RECEIVED

1:35 pm, Jul 23, 2008

Alameda County Environmental Health

Shaw Environmental, Inc. 4005 Port Chicago Highway Concord, California 94520-1120 Phone: 925.288.9898 Fax: 925.288.0888

July 15, 2008

Shaw Project No. 130263.12

Mr. Paresh Khatri Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Results of Soil and Groundwater Investigation, AT&T Facility, 1189 58th Avenue, Oakland, California

Dear Mr. Khatri:

Shaw Environmental, Inc. (Shaw) is pleased to present the results of soil and groundwater investigation completed at the above-mentioned AT&T facility. This investigation consisted of advancing 5 direct-push soil borings in the vicinity of the former gasoline/diesel underground storage tank (UST), and collection and analysis of soil and groundwater samples. Field activities discussed in this report were completed on July 3, 2008.

Four soil borings were advanced around the former UST, to depths of 20 feet to 24 feet below surface grade (bsg). Groundwater was encountered in three of the borings at depths of 16 feet to 19 feet bsg; groundwater was not encountered in the fourth boring. Groundwater samples were collected for laboratory analysis from the borings where groundwater was present, and a soil sample submitted for laboratory analysis from the remaining boring.

The fifth boring was placed within the center of the former UST excavation, with fill material encountered to a depth of 15 feet bsg followed by native soils to the termination of continuous coring activities at 17 feet bsg. A hydropunch was advanced in the borehole to a depth of 24 feet bsg, with the outer casing then retracted to expose a screened interval approximately 3 feet in length. A groundwater sample was then collected for laboratory analysis.

No petroleum hydrocarbons were detected in the analysis of the soil sample collected from the borehole where groundwater was not encountered. Analysis of the groundwater samples reported total petroleum hydrocarbons as diesel (TPH-D) in all four samples at concentrations of 120 μ g/L (B1E), 170 μ g/L (B2N), 68 μ g/L (B3W), and 110 μ g/L (B5C). The fuel oxygenate methyl

Mr. Paresh Khatri July 15, 2008 Page 2

tertiary butyl ether (MTBE) was also detected in all four samples at concentrations of 71 μ g/L (B1E), 1.1 μ g/L (B2N), 260 μ g/L (B3W), and 0.76 μ g/L (B5C). No TPH-G, benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents, or the fuel oxygenates tert-amylmethyl ether (TAME), di-isopropyl ether (DIPE), tert-butanol, or ethanol were detected in any of the samples.

No TPH-D or MTBE concentrations reported in the laboratory analysis exceeded the San Francisco Regional Water Quality Control Board (RWQCB) environmental screening levels (ESLs) for deep groundwater (>3 meters) at commercial/industrial properties. However, both TPH-D and MTBE exceeded the ESLs for residential properties. Additional investigation would need to be performed to delineate the extent of impacted groundwater.

If you have any questions regarding the information presented in this report, please contact Rob Delnagro at (925) 288-2103. Any written correspondence should be addressed to:

Mr. Jason Weller AT&T Services, Inc. 308 South Akard Street; Room 1700 Dallas, Texas 75202

Sincerely, Shaw Environmental, Inc.

Rob Delnagro Project Manager

cc: Mr. Jason Weller – AT&T EH&S

SOIL AND GROUNDWATER INVESTIGATION AT&T FACILITY 1189 58TH AVENUE OAKLAND, CALIFORNIA

Prepared for:

AT&T Services, Inc. 308 South Akard, Room 1700 Dallas, Texas 75202

Prepared by:

Shaw Environmental, Inc. 4005 Port Chicago Highway Concord, California 94520

Shaw Project No. 130263.12

July 2008

Table of Contents_

List	ofTa	blesii	i
List	ofFi	guresii	i
		ppendicesii	
1.0	Intro	oduction1	
	1.1	Site Description	
	1.2	Site Background	
2.0	Fiel	d Activities	;
	2.1	Permitting, Health and Safety Plan, and Utility Location	
	2.2	Soil Borings	
	2.3	Laboratory Analysis	
	2.4	Soil Sample Analytical Results	
	2.5	Groundwater Sample Analytical Results	
	2.6	Waste Disposal	
3.0	Dise	cussion 6	,
4.0	Con	clusions	;
5.0	Ref	erences	,
6.0	Sigr	natures	;

1

.

1

List of Tables_

Table

Title

Summary of Soil Sample Analytical Data
 Summary of Groundwater Sample Analytical Data

List of Figures_____

Figure

Title

1	Site Vicinity Map
2	Site Plan
3	Soil Sample Analytical Data
4	Groundwater Sample Analytical Data

List of Appendices_____

Appendix

Title

- A Approval Letter from the ACHCSA
- B Soil Boring Permit
- C Laboratory Analytical Report and Chain-of-Custody Document
- D Soil Boring Logs

1.0 Introduction

On behalf of AT&T Services, Inc. (AT&T), Shaw Environmental, Inc. (Shaw) has prepared this report of the soil and groundwater investigation completed at the AT&T facility located at 1189 58th Avenue in Oakland, California (Figure 1). These activities were required by the Alameda County Health Care Services Agency (ACHCSA) to evaluate conditions in the vicinity of a former dual-compartment gasoline/diesel underground storage tank (UST).

The investigation involved the advancement of five direct-push soil borings around the former UST location, and the collection and analysis of soil and groundwater samples. Field activities presented in this report were performed by Shaw on July 3rd, 2008.

1.1 Site Description

The AT&T property is located in a commercial/light industrial and residential area of Oakland, California. A one-story building used for housing telecommunications equipment and offices occupies the northeastern portion of the site. A warehouse facility and carport occupy the northwestern portion of the site, with a covered equipment storage bay centrally located on the property. The remainder of the site is paved and used for vehicle parking and equipment storage (Figure 2).

On the southeastern portion of the site was a 12,000-gallon, dual-compartment UST used for fueling AT&T fleet vehicles. The UST contained an 8,000-gallon compartment containing gasoline and a 4,000-gallon compartment containing diesel fuel. AT&T had decided to no longer operate the fleet fueling facility and the UST was removed in July 2003.

1.2 Site Background

October 1994 UST Removal/Groundwater Monitoring

In October 1994, an 8,000-gallon gasoline UST was removed from the site (IT Corporation, 1994). Analysis of an initial sample collected from groundwater encountered in the excavation detected total petroleum hydrocarbons as gasoline (TPH-G) at a concentration of 18,000 micrograms per liter (μ g/L). Benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents were also detected, with benzene reported at a concentration of 630 μ g/L. No petroleum hydrocarbons were detected in soil samples collected from the excavation. The excavation was subsequently dewatered, with TPH-G detected in a second groundwater sample at 400 μ g/L.

BTEX constituents were also encountered with benzene at 2.9 μ g/L. A new 12,000-gallon dual-compartment gasoline/diesel UST was then installed within the same excavation.

In January 1995, three monitoring wells were installed at the site, and a quarterly monitoring program initiated. Results of the initial sampling activities detected TPH-G and BTEX compounds in the downgradient monitoring well. In April 1994, a fourth monitoring well was installed further downgradient and incorporated into the monitoring program. A total of four sampling events were performed, with petroleum hydrocarbons only detected in the well located immediately downgradient of the former UST system in the initial two sampling events. Inferred groundwater flow direction was to the west at an average gradient of approximately 0.01 ft/ft. The fuel oxygenate methyl tertiary butyl ether (MTBE) was not included in the analytical suite. No hydrocarbons were detected in any of the wells in the last two sampling events conducted in July and October 1995 (IT Corporation, 1995).

In May 1996, case closure was granted by the ACHCSA, with the four monitoring wells subsequently destroyed.

July 2003 UST Removal

The 12,000-gallon gasoline/diesel UST was removed from the property on July 30, 2003. Following removal, the tank was observed to be in good condition, without any holes or cracks. Light green staining was observed on the sidewalls of the excavation (Shaw, 2003). Groundwater with a slight hydrocarbon odor was encountered at approximately 9.5 bsg in the excavation. Following removal, four soil samples were collected from the sidewalls of the excavation. Analysis of the soil samples indicated methyl tertiary butyl ether (MTBE) in the sample collected from the southern sidewall at a concentration of 0.079 milligrams per kilogram (mg/kg). TPH as diesel (TPH-D), TPH-G, BTEX constituents, and total lead were not detected in any of the soil samples collected

After removal of the UST and completion of soil sampling activities, the excavation was dewatered, with approximately 1,500 gallons of groundwater removed. The following day, the excavation was further dewatered, with an additional 1,100 gallons of groundwater removed. The excavation was allowed to partially recharge, and a groundwater sample was collected. Analysis of the groundwater sample detected TPH-D, TPH-G, and MTBE at concentrations of 190 μ g/L, 1,600 μ g/L, and 1,800 μ g/L, respectively. BTEX constituents were detected at

concentrations of 51 μ g/L (benzene), 300 μ g/L (toluene), 32 μ g/L (ethylbenzene), and 260 μ g/L (xylenes).

In August 2006, a work plan detailing completion of a soil/groundwater investigation was submitted by Environmental Resolutions, Inc. (ERI) to the ACHCSA (ERI, 2006). In a letter dated April 9, 2008, the ACHCSA approved implementation of the work plan with the analyses for di-isopropyl ether (DIPE), tert-amylmethyl ether (TAME), tert-butanol (TBA), and ethanol added to the laboratory sampling program (ACHCSA, 2008). A copy of this letter is included in Appendix A. The following sections detail field activities and sampling results of this investigation.

2.0 Field Activities____

2.1 Permitting, Health and Safety Plan, and Utility Location

Prior to performing field activities, a permit for the soil borings was obtained from the Alameda County Public Works Agency (ACPWA). Upon approval, representatives of the ACPWA and the ACHCSA were notified of the proposed drilling date. A copy of the permit is included in Appendix B.

A site-specific health and safety plan was developed to outline safety measures to be implemented during field activities. The proposed drilling locations were marked and Underground Service Alert (USA) was contacted and notified of the anticipated locations and date of drilling. In addition, an independent utility locating service was subcontracted to further assist in locating utilities near the anticipated drilling locations.

2.2 Soil Borings

On July 3, 2008 five soil borings were advanced at select locations on the site (Figure 3). Four of the soil borings were placed around the former UST excavation (borings B1E, B2N, B3W, and B4S), and one boring placed within the center of the former excavation (B5C). Drilling activities were performed under the supervision of a Shaw field geologist, by Gregg Drilling and Testing, of Martinez, California using direct-push equipment. The borings not located within the backfilled UST excavation were hand-augered until native soils were encountered. The borings were then cored to depth using 48-inch-long core samplers lined with clear, lexan sample tubes, with soil cores used for lithologic evaluation and field screening of organic vapors using a photoionization detector (PID).

Boring B2N and B4S were placed in the inferred cross-gradient groundwater flow direction from the former UST, boring B1E was placed up-gradient of the former UST, and boring B3W placed in the downgradient direction. Borings B2N, B3W, and B4S were advanced to a total depth of 20 feet bsg, with the fourth boring (B1E) was performed to a depth of 24 feet bsg. During borehole advancement, soil samples were collected from 15 feet and 20 feet bsg, sealed with teflon tape and plastic end caps, appropriately labeled, and placed in an insulated chest with ice pending transport to the laboratory. A copy of the chain-of-custody document is included in Appendix C.

Following completion of the borings, a 1.25-inch temporary PVC well casing was placed into boreholes B1E, B2N, B3W, and B4S. A pre-cleaned stainless steel bailer was then used to collect a water sample, if present, from within each casing. The samples were then transferred into the appropriate laboratory-supplied containers, placed in seam sealing plastic bags and stored in a cooler with ice until delivery to the laboratory. After approximately 6 hours, there was insufficient water present to sample within boring B4S.

Soil boring B5C was located in the center of the former UST excavation. During boring activities, pea gravel fill material was encountered to a depth of 15 feet bsg, followed by native soils to the termination of continuous coring activities at 17 feet bsg (probe refusal?). In order to collect a groundwater sample from depth, a hydropunch was advanced within the borehole to 24 feet, with the outer casing then retracted to expose a screened interval approximately 3 feet in length. A groundwater sample was collected from the hydropunch sampler using a pre-cleaned stainless steel bailer. The water was transferred into the appropriate laboratory-supplied containers, placed in seam sealing plastic bags and stored in a cooler with ice until delivery to the laboratory.

Native soils encountered during boring activities consisted of dark gray clays to approximately 12 feet bsg, followed by yellowish brown sandy clays to the end of the borings. Slight petroleum hydrocarbons and elevated PID readings were noted in soils in boring B3W from 3 feet to 5 feet bsg, and in boring B5C from 15 feet to 17 feet bsg. Groundwater was encountered in borings B1E, B2N, and B3W, and B5C at depths of 16 feet to 19 feet bsg; groundwater was not encountered in boring B4S. Soil boring logs are included in Appendix C.

Following completion of drilling and groundwater sampling, the borings were grouted up with a bentonite/cement grout slurry and surface-patched with concrete. Soil cuttings generated

during boring advancement were placed into a labeled 55-gallon drum and left on-site pending disposal. In order to characterize the soils for disposal purposes, one soil sample, labeled B1-5, was collected from the drummed soils and submitted for laboratory analyses.

2.3 Laboratory Analysis

A total of two soil samples and four groundwater samples were collected for laboratory analysis and submitted to McCampbell Analytical Inc., an ELAP-certified laboratory located in Pittsburg, California. The samples were analyzed for TPH-D and TPH-G under EPA method 8015C and BTEX constituents under EPA method 8260B. The samples were further analyzed for MTBE, DIPE, TBA, TBA and ethanol under EPA method 8260B. In addition, soil sample B1-5, collected from drummed soil cuttings, was analyzed for total lead under EPA method 6010C. A copy of the chain-of-custody document is included in Appendix C.

2.4 Soil Sample Analytical Results

No petroleum hydrocarbons were detected in soil sample B4S-15, collected from boring B4S at a depth of 15 feet bsg. Analysis of sample B1-5, collected for waste disposal purposes from drummed soil cuttings, reported TPH-D at a concentration of 24 mg/kg. No other analytes were detected in this sample. Analytical results are summarized in Table 1, and depicted on Figure 3. A copy of the laboratory analytical report is included in Appendix C.

2.5 Groundwater Sample Analytical Results

TPH-D was detected in all four samples at concentrations of 120 μ g/L (B1E), 170 μ g/L (B2N), 68 μ g/L (B3W), and 110 μ g/L (B5C). The fuel oxygenate MTBE was also detected in all four samples at concentrations of 71 μ g/L (B1E), 1.1 μ g/L (B2N), 260 μ g/L (B3W), and 0.76 μ g/L (B5C). No other analytes were encountered in the groundwater samples. Analytical results are summarized in Table 2, and depicted on Figure 4. A copy of the laboratory analytical report is included in Appendix C.

2.6 Waste Disposal

Soils generated during boring activities were placed into a labeled 55-gallon drum pending offsite disposal. A copy of the disposal documentation will be forwarded upon receipt.

3.0 Discussion

Groundwater was encountered in four of the five borings, at depths ranging from 16 feet to 19 feet bsg. After allowing the remaining boring (B4S) to remain open for approximately 6 hours, insufficient water to sample had infiltrated into the boring. Due to the lack of groundwater within the remaining boring, one soil sample was submitted for analysis from a depth of 15 feet bsg, near the approximately depth of the former UST excavation. No petroleum hydrocarbons were detected in the laboratory analysis of the sample.

Analysis of the four groundwater samples detected elevated TPH-D and MTBE in all four groundwater samples, with TPH-D concentrations ranging from 68 μ g/L to 170 μ g/L, and MTBE concentrations ranging from 0.76 μ g/L to 260 μ g/L. None of the analyte concentrations exceeded the San Francisco Regional Water Quality Control Board (RWQCB) environmental screening levels (ESLs) for deep groundwater (>3 meters) at commercial/industrial properties. However, both TPH-D and MTBE exceeded the ESLs for residential properties.

In order to characterize the extent of impacted groundwater, additional investigation would be required.

4.0 Conclusions

Based on the field observations and laboratory analytical data presented in this report, Shaw concludes the following:

- In July 2008, five direct-push soil borings were performed in the vicinity of the former 12,000-gallon gasoline/diesel UST.
- Groundwater was encountered in borings B1E, B2N, B3W, and B5C at depths ranging from 16 feet to 19 feet bsg. Groundwater samples were collected from either temporary well casings placed in each borehole or from hydropunch sampling equipment.
- Due to the lack of groundwater within boring B4S, one soil sample collected from a depth of 15 feet bsg was submitted for analysis.
- No petroleum hydrocarbons were detected in the analysis of the soil sample collected from boring B4S.
- TPH-D was reported in all four groundwater samples at concentrations of 120 $\mu g/L$ (B1E), 170 $\mu g/L$ (B2N), 68 $\mu g/L$ (B3W), and 110 $\mu g/L$ (B5C).

- The fuel oxygenate MTBE was also detected in all four samples at concentrations of 71 µg/L (B1E), 1.1 µg/L (B2N), 260 µg/L (B3W), and 0.76 µg/L (B5C).
- Additional investigation would be required to delineate the extent of impacted groundwater at the site.

5.0 References_

California Regional Water Quality Control Board – San Francisco Bay (RWQCB, 2008), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final – May 2008, May 2008.

Environmental Resolutions, Inc. (ERI, 2006), Work Plan for Evaluation of Groundwater, AT&T Maintenance Facility, 1189 58th Avenue, Oakland, California, August 9, 2006.

IT Corporation (IT Corporation, 1994), Underground Storage Tank Removal Report, Pacific Bell Facility, 1189 58th Avenue, Oakland, California, November 1994.

IT Corporation (IT Corporation, 1995), Quarterly Sampling Report, Pacific Bell, 1189 58th Avenue, Oakland, California, October 1995.

Shaw Environmental, Inc. (Shaw, 2003a), Underground Storage Tank Removal Report, SBC Facility, 1189 58th Avenue, Oakland California, October 2003.

6.0 Signatures

The interpretations and conclusions contained in this report represent our professional opinions. These opinions are based on currently accepted engineering practices at this time and for this specific site. No additional warranty is implied or intended.

Report prepared by:

Matthew Osowsk

Scientist Shaw Environmental, Inc.

ONAL ROBERT NAGRO No.7793 Rob Delnagro California Profession GOAL Shaw Environmental, Inc.

Report reviewed by:

The work described in this report was performed by or under the direct supervision of a State of California Professional Geologist.

TABLES

CNCD\SHARE\UST\08-0028.doc

-

TABLE 1 Summary of Soil Sample Analytical Data AT&T Facility 1189 58th Avenue Oakland, California

Sample I.D.	Sample Location	on Sample Depth (bsg)	Depth	Depth Date	TPH-D	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Four Fuel Oxygenates	Total Lead
			Collected	(all results reported in milligrams per kilogram)									
B4S-15	soil boring B4S	15 feet	07/03/08	ND _{1.0}	ND _{1.0}	ND _{0.005}	ND _{0.005-0.025}	NA					
B1-5	soil cuttings		07/03/08	24	ND _{1.0}	ND _{0.005}	ND _{0.005-0.025}	14					
San Francisco RWQCB ESLs, deep soil impact, drinking water resource			83	83	0.044	2.9	3.3	2.3	0.023	TBA - 0.075	750		
San Francisco RWQCB ESLs, deep soil impact, non- drinking water resource				180	180	2.0	9.3	4.7	11	8.4	TBA - 110	750	

Notes:

bsg - below surface grade

TPH-D - total petroleum hydrocarbons as diesel

TPH-G - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether

Four Fuel Oxygenates - di-isopropyl ether, tert-amymethyl ether, tert-butanol (TBA), and ethanol

ND_x - not detected above "x" laboratory detection limits

NA - not analyzed

San Francisco Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs)

from Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater

Volume 1: Summary Tier 1 Lookup Tables, Interim Final - May 2008

TPH-D ESL compared to TPH (middle distillate) value

TABLE 2 Summary of Groundwater Sample Analytical Data AT&T Facility 1189 58th Avenue Oakland, California

	Semale Leastion	Date Collected	ТРН-D	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Four Fuel Oxygenates
Sample I.D.	Sample Location			(all results reported in micrograms per liter)						
B1E	soil boring B1E	07/03/08	120	ND ₅₀	ND _{1.2}	ND _{1.2}	ND _{1.2}	ND _{1.2}	71	ND _{1.2-120}
B2N	soil boring B2N	07/03/08	170	ND ₅₀	ND _{0.5}	ND _{0.5}	ND _{0.5}	ND _{0.5}	1.1	ND _{0.5-50}
B3W	soil boring B3W	07/03/08	68	ND ₅₀	ND ₁₀	ND ₁₀	ND ₁₀	ND ₁₀	260	ND _{10-1,000}
B5C	soil boring B5C	07/03/08	110	ND ₅₀	ND _{0.5}	ND _{0,5}	ND _{0.5}	ND _{0.5}	0.76	ND _{0.5-50}
San Francisco RWQCB ESLs, deep soil impact, drinking water resource			100	100	1.0	40	30	20	5.0	TBA - 12
San Francisco RWQCB ESLs, deep soil impact, non-drinking water resource			210	210	46	130	43	100	1,800	TBA - 18,000

Notes:

bsg - below surface grade

TPH-D - total petroleum hydrocarbons as diesel

TPH-G - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether

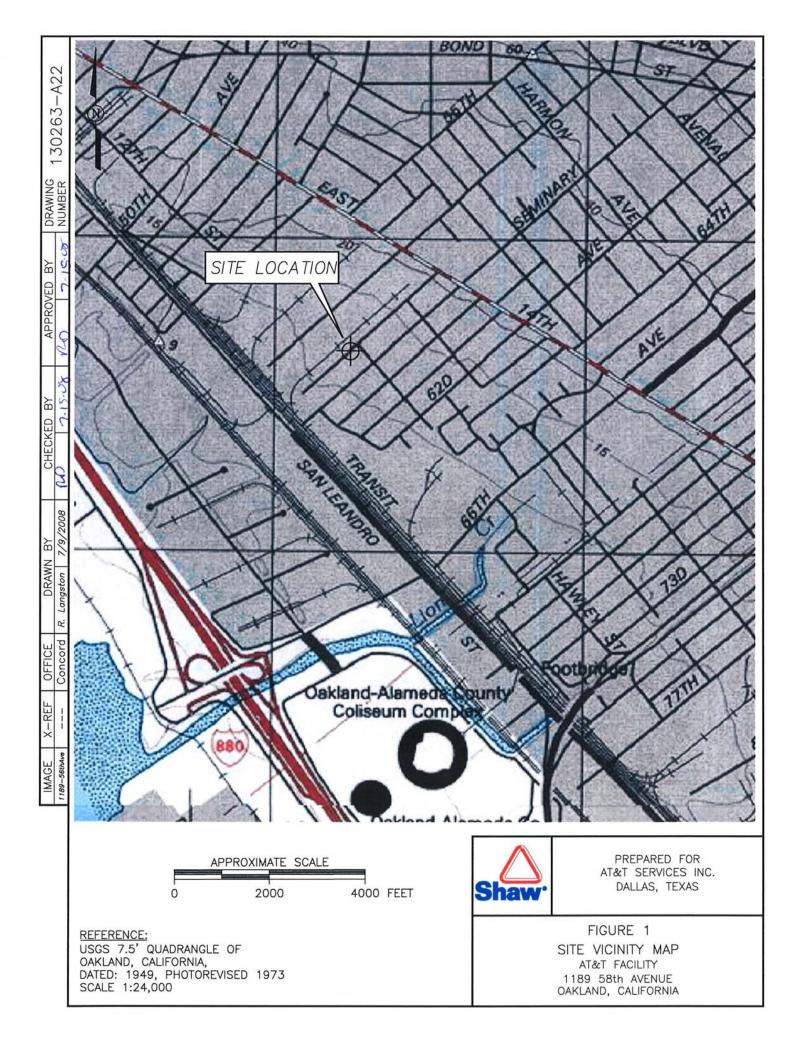
Four Fuel Oxygenates - di-isopropyl ether, tert-amymethyl ether, tert-butanol (TBA), and ethanol

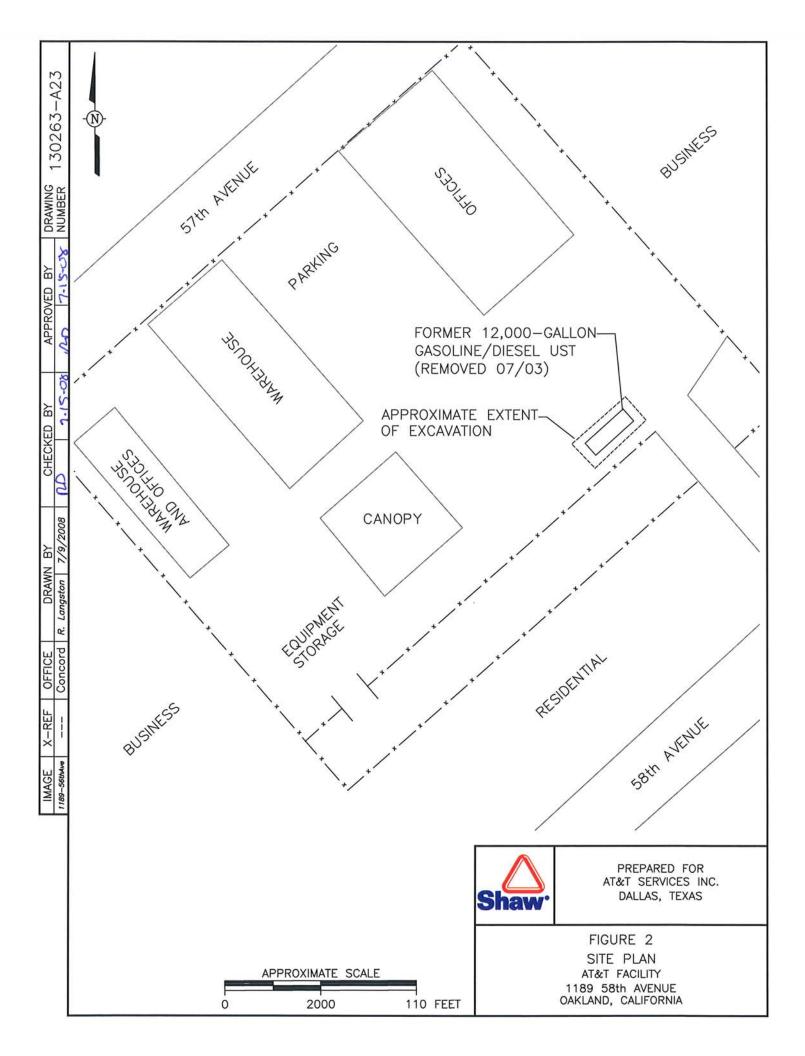
ND_x - not detected above "x" laboratory detectio

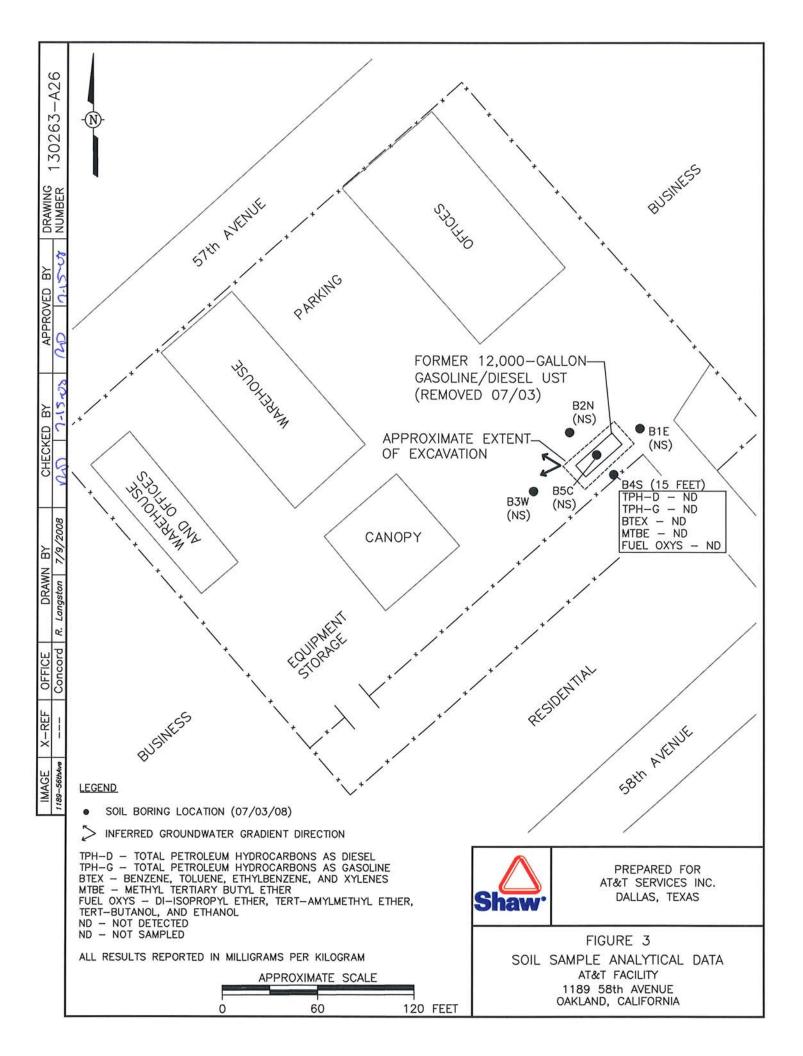
San Francisco Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs)

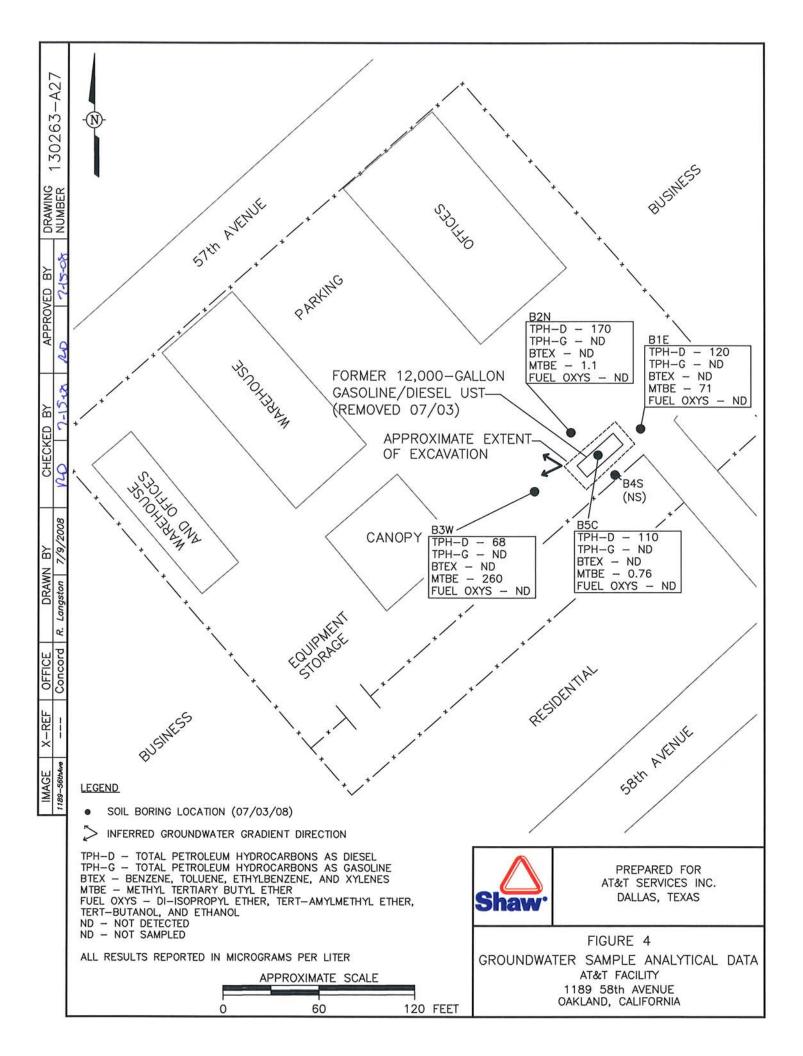
from Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater

Volume 1: Summary Tier 1 Lookup Tables, Interim Final - May 2008


TPH-D ESL compared to TPH (middle distillate) value


FIGURES


.


CNCD\SHARE\UST\08-0028.doc

.

APPENDIX A

APPROVAL LETTER FROM THE ACHCSA

.

CNCD\SHARE\UST\08-0028.doc

-

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY DAVID J. KEARS, Agency Director

> ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway. Suite 250 Alameda. CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

April 29, 2008

Mr. Andy Taylor SBC PO Box 5095, Room 3E00K San Ramon, CA 94583

Subject: Fuel Leak Case No. RO0002588, SBC, 1189 58th Avenue, Oakland, CA 94621

Dear Mr. Taylor:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above-referenced site including the recently submitted document entitled, "Work Plan for Evaluation of Groundwater," dated August 9, 2006, which was prepared by Environmental Resolutions, Inc. The work plan proposes to characterize site stratigraphy up to 40 feet below ground surface and collect and analyze five groundwater samples for gasoline and diesel fuel constituents

ACEH generally concurs with the proposed scope of work and requests that you address the following technical comments, perform the proposed work, and send us the technical reports described below.

TECHNICAL COMMENTS

 <u>Gasoline Analytes</u> -- In addition to the proposed testing for BTEX and MTBE, please include analyses for TBA, DIPE, TAME, and ethanol.

REQUEST FOR INFORMATION

ACEH's case file for the subject site contains only the electronic reports as listed on our website (<u>http://www.acgov.org/aceh/lop/ust.htm</u>). You are requested to submit copies of all other reports related to environmental investigations for this property by **July 15, 2008**.

LANDOWNER NOTIFICATION REQUIREMENTS

Pursuant to California Health & Safety Code Section 25297.15, the active or primary responsible party for a fuel leak case must inform all current property owners of the site of cleanup actions or requests for closure. Furthermore, ACEH may not consider any cleanup proposals or requests for case closure without assurance that this notification requirement has been met. Additionally, the active or primary responsible party is required to forward to ACEH a complete mailing list of all record fee title holders to the site.

the second reaction of the second sec

RECEIVED MAY 07 2008

したな話だい

Mr. Taylor RO0002588 April 29, 2008, Page 2

At this time we require that you submit a complete mailing list of all record fee title owners of the site by May 15, 2008, which states, at a minimum, the following:

A. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, <u>(name of primary responsible party)</u>, certify that the following is a complete list of current record fee title owners and their mailing addresses for the above site:

- OR -

B. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, (<u>name of primary responsible party</u>), certify that I am the sole landowner for the above site.

(Note: Complete item A if there are multiple site landowners. If you are the sole site landowner, skip item A and complete item B.)

In the future, for you to meet these requirements when submitting cleanup proposals or requests for case closure, ACEH requires that you:

1. Notify all current record owners of fee title to the site of any cleanup proposals or requests for case closure;

2. Submit a letter to ACEH which certifies that the notification requirement in 25297.15(a) of the Health and Safety Code has been met;

3. Forward to ACEH a copy of your complete mailing list of all record fee title holders to the site; and

4. Update your mailing list of all record fee title holders, and repeat the process outlined above prior to submittal of any additional *Corrective Action Plan* or your *Request for Case Closure*.

Your written certification to ACEH (Item 2 above) must state, at a minimum, the following:

A. In accordance with Section 25297.15(a) of the Health & Safety Code, I, (<u>name of primary responsible party</u>), certify that I have notified all responsible landowners of the enclosed proposed action. (Check space for applicable proposed action(s)):

cleanup proposal (Corrective Action Plan)

____ request for case closure

____ local agency intention to make a determination that no further action is required

local agency intention to issue a closure letter

- OR -

B. In accordance with section 25297.15(a) of Chapter 6.7 of the Health & Safety Code, I, (name of primary responsible party), certify that I am the sole landowner for the above site.

(Note: Complete item A if there are multiple site landowners. If you are the sole site landowner, skip item A and complete item B.)

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Paresh Khatri), according to the following schedule:

• July 15, 2008 – Groundwater Investigation

Mr. Taylor RO0002588 April 29, 2008, Page 3

This report is being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the State Water Resources Control Board for more information on these requirements

(http://www.swrcb.ca.gov/ust/electronic_submittal/report_rgmts.shtml).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

Mr. Taylor RO0002588 April 29, 2008, Page 4

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call Paresh Khatri at (510) 777-2478.

Sincerely,

Paresh C. Khatri Hazardous Material Specialist

Donna L. Drogos, PE

LOP Program Manager Alameda County Environmental Health

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032

John Bobitt, PG. Environmental Resolutions, Inc., 601 McDowell Avenue, Petaluma, CA 94964 Dennis Parfitt, PG, SWRCB UST Program, 1001 I Street 17th Floor, Sacramento, CA 95814 Donna Drogos, ACEH Paresh Khatri, ACEH file RO0002588

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005		
Oversight Programs	REVISION DATE: December 16, 2005		
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005		
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions		

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555 WorkPlan 2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the fip site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Alicia Lam-Finneke.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.

2) Upload Files to the ftp Site

- a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
- b) Click on File, then on Login As.
- c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
- d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
- e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload)

APPENDIX B

SOIL BORING PERMIT

•

CNCD\SHARE\UST\08-0028.doc

Alameda County Public Works Agency - Water Resources Well Permit

	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(5			
Application Approved	on: 06/24/2008 By jamesy		t Numbers: W2008-0388)7/03/2008 to 07/03/2008	
Application Id:	1214237736812	City of Project Site	:Oakland	
Site Location: Project Start Date:	1189 58th Avenue, Oakland, CA 07/03/2008	Completion Date	:07/03/2008	
Requested Inspection Scheduled Inspection	:07/03/2008 :07/03/2008 at 1:30 PM (Contact your inspector,	Ron Smalley at (510) 67	0-5407, to confirm.)	
Applicant:	Shaw Environmental - Rob Delnagro	Phone: 925-288-2103		
Property Owner:	4005 Port Chicago Hwy., Concord, CA 94520 AT &T	Phone: 214-464-5226		
Client:	308 South Akard, Rm 1700, Dallas, TX 75202 ** same as Property Owner **			
	Receipt Number: WR2008-0223 Payer Name : Robert Delnagro		\$200.00 \$200.00 PAID IN FULL	
Works Requesting Pe	mits:			
.,	ation-Contamination Study - 5 Boreholes Testing - Lic #: 485165 - Method: DP		Work Total: \$200.00	

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2008-	06/24/2008	10/01/2008	5	2.00 in.	20.00 ft
0388					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

5. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 or email to ronaldws@acpwa.org at least

Ś

AND DEPENDENCE OF

(1) (A. 1997)

2

A THE REPORT OF A DESCRIPTION OF A DESCRIPANCON OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESC

Alameda County Public Works Agency - Water Resources Well Permit

five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

10.00

2022)²⁰ 221 - 1.

1053224111

Alameda County Public Works Agency - Water Resources Well Permit

five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

18

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda,Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least ten (10) working days prior to the planned start of work. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

A STATE AND A STATE AND A STATE

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application after a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

APPENDIX C

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENT

-

CNCD\SHARE\UST\08-0028.doc

	Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Shaw Environmental	Client Project ID: #130263	3.12; AT&T	Date Sampled:	07/03/08		
4005 Port Chicago Hwy	Oakland	Oakland		07/03/08		
Concord, CA 94520	Client Contact: Rob Delna	Client Contact: Rob Delnagro Client P.O.:		07/11/08		
Concora, CA 94520	Client P.O.:			07/11/08		

WorkOrder: 0807122

July 11, 2008

Dear Rob:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: #130263.12; AT&T Oakland,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McC	Campbell Analyt "When Ouality Counts"	ical, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccan 377-252-9262 Fax: 925-252-92	pbell.com	
Shaw Environmental		Client Project ID: #130263.12; AT&T Oakland		Date Sampled: 07/03/08		
4005 Port Chicago	4005 Port Chicago Hwy			Date Received: 07/03		
		Client Contact: R	ob Delnagro	Date Extracted: 07/03/08		
Concord, CA 945	20	Client P.O.:		Date Analyzed 07/08,	/08-07/1	1/08
Extraction method: SW			nethods: SW8015C	Work O	rder: 080)7122
Lab ID	Client ID	Matrix	TPH-Dies (C10-C23)		DF	% SS
0807122-001A	B2N	w	170,e7,e2	,bI	1	99
0807122-002A	B3W	w	68,e7,e2,b1		1	98
0807122-003A	BIE	w	120,e7,e2,b1		1	107
0807122-004A	B5C	w	110,e2,b1		1	99
0807122-005A	B4S-15	s	ND		1	119
0807122-007A	B1-5	s	24,e7		20	92
			_			
Reportin	g Limit for DF =1:					~/I

Reporting Limit for $DF = 1$;	W	50	μg/L
ND means not detected at or	c	1.0	л Л <i>И</i>
above the reporting limit	5	1.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment e2) diesel range compounds are significant; no recognizable pattern e7) oil range compounds are significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

<u> </u>	Campbell Analyti "When Ouality Counts"	ical, Inc.	Web: www.inccamp	Pass Road, Pittsburg, CA 94565- obell.com E-mail: main@mccar 877-252-9262 Fax: 925-252-92	npbell.com	
Shaw Environme	ental		#130263.12; AT&T	Date Sampled: 07/03		
4005 Port Chicag		Oakland		Date Received: 07/03	Date Received: 07/03/08	
4000 Fort Chicag	onwy	Client Contact: R	Date Extracted: 07/03	/08-07/1	0/08	
Concord, CA 945	20	Client P.O.:		Date Analyzed 07/04	/08-07/1	0/08
extraction method SW5		-	ntile Hydrocarbons as G		order: 08	07122
Lab ID	Client ID	Matrix	ТРН	(g)	DF	% SS
001A	B2N	w	ND,	b1	1	96
002A	B3W	w	ND,	bl	1	100
003A	BIE	w	ND,	b1	1	100
004A	B5C	W	W ND,b1			
005A	B4S-15	S	NI)	1	81
007A	B1-5	s	S ND			
· · · · · · · · · · · · · · · · · · ·						-
						-
		_				
-	ing Limit for DF =1;	w	50)		2/L
	ans not detected at or e the reporting limit	S	1.0	0	_	y/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

When Ouality		<u>c.</u>	Web: www.mccamp		94565-1701 @mccampbell.co 5-252-9269	om		
Shaw Environmental		oject ID: #13026		Date Sampled:				
	Oakland		-	Date Received: 07/03/08				
4005 Port Chicago Hwy	Client C	ontact: Rob Deln	agro	07/10/08				
Concord, CA 94520	Client P.			Date Analyzed	07/10/08			
	Oxygenates a	Oxygenates and BTEX + Ethanol by GC/MS*						
Extraction Method: SW5030B	Ana	lytical Method: SW826	0B		Work Order:	0807122		
Lab ID	0807122-001B	0807122-002B	0807122-003B	0807122-004B				
Client ID	B2N	B3W	B1E	B5C	Reporting DF			
Matrix	W	W	w	W				
DF	1	20	2.5	1	S	w		
Compound		Conce	entration		ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	ND	ND<10	ND<1.2	ND	NA	0.5		
Benzene	ND	ND<10	ND<1.2	ND	NA	0.5		
t-Butyl alcohol (TBA)	ND	ND<40	ND<5.0	ND	NA	2.0		
Diisopropyl ether (DIPE)	ND	ND<10	ND<1.2	ND	NA	0.5		
Ethanol	ND	ND<1000	ND<120	ND	NA	50		
Ethylbenzene	ND	ND<10	ND<1.2	ND	NA	0.5		
Methyl-1-butyl ether (MTBE)	1.1	260	71	0.76	NA	0.5		
Toluene	ND	ND<10	ND<1.2	ND	NA	0.5		
Xylenes	ND	ND<10	ND<1.2	ND	NA	0.5		
	Surr	ogate Recoverie	s (%)					
%SS1:	97	99	99	98				
%\$\$2:	104	103	103	104				
%SS3:	111	112	114	117				
Comments	bl	bl	b1	bl		_		

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell An		<u>c.</u>	Web: www.mccan		@mccampbell.co	om			
"When Ouality Shaw Environmental		oject ID: #13026		B77-252-9262 Fax: 92 Date Sampled:					
	Oakland	ojeet 12. 773020	5.12, 11101	Date Received: 07/03/08					
4005 Port Chicago Hwy	Client C	ontact: Rob Delr	Date Extracted:						
Concord, CA 94520	Client P.								
			Date Analyzed 07/10/08						
Extraction Method: SW5030B		and BTEX + Eth: lytical Method: SW826	-		Work Order:	0807122			
Lab ID	0807122-005A	0807122-007A							
Client ID	B4S-15	B1-5	B1-5						
Matrix	S	S							
DF	I	1	r		s	w			
Compound		Conc	entration		mg/kg	ug/L			
tert-Amyl methyl ether (TAME)	ND	ND			0.005	NA			
Benzene	ND	ND			0.005	NA			
t-Butyl alcohol (TBA)	ND	ND			0.05	NA			
Diisopropyl ether (DIPE)	ND	ND			0.005	NA			
Ethanol	ND	ND			0.25	NA			
Ethylbenzene	ND	ND			0.005	NA			
Methyl-t-butyl ether (MTBE)	ND	ND			0.005	NA			
Toluene	ND	ND			0.005	NA			
Xylenes	ND	ND			0.005	NA			
	Surr	ogate Recoverie	s (%)						
%SS1:	97	98							
%SS2:	106	106							
%SS3:	117	118							
Comments									

extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Campbell Analyti	cal, Inc	<u>.</u>	Web: www	v.mccamp	Pass Road, Pittsburg, CA 9456 bell.com E-mail: main@mcc 177-252-9262 Fax: 925-252-	ampbell.com	
Shaw Environ	mental	Client Pro Oakland	ject ID: #	3/08	_			
4005 Port Chic	cago Hwy					Date Received: 07/0	3/08	_
		Client Co	ntact: Ro	b Delnagro		Date Extracted: 07/0	3/08	
Concord, CA 9	94520	Client P.O).:			Date Analyzed: 07/0	7/08	
			Lead by					
Extraction method: S	Client ID		·	ethods: 6010C Extraction Type		Work	Order: 08 DF	07122 % SS
0807122-007A	B1-5		S	TOTAL		14	1	98
								-
				_				

Reporting Limit for DF =1;	W	TOTAL	NA	μg/L
ND means not detected at or above the reporting limit	S	TOTAL	5.0	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion. WET = Waste Extraction Test (STLC). DI WET = Waste Extraction Test using de-ionized water.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@inccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0807122

EPA Method SW8015Cm	EPA Method SW8015Cm Extraction SW5030B BatchID: 36684 Spiked Sample ID: 0807117-00							1A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(biexf	ND	0.60	92.4	101	8.93	108	92	15.7	70 - 130	20	70 - 130	20
MTBE	ND	0.10	102	112	9.19	100	110	9.19	70 - 130	20	70 - 130	20
Benzene	ND	0.10	98.3	105	6.51	106	105	0.619	70 - 130	20	70 - 130	20
Toluene	ND	0.10	98.1	103	5.29	95.2	92.3	3.03	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	104	110	5.49	106	101	5.28	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	117	123	5.00	105	100	4.64	70 - 130	20	70 - 130	20
%SS:	118	0.10	90	95	5.60	77	71	8.01	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

	BATCH	36684	SUMMARY
--	-------	-------	---------

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807122-005A	07/03/08 10:30 AM	07/03/08	07/04/08 4:40 PM	0807122-007A	07/03/08 11:30 AM	07/03/08	07/04/08 5:10 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0807122

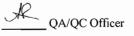
EPA Method SW8015Cm	Extra	ction SW	5030B		Bat	chID: 36	735	Sp	iked Sam	ple ID:	0807109-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
Analyte	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf	ND	60	95.6	92.4	3.35	98	94.9	3.21	70 - 130	20	70 - 130	20
МТВЕ	ND	10	107	120	11.4	110	99.4	9.65	70 - 130	20	70 - 130	20
Benzene	ND	10	95.5	108	12.0	95	99.6	4.80	70 - 130	20	70 - 130	20
Toluene	ND	10	86.9	95.8	9.79	95.5	97.1	1.63	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	95.9	106	10.3	98.3	103	4.70	70 - 130	20	70 - 130	20
Xylenes	ND	30	95.3	102	7.21	115	114	0.960	70 - 130	20	70 - 130	20
%SS:	92	10	95	96	1.14	86	85	1.30	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 36735 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807122-001A	07/03/08 12:00 PM	07/07/08	07/07/08 3:48 PM	0807122-002A	07/03/08 12:20 PM	07/07/08	07/07/08 4:19 PM
0807122-003A	07/03/08 12:40 PM	07/09/08	07/09/08 11:36 PM	0807122-004A	07/03/08 12:55 PM	07/10/08	07/10/08 12:07 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0807122

EPA Method SW8015C	EPA Method SW8015C Extraction SW3510C					BatchID: 36671 Spiked Sample ID: N//					N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, many to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	98.7	99.9	1.20	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	105	106	0.536	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

NONE

BATCH 36671 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
0807122-001A	07/03/08 12:00 PM	07/03/08	07/09/08 8:32 PM	0807122-002A	07/03/08 12:20 PM	07/03/08	07/09/08 9:44 PM			
0807122-003A	07/03/08 12:40 PM	07/03/08	07/11/08 10:42 AM	0807122-004A	07/03/08 12:55 PM	07/03/08	07/11/08 1:01 PM			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0807122

EPA Method SW8260B	Extraction SW5030B BatchID: 36724 Spiked Sample ID: 08									0807018-00	1B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	}
, maly to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzene	NÐ	10	107	106	1.05	110	109	0.617	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	118	118	0	111	115	2.88	70 - 130	30	70 - 130	30
Toluene	ND	10	101	101	0	104	101	2.45	70 - 130	30	70 - 130	30
%SS1:	100	25	100	100	0	102	103	0.432	70 - 130	30	70 - 130	30
%SS2:	100	25	102	102	0	110	108	1.25	70 - 130	30	70 - 130	30
%SS3:	113	25	115	114	1.17	112	109	2.05	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

_	Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
	0807122-001B	07/03/08 12:00 PM	07/10/08	07/10/08 6:30 PM	0807122-002B	07/03/08 12:20 PM	07/10/08	07/10/08 7:49 PM
	0807122-003B	07/03/08 12:40 PM	07/10/08	07/10/08 9:44 PM	0807122-004B	07/03/08 12:55 PM	07/10/08	07/10/08 10:23 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A QA/QC Officer

"When Ouality Counts"

I 534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil			0	QC Matrix	: Soil				WorkC	order: 08071	22		
EPA Method SW8260B	Extrac	Extraction SW5030B				tchID: 36	729	Spiked Sample ID: 0807114-002A					
Analyte	Sample	Sample Spiked MS MS				MS-MSD LCS LCSD			Acce	eptance	Criteria (%))	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Benzene	ND	0.050	84	83.7	0.358	104	100	3.63	60 - 130	30	60 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	0.050	84.7	84.3	0.404	107	104	2.70	60 - 130	30	60 - 130	30	
Toluene	ND	0.050	90.1	88.9	1.33	108	101	6.55	60 - 130	30	60 - 130	30	
%SS1:	99	0.12	95	95	0	94	95	1.06	70 - 130	30	70 - 130	30	
%SS2:	105	0.12	99	98	0.543	98	97	0.556	70 - 130	30	70 - 130	30	
%SS3:	110	0.12	100	99	1.37	97	96	0.299	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 36729 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807122-005A	07/03/08 10:30 AM	07/03/08	07/10/08 11:03 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

R_QA/QC Officer

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.meeampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 36	732	Spiked Sample ID: 0807099-006A					
Analyte	Sample	Sample Spiked MS MSD					LCSD	LCS-LCSD	Acceptance Criteria (%)				
, mary te	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Benzene	ND	0.050	84	84.1	0.0710	103	103	0	60 - 130	30	60 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	0.050	85.4	85.6	0.247	101	103	1.66	60 - 130	30	60 - 130	30	
Foluene	ND	0.050	88.7	89	0.331	104	104	0	60 - 130	30	60 - 130	30	
%SS1:	102	0.12	94	95	0.927	93	94	0.472	70 - 130	30	70 - 130	30	
%SS2:	104	0.12	97	98	1.11	97	98	0.439	70 - 130	30	70 - 130	30	
%SS3:	97	0.12	99	97	1.61	96	98	2.58	70 - 130	30	70 - 130	30	

BATCH 36732 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807122-007A	07/03/08 11:30 AM	07/03/08	07/10/08 11:41 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

R_QA/QC Officer

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil	_		C	C Matrix	: Soil		WorkOrder: 0807122						
EPA Method SW8015C	Extrac	tion SW	3550C		Ba	tchlD: 36	742	Spiked Sample ID: 0807112-040A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	D LCS-LCSD Acceptance			e Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	ND	20	97.2	95.8	1.39	100	100	0	70 - 130	30	70 - 130	30	
%SS:	97	50	98	115	15.5	107	108	0.511	70 - 130	30	70 - 130	30	
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method R	L with th	e following	exceptions:				

BATCH 36742 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed				
0807122-005A	07/03/08 10:30 AM	07/03/08	07/09/08 4:24 AM	0807122-007A	07/03/08 11:30 AM	07/03/08	07/08/08 11:52 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

McCampbell Analytical, Inc. "When Ouality Counts" I 534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.meeampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0807122

EPA Method 60	010C			Extracti	on SW3050	в	В	atchID: 3	6745	Spiked Sample ID 0807112-041A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%			.)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Lead	ND	50	103	99	3.81	10	104	103	1.74	75 - 125	20	80 - 120	20	
%SS:	97	250	99	100	1.35	250	101	103	1.77	70 - 130	20	70 - 130	20	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

BATCH 36745 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed				
0807122-007A)7/03/08 11:30 AN	M 07/03/08	07/07/08 5:15 PM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

R

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Sample Receipt Checklist

Client Name:	Shaw Environme	ntal				Date	and Time Received:	07/03/08 7	:15:29 PM
Project Name:	#130263.12; AT&	T Oakla	and			Cheo	cklist completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0807122	Matrix	Soil/Water			Carri	er: <u>Rob Pringle (M</u>	Al Courier)	
			Chain	ı of Cu	stody (C	OC) Inform	<u>iation</u>		
Chain of custody	present?			Yes	V	No 🗆			
Chain of custody	signed when relinquis	shed an	d received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗔			
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?			Yes	~	No 🗆			
			S	ample	Receipt	Informatio	n		
Custody seals int	act on shipping contai	iner/coo	ler?	Yes	✓	No 🗆			
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	rs intact?			Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?		Yes	\checkmark	No 🗌			
		Sa	mple Prese	rvatior	n and Ho	ld Time (H	T) Information		
All samples recei	ved within holding time			Yes		No 🗆			
Container/Temp E	Blank temperature			Coole	r Temp:	5.9°C			
Water - VOA vial	s have zero headspac	ce / no b	ubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	ecked for correct pres	servatio	ר?	Yes	◄	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2	2)?	Yes		No 🗆		NA 🗹	

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

ALLA.	
$\frown \mathfrak{A} \mathcal{Y}$	
	H
Second (
S	1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262					WorkO	der: 0	80712	2 C	lientCode: S	SHAW			
		Uvrite C	n 🗌 EDF	C	Excel	F 🗌 F	Fax	🖌 Email	🗌 Har	dCopy		🗌)-	flag
Report to:					Bi	ll to:				Rec	uested TAT:	5 0	days
Rob Delnagro	Email:	rob.deInagro	@shawgrp.com			Accou	unts Pa	iyable					
Shaw Environmental	CC:					Shaw	Enviro	onmental & In	frastructure	_			
4005 Port Chicago Hwy	PO:					P.O. E	3ox 98	519		Dai	te Received:	07/03/	2008
Concord, CA 94520	ProjectN	o: #130263.12;	AT&T Oakland			Baton	Roug	e, LA 70884		Da	te Printed:	07/03/	2008
925-288-9898 FAX 925-288-2359						apinvo	oices@)shawgrp.co	m				
								Requested [•]	ſests (See le	gend t	pelow)		
Lah ID Client ID		Matrix	Collection Date	A HOLA	1	2	2	4 5	6 7	8	9 10	11	12

	Client ID	Watrix	Collection Date	Hola	1	2	3	4	5	6	1	8	9	10	11	12
										1	<u> </u>		1		1	
0807122-001	B2N	Water	7/3/2008 12:00			A		В								
0807122-002	B3W	Water	7/3/2008 12:20			A		В								
0807122-003	B1E	Water	7/3/2008 12:40			A		В								
0807122-004	B5C	Water	7/3/2008 12:55			A		В								
0807122-005	B45-15	Soil	7/3/2008 10:30		А		A									
0807122-007	B1-5	Soil	7/3/2008 11:30		A		A		A							

<u>Test Legend</u>:

1	G-MBTEX_S
6	
11	

2	G-MBTEX_W
7	
12	

3	3
8	8

4 MBTEX-8260B_W

5	PB_S
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 007A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Samantha Arbuckle

مسیدی	We	McCAMH ebsite: <u>www.m</u> one: (925) 79	1534 WILL PITTSBUR ccampbell.c	OW PASS G. CA 945	ROA 65-170	n@mc)8 :camp	0 =	7\'. om	22	2			-			ou	HA ND	TI	ME	2	C R	US) USF) 1] 24 I	IR	4) 8 H		О 72 н	R SDAY (NORMAL)
	Report To: Rob I		0-2020	E	III To	o: san			*****	in all the second			Analysis Requ					uest					Øtl	her	Comments						
	Company: Shaw		tal. Inc.				*****						~		******						Ī			1		;			Š		
ł		Port Chicago					10-10-10 mer-						1					S.			Ì					1		a period period	W Per		
ľ		ord, CA 9452	our and the control of the local sector of the	E-N	Tail:	rob.de	elnag	ro@s	hawg	grp.c	:om		1					Ò,						-				tantan tan	No. The		Filter
t i	Tele: (925) 288-2				*******************	(925)	MACONE, Contraction								613			ji j		are true					0				10		Samples
	Project # 129939-	88-120263	3.12	P	rojec	t Nan	ae: A	T&T	-14	ghla	nd (9. Ki	day		1874	8.1)		Heren .							8310	1			4		for Metals
	Project Location: 26840 Base Line, Highland, CA-1189 57TH ST. OKKLAND										ND			ane (5520 £& P.B&F)	1) suoq	1	17 (020) J		LY	- (a a na ing a sa dh' dh' na Mar a	·	625 / 8270)	(Q	(0)			anna a' anna ' a Ann	analysis: Yes / No	
	Sampler Signatur	e: 1053	TRACK		2	Stra	Ľ	2 	,	T 1					₩ ;	dracar	31	61278		8's ONLY			560	0		010 / 6 0	10/602		ne, e	تلائم خارات ليبر والمالة	
			SAMP	LING	ž	ners	M	IATR	ax			HOD RVED	12	1(301:	n Oil &	um Hy	10/80	(EPA	-	87 PO	111	151	34/8	5/827	's by I	als (61	uls (60).	9.005		5.5.°	
	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil Air	Sludge Other	ICE	HCL	HNO, Other	TPH as Gas (8015)	TPH as Dirsel (8015)	Total Petraleum Oil & Gr	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEN ONLY (EPA 602 / 8020) + M BE (82608)	EPA 608 / 8081	EPA 608 / 8082 PCB's	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Merals (6010 / 6020)	LUFT 5 Metads (6010 / 6020)	Lead (200 1 1 200 0 6010)	the dipertant ettant add	or a life a life build all the orthogon and the second second second second second second second second second	
+1	B2N		7-3-08			2.0	X			X	X		X	X	*********			X						,					8		
+2	ß3W	BORE 3	73.08	1220	5	4400	X			X	X		\mathbf{X}	Х				X								; ;		Ľ	Ľ		
	BIE	BORE 1	7-2-08	1240	5	4 WEAR	X			V	X		X	X	1)		X									_		$\overline{\mathbf{x}}$		and a subscription of the second of the s
xil	BSC	BORES	7-3-08			4 VCA 1617 EX	X		:	K	X		TŶ	X		-		X							}		and an and a second	k	(\mathbf{x})	nda more i	
~~ `	643-15	JONE Y SUNC 15	7-3-08	1030	1	TUBE	No.	X	, and a factor of the second states	X			K	X)		X								-		1	$\langle \mathbf{X} \rangle$	a constant	
	348-20	1-25 Y SUN 20	7-3-08	1040	1	TUSE		1		X	encorocotio:	an na n	*	*				*	· ····						1						
		WATTE SOLL PROFILE				1200		$\mathbf{\hat{\mathbf{v}}}$		於			m i siraa	X				X				·····	MN				ĺ	X	\bigotimes		
		<u>S.e.u. 184/10</u> 5	7-2-08	1130	L	149-		<u> </u>		12				<u>^</u>			·······················		· · · · • • •	weedown	· v y i g i v a dona	·					*		an share		
	were were also all that the analysis were as a second second second second second second second second second s	*****			amenaansi			а ^н а (нарадеания такжата фа		17			n . 2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	~	j	P			(man - 80		······							
										an a	*******	0401 VOY00				<u> </u>	alann i s		*****		0 000. en f er								ADDOVIN DIŘEN A		
	х тэмжээ оролоо том тороор түү түгээ тэрээгээ нэй нэрэгцэгээ.											un:	1999 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	ر. چندردیمین ن									/ · · · No.00.04								
		·····					esennolota (SPI) a fi			-								e													
									200000000 R 10000000			·														man na singer	· • · • · · · · · · ·				
									<u>.</u>	ļ			.												11	**************************************					
	, with the second se			1210	· · ·		!	-4					<u>b</u>														-			initian .	
	Relimquished by:	l	Date: 7-3-08	Time: 1600	Rece	sived B	¥2	$ \rightarrow $		1999 - 1999	10 12 14 10 10 10 10 10 10 10 10 10 10 10 10 10	and a survey of the	GC	OD	C 10 4 4	DIT	ION	vm 1	1	8.1		ß	45	1-2	20	0	J.	40	NTS:	PO	NNNG
-	Relinquished By	en fallen General en ander ander ander ander ander Andere en ander	Date:	Time: 43	Rece	eived B	<u>,</u>	·×	2.0	\sim	<u> </u>	~	DE	CHI PRO	ORI	NAT Ate	ED I	NLA	BF	9 ¥ s	IJ	. i.	Cornal .	46	75	15	0	-	B +1	Sm.	4620
	Relinquished By:	1	Date:	Time:		eived B	y:	*****	*****		*****	********		ESE			vQ	36	0&	G	мет 2 H <7	ral:									

APPENDIX D

.

SOIL BORING LOGS

CNCD\SHARE\UST\08-0028.doc

1 O DEPTH IN FEET	SAMPLE NUMBER	RECOVERY	P.I.D.	DRIL	LING REMARKS	nscs	PROFILE	APPROVED BY TOTAL DEPTH	<u>J. Str</u> 24.0 ft.	ack DESC	COORDINA DATE BEGA DATE FINIS RIM ELEVA CORE SIZE	<u>E.</u>
		Hand Auger	0.0ppm			fill CH		Asphalt surface/f Fat Clay: bluish b (SB 2.5/2), mol	black (S	B 2.5/1) to		
		100%	12.1ppm			CL		Sandy Clay: olive moist, stiff, mediu	brown um plas	(2.5Y 4/3). sticity.	slightly	6.5'
- 10 -		100%	2.7ppm					Clay: dark gray (5' medium sand.	iY 4/1),	moist, stif	f, low plasticity,	9,0' up to 10% to fine to
		90%	0.0ppm									
		100%	0.0ppm			CL		Stiff to very stiff GROUNDWATER AT			ft.	
-20-		100%	0.0ppm									20.0'
- 25 -				·			NIIII	Total Depth: 24ft.				2000
- 30-												
DRIL DRIL SAM PRO LOC PRO	LING LING PLIN JEC1 ATIO JEC1	CO. MET G ME F : AT N : 1 T NO.	HOD THOE &T - 189 ! : 13	egg Drillin : Direct) : 48" L - Oakland 58th Ave. 0263	Push, Hand Auger ine Core Samplers d Oakland, CA		o 5'					PAGE 1 OF 1
DRAWN		7/3/0		HECKED BY	AD7-15.00 NO7-1500	DRA	WING	NO. : 130263-A28			0	

					-		
DEPTH IN FEET	SAMPLE NUMBER	RECOVERY	P.I.D.	DRILLING REMARKS	nscs	PROFILE	BORING NO. B2N COORDINATES: N. E. FIELD GEOLOGIST J. Strack CHECKED BY APPROVED BY TOTAL DEPTH 20.0 ft. DESCRIPTION
		Hand Auger	0.0ppm		fill		Asphalt surface/fill material 6" Fat Clay: bluish black (SB 2.5/1), moist to slightly moist, stiff. high plasticity.
		100%	0.0ppm		CL		Clay: dark green (56Y 4/1), slightly moist, stiff, medium plasticity.
- 10 -		100%	0.0ppm				11.0" Clay with silt: olive gray (5Y 4/1), slightly moist, stiff, low plasticity.
- 15		10%	0.0ppm		CL		Groundwater at 16 feet. Very soft from 16 feet to 20 feet.
 - 20 - 			0.0ppm				20.0' Total Depth: 20 ft.
- 30 -							
							PAGE 1 OF 1
DRIL DRIL SAM PRO LOC	LING LING PLIN JEC ⁻ ATIO	6 МЕТ IG МЕ Г : АТ N : 1	: Gr THOD THOD THOI T&T - 189 :	o egg Drilling : Direct Push, Hand Auger) : 48" Line Core Samplers – Oakland 58th Ave. Oakland, CA 0263	tc	5'	
DRAWN DATE		R. Langs 7/3/0		HECKED BY NO 7-15-02	DRA	WNG	NO. : 130263-A30

1 O DEPTH IN FEET	SAMPLE NUMBER	RECOVERY	P.I.D.	DRILLING REMARKS	NSCS	PROFILE	BORING NO. B3W COORDINATES: N. E. FIELD GEOLOGIST J. Strack DATE BEGAN 7/3/08 CHECKED BY DATE FINISHED 7/3/08 APPROVED BY TOTAL DEPTH 20.0 ft. CORE SIZE DESCRIPTION
		HAND AUGER	0.003		fill CL		Asphalt surface/fill material 6" Clay: bluish black to dark grayish brown (5B 2.5/1)—2.5Y 4/2), slightly moist, stiff to very stiff, medium plasticity, slight hydrocarbon odor 3 ft. to 5 ft.
- 5 -		30/36	0.0 0 5' 0.0 0 7'		CL		5.0" Clay: olive gray (5Y 5/25), SL. moist to moist, stiff, low to medium plasticity.
- 10		48/48 48/48	0.0 0 10' 0.0 0 13'				Becomes soft at 13 ft. Clawith silt: very pole brown (10YR 7/4) slightly moist
			0.0 0 13'		CL		Claywith silt: very pale brown (10YR 7/4), slightly moist, very stiff to hard non plastic, silt decreases. At 14 ft.becomes soft, moist, low to med. plastivity
- 20-		48/48	0.0 0 18'				
- 25-							
DRIL DRIL DRIL SAM PRO LOC	LING LING PLIN JEC1 ATIO	G MET G MET G ME C AT	THOD	egg Drilling : Direct Push, Hand Auge) : 48" Line Core Sampler - Oakland 58th Ave. Oakland, CA	er to s	5'	PAGE 1 OF 1

	1					-	1	
E H	œ							BORING NO. B4S
FEET	SAMPLE NUMBER	۲					1.0	COORDINATES: <u>N.</u> E.
	Ñ	RECOVERY	P.I.D.	DRILLIN	G REMARKS	nscs	PROFILE	FIELD GEOLOGIST J. Strack DATE BEGAN 7/3/08
DEPTH IN	PLE	ECC	a.			S	PRO	CHECKED BY DATE FINISHED 7/3/08 APPROVED BY RIM ELEVATION
EP	SAM	œ						APPROVED BY RIM ELEVATION
								TOTAL DEPTH 20.0 ft. CORE SIZE DESCRIPTION
E º -						fill	1.4.	Asphalt surface/fill material
								Clay: bluish black to dark brown, slightly moist, stiff, medium plasticity.
6 2						-		
		Land.				CL		
t :		Hand Auger	0.0ppm					
F 1								4.0'
- 5 -								Clay: olive gray (5Y 4/3), slightly moist, medium stiff to stiff, medium plasticity.
F ³ -								
		1000						
		100%	0.0ppm					
71 7								
-10-		100%	0.0			CL		
- ' -			0.0ppm					
E 1								
F -								
			0.0					
			0.0ppm					
		100%						14.5'
-15-	B4S-15		0.0ppm					Clay light yellow brown (2.5Y 5/4), slightly moist, stiff, medium plasticity, trace sand and round pebbles.
	1 1							Contains sand, pebbles and shell fragments near 16ft. Becomes wet 16.5 to 17 ft.
						CL		
L 1		1000	0.0ppm					
		100%						
2 1	B4S-20							
-20-							1111	20.0'
5 1								Total Depth: 20ft.
t 1								
F 7								
5 5								
[]								
-25-								
E 1								
t 1								
L 1								
F -								
E 1								
- 30 -								
E 1								
E 1								
- 35 -								
DRIL	LER	: Ari	mand	0				PAGE 1 OF 1
				egg Drilling				2
					sh, Hand Auge		15	
) : 48" Line - Oakland	Core Sampler	S		
1101/02/19/23				- Oakland 58th Ave. C	akland CA			
1111111111111111				0263				
DRAWN	BY	R. Lana	ston IC	HECKED BY	120 7-13-05	1		NO. : 130263-A25
DATE		7/3/0		PPROVED BY	202-10-26	DRA	MNG	NO. : 130263-A25

			-			-	<u> </u>	DODING N	TO	DEC	- 1
E	æ							BORING N	10.		
FEET	SAMPLE NUMBER	ž					щ			COORDINATES: <u>N.</u> E.	
Z	R	RECOVERY	P.I.D.	DRILLING RE	MARKS	uscs	PROFILE	FIELD GEOLOGIST J. Strack		DATE BEGAN 7/3/08	
DEPTH IN	PLE	SEC	۵.			š	PR	CHECKED BY		DATE FINISHED 7/3/08	
DEP	SAM							TOTAL DEPTH 24.0 ft.		RIM ELEVATION CORE SIZE	
								101AC 0C1 111 24.0 10.		IPTION	
						Asph	Asph	Asphalt surface Fill: pea gravel with fines co			6**
	{							rin: ped gravel with lines co	mpactea	ury	
	1	Hand									
	{	Auger	0.0 ppm								
E -	1										
- 5 -			0.0 ppm								
							1				
		50%					1				
						fill					
-10-		50%									
E 1											
P 7											
		50%						Saturated PEA gravel 14 to	15 ft.		
-15-					ļ			States and the states of the s			15.0'
								medium plasticity, up to 10%	fine san	moist to very moist, stiff, d, moderate hydrocarbon odor.	
[]		100%				CL					
		100%			-	-	<i>}}}}</i>				17.0'
2 2											
-20-		Hydro- punch						No core this interval; hydro	ounch fro	orn 21 feet to 24	
		Porticity of						feet bsg.			
[]											
E 1											
L 2											24.0
E 1		-				-	1111	Total Depth: 24.0 ft.			24.0
-25-											
F 7											
F 1											
1 1											
-30-											
1 1											
6 3											
t -											
- 35 -											
DRIL	LER	: Ari	mand	0						PAGE 1 OF 1	ě – – –
DRILLER : Armando PAGE 1 OF 1 DRILLING CO. : Gregg Drilling											
DRILLING METHOD : Direct Push, Hand Auger to 5'											
SAMPLING METHOD : 48" Line Core Samplers											
PROJECT : AT&T - Oakland LOCATION : 1189 58th Ave. Oakland, CA											
100000000000000000000000000000000000000				0263.12	unu, CA						
DRAWN BY R. Langston CHECKED BY 20 7-5-0 DRAWNG NO : 130263-429											
DATE		7/3/0			0-1-15-20	DRA	WING	NO. : 130263-A29			