

By Alameda County Environmental Health at 4:32 pm, Jan 17, 2014

Telephone: (925) 944-2856

Facsimile: (925) 944-2859

January 15, 2014

Mr. Jerry Wickham, P.G. Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Sub-Slab Vapor and Indoor Air Investigation Report

Former Francis Plating Site, 751-785 7th Street, Oakland, California

Dear Mr. Wickham:

Enclosed please find the Sub-Slab Vapor and Indoor Air Investigation Report (Report) for the Former Francis Plating Site. The Report presents details regarding investigation activities and laboratory results, and provides conclusions and recommendations based on the results of the investigation. Sub-slab vapor data and empirical outdoor ambient and indoor air data collected suggest that vapor intrusion from the subsurface is not impacting indoor air at the Site. SGI is preparing a simple risk management plan to ensure that the current cap on the Site remains in place and that any breach of the cap or exposure to residual contaminants in the soil are performed in a manner that does not expose users of the Site or construction workers to unacceptable health risks.

With respect to earlier discussions of division of the large parcel, the administrative aspects of the parcel split, (shown on Figures 2 and 3 of the Report), are complete. After your review of the report, we would appreciate the opportunity to discuss process and option details as they pertain to gaining an NFA on the eastern parcel and enabling focused attention on the western parcel (the parcel with the former "Frog Pond").

Perjury Statement:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments regarding the Report, please feel free to call me on my direct line at (925) 951-6386.

Sincerely,

The Source Group, Inc.

Matthew C. Sutton, P.E.

Project Manager

Cc: Tom McCov, The Brush Street Group, LLC

Enclosure

SUB-SLAB VAPOR AND INDOOR AIR SAMPLING REPORT

Former Francis Plating Site 751-785 7th Street Oakland, California

01-FP-002

Prepared For:

The Brush Street Group LLC 1155 Third Street, Suite 230 Oakland, California 94607

Prepared By:

3478 Buskirk Ave, Suite 100 Pleasant Hill, California 94523

January 15, 2014

Prepared By:

Mary Cunningham Project Engineer Reviewed By:

Matthew C. Sutton, P.E.

Project Manager

TABLE OF CONTENTS

		PAGE
LIST	OF FIGURES	iii
	「OF TABLES	
LIST	FOF APPENDICES	iii
1.0	INTRODUCTION	1-1
2.0	SITE BACKGROUND	2-1
3.0	SUB-SLAB VAPOR AND INDOOR AIR INVESTIGATION	3-1
	3.1 Sub-Slab Vapor Point and Indoor Air Sampling	3-1
	3.1.1 Sub-Slab Vapor Point Sampling	
	3.1.2 Ambient and Indoor Air Sampling	3-2
	3.2 Sub-Slab and Indoor Air Sampling Results	3-2
	3.2.1 Sub-Slab Vapor Sample Results	3-2
	3.2.2 Ambient and Indoor Air Sample Results	3-3
4.0	DATA EVALUATION	4-1
	4.1 Comparison to Previous Data	4-1
	4.2 Comparison to ESLs	4-1
	4.2.1 Sub-Slab Vapor Data	
	4.3 Ambient and Indoor Air Data	4-1
5.0	CONCLUSIONS AND RECOMMENDATIONS	5-1
6.0	REFERENCES	6-1

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Sub-Slab Vapor Sample Locations and December 2013 Results
Figure 3	Ambient and Indoor Air Sample Locations and December 2013 Results

LIST OF TABLES

Table 1	Sub-Slab Soil Vapor Results – December 2013
Table 2	Ambient and Indoor Air Sampling Results - December 2013
Table 3	Helium Results and Dilution Factor Calculations – December 2013

LIST OF APPENDICES

Appendix A	Sampling Field Forms
Appendix B	Laboratory Analytical Data

1.0 INTRODUCTION

The Source Group, Inc. (SGI), on behalf of The Brush Street Group, LLC (Brush Street Group), is submitting this *Sub-Slab Vapor and Indoor Air Sampling Report* (Report) for the Former Francis Plating Site located at 751-785 7th Street, Oakland, California (Site) (Figures 1 and 2). This sampling was performed at the request of Alameda County Environmental Health (ACEH) following their review of the initial investigation performed by SGI in May and June 2013 (ACEH, 2013). The initial investigation, summarized in the report *Soil Gas, Sub-Slab Vapor, and Indoor Air Investigations, 751-785 Seventh Street, Oakland, California*, was performed to further characterize soil gas and sub-slab vapor concentrations at the Site as well as evaluate potential health risks for users of onsite and adjacent commercial buildings (SGI, 2013). Concentrations of volatile organic compounds (VOCs) in soil gas and indoor air samples collected during the May and June investigation did not exceed applicable Environmental Screening Levels (ESLs).

In order to confirm the results of the initial investigation by SGI, ACEH requested the collection of additional data. SGI collected additional samples on December 6, 2013. These samples included two sub-slab vapor samples from existing probes located within the former plating shop, two indoor air samples, and one ambient air sample outside the building. Sample locations are depicted on Figures 2 and 3. Analytical results are provided in Tables 1 and 2 and further discussed in Section 3.2.

2.0 SITE BACKGROUND

The Site was operated as a plating facility from approximately 1957 to 1998. In 1998, the property was found to be abandoned along with chemicals and equipment on Site. As part of an emergency response action, the U.S. Environmental Protection Agency (U.S. EPA) removed abandoned chemicals and equipment, and excavated shallow soil in areas without asphalt or concrete coverings. In 2003, the current owner, Brush Street Group, LLC, acquired the property.

The Site is currently occupied by the Kinetic Arts Center, a circus and fitness facility. This facility operates within the existing building in the northeastern corner of the property. The remaining property is covered by concrete or asphalt, with the exception of an exposed strip of soil along the western property line and small landscaped areas along Brush Street.

Numerous Site investigations have been conducted at the Site. A Conceptual Site Model (CSM) prepared by BASELINE in 2012 was presented in the *Conceptual Site Model and Work Plan: Sub-Slab Vapor Investigation* (BASELINE, 2012). The CSM discusses in further detail the previous investigations conducted at the Site through 2012. In May and June 2013, SGI performed an investigation summarized in the *Soil Gas, Sub-Slab Vapor, and Indoor Air Investigation Report* in order to further characterize the soil gas, sub-slab vapor, and indoor air conditions at the Site (SGI, 2013). The results of that investigation indicated that VOC concentrations in the soil vapor and indoor air did not pose a risk to users of the Site or nearby facilities; the December 2013 sampling event was performed in order to confirm the results of that investigation.

3.0 SUB-SLAB VAPOR AND INDOOR AIR INVESTIGATION

Sub-slab vapor and indoor air sampling activities were conducted in accordance with the request from ACEH dated September 19, 2013 (ACEH, 2013). Two indoor air samples, one ambient air sample, and two sub-slab vapor samples were collected with the objective of confirming results from the May and June 2013 investigation (SGI, 2013).

3.1 Sub-Slab Vapor Point and Indoor Air Sampling

3.1.1 Sub-Slab Vapor Point Sampling

Sub-slab vapor sampling occurred on December 6, 2013. Two sub-slab vapor probes were sampled: Sub-Slab2, located near the center of the building over the former containment vault, and Sub-Slab 3, located near the best wing of the building. Approximate sample locations are shown on Figure 2.

Sub-slab vapor samples were collected from each point using a 1-liter SUMMA™ canister and sampling manifold provided by Torrent Laboratory (Torrent). A stainless steel ball valve was screwed into each sample port, which connected to the manifold with Teflon™ tubing. The manifold, which was equipped with a flow regulator that limited the flow to between 80 and 180 milliliters per minute (mL/min), connected directly to the 1-liter SUMMA™ canister.

Prior to sampling, a shut-in test was performed according to DTSC guidance (DTSC, 2012). Purging was also performed to ensure that stagnant or ambient air was removed from the sampling system and to ensure that samples collected were representative of subsurface conditions. Approximately three volumes of the sampling system were purged through the manifold into a purge canister by opening the manifold valve to the purge canister and then opening the canister valve. After the purging was complete, samples were collected in the 1-liter SUMMA™ canisters by opening the valve on the 1-liter SUMMA™ sample canister. SUMMA™ canister vacuum was monitored and recorded on field measurement logs during sampling.

Leak detection during sampling was conducted using a helium tracer shroud. The helium tracer was used as a quality control measure during sampling. During sampling, a concentration of approximately 20 percent helium was maintained around the sampling train and above the sample probe by positioning a shroud over the soil gas probe. Helium concentrations were monitored using a helium detector and adjusted as needed throughout sampling.

Following collection of each sample, the canister valve was closed and the sample container was prepared for delivery to the laboratory for analyses. The sample containers were labeled with sample point identification, date, and time of collection. The samples were relinquished under chain-of-custody documentation to Torrent for analysis by EPA method TO-15 for VOCs and by ASTM D1946 for helium.

3.1.2 Ambient and Indoor Air Sampling

Two indoor air samples were collected from the building on Site on December 6, 2013. The approximate sample locations are shown on Figure 3. The first sample, Indoor Air 1 (IA1), was collected near the center of the building between the office area and the main student instruction area. The second sample, Indoor Air 2 (IA2), was collected in the northwest corner of the building near the student lounge, kitchen, and storage areas.

An ambient air sample (Ambient) was also collected from the Site on December 6, 2013, concurrent with the indoor air samples mentioned above. The sample location, shown in Figure 3, was near the southwest corner of the Site and was upwind of the building.

During the sampling event, air samples were collected in 6-liter pre-evacuated, lab-certified SUMMATM canisters with laboratory-calibrated flow controllers and particulate filters. All samples were collected over an eight-hour interval to simulate worker exposure. At the end of the eight-hour sampling period, the SUMMATM canisters were closed tightly and relinquished under chain-of-custody to Torrent. The samples were analyzed by EPA method TO-15 using gas chromatography/mass spectrometry (GC/MS) in the Selective Ion Monitoring (SIM) acquisition mode.

3.2 Sub-Slab and Indoor Air Sampling Results

3.2.1 Sub-Slab Vapor Sample Results

As described in Section 3.1.1, sub-slab vapor sampling was conducted on December 6, 2013. Sample results for VOCs by USEPA Method TO-15 are presented in Table 1, and for helium by ASTM D1946 in Table 3. Full laboratory analytical reports are presented in Appendix B.

Helium, the leak detection compound, was detected at low concentrations in both of the sub-slab vapor samples, indicating ambient air leakage during sampling. To account for this leakage, a dilution factor (DF) was calculated using the concentration of helium in the sample and the average concentration of helium under the shroud during sampling using the following formula:

DF = [Concentration of Helium in Sample (%)] / [Concentration of Helium in Shroud (%)]

The dilution factors for each sample are calculated in Table 3, and were then used to adjust the laboratory-reported VOC concentrations to account for the ambient air leakage using the following formula:

Corrected concentrations ($\mu g/m^3$) = Reported concentration ($\mu g/m^3$) x [1 + DF]

DTSC guidance states that an ambient air leak of up to 5 percent is acceptable when a quantitative tracer is used under the sampling shroud (DTSC, 2012). Both of the samples had helium concentrations well under 5 percent, and so the corrected concentrations are deemed acceptable.

In order to estimate indoor air concentrations, the soil gas results were multiplied by an attenuation factor of 0.05 as recommended by the DTSC (DTSC, 2011). As shown in Table 1, the estimated indoor air concentrations of VOCs are below industrial indoor air ESLs.

3.2.2 Ambient and Indoor Air Sample Results

As described in Section 3.1.2, indoor air samples were collected from the building on Site on December 6, 2013. An ambient air sample was concurrently collected upwind of the building. Laboratory analytical results for the indoor air samples are presented on Table 2, with full laboratory analytical reports presented in Appendix B. As shown on Table 2, a variety of VOCs were detected in the ambient air sample and in each of the indoor air samples. The only constituent detected above the industrial indoor air ESL was benzene, with an ESL value of 0.42 μ g/m³. Benzene concentrations in samples Ambient, IA1, IA2 were 0.90, 0.90, and 1.0 μ g/m³, respectively.

4.0 DATA EVALUATION

Sampling activities at the Site were performed on December 6, 2013. These activities included the collection of samples from two sub-slab vapor probes within the building as well as the collection of two indoor air and one ambient air samples. The purpose of the sampling event was to confirm results from the previous investigation performed by SGI in May and June 2013.

4.1 Comparison to Previous Data

The laboratory analytical results from the December 2013 sampling event were compared to results from the previous investigation conducted by SGI in May and June 2013 (SGI, 2013). Subslab vapor data from the December sampling event revealed generally lower VOC concentrations than the data collected in May and June. VOC concentrations detected in indoor air samples in December were slightly higher than those detected in June; However, the chemicals that were detected at increased concentrations were not present due to sub-slab conditions, as discussed in more detail below.

4.2 Comparison to ESLs

The results of sub-slab soil vapor and indoor/ambient air sampling were compared to the ESLs for commercial/industrial land use. The ESLs are based on the lowest chemical-specific value that would be expected to represent an adverse cancer or non-cancer health risk using conservative exposure assumptions. The ESLs assume an unacceptable health risk to be an excess cancer risk over one in a million (1 x 10⁻⁶) or a non-cancer hazard index over 0.2 (CRWQCB, 2013). If detected VOC concentrations exceed the commercial/industrial ESLs, site-specific human health risk calculations may be necessary to determine if the site poses an unacceptable risk to potential receptors.

4.2.1 Sub-Slab Vapor Data

The adjusted December 2013 sub-slab vapor results from points Sub-Slab 2 and Sub-Slab3 were used to estimate indoor air concentrations within the building. A soil vapor to indoor air attenuation factor of 0.05 was used to estimate indoor air concentrations using the sub-slab vapor concentrations. Estimated hexane, trichlorofluoromethane, and toluene indoor air concentrations were 2.98, 0.705, and 0.116 $\mu g/m^3$, respectively. None of these concentrations exceed commercial/industrial ESLs. No other constituents were detected above laboratory reporting limits. Benzene was detected in indoor air (Section 4.2.2) but not detected above the method reporting limit of 0.08 $\mu g/m^3$ in sub-slab vapor samples. The complete data are presented in Table 1.

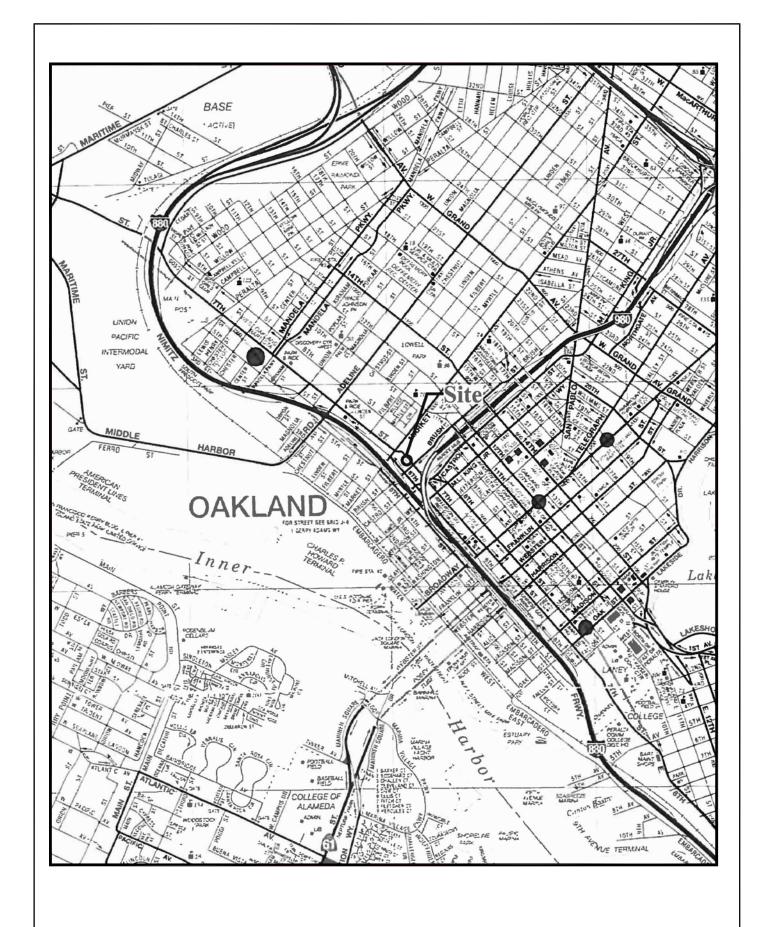
4.3 Ambient and Indoor Air Data

Indoor air sample results from December 2013 were compared to the commercial/industrial ESLs.

As discussed in Section 3.2, the only constituent detected above the indoor air ESL was benzene, with an ESL value of $0.42 \mu g/m^3$. Benzene concentrations in samples Ambient, IA1, IA2 were 0.90, 0.90, and 1.0 $\mu g/m^3$, respectively. The benzene concentrations in ambient outdoor air and indoor air are essentially the same concentration.

The estimated indoor air concentration of benzene based on sub-slab vapor data (non-detect at $0.08~\mu g/m^3$ method detection limit) was 10 times lower than the empirical indoor air concentration of benzene (up to $1.0~\mu g/m^3$). Benzene was not detected in sub-slab vapor samples and the benzene concentration in the ambient outdoor air sample was consistent with the indoor air sample, which suggests that benzene in indoor air is not present as a result of vapor intrusion from the subsurface. Sub-slab vapor and indoor air data suggest ambient outdoor air conditions are impacting indoor air at the Site.

5.0 CONCLUSIONS AND RECOMMENDATIONS


This report documents the December 2013 sampling of the sub-slab vapor and indoor air performed to confirm results of previous Site investigations. Data collected during this event are generally consistent with the results of earlier sampling events (SGI, 2013). While indoor air concentrations of benzene exceeded the industrial ESL, ambient air and sub-slab vapor data indicate that subsurface contamination is not the cause. Because of this, site-specific health risk calculations were not performed.

SGI is currently preparing a risk management plan (RMP) to ensure that the current cap on the Site remains in place and that any breach of the cap or exposure to residual contaminants in the soil are performed in a manner that does not expose users of the Site or construction workers to unacceptable health risks. This RMP will be submitted under a separate cover.

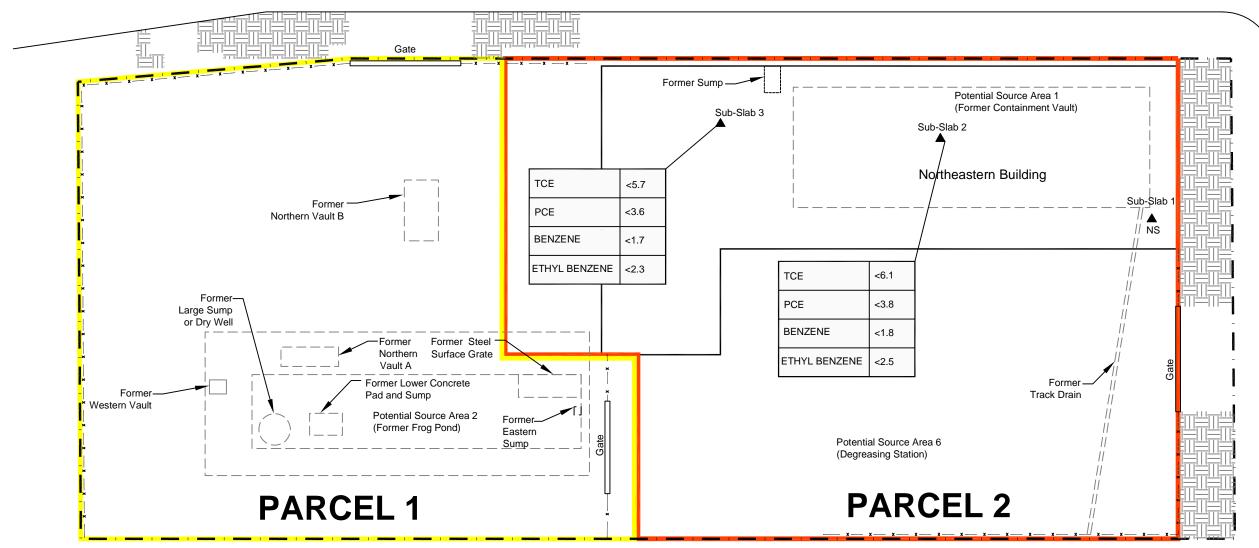
6.0 REFERENCES

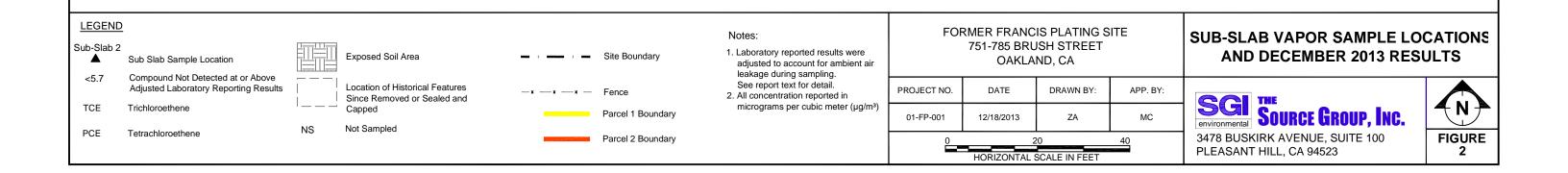
- Alameda County Environmental Health (ACEH). 2013. Case File Review for SLIC Case RO0002586 and GeoTracker Global ID SL0600130797, Francis Plating, 752-785 7th Street, Oakland, CA 94607. September 13.
- BASELINE. 2012. Conceptual Site Model and Work Plan for Sub-Slab Vapor Investigation. June.
- California Regional Water Quality Control Board (CRWQCB), San Francisco Bay Area Region. 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Summary Table E. February.
- Department of Toxic Substances Control (DTSC), Los Angeles Regional Water Quality Control Board, and San Francisco Regional Water Quality Control Board. 2012. Advisory Active Soil Gas Investigations. April.
- DTSC. 2011. Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air. October.
- The Source Group, Inc. (SGI). 2013. Soil Gas, Sub-Slab Vapor, and Indoor Air Investigation Report, Former Francis Plating Site, 751-785 7th Street, Oakland, California. August.

FORMER FRANCIS PLATING 751-785 SEVENTH STREET OAKLAND, CALIFORNIA

PROJECT NO. DATE DR.BY: APP. BY: 01-FP-001 07/15/2013 ZA JH

SITE LOCATION MAP





FIGURE

Brush Street

Table 1 Sub-Slab Soil Vapor Results - December 2013

Former Francis Plating 785 7th St., Oakland, California

	Sub-Slab Sample Results - As-Reported		Sub-Slab Sample Results - Adjusted ¹		Estimated Indoor	Air Concentration ²	Indoor Air ESL ³		
Analyte	Sub-Slab 2	Sub-Slab 3	Sub-Slab 2	Sub-Slab 3	Sub-Slab 2	Sub-Slab 3	Residential Ambient and Indoor Air	Industrial Ambient and Indoor Air	
1,1-Dichloroethene	< 2.0	< 2.0	< 2.2	< 2.1	< 0.10	< 0.10	210	880	
Acetone	< 19	< 19	< 21	< 20	< 0.95	< 0.95	32,000	140,000	
Hexane	59.5	2.03	66.9	2.15	2.98	0.10	NA	NA	
tert-Butanol	< 8.4	< 8.4	< 9.4	< 8.9	< 0.42	< 0.42	NA	NA	
Carbon Tetrachloride	< 3.2	< 3.2	< 3.6	< 3.4	< 0.16	< 0.16	0.058	0.29	
1,1,1-Trichloroethane	< 2.8	< 2.8	< 3.1	< 3.0	< 0.14	< 0.14	5,200	22,000	
2-Butanone (MEK)	< 1.5	< 1.5	< 1.7	< 1.6	< 0.08	< 0.08	5,200	22,000	
Ethyl Acetate	< 1.8	< 1.8	< 2.0	< 1.9	< 0.09	< 0.09	NA	NA	
Benzene	< 1.6	< 1.6	< 1.8	< 1.7	< 0.08	< 0.08	0.084	0.42	
Trichloroethylene	< 5.4	< 5.4	< 6.1	< 5.7	< 0.27	< 0.27	0.59	3.0	
Trichlorofluoromethane	14.1	< 5.6	15.86	< 5.9	0.705	< 0.28	NA	NA	
Toluene	2.32	< 1.9	2.61	< 2.0	0.116	< 0.10	310	1300	
Tetrachloroethylene	< 3.4	< 3.4	< 3.8	< 3.6	< 0.17	< 0.17	0.41	2.1	
Ethyl Benzene	< 2.2	< 2.2	< 2.5	< 2.3	< 0.11	< 0.11	0.97	4.9	
m,p-Xylene	< 4.3	< 4.3	< 4.8	< 4.6	< 0.22	< 0.22	100 ⁴	440 ⁴	
o-Xylene	< 2.2	< 2.2	< 2.5	< 2.3	< 0.11	< 0.11	100 ⁴	440 ⁴	
Styrene	< 2.2	< 2.2	< 2.5	< 2.3	< 0.11	< 0.11	940	3900	
4-Ethyl Toluene	< 2.5	< 2.5	< 2.8	< 2.6	< 0.13	< 0.13	NA	NA	
1,3,5-Trimethylbenzene	< 2.5	< 2.5	< 2.8	< 2.6	< 0.13	< 0.13	NA	NA	
1,2,4-Trimethylbenzene	< 2.5	< 2.5	< 2.8	< 2.6	< 0.13	< 0.13	NA	NA	

Notes:

All results given in micrograms per cubic meter (µg/m³)

Results given only for parameters detected in one or more samples. See Appendix B for complete results.

Values reported above the laboratory reporting limits are shown in **bold**

Note 1 = Laboratory-reported results were adjusted to account for ambient air leakage using the dilution factors (DF) calculated in Table 3. The as-reported results were multiplied by (1 + DF) to calculate the adjusted result.

Note 2 = Results multiplied by 0.05 attenuation factor as recommended by the Cal/EPA Department of Toxic Substances Control.

Note 3 = California Regional Water Quality Control Board, San Francisco Bay Area Region, February 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Summary Table E.

Note 4 = Based on ESL for total xylenes

ESLs = Environmental Screening Levels

 $\langle x.x \rangle$ = Compound was not identified above the laboratory reporting limit of x.x.

Page 1 of 1 The Source Group, Inc.

Table 2 Ambient and Indoor Air Sampling Results - December 2013

Former Francis Plating 785 7th St., Oakland, California

		Indoor Air C	oncentration	Indoor Air ESL ²		
Analyte	Ambient Air Concentration	Location 1 (IA1)	Location 2 (IA2)	Residential Ambient and Indoor Air	Industrial Ambient and Indoor Air	
Acetone	7.6	72	28	32,000	140,000	
Benzene	0.90	0.90	1.0	0.084	0.42	
Bromomethane	0.71	0.43	0.30	5.2	220	
1,3-Butadiene	0.11	0.10	0.14	NA	NA	
2-Butanone (MEK)	0.95	< 0.02	0.81	5,200	22,000	
Carbon disulfide	0.036	0.050	0.062	NA	NA	
Carbon Tetrachloride	< 0.05	0.0504	0.0504	0.058	0.29	
Chloroethane	0.056	0.029	0.034	31,000	130,000	
Chloroform	0.0569	0.0735	0.0637	0.46	2.3	
Chloromethane	0.27	0.23	0.21	94	390	
1,4-Dichlorobenzene	0.090	0.10	0.090	0.22	1.1	
Dichlorodifluoromethane	1.10	0.95	0.80	NA	NA	
1,2-Dichloroethane (EDC)	0.054	< 0.02	0.041	0.12	0.58	
1,1-Dichloroethene	< 0.03	0.024	0.020	210	880	
1,2-Dichloropropane	< 0.04	0.046	< 0.02	0.24	1.2	
Ethyl Acetate	0.18	0.40	0.54	NA	NA	
Ethyl Benzene	0.42	0.47	0.60	0.97	4.9	
4-Ethyl Toluene	0.24	0.31	0.36	NA	NA	
Freon 113	0.38	0.34	0.32	NA	NA	
Heptane	0.47	11	1.4	NA	NA	
Hexane	0.70	0.81	0.84	NA	NA	
2-Hexanone	0.20	0.078	0.23	NA	NA	
m,p-Xylene	1.4	1.5	2.0	100 ³	440 ³	
Methylene Chloride	0.33	0.53	0.74	5.2	260	
Methyl Isobutyl Ketone (MIBK)	0.18	0.20	0.18	3,100	13,000	
Napthalene	0.13	0.094	0.15	0.072	0.36	
o-Xylene	0.49	0.47	0.60	100 ³	440 ³	
Styrene	0.15	0.19	0.28	940	3,900	
tert-Butanol	0.55	< 0.03	0.45	NA	NA	
1,1,2,2-Tetrachloroethane	< 0.06	< 0.007	0.0138	0.042	0.21	
Tetrachloroethylene	1.2	1.1	1.5	0.41	2.1	
Toluene	1.9	1.9	2.3	310	1300	
1,2,4-Trichlorobenzene	< 0.06	< 0.04	0.052	4.2	180	
Trichloroethylene	< 0.04	0.038	0.032	0.59	3.0	
Trichloromonofluoromethane	0.167	0.174	0.134	NA	NA	
1,2,4-Trimethylbenzene	0.59	0.49	0.64	NA	NA	
1,3,5-Trimethylbenzene	0.18	0.15	0.20	NA	NA	
Vinyl Chloride	< 0.02	0.016	0.010	0.031	0.16	

Notes:

All results given in micrograms per cubic meter (µg/m³)

Results given only for parameters detected in one or more samples. See Appendix B for complete results.

Values reported above the laboratory reporting limits are shown in **bold**

Note 1 = Results multiplied by 0.05 attenuation factor as recommended by the Cal/EPA Department of Toxic Substances Control.

Note 2 = California Regional Water Quality Control Board, San Francisco Bay Area Region, February 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Summary Table E.

Note 3 = Based on ESL for total xylenes

E = Estimated value due to being outside of calibration range.

ESLs = Environmental Screening Levels

<x.x = Compound was not identified above the laboratory reporting limit of x.x.

Table 3 Helium Results and Dilution Factor Calculations - December 2013

Former Francis Plating 785 7th St., Oakland, California

	Helium in Sample (%)	Average Helium Under Shroud (%)	Dilution Factor (DF) ¹	
Sub-Slab 2	2.1	16.8	0.125	
Sub-Slab 3	1.2	20.2	0.059	

Notes:

Note 1 = Dilution factor is calculated by dividing the helium concentration detected in the sample by the average helium concentration under the shroud during sampling

APPENDIX A SAMPLING FIELD FORMS

DAILY FIELD RECORD

Page 1 of ____.

Project and Ta	sk Number: 01-FP-007	2	Date: 12/6/13				
Project Name:	FRANCIS PLANNE		Field Activity: Subs	lab/ Ar	nbient/IA se	unding	
Location: 71	M ST OAKLAND		Weather dear	10° F		, ,	
PERSONNEL	: Name		Company		Time In	Time Out	
Mary Cunningham			561		0830	ONDO 1600	
PERSONAL S	AFETY CHECKLIST						
Stee	l-toed Boots	Ha	rd Hat		Tyvek Coveralls		
Rub	ber Gloves	Sa	fety Goggles		½ Face Respirator		
DRUM I.D.	DESCRIPTION OF	F CONTENTS	S AND QUANTITY		LOCA	TION	
				_			
						-3.44	
TIME		DESCRIP	TION OF WORK PERF	ORME	D		
0830	Arrive e site						
0900			ent 9 hr conjuters	6	L SUMMA)		
0915	A Committee of the Comm		test, purge.				
6930	Sample Substab 2				-		
0945	Leave site, purchase						
1000	Sct up for substan	3. Leak	tert, purge.				
1020	Sample Substab 3. Check on 9 hour	Nate stain	ing surrounding pr	obe d	ne to spill	ed veg. al	
1100	Check on 9 how	Commers.	Note 1AZ 15 fil	Illing ta	<i></i>		
1430	Recheck & har 4						
1600	Depart site	Amaleni					
1000	1/4/2/ SILC						
		· · · · · · · · · · · · · · · · · · ·					

SOIL VAPOR FIELD MEASUREMENT LOG

The Source Group, Inc.

Date: 12 6 13		Sampler: M CUMMUGHAM						
Client: FRANCIS PLA	MNG							
Container ID: 6173								
Sample ID: Substate	2		THE RESIDENCE OF THE PROPERTY					
Veather Conditions	Temperature:	40 F	Precipitation: deap					
		HOS BUESE NO						
ampling Device:	SUMMA							
eak Test:		Leak Check Compound	1: Heljum					
Purge Volume: minu	nte							
Purge Start Time: 092		End Time: 0926						
Sample Start Time: 09		End Time: 093	5					
Canister Start Vacuum:	-30" Ha	End Vacuum: -5	" Hq					
)		,					
ield Measurements								
	Flour for Advis	Vacuum Pressure	_					
lime	Flow (ml/min)	(inches Hg)	Comments					
0930		-30	He: 178					
093		-25	192					
0932		-15	197					
0934		-10	16 %					
0935		-5	148					
0935			162					
		ļ						
								
		L						
an establish in								
		Notes						
	Service Servic		Walter of the Control					
8.0		Av He	= 16.83 2					

		-0-000000000000000000000000000000000000						
	Later and the Sandarian							
557 21 27		10.00						
.8 4 5 9								
			1.300					

SOIL VAPOR FIELD MEASUREMENT LOG

The Source Group, Inc.

	****		·				
Date: 12 6 13		Sampler: M. Cunningham					
Client: FRANCIS PL	ADNG	Project #: 01 - FP-&2					
Container ID: A 7465							
Sample ID: Subclab 3							
Weather Conditions	Temperature:	40 F	Precipitation: Clear				
Sampling Device: 5	UMMA						
Leak Test:		Leak Check Compoun	d: Helium				
Purge Volume: min	rte.						
Purge Start Time: 1019		End Time: 1010	0				
Sample Start Time: 107		End Time: 107	29				
Canister Start Vacuum:	-30' Ha	End Vacuum: -C	" Ha				
	7)				
Field Measurements							
		Vacuum Pressure					
Time	Flow (ml/min)	(inches Hg)	Comments				
1020	150	- 30	He - 212				
1022		-25	23 2				
1024		-20	197				
1026		-15	71 %				
1028		-10	19 ~				
1029		-<	19 %				
-5. 000							
		·					
			1				
	22						
		Notes					
Oil staining e probe	likely from	deep fryer low	ted nearby (yes all).				
Didn't appear to b	e oil to only))				
E 1995		Au He = 2	0.17 9				

APPENDIX B LABORATORY ANALYTICAL DATA

Matthew C. Sutton The Source Group, Inc 3478 Buskirk Avenue, Suite 100 Pleasant Hill, California 94523

Tel: 925.951.6386 Fax: 925.944.2859

Email: msutton@thesourcegroup.net

RE:

Work Order No.: 1312039

Dear Mary Cunningham:

Torrent Laboratory, Inc. received 5 sample(s) on December 09, 2013 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Patti Sandrock
QA Officer

December 16, 2013

Date

Total Page Count: 25 Page 1 of 25

Date: 12/16/2013

Client: The Source Group, Inc

Project:

Work Order: 1312039

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

This report shall not be reproduced, except in full, without the written approval of Torrent Analytical, Inc.

The associated report containing the data for the individually certified canisters can be found on WO 1312069.

118 0 165

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

IA 1 1312039-001A

Parameters:	Analysis Method	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Results ug/m3
Dichlorodifluoromethane	TO15SIM	1	0.018	0.05	0.95
Chloromethane	TO15SIM	1	0.0088	0.02	0.23
Vinyl Chloride	TO15SIM	1	0.0037	0.01	0.016
1,3-Butadiene	TO15SIM	1	0.022	0.04	0.10
Bromomethane	TO15SIM	1	0.0082	0.02	0.43
Chloroethane	TO15SIM	1	0.0021	0.01	0.029
Trichloromonofluoromethane	TO15SIM	1	0.012	0.03	0.174
1,1-Dichloroethene	TO15SIM	1	0.0068	0.02	0.024
Methylene Chloride	TO15SIM	1	0.015	0.04	0.53
Freon 113	TO15SIM	1	0.013	0.04	0.34
Carbon disulfide	TO15SIM	1	0.0028	0.02	0.050
Hexane	TO15SIM	1	0.0045	0.02	0.81
Ethyl Acetate	TO15SIM	1	0.0033	0.02	0.40
Chloroform	TO15SIM	1	0.00813	0.02	0.0735
Carbon Tetrachloride	TO15SIM	1	0.0085	0.03	0.0504
Benzene	TO15SIM	1	0.034	0.06	0.90
1,2-Dichloropropane	TO15SIM	1	0.0047	0.02	0.046
Trichloroethylene	TO15SIM	1	0.011	0.03	0.038
Methyl Isobutyl Ketone (MIBK)	TO15SIM	1	0.0064	0.02	0.20
Toluene	TO15SIM	1	0.0042	0.02	1.9
2-Hexanone	TO15SIM	1	0.0089	0.02	0.078
Tetrachloroethylene	TO15SIM	1	0.026	0.07	1.1
Ethylbenzene	TO15SIM	1	0.0023	0.02	0.47
m,p-Xylene	TO15SIM	1	0.0042	0.02	1.5
Styrene	TO15SIM	1	0.0031	0.02	0.19
o-Xylene	TO15SIM	1	0.0022	0.02	0.47
4-Ethyl toluene	TO15SIM	1	0.0034	0.02	0.31
1,3,5-Trimethylbenzene	TO15SIM	1	0.0035	0.02	0.15
1,2,4-Trimethylbenzene	TO15SIM	1	0.0033	0.02	0.49
1,4-Dichlorobenzene	TO15SIM	1	0.0052	0.03	0.10
Naphthalene	TO15SIM	1	0.0047	0.03	0.094
Isopropyl Alcohol	TO15SIM	20	0.32	30	55
Acetone	TO15SIM	20	0.52	1	72
Heptane	TO15SIM	20	0.066	0.4	11

Total Page Count: 25 Page 3 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

IA 2 1312039-002A

Parameters:	Analysis Method	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Results ug/m3
Dichlorodifluoromethane	TO15SIM	1	0.018	0.05	0.80
Chloromethane	TO15SIM	1	0.0088	0.02	0.21
Vinyl Chloride	TO15SIM	1	0.0037	0.01	0.010
1,3-Butadiene	TO15SIM	1	0.022	0.04	0.14
Bromomethane	TO15SIM	1	0.0082	0.02	0.30
Chloroethane	TO15SIM	1	0.0021	0.01	0.034
Trichloromonofluoromethane	TO15SIM	1	0.012	0.03	0.134
1,1-Dichloroethene	TO15SIM	1	0.0068	0.02	0.020
tert-Butanol	TO15SIM	1	0.011	0.03	0.45
Methylene Chloride	TO15SIM	1	0.015	0.04	0.74
Freon 113	TO15SIM	1	0.013	0.04	0.32
Carbon disulfide	TO15SIM	1	0.0028	0.02	0.062
Hexane	TO15SIM	1	0.0045	0.02	0.84
2-Butanone (MEK)	TO15SIM	1	0.0028	0.02	0.81
Ethyl Acetate	TO15SIM	1	0.0033	0.02	0.54
Chloroform	TO15SIM	1	0.00813	0.02	0.0637
ETBE	TO15SIM	1	0.0048	0.02	0.025
1,2-Dichloroethane (EDC)	TO15SIM	1	0.0050	0.02	0.041
Carbon Tetrachloride	TO15SIM	1	0.0085	0.03	0.0504
Benzene	TO15SIM	1	0.034	0.06	1.0
Heptane	TO15SIM	1	0.0033	0.02	1.4
Trichloroethylene	TO15SIM	1	0.011	0.03	0.032
Methyl Isobutyl Ketone (MIBK)	TO15SIM	1	0.0064	0.02	0.18
2-Hexanone	TO15SIM	1	0.0089	0.02	0.23
Tetrachloroethylene	TO15SIM	1	0.026	0.07	1.5
Ethylbenzene	TO15SIM	1	0.0023	0.02	0.60
m,p-Xylene	TO15SIM	1	0.0042	0.02	2.0
Styrene	TO15SIM	1	0.0031	0.02	0.28
1,1,2,2-Tetrachloroethane	TO15SIM	1	0.0023	0.007	0.0138
o-Xylene	TO15SIM	1	0.0022	0.02	0.60
4-Ethyl toluene	TO15SIM	1	0.0034	0.02	0.36
1,3,5-Trimethylbenzene	TO15SIM	1	0.0035	0.02	0.20
1,2,4-Trimethylbenzene	TO15SIM	1	0.0033	0.02	0.64
1,4-Dichlorobenzene	TO15SIM	1	0.0052	0.03	0.090
1,2,4-trichlorobenzene	TO15SIM	1	0.066	0.04	0.052
Naphthalene	TO15SIM	1	0.0047	0.03	0.15
Acetone	TO15SIM	50	1.3	2	28
Toluene	TO15SIM	50	0.21	1	2.3

Total Page Count: 25 Page 4 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Ambient 1312039-003A

Parameters:	Analysis Method	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Results ug/m3
Dichlorodifluoromethane	TO15SIM	1.66	0.030	0.08	1.1
Chloromethane	TO15SIM	1.66	0.015	0.03	0.27
1,3-Butadiene	TO15SIM	1.66	0.036	0.07	0.11
Bromomethane	TO15SIM	1.66	0.014	0.03	0.71
Chloroethane	TO15SIM	1.66	0.0034	0.02	0.056
Trichloromonofluoromethane	TO15SIM	1.66	0.020	0.05	0.167
tert-Butanol	TO15SIM	1.66	0.019	0.05	0.55
Methylene Chloride	TO15SIM	1.66	0.024	0.06	0.33
Freon 113	TO15SIM	1.66	0.022	0.06	0.38
Carbon disulfide	TO15SIM	1.66	0.0047	0.03	0.036
Hexane	TO15SIM	1.66	0.0074	0.03	0.70
2-Butanone (MEK)	TO15SIM	1.66	0.0046	0.02	0.95
Ethyl Acetate	TO15SIM	1.66	0.0055	0.03	0.18
Chloroform	TO15SIM	1.66	0.0135	0.04	0.0569
1,2-Dichloroethane (EDC)	TO15SIM	1.66	0.0084	0.03	0.054
Benzene	TO15SIM	1.66	0.056	0.1	0.90
Heptane	TO15SIM	1.66	0.0055	0.03	0.47
Methyl Isobutyl Ketone (MIBK)	TO15SIM	1.66	0.011	0.03	0.18
Toluene	TO15SIM	1.66	0.0069	0.03	1.9
2-Hexanone	TO15SIM	1.66	0.015	0.03	0.20
Tetrachloroethylene	TO15SIM	1.66	0.043	0.1	1.2
Ethylbenzene	TO15SIM	1.66	0.0039	0.04	0.42
m,p-Xylene	TO15SIM	1.66	0.0070	0.04	1.4
Styrene	TO15SIM	1.66	0.0052	0.04	0.15
o-Xylene	TO15SIM	1.66	0.0036	0.04	0.49
4-Ethyl toluene	TO15SIM	1.66	0.0057	0.04	0.24
1,3,5-Trimethylbenzene	TO15SIM	1.66	0.0059	0.04	0.18
1,2,4-Trimethylbenzene	TO15SIM	1.66	0.0055	0.04	0.59
1,4-Dichlorobenzene	TO15SIM	1.66	0.0086	0.05	0.090
Naphthalene	TO15SIM	1.66	0.0078	0.04	0.13
Acetone	TO15SIM	83	2.2	4	7.6

Total Page Count: 25 Page 5 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Subslab 2 1312039-004A

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results ug/m3
Trichlorofluoromethane	ETO15	1	1.8	5.6	14.1
Hexane Toluene	ETO15 ETO15	1 1	0.53 0.95	1.8 1.9	59.5 2.32
Helium	D1946	5.3	0.027	0.13	2.1%

Subslab 3 1312039-005A

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Results ug/m3	
Hexane	ETO15	1	0.53	1.8	2.03	
Helium	D1946	5.1	0.026	0.13	1.2%	

....

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Client Sample ID: IA 1 Lab Sample ID: 1312039-001A

Project Name/Location: Sample Matrix: Ambient Air

Project Number:

Date/Time Sampled: 12/06/13 / 9:00 Certified Clean WO #:

 Canister/Tube ID:
 449
 Received PSI:
 13.5

 Collection Volume (L):
 0.00
 Corrected PSI:
 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Analytical Qualifier Batch	Prep Batch
5:11 1:4	T0450#:	<u> </u>	10/10//2		0.046	2.05	0.05	0.40	140000	
Dichlorodifluoromethane	TO15SIM	NA	12/12/13	1	0.018	0.05	0.95	0.19	418630	NA
Chloromethane	TO15SIM	NA	12/12/13	1	0.0088	0.02	0.23	0.11	418630	NA
Vinyl Chloride	TO15SIM	NA	12/12/13	1	0.0037	0.01	0.016	0.01	418630	NA
1,3-Butadiene	TO15SIM	NA	12/12/13	1	0.022	0.04	0.10	0.05	418630	NA
Bromomethane	TO15SIM	NA	12/12/13	1	0.0082	0.02	0.43	0.11	418630	NA
Chloroethane	TO15SIM	NA	12/12/13	1	0.0021	0.01	0.029	0.01	418630	NA
Trichloromonofluoromethane	TO15SIM	NA	12/12/13	1	0.012	0.03	0.174	0.03	418630	NA
1,1-Dichloroethene	TO15SIM	NA	12/12/13	1	0.0068	0.02	0.024	0.01	418630	NA
tert-Butanol	TO15SIM	NA	12/12/13	1	0.011	0.03	ND	ND	418630	NA
Methylene Chloride	TO15SIM	NA	12/12/13	1	0.015	0.04	0.53	0.15	418630	NA
Freon 113	TO15SIM	NA	12/12/13	1	0.013	0.04	0.34	0.04	418630	NA
Carbon disulfide	TO15SIM	NA	12/12/13	1	0.0028	0.02	0.050	0.02	418630	NA
trans-1,2-Dichloroethene	TO15SIM	NA	12/12/13	1	0.0038	0.02	ND	ND	418630	NA
MTBE	TO15SIM	NA	12/12/13	1	0.0062	0.02	ND	ND	418630	NA
1,1-Dichloroethane	TO15SIM	NA	12/12/13	1	0.0050	0.02	ND	ND	418630	NA
Vinyl Acetate	TO15SIM	NA	12/12/13	1	0.0050	0.02	ND	ND	418630	NA
Hexane	TO15SIM	NA	12/12/13	1	0.0045	0.02	0.81	0.23	418630	NA
2-Butanone (MEK)	TO15SIM	NA	12/12/13	1	0.0028	0.02	ND	ND	418630	NA
DIPE	TO15SIM	NA	12/12/13	1	0.0044	0.02	ND	ND	418630	NA
cis-1,2-Dichloroethene	TO15SIM	NA	12/12/13	1	0.0041	0.02	ND	ND	418630	NA
Ethyl Acetate	TO15SIM	NA	12/12/13	1	0.0033	0.02	0.40	0.11	418630	NA
Chloroform	TO15SIM	NA	12/12/13	1	0.00813	0.02	0.0735	0.02	418630	NA
ETBE	TO15SIM	NA	12/12/13	1	0.0048	0.02	ND	ND	418630	NA
Tetrahydrofuran	TO15SIM	NA	12/12/13	1	0.029	0.06	ND	ND	418630	NA
1,2-Dichloroethane (EDC)	TO15SIM	NA	12/12/13	1	0.0050	0.02	ND	ND	418630	NA
1,1,1-Trichloroethane	TO15SIM	NA	12/12/13	1	0.0083	0.03	ND	ND	418630	NA
Carbon Tetrachloride	TO15SIM	NA	12/12/13	1	0.0085	0.03	0.0504	0.01	418630	NA
Benzene	TO15SIM	NA	12/12/13	1	0.034	0.06	0.90	0.28	418630	NA
TAME	TO15SIM	NA	12/12/13	1	0.0025	0.02	ND	ND	418630	NA
1,2-Dichloropropane	TO15SIM	NA	12/12/13	1	0.0047	0.02	0.046	0.01	418630	NA
Trichloroethylene	TO15SIM	NA	12/12/13	1	0.011	0.03	0.038	0.01	418630	NA
Bromodichloromethane	TO15SIM	NA	12/12/13	1	0.0056	0.03	ND	ND	418630	NA
1,4-Dioxane	TO15SIM	NA	12/12/13	1	0.011	0.02	ND	ND	418630	NA
cis-1,3-Dichloropropene	TO15SIM	NA	12/12/13	1	0.0036	0.02	ND	ND	418630	NA
Methyl Isobutyl Ketone (MIBK)	TO15SIM	NA	12/12/13	1	0.0064	0.02	0.20	0.05	418630	NA
trans-1,3-Dichloropropene	TO15SIM	NA	12/12/13	1	0.0040	0.02	ND	ND	418630	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 7 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Ambient Air

Client Sample ID: IA 1 Lab Sample ID: 1312039-001A

Project Name/Location: Sample Matrix:

Project Number:

Date/Time Sampled: 12/06/13 / 9:00 Certified Clean WO #:

 Canister/Tube ID:
 449
 Received PSI:
 13.5

 Collection Volume (L):
 0.00
 Corrected PSI:
 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
1,1,2-Trichloroethane	TO15SIM	NA	12/12/13	1	0.00325	0.03	ND	ND	1	418630	NA
Toluene	TO15SIM	NA	12/12/13	1	0.0042	0.02	1.9	0.50		418630	NA
Isopropyl Alcohol	TO15SIM	NA	12/12/13	20	0.32	30	55	22.00		418630	NA
Acetone	TO15SIM	NA	12/12/13	20	0.52	1	72	30.00		418630	NA
Heptane	TO15SIM	NA	12/12/13	20	0.066	0.4	11	2.68		418630	NA
2-Hexanone	TO15SIM	NA	12/12/13	1	0.0089	0.02	0.078	0.02		418630	NA
Dibromochloromethane	TO15SIM	NA	12/12/13	1	0.021	0.04	ND	ND		418630	NA
1,2-Dibromoethane (EDB)	TO15SIM	NA	12/12/13	1	0.0042	0.04	ND	ND		418630	NA
Tetrachloroethylene	TO15SIM	NA	12/12/13	1	0.026	0.07	1.1	0.16		418630	NA
1,1,1,2-Tetrachloroethane	TO15SIM	NA	12/12/13	1	0.0090	0.03	ND	ND		418630	NA
Chlorobenzene	TO15SIM	NA	12/12/13	1	0.0023	0.005	ND	ND		418630	NA
Ethylbenzene	TO15SIM	NA	12/12/13	1	0.0023	0.02	0.47	0.11		418630	NA
m,p-Xylene	TO15SIM	NA	12/12/13	1	0.0042	0.02	1.5	0.35		418630	NA
Bromoform	TO15SIM	NA	12/12/13	1	0.033	0.1	ND	ND		418630	NA
Styrene	TO15SIM	NA	12/12/13	1	0.0031	0.02	0.19	0.04		418630	NA
1,1,2,2-Tetrachloroethane	TO15SIM	NA	12/12/13	1	0.0023	0.007	ND	ND		418630	NA
o-Xylene	TO15SIM	NA	12/12/13	1	0.0022	0.02	0.47	0.11		418630	NA
4-Ethyl toluene	TO15SIM	NA	12/12/13	1	0.0034	0.02	0.31	0.06		418630	NA
1,3,5-Trimethylbenzene	TO15SIM	NA	12/12/13	1	0.0035	0.02	0.15	0.03		418630	NA
1,2,4-Trimethylbenzene	TO15SIM	NA	12/12/13	1	0.0033	0.02	0.49	0.10		418630	NA
1,3-Dichlorobenzene	TO15SIM	NA	12/12/13	1	0.0056	0.03	ND	ND		418630	NA
1,4-Dichlorobenzene	TO15SIM	NA	12/12/13	1	0.0052	0.03	0.10	0.02		418630	NA
1,2-Dichlorobenzene	TO15SIM	NA	12/12/13	1	0.0056	0.03	ND	ND		418630	NA
1,2,4-trichlorobenzene	TO15SIM	NA	12/12/13	1	0.066	0.04	ND	ND		418630	NA
Naphthalene	TO15SIM	NA	12/12/13	1	0.0047	0.03	0.094	0.02		418630	NA
Hexachlorobutadiene	TO15SIM	NA	12/12/13	1	0.11	0.2	ND	ND		418630	NA

Total Page Count: 25 Page 8 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

 Client Sample ID:
 IA 2
 Lab Sample ID:
 1312039-002A

Project Name/Location: Sample Matrix: Ambient Air

Project Number:

Date/Time Sampled: 12/06/13 / 9:05 Certified Clean WO #:

 Canister/Tube ID:
 1438
 Received PSI :
 12.1

 Collection Volume (L):
 0.00
 Corrected PSI :
 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Dichlorodifluoromethane	TO15SIM	NA	12/12/13	1	0.018	0.05	0.80	0.16		418630	NA
Chloromethane	TO15SIM	NA	12/12/13	1	0.0088	0.02	0.21	0.10		418630	NA
Vinyl Chloride	TO15SIM	NA	12/12/13	1	0.0037	0.01	0.010	0.00		418630	NA
1,3-Butadiene	TO15SIM	NA	12/12/13	1	0.022	0.04	0.14	0.06		418630	NA
Bromomethane	TO15SIM	NA	12/12/13	1	0.0082	0.02	0.30	0.08		418630	NA
Chloroethane	TO15SIM	NA	12/12/13	1	0.0021	0.01	0.034	0.01		418630	NA
Trichloromonofluoromethane	TO15SIM	NA	12/12/13	1	0.012	0.03	0.134	0.02		418630	NA
1,1-Dichloroethene	TO15SIM	NA	12/12/13	1	0.0068	0.02	0.020	0.01		418630	NA
tert-Butanol	TO15SIM	NA	12/12/13	1	0.011	0.03	0.45	0.15		418630	NA
Methylene Chloride	TO15SIM	NA	12/12/13	1	0.015	0.04	0.74	0.21		418630	NA
Freon 113	TO15SIM	NA	12/12/13	1	0.013	0.04	0.32	0.04		418630	NA
Carbon disulfide	TO15SIM	NA	12/12/13	1	0.0028	0.02	0.062	0.02		418630	NA
trans-1,2-Dichloroethene	TO15SIM	NA	12/12/13	1	0.0038	0.02	ND	ND		418630	NA
MTBE	TO15SIM	NA	12/12/13	1	0.0062	0.02	ND	ND		418630	NA
1,1-Dichloroethane	TO15SIM	NA	12/12/13	1	0.0050	0.02	ND	ND		418630	NA
Vinyl Acetate	TO15SIM	NA	12/12/13	1	0.0050	0.02	ND	ND		418630	NA
Hexane	TO15SIM	NA	12/12/13	1	0.0045	0.02	0.84	0.24		418630	NA
2-Butanone (MEK)	TO15SIM	NA	12/12/13	1	0.0028	0.02	0.81	0.27		418630	NA
DIPE	TO15SIM	NA	12/12/13	1	0.0044	0.02	ND	ND		418630	NA
cis-1,2-Dichloroethene	TO15SIM	NA	12/12/13	1	0.0041	0.02	ND	ND		418630	NA
Ethyl Acetate	TO15SIM	NA	12/12/13	1	0.0033	0.02	0.54	0.15		418630	NA
Chloroform	TO15SIM	NA	12/12/13	1	0.00813	0.02	0.0637	0.01		418630	NA
ETBE	TO15SIM	NA	12/12/13	1	0.0048	0.02	0.025	0.01		418630	NA
Tetrahydrofuran	TO15SIM	NA	12/12/13	1	0.029	0.06	ND	ND		418630	NA
1,2-Dichloroethane (EDC)	TO15SIM	NA	12/12/13	1	0.0050	0.02	0.041	0.01		418630	NA
1,1,1-Trichloroethane	TO15SIM	NA	12/12/13	1	0.0083	0.03	ND	ND		418630	NA
Carbon Tetrachloride	TO15SIM	NA	12/12/13	1	0.0085	0.03	0.0504	0.01		418630	NA
Benzene	TO15SIM	NA	12/12/13	1	0.034	0.06	1.0	0.31		418630	NA
TAME	TO15SIM	NA	12/12/13	1	0.0025	0.02	ND	ND		418630	NA
Heptane	TO15SIM	NA	12/12/13	1	0.0033	0.02	1.4	0.34		418630	NA
1,2-Dichloropropane	TO15SIM	NA	12/12/13	1	0.0047	0.02	ND	ND		418630	NA
Trichloroethylene	TO15SIM	NA	12/12/13	1	0.011	0.03	0.032	0.01		418630	NA
Bromodichloromethane	TO15SIM	NA	12/12/13	1	0.0056	0.03	ND	ND		418630	NA
1,4-Dioxane	TO15SIM	NA	12/12/13	1	0.011	0.02	ND	ND		418630	NA
cis-1,3-Dichloropropene	TO15SIM	NA	12/12/13	1	0.0036	0.02	ND	ND		418630	NA
Methyl Isobutyl Ketone (MIBK)	TO15SIM	NA	12/12/13	1	0.0064	0.02	0.18	0.04		418630	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 9 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

 Client Sample ID:
 IA 2
 Lab Sample ID:
 1312039-002A

Project Name/Location: Sample Matrix: Ambient Air

Project Number:

Date/Time Sampled: 12/06/13 / 9:05 Certified Clean WO #:

 Canister/Tube ID:
 1438
 Received PSI :
 12.1

 Collection Volume (L):
 0.00
 Corrected PSI :
 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
trans-1,3-Dichloropropene	TO15SIM	NA	12/12/13	1	0.0040	0.02	ND	ND		418630	NA
1,1,2-Trichloroethane	TO15SIM	NA	12/12/13	1	0.00325	0.03	ND	ND		418630	NA
Isopropyl Alcohol	TO15SIM	NA	12/12/13	50	0.79	60	ND	ND		418630	NA
Acetone	TO15SIM	NA	12/12/13	50	1.3	2	28	11.67		418630	NA
Toluene	TO15SIM	NA	12/12/13	50	0.21	1	2.3	0.61		418630	NA
2-Hexanone	TO15SIM	NA	12/12/13	1	0.0089	0.02	0.23	0.06		418630	NA
Dibromochloromethane	TO15SIM	NA	12/12/13	1	0.021	0.04	ND	ND		418630	NA
1,2-Dibromoethane (EDB)	TO15SIM	NA	12/12/13	1	0.0042	0.04	ND	ND		418630	NA
Tetrachloroethylene	TO15SIM	NA	12/12/13	1	0.026	0.07	1.5	0.22		418630	NA
1,1,1,2-Tetrachloroethane	TO15SIM	NA	12/12/13	1	0.0090	0.03	ND	ND		418630	NA
Chlorobenzene	TO15SIM	NA	12/12/13	1	0.0023	0.005	ND	ND		418630	NA
Ethylbenzene	TO15SIM	NA	12/12/13	1	0.0023	0.02	0.60	0.14		418630	NA
m,p-Xylene	TO15SIM	NA	12/12/13	1	0.0042	0.02	2.0	0.47		418630	NA
Bromoform	TO15SIM	NA	12/12/13	1	0.033	0.1	ND	ND		418630	NA
Styrene	TO15SIM	NA	12/12/13	1	0.0031	0.02	0.28	0.07		418630	NA
1,1,2,2-Tetrachloroethane	TO15SIM	NA	12/12/13	1	0.0023	0.007	0.0138	0.00		418630	NA
o-Xylene	TO15SIM	NA	12/12/13	1	0.0022	0.02	0.60	0.14		418630	NA
4-Ethyl toluene	TO15SIM	NA	12/12/13	1	0.0034	0.02	0.36	0.07		418630	NA
1,3,5-Trimethylbenzene	TO15SIM	NA	12/12/13	1	0.0035	0.02	0.20	0.04		418630	NA
1,2,4-Trimethylbenzene	TO15SIM	NA	12/12/13	1	0.0033	0.02	0.64	0.13		418630	NA
1,3-Dichlorobenzene	TO15SIM	NA	12/12/13	1	0.0056	0.03	ND	ND		418630	NA
1,4-Dichlorobenzene	TO15SIM	NA	12/12/13	1	0.0052	0.03	0.090	0.02		418630	NA
1,2-Dichlorobenzene	TO15SIM	NA	12/12/13	1	0.0056	0.03	ND	ND		418630	NA
1,2,4-trichlorobenzene	TO15SIM	NA	12/12/13	1	0.066	0.04	0.052	0.01		418630	NA
Naphthalene	TO15SIM	NA	12/12/13	1	0.0047	0.03	0.15	0.03		418630	NA
Hexachlorobutadiene	TO15SIM	NA	12/12/13	1	0.11	0.2	ND	ND		418630	NA

Total Page Count: 25 Page 10 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Client Sample ID: Ambient Lab Sample ID: 1312039-003A

Project Name/Location:

Project Number:

Date/Time Sampled: 12/06/13 / 9:10

Canister/Tube ID: 1435
Collection Volume (L): 0.00

Sample Matrix: Ambient Air

Received PSI: 8.0 Corrected PSI: 0.0

Certified Clean WO #:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Dichlorodifluoromethane	TO15SIM	NA	12/12/13	1.66	0.030	0.08	1.1	0.22		418630	NA
Chloromethane	TO15SIM	NA	12/12/13	1.66	0.015	0.03	0.27	0.13		418630	NA
Vinyl Chloride	TO15SIM	NA	12/12/13	1.66	0.0062	0.02	ND	ND		418630	NA
1,3-Butadiene	TO15SIM	NA	12/12/13	1.66	0.036	0.07	0.11	0.05		418630	NA
Bromomethane	TO15SIM	NA	12/12/13	1.66	0.014	0.03	0.71	0.18		418630	NA
Chloroethane	TO15SIM	NA	12/12/13	1.66	0.0034	0.02	0.056	0.02		418630	NA
Trichloromonofluoromethane	TO15SIM	NA	12/12/13	1.66	0.020	0.05	0.167	0.03		418630	NA
Isopropyl Alcohol	TO15SIM	NA	12/12/13	1.66	0.026	2	ND	ND		418630	NA
1,1-Dichloroethene	TO15SIM	NA	12/12/13	1.66	0.011	0.03	ND	ND		418630	NA
tert-Butanol	TO15SIM	NA	12/12/13	1.66	0.019	0.05	0.55	0.18		418630	NA
Methylene Chloride	TO15SIM	NA	12/12/13	1.66	0.024	0.06	0.33	0.09		418630	NA
Freon 113	TO15SIM	NA	12/12/13	1.66	0.022	0.06	0.38	0.05		418630	NA
Carbon disulfide	TO15SIM	NA	12/12/13	1.66	0.0047	0.03	0.036	0.01		418630	NA
trans-1,2-Dichloroethene	TO15SIM	NA	12/12/13	1.66	0.0062	0.03	ND	ND		418630	NA
MTBE	TO15SIM	NA	12/12/13	1.66	0.010	0.03	ND	ND		418630	NA
1,1-Dichloroethane	TO15SIM	NA	12/12/13	1.66	0.0084	0.03	ND	ND		418630	NA
Vinyl Acetate	TO15SIM	NA	12/12/13	1.66	0.0083	0.03	ND	ND		418630	NA
Hexane	TO15SIM	NA	12/12/13	1.66	0.0074	0.03	0.70	0.20		418630	NA
2-Butanone (MEK)	TO15SIM	NA	12/12/13	1.66	0.0046	0.02	0.95	0.32		418630	NA
DIPE	TO15SIM	NA	12/12/13	1.66	0.0073	0.03	ND	ND		418630	NA
cis-1,2-Dichloroethene	TO15SIM	NA	12/12/13	1.66	0.0068	0.03	ND	ND		418630	NA
Ethyl Acetate	TO15SIM	NA	12/12/13	1.66	0.0055	0.03	0.18	0.05		418630	NA
Chloroform	TO15SIM	NA	12/12/13	1.66	0.0135	0.04	0.0569	0.01		418630	NA
ETBE	TO15SIM	NA	12/12/13	1.66	0.0079	0.03	ND	ND		418630	NA
Tetrahydrofuran	TO15SIM	NA	12/12/13	1.66	0.048	0.1	ND	ND		418630	NA
1,2-Dichloroethane (EDC)	TO15SIM	NA	12/12/13	1.66	0.0084	0.03	0.054	0.01		418630	NA
1,1,1-Trichloroethane	TO15SIM	NA	12/12/13	1.66	0.014	0.05	ND	ND		418630	NA
Carbon Tetrachloride	TO15SIM	NA	12/12/13	1.66	0.014	0.05	ND	ND		418630	NA
Benzene	TO15SIM	NA	12/12/13	1.66	0.056	0.1	0.90	0.28		418630	NA
TAME	TO15SIM	NA	12/12/13	1.66	0.0041	0.03	ND	ND		418630	NA
Heptane	TO15SIM	NA	12/12/13	1.66	0.0055	0.03	0.47	0.11		418630	NA
1,2-Dichloropropane	TO15SIM	NA	12/12/13	1.66	0.0078	0.04	ND	ND		418630	NA
Trichloroethylene	TO15SIM	NA	12/12/13	1.66	0.019	0.04	ND	ND		418630	NA
Bromodichloromethane	TO15SIM	NA	12/12/13	1.66	0.0092	0.06	ND	ND		418630	NA
1,4-Dioxane	TO15SIM	NA	12/12/13	1.66	0.018	0.03	ND	ND		418630	NA
cis-1,3-Dichloropropene	TO15SIM	NA		1.66	0.0059	0.04	ND	ND		418630	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 11 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Client Sample ID: Ambient Lab Sample ID: 1312039-003A

Project Name/Location: Sample Matrix: Ambient Air

Project Number:

Date/Time Sampled: 12/06/13 / 9:10 Certified Clean WO #:

 Canister/Tube ID:
 1435
 Received PSI :
 8.0

 Collection Volume (L):
 0.00
 Corrected PSI :
 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Methyl Isobutyl Ketone (MIBK)	TO15SIM	NA	12/12/13	1.66	0.011	0.03	0.18	0.04	ı	418630	NA
trans-1,3-Dichloropropene	TO15SIM	NA	12/12/13	1.66	0.0066	0.04	ND	ND		418630	NA
1,1,2-Trichloroethane	TO15SIM	NA	12/12/13	1.66	0.00539	0.05	ND	ND		418630	NA
Toluene	TO15SIM	NA	12/12/13	1.66	0.0069	0.03	1.9	0.50		418630	NA
NOTE: Due to insufficient samp	le volume availab	le to SIM a	nalysis, sam	iple wa	s analyzed	d with app	ropriate dilu	tion.			
Acetone	TO15SIM	NA	12/12/13	83	2.2	4	7.6	3.17		418630	NA
2-Hexanone	TO15SIM	NA	12/12/13	1.66	0.015	0.03	0.20	0.05		418630	NA
Dibromochloromethane	TO15SIM	NA	12/12/13	1.66	0.035	0.07	ND	ND		418630	NA
1,2-Dibromoethane (EDB)	TO15SIM	NA	12/12/13	1.66	0.0069	0.06	ND	ND		418630	NA
Tetrachloroethylene	TO15SIM	NA	12/12/13	1.66	0.043	0.1	1.2	0.18		418630	NA
1,1,1,2-Tetrachloroethane	TO15SIM	NA	12/12/13	1.66	0.015	0.06	ND	ND		418630	NA
Chlorobenzene	TO15SIM	NA	12/12/13	1.66	0.0038	0.008	ND	ND		418630	NA
Ethylbenzene	TO15SIM	NA	12/12/13	1.66	0.0039	0.04	0.42	0.10		418630	NA
n,p-Xylene	TO15SIM	NA	12/12/13	1.66	0.0070	0.04	1.4	0.33		418630	NA
Bromoform	TO15SIM	NA	12/12/13	1.66	0.055	0.2	ND	ND		418630	NA
Styrene	TO15SIM	NA	12/12/13	1.66	0.0052	0.04	0.15	0.03		418630	NA
1,1,2,2-Tetrachloroethane	TO15SIM	NA	12/12/13	1.66	0.0039	0.01	ND	ND		418630	NA
o-Xylene	TO15SIM	NA	12/12/13	1.66	0.0036	0.04	0.49	0.11		418630	NA
1-Ethyl toluene	TO15SIM	NA	12/12/13	1.66	0.0057	0.04	0.24	0.05		418630	NA
1,3,5-Trimethylbenzene	TO15SIM	NA	12/12/13	1.66	0.0059	0.04	0.18	0.04		418630	NA
1,2,4-Trimethylbenzene	TO15SIM	NA	12/12/13	1.66	0.0055	0.04	0.59	0.12		418630	NA
1,3-Dichlorobenzene	TO15SIM	NA	12/12/13	1.66	0.0094	0.05	ND	ND		418630	NA
,4-Dichlorobenzene	TO15SIM	NA	12/12/13	1.66	0.0086	0.05	0.090	0.02		418630	NA
1,2-Dichlorobenzene	TO15SIM	NA	12/12/13	1.66	0.0094	0.05	ND	ND		418630	NA
1,2,4-trichlorobenzene	TO15SIM	NA	12/12/13	1.66	0.11	0.06	ND	ND		418630	NA
Naphthalene	TO15SIM	NA	12/12/13	1.66	0.0078	0.04	0.13	0.03		418630	NA
- Hexachlorobutadiene	TO15SIM	NA	12/12/13	1.66	0.18	0.4	ND	ND		418630	NA

Total Page Count: 25 Page 12 of 25

Mary Cunningham Report prepared for: Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Client Sample ID: Subslab 2 1312039-004A Lab Sample ID:

Project Name/Location:

Project Number:

Date/Time Sampled: 12/06/13 / 9:10

Canister/Tube ID: 6127 Collection Volume (L): 0.00 Soil Vapor

Certified Clean WO #:

Sample Matrix:

Received PSI: 12.4

Corrected PSI: 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
L Dichlorodifluoromethane	ETO15	NA	12/12/13	1	1.5	5.0	ND	ND		418586	NA
1,1-Difluoroethane	ETO15	NA	12/12/13	1	0.50	1.4	ND	ND		418586	NA
1,2-Dichlorotetrafluoroethane	ETO15	NA	12/12/13	1	4.9	14	ND	ND		418586	NA
Chloromethane	ETO15	NA	12/12/13	1	0.32	1.1	ND	ND		418586	NA
Vinyl Chloride	ETO15	NA	12/12/13	1	0.67	2.6	ND	ND		418586	NA
1,3-Butadiene	ETO15	NA	12/12/13	1	0.45	1.1	ND	ND		418586	NA
Bromomethane	ETO15	NA	12/12/13	1	0.72	2.0	ND	ND		418586	NA
Chloroethane	ETO15	NA	12/12/13	1	0.50	1.3	ND	ND		418586	NA
Trichlorofluoromethane	ETO15	NA	12/12/13	1	1.8	5.6	14.1	2.52		418586	NA
1,1-Dichloroethene	ETO15	NA	12/12/13	1	0.61	2.0	ND	ND		418586	NA
Freon 113	ETO15	NA	12/12/13	1	0.85	3.9	ND	ND		418586	NA
Carbon Disulfide	ETO15	NA	12/12/13	1	0.81	3.1	ND	ND		418586	NA
2-Propanol (Isopropyl Alcohol)	ETO15	NA	12/12/13	1	0.97	20	ND	ND		418586	NA
Methylene Chloride	ETO15	NA	12/12/13	1	0.58	28	ND	ND		418586	NA
Acetone	ETO15	NA	12/12/13	1	0.88	19	ND	ND		418586	NA
trans-1,2-Dichloroethene	ETO15	NA	12/12/13	1	0.64	2.0	ND	ND		418586	NA
Hexane	ETO15	NA	12/12/13	1	0.53	1.8	59.5	17.00		418586	NA
MTBE	ETO15	NA	12/12/13	1	0.87	1.8	ND	ND		418586	NA
tert-Butanol	ETO15	NA	12/12/13	1	0.91	8.4	ND	ND		418586	NA
Diisopropyl ether (DIPE)	ETO15	NA	12/12/13	1	0.88	2.1	ND	ND		418586	NA
1,1-Dichloroethane	ETO15	NA	12/12/13	1	0.75	2.1	ND	ND		418586	NA
ETBE	ETO15	NA	12/12/13	1	0.68	2.1	ND	ND		418586	NA
cis-1,2-Dichloroethene	ETO15	NA	12/12/13	1	0.54	2.0	ND	ND		418586	NA
Chloroform	ETO15	NA	12/12/13	1	1.2	4.9	ND	ND		418586	NA
Vinyl Acetate	ETO15	NA	12/12/13	1	0.57	1.8	ND	ND		418586	NA
Carbon Tetrachloride	ETO15	NA	12/12/13	1	0.86	3.2	ND	ND		418586	NA
1,1,1-Trichloroethane	ETO15	NA	12/12/13	1	0.85	2.8	ND	ND		418586	NA
2-Butanone (MEK)	ETO15	NA	12/12/13	1	0.63	1.5	ND	ND		418586	NA
Ethyl Acetate	ETO15	NA	12/12/13	1	0.74	1.8	ND	ND		418586	NA
Tetrahydrofuran	ETO15	NA	12/12/13	1	0.30	1.5	ND	ND		418586	NA
Benzene	ETO15	NA	12/12/13	1	0.69	1.6	ND	ND		418586	NA
TAME	ETO15	NA	12/12/13	1	0.36	2.1	ND	ND		418586	NA
1,2-Dichloroethane (EDC)	ETO15	NA	12/12/13	1	0.99	2.1	ND	ND		418586	NA
Trichloroethylene	ETO15	NA	12/12/13	1	1.4	5.4	ND	ND		418586	NA
1,2-Dichloropropane	ETO15	NA	12/12/13	1	1.3	4.6	ND	ND		418586	NA
Bromodichloromethane	ETO15	NA	12/12/13	1	0.89	3.4	ND	ND		418586	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 13 of 25

Mary Cunningham Report prepared for: Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Client Sample ID: Subslab 2 Lab Sample ID: 1312039-004A

Project Name/Location:

Project Number: Date/Time Sampled:

12/06/13 / 9:10

Canister/Tube ID: 6127 Collection Volume (L): 0.00 Sample Matrix: Soil Vapor

Certified Clean WO #: Received PSI: 12.4

Corrected PSI:

0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
1,4-Dioxane	ETO15	NA	12/12/13	1	1.2	3.6	ND	ND		418586	NA
trans-1,3-Dichloropropene	ETO15	NA	12/12/13	1	0.87	2.3	ND	ND		418586	NA
Toluene	ETO15	NA	12/12/13	1	0.95	1.9	2.32	0.61		418586	NA
4-Methyl-2-Pentanone (MIBK)	ETO15	NA	12/12/13	1	0.85	2.1	ND	ND		418586	NA
cis-1,3-Dichloropropene	ETO15	NA	12/12/13	1	1.1	2.3	ND	ND		418586	NA
Tetrachloroethylene	ETO15	NA	12/12/13	1	0.91	3.4	ND	ND		418586	NA
1,1,2-Trichloroethane	ETO15	NA	12/12/13	1	0.93	2.8	ND	ND		418586	NA
Dibromochloromethane	ETO15	NA	12/12/13	1	1.7	4.3	ND	ND		418586	NA
1,2-Dibromoethane (EDB)	ETO15	NA	12/12/13	1	2.0	7.7	ND	ND		418586	NA
2-Hexanone	ETO15	NA	12/12/13	1	1.1	4.1	ND	ND		418586	NA
Ethyl Benzene	ETO15	NA	12/12/13	1	0.99	2.2	ND	ND		418586	NA
Chlorobenzene	ETO15	NA	12/12/13	1	0.71	2.3	ND	ND		418586	NA
1,1,1,2-Tetrachloroethane	ETO15	NA	12/12/13	1	1.0	3.5	ND	ND		418586	NA
m,p-Xylene	ETO15	NA	12/12/13	1	1.6	4.3	ND	ND		418586	NA
o-Xylene	ETO15	NA	12/12/13	1	0.81	2.2	ND	ND		418586	NA
Styrene	ETO15	NA	12/12/13	1	0.69	2.2	ND	ND		418586	NA
Bromoform	ETO15	NA	12/12/13	1	1.1	5.0	ND	ND		418586	NA
1,1,2,2-Tetrachloroethane	ETO15	NA	12/12/13	1	0.70	3.5	ND	ND		418586	NA
4-Ethyl Toluene	ETO15	NA	12/12/13	1	0.82	2.5	ND	ND		418586	NA
1,3,5-Trimethylbenzene	ETO15	NA	12/12/13	1	0.76	2.5	ND	ND		418586	NA
1,2,4-Trimethylbenzene	ETO15	NA	12/12/13	1	0.69	2.5	ND	ND		418586	NA
1,4-Dichlorobenzene	ETO15	NA	12/12/13	1	0.65	3.0	ND	ND		418586	NA
1,3-Dichlorobenzene	ETO15	NA	12/12/13	1	0.84	3.0	ND	ND		418586	NA
1,2-Dichlorobenzene	ETO15	NA	12/12/13	1	0.91	3.0	ND	ND		418586	NA
Hexachlorobutadiene	ETO15	NA	12/12/13	1	2.4	5.5	ND	ND		418586	NA
1,2,4-Trichlorobenzene	ETO15	NA	12/12/13	1	3.4	7.4	ND	ND		418586	NA
Naphthalene	ETO15	NA	12/12/13	1	1.5	5.2	ND	ND		418586	NA
(S) 4-Bromofluorobenzene	ETO15	NA	12/12/13	1	65	135	82.4 %			418586	NA
	Analysis	Pren	Date	DE	MDI	POI	Posults	Posults	Lah	Analytical	Dren

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL %	Results %	Results ppmv	Lab Qualifier	Analytical Batch	Prep Batch	
Helium	D1946	NA	12/16/13	5.3	0.027	0.13	2.1			418631	NA	

Total Page Count: 25 Page 14 of 25

Report prepared for: Mary Cunningham Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Sample Matrix:

Certified Clean WO #:

Soil Vapor

Client Sample ID: Subslab 3 Lab Sample ID: 1312039-005A

Project Name/Location:

Project Number:

Date/Time Sampled: 12/06/13 / 9:10

 Canister/Tube ID:
 A7465
 Received PSI :
 13.0

 Collection Volume (L):
 0.00
 Corrected PSI :
 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Dichlorodifluoromethane	ETO15	NA	12/12/13	1	1.5	5.0	ND	ND		418586	NA
1,1-Difluoroethane	ETO15	NA	12/12/13	1	0.50	1.4	ND	ND		418586	NA
1,2-Dichlorotetrafluoroethane	ETO15	NA	12/12/13	1	4.9	14	ND	ND		418586	NA
Chloromethane	ETO15	NA	12/12/13	1	0.32	1.1	ND	ND		418586	NA
Vinyl Chloride	ETO15	NA	12/12/13	1	0.67	2.6	ND	ND		418586	NA
1,3-Butadiene	ETO15	NA	12/12/13	1	0.45	1.1	ND	ND		418586	NA
Bromomethane	ETO15	NA	12/12/13	1	0.72	2.0	ND	ND		418586	NA
Chloroethane	ETO15	NA	12/12/13	1	0.50	1.3	ND	ND		418586	NA
Trichlorofluoromethane	ETO15	NA	12/12/13	1	1.8	5.6	ND	ND		418586	NA
1,1-Dichloroethene	ETO15	NA	12/12/13	1	0.61	2.0	ND	ND		418586	NA
Freon 113	ETO15	NA	12/12/13	1	0.85	3.9	ND	ND		418586	NA
Carbon Disulfide	ETO15	NA	12/12/13	1	0.81	3.1	ND	ND		418586	NA
2-Propanol (Isopropyl Alcohol)	ETO15	NA	12/12/13	1	0.97	20	ND	ND		418586	NA
Methylene Chloride	ETO15	NA	12/12/13	1	0.58	28	ND	ND		418586	NA
Acetone	ETO15	NA	12/12/13	1	0.88	19	ND	ND		418586	NA
trans-1,2-Dichloroethene	ETO15	NA	12/12/13	1	0.64	2.0	ND	ND		418586	NA
Hexane	ETO15	NA	12/12/13	1	0.53	1.8	2.03	0.58		418586	NA
MTBE	ETO15	NA	12/12/13	1	0.87	1.8	ND	ND		418586	NA
tert-Butanol	ETO15	NA	12/12/13	1	0.91	8.4	ND	ND		418586	NA
Diisopropyl ether (DIPE)	ETO15	NA	12/12/13	1	0.88	2.1	ND	ND		418586	NA
1,1-Dichloroethane	ETO15	NA	12/12/13	1	0.75	2.1	ND	ND		418586	NA
ETBE	ETO15	NA	12/12/13	1	0.68	2.1	ND	ND		418586	NA
cis-1,2-Dichloroethene	ETO15	NA	12/12/13	1	0.54	2.0	ND	ND		418586	NA
Chloroform	ETO15	NA	12/12/13	1	1.2	4.9	ND	ND		418586	NA
Vinyl Acetate	ETO15	NA	12/12/13	1	0.57	1.8	ND	ND		418586	NA
Carbon Tetrachloride	ETO15	NA	12/12/13	1	0.86	3.2	ND	ND		418586	NA
1,1,1-Trichloroethane	ETO15	NA	12/12/13	1	0.85	2.8	ND	ND		418586	NA
2-Butanone (MEK)	ETO15	NA	12/12/13	1	0.63	1.5	ND	ND		418586	NA
Ethyl Acetate	ETO15	NA	12/12/13	1	0.74	1.8	ND	ND		418586	NA
Tetrahydrofuran	ETO15	NA	12/12/13	1	0.30	1.5	ND	ND		418586	NA
Benzene	ETO15	NA	12/12/13	1	0.69	1.6	ND	ND		418586	NA
TAME	ETO15	NA	12/12/13	1	0.36	2.1	ND	ND		418586	NA
1,2-Dichloroethane (EDC)	ETO15	NA	12/12/13	1	0.99	2.1	ND	ND		418586	NA
Trichloroethylene	ETO15	NA	12/12/13	1	1.4	5.4	ND	ND		418586	NA
1,2-Dichloropropane	ETO15	NA	12/12/13	1	1.3	4.6	ND	ND		418586	NA
Bromodichloromethane	ETO15	NA	12/12/13	1	0.89	3.4	ND	ND		418586	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 15 of 25

Mary Cunningham Report prepared for: Date Received: 12/09/13

The Source Group, Inc Date Reported: 12/16/13

Client Sample ID: Subslab 3 Lab Sample ID: 1312039-005A

Project Name/Location:

Project Number: Date/Time Sampled:

12/06/13 / 9:10

Canister/Tube ID: A7465 Collection Volume (L): 0.00

Sample Matrix: Soil Vapor

Certified Clean WO #:

Received PSI: 13.0

0.0 Corrected PSI:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
1,4-Dioxane	ETO15	NA	12/12/13	1	1.2	3.6	ND	ND		418586	NA
trans-1,3-Dichloropropene	ETO15	NA	12/12/13	1	0.87	2.3	ND	ND		418586	NA
Toluene	ETO15	NA	12/12/13	1	0.95	1.9	ND	ND		418586	NA
4-Methyl-2-Pentanone (MIBK)	ETO15	NA	12/12/13	1	0.85	2.1	ND	ND		418586	NA
cis-1,3-Dichloropropene	ETO15	NA	12/12/13	1	1.1	2.3	ND	ND		418586	NA
Tetrachloroethylene	ETO15	NA	12/12/13	1	0.91	3.4	ND	ND		418586	NA
1,1,2-Trichloroethane	ETO15	NA	12/12/13	1	0.93	2.8	ND	ND		418586	NA
Dibromochloromethane	ETO15	NA	12/12/13	1	1.7	4.3	ND	ND		418586	NA
1,2-Dibromoethane (EDB)	ETO15	NA	12/12/13	1	2.0	7.7	ND	ND		418586	NA
2-Hexanone	ETO15	NA	12/12/13	1	1.1	4.1	ND	ND		418586	NA
Ethyl Benzene	ETO15	NA	12/12/13	1	0.99	2.2	ND	ND		418586	NA
Chlorobenzene	ETO15	NA	12/12/13	1	0.71	2.3	ND	ND		418586	NA
,1,1,2-Tetrachloroethane	ETO15	NA	12/12/13	1	1.0	3.5	ND	ND		418586	NA
n,p-Xylene	ETO15	NA	12/12/13	1	1.6	4.3	ND	ND		418586	NA
o-Xylene	ETO15	NA	12/12/13	1	0.81	2.2	ND	ND		418586	NA
Styrene	ETO15	NA	12/12/13	1	0.69	2.2	ND	ND		418586	NA
Bromoform	ETO15	NA	12/12/13	1	1.1	5.0	ND	ND		418586	NA
,1,2,2-Tetrachloroethane	ETO15	NA	12/12/13	1	0.70	3.5	ND	ND		418586	NA
I-Ethyl Toluene	ETO15	NA	12/12/13	1	0.82	2.5	ND	ND		418586	NA
,3,5-Trimethylbenzene	ETO15	NA	12/12/13	1	0.76	2.5	ND	ND		418586	NA
,2,4-Trimethylbenzene	ETO15	NA	12/12/13	1	0.69	2.5	ND	ND		418586	NA
,4-Dichlorobenzene	ETO15	NA	12/12/13	1	0.65	3.0	ND	ND		418586	NA
,3-Dichlorobenzene	ETO15	NA	12/12/13	1	0.84	3.0	ND	ND		418586	NA
,2-Dichlorobenzene	ETO15	NA	12/12/13	1	0.91	3.0	ND	ND		418586	NA
lexachlorobutadiene	ETO15	NA	12/12/13	1	2.4	5.5	ND	ND		418586	NA
,2,4-Trichlorobenzene	ETO15	NA	12/12/13	1	3.4	7.4	ND	ND		418586	NA
Naphthalene	ETO15	NA	12/12/13	1	1.5	5.2	ND	ND		418586	NA
S) 4-Bromofluorobenzene	ETO15	NA	12/12/13	1	65	135	85.5 %			418586	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL %	Results %	Results ppmv	Lab Qualifier	Analytical Batch	Prep Batch	
Helium	D1946	NA	12/13/13	5.1	0.026	0.13	1.2			418619	NA	-

Total Page Count: 25 Page 16 of 25

MB Summary Report

Work Order: 1312039 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Air Analytical ETO15 **Analyzed Date:** 12/12/13 Analytical 418586 Method: Batch: Units: ppbv

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.30	1.00	ND	
1,1-Difluoroethane	0.18	10.0	ND	
1,2-Dichlorotetrafluoroethane	0.70	2.00	ND	
Chloromethane	0.15	0.500	ND	
Vinyl Chloride	0.26	1.00	ND	
1,3-Butadiene	0.20	0.500	ND	
Bromomethane	0.18	0.500	ND	
Chloroethane	0.19	0.500	ND	
Trichlorofluoromethane	0.32	1.00	ND	
1,1-Dichloroethene	0.15	0.500	ND	
Freon 113	0.11	0.500	ND	
Carbon Disulfide	0.26	1.00	ND	
2-Propanol (Isopropyl Alcohol)	0.39	8.00	ND	
Methylene Chloride	0.17	8.00	ND	
Acetone	0.37	8.00	ND	
trans-1,2-Dichloroethene	0.16	0.500	ND	
Hexane	0.15	0.500	ND	
MTBE	0.24	0.500	ND	
tert-Butanol	0.22	2.00	ND	
Diisopropyl ether (DIPE)	0.21	0.500	ND	
1,1-Dichloroethane	0.18	0.500	ND	
ETBE	0.16	0.500	ND	
cis-1,2-Dichloroethene	0.13	0.500	ND	
Chloroform	0.25	1.00	ND	
Vinyl Acetate	0.16	0.500	ND	
Carbon Tetrachloride	0.14	0.500	ND	
1,1,1-Trichloroethane	0.15	0.500	ND	
2-Butanone (MEK)	0.21	0.500	ND	
Ethyl Acetate	0.21	0.500	ND	
Tetrahydrofuran	0.10	0.500	ND	
Benzene	0.21	0.500	ND	
TAME	0.086	0.500	ND	
1,2-Dichloroethane (EDC)	0.24	0.500	ND	
Trichloroethylene	0.26	1.00	ND	
1,2-Dichloropropane	0.29	1.00	ND	
Bromodichloromethane	0.13	0.500	ND	
1,4-Dioxane	0.35	1.00	ND	
trans-1,3-Dichloropropene	0.19	0.500	ND	
Toluene	0.25	0.500	ND	
4-Methyl-2-Pentanone (MIBK)	0.21	0.500	ND	
cis-1,3-Dichloropropene	0.25	0.500	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 17 of 25

1312039

Work Order:

1,3-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

(S) 4-Bromofluorobenzene

MB Summary Report

Prep Date:

NA

NA

Prep Batch:

NA

Prep Method:

0.14

0.15

0.22

0.46

0.28

0.500

0.500

0.500

1.00

1.00

ND

ND

ND

ND

ND

93.8

Matrix: Units:	Air ppbv	Analyt Metho		ETO15	Anal	yzed Date:	12/12/13	Analytical Batch:	418586
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Tetrachloroethylene		0.13	0.500	ND					
1,1,2-Trichloroethane	•	0.17	0.500	ND					
Dibromochlorometha	ne	0.20	0.500	ND					
1,2-Dibromoethane (EDB)	0.27	1.00	ND					
2-Hexanone		0.27	1.00	ND					
Ethyl Benzene		0.23	0.500	ND					
Chlorobenzene		0.15	0.500	ND					
1,1,1,2-Tetrachloroet	hane	0.15	0.500	ND					
m,p-Xylene		0.38	1.00	ND					
o-Xylene		0.19	0.500	ND					
Styrene		0.16	0.500	ND					
Bromoform		0.11	0.500	ND					
1,1,2,2-Tetrachloroet	hane	0.10	0.500	ND					
4-Ethyl Toluene		0.17	0.500	ND					
1,3,5-Trimethylbenze	ne	0.15	0.500	ND					
1,2,4-Trimethylbenze	ene	0.14	0.500	ND					
1,4-Dichlorobenzene		0.11	0.500	ND					

Work Order:	1312039	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analytical	D1946	Analyzed Date:	12/13/13	Analytical	418619
Units:	%	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Carbon Dioxide	0.025	0.025	ND	ļ
Ethene	0.025	0.025	ND	
Ethane	0.025	0.025	ND	
Helium	0.0050	0.025	ND	
Hydrogen	0.025	0.025	ND	
Oxygen	0.025	0.025	ND	
Nitrogen	0.025	0.025	ND	
Methane	0.0005	0.0005	ND	
Carbon Monoxide	0.025	0.025	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 18 of 25

MB Summary Report

Work Order: 1312039 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Air Analytical ETO15SIM **Analyzed Date:** 12/12/13 Analytical 418630 Method: Batch: Units: ppbv

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.0036	0.01	ND	
Chloromethane	0.0042	0.01	ND	
Vinyl Chloride	0.0014	0.005	0.0020	
1,3-Butadiene	0.0099	0.02	ND	
Bromomethane	0.0021	0.005	0.0070	В
Chloroethane	0.00079	0.005	0.0030	
Trichloromonofluoromethane	0.0022	0.005	ND	
Isopropyl Alcohol	0.0063	0.05	ND	
Acetone	0.011	0.02	0.018	
1,1-Dichloroethene	0.0017	0.005	ND	
tert-Butanol	0.0038	0.1	ND	
Methylene Chloride	0.0042	0.01	0.0050	
Freon 113	0.0017	0.005	0.0030	
Carbon disulfide	0.00091	0.005	0.0040	
trans-1,2-Dichloroethene	0.00094	0.005	0.0020	
MTBE	0.0017	0.005	ND	
1,1-Dichloroethane	0.0012	0.005	ND	
Vinyl Acetate	0.0014	0.005	ND	
Hexane	0.0013	0.005	0.0030	
2-Butanone (MEK)	0.00092	0.005	ND	
DIPE	0.0011	0.005	0.0030	
cis-1,2-Dichloroethene	0.0010	0.005	0.0020	
Ethyl Acetate	0.00092	0.005	ND	
Chloroform	0.00166	0.005	0.0020	
ETBE	0.0011	0.005	0.0030	
Tetrahydrofuran	0.0097	0.02	ND	
1,2-Dichloroethane (EDC)	0.0012	0.005	0.0030	
1,1,1-Trichloroethane	0.0015	0.005	0.0020	
Carbon Tetrachloride	0.0014	0.005	ND	
Benzene	0.011	0.02	ND	
TAME	0.00059	0.005	0.0010	
Heptane	0.00081	0.005	0.0010	
1,2-Dichloropropane	0.0010	0.005	0.0010	
Trichloroethylene	0.0021	0.005	ND	
Bromodichloromethane	0.00083	0.005	ND	
1,4-Dioxane	0.0030	0.005	ND	
cis-1,3-Dichloropropene	0.00079	0.005	0.0010	
Methyl Isobutyl Ketone (MIBK)	0.0016	0.005	0.0020	
trans-1,3-Dichloropropene	0.00088	0.005	0.0020	
1,1,2-Trichloroethane	0.000590	0.005	0.0010	
Toluene	0.0011	0.005	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 19 of 25

Helium

0.0050

0.025

ND

MB Summary Report

Nork Order: 1312039		Prep Method:		NA	Prep	Date:	NA	Prep Batch:	NA		
Matrix:	Air	Analytical		ETO15SIM	Anal	yzed Date:	12/12/13	Analytical	418630		
Units:	ppbv	Metho	od:					Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier						
2-Hexanone		0.0022	0.005	ND							
Dibromochlorome	ethane	0.0025	0.005	ND							
1,2-Dibromoethar	ne (EDB)	0.00054	0.005	0.0020							
Tetrachloroethyle	ne	0.0038	0.01	ND							
1,1,1,2-Tetrachlor	roethane	0.0013	0.005	ND							
Chlorobenzene		0.00050	0.001	ND							
Ethylbenzene		0.00054	0.005	0.0010							
m,p-Xylene	0.00061	0.005	0.0030								
Bromoform		0.0033	0.01	ND							
Styrene		0.00073	0.005	0.0030							
1,1,2,2-Tetrachloroethane		0.00034	0.001	0.0010							
o-Xylene		0.00051	0.005	0.0010							
4-Ethyl toluene		0.00070	0.005	0.0020							
1,3,5-Trimethylbenzene		0.00072	0.005	0.0020							
1,2,4-Trimethylbe	nzene	0.00068	0.005	0.0020							
1,3-Dichlorobenzene		0.00094	0.005	ND							
1,4-Dichlorobenze	ene	0.00086	0.005	ND							
1,2-Dichlorobenze	ene	0.00094	0.005	0.0010							
1,2,4-trichloroben	zene	0.0090	0.005	ND							
Naphthalene		0.00090	0.005	0.0030							
Hexachlorobutadiene		0.0099	0.02	ND							
1,1-Difluoroethan	e	0.050	0.1	ND							
Work Order:	1312039	Prep M	Method:	NA	Prep	Date:	NA	Prep Batch:	NA		
Matrix:	Air	Analytical		D1946	Anal	Analyzed Date:		Analytical	418631		
Units: %		Metho	Method:					Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier						

Total Page Count: 25 Page 20 of 25

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

LCS/LCSD Summary Report

Limits

65 - 135

Limits

30

Qualifier

				LUGA	LCOD O	ullillal y	Raw values are used in quality control assessment					
Work Order:	1312039		Prep Metho	od: NA		Prep Da	te:	NA	Prep Batch: NA			
Matrix:	Air		Analytical	ETO15		Analyzed Date:		12/12/13	Analytical 418586		586	
Units:	ppbv		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
1,1-Dichloroethene 0.		0.15	0.500	ND	20	116	123	6.32	65 - 135	30		
Benzene		0.21	0.500	ND	20	111	116	4.29	65 - 135	30		
Trichloroethylene		0.26	1.00	ND	20	110	109	0.958	65 - 135	30		
Toluene		0.25	0.500	ND	20	95.2	95.8	0.681	65 - 135	30		
Chlorobenzene		0.15	0.500	ND	20	116	103	11.6	65 - 135	30		
(S) 4-Bromofluoro	benzene			ND	20	115	110		65 - 135			
Work Order:	/ork Order: 1312039		Prep Metho	od: NA		Prep Da	te:	NA	Prep Batch: NA			
Matrix:	trix: Air		Analytical D1946			Analyze	d Date:	12/13/13	Analytical 418619			
Units:	%		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifie	
Helium		0.0050	0.025	ND	1000	100	104	3.79	65 - 135	30		
Work Order:	ork Order: 1312039		Prep Metho	od: NA		Prep Da	te:	NA Prep Batch: NA				
Matrix:	Air		Analytical	ETO	15SIM	Analyze	d Date:	12/12/13	•			
Units:	Method: ppbv				Batch:							
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
1,1-Dichloroethen	е	0.0017	0.005	ND	0.1	99.0	94.0	5.18	70 - 130	30		
Benzene		0.011	0.02	0.00	0.1	96.0	95.0	1.05	70 - 130	30		
Trichloroethylene		0.0021	0.005	ND	0.1	105	105	0.000	70 - 130	30		
Toluene		0.0011	0.005	0.0020	0.1	94.0	92.0	2.15	70 - 130	30		
Chlorobenzene		0.00050	0.001	ND	0.1	110	103	6.57	70 - 130	30		
Work Order:	1312039		Prep Metho	od: NA		Prep Da	te:	NA	Prep Batch: NA			
Matrix:	Air		Analytical	D194	6	Analyze	d Date:	12/16/13	Analytical 418631		631	
Units:	%		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery	% RPD	Lab Qualifier	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

1000

Conc.

ND

0.005

Helium

0.025

Total Page Count: 25 Page 21 of 25

116.24

109.5

5.9714716

0450076

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/m3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- **E** Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable

Total Page Count: 25

- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Page 23 of 25

Sample Receipt Checklist

Client Name: The Source Group, Inc Date and Time Received: 12/9/2013 12:00

Project Name: Received By: ng

Work Order No.: 1312039 Physically Logged By: ng

Checklist Completed By: ng

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? Yes

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? **Not Present**

Sample Receipt Information

Custody seals intact on shipping container/cooler? Not Present

Shipping Container/Cooler In Good Condition? Yes

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test? Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

°C Container/Temp Blank temperature in compliance? Yes Temperature:

Water-VOA vials have zero headspace? No VOA vials submitted

Water-pH acceptable upon receipt? N/A

pH Checked by: n/a pH Adjusted by: n/a

Total Page Count: 25

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

 ☐ Torrent
LABORATORY, INC.

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293

CHAIN OF CUSTODY

LAB WORK ORDER NO

LAB		www.torrentlab.com		·N	OTE: SHA	DED A	REAS A	ARE FOR	TORRE	NT LAB US	E ONLY •		312	030	1		
Company Name:	561				Env.) H 🔲	Food	Special Lo	cation of	Sampling:							
Address: 30	179 Burkirk Ar	2					Purpos	e:									
City: Pleasant Hill State: CA Zip Code: 94523								Special Instructions / Comments:									
Telephone: 92																	
TURNAROUND TIME: THE CALLEGY SAMPLE TYPE: REPORT FORMAT:								P.O. #: 01-FP-CO2 EMAIL: Manningham of the									
TURNAROUND TIME: The sarrugy SAMPLE TYPE: REPORT FORMAT:													10	gn	M-16	-	
10 Work Days 4 Work Days 1 Work Day Slorm Water Air CLevel IV											•		ANALYSIS				
7 Work Days 3 Work Days Noon - Nxt Day Ground Water Dther EDF Excel / EDD						12-15	3						REQUESTED				
5 Work Days 2 -8 Hours Soil							110					1.	,				
LAB ID CANISTE	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	1-	4						R	EMARKS			
001A 449	1A1	12/6/13	xr .	1	6L Summa	X						1			* 1 * 2	8,8	
002A 1438	[42	12/6/13090		1		7										TORRENT LAB	
003A	Ambent	0910			1	7								, N		JRRE.	
004A 612	J*(-)) (O)				16 Summe	X	X							h N	: .	7	
005A A 740	5 545125 3	4	V	1	9	X	7							41.	3		
														F 1 7			
			ή,											1 14			
			, V.										1.		4		
														^			
	4			. 22													
Relinquished By: Print: Date: Time: R						Receiv	ived By: Print: Date: Time:										
Relinquished B		Date:	ı	104(Time:)	Receiv	red By:	-	Print:	CAVIN	Date:	-9-1	Tim		1 2		
1 Sundasora 127-3									12:00								
Were Samples Rec	eived in Good Condition?						d of Shipn ts are mad		ics	Temp		eals intac		_	N/A		
Log In By:	Married or an investment of the second of the second of	Date:	* * *		riewed By: _	, iieli	o are made	10.	D	ate:		_ Page		_ of_			
	ING LBLNG LIR	R R too meet t	A 64 A	-			5.76.			3.0 4	and decree						

Total Page Count: 25 Page 25 of 25