ROTECTION

4 \$P16 AH 9:31

GROUNDWATER MONITORING REPORT APRIL 1996

Northwest Area Marina Village Alameda, California

Prepared for

Alameda Marina Village Associates 1150 Marina Village Parkway Alameda, California

September 1996 Project No. 1736.14

Geomatrix Consultants

13 September 1996 Project 1736

Ms. Juliet Shin Alameda County Health Care Services Agency Divisions of Hazardous Materials Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

Subject:

Groundwater Monitoring Report

April 1996 Northwest Area

Marina Village Development

Alameda, California

Dear Ms. Shin:

On behalf of Alameda Marina Village Associates (AMVA), Geomatrix Consultants, Inc. (Geomatrix), is submitting the subject report. Based on the data presented in this report, we recommend discontinuation of groundwater monitoring at the site, and consideration of the site for closure according to Regional Water Quality Control Board Guidelines for Low Risk Groundwater cases. We look forward to discussing site closure and discontinuation of monitoring with you at our 18 September 1996 meeting.

Sincerely,

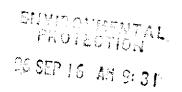
GEOMATRIX CONSULTANTS

Monne G. Prace

Yvonne G. Pierce, R.G.

Senior Geologist

Elizabeth A. Nixon, P.E.


Senior Engineer

YGP/EAN:mdg K:\WPDOCS\1736\GMR1-LTR:DOC (WORD)

Enclosure

cc: Rahn Verhaeghe, AMVA
Geomatrix Consultants, Inc.

Engineers, Geologists, and Environmental Scientists

GROUNDWATER MONITORING REPORT APRIL 1996

Northwest Area Marina Village Alameda, California

Prepared for

Alameda Marina Village Associates 1150 Marina Village Parkway Alameda, California

September 1996 Project No. 1736.14

Geomatrix Consultants

TABLE OF CONTENTS

		<u>Page</u>
1.0 INTR	ODUCTION AND OBJECTIVES	1
2.0 BAC	KGROUND	. 1
3.0 SEPA	RATE-PHASE PRODUCT AND WATER-LEVEL MEASUREMENTS	3
4.0 GRO	UNDWATER SAMPLING	4
6.0 CON	CLUSIONS AND RECOMMENDATIONS	5
7.0 REFE	RENCES	7
	LIST OF TABLES	
Table 1 Table 2 Table 3	Well Construction Details Water-Level Measurements Historical Groundwater Analytical Results	
	LIST OF FIGURES	
Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Well Location Map Potentiometric Surface Map, 15 April 1996 Groundwater Analytical Results, 15 April 1996	
	LIST OF APPENDICES	
Appendix A Appendix B	Water Level and Monitoring Well Sampling Record Field Sheets Analytical Laboratory Reports and Chain-of-Custody Documentation	

GROUNDWATER MONITORING REPORT APRIL 1996 Northwest Area Marina Village Alameda, California

1.0 INTRODUCTION AND OBJECTIVES

This report presents a summary of groundwater monitoring activities conducted by Geomatrix Consultants, Inc. (Geomatrix) on behalf of the Alameda Marina Village Associates (AMVA) at the Northwest Area of Marina Village in Alameda, California (Figure 1). The work was performed in response to the 6 April 1995 letter from the Alameda County Health Care Services Agency (ACHCSA) to the AMVA requesting additional soil and groundwater investigations at the site. Work was conducted in accordance with the 13 June 1995 work plan prepared by Geomatrix, which was approved by ACHCSA in a 22 June 1995 letter to AMVA.

The objective of this sampling event was to confirm the results of the July 1995 monitoring event, including: (1) the possible presence of separate-phase hydrocarbons in wells at the site; (2) the distribution of possible dissolved petroleum hydrocarbons and their constituents, benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater at the site; and (3) the direction of the hydraulic gradient at the site. These data were subsequently used as a basis for recommendations regarding the discontinuation of monitoring and the development of a management program for closure of the site.

2.0 BACKGROUND

The site currently consists of undeveloped areas and paved parking lots. The site is bounded to the east by Oakland Inner Harbor and boat docks, to the west by Marina Village Parkway, to the south by four former shipways that currently are developed as office space, and to the north by an adjacent property owned by Barnhill Construction Company (Figure 2). A sheet-pile wall extends from the shipways westward and northward along the boat docks as shown on Figure 2.

The historical direction of the hydraulic gradient at the site generally has been toward Oakland Inner Harbor, and may be influenced by the presence of the sheet-pile wall and tidal fluctuations.

The extent of petroleum hydrocarbons in soil at the site and surrounding areas was characterized during previous investigations performed by Levine-Fricke (1988, 1989, 1990) and Geomatrix (1992). Based on the results of these investigations, medium- and high-boiling petroleum hydrocarbons (crude oil, waste oil, diesel oil and fuel) were detected in shallow soil at concentrations greater than 500 parts per million (ppm) beneath approximately 2.5 acres of the site. Residual separate-phase high-boiling petroleum hydrocarbons, characterized as degraded crude oil, were observed in the soil beneath an area of approximately 1.3 acres adjacent to the northwest property boundary. The vertical extent of petroleum hydrocarbons in soil has been limited by the occurrence of estuarine clay sediments, locally referred to as San Francisco Bay Mud. The Bay Mud occurs at shallow depths (ranging from approximately 4 to 15 feet) below the ground surface at the site. The source of petroleum hydrocarbons in soil at the site likely was a combination of shipbuilding activities at and in the vicinity of the site that date back to the first half of this century, and historical off-site sources to the northwest of Marina Village. Other chemicals that have been detected in soil include lead, which was detected in two samples at concentrations of 130 and 520 milligrams per kilogram (mg/kg), and toluene, concentrations up to 0.7 mg/kg.

Since 1987, ten shallow groundwater monitoring wells have been installed at the Northwest Area (Figure 2). Well construction details for these wells are summarized in Table 1. From 1988 to 1990, concentrations of medium and high boiling petroleum hydrocarbons detected in groundwater were either in the range of several milligrams per liter (mg/l) or were not detected in groundwater samples from wells located at the site downgradient perimeter (wells WC-3, LF-6, LF-7, LF-11, LF-12, LF-13 and GMW-2). Separate-phase product or petroleum sheen were observed in two of the wells, LF-8 and LF-9, located near the northwest property boundary. A sheen was also observed in groundwater from well LF-10, which is located approximately upgradient from the Northwest Area. TPH concentrations measured in Well LF-10 in 1990 were 17 mg/l. Very low concentrations of dissolved petroleum hydrocarbon constituents benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in groundwater samples from wells

LF-7, LF-9, and LF-13 during one sampling round in 1990. During a subsequent sampling event (July 1995), total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as motor oil (TPHmo), and BTEX were not detected in groundwater samples collected except for low concentrations of TPHd (0.07 mg/l) in the sample from well LF-10.

In 1993 a 10,000 cubic yard soil stockpile was placed in the vicinity of monitoring well LF-9, rendering this well inaccessible for sampling. As discussed in our previous groundwater monitoring report dated December 1995, data that would be obtained from this well would not provide additional information regarding site characterization or the potential for migration of petroleum hydrocarbons towards Oakland Inner Harbor that is not already available.

3.0 SEPARATE-PHASE PRODUCT AND WATER-LEVEL MEASUREMENTS

The presence of separate-phase petroleum hydrocarbons was measured to the nearest 0.01 foot on 15 April 1996 using a Flexidip oil-water interface probe. Water levels were measured on 15 April 1996 using an electric well sounder. Measurement equipment was washed with a detergent-water solution and rinsed with deionized water before each measurement was taken. Separate-phase product and water-level measurements are summarized in Table 2; field records for these measurements are included in Appendix A.

Approximately 2 inches of separate-phase product previously characterized as degraded crude oil was measured on top of the water column in well LF-8. Separate-phase product was not measured nor sheen observed in the other wells tested. Water-level elevations across the site ranged from -1.3 feet at well LF-13 to -5.26 feet at well WC-3 (relative to City of Alameda datum). The horizontal hydraulic gradient direction at the site, although generally to the southeast toward Oakland Inner Harbor, appears to be locally variable, with gradient directions ranging from southeast in the northwestern portion to south in the southeastern portion. The potentiometric surface map for 15 April 1996 is shown on Figure 3. This variable gradient direction is consistent with measurements taken since monitoring was initiated in 1988. It is believed that the

observed variability is a result of tidal influence and the presence of the sheet-pile wall that is aligned along the shoreline.

4.0 GROUNDWATER SAMPLING

Before sample collection, the wells were purged with a diaphragm pump or disposable bailer until a minimum of four casing volumes were removed and water quality parameters stabilized. The purge water was collected in 55-gallon drums and stored temporarily on site pending analysis. Groundwater samples were collected using disposable polyethylene bailers from monitoring wells LF-6, LF-7, LF-10, LF-11, LF-12, LF-13, WC-3, and GMW-2 on 15 April 1996. No sample was collected from well LF-8 due to the presence of separate-phase product in the well. Field records for sampling are included in Appendix A.

Samples to be analyzed for extractable petroleum hydrocarbons and lead were transferred to 1-liter amber bottles, and samples to be analyzed for BTEX were transferred to 40-milliliter volatile organic analysis vials. Immediately after collection, samples were placed in an ice-chilled cooler and transported under Geomatrix chain-of-custody procedures to Friedman and Bruya, Inc., of Seattle, Washington, a California-certified laboratory.

5.0 LABORATORY ANALYTICAL PROGRAM AND RESULTS

The analytical program consisted of analyzing samples from eight wells by modified EPA Method 8015 for TPHd and TPHmo. Samples from wells LF-7 and LF-13 additionally were analyzed according to EPA Method 8020 for BTEX. As requested by the ACHCSA in a 2 May 1996 meeting, samples from wells LF-11 and LF-12 were analyzed for total lead by EPA Method 6010 to evaluate the possible presence of lead in groundwater downgradient of the area, where low concentrations of lead historically had been detected in shallow soil. One equipment blank (identified as sample EBNT-41596) and one blind field duplicate from well LF-10 (identified as sample LF-14) were collected and analyzed for TPHd and TPHmo for quality control purposes. Additionally, one equipment blank (identified as sample EBNT-41596) and

one blind field duplicate from well LF-7 (identified as sample LF-15) were collected and analyzed for BTEX for quality control purposes.

Samples for TPHd and TPHmo analysis were filtered by the laboratory prior to extraction with a 0.7-micron glass filter to remove nondissolved petroleum hydrocarbons associated with particulates in the sample media that possibly can cause interference with the analysis. In addition, to remove polar biogenic materials from the samples, a silica gel cleanup procedure was used in the preparation of the sample extract.

Groundwater analytical results for samples collected to date from the monitoring wells are summarized in Table 3. Analytical results from this latest sampling event are presented on Figure 4. Analytical laboratory reports and chain-of-custody documentation for the samples collected during this sampling event are presented in Appendix B.

No lead, TPHd, or TPHmo were detected in the groundwater samples. BTEX was not detected in any samples except in one set of samples from well LF-7 (0.7 micrograms per liter ($\mu g/l$) of benzene and 0.7 $\mu g/l$ of toluene). BTEX was not detected in duplicate samples from this well. Similar low concentrations of benzene and toluene historically have occurred sporadically in some of the wells, and may be due to the proximity of the adjacent boat dock and Oakland Inner Harbor.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on data obtained during this groundwater monitoring event, we conclude the following:

- The hydraulic gradient at the site generally appears to be to the east towards Oakland Inner Harbor. Local variability in the gradient may be a result of tidal influence and the presence of a shoreline sheet-pile wall.
- No lead was detected in groundwater samples collected.
- No TPHd or TPHmo were detected in groundwater samples collected.

- Residual separate-phase crude oil was measured in well LF-8 and historically observed in well LF-9 along the northern property boundary; however, TPHd and TPHmo have not been detected in samples collected in 1995 and 1996 from wells LF-13, LF-7, LF-12, and LF-6 located downgradient of wells LF-8 and LF-9.
- Benzene (0.7 μg/l) and toluene (0.7 μg/l) were detected in one of the samples (but not the duplicate sample) from well LF-7. No BTEX was detected in the sample from LF-13.
- Based on the data, groundwater at the perimeter of the Northwest Area does not
 contain dissolved petroleum hydrocarbons or significant concentrations of BTEX.
 The data collected since 1988 indicate that residual petroleum hydrocarbons in soil
 beneath the Northwest Area are not a continuing source of petroleum hydrocarbons to
 groundwater. Therefore, the potential for migration of these constituents toward
 Oakland Inner Harbor is very low.

Based on these conclusions, we recommend discontinuation of groundwater monitoring at the site. Sufficient data have been collected to establish site conditions and to provide the basis for supporting a recommendation for site closure under the California Regional Water Quality Control Board (RWQCB) Guidelines for Low Risk Groundwater Case Closure.

7.0 REFERENCES

- Geomatrix Consultants, Inc., 1992, Soil and Groundwater Quality Investigation, Shipways Project, Marina Village Development, Alameda, California, prepared for Alameda Real Estate Investments, July.
- Geomatrix Consultants, Inc., 1995, Groundwater Monitoring Report, Lots 1 and 2 (Northwest Area), Marina Village, Alameda, California, prepared for Alameda Marina Village Associates, December
- Levine•Fricke, 1988, Investigations of Northwest Area Marina Village, Alameda, California, 6 October.
- Levine•Fricke, 1989, Continued Soil and Groundwater Investigation of Parcel 5, Implementation of a Groundwater Monitoring Program and Proposed Remedial Measures in the Northwest Study Area, Marina Village, Alameda, California, 26 June.
- Levine•Fricke, 1990, Results of Third Round of Groundwater Sampling, Northwest Area, Marina Village, Alameda, California, 13 April.

WELL CONSTRUCTION DETAILS

Northwest Area Marina Village Alameda, California

Well Number	Date Constructed	Well Depth (feet below grade)	Screened Interval (feet below grade)	Measuring Point Elevation (feet)
LF-6	3/88	15	5-15	3.30
LF-7	3/88	15	5-15	4.56
LF-8	3/88	15	5-15	4.84
LF-9	3/88	15	5-15	NA ²
LF-10	3/88	15	5-15	3.95
LF-11	3/89	15	5-15	5.09
LF-12	3/89	15	5-15	7.19
LF-13	3/89	13	3-13	2.95
WC-3	1987	14	7-14	3.84
GMW-2	3/16/92	13.5	3-13	3.5

Notes:

Top of well casings were surveyed on 10 July 1995 by Luk, Milani & Associates of Walnut Creek, California, relative to an established City of Alameda datum. Well LF-9 not accessible for surveying.

WATER-LEVEL MEASUREMENTS

Northwest Area Marina Village Alameda, California

Well Number	Date Water Level Measured	Measuring Point (MP) Elevation ¹	Depth to Water Below MP ² (feet)	Water-Level Elevation ¹	Separate Phase Product Thickness ³ (feet)
LF-6	4/15/96	3.3	5.74	-2.44	0
LF-7	4/15/96	4.56	7.11	-2.55	0
LF-8	4/15/96	4.84	7.084	NA ⁵	0.16
LF-10	4/15/96	3.95	7.52	-3.57	0
LF-11	4/15/96	5.09	8.13	-3.04	0
LF-12	4/15/96	7.19	10.50	-3.31	0
LF-13	4/15/96	2.95	4.25	-1.3	0
WC-3	4/15/96	3.84	9.10	-5.26	0
GMW-2	4/15/96	3.5	6.86	-3.36	0

Notes:

Top of well casings were surveyed on 10 July 1995 by Luk, Milani & Associates of Walnut Creek, California, relative to an established City of Alameda datum. Water levels were measured with an electric sounder.

³

Thickness of separate-phase product measured with a Flexidip oil-water interface probe.

Measurement is approximate.

Water-level elevation not calculated due to the presence of separate-phase product.

HISTORICAL GROUNDWATER ANALYTICAL RESULTS¹

Page 1 of 3

Northwest Area Marina Village Alameda, California

Concentrations in milligrams per liter (mg/l)

Well Number	Date Sampled	TPHd ²	TPHmo ³	Веплене	Toluene	Ethylbenzene	Xylenes	Total Lead	Petroleum Product ⁴ Thickness (inches)
LF-6	3/29/88	<0.05	<0.05	< 0.004	<0.006	<0.007	NA	NA	
	3/28/89	<0.3	<0.5	< 0.0005	<0.0005	<0.0005	< 0.002	NA	
	8/3/89	<0.3	<0.5	NA	NA	NA	NA	NA	
	1/1/90	NA	NA	NA	NA.	NA	NA	NA	
	7/12/95	<0.05	<0.2	NA	NA NA	NA	NA	NA	
	4/15/96	< 0.05	<0.25	NA	NA	NA	NA	NA	
LF-7	3/29/88	<0.05	< 0.05	< 0.004	<0.006	<0.007	NA	NA	
D1 /	3/28/89	<0.3	1.8	< 0.0005	<0.0005	<0.0005	<0.002	NA	
	8/3/89	<0.3	<0.5	NA	NA .	NA	NA	NA	ł
	1/31/90	< 0.3	3.3	< 0.0005	0.003	0.001	0.007	NA	1
	7/13/95	< 0.05	<0.2	< 0.0005	<0.0005	< 0.0005	< 0.002	NA	
	4/15/96	< 0.05	<0.25	0.0007/<0.0005	0.0007/<0.0005	<0.0005/<0.0005	<0.0005/<0.0005	NA	
LF-8	3/29/88	62.0	NQ	< 0.004	< 0.006	<0.007	NA	NA	<0.1
	3/28/89	ΝA	NA	< 0.003	< 0.003	< 0.003	< 0.010	NA	Approx. 2
	8/3/89	NA	NA	NA	NA	NA	NA	NA	Approx. 5
	1/31/90	NA	NA	NA	NA ,	NA	NA	NA	Approx. 7
	7/11/95	NA	NA	NA	NA	NA	NA	NA	Approx. 6
	4/15/96	NA	NA	NA	NA	NA	NA	NA	Арргох. 2
LF-9	3/29/88	54.0	NQ	<0.004	<0.006	0.007	NA	NA	
2.	3/28/89	12.0	6.0	< 0.0005	<0.0005	< 0.0005	< 0.002	NA	
	8/3/89	79.0	67.0	NA	NA	NA	NA	NA	
	1/31/90	15.0/12.0	17.0/15.0	0.003/0.003	<0.0005/<0.0005	0.007/0.006	0.014/0.012	NA	

TABLE 3 $\label{eq:historical groundwater analytical results^1 }$

Page 2 of 3

Well Number	Date Sampled	TPHd²	TPHmo ³	Benzenc	Toluene	Ethylbenzens	Xylenes	Total Lead	Petroleum Product ⁴ Thickness (inches)
LF-10	3/29/88	43.0	NQ	< 0.004	< 0.006	< 0.007	NA	NA	
	3/28/89	<0.2	7.8	< 0.0005	< 0.0005	<0.0005	<0.002	NA NA	
	8/3/89	<0.3/<0.3	8.3/7.6	NA/NA	NA/NA	NA/NA	NA/NA	NA NA	
	1/31/90	<0.3	17.0	< 0.0005	< 0.0005	<0.0005	<0.002	NA NA	İ
	7/14/95	0.06/0.06	<0.2/<0.2	NA/NA	NA/NA	NA/NA	NA/NA	NA NA	1
	7/14/95	0.07	<0.2	NA	NA	NA	NA	NA NA	1
ĺ	(filtered)						144.	NA NA	1
	4/15/96	< 0.05	<0.25	NA	NA	NA	NA	NA NA	
LF-11	3/28/89	<0.3	1.0	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	
	8/3/89	< 0.3	0.9	NA	NA	NA	NA	NA	
	1/31/90	<0.3	1.2	< 0.0005	<0.0005	< 0.0005	< 0.002	NA	
ł	7/12/95	<0.05	<0.2	NA	NA	NA	l NA	NA NA	l
	4/15/96	<0.05	<0.25	NA	NA	NA	NA	<0.005	ļ i
LF-12	3/28/89	<0.3	1.1	< 0.0005	<0.0005	< 0.0005	<0.002	NA	
	8/3/89	<0.3	2.0	NA	NA	NA NA	NA	NA]
	1/31/90	<0.3	1.4	< 0.0005	< 0.0005	< 0.0005	<0.002	NA	
	7/13/95	<0.05	<0.2	NA	NA	NA	NA NA	NA	
	4/15/96	<0.05	<0.25	NA	NA	NA NA	NA	<0.005	
LF-13	3/28/89	<0.3	4.4	<0.0005	< 0.0005	< 0.0005	<0.002	NA	
	8/3/89	<0.3	3.0	NA	NA	NA	NA	NA NA	
ļ	1/31/90	<0.3	6.1	0.004	100.0	<0.0005	<0.002	NA I	
1	7/14/95	NR	NR	<0.0005	< 0.0005	< 0.0005	<0.002	NA NA	
	7/14/95	<0.05	<0.2	NA	NA	NA	NA	NA	
	4/15/96	<0.05	<0.25	<0.0005	< 0.0005	< 0.0005	<0.0005	NA NA	

HISTORICAL GROUNDWATER ANALYTICAL RESULTS1

Page 3 of 3

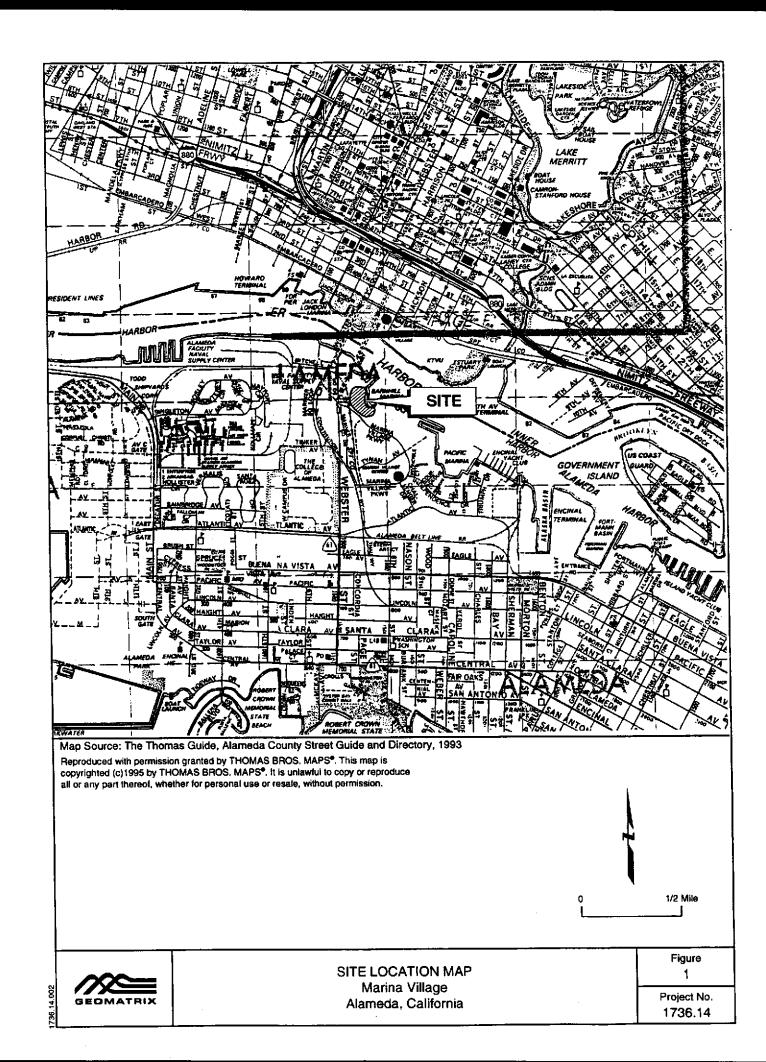
Well Number	Date Sampled	TPHd²	TPHmo ²	Benzene	Toluene	Ethylbenzene	Xylenes	Total Lead	Petroleum Product ⁴ Thickness (inches)
WC-3	3/31/88	< 0.05	<0.05	<0.004	< 0.006	<0.007	NA	NA	
	3/28/89	< 0.3	3.2	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	1
	8/3/89	< 0.3	1.0	NA	NA	NA	NA	NA	
	1/31/90	<0.3	5.7	< 0.0005	< 0.0005	< 0.0005	<0.002	NA	
	7/14/95	< 0.05	<0.2	NA	NA	NA	NA	NA NA	1
	4/15/96	< 0.05	<0.25	NA	NA	MA	NA	NA NA	
GMW-2	4/29/92	0.2	0.4	NA	NA	NA	NA	NA	
	7/12/95	< 0.05	<0.2	NA	NA	NA NA	NA NA	NA NA	
	4/15/96	< 0.05	<0.25	NA	NA	NA I	NA	NA NA	

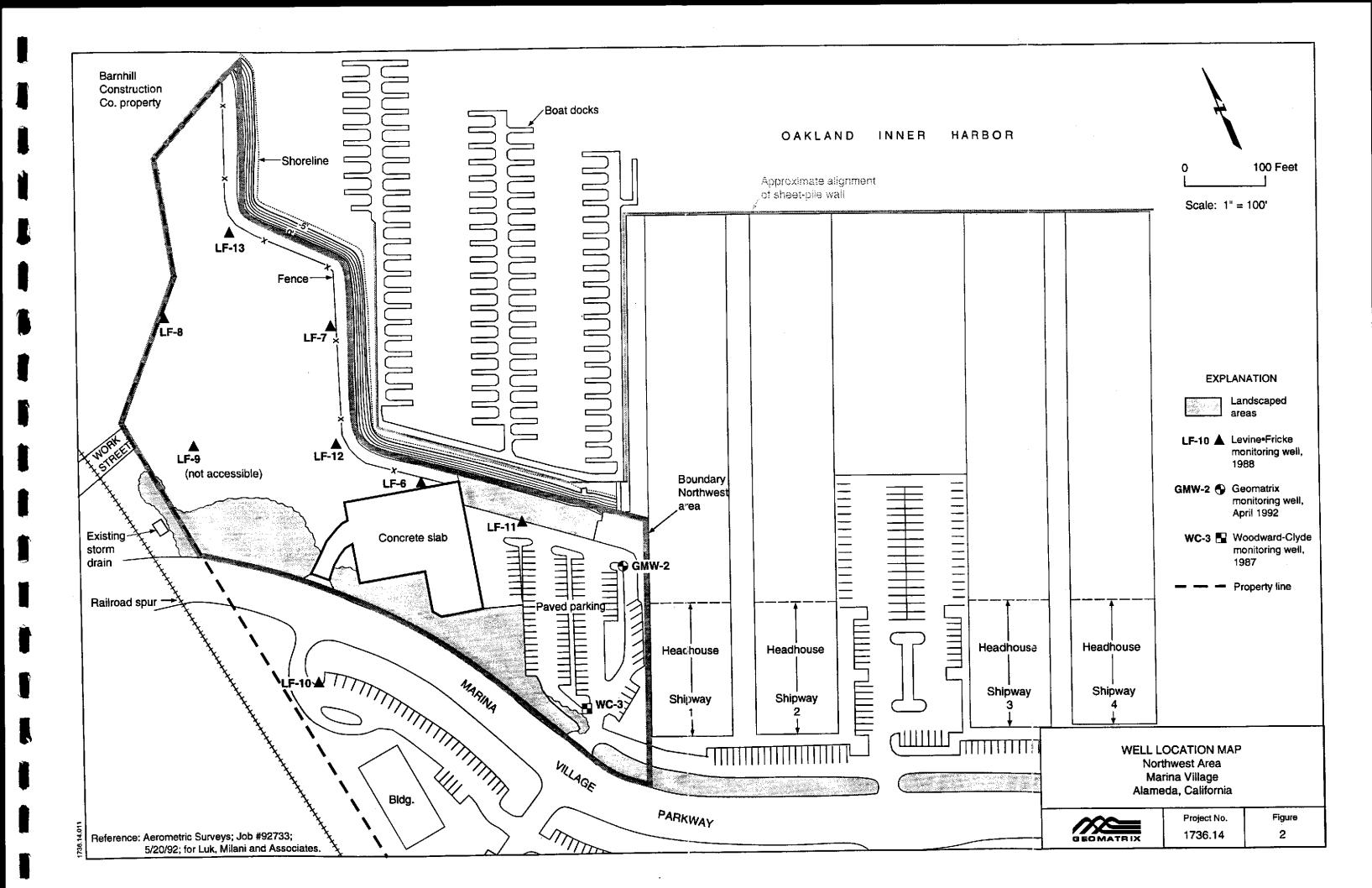
Notes:

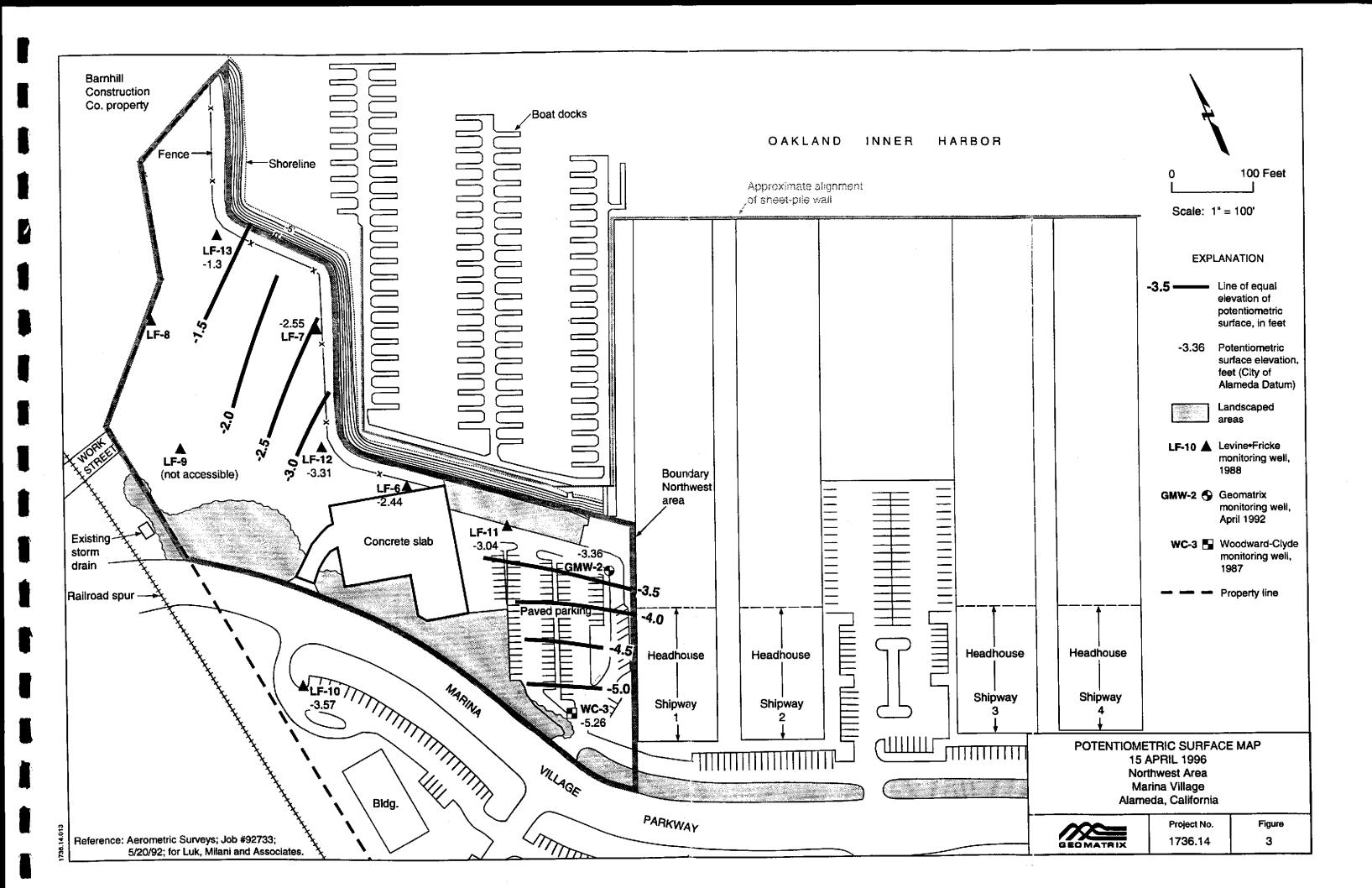
[/] Indicates duplicate sample.

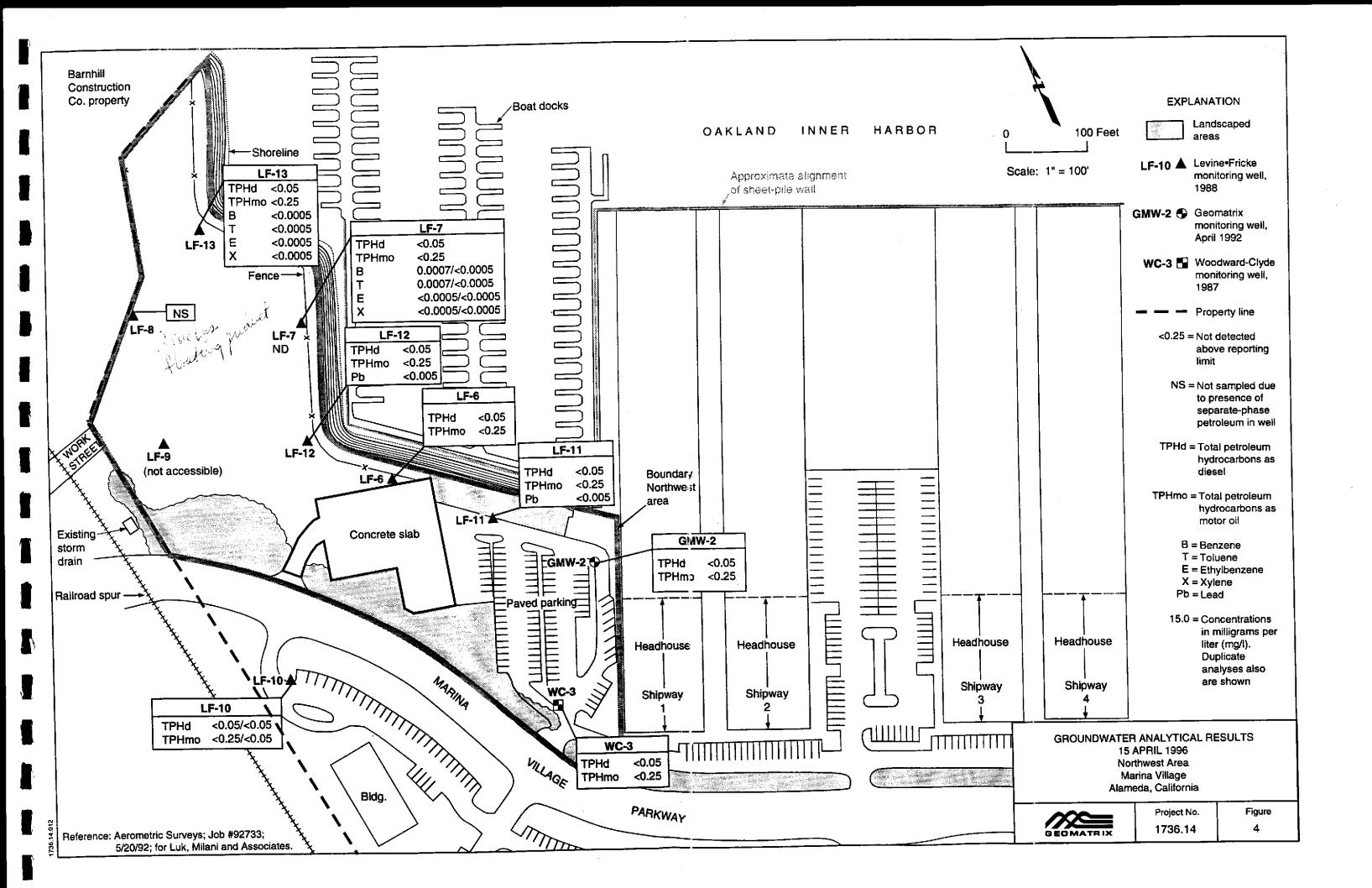
Samples analyzed for total petroleum hydrocarbons as diesel and motor oil by EPA Method 8015, and for benzene, toluene, ethylbenzene, and xylenes by EPA Method 602. In 1995, silica gel cleanup was performed prior to all 8015 analyses, and samples from wells LF-10, LF-13, and WC-3 were filtered prior to analysis. In 1996, all samples were filtered and a silica gel cleanup was performed prior to 8015 analysis.

TPHd = total petroleum hydrocarbons as diesel.


TPHmo = total petroleum hydrocarbons as motor oil.


Product characterized as crude oil.


NQ Indicates extractable TPH detected in samples was not quantified against motor oil standard.


NA Indicates not analyzed.

NR Not reported due to insufficient silica gel cleanup on the sample.

APPENDIX A

WATER LEVEL AND MONITORING WELL SAMPLING RECORD FIELD SHEETS

WATER LEVEL MONITORING RECORD

Project Name: Maring	· Village	Project and Task Number:
----------------------	-----------	--------------------------

Date: 4/15/96 Measured by: NAT/ FIC Instrument Used: F5/IP

Note: For your convenience, the following abbreviations may be used.

P = Pumping

I = Inaccessible D = Dedicated Pump

ST = Steel Tape

ES = Electric Sounder MP = Measuring Point

WL = Water Level

Well No.	Time	MP Elevation (feet)	Water Level Below MP (feet)	Water Level Elevation (feet)	Previous Water Level Below MP	Remarks
LF-6	0934	3.30	5.74	-2.44	5.66	UTHER SIDE OFF CYCLONG FRANCING
4E-7	0947	4.56	7.11	-2.55	8.23	
LF-8	1005	4.84	6-92=	(OTP)	7.08 = DTW	(IP) DARK VISCOUS CRIDE
LF-10	0938	3.95	F. 52	-3.57	5.53	
LF-li	0926	5.09	8.13	-3.04	7.58	FLUODED - SCALS BAD
Ur,2	0942	714	10.50	-3.31	9.12	1
DF-13	0952	2.95	4.25	-1.30	4.78	F100080
WC-3	0912	3,84	9.10	-5.26	6.72	Well CHSING DEFORMED - NO LIG COURR.
MW-2	0920	3.50	F.86	-3.36	6.37	
						}
	İ					
						,
				1		
	1				1	
					1	
		1	1			
	1	1	1			
	1	1		1	-	
	 	 	-	 		

Forms(PF):007 (Revised 12/95)

Page _____ of ____

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

Sample Sample Project ! Project !	Depth: No: Name:	4 1736. Manva 115166	Duplica I I U	te ID.:_		Dept Total Well 1 Ca 4 Ca Meth	Initial Depth to Water: 6-92 Depth to Water after Purging: DTP 7.08 Total Depth of Well: Well Diameter: 1 Casing Volume = 4 Casing Volumes = 4 Method of Purging:				
TIME	INTAKE DEPTH	RATE (gpm)	CUM VOL (gai)	- 121		H CON	177 1				
				-		-		-			
		 _		:				<u> </u>			
			NO	SA	MPLE	=					
			ļ			- -					
							ļ				
	!										
. <u></u>											
								<u> </u>			
	Dh	CALIBRA	TION	 CHOOSE	TWO)		Model	or Unit No.	. ?		
Buffer S		pH 4		pH 7.0	pH 10.0	Ī			No. of the last of		
Temp. °				1/4							
Instrume	ent Readin	4	10,001	UDLICTAL	NCE - CAL	IRRATIO			Model or Unit No.: ≥		
KCL Sol	lution (µm)			1409	12856						
Temp. °											
Instrument Reading											
Notes _			Pr	roduct	Thick	ness	Meas	ement	ONLY		

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

Sample Sample Project	LF. ID.: LF- Depth: No:	6 10 17 % .14	2	ID.:	Depth to Wat Total Depth of Well Diamete	o Water:					
Date	4/15	196			4 Casing Vol	mes = 6.29 GAL.					
	d By:			<u> </u>		rging: Dianhraam Dump					
	,					mpling: <u>Deposable</u> Bailer					
TIME	INTAKE DEPTH	RATE (gpm)	CUM. VOL. (gai)	TEMP.	Hc (annu)	CONDUCTIVITY					
1050	15		7	16.4	17.3	19500	SEDIMENTS				
1052	15		2	15.5		-	./				
1053	15		3	15.5			-1				
1055	15		5	15.5		· · · · · · · · · · · · · · · · · · ·	punces tol; SEDS				
1056	15-		6.5	T			**				
1100	Sima	LP		1511	7.5	15500					
				, , ,		, , , , , ,					
·											
·											
					-	<u> </u>					
				-							
							· · · · · · · · · · · · · · · · · · ·				
	Ph C	ALIBRAT	ION (CH	OOSE TV	YO)	l Maria	or Unit No.: 3				
Buffer Sc		pH 4.			110.0	WOOG!	or orm vo				
Temp. °C	;	(se	e LF	-10)			OF OTHER MO.				
Instrumer	nt Reading										
					- CALIBRA	ATION:	Model or Unit No.: 3				
-	tion (µmh	os/cm at 2	20°C 1	1409 1	2856						
Temp. °C											
Notes —											
	2 Amber Liters for TPH d/m.										
		_									

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

						_ lr	Initial Depth to Water: 7.1						
Sample	10.:	• 7	Duplicate	1D.:	F-15	_ [Depth to Water after Purging:						
Sample	Depth:	10			<u>-</u>	_ T	Total Depth of Well: 15						
Project I	No:	<u>[736.1</u>	<u>u</u>	-		_ Y	Total Depth of Well: 15 Well Diameter: 27						
Project I	Name:	Maria	1 V;	llage		_ 1	Casing Volu	ıme =	1.34				
Date:	Name:	115	96			_ 4	Casing Volu	mes =_	5.36				
Sample	d By:	NATI	FIC						Diaphram	Pump			
						M	lethod of Sai	mpling:	Disposable	Bailer			
TIME	INTAKE DEPTH	RATE (gpm)	CUM. VOL. (gai)	TEMF (°C)		H ids)	CONDUCTIVITY (µmnosom)	(6	REMARK color, turbidity & s				
1134	15		1	15.	90 7.	5			BLACK W				
//55	15		/	15.9	17	/	184000		er w/ BLH	CK ORGANICS			
1157	1157 15 2.5 15.6 7.2							11		1			
1159	15		4.0	15.8	7.	<u> 2</u> :	178000	roc T	Puzced				
1205							178,000	ţ,	L .	۲			
1210	15	Sampl	ć	16.1	7.3	3	180,000	iı	Ÿ	tr			
				ļ <u>.</u>									
							, , , , , , , , , , , , , , , , , , ,			į			
İ			- <u>-</u>										
				 	1								
									<u> </u>				
					-		···						
				1		-							
									· · · · · · · · · · · · · · · · · · ·				
	Ph C	ALIBRAT	TION (CH	IOOSE T	WO)		Model	or Unit I	No.: 3	·			
Butter Sc	dution	pH 4	.0 pH	17.0 p	H 10.0			•					
Temp. °C	;	566	CF	10)									
Instrume	nt Reading												
		SPECIFIC	COND	UCTANC	E - CALIE	BRATI			Model or U	init No.: 3			
KCL Solu	tion (µmh	os/cm at 2	20°C	1409	12856								
Temp. °C	;								1000				
Instrume	nt Reading	3							23.25				
Notes	Votes												
		d /	inter	0.40		10 7	T91 14	Imo	by 5015	<u>~</u>			
		_D V	oss -			16-7 15-14		<u> </u>	8070				
						1 7		~~~	5 0 7-0				

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

1	<u>LF</u>					Initial Depth to Water: 7.52						
Sample	ID.: LF	10	Duplica	ate ID.:	L1=-14	_	Depth to Water after Purging:					
Sample	Depth:	10					Total Depth of Well:/ 5					
	No:					_	Well Diameter:					
Project I	Name:	Marino	<u> </u>	/; llage		-	1 Casing Volume = 1.27					
Date:	4	15/96					4 Cas	ing Volu	ımes =	5.	08	
Sample	d By:	NAT	IFIC									Pump.
											_	Bailer
TIME INTAKE PATE CUM. VOL. (*C) Junit							CONDUCTIVITY REMARKS (umnos/cm) (color, turbidity & sediment)					
1625	15		١	16.5		1.1	29	000	Clear	w	OIGANIC	fines.
ዜ 3ጔ	15		2	17.7) 7	3	29	,400	Clear	W	OVYNOC	tims Dry
1638	15		3	17,	3 7	. 2	32,	000			ORGANICS	
1642							30	,600	te			* 1
1645	15		5	16	9	7. y	12	6400	τt			11
1648	15 56	mpk		7.4	7.	2	28.	w	c ş	t)	ι.	£1
						_						
		,				·						
		-		_			-	I			• . •	-
	Ph (CALIBRA"	TION (CHOOSE	TWO		<u> </u>	Mode	or Unit	No.:	3	
Butter Sc		pH 4		pH 7.0	pH 10.0	1			**************************************	3 00 (30 (30 20 (30 (30 (30 (30 (30 (30 (30 (30 (30 (3		
Temp. °0	3	22.	20	22.30						•	N-18-7-18	
Instrume	nt Readin	g 4	· D	7.0								
		SPECIFI	CCOV	IDUCTAN	ICE - CAI	JBRA	TION			[i	Model or U	nit No.: 3
KCL Son	ution (யா)	os/cm at	20°C	1409	12856					**		
Temp. °0					21.9	,					4.000	
Instrume	nt Readin	g _			12800	7						
Notes	41		· · ·		,-		×11	<u>, i</u>				
		Amb.		<u>c:tus</u> Litró	tev tev		14 00	Jlm (LE-	14 1	DPH	dimo	by 8015m
	 			J. TND	:			<u> </u>	<u></u>	77	<u> </u>	V 1 -V 1 -V 1
	1/0	She	(v)	obser.	ved.							
_	· · · · · · · · · · · · · · · · · · ·											

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

		+34-5400							7	
Well ID:	LF-1			<u></u>		Initial D	epth to	Water:	8.13	
Sample	10.: LF-	<u> </u>	uplicate	• ID.:	-			r after Pur		
Sample	Depth:	<u>10</u>				Total D	epth of	Well:		
Project f	۷o: <u>اع</u> ظ	36.14				Well Diameter:				
Project f	الس:ل	Mavira	Vi	lage		1 Casing Volume = 1.16				
Date:	니	15796				4 Casing Volumes = 4.67				
Sample	d By:	NATI	FIC_			Method of Purging: Disposable Barker				
TIME	INTAKE DEPTH	RATE (gpm)	CUM. VOL (gai)	TEMP (*C)	Hc .	CONDU	CTIVITY		REMARKS or, turbidity & se	
1330	15"		,	16.4	7.5	120	000	BIALK	ORCHWIC	Flues
1372	15		ય	16.3		- /2	200	<i>^</i> (• •	10
1334	15"		3	16-2	7		1000	elear		"
1335	15		: 4	16.0			500	CLEAR	W/ BLACK	ORGANIC
<u> </u>										
1340	Sumi	ze,		16.2	7.3	106	00	CLEAR		
								Ţ		
	<u> </u>			- 						
	 		 		1					
			<u> </u> 							
<u></u>			ļ							
			<u> </u>					 		
	Ph	CALIBRA	TION (CHOOSE	WO)		Mode	el or Unit N	o.: 3	
Butter S	Solution	pH.	4.0	pH 7.0	pH 10.0					
Temp.		(9	40	LF-10)						
	ent Readi	ng					- Modboocee			
		SPECIF	IC CON	DUCTANO	E - CALIB	RATION	-		Model or U	
KCL Sc	olution (шт	hos/cm a	1 20°C	1409	12856					
Temp.	•c									
Instruit	nent Readi	na		1						
Notes .	·	2	An	ber l	-itess	ter	ΔŢ	H da	no hy s	usm
									<u> </u>	
}					· · · · · · · · · · · · · · · · · · ·					

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

Well ID:	LF-	١				initial Depth to	o Water: 10.50			
Sample	1D.:LE-	100)uplicat	e ID.:		Depth to Wat	er after Purging:			
Sample	Depth:	10				Total Depth o	of Well: 15.			
Project f	۷o: ۱ ⁻⁺	36.14				Well Diamete	er:			
Project I	Name:	Mavina	Vi	<i>ilage</i>		1 Casing Volume = 0.765				
Date:	4156	16				4 Casing Volumes = 3.06				
Samoleo	d By:^_	AT - F	1C			Method of Purging: Diaphragin Pump				
						Method of Sa	empling: Disnosable Bailer			
TIME	INTAKE DEPTH	RATE (gpm)	CUM. VOL. (gai)	/eC)		(umnos/an)	(color, turbidity & sediment)			
1/34	15		1	15-9	゜ノチェ	32000	BLACK OXLANIC - FINES.			
1320	15		3	17:	1 7.9	28500	CLEAR W ORLAND FINES.			
1340	15		4	1.7.	3 79	22600	CLEAR Of SOME FINES.			
1440	15		6	17	4 7.9	21000	CLEAR Witured conductivity	ソ		
1500	SAMI	ele.		16.	7 7.	6 22000	CLEAR WY FINES (OR W 4016 5	,		
ļ										
-					:					
				-						
		<u> </u>	-							
	<u> </u>	<u> </u>	╂					1		
		 	 					1		
	<u> </u>	044187	171011	(CUCOSE	TNO	Mod	del or Unit No.: 3	1		
			4.0	CHOOSE	pH 10.0					
	Solution			LF-10)	D. V C C		Contracted Contract Contract			
Temp.	nent Readi		1	-1						
IIISUUN	HEIR HEAD!	SPECI	FIC CO	NDUCTAN	CE - CALIE	BRATION:	Model or Unit No.: 3	<u>.</u>		
KCL S	olution (µn			1	12856					
Temp.										
	nent Read	ing		<u> </u>				4		
Notes		 _		Amber	Litus	-for	TPH down by 8015 M]		
				7-1 14/4/10						
\$						<u> </u>		_		
3			· <u> </u>							

100 Pine Street, 10th Fioor San Francisco, California 94111 (415) 434-9400

Weil ID:	LF-1	3 13 r	hinlicati	e ID.:		Initial Depth to Water: 4-25 Depth to Water after Purging:				
Sample i	Depth:	81	upica:			Total D	epth of	Well: /3 - 5		
Sample I	ia. 17	36.15	<i>t</i>			GOVERNMENT				
Project r	io.	ARINA	VIL	LAGE		1 Casing Volume = 1-57				
Project r	15 pt	PRIL 19	96			4 Casing Volumes =				
Date:	By:	45/1=	C			Method of Purning: DIRPHRAGM				
Sambled	. Бу					Method	of Sai	mpling: <u>Asposable Bailer</u>		
TIME	INTAKE DEPTH	RATE (gpm)	CUM. VOL. (gal)	TEMP (°C)	and the second second	CONDU	CTIVITY SECOTI)	BELLADVE		
404	15		/	16.	1 7.1	٤.	700	CLUMP ON BLACK ORGANICS		
1406	15		2-5		1		00	PURCES TOC CLEAR		
1412	15		4.0	15.	6 7.7	2 5	100	TUL CLEHR WY BLACK ORGAN		
1415	15		5.0	15.	5 7.	<u> </u>	800			
1422	SAMP	<i>i o</i>	6.3	15.	9 7.	ζ	800	eren R		
1720	3/////		ر د تا	1,32	/					
					,					
					<u>:</u>		<u>.</u>	·		
				_						
						_				
<u>. </u>	 									
							lator	el or Unit No.: 3		
			 :	CHOOSE	pH 10.0		MODE	er or Onk red		
Butter S		PH ·			1					
Temp. '			<u>e</u> e	LF-10) 					
Instrum	ent Readi			NDUCTANO	CE - CALIF	RATION		Model or Unit No.: -3		
אכן פּ	lution (µm			1409	12856					
Temp.										
	ent Readi	na								
Notes -		H - A	lig							
	2	Am		Citers	BIE	c by	8020			
	3	vois	<u> </u>	ne) ter	<u>U</u>	- 174				

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

Well ID:	ive-	- J		_			Initial Depth t	to Water:9. 10		
Sample	ID .: WC-	3	Duplicate	ID.:				er after Purging:		
Sample	Depth:	10	 			_	Total Depth o	of Well:		
1 -	No:					_	Well Diamete	or:		
Project f	Name: 22	AKINA	VILL	AGE			1 Casing Volume = 1.00			
Date:	15 A	PRIL	199	6		_	4 Casing Volumes = <u>7.0/</u>			
Sampled	By: <i>N</i>	45/ FC	C-			_	Method of Pu	irging: <u>BIAPHEAGM Pump</u>		
							Method of Sa	impling: DIS POSABLE BHILE		
TIME	INTAKE DEPTH	RATE (gpm)	CUM. VOL. (gai)	TEM (°C		oH nts)	CONDUCTIVITY (µmnoucm)	REMARKS (color, turbidity & sediment)		
14103			_/_	16.1	7	ı,	2700	Butter of operations Fee		
1547	15		1	16.	9 7	-8	10000	CICAR WIBLACK FINES.		
1550	15		2	17.0	7.	7_	9400	Clear wisome black fines		
1552	15		3	17-	0 7	2 fer :	8100	the State of		
1554	15		4	16.	9 7	6	8400			
1556	SAME	ole		16-2	1 7	8	7400			
					-					
i										
	· · · · · · · · · · · · · · · · · · ·	_								
			<u></u>							
5 11 0		ALIBRAT						or Unit No.: 3		
Butter So Temp. °C		pH 4.0			CH 10.0					
	nt Reading	(50	<u>e</u> 2	F-10)			SACREMENT OF THE SECOND		
HISTORIE		SPECIFIC	CONDU	ICTANO	E - CALL	PRAT	-			
KCL Solu	tion (µmho			409	12856	BNAI	1014.	Model or Unit No.: 3		
Temp. °C										
instrumen	it Reading	· · · · · · · · · · · · · · · · · · ·								
Notes					······································					
·		- An	nhev i	Liters	-tev		TPH din	10		
			-							

100 Pine Street, 10th Floor San Francisco, California 94111 (415) 434-9400

Well ID:	ell ID: 6MW-2						Initial Depth to Water: 6 - 86			
Sample	ID.: GMI	<u>u-2</u> 1	Duplicate	e ID.: <u>4</u>	Α		Depth to Water after Purging:			
Sample	Depth:	101			<u> </u>					
Project .	No:	736.5	4				Total Depth of Well: 25" Well Diameter: 25"			
Project	Name: 🗷	MARINA	4 01	LLAGI	<u> </u>		1 Casing Volume = 1.38			
Date: _	15 4	PRIL	1991	5			4 Casing Volumes - 5-54			
Sample	d By: <i>N</i> /	47 / E	10			:	Method of Pur	rging: DIFE	HEAGH	
1							Method of Sa	mpling:	BAILER	
TIME	INTAKE DEPTH	RATE (gpm)	CUM. VOL (gai)	TEM (°C		Hc (annu,	CONDUCTIVITY (µ/mnos/cm)	RI	EMARKS pidity & sediment)	
1613	15		1	17.	1	7.5	15400	CLEAR	-BRY	
1705	15		ょ	16.4	<i>{</i>	7.6	14500	CLEAR		
,715	15		_ 3	16-	5	7.7	14200	Clear		
1725	15		4	16.	2	7.5	14800	CLEAR		
1740	17-		5-	16.	2	7.5	14400	ELEAR		
1745	3 11	ple	_	16.	2 3	7.5	14500	CLLAR		
						-			•	
	•		<u>-</u>						·	
								<u> </u>		
			-							
									. •	
-	Ph C	ALIBRAT	ION (CH	OOSE	TWO)			or Unit No.: 3		
Buffer So	lution	pH 4.	<u></u>	7.0	р Н 10. 0					
Temp. °C		2)	CB 1	F-10)						
Instrumer	nt Reading									
		SPECIFIC				IBRAT	ION:		lel or Unit No.: 3	
	tion (µmh	os/cm at 2	50°C	1409	12856	1				
Temp. °C						<u> </u>				
Instrumer	nt Reading	<u> </u>				<u> </u>				
Notes		2	Amb		Liters		- / >/1			
				220°		5015	W TALL	direct m	<u>U</u>	
-										
										

APPENDIX B

ANALYTICAL LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282

3012 16th Avenue West Seattle, WA 98119-2029 FAX: (206) 283-5044

April 22, 1996

Yvonne Pierce, Project Manager Geomatrix Consultants, Inc. 100 Pine Street, Suite 1000 San Francisco, CA 94111-5112

Dear Ms. Pierce:

Enclosed are the results from the testing of material submitted on April 17, 1996 from your 1736.14 project.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.
Bethalbertson

Beth Albertson

Chemist

keh

Enclosures GMC0422R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: April 22, 1996 Date Received: April 17, 1996

Project: 1736.14

Date Samples Extracted: April 17, 1996

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE AND THE XYLENES USING METHOD 8020

Samples Processed Using Method 5030

Results Reported as µg/L (ppb)

Sample ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	Total <u>Xylenes</u>	Surrogate % Recovery
LF-7	0.7	0.7	< 0.5	<0.5	94
LF-13	< 0.5	<0.5	<0.5	<0.5	95
LF-15 Duplicate LF-7	<0.5	< 0.5	< 0.5	< 0.5	93
EBNT-41596	< 0.5	0.6	< 0.5	0.5	95
Method Blank	<0.5	<0.5	<0.5	<0.5	98

ENVIRONMENTAL CHEMISTS

Date of Report: April 22, 1996 Date Received: April 17, 1996

Project: 1736.14

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND THE XYLENES USING EPA METHOD 8020

Laboratory Code: 67978 (Duplicate)

Education, 60		,	Relative				
Analyte:	Reporting	Sample	Duplicate	Percent	Acceptance		
	Units	Result	<u>Res</u> ult	Difference	Criteria		
Benzene	ug/L (ppb)	<0.5	<0.5	nm	0-20		
Toluene	ug/L (ppb)	<0.5	<0.5	nm	0-20		
Ethylbenzene	ug/L (ppb)	<0.5	<0.5	nm	0-20		
Xylenes	ug/L (ppb)	<0.5	<0.5	nm	0-20		

Laboratory Code: 67979 (Matrix Spike)

Analyte:	Reporting	Spike	Sample	% Recovery	Acceptance
	Units	<u>Level</u>	Result	MS	Criteria
Benzene	ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	100	<0.5	98	87-106
Toluene		100	<0.5	100	74-109
Ethylbenzene		100	<0.5	100	72-111
Xylenes		300	<0.5	102	66-114

Laboratory Code: Spike Blank

Analyte:	Reporting Units	Spike Level	% Re MS	ecovery MSD	Acceptance Criteria	Relative Percent <u>Difference</u>
Benzene	ug/L (ppb)	100	103	102	79-113	1
Toluene	ug/L (ppb)	100	105	104	77-117	1
Ethylbenzene	ug/L (ppb)	100	106	104	77-121	2
Xylenes	ug/L (ppb)	300	106	105	79-123	1

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

Date of Report: April 22, 1996 Date Received: April 17, 1996

Project: 1736.14

Date Samples Extracted: April 17, 1996

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL RANGE AND MOTOR OIL RANGE ORGANICS BY GC/FID (Modified 8015)

Samples Processed Using Method 3510 Results Reported as µg/L (ppb)

Sample ID	<u>Diesel</u>	Motor Oil	<u>Surrogate</u> (% Recovery)
LF-6	<50	<250	99
LF-7	<50	<250	86
LF-10	< 50	<250	108
LF-11	< 50	<250	92
LF-12	< 50	<250	110
LF-13	<50	<250	90
LF-14 Duplicate LF-10	<50	<250	91
WC-3	< 50	<250	103
GMW-2	< 50	<250	106
EBNT-41596	<50	<250	94
Method Blank	<50	<250	103

ENVIRONMENTAL CHEMISTS

Date of Report: April 22, 1996 Date Received: April 17, 1996

Project: 1736.14

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL RANGE AND MOTOR OIL RANGE ORGANICS BY GC/FID (Modified 8015)

Laboratory Code: 68028 (Duplicate)

Analyte:	Reporting Units	Sample <u>Res</u> ult	Duplicate Result	Relative Percent Difference	Acceptance Criteria
Diesel	ug/L (ppb)	<50	<50	nm	0-20
Motor Oil	ug/L (ppb)	<250	<250	nm	0-20

Laboratory Code: 68030 (Matrix Spike)

Analyte:	Reporting	Spike	Sample	% Recovery	Acceptance
	Units	Level	Result	MS	<u>Criteria</u>
Diesel	ug/L (ppb)	2500	<50	94	55-145

Laboratory Code: Spike Blank

Analyte:	Reporting Units	Spike Level	% Re MS	covery _MSD	Acceptance Criteria	Relative Percent Difference
Diesel	ug/L (ppb)	2500	89	89	55-145	0

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

Date of Report: June 26, 1996 Date Received: April 17, 1996

Project: 1736.14

Date Samples Extracted: June 19, 1996 Date Extracts Analyzed: June 20, 1996

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL LEAD BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Results Reported as µg/L (ppb)

Sample ID	Lead
LF-11	<5
LF-12	<5
Method Blank	<5

ENVIRONMENTAL CHEMISTS

Date of Report: June 26, 1996 Date Received: April 17, 1996

Project: 1736.14

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL LEAD BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Laboratory Code: 69749 (Duplicate)

Analyte:	Reporting Units	Sample Result	Duplicate Result	Relative Percent <u>Difference</u>	Acceptance Criteria		
Lead	ug/L (ppb)	<5	<5	nm	0-20		

Laboratory Code: Spike Blank

	Reporting	Spike	% Re	ecovery	Acceptance	Relative Percent
Analyte:	Units	Level	MS	MSD	Criteria	<u>Difference</u>
Lead	ug/L (ppb)	500	108	106	80-120	2

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

Chain-of-Custody Record						N9 7299							Date: 4//6/6									/ of	1									
Proj	ct No	D.:		Ĭ							ANALYSES											<u> </u>				MARK	<u>s</u>					
	1 1	10 14	es): .:	-{						ŊÜ								İ							<u>(š</u>		iners		Addit	ional com	ments	
	Lu	prof.	of Taylor		A Method 8010	EPA Method 8020	A Method 8240	A Method 8270	TPH as gasoline	TPH as diesel (M)	трн as втех			ms/msis										Cooled	xi (S) or water	Acidilied	Number of containers	JEIL Grulyi	: 	buker		
Di	ite	Time	Sample Number	\sqsupset	EP.	EP.	ם	ם	E		Ŧ			*	\sqcup					\dashv		ļ	-		x	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 :2	ر. الله)	, ,) 1	-autet
4	, j	1100	LF-6	İ						X														X		N		3	42.541		11. 12	
١		1310	48-7							X	X													X	¥	1	5	6.				
			6F-10	7			T			×				×										X	w	N	4	6) (1)				
			LF -11							×														X	W	W	2	31	(36)	(سية	~1} ·	w rphs
				-						X														y.	W	N	2	420	Let J	إمرص في إ	ا (د	1
-			LF-13	-						¥	У			-										×	W	1/4/	5	3 50	vf.	امر وا	erka	()
			LF-14	-				Γ		X														X	1	v	ス	4,49,7				
			LF-15	-				_			×											<u> </u>		Y	W	¥	3	(eu)	د.نوکان و	Sol C	4 6 4	
_			WC-3	7						¥				•											w/		2					
	T	- 40	Gmu - A	•						×														×	W	~	3	e pra	\	17 A G. C. 11	>	
Ι.	-		E1907-41541	7						X	X													X	W	YA	5	H Yu	بم بمان إ	i ć 13	1.00	i.
-													-	_						-			ļ	<u> </u>				6115 1	413	il or is	6 5	i
					Turnaround time:						Results to:						•	Total No. of contai					ntain									
Reli	nquis	hed by:	Taylu		ate:	Re			d by:				_				lelinqu		by:		1_				Date	e: 1	Metho	d of shipmen	t:	EL.	•	
Sign	ature	<u>r(1 /1)</u> :	1 Super San	4/	16/4	Si	gnatu	ıre:						+		s	ignatu	Jre:						\dashv		Į	abora	atory comme				
N	11:1	A4116	A THUM2		146	<u> </u>	_							4		Ļ	المحادث							\dashv								
	ted na		J			Pr	inted	nam	i e :								rinted	·	e.													
Company: Company:									٦		C	отра	ny:																			
Received by: Time: Received by:				<i>r</i> :	•				+	Time:	F	leceiv	ed by	"		1	<u> </u>		\dashv	Tim	e:											
			Signature:						-		Signature:							•	\dashv								•					
			Printed name:						4		Printed name:								\dashv		f	~	~									
Prin	ed na	ame:		N O	150		MITEG.	nam								L			<u>.</u>										100 Pi	ne St. 101	th Floor	ultants
Company:				j.	C	ompa	ny:								С	ompa	ıny:												ancisco, 134-9400	CA. 9411	1	