RECEIVED

9:03 am, Jun 02, 2010

Alameda County Environmental Health

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

MAY 2010

751 - 785 Seventh Street Oakland, California

Alameda County Case No. RO0002586

For: Brush Street Group, LLC Oakland, California

Y0323-03.01478.fnl.doc

5900 Hollis Street, Suite D • Emeryville, CA 94608 • (510) 420-8686

28 May 2010

Mr. Jerry Wickham Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Transmittal of Report on Phase IV Soil and Groundwater Investigation, 751 - 785 Seventh Street, Oakland, California

Dear Mr. Wickham:

Please find attached the above-referenced report for the 751 - 785 Seventh Street site in Oakland prepared by BASELINE Environmental Consulting. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely, Tom McCoy Brush Street Group, LLC

PROFESSIONAL CERTIFICATION

This report was prepared by myself or by other professionals directly under my supervision.

ann

James McCarty P. E. No. C 62618

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

May 2010

751 - 785 Seventh Street Oakland, California

Alameda County Case No. RO0002586

For: Brush Street Group, LLC Oakland, California

Y0323-03.01478.fnl.doc

BASELINE Environmental Consulting 5900 Hollis Street, Suite D • Emeryville • California 94608 (510) 420-8686

TABLE OF CONTENTS

EXECUTIVE SUMMARY vii
1.0 INTRODUCTION
2.0 BACKGROUND
2.1 Previous Investigations
2.2 Phase IV Workplan
3.0 PHASE IV INVESTIGATION OBJECTIVES
4.0 SITE DESCRIPTION
4.1 Hydrogeology7
5.0 PHASE IV SOIL AND GROUNDWATER INVESTIGATION
5.1 Soil Sampling7
5.2 Groundwater Well Installation
5.3 Groundwater Sampling
6.0 QUALITY ASSURANCE/QUALITY CONTROL
7.0 ANALYTICAL RESULTS10
7.1 Soil Sample Results from the Phase IV Investigation
7.2 Groundwater Sample Results from the Phase IV Investigation
7.3 Groundwater Flow Direction And Gradient
8.0 CONCLUSIONS
9.0 REFERENCES

APPENDICES

A: Alameda Co	unty Boring Permit
---------------	--------------------

- B: Boring Logs
- C: Survey Data
- D: Well Development Forms
- E: Groundwater Sampling Forms
- F: Laboratory Analytical Reports (CD ROM)

FIGURES

- 1: Regional Location
- 2: Site Plan
- 3: Groundwater Contours 15 April 2010
- 4: Hexavalent Chromium in Soil
- 5: Hexavalent Chromium in Groundwater 15 April 2010

TABLES

- 1: List of Samples and Analyses
- 2: Groundwater Elevation Data
- 3: Volatile Organic Compounds in Soil
- 4: Metals in Soil
- 5: WET and TCLP Metal Concentrations in Soil
- 6: Polychlorinated Biphenyls in Soil
- 7: Polynuclear Aromatic Hydrocarbons in Soil
- 8: Cyanide and pH in Soil
- 9: Petroleum Hydrocarbons in Soil
- 10: Volatile Organic Compounds in Groundwater
- 11: Dissolved Metals in Groundwater
- 12: Polychlorinated Biphenyls in Groundwater
- 13: Polynuclear Aromatic Hydrocarbons in Groundwater
- 14: Cyanide and pH in Groundwater
- 15: Petroleum Hydrocarbons in Groundwater
- 16: Geotechnical Parameters

EXECUTIVE SUMMARY

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

751 - 785 Seventh Street Oakland, California

This report describes the activities and results of an additional soil and groundwater investigation performed by BASELINE Environmental Consulting ("BASELINE") on the behalf of the Brush Street Group, LLC for the properties at 751 - 785 Seventh Street in Oakland, California ("site") (Figure 1). BASELINE installed two shallow groundwater monitoring wells and one deep groundwater monitoring well on the subject property, and one shallow and one deep groundwater monitoring well off-site in the downgradient direction. BASELINE collected soil samples during the installation of the wells, which were analyzed for Title 22 metals and hexavalent chromium. Once the wells were installed, BASELINE collected groundwater samples from the new wells, two existing wells on-site, and two off-site wells that are part of a groundwater monitoring network for the adjacent Shell Service Station. The groundwater samples were analyzed for volatile organic compounds, Title 22 metals, and hexavalent chromium.

FINDINGS

- The shallow aquifer is confined by a layer of clay (Old Bay Mud) that is present at the site at approximately 57 feet below ground surface.
- The soil samples collected on-site contained total chromium and hexavalent chromium at concentrations exceeding environmental screening levels for residential or commercial land use where groundwater is not a potential drinking water source.
- The groundwater samples collected both on-site and off-site contained dissolved total chromium, hexavalent chromium ("Cr-VI"), cobalt, copper, and nickel at concentrations exceeding environmental screening levels for sites where groundwater is not a potential drinking water source.
- The groundwater samples collected on-site also contained thallium and vanadium at concentrations exceeding environmental screening levels for sites where groundwater is not a potential drinking water source.
- None of the groundwater samples collected contained volatile organic compounds ("VOCs") at concentrations exceeding the environmental screening levels for sites where groundwater is not a potential drinking water source.
- VOC concentrations in off-site wells are all below environmental screening levels where groundwater is not a potential drinking water source.

• Nickel, copper, and cobalt are present in off-site wells at concentrations above environmental screening levels where groundwater is not a potential drinking water source.

CONCLUSIONS

Past use of the site as a plating facility has resulted in metals impact to the soil and groundwater at the site. The chemical of primary concern for the groundwater is Cr-VI, which was reported in shallow soil samples nearest to the former Frog Pond and all of the groundwater samples collected on-site. The analytical results of the soil and groundwater samples collected during this investigation indicated that the elevated concentrations of metals in the soil and groundwater, primarily Cr-VI, originated from the area of a subsurface concrete column associated with the former Frog Pond. The groundwater impact is confined to the Merritt Sand since the Old Bay Mud, present at approximately 60 feet below ground surface, acts as a barrier to further vertical migration.

While dissolved cobalt, copper, nickel, thallium, and vanadium were also reported in groundwater samples collected on-site at concentrations exceeding environmental screening levels, the impact is limited since detection of these metals has only been reported in a few soil samples collected on-site. While some VOCs have been detected in shallow soil samples collected at the site, no VOCs were reported at concentrations exceeding the environmental screening levels in the groundwater samples collected.

Dissolved hexavalent chromium in the groundwater has migrated as far as 120 feet from the Frog Pond in the southwesterly direction. The results also indicate that the Cr-VI has migrated off-site and the plume appears to be undergoing vertical dispersion as indicated by the increase in the Cr-VI concentration in the deeper off-site well, screened in the Merritt Sands, relative to the deeper on-site well, also screened in the Merritt Sands

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

751 - 785 Seventh Street Oakland, California

1.0 INTRODUCTION

This report describes the activities and results of an additional soil and groundwater investigation performed by BASELINE Environmental Consulting ("BASELINE") on the behalf of the Brush Street Group, LLC for the properties at 751 - 785 Seventh Street in Oakland, California ("site") (Figure 1). This investigation is the fourth ("Phase IV") in a series of investigations that BASELINE has conducted at the site. The site is currently under the regulatory oversight of the Alameda County Environmental Health Services ("ACEH") (Alameda County SLIC Case No. RO0002586). The investigation was performed in accordance with BASELINE's *Work Plan for Additional Soil and Groundwater Investigation*, dated 19 June 2009 and *Addendum I to Work Plan for Additional Soil and Groundwater Investigation*, dated 6 October 2009. The investigation was also performed in accordance with ACEH's letter to Tom McCoy of the Brush Street Group, LLC, dated 10 December 2009.

2.0 BACKGROUND

A plating facility was operated at the site between 1957 and 1998, at which time the site was abandoned. The abandoned plating facility contained hazardous materials and wastes, which were removed during an emergency response action directed by U.S. Environmental Protection Agency ("EPA"), Office of Emergency Response in 1998/1999. Subsequent soil and groundwater investigations have found that the soil and groundwater at the site have been impacted by metals, in particular hexavalent chromium ("Cr-VI"), and volatile organic compounds ("VOCs"), in particular, trichloroethene ("TCE").

The primary source of metals and VOCs appears to have been a below-grade concrete structure referred to as the Frog Pond (Figure 2). The Frog Pond is described in further detail in Section 4. Between June and December 2007, the Frog Pond was removed and backfilled with gravel. The Frog Pond was subsequently covered with a concrete cap.

2.1 **Previous Investigations**

Environmental investigation of the site began in February 2003 and has occurred in several phases as summarized below. The list of samples collected and analyses performed during the Phase IV investigation is presented in Table 1. Tables 2 through 15 contain the groundwater level data and analytical results for soil and groundwater samples collected to date.

2.1.1 Phase I

BASELINE performed a preliminary soil and groundwater investigation in 2003 (BASELINE, 2003). A total of seven soil borings, B-FP01 through B-FP07, were installed to depths ranging

from 16 to 25 feet below ground surface ("bgs"), and two shallow monitoring wells, MW-FP1 and MW-FP2, were installed (Figure 2).

Soil samples were collected in the fill and just beneath the fill/native material interface at approximately two feet and five feet bgs. Soil samples were analyzed for Title 22 metals, total petroleum hydrocarbons ("TPH") as gasoline and diesel, VOCs, polynuclear aromatic hydrocarbons ("PAHs"), polychlorinated biphenyls ("PCBs"), pH, Cr-VI, and cyanide. Select soil samples were also analyzed for soluble lead and/or nickel using the waste extraction test using deionized water ("DI WET") or toxicity characteristic leaching procedure ("TCLP").

Groundwater samples were collected from the two groundwater monitoring wells. Grab groundwater samples were collected from two boreholes, B-FP04 and B-FP05, to assess groundwater quality directly beneath the property. These groundwater samples were analyzed for TPH, VOCs, PAHs, PCBs, and cyanide. A grab groundwater sample was also collected from boring B-FP03 and analyzed for TPH to assess the potential presence of petroleum hydrocarbons, which might have migrated from the adjacent Shell Service Station site.

Elevated levels of lead, nickel, and zinc were reported in shallow soils samples (Table 4). Several of the soil samples contained soluble nickel at levels that exceeded California hazardous waste criteria (Table 5). One sample, B-FP07 collected at 2.5 feet bgs was reported to contain elevated levels of PAHs and cyanide. However, the soil sample collected from 5.0 feet bgs at this location did not contain elevated levels of these contaminants. Elevated levels of nickel were also reported in two of the grab groundwater samples and one of the groundwater monitoring well samples. TPH as diesel was reported in the groundwater sample B-FP03 (Table 15).

2.1.2 Phase II

BASELINE performed a Phase II investigation in November 2005 (BASELINE, 2006). The investigation consisted of installation of soil borings in: 1) source areas (borings B-FP08 through B-FP17), 2) areas to define the extent of the PAH-impacted area (borings B-FP07A through B-FP07C), and 3) areas with exposed soil (samples SS-FP01 through SS-FP10). In addition, grab groundwater samples were collected from select soil borings and the two on-site groundwater monitoring wells (Figure 2).

Soil samples were analyzed for one or all of the following: Title 22 metals, VOCs, PAHs, and Cr-VI. Select soil samples were also analyzed for soluble cadmium, copper, lead, and/or nickel using DI WET or toxicity characteristic leaching procedure ("TCLP"). Groundwater samples from the two groundwater monitoring wells were analyzed for TPH as gasoline, TPH as diesel, VOCs, and PAHs. Grab groundwater samples from the soil borings were analyzed for at least one of the following: Title 22 metals, Cr-VI, TPH as gasoline, TPH as diesel, VOCs, PAHs, and pH.

Elevated levels of total chromium, Cr-VI, copper, lead, nickel, and zinc were reported in shallow soil samples (Table 4). Elevated levels of cis-1,2-dichloroethene and TCE were reported in one grab groundwater sample (B-FP14) (Table 10).

2.1.3 Phase III Investigation

The Focused Phase III investigation was proposed after sample results from the Phase II investigation identified chlorinated VOCs adjacent to the Frog Pond, located in the southwestern portion of the site (Figure 2) (BASELINE, 2006). The focused Phase III investigation was proposed to clarify the presence of chlorinated VOCs in the area. The investigation consisted of collecting soil and grab groundwater samples from six soil borings (B-FP18 through B-FP23) (Figure 2).

Two soil samples were collected from each boring, from five or six feet bgs and from 12 feet bgs. Soil samples were analyzed for VOCs. In addition, the soil sample from B-FP25 collected at 6.0 feet bgs was also analyzed for Cr-VI. About six inches of standing water was observed above the presumed bottom of the Frog Pond in boring B-FP23. This water had a greenish-yellow tint. The grab groundwater sample collected from B-FP23 also had a greenish-yellow tint, more strongly colored than the water in the Frog Pond. The grab groundwater sample from B-FP23 was analyzed for Title 22 metals, Cr-VI, VOCs, and pH.

Elevated levels of chromium and Cr-VI were reported in the soil sample collected from B-FP23, adjacent to and south of the Frog Pond (Figure 2, Table 4). Elevated levels of cis-1,2-dichloroethene and TCE were reported in several grab groundwater samples (Table 10). Elevated levels of antimony, total chromium, Cr-VI, cobalt, copper, lead, mercury, nickel, silver, thallium, and/or vanadium were also reported in the grab groundwater samples from B-FP23 and FP-GRAB GW (Table 11).

2.1.4 Frog Pond Removal

Data from the Phase III investigation suggested that the Frog Pond was the likely source of contamination. Therefore, the Frog Pond was removed in an attempt to identify the source (BASELINE, 2008). BASELINE collected soil samples from eight locations underneath the Frog Pond between 31 May and 5 June 2007 (sample locations B-FP24 through B-FP31 on Figure 2) and submitted the samples for Title 22 metals and Cr-VI analyses (BASELINE, 2008). Sample locations B-FP24 through B-FP28 were chosen to characterize the soil underneath the Frog Pond. Samples were collected from sampling locations B-FP24 through B-FP28 from 4.5 feet below the surrounding grade, which was immediately below the concrete bottom of the Frog Pond. A second soil sample was collected at 9.5 feet below grade, or five feet below the bottom of the Frog Pond from B-FP24 through B-FP27.

Additional soil samples were collected below suspect features found in the Frog Pond, as follows:

- One soil sample (B-FP29) was collected from seven feet bgs, which is below the bottom of the Eastern Sump;
- One soil sample (B-FP30) was collected below the bottom of the sump that was attached to the separate concrete pad found about one foot below the bottom of the Frog Pond from seven feet below grade; and
- Two soil samples were collected adjacent to the concrete column (B-FP31) from 11.5 and 18.5 feet below grade.

BASELINE also collected a sample of the fine-grained sand immediately below the cobbles imbedded at the bottom of the concrete column for metals analysis, after the cobbles and sand were excavated. Elevated levels of total chromium, Cr-VI, copper, and nickel were reported in some of the soil samples collected (Table 4).

2.1.5 Soil Gas Survey – 601 Brush Street

On 24 September 2009, P&D Environmental performed a subsurface investigation for the property adjacent to and southwest of the site, 601 Brush Street. Part of the scope of work included installation of two borings (B6 and B7) and two soil gas probes (SG5 and SG6) on the southwestern portion of the 751-785 Seventh Street property (P&D Environmental, 2009). Grab groundwater samples were collected from the borings, which were reported to contain MTBE at 0.64 and 8.6 micrograms per liter (" μ g/L"), 1,1-dichloroethene at 1.2 and 2.7 μ g/L, and TCE at 7.1 and 15 μ g/L. Grab groundwater samples collected on the 601 Brush Street property contained 1,1-dichloroethene and TCE at higher concentrations.

The soil gas samples collected on the 751-785 Seventh Street property contained TCE at 3,400 and 5,900 micrograms per cubic meter. Low concentrations of benzene, toluene, ethylbenzene, and xylenes were also reported in one of the samples. The soil gas concentrations reported in the samples collected at the 751-785 Seventh Street property were higher than those collected at 601 Brush Street. However, of the nine soil gas samples collected at 601 Brush Street, five contained the tracer compound 2-propanol used for leak detection in the sampling train, indicating that the five samples collected from the 601 Brush Street property were biased low and may not be reliable.

2.2 Phase IV Workplan

As discussed above, between June and December 2007, the Frog Pond was removed and the removal activities were documented in BASELINE's report, *Documentation of Frog Pond Removal Activities*, dated 29 February 2008. The report was submitted and reviewed by ACEH. In a letter to the Brush Street Group, LLC, dated 5 November 2008, ACEH requested that a workplan be prepared to address the following items:

- Evaluate whether the backfill effectively seals the sump and prevents vertical migration of water from the Frog Pond to groundwater;
- Assess contamination possibly associated with the "eastern sump" of the former Frog Pond;
- Assess vertical extent of groundwater contamination near the Frog Pond;
- Assess whether a plume of dissolved metals and VOCs extends a significant distance offsite;
- Define the extent of metals contamination in the area of the former drainage ditch that crossed the rear yard;
- Describe why the soils with elevated concentrations of metals are not considered a potential source of releases of metals to groundwater; and

• Evaluate the potential for vapor intrusion into indoor air by collecting soil gas samples at the site.

In addition, ACEH requested that the San Francisco Bay Regional Water Quality Control Board ("RWQCB") Environmental Screening Levels ("ESLs") be used to perform a Tier 1 screening level evaluation.

In response to ACEH's 5 November 2008 letter, BASELINE submitted a workplan, dated 19 June 2009, to the ACEH which addressed the question of the backfill of the sump, clarified earlier statements as to whether the metals in the soil were a source of metals in the groundwater, proposed to defer further investigation of the former drainage ditch, and proposed an additional soil and groundwater investigation for the remaining issues (BASELINE, 2009a).

In a letter to the Brush Street Group, LLC, dated 6 August 2009, the ACEH requested that a revised workplan be prepared to address the following:

- Present more detailed plans and a schedule for the interim impermeable cover to be placed over the Frog Pond;
- Provide further description of the soil sampling methods and proposed well screen intervals;
- Provide additional soil sampling to adequately define the vertical extent of the elevated concentrations of metals in soil;
- Provide information about the purpose, history and fate of liquids discharge to the former drainage ditch;
- Propose additional off-site groundwater sampling; and
- Propose additional investigation activities to evaluate the extent of PAHs and cyanide detected in soil samples collected from within the former Plating Building (Figure 2).

The 6 August 2009 letter agreed to defer an investigation to evaluate the potential for indoor air vapor intrusion until a later date.

In response to ACEH's 6 August letter, BASELINE submitted a revised workplan to ACEH, dated 6 October 2009, which provided additional information about the sealing of the former Frog Pond, the soil sampling methods, the well screen intervals, the known history of the drainage ditch, and past delineation of the hydrocarbons and cyanide detected in soil samples collected from within the former Plating Building (BASELINE, 2009b). The workplan also proposed collecting additional soil samples in the vicinity of the former drainage ditch and the installation of two new wells off-site, one shallow and one deep, to evaluate the horizontal and vertical extent of contamination.

On 9 December 2010, Jerry Wickham and Donna Drogos of ACEH, Tom McCoy of Brush Street Group, LLC, Lydia Huang of BASELINE, Margot Lederer of the City of Oakland, and Mark Jonson of the RWQCB attended a meeting to discuss the revised workplan. In a letter to the Brush Street Group, LLC, dated 10 December 2010, the ACEH requested the revised workplan with the following conditions:

- BASELINE would perform continuous sampling from a depth of 20 feet bgs to the base of the two deeper soil borings;
- The depths of the screen interval for the deeper wells should be based on the depths at which Bay Mud or significant fine-grained soils are encountered in the deeper well borings; and
- Groundwater samples collected from the groundwater monitoring wells would be analyzed for VOCs;

The 9 December 2010 ACEH letter agreed to defer the investigation of the former drainage ditch until a later date.

3.0 PHASE IV INVESTIGATION OBJECTIVES

Based on the communications with ACEH described in Section 2, this soil and groundwater investigation was preformed to achieve the following objectives:

- Assess vertical extent of groundwater contamination near the Frog Pond;
- Assess whether a plume of dissolved metals and VOCs extends a significant distance offsite;
- Define the vertical extent of the elevated concentrations of metals in soil; and
- Perform a Tier 1 screening level evaluation using the RWQCB's ESLs.

4.0 SITE DESCRIPTION

The site is bounded by Seventh Street to the north, Brush Street to the east, a vacant building and lot to the south, and a Shell service station to the west. The adjacent Shell station is also under ACEH oversight due to petroleum releases (Alameda County Case No. RO0000493).

The former Frog Pond was located on the southwestern portion of the site and was a belowgrade, concrete structure that measured approximately 70 feet long by 15 feet wide, and four feet deep (Figure 2). It is unknown when the Frog Pond was initially constructed. The former plating operations apparently used the Frog Pond during some plating activities and to contain wastewater, liquids, and solids from on-site treatment of wastes. Sometime in 2003, before the Brush Street Group, LLC became the owner of the site, the Frog Pond was covered with an asphalt concrete cap.

A 2006 investigation by BASELINE to assess the presence of VOCs in the soil and groundwater at the site focused on the southwestern corner, adjacent to the Frog Pond (BASELINE, 2006). During that investigation, high chromium concentrations were identified in one grab groundwater sample. This finding suggested that a source of metals contamination could be present in or under the Frog Pond. As a result, the Brush Street Group, LLC removed the Frog Pond in 2007. The Frog Pond was subsequently covered with a concrete cap.

The eastern portion of the site (former plating building and rear yard) has been improved and the existing building upgraded.

4.1 Hydrogeology

The site is located within the East Bay Plain Subbasin (DWR, 2004). The East Bay Plain Subbasin is a northwest trending alluvial plain bounded on the north by San Pablo Bay, on the east by the contact with Franciscan Basement rock, and on the south by the Niles Cone Groundwater Basin. The East Bay Plain Basin extends beneath San Francisco Bay to the west. Average precipitation in the subbasin ranges from about 17 inches in the southeast to greater than 25 inches along the eastern boundary; most of the precipitation occurs between the months of November and March.

Past investigations indicate that the lithology is consistent across the site. The soil from the surface to three or four feet bgs consists of silty sand/sand fill with some brick and concrete debris. Very fine- to fine-grained sands (Merritt Sands) of the San Antonio Formation underlie the fill and are expected to extend to approximately 60 feet bgs. Regional groundwater flow direction in the San Antonio Formation is southwesterly toward the Oakland Inner Harbor. The hydraulic conductivity has been estimated to be 0.005 centimeter per second (Subsurface Consultants and Todd Engineers, 1997). The Merritt Sands is underlain by plastic clay (Old Bay Mud). The Old Bay Mud is the confining layer for the deeper water-bearing formation.

The depth to groundwater at the site, as measured in 2003 and 2005 ranges from 12.3 to 15.5 feet below the top of the well casing ("TOC") (Table 2). Groundwater monitoring reports from the adjacent Shell service station indicate that the local shallow groundwater flows in a south southwesterly direction (CRA, 2009).

The Merritt Sands, in general, is considered a potential drinking water aquifer; however, the RWQCB does not consider portions of the Merritt Sands located along the Oakland Inner Harbor to be potential drinking water sources. On 19 April 2000, the RWQCB adopted Groundwater Basin Plan Amendments², which "dedesignated" the municipal supply beneficial use designation for portions of the Oakland shoreline, including the shoreline along the Oakland Estuary, and therefore, the groundwater in these areas would not be considered an actual or potential drinking water source. The RWQCB adopted the dedesignation amendment because of the brackishness of the groundwater, which met the exemption criteria of the State Water Resources Control Board's Sources of Drinking Water Policy. The site is located upgradient of and about 1,700 feet northeast of the portion of the Oakland shoreline dedesignated by the RWQCB.

5.0 PHASE IV SOIL AND GROUNDWATER INVESTIGATION

5.1 Soil Sampling

Prior to initiating field activities at the site, BASELINE marked the proposed boring locations and notified Underground Service Alert. No conflicts with utilities were identified. BASELINE also obtained boring permits from the Alameda County Public Works Agency (Appendix A).

On 2 and 3 March 2010, BASELINE contracted with Gregg Drilling & Testing, Inc. ("Gregg"), a California-licensed drilling company, to install three shallow groundwater monitoring wells

 $^{^2}$ This dedesignation is implemented on the regional level, but has not been approved by the State Water Resources Control Board.

(MW-FP3, MW-FP4A, and MW-FP5) and one deep groundwater monitoring well (MW-FP4B) at the site. The work was overseen by a BASELINE Professional Geologist. The boreholes were logged in accordance with ASTM Unified Soil Classification System (Appendix B). Borings logs are provided in Appendix B. Soil cuttings were monitored for organic vapor with a photo-ionization detector ("PID").

The boreholes were advanced by Gregg using 8-1/4-inch hollow stem augurs. BASELINE collected soil samples in stainless steel tubes at approximately five-foot intervals, beginning at 5 feet bgs, which corresponds to just below the bottom of the former Frog Pond and other underground vaults previously uncovered. The shallow borings were completed to a total depth of approximately 25 feet bgs. Samples from the deep boring were collected from the same five-foot intervals to 25 feet bgs and then continuously cored from 25 feet to the final depth of 65 feet bgs. The soil samples were labeled with sample location, depth, date, and time and the ends sealed with Teflon sheets and plastic end caps. The soil samples were preserved by placing them in a cooler with ice. All sampling equipment was cleaned before use and after sample collection using an Alconox and water solution and rinsed with clean deionized water.

Soil samples were retained from 5 feet bgs at MW-FP3 and from 5, 10, 15, and 20 feet bgs at MW-FP4A and MW-FP5 for chemical analysis. The samples were transported and submitted to Curtis and Tompkins, Ltd ("C&T"), a California-certified analytical laboratory, under chain-of-custody protocol for the following analyses:

- Title 22 Metals in accordance with EPA Methods 6000/7000 Series;
- Cr-VI in accordance with EPA Method 7196A; and
- VOCs in accordance with EPA Method 8260B.

One soil sample was retained from a depth of 20 feet bgs from MW-FP4A and analyzed for total organic carbon in accordance with the Walkley-Black Method.

One soil sample was retained from a depth of 26 feet bgs from MW-FP4B for geotechnical parameter testing. The soil sample was submitted to Cooper Testing Laboratory under chain-of-custody protocol for the following analyses:

- Hydraulic conductivity in accordance with D5084;
- Effective porosity in accordance with API RP40 and ASTM D6836m; and
- Bulk density in accordance with ASTM D854m.

Drill cuttings and decontamination water were stored in properly labeled 55-gallon DOT compliant drums on-site pending receipt of the analytical data. The drums will be disposed of in accordance with all local, state, and federal regulations.

5.2 Groundwater Well Installation

The three on-site shallow groundwater monitoring wells, MW-FP4A, MW-FP3, and MW-FP5, were constructed of 2-inch PVC with 13 feet of 0.010-inch slotted screen sections. The wells were screened from 12 to 25 feet bgs within the Merritt Sands. A sand filter pack (#2/16 sand) was placed through the hollow-stem auger as the auger was being raised, filling the annular

space between the borehole walls and the well casings to approximately two feet above the screen interval. A two-foot thick bentonite seal was placed on top of the filter pack. The remaining annular space was grouted with neat cement to the surface and the wellheads finished with traffic-rated Christy boxes. The deep well (MW-FP4B) was similarly constructed but screened within the Merritt Sands from 45 to the top of the Old Bay Mud at 57 feet bgs. Well construction diagrams are included with the boring logs in Appendix B.

On 12 April 2010, BASELINE contracted with Gregg to install one shallow off-site well (MW-FP6) and one deep off-site well (MW-FP7B) (Figure 2). Prior to beginning this work, the Brush Street Group, LLC had to enter into an Indenture Agreement with the City of Oakland and obtain a minor encroachment permit for the two off-site wells to be installed in the public right-of-way along Sixth Street. BASELINE also obtained an excavation permit from the City of Oakland. Traffic control was provided by Hernandez Engineering in accordance with the site-specific traffic control plan prepared by BASELINE. These wells were installed similarly to the wells previously installed on-site as described, above.

The top of the well casings were notched or marked to serve as reference for surveying the horizontal and vertical position of the groundwater monitoring wells and the groundwater monitoring well locations were surveyed on 15 April 2010 by Aaron M. Stessman, P.E. of CSS Environmental Services, a California-licensed surveyor (Appendix C).

On 9 March 2010, BASELINE developed the two existing on-site monitoring wells (MW-FP1, and MW-FP2) and the new on-site monitoring wells (MW-FP3, MW-FP4A, and MW-FP5). On 14 March 2010, BASELINE developed the two new off-site monitoring wells (MW-FP6 and MW-FP7B). The monitoring wells were developed using a surge block and a peristaltic pump. The surge block was decontaminated by washing in an Alconox solution and rinsing with deionized water. The peristaltic pump was equipped with new disposable polyethylene tubing for each well. Prior to well development, the water level in the monitoring wells was measured from the TOC. The peristaltic pump was used to remove accumulated sediment, while the surge block was used to dislodge fine-grained sediments from the filter pack. Well development continued until the purged groundwater became clear of sediments. Purge water from well development was placed in 55-gallon drums stored on-site and properly labeled for subsequent disposal pending receipt of analytical results. Well development forms are included in Appendix D.

5.3 Groundwater Sampling

On 15 April 2010, the two existing groundwater monitoring wells (MW-FP1, and MW-FP2), the six new groundwater monitoring wells (MW-FP3, MW-FP4A, MW-FP4B MW-FP5, MW-FP6, and MW-FP7B), and two Shell Service Station groundwater monitoring wells (MW-3 and MW-9) (Figure 2) were sampled using a low flow method in accordance with EPA guidance (EPA, 1996). Prior to sampling, the depth to groundwater was measured in each well using a dual phase interface probe. The probe also was used to check for the presence of free-phase product; no free-phase product was detected. Groundwater sampling forms for the sampling conducted on 15 April 2010 are included in Appendix E. Depth to groundwater measurements are summarized on Table 2. After collecting the groundwater samples, BASELINE immediately sealed and labeled the sample containers and stored the samples in a cooler containing ice. The soil and groundwater samples were submitted to C&T under chain-of-custody procedures for the following analyses:

- Dissolved Title 22 Metals in accordance with EPA Methods 6000/7000 Series:
- Cr-VI in accordance with EPA Method 7196A; and
- VOCs in accordance with EPA Method 8260B.

Samples analyzed for dissolved Title 22 metals were filtered by the analytical laboratory.

Purge and decontamination water was stored in properly labeled 55-gallon DOT-compliant drums on-site pending receipt of the analytical data. The purge water will be disposed on in accordance with all local, state, and federal regulations.

6.0 QUALITY ASSURANCE/QUALITY CONTROL

BASELINE reviewed the data provided by the laboratory for completeness and accuracy. All of the laboratory quality assurance and quality control ("QA/QC") goals were met. However, the groundwater sample for volatile organic analysis from MW-FB4B reportedly contained more than one milliliter of headspace, and therefore, may be biased low. A trip blank sample was used to check for cross-contamination during groundwater sampling. The trip blank consisted of laboratory provided de-ionized water and accompanied the samples from time of collection until delivery to the analytical laboratory. The trip blank was analyzed for VOCs; the sample did not contain any reportable concentrations of VOCs (Appendix D).

7.0 ANALYTICAL RESULTS

The list of all the soil and groundwater samples collected during this soil and groundwater investigation are presented on Table 1. Analytical results for soil and groundwater samples collected to date are summarized in Tables 3 through 16. Sample locations are shown on Figure 2. Laboratory reports for the soil and groundwater samples analyzed for this investigation are provided on a compact disk in Appendix F of this report.

Below is an assessment of the analytical data. The analytical results from all four phases of investigations at the site (Phase I in February 2003, Phase II in November 2005, Phase III in March 2006, and Phase IV in 2010) have been screened against the RWQCB's ESLs (RWQCB, 2007, Revised 2008). In this report, ESLs developed for residential and commercial land uses, where groundwater is not a drinking water source were used for screening purposes.

7.1 Soil Sample Results from the Phase IV Investigation

The metals analytical results for soil samples collected are presented in Table 4. All soil samples collected were reported to contain arsenic, barium, beryllium, total chromium, cobalt, copper lead, nickel, vanadium, and zinc above the laboratory reporting limits. All the soil samples except for the soil sample collected from MW-FP3 at 5.0 feet bgs were reported to contain Cr-VI. The soil sample from MW-FP3 at 5.0 feet bgs was the only soil sample reported to contain selenium and the soil samples from MW-FP4A at 5.0 and 10.0 feet bgs were the only soil samples reported to contain cadmium. Antimony, mercury, molybdenum, silver, and thallium were not reported above the laboratory reporting limit in any of the soil samples collected.

Except for total chromium and Cr-VI, none of the metal concentrations reported in the soil samples collected on-site during this investigation exceeded the ESLs for residential or

commercial land use for sites where groundwater is not considered a potential drinking water source (RWQCB, 2007, Revised 2008) and published background values¹ (LBNL, 2002, as revised). Only one soil sample, collected at 5.0 feet bgs from MW-FP4A, contained total chromium above the chromium III ESL for residential or commercial land use for sites where groundwater is not considered a potential drinking water source (Table 4). Figure 3 presents the concentration of Cr-VI reported in soil samples. Cr-VI was reported in soil samples at concentrations exceeding the ESL value from MW-FP4A at 5.0, 10.0, 15.0, and 20.0 feet bgs,² the maximum depth for which analyses were performed. The concentration of Cr-VI in soil samples from MW-FP5 collected at 10.0, 15.0, and 20.0 feet bgs exceeded the ESL value; however, the Cr-VI concentrations were notably lower than those reported in soil samples from MW-FP4A.

The results of geotechnical parameter testing performed by Cooper Testing are provided in Table 16 and Appendix F. The average hydraulic conductivity of the soil sample submitted, collected at 26 feet bgs from MW-FP4B was reported to be 3×10^{-7} centimeters per second. Since this was determined using a falling head test, this is representative of the vertical hydraulic conductivity of the soil. While the porosity of the soil was determined to be 38.4 percent, the effective porosity of the soil sample tested was only 0.7 percent. The total organic carbon content for the soil sample collected from MW-FP4A at 20.0 feet bgs was less than 0.01 percent (Table 16). The dry density of the soil sample submitted for geotechnical parameters was 105.8 pounds per cubic foot. These data may be used to evaluate remedial options in the future.

7.2 Groundwater Sample Results from the Phase IV Investigation

The VOC analytical results for those analytes ever reported above the laboratory reporting limits in one or more groundwater samples are presented in Table 10. Groundwater samples were reported to contain acetone, carbon disulfide, chloroform, methyl tertiary-butyl ether ("MTBE"), 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and TCE above laboratory reporting limits in one or more samples collected in April 2010. None of the VOC concentrations reported in the groundwater samples collected on-site or off-site during this investigation exceeded the ESLs for sites where groundwater is not considered a potential drinking water source (RWQCB, 2007, Revised 2008).

The dissolved metals analytical results for the groundwater samples collected are presented in Table 11. Groundwater samples were reported to contain barium, total chromium, Cr-VI, cobalt, copper, molybdenum, nickel, thallium, vanadium, and zinc. Total chromium, Cr-VI, cobalt, copper, nickel, thallium, and vanadium were reported in the groundwater samples collected onsite or off-site at concentrations exceeding the ESLs for sites where groundwater is not considered a potential drinking water source (RWQCB, 2007, Revised 2008). Figure 45 presents the concentration of Cr-VI reported in groundwater samples collected.

7.3 Groundwater Flow Direction And Gradient

The depths to groundwater measured on 15 April 2010 were used to calculate the groundwater elevation at the wells referenced to the North American Vertical Datum 1988 ("NAVD88").

¹ Background values are 99th percentile values established by Lawrence Berkeley National Laboratory.

² The 10.0-, 15.0-, and 20.0-foot bgs samples were compared against ESLs for soils deeper than 3 meters.

Groundwater contours based on these elevations is presented on Figure 3. The groundwater flow direction on 15 April 2010 was toward the southwest with gradient of 0.005.

8.0 CONCLUSIONS

The analytical results of the soil and groundwater samples collected during this Phase IV investigation indicate that the elevated concentrations of metals in the soil and groundwater, primarily Cr-VI, originated from the former concrete column associated with the former Frog Pond. The highest concentrations of Cr-VI in both soil and groundwater were reported in the samples collected from MW-FP4A (Tables 4 and 11, Figures 4 and 5). The concentration of Cr-VI was highest at MW-FP4A in the soil sample collected from 20 feet bgs, although the concentration increased from 5.0 to 10.0 feet bgs, then decreased at 15.0 feet bgs and then increased again at 20.0 feet bgs.

The confining Old Bay Mud underlying the shallow groundwater bearing Merritt Sands was located at 57 feet bgs at MW-FP4B and at approximately 50 feet bgs at MW-FP7B (see boring logs Appendix B). Above the Old Bay Mud was the Merritt Sands with varying degrees of silt and clay. The low vertical hydraulic conductivity and effective porosity values reported from the soil sample collected from MW-FP4B at 26 feet bgs indicate that the contaminant vertical migration would likely be slow.

The concentrations of Cr-VI in groundwater decreased from 460,000 μ g/L in MW-FP4A, which was screened from 12 to 25 feet bgs, to 30 μ g/L in MW-FP4B, which was screen from 45 to 57 feet bgs (Figure 5). This is consistent with the low vertical hydraulic conductivity and effective porosity values reported. The difference between the shallow and deep concentrations of Cr-VI in groundwater were much less dramatic off-site where the Cr-VI concentrations decreased from 15,000 μ g/L in MW-FP6 and 5,700 μ g/L in MW-9, screened in the shallow groundwater, to 1,200 μ g/L in MW-FP7B, which was screened from 39 to 49 feet bgs. These results indicate that the Cr-VI is present at elevated levels in the shallow groundwater. These results also indicate that the Cr-VI has migrated off-site and the plume appears to be undergoing vertical dispersion as indicated by the increase in the Cr-VI concentration in the deeper off-site well, screened in the Merritt Sands, relative to the deeper on-site well, also screened in the Merritt Sands (Figure 5).

VOC concentrations in off-site wells are all below environmental screening levels where groundwater is not a potential drinking water source. Nickel, copper, and cobalt are present in off-site wells at concentrations above environmental screening levels where groundwater is not a potential drinking water source.

9.0 REFERENCES

BASELINE, 2009a, Work Plan for Additional Soil and Groundwater Investigation, 751-785 Seventh Street, Oakland, California, 19 June.

BASELINE Environmental Consulting ("BASELINE"), 2009b, Addendum I to Work Plan for Additional Soil and Groundwater Investigation, 751-785 Seventh Street, Oakland, California, 6 October

BASELINE, 2008, Documentation of Frog Pond Removal Activities, 785-7th Street, Oakland, California, 29 February.

BASELINE, 2006, Report on Phase II and Focused Phase III Investigation and Frog Pond Removal Workplan, 785-7th Street, Oakland, California, June.

BASELINE, 2005, Site History and Data Summary Report, 785-7th Street, Oakland, California, 10 January.

BASELINE, 2003, Soil and Groundwater Investigation, 785-7th Street, Oakland, California, 29 April.

California Department of Water Resources ("DWR"), 2004, California's Groundwater Santa Clara Valley Groundwater Basin Bulletin 118, 27 February.

Conestoga-Rogers & Associates ("CRA"), 2009, Groundwater Monitoring Report – Third Quarter 2009, Shell-Branded Service Station, 601 Market Street, Oakland, California, 28 October.

Lawrence Berkeley National Laboratory ("LBNL"), 2002, Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, June, revised April 2009.

P&D Environmental, 2009, Subsurface Investigation Report, (SG1 through SG6 and B6 through B8), 601 Brush Street, 12 November.

San Francisco Regional Water Quality Control Board ("RWQCB"), 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final, November 2007 (Revised May 2008).

Subsurface Consultants and Todd Engineers, 1997, Draft Hydrogeologic Investigation, 50-Foot Navigation Improvement Project, Port of Oakland, December.

U.S. Environmental Protection Agency ("EPA"), 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, April.

FIGURES

751-785 Seventh Street Oakland, California

2000 Feet BASELIN E

Y0323-03.01478.Fig1.cdr 5/13/10

Oakland, California

Y0323-03.01478.Figure2.dwg 05/28/10

Figure 2

Y0323-03.01478.Figure3.dwg 05/28/10

BaselinE

HEXAVALENT CHROMIUM IN SOIL

Y0323-03.01478.Figure4.dwg 05/28/10

Oakland, California

Former Plating Building B-FP09 B-FP08 0-<0.05 2.0' <0.05 4.5' **B-FP10** -Ð <0.05 0.5' <0.05 3.5' **B-FP11** Sidewalk **Brush Street** < 0.05 0.5' <0.05 3.5' Former Drainage Ditch (in Rear Yard) -O **B-FP12** 0.18 0.5' 0.06 3.5'

Figure 4

HEXAVALENT CHROMIUM IN GROUNDWATER - 15 APRIL 2010

7th Street

Y0323-03.01478.Figure5.dwg 05/28/10

Figure 5

TABLES

Table 1: List of Samples and Analyses, 781-785 Seventh Street, Oakland, CaliforniaPhase IV Investigation

Boring	Sample ID	Sample Date	Title 22 Metals	Chromium VI	VOCs	Total Organic Carbon	Hydraulic Conductivity	Effective Porosity	Bulk Density
Soil Samples									
MW-FP3	MW-FP3;5.0-5.5	3/3/2010	Х	Х					
MW-FP4A	MW-FP4A;5.0-5.5	3/3/2010	Х	Х					
MW-FP4A	MW-FP4A;10.0-10.5	3/3/2010	Х	Х					
MW-FP4A	MW-FP4A;15.0-15.5	3/3/2010	Х	Х					
MW-FP4A	MW-FP4A;20.0-20.5	3/3/2010	Х	Х		Х			
MW-FP4B	MW-FP4B;26-26.5	3/2/2010					Х	Х	Х
MW-FP5	MW-FP5;5.0-5.5	3/3/2010	Х	Х					
MW-FP5	MW-FP5;10.0-10.5	3/3/2010	Х	Х					
MW-FP5	MW-FP5;15.0-15.5	3/3/2010	Х	Х					
MW-FP5	MW-FP5;20.0-20.5	3/3/2010	Х	Х					
Groundwater Sa	amples								
MW-FP1	MW-FP1	4/15/2010	Х	Х	Х				
MW-FP2	MW-FP2	4/15/2010	Х	Х	Х				
MW-FP3	MW-FP3	4/15/2010	Х	Х	Х				
MW-FP4A	MW-FP4A	4/15/2010	Х	Х	Х				
MW-FP4B	MW-FP4B	4/15/2010	Х	Х	Х				
MW-FP5	MW-FP5	4/15/2010	X	X	X				
MW-FP6	MW-FP6	4/15/2010	X	X	Х				
MW-FP7B	MW-FP7B	4/15/2010	X	X	X				

Notes:

VOCs = volatile organic compounds

X = sample analyzed for constituents as indicated

Boring locations are shown on Figure 2.

Results are summarized in Tables 4, 10, 11, and through 16.

Well ID	Date Measured	Top of Well Casing Elevation (ft)	Depth to Water (ft btc)	Groundwater Elevation (ft NAVD88)			
Phase I							
MW-FP1	02/12/03	25.77	13.91	11.86			
MW-FP2	02/12/03	23.81	12.30	11.51			
Phase I							
MW-FP1	11/25/05	25.77	15.50	10.27			
MW-FP2	11/25/05	23.81	13.84	9.97			
Phase IV							
MW-FP1	04/15/10	25.77	14.82	10.95			
MW-FP2	04/15/10	23.81	13.19	10.62			
MW-FP3	04/15/10	25.66	14.82	10.84			
MW-FP4A	04/15/10	25.64	15.01	10.63			
MW-FP4B	04/15/10	25.44	14.92	10.52			
MW-FP5	04/15/10	25.69	15.01	10.68			
MW-FP6	04/15/10	21.04	10.98	10.06			
MW-FP7B	04/15/10	20.51	10.48	10.03			
MW-3 (Shell)	04/15/10	NS	11.00	NS			
MW-9 (Shell)	04/15/10	21.03	10.98	10.05			

Notes:

btc = below top of casing

ft = feet

NS = not surveyed

Elevation datum is North American Vertical Datum of 1988 (NAVD88).

Well locations shown on Figure 2.

Well top of casings surveyed 04/15/10 (Appendix C).

Sample Location	Top of Sample Interval (ft bgs)	Sample Date	Acetone	Carbon Disulfide	Methylene Chloride	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene
Residential ES	Ls ≤3 meters (9.	8 feet) ¹	0.50	NE	7.2	6.5	10	7.8	1.9
Residential ES	Ls > 3 meters (9.	.8 feet) 2	0.50	NE	34	18	39	7.8	33
Commercial ES	SLs ≤3 meters (9	9.8 feet) 1	0.50	NE	17	18	34	7.8	4.1
Commercial ES	SLs >3 meters (9	9.8 feet) ²	0.50	NE	34	18	39	7.8	33
Phase I				1				1	
B-FP01	2.5	02/05/03	< 0.02	< 0.0049	< 0.02	< 0.0049	< 0.0049	< 0.0049	< 0.0049
B-FP01	5.5	02/05/03	< 0.018	< 0.0044	< 0.018	< 0.0044	< 0.0044	< 0.0044	< 0.0044
B-FP02	2.5	02/05/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP02	5.5	02/05/03	< 0.017	< 0.0043	< 0.017	< 0.0043	< 0.0043	< 0.0043	< 0.0043
B-FP03	1.5	02/04/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	0.024
B-FP03	5.0	02/04/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP04	2.5	02/04/03	< 0.02	< 0.005	< 0.02	< 0.005	< 0.005	< 0.005	< 0.005
B-FP04	5.0	02/04/03	< 0.02	< 0.0049	< 0.02	< 0.0049	< 0.0049	< 0.0049	< 0.0049
B-FP05	2.5	02/04/03	< 0.018	< 0.0044	< 0.018	< 0.0044	< 0.0044	0.0054	0.033
B-FP05	5.5	02/04/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP06	2.5	02/05/03	< 0.019	< 0.0048	< 0.019	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-FP06	5.5	02/05/03	< 0.018	< 0.0044	< 0.018	< 0.0044	< 0.0044	0.005	< 0.0044
B-FP07	2.5	02/05/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP07	5.5	02/05/03	< 0.018	< 0.0045	< 0.018	< 0.0045	< 0.0045	< 0.0045	< 0.0045
COMP FY ³	7.0	02/05/03	< 0.02	< 0.0051	< 0.02	< 0.0051	< 0.0051	< 0.0051	< 0.0051
COMP RY ⁺	7.0	02/05/03	< 0.021	< 0.0052	< 0.021	< 0.0052	< 0.0052	< 0.0052	< 0.0052
Phase II									
B-FP08	2.5	11/22/05	< 0.019	< 0.0048	< 0.019	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-FP09	2.0	11/22/05	<0.018	<0.0045	0.028	<0.0045	<0.0045	<0.0045	<0.0045
B-FP10	0.5	11/28/05	<0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FPI1	0.5	11/28/05	<0.019	<0.0048	< 0.019	<0.0048	<0.0048	<0.0048	< 0.0048
B-FP12	0.5	11/29/05	<0.019	< 0.0046	< 0.019	<0.0046	<0.0046	<0.0046	< 0.0046
B-FP13	0.5	11/28/05	<0.018	< 0.0045	< 0.018	< 0.0045	< 0.0045	< 0.0045	< 0.0045
B-FP14	0.5	11/29/05	<0.019	<0.0047	< 0.019	<0.0047	<0.0047	<0.0047	0.0094
B-FP15	0.5	11/29/05	<0.021	< 0.0053	<0.021	< 0.0053	< 0.0053	< 0.0053	< 0.0053
B-FPI5	3.0	11/29/05	<0.019	< 0.0048	< 0.019	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-FP16	0.5	11/28/05	<0.019	< 0.0046	< 0.019	< 0.0046	< 0.0046	< 0.0046	< 0.0046
B-FP1/	0.5	11/28/05	<0.019	<0.0047	<0.019	<0.0047	<0.0047	<0.0047	<0.0047
P ED19	5.0	02/20/06	<0.016	<0.004	<0.016	<0.004	<0.004	<0.004	<0.004
D-FF18 D ED19	5.0	03/30/06	<0.016	<0.004	<0.016	<0.004	<0.004	<0.004	<0.004
D-FF18 D ED10	10.0	03/30/06	<0.016	<0.004	<0.016	<0.004	<0.004	<0.004	<0.004
D-FF19	0.0	03/30/06	<0.010	<0.004	<0.016	<0.004	<0.004	<0.004	<0.004

Sample Location	Top of Sample Interval (ft bgs)	Sample Date	Acetone	Carbon Disulfide	Methylene Chloride	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene
Residential ESI	Ls ≤3 meters (9.	8 feet) ¹	0.50	NE	7.2	6.5	10	7.8	1.9
Residential ESI	Ls >3 meters (9.	8 feet) 2	0.50	NE	34	18	39	7.8	33
Commercial ES	SLs ≤3 meters (9	9.8 feet) ¹	0.50	NE	17	18	34	7.8	4.1
Commercial ES	SLs >3 meters (9	9.8 feet) ²	0.50	NE	34	18	39	7.8	33
B-FP19	12.0	03/30/06	< 0.015	< 0.0038	< 0.015	< 0.0038	< 0.0038	< 0.0038	< 0.0038
B-FP20	6.0	03/30/06	< 0.015	< 0.0038	< 0.015	< 0.0038	< 0.0038	< 0.0038	< 0.0038
B-FP20	12.0	03/30/06	< 0.016	< 0.004	< 0.016	< 0.004	< 0.004	< 0.004	< 0.004
B-FP21	6.0	03/30/06	< 0.015	< 0.0038	< 0.015	< 0.0038	< 0.0038	< 0.0038	0.0044
B-FP21	12.0	03/30/06	< 0.016	< 0.004	< 0.016	0.020	< 0.004	< 0.004	0.017
B-FP22	6.0	03/30/06	< 0.017	0.0092	< 0.017	0.066	0.0045	< 0.0042	0.040
B-FP22	12.0	03/30/06	< 0.016	< 0.004	< 0.016	0.027	< 0.004	< 0.004	0.0077
B-FP23	6.0	03/30/06	< 0.016	< 0.004	< 0.016	< 0.004	< 0.004	< 0.004	< 0.004
B-FP23	12.0	03/30/06	0.061	< 0.0037	< 0.015	< 0.0037	< 0.0037	< 0.0037	0.005

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NE = not established

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Method 8260B.

Only those analytes reported above the laboratory reporting limit in at least one sample are shown.

Sample locations shown on Figure 2.

Values reported above the laboratory reporting limit are indicated in bold text.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Table D, Environmental Screening Levels, Deep Soils, (> 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

³ Composite samples from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

⁴ Composite samples from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.

	Top of Sample																			
Sample	Interval										G					.	G *1			7
Location Residential ES	(Ieet bgs) Ls <3 meters (9	SampleDate 8 feet) ¹	Antimony 6.3	0 39	Barium 750	Beryllium	Cadmium	R O	$\frac{\text{Chromium, Total}}{750^{3}}$	Cobalt	230	200	1 3	40	Nickel	10	20	Thallium	Vanadium	Zinc
Residential ES	Ls >3 meters (9	1000000000000000000000000000000000000	310	15	2 500	98	39	0.53	2500^{3}	94	2 500	750	58	2 500	260	2 500	2 500	62	770	2 500
Commercial ES	SLs <3 meters (9.8 feet) 1	40	16	1 500	8.0	74	8.0	750 3	80	2,300	750	10	40	150	10	40	16	200	600
Commercial E	SLs >3 meters (9.8 feet) ²	310	1.0	2 600	98	30	0.53	5,000 3	94	5.000	750	58	3 900	260	3 900	3 900	62	770	5 000
Background ⁴		9.0 1001)	<i>510</i>	24	410	1.0	56	0.55 NE	120	25	63	24 5	0.42	1.8	200	1.0	2.0	10	00	140
Phase I			<0	24	410	1.0	5.0	INE	120	23	05	24	0.42	4.0	212	4.7	2.9	10	90	140
Н	2.5	02/05/03	< 0.75	1.15	52.7	< 0.25	< 0.5	< 0.05	28.1	3.89	5.31	2.25	< 0.0835	< 0.25	16.1	< 0.75	< 0.25	< 0.75	19.6	14.9
B-FP01	5.5	02/05/03	< 0.75	1.04	60.2	0.382	< 0.5	0.59	49.2	16.8	9.01	3.75	< 0.0835	< 0.25	53.6	< 0.75	< 0.25	< 0.75	34.8	23.7
B-FP02	2.5	02/05/03	< 0.75	< 0.75	56.1	< 0.25	< 0.5	< 0.05	29.1	4.21	5.74	2.44	< 0.0835	< 0.25	17.4	< 0.75	< 0.25	< 0.75	20	16.3
B-FP02	5.5	02/05/03	< 0.75	< 0.75	70.6	0.321	< 0.5	< 0.05	83.4	6.88	10.2	3.33	< 0.0835	< 0.25	99.2	< 0.75	< 0.25	< 0.75	34.9	24.4
B-FP03	1.5	02/04/03	< 0.75	0.928	71.1	< 0.25	<0.5	< 0.05	37.5	4.43	5.6	5.04	< 0.0835	0.367	17.2	< 0.75	< 0.25	< 0.75	18.2	15.8
B-FP03	5.0	02/04/03	< 0.75	1.42	53.3	0.349	< 0.5	< 0.05	66.8	9.7	10.1	3.54	< 0.0835	< 0.25	<u>995</u>	< 0.75	< 0.25	< 0.75	42.5	24
B-FP04	2.0	02/04/03	< 0.75	< 0.75	75.6	< 0.25	< 0.5	< 0.05	27.3	4.05	5.77	2.43	< 0.0835	< 0.25	16.5	< 0.75	< 0.25	< 0.75	19.1	16.5
B-FP04	5.0	02/04/03	< 0.75	1.07	43	0.326	<0.5	<0.05	47.9	10.8	6.61	3.22	< 0.0835	0.872	37	< 0.75	< 0.25	< 0.75	32.5	45.1
B-FP05	2.0	02/04/03	<0.75	0.794	55.9	<0.25	<0.5	0.09	36.6	3.86	4.79	2.83	<0.0835	<0.25	17.3	<0.75	<0.25	<0.75	20.3	13.9
B-FP05	5.0	02/04/03	<0.75	0.764	28.4	<0.25	<0.5	1.9	34.8	2.55	4.6	2.08	< 0.0835	<0.25	19.3	<0.75	<0.25	<0.75	21.6	11.4
B-FP06	2.0	02/05/03	<0.75	3.44	134	<0.25	0.689	<0.05	<u> </u>	5.17	19./	<u>1,200</u> 2.05	0.415	-0.25	<u>308</u> 320	<0.75	<0.25	<0.75	19.3	<u>1,260</u>
D-FP00 D FD07	3.0	02/03/03	<0.75	1.78	49.2	<0.25	<0.5	<0.03	49.1	11.5	24.6	<u> </u>	<u><0.0833</u>	0.23	<u>320</u> 30	<0.75	<0.23	<0.75	35.8 21.5	<u> </u>
B-FP07	5.0	02/05/03	<0.75	<0.75	81	0.23	<0.5	0.05	84.6	7.33	9.69	4.11	<0.139	<0.25	<u> </u>	<0.75	<0.23	<0.75	46.5	27.7
$\frac{D \Pi 0}{COMP EV^{6}}$	7.0	02/05/03	<0.75	1 10	64.2	0.778	<0.5	<0.05	54.2	7 70	7 /0	2.08	<0.0035	<0.25	75 /	<0.75	<0.25	<0.75	31.8	27.0
$\frac{\text{COMP PV}^7}{\text{COMP PV}^7}$	7.0	02/05/03	<0.75	-0.75	66.2	0.270	<0.5	<0.05	19.2	6.07	7.70	2.76	<0.0035	<0.25	55 4	<0.75	<0.25	<0.75	20.6	22.9
COMP R I Phase II	7.0	02/03/03	<0.73	<0.73	00.5	0.200	<0.3	<0.03	40.2	0.07	1.19	2.70	<0.0855	<0.23	55.4	<0.73	<0.23	<0.75	30.0	22.4
B-FP08	2.5	11/22/05	<2.7	2.6	40	0.23	<0.23	<0.05	42	53	7.0	2.5	<0.02	<0.9	32	<0.23	<0.23	<0.23	25	24
B-FP08	4.5	11/22/05	<3.1	2.6	50	0.24	<0.25	<0.05	52	6.4	9.1	2.8	<0.02	<1	34	<0.25	<0.25	<0.25	32	27
B-FP09	2.0	11/22/05	<3.2	2.3	52	0.23	<0.27	< 0.05	50	7.8	9.0	18	< 0.019	<1.1	38	<0.27	<0.27	<0.27	26	33
B-FP09	4.5	11/22/05	<3.0	3.3	63	0.28	< 0.25	< 0.05	51	6.7	10	3.1	< 0.019	<1	35	< 0.25	< 0.25	< 0.25	37	26
B-FP10	0.5	11/28/05	<3.1	2.5	66	0.14	0.67	< 0.05	30	1.9	26	60	0.029	<1	13	< 0.26	< 0.26	0.34	22	67
B-FP10	3.5	11/28/05	<2.9	2.3	23	0.16	0.35	< 0.05	41	12	12	3.8	0.024	< 0.95	77	< 0.24	< 0.24	< 0.24	24	69
B-FP11	0.5	11/28/05	<2.5	1.8	65	< 0.083	<u>9.0</u>	< 0.05	<u>1,800</u>	3.0	56	72	0.031	< 0.83	<u>660</u>	0.47	< 0.21	0.96	15	38
B-FP11	3.5	11/28/05	<2.1	1.8	37	0.22	<u>39</u>	< 0.05	680	2.3	<u>410</u>	2.7	0.033	<0.7	170	< 0.17	< 0.17	0.52	22	100
B-FP12	0.5	11/29/05	<2.1	2.8	68	0.15	0.39	0.18	88	4.8	78	2.9	0.035	< 0.71	<u>1,100</u>	< 0.18	<0.18	< 0.18	19	69
B-FP12	3.5	11/29/05	<2.6	1.8	45	0.14	0.30	0.06	43	2.1	4.8	1.8	0.034	<0.88	190	< 0.22	< 0.22	< 0.22	20	25
B-FP13	0.5	11/28/05	<2.5	3.8	68	0.18	0.39	<0.05	38	3.4	12	66	0.13	<0.83	16	<0.21	<0.21	0.43	22	43
B-FP13	3.5	11/28/05	<3.1	2.3	49	0.14	0.35	< 0.05	26	2.6	7.2	38	0.079	<1	16	<0.26	<0.26	0.52	19	28
B-FP14	0.5	11/29/05	<3	5.3	180	0.19	0.69	<u>19</u>	<u>1,000</u>	4.0	30	290	0.44	<0.99	19	<0.25	<0.25	0.79	24	170
B-FP14	3.5	11/29/05	<u> </u>	2.8	24	0.1	4.2	<0.05	<u>5,500</u>	5.2	170	3.2	0.088	1.9	<u>520</u> 17	< 0.26	<0.26	<0.26	28	<u> </u>
B-FP15	0.5	11/29/05	<2.9	2.1	/1	0.17	0.36	<0.05	32	3.5	5.5	2.6	<0.02	<0.98	17	<0.25	<0.25	<0.25	23	18
B-FP15 D ED16	3.0	11/29/05	<2.1	2.3	44 52	0.17	0.40	<0.05	140	3.2	10	2.3	0.020	<0.08	16	<0.17	<0.17	0.22	23	10
D-FF10 B_FP16	0.5	11/28/03	~2.9	2.1	52	0.15	0.43	0.00	130	<u> </u>	4.7	2.5 3.1	<0.045	<u>~0.90</u> 1.6	10	<0.24	<0.24	<0.24	<u>41</u> <u>1</u>	20
B-FP17	<u> </u>	11/28/05	<2.0 <2.8	<u> </u>	43	0.5	0.75	<0.05	30	31	7.0	27	<0.021	<0.03	20	<0.22	<0.22	<0.22	22	<u> </u>
B-FP17	3.5	11/28/05	<2.0	2.1	2.9	0.15	0.33	<0.05	31	2.5	4.6	2.1	<0.02	13	16	<0.23	<0.23	0.25	23	10
COMP 1 ⁸	0.0	11/20/05	<2.)	/ 0	<u> </u>	0.15	2 2	<0.05	70	57	/18	180	0.023 0.24	11	71	<0.27	<0.24	<0.25	22	1/0
	0.0	11/21/03	~5.0	7.7	71	0.43	4. J	-0.05	17	5.1	-10	100	0.47	1.1	/1	~0.25	~0.43	~0.25	55	140

Samuela	Top of Sample																			
Location	(feet bgs)	SampleDate	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium VI	Chromium, Total	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Residential ESI	Ls ≤3 meters (9	.8 feet) ¹	6.3	0.39	750	4.0	1.7	8.0	750 ³	40	230	200	1.3	40	150	10	20	1.3	16	600
Residential ESI	Ls >3 meters (9	.8 feet) ²	310	15	2,500	98	39	0.53	2,500 ³	94	2,500	750	58	2,500	260	2,500	2,500	62	770	2,500
Commercial ES	Ls ≤3 meters (9.8 feet) 1	40	1.6	1,500	8.0	7.4	8.0	750 ³	80	230	750	10	40	150	10	40	16	200	600
Commercial ES	Ls >3 meters (9.8 feet) 2	310	15	2,600	98	39	0.53	5,000 ³	94	5,000	750	58	3,900	260	3,900	3,900	62	770	5,000
Background 4			<6	24	410	1.0	5.6	NE	120	25	63	24 ⁵	0.42	4.8	272	4.9	2.9	10	90	140
COMP 2 ⁹	1.0	11/21/05	<2.6	2.4	66	0.24	2.9	< 0.05	40	5.3	18	7.7	0.072	< 0.86	71	< 0.22	< 0.22	< 0.22	25	44
COMP 3 ¹⁰	0.0	11/21/05	<2.3	2.5	65	0.25	1.5	< 0.05	42	5.7	19	47	0.19	2.1	48	< 0.19	< 0.19	< 0.19	25	69
COMP 4 ¹¹	1.0	11/21/05	<2.6	2.3	62	0.27	0.60	< 0.05	27	6.1	16	32	0.32	1.6	38	< 0.21	< 0.21	< 0.21	26	65
COMP 5 ¹²	0.0	11/22/05	<2.8	3.0	84	0.25	< 0.23	< 0.05	40	4.6	30	190	0.22	< 0.93	22	< 0.23	< 0.23	< 0.23	27	95
COMP 6 ¹³	1.0	11/22/05	<2.5	4.6	130	0.3	5.0	< 0.05	42	5.9	41	230	0.40	1.2	150	< 0.2	0.37	<0.2	23	250
Phase III																•				
B-FP23	6.0	03/30/06						<u>30</u>												
Frog Pond Ren	noval																			
B-FP24	4.5	05/31/07	< 0.25	2.0	51	< 0.25	< 0.25	<u>33</u>	48	3.1	6.7	19	0.14	0.35	17	< 0.25	< 0.25	< 0.25	18	27
B-FP24	9.5	05/31/07	< 0.25	2.6	52	< 0.25	< 0.25	<u>67</u>	140	6.2	7.6	2.6	< 0.02	< 0.25	34	< 0.25	< 0.25	< 0.25	27	23
B-FP25	4.5	06/01/07	0.29	3.8	40	0.38	0.61	<u>10</u>	610	14	49	13	< 0.02	0.85	240	< 0.25	< 0.25	< 0.25	37	30
B-FP25	9.5	06/01/07	< 0.25	2.2	50	< 0.25	0.31	6.5	180	5.5	20	2.4	< 0.02	< 0.25	76	< 0.25	< 0.25	< 0.25	24	25
B-FP26	4.5	06/01/07	< 0.25	2.7	33	< 0.25	< 0.25	< 0.05	44	2.9	4.7	2.7	< 0.02	0.61	89	< 0.25	< 0.25	< 0.25	29	14
B-FP26	9.5	06/01/07	< 0.25	2.1	41	< 0.25	< 0.25	< 0.05	36	4.3	6.9	2.2	< 0.02	0.34	33	< 0.25	< 0.25	< 0.25	23	24
B-FP27	4.5	06/01/07	0.81	2.0	40	< 0.25	3.1	0.77	290	3.4	12	48	0.045	0.59	160	< 0.25	< 0.25	< 0.25	19	28
B-FP27	9.5	06/01/07	< 0.25	2.1	49	< 0.25	< 0.25	3.7	44	5.0	6.8	2.5	< 0.02	< 0.25	36	< 0.25	< 0.25	< 0.25	23	26
B-FP28	4.5	06/01/07	< 0.25	4.0	65	0.35	< 0.25	3.8	110	7.2	9.2	3.2	< 0.02	0.41	74	< 0.25	< 0.25	< 0.25	42	20
B-FP29	7.0	06/01/07	0.47	2.9	62	0.33	1.5	0.31	430	9.9	<u>260</u>	4.4	< 0.02	0.64	<u>580</u>	< 0.25	< 0.25	< 0.25	32	72
B-FP30	7.0	06/01/07	< 0.25	2.7	63	0.28	0.31	< 0.05	170	6.4	10	3.7	< 0.02	0.37	<u>1,100</u>	< 0.25	< 0.25	< 0.25	32	25
B-FP31 ¹⁴	11.5	06/01/07	< 0.25	3.1	59	0.33	< 0.25	< 0.05	65	10	9.4	3.9	< 0.021	0.34	51	< 0.25	< 0.25	< 0.25	32	25
B-FP31 ¹⁴	18.5	06/05/07	0.85	2.5	34	< 0.25	< 0.25	< 0.05	<u>1,400</u>	7.7	220	1.6	< 0.020	0.30	<u>1,800</u>	< 0.25	< 0.25	< 0.25	22	38.7
Bottom of																				
Concrete																				
Column	20.0	09/05/07	1.4	2.6	52	0.22	3.2	<u>3.9</u>	240	6.1	41	36	< 0.02	0.74	230	< 0.5	< 0.25	< 0.5	29	63
Phase IV																				
MW-FP3	5.0	03/03/10	< 0.5	3.2	47	0.43	< 0.25	<0.4	72	5.5	20	3.5	< 0.021	< 0.25	51	0.69	< 0.25	< 0.5	38	33
MW-FP4A	5.0	03/03/10	< 0.5	2.1	47	0.22	1.8	<u>92</u>	<u>1,400</u>	6.3	88	1.7	< 0.02	< 0.25	36	< 0.5	< 0.25	< 0.5	29	22
MW-FP4A	10.0	03/03/10	< 0.5	2.1	46	0.27	2.0	<u>310</u>	440	4.9	140	2.2	< 0.021	< 0.25	62	< 0.5	< 0.25	< 0.5	27	27
MW-FP4A	15.0	03/03/10	< 0.5	2.5	40	0.25	< 0.25	<u>19</u>	130	5.6	7.1	2.1	< 0.02	< 0.25	76	<0.5	< 0.25	< 0.5	33	21
MW-FP4A	20.0	03/03/10	< 0.5	3.0	44	0.13	< 0.25	<u>460</u>	560	4.3	5.9	0.83	< 0.021	< 0.25	42	<0.5	< 0.25	< 0.5	25	18
MW-FP5	5.0	03/03/10	< 0.5	3.0	44	0.31	< 0.25	1.0	120	2.4	23	3.3	< 0.02	< 0.25	31	<0.5	< 0.25	< 0.5	45	29
MW-FP5	10.0	03/03/10	< 0.5	2.1	43	0.21	< 0.25	<u>5.3</u>	43	5.7	7.6	2	< 0.021	< 0.25	30	<0.5	< 0.25	< 0.5	28	21
MW-FP5	15.0	03/03/10	< 0.5	4.4	66	0.33	< 0.25	<u>11</u>	65	8.4	10	2.5	< 0.02	< 0.25	35	<0.5	< 0.25	< 0.5	43	23
MW-FP5	20.0	03/03/10	< 0.5	1.9	28	0.11	< 0.25	<u>21</u>	62	4.5	7.4	1.2	< 0.02	< 0.25	28	< 0.5	< 0.25	< 0.5	24	18

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 6010B/7400/7196A.

Sample locations shown on Figure 2.

Underlined values exceed the Commercial ESL and background value.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the residential ESL and background value.

¹ Table B, Environmental Screening Levels, Shallow Soils, (\leq 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Table D, Environmental Screening Levels, Deep Soils, (> 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

³ ESL for Chromium III

⁴ Background metals - Lawrence Berkeley National Laboratory ("LBNL"), 2002, Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, June, revised April 2009 (99th percentile).

⁵ Greater than five feet below ground surface.

⁶ Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

⁷ Composite sample from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.

⁸ Composite sample from SS-FP1 to SS-FP4 collected at 0.0-0.5 feet below ground surface.

⁹ Composite sample from SS-FP1 to SS-FP4 collected at 1.0-1.5 feet below ground surface.

¹⁰ Composite sample from SS-FP5 to SS-FP7 collected at 0.0-0.5 feet below ground surface.

¹¹ Composite sample from SS-FP5 to SS-FP7 collected at 1.0-1.5 feet below ground surface.

¹² Composite sample from SS-FP8 to SS-FP10 collected at 0.0-0.5 feet below ground surface.

¹³ Composite sample from SS-FP1 to SS-FP4 collected at 1.0-1.5 feet below ground surface.

¹⁴ Results were reported by the laboratory on a dry-weight basis. Values in the table have been converted to "as received"-weight basis to be consistent with other samples. Moisture content 14 to 15 percent.

Table 5: WET and TCLP Metal Concentrations in Soil, 751-785 Seventh Street, Oakland, California (µg/L)

Sample ID	Top of Sample Interval (ft bgs)	Sample Date	Cadmium, DI WET	Copper, DI WET	Lead, DI WET	Nickel, DI WET	Lead, WET	Nickel, WET	Lead, TCLP
Hazardous Waste	Criteria ¹		NA	NA	NA	NA	5,000	20,000	5,000
Phase I			1						
B-FP03	5.0	2/4/03						<u>31,000</u>	
B-FP06	2.0	2/5/03							<300
B-FP06	2.0	2/5/03					1,500	17,000	
B-FP06	5.0	2/5/03						<u>26,000</u>	
Phase II									
B-FP10	0.5	11/28/05			520				
B-FP11	0.5	11/28/05			61	640			
B-FP11	3.5	11/28/05	31	61					
B-FP12	0.5	11/29/05				1,200			
B-FP13	0.5	11/28/05			31				
B-FP14	0.5	11/29/05			11				
B-FP14	3.5	11/29/05				250			
COMP 1	0.0	11/21/05			7				
COMP 5	0.0	11/22/05			14				
COMP 6	1.0	11/22/05			13				

Notes:

COMP X = composite sample

DI WET = Waste Extraction Test using deionized water

NA = not applicable

TCLP = toxicity characteristic leaching procedure

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

-- = not analyzed

Sample locations are shown on Figure 2.

Underlined values exceed hazardous waste criteria.

Values shown in **bold** are concentrations quantified above laboratory reporting limits.

¹ WET - California Hazardous Waste criteria; TCLP - RCRA Hazardous Waste criteria.
Tuble of I offention mater Diplicity is in bolly for for before birder outhand, camping ing ing is
--

Sample Location	Top of Sample Interval (feet bgs)	Sample Date	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Aroclor-1262
Residential ES	SLs ≤3 meter	rs (9.8 feet) 1	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Commercial H	ESLs ≤3 mete	ers (9.8 feet) 1	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Phase I										
B-FP01	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP01	5.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	5.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	1.5	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	2.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP07	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP07	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP FY ²	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP RY ³	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8082.

Sample locations are shown on Figure 2.

¹ Table B, Environmental Screening Levels, Shallow Soils, (\leq 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

Sample Location	Top of Sample Interval (feet bgs)	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Residential ESLs ≤	3 meters (9.8 feet)	1	19	13	2.8	0.38	0.038	0.38	27	0.38	23	0.062	40	8.9	0.62	1.3	11	85
Commercial ESLs <	≤3 meters (9.8 feet)) ¹	19	13	2.8	1.3	0.13	1.3	27	1.3	23	0.21	40	8.9	2.1	2.8	11	85
Phase I			-															
B-FP01	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP01	5.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	5.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	1.5	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	2.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP07	2.5	02/05/03	0.14	0.55	0.20	<u>1.5</u>	<u>3.9</u>	<u>2.0</u>	3.4	0.85	2.2	<u>2.6</u>	3.0	0.091	<u>2.4</u>	1.8	1.3	4.6
B-FP07	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP FY ²	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP RY ³	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phase II																		
B-FP07A	2.5	11/28/05	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051
B-FP07B	2.0	11/29/05	< 0.005	< 0.005	< 0.005	0.011	0.023	0.015	0.027	0.016	0.016	0.0065	0.017	< 0.005	0.019	< 0.005	0.0097	0.018
B-FP07B	3.5	11/29/05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0069	< 0.005	< 0.005
B-FP07C	2.5	11/22/05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8310.

Sample locations are shown on Figure 2.

Underlined values exceed the Commercial ESL and background value.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the residential ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

Sample Location	Top of Sample Interval (feet bgs)	Sample Date	Total Cyanide (mg/kg)	pН
Residential ESLs ≤3	3 meters (9.8 feet)	1	0.0036	NA
Commercial ESLs <	3 meters (9.8 feet)	1	0.0036	NA
Phase I				
B-FP01	2.5	02/05/03	<1	5.9
B-FP01	5.5	02/05/03	<1	6.3
B-FP02	2.5	02/05/03	<1	5.7
B-FP02	5.5	02/05/03	<1	5.2
B-FP03	1.5	02/04/03	<1	7.0
B-FP03	5.0	02/04/03	<1	6.4
B-FP04	2.0	02/04/03	<1	5.9
B-FP04	5.0	02/04/03	<1	7.5
B-FP05	2.0	02/04/03	<1	7.8
B-FP05	5.0	02/04/03	<1	7.5
B-FP06	2.0	02/05/03	<1	5.9
B-FP06	5.0	02/05/03	<1	6.1
B-FP07	2.5	02/05/03	<1	9.2
B-FP07	5.0	02/05/03	<u>11</u>	8.0
COMP FY ²	7.0	02/05/03	<1	6.2
COMP RY ³	7.0	02/05/03	<1	7.4

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<x.x = compound not identified above laboratory reporting limit of x.x

Cyanide analyzed in accordance with EPA Methods 335.2.

pH analyzed in accordance with EPA Methods 9045C.

Sample locations are shown on Figure 2.

Underlined values exceed the Commercial ESL and background value.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the residential ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, ($\leq 3 \text{ m bgs}$), Groundwater is not a

Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

Somula Location	Top of Sample	Sample		TDU
Sample Location		Date	IPH as diesel	IPH as gasoline
Residential ESLs ≤ 3 r	neters (9.8 feet)		100	100
Commercial ESLs ≤ 3	meters (9.8 feet) ¹		180	180
Phase I	I	1	1	1
B-FP01	2.5	02/05/03		< 0.19
B-FP01	2.5	02/05/03	<1	
B-FP01	5.5	02/05/03		< 0.16
B-FP01	5.5	02/05/03	<1	
B-FP02	2.5	02/05/03		< 0.19
B-FP02	2.5	02/05/03	<1	
B-FP02	5.5	02/05/03		< 0.19
B-FP02	5.5	02/05/03	<1	
B-FP03	1.5	02/04/03		< 0.19
B-FP03	1.5	02/04/03	<1	
B-FP03	5.0	02/04/03		< 0.17
B-FP03	5.0	02/04/03	<1	
B-FP04	2.0	02/04/03	<1	
B-FP04	2.5	02/04/03		<0.2
B-FP04	5.0	02/04/03	<1	<1.1
B-FP05	2.5	02/04/03		< 0.17
B-FP05	2.0	02/04/03	3.4	
B-FP05	5.5	02/04/03		< 0.18
B-FP05	5.0	02/04/03	<1	
B-FP06	2.5	02/05/03		<0.2
B-FP06	2.0	02/05/03	<1	
B-FP06	5.5	02/05/03		< 0.18
B-FP06	5.0	02/05/03	<1	
B-FP07	2.5	02/05/03		< 0.21
B-FP07	2.5	02/05/03	3.6	
B-FP07	5.5	02/05/03		<0.2
B-FP07	5.0	02/05/03	<1	
COMP FY ²	7.0	02/05/03	<1	<1
COMP RY ³	7.0	02/05/03	<1	<0.98

Table 9: Petroleun	n Hydrocarbons ir	n Soil, 781-785 Seventh	Street, Oakland,	California (mg/kg)
--------------------	-------------------	-------------------------	------------------	--------------------

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

TPH = total petroluem hydrocarbons

<x.x = compound not identified above laboratory reporting limit of x.x

Sample locations are shown on Figure 2.

TPH as diesel analyzed in accordance with EPA Methods 8015M with silica gel clean-up.

TPH as gasoline analyzed in accordance with EPA Methods 8015M.

Values reported above the laboratory reporting limit are indicated in bold text.

¹ Table B, Environmental Screening Levels, Shallow Soils, ($\leq 3 \text{ m bgs}$), Groundwater is not a Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

Table 10: Volatile Organic Compounds in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	Acetone	m,p-Xylenes	o-Xylene	MTBE	Carbon Disulfide	2-Chlorotoluene	Chloroform	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene
Residential/Comm	ercial ESLs ¹	1,500	100	100	1,800	NE	NE	330	25	590	590	62	360
Phase I													
B-FP04	02/05/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	21
B-FP05	02/05/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	42
MW-FP1	02/12/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
MW-FP2	02/12/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Phase II													
B-FP07A	11/29/05	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
B-FP09	11/22/05	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5
B-FP10	11/28/05	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.1	< 0.5	< 0.5	9.8	8.9
B-FP11	11/28/05	<10	< 0.5	< 0.5	7.7	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	1.2	1.2
B-FP13	11/29/05	13	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	11	0.9	< 0.5	13
B-FP14	11/29/05	<400	<20	<20	<20	<20	<20	<20	<20	2,200	58	<20	1,000
B-FP16	11/28/05	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	8
B-FP17	11/28/05	<10	< 0.5	< 0.5	1.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SS-FP09	11/29/05	<10	< 0.5	1.0	< 0.5	< 0.5	4.1	< 0.5	< 0.5	1.7	< 0.5	< 0.5	3.6
MW-FP1	11/28/05	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-FP2	11/28/05	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
Phase III													
B-FP18	03/31/06	<170	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3	1,200	26	<8.3	600
B-FP19	03/30/06	<10	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	< 0.5	< 0.5	6.4
B-FP20	03/30/06	<400	<20	<20	<20	<20	<20	<20	<20	3,000	31	<20	390
B-FP21	03/31/06	<63	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	540	6.3	<3.1	57
B-FP22	03/31/06	<630	<31	<31	<31	<31	<31	<31	<31	3,400	88	<31	1,500
B-FP23	03/30/06	<71	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	5.3	520	11	<3.6	310

Table 10: Volatile Organic Compounds in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	Acetone	m,p-Xylenes	o-Xylene	MTBE	Carbon Disulfide	2-Chlorotoluene	Chloroform	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethen	1,1,1-Trichloroethane	Trichloroethene
Residential/Comm	ercial ESLs ¹	1,500	100	100	1,800	NE	NE	330	25	590	590	62	360
Phase IV													
MW-FP1	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
MW-FP2	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-FP3	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.9
MW-FP4A	04/15/10	34	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	31	1.9	< 0.5	51
MW-FP4B ²	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	19	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
MW-FP5	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2
MW-FP6	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	9.4
MW-FP7B	04/15/10	<10	< 0.5	< 0.5	1.3	< 0.5	< 0.5	7.9	< 0.5	2.3	< 0.5	< 0.5	4.9
MW-3 (Shell)	04/15/10	<10	< 0.5	< 0.5	1.0	0.6	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-9 (Shell)	04/15/10	<10	< 0.5	< 0.5	1.3	< 0.5	< 0.5	< 0.5	< 0.5	48	0.9	< 0.5	27

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

MTBE = methyl tertiary-butyl ether

NE = not established

Shell =groundwater monitoring wells from Shell Service Station at 610 Market Street

 $\mu g/L = microgram per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Method 8260B.

Laboratory reports for Phase II and III investigations are included in Appendix D.

Only those analytes reported above the laboratory reporting limit in at least one sample are shown.

Sample locations shown on Figure 2.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, (\leq 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² The groundwater sample for volatile organic analysis from MW-FB4B reportedly contains more than one milliliter of headspace, and therefore, may be biased low.

Table 11: Dissolved Metals in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample	ntimony, Dissolved	rrsenic, Dissolved	arium, Dissolved	eryllium, Dissolved	² admium, Dissolved	Jhromium VI, Dissolved	Jhromium, Dissolved	obalt, Dissolved	Jopper, Dissolved	cead, Dissolved	fercury, Dissolved	Aolybdenum, Dissolved	iickel, Dissolved	elenium, Dissolved	ilver, Dissolved	'hallium, Dissolved	'anadium, Dissolved	inc, Dissolved
Residential/Comme	rcial ESLs ¹	30	36	1 000	0.53	0.25	11	180	3.0	31	25	0.025	240	82	5.0	0.19	40	19	81
Phase I	Colur EBES	50	50	1,000	0.55	0.25	11	100	5.0	5.1	2.0	0.025	210	0.2	5.0	0.17	1.0	17	01
B-FP04	02/05/03	<60	<5	110	<2	<5	<10	<10	<20	<10	<3	< 0.2	<20	32	<5	<5	<5	<10	<20
B-FP05	02/05/03	<60	<5	62	<2	<5	10	17	<20	<10	<3	< 0.2	<20	96	11	<5	<5	<10	<20
MW-FP1	02/12/03	<60	<5	67	<2	<5	<10	<10	<20	<10	<3	< 0.2	<20	24	<5	<5	<5	<10	<20
MW-FP2	02/12/03	<60	<5	74	<2	<5	70	61	<20	<10	<3	< 0.2	<20	<20	<5	<5	<5	<10	<20
Phase III																			
B-FP23	03/31/06	<600	<5	<10	<2	<5	360,000	1,300,000	300	<10	120	0.25	160	1,000	<50	18	250	160	<200
FP-GRAB GW ²	06/04/07	180	13	15	<2	<5	100,000	93,000	37	15	<3	< 0.2	23	270	<10	<5	16	25	<20
Phase IV																			
MW-FP1	04/15/10	<10	<5.0	41	<2.0	<5.0	20	13	<5.0	<5.0	<5.0	< 0.20	<5.0	16	<10	<5.0	<10	<5.0	<2.0
MW-FP2	04/15/10	<10	< 5.0	61	<2.0	< 5.0	30	22	<5.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	<10	< 5.0	<10	< 5.0	<2.0
MW-FP3	04/15/10	<10	< 5.0	49	<2.0	< 5.0	180	150	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	25	<10	< 5.0	<10	< 5.0	71
MW-FP4A	04/15/10	<10	<5.0	<5.0	<2.0	<5.0	460,000	400,000	180	37	<5.0	< 0.20	68	930	<10	<5.0	110	<5.0	61
MW-FP4B	04/15/10	<10	< 5.0	41	<2.0	< 5.0	30	43	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	<10	< 5.0	<10	20	30
MW-FP5	04/15/10	<10	<5.0	51	<2.0	<5.0	14,000	11,000	5.6	<5.0	<5.0	< 0.20	16	9.9	<10	<5.0	<10	< 5.0	25
MW-FP6	04/15/10	<10	<5.0	40	<2.0	<5.0	15,000	11,000	6.1	6.5	<5.0	< 0.20	<5.0	26	<10	<5.0	<100	<5.0	33
MW-FP7B	04/15/10	<10	<5.0	34	<2.0	<5.0	1,200	1,200	<5.0	<5.0	<5.0	< 0.20	<5.0	<5.0	<10	<5.0	<10	<5.0	<2.0
MW-3 (Shell)	04/15/10	<10	<5.0	190	<2.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	< 0.20	<5.0	< 5.0	<10	<5.0	<10	<5.0	20
MW-9 (Shell)	04/15/10	<10	< 5.0	64	<2.0	< 5.0	5,700	4,900	<5.0	5.8	<5.0	< 0.20	< 5.0	19	<10	<5.0	<10	< 5.0	26

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

Shell = groundwater monitoring wells from Shell Service Station at 610 Market Street.

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 6010B/7400/7196A.

Sample locations shown on Figure 2.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, \notin 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Grab goundwater sample collected underneath former Frog Pond, adjacent to concrete column.

Table 12: Polychlorinated Biphenyls in Groundwater , 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample n Date		Aroclor-1016 Aroclor-1221		Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Aroclor-1262
Residential/Com	mercial ESLs ¹	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Phase I									
B-FP04	02/05/03	<1	<1	<1	<1	<1	<1	<1	<1
B-FP05	02/05/03	<1	<1	<1	<1	<1	<1	<1	<1
MW-FP1	02/12/03	< 0.47	< 0.94	< 0.47	< 0.47	< 0.47	< 0.47	< 0.47	
MW-FP2	02/12/03	< 0.49	< 0.97	< 0.49	< 0.49	< 0.49	< 0.49	< 0.49	

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8082.

Sample locations shown on Figure 2.

¹ Table B, Environmental Screening Levels, Shallow Soils, (\leq 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

Table 13: Polynuclear Aromatic Hydrocarbons in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Residential/Com	mercial ESLs ¹	23	30	0.73	0.027	0.014	0.029	0.10	0.40	0.35	0.25	8.0	3.9	0.048	24	4.6	2.0
Phase I																	
B-FP04	02/05/03	<1	<1	<1	<1	< 0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
B-FP05	02/05/03	<1	<1	<1	<1	< 0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-FP1	02/12/03	< 0.94	<1.9	< 0.09	< 0.09	< 0.09	< 0.19	< 0.19	< 0.09	< 0.09	< 0.19	< 0.19	< 0.19	< 0.09	< 0.94	< 0.09	< 0.09
MW-FP2	02/12/03	< 0.94	<1.9	< 0.09	< 0.09	< 0.09	< 0.19	< 0.19	< 0.09	< 0.09	< 0.19	< 0.19	< 0.19	< 0.09	< 0.94	< 0.09	< 0.09
Phase II																	
B-FP07A	11/29/05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-FP1	11/28/05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-FP2	11/28/05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8310 or 8270C-SIM.

Sample locations shown on Figure 2.

¹ Table B, Environmental Screening Levels, Shallow Soils, (\leq 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

Table 14: Cyanide and pH in Groundwater, 781-785 Seventh Street, Oakland, California

		Total	
		Cyanide	
Sample Location	Sample Date	(µg/L)	pН
Residential/Commer	cial ESLs ¹	1.0	
Phase I			
B-FP04	02/05/03	<10	
B-FP05	02/05/03	<10	
MW-FP1	02/12/03	<10	
MW-FP2	02/12/03	<10	
Phase III			
B-FP23	03/31/06		10.1

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Cyanide analyzed in accordance with EPA Methods 335.2.

pH analyzed in accordance with EPA Methods 9045C.

Sample locations shown on Figure 2.

¹ Table B, Environmental Screening Levels, Shallow Soils, (\leq 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

Table 15: Petroleum Hydrocarbons in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample	Sample		
Location	Date	TPH as diesel	TPH as gasoline
Residential/Com	mercial ESLs ¹	210	210
Phase I			
B-FP03	02/04/03	<50	150
B-FP04	02/05/03	<50	<50
B-FP05	02/05/03	<50	<50
MW-FP1	02/12/03	260	<50
MW-FP2	02/12/03	110	<50
Phase II			
B-FP07A	11/29/05	<50	<50
MW-FP1	11/28/05	<50	<50
MW-FP2	11/28/05	<50	<50

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

TPH = total petroluem hydrocarbons

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Sample locations are shown on Figure 2.

TPH as diesel analyzed in accordance with EPA Methods 8015M with silica gel clean-up.

TPH as gasoline analyzed in accordance with EPA Methods 8015M.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, ($\leq 3 \text{ m bgs}$),

Groundwater is not a Current or Potential Source of Drinking Water.

Table 16: Geotechnical Parameters, 781-785 Seventh Street, Oakland, California

SampleID	Sample Depth (ft bgs)	Soil Type	Average permeabiliy (cm/sec)	Total porosity	Effective porosity	Density (pcf)	Total Organic Carbon (mg/kg)
		Grayish brown clayey					
MW-FP4B	26.0-26.5	sand	3E-07	38.4%	0.7%	105.8	NA
		Dark yellowish brown					
MW-FP4A	20.0-20.5	sand, some silt	NA	NA	NA	NA	< 0.01%

Notes:

cm/sec = centimeters per second

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NA = not analyzed

pcf = pounds per cubic foot

Hydraulic conductivity test performed in accordance with ASTM D5084.

Sample location shown on Figure 2.

Soil sample collected on 03/02/10.

Specific gravity test performed in accordance with ASTM D854m.

Total and effective porosity test performed in accordance with API RP40 and ASTM D6836m.

Total organic carbon analyzed in accordance with the Walkley-Black Method.

APPENDICES

APPENDIX A ALAMEDA COUNTY BORING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 02/23/2010 By jamesy

Permit Numbers: W2010-0096 to W2010-0101 Permits Valid from 04/12/2010 to 04/16/2010

Application Id: Site Location:	1266604422199 751-785 Seventh Street	City of Project Site:Oakland		
Project Start Date: Assigned Inspector: Extension Start Date: Extension Count:	Oakland CA 03/02/2010 Contact Vicky Hamlin at (510) 670-5443 or vickyh 04/12/2010 1	Completion Date:03/06/2010 @acpwa.org Extension End Date: 04/16/2010 Extended By: vickyh1		
Applicant:	BASELINE - William Scott	Phone: 510-420-8686 x190		
Property Owner:	Brush Street Group LLC 1153 3rd Street Street Suite 230 Oakland CA 94607	Phone: 510-000-0000		
Client:	BASELINE Environmental	Phone: 510-420-8686 x190		
Contact:	William Scott	Phone: 510-420-8686 x190 Cell: 510-612-7153		

	Total Due:	\$2382.00
Receipt Number: WR2010-0046 Paver Name : william scott	Total Amount Paid: Paid By: MC	\$2382.00 PAID IN FULL
	r ald by: Mo	

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 6 Wells Driller: Gregg Drilling - Lic #: 485165 - Method: hstem

Specification	ns						
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0096	02/23/2010	05/31/2010	MW-FP3	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0097	02/23/2010	05/31/2010	MW-FP4A	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0098	02/23/2010	05/31/2010	MW-FP4B	8.00 in.	2.00 in.	32.00 ft	50.00 ft
W2010- 0099	02/23/2010	05/31/2010	MW-FP5	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0100	02/23/2010	05/31/2010	MW-FP6	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0101	02/23/2010	05/31/2010	MW-FP7B	8.00 in.	2.00 in.	32.00 ft	50.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

Work Total: \$2382.00

Alameda County Public Works Agency - Water Resources Well Permit

waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five(5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

APPENDIX B BORING LOGS

UNIFIED SOILS CLASSIFICATION

	RIMARY DI	VISIONS		5	GROUP SYMBOL		SECOND	ARY DIVISION	S			
	AL	GRAV	ELS	CLEAN	GRAVEL	s	GW	Wellg	graded gravels, grave	el-sand mixtures,	little or no fines.	
) SOILS	MA I EH JO. 200	MORE THA OF COA FRACTIO	AN HALF ARSE ON IS	(LESS 5% F	S THAN FINES)		GP	Poorly graded gravels or gravel-sand mixtures, little or no fines.				
	AN N SIZE	LARGER TH 4 SIE	HAN NO. VE	GRAVEL			GM	Silty g	gravels, gravel-sand-	silt mixtures, non	-plastic fines.	
GRA				WITH	FINES		GC	Claye	y gravels, gravel-san	d-clay mixtures,	plastic fines.	
SE	ARGE SI SI	SANI	DS	CLEAN			SW	Well g	graded sands, gravell	y sands, little or	no fines.	
COAI	- S -	MORE THA OF COA	N HALF	(LESS 5% F	FINES)		SP	Poorly	Poorly graded sands or gravelly sands, little or no fines.			
		FRACTIC SMALLER	ON IS I THAN	SA	NDS		SM	Silty s	Silty sands, sand-silt mixtures, non-plastic fines.			
		NO. 4 S	IEVE	WIIH	FINES		SC	Claye	y sands, sand-clay m	nixtures, plastic fi	nes.	
	Jr SIZE	ç	SILTS AN LIQUID I	ID CLAYS			ML	Inorga clayey	anic silts and very find y fine sands or clayey	e sands, rock flo / silts with slight	ur, silty or plasticity.	
ED SO	SIEVE		LESS TH	IAN 50%			CL	Inorga sandy	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.			
RAIN	1 HAIN AL 15 - 200						OL	Organ	nic silts and organic s	ilty clays of low p	plasticity.	
	MURE AATERI HAN NO		SILTS AN LIQUID I	D CLAYS			МН	Inorga silty se	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.			
	~ †	GREATER THAN 50%					СН	Inorga	anic clays of high plas	sticity, fat clays.	· · · · · · · · · · · · · · · · · · ·	
							он	Organ	nic clays of medium to	high plasticity,	organic silts.	
	HIG	HLY ORGAI	NIC SOIL	S			Pt	Peat a	and other highly orga	nic soils.	анан алан алан алан алан алан алан алан	
]	DEFINITI	ON O	F TERMS	6				
		U.S	S. STAND	ARD SERIE	S SIEVE				CLEAR SOLIARE S		2	
		200	40		10		4		3/4" 3'		5 7"	
				SAND		<u></u>		GF	RAVEL			
SILTS AND	O CLAYS	FINE	N	IEDIUM	COA	RSE	FI	NE	COARSE	COBBLES	BOULDERS	
	nin ani a san				GR	AIN S	IZES				, , , 15925060 · · · · · · · · · · · · · · · · · ·	
	SANDS AND	GRAVELS	BLOWS)/FOOT [†]	e .	SILT	TS AND CL	AYS	STRENGTH [‡]	BLOWS/FOC)T [†]	
	VERY LOOSE 0 LOOSE 4 MEDIUM DENSE 10 DENSE 30 VERY DENSE OV					VERY SOFT SOFT FIRM STIFF VERY STIFF		T	0 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 OVER 4	0 - 2 2 - 4 4 - 8 8 - 16 16 - 32 OVER 32		
RELATIVE DENSITY									CONSISTENCY			
	[†] Number of blows of 140-pound hammer falling 30 inches to drive a 2-inch O.D. (1-3/8 inch I.D.) split spoon (ASTM D-1586). [‡] Unconfined compressive strength in tons/square foot as determined by laboratory testing or approximated by the standard penetration test (ASTM D-1586), pocket penetrometer, torvane, or visual observation.											

B<u>ASELIN</u>E

05-28-2010 P:\Baselogs\Y0323-03\MW-FP3.bor

05-28-2010 P:\Baselogs\Y0323-03\MW-FP4A.bor

05-28-2010 P:\Baselogs\Y0323-03\MW-FP4B.bor

						LOG OF BORING: MW-FP4B						
				-		(P	age 3 of 5)					
	5 Er	900 Hollis : neryville, C (510) 420 (510) 42	Street, Su California -8686 voi 0-1707 fa	uite D 94608 ice ax	Location Driller Method Logger Datum	: 751-785 Seventh St., Oakland Boring no. : Gregg Drilling Project no. : Hollow stem Date : WKS Casing size : N/A Bore size	: MW-FP4B : Y0323-03 : 3/2/10 : 2 inch : 8 1/4					
Depth in Inches	Sample	NSCS	Graphic	PID (ppm)	MW-FP4B	DESCRIPTION	REMARKS					
28 29 30 31 32 33 34 35 36 37 38 37 38 39 40		SP			Grout PVC casing, 2 inch	Some interbedding of clayey sand with silt Same as above; layers of medium dense and dense sand	Used 5' core barrel 4' recovery 2.5' recovery 3'3" recovery					
05-28-2010 P:\Baselogs\ 1 1 1 1 1 1 1 1 1 1 1 1 1		SP			Bentonite seal	Very dark grayish brown to grayish brown (2.5YR 3/2 - 4/2) SAND, fine grained, loose, wet (Merritt Sand)						

B	A	SE	ĽĽ	N	E		LOG OF BORING: MW-FP4B			
							of 5)			
5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax						Location Driller Method Logger Datum	: 751-785 Seventh St., Oakland : Gregg Drilling : Hollow stem : WKS : N/A	Boring no. Project no. Date Casing size Bore size	: MW-F : Y032 : 3/2/1(: 2 inch : 8 1/4	FP4B 3-03)
Depth in Inches	Sample	nscs	Graphic	PID (ppm)	MW-FI	P4B	DESCR	IPTION		REMARKS
42		SP				PVC casing, 2 inch Screen, PVC 010				3'4" recovery 3' recovery
52										Flowing sand becoming problem inside auger Added potable water inside auger to reduce effect 1.5' recovery

05-28-2010 P:\Baselogs\Y0323-03\MW-FP4B.bor

05-28-2010 P:\Baselogs\Y0323-03\MW-FP4B.bor

05-28-2010 P:\Baselogs\Y0323-03\MW-FP6.bor

$ \mathbf{B} $	A	S	EL	IN	E		LOG OF BORING: MW-FP7B				
						(Page 2 of 3)					
	5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax						: 751-785 Seventh St., Oakland : Gregg Drilling : Hollow stem : WKS : N/A	Boring no. Project no. Date Casing size Bore size	: MW-FP7B : Y0323-03 : 4/12/10 : 2 inch : 8 1/2		
Depth in Inches	Sample	USCS	Graphic	PID (ppm)	MW-FP7I	3	DESCRIPTIO	N	REMARKS		
18– 19–		SP									
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 35		SM					Dark olive brown (2.5YR 3/3) s fine grained, medium dense, v Sand)	silty SAND, vet (Merritt	0 PID drill cutting		

P		SI	EL	IN	F	LOG OF BORING: MW-FP7B					
							(Page 1 of 3)				
	59 Em	00 Hollis eryville, (510) 42 (510) 4	Street, S California 0-8686 v 20-1707	Suite D a 94608 voice fax		Location Driller Method Logger Datum	: 751-785 Seventh St., Oakland : Gregg Drilling : Hollow stem : WKS : N/A	Boring no. Project no. Date Casing size Bore size	: MW-FP7B : Y0323-03 : 4/12/10 : 2 inch : 8 1/2		
Depth in Inches	Sample	USCS	Graphic	PID (ppm)	MW-FP7	B — Christy box	DESCRIPTIO	N	REMARKS		
0-		SM/SP					Very dark brown (10YR 2/2) si SAND-SAND, fine grained, so moist (Fill)	ilty ft, very	Hand augered to 5 feet		
2- 3- 4- 5- 6- 7- 8- 9- 10-		SM				PVC casing, 2 inch	Yellowish brown (10YR 5/4) si fine grained, oxide stained, me dense, very moist (Merritt San	n (10YR 3/6)			
11- 12- 13- 13- 14- 14- 15- 15- 16-		SM					Mottled dark yellowish brown (and yellowish brown (10YR 5/- SAND, trace clay, medium der stained, very moist (Merritt Sa	(10YR 3/6) 4) silty nse, oxide nd)			
-01 05-28-2010 P:\Base -81 -81		SP					Dark yellowish brown (10YR 4 some silt, fine grained, dense, (Merritt Sand)	/4) SAND, wet			

APPENDIX C SURVEY DATA

CSS ENVIRONMENTAL SERVICES, INC. Managing Cost, Scope and Schedule 100 Galli Drive, Suite 1 Novato, CA 94949 Telephone: (415) 883-6203 Facsimile: (415) 883-6204

Site Positions

CSS Project 6633 - Baseline Environmental 751 Brush St, Oakland, CA

Horizontal Coordinate System:North American 1983-CONUSSurvey Date:04/15/10Height System:North American Vertical Datum 1988-Ortho. Ht. (GEOIDO3)Project file:6626 ERS Fremont.sprDesired Horizontal Accuracy:0.250Ft + 1ppmConfidence Level:95% Err.Linear Units of Measure:Int. Feet

	Site ID	Site_Descriptor	Position	95% Fix Error Status
1	0875	MONUMENT HT0875	Lat. 37° 46′ 47.37890″ N Lon. 122° 16′ 44.87725″ W Elv. 11.970	0.000 Fixed 0.000 Fixed 0.000 Fixed
2	3814	MONUMENT AA3814	Lat. 37° 44′ 59.76244″ N Lon. 122° 12′ 18.12186″ W Elv. 11.600	0.000 Fixed 0.000 Fixed 0.000 Fixed
.3	MW-FP1	TEM-B ON N RIM N TOC	Lat. 37° 48′ 09.02781″ N Lon. 122° 16′ 55.94308″ W Elv. 26.00 Elv. 25.77	0.174 0.206
4	MW-FP2	N RIM OF WELL BOX	Lat. 37° 48′ 07.22694″ N Lon. 122° 16′ 53.85962″ W Elv. 24.14 Elv. 23.81	0.033 0.032
5	MW-FP3	TBM-A ON N RIM N TOC	Lat. 37° 48′ 08.44796″ N Lon. 122° 16′ 55.59573″ W Elv. 25.95 Elv. 25.66	0.032 0.032 0.071
6	MW-FP4A	N RIM OF WELL BOX	Lat. 37° 48′ 08.16163″ N Lon. 122° 16′ 56.03348″ W Elv. 25.94 Elv. 25.64	0.033 0.032

CSS ENVIRONMENTAL SERVICES, INC. Managing Cost, Scope and Schedule 100 Galli Drive, Suite 1 Novato, CA 94949 Telephone: (415) 883-6203 Facsimile: (415) 883-6204

7	MW-FP4B	N RIM OF WELL	BOX Lat. Lon. Elv. TOC Elv.	37° 48′ 122° 16′	08.10626" 56.06945" 25.94 25.44	N 0.034 W 0.032
8	MW-FP5	N RIM OF WELL	BOX Lat. Lon. Elv. TOC Elv.	37° 48' 122° 16'	07.90853" 55.41758" 25.92 25.69	N 0.033 W 0.032
9	MW-FP6	N RIM OF WELL	BOX Lat. Lon. Elv. TOC Elv.	37° 48′ 122° 16′	06.92465" 56.23073" 21.56 21.04	N 0.045 W 0.056
10	MW-F97B	N RIM OF WELL 3	BOX Lat. Lon. Elv. TOC Elv.	37° 48′ 122° 16′	07.05197" 56.82023" 21.10 20.51	N 0.085 W 0.066

NOTE: The elevation of the North Top of Casing of Shell Monitoring Well MW-9 (located near MW-FP7B) was surveyed and found to be 21.03' in the current survey's NAVD88 datum. Its elevation has been reported by others as 18.42' in the NGVD29 datum (from GeoTracker). When comparing groundwater elevations from your Site to the Shell Site wells, add 2.61' to the reported Shell elevations for consistency.

APPENDIX D WELL DEVELOPMENT FORMS

Well No.: MW-FP1

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10	
Project Name: Brush Stree	et			-	De	pth of w	ell from TO	C (feet): 25.05	
Location: 751 Sevent	h St., Oakl	and, CA		-		We	ell diameter	(inches): 2	
				-	Screen	ed interv	val from TO	C (feet): 13-25	
Weather: Sunny, col	d				TOC	c elevatio	on, NAVD 8	38 (feet): 25.77	
Precip in past 5 days (in):	0.2 Oaklan	d North (ONC))		Groundwate	r elevatio	on, NAVD 8	88 (feet): 10.96	
				Water	level from TO	C (feet):	14.81	Time: 8:39	
Water level instrument:	Dual-phase	e interface pro	be (Solinst)	Product	level from TO	C (feet):	NA	Time: 8:39	
CALCULATION OF WE	ELL VOLU	JME:							
<i>(</i> -			- (0, 1/0 ³						
(25.05 ft	- 14.81 ft)) #########	$x \pi x / .48 \text{ gal/ft}^3 =$	1.7	_gallons in on	e casing	volume		
well depth	- water lev	e x (well radiu	$(s)^2 \propto \pi \propto \text{gal/ft}^3 =$	4.5	total gallons	removed			
CALIBRATION:									
		Temp	EC	DO	pН	ORP	Turbidity		
	Time	<u>(°C)</u>	<u>(µmho/cm)</u>	<u>(%)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>		
Calibration Standard:			1,000	100%	4.0/7.0/10.0	244	0/1.0		
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0		
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95		
	TS:								
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative	
	Time	(°C)	<u>(µmho/cm)</u>	<u>(mg/L)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed	
	8:47	Removing	sediment from bo	ottom of	well.			0.5	
	8:55	18.64	602	1.23	6.31	158.3	15.50	1.0	
	9:10	18.85	617	0.83	6.31	169.1	31.20	2.0	
	9:19	18.96	626	0.68	6.32	170.3	9.09	2.5	
	9:28	18.85	621	0.7	6.31	166.2	2.44	3.0	
	9:37	18.93	624	0.6	6.31	161.2	2.26	3.5	
	9:45	19.02	630	0.63	6.31	164.6	1.6	4.0	
	9:53	18.96	631	0.65	6.31	168.8	0.72	4.5	
Purge method:		Peristaltic P	ump and new dispo	sable pol	y tubing				
Decontamination method:									
Comments:									

Well No.: MW-FP2

Project No. Y0323-03	3				Recorded by:	wks		Date: 03/09/10
Project Name: Brush Str	eet			•	De	pth of w	ell from TO	OC (feet): 25.03
Location: 751 Sever	nth St., Oakl	and, CA		•		We	ell diameter	(inches): 2
				•	Screen	ned interv	val from TO	C (feet): 13-25
Weather: Sunny, co	old				TOC	2 elevatio	on, NAVD 8	38 (feet): 23.81
Precip in past 5 days (in)	: 0.2 Oaklan	d North (ONG)		Groundwate	r elevatio	on, NAVD 8	38 (feet): 10.61
				Water	level from TO	C (feet):	13.20	Time: <u>7:20</u>
Water level instrument:	Dual-phase	e interface pro	be (Solinst)	Product	level from TO	C (feet):	None	Time: <u>7:20</u>
CALCULATION OF W	ELL VOLU	JME:						
(25.02.0			7 10 1/03	1.0				
(25.03 f	t = 13.20 m	/ ##########	$x \pi x^{7}.48 \text{ gal/tt} =$	1.9	_gallons in one	e casing	volume	
well dept	n - water lev	e x (well radiu	$(s)^{2} \times \pi \times gal/tt^{2} =$	5.0	total gallons	removed		
CALIBRATION:								
		Temp	EC	DO	pН	ORP	Turbidity	
	Time	<u>(°C)</u>	<u>(µmho/cm)</u>	<u>(%)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	
Calibration Standard	:		1,000	100%	4.0/7.0/10.0	244	0/1.0	
Before Purging	: 7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0	
After Purging	:	17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95	
FIELD MEASUREMEI	NTS:							
•••••	••••	Temp	EC	DO	pН	ORP	Turbidity	Cumulative
	Time	<u>(°C)</u>	<u>(µmho/cm)</u>	<u>(mg/L)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed
	7:36	Removing	sediment from bo	ottom of	well.			0.5
	7:40	18.48	526	1.86	6.57	92.0	16.70	1.0
	7:48	18.49	494	1.49	6.60	108.5	7.58	2.0
	7:56	18.53	496	1.38	6.60	120.8	2.58	3.0
	8:04	18.60	495	1.42	6.60	128.9	1.23	4.0
	8:12	18.55	494	1.44	6.60	132.5	0.70	5.0
Purge method:	Purge method: Peristaltic Pump and new disposable poly tubing							
Decontamination method	1:							
Comments: Replace	d padlock to	well cap.						
<u> </u>	r	r						

Well No.: MW-FP3

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10
Project Name: Brush Stree	et			_	De	pth of w	ell from TO	C (feet): 25.08
Location: 751 Sevent	h St., Oakl	and, CA		_		We	ell diameter	(inches): 2
				_	Screen	ed inter	val from TO	C (feet): 12-25
Weather: Sunny					TOC	C elevation	on, NAVD 8	38 (feet): 25.66
Precip in past 5 days (in):	0.2 Oaklar	d North (ONC))		Groundwate	r elevati	on, NAVD 8	38 (feet): 10.78
				Water	level from TO	C (feet):	14.88	Time: 10:15
Water level instrument:	Dual-phas	e interface pro	be (Solinst)	Product	level from TO	C (feet):	None	Time: <u>10:15</u>
CALCULATION OF WE	LL VOLU	JME:						
(25.08 ft	- 14.88 ft) #########	x π x 7.48 gal/ft ³ =	= 1.7	gallons in on	e casing	volume	
well depth	- water lev	e x (well radiu	$(s)^2 x \pi x \text{ gal/ft}^3 =$	9.0	total gallons	removed		
CALIBRATION.		Temp	EC	DO	рH	ORP	Turbidity	
	Time	(°C)	(µmho/cm)	(%)	<u>S.U.</u>	(mV)	<u>NTU</u>	
Calibration Standard:			1.000	100%	4.0/7.0/10.0	244	0/1.0	
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0	
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95	
FIFI D MEASUREMEN								
		Temp	EC	DO	рH	ORP	Turbidity	Cumulative
	Time	(°C)	(µmho/cm)	(mg/L)	S.U.	(mV)	NTU	Gallons Removed
	10:17	Removing	sediment from bo	ottom of	well.		VT	0.5
	10:23	Surge block	κ.				ST	1.0
	10:39						VST	4.0
	10:40	Slow pump	ing rate					
	11:00	0.80	1700	2.69	6.91	197.5	65.8	5.0
	11:18	0.79	1570	0.47	6.57	200.1	43.7	6.0
*	11:35	18.78	1337	0.80	6.56	201.1	68.7	7.0
	11:52	19.13	1287	0.60	6.60	204.0	18.1	8.0
	12:12	19.04	1340	0.72	6.64	205.0	6.26	9.0
	VT = ver	y tubid						
	ST = very	v tubid						
	VST = ve	ry slightly tu	bid					
Purge method:		Peristaltic Pu	ump and new dispo	sable pol	y tubing			
Decontamination method:								
Comments: * Moved	pump inta	ke from bottor	n to mid screen.					

Well No.: MW-FP4A

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10	
Project Name: Brush Stree	t				De	epth of w	ell from TO	C (feet): 25.07	
Location: 751 Sevent	h St., Oakl	and, CA				We	ell diameter	(inches): 2	
					Screen	ned inter	val from TO	C (feet): 12-25	
Weather: Sunny					TOC	C elevati	on, NAVD 8	38 (feet): 25.64	
Precip in past 5 days (in):	0.2 Oaklar	d North (ONC))		Groundwate	r elevati	on, NAVD 8	38 (feet): 10.66	
				Water	level from TO	C (feet):	14.98	Time: 12:01	
Water level instrument:	Dual-phas	e interface pro	be (Solinst)	Product	level from TO	C (feet):	None	Time: <u>12:01</u>	
CALCULATION OF WE		JME:							
(25.07.8	14 09 4		$v = v = 7.48 \text{ co}^{1/\Omega^3} =$	1.6					
(23.07 Il well depth	- 14.98 IL) ####################################	$x \pi x / .48 \text{ gal/ft}^{-1}$	1.0	gamons in one	e casing	volume		
wen depui	- water lev	e x (well fault	is) x n x gai/it –	7.5	total gallons	removed			
CALIBRATION:									
		Temp	EC	DO	pН	ORP	Turbidity		
	Time	<u>(°C)</u>	(umho/cm)	<u>(%)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>		
Calibration Standard:			1,000	100%	4.0/7.0/10.0	244	0/1.0		
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0		
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95		
FIELD MEASUREMEN	rs:								
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative	
	Time	<u>(°C)</u>	(umho/cm)	<u>(mg/L)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed	
	13:45	Removing	sediment from bo	ottom of	well.	. ,		1.5	
	13:55	Surge block	K						
*	14:05							5.0	
**	14:13	17.77	3070	1.59	6.22	274	343	5.5	
	14:18	17.73	3043	1.43	6.23	279	321	6.0	
	14:23	17.72	3021	1.28	6.22	281	308	6.5	
	14:28	17.73	3008	1.25	6.22	278	314	7.5	
-									
-									
Purge method:		Peristaltic P	ump and new dispo	sable pol	y tubing				
Decontamination method:									
Comments: * Slowed	pump rate	down.							
** Purge w	ater deepe	r yellow in col	or.						

Well No.: MW-FP4B

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10
Project Name: Brush Stre	et			_	De	pth of w	vell from TO	C (feet): 56.85
Location: 751 Seven	th St., Oakl	and, CA		_		We	ell diameter	(inches): 2
				_	Screen	ed inter	val from TO	C (feet): 45-57
Weather: Sunny					TOC	C elevati	on, NAVD 8	38 (feet): 25.64
Precip in past 5 days (in):	0.2 Oaklar	nd North (ONO)		Groundwate	r elevati	on, NAVD 8	38 (feet): 10.66
				Water	level from TO	C (feet):	14.99	Time: 12:02
Water level instrument:	Dual-phase	e interface prob	e (Solinst)	Product	level from TO	C (feet):	None	Time: <u>12:02</u>
CALCULATION OF W	ELL VOLI	JME:						
(56.85 ft	- 14.99 ft) ########	$\kappa \pi \ge 7.48 \text{ gal/ft}^3 =$	= 6.8	gallons in one	e casing	volume	
well depth	- water lev	e x (well radius	$(x)^2 \propto \pi \propto \text{gal/ft}^3 =$	59.2	total gallons	removed	l	
					-			
CALIBRATION:		Temn	FC	DO	nН	ORP	Turbidity	
	Time	(°C)	(umho/cm)	(%)	SU	(mV)	NTU	
Calibration Standard:		<u> </u>	1 000	100%	4 0/7 0/10 0	244	0/1.0	
Before Purging	7.30	18.4	1,000	100%	4 0/7 0/10 0	244	0/1.0	
After Purging:	1.50	17.4	1 010	100%	4 0/7 0/10 1	237	0/0.95	
Third Turging.	1,010	10070	1.0/ / .0/ 10.1	237	0/0190			
FIELD MEASUREMEN	ITS:	m		DO		0.0.0		
	T	Temp	EC	DO	pH	ORP	Turbidity	Cumulative
	10.11	<u>(°C)</u> Removing s	<u>(µmno/cm)</u> ediment from b	(<u>mg/L)</u> ttom of	<u>5.U.</u> well	<u>(mv)</u>	$\frac{NIU}{VT}$	Gallons Removed
	10.11	Removing s	ediment from bo	ottom of	well		VT	5.0
	11.30	Surge block			wen.		VT	10.0
*	12:07	18 38	601	1 37	7 94	71.2	166	14.0
**	12:25	18.24	594	0.97	7.98	44.9	78.4	15.0
	12:39	16.98	541	0.85	8.04	31.5	50	15.5
	14:28	16.17	549	0.90	8.04	29.2	53.7	16.0
	Purged w	ith pump intal	ke at top of wate	er.				21.0
	Purge wa	ter went from	yellow to clear.					39.2
	2/11/2010)					20 6	
	5/11/2010	of casing pu	lonal 20 gallons	s with sui mately 1	25 gallons ne	npset a		
		<u>o or casing, pu</u>	inged at approxim	inducity 1.	25 ganons pe	1 mmu	.0.	
Purge method:		Peristaltic Pu	mp and new dispo	sable pol	y tubing			
Decontamination method	:							
Comments: * Slowed	d pump rate	down.						
** Moved	pump intak	te from bottom	to middle of well	screen.				

Well No.: MW-FP5

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10	
Project Name: Brush Stree	:t				De	pth of w	vell from TO	C (feet): 25.12	
Location: 751 Sevent	h St., Oakl	and, CA				We	ell diameter	(inches): 2	
					Screen	ed inter	val from TO	C (feet): 12-25	
Weather: Sunny					TOC	c elevati	on, NAVD 8	38 (feet): 25.69	
Precip in past 5 days (in):	0.2 Oaklar	d North (ONO)		Groundwate	r elevati	on, NAVD 8	38 (feet): 10.69	
			<u> </u>	Water	level from TO	C (feet):	15.00	Time: 11:59	
Water level instrument:	Dual-phase	e interface prob	be (Solinst)	Product	level from TO	C (feet):	None	Time: 11:59	
CALCULATION OF WE		JME:							
(25 12 B	15 00 A		$x = x - 7 - 48 \cos(1/4)^3 - 100 \cos(1/4) \cos(1/4) \cos(1/4) \cos(1/4) \cos(1/4) \cos(1/4) \cos(1/4) $	17	callong in on	andina			
(23.12 It well depth	- 15.00 IL) ############	$(\pi x / .40 \text{ gal/ft}^3 - 1)^2 x \pi x \cos(1/ft^3 - 1)^2$	1.7	ganons in one	casing	volume		
wen depui	- water lev	e x (well faulus	s) $x \pi x gal/\pi =$	30.3	total gallons i	lemoved	L		
CALIBRATION:									
		Temp	EC	DO	pН	ORP	Turbidity		
	Time	<u>(°C)</u>	<u>(µmho/cm)</u>	<u>(%)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>		
Calibration Standard:			1,000	100%	4.0/7.0/10.0	244	0/1.0		
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0		
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95		
FIELD MEASUREMEN	rs:								
	Temp	EC	DO	pН	ORP	Turbidity	Cumulative		
	Time	<u>(°C)</u>	(umho/cm)	<u>(mg/L)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed	
	12:22	Removing s	ediment from bo	ottom of	well.		VT	0.5	
	12:34	Surge block					VT	3.0	
	12:40	Surge block					VT	4.0	
* **	12:51						VST	7.0	
**	13:08	16.81	1136	2.98	7.25	192	291	8.0	
**	13:28	16.95	1165	3.26	7.24	199	265	9.0	
**	13:38	16.88	1193	2.76	7.22	197	154	9.5	
	13:48	16.97	1210	2.80	7.22	194	78.6	10.0	
	13:58	16.98	1226	2.92	7.22	190	71.0	10.5	
	14:18	16.81	1241	2.84	7.21	188	71.4	11.5	
-		_							
-									
Purge method: Peristaltic Pump and new disposable poly tubing									
Decontamination method:									
Comments: * Slowed	pump rate	down.							
** Purge w	ater vellov	v in color.							
<u></u>	<u> </u>								

Well No.: MW-FP6

Project No. Y0323-03					Recorded by	: wks		Date: 04/14/10		
Project Name: Brush Stree	et			•	D	epth of w	ell from TO	C (feet): 24.68		
Location: 751 Sevent	th St., Oakl	and, CA		•		We	ell diameter	(inches): 2		
	,	,			Scree	ened interv	val from TO	C (feet): 12-25		
Weather: Sunny					ТО	C elevatio	on. NAVD 8	38 (feet): 21.04		
Precip in past 5 days (in):	0.2 Oaklar	d North (ONC))		Groundwat	er elevatio	on. NAVD 8	38 (feet): 10.06		
		()	Water	level from T(C (feet):	10.98	Time: 7:00		
Water level instrument:	Dual-phase	e interface prol	be (Solinst)	Product	level from TO	DC (feet):	None	Time: 7:00		
CALCULATION OF WE		JME:								
- 10 1/23										
(24.68 ft	- 10.98 ft) #########	$x \pi x 7.48 \text{ gal/ft}^3 =$	2.2	gallons in or	ne casing	volume			
well depth	- water lev	e x (well radiu	s) ² x π x gal/ft ³ =	19	total gallons	removed				
CALIBRATION.										
		Temp	EC	DO	nН	ORP	Turbidity			
	Time	(°C)	(umho/cm)	(%)	SU	(mV)	NTU			
Calibration Standard	<u> </u>		<u>(primo, em)</u>	<u>(, , , , , , , , , , , , , , , , , , , </u>	<u></u>	<u>(111 ;)</u>	1110			
Refore Durging:										
A ftor Durging:										
Alter Purging.										
FIELD MEASUREMEN	TS:									
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative		
	<u>Time</u>	<u>(°C)</u>	<u>(µmho/cm)</u>	<u>(mg/L)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed		
	7:00	Removing s	sediment from bo	ottom of	well.					
	7:10	Surge block	2					2.0		
	7:30	18.17	2353	1.15	6.76	47.2	342	5.0		
	7:37	18.34	2197	0.95	6.73	44.4	250	8.0		
	7:58	18.44	2001	0.6	6.66	66.2	123	13		
	8:14	18.40	1916	0.56	6.63	80.9	38.2	16		
	8:30	18.41	1841	0.52	6.60	92.3	17.5	19		
-		_								
-		_								
Purge method		Peristaltic Pu	imn and new dispo	sahle nol	v tubing					
i urge memou.			mp and new dispo		y tuonig					
Decontamination method:										
Comments:										

Well No.: MW-FP7B

Project No. Y0323-03 Recorded by: wks Date: 03/09/										
Project Name: Brush Stree	t			_	D	Depth of w	ell from TO	C (feet): 49.04		
Location: 751 Sevent	h St., Oakl	and, CA		_		We	ll diameter	(inches): 2		
				_	Scree	ened interv	al from TO	C (feet): 39-49		
Weather: Sunny					TC	C elevation	on, NAVD 8	38 (feet): 20.51		
Precip in past 5 days (in):	0.2 Oaklar	d North (ONC)		Groundwat	er elevation	on, NAVD 8	88 (feet): 10.02		
				Water	level from TO	OC (feet):	10.49	Time: <u>9:13</u>		
Water level instrument:	Dual-phas	e interface prol	be (Solinst)	Product	level from T(OC (feet):	None	Time: <u>9:13</u>		
CALCULATION OF WE		JME:								
(40.04 8	10.40 8		$x = x - 7 - 48 \cos (4t^3 - 1)$	- 62	collong in a	na anging				
(49.04 Il well depth	- 10.49 IL) ############ o.v. (woll rodiu	$(x \pi x / .40 \text{ gal/ft}^3 - x - x)^2 x \pi x \text{ gal/ft}^3 - (x$	- 0.5	gamons in o	ne casing	volume			
wen depui-	- water lev	ex (well faulu	s) $x \pi x \text{ gai/n} =$	20.0	total ganons	stemoveu				
CALIBRATION:										
		Temp	EC	DO	pН	ORP	Turbidity			
	Time	<u>(°C)</u>	(umho/cm)	<u>(%)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>			
Calibration Standard:										
Before Purging:										
After Purging:										
	rs:									
	EC	DO	pН	ORP	Turbidity	Cumulative				
	Time	<u>(°C)</u>	(umho/cm)	<u>(mg/L)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed		
	9:30	Removing s	sediment from bo	ottom of	well.			3.0		
	9:54	Surge block						4.0		
	10:15	19.82	910	1.58	7.54	-13.2	135	10		
	10:30	19.72	628	1.07	7.35	-78.0	30.9	18		
	10:37	19.52	572	1.11	7.33	-74	10.46	22		
	10:45	19.57	540	0.98	7.31	-72	9.76	26 20		
	10:53	19.54	512	0.94	7.31	-/1.4	6.48	30		
	11:04	19.52	505	1.08	2.29	-/1.4	3.95	35		
-		_								
-										
Purge method:		Peristaltic Pu	imp and new dispo	sable pol	y tubing					
Decontamination method:										
Comments: * Slowed	pump rate	down.								
** Purge w	ater yellov	v in color.								

APPENDIX E GROUNDWATER SAMPLING FORMS

Well No.: MW-FP1 **GROUNDWATER SAMPLING** Project No. Well screened interval (feet) BTOC: 4/15/2010 Y0323-03 13 25.0 Date: Project name: Brush St. Tube inlet placed at (feet) BTOC : 19.9 Depth of well (feet) BTOC: 25.1 751-758 Brush St. 5.1 Location: Tube inlet (feet) ABOW Well diameter (inches) 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches Weather: Water Level from (feet) BTOC: 14.82 Sunnv Time: 7:06 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches): 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 19.9 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.09 liters of water in tubing 40 min. tubing length (ft.) tubing diameter (ft.) flow cell vol (L) total liters removed CALIBRATION **Before Purging** After Purging Standard Time: 7:30 14:40 - -13.45 Temp (°C): 20.21 - -100% 98% $100\% 0^2$ saturated DO NTU: 0.0/9.70.0 / 10.0 0.0 / 10.82 235 @ 20.2 248 ORP (mV): 248 @ 13.5 4.0/7.0/10.0 4.10/7.07/9.97 4.0/7.0/10.0 pH: E C (µmho/cm): 1,000 (umho/cm): 940 (umho/cm): 1.000 (umho/cm): FIELD MEASUREMENTS Cumulative Purge Rate EC Purge Vol. Water Level from ORP DO Time TOC (ft.) (L / min)pН (umho/cm): (mV): (mg/l): NTU Removed (L) Temp (°C) 0805 14.95 6.34 538 231 1.54 4.98 1.0 17.41 ---0810 14.98 0.20 6.34 547 220 1.44 4.88 2.0 17.85 0815 14.98 0.20 6.34 545 211 1.34 4.05 3.0 18.17 14.98 550 207 1.31 4.0 18.42 0820 0.20 6.34 2.61 Laboratory: Curtis & Tompkins Ltd Appearance of sample: Clear Sample Time: 8:30 Duplicate/blank number: None Time: - -Rinsate disposal: 55-gallon drum temporarily stored on site Sample analyses: VOCs, Title 22 metals, Cr VI Peristaltic Pump with new disposable poly Sampling equipment: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash) tubing Sample containers: BTOC= below top of casing bgs= below ground surface ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)

Well No.: MW-FP2 **GROUNDWATER SAMPLING** Project No. Well screened interval (feet) BTOC: Y0323-03 25.0 Date: 4/15/2010 13 Project name: Brush St. Tube inlet placed at (feet) BTOC 19.0 Depth of well (feet) BTOC: 25.0 751-758 Brush St. Location: Tube inlet (feet) ABOW 6.0 Well diameter (inches): 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches Weather: Sunnv Water Level from (feet) BTOC: 13.19 6:59 Time: 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches): 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 19.0 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.08 liters of water in tubing 8.0 total liters removed min. tubing length (ft.) tubing radius (ft.) flow cell vol (L) CALIBRATION **Before Purging After Purging** Standard Time: 7:30 14:40 - -13.45 Temp (°C): 20.21 - -98% 100% 0² saturated DO (%) 100% 0.0/9.7 0.0 / 10.0 Turbidity (NTU): 0.0 / 10.82 235 @ 20.2 244 ORP (mV): 248 @ 13.5 4.0/7.0/10.0 4.10/7.07/9.97 4.0/7.0/10.0 pH: E C (µmho/cm): $1.000 (\mu mho/cm)$: 940 (umho/cm): 1,000 FIELD MEASUREMENTS Cumulative Temperature EC Water Level from Purge Rate ORP DO Turbidity Purge Vol. TOC (ft.) (L / min)pН (umho/cm): (mV): (mg/l): (NTU): Removed (L) (^{0}C) : Time 1249 13.25 6.82 542 98 2.26 2.96 1.0 20.69 ---1301 13.25 0 17 526 104 1.91 2.003.0 20.68 6.65 1310 13.26 0.11 6.63 522 101 1.88 1.65 4.0 21.06 1316 521 95 5.0 21.27 13.26 0.17 6.61 1.83 1.39 6.0 1322 13.26 0.17 6.62 520 93 1.73 1.53 21.45 0.17 523 89 7.0 21.53 1328 13.26 6.63 1.68 1.10 8.0 1334 13.26 0.17 Laboratory: Curtis & Tompkins Ltd Appearance of sample: Clear Sample Time: 8:34 Duplicate/blank number: None Time: - -Rinsate disposal: 55-gallon drum temporarily stored on site Sample analyses: VOCs, Title 22 metals, Cr VI Peristaltic Pump with new disposable poly Sampling equipment: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash) tubing Sample containers: BTOC= below top of casing bgs= below ground surface ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)

GROUNDWATE	R SAMPLING					Well No.:	MW-FP3		
Project No.	Y0323-03		Well screened	interval (feet) BTC	DC: 12	25.0		Date:	4/15/2010
Project name:	Brush St.		_	Tube in	let placed at (feet) BTOC :	19.9		Depth of well (feet) BTOC:	25.1
Location:	751-758 Brush St.		_		Tube inlet (feet) ABOW :	5.1		Well diameter (inches):	2
Sampled and Recorded by:	RR & WKS		_	Di	scharge Tubing Used (ID):	0.17	inches		
Weather:	Sunny		_	Wate	er Level from (feet) BTOC:	14.82		Time:	7:09
Precip. in past 5 days (inches): 1.36	001654.1			1/4-inch OD tubing =	0.17 inch ID			
water Level Instrument:	Solinst Model 122, s/n	001654-1	_		3/8-inch OD tubing =	0.25 inch ID			
CALCULATION OF TH	HE WATER VOLUM	IE CONTAIN	ED WITHIN THE L	OW-FLOW SYS	STEM				
19.9	9 ft. x $(0.00708 \text{ ft})^2 \text{ x}$	π x 28.32 liter	$rs/ft^3 + 1.0 L =$	1.09	liters of water in tubing				
min. tubing length (ft.)	tubing radius (ft.)		flow cell vol (L)	8.0	total liters removed				
CALIBRATION	Before Purging		After Purging		Standard				
Time:	7:30		14:40						
Temp (°C):	13.45		20.21						
DO (%)	100%		98%		100% 0 ² saturated				
Turbidity (NTU):	0.0 / 9.7		0.0 / 10.82		0.0 / 10.0				
ORP (mV):	248 @ 13.5		235 @ 20.2		244				
pH:	4.0/7.0/10.0		4.10/7.07/9.97		4.0/7.0/10.0				
E C (µmho/cm):	1,000 (µmho/cm):		940 (µmho/cm):		1,000				
FIELD MEASUREMEN	TELD MEASUREMENTS							Cumulative	
	Water Level from	Purge Rate		EC	ORP	DO	Turbidity	Purge Vol.	Temperature
Time	TOC (ft.)	(L / min)	pH	(µmho/cm):	$(\overline{\mathrm{mV}})$:	(mg/l):	(NTU):	Removed (L)	(^{0}C) :
0807	15.04		6.45	1,170	239	1.97	7.22	1.0	16.86
0816	15.08	0.19	6.33	1,131	221	1.94	5.57	2.8	17.52
0828	15.10	0.10	6.40	1,132	206	2.68	4.66	4.0	17.57
0834	15.11	0.17	6.51	1,153	196	2.49	5.02	5.0	17.71
0840	15.12	0.17	6.47	1,152	161	1.79	4.69	6.0	17.84
0846	15.12	0.17	6.45	1,150	147	1.46	4.47	7.0	17.89
0852	15.13	0.17	6.44	1,145	145	2.41	3.60	8.0	17.97
	~		~			Laboratory:	Curtis & Tompkins Lt	d	
Appearance of sample:	Clear		Sample Time:	9:00					
Duplicate/blank number:	None		Time:			Rinsate disposal:	55-gallon drum tempo	rarily stored on site	
Sampling equipment:	Peristaltic Pump with new	disposable poly	Sample analyses: V	OCs, Title 22 metals,	, Cr VI				
	tubing		Sample containers: 3	-40 ml VOA's, 1-500	ml poly, 1-250 ml poly	Decon method:	ASTM 5088-02, (thre	e bucket wash)	
BTOC= below top of casing	bgs= below ground sur	face	ABOW= above botton	n of well					
BASELINE QA/QC Peer I	Review Completed:		(initial, date)						

Well No.: MW-FP4A **GROUNDWATER SAMPLING** Project No. Well screened interval (feet) BTOC: Y0323-03 25.0 Date: 4/15/2010 12 Project name: Brush St. Tube inlet placed at (feet) BTOC 20.0 Depth of well (feet) BTOC: 25.1 751-758 Brush St. 5.0 Location: Tube inlet (feet) ABOW Well diameter (inches): 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches 15.01 Weather: Sunnv Water Level from (feet) BTOC: Time: 7:14 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches): 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 20.0 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.09 liters of water in tubing 40total liters removed min. tubing length (ft.) tubing radius (ft.) flow cell vol (L) CALIBRATION **Before Purging After Purging** Standard Time: 7:30 14:40 - -Temp (°C): 13.45 20.21 - -98% 100% 0² saturated DO (%) 100% 0.0/9.7 0.0 / 10.0 Turbidity (NTU): 0.0 / 10.82 235 @ 20.2 244 ORP (mV): 248 @ 13.5 4.0/7.0/10.0 4.10/7.07/9.97 4.0/7.0/10.0 pH: E C (µmho/cm): $1.000 (\mu mho/cm)$: 940 (umho/cm): 1,000 FIELD MEASUREMENTS Cumulative Temperature EC Water Level from Purge Rate ORP DO Turbidity Purge Vol. Time TOC (ft.) (L / min)pН (umho/cm): (mV): (mg/l): (NTU): Removed (L) (^{0}C) : 14:11 15.05 6.00 2,754 240 1.25 12.50 1.0 19.66 ---1416 15.05 0.00 5.99 2,745 253 1.32 12.00 2.0 197 1421 15.05 0.20 5.99 2,744 258 1.38 10.67 3.0 19.72 1426 5.99 2,731 266 4.0 19.72 15.05 0.20 1.29 10.29 Laboratory: Curtis & Tompkins Ltd Appearance of sample: yellow Sample Time: 14:35 Duplicate/blank number: None Time: - -Rinsate disposal: 55-gallon drum temporarily stored on site Sample analyses: VOCs, Title 22 metals, Cr VI Peristaltic Pump with new disposable poly Sampling equipment: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash) tubing Sample containers: BTOC= below top of casing bgs= below ground surface ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)

Well No.: MW-FP4B **GROUNDWATER SAMPLING** Project No. Well screened interval (feet) BTOC: Y0323-03 45 57.0 Date: 4/15/2010 Project name: Brush St. Tube inlet placed at (feet) BTOC 51.0 Depth of well (feet) BTOC: 56.9 751-758 Brush St. Location: Tube inlet (feet) ABOW 6.0 Well diameter (inches): 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.25 inches 14.92 Weather: Sunnv Water Level from (feet) BTOC: 7:11 Time: 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches) 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 51.0 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.49 liters of water in tubing tubing diameter (ft.) 70 min. tubing length (ft.) flow cell vol (L) total liters removed CALIBRATION **Before Purging After Purging** Standard Time: 7:30 14:40 - -13.45 20.21 Temp (°C): - -100% $100\% 0^2$ saturated DO 98% NTU: 0.0/9.70.0 / 10.82 0.0 / 10.0 235 @ 20.2 244 ORP (mV): 248 @ 13.5 4.0/7.0/10.0 4.10/7.07/9.97 4.0/7.0/10.0 pH: E C (µmho/cm): $1,000 (\mu mho/cm)$: 940 (umho/cm): $1.000 (\mu mho/cm)$: FIELD MEASUREMENTS Cumulative EC Purge Vol. Water Level from Purge Rate ORP DO TOC (ft.) (L / min)<u>pH</u> (umho/cm): (mV): (mg/l): NTU Removed (L) Temp (°C) Time 1340 14.98 9.06 324 3 0.35 26.70 3.0 18.6 ---1346 017 9.01 319 -11 0.31 25.30 4.018.69 15.12 1352 15.38 0.17 9.00 319 -26 0.35 21.30 5.0 18.7 1359 9.00 321 -29 6.0 15.38 0.14 0.42 17.60 18.66 7.0 1405 15.38 0.17 9.00 322 -34 0.39 16.80 18.63 Laboratory: Curtis & Tompkins Ltd Appearance of sample: Clear Sample Time: 14:10 Duplicate/blank number: None Time: Rinsate disposal: 55-gallon drum temporarily stored on site Sample analyses: VOCs, Title 22 metals, Cr VI Peristaltic Pump with new disposable poly Sampling equipment: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash) tubing Sample containers: BTOC= below top of casing bgs= below ground surface ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)

Well No.: MW-FP5 **GROUNDWATER SAMPLING** Project No. Well screened interval (feet) BTOC: Y0323-03 25.0 Date: 4/15/2010 12 Project name: Brush St. Tube inlet placed at (feet) BTOC 20.0 Depth of well (feet) BTOC: 25.1 751-758 Brush St. 5.0 Location: Tube inlet (feet) ABOW Well diameter (inches): 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches Weather: Sunnv Water Level from (feet) BTOC: 15.01 Time: 7:13 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches): 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 20.0 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.09 liters of water in tubing 55 total liters removed min. tubing length (ft.) tubing diameter (ft.) flow cell vol (L) CALIBRATION **Before Purging After Purging** Standard Time: 7:30 14:40 - -13.45 20.21 Temp (°C): - - $100\% 0^2$ saturated DO 100% 98% NTU: 0.0/9.7 0.0 / 10.82 0.0 / 10.0235 @ 20.2 244 ORP (mV): 248 @ 13.5 4.10/7.07/9.97 4.0/7.0/10.0 pH: 4.0/7.0/10.0 E C (µmho/cm): 1,000 (umho/cm): 940 (umho/cm): 1,000 (umho/cm): FIELD MEASUREMENTS Cumulative EC DO Water Level from Purge Rate ORP Purge Vol. Time TOC (ft.) (L / min)pН (umho/cm): (mV): (mg/l): NTU Removed (L) Temp (°C) 1224 15.08 7.07 776 80 6.49 57.80 1.5 19.20 --1232 15.08 0.13 7.07 794 89 5.99 58.40 2.5 19.21 1240 15.08 0.13 7.06 794 97 6.12 46.56 3.5 19.41 794 7.06 4.5 1248 15.09 0.13 100 6.11 45.23 19.46 5.5 1256 15.09 0.13 7.07 786 105 6.46 42.30 19.50 Laboratory: Curtis & Tompkins Ltd Appearance of sample: Clear Sample Time: 13:00 Duplicate/blank number: None Time: - -Rinsate disposal: 55-gallon drum temporarily stored on site Sample analyses: VOCs, Title 22 metals, Cr VI Peristaltic Pump with new disposable poly Sampling equipment: Decon method: ASTM 5088-02, (three bucket wash) Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly tubing bgs= below ground surface BTOC= below top of casing ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)

GROUNDWATE	R SAMPLING					Well No.:	MW-FP6		
Project No.	Y0323-03		Well screene	ed interval (feet) BTC	DC: 12	25.0		Date:	4/15/2010
Project name:	Brush St.		_	Tube in	let placed at (feet) BTOC :	18.5	-	Depth of well (feet) BTOC:	25.1
Location:	751-758 Brush St.				Tube inlet (feet) ABOW :	6.5		Well diameter (inches):	2
Sampled and Recorded by:	RR & WKS		_	Di	scharge Tubing Used (ID):	0.17	inches	_	
Weather:	Sunny		_	Wate	er Level from (feet) BTOC:	10.98	_	Time:	7:04
Precip. in past 5 days (inches	s) 1.36				1/4-inch OD tubing =	0.17 inch ID			
Water Level Instrument:	Solinst Model 122, s/n	001654-1	_		3/8-inch OD tubing =	0.25 inch ID			
CALCULATION OF T	HE WATER VOLUN	AE CONTAI	NED WITHIN THE	LOW-FLOW SY	STEM				
18.5	5 ft. x $(0.00708 \text{ ft})^2 \text{ x}$	π x 28.32 lite	$rs/ft^3 + 1.0 L =$	1.08	liters of water in tubing				
min. tubing length (ft.)	tubing diameter (ft.)		flow cell vol (L)) 8.0	total liters removed				
CALIBRATION	Before Purging		After Purging		Standard				
Time:	7:30		14:40	_					
Temp (°C):	13.45		20.21						
DO	100%		98%		100% 0 ² saturated				
NTU:	0.0 / 9.7		0.0 / 10.82	_	0.0 / 10.0				
ORP (mV):	248 @ 13.5		235 @ 20.2	_	244				
pH:	$\frac{4.0/7.0/10.0}{1.000 (umbo/cm)}$			_	4.0/7.0/10.0				
E C (µmho/cm):	1,000 (µmho/cm):		940 (µmho/cm):		1,000 (µmho/cm):				
FIELD MEASUREMEN	FIELD MEASUREMENTS							Cumulative	
Water Level from Purge Rate			EC	ORP	DO		Purge Vol.		
Time	TOC (ft.)	(L / min)	pH	(µmho/cm):	$(\overline{\mathrm{mV}})$:	(mg/l):	<u>NTU</u>	Removed (L)	Temp (°C)
1105	11.21		6.84	2,140	62	0.52	3.55	2.5	19.78
1115	11.21	0.25	6.67	1,990	65	0.45	2.89	5.0	19.90
1120	11.23	0.20	6.66	1,942	69	0.43	2.69	6.0	20.02
1125	11.23	0.20	6.64	1,910	68	0.43	2.56	7.0	20.09
1130	11.23	0.20	6.63	1,905	75	0.43	2.67	8.0	20.20
			_						
						Laboratory	r: Curtis & Tompkins Lt	d	
Appearance of sample:	Clear		Sample Time:	11:35		Euconatory	Curris & Tompkins Et		
Duplicate/blank number:	None		Time		_	Rinsate disposal	: 55-gallon drum tempo	rarily stored on site	
Compling oquinti	Peristaltic Pumn with new	disposable poly	Sample analyses:	VOCs, Title 22 metals,	, Cr VI	*	^		
tubing Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml					ml poly, 1-250 ml poly	Decon method	: ASTM 5088-02, (three	e bucket wash)	
BTOC= below top of casing			bgs= below ground s	urface	ABOW= above bottor	n of well			
BASELINE QA/QC Peer	Review Completed:		_(initial, date)						

GROUNDWATE	<u>R SAMPLING</u>					Well No.:	MW-FP7B		
Project No.	Y0323-03		Well screen	ned interval (feet) BTC	DC: 39	49.0		Date:	4/15/2010
Project name:	Brush St.		_	Tube in	let placed at (feet) BTOC :	44.0	_	Depth of well (feet) BTOC:	49.0
Location:	751-758 Brush St.				Tube inlet (feet) ABOW :	5.0	_	Well diameter (inches):	2
Sampled and Recorded by:	RR & WKS		_	Di	scharge Tubing Used (ID):	0.25	inches		
Weather:	Sunny		_	Wate	er Level from (feet) BTOC:	10.48	_	Time:	7:07
Precip. in past 5 days (inches	5) 1.36				1/4-inch OD tubing =	0.17 inch ID			
Water Level Instrument:	Solinst Model 122, s/n	001654-1	_		3/8-inch OD tubing =	0.25 inch ID			
CALCULATION OF TH	HE WATER VOLUM	IE CONTAI	NED WITHIN THI	E LOW-FLOW SY	STEM				
44.0) ft. x $(0.00708 \text{ ft})^2 \text{ x}$	π x 28.32 liter	$rs/ft^3 + 1.0 L =$	1.42	liters of water in tubing				
min. tubing length (ft.)	tubing radius (ft.)		flow cell vol (L	20.0	total liters removed				
CALIBRATION	Before Purging		After Purging		Standard				
Time:	7:30		14:40						
Temp (°C):	13.45		20.21	_					
DO (%)	100%		98%	_	100% 0 ² saturated				
Turbidity (NTU):	0.0 / 9.7		0.0 / 10.82		0.0 / 10.0				
ORP (mV):	248 @ 13.5		235 @ 20.2		244				
pH:	4.0/7.0/10.0		4.10/7.07/9.97		4.0/7.0/10.0				
E C (μmho/cm):	1,000 (µmho/cm):		940 (µmho/cm):		1,000				
FIELD MEASUREMEN	TS							Cumulative	
	Water Level from	Purge Rate		EC	ORP	DO	Turbidity	Purge Vol.	Temperature
Time	TOC (ft.)	(L / min)	 pH	$(\mu m ho/cm)$:	$(\overline{\mathrm{mV}})$:	(mg/l):	(NTU):	Removed (L)	$({}^{0}C):$
1054	10.63		7.50	580	-83	1.12	9.91	1.0	20.85
1108	10.63	0.29	7.39	606	-74	0.71	5.78	5.0	20.33
1119	10.63	0.27	7.31	635	-91	0.63	3.57	8.0	20.18
1127	10.63	0.25	7.38	585	-96	0.81	3.58	10.0	20.21
1135	10.62	0.38	7.45	549	-98	0.99	3.13	13.0	20.72
1140	10.61	0.20	7.42	561	-100	0.50	2.99	14.0	20.63
1143	10.59	0.33	7.41	569	-104	0.36	2.48	15.0	20.68
1147	10.59	0.25	7.39	570	-108	0.30	2.99	16.0	20.95
1151	10.59	0.25	7.40	571	-114	0.28	2.32	17.0	20.99
1155	10.59	0.25	7.39	572	-115	0.34	2.55	18.0	20.99
1159	10.59	0.25	7.39	573	-126	0.35	2.32	19.0	21.00
1203	10.59	0.25	7.38	578	-126	0.33	2.45	20.0	21.14
						Laboratory	: Curtis & Tompkins Lto	d	
Appearance of sample:	light yellow		Sample Time	12:13					
Duplicate/blank number:	None		Time	e:		Rinsate disposal	: 55-gallon drum tempor	rarily stored on site	
Sampling equipment:	Peristaltic Pump with new	disposable polv	Sample analyses:	VOCs, Title 22 metals,	, Cr VI				
Sampning equipment.	tubing	Poolog Pool	Sample containers:	3-40 ml VOA's, 1-500	ml poly, 1-250 ml poly	Decon method	: ASTM 5088-02, (thre	e bucket wash)	
BTOC= below top of casing			bgs= below ground s	surface	ABOW= above botton	n of well			
BASELINE QA/QC Peer	Review Completed:		(initial, date)						

Well No.: MW-3 (Shell) **GROUNDWATER SAMPLING** Project No. Well screened interval (feet) BTOC: 4/15/2010 Y0323-03 10 18.4 Date: Project name: Brush St. Tube inlet placed at (feet) BTOC 14.2 Depth of well (feet) BTOC: 18.4 751-758 Brush St. 4.2 Location: Tube inlet (feet) ABOW Well diameter (inches): 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches Weather: Sunnv Water Level from (feet) BTOC: 11.00 Time: 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches): 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 14.2 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.06 liters of water in tubing 6.0 total liters removed min. tubing length (ft.) tubing radius (ft.) flow cell vol (L) CALIBRATION **Before Purging After Purging** Standard Time: 10:10 14:40 - -Temp (°C): 13.45 20.21 - -98% 100% 0² saturated DO (%) 100% 0.0/9.7 0.0 / 10.0 Turbidity (NTU): 0.0 / 10.82 235 @ 20.2 244 ORP (mV): 248 @ 13.5 4.0/7.0/10.0 4.10/7.07/9.97 4.0/7.0/10.0 pH: E C (µmho/cm): $1.000 (\mu mho/cm)$: 940 (umho/cm): 1,000 FIELD MEASUREMENTS Cumulative Temperature EC Water Level from Purge Rate ORP DO Turbidity Purge Vol. TOC (ft.) (L / min)pН (umho/cm): (mV): (mg/l): (NTU): Removed (L) (^{0}C) : Time 0923 10.90 6.33 327 -127 1.04 1.92 1.0 18.16 ---0929 11.02 0 17 6.32 316 -1080.59 2.23 2.0 18.34 0936 11.18 0.14 6.32 329 -110 0.45 2.45 3.0 18.58 346 -101 4.0 18.67 0943 11.24 0.14 6.48 0.54 1.64 5.0 0949 11.31 0.17 6.33 332 -116 0.52 1.50 18.64 0.17 0955 11.40 6.33 356 -116 0.60 1.54 6.0 18.76 Laboratory: Curtis & Tompkins Ltd Appearance of sample: Clear Sample Time: 10:10 Duplicate/blank number: None Time: Rinsate disposal: 55-gallon drum temporarily stored on site Sample analyses: VOCs, Title 22 metals, Cr VI Peristaltic Pump with new disposable poly Sampling equipment: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash) tubing Sample containers: BTOC= below top of casing bgs= below ground surface ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)

GROUNDWATER SAMPLING Well No.: MW-9 (Shell) Project No. Well screened interval (feet) BTOC: Y0323-03 18.4 Date: 4/15/2010 10 Project name: Brush St. Tube inlet placed at (feet) BTOC 14.2 Depth of well (feet) BTOC: 19.7 751-758 Brush St. 4.2 Location: Tube inlet (feet) ABOW Well diameter (inches): 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches Weather: Sunnv Water Level from (feet) BTOC: 10.98 Time: 9:13 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches): 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 14.2 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.06 liters of water in tubing tubing diameter (ft.) 13.5 min. tubing length (ft.) flow cell vol (L) total liters removed CALIBRATION **Before Purging After Purging** Standard Time: 7:30 14:40 - -13.45 20.21 Temp (°C): - - $100\% 0^2$ saturated DO 100% 98% NTU: 0.0/9.7 0.0 / 10.82 0.0 / 10.0235 @ 20.2 244 ORP (mV): 248 @ 13.5 4.10/7.07/9.97 4.0/7.0/10.0 pH: 4.0/7.0/10.0 E C (µmho/cm): 1,000 (umho/cm): 940 (umho/cm): 1,000 (umho/cm): FIELD MEASUREMENTS Cumulative EC DO Water Level from Purge Rate ORP Purge Vol. TOC (ft.) (L / min)pН (umho/cm): (mV): (mg/l): NTU Removed (L) Temp (°C) Time 0930 11.04 6.55 857 34 0.97 3.22 1.5 17.45 --0940 11.12 0.20 6.55 877 37 3.14 3.5 17.44 1.000950 11.19 0.20 6.54 890 44 1.22 2.15 5.5 17.82 880 52 2.07 7.5 1000 11.21 0.20 6.55 0.99 17.88 9.5 1010 11.22 0.20 6.54 984 87 0.34 3.36 17.88 998 93 17.85 1015 11.22 0.20 6.53 0.29 1.68 10.5 1020 11.22 0.20 6.52 1.038 96 0.31 1.59 11.5 17.96 1025 11.22 0.20 6.51 1,047 106 0.31 1.23 12.5 17.98 1030 11.22 0.20 6.51 1,052 110 0.31 1.20 13.5 18.01 Laboratory: Curtis & Tompkins Ltd Appearance of sample: Clear Sample Time: 10:35 Duplicate/blank number: None Time: - -Rinsate disposal: 55-gallon drum temporarily stored on site

Sample analyses: VOCs, Title 22 metals, Cr VI Peristaltic Pump with new disposable poly Sampling equipment: Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash) tubing bgs= below ground surface BTOC= below top of casing ABOW= above bottom of well (initial, date)

BASELINE QA/QC Peer Review Completed:

APPENDIX F LABORATORY ANALYTICAL REPORTS

(ON CD-ROM IN PORTABLE DOCUMENT FORMAT) C&T Laboratory Report No. 218575 C&T Laboratory Report No. 219511 Cooper Testing Report 360-062

QUALITY CONTROL CHECKLIST FOR REVIEW OF LABORATORY REPORT

Job No.	Y0323-03
000 110	10525 05

Laboratory: Curtis and Tompkins, Ltd.

Г

Report Date: 17 March 2010

Site: 751-785 7thSt Laboratory Report No.: 218575

1

BASELINE Reviewer: JM

		Yes	No	NA
GE (De exp	NERAL QUESTIONS scribe "no" responses below in "comments" section. Contact the laboratory, as requ lanation or action on "no" responses; document discussion in comments section.)	ired, fo	r furthe	r
1a.	Does the report include a case narrative? (A case narrative MUST be prepared by the lab for all analytical work requested by BASELINE)	Х		
1b.	Is the number of pages for the lab report as indicated on the case narrative/lab transmittal consistent with the number of pages that are included in report?	Х		
1c.	Does the case narrative indicate which samples were analyzed by a subcontractor and the subcontractor's name?			Х
1d.	Does the case narrative summarize subsequent requests not shown on the chain-of- custody (e.g., additional analyses requested, release of "hold" samples)?			Х
1e.	Does the case narrative explain why requested analyses could not be performed by laboratory (e.g., insufficient sample)?			Х
1f.	Does the case narrative explain all problems with the QA/QC data as identified in the checklist (as applicable)?			Х
2a.	Is the laboratory report format consistent and legible throughout the report?	Х		
2b.	Are the sample and reported dates shown in the laboratory report correct?	Х		
3a.	Does the lab report include an original copy of the chain-of-custody form?	Х		
3b.	Were all samples appropriately analyzed as requested on the chain-of-custody form?	X		
4.	Was the lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel? (Some lab reports have signature spaces for each page). (This requirement also applies to any analyses subcontracted out by the laboratory)	Х		
5a.	Are preparation methods, cleanup methods (if applicable), and laboratory methods indicated for all analyses?	Х		
5b.	If additional analytes were requested as part of the reporting of the data for an analytical method, were these included in the lab report?			Х
6.	Are the units in the lab report provided for each analysis consistent throughout the report?	Х		
7.	Are the detection limits (DL) appropriate based on the intended use of the data (e.g., DL below applicable MCLs for water quality issues)?	X		

Quality Control Checklist - continued

	Yes	No	NA
8a. Are detection limits appropriate based on the analysis performed (i.e., not elevated due to dilution effects)?	Х		
8b. If no, is an explanation provided by the laboratory?			Х
9a. Were the samples analyzed within the appropriate holding time (generally 2 weeks for volatiles, and up to 6 months for total metals)?	Х		
9b. If no, was it flagged in the report?			Х
10. If samples were composited prior to analysis, does the lab report indicate which samples were composited for each analysis?			Х
11a. Do the chromatograms confirm quantitative laboratory results (petroleum hydrocarbons)?			Х
11b. Is a standard chromatogram(s) included in the laboratory report?			Х
11c. Do the chromatograms confirm laboratory notes, if present (e.g., sample exhibits lighter hydrocarbon than standard)?			Х
12. Are the results consistent with previous analytical results from the site? (If no, contact the lab and request review/reanalysis of data, as appropriate.)	X		
13a. REVISED LAB REPORTS ONLY. Is the revised lab report or revised pages to a lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel?			Х
13b. REVISED LAB REPORTS ONLY. Does the case narrative indicate the date of revision and provide an explanation for the revision?			Х
13c. REVISED LAB REPORTS ONLY. Does the revised lab report adequately address the problem(s) that triggered the need for a revision?			Х
13d. REVISED LAB REPORTS ONLY. Are the data included in the revised report the same as the data reported in the original report, except where the report was revised to correct incorrectly reported data?			Х
<i>QA/QC Questions</i> Field/Laboratory Quality Control - Groundwater Analyses			
14. Are field blanks reported as "ND" (groundwater samples)? A field blank is a sample of DI water that is prepared in the field using the same collection and handling procedures as the other samples collected, and used to demonstrate that the sampling procedure has not contaminated the sample.			Х
14a. Are rinsate blanks reported as "ND" (soil samples)? A rinsate blank is a sample of DI water that is prepared in the field by collecting DI rinse water after it has been poured over decontaminated sampling equipment. The rinsate blank is collected to demonstrate that the decontamination procedure has removed all the contaminants from the sampling equipment and that the sampling equipment has not contaminated the sample.			Х

	Yes	No	NA
15. Are trip blanks reported as "ND" (groundwater samples/volatile analyses)? A trip blank is a sample of contaminant free matrix placed in an appropriate container by the lab and transported with the field samples collected. Provides information regarding positive interference introduced during sample transport, storage, preservation, and analysis. The sample is NOT opened in the field.			Х
16. Are duplicate sample results consistent with the original sample (groundwater samples)? Field duplicates consist of two independent samples collected at the same sampling location during a single sampling event. Used to evaluate precision of the analytical data and sampling technique. (Differences between the duplicate and sample results may also be attributed to environmental variability.)			Х
Batch Quality Control (Samples are batched together by matrix [soil, water] and analyses requested. A batch general fewer samples of the same matrix type, and is prepared using the same reagents, standards, p frame as the samples. QC samples are run with each batch to assess performance of the entir process.)	ally const rocedures e measur	ists of 20 s, and tir rement) or ne
17. Do the sample batch numbers and corresponding laboratory QA/QC batch numbers match?	Х		
18a. Are method blanks (MB) for the analytical method(s) below the laboratory reporting limits? Used to assess lab contamination and prevent false positive results.	Х		
18b. If no, is an explanation provided in the case narrative to validate the data?			X
18c. Are analytes that may be considered laboratory contaminants reported below the laboratory reporting limit? <i>Common lab contaminants include acetone, methylene chloride, diethylhexyl phthalate, and di-n-octyl phthalate.</i>	Х		
18d. If no, was the laboratory contacted to determine whether the reported analyte could be a potential laboratory contaminant and was an explanation included in the case narrative?			Х
19. Are laboratory control samples (LCS) and LCS duplicate (LCSD) [a.k.a., Blank Spike (BS) and BS duplicates (BSD)] within laboratory reporting limits? Limits should be provided on the report. <i>LCS is a reagent blank spike with a representative selection of target analyte(s) and prepared in the same manner as the samples analyzed. The LCS should be spiked with the same analytes as the matrix spike (below). The LCS is free from interferences from the sample matrix and demonstrates the ability of the lab instruments to recover the target analytes. Accuracy (recovery information) is generally reported as % spike recovery; precision (reproducibility of results) between the LCS and LCSD is generally reported as the relative percent difference (RPD). LCS/LCSD can be run in addition to or in lieu of matrix QC data.</i>	x		
20a. Are the Matrix QC data (i.e., MS/MSD) within laboratory limits? Limits should be provided on the lab report. <i>The lab selects a sample from the batch and analyzes a spike and a spike duplicate of that sample. Matrix QC data is used to obtain precision and accuracy information and is reported in the same manner as LCS/LCSD. If the MS/MSD fails, the results may still be considered valid if the MB and either the LCS/LCSD or BS/BSD is within the lab's limits (failure is probably due to matrix interference).</i>	X		

	Yes	No	NA
20b. If no, is the MB and either LCS/LCSD or BS/BSD within lab limits to validate the data?			Х
Sample Quality Control			
21a. Are the surrogate spikes reported within the lab's acceptable recovery limits? A surrogate is a non-target analyte, which is similar in chemical structure to the analyte(s) being analyzed for, and which is not commonly found in environmental samples. A known concentration of the surrogate is spiked into the sample or QA "sample" prior to extraction or sample preparation. Results are usually reported as % recovery of the spike. Failure to meet lab's limits for primary and secondary surrogates results in rebatching and reanalysis of the sample; failure of only the primary or the secondary surrogate may be acceptable under certain circumstances. Failure generally is due to coelution with the sample matrix.	Х		
21b. If no, is an explanation given in the case narrative to validate the data?			Х

Comments:

and setting to the

H

Laboratory Job Number 218575 ANALYTICAL REPORT

Baseline Environmental	Project	:	Y0232-03
5900 Hollis Street	Location	:	751-785 Seventh St. Oakland
Emeryville, CA 94608	Level	:	II

<u>Sample ID</u>	<u>Lab ID</u>
MW-FP3;5.0-5.5	218575-001
MW-FP4A;5.0-5.5	218575-002
MW-FP4A;10.0-10.5	218575-003
MW-FP4A;15.0-15.5	218575-004
MW-FP4A;20.0-20.5	218575-005
MW-FP5;5.0-5.5	218575-006
MW-FP5;10.0-10.5	218575-007
MW-FP5;15.0-15.5	218575-008
MW-FP5;20.0-20.5	218575-009

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Derine 71. Tetralt

Signature:

Project Manager

Date: <u>03/17/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 218575 Baseline Environmental Y0232-03 751-785 Seventh St. Oakland 03/03/10 03/03/10

This data package contains sample and QC results for nine soil samples, requested for the above referenced project on 03/03/10. The samples were received cold and intact.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

Hexavalent Chromium (EPA 7196A):

No analytical problems were encountered.

Total Organic Carbon (TOC) (WALKLEY-BLACK):

No analytical problems were encountered.

23.0

BASELINE Environmental Consulting

CHAIN OF CUSTODY RECORD

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

218575

Turn-Around-Time Standard TAT

Laboratory Curtis & Tompkins, Ltd.

BASELINE Contact Person Lydia Huang

Project Number Y0232-03																				
Project Name: 751 - 785 Seventh	St. Oaklar	nd																		
Samplers Signature				Containers			Presv.		8260)						ls 7400)	196A)				
Sample ID					inless Steel	ss liner	crocore			DC's (EPA					c	le 22 Meta PA 6010B/	VI (EPA 7			
No. Station	Date	Time	Media	No.	Stai	Bra	Ma	. S		×					J	Tit (E)	Ç			
MW-FP3;5.0-5.5	3-3-10	5 ZZO 9:02	5	۱		1										Х	X			
MW-FP4A;5.0-5.5		7:20	5	1		1										Х	Х			
MW-FP4A;10.0-10.5		7:35	5)		١										х	Х			
MW-FP4A;15.0-15.5		7:38	5	1		١										x	x			
MW-FP4A;20.0-20.5		7146	5	ι		۱									x	Х	Х			
MW-FP5;5.0-5.5		10:35	5	١		1										х	х			
MW-FP5;10.0-10.5		10:39	5	<u>۱</u>		۱,										x	Х			
MW-FP5;15.0-15.5		10:44	5	1		1										x	х			
MW-FP5;20.0-20.5	ł	10:50	٢	(ı							,			X	х			
Relinquished by: (Signature)	Date/Time 3/3/10	12:15		Receiv	Received by: (Signature)		mak		ah		Date/Time 3/3/10 12:11		:15	•	Remark	s:				
Relinquished by: (Signature)	Date/Time			Receiv	ved by:	: (Sigr	nature)	C)	\mathcal{O}		Date/Tin	ne				'I			
Relinquished by: (Signature)	Date/Time			Received by: (Signature) Date/Time Email contact:					ι:											
Received at laboratory with intact custody seal:	Samp	les conditions U Arrival:	Ipon	Com	ments	5:	· ·					1								
Yes No Ala	Intact	On Ice	Cold																	

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # 218575 Date Received 3/2/10 Client <u>FASELINE</u> Project 751-70	Number of coolers /. 5 FTH ST. OALCORD,
Date Opened 43/10 By (print) M. NILL by Be (sign) Date Logged in By (print) (sign)	Maller
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES DO
 2A. Were custody seals present? □ YES (circle) on cooler How manyName 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out togother the packing in cooler: (if other describe) 	on samples Date Date YES NO NA YES NO YES NO p of form) YES NO
Bubble Wrap Foam blocks Bags Cloth material Cardboard Styrofoam 7. Temperature documentation:	□ None □ Paper towels
Type of ice used: 🗌 Wet 🖉 Blue/Gel 🔲 None	Temp(°C)
Samples Received on ice & cold without a temperature l	olank
Samples received on ice directly from the field. Cooling	process had begun
 8. Were Method 5035 sampling containers present? If VES, what time were they transferred to freezer? 	Process had begun YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 	Process had begun YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 	Process had begun YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 	YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 	Process had begun YES NO YES NO YES NO YES NO YES NO YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 	Process had begun YES NO SES NO SES NO ES NO ES NO ES NO VES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present?	Process had begun YES NO YES NO YES NO YES NO YES NO YES NO YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 	Process had begun YES NO YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? 	Process had begun YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present?	YES NO YES NO
 Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present?	YES NO
Samples received on ice directly from the held. Cooling 8. Were Method 5035 sampling containers present?	YES NO YES NO
Samples received on ice directly from the held. Cooling Were Method 5035 sampling containers present?	YES NO YES NO
Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present?	Process had begun YES NO Date:
Samples received on ice directly from the field. Cooling 8. Were Method 5035 sampling containers present?	Process had begun YES NO Date:

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\gc\forms\checklists\Cooler Receipt Checklist_rv6.doc

		Califor	nia Ti	tle 22 M	letals		
Lab #:	218575			Project#:	YO	232-03	
Client:	Baseline Enviro]	Location:	75	51-785 Sevent	h St. Oakland	
Field ID:	MW-FP3;5.0-5.5]	Basis:	as	received	
Lab ID:	218575-001]	Diln Fac:	1.	000	
Matrix:	Soil		:	Sampled:	03	8/03/10	
Units:	mg/Kg]	Received:	03	8/03/10	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	3.2	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	47	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.43	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	72	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	5.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	20	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	3.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.021	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	51	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	0.69	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	38	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	33	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Cal	ifornia	Title	22 Meta	ls					
Lab #:	218575			Proje	ect#:	Y0232	-03				
Client:	Baseline Er	ental	Loca	tion:	751-78	751-785 Seventh St. Oakland					
Field ID:	MW-FP4A;5.()-5.5		Basi	s:	as re	ceived				
Lab ID:	218575-002			Samp	led:	03/03	/10				
Matrix:	Soil			Rece	ived:	03/03	/10				
Units:	mg/Kg										
Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis			
Antimony	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Arsenic	2.1	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Barium	47	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Beryllium	0.22	0.10	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Cadmium	1.8	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Chromium	1,400	2.4	10.00	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Cobalt	6.3	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Copper	88	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Lead	1.7	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Mercury	ND	0.020	1.000	160652	03/05/10	03/05/10	METHOD	EPA 7471A			
Molybdenum	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Nickel	36	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Selenium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Silver	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Thallium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Vanadium	29	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			
Zinc	22	1.0	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B			

California Title 22 Metals													
Lab #:	218575		Proje	ect#:	Y0232-03								
Client:	Baseline Environmental			Location:		751-785 Seventh St. Oakland							
Field ID:	MW-FP4A;10.0-10.5			Basis:		as received							
Lab ID:	218575-003			Sampled:		03/03/10							
Matrix:	Soil	Soil			Received:		03/03/10						
Units:	mg/Kg	mg/Kg											
Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Ana	alysis				
Antimony	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Arsenic	2.1	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Barium	46	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Beryllium	0.27	0.10	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Cadmium	2.0	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Chromium	440	2.3	10.00	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Cobalt	4.9	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Copper	140	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Lead	2.2	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Mercury	ND	0.021	1.000	160652	03/05/10	03/05/10	METHOD	EPA	7471A				
Molybdenum	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Nickel	62	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Selenium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Silver	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Thallium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Vanadium	27	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				
Zinc	27	1.0	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA	6010B				

California Title 22 Metals												
Lab #:	218575]	Project#:	YO	232-03						
Client:	Baseline Enviro]	Location:	75	751-785 Seventh St. Oakland							
Field ID:	MW-FP4A;15.0-15	Basis:		as	received							
Lab ID:	218575-004	Diln Fac:		1.	000							
Matrix:	Soil	Sampled:		03	/03/10							
Units:	mg/Kg	I	Received:	03	03/03/10							
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis					
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Arsenic	2.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Barium	40	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Beryllium	0.25	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Chromium	130	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Cobalt	5.6	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Copper	7.1	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Lead	2.1	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A					
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Nickel	76	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Vanadium	33	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					
Zinc	21	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B					

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Cal	ifornia	Title	22 Meta	ls		
Lab #:	218575			Proje	ect#:	Y0232-	-03	
Client:	Baseline E	nvironme	ntal	Locat	tion:	751-78	35 Seventh	St. Oakland
Field ID:	MW-FP4A;20	.0-20.5		Basi	5:	as red	ceived	
Lab ID:	218575-005			Samp	led:	03/03,	/10	
Matrix:	Soil			Rece	ived:	03/03,	/10	
Units:	mg/Kg							
Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	3.0	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	44	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.13	0.10	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	560	2.3	10.00	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	4.3	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	5.9	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	0.83	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.021	1.000	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	42	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	25	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	18	1.0	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

		Califor	nia Ti	tle 22 M	letals		
Lab #:	218575]	Project#:	YO	232-03	
Client:	Baseline Enviro	onmental]	Location:	75	1-785 Sevent	h St. Oakland
Field ID:	MW-FP5;5.0-5.5]	Basis:	as	received	
Lab ID:	218575-006]	Diln Fac:	1.	000	
Matrix:	Soil			Sampled:	03	/03/10	
Units:	mg/Kg]	Received:	03	/03/10	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	3.0	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	44	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.31	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	120	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	2.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	23	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	3.3	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	31	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	45	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	29	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

		Califor	nia Ti	tle 22 M	etals		
Lab #:	218575]	Project#:	YO	232-03	
Client:	Baseline Enviro	onmental]	Location:	75	1-785 Sevent	h St. Oakland
Field ID:	MW-FP5;10.0-10	.5]	Basis:	as	received	
Lab ID:	218575-007]	Diln Fac:	1.	000	
Matrix:	Soil		2	Sampled:	03	/03/10	
Units:	mg/Kg]	Received:	03	/03/10	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	2.1	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	43	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.21	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	43	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	5.7	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	7.6	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	2.0	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.021	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	30	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	28	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	21	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Califor	nia Ti	tle 22 M	letals		
Lab #:	218575]	Project#:	YO	232-03	
Client:	Baseline Envir	onmental]	Location:	75	1-785 Sevent	h St. Oakland
Field ID:	MW-FP5;15.0-15	.5]	Basis:	as	received	
Lab ID:	218575-008]	Diln Fac:	1.	000	
Matrix:	Soil		:	Sampled:	03	/03/10	
Units:	mg/Kg]	Received:	03	/03/10	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	4.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	66	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.33	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	65	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	8.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	10	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	2.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	35	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	43	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	23	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

California Title 22 Metals							
Lab #:	218575]	Project#:	YO	232-03	
Client:	Baseline Enviro	onmental]	Location:	75	1-785 Sevent	h St. Oakland
Field ID:	MW-FP5;20.0-20.	5]	Basis:	as	received	
Lab ID:	218575-009]	Diln Fac:	1.	000	
Matrix:	Soil		:	Sampled:	03	/03/10	
Units:	mg/Kg]	Received:	03	/03/10	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	1.9	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	28	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.11	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	62	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	4.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	7.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	1.2	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	28	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	24	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	18	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit Page 1 of 1

	California T	itle 22 Metals	
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0232-03	Analysis:	EPA 7471A
Analyte:	Mercury	Diln Fac:	1.000
Туре:	BLANK	Batch#:	160652
Lab ID:	QC534979	Prepared:	03/05/10
Matrix:	Soil	Analyzed:	03/05/10
Units:	mg/Kg		
Degult	DI		

Result	RL	
ND	0.020	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals						
Lab #:	218575	Location:	751-785 Seventh St. Oakland			
Client:	Baseline Environmental	Prep:	METHOD			
Project#:	Y0232-03	Analysis:	EPA 7471A			
Analyte:	Mercury	Batch#:	160652			
Matrix:	Soil	Prepared:	03/05/10			
Units:	mg/Kg	Analyzed:	03/05/10			
Diln Fac:	1.000					

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC534980	0.2500	0.2470	99	77-130		
BSD	QC534981	0.2500	0.2500	100	77-130	1	16

127 NM 38-164 6

56

Batch QC Report

QC534983

MSD

	California Title 22 Metals							
Lab #:		218575	Location:	751-	785 Seve	nth St.	Oakla	nd
Client	:	Baseline Environmental	Prep:	METH	IOD			
Projec	t#:	Y0232-03	Analysis:	EPA	7471A			
Analyt	e:	Mercury	Diln Fac:	10.0	0			
Field	ID:	ZZZZZZZZZ	Batch#:	1606	52			
MSS La	b ID:	218616-001	Sampled:	03/0	4/10			
Matrix	:	Soil	Received:	03/0	4/10			
Units:		mg/Kg	Prepared:	03/0	5/10			
Basis:		as received	Analyzed:	03/0	5/10			
Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC534982	4.217	0.2358	4.274	24 NM	38-164		

0.2551

California Title 22 Metals						
Lab #:	218575	Location:	751-785 Seventh St. Oakland			
Client:	Baseline Environmental	Prep:	EPA 3050B			
Project#:	Y0232-03	Analysis:	EPA 6010B			
Туре:	BLANK	Diln Fac:	1.000			
Lab ID:	QC535252	Batch#:	160726			
Matrix:	Soil	Prepared:	03/08/10			
Units:	mg/Kg	Analyzed:	03/09/10			

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.25	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	California T	itle 22 Metals	
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	EPA 3050B
Project#:	Y0232-03	Analysis:	EPA 6010B
Matrix:	Soil	Batch#:	160726
Units:	mg/Kg	Prepared:	03/08/10
Diln Fac:	1.000	Analyzed:	03/09/10

Type: BS	Lab	ID: QC535	253	
Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	95.45	95	75-122
Arsenic	50.00	51.20	102	76-119
Barium	100.0	95.90	96	73-120
Beryllium	2.500	2.521	101	80-122
Cadmium	10.00	9.824	98	77-120
Chromium	100.0	94.00	94	74-118
Cobalt	25.00	23.12	92	72-114
Copper	12.50	12.08	97	72-117
Lead	100.0	94.57	95	73-117
Molybdenum	20.00	20.05	100	79-120
Nickel	25.00	23.09	92	73-115
Selenium	50.00	48.01	96	71-121
Silver	10.00	9.221	92	72-115
Thallium	50.00	46.98	94	73-116
Vanadium	25.00	24.09	96	72-121
Zinc	25.00	23.73	95	71-119

Type: BSD	Lab I	D: QC535:	254			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	95.58	96	75-122	0	19
Arsenic	50.00	50.90	102	76-119	1	20
Barium	100.0	95.80	96	73-120	0	18
Beryllium	2.500	2.519	101	80-122	0	19
Cadmium	10.00	9.925	99	77-120	1	18
Chromium	100.0	94.00	94	74-118	0	25
Cobalt	25.00	23.12	92	72-114	0	18
Copper	12.50	12.03	96	72-117	0	17
Lead	100.0	94.88	95	73-117	0	24
Molybdenum	20.00	20.09	100	79-120	0	20
Nickel	25.00	23.18	93	73-115	0	17
Selenium	50.00	46.95	94	71-121	2	19
Silver	10.00	9.219	92	72-115	0	17
Thallium	50.00	47.01	94	73-116	0	18
Vanadium	25.00	24.10	96	72-121	0	18
Zinc	25.00	23.64	95	71-119	0	18

California Title 22 Metals					
Lab #:	218575	Location:	751-785 Seventh St. Oakland		
Client:	Baseline Environmental	Prep:	EPA 3050B		
Project#:	Y0232-03	Analysis:	EPA 6010B		
Field ID:	ZZZZZZZZZ	Batch#:	160726		
MSS Lab ID:	218499-001	Sampled:	02/19/10		
Matrix:	Oil	Received:	02/25/10		
Units:	mg/Kg	Prepared:	03/08/10		
Diln Fac:	1.000	Analyzed:	03/09/10		

Type: MS		Lab ID:	QC535255		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<0.1424	97.09	85.44	88	1-142
Arsenic	0.08336	48.54	50.76	104	45-136
Barium	0.3063	97.09	97.19	100	11-172
Beryllium	<0.01180	2.427	2.549	105	56-133
Cadmium	<0.02429	9.709	9.795	101	46-132
Chromium	<0.05998	97.09	95.69	99	27-153
Cobalt	<0.02852	24.27	23.64	97	34-139
Copper	1.169	12.14	14.25	108	12-174
Lead	0.09626	97.09	93.96	97	27-147
Molybdenum	<0.04652	19.42	19.84	102	43-130
Nickel	<0.06267	24.27	23.32	96	15-165
Selenium	<0.1521	48.54	47.95	99	44-132
Silver	<0.03797	9.709	9.180	95	47-130
Thallium	0.1582	48.54	46.00	94	40-124
Vanadium	<0.05431	24.27	24.35	100	18-167
Zinc	1.341	24.27	25.95	101	6-172

Type:	MSD	Lab ID:	QC535	5256			
	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony		99.01	85.08	86	1-142	2	47
Arsenic		49.50	50.36	102	45-136	3	39
Barium		99.01	94.49	95	11-172	5	49
Beryllium		2.475	2.486	100	56-133	4	32
Cadmium		9.901	9.711	98	46-132	3	29
Chromium		99.01	93.55	94	27-153	4	40
Cobalt		24.75	23.37	94	34-139	3	42
Copper		12.38	13.42	99	12-174	8	49
Lead		99.01	93.07	94	27-147	3	54
Molybdenum		19.80	19.47	98	43-130	4	33
Nickel		24.75	23.27	94	15-165	2	46
Selenium		49.50	47.13	95	44-132	4	30
Silver		9.901	9.019	91	47-130	4	29
Thallium		49.50	45.24	91	40-124	4	28
Vanadium		24.75	23.87	96	18-167	4	39
Zinc		24.75	24.53	94	6-172	7	53

Hexavalent Chromium

Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	EPA 3060A
Project#:	Y0232-03	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Diln Fac:	1.000
Matrix:	Soil	Batch#:	160781
Units:	mg/Kg	Received:	03/03/10
Basis:	as received	Analyzed:	03/10/10 00:00

Field ID	Туре	Lab ID	Result	RL	Sampled
MW-FP3;5.0-5.5	SAMPLE	218575-001	ND	0.40	03/03/10 09:05
MW-FP4A;5.0-5.5	SAMPLE	218575-002	92	2.0	03/03/10 07:20
MW-FP4A;10.0-10.5	SAMPLE	218575-003	310	10	03/03/10 07:35
MW-FP4A;15.0-15.5	SAMPLE	218575-004	19	0.40	03/03/10 07:38
MW-FP4A;20.0-20.5	SAMPLE	218575-005	460	9.3	03/03/10 07:46
MW-FP5;5.0-5.5	SAMPLE	218575-006	1.0	0.40	03/03/10 10:35
MW-FP5;10.0-10.5	SAMPLE	218575-007	5.3	0.40	03/03/10 10:39
MW-FP5;15.0-15.5	SAMPLE	218575-008	11	0.40	03/03/10 10:44
MW-FP5;20.0-20.5	SAMPLE	218575-009	21	0.30	03/03/10 10:50
	BLANK	QC535490	ND	0.40	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Hexavalent Chromium					
Lab #:	218575	Location:	751-785 Seventh St. Oakland		
Client:	Baseline Environmental	Prep:	EPA 3060A		
Project#:	Y0232-03	Analysis:	EPA 7196A		
Analyte:	Hexavalent Chromium	Diln Fac:	1.000		
Field ID:	MW-FP5;20.0-20.5	Batch#:	160781		
MSS Lab ID:	218575-009	Sampled:	03/03/10 10:50		
Matrix:	Soil	Received:	03/03/10		
Units:	mg/Kg	Analyzed:	03/10/10 00:00		
Basis:	as received				

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC535491		4.000	36.93	92	79-118		
MS	QC535492	21.04	39.06	52.92	82	1-163		
MSD	QC535493		40.00	57.57	91	1-163	7	39

	Total Organi	.c Carbon (TOC)	
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0232-03	Analysis:	WALKLEY-BLACK
Analyte:	Total Organic Carbon	Diln Fac:	1.000
Field ID:	MW-FP4A;20.0-20.5	Batch#:	160672
Matrix:	Soil	Sampled:	03/03/10
Units:	8	Received:	03/03/10
Basis:	as received	Analyzed:	03/05/10
Type Lab ID	Result	RL	
SAMPLE 218575-00	5 ND	0.01	
BLANK OC535049	ND	0.01	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Total Or	ganic Carbon (TC	DC)
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0232-03	Analysis:	WALKLEY-BLACK
Analyte:	Total Organic Carbon	Diln Fac:	1.000
Field ID:	ZZZZZZZZZZ	Batch#:	160672
MSS Lab ID:	218517-008	Sampled:	02/28/10
Matrix:	Soil	Received:	03/01/10
Units:	8	Analyzed:	03/05/10
Basis:	as received		
Type Lab ID	MSS Result	Spiked Re	esult %REC Limits RPD Lim

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC535050		0.1300	0.1190	91	90-110		
MS	QC535051	0.03300	0.2000	0.1960	81	21-148		
MSD	QC535052		0.1985	0.1810	75	21-148	7	28

QUALITY CONTROL CHECKLIST FOR REVIEW OF LABORATORY REPORT

Job No.	Y0323-03
300 110.	10525 05

Laboratory: Curtis and Tompkins, Ltd.

1

Report Date: 17 March 2010

Site: 751-785 7thSt Laboratory Report No.: 219511

BASELINE Reviewer: JM

		Yes	No	NA
GE (Des expl	NERAL QUESTIONS scribe "no" responses below in "comments" section. Contact the laboratory, as requ lanation or action on "no" responses; document discussion in comments section.)	iired, fo	r furthe	r
1a.	Does the report include a case narrative? (A case narrative MUST be prepared by the lab for all analytical work requested by BASELINE)	Х		
1b.	Is the number of pages for the lab report as indicated on the case narrative/lab transmittal consistent with the number of pages that are included in report?	Х		
1c.	Does the case narrative indicate which samples were analyzed by a subcontractor and the subcontractor's name?			Х
1d.	Does the case narrative summarize subsequent requests not shown on the chain-of- custody (e.g., additional analyses requested, release of "hold" samples)?			Х
1e.	Does the case narrative explain why requested analyses could not be performed by laboratory (e.g., insufficient sample)?			Х
1f.	Does the case narrative explain all problems with the QA/QC data as identified in the checklist (as applicable)?			Х
2a.	Is the laboratory report format consistent and legible throughout the report?	Х		
2b.	Are the sample and reported dates shown in the laboratory report correct?	Х		
3a.	Does the lab report include an original copy of the chain-of-custody form?	X		
3b.	Were all samples appropriately analyzed as requested on the chain-of-custody form?	Х		
4.	Was the lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel? (Some lab reports have signature spaces for each page). (This requirement also applies to any analyses subcontracted out by the laboratory)	Х		
5a.	Are preparation methods, cleanup methods (if applicable), and laboratory methods indicated for all analyses?	Х		
5b.	If additional analytes were requested as part of the reporting of the data for an analytical method, were these included in the lab report?			Х
6.	Are the units in the lab report provided for each analysis consistent throughout the report?	Х		
7.	Are the detection limits (DL) appropriate based on the intended use of the data (e.g., DL below applicable MCLs for water quality issues)?		Х	

Quality Control Checklist - continued

	Yes	No	NA
8a. Are detection limits appropriate based on the analysis performed (i.e., not elevated due to dilution effects)?	Х		
8b. If no, is an explanation provided by the laboratory?			Х
9a. Were the samples analyzed within the appropriate holding time (generally 2 weeks for volatiles, and up to 6 months for total metals)?	Х		
9b. If no, was it flagged in the report?			Х
10. If samples were composited prior to analysis, does the lab report indicate which samples were composited for each analysis?			Х
11a. Do the chromatograms confirm quantitative laboratory results (petroleum hydrocarbons)?			Х
11b. Is a standard chromatogram(s) included in the laboratory report?			X
11c. Do the chromatograms confirm laboratory notes, if present (e.g., sample exhibits lighter hydrocarbon than standard)?			Х
12. Are the results consistent with previous analytical results from the site? (If no, contact the lab and request review/reanalysis of data, as appropriate.)	Х		
13a. REVISED LAB REPORTS ONLY. Is the revised lab report or revised pages to a lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel?			Х
13b. REVISED LAB REPORTS ONLY. Does the case narrative indicate the date of revision and provide an explanation for the revision?			Х
13c. REVISED LAB REPORTS ONLY. Does the revised lab report adequately address the problem(s) that triggered the need for a revision?			Х
13d. REVISED LAB REPORTS ONLY. Are the data included in the revised report the same as the data reported in the original report, except where the report was revised to correct incorrectly reported data?			Х
<i>QA/QC Questions</i> Field/Laboratory Quality Control - Groundwater Analyses			
14. Are field blanks reported as "ND" (groundwater samples)? A field blank is a sample of DI water that is prepared in the field using the same collection and handling procedures as the other samples collected, and used to demonstrate that the sampling procedure has not contaminated the sample.			Х
14a. Are rinsate blanks reported as "ND" (soil samples)? A rinsate blank is a sample of DI water that is prepared in the field by collecting DI rinse water after it has been poured over decontaminated sampling equipment. The rinsate blank is collected to demonstrate that the decontamination procedure has removed all the contaminants from the sampling equipment and that the sampling equipment has not contaminated the sample.			Х

	Yes	No	NA
15. Are trip blanks reported as "ND" (groundwater samples/volatile analyses)? A trip blank is a sample of contaminant free matrix placed in an appropriate container by the lab and transported with the field samples collected. Provides information regarding positive interference introduced during sample transport, storage, preservation, and analysis. The sample is NOT opened in the field.	x		
16. Are duplicate sample results consistent with the original sample (groundwater samples)? <i>Field duplicates consist of two independent samples collected at the same sampling location during a single sampling event. Used to evaluate precision of the analytical data and sampling technique. (Differences between the duplicate and sample results may also be attributed to environmental variability.)</i>			Х
<i>Batch Quality Control</i> (Samples are batched together by matrix [soil, water] and analyses requested. A batch gener fewer samples of the same matrix type, and is prepared using the same reagents, standards, j frame as the samples. QC samples are run with each batch to assess performance of the enti- process.)	rally cons procedure re measur	ists of 20 s, and tin rement	0 or me
17. Do the sample batch numbers and corresponding laboratory QA/QC batch numbers match?	Х		
18a. Are method blanks (MB) for the analytical method(s) below the laboratory reporting limits? Used to assess lab contamination and prevent false positive results.	Х		
18b. If no, is an explanation provided in the case narrative to validate the data?			X
18c. Are analytes that may be considered laboratory contaminants reported below the laboratory reporting limit? <i>Common lab contaminants include acetone, methylene chloride, diethylhexyl phthalate, and di-n-octyl phthalate.</i>		Х	
18d. If no, was the laboratory contacted to determine whether the reported analyte could be a potential laboratory contaminant and was an explanation included in the case narrative?		х	
19. Are laboratory control samples (LCS) and LCS duplicate (LCSD) [a.k.a., Blank Spike (BS) and BS duplicates (BSD)] within laboratory reporting limits? Limits should be provided on the report. <i>LCS is a reagent blank spike with a representative selection of target analyte(s) and prepared in the same manner as the samples analyzed. The LCS should be spiked with the same analytes as the matrix spike (below). The LCS is free from interferences from the sample matrix and demonstrates the ability of the lab instruments to recover the target analytes. Accuracy (recovery information) is generally reported as % spike recovery; precision (reproducibility of results) between the LCS and LCSD is generally reported as the relative percent difference (RPD). LCS/LCSD can be run in addition to or in lieu of matrix QC data.</i>	X		
20a. Are the Matrix QC data (i.e., MS/MSD) within laboratory limits? Limits should be provided on the lab report. <i>The lab selects a sample from the batch and analyzes a spike and a spike duplicate of that sample. Matrix QC data is used to obtain precision and accuracy information and is reported in the same manner as LCS/LCSD. If the MS/MSD fails, the results may still be considered valid if the MB and either the LCS/LCSD or BS/BSD is within the lab's limits (failure is probably due to matrix interference).</i>	X		

	Yes	No	NA
20b. If no, is the MB and either LCS/LCSD or BS/BSD within lab limits to validate the data?			Х
Sample Quality Control			
21a. Are the surrogate spikes reported within the lab's acceptable recovery limits? A surrogate is a non-target analyte, which is similar in chemical structure to the analyte(s) being analyzed for, and which is not commonly found in environmental samples. A known concentration of the surrogate is spiked into the sample or QA "sample" prior to extraction or sample preparation. Results are usually reported as % recovery of the spike. Failure to meet lab's limits for primary and secondary surrogates results in rebatching and reanalysis of the sample; failure of only the primary or the secondary surrogate may be acceptable under certain circumstances. Failure generally is due to coelution with the sample matrix.	Х		
21b. If no, is an explanation given in the case narrative to validate the data?			Х

Comments:

The groundwater sample for volatile organic analysis from MW-FB4B reportedly contain more than one milliliter of headspace, and therefore, may be biased low.

Acetone, a common laboratory contaminant, was detected above the reporting limit in one sample.

and setting to the

H

Laboratory Job Number 219511 ANALYTICAL REPORT

Baseline Env:	ironmental	Project	:	Y0323-03	3			
5900 Hollis S	Street	Location	:	751-758	Seventh	St	Oakland	CA
Emeryville, (CA 94608	Level	:	II				

<u>Sample ID</u>	<u>Lab ID</u>
MW-FP1	219511-001
MW-FP2	219511-002
MW-FP3	219511-003
MW-FP4A	219511-004
MW-FP4B	219511-005
MW-FP5	219511-006
MW-FP6	219511-007
MW-FP7B	219511-008
TRIP BLANK	219511-009
MW-3	219511-010
MW-9	219511-011

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Derine 71. Tetralt

Signature:

Project Manager

Date: <u>04/22/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 219511 Baseline Environmental Y0323-03 751-758 Seventh St Oakland CA 04/15/10 04/15/10

This data package contains sample and QC results for eleven water samples, requested for the above referenced project on 04/15/10. The samples were received cold and intact.

Volatile Organics by GC/MS (EPA 8260B):

MW-FP4A (lab # 219511-004) was analyzed with more than 1 mL of headspace in the VOA vial. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7470A):

No analytical problems were encountered.

Hexavalent Chromium (EPA 7196A):

No analytical problems were encountered.

219511

BASELINE Environmental Consulting

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

CHAIN OF CUSTODY RECORD

Turn-Around-Time <u>Standard</u> Laboratory <u>Curtis and Tompkins, Ltd.</u> BASELINE Contact Person Lydia Huang

oject Number Y0323-03 oject Name: 751-758 7th St.												(dnu		B)						*	por		
Samplersy (Signature)	(Keginah	d fam	ris			(Туре	Contain	ers	Pres	servati	ive	SM)	PA Meth gel clea	d 8260B	10d 8260	lod 8270	d 8082)		olids		od 7196/	PA Meth	
Sample ID	Date	Time	Media	No. (total)	L-AG	40-mi VUA 1000 ml-Poly	500 ml-Poly 250 ml Polv	lce	нсг	HNO3	H ₂ SO4 NaOH	TPH-g & BTEX (EPA Method 801	TPH-d and mo (El 8015M with silica	VOC (EPA Metho	MTBE (EPA Met	SVOC (EPA Meth	PCB (EPA Metho	Dissolved Sulfides	Total Suspended S	TDS (SM2540C)	Cr-VI (EPA Meth	Title 22 Metals (E) 6010B/7471)*	Remarks
MW-FP1	4/15/10	8;30	Water	17 \$ AN		B	1	x	x					X							X	X	
7 MW-FP2	4/15/10	a:3≸	Water	985 5 18	3		1	x	X	· · · · · · · · · · · · · · · · · · ·				X							X	x	
3 MW-FP3	4/15/10	q:00	Water	WK 7 8	Š		1	x	X					X							X	X	
Relinquished by: (Signature) Keymard Kamurk Relinquished by: (Signature)	, ;	<u></u>	I	Date/T 4//S Date/T	ime 12010 ime	0 K	2:5(Rec Rec	eived	by: (S	Signatu Signatu	re)	50	(Date/Ti	me 5/10	- E	221	Remark	s:		
Relinquished by: (Signature)				Date/T	ime			Rec	eived	by: (S	Signatu	re)								Email co	ontact:		
Received at laboratory with inte seal Yes No Na	act custody	Samples of A	conditions Arrival: On Ice	Upon Cold	Comm	ents: *	Lab t	io Fil	ter ar	nd Pr	eserve			<u></u>	A	G	<u>~~ ~</u>	A					

219511

BASELINE Environmental Consulting

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

CHAIN OF CUSTODY RECORD

Turn-Around-Time <u>Standard</u> Laboratory <u>Curtis and Tompkins, Ltd.</u> BASELINE Contact Person <u>Lydia Huang</u>

1

Project Number Project Name:	Y0323-03 751-758	th St.											thod sanup))B)	60B)	(0)					4(Y9	ethod	
Samplers: (Signatur)	(Keyinald	fami	አ			C Type	Containe	ers	Prese	ervativ	/e	15M)	EPA Me a gel cle	od 8260	thod 82t	thod 82.	od 8082	8	Solids		hod 719	EPA M	
Sample ID	Date	Time	Media	vo. (total)	L-AG	40-ml VUA 1000 ml-Poly	500 ml-Poly 250 ml Poly	lce	HCL	HNO,	H ₂ SU4 NaOH	TPH-g & BTEX (EPA Method 80)	TPH-d and mo (E 8015M with silica	VOC (EPA Meth	MTBE (EPA Mei	SVOC (EPA Met	PCB (EPA Metho	Dissolved Sulfide	Total Suspended	TDS (SM2540C)	Cr-VI (EPA Metl	Title 22 Metals () 6010B/7471)*	Remarks
MW-FP4A	4/15/10	14:35	Water	uts ** 5				X	X					X							X	X	Flevated Cr + 6
5 MW-FP4B	4/15/10) 1430	Water	w15 # 5		3	1	x	X					X							x	X	
6 мw-fp5	4/15/1	13:00	Water	12 5 4		3	1	x	x					x				· · · · · · · · · · · · · · · · · · ·			X	x	
Relinquished by: (Signa Regnald 12 Relinquished by: (Signa	iture) ture)			Date/ 4 / Date/	Time /5/20 Time	ى 10	5;21	Rec Rec	eived	by: (S by: (S	Signatu Dignatu	rre) rre)	Śų	3	•	Date/I	ime S	1,0	<u>15:2 ·</u>	Remark	S:	·	
Relinquished by: (Signa	iture)			Date/	Time			Rec	eived	by: (S	Signatu	ire)								Email c	ontact:		
Received at laborator set Yes N	y with intact custod al Io Na	y Samples Intact	conditions Arrival: On Ice	I s Upon Cold	Сот	nents: '	* Lab	to Fi	lter a	nd Pro	eserve									· · · · · ·			
											1				_								

T

Cold Eart

4 of 53

219511

BASELINE Environmental Consulting

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

CHAIN OF CUSTODY RECORD

Turn-Around-Time Standard Laboratory Curtis and Tompkins, Ltd. BASELINE Contact Person Lydia Huang

Project Number Y0323-03 Project Name: 751-758 7th St.		Contringer	ethod (eanup) (0B)	2)	96A)* 1ethod
amplers: (Signature) figurald to	muriz,	Type Preservative	15M) EPA M6 a gel cl nod 826	thod 82 hod 808 les	(EPA V (EPA V
7 Sample ID Date Time	(Intro) Media	No. (total) L-AG 40-ml VOA 500 ml-Poly 500 ml Poly 160 HCL HSO, NaOH	TPH-g & BTEX (EPA Method 8C 1PH-d and mo () 8015M with silic VOC (EPA Meth MTBE (EPA Meth	SVOC (EPA Me PCB (EPA Meth Dissolved Suffic Total Suspendec	TDS (SM2540C Cr-VI (EPA Me 6010B/7471)*
1 18 MW-FP6 4/15/10 1/:35	Water 8				
16 В МW-FP7В 4/15/10 12:13	Water 8				
10 Trip Blank 4/115/10 710) 9	water 2		×		
Relinquished by: (Signature) Keyworld Kummy Relinquished by: (Signature)	Date. 4/1 Date	te/Time Received by: (Signature 15/10 15/21 te/Time Received by: (Signature	3.3n	Date/Time 4/5/10/15:?/	Remarks:
Relinquished by: (Signature)	Date	te/Time Received by: (Signatur)		Email contact:
Received at laboratory with intact custody seal Yes No Na Intact	conditions Upon Arrival: On Ice Cole	on Comments : * Lab to Filter and Preserve			

Coldana

5 of 53

21951)

BASELINE Environmental Consulting

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

CHAIN OF CUSTODY RECORD

Turn-Around-Time <u>Standard</u> Laboratory <u>Curtis and Tompkins, Ltd.</u> BASELINE Contact Person Lydia Huang

Project Number Project Name:	Y0323-03 751-758 7th	n St.											dnu	Â)B)						A)*	poq	
Samplers: (Signature)			Туре	Contain	ers	Pres	ervati	ve	5M)	PA Meth	od 8260E	hod 826(hod 8270	d 8082)	s	Solids		iod 7196,	SPA Metl				
Sample ID	Date	Time	Media	No. (total)	L-AG	40-ml VOA 1000 ml-Poly	500 ml-Poly 250 ml Poly	Ice	нсг	HNO3	H ₂ SO4	TPH-g & BTEX (EPA Method 801	TPH-d and mo (E 8015M with silica	VOC (EPA Metho	MTBE (EPA Met	SVOC (EPA Metl	PCB (EPA Metho	Dissolved Sulfide	Total Suspended (TDS (SM2540C)	Cr-VI (EPA Meth	Title 22 Metals (F 6010B/7471)*	Remarks
MW-3	4/15/10	10:.10	Water	5		83	1	- X	x					X							X	X	
18 MW-9	4/15/10	10:35	Water	5		83	1	x	X					X							X	X	
					~																		
Relinquished by: (Signature) Kyunald Kanny Relinquished by: (Signature)	• • • •	•		Date/T 4//S Date/T	`ime S∕₩ `ime	15:	21	Rec Rec	ceived ceived	by: (S	Signati Signati	ıre)	Í			Date/T	ime 5/0	- []		Remark	S:		
Relinquished by: (Signature)		7		Date/T	ime			Rec	ceived	by: (\$	Signat	ure)								Email o	ontact:		
Received at laboratory with intersection seal Yes No Na	act custody	Samples Intact	conditions Arrival: On Ice	Upon Cold	Comn	nents:	* Lab	to Fi	lter ar	nd Pr	reserve												

cold & Mar2

ດ ດ ກ Brush Groundwater Lrg MW-3 to MW-9.xls

٠

COOLER RECEIPT CHECKLIST

Login # Z19511 Date Received 4-15	5-10 NI	umber of coolers	7		
Client BASELIAIE Project	751-758	7th ST			
		11			
Date Opened 4-15-00 By (print) S. Evens	(sign)	me-			
Date Logged in By (print)	(sign)	+			
			\sim		
1. Did cooler come with a shipping slip (airbill, etc)		YES (NO		
2A. Were custody seals present? □ YES (circle) on cooler	on samples	🗶 NO		
How many Name	·	Date	<u> </u>		
2B. Were custody seals intact upon arrival?		YES	NO ATA		
3. Were custody papers dry and intact when received?		YES	NO		
4. Were custody papers filled out properly (ink, signed	l, etc)?	YES	NO		
5. Is the project identifiable from custody papers? (If	so fill out top of	f form)YES	NO		
6. Indicate the packing in cooler: (if other, describe)_					
🗆 Bubble Wrap 🛛 🕅 Foam blocks 🛛 🛪	Bags	□ None			
\Box Cloth material \Box Cardboard	Styrofoam	Paper tow	els		
7. Temperature documentation:	-				
Type of ice used: VZI Wat TRue/Gel	□ None T	emp(°C)			
		•mp(0)			
Samples Received on ice & cold without a	emperature bla	nk			
□ Samples received on ice directly from the fi	eld. Cooling pr	ocess had begun			
9 Ware Method 5025 compling containers present?		v	FS KO		
If VES, what time were they transferred to free		1			
0 Did all bottles arrive unbroken/unonened?		A	ES) NO		
10 Are samples in the appropriate containers for indi	cated tests?	A	ES NO		
11 Are sample labels present in good condition and c	omplete?	<u> </u>	EP NO		
12 Do the sample labels agree with custody papers?					
13 Was sufficient amount of sample sent for tests requested?					
14. Are the samples appropriately preserved?		YESDN	IO N/A		
15. Are bubbles > 6mm absent in VOA samples? (TES) NO N/A					
16. Was the client contacted concerning this sample delivery? YES NO					
If YES, Who was called?	By	Date:			

COMMENTS

Curtis & Tompkins, Ltd.

	Purgeable Or	ganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP1	Batch#: 162139
Lab ID:	219511-001	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Orga	anics by GC/MS	
Lab #:	219511	Location: 751-758	8 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 503	30B
Project#:	Y0323-03	Analysis: EPA 826	50B
Field ID:	MW-FP1	Batch#:	162139
Lab ID:	219511-001	Sampled:	04/15/10
Matrix:	Water	Received:	04/15/10
Units:	ug/L	Analyzed:	04/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	105	81-124
1,2-Dichloroethane-d4	107	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	98	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable O	rganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP2	Batch#: 162139
Lab ID:	219511-002	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Orga	anics by GC/MS	
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 50	30B
Project#:	Y0323-03	Analysis: EPA 82	60B
Field ID:	MW-FP2	Batch#:	162139
Lab ID:	219511-002	Sampled:	04/15/10
Matrix:	Water	Received:	04/15/10
Units:	ug/L	Analyzed:	04/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	104	81-124
1,2-Dichloroethane-d4	107	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	99	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable C	organics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP3	Batch#: 162139
Lab ID:	219511-003	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	0.9	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5030B		
Project#:	Y0323-03	Analysis: EPA 8260B		
Field ID:	MW-FP3	Batch#: 162139		
Lab ID:	219511-003	Sampled: 04/15/10		
Matrix:	Water	Received: 04/15/10		
Units:	ug/L	Analyzed: 04/19/10		
Diln Fac:	1.000			

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	104	81-124
1,2-Dichloroethane-d4	107	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	99	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5030B		
Project#:	Y0323-03	Analysis: EPA 8260B		
Field ID:	MW-FP4A	Batch#: 162188		
Lab ID:	219511-004	Sampled: 04/15/10		
Matrix:	Water	Received: 04/15/10		
Units:	ug/L	Analyzed: 04/20/10		
Diln Fac:	1.000			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	34	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	0.5	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	1.9	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	31	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	51	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-758 Se	eventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5030B			
Project#:	Y0323-03	Analysis: EPA 8260B			
Field ID:	MW-FP4A	Batch#: 162	188		
Lab ID:	219511-004	Sampled: 04/	15/10		
Matrix:	Water	Received: 04/	15/10		
Units:	ug/L	Analyzed: 04/	20/10		
Diln Fac:	1.000				

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

dumme met e	*DEC	T
Surrogate	%REC	LIMITS
Dibromofluoromethane	98	81-124
1,2-Dichloroethane-d4	115	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	100	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5030B		
Project#:	Y0323-03	Analysis: EPA 8260B		
Field ID:	MW-FP4B	Batch#: 162139		
Lab ID:	219511-005	Sampled: 04/15/10		
Matrix:	Water	Received: 04/15/10		
Units:	ug/L	Analyzed: 04/19/10		
Diln Fac:	1.000			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	19	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS Lab #: 219511 Location: 751-758 Seventh St Oakland CA Client: Baseline Environmental Prep: EPA 5030B Project#: Y0323-03 Analysis: EPA 8260B Field ID: MW-FP4B Batch#: 162139 Lab ID: 219511-005 Sampled: 04/15/10 Matrix: Received: Water 04/15/10 Units: ug/L Analyzed: 04/19/10 Diln Fac: 1.000

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	105	81-124
1,2-Dichloroethane-d4	108	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	97	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable C	organics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP5	Batch#: 162139
Lab ID:	219511-006	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	1.2	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable Orga	anics by GC/MS	
Lab #:	219511	Location: 751-75	58 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 50)30B
Project#:	Y0323-03	Analysis: EPA 82	260B
Field ID:	MW-FP5	Batch#:	162139
Lab ID:	219511-006	Sampled:	04/15/10
Matrix:	Water	Received:	04/15/10
Units:	ug/L	Analyzed:	04/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	104	81-124
1,2-Dichloroethane-d4	108	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	99	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable O	rganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP6	Batch#: 162139
Lab ID:	219511-007	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	9.4	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable Org	anics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP6	Batch#: 162139
Lab ID:	219511-007	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	104	81-124
1,2-Dichloroethane-d4	107	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	98	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP7B	Batch#: 162139
Lab ID:	219511-008	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	1.3	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	2.3	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	7.9	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	4.9	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS Lab #: 219511 Location: 751-758 Seventh St Oakland CA Client: Baseline Environmental Prep: EPA 5030B Project#: Y0323-03 Analysis: EPA 8260B Field ID: MW-FP7B Batch#: 162139 Lab ID: 219511-008 Sampled: 04/15/10 Matrix: Received: Water 04/15/10 Units: ug/L Analyzed: 04/19/10 Diln Fac: 1.000

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	105	81-124
1,2-Dichloroethane-d4	109	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	99	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable C	rganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	TRIP BLANK	Batch#: 162139
Lab ID:	219511-009	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS

Lab #:	219511	Location: 751-	758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA	5030B
Project#:	Y0323-03	Analysis: EPA	8260B
Field ID:	TRIP BLANK	Batch#:	162139
Lab ID:	219511-009	Sampled:	04/15/10
Matrix:	Water	Received:	04/15/10
Units:	ug/L	Analyzed:	04/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	99	81-124
1,2-Dichloroethane-d4	104	73-140
Toluene-d8	102	88-113
Bromofluorobenzene	100	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-3	Batch#: 162139
Lab ID:	219511-010	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	0.6	0.5	
MTBE	1.0	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	0.5	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS Lab #: 219511 Location: 751-758 Seventh St Oakland CA Client: Baseline Environmental Prep: EPA 5030B Project#: Y0323-03 Analysis: EPA 8260B Field ID: MW-3 Batch#: 162139 219511-010 Lab ID: Sampled: 04/15/10 Matrix: Received: Water 04/15/10 Units: ug/L Analyzed: 04/19/10 Diln Fac: 1.000

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	103	81-124
1,2-Dichloroethane-d4	110	73-140
Toluene-d8	102	88-113
Bromofluorobenzene	100	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-758 Seventh St Oakland CA			
Client:	Baseline Environmental	Prep: EPA 5030B			
Project#:	Y0323-03	Analysis: EPA 8260B			
Field ID:	MW-9	Batch#: 162139			
Lab ID:	219511-011	Sampled: 04/15/10			
Matrix:	Water	Received: 04/15/10			
Units:	ug/L	Analyzed: 04/19/10			
Diln Fac:	1.000				

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	1.3	0.5	
trans-1,2-Dichloroethene	0.9	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	48	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	27	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-758 Seventh St Oakland CA			
Client:	Baseline Environmental	Prep: EPA 5030B			
Project#:	Y0323-03	Analysis: EPA 8260B			
Field ID:	MW-9	Batch#: 162139			
Lab ID:	219511-011	Sampled: 04/15/10			
Matrix:	Water	Received: 04/15/10			
Units:	ug/L	Analyzed: 04/19/10			
Diln Fac:	1.000				

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	104	81-124
1,2-Dichloroethane-d4	108	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	98	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5030B		
Project#:	Y0323-03	Analysis: EPA 8260B		
Matrix:	Water	Batch#: 162139		
Units:	ug/L	Analyzed: 04/19/10		
Diln Fac:	1.000			

Type:

BS

Lab ID: QC540929

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	23.78	95	71-136
Benzene	25.00	24.51	98	81-122
Trichloroethene	25.00	23.09	92	80-124
Toluene	25.00	25.12	100	82-122
Chlorobenzene	25.00	26.00	104	84-118

Surrogate	%REC	Limits	
Dibromofluoromethane	100	81-124	
1,2-Dichloroethane-d4	103	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	97	80-127	

Type:

BSD

)

Lab ID:

QC540930

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	24.00	96	71-136	1	15
Benzene	25.00	24.32	97	81-122	1	12
Trichloroethene	25.00	22.85	91	80-124	1	13
Toluene	25.00	24.79	99	82-122	1	12
Chlorobenzene	25.00	25.76	103	84-118	1	11

Surrogate	%REC	Limits	
Dibromofluoromethane	99	81-124	
1,2-Dichloroethane-d4	103	73-140	
Toluene-d8	102	88-113	
Bromofluorobenzene	95	80-127	

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 50	30B		
Project#:	Y0323-03	Analysis: EPA 82	260B		
Туре:	BLANK	Diln Fac:	1.000		
Lab ID:	QC540931	Batch#:	162139		
Matrix:	Water	Analyzed:	04/19/10		
Units:	ug/L				

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 50	30B		
Project#:	Y0323-03	Analysis: EPA 82	60B		
Туре:	BLANK	Diln Fac:	1.000		
Lab ID:	QC540931	Batch#:	162139		
Matrix:	Water	Analyzed:	04/19/10		
Units:	ug/L				

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	99	81-124
1,2-Dichloroethane-d4	105	73-140
Toluene-d8	101	88-113
Bromofluorobenzene	98	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	219511	Location: 751-758 Seventh St Oakland CA				
Client:	Baseline Environmental	Prep: EPA 5030B				
Project#:	Y0323-03	Analysis: EPA 8260B				
Matrix:	Water	Batch#: 162188				
Units:	ug/L	Analyzed: 04/20/10				
Diln Fac:	1.000					

Type:

BS

Lab ID: QC541154

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	20.00	16.81	84	71-136
Benzene	20.00	18.85	94	81-122
Trichloroethene	20.00	18.89	94	80-124
Toluene	20.00	18.65	93	82-122
Chlorobenzene	20.00	18.05	90	84-118

Surrogate	%REC	Limits	
Dibromofluoromethane	100	81-124	
1,2-Dichloroethane-d4	110	73-140	
Toluene-d8	103	88-113	
Bromofluorobenzene	101	80-127	

Type:

BSD

Lab ID:

QC541155

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	20.00	16.26	81	71-136	3	15
Benzene	20.00	17.79	89	81-122	6	12
Trichloroethene	20.00	18.16	91	80-124	4	13
Toluene	20.00	17.92	90	82-122	4	12
Chlorobenzene	20.00	17.49	87	84-118	3	11

Surrogate	%REC	Limits
Dibromofluoromethane	98	81-124
1,2-Dichloroethane-d4	110	73-140
Toluene-d8	102	88-113
Bromofluorobenzene	100	80-127

	Purgeable Orga	anics by GC/MS	
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 50	30B
Project#:	Y0323-03	Analysis: EPA 82	260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC541156	Batch#:	162188
Matrix:	Water	Analyzed:	04/20/10
Units:	ug/L		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 50	30B		
Project#:	Y0323-03	Analysis: EPA 82	60B		
Туре:	BLANK	Diln Fac:	1.000		
Lab ID:	QC541156	Batch#:	162188		
Matrix:	Water	Analyzed:	04/20/10		
Units:	ug/L				

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	99	81-124
1,2-Dichloroethane-d4	113	73-140
Toluene-d8	99	88-113
Bromofluorobenzene	99	80-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Dissolved Cal	ifornia	Title 22	2 Metals	5	
Lab #:	219511	Loc	ation: 751	1-758 Sev	enth St Oa	akland CA
Client:	Baseline Environmental	Pre	p: MET	THOD		
Project#:	Y0323-03					
Field ID:	MW-FP1	Dil	n Fac:	1.00	0	
Lab ID:	219511-001	Sam	pled:	04/1	5/10	
Matrix:	Filtrate	Rec	eived:	04/1	5/10	
Units:	ug/L					
Analyte	Result	RL	Batch# I	Prepared	Analyzed	Analysis
Antimony	ND	10	162181 (04/19/10	04/20/10	EPA 6010B
Arsenic	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Barium	41	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Beryllium	ND	2.0	162181 (04/19/10	04/20/10	EPA 6010B
Cadmium	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Chromium	13	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Cobalt	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Copper	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Lead	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Mercury	ND	0.20	162085 (04/16/10	04/16/10	EPA 7470A
Molybdenum	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Nickel	16	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Selenium	ND	10	162181 (04/19/10	04/20/10	EPA 6010B
Silver	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B
Thallium	ND	10	162181 (04/19/10	04/20/10	EPA 6010B
Vanadium	ND	5.0	162181 (04/19/10	04/20/10	EPA 6010B

20

ND

ND= Not Detected RL= Reporting Limit Page 1 of 1

Zinc

	Dissolved Cal	ifornia	Title 22 Metal	s	
Lab #:	219511	Loc	ation: 751-758 Sev	venth St Oak	cland CA
Client:	Baseline Environmental	Pre	p: METHOD		
Project#:	Y0323-03				
Field ID:	MW-FP2	Dil	n Fac: 1.00	00	
Lab ID:	219511-002	Sam	pled: 04/2	L5/10	
Matrix:	Filtrate	Rec	eived: 04/2	L5/10	
Units:	ug/L				
Analyte	Result	RL	Batch# Prepared	Analyzed	Analysis
Antimony	ND	10	162181 04/19/10	04/20/10 E	EPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Barium	61	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10 E	EPA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Chromium	22	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Copper	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10 E	EPA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Nickel	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10 E	EPA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10 E	EPA 6010B
Vanadium	ND	5.0	162181 04/19/10	04/20/10 E	EPA 6010B

20

ND

Zinc

162181 04/19/10 04/20/10 EPA 6010B

04/20/10 EPA 6010B

162181 04/19/10

Dissolved California Title 22 Metals							
Lab #:	219511	Loc	ation: 75	51-758 Sev	enth St Oa	akland CA	
Client:	Baseline Environmental	Pre	p: MH	ETHOD			
Project#:	Y0323-03						
Field ID:	MW-FP3	Dil	n Fac:	1.00	0		
Lab ID:	219511-003	Sam	pled:	04/1	5/10		
Matrix:	Filtrate	Rec	eived:	04/1	5/10		
Units:	ug/L						
Analyte	Result	RL	Batch#	Prepared	Analyzed	Analysis	
Antimony	ND	10	162181	04/19/10	04/20/10	EPA 6010B	
Arsenic	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Barium	49	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Beryllium	ND	2.0	162181	04/19/10	04/20/10	EPA 6010B	
Cadmium	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Chromium	150	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Cobalt	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Copper	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Lead	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Mercury	ND	0.20	162085	04/16/10	04/16/10	EPA 7470A	
Molybdenum	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Nickel	25	5.0	162181	04/19/10	04/20/10	EPA 6010B	
Selenium	ND	10	162181	04/19/10	04/20/10	EPA 6010B	
Silver	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B	

10

20

5.0

ND= Not Detected RL= Reporting Limit Page 1 of 1

Thallium

Vanadium

Zinc

ND

ND

71

	Dissol	ved Cali:	fornia Ti	tle 22	Metals		
Lab #:	219511		Locati	on: 751-	-758 Sever	nth St Oak	land CA
Client:	Baseline Enviro	nmental	Prep:	METI	HOD		
Project#:	Y0323-03						
Field ID:	MW-FP4A		Units:		ug/L		
Lab ID:	219511-004		Sample	d:	04/15/	/10	
Matrix:	Filtrate		Receiv	ed:	04/15/	/10	
Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Analysis
Antimony	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Arsenic	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Barium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Beryllium	ND	2.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Cadmium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Chromium	400,000	500	100.0	162181	04/19/10	04/20/10	EPA 6010B
Cobalt	180	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Copper	37	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Lead	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Mercury	ND	0.20	1.000	162085	04/16/10	04/16/10	EPA 7470A
Molybdenum	68	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Nickel	930	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Selenium	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Silver	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Thallium	110	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Vanadium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Zinc	61	20	1.000	162181	04/19/10	04/20/10	EPA 6010B

ND= Not Detected RL= Reporting Limit Page 1 of 1

04/20/10 EPA 6010B

	Dissolved Cal	ifornia	Title 22 Metal	S	
Lab #:	219511	Loc	ation: 751-758 Sev	venth St Oak	land CA
Client:	Baseline Environmental	Pre	p: METHOD		
Project#:	Y0323-03				
Field ID:	MW-FP4B	Dil	n Fac: 1.00	00	
Lab ID:	219511-005	Sam	pled: 04/2	15/10	
Matrix:	Filtrate	Rec	eived: 04/2	15/10	
Units:	ug/L				
Analyte	Result	RL	Batch# Prepared	Analyzed	Analysis
Antimony	ND	10	162181 04/19/10	04/20/10 E	CPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Barium	41	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10 E	PA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Chromium	43	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Copper	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10 E	PA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Nickel	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10 E	PA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10 E	PA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10 E	PA 6010B
Vanadium	20	5.0	162181 04/19/10	04/20/10 E	PA 6010B

20

162181 04/19/10

30

ND= Not Detected RL= Reporting Limit Page 1 of 1

Zinc

	Dissolve	ed Calif	ornia Ti	tle 22	Metals				
Lab #:	219511	219511 Location: 751-758 Seventh St Oakland CA							
Client:	Baseline Environm	ental	Prep:	METH	HOD				
Project#:	Y0323-03								
Field ID:	MW-FP5		Units:		ug/L				
Lab ID:	219511-006		Sample	d:	04/15/	10			
Matrix:	Filtrate		Receive	ed:	04/15/	10			
Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Analysis		
Antimony	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Arsenic	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Barium	51	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Beryllium	ND	2.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Cadmium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Chromium	11,000	50	10.00	162181	04/19/10	04/20/10	EPA 6010B		
Cobalt	5.6	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Copper	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Lead	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Mercury	ND	0.20	1.000	162085	04/16/10	04/16/10	EPA 7470A		
Molybdenum	16	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Nickel	9.9	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Selenium	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Silver	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Thallium	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Vanadium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Zinc	25	20	1.000	162181	04/19/10	04/20/10	EPA 6010B		

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Dissolv	ed Calif	ornia Tit	le 22	Metals				
Lab #:	219511	219511 Location: 751-758 Seventh St Oakland CA							
Client:	Baseline Environm	ental	Prep:	METH	DD				
Project#:	Y0323-03								
Field ID:	MW-FP6		Units:		ug/L				
Lab ID:	219511-007		Sampled	:	04/15/1	.0			
Matrix:	Filtrate		Receive	d:	04/15/1	.0			
Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Analysis		
Antimony	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Arsenic	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Barium	40	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Beryllium	ND	2.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Cadmium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Chromium	11,000	50	10.00	162181	04/19/10	04/20/10	EPA 6010B		
Cobalt	6.1	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Copper	6.5	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Lead	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Mercury	ND	0.20	1.000	162085	04/16/10	04/16/10	EPA 7470A		
Molybdenum	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Nickel	26	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Selenium	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Silver	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Thallium	ND	100	10.00	162181	04/19/10	04/20/10	EPA 6010B		
Vanadium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B		
Zinc	33	20	1.000	162181	04/19/10	04/20/10	EPA 6010B		

162181 04/19/10 04/20/10 EPA 6010B

162181 04/19/10 04/20/10 EPA 6010B

Dissolved California Title 22 Metals								
Lab #:	219511	Loc	ation: 75	51-758 Sev	enth St Oa	kland CA		
Client:	Baseline Environmental	Baseline Environmental Prep: METHOD						
Project#:	Y0323-03							
Field ID:	MW-FP7B	Dil	n Fac:	1.00	0			
Lab ID:	219511-008	Sam	pled:	04/1	5/10			
Matrix:	Filtrate	Rec	eived:	04/1	5/10			
Units:	ug/L							
Analyte	Result	RL	Batch#	Prepared	Analyzed	Analysis		
Antimony	ND	10	162181	04/19/10	04/20/10	EPA 6010B		
Arsenic	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Barium	34	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Beryllium	ND	2.0	162181	04/19/10	04/20/10	EPA 6010B		
Cadmium	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Chromium	1,200	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Cobalt	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Copper	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Lead	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Mercury	ND	0.20	162085	04/16/10	04/16/10	EPA 7470A		
Molybdenum	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Nickel	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Selenium	ND	10	162181	04/19/10	04/20/10	EPA 6010B		
Silver	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		

10

5.0

20

ND= Not Detected RL= Reporting Limit Page 1 of 1

Thallium

Vanadium

Zinc

ND

ND

ND

162085 04/16/10 04/16/10 EPA 7470A

162181 04/19/10 04/20/10 EPA 6010B

162181 04/19/10

162181 04/19/10

162181 04/19/10

162181 04/19/10

162181 04/19/10

162181 04/19/10

Dissolved California Title 22 Metals								
Lab #:	219511 Location: 751-758 Seventh St Oakland CA							
Client:	Baseline Environmental	Pre	p: METHOD					
Project#:	Y0323-03							
Field ID:	MW-3	Dil	n Fac: 1.00	00				
Lab ID:	219511-010	Sam	pled: 04/2	L5/10				
Matrix:	Filtrate	Rec	eived: 04/2	L5/10				
Units:	ug/L							
Analyte	Result	RL	Batch# Prepared	Analyzed	Analysis			
Antimony	ND	10	162181 04/19/10	04/20/10	EPA 6010B			
Arsenic	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B			
Barium	190	5.0	162181 04/19/10	04/20/10	EPA 6010B			
Beryllium	ND	2.0	162181 04/19/10	04/20/10	EPA 6010B			
Cadmium	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B			
Chromium	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B			
Cobalt	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B			
Copper	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B			

5.0

0.20

5.0

5.0

5.0

5.0

10

10

20

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lead

Mercury

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Molybdenum

ND

ND

ND

ND

ND

ND

ND

ND

20

	Dissolved Cal	lifornia	. Title	22 Metal	.s			
Lab #:	219511 Location: 751-758 Seventh St Oakland CA							
Client:	Baseline Environmental	Pr	ep: I	METHOD				
Project#:	Y0323-03							
Field ID:	MW-9	Di	ln Fac:	1.0	00			
Lab ID:	219511-011	Sa	mpled:	04/	15/10			
Matrix:	Filtrate	Re	ceived:	04/	15/10			
Units:	ug/L							
Analyte	Result	RL	Batch#	Prepared	Analyzed	Analysis		
Antimony	ND	10	162181	04/19/10	04/20/10	EPA 6010B		
Arsenic	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Barium	64	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Beryllium	ND	2.0	162181	04/19/10	04/20/10	EPA 6010B		
Cadmium	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Chromium	4,900	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Cobalt	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Copper	5.8	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Lead	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Mercury	ND	0.20	162085	04/16/10	04/16/10	EPA 7470A		
Molybdenum	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Nickel	19	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Selenium	ND	10	162181	04/19/10	04/20/10	EPA 6010B		
Silver	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		
Thallium	ND	10	162181	04/19/10	04/20/10	EPA 6010B		
Vanadium	ND	5.0	162181	04/19/10	04/20/10	EPA 6010B		

20

26

ND= Not Detected RL= Reporting Limit Page 1 of 1

Zinc

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA	
Client:	Baseline Environmental	Prep: METHOD)	
Project#:	Y0323-03	Analysis: EPA 74	70A	
Analyte:	Mercury	Diln Fac:	1.000	
Туре:	BLANK	Batch#:	162085	
Lab ID:	QC540745	Prepared:	04/16/10	
Matrix:	Water	Analyzed:	04/16/10	
Units:	ug/L			

Result	RL	
ND	0.20	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METHOD		
Project#:	Y0323-03	Analysis: EPA 7470A		
Analyte:	Mercury	Batch#: 162085		
Matrix:	Water	Prepared: 04/16/10		
Units:	ug/L	Analyzed: 04/16/10		
Diln Fac:	1.000			

Туре	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC540746	2.500	2.490	100	77-124		
BSD	QC540747	2.500	2.480	99	77-124	0	12

Dissolved California Title 22 Metals			
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: METHOD	
Project#:	Y0323-03	Analysis: EPA 74	70A
Analyte:	Mercury	Batch#:	162085
Field ID:	ZZZZZZZZZ	Sampled:	04/14/10
MSS Lab ID:	219495-001	Received:	04/15/10
Matrix:	Water	Prepared:	04/16/10
Units:	ug/L	Analyzed:	04/16/10
Diln Fac:	1.000		

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC540748	<0.03335	2.500	2.620	105	53-149		
MSD	QC540749		2.500	2.590	104	53-149	1	19

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA	
Client:	Baseline Environmental	Prep: METHOD		
Project#:	Y0323-03	Analysis: EPA 60	10B	
Туре:	BLANK	Diln Fac:	1.000	
Lab ID:	QC541115	Batch#:	162181	
Matrix:	Filtrate	Prepared:	04/19/10	
Units:	ug/L	Analyzed:	04/20/10	

Analyte	Result	RL
Antimony	ND	10
Arsenic	ND	5.0
Barium	ND	5.0
Beryllium	ND	2.0
Cadmium	ND	5.0
Chromium	ND	5.0
Cobalt	ND	5.0
Copper	ND	5.0
Lead	ND	5.0
Molybdenum	ND	5.0
Nickel	ND	5.0
Selenium	ND	10
Silver	ND	5.0
Thallium	ND	10
Vanadium	ND	5.0
Zinc	ND	20

ND= Not Detected RL= Reporting Limit Page 1 of 1

Dissolved California Title 22 Metals				
Lab #: Client:	219511 Baseline Environmental	Location: 751-75 Prep: METHOD	8 Seventh St Oakland CA	
Project#:	Y0323-03	Analysis: EPA 60	10B	
Matrix:	Filtrate	Batch#:	162181	
Units:	ug/L	Prepared:	04/19/10	
Diln Fac:	1.000	Analyzed:	04/20/10	

Type: BS	Lab ID:	QC5411	16	
Analyte	Spiked	Result	%REC	Limits
Antimony	500.0	454.1	91	66-129
Arsenic	100.0	96.19	96	78-122
Barium	2,000	1,796	90	80-119
Beryllium	50.00	47.58	95	84-124
Cadmium	50.00	46.29	93	83-121
Chromium	200.0	168.0	84	81-116
Cobalt	500.0	429.3	86	78-115
Copper	250.0	205.8	82	77-115
Lead	100.0	84.91	85	73-124
Molybdenum	400.0	366.3	92	81-120
Nickel	500.0	428.7	86	78-117
Selenium	100.0	93.47	93	74-128
Silver	50.00	45.56	91	71-120
Thallium	100.0	98.73	99	77-124
Vanadium	500.0	434.2	87	81-117
Zinc	500.0	453.4	91	79-120

Type: BSD	Lab	ID: QC541	117			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	500.0	459.1	92	66-129	1	15
Arsenic	100.0	97.77	98	78-122	2	14
Barium	2,000	1,832	92	80-119	2	15
Beryllium	50.00	48.43	97	84-124	2	14
Cadmium	50.00	46.86	94	83-121	1	14
Chromium	200.0	173.5	87	81-116	3	14
Cobalt	500.0	433.0	87	78-115	1	14
Copper	250.0	208.9	84	77-115	1	15
Lead	100.0	85.98	86	73-124	1	17
Molybdenum	400.0	374.6	94	81-120	2	11
Nickel	500.0	436.9	87	78-117	2	14
Selenium	100.0	95.93	96	74-128	3	15
Silver	50.00	45.63	91	71-120	0	19
Thallium	100.0	101.0	101	77-124	2	13
Vanadium	500.0	445.0	89	81-117	2	14
Zinc	500.0	455.6	91	79-120	0	16

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA	
Client:	Baseline Environmental	Prep: METHOD)	
Project#:	Y0323-03	Analysis: EPA 60	10B	
Field ID:	MW-FP1	Batch#:	162181	
MSS Lab ID:	219511-001	Sampled:	04/15/10	
Matrix:	Filtrate	Received:	04/15/10	
Units:	ug/L	Prepared:	04/19/10	
Diln Fac:	1.000	Analyzed:	04/20/10	

Type: MS		Lab ID:	QC541118		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<3.290	500.0	423.8	85	53-139
Arsenic	<1.600	100.0	92.79	93	60-140
Barium	41.18	2,000	1,664	81	63-128
Beryllium	<0.4000	50.00	45.78	92	74-130
Cadmium	<1.411	50.00	39.41	79	69-128
Chromium	12.71	200.0	173.2	80	68-122
Cobalt	<1.000	500.0	408.3	82	68-119
Copper	2.182	250.0	202.4	80	61-130
Lead	<1.027	100.0	74.93	75	55-133
Molybdenum	2.385	400.0	331.0	82	70-128
Nickel	16.06	500.0	414.4	80	61-125
Selenium	<2.501	100.0	88.65	89	57-140
Silver	<1.000	50.00	44.16	88	53-132
Thallium	<2.616	100.0	89.11	89	54-133
Vanadium	1.083	500.0	421.8	84	71-124
Zinc	13.93	500.0	448.1	87	58-137

Type: MSD	Lab ID:	QC54	1119			
Analyte	Spiked	Result	%REC	Limits	RPI) Lim
Antimony	500.0	448.3	90	53-139	6	18
Arsenic	100.0	87.94	88	60-140	5	23
Barium	2,000	1,755	86	63-128	5	21
Beryllium	50.00	44.06	88	74-130	4	15
Cadmium	50.00	37.83	76	69-128	4	14
Chromium	200.0	166.3	77	68-122	4	19
Cobalt	500.0	393.0	79	68-119	4	13
Copper	250.0	194.0	77	61-130	4	19
Lead	100.0	79.51	80	55-133	6	21
Molybdenum	400.0	352.3	87	70-128	6	14
Nickel	500.0	400.2	77	61-125	4	21
Selenium	100.0	89.33	89	57-140	1	24
Silver	50.00	42.50	85	53-132	4	17
Thallium	100.0	86.73	87	54-133	3	24
Vanadium	500.0	407.5	81	71-124	3	16
Zinc	500.0	435.9	84	58-137	3	25

Hexavalent Chromium							
Lab #:	219511 Location: 751-758 Seventh St Oakland CA					kland CA	
Client:	Baseline Environmental		Prep: METHOD				
Project#:	Y0323-03	23-03 Analysis: EPA 7196A					
Analyte:	Hexavalent Chr	Hexavalent Chromium Batch#:		:	162065		
Matrix:	Water		Received: 04/15/10				
Units:	mg/L						
Field ID	Type Lab ID	Result	RL	Diln Fac	Sampled	Analyzed	
MW-FP1	SAMPLE 219511-001	0.02	0.01	1.000	04/15/10 08:30	04/15/10 18:00	
MW-FP2	SAMPLE 219511-002	0.03	0.01	1.000	04/15/10 13:34	04/15/10 18:00	
MW-FP3	SAMPLE 219511-003	0.18	0.01	1.000	04/15/10 09:00	04/15/10 18:00	
MW-FP4A	SAMPLE 219511-004	460	10	1,000	04/15/10 14:35	04/16/10 12:00	
MW-FP4B	SAMPLE 219511-005	0.03	0.01	1.000	04/15/10 14:10	04/15/10 18:00	
MW-FP5	SAMPLE 219511-006	14	0.40	40.00	04/15/10 13:00	04/15/10 18:00	
MW-FP6	SAMPLE 219511-007	15	0.40	40.00	04/15/10 11:35	04/15/10 18:00	
MW-FP7B	SAMPLE 219511-008	1.2	0.01	1.000	04/15/10 12:13	04/15/10 18:00	
MW-3	SAMPLE 219511-010	ND	0.01	1.000	04/15/10 10:10	04/15/10 18:00	
MW-9	SAMPLE 219511-011	5.7	0.10	10.00	04/15/10 10:35	04/15/10 18:00	
	BLANK OC540664	ND	0.01	1.000		04/15/10 18:00	

Batch QC Report

Hexavalent Chromium									
Lab #:	219511	Location:	751-758 Seventh St Oakland CA						
Client:	Baseline Environmental	Prep:	METHOD						
Project#:	Y0323-03	Analysis:	EPA 7196A						
Analyte:	Hexavalent Chromium	Diln Fac:	1.000						
Field ID:	MW-FP1	Batch#:	162065						
MSS Lab ID:	219511-001	Sampled:	04/15/10 08:30						
Matrix:	Water	Received:	04/15/10						
Units:	mg/L	Analyzed:	04/15/10 18:00						
Type Lab ID	MSS Result Sr	piked	Result %REC Limits RPD Lim						

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC540665		1.000	1.049	105	90-110		
MS	QC540666	0.01730	1.000	1.014	100	85-115		
MSD	QC540667		1.000	1.034	102	85-115	2	59

H Meth			Hydr Method C:	Straulic Conductivity ASTM D 5084 C: Falling Head Rising Tailwater						
Job No:	360	-062	Boring:		MW	-FP4B	Date:		03/11/	10
Client:	Baseline Environ	mental Consulting	Sample:				By:	-	MD/F	2
Project:	Y23	32-03	Depth, ft.:	26-26	6.5	Remold	ed:	_		
Visual Clas	sification:	Grayish Brov	wn Clayey SA	ND (slig	htly	cemented)	(slightly pla	stic)		
Max Sample Pressures, psi:				B: =	= >0.95	("B" is	an indicati	on of satur	ation)	
Cell:	Bottom	Тор	Avg. Sigma3		N	/lax Hydra	ulic Gradie	ent: =	17	
63.5	59	58	5	1.0E-06						_
Date	Minutes	Head, (in)	K,cm/sec	0.07.07						
3/8/2010	0.00	42.69	Start of Test	9.02-07						
3/8/2010	53.00	42.09	3.2E-07	8.0E-07	-					
3/8/2010	259.00	40.14	2.9E-07							
3/9/2010	1266.00	39.39	2.8E-07	7.0E-07						
3/9/2010	1459.00	31.09	2.8E-07	file 6.0E-07						
0/0/2010	1409.00	30.49	2.0E-07	neal						
				5.0E-07						- 1
				4.0E-07						
2					~					
				3.0E-07	12			0-0		- 1
				2.0E-07				• •		
										- 11
				1.0E-07						-
3				()	500	1000	1500) 2	2000
122222222222222222222222222222222222222	000000000000000000000000000000000000000	700		BOOLDLAT MIL			Time, min.			
		Avera	age Permeab	ility:		3.E-07	cm/s	ec		
Sample Data:			Initial				Fina	al		
Height, in	20		2.50				2.47			
Diameter, in			2.41				2.41			
Area, Inz			4.57				4.56			
Volume Ins			11.41		_		11.2	5		
Volume Solid	, cc		187.0				184.3	3		
Volume Void	5, 66		113.3				113.3	3		
Void Patio	s, cc		/3./				71.0			
Total Porosite	, 0/		0.7			S	0.6			
Air-Filled Por	, /0		39.4				38.5	5		
Water-Filled P	orogity, 70		1.2				0.0			
Saturation %	brosity,%		38.2				38.5	5		
Specific Grav	ity		90.9				100.	0		
Wet Weight	m		2.70				2.75	7		
Dry Weight	m		311 7				382.7	7		
Tare, om			0.00				311.7	9		
Moisture %			22 9				0.00			
Dry Density	ocf		104 0				22.8	• =		
Derrol			104.0				105.5	0		
Remarks:										

COPER			Specific G	Sravity by Pyc ASTM D 854m	nometer			
CTL Job#:		360-062		Project Name:	751-785 Seven	th St. Oakland	Date:	03/17/10
Client:	Bas	line Environmental		Project No.:	Y0353-03		Run By:	MD DC
Boring:	MW-FP4B							
Sample:								
Depth, ft.:	26-26.5							
Pan No.:								
Soil Description (visual)	Grayish Brown Clayey SAND (slightly cemented) (slightly plastic)							
Dish No.								
Air-Dry Weight, gm	40.80							
Oven-Dry Weight., gm	40.47							
Dish Weight, gm	11.30							
Hydroscopic MC, %	1.1							
Pycnometer No.:								
Wt Pycn., Soil & H2O (Wb), g	734.0							
Test Temp. (T), °C	21.3							
Wt Pycn. & H2O @ T (Wa), g	662.7							
Wt of Air-Dried Soil (Wm), g	113.32							
Wt of Oven-Dried Soil (Wo), g	112.05							
Temp. Corr. Factor (K)	0.99972							1.6
Specific Gravity (20°C) Gs = <u>K Wo</u> Wo+Wa-Wb	2.75							

COR	Total and Effective Porosity Report (API RP40 and ASTM D6836m)										
Job No: 360-062 Project No.: Y0353-03											
Client: Baseline Environmental Date: 3/18/10											
Project Name	: 751-785 Se	eventh St. O	akland	Ву	r: PJ						
Boring:	IVIVV-FP4B										
Denth ft	26-26.5										
Visual	Gravish										
Description:	Brown Clayey SAND, slightly cemented										
Total Porosity, %	38.4										
Effective Porosity, %	0.7							0.0			
Air-filled Porosity, %	0.0										
Water-filled Porosity, %	38.4										
Saturation, %	100.0										
Moisture, %	22.7										
Wet Unit wt, pcf	129.8	/									
Series	100.0	2	3	1	5	6	7				
Note: All reported v	alues above are fo	or the "as received	condition except	for the effective n	orosity which is mes	O Sured at a tension	/	<u> </u>			
140 Zero /	Moisture-Density Zero Air-voids Curves, Specific Gravity 140										
130		11	2.6 2	.7	The Ze	ero Air-Voids curve ent the dry density	at	Series 1			
bcf		\sim		2.8	100%	saturation for each		∆ Series 2			
120 tig			X			or specific gravity		X Series 3			
			1					WCarles			
Dy								X Series 4			
100								Series 5			
S 80								+Series 6			
80								- Series 8			
70							, I				
0.0	70										

BASELINE Environmental Consulting 5900 Hollis Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707 J 4023	CHAIN OF CUST	ody.record CTL 36	0-06Z		Jun Around-Time <u>Standard TAT</u> Laboratory <u>Cooper</u> BASELINE Contact Person (VID) Huang
Project Number Y022-03 Project Name: 751 - 785 Seventh St. Oakland Samplers Signature		Containers	ivity		
Malon & Sury Bill Su		Type	Presv lic Conduct) D5084	e Porosity insity	
Sample ID No. Station Date MW-FP4B	Time Media No.	Stainless in Brass line Macrocor	Hydrau A (ASTM	Effectiv Bulk De	
MW-FP4B; 1010 I CM	9.20 Sal 1	×	X		Additional sample if needed
Perm Derm	5			00	
Gravice	Pro I		X		ched
Silty S	SAND,			All	
Relinquished by: (Sjgnatur	-W Cementel	wed by: (Signature)		Date/Time	Remarks:
Relinquished by: (Signature) Date/Time	Recei	ved by: (Signature)	te -	3-4-10 Date/Time	a:47
Relinquished by: (Signature)	> 10:55 2 Recei	ved by: (Signature)	In	3 4 10 Date/Time	Email contact:
Received at laboratory with intact custody seal: Samples of A Yes No	Com Com Arrival: On Ice Cold	lote: SAM	Protect ag	Contain ainst derm	elevated (evels of

Brush st- Soil Lrg.xls