPROPANE	<	.010	mg∕Kg₩
1,2,4-TRIMETHYLBENZENE	<	.010	mg/KgW
N-BUTYLBENZENE	<	.010	mg/KgW
NAPHTHALENE	×	.010	mg/KgW
HEXACHLOROBUTADIENE	<	.020	mg/KgW
P-CHLOROTOLUENE	<	.010	mg/KgW
1,3,5-TRIMETHYLBENZENE	<	.010	mg/KgW
P-ISOPROPYLTOLUENE	<	.010	mg/KgW
1,1-DICHLOROPROPANE	<	.010	mq/KqW
ISOPROPYLBENZENE	<	.010	mq/KqW
TERT-BUTYLBENZENE	<	.010	mq/KqW
SEC-BUTYLBENZENE	<	.010	mg/KgW
BROMOBENZENE	<	.010	mg/KgW
CIS-1,2-DICHLOROETHENE	<	.010	MG/KGW
O-CHOLOROTOLUENE	<	.010	MG/KGW
CARBON DISULFIDE	<	.010	mq/KqW
1,1-DICHLOROPROPENE	<	.010	mq/KqW
ETHYL ACETATE	<	.010	mg/KG
2-HEXANONE	<	.010	MG/KGW
VINYL ACETATE	<	.010	MG/KGW
1,3-BUTADIENE	<	.010	MG/KGW
1.3-BUTADIENE	<	10,000	MG/KGW

EBMUD LAB RESULTS

Account No.: - Lab Number : 90 10 12 202 Sample Type: Grab	Station Name: MISC Side Sewer :	e South Yard 8.
ACROLEIN	<	.050 mg/KgW
ACRYLONITRILE	<	.050 mg/KgW
BENZENE	< ·	.010 mg/KgW
BROMODICHLOROMETHANE-GC/MS	<	.010 mg/KgW
BROMOFROM-GC/MS	<	.020 mg/KgW
BROMOETHANE	<	.030 mg/KgW
CARBON TETRACHLORIDE	<	.010 mg/KgW
CHLOROBENZENE	<	.010 mg/KgW
CHLOROETHANE	<	.020 mg/KgW
2-CHLOROETHYLVINYL ETHER	<	.050 mg/KgW
CHLOROFORM	<	.010 mg/KgW
CHLOROMETHANE	i i	
DIBROMOCHLOROMETHANE		
1.2-DICHOLORBENZENE		
1, 2-DICHLORUETHENE	< .	
T, I-DICHLOROETHENE	< .	.UIU mg/kgw
TRANS-1, Z-DICHLOROETHENE	<	.010 mg/KgW
1, 2-DICHLOROPROPANE	<	.010 mg/KgW
CIS-1, 3-DICHLOROPROPENE	<	.010 mg/KgW
TRANS-1, 3-DICHLOROPROPENE	<	.010 mg/KgW
ETHYL BENZENE	<	.010 mg/KgW
METHYLENE CHLORIDE	< .	.010 mg/KgW
1, 1, 2, 2-TETRACHLOROETHANE	<	.010 mg/KgW
TETRACHLOROETHENE	<	.010 mg/KgW
TOLUENE	<	.010 mg/KgW
1,1,1-TRICHLOROETHANE	<	.010 mg/KgW
1,1,2-TRICHLOROETHANE	<	.010 mg/KgW
TRICHLOROETHENE	<	.010 mg/KgW
VINYL CHLORIDE		020 mg/KgW
ACETONE	i i	050 mg/KgW
DIBROMOCHLOROPROPANE	č	
ETHYLENE DIBROMIDE	2	
METHYLETHYL, KETYNE		
METHYI, ISOBITTYI, KETYONE		
STVRENE		010 mg/KgW
TETERIA TETERIA TO ALVIDO TO ANI		
EDEVAL 112		.040 mg/Kgw
CATERATED INTODOCADDONC		.UIU mg/kgw
DATORATED HIDROCARDONS	<	200 mg/KgW
ADONNATED HYDROCARBONS	<	.200 mg/KgW
AROMATIC HIDROCARBONS	<	.200 mg/KgW
AILENES	< .	.010 mg/KgW
1, 2, 4-TRICHLOROBENZENE	<	.010 mg/KgW
FLUOROTRI CHLOROMETHANE	<	.050 mg/KgW
DICHLORODIFLUOROMETHANE	<	.050 mg/KgW
M-CHLOROTOLUENE	<	.010 mg/KgW
DIBROMOMETHANE	<	.010 mg/KgW
1,3-DICHLOROPROPANE	<	.010 mg/KgW
BROMOCHLOROMETHANE	<	.010 mg/KgW
1,2,3-TRICHLOROPROPANE	<	.010 mg/KgW

٠

EBMUD LAB RESULTS

23-Oct-1990 Page 2

.

Account No.: - Lab Number : 90 10 12 202 Sample Type: Grab	Station Name: Side Sewer :	MISC So	oth Yord 8
1,2,3-TRICHLOROBENZENE	<	.010	mg/KgW
N-PROPYLBENZENE	<	.010	mg/KgW
1,1,1,2-TETRACHLOROETHANE	<	.010	mg/KgW
PENTACHLOROETHANE	<	.010	mg/KgW
BIS (2-CHLOROISOPROPYL) ETHER	Κ	.020	mg/KgW
SEC-DICHLOROPROPANE	<	.010	mq/KgW
1,2,4-TRIMETHYLBENZENE	<	.010	mg/KgW
N-BUTYLBENZENE	<	.010	mq/KqW
NAPHTHALENE	<	.010	mq/KgW
HEXACHLOROBUTADIENE	<	.020	mg/KgW
P-CHLOROTOLUENE	<	.010	mg/KgW
1,3,5-TRIMETHYLBENZENE	<	.010	mg/KgW
P-ISOPROPYLTOLUENE	<	.010	mg/KgW
1,1-DICHLOROPROPANE	<	.010	mg/KgW
ISOPROPYLBENZENE	<	.010	mg/KgW
TERT-BUTYLBENZENE	<	.010	mg/KgW
SEC-BUTYLBENZENE	<	.010	mg/KgW
BROMOBENZENE	<	.010	mg/KgW
CIS-1,2-DICHLOROETHENE	<	.010	MG/KGW
O-CHOLOROTOLUENE	<	.010	MG/KGW
CARBON DISULFIDE	<	.010	mg/KgW
1,1-DICHLOROPROPENE	<	.010	mg/KgW
ETHYL ACETATE	<	.010	mg/KG
2-HEXANONE	<	.010	MG/KGW
VINYL ACETATE	<	.010	MG/KGW
1,3-BUTADIENE	<	.010	MG/KGW
1,3-BUTADIENE	<	10.000	MG/KGW

			•	L	ABOR	ATOR	IY SEF	RVICES	CHA	IN O	F CU	ISTO	DY RECORD Lab Number Date (1) 101010
Budget	Unit Name	& Code				Contact Kary	en Fol	ks_	е 27	xt. 2/	/		Analysis Required
Program	n Title	· •		•		Program	Codes						
Sample 54	dby an Ar	chac	iki	Re	port attent	ion		MS	s /	7	.	/ /	Sample Description/Remarks
Lab ² Sample Number	Date Sampled	Time Sampled	Type ³ See Key Below	4	Statio	n Code	# Cont.	Account Codes	/×				Results Due 10/10/0
193	10/12/90	1620	TRIP QC E B		TRIP G)C	1	0.20	X				TRIP BLAUK
194	11	1020	E		FBLK	6C	1	-	_				Field BLANK
العز	11	1035	S		I mi	56							SOIL SAMPLES Son. jAL
196	17.	1043	5		2	"							ي ا
197	<u>11</u>	1050	5		3	'1							لا : 14
198	ν.	/ •ડઽ	S		4	"							
199	11	1130	S		5) ,							- 1) · · · · · · · · · · · · · · · · · ·
200	11	טאון	S		6 1	,							1) tł
201	"	1150	S		1	,		.			ļ		b) ≠
202	,,	1200	5		8 1	,	V		́		·		
			Signature	4		Pr	int Name			Time	t	Date	NOTES:
Reling	uished by	Æ	the la	h	hhi	STAN	Archa	скі		1249	10	12/90	(1) First six digits (1 Hind D) (2) Last three digits only.
Recei	ved by		5. He	Qi	~	U.C	5. He_1	ier	/	250	(3) Sample type codes: E = Hand Grab, F = Hand G		
Relinc	uished by												G = Auto Grab, H = Auto Composite Sample Matrix Codes: Water, Wastewater (WW), Tissue,
Recei	ved by												Soil, Compost, Sludge, Petrolleum, Ot
Relino	quished by												(4) Check if a followup sample.
Rece	ived by												

LABORATORY SERVICES CHAIN OF CUSTODY HECOHD

EBMUD Laboratory Analytical Report

Ó

EAST BAY MUNICIPAL UTILITY DISTRICT Laboratory Services Division PO Box 24055, MS 59, Oakland, CA 94623 Phone (510)287-1432 Fax (510)465-5462

California Environmental Laboratory Accreditation Program Certificate Number 1060

Laboratory Report - L112151

LSR # - B793-9512-1 Project Title: TRENCH SPOILS PROGRAM

Report generated on: May 07, 2004 01:39 pm

2 - Samples received by the lab on: May 05 2004, 09:52 am 0 - Lost Analyses 0 - Hold Time Exceedences Turn-around-time met

KENNETH GERSTMAN

Please route this report to:

Client PM: SAFA TOMA CC: SUSA SUZUK

Samples inc	cluded in this re	port:	
Sample	Type Collected	Site	Locator
L112151-1	GRAB 05-May-200	4 09:00 SOUTH YAR	D MISC
L112151-2	GRAB 05-May-200	4 09:15 SOUTH YAR	D MISC

ClientID South Yard soil under dispensers/pumps South Yard soil under dispensers/pumps

WILLIAM M. ELLGAS

5/10/04

Legend to the laboratory qualifiers used in this report: N - Spike recovery outside of control limits U - Analyte not detected Qualifiers for subcontract work - See textvalue for description

THIS REPORT MAY ONLY BE REPRODUCED IN ITS ENTIRETY. RESULTS CONTAINED IN THIS REPORT ARE REFLECTIVE ONLY OF THE ITEMS REQUESTED TO BE ANALYZED AND REPORTED. UNUSED PORTIONS OF SAMPLE WILL BE DISCARDED WITHIN THIRTY DAYS OF RECEIPT UNLESS OTHER ARRANGEMENTS ARE MADE BY THE CLIENT.

EAST BAY MUNICIPAL UTILITY DISTRICT Laboratory Services Division PO Box 24055, MS 59, Oakland, CA 94623 Phone (510)287-1432 Fax (510)465-5462 Analytical Results Report

LSR#: B793-9512-1 TRENCH SPOILS PROGRAM Site: SOUTH YARD South Area Service Center Locator: MISC Miscellaneous sample, see sample comments for location ClientID: South Yard soil under dispensers/pumps Lab ID: L112151-1 Rush - 2 working day TAT Sample Type: GRAB (Instantaneous Grab) Date Collected: May 05 2004, 09:00am Sample collector: R LAURITZEN/GR Date Received: May 05 2004, 09:52am Sample receiver: LABTEMP Sample Comments: B785 7999/1004686; South Yard soil samples collected from under existing dispensers/pumps prior to secondary containment installation

Method Reference	r de la fille de la fille			1494-1496		Matrix Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML
SEC-DICHLOROPROPANE	U	0.0042	mg/kg	1.0	0.0042	
CIS-1,2-DICHLOROETHENE	U	0.0012	mg/kg	1.0	0.0012	
METHYLACRYLATE	U	0.012	mg/kg	1.0	0.012	
METHYLACRYLONITRILE	U	0.012	mg/kg	1.0	0.012	
BROMOCHLOROMETHANE	U	0.0035	mg/kg	1.0	0.0035	
TETRAHYDROFURAN	U	0.25	mg/kg	1.0	0.25	
CHLOROFORM	U	0.0018	mg/kg	1.0	0.0018	
1,1,1-TRICHLOROETHANE	U	0.0020	mg/kg	1.0	0.0020	
1 - CHLOROBUTANE	U	0.012	mg/kg	1.0	0.012	
1,1-DICHLOROPROPENE	U	0.0018	mg/kg	1.0	0.0018	
CARBON TETRACHLORIDE	U	0.0035	mg/kg	1.0	0.0035	
BENZENE	U	0.0012	mg/kg	1.0	0.0012	
1,2-DICHLOROETHANE	U	0.0015	mg/kg	1.0	0.0015	
TERT-AMYL METHYL ETHER	U	0.013	mg/kg	1.0	0.013	
TRICHLOROETHENE	U	0.0012	mg/kg	1.0	0.0012	
1,2-DICHLOROPROPANE	U	0.0030	mg/kg	1.0	0.0030	
METHYLMETHACRYLATE	U	0.012	mg/kg	1.0	0.012	
DIBROMOMETHANE	U	0.0022	mg/kg	1.0	0.0022	
BROMODICHLOROMETHANE	U	0.0020	mg/kg	1.0	0.0020	
2-CHLOROETHYLVINYL ETHER	U	0.0025	mg/kg	1.0	0.0025	
2-NITROPROPANE	U	0.012	mg/kg	1.0	0.012	
CHLOROACETONITRILE	U	0.25	mg/kg	1.0	0.25	
CIS-1,3-DICHLOROPROPENE	U	0.0018	mg/kg	1.0	0.0018	
4-METHYL-2-PENTANONE	U	0.010	mg/kg	1.0	0.010	
1,1-DICHLORO-2-PROPANONE	U	0.025	mg/kg	1.0	0.025	
TOLUENE	U	0.0018	mg/kg	1.0	0.0018	
TRANS-1,3-DICHLOROPROPENE	U	0.0050	mq/kq	1.0	0.0050	
ETHYLMETHACRYLATE	U	0.012	mq/kq	1.0	0.012	
1,1,2-TRICHLOROETHANE	U	0.0075	mg/kg	1.0	0.0075	
TETRACHLOROETHENE	U	0.0028	mg/kg	1.0	0.0028	
1,3-DICHLOROPROPANE	U	0.0018	mg/kg	1.0	0.0018	
2-HEXANONE	U	0.0025	mg/kg	1.0	0.0025	
DIBROMOCHLOROMETHANE	U	0.0015	mq/kq	1.0	0.0015	
ETHYLENE DIBROMIDE	U	0.0025	mg/kg	1.0	0.0025	
CHLOROBENZENE	U	0.0012	mq/kq	1.0	0.0012	
1,1,1,2-TETRACHLOROETHANE	U	0.0075	mg/kg	1.0	0.0075	
ETHYL BENZENE	U	0.0020	mq/kq	1.0	0.0020	
M+P XYLENES	U	0.0055	mq/kq	1.0	0.0055	
O-XYLENE	υ	0.0028	mg/kg	1.0	0.0028	
STYRENE	U	0.0020	mg/kg	1.0	0.0020	
BROMOFORM	U	0.0025	mg/kg	1.0	0.0025	
ISOPROPYLBENZENE	U	0.0028	ma/ka	1.0	0.0028	
BROMOBENZENE	Ū	0.0020	ma/ka	1.0	0.0020	
TRANS-1.4-DICHLORO-2-BUTENE	U U	0.012	ma/ka	1.0	0.012	
1.1.2.2-TETRACHLOROETHANE	U U	0.0028	mg/kg	1.0	0.0028	
1, 2, 3-TRICHLOROPROPANE	TI I	0.0020	mg/kg	1 0	0 0020	
N-PROPYLBENZENE	11	0.0022	ma/ka	1 0	0 0022	
0-CHLOROTOLJENE	U U	0 0030	mg/kg	1.0	0.0030	
P-CHLOROTOLIENE	11	0 0020		1 0	0.0030	
	U	0.0020	mg/kg	1.0	0.0020	
TERT-BITTIBENZENE	TT	0 0020	mg/kg	1.0	0.0045	
	U T	0.0020	mg/kg	1.0	0.0020	
	0	0.0050	mg/kg	1.0	0.0050	
I, Z, T - IKIMEINIDENGENE		0.050	ilig/ Kg	1.0	0.0088	

EAST BAY MUNICIPAL UTILITY DISTRICT Laboratory Services Division PO Box 24055, MS 59, Oakland, CA 94623 Phone (510)287-1432 Fax (510)465-5462 Analytical Results Report

LSR#: B793-9512-1 TRENCH SPOILS PROGR Site: SOUTH YARD S Locator: MISC M ClientID: South Yard soil under Lab ID: L112151-2 Rush - 2 Sample Type: GRAB (Instantaneous G Date Collected: May 05 2004, 09:15am Date Received: May 05 2004, 09:52am Sample Comments: South Yard soil sampl prior to secondary c	AM outh Area Servic iscellaneous sam dispensers/pump working day TAT rab) Sample collecto Sample receiver es collected fro ontainment insta	e Center ple, see sa s r: R LAURIT : LABTEMP m under exi llation	ample comm CZEN/GR Lsting dis	ents for locatio	on	
Method Reference Parameter	Qualifier	Result	Units	Dilution	MDL	Matrix Tag RL/ML
Method: CALIFORNIA LUFT MANUAL - Diese TARGET ANALYTES	1:ASE:GC/MS			ke bizhoel (else)	est vetter	Soil
DIESEL		11	ma/ka	1.0	1.0	
MOTOR OIL COMPOSITE (C21-C32)	U	100	ma/ka	1.0	100	
SUBROGATE PARAMETERS	-					
5-A-ANDROSTANE		81.1	* recov	rerv 1 00		
Pup ID. P122926 / Work Group No . WG11	1436	01.1	. 1000	CI / 1.00		
Prep Datel: 05-MAY-04 Prep Date2: 05-M	AY-04 Analyzed	05-MAY-04				
Method: CALIFORNIA LUFT MANUAL - Gasol	ine:MeOH Ext.:GC	/MS				Soil
TARGET ANALYTES						
GASOLINE	Ŭ	1.0	mg/kg	1.0	1.0	
INTERNAL STANDARD						
FLUOROBENZENE		98.6	% recov	ery 1.00		
D5-CHLOROBENZENE		99.2	% recov	ery 1.00		
D4-1,4-DICHLOROBENZENE		94.2	% recov	ery 1.00		
SURROGA TE PARAMETERS						
DIBROMOFLUOROMETHANE		96.4	% recov	ery 1.00		
D4-DI CHLOROETHANE		78.2	* recov	erv 1.00		
D8-TOLIENE		92.8	* recov	ery 1 00		
		09 /	* recov	Cry 1.00		
PUR ID. BISSION / North Crown No WCII	1 4 7 4	00.4	* IECOV	ery 1.00		
Pren Datel: 05-MAY-04 Pren Date2: 05-M	IH2H AV-04 Analyzed (06-MAV-04				
riep Dater: 05-MAI-04 Fiep Datez. 05-M	Al-04 Allalyzed	00-MAI-04				
Method: EPA 8260B - Volatile Organics:	GC/MS	u de la compañía de l	1			Soil
TARGET ANALYTES		Constantistica de Proste	0.97.985.949.48494	i bildekiliki (letteri d	00000000000000000000000000000000000000	
	IT N	0 0022	ma /ka	1 0	0 0022	
OUL OD OMETINANE	U, N	0.0022	mg/kg	1.0	0.0022	
ULUROMETRANE	U	0.0025	mg/kg	1.0	0.0025	
VINYL CHLORIDE	U	0.0018	mg/kg	1.0	0.0018	
1, 3-BUTADIENE	U	0.0050	mg/kg	1.0	0.0050	
BROMOMETHANE	U, N	0.0052	mg/kg	1.0	0.0052	
CHLOROETHANE	U, N	0.0048	mg/kg	1.0	0.0048	
FLUOROTRICHLOROMETHANE	U,N	0.0038	mg/kg	1.0	0.0038	
ETHYL ETHER	U	0.012	mg/kg	1.0	0.012	
ACROLEIN	U	0.50	mg/kg	1.0	0.50	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	U	0.0025	mg/kg	1.0	0.0025	
1,1-DICHLOROETHENE	U	0.0012	mg/kg	1.0	0.0012	
ACETONE	U,N	0.15	mg/kg	1.0	0.15	
IODOMETHANE	Ū	0.012	ma/ka	1.0	0.012	
CARBON DISULFIDE	U.N	0.0025	ma/ka	1.0	0.0025	
ALLYL CHLORIDE	1	0 012	ma/ka	. 1 0	0 012	
		0.0019	mg/kg	1.0	0 0019	
	11	0.0010	mg/ 29	1.0	0.0010	
ACDAT ON TRADIT B	U TT	0.20	mg/kg	1.0	0.25	
ACKILONIIKILE	U •••	0.025	ilig/kg	1.0	0.025	
METHYL-T-BUTYL ETHER	U	0.013	mg/kg	1.0	0.013	
TRANS-1,2-DICHLOROETHENE	U	0.0035	mg/kg	1.0	0.0035	
DIISOPROPYL ETHER	U	0.013	mg/kg	1.0	0.013	
VINYL ACETATE	U,N	0.0050	mg/kg	1.0	0.0050	
1,1-DICHLOROETHANE	U	0.0018	mg/kg	1.0	0.0018	
ETHYL-T-BUTYL ETHER	U	0.013	mg/kq	1.0	0.013	
2-BUTANONE	U	0.075	mg/kg	1.0	0.075	
ETHYL ACETATE	TI I	0,0025	ma/ka	1.0	0,0025	
	5	0.0020				

EAST BAY MUNICIPAL UTILITY DISTRICT Laboratory Services Division FO Box 24055, MS 59, Oakland, CA 94623 Phone (510)287-1432 Fax (510)465-5462 Analytical Results Report

LSR#: B793-9512-1	TRENCH SPOILS PROGRAM
Site:	SOUTH YARD South Area Service Center
Locator:	MISC Miscellaneous sample, see sample comments for location
ClientID:	South Yard soil under dispensers/pumps
Lab ID:	L112151-2 Rush - 2 working day TAT
Sample Type:	GRAB (Instantaneous Grab)
Date Collected:	May 05 2004, 09:15am Sample collector: R LAURITZEN/GR
Date Received:	May 05 2004, 09:52am Sample receiver: LABTEMP
Sample Comments:	South Yard soil samples collected from under existing dispensers/pumps
	prior to secondary containment installation

Method Reference	gun grégorie de Calego.				Yoshi da ku shi da ku sh	Matrix Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML
SEC-BUTYLBENZENE	U	0.0025	mg/kg	1.0	0.0025	
1,3-DICHLOROBENZENE	U	0.0015	mg/kg	1.0	0.0015	
P-ISOPROPYLTOLUENE	U	0.0020	mg/kg	1.0	0.0020	
1,4-DICHLOROBENZENE	U	0.0010	mg/kg	1.0	0.0010	
1,2-DICHLOROBENZENE	U	0.0012	mg/kg	1.0	0.0012	
N-BUTYLBENZENE	ប	0.0025	mg/kg	1.0	0.0025	
BIS(2-CHLOROISOPROPYL)ETHER	U	0.015	mg/kg	1.0	0.015	
HEXACHLOROETHANE	υ	0.025	mg/kg	1.0	0.025	
DIBROMOCHLOROPROPANE	υ	0.012	mg/kg	1.0	0.012	
NITROBENZENE	U	0.50	mg/kg	1.0	0.50	
1,2,4-TRICHLOROBENZENE	U	0.0028	mg/kg	1.0	0.0028	
HEXACHLOROBUTADIENE	U	0.0030	mg/kg	1.0	0.0030	
NAPHTHALENE	U	0.0025	mg/kg	1.0	0.0025	
1,2,3-TRICHLOROBENZENE	· U	0.0028	mg/kg	1.0	0.0028	
INTERNAL STANDARD						
FLUOROBENZENE		101	<pre>% recover</pre>	у 1.00		
D5-CHLOROBENZENE		100	<pre>% recover</pre>	у 1.00		
D4-1,4-DICHLOROBENZENE		88.6	<pre>% recover</pre>	y 1.00		
SURROGATE PARAMETERS						
DIBROMOFLUOROMETHANE		91.2	% recover	у 1.00		
D4-DICHLOROETHANE		84.4	<pre>% recover</pre>	y 1.00		
D8-TOLUENE		93.8	* recover	y 1.00		
4-BROMOFLUOROBENZENE		90.8	<pre>% recover</pre>	у 1.00		
Run ID: R122933 / Work Group No.: W	G111423					
Prep Date1: 05-MAY-04 Prep Date2: 0	5-MAY-04 Analyzed	06-MAY-04				
Method: EPA 6010 - ICAP Metals						Soil
TARGET ANALYTES						
LEAD		8.78	mg/kg	0.210	1.05	

Run ID: R122903 / Work Group No.: WG111444 Prep Date1: 05-MAY-04 Prep Date2: 06-MAY-04 Analyzed 06-MAY-04

relog or ogin No.: L112151		Laboratory Services Chain	of Custody Record	. Page 1 of 1
Prelog or ogin No.: L112151	Desident mithle			
	TRENCH SPOILS PROGRAM Account or Project: B793-9512-1		Client PM: SAFA TOMA Tel No.: 1512 Lab PM: KENNETH GERST	Sampled by: R LAURITZEN Rcvd: 05-MAY-04 09:52 MAN Sample Date: 05-MAY-04
ab Sample Io. Type Time	Site Locator	Sample Container ID Matrix Barcode) Tests Required	Date DueDate Preservative Initials pH
112151-1 GRAB 09:00	SOUTH YARD MISC	Soil 521038 JARS Soil 521039 JARS Soil 521039 JARS	8260;DIESEL GC/MS;GASOLINE G *ICP:C EPA 6010;PE EPA 6010 *REPORT	C/MS 12-MAY-0
lientID: South Yard s Pric:	oil under dispensers/pumps Sample Commer ng: STD	ts: B785 7999/1004686; South	Yard soil samples collected f	rom under existing dispensers/pumps prior to secondary
112151-2 GRAB 09:1:	SOUTH YARD MISC	S011 521040 JARS S011 521041 JARS S011 521041 JARS	8260;DIESEL GC/MS;GASOLINE G *ICP:C HPA 6010;PB EPA 6010 *REPORT	C/MS 12-MAY-0
lientID: South Yard (oil under dispensers/pumps Sample Commer	ts: South Yard soil samples	collected from under existing	dispensers/pumps prior to secondary containment instal
Total conta	iners received: 4			
	Signature	Print Name	Time Date	
linquished by				Type Codes: CF01;CF02;CF03;CFV;COMP;CT01;CT02;CT03 CT04;CT05;CT06;CT07;CT08;CTV;GRAB
ceived by				
linquished by				
ceived by				
linquished by				

L112151

East Bay Municipal Utility District Laboratory Services Chain of Custody Record

sampled by: Robert Lauriturn / G.R. Client PM: SAFA TOMA Prelog or Project Title Login No.: P111150 Revd: TRENCH SPOILS PROGRAM Tel No.: 1512 Sample Date: 5 /5/04 Lab PM: KENNETH GERSTMAN Account or Project: B793-9512-1 DueDate Lab Sample Sample Container ID Date No. Type Time Site Matrix Barcode Tests Required Preservative Initials pH Locator GRAB 0400 8260; DIESEL GC/MS; GASOLINE GC/MS P111150-1 SOUTH YARD MISC Soil 521038 JARS ice *ICP:C EPA 6010; PB EPA 6010 Soil 521039 JARS D-1 +REPORT Soil

ClientID: South Yard soil under dispensers/pumps Sample Comments: B785 7999/######; South Yard soil samples collected from under existing dispensers/pumps prior to secondary conta. Pricing: STD

P111150-2 GRAB 15 SOUTH YARD 8260; DIESEL GC/MS; GASOLINE GC/MS MISC Soil 521040 JARS *ICP:C EPA 6010; PB EPA 6010 160 Soi1 521041 JARS D-2 +REPORT Soi1

ClientID: South Yard soil under dispensers/pumps Sample Comments: South Yard soil samples collected from under existing dispensers/pumps prior to secondary containment installatio:

Total	containers received:	4	· · · · · · · · · · · · · · · · · · ·			
	Signat	ure	Print Name	Time	Date	
Relinquished by	Robert 6	A	Robert Launitzon	0950	5/5/04	Туре Сс
Received by		1	100	X		
Relinquished by				X		
Received by						
Relinguished by					$\overline{\mathcal{A}}$	
Received by	Ball J	Mut	Bobb: North	0950	5/5/01	
	F		p-1 = pi	rsel Di	spenser	
		:	D-2 = 6	as Disp)enser	

/pe Codes: CF01;CF02;CF03;CFV;COMP;CT01;CT02;CT03 CT04;CT05;CT06;CT07;CT08;CTV;GRAB

Page 1 of 1

EBMUD Laboratory Analytical Report

l

EAST BAY MUNICIPAL UTILITY DISTRICT Laboratory Services Division PO Box 24055, MS 59, Oakland, CA 94623 Phone (510)287-1432 Fax (510)465-5462

California Environmental Laboratory Accreditation Program Certificate Number 1060

Laboratory Report - L112310

LSR # - B793-9512-1 Project Title: TRENCH SPOILS PROGRAM

Report generated on: May 14, 2004 06:47 am

2 - Samples received by the lab on: May 11 2004, 03:24 pm 0 - Lost Analyses 0 - Hold Time Exceedences Turn-around-time met

KENNETH GERSTMAN

Please route this report to:

Client PM: SAFA TOMA

Samples inc	luded in this report:			
Sample	Type Collected	Site	Locator	ClientID
L112310-1	GRAB 11-May-2004 14:27	SOUTH YARD	MISC	South Yard soil under dispensers/pumps
L112310-2	GRAB 11-May-2004 13:00	SOUTH YARD	MISC	South Yard Stock Pile From Under Pumps

Legend to the laboratory qualifiers used in this report:

N - Spike recovery outside of control limits

T - Diesel/Gasoline pattern is atypical

U - Analyte not detected

Qualifiers for subcontract work - See textvalue for description

THIS REPORT MAY ONLY BE REPRODUCED IN ITS ENTIRETY. RESULTS CONTAINED IN THIS REPORT ARE REFLECTIVE ONLY OF THE ITEMS REQUESTED TO BE ANALYZED AND REPORTED. UNUSED PORTIONS OF SAMPLE WILL BE DISCARDED WITHIN THIRTY DAYS OF RECEIPT UNLESS OTHER ARRANGEMENTS ARE MADE BY THE CLIENT.

LSR#: B793-9512-1	L TRENCH SPOILS PROGRAM
Site:	SOUTH YARD South Area Service Center
Locator:	MISC Miscellaneous sample, see sample comments for location
ClientID:	South Yard soil under dispensers/pumps
Lab ID:	L112310-1 Rush - 2 working day TAT
Sample Type:	GRAB (Instantaneous Grab)
Date Collected:	May 11 2004, 02:27pm Sample collector: R LAURITZEN
Date Received:	May 11 2004, 03:24pm Sample receiver: BMARTIN
Sample Comments:	B785 7999/1004686; South Yard soil samples collected from under existing
-	dispensers/pumps prior to secondary containment installation; Follow-up
	sample from L112151-1 with Diesel result of 1400 mg/kg; SOUTH DISPENSER AT
	5.5'

Method Reference					en de la compañía de	Matrix Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML
1.2-DICHLOROETHANE	U	0.0030	mg/kg	2.0	0.0030	
TERT-AMYL METHYL ETHER	U	0.026	mg/kg	2.0	0.026	
TRICHLOROETHENE	U	0.0024	mg/kg	2.0	0.0024	
1.2-DICHLOROPROPANE	υ	0.0060	mg/kg	2.0	0.0060	
METHYLMETHACRYLATE	υ	0.025	mg/kg	2.0	0.025	
DIBROMOMETHANE	U	0.0044	mg/kg	2.0	0.0044	
BROMODICHLOROMETHANE	U	0.0040	mg/kg	2.0	0.0040	
2-CHLOROETHYLVINYL ETHER	ប	0.0050	mg/kg	2.0	0.0050	
2-NITROPROPANE	U	0.025	mg/kg	2.0	0.025	
CHLOROACETONITRILE	U	0.50	mg/kg	2.0	0.50	
CIS-1.3-DICHLOROPROPENE	U	0.0036	mg/kg	2.0	0.0036	
4 -METHYL-2-PENTANONE	U	0.020	mg/kg	2.0	0.020	
1 1-DICHLORO-2-PROPANONE	U	0.050	mg/kg	2.0	0.050	
TOLIENE	U	0.0036	mg/kg	2.0	0.0036	
TRANS-1.3-DICHLOROPROPENE	U	0.010	mg/kg	2.0	0.010	
ETHYLMETHACRYLATE	U	0.025	mg/kg	2.0	0.025	
1 1 2-TRICHLOROETHANE	U	0.015	mg/kg	2.0	0.015	
TETRACHLOROFTHENE	υ	0.0056	mg/kg	2.0	0.0056	
1 3-DICHLOROPROPANE	U	0.0036	mg/kg	2.0	0.0036	
2_UEYANONE	υ	0.0050	mg/kg	2.0	0.0050	
DIBROMOCHLOROMETHANE	U	0.0030	mg/kg	2.0	0.0030	
THAT THE DIBRONIDE	Ū	0.0050	mg/kg	2.0	0.0050	
CUI ODODENZENE	Ū	0.0024	mg/kg	2.0	0.0024	
1 1 1 2-TETRACHLOROETHANE	Ū	0.015	mg/kg	2.0	0.015	
T, T, T, Z-TETRACHIORODITEND	Ū	0.0040	mg/kg	2.0	0.0040	
MAD YVLENES	U	0.011	mg/kg	2.0	0.011	
O-YYLENE	U	0.0056	mg/kg	2.0	0.0056	
O-AIDENE CTVDENE	Ū	0.0040	mg/kg	2.0	0.0040	
BROMOEOPM	U	0.0050	mg/kg	2.0	0.0050	
I COBODYL BENZENE	U	0.0056	mg/kg	2.0	0.0056	
DDOMODENZENE	U	0.0040	mg/kg	2.0	0.0040	
TRANS-1 4-DICHLORO-2-BUTTENE	U	0.025	mg/kg	2.0	0.025	
1 1 2 2-TETRACHLOROETHANE	U	0.0056	mg/kg	2.0	0.0056	
1 2 2 TRICHLOROPROPANE	U	0.0040	mg/kg	2.0	0.0040	
N_ DODVI.BENZENE	U	0.0044	mg/kg	2.0	0.0044	
O-CHLOPOTOLUENE	U	0.0060	mg/kg	2.0	0.0060	
B-CHLOROTOLUENE	U	0.0040	mg/kg	2.0	0.0040	
1 3 5 TRIMETHYLBENZENE	U	0.0090	mg/kg	2.0	0.0090	
T, S, S - IKIMEINIBBENBENB TEDT_DITTYLEENZENE	Ū	0.0040	mg/kg	2.0	0.0040	
DENER CUI ODOETUNIE	U U	0.010	mg/kg	2.0	0.010	
1 0 A TO IMETUVI DENZENE	U	0.018	mq/kq	2.0	0.018	
CEC DIEVI DENZENE	U	0.0050	mg/kg	2.0	0.0050	
1 2 DIGUIODODENZENE	U U	0.0030	mg/kg	2.0	0.0030	
D LOODODYI TOLIENE	II.	0.0040	mg/kg	2.0	0.0040	
1 A DICULOBORENZENE	U U	0.0020	mg/kg	2.0	0.0020	
1,4-DICALOROBENZENE	U U	0.0024	mg/kg	2.0	0.0024	
L, Z-DICHLOROBENZENE	U II	0.0050	mg/ka	2.0	0.0050	
N-BUTILBENGENE	11	0.030	mg/kg	2.0	0.030	
BIS (2-CHLOROISOPROFIL) EINER	U TT	0.050	ma/ka	2.0	0.050	
MEAACHLOKUEIHANE	11	0.024	mg/kg	2.0	0.024	
DIBROMOCHLOROPROPANE	11	1.0	mg/kg	2.0	1.0	
NITKOBENZENE	8	1.0				

LSR#: B793-9512-1	TRENCH SPOILS PROGRAM								
Site: S	SOUTH YARD Sout	h Area Servi	ce Center	-					
Locator: N	AISC Misc	ellaneous sa	mple, see sa	mple comme	nts for loc	cation			
ClientID: S	lientID: South Yard Stock Pile From Under Pumps								
Lab ID: I	ab ID: L112310-2 Rush - 2 working day TAT Ample Type: GRAB (Instantaneous Grab) ba Collected New 1. 2004 - 0.00mm Comple collector, B LNETTZEN								
Date Collected.									
Date Corrected: M	fay 11 2004, 01:00pm Sa	mple correct	7. BMARTIN	23 <u>12</u> 1N					
Sample Comments, S	outh Vard stockpile soi	l camples co	llected from	under evi	etina				
sample comments: a	dispensers/pumps prior	to secondary	containment	ingtallat	ion. Follow	<i>v</i> -110			
	sample from L112151-1 w	ith Diesel r	esult of 140	0 mg/kg: S	TOCK PILE S	SAMPLE			
			<u></u>			· · ··································			
Method Reference Parameter		Qualifier	Result	Units	Dilution	Matrix MDL RL/ML	Tag		
Method: CALIFORNIA	A LUFT MANUAL - Diesel:A	SE:GC/MS				Soil			
DIESEL		т	430	ma/ka	10	10			
Unidentified	interfering peaks elute	d between di	esel and mot	or oil.					
MOTOR OIL COMPOSIT	TE (C21-C32)	ມ 2000 100 100 ປັ	1,000	mg/kg	10	1000			
SURROGATE PARAMETERS	5			5, 5					
5-A-ANDROSTANE			12.8	<pre>% recove:</pre>	ry 10.0				
Run ID: R123093 /	Work Group No.: WG11160	8							
Prep Date1: 12-MAY	-04 Prep Date2: 12-MAY-	04 Analyzed	12-MAY-04						
Method: EPA 8260B	- Volatile Organics: GC	/ms				Soil			
TARGET ANALYTES									
DICHLORODIFLUOROME	THANE	Ŭ	0.0044	mg/kg	2.0	0.0044			
CHLOROMETHANE		U	0.0050	mg/kg	2.0	0.0050			
VINYL CHLORIDE		U	0.0036	mg/kg	2.0	0.0036			
1,3-BUTADIENE			0.010	mg/kg	2.0	0.010			
BROMOMETHANE		U,N	0.010	mg/kg	2.0	0.010			
CHLOROETHANE THOROETHANE		U, N	0.0096	mg/kg	2.0	0.0036			
FTUUROIRICHLOROMEI	HANE	1	0.0078	mg/kg	2.0	0.025			
		11	1 0	mg/kg	2.0	1 0			
1 1 2_TPICHLOPO_1	2 2-TRIFILIOROFTHANE	U U	0.0050	mg/kg	2.0	0.0050			
1.1-DICHLOROETHENE		U	0.0024	mg/kg	2.0	0.0024			
ACETONE	-	U.N	0.30	mg/kg	2.0	0.30			
IODOMETHANE		U.	0.025	mg/kg	2.0	0.025			
CARBON DISULFIDE		U	0.0050	mg/kg	2.0	0.0050			
ALLYL CHLORIDE		U	0.025	mg/kg	2.0	0.025			
METHYLENE CHLORIDE	3	U	0.0036	mg/kg	2.0	0.0036			
TERT-BUTYL ALCOHOL		ប	0.50	mg/kg	2.0	0.50			
ACRYLONITRILE		U	0.050	mg/kg	2.0	0.050			
METHYL-T-BUTYL ETH	IER	U	0.026	mg/kg	2.0	0.026			
TRANS-1, 2-DICHLORC	DETHENE	U	0.0070	mg/kg	2.0	0.0070			
DIISOPROPYL ETHER		U	0.026	mg/kg	2.0	0.026			
VINYL ACETATE		U,N	0.010	mg/kg	2.0	0.010			
1,1-DICHLOROETHANE		U	0.0036	mg/kg	2.0	0.0036			
ETHYL-T-BUTYL ETHE	R	U	0.026	mg/kg	2.0	0.026			
2-BUTANONE		U, N	0.15	mg/kg	2.0	0.15			
ETHYL ACETATE		U	0.0050	mg/kg	2.0	0.0050			
SEC-DICHLOROPROPAN		U	0.0084	mg/kg	2.0	0.0034			
CIS-I, 2-DICHLORUEI	HENE	U	0.0024	mg/kg	2.0	0.0024			
	P	U	0.025	mg/kg	2.0	0.025			
METHILACKILONIIKIL			0.025	mg/kg	2.0	0.0070			
TETRAHYDROFIDAM		11	0.0070	""3/ ~3 ma/ka	2.0	0.50			
CHLOROFORM		ט זז	0.0036	mg/kg	2.0	0.0036			
1.1.1.T-TRICHIOROFTH	ANE	11	0,0040	mg/kg	2.0	0.0040			
1-CHLOROBUTANE		Ŭ	0.025	mg/kg	2.0	0.025			
1.1-DICHLOROPROPEN	Е	Ū	0.0036	mg/kg	2.0	0.0036			
CARBON TETRACHLORT	 DE	Ŭ	0.0070	mg/kg	2.0	0.0070			
BENZENE		Ŭ	0.0024	mq/ka	2.0	0.0024			
1,2-DICHLOROETHANE		Ū	0.0030	mg/kg	2.0	0.0030			
,		-	-						

LSR#: B793-9512-1	TRENCH SPOILS PROGRAM
Site:	SOUTH YARD South Area Service Center
Locator:	MISC Miscellaneous sample, see sample comments for location
ClientID:	South Yard Stock Pile From Under Pumps
Lab ID:	L112310-2 Rush - 2 working day TAT
Sample Type:	GRAB (Instantaneous Grab)
Date Collected:	May 11 2004, 01:00pm Sample collector: R LAURITZEN
Date Received:	May 11 2004, 03:24pm Sample receiver: BMARTIN
Sample Comments:	South Yard stockpile soil samples collected from under existing
	dispensers/pumps prior to secondary containment installation; Follow-up
	sample from L112151-1 with Diesel result of 1400 mg/kg; STOCK PILE SAMPLE

Method Reference						Matrix Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML
NAPHTHALENE	υ	0.0050	mg/kg	2.0	0.0050	
1,2,3-TRICHLOROBENZENE	U, N	0.0056	mg/kg	2.0	0.0056	
INTERNAL STANDARD						
FLUOROBENZENE		88.4	<pre>% recove</pre>	ry 1.00		
D5-CHLOROBENZENE		85.4	% recove	ry 1.00		
D4-1,4-DICHLOROBENZENE		74.4	% recove	ry 1.00		
SURROGATE PARAMETERS						
DIBROMOFLUOROMETHANE		94.8	<pre>% recove</pre>	ry 1.00		
D4-DI CHLOROETHANE		81.0	% recove	ry 1.00		
D8-TOLUENE		96.8	% recove	ry 1.00		
4-BROMOFLUOROBENZENE		87.6	<pre>% recove</pre>	ry 1.00		
Run ID: R123086 / Work Group No.: W	G111593					
Prep Date1: 12-MAY-04 Prep Date2: 1	2-MAY-04 Analyzed 1	3-MAY-04				
Method: EPA 6010 - ICAP Metals						Soil
TARGET ANALYTES						
LEAD		1.66	mg/kg	0.196	0.982	

LEAD 1.66 Run ID: R123089 / Work Group No.: WG111619 Prep Datel: 11-MAY-04 Prep Date2: 13-MAY-04 Analyzed 13-MAY-04

				East Ba Laboratory	y Municipal Uti Services Chain	lity District of Custody Record	1	Page 1 of 1
Prelog or Login No.:	: L112310	Project I TRENCH SF Account o	Nitle OILS PROGRAM or Project: B793-9512-1			Client PM: S Tel No.: 1 Lab PM: F	SAFA TOMA 1512 KENNETH GERST	Sampled by: R LAURITZEN Rcvd: 11-MAY-04 15:24 MAN Sample Date: 11-MAY-04
Lab No.	Sample Type Time	Site	Locator	Sample Matrix	Container ID Barcode	Tests Required		Date DueDate Preservative Initials pH
L112310-1	GRAB 14:27	SOUTH YARD	MISC	Soil Soil Soil	523353 JARS 523354 JARS	8260; DIESEL GC/M *ICP: C EPA 6010; +REPORT	IS PB BPA 6010	13-MAY-04
ClientID:	South Yard so Follow	il under dispen -up sample from	sers/pumps Sample Comment L112151-1 with Diesel res	s: B785 7999/ ult of 1400 m	1004686; South) g/kg; SOUTH DIS	Yard soil samples PENSER AT 5.5'	collected fi Friding: STD	rom under existing dispensers/pumps prior to secondary co
L112310-2	GRAB 13:00	SOUTH YARD	MISC	Soil Soil Soil	523361 JARS 523362 JARS	8260;DIESEL GC/M *ICP:C EPA 6010; +REPORT	IS PB EPA 6010	13-MAY-04
ClientID:	South Yard St sample	ock Pile From U from <u>Lil2151-1</u>	nder Pumps Sample Comment with Diesel result of 140	s: South Yard D mg/kg; STOC	stockpile soil PILE SAMPLE	samples collecte Pricing: STD	d from under	existing dispensers/pumps prior to secondary containment
	Total contai	ners received:	4	····.		······	·	
		Signatu	re	Print Na	ame	Time	Date	
Relinquish	led by							Type Codes: CF01;CF02;CF03;CFV;COMP;CT01;CT02;CT03 CT04;CT05;CT06;CT07;CT08;CTV;GRAB
Received b	р <u>у</u>							
Relinquish	ed by							
Received b	<u>у</u>							
Relinquish	ed by							·
Received b	<u>у</u>			Bobbi J	Martin	15:24	11-MAY-04	

C	1103	10		1	East Ba	y Municipal U Services Chai:	cility District	d		Page	1 of 1		
Prelog or Login No.: 1	P111302	Project TRENCH S Account	Title POILS PROGRAM or Project: B793-	9512-1			Client PM: Tel No.: Lab PM:	SAFA TOMA 1512 KENNETH GERSTMA	N	Sampl Sample	ed by: Rcvd: Date:		
Lab No.	Sample Type Time	Site	Locator	· · · · · · · · · · · · · · · · · · ·	Sample Matrix	Conțainer I Barcode) Tests Required				Preservative	Date Initials	DueDate pH
1111302- 1 South cli	дгав 5 <i>рс1.9ст (</i>)	SOUTH YARD	- D-10 5.5	- 1	Soil Soil Soil	523353 JAR 523354 JAR	5 8260;DIESEL GC/ 5 *ICP:C EPA 6010 +REPORT	NS 7PB BPA 6010			أزد	5/11/04 PA-C	
ClientID: So	outh Yard so Follow	oil under dispe v-up sample fro	nsers/pumps Samp m L112151-1 with	ole Comments: Diesel result	B785 7999/ of 1400 m	1004686; Sout g/kg Pricing	n Yard soil sample : STD	s collected fro	m under exist	ing disp	ensers/pumps	prior to	secondary
PI11302-2 Gtock	GRAB pile Sample	SOUTH YARD	MISC		Soil Soil Soil	523361 JAR 523362 JAR	S 8260;DIESEL GC/ S *ICP:C EPA 6010 +REPORT	MS ;PB BPA 6010			i(e	5/11/04 BA-	,
ClientID: So	outh Yard St sample	cock Pile From from L112151-	Under Pumps Samp 1 with Diesel res	le Comments: wit of 1400 m	South Yard g/kg: Pric	stockpile so ing: STD	il samples collect	ed from under e	xisting dispe	nsers/pu	mps prior to	secondary	containm
5	Total contai	iners received:	4										
			ure		Print N	ame	Time	Date					
		Signat											
Relinquished	a by R	slut A.	L.T.	Ro	pert	Laurst	2m	5/11/04	Type Codes:	CF01;CF0 CT04;CT0	2;CF03;CFV;C 5;CT06;CT07;	OMP;CT01;C CT08;CTV;G	T02;CT03 RAB
Relinquished Received by	а _{by} <i>Қи</i>	signat	hψ	Ro	<u>pert</u>	Laurit	2m	5/11/04	Type Codes:	CF01;CF0 CT04;CT0	2;CF03;CFV;C 5;CT06;CT07;	OMP ; CT01 ; C CT08 ; CTV ; G	T02;CT03 RAB
Relinquished Received by Relinquished	a by - a by	signat	λÿ	Ro S	Dect	Laurit	2/n	5/11/04	Type Codes:	CF01 ; CF0 CT04 ; CT0	2; CF03; CFV; C 5; CT06; CT07;	0MP;CT01;C CT08;CTV;G	T02;CT03 RAB
Relinquished Received by Relinquished Received by	a by R - a by	signat Aut A.	tip S	Ro S	Pect	Laurit	2/n	5/11/04 X	Type Codes:	CF01;CF0 CT04;CT0	2;CF03;CFV;C 5;CT06;CT07;	OMP;CT01;C CT08;CTV;G	T02;CT03 RAB
Relinquished Received by Relinquished Received by Relinquished	d by - d by - d by	signat Aut A.	AP X		pert V	<u>Lavid</u>	2/h	511/04 X	Type Codes:	CF01;CF0 CT04;CT0	2; CF03; CFV; C 5; CT06; CT07;	OMP;CT01;C CT08;CTV;G	T02;CT03 RAB

APPENDIX B

Soil Boring Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 04/14/2009 By jamesy

Permit Numbers: W2009-0277 Permits Valid from 04/17/2009 to 04/17/2009

Total Amount Paid:

Paid By: VISA

Application Id: Site Location:	1239645428317 589 East Lewelling Blvd	City of Proje	ect Site:San Lorenzo	
Project Start Date: Assigned Inspector:	San Lorenzo, Ca 04/17/2009 Contact John Shouldice at (510) 670-5424 or johns@	Completic @acpwa.org	on Date:04/17/2009	
Applicant:	Alisto Engineering Group - Chris Reinheimer	04507	Phone: 925-279-5000	
Property Owner:	East Bay MUD East Bay MUD	94397	Phone:	
Client:	same as above same as above same as above, same as above, CA 94607		Phone:	
	Tot	al Due:		\$230.00

Receipt Number: WR2009-0133

Payer Name : Evelyn S Sevilla

Works Requesting Permits:

Specifications

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 2 Boreholes Driller: EnProbe - Lic #: 748088 - Method: DP

Work Total: \$230.00

<u>\$230.00</u>

PAID IN FULL

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2009-	04/14/2009	07/16/2009	2	2.25 in.	30.00 ft
0277					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

Alameda County Public Works Agency - Water Resources Well Permit

waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX C

Boring Logs

Z:\DWG_ASSESS\06\10654\10-654-42

APPENDIX D

Field Procedures for Drilling, Soil Sampling, and Grab Groundwater Sampling

FIELD PROCEDURES FOR DRILLING, SOIL SAMPLING, AND GRAB GROUNDWATER SAMPLING

Drilling

The borings were drilled using a truck-mounted Geoprobe direct-push drilling rig equipped with a 2.25-inch-diameter continuous sampling tool. To avoid cross-contamination, drilling equipment in contact with potentially contaminated material was decontaminated by steam cleaning before and after each use. Decontamination fluids were placed into DOT-approved drums for disposal.

Soil and Grab Groundwater Sampling

During drilling, core samples were collected at minimum interval of five feet using a coring tool lined with Lexan sample tubes, beginning at 5 feet below grade to the total depth of the borings. Before and after each use, the sampler was washed using a phosphate-free detergent followed by tap water and deionized water rinses.

After retrieval from the Geoprobe drill string, the sample core was removed, and a soil sample was selected for chemical analysis. The sample was retained within the Lexan liner, and both ends were immediately covered with Teflon sheeting and polyurethane caps. The caps were sealed with tape and labeled with the following information: Alisto's project number, boring number, sample depth interval, sampler's initials, and date of collection. The sample was immediately placed in a waterproof plastic bag and stored in a cooler containing blue ice. Possession of the samples was documented from the field to a state-certified analytical laboratory by using a chain of custody form.

Soil samples were described by Alisto's personnel using the Unified Soils Classification System; and field estimates of soil type, color, moisture, density, and consistency were noted on the boring logs. The logs were reviewed by a civil engineer registered in the state of California.

Once the desired sampling depth of the boring was reached a Hydropunch tool was used or the Geoprobe drill string was retrieved from the boring and clean temporary well casing was installed in the boring to prevent caving. If sufficient groundwater was present in the boring, a grab groundwater sample was collected using with either a peristaltic surface pump. The grab groundwater sample was immediately placed into the appropriate laboratory-supplied container, properly labeled and temporarily stored in an iced cooler.

After completion of the grab groundwater sampling, the temporary casing was removed and the borings were backfilled using tremied neat cement from the total depth to within 6 inches of grade. The surface was repaired to match existing with either asphalt cold patch or concrete.

APPENDIX E

Field Procedures for Chain of Custody Documentation, Laboratory Reports, and Chain of Custody Records

FIELD PROCEDURES FOR CHAIN OF CUSTODY DOCUMENTATION

Samples were handled in accordance with the California Department of Health Services guidelines. Each sample was labeled in the field and immediately stored in an iced cooler for transport to a state-certified laboratory for analysis. All samples were delivered to the lab within 24 hours of collection by Alisto engineering personnel

A chain of custody record accompanied the samples and included the site and sample identification, date of collection, analysis requested, and the name and signature of the sampling technician. When transferring possession of the samples, the transferee signed and dated the chain of custody record.

EBMUD Laboratory Analytical Report

EAST BAY MUNICIPAL UTILITY DISTRICT Laboratory Services Division PO Box 24055, MS 59, Oakland, CA 94623 Phone (510)287-1432 Fax (510)465-5462

California Environmental Laboratory Accreditation Program Certificate Number 1060

Laboratory Report - L151437

LSR # - B793-9512-1 Project Title: TRENCH SPOILS PROGRAM

Report generated on: Jun 01, 2009 07:59 am

8 - Samples received by the lab on: Apr 22 2009, 09:22 am 0 - Lost Analyses 0 - Hold Time Exceedences Turn-around-time met

Client PM: JOHN WALTER

Samples included in this report:

Lab PM: KENNETH GERSTMAN

This is an electronic transmittal of a Laboratory Analytical Report

Jampieco ino:	Luucu	TH OHTO TOPO	20				
Sample	Туре	Collected		Site		Locator	ClientID
L151437-1	GRAB	17-Apr-2009	08:50	SOUTH	YARD	MISC	Bl 6ft
L151437-2	GRAB	17-Apr-2009	08:55	SOUTH	YARD	MISC	Bl 11ft
L151437-3	GRAB	17-Apr-2009	09:00	SOUTH	YARD	MISC	Bl 17ft
L151437-4	GRAB	17-Apr-2009	09:45	SOUTH	YARD	MISC	B2 6ft
L151437-5	GRAB	17-Apr-2009	09:50	SOUTH	YARD	MISC	B2 11ft
L151437-6	GRAB	17-Apr-2009	10:00	SOUTH	YARD	MISC	B2 17ft
L151437-7	GRAB	17-Apr-2009	09:30	SOUTH	YARD	MISC	B1W
L151437-8	GRAB	17-Apr-2009	10:30	SOUTH	YARD	MISC	B2W

Legend to the laboratory qualifiers used in this report: U - Analyte not detected Qualifiers for subcontract work - See textvalue for description

RESULTS IN THIS REPORT ARE REPORTED IN ACCORDANCE WITH TITLE 22, SECTION 64819

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	Bl 6ft	
Lab ID:	L151437-1 (P153643-1	1)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 08:50ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	ASE:GC/MS					Soil	
TARGET ANALYTES							
DIESEL	U	1.5	mg/kg	1	1.5		
MOTOR OIL COMPOSITE (C21-C32)	U	18	mg/kg	1	18		
INTERNAL STANDARD							
5-A-ANDROSTANE		168	% recover	y 1			
Run ID: R183225 / Work Group No.: WG1541	37						
Prep Date1: 30-APR-09 Prep Date2: 06-MAY	-09 Analyzed	06-May-09	20:11				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					Soil	
TARGET ANALYTES							
NAPHTHALENE	U	0.021	mg/kg	1	0.021		
INTERNAL STANDARD							
D8-NAPHTHALENE		91.7	% recover	y 1	1		
SURROGATE							
2-FLUOROBIPHENYL		73	% recover	y 1			
Run ID: R183102 / Work Group No.: WG1539	81						
Prep Date1: 29-APR-09 Prep Date2: 05-MAY	-09 Analyzed	06-May-09	02:13				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	B1 11ft	
Lab ID:	L151437-2 (P153643-2	2)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 08:55ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	ASE:GC/MS					Soil	
TARGET ANALYTES							
DIESEL	U	1.5	mg/kg	1	1.5		
MOTOR OIL COMPOSITE (C21-C32)	U	18	mg/kg	1	18		
INTERNAL STANDARD							
5-A-ANDROSTANE		136	% recover	y 1			
Run ID: R183225 / Work Group No.: WG1541	37						
Prep Date1: 30-APR-09 Prep Date2: 06-MAY	-09 Analyzed (06-May-09 2	20:37				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					Soil	
TARGET ANALYTES							
NAPHTHALENE	U	0.021	mg/kg	1	0.021		
INTERNAL STANDARD							
D8-NAPHTHALENE		91.9	% recover	y 1	1		
SURROGATE							
2-FLUOROBIPHENYL		74	% recover	y 1			
Run ID: R183102 / Work Group No.: WG1539	81						
Prep Date1: 29-APR-09 Prep Date2: 05-MAY	-09 Analyzed (06-May-09 0	2:58				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	B1 17ft	
Lab ID:	L151437-3 (P153643-3	3)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 09:00ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	ASE:GC/MS					Soil	
TARGET ANALYTES							
DIESEL	U	1.5	mg/kg	1	1.5		
MOTOR OIL COMPOSITE (C21-C32)	U	18	mg/kg	1	18		
INTERNAL STANDARD							
5-A-ANDROSTANE		159	% recover	ry 1			
Run ID: R183225 / Work Group No.: WG1541	37						
Prep Date1: 30-APR-09 Prep Date2: 06-MAY	-09 Analyzed	06-May-09	21:03				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					Soil	
TARGET ANALYTES							
NAPHTHALENE	U	0.021	mg/kg	1	0.021		
INTERNAL STANDARD							
D8-NAPHTHALENE		87.8	% recover	ry 1	1		
SURROGATE							
2-FLUOROBIPHENYL		75	% recover	ry 1			
Run ID: R183102 / Work Group No.: WG1539	81						
Prep Date1: 29-APR-09 Prep Date2: 05-MAY	-09 Analyzed	06-May-09	03:43				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	B2 6ft	
Lab ID:	L151437-4 (P153643-4	1)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 09:45ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	ASE:GC/MS					Soil	
TARGET ANALYTES							
DIESEL	U	1.5	mg/kg	1	1.5		
MOTOR OIL COMPOSITE (C21-C32)	U	18	mg/kg	1	18		
INTERNAL STANDARD							
5-A-ANDROSTANE		144	% recover	y 1			
Run ID: R183225 / Work Group No.: WG1541	37						
Prep Date1: 30-APR-09 Prep Date2: 06-MAY	-09 Analyzed	06-May-09 2	21:29				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					Soil	
TARGET ANALYTES							
NAPHTHALENE	U	0.021	mg/kg	1	0.021		
INTERNAL STANDARD							
D8-NAPHTHALENE		85.6	% recover	y 1	1		
SURROGATE							
2-FLUOROBIPHENYL		74	% recover	y 1			
Run ID: R183102 / Work Group No.: WG1539	81						
Prep Date1: 29-APR-09 Prep Date2: 05-MAY	-09 Analyzed	06-May-09 ()4:29				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	B2 11ft	
Lab ID:	L151437-5 (P153643-	5)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 09:50ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	ASE:GC/MS					Soil	
TARGET ANALYTES							
DIESEL	U	1.5	mg/kg	1	1.5		
MOTOR OIL COMPOSITE (C21-C32)	U	18	mg/kg	1	18		
INTERNAL STANDARD							
5-A-ANDROSTANE		141	% recover	y 1			
Run ID: R183225 / Work Group No.: WG1541	37						
Prep Date1: 30-APR-09 Prep Date2: 06-MAY	-09 Analyzed	06-May-09	21:55				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					Soil	
TARGET ANALYTES							
NAPHTHALENE	U	0.021	mg/kg	1	0.021		
INTERNAL STANDARD							
D8-NAPHTHALENE		95.7	% recover	y 1	1		
SURROGATE							
2-FLUOROBIPHENYL		67	% recover	y 1			
Run ID: R183102 / Work Group No.: WG1539	81						
Prep Date1: 29-APR-09 Prep Date2: 05-MAY	-09 Analyzed	06-May-09	05:15				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	B2 17ft	
Lab ID:	L151437-6 (P153643-6	5)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 10:00ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	ASE:GC/MS					Soil	
TARGET ANALYTES							
DIESEL	U	1.5	mg/kg	1	1.5		
MOTOR OIL COMPOSITE (C21-C32)	U	18	mg/kg	1	18		
INTERNAL STANDARD							
5-A-ANDROSTANE		148	% recover	y 1			
Run ID: R183225 / Work Group No.: WG1541	37						
Prep Date1: 30-APR-09 Prep Date2: 06-MAY	-09 Analyzed	06-May-09	22:20				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					Soil	
TARGET ANALYTES							
NAPHTHALENE	U	0.021	mg/kg	1	0.021		
INTERNAL STANDARD							
D8-NAPHTHALENE		87.0	% recover	y 1	1		
SURROGATE							
2-FLUOROBIPHENYL		78	% recover	y 1			
Run ID: R183102 / Work Group No.: WG1539	81						
Prep Date1: 29-APR-09 Prep Date2: 05-MAY	-09 Analyzed	06-May-09	06:00				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	B1W	
Lab ID:	L151437-7 (P153643-7	7)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 09:30ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	L/L:GCMS					GroundH20	
TARGET ANALYTES							
DIESEL	U	20	ug/L	1	20		
MOTOR OIL COMPOSITE (C21-C32)	U	260	ug/L	1	260		
INTERNAL STANDARD							
5-A-ANDROSTANE		152	% recov	ery 1			
Run ID: R183227 / Work Group No.: WG1541	.38						
Prep Date1: 23-APR-09 Prep Date2: 06-MAY	-09 Analyzed	06-May-09	22:46				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					GroundH20	
TARGET ANALYTES							
NAPHTHALENE	U	0.21	ug/L	1.04	0.21		
INTERNAL STANDARD							
D8-NAPHTHALENE		82.2	% recov	ery 1	1		
SURROGATE							
2-FLUOROBIPHENYL		82	% recov	ery 1			
Run ID: R183108 / Work Group No.: WG1539	82						
Prep Date1: 23-APR-09 Prep Date2: 05-MAY	-09 Analyzed	06-May-09	06:46				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level

LSR#: B793-9512-2	L TRENCH SPOILS PROC	GRAM
Site:	SOUTH YARD	South Area Service Center
Locator:	MISC	Miscellaneous sample, see sample comments for location
ClientID:	B2W	
Lab ID:	L151437-8 (P153643-8	3)
Sample Type:	GRAB (Instantaneous	Grab)
Date Collected:	Apr 17 2009, 10:30ar	n Sample collector: SParker/Alisto
Date Received:	Apr 22 2009, 09:22ar	n Sample receiver: DNG
Sample Comments:	Analyst Note: DIESE	GC/MS report DIESEL only; 8270 report NAPHTHALENE
	only.	

Method Reference						Matrix	Tag
Parameter	Qualifier	Result	Units	Dilution	MDL	RL/ML	
Method: CALIFORNIA LUFT MANUAL - Diesel:	L/L:GCMS					GroundH2O	
TARGET ANALYTES							
DIESEL	U	20	ug/L	1	20		
MOTOR OIL COMPOSITE (C21-C32)	U	260	ug/L	1	260		
INTERNAL STANDARD							
5-A-ANDROSTANE		142	% recov	ery 1			
Run ID: R183227 / Work Group No.: WG1541	38						
Prep Date1: 23-APR-09 Prep Date2: 06-MAY	-09 Analyzed	06-May-09	23:12				
Method: EPA 8270C - Semivolatile Organic	s: GC/MS					GroundH2O	
TARGET ANALYTES							
NAPHTHALENE	U	0.21	ug/L	1.06	0.21		
INTERNAL STANDARD							
D8-NAPHTHALENE		85.8	% recov	ery 1	1		
SURROGATE							
2-FLUOROBIPHENYL		83	% recov	ery 1			
Run ID: R183108 / Work Group No.: WG1539	82						
Prep Date1: 23-APR-09 Prep Date2: 05-MAY	-09 Analyzed	06-May-09	07:31				

RL is either the client requested or regulatory mandated Reporting Limit. ML is the regulatory mandated Minimum Level