

RECEIVED

2:12 pm, Jul 29, 2008

Alameda County Environmental Health

July 28, 2008

Project 4069.01

Barbara Jakub Hazardous Materials Specialist Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Subject: Certification Letter July 2008 Groundwater Sampling 5885 Hollis Street Emeryville, California SLIC Site RO0002621, Emeryville Industrial Court

Dear Ms. Jakub:

The attached July 2008 Groundwater Sampling Letter Report from Treadwell & Rollo provides the results of the groundwater sampling conducted in accordance with the Treadwell & Rollo July 9, 2008 Work Plan submitted to you for SLIC Site RO0002621, located at 5885 Hollis Street, Emeryville, California (the Site). The attached report has been prepared on behalf of the current property owner, ES East Associates, LLC, an affiliate of Wareham Development, the developer of the property.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions, please call me at (415) 457-4964.

Sincerely yours,

James A. Goddard Wareham Development for ES East Associates, LLC

Treadwell&Rollo

28 July 2008 Project 4069.01

Barbara Jakub Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Subject: July 2008 Groundwater Sampling 5885 Hollis Street Emeryville, California SLIC Site RO0002621, Emeryville Industrial Court

Dear Ms. Jakub:

This letter report summarizes the results of the groundwater sampling performed by Treadwell & Rollo, Inc. on 22 July 2008 for SLIC Site RO0002621, located at 5885 Hollis Street in Emeryville, California (Site) (Figure 1) on behalf of Wareham Development (Wareham). The sampling was conducted in accordance with the Treadwell & Rollo 9 July 2008 document *Work Plan for Groundwater Sampling*, which was submitted to you and uploaded to the Alameda County Environmental Health (ACEH) FTP site. This report includes a brief Site background, a description of field activities, discussion of the analytical results, and conclusions and recommendations. Attached to this letter report is a summary table of analytical results and associated figures.

SITE BACKGROUND

The Site consists of an approximately 120,000 square foot rectangular-shaped lot which is occupied by a recently completed three-story commercial building. The commercial building includes a parking garage that extends below grade into the shallow groundwater. The garage foundation includes a membrane-based waterproofing and ventilation for the vehicles. The Site is bound by Hollis Street to the east, Peladeau Street to the west, 59th Street to the north, and a Chevron Service Station (former Unocal/ConocoPhillips service station) to the south. Other adjacent land use includes office and warehouse buildings.

Numerous environmental investigations have been conducted at the Site prior to the most recent development. Site management activities, including soil excavation across approximately 95 percent of the Site, construction dewatering, and site capping were documented in the 5 January 2007 Treadwell & Rollo *Site Management Completion Report.* The 22 January 2007 letter from Mr. Barney Chan of ACEH regarding the *Site Management Completion Report* indicated that additional groundwater sampling was required at the southwest corner of the Site based on the result of samples collected from a construction dewatering well in that area. Several communications have occurred between Treadwell & Rollo and Mr. Chan regarding the potential impacts to groundwater at the subject location from either the adjacent Unocal/ConocoPhillips gasoline service station at 1400 Powell Street or from the former Union Oil Company operations that spanned both the Site and the service station.

Based on recent correspondence between Glenn Leong of Treadwell & Rollo and ACEH, grab groundwater sampling by E S East Associates LLC (an affiliate of Wareham Development) at the southwest corner of the Site will provide sufficient information to evaluate a no further action status of the Site. The

Ms. Barbara Jakub Alameda County Environmental Health 28 July 2008 Page 2

9 July 2008 *Work Plan for Groundwater Sampling* was submitted to ACEH and this letter report summarizes the results of the groundwater sampling.

FIELD INVESTIGATION ACTIVITIES

Prior to drilling activities, Treadwell & Rollo obtained a drilling permit (No. W2008-0433), from Alameda County Public Works Agency, notified Underground Services Alert (Ticket No. 272223), and retained the services of Cruz Brothers Locators, Inc., a private utility locator based in Scotts Valley, California, to perform a subsurface utility survey at the proposed drilling location.

Drilling and sampling activities were performed at the Site on 22 July 2008. Treadwell & Rollo retained the services of Vironex, Inc., based in Pacheco, California to provide drilling and groundwater sampling services. One boring, TR-GW, was advanced in the southwest corner of the Site with direct push technology (Figure 2). TR-GW was logged to a maximum observed depth of 32 feet below ground surface (bgs). The boring log for TR-GW is included in Attachment A.

TR-GW was advanced past the anticipated groundwater depth (9-11 feet bgs) to approximately 32 feet bgs, the depth at which groundwater was first detected during this drilling. After the completion of drilling, a 1" diameter pre-pack temporary PVC well casing with a stainless steel slotted section from 25 to 30 feet bgs was placed in the bore hole for grab groundwater sampling activities. The grab groundwater sample was collected from TR-GW using a disposable bailer and placed into laboratory-supplied containers which were then secured, labeled, and placed in an ice-chilled cooler.

The grab groundwater sample was transported under Chain-of-Custody protocol to Curtis & Tompkins, Ltd., a California-certified laboratory located in Berkeley, California. Details of the laboratory analysis program are described below. Upon completion of groundwater sampling activities, the temporary well location was destroyed by removing the PVC casing and tremie grouting the hole with Portland cement. The top of the boring was surfaced with concrete to match the existing surface.

LABORATORY ANALYSES

The groundwater sample was analyzed for the following analytes:

- Total petroleum hydrocarbons (TPH) quantified as gasoline (TPH-g) by EPA Method 8015M
- TPH quantified as diesel (TPH-d) and motor oil (TPH-mo) by EPA 8015M with silica gel cleanup
- Volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, xylenes, methyltert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), methyl tert-amyl ether (TAME), tert-butyl alcohol (TBA), ethanol, 1,2-dibromoethane (EDB), and 1,2-dichloroethane (EDC) by EPA Method 8260B

Ms. Barbara Jakub Alameda County Environmental Health 28 July 2008 Page 3

RESULTS

Laboratory analytical results for the grab groundwater sample collected at TR-GW are summarized on Table 1, which also includes the results of samples collected from the construction dewatering wells between April and July 2006. Analytical results were compared to the following benchmarks:

- The San Francisco Bay Regional Water Quality Control Board's (SF-RWQCB) 2008 Environmental Screening Levels (ESLs) for groundwater that is not a current or potential source of drinking water (Table B of SF-RWQCB, 2008)
- ESLs for gross contamination ceiling value (Table F-1b of SF-RWQCB, 2008)
- ESLs for groundwater for evaluation of vapor intrusion concerns under a commercial land use (Table E-1 of SF-RWQCB, 2008)

Concentrations of benzene, ethylbenzene, xylenes, and EDC are below the groundwater ESLs listed in Table B of SF-RWQCB, 2008. TPHg and TPHd concentrations are slightly greater than the groundwater ESLs. Because the Site is located more than 1,500 feet from the San Francisco Bay, most of Emeryville was constructed on fill material, and the Site and surrounding properties are under commercial land use it is appropriate to compare TPHg and TPHd concentrations to gross contamination ceiling value ESLs (Table F-1b ESLs), rather than the aquatic habitat goal values that are used as the basis for the Table B ESLs.

As noted in Figure 2, TR-GW was located approximately 15 feet from construction dewatering well DW-14, which had TPH-g concentrations between 77 to 1,800 micrograms per liter (μ g/l), as well as detections of benzene, toluene, ethylbenzene, xylenes, and EDC. The results for TR-GW were within the range or less than the range of the results from well DW-14.

- TPH-g was detected at 430 µg/l, which is below the ESL for gross contamination (there is no ESL for the evaluation of potential vapor concerns for TPH-g). This concentration is within the lower range of the TPH-g detected in DW-14.
- TPH-d was detected at 560 µg/l, which is below the ESL for gross contamination (there is no ESL for the evaluation of potential vapor concerns for TPH-d). This concentration is slightly above the highest concentration reported from DW-14 (440 µg/l). Consistent with the sampling at DW-14, the laboratory reported that the chromatographic pattern for TPH-d in TR-GW does not resemble the standard.
- Benzene, ethylbenzene, xylenes, and EDC were detected at concentrations below both the general groundwater ESLs, the gross concentration ESLs, and the ESLs for the evaluation of potential vapor concerns.
- TBA, MTBE, DIPE, ETBE, TAME, Ethanol and EDB were not detected above laboratory reporting limits.

Ms. Barbara Jakub Alameda County Environmental Health 28 July 2008 Page 4

SUMMARY

The purpose of the July 2008 Groundwater Sampling was to address the remaining ACEH issue associated with the 5 January 2007 Treadwell & Rollo *Site Management Completion Report.* The results of the grab groundwater sampling indicate that residual TPH-related chemicals are present in groundwater at the southwestern corner of the Site, but at concentrations below gross contamination and vapor intrusion ESLs. The TPH-g and detected volatile organic compound concentrations in groundwater are within the low range of concentrations previously detected in the nearby construction dewatering well and all detected chemical concentrations are less than concentrations that would be indicative of the presence of free-phase liquid in the subsurface. The presence of EDC in the groundwater sample is consistent with the construction dewatering sample results and may be indicative of potential groundwater impacts to the Site from the adjacent Unocal/ConocoPhillips gasoline service station at 1400 Powell Street.

Based on the results of the July 2008 groundwater sampling and the site mitigation activities completed to date, we request that ACEH issue a letter of completion for the site mitigation activities and that no further action is required for the Site located at 5885 Hollis Street in Emeryville, California.

If you have any questions, please contact Grover Buhr at (510) 874-4500 or Glenn Leong at (415) 272-6986.

Sincerely yours, TREADWELL & ROLLO, INC.

Glenn M. Leong Senior Associate

40690108.OAK

Figures 1 and 2

Table 1

Attachment A – Boring Log Attachment B – Laboratory Report

Table 1 GROUNDWATER ANALYTICAL RESULTS Grab Groundwater Sample and Previous Dewatering Samples 5885 Hollis Street Emeryville, California

			TPH							VOCs							
Sample ID	Sample Date	Gasoline	Diesel Fuel	Motor Oil	TBA	MTBE	DIPE	ETBE	TAME	Ethanol	В	т	E	х	EDB	EDC	Other VOCs
DW-11	4/13/2006	<50	<50	< 300	<10	<0.5	< 0.5	< 0.5	< 0.5	<1,000	<0.5	< 0.5	< 0.5	<0.5			
DW-11																	
DW-11	4/18/2006	<50	<50	< 300	<10	<0.5	< 0.5	< 0.5	< 0.5	<1,000	<0.5	0.6	< 0.5	< 0.5	< 0.5	<0.5	All ND
DW-11	4/26/2006	<50	<50	< 300	<10	<0.5	< 0.5	<0.5	<0.5	<1,000	<0.5	9.8	<0.5	<0.5	<5.0	<5.0	
DW-11	5/3/2006	<50	130 Y	< 300	<10	<0.5	<0.5	<0.5	<0.5	<1,000	<0.5	2.3	<0.5	<0.5	<5.0	<5.0	
DW-11	5/10/2006	<50	<50	< 300	<10	<0.5	< 0.5	< 0.5	< 0.5	<1,000	<0.5	0.9	< 0.5	< 0.5	<5.0	<5.0	
DW-11	5/17/2006	<50	100 Y	< 300	<10	< 0.5	<0.5	< 0.5	< 0.5	<1,000	<0.5	0.6	< 0.5	< 0.5	<5.0	<5.0	
DW-11	5/23/2006	<50	<50	< 300	<10	<0.5	<0.5	<0.5	<0.5	<1,000	<0.5	0.5	<0.5	<0.5	<5.0	<5.0	
DW-11	6/1/2006	<50	<50	< 300	<10	<0.5	<0.5	<0.5	<0.5	<1,000	<0.5	< 0.5	< 0.5	<0.5	<5.0	<5.0	
DW-11	6/8/2006	<50	<50	< 300	<10	< 0.5	<0.5	< 0.5	< 0.5	<1,000	<0.5	<0.5	< 0.5	<0.5	<5.0	<5.0	
DW-11	6/16/2006	<50	<50	< 300	<10	< 0.5	<0.5	< 0.5	< 0.5	<1,000	<0.5	<0.5	< 0.5	<0.5	<5.0	<5.0	
DW-11	6/22/2006	<50	<50	< 300	<10	< 0.5	<0.5	< 0.5	< 0.5	<1,000	<0.5	<0.5	< 0.5	<0.5	<5.0	<5.0	
DW-11	6/30/2006	<50	<50	< 300	<10	<0.5	<0.5	< 0.5	< 0.5	<1,000	<0.5	<0.5	< 0.5	<0.5	<5.0	<5.0	
DW-11	7/5/2006	<50	<50	< 300	<10	<0.5	<0.5	< 0.5	<0.5	<1,000	<0.5	<0.5	<0.5	<0.5	<5.0	< 5.0	
DW-11	7/12/2006	<50	78 Y	<300	<10	<0.5	<0.5	< 0.5	< 0.5	<1,000	<0.5	<0.5	<0.5	<0.5	<5.0	< 5.0	
DW-11	7/18/2006	<50	<50	< 300	<10	<0.5	<0.5	< 0.5	<0.5	<1,000	<0.5	<0.5	<0.5	<0.5	<5.0	< 5.0	
DW-11	7/27/2006	< 50	<50	< 300	<10	<0.5	<0.5	< 0.5	<0.5	<1,000	<0.5	<0.5	<0.5	<0.5	<5.0	< 5.0	
DW-14	4/13/2006	77 L Y	<50	< 300	72	< 0.5	<0.5	<0.5	< 0.5	<1,000	10	0.8	<0.5	0.6			
DW-14	4/18/2006	250	110Y	<300	72	<0.5	<0.5	<0.5	<0.5	<1,000	22	1.3	6.4	5.7	<0.5	19	Isopropyl Benzene = 1.9 Propyl Benzene = 1.7 1,3,5 Trimethylbenzene = 1.9 1,2,4 Trimethylbenzene = 0.8 para-Isopropyl Toluene = 1.3 n-Butylbenzene = 0.6 All Others ND
DW-14	4/26/2006	630	440 L	<300	76	< 0.5	<0.5	<0.5	< 0.5	<1,000	42	4.9	14	6.8	<5.0	16	
DW-14	5/3/2006	620	370 L Y	<300	64	< 0.5	<0.5	<0.5	< 0.5	<1,000	39	1.8	21	10	<5.0	18	
DW-14	5/10/2006	450	250 L Y	< 300	83	<0.5	<0.5	<0.5	< 0.5	<1,000	11	2.4	8.6	4.9	<5.0	15	
DW-14	5/17/2006	450	340 Y	< 300	44	<0.5	<0.5	<0.5	<0.5	<1,000	37	0.6	9.1	6.2	<5.0	16	
DW-14	5/23/2006	390	110 L Y	< 300	30	<0.5	<0.5	< 0.5	<0.5	<1,000	28	<0.5	4.9	3.3	< 5.0	15	
DW-14	6/1/2006	1,800	360 L Y	< 300	58	<0.5	<0.5	< 0.5	<0.5	<1,000	55	1.2	41	28	< 5.0	16	
DW-14	6/8/2006	520	130 L Y	< 300	40	<0.5	<0.5	< 0.5	<0.5	<1,000	37	<0.5	6.0	4.7	< 5.0	16	
DW-14	6/16/2006	580	150 L Y	< 300	34	< 0.5	<0.5	< 0.5	< 0.5	<1,000	35	<0.5	6.4	5.4	<5.0	15	
DW-14	6/22/2006	1,200	320 L Y	< 300	47	<0.5	< 0.5	< 0.5	< 0.5	<1,000	34	0.5	7.6	9.7	<5.0	14	
DW-14	6/30/2006	970	270 L Y	< 300	35	<0.5	< 0.5	< 0.5	< 0.5	<1,000	30	<0.5	6.7	5.6	<5.0	15	
DW-14	7/5/2006	950	230 L Y	< 300	37	<0.5	< 0.5	< 0.5	< 0.5	<1,000	38	<0.5	6.1	5.2	<5.0	16	
DW-14	7/12/2006	850 Y	<50	< 300	24	< 0.5	<0.5	< 0.5	< 0.5	<1,000	26	<0.5	6.9	4.6	<5.0	14	
DW-14	7/18/2006	980	220 L Y	< 300	57	< 0.5	<0.5	<0.5	< 0.5	<1,000	39	<0.5	6.5	4.8	<5.0	14	
DW-14	7/27/2006	670	170 L Y	< 300	51	< 0.5	< 0.5	< 0.5	< 0.5	<1,000	38	0.5	3.2	5.3	<5.0	15	
DW-24	4/13/2006		<50	< 300													
DW-24	4/18/2006		<50	< 300													
DW-24	4/26/2006		<50	< 300													

Table 1 GROUNDWATER ANALYTICAL RESULTS Grab Groundwater Sample and Previous Dewatering Samples 5885 Hollis Street Emeryville, California

			TPH							VOCs								
Sample ID	Sample Date	Gasoline	Diesel Fuel	Motor Oil	ТВА	MTBE	DIPE	ETBE	TAME	Ethanol	В	т	E	х	EDB	EDC	Other VOCs	
DW-24	5/3/2006		63 Y	< 300														
DW-24	5/10/2006		<50	< 300														
DW-24	5/17/2006		<50	< 300														
DW-24	5/23/2006		<50	< 300														
DW-24	6/1/2006		<50	< 300														
DW-24	6/8/2006		<50	< 300														
DW-24	6/16/2006		<50	< 300														
DW-24	6/22/2006		<50	< 300														
DW-24	6/30/2006		<50	< 300														
DW-24	7/5/2006		<50	< 300														
DW-24	7/12/2006		<50	< 300														
DW-24	7/18/2006		<50	< 300														
DW-24	7/27/2006		<50	< 300														
TR-GW	7/22/2008	430	560 Y	<300	<10	<0.5	<0.5	<0.5	<0.5	<0.5	3.8	<0.5	3.5	0.6	<5.0	13	Isopropyl Benzene = 2.5 Propyl Benzene = 3.3 sec-Butylbenzene = 1.0 para-Isopropyl Toluene = 0.9 n-Butylbenzene = 1.3 All Others ND	
ESLs - Tier 1		210	210	210	18,000	1,800	NE	NE	NE	NE	46	130	43	100	150	200	NE	
ESLs - Gross (Contamination	5,000	2,500	2,500	50,000	1,800	NE	NE	NE	NE	20,000	400	300	5,300	50,000	50,000	NE	
ESLs - Vapor	Intrusion	NE	NE	NE	NE	NE	NE	NE	NE	NE	1,800	530,000	170,000	160,000	510	690	NE	

Notes

All water results reported in micrograms per liter (μ g/L). Detected concentrations shown in **bold**.

L = Lighter hydrocarbons contributed to the quantitation

Y = Sample exhibits chromatographic pattern which does not resemble standard.

Total petroleum hydrocarbons analyzed by EPA Method 8015M. Volatile organic compounds (VOCs) analyzed by EPA Method 8260B.

Fuel oxygenates include tert-Butyl Alcohol (TBA), Methyl tert-Butyl ether (MTBE), Isopropyl Ether (DIPE), Ethyl tert-Butyl Ether (ETBE), and Methyl tert-Amyl Ether (TAME)

B = Benzene, T = Toluene, E = Ethylbenzene, X = Total Xylenes

Lead scavengers include 1,2 dibromoethane (EDB) and 1,2 dichloroethane (EDC)

Other VOCs = Other volatile organic compounds described in the laboratory analytical report

<0.5 = Compound not detected above laboratory reporting limit.

-- = Not Analyzed

NE = Not Established

ND = Not detected above laboratory detection limits. Detection limits vary for each constituent.

ESLs = Environmental Screening Levels, California Regional Water Quality Control Board, San Francisco Bay Region, November 2007 (revised May 2008). Based on criteria where water is not a current or potential source of drinking water (Table B. Environmental Screening Levels), (Table F-1b. Groundwater Screening Levels), and (Table E-1. Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, under commercial land use)

Shaded results indicate that results exceeded ESL criteria for their respective constituent.

Treadwell&Rollo

ATTACHMENT A BORING LOG

PRC	DJECT:				588 Em	5 HO neryvi	LLIS STREET Ile, California	Log of Boring TR-GW
Borir	ng locatio	n:	See	Site	Plan	, Figu	ire 2	Logged by: J. Gekov
Date	started:	7/22	2/08				Date finished: 7/22/08	Drilled By: Vironex, Inc.
Drilli	ng metho	d: C	Direct	Pusł	1			
Ham	mer weig	ht/dr	op:				Hammer type:	
Sam	pler: Co	ontinu	uous	Core				
ΞΩ	S/	AMPL	ES		(ju	ЗGY	640	
EPT (feet	Sample	mple	ow	overy ches)	ld) W	НОГО	IMA	TERIAL DESCRIPTION
	Number	Sar	<u>8</u> 0	(inc	6	5		
1_							SANDY GRAVELLY CLA	AY (CL) ise to soft moist, non plastic, weak hydrocarbon odor, 10,
						CL	percent gravel, 10 perce	nt fine sand, 80 percent fines
		ľ					hand augered to 5 feet	_
							SAND CLAY (CL)	
4-	-	ΤΠ	Ť			CL	sand, 90 percent fines	signtly plastic, weak hydrocarbon odor, 10 percent line –
5-					ļ		SANDY CLAY (CL)	
6—							brown-green, soft, moist, sand, 85 percent fines	slightly plastic, weak hydrocarbon odor, 15 percent fine –
7-							· · · ·	-
8	-		┢					-
9-							SANDY CLAY (CL)	
10-						CL	brown-green, soft, moist,	slightly plastic, weak hydrocarbon odor, 20 percent fine
11-						-	SANDY GRAVELLY CLA	AY (CL)
12-	-	╎╎┼	+			CL	light brown to green, med	dium stiff, moist, subangular gravel to 1/4-inch, slightly
13-						-	plastic, weak hydrocarbo	n odor, 10 percent gravel, 10 percent sand, 80 percent
14-							SANDY GRAVELLY CLA	AY (SC-CL)
15-							slightly plastic, moderate	ly graded, no odor, 20 percent gravel, 30 percent medium
16-	-		L			CL	sand, 50 percent fines	_
17-								_
18_								
10							SANDY CLAY (CL)	e staining soft moist no odor 15 percent fine sand 85
							percent fines	
20-	•							-
21-								-
22-								-
23-								-
24-	-		+					-
25-						CL		-
26-							,	-
ت لي لي								-
28-	-	+++	┢				Ţ	-
29-								_
¥ 30-								_
5 31								-
₹ 32-	-	\square	Ļ				<u> </u>	
z 33-	L <u></u>							
Borir	ng terminate	ed at 3	2 feet I	pelow g	groun	d surfa	ce	Treaduall ⁰ Dalla
Z Grou	ug backfilled undwater wa w ground ei	i with o is enco inface	ountere	ed at a	depti	n of 32 i	feet	
Soil	properties b	ased o	on visu	al obse	ervatio	ons only	у.	4069.01 Figure A-1
					_			

			UNIFIED SOIL CLASSIFICATION SYSTEM						
M	lajor Divisions	Symbols	Typical Names						
00		GW	Well-graded gravels or gravel-sand mixtures, little or no fines						
no.	Gravels (More than half of	GP	Poorly-graded gravels or gravel-sand mixtures, little or no fines						
Coarse-Grained Sc ore than half of soil > sieve size	coarse fraction >	GM	Silty gravels, gravel-sand-silt mixtures						
	no. 4 sieve size)	GC	Clayey gravels, gravel-sand-clay mixtures						
	0l-	sw	Well-graded sands or gravelly sands, little or no fines						
	Sands (More than half of	SP	Poorly-graded sands or gravelly sands, little or no fines						
	coarse fraction <	SM	Silty sands, sand-silt mixtures						
ŭ,	no. 4 sieve size)	SC	Clayey sands, sand-clay mixtures						
s ji 🔅		ML	Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts						
Soil of s(size	Silts and Clays	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays						
ned half ieve		OL	Organic silts and organic silt-clays of low plasticity						
han 00 s		мн	Inorganic silts of high plasticity						
De t C	Silts and Clays	СН	Inorganic clays of high plasticity, fat clays						
ĒĔĪ	LL = > 50	ОН	Organic silts and clays of high plasticity						
Highi	ly Organic Soils	PT	Peat and other highly organic soils						
		·	SAMPLE DESIGNATIONS/SYMBOLS						
	GRAIN SIZE	CHART							
	Range	of Grain Sia	zes Sample taken with split-barrel sampler other than Standard Penetration Test sampler. Darkened area indicates soil recovered						

		GRAIN SIZE CHA		美國經	Sample	taken with s	nlit-harrel samı	oler other than 9	Standard
		Range of Gra	ain Sizes		Penetrat	ion Test san	pler. Darkened	area indicates	soil recovered
Class	sification	U.S. Standard Sieve Size	Grain Size in Millimeters		Classific	ation sampl	e taken with St	andard Penetra	tion Test
Boul	ders	Above 12"	Above 305		sampler				
Cob	oles	12" to 3"	305 to 76.2	清麗	Undistur				
Grav coa fine	vel arse e	3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 76.2 to 19.1 19.1 to 4.76		Disturbed sample				
Sano coa me fine	d arse dium e	No. 4 to No. 200 No 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.074 4.76 to 2.00 2.00 to 0.420 0.420 to 0.074	0	Sampling attempted with no recovery				
Silt a	and Clay	Below No. 200	Below 0.074		Core sar	nple			
	Unstabili	zed groundwater lev	rel		Analytica	al laboratory	sample		
_ _ _	Stabilized	d groundwater level			Sample	taken with D	Pirect Push sam	npler	
				SAMPL	ER TYPI	E			
С	Core bar	rel			PT	Pitcher tul thin-walled	be sampler usir I Shelby tube	ng 3.0-inch outs	ide diameter,
CA	California diameter	a split-barrel sample and a 1.93-inch insi	r with 2.5-inch outs ide diameter	side	S&H	Sprague & outside di	Henwood spli ameter and a 2	t-barrel sample .43-inch inside	r with a 3.0-inch diameter
D&M	Dames & diameter,	Moore piston samp , thin-walled tube	bler using 2.5-inch	outside	SPT	Standard	Penetration Tes	st (SPT) split-ba	rrel sampler with
0	Osterber thin-walle	g piston sampler usi ed Shelby tube	ing 3.0-inch outside	e diameter,	ST	Shelby Tul advanced	be (3.0-inch ou with hydraulic	tside diameter, pressure	thin-walled tube)
		5885 HOLLIS S Emeryville, Ca	STREET Ilifornia			CL	ASSIFICA	TION CHA	RT
1	Tre	adwell	& Rol	0	Date (7/24/08	Project No.	4069.01	Figure A-2
				-	1 Dato t		0 0 0 0 1 1 0 0		L'iguio n'E

4

Treadwell&Rollo

ATTACHMENT B LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Treadwell	L &	Rollo	
501 14th	Sti	reet	
Oakland,	CA	94612	

Project : 4069.01 Location : 5885 Hollis St. Level : II

<u>Sample ID</u> TR-GW <u>Lab ID</u> 204806-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

pina Jaganter Signature:

Project Manager

Signature:

UMRJ

Project Manager

NELAP # 01107CA

Date: 07/25/2008

Date: 07/25/2008

Page 1 of ____

CASE NARRATIVE

Laboratory number:204806Client:Treadwell & RolloProject:4069.01Location:5885 Hollis St.Request Date:07/22/08Samples Received:07/22/08

This hardcopy data package contains sample and QC results for one water sample, requested for the above referenced project on 07/22/08. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

High surrogate recoveries were observed for bromofluorobenzene (FID) in TR-GW (lab # 204806-001) and the MS/MSD of TR-GW (lab # 204806-001); the corresponding trifluorotoluene (FID) surrogate recoveries were within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

		Total	Volatil	Le Hydrocar	bons	
				•		
Lab #:	204806			Location:		5885 Hollis St.
Client:	Treadwell &	Rollo		Prep:		EPA 5030B
Project#:	4069.01			Analysis:	_	EPA 8015B
Field ID:	TR-GW			Batch#:		140625
Matrix:	Water			Sampled:		07/22/08
Units:	ug/L			Received:		07/22/08
Diln Fac:	1.000			Analyzed:		07/23/08
Type:	SAMPLE			Lab ID:		204806-001
A	nalyte		Result		RL	
Gasoline C7-	·C12		430		50	
Su	rrogate	%REC	T.imite			
Trifluorotol	HIOGACE	111	69-140			
Bromofluorob	enzene (FID)	 155 *	73-144			
DIGMOLIGOIGE		100	15 111			
Type:	BLANK			Lab ID:		QC452145
A	nalyte		Result		RL	
Gasoline C7-	·C12	NE)		50	
Su	irrogate	%REC	Limits			
Trifluorotol	uene (FID)	72	69-140			

137

73-144

Bromofluorobenzene (FID)

	Total Volatil	e Hydrocarbons	
Lab #:	204806	Location:	5885 Hollis St.
Client:	Treadwell & Rollo	Prep:	EPA 5030B
Project#:	4069.01	Analysis:	EPA 8015B
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC452146	Batch#:	140625
Matrix:	Water	Analyzed:	07/23/08
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	951.0	95	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	97	69-140
Bromofluorobenzene (FID)	144	73-144

	Total Volatil	e Hydrocarbons	
Lab #:	204806	Location:	5885 Hollis St.
Client:	Treadwell & Rollo	Prep:	EPA 5030B
Project#:	4069.01	Analysis:	EPA 8015B
Field ID:	TR-GW	Batch#:	140625
MSS Lab ID:	204806-001	Sampled:	07/22/08
Matrix:	Water	Received:	07/22/08
Units:	ug/L	Analyzed:	07/23/08
Diln Fac:	1.000		

Туре:	MS			Lab ID:		QC452150		
	Analyte	MSS Re	sult	Spike	d	Result	%REC	Limits
Gasoline	C7-C12	43	1.0	2,000		2,123	85	67-120
	Surrogate	%REC	Limits					
Trifluoro	toluene (FID)	112	69-140					
Bromofluc	probenzene (FID)	167 *	73-144					
Туре:	MSD			Lab ID:		QC452151		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline	C7-C12		2,000		2,090	83	67-120	2 20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	104	69-140
Bromofluorobenzene (FID)	163 *	73-144

*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\205.seq Sample Name: mss,204806-001,140625,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\205_004 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe184.met

Software Version 3.1.7 Run Date: 7/23/2008 10:02:02 AM Analysis Date: 7/23/2008 1:05:07 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

---< General Method Parameters >---No items selected for this section ----< A >-----

No items selected for this section

Integration Events

Enable	ed Event Type	Start	Sto (Minu	op tes) (N	/linutes)	Value
Yes Yes	Width Threshold		0 0	00	0.2 50	

Manual Integration Fixes

· \\\ ims\adrivo\a D

Data File: \\Lims\gdrive\ezchrom	h\Projects\GC04\Data\205_004	1
Star	rt Stop	
Enabled Event Type	(Minutes) (Minutes) Valu	е

Enable	eu Event Type	(iviinutes) (iviiri	utes)	valu
Yes	Split Peak	5.635	0	0	
Yes	Split Peak	14.71	0	0	

Channel ⊳

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\205.seq Sample Name: ccv/lcs,qc452146,140625,tvh,s9781,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\205_002 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe184.met

Software Version 3.1.7 Run Date: 7/23/2008 8:35:46 AM Analysis Date: 7/23/2008 1:03:20 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

----< General Method Parameters >----No items selected for this section ----< A >-----No items selected for this section Integration Events Stop Start (Minutes) (Minutes) Value Enabled Event Type Yes Width 0 0 0.2 0 0 Yes Threshold 50 Manual Integration Fixes
 Start
 Stop

 Enabled
 Event Type
 (Minutes)
 (Minutes)
 Value
 None

Channel

⊳

		Total 1	Extracta	ble Hydroc	arbo	ns
Lab #:	204806			Location:		5885 Hollis St.
Client:	Treadwell &	Rollo		Prep:		EPA 3520C
Project#:	4069.01			Analysis:		EPA 8015B
Field ID:	TR-GW			Sampled:		07/22/08
Matrix:	Water			Received:		07/22/08
Units:	ug/L			Prepared:		07/22/08
Diln Fac:	1.000			Analyzed:		07/23/08
Batch#:	140610					
Туре:	SAMPLE			Lab ID:		204806-001
	Analyte		Result		RL	
Diesel Cl	0-C24		560 Y		50	
Motor Oil	C24-C36	NI)		300	
	Surrogate	%REC	Limits			
Hexacosane	e	96	63-130			
Туре:	BLANK			Lab ID:		QC452072
	Analyte		Result		RL	
Diesel Cl	0-C24	NI)		50	
Motor Oil	C24-C36	NI)		300	
	Surrogate	%REC	Limits			
Hexacosan	e	113	63-130			

		Total 1	Extracta	ble Hydro	carbor	າຮ			
Lab #:	204806			Location:		5885 Hollis S	t.		
Client:	Treadwell &	Rollo		Prep:		EPA 3520C			
Project#:	4069.01			Analysis:		EPA 8015B			
Matrix:	Water			Batch#:		140610			
Units:	ug/L			Prepared:		07/22/08			
Diln Fac:	1.000			Analyzed:		07/23/08			
Type:	BS			Lab ID:		QC452073			
Anal	yte		Spiked		Result	%REC	Limits		
Diesel C10-C24			2,500		2,455	98	61-120		
Surro	ogate	%REC	Limits						
Hexacosane		93	63-130						
Туре:	BSD			Lab ID:		QC452074			
Anal	yte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C10-C24			2,500		2,424	97	61-120	1	29
Surro	ogate	%REC	Limits						
Hexacosane		92	63-130						

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\205b014, B

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\204b030, B

		Volatile	Organics	
Lab #: Client: Project#:	204806 Treadwell & Rollc 4069.01		Location: Prep: Analysis:	5885 Hollis St. EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	TR-GW 204806-001 Water ug/L 1.000		Batch#: Sampled: Received: Analyzed:	140624 07/22/08 07/22/08 07/23/08
	Analyte	Result		RI.
Freon 12 tert-Butyl	Alcohol (TBA)	ND		1.0

Freon 12	ND		1.0
tert-Butyl Alcohol (TBA)	ND		10
Chloromethane	ND		1.0
Isopropyl Ether (DIPE)	ND		0.5
Vinyl Chloride	ND		0.5
Bromomethane	ND		1.0
Ethyl tert-Butyl Ether (ETBE)	ND		0.5
Chloroethane	ND		1.0
Methyl tert-Amyl Ether (TAME)	ND		0.5
Trichlorofluoromethane	ND		1.0
Ethanol	ND		1.000
Acetone	ND		10
Freen 113	ND		2 0
1 1-Dichloroethene	ND		0.5
Methylene Chloride			10
Carbon Digulfido			
			0.5
MIDE twong 1 2 Dighlowoothono			0.5
			0.5
Vinyi Acetate	ND		
1,1-Dichloroethane	ND		0.5
2-Butanone	ND		
cis-1,2-Dichloroethene	ND		0.5
2,2-Dichloropropane	ND		0.5
Chloroform	ND		0.5
Bromochloromethane	ND		0.5
1,1,1-Trichloroethane	ND		0.5
1,1-Dichloropropene	ND		0.5
Carbon Tetrachloride	ND		0.5
1,2-Dichloroethane		13	0.5
Benzene		3.8	0.5
Trichloroethene	ND		0.5
1,2-Dichloropropane	ND		0.5
Bromodichloromethane	ND		0.5
Dibromomethane	ND		0.5
4-Methyl-2-Pentanone	ND		10
cis-1 3-Dichloropropene	ND		-0 0 5
			0.5
trang_1 2_Dighloropropono			0.5
1 1 2-Trichloroothano			0.5
			10
1 2 Dichlemonropone			
T, S-Dichioropropane			0.5
Dibust abless abless			0.5
Dibromochioromethane	ND		0.5
1,2-Dibromoethane	ND		0.5
Chlorobenzene	ND		0.5
1,1,1,2-Tetrachloroethane	ND		0.5
Ethylbenzene		3.5	0.5
m,p-Xylenes	ND		0.5
o-Xylene	ND		0.5
Styrene	ND		0.5
Bromoform	ND		1.0
Isopropylbenzene		2.5	0.5
1,1,2,2-Tetrachloroethane	ND		0.5
1.2.3-Trichloropropane	ND		0.5
· · · · · · · · · · · · · · · · · · ·			

ND= Not Detected RL= Reporting Limit Page 1 of 2

		v	olatile	Organics		
Lab #:	204806			Location:	5885 Hollis St.	
Client:	Treadwell & F	Rollo		Prep:	EPA 5030B	
Project#:	4069.01			Analysis	EPA 8260B	
Field ID:	TR-GW			Batch#:	140624	
Lab ID:	204806-001			Sampled	07/22/08	
Matrix:	Water			Received:	07/22/08	
Units	ug/L			Analyzed:	07/23/08	
Diln Fac:	1.000					
Analyt	-0				PT.	
Propylbenzene		•	3.3		0.5	
Bromobenzene		ND	0.0		0.5	
1.3.5-Trimethylbe	enzene	ND			0.5	
2-Chlorotoluene		ND			0.5	
4-Chlorotoluene		ND			0.5	
tert-Butylbenzene	9	ND			0.5	
1,2,4-Trimethylbe	enzene	ND			0.5	
sec-Butylbenzene			1.0		0.5	
para-Isopropyl To	oluene		0.9		0.5	
1,3-Dichlorobenze	ene	ND			0.5	
1,4-Dichlorobenze	ene	ND			0.5	
n-Butylbenzene			1.3		0.5	
1,2-Dichlorobenze	ene	ND			0.5	
1,2-Dibromo-3-Ch	loropropane	ND			2.0	
1,2,4-Trichlorobe	enzene	ND			0.5	
Hexachlorobutadie	ene	ND			2.0	
Naphthalene		ND			2.0	
1,2,3-Trichlorobe	enzene	ND			0.5	
Surrog	2+0	% P FC	Limita			
Dibromofluorometh	nane	95	80-123			
1.2-Dichloroethau	ne-d4	101	76-138			
Toluene-d8		94	80-120			
Bromofluorobenzer	ne	103	80-120			

	Volatile	Organics	
Lab #: Client: Project#:	204806 Treadwell & Rollo 4069.01	Location: Prep: Analysis:	5885 Hollis St. EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	140624 07/23/08

Type:	BS			Lab ID:	QC	452142		
	Analyte		Spiked		Result	%REC	Limits	
tert-Buty	l Alcohol (TBA)		125.0		128.2	103	55-158	
Isopropyl	Ether (DIPE)		25.00		22.61	90	63-122	
Ethyl ter	t-Butyl Ether (ETBE)		25.00		24.60	98	62-133	
Metĥyl te	rt-Amyl Ether (TAME)		25.00		23.82	95	69-137	
1,1-Dichl	oroetĥene		25.00		24.06	96	77-132	
Benzene			25.00		23.72	95	80-120	
Trichloro	ethene		25.00		24.63	99	80-120	
Toluene			25.00		22.34	89	80-121	
Chloroben	zene		25.00		23.89	96	80-120	
	Surrogate	%REC	Limits					
Dibromofl	uoromethane	99	80-123					
1 2 - Diabl	oroothano_d/	100	76-128					

J		
Dibromofluoromethane	99	80-123
1,2-Dichloroethane-d4	100	76–138
Toluene-d8	101	80-120
Bromofluorobenzene	101	80-120

Type: BSD			Lab ID:	QC45	52143			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		136.4	109	55-158	6	20
Isopropyl Ether (DIPE)		25.00		22.37	89	63-122	1	20
Ethyl tert-Butyl Ether (ETH	BE)	25.00		23.73	95	62-133	4	20
Methyl tert-Amyl Ether (TAN	ME)	25.00		24.21	97	69-137	2	20
1,1-Dichloroethene	,	25.00		23.80	95	77-132	1	20
Benzene		25.00		24.59	98	80-120	4	20
Trichloroethene		25.00		24.19	97	80-120	2	20
Toluene		25.00		22.57	90	80-121	1	20
Chlorobenzene		25.00		24.25	97	80-120	1	20
Surrogate	%REC	Limits						
Dibromofluoromethane	91	80-123						
1,2-Dichloroethane-d4	96	76-138						1
Toluene-d8	95	80-120						1
Bromofluorobenzene	97	80-120						

	Volatile	Organics	
Lab #: Client: Draight#:	204806 Treadwell & Rollo	Location: Prep:	5885 Hollis St. EPA 5030B
Type: Lab ID:	4069.01 BLANK QC452211	Diln Fac: Batch#:	1.000 140624
Matrix: Units:	water ug/L	Analyzed:	07/23/08

Freon 12 ND 1.0	
tert-Butyl Alcohol (TBA) ND 10	
Chloromethane ND 1.0	
Isopropyl Ether (DIPE) ND 0.5	
Vinyl Chloride ND 0.5	
Bromomethane ND 10	
Ftbyl tert-Butyl Ftber (FTRF) ND 05	
Chloroethane 10	
Mothyl tort-Amyl Ethor (TAME) ND 0 5	
Triellorofluoromothono ND 1.0	
Acchange ND 1,000	
Acetone ND 10	
Freon 113 ND 2.0	
1,1-Dichloroethene ND 0.5	
Methylene Chloride ND 10	
Carbon Disulfide ND 0.5	
MTBE ND 0.5	
trans-1,2-Dichloroethene ND 0.5	
Vinyl Acetate ND 10	
1,1-Dichloroethane ND 0.5	
2-Butanone ND 10	
cis-1,2-Dichloroethene ND 0.5	
2,2-Dichloropropane ND 0.5	
Chloroform ND 0.5	
Bromochloromethane ND 0.5	
1.1-Trichloroethane ND 0.5	
1 1 - Dichloropropene ND 0.5	
Carbon Tetrachloride ND 0.5	
1 2-Dichloroethane ND 0.5	
Trichleroothono ND 0.5	
12 Dichlerenzenzenzen ND 0.5	
I, Z-DIGHIOLOPIOPARE ND 0.5	
A Mohen Department ND 10	
4-Methyl-2-Pentanone ND 10	
CIS-1, 3-DICRIOTOPROPENE ND 0.5	
ND 0.5	
trans-1,3-Dichloropropene ND 0.5	
1,1,2-Trichloroethane ND 0.5	
2-Hexanone ND 10	
1,3-Dichloropropane ND 0.5	
Tetrachloroethene ND 0.5	
Dibromochloromethane ND 0.5	
1,2-Dibromoethane ND 0.5	
Chlorobenzene ND 0.5	
1,1,1,2-Tetrachloroethane ND 0.5	
Ethylbenzene ND 0.5	
m,p-Xylenes ND 0.5	
o-Xylène ND 0.5	
Styrene ND 0.5	
Bromoform ND 1.0	
Isopropylbenzene ND 0.5	
1.1.2.2-Tetrachloroethane ND 0.5	
1,2,3-Trichloropropane ND 0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

	Volatile	Organics	
Lab #: Client: Project#:	204806 Treadwell & Rollo 4069.01	Location: Prep: Analysis:	5885 Hollis St. EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC452211 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 140624 07/23/08

Analyte	Result	RL	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butvlbenzene	ND	0.5	
1.2.4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1.3-Dichlorobenzene	ND	0.5	
1.4-Dichlorobenzene	ND	0 5	
n-Butylbenzene	ND	0,5	
1 2-Dichlorobenzene	ND	0,5	
1 2-Dibromo-3-Chloropropane	ND	2 0	
1 2 4-Trichlorobenzene	ND	0 5	
Hexachlorobutadiene	ND	2 0	
Naphthalene	ND	2.0	
1 2 3-Trichlorobenzene	ND	0.5	
1,2,5 IIICIIIOIODEIIZEIIE	ND	0.5	
Surrogate	%REC Limits		
Dibromofluoromethane	93 80-123		
1.2-Dichloroethane-d4	104 76-138		
Toluene-d8	98 80-120		
Bromofluorobenzene	103 80-120		

ND= Not Detected RL= Reporting Limit Page 2 of 2

											20	748	301	φ																	
Telephon	CURTIS & TOMPKINS, LTD. 2323 FIFTH ST, BERKELEY CA 94710 Website: <u>www.curtisandtompkins.com</u> Telephone: (800) 522-1878								<u> </u>	CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 48 HR 72 HR 5 DAY																					
									Geofracker EDF PDF Excel Write On (DW)																						
Report To: Glen	n Leong]	Bill T	ill To: Treadwell & Rollo, Inc. Analysis Request												Othe	Comments													
Company: Tread	iwell & Rollo	o, Inc.						·								Œ					<u> </u>										Filtor
		····		- Mai									- 2			C/B&				5	, i	S	۱ ۱								Samples
Tele: (415) 272-	6986			Zov.	11: (A15)	753 (661						┨ᡱ			520 E	130	20)		6	l'u	3	$\mathbf{\mathbf{x}}$								for Metals
Project #: 4069.0)1	····	1	Projec	415) • Nai	<u>755-0</u>	2825	Hol	lie	C +			- 80	8021)		4 / 5	0 / 6(/ 60		9	er z	ð	5								analysis:
Project Location	5885 Hollis	St. Emer	vville C	A	L I I AI	пс	0000	110	115 .	31			- 29	02 / 8	2)	(166	(601	6010	6	-	3	10	ğ								Yes / No
Sampler Signatu	re: Kin	all	in the second se	-									Gas	PA 6	(801	ease	00.8	0.8 /	/ 602	7	2	3	3	ع م							
		SAM	PLING	Γ	rs	N	1AT	RIX		MI	eth Sfd	IOD	Ha se Ha	TA (EI	tor Oil	l & Gr	0.7 / 2(0.7 / 20	/ 6010	S	X	6	91	976							
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containe	Water	<i>><u>0, / , , ,</u> Air</i>	Sludge	Other	ICE		HNU ₃ Other	MTBE / BTEX & T	MTBE / BTEX ON	TPH as Diesel / Mot	Total Petroleum Oil	CAM 17 Metals (20	LUFT 5 Metals (200	Lead (200.7 / 200.8 /	TPHa 80	FULD Scan	BTEX, 3	Lead SG	and eth.							
TR-GW		7/27/09	1600	8	NOA	X				X	X		\mathbf{T}		\mathbf{x}					$\overline{\mathbf{X}}$		\leftarrow	Ť			-	+	┢──	+	\neg	
		1-7-5		Ť	AMB,		+-				-		┨──			1													+		
							+-						+																	_	
								+			-+-			+							\rightarrow				_		_				
								-					_		-							-						┣			
					Į		_					_																			
·····				ļ	 		_																								
													Γ														+ +				
															-	<u> </u>															
							-				+	+	1	-	<u> </u>	<u>† </u>						-+					+-'	<u> </u>	$\left \right $		
······								+			+	+-	┨──	+	+									-+				┣	$\left \right $	-+	
							+	┼─┤	-				 	+		+											<u> </u>	┣—	-	-+	
Relimished Ry:		Date	Time	Pass								İ		TE (40			l											L			
Juna Ma		Tala	1774	\mathbb{Z}		\mathbb{Z}							G	DOD	CO	TIDN	ION					6	VE	-	Γc			LNTS	7/2	e In	0
Relinquished By:		/ Date:	Time	Rece	iver	y:	\sim	<u> </u>					HI DI AI	EAD ECHI PPRC	SPA LOR)PRI	CE A INAT	ABSE FED	INT_ IN L	AB_	-	_	- 1				<u> </u>	- 2			0	~
Relinguished By:		Date:	Time	Rece	ived P								PF	RESE	RVE	ED IN	LA	B				•									
		Part.	A 488Q.	ncce	14CU D	, .							 PR	RESE	RVA	TIO	VO	DAS	08	G	ME]	FALS	6 C	THI	ER						