

Apex Companies, LLC 944 McCourtney Road, Suite H • Grass Valley, CA 95949 P: (530) 272-4200 • F: (530) 272-4211

December 5, 2016

Ms. Kit Soo, P.G. Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 RECEIVED

By Alameda County Environmental Health 10:24 am, Dec 15, 2016

Subject:

SECOND 2016 SEMI-ANNUAL GROUNDWATER MONITORING AND

SAMPLING, PLUME DELINEATION, AND DATA COLLECTION FOR

REMEDIAL EVALUATION REPORT

**Former Francis Plating Site** 

785 7th Street, Oakland, California

Dear Ms. Soo:

Enclosed please find the Second 2016 Semi-Annual Groundwater Monitoring and Sampling Report for the Former Francis Plating Site.

Periury Statement:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments regarding the Report, please feel free to Greg McIver at (530) 272-4200.

Sincerely,

Tom McCoy Property Owner

Enclosure



# SECOND 2016 SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT

# Former Francis Plating Site 789 7th Street, Oakland, California

06-FP-001

Prepared For:

Brush Street Group, LLC 1155 Third Street, Suite 230 Oakland, California 94607

Prepared By:



944 McCourtney Rd, Suite H Grass Valley, California 95945

December 5, 2016

Prepared By:

Adam Brown Project Scientist No. 666

No. 666

CERTIFIED

HYDROGEOLOGIST

Exp. 2/28/17

Reviewed By:

Jing Heisler Senior Geologist

Greg McIver Principal Scientist

# **TABLE OF CONTENTS**

| LICT | 0F FI0I | UDEC                                                             | PAGE |
|------|---------|------------------------------------------------------------------|------|
|      |         | PENDICES                                                         |      |
| CER  | ΓIFICAT | ION                                                              | iii  |
| 1.0  |         | ODUCTION                                                         |      |
|      | 1.1     | Report Organization                                              | 1-1  |
| 2.0  | SITE    | BACKGROUND                                                       | 2-1  |
|      | 2.1     | Site Location and Description                                    |      |
|      | 2.2     | Site Operational History                                         | 2-1  |
|      | 2.3     | Hydrogeologic Setting                                            |      |
|      | 2.4     | Summary of Remedial Actions and Current Environmental Conditions | 2-2  |
| 3.0  | GRO     | JNDWATER MONITORING AND SAMPLING ACTIVITIES                      | 3-1  |
|      | 3.1     | Groundwater Monitoring                                           |      |
|      | 3.2     | Groundwater Sampling                                             | 3-1  |
|      | 3.3     | Monitoring and Sampling Results                                  |      |
|      |         | 3.3.1 Groundwater Elevations                                     |      |
|      |         | 3.3.2 Groundwater Analytical Results                             |      |
|      |         | 3.3.3 Groundwater Parameters                                     | 3-3  |
| 4.0  | SUMM    | MARY AND RECOMMENDATIONS                                         | 4-1  |
| 5.0  | LIMIT   | ATIONS                                                           | 5-1  |
| 6.0  | REFE    | RENCES                                                           | 6-1  |



3Q16 GWMS Report

# **LIST OF FIGURES**

| Figure 1 | Site Location Map                                                       |
|----------|-------------------------------------------------------------------------|
| Figure 2 | Site Plan (On-Site)                                                     |
| Figure 3 | Site Vicinity Map                                                       |
| Figure 4 | Groundwater Elevation Contour Map, Shallow Screened Zone September 2016 |
| Figure 5 | Hexavalent Chromium Concentrations in Groundwater September 2016        |
| Figure 6 | TCE Concentrations in Groundwater September 2016                        |

# **LIST OF TABLES**

| Table 1 | Groundwater Level Measurements                                            |
|---------|---------------------------------------------------------------------------|
| Table 2 | Vertical Groundwater Potentiometric Head Differences                      |
| Table 3 | Groundwater Analytical Results – Dissolved Metals and Hexavalent Chromium |
| Table 4 | Groundwater Analytical Results – Volatile Organic Compounds               |

# **LIST OF APPENDICES**

ii

| Appendix A Regu | ulatory Correspondence |
|-----------------|------------------------|
|-----------------|------------------------|

Appendix B Field Forms

Appendix C Laboratory Analytical Data

# **CERTIFICATION**

All hydrogeologic and geologic information in this document regarding the <u>789 7<sup>th</sup> Street Site</u> have been prepared under the supervision of and reviewed by the certified professional whose signature appears below.

(40)

Jing Heisler, P.G.
Professional Geologist
The Source Group, Inc.
A division of APEX Companies, LLC

iii

### 1.0 INTRODUCTION

On behalf of The Brush Street Group, LLC, (BSG), The Source Group, Inc. a division of Apex Companies, LLC., (SGI/Apex) has prepared this *Second 2016 Semi-Annual Groundwater Monitoring and Sampling Report* (Report) for the Former Francis Plating Frog Pond Site located at 789 7<sup>th</sup> Street in Oakland, California (Site, Figures 1 through 3). The report has been prepared to satisfy Alameda County Department of Environmental Health (ACDEH) semi-annual report request (Appendix A) and detail groundwater conditions beneath the Site during the third quarter 2016 (3Q16) groundwater monitoring and sampling event.

# 1.1 Report Organization

The remainder of this Report is organized into the following sections:

# Section 2.0: Site Background

This section presents a summary of the Site setting and a brief description of previous Site investigations.

# Section 3.0: Groundwater Monitoring and Sampling Activities

This section presents a summary third quarter 2016 monitoring and sampling activities.

# Section 4.0: Summary and Recommendations

This section provides a summary of monitoring and sampling activities and recommendations.

## Section 5.0: Limitations

This section provides SGI/Apex limitations as they relate to use of this Report.

# Section 6.0: References

This section provides references cited in this Report.



3Q16 GWMS Report 1-1

### 2.0 SITE BACKGROUND

This section provides background information, subsurface conditions, and previous remediation activities at the Site.

# 2.1 Site Location and Description

The Site is located at 789 7<sup>th</sup> Street, in a light industrial area of Oakland. The Site is bounded by 7<sup>th</sup> Street to the north, Parcel 2 and Brush Street to the east, a Shell service station to the west, and a commercial building and lot to the south (Figure 2).

The Site is vacant and paved, and is used for parking. An approximately 2,227-square-foot building occupies the northeast corner of the adjacent Parcel 2. The property is covered by concrete or asphalt, with the exception of an exposed strip of soil along the western property line. Property details and surrounding area is shown on Figure 1 through 3.

# 2.2 Site Operational History

A review of Sanborn Fire Insurance maps by BASELINE Environmental Consulting (BASELINE) identified the Site use in the late 1940s and early 1950s as an auto and truck sales and service shop (BASELINE, 2005). The Site was operated as a plating facility from approximately 1957 to 1998. A building occupied the western portion (Parcel 1) of the Site from the late 1940s until it was destroyed by fire in 1992. The building currently on the adjacent parcel (Parcel 2) was constructed in 1970. Plating operations were conducted in both the former and current buildings on the two parcels.

In 1998, the property was found abandoned with chemicals and equipment remaining on Site. As part of an emergency response action, the U.S. Environmental Protection Agency (USEPA) removed the abandoned chemicals and equipment, and excavated shallow soil in areas without asphalt or concrete surfaces. In 2003, the current owner, The Seventh Street Group, acquired the property.

# 2.3 Hydrogeologic Setting

Past investigations indicate that the lithology is consistent across the Site. Soil from the surface to 3 to 5 feet below ground surface (bgs) consists of silty sand/sand fill with some brick and concrete debris. Very fine- to fine-grained sands (Merritt Sands) of the San Antonio Formation underlie the fill and extend to approximately 60 feet bgs (BASELINE, 2010). The Merritt Sands are underlain by plastic clay (Old Bay Mud).

Regional groundwater flow direction in the San Antonio Formation is southwesterly toward the Oakland Inner Harbor, located approximately 2,300 feet south of the Site. Based on groundwater monitoring conducted by BASELINE in 2003, 2005, and 2010, the depth to the shallow unconfined groundwater at the Site has ranged from approximately 12 to 16 feet bgs. Groundwater monitoring performed by BASELINE in 2010, and groundwater monitoring reports from the adjacent Shell Service Station, indicate that the local shallow unconfined groundwater flows in a south/southwesterly direction (BASELINE, 2010; CRA, 2009).



3Q16 GWMS Report 2-1

# 2.4 Summary of Remedial Actions and Current Environmental Conditions

The USEPA response action, conducted from 1998 through 2000, involved characterization of stored liquids, sludge, and sediments contained in tanks, pits, and ponds, all located above the concrete pavement. All of these materials were subsequently removed from the Site, and soil samples were collected and analyzed for selected metals and total cyanide (BASELINE, 2005).

Surface soils were removed as part of the emergency response action in an attempt to remove surface soil containing cadmium, chromium, nickel, and lead concentrations above USEPA Industrial Preliminary Remedial Goals. During the removal actions, shallow soil was excavated and removed from select areas.

Numerous investigations between 2000 and 2010 have identified metals, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons in soil, groundwater, and/or soil vapor samples. Compounds detected in Site soil, groundwater, soil vapor and indoor air include:

- Lead, nickel, zinc, cadmium, total chromium, hexavalent chromium (Cr-VI), copper, antimony, PAHs, and cyanide have been detected in one or more soil samples at concentrations exceeding environmental screening levels (ESLs) established by the California Regional Water Quality Control Board – San Francisco Bay Region (CRWQCB) for land uses where groundwater is a drinking water resource;
- Dissolved total chromium, Cr-VI, cobalt, copper, lead, mercury, nickel, silver, thallium, vanadium, total petroleum hydrocarbons as diesel (TPHd), cis-1,2-dichloroethene (cis-1,2-DCE) and trichloroethene (TCE) have been detected in one or more groundwater samples at concentrations exceeding residential or commercial ESLs; and
- TCE has been detected in one or more shallow soil gas samples at concentrations exceeding ESLs.

Results of a 2006 investigation suggested that a subsurface containment vault on the southwestern portion of the Site referred to as the "Frog Pond," was a significant source of the subsurface contamination at the Site. As a result, the Frog Pond was removed in two phases, beginning in May 2007, and completed in December 2007. The Frog Pond removal activities are described in a BASELINE report dated February 2008 (BASELINE, 2008).

In April, 2010, BASELINE completed a soil and groundwater investigation which concluded groundwater impacts were confined to the Merritt Sand and chemical of primary concern for groundwater was Cr-VI detected in shallow and deep wells extending 120 feet down gradient of the Site. In addition, select dissolved metals detected in groundwater exceeded ESLs, no VOCs were reported in groundwater exceeding ESLs. Complete results are presented in BASELINE's *Phase IV Soil and Groundwater Investigation*, dated May 2010, (BASELINE, 2010).

During the first quarter 2016 monitoring and sampling activities on- and off-Site soil borings were advanced for the collection of soil samples, grab groundwater and remedial evaluation parameters.



3Q16 GWMS Report 2-2

Cr-VI was not detected above respective ESLs in shallow source area soil. Results indicate impacted shallow soil is limited to the former Frog Pond area. The lateral extent of CrVI in groundwater extends approximately 160 feet down-gradient of the Site. Site lithology and remedial evaluation parameters indicate silts and clays of low permeability at the Site. Details regarding first quarter monitoring and sampling activities and delineation/remedial evaluation are presented in SGI/Apex's First 2016 Semi-Annual Groundwater Monitoring and Sampling, Plume Delineation, and Data Collection for Remedial Evaluation Report, dated August 3, 2016.

During the most recent third quarter 2016 (3Q16) sampling event Cr-VI and TCE were detected at maximum concentrations of 30,000  $\mu$ g/L and 140  $\mu$ g/L in wells MW-FP5 and MW-FP4A, respectively. Groundwater flow direction was observed to the south/southwest gradient of 0.004 feet per foot (ft/ft). Groundwater concentrations and flow direction/gradient were generally consistent with historical conditions. Furthermore, groundwater measurements, including analytical results and groundwater parameters continue to indicate an aerobic subsurface environment. 3Q16 monitoring and sampling activities are presented in the following Sections.



3Q16 GWMS Report 2-3

### 3.0 GROUNDWATER MONITORING AND SAMPLING ACTIVITIES

# 3.1 Groundwater Monitoring

Groundwater levels measured on September 14, 2016, in seven shallow screened wells (MW-FP1, MW-FP2, MW-FP3, MW-FP4A, MW-FP5, MW-FP6 and MW-9) and two deeper screened on-Site wells (MW-FP4B and MW-FP7B). Prior to collecting groundwater measurements well caps were removed to allow for groundwater equilibration. Groundwater levels were gauged from the top of the well casings using an electronic water level indicator graduated to 0.01-foot. Well locations are presented on Figure 2 and 3.

# 3.2 Groundwater Sampling

Groundwater samples were collected on September 14, 2016, by Confluence Environmental, Inc. of Sacramento, California using low-flow techniques via peristaltic pump and dedicated tubing. The inlet of dedicated tubing was placed at the middle of the screen interval. During well purging, water quality parameters [dissolved oxygen (DO), oxidation reduction potential (ORP), temperature, electrical conductivity, and pH] were measured and recorded to ensure the groundwater samples were representative of aquifer conditions. Samples were transferred directly into laboratory-supplied containers and placed on ice for transport to Curtis & Tompkins Laboratory of Berkeley, California under chain-of-custody control. All groundwater samples collected during the 3Q16 event were analyzed for VOCs by EPA Method 8260B, dissolved metals (CAM 17 Metals) by EPA 6010B/7470A (field filtered with 0.45-micron filter), and total and dissolved CrVI by EPA Method 7196A (field filtered with 0.45 micron filter for dissolved Cr-VI).

## 3.3 Decontamination/Waste

All non-dedicated equipment was triple rinsed using non-phosphate Liquinox and high pressure steam between sample locations. Purge water was stored in DOT approved 55-gallon drums on-Site pending disposal.

# 3.4 Monitoring and Sampling Results

3Q16 groundwater monitoring and sampling was conducted on September 14, 2016. Results are presented in the following sections.

# 3.4.1 Groundwater Elevations

Depth to water measurements ranged from 13.05 to 17.29 feet below top of casing (btoc) in wells screened in shallow zone; and from 12.63 to 17.78 feet btoc in wells screened in deeper zone. Corresponding groundwater elevations ranged from 7.92 to 8.74 feet above mean sea level (amsl) in wells screened in shallow zone; and from 7.66 to 7.88 feet amsl in wells screened in deeper zone. A review of elevation data and the potentiometric surface map (Figure 4) indicates a south southwest gradient in shallow groundwater at rate of approximately 0.004 ft/ft, similar to previous findings. A

SGI APEX

3Q16 GWMS Report 3-1

potentiometric surface map for 3Q16 was generated from the groundwater elevation data and is presented as Figure 4. Groundwater elevation measurements are presented in Table 1.

The vertical potentiometric head difference between wells pairs MW-FP4A/4B and MW-9/MW-FP7B presented in Table 2. A review of the data indicates the vertical hydraulic gradients are slightly downward at 0.02 ft/ft in wells MW-FP4A/4B and flat at 0.00 ft/ft in wells MW-9/MW-FP7B. Field forms are included in Appendix B.

# 3.4.2 Groundwater Analytical Results

A summary of dissolved metals and Cr-VI detected in shallow and deep zone monitoring wells are provided in the table below:

|                   |                        | Shallow Zone                                     | •                                                |                        | Deep Zone                                        |                                                  |  |
|-------------------|------------------------|--------------------------------------------------|--------------------------------------------------|------------------------|--------------------------------------------------|--------------------------------------------------|--|
| Analyte           | Detection<br>Frequency | Minimum Detected Concentration / Sample Location | Maximum Detected Concentration / Sample Location | Detection<br>Frequency | Minimum Detected Concentration / Sample Location | Maximum Detected Concentration / Sample Location |  |
| Barium            | 7/7                    | 33<br>MW-FP1                                     | 160<br>MW-9                                      | 2/2                    | 29<br>MW-FP4B                                    | 31<br>MW-FP7B                                    |  |
| Total<br>Chromium | 7/7                    | 8.0<br>MW-FP1                                    | 20,000<br>MW-FP5                                 | 2/2                    | 10<br>MW-FP4B                                    | 31<br>MW-FP7B                                    |  |
| Cr-VI             | 7/7                    | 7.1<br>MW-FP1                                    | 30,000<br>MW-FP5                                 | 2/ 2                   | 9.6<br>MW-FP4B                                   | 21<br>MW-FP7B                                    |  |
| Cobalt            | 1/7                    | 7.1<br>MW-FP4A                                   | 7.1<br>MW-FP4A                                   | 0/2                    |                                                  |                                                  |  |
| Copper            | 1/7                    | 20<br>MW-FP4A                                    | 20<br>MW-FP4A                                    | 0/2                    |                                                  |                                                  |  |
| Molybdenum        | 1/7                    | 14<br>MW-FP4A                                    | 14<br>MW-FP4A                                    | 0/2                    |                                                  |                                                  |  |
| Nickel            | 6/7                    | 11<br>MW-FP1                                     | 130<br>MW-FP4A                                   | 0/2                    |                                                  |                                                  |  |
| Vanadium          | 0/7                    |                                                  |                                                  | 2/2                    | 9.6<br>MW-FP4B                                   | 12<br>MW-FP7B                                    |  |
| Zinc              | 2/7                    | 28<br>MW-FP4A                                    | 110<br>MW-FP4A                                   | 1/2                    | 300<br>MW-FP4B                                   | 300<br>MW-FP4B                                   |  |

### Note:

-- = Not Applicable

Dissolved total chromium, Cr-VI, cobalt, copper, nickel, and zinc have been detected in one or more groundwater samples at concentrations exceeding ESLs. Results indicate that Cr-VI concentrations remain elevated and extend approximately 160 feet south of the Site to 6<sup>th</sup> Street. Cr-VI concentrations were generally detected within historical range in monitoring wells. Results are summarized in Table 3 and Cr-VI results are displayed on Figure 5. Laboratory analytical reports are included in Appendix C.



3O16 GWMS Report 3-2

A summary of VOC results in shallow zone monitoring wells is provided in the table below:

| Analyte        | Detection<br>Frequency | Minimum Detected<br>Concentration /<br>Sample Location | Maximum<br>Detected<br>Concentration /<br>Sample Location |
|----------------|------------------------|--------------------------------------------------------|-----------------------------------------------------------|
| PCE            | 0/7                    |                                                        |                                                           |
| TCE            | 4/7                    | 2.7<br>MW-FP5                                          | 140<br>MW-FP4A                                            |
| cis-1,2-DCE    | 2/7                    | 13<br>MW-9                                             | 170<br>MW-FP4A                                            |
| 1,1-DCE        | 1/7                    | 1.8<br>MW-FP4A                                         | 1.8<br>MW-FP4A                                            |
| Vinyl Chloride | 0/7                    |                                                        |                                                           |

### Note:

Results presented in µg/L. PCE – tetrachloroethene DCE - dichloroethene

-- = Not Applicable

TCE and cis-1,2-DCE have been detected in one or more groundwater samples at concentrations exceeding the environmental screening level maximum contaminant level. TCE was detected at a maximum concentration from on-Site monitoring well MW-FP4A at a concentration of 140  $\mu$ g/L, immediately downgradient of the Former Frog Pond. TCE was detected at a lesser extent of 8.9  $\mu$ g/L and 22  $\mu$ g/L in monitoring wells MW-FP6 and MW-9, respectively, approximately 130 feet downgradient, south of the Site. VOCs were not detected above the laboratory reporting limit in deep zone monitoring wells with the exception of chloroform at a maximum concentration of 10  $\mu$ g/L in well MW-FP7B. VOC results are summarized in Table 4 and a TCE chemical concentration map is included as Figure 6. Laboratory analytical report is included in Appendix C.

# 3.4.3 Groundwater Parameters

Oxidation reduction potential (ORP) and dissolved oxygen (D.O.) parameters were measured in groundwater monitoring wells during the sampling event. Results were recorded positive and greater than 1 milligram per liter (mg/L) in all monitoring wells. Similar to previous sampling events the groundwater parameters measured during the 3Q16 sampling event indicate an aerobic groundwater environment.



3Q16 GWMS Report 3-3

### 4.0 SUMMARY AND RECOMMENDATIONS

A summary of investigation results is provided below:

- During the 3Q16 shallow groundwater beneath the Site flowed toward the south/southwest at a gradient of approximately 0.004 ft/ft, consistent with historical groundwater conditions;
- Groundwater parameters and results continue to indicate an aerobic subsurface groundwater environment;
- The maximum Cr-VI concentration in groundwater was detected in shallow zoned monitoring well MW-FP5 at 30,000 μg/L, located immediately downgradient of the Former Frog Pond;
- TCE was detected in 4 of 7 groundwater samples from shallow screened wells, three of which, located downgradient of the Former Frog Pond, (MW-FP4A, MW-FP6, and MW-9) were at concentrations greater than the ESL (5 μg/L) for protection of drinking water resources; and
- The defined Cr-VI plume in groundwater shown on Figure 5 extends to approximately 180 feet south of the Site.

On November 10, 2016 SGI/Apex submitted *Remedial Action Plan Meeting Preparation* letter correspondence to provide documents associated with a conceptual site model (CSM) and components of a feasibility study (FS) in order to evaluate remedial alternatives for the Site. The preparation of the aforementioned documents will be used for discussion purposes between SGI/Apex and ACDEH to develop a remedial action plan intended to protect human health and the environment and supplement the Site Cleanup Subaccount Program (SCAP) funding application. SGI/Apex is scheduled to prepare a comprehensive feasibility study following discussions with ACEHD and conduct the first semi-annual monitoring and sampling event during the first quarter 2017.



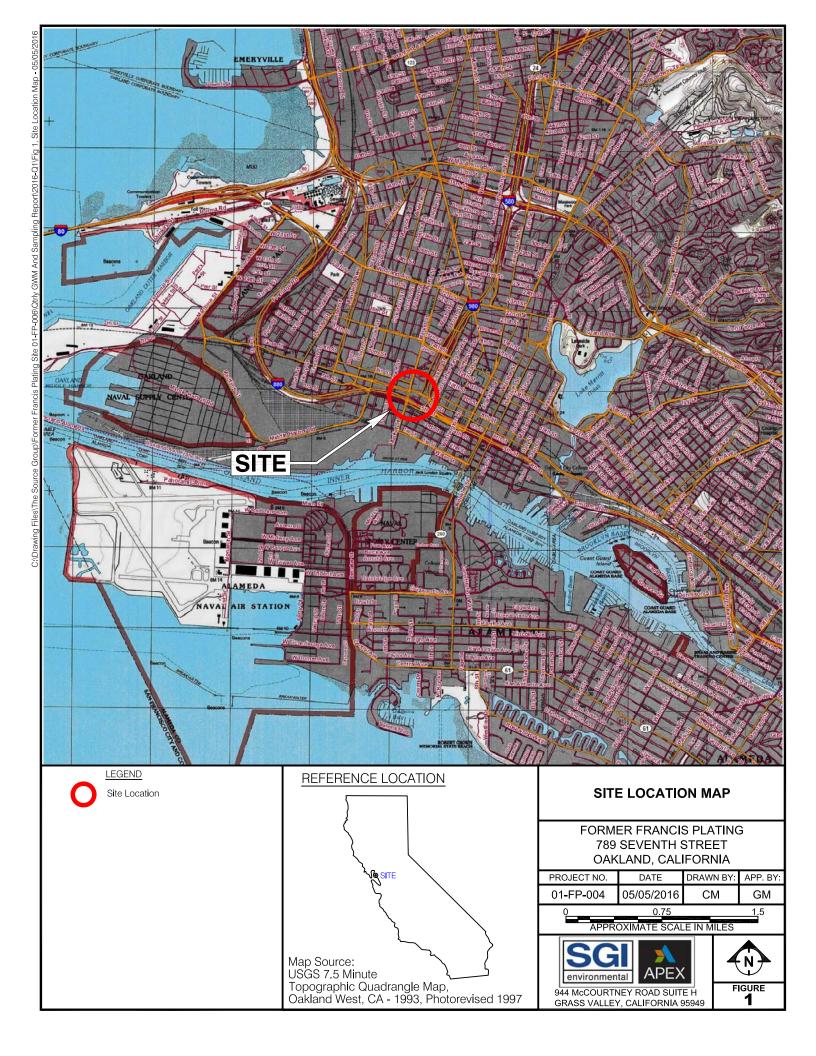
3Q16 GWMS Report 4-1

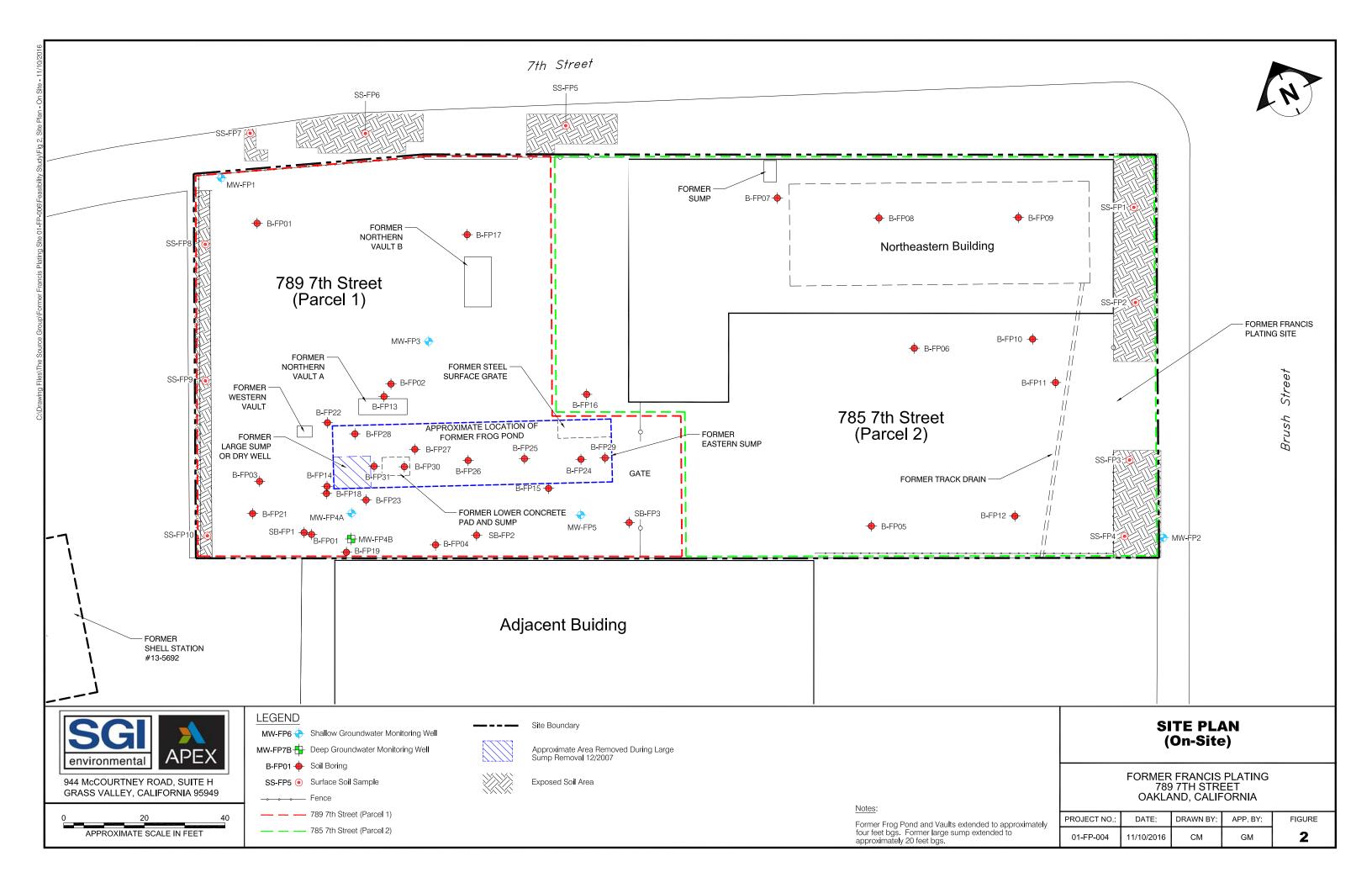
### 5.0 LIMITATIONS

This Report was prepared for the exclusive use of The Brush Street Group for the express purpose of complying with regulatory directives for environmental investigation, in accordance with the scope of work, methodologies, and assumptions outlined in SGI's contract with The Brush Street Group and as applicable to the location of the proposed investigation. Any re-use of this work product, in whole or in part, for a different purpose, or by others must be approved by SGI and The Brush Street Group in writing. If any such unauthorized use occurs, it shall be at the user's sole risk without liability to SGI. To the extent that this Report is based on information provided to SGI by third parties, including The Brush Street Group, their direct-contractors, previous workers, and other stakeholders, SGI cannot guarantee the completeness or accuracy of this information, even where efforts were made to verify third-party information. SGI has exercised professional judgment to collect and present a scope of work and opinions of a scientific and technical nature. The opinions expressed are based on the conditions of the Site existing at the time of this Report preparation, current regulatory requirements, and any specified assumptions. Findings or conclusions presented in this Report are intended to be taken in their entirety to assist The Brush Street Group and regulatory personnel in applying their own professional judgment in making decisions related to the property. SGI cannot provide conclusions on environmental conditions outside the completed scope of work. SGI cannot guarantee that future conditions will not change and affect the validity of the presented scope of work and any conclusions presented. No warranty or quarantee, whether expressed or implied, is made with respect to the data, observations, recommendations, and conclusions.

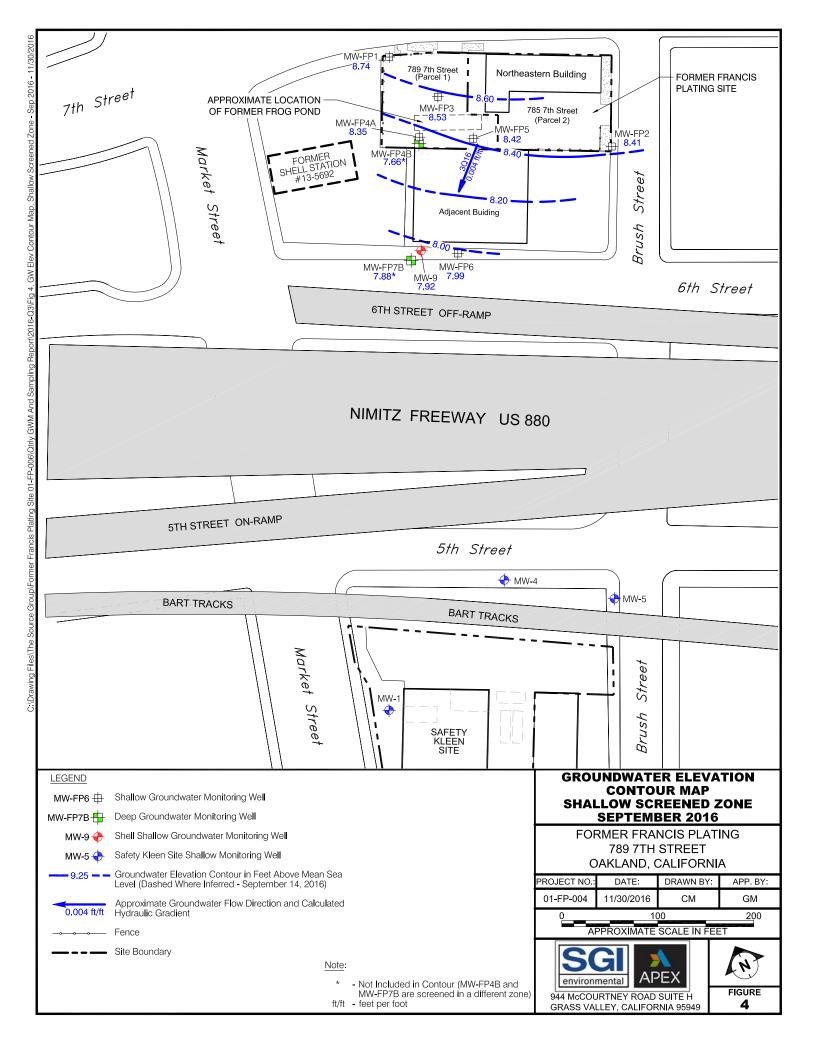


3Q16 GWMS Report 5-1

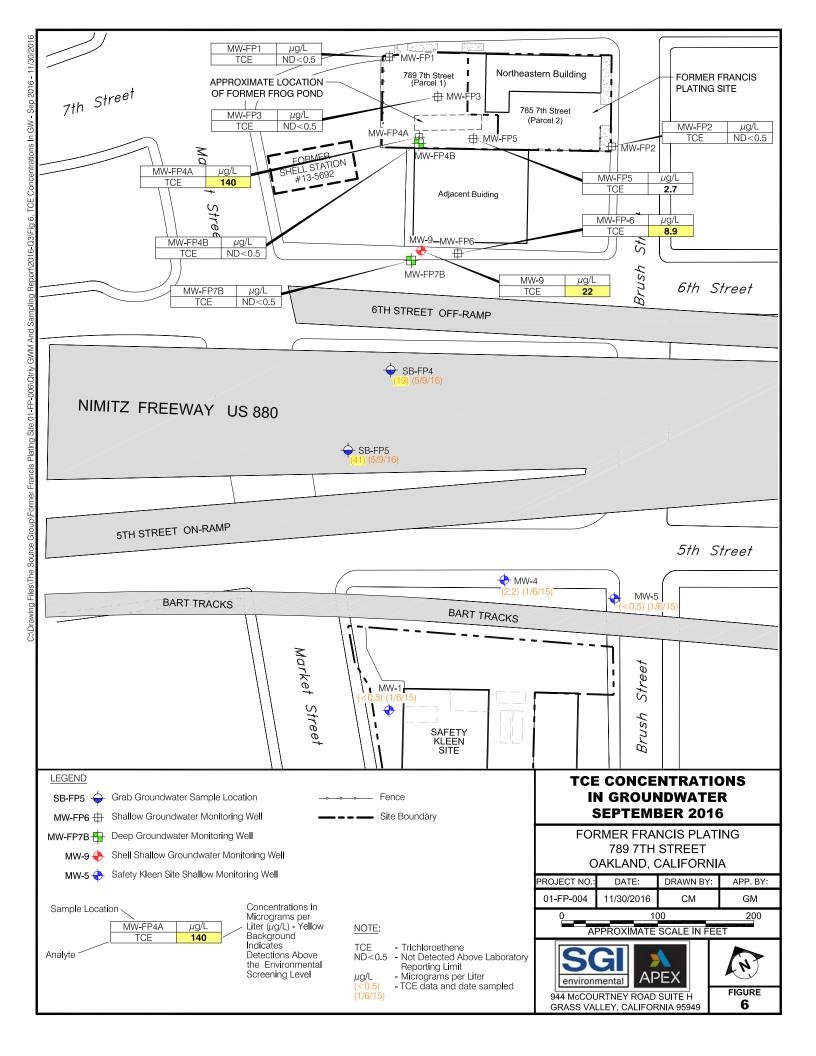

## 6.0 REFERENCES


- BASELINE Environmental Consulting (BASELINE). 2005. Site History and Data Summary Report, 785 7<sup>th</sup> Street, Oakland, California. January 10.
- BASELINE. 2008. Documentation of Frog Pond Removal Activities, 751-785 Seventh Street, Oakland, California. February 29.
- BASELINE. 2010. Phase IV Soil and Groundwater Investigation, 751-785 Seventh Street, Oakland, California. May 28.
- Conestoga-Rovers & Associates (CRA). 2009. Groundwater Monitoring Report Third Quarter 2009, Shell-Branded Service Station, 601 Market Street, Oakland, California. October 28.
- The Source Group, Inc. (SGI), 2015. Revised Plume Delineation and Data Collection for Evaluation of Remedial Alternatives Work Plan. November 20.
- SGI 2016. First 2016 Semi-Annual Groundwater Monitoring and Sampling, Plume Delineation, and Data Collection for Remedial Evaluation Report. September 29.




3Q16 GWMS Report 6-1
















# Table 1 Groundwater Level Measurements Former Francis Plating Oakland, California

| Groundwater Zone<br>Screened | Well ID    | Sample Date | TOC1     | Depth to Water<br>(ft btoc) | GW Elevation<br>(ft msl) |
|------------------------------|------------|-------------|----------|-----------------------------|--------------------------|
|                              |            | ON-SITE     |          |                             |                          |
|                              |            | 1/5/2015    |          | 14.95                       | 10.82                    |
|                              | MW-FP1     | 8/25/2015   | 25.77    | 16.94                       | 8.83                     |
|                              | IVIVV-FP I | 3/4/2016    | 25.77    | 16.44                       | 9.33                     |
|                              |            | 9/14/2016   |          | 17.03                       | 8.74                     |
|                              |            | 1/6/2015    |          | 13.04                       | 10.77                    |
|                              | MANA/ EDO  | 8/25/2015   | 22.04    | 15.41                       | 8.40                     |
|                              | MW-FP2     | 3/4/2016    | 23.81    | 14.69                       | 9.12                     |
|                              |            | 9/14/2016   | Ī        | 15.40                       | 8.41                     |
|                              |            | 1/5/2015    |          | 14.88                       | 10.78                    |
|                              | MAY EDO    | 8/25/2015   | 05.00    | 16.96                       | 8.70                     |
|                              | MW-FP3     | 3/4/2016    | 25.66    | 16.40                       | 9.26                     |
|                              |            | 9/14/2016   | 1        | 17.13                       | 8.53                     |
|                              |            | 1/5/2015    |          | 15.11                       | 10.53                    |
| Shallow                      |            | 8/25/2015   | <u> </u> | 17.26                       | 8.38                     |
|                              | MW-FP4A    | 3/4/2016    | 25.64    | 16.49                       | 9.15                     |
|                              |            | 9/14/2016   | 1        | 17.29                       | 8.35                     |
|                              |            | 1/5/2015    |          | 15.04                       | 10.65                    |
|                              | MAY EDE    | 8/25/2015   | 05.00    | 17.27                       | 8.42                     |
|                              | MW-FP5     | 3/4/2016    | 25.69    | 16.56                       | 9.13                     |
|                              |            | 9/14/2016   | İ        | 17.27                       | 8.42                     |
|                              |            | 1/5/2015    |          | 10.98                       | 10.06                    |
|                              | 1414/ EDG  | 8/25/2015   | 0, 0,    | 13.12                       | 7.92                     |
|                              | MW-FP6     | 3/4/2016    | 21.04    | 12.36                       | 8.68                     |
|                              |            | 9/14/2016   | Ī        | 13.05                       | 7.99                     |
|                              |            | 9/1/2015    |          | 13.16                       | 7.87                     |
|                              | MW-9       | 3/4/2016    | 21.03    | 12.38                       | 8.65                     |
|                              |            | 9/14/2016   | 1        | 13.11                       | 7.92                     |
|                              |            | 1/5/2015    |          | 15.12                       | 10.32                    |
|                              | MAN ED 4D  | 8/25/2015   | 05.44    | 17.08                       | 8.36                     |
|                              | MW-FP4B    | 3/4/2016    | 25.44    | 16.43                       | 9.01                     |
| D                            |            | 9/14/2016   | İ        | 17.78                       | 7.66                     |
| реер                         |            | 1/5/2015    |          | 10.53                       | 9.98                     |
|                              | MM/ EDZD   | 8/25/2015   | 20.54    | 12.53                       | 7.98                     |
|                              | MW-FP7B    | 3/4/2016    | 20.51    | 11.88                       | 8.63                     |
|                              |            | 9/14/2016   | 1        | 12.63                       | 7.88                     |
|                              |            | OFF-SIT     | Ė        | ·                           |                          |
|                              | MW-1       | 1/6/2015    | 7.99     | 5.55                        | 2.44                     |
| Shallow                      | MW-4       | 1/6/2015    | 10.32    | 7.23                        | 3.09                     |
|                              | MW-5       | 1/6/2015    | 10.28    | 7.08                        | 3.20                     |

## Notes:

TOC = Top of casing (feet above mean sea level)

ft btoc = feet below top of casing

ft msl = feet above mean sea level

<sup>&</sup>lt;sup>1</sup> = Elevation datum is North American Vertical Datum of 1988 (NAVD88).

# Table 2 Vertical Groundwater Potentiometric Head Differences

Former Francis Plating Oakland, California

| Water Bearing<br>Zone | Well Pairs | Vertical Distance<br>Between Center<br>of Screened<br>Intervals | Groundwater<br>Elevation<br>(feet amsl) | Hydraulic<br>Head<br>Difference<br>(feet) | Vertical<br>Gradient<br>(ft/ft) <sup>a</sup> | Vertical<br>Gradient<br>Direction |  |  |  |
|-----------------------|------------|-----------------------------------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------|--|--|--|
|                       |            | (feet)                                                          | Third Quarter 2016 (9/14/2016)          |                                           |                                              |                                   |  |  |  |
| Shallow Zone          | MW-FP4A    | 32.5                                                            | 8.35                                    | 0.69                                      | 0.02                                         | slightly                          |  |  |  |
| Deep Zone             | MW-FP4B    | 32.3                                                            | 7.66                                    | 0.09                                      | 0.02                                         | downward                          |  |  |  |
| Shallow Zone          | MW-9       | 31.50                                                           | 7.92                                    | 0.04                                      | 0.00                                         | flat                              |  |  |  |
| Deep Zone             | MW-FP7B    | 31.30                                                           | 7.88                                    | 0.04                                      | 0.00                                         | ııdl                              |  |  |  |

# Notes:

ft/ft = feet per foot.

amsl = above mean sea level.



<sup>&</sup>lt;sup>a</sup> Vertical gradient measurement based on mid-point of well screens.

# Table 3 Groundwater Analytical Results - Dissolved Metals and Hexavalent Chromium Former Francis Plating Oakland, California

| Groundwater Zone | Well       | Sample               | Chromium<br>(Hexavalent) | Antimony       | Arsenic          | Barium   | Chromium<br>(Total) | Cobalt           | Copper           | Mercury            | Molybdenum       | Nickel   | Vanadium         | Zinc           |
|------------------|------------|----------------------|--------------------------|----------------|------------------|----------|---------------------|------------------|------------------|--------------------|------------------|----------|------------------|----------------|
| Screened         | ID         | Date                 | (µg/L)                   | (µg/L)         | (µg/L)           | (µg/L)   | (µg/L)              | (µg/L)           | (µg/L)           | (µg/L)             | (µg/L)           | (µg/L)   | (µg/L)           | (µg/L)         |
|                  |            | 02/12/03             | ND<10                    | ND<60          | ND<5.0           | ON-S     |                     | ND-20            | ND<10            | ND<0.20            | ND-20            | 24       | ND-10            | ND<20          |
|                  |            | 02/12/03             | ND<10                    | ND<60          | ND<5.0           | 67<br>41 | <10<br><b>13</b>    | ND<20<br>ND<5.0  | ND<10<br>ND<5.0  | ND<0.20            | ND<20<br>ND<5.0  | 16       | ND<10<br>ND<5.0  | ND<20          |
|                  |            |                      |                          |                |                  |          |                     |                  |                  |                    |                  | -        |                  |                |
|                  | MW-FP1     | 01/05/15             | <b>10</b><br>ND<10       | ND<10<br>ND<10 | ND<5.0           | 44       | 5.2<br>21           | ND<5.0           | ND<5.0<br>ND<5.0 | ND<0.20<br>ND<0.20 | ND<5.0           | 31<br>35 | ND<5.0           | ND<20<br>ND<20 |
|                  |            | 08/25/15<br>03/04/16 | 20*                      | ND<10          | ND<5.0<br>ND<5.0 | 46<br>42 | 11                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0<br>ND<5.0 | 12       | ND<5.0<br>ND<5.0 | ND<20          |
|                  |            | 09/14/16             | 7.1                      | ND<10          | ND<5.0           | 39       | 8                   | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 11       | ND<5.0           | ND<20          |
|                  |            | 02/12/03             | 7.1                      | ND<60          | ND<5.0           | 74       | 61                  | ND<20            | ND<10            | ND<0.20            | ND<20            | ND<20    | ND<3.0           | ND<20          |
|                  |            | 04/15/10             | 30                       | ND<10          | ND<5.0           | 61       | 22                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | ND<5.0           | ND<2           |
|                  |            | 01/06/15             | 10                       | ND<10          | ND<5.0           | 32       | 16                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | ND<5.0           | ND<20          |
|                  | MW-FP2     | 08/25/15             | 10                       | ND<10          | ND<5.0           | 29       | 25                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | ND<5.0           | ND<20          |
|                  |            | 03/04/16             | 30*                      | ND<10          | ND<5.0           | 32       | 19                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | ND<5.0           | ND<20          |
|                  |            | 09/14/16             | 17                       | ND<10          | ND<5.0           | 33       | 15                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | ND<5.0           | 28             |
|                  |            | 04/15/10             | 180                      | ND<10          | ND<5.0           | 49       | 150                 | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 25       | ND<5.0           | 71             |
|                  |            | 01/05/15             | 280                      | ND<10          | ND<5.0           | 45       | 270                 | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 19       | 5.2              | ND<20          |
|                  | MW-FP3     | 08/25/15             | 250                      | ND<10          | ND<5.0           | 56       | 290                 | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 20       | ND<5.0           | ND<20          |
|                  |            | 03/04/16             | 240*                     | ND<10          | ND<5.0           | 55       | 300                 | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 29       | ND<5.0           | ND<20          |
|                  |            | 09/14/16             | 200                      | ND<10          | ND<5.0           | 70       | 200                 | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 20       | ND<5.0           | ND<20          |
|                  |            | 04/15/10             | 460,000                  | ND<10          | ND<5.0           | ND<5.0   | 400,000             | 180              | 37               | ND<0.20            | 68               | 930      | ND<5.0           | 61             |
| Shallow          |            | 01/05/15             | 37,000                   | 44             | ND<5.0           | 38       | 38,000              | 9.7              | 38               | ND<0.20            | 14               | 330      | ND<5.0           | 59             |
|                  | MW-FP4A    | 08/25/15             | 8,400                    | ND<10          | ND<5.0           | 83       | 10,000              | 11               | 12               | ND<0.20            | 22               | 120      | ND<5.0           | 85             |
|                  |            | 03/04/16             | 200,000*                 | ND<10          | ND<5.0           | 99       | 10,000              | 9.2              | 19               | ND<0.20            | 34               | 130      | ND<5.0           | 4              |
|                  |            | 09/14/16             | 12,000                   | ND<10          | ND<5.0           | 97       | 12,000              | 7.1              | 20               | ND<0.20            | 14               | 130      | ND<5.0           | 110            |
|                  |            | 04/15/10             | 14,000                   | ND<10          | ND<5.0           | 51       | 11,000              | 5.6              | ND<5.0           | ND<0.20            | 16               | 9.9      | ND<5.0           | 25             |
|                  |            | 01/05/15             | 11,000                   | 16             | ND<5.0           | 55       | 14,000              | ND<5.0           | ND<5.0           | ND<0.20            | 6.0              | 12       | ND<5.0           | ND<20          |
|                  | MW-FP5     | 08/25/15             | 19,000                   | ND<10          | ND<5.0           | 40       | 24,000              | ND<5.0           | ND<5.0           | ND<0.20            | 6.2              | 24       | ND<5.0           | ND<20          |
|                  |            | 03/04/16             | 5,700*                   | ND<10          | ND<5.0           | 61       | 16,000              | ND<5.0           | ND<5.0           | ND<0.20            | 6.7              | 18       | ND<5.0           | ND<20          |
|                  |            | 09/14/16             | 30,000                   | ND<10          | ND<5.0           | 56       | 20,000              | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 24       | ND<5.0           | ND<20          |
|                  | MW-FP6     | 04/15/10             | 15,000                   | ND<10          | ND<5.0           | 40       | 11,000              | 6.1              | 6.5              | ND<0.20            | ND<5.0           | 26       | ND<5.0           | 33             |
|                  |            | 01/05/15             | 5,300                    | ND<10          | ND<5.0           | 44       | 5,400               | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 15       | ND<5.0           | ND<20          |
|                  |            | 08/25/15             | 19,000                   | ND<10          | ND<5.0           | 31       | 23,000              | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 38       | ND<5.0           | ND<20          |
|                  |            | 03/04/16             | 240*                     | ND<10          | ND<5.0           | 54       | 13,000              | ND<5.0           | ND<5.0           | ND<0.20            | 5.5              | 27       | ND<5.0           | ND<20          |
|                  |            | 09/14/16             | 18,000                   | ND<10          | ND<5.0           | 48       | 18,000              | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 35       | ND<5.0           | ND<20          |
|                  |            | 04/15/10             | 5,700                    | ND<10          | ND<5.0           | 160      | 4,900               | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | ND<5.0           | 26             |
|                  | MW-9       | 09/01/15             | 12,000                   | ND<10          | ND<5.0           | 120      | 12,000              | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 98       | ND<5.0           | ND<20          |
|                  |            | 03/04/16             | 4,300*                   | ND<10          | ND<5.0           | 40       | 930                 | ND<5.0           | ND<5.0           | ND<0.20            | 5.5              | 8.4      | ND<5.0           | ND<20          |
|                  |            | 09/14/16             | 9,000                    | ND<10          | ND<5.0           | 160      | 9,100               | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | 33       | ND<5.0           | ND<20          |
|                  |            | 04/15/10             | 30                       | ND<10          | ND<5.0           | 41       | 43                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | 20               | 30<br>ND <20   |
|                  | MM/ FD4P   | 01/05/15             | 10<br>ND <10             | ND<10          | ND<5.0           | 24       | 11                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | 8.9              | ND<20          |
|                  | MW-FP4B    | 08/25/15             | ND<10                    | ND<10          | ND<5.0           | 25       | 40                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | 7.3              | ND<20          |
|                  |            | 03/04/16             | 10*                      | ND<10          | ND<5.0           | 29       | 9.2                 | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | 11.0             | ND<20          |
| Deep             |            | 09/14/16             | 9.6                      | ND<10          | ND<5.0           | 29       | 10                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | 9.6<br>ND<5.0    | 300            |
|                  |            | 04/15/10<br>01/05/15 | 1,200<br>20              | ND<10<br>ND<10 | ND<5.0<br>ND<5.0 | 34<br>16 | 1,200<br>20         | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | ND<5.0           | ND<2<br>ND<20  |
|                  | MW-FP7B    | 08/25/15             | 20                       | ND<10          | ND<5.0           | 16<br>20 | 26                  | ND<5.0<br>ND<5.0 | ND<5.0<br>ND<5.0 | ND<0.20<br>ND<0.20 | ND<5.0<br>ND<5.0 | ND<5.0   | 12<br>12         | ND<20          |
|                  | IVIVV-FF/D |                      | 20*                      |                |                  | 27       | 26                  |                  |                  |                    |                  |          | 12               |                |
|                  |            | 03/04/16             |                          | ND<10          | ND<5.0           |          |                     | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   |                  | ND<20          |
|                  |            | 09/14/16             | 21                       | ND<10          | ND<5.0           | 31       | 21                  | ND<5.0           | ND<5.0           | ND<0.20            | ND<5.0           | ND<5.0   | 12               | ND<20          |

Page 1 of 2

# Table 3 Groundwater Analytical Results - Dissolved Metals and Hexavalent Chromium Former Francis Plating Oakland, California

| Groundwater Zone<br>Screened | Well<br>ID |          | Chromium (Hexavalent) | Antimony | Arsenic | Barium   | Chromium<br>(Total) | Cobalt | Copper | Mercury | Molybdenum | Nickel | Vanadium | Zinc   |
|------------------------------|------------|----------|-----------------------|----------|---------|----------|---------------------|--------|--------|---------|------------|--------|----------|--------|
| 00.0000                      |            |          | (µg/L)                | (µg/L)   | (µg/L)  | (µg/L)   | (µg/L)              | (µg/L) | (µg/L) | (µg/L)  | (µg/L)     | (µg/L) | (µg/L)   | (µg/L) |
|                              |            |          |                       |          |         | OFF-S    | ITE                 |        |        |         |            |        |          |        |
|                              | MW-1       | 01/06/15 | ND<10                 | ND<10    | 6.4     | 52       | ND<5.0              | ND<5.0 | ND<5.0 | ND<0.20 | ND<5.0     | ND<5.0 | ND<5.0   | ND<20  |
| Shallow                      | MW-4       | 01/06/15 | ND<10                 | ND<10    | 5.2     | 35       | ND<5.0              | ND<5.0 | ND<5.0 | ND<0.20 | ND<5.0     | ND<5.0 | ND<5.0   | ND<20  |
|                              | MW-5       | 01/06/15 | ND<10                 | ND<10    | ND<5.0  | 48       | ND<5.0              | ND<5.0 | ND<5.0 | ND<0.20 | ND<5.0     | ND<5.0 | ND<5.0   | ND<20  |
|                              |            |          |                       |          | GF      | RAB GROU | NDWATER             |        |        |         |            |        |          |        |
|                              | SB-FP4     | 05/19/16 | ND<10                 | NA       | NA      | NA       | NA                  | NA     | NA     | NA      | NA         | NA     | NA       | NA     |
| Shallow                      | SB-FP5     | 05/19/16 | ND<10                 | NA       | NA      | NA       | NA                  | NA     | NA     | NA      | NA         | NA     | NA       | NA     |
|                              | Blank      | 05/19/16 | ND<10                 | NA       | NA      | NA       | NA                  | NA     | NA     | NA      | NA         | NA     | NA       | NA     |
| E                            | 10         | 6        | 10                    | 1,000    | 50      | 3        | 3.1                 | 0.025  | 78     | 8.2     | 19         | 81     |          |        |

### Notes:

Notes:

Detections shown in Bold.

= Greater than ESL

µg/L = Micrograms per liter

ND<10 = Analyte not detected above laboratory reporting limit

- = Not sampled

NA = Not analyzed

ESLs = CRWQCB Environmental Screening Levels - groundwater is a potenitial drinking water resource. (values above shaded)

VALUE\* = Indicates hexavalent chromium sample was collected on March 30, 2016.

The Source Group, Inc. Page 2 of 2

# Table 4 Groundwater Analytical Results - Volatile Organic Compounds Former Francis Plating Oakland, California

|         | MW-FP1  MW-FP2 | 2/12/2003 11/28/2005 4/15/2010 1/5/2015 8/25/2015 3/4/2016 9/14/2016 2/12/2003 11/28/2005 4/15/2010 1/6/2015 8/25/2015 3/4/2016 9/14/2016 9/14/2016 4/15/2010       | (μg/L)  ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 | ND<5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<5 ND<0.5 ND<5 ND<5 ND<5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 | (µg/L) ON-SITE ND<5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND< | ND<5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<5 ND<5 ND<5 ND<5 ND<0.5 ND<5 ND<0.5 ND<0.5 | ND<5 ND<0.5 | (μg/L) ND<0.5 ND<0.5 ND<0.5 ND<0.5       | (μg/L)   ND<5     ND<0.5     N | ND<1.0 ND<0.5 ND<0.5           | (μg/L)  ND<5  ND<0.5  ND<0.5  -  -  ND<0.5  ND<5  ND<0.5  ND<0.5  ND<0.5  ND<0.5 |
|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|
|         | MW-FP2         | 11/28/2005<br>4/15/2010<br>1/5/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016<br>2/12/2003<br>11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016 | ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5  | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5<br>ND<0.5<br>ND<0.5           | ND<5 ND<0.5 ND<5 ND<0.5 ND<5 ND<0.5 ND<0.5   | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5                      | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<5<br>ND<0.5   | <br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5 | ND<0.5<br>ND<0.5<br>-<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>ND<1.0<br>ND<0.5<br>ND<0.5 | ND<0.5<br>ND<0.5<br>-<br>-<br>-<br>ND<0.5<br>ND<5<br>ND<5                        |
|         | MW-FP2         | 4/15/2010<br>1/5/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016<br>2/12/2003<br>11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016               | ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5  | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>0.6<br>ND<0.5<br>ND<0.5<br>ND<0.5                      | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5<br>ND<0.5<br>ND<0.5              | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5                                | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<5<br>ND<0.5                       | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br> | ND<0.5  -  ND<0.5  ND<0.5  ND<0.5  ND<0.5  ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<1.0<br>ND<0.5<br>ND<0.5     | ND<0.5  ND<0.5  ND<5 ND<5                                                        |
|         | MW-FP2         | 1/5/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016<br>2/12/2003<br>11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                            | ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5  | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>0.6<br>ND<0.5<br>ND<0.5<br>ND<0.5                                          | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5<br>ND<0.5<br>ND<0.5                          | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5<br>ND<0.5                                          | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5                                         | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<0.5<br> | -<br>ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<1.0<br>ND<0.5<br>ND<0.5     | -<br>-<br>ND<0.5<br>ND<5<br>ND<0.5                                               |
|         | MW-FP2         | 8/25/2015<br>3/4/2016<br>9/14/2016<br>2/12/2003<br>11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                        | ND<0.5<br>ND<0.5<br>ND<0.5<br><br><br>ND<0.5<br>ND<0.5<br>ND<0.5       | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>0.6<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                    | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5<br>ND<0.5                                              | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5<br>ND<0.5                                                            | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5                                                   | ND<0.5<br>ND<0.5<br>ND<0.5               | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<1.0<br>ND<0.5<br>ND<0.5     | -<br>ND<0.5<br>ND<5<br>ND<0.5                                                    |
| _       |                | 8/25/2015<br>3/4/2016<br>9/14/2016<br>2/12/2003<br>11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                        | ND<0.5<br>ND<0.5<br><br><br>ND<0.5<br>ND<0.5<br>ND<0.5                 | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>0.6<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                    | ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                      | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5<br>ND<0.5                                                            | ND<0.5<br>ND<0.5<br>ND<0.5<br>ND<5<br>ND<5<br>ND<0.5                                                   | ND<0.5<br>ND<0.5<br>                     | ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<0.5<br>ND<0.5<br>           | -<br>ND<0.5<br>ND<5<br>ND<0.5                                                    |
| _       |                | 3/4/2016<br>9/14/2016<br>2/12/2003<br>11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                                     | ND<0.5<br>ND<0.5<br><br><br>ND<0.5<br>ND<0.5<br>ND<0.5                 | ND<0.5<br>ND<0.5<br>ND<5<br>0.6<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                              | ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                      | ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5<br>ND<0.5                                                                      | ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5<br>ND<0.5                                                           | ND<0.5<br>ND<0.5<br>                     | ND<0.5<br>ND<0.5<br>ND<5<br>ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<0.5<br>ND<0.5<br>           | ND<0.5<br>ND<5<br>ND<0.5                                                         |
| _       |                | 2/12/2003<br>11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                                                              | <br><br>ND<0.5<br>ND<0.5<br>ND<0.5                                     | ND<5<br>0.6<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                                                  | ND<5<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                                          | ND<5<br>ND<0.5<br>ND<0.5                                                                                          | ND<5<br>ND<0.5<br>ND<0.5                                                                               |                                          | ND<5<br>ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | ND<5<br>ND<0.5                                                                   |
| _       |                | 11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                                                                           | <br>ND<0.5<br>ND<0.5<br>ND<0.5                                         | 0.6<br>ND<0.5<br>ND<0.5<br>ND<0.5                                                                                          | ND<0.5<br>ND<0.5<br>ND<0.5                                                                                  | ND<0.5<br>ND<0.5                                                                                                  | ND<0.5<br>ND<0.5                                                                                       |                                          | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | ND<0.5                                                                           |
| _       |                | 11/28/2005<br>4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                                                                           | <br>ND<0.5<br>ND<0.5<br>ND<0.5                                         | ND<0.5<br>ND<0.5<br>ND<0.5                                                                                                 | ND<0.5<br>ND<0.5                                                                                            | ND<0.5                                                                                                            | ND<0.5                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                  |
|         |                | 4/15/2010<br>1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                                                                                         | <br>ND<0.5<br>ND<0.5<br>ND<0.5                                         | ND<0.5<br>ND<0.5<br>ND<0.5                                                                                                 | ND<0.5<br>ND<0.5                                                                                            | ND<0.5                                                                                                            | ND<0.5                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                  |
| _       |                | 1/6/2015<br>8/25/2015<br>3/4/2016<br>9/14/2016                                                                                                                      | ND<0.5<br>ND<0.5<br>ND<0.5                                             | ND<0.5<br>ND<0.5                                                                                                           | ND<0.5                                                                                                      |                                                                                                                   |                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                  |
|         |                | 8/25/2015<br>3/4/2016<br>9/14/2016                                                                                                                                  | ND<0.5<br>ND<0.5                                                       | ND<0.5                                                                                                                     |                                                                                                             |                                                                                                                   | ND<0.5                                                                                                 | ND<0.5                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | 140 -0.0                                                                         |
|         | MW-FP3         | 3/4/2016<br>9/14/2016                                                                                                                                               | ND<0.5                                                                 |                                                                                                                            |                                                                                                             | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<1.0                         |                                                                                  |
|         | MW-FP3         | 9/14/2016                                                                                                                                                           |                                                                        |                                                                                                                            | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<1.0                         | -                                                                                |
|         | MW-FP3         |                                                                                                                                                                     | ND~0.3                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5<br>ND<0.5                                                                                                  |                                                                                                        | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5<br>ND<0.5               | ND<0.5                                                                           |
|         | MW-FP3         | 4/15/2010                                                                                                                                                           |                                                                        |                                                                                                                            |                                                                                                             |                                                                                                                   | ND<0.5                                                                                                 | ND<0.5                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                  |
| ı       | MW-FP3         | 4/5/0045                                                                                                                                                            |                                                                        | 0.9                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 |                                          | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | ND<0.5                                                                           |
|         |                | 1/5/2015                                                                                                                                                            | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | -                                                                                |
| Į.      |                | 8/25/2015                                                                                                                                                           | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<1.0                         | -                                                                                |
| 1       | -              | 3/4/2016                                                                                                                                                            | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | -                                                                                |
| Shallow |                | 9/14/2016                                                                                                                                                           | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | ND<0.5                                                                           |
|         | -              | 4/15/2010                                                                                                                                                           |                                                                        | 51                                                                                                                         | 31                                                                                                          | 1.9                                                                                                               | 0.5                                                                                                    |                                          | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | ND<0.5                                                                           |
|         |                | 1/5/2015                                                                                                                                                            | ND<0.5                                                                 | 52                                                                                                                         | 37                                                                                                          | 2.6                                                                                                               | 0.6                                                                                                    | ND<0.5                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | -                                                                                |
| , N     | MW-FP4A        | 8/25/2015                                                                                                                                                           | ND<0.5                                                                 | 91                                                                                                                         | 91                                                                                                          | 5.4                                                                                                               | 1.1                                                                                                    | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<1.0                         | -                                                                                |
|         |                | 3/4/2016                                                                                                                                                            | ND<0.5                                                                 | 93                                                                                                                         | 71                                                                                                          | 4.7                                                                                                               | 1.0                                                                                                    | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | -                                                                                |
|         |                | 9/14/2016                                                                                                                                                           | ND<1.0                                                                 | 140                                                                                                                        | 170                                                                                                         | 8.7                                                                                                               | 1.8                                                                                                    | ND<1.0                                   | ND<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<1.0                         | ND<1.0                                                                           |
|         | MW-FP5         | 4/15/2010                                                                                                                                                           | -                                                                      | 1.2                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 |                                          | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | ND<0.5                                                                           |
|         |                | 1/5/2015                                                                                                                                                            | ND<0.5                                                                 | 1.4                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | -                                                                                |
| !       |                | 8/25/2015                                                                                                                                                           | ND<0.5                                                                 | 3.2                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1                            | -                                                                                |
|         |                | 3/4/2016                                                                                                                                                            | ND<0.5                                                                 | 2.2                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | -                                                                                |
|         |                | 9/14/2016                                                                                                                                                           | ND<0.5                                                                 | 2.7                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | ND<0.5                                                                           |
|         |                | 4/15/2010                                                                                                                                                           | -                                                                      | 9.4                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 |                                          | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | ND<0.5                                                                           |
|         |                | 1/5/2015                                                                                                                                                            | ND<0.5                                                                 | 6.6                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | -                                                                                |
| 1       | MW-FP6         | 8/25/2015                                                                                                                                                           | ND<0.5                                                                 | 9.6                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<1.0                         | -                                                                                |
|         |                | 3/4/2016                                                                                                                                                            | ND<0.5                                                                 | 9.9                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | -                                                                                |
|         |                | 9/14/2016                                                                                                                                                           | ND<0.5                                                                 | 8.9                                                                                                                        | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | ND<0.5                                                                           |
|         |                | 4/15/2010                                                                                                                                                           |                                                                        | 27                                                                                                                         | 48                                                                                                          | 0.9                                                                                                               | ND<0.5                                                                                                 |                                          | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 1.3                                                                              |
|         |                | 9/1/2015                                                                                                                                                            | ND<0.5                                                                 | 20                                                                                                                         | 8.2                                                                                                         | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<1.0                         | -                                                                                |
|         | MW-9           | 3/4/2016                                                                                                                                                            | ND<0.5                                                                 | 3                                                                                                                          | 1.7                                                                                                         | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | -                                                                                |
|         | Ţ              | 9/14/2016                                                                                                                                                           | ND<0.5                                                                 | 22                                                                                                                         | 13                                                                                                          | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | ND<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<0.5                         | 4.9                                                                              |
|         |                | 4/15/2010                                                                                                                                                           |                                                                        | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 |                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | ND<0.5                                                                           |
|         | j              | 1/5/2015                                                                                                                                                            | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | -                                                                                |
|         | MW-FP4B        | 8/25/2015                                                                                                                                                           | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<1.0                         | -                                                                                |
|         | ļ              | 3/4/2016                                                                                                                                                            | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<0.5                         | -                                                                                |
|         | j              | 9/14/2016                                                                                                                                                           | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<0.5                         | ND<0.5                                                                           |
| Deep    | 1              | 4/15/2010                                                                                                                                                           |                                                                        | 4.9                                                                                                                        | 2.3                                                                                                         | ND<0.5                                                                                                            | ND<0.5                                                                                                 |                                          | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | 1.3                                                                              |
|         | }              | 1/5/2015                                                                                                                                                            | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                              | -                                                                                |
|         | MW-FP7B        | 8/25/2015                                                                                                                                                           | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<1.0                         |                                                                                  |
|         |                | 3/4/2016                                                                                                                                                            | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<1.0                         | -                                                                                |
|         | -              | 9/14/2016                                                                                                                                                           | ND<0.5                                                                 | ND<0.5                                                                                                                     | ND<0.5                                                                                                      | ND<0.5                                                                                                            | ND<0.5                                                                                                 | ND<0.5                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<0.5                         | -<br>ND<0.5                                                                      |

Page 1 of 2 The Source Group, Inc.

# Table 4 Groundwater Analytical Results - Volatile Organic Compounds Former Francis Plating Oakland, California

| Groundwater Zone<br>Screened | Sample<br>ID   | Sample<br>Date | PCE    | TCE    | cis-1,2-DCE   | trans-1,2-DCE | 1,1-DCE | Vinyl Chloride | Chloroform | Naphthalene | MTBE   |
|------------------------------|----------------|----------------|--------|--------|---------------|---------------|---------|----------------|------------|-------------|--------|
| Screeneu                     | ID             | Date           | (µg/L) | (µg/L) | (µg/L)        | (µg/L)        | (µg/L)  | (µg/L)         | (µg/L)     | (µg/L)      | (µg/L) |
|                              |                |                |        |        | OFF-SITE      |               |         |                |            |             |        |
|                              | MW-1           | 1/6/2015       | ND<0.5 | ND<0.5 | ND<0.5        | ND<0.5        | ND<0.5  | ND<0.5         | -          | -           | -      |
| Shallow                      | MW-4           | 1/6/2015       | ND<0.5 | 2.2    | ND<0.5        | ND<0.5        | ND<0.5  | ND<0.5         | -          | -           | -      |
|                              | MW-5           | 1/6/2015       | ND<0.5 | ND<0.5 | ND<0.5        | ND<0.5        | ND<0.5  | ND<0.5         | -          | -           | -      |
|                              | TB-1           | 8/25/2015      | ND<0.5 | ND<0.5 | ND<0.5        | ND<0.5        | ND<0.5  | ND<0.5         | ND<0.5     | ND<1.0      | -      |
| QA/QC                        | TRIP BLANK     | 9/1/2015       | ND<0.5 | ND<0.5 | ND<0.5        | ND<0.5        | ND<0.5  | ND<0.5         | ND<0.5     | ND<1.0      | -      |
|                              | TB-1           | 9/14/2016      | ND<0.5 | ND<0.5 | ND<0.5        | ND<0.5        | ND<0.5  | ND<0.5         | ND<0.5     | ND<0.5      | ND<0.5 |
|                              |                |                |        | (      | GRAB GROUNDWA | TER           |         |                |            |             |        |
| Shallow                      | SB-FP4         | 5/19/2016      | ND<0.5 | 19     | 8.3           | ND<0.5        | ND<0.5  | ND<0.5         | ND<0.5     | ND<0.5      | ND<0.5 |
| SilaliOW                     | SB-FP5         | 5/19/2016      | ND<0.5 | 41     | 14            | 2.2           | ND<0.5  | ND<0.5         | ND<0.5     | ND<0.5      | 120    |
| ESLs - Maxim                 | um Contaminant | Level          | 5      | 5      | 6             | 10            | 6       | 0.5            | 80         | 6.1         | 5      |

#### Notes:

Notes:

Detections shown in Bold.

= Greater than ESL

µg/L = Micrograms per liter

PCE = Tetrachloroethylene

TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

1,1-DCE = 1,1-Dichloroethene

ND-0.50 = Not detected above laboratory's reporting limit

- Not sampled

- = Not sampled

ESLs = CRWQCB Environmental Screening Levels - groundwater is a potential drinking water resource. (values above shaded)

Page 2 of 2  $\label{the Source Group, Inc.} The Source Group, Inc.$ 

# APPENDIX A REGULATORY CORRESPONDENCE

# ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY



ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

January 13, 2016

Mr. Tom McCoy 94612 (Sent via E-mail to: tmccoy@bbiconstruction.com)
Brush Street Group, LLC
1155 3<sup>rd</sup> Street, Suite 230
Oakland, CA 94607

Subject: Conditional Work Plan Approval for SLIC Case RO0002586 and GeoTracker Global ID SL0600130797, Francis Plating Frog Pond, 789 7th Street, Oakland, CA 94607

Dear Mr. McCoy:

Alameda County Environmental Health (ACEH) staff has reviewed the Site Cleanup Program (SCP) case file for the above referenced site including the recently submitted document entitled, "Revised Plume Delineation and Data Collection for Evaluation of Remedial Alternatives Work Plan, Former Francis Plating – Frog Pond Site, 789 Seventh Street, Oakland, California," dated February 23, 2015 (Work Plan). The Work Plan proposes three on-site borings to collect data to help evaluate source area remedial options and two off-site borings for plume delineation.

The proposed scope of work in the Work Plan is conditionally approved and may be implemented provided that the technical comments below are incorporated during the site investigation. Submittal of a revised Work Plan is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

## **TECHNICAL COMMENTS**

- 1. Depth of Off-site Borings and Grab Groundwater Sampling. The Scope of Work section on page 4 of the Work Plan indicates that off-site borings will be advanced to depth of approximately 20 and 50 feet bgs for the collection of grab groundwater samples. Table 1 Proposed Sampling Plan indicates that the proposed sample depths for the off-site borings will be 30 feet bgs. Since the depth to groundwater at the site ranges from approximately 11 to 17 feet bgs, the collection of grab groundwater samples from a depth of 30 feet bgs is not acceptable to define the shallow groundwater plume. We request that the grab groundwater samples be collected less than 10 feet below first-encountered groundwater. In no case should the grab groundwater samples be collected below a depth of 25 feet bgs. Please present the sampling results in the Plume Delineation and Data Collection for Evaluation of Remedial Alternatives Report requested below.
- 2. Clarification of Laboratory Analysis. We generally concur with the proposed laboratory analyses presented in Table 1. However, the soil samples from the on-site borings will be analyzed for metals and not dissolved metals. We request that the two grab groundwater samples be analyzed for both total and dissolved hexavalent chromium.

## **TECHNICAL REPORT REQUEST**

Please upload technical reports to the ACEH ftp site (Attention: Jerry Wickham), and to the State Water Resources Control Board's GeoTracker website according to the following schedule and filenaming convention:

- March 25, 2016 Semi-annual Groundwater Monitoring Report File to be named: GWM\_R\_yyyy-mm-dd RO2586
- May 8, 2016 Plume Delineation and Data Collection for Evaluation of Remedial Alternatives Report

File to be named: SWI\_R\_yyyy-mm-dd RO2586

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at <a href="mailto:jerry.wickham@acgov.org">jerry.wickham@acgov.org</a>. Online case files are available for review at the following website: <a href="mailto:http://www.acgov.org/aceh/index.htm">http://www.acgov.org/aceh/index.htm</a>.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachments: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Margot Lederer Prado, City of Oakland Economic Development Division, Brownfields Management, 250 Frank H. Ogawa Plaza, Suite 3315, Oakland, CA 94612 (Sent via E-mail to: MPrado @oaklandnet.com)

Adam Brown, The Source Group, Inc., 944 McCourtney Road, Suite H, Grass Valley, CA 95949 (Sent via E-mail to: abrown@thesourcegroup.net)

Markus Niebanck, Amicus, 580 Second Street, Suite 260, Oakland, CA 94607 (Sent via E-mail to: markus@amicusenv.com)

Jerry Wickham, ACEH (Sent via E-mail to: <u>jerry.wickham@acgov.org</u>)
GeoTracker, eFile

### Attachment 1

# Responsible Party(ies) Legal Requirements / Obligations

### REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

### **ELECTRONIC SUBMITTAL OF REPORTS**

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please **SWRCB** visit the website for more information on these requirements (http://www.waterboards.ca.gov/water\_issues/programs/ust/electronic\_submittal/).

## PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

# PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

## **UNDERGROUND STORAGE TANK CLEANUP FUND**

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

# **AGENCY OVERSIGHT**

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

# Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

**REVISION DATE:** May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010,

July 25, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

**SUBJECT:** Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

## **REQUIREMENTS**

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
  document will be secured in compliance with the County's current security standards and a password. <u>Documents</u>
  with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#\_Report Name\_Year-Month-Date (e.g., RO#5555\_WorkPlan\_2005-06-14)

### **Submission Instructions**

- 1) Obtain User Name and Password
  - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
    - i) Send an e-mail to deh.loptoxic@acgov.org
  - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
  - a) Using Internet Explorer (IE4+), go to <a href="ftp://alcoftp1.acgov.org">ftp://alcoftp1.acgov.org</a>
    - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
  - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
  - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
  - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
  - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- Send E-mail Notifications to the Environmental Cleanup Oversight Programs
  - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
  - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
  - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
  - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

FIELD FORMS



Confluence Environmental, Inc. 3308 El Camino Ave, Suite 300 #148 Sacramento, CA 95821 916-760-7641 - main 916-473-8617 - fax www.confluence-env.com

# **Chain of Custody**

**Project Name:** 

Former Francis Plating - Frog Pond Site, Oakland

Job Number:

C1-160914

TAT: STANDARD 5 DAY 2 DAY 24 HOUR OTHER:

| Contact: Mike Dalquist Phone/ Fax: 510-486-0900  Sample ID  Sample | S                     | ort:C          | Yes<br>e Gro<br>4545           | oup / /          | rvativ | e<br>e | VOC's (8260)  | 22 Metals * (6010B) | Hexavalent Chromium* (7199) | Cor<br>Repo | ort to: | ice Lo     | og Coo<br>The So<br>The So | de: Cl       | 916-47.<br>ESC<br>Group<br>Group | Not     | es and |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|--------------------------------|------------------|--------|--------|---------------|---------------------|-----------------------------|-------------|---------|------------|----------------------------|--------------|----------------------------------|---------|--------|
| Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID  Sample ID   | ory No. of Containers | Sourc<br>)-906 | e Gro<br>-4545<br>P            | Preser           | Adam   | e      |               |                     | ent Chromium* (7199)        | Cor<br>Repo | ort to: | ice Lo     | og Coo<br>The So<br>The So | de: Cl       | ESC<br>Group                     | Not     |        |
| Sample ID  Sample ID  Laborator  Vii.  Alice A 914116 A 1416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ory No. of Containers | )-906          | -4545<br>P                     | 5<br>Preser      | rvativ | e      |               |                     | ent Chromium* (7199)        | Invo        | ice to  | : <i>:</i> | The So                     |              |                                  | 110     |        |
| Sample ID  Laborator  Vir.  VB  Alic   No. of Containers     |                | P                              | reser            |        |        | s (8260)      |                     | ent Chromium* (7199)        |             |         |            |                            | ource        | Group                            | 110     |        |
| Sample ID  Laborator  Air  Alir  A 314416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Unpreserved    |                                |                  |        |        | s (8260)      |                     | ent Chromium* (7199)        | Req         | ueste   | d Ana      | lysis                      |              |                                  | 110     |        |
| 1B ~ 91416 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Unpreserved    | H <sub>2</sub> SO <sub>4</sub> | 1NO <sub>3</sub> |        | -      | s (8260)      |                     | ent Chromium* (7199)        |             |         |            |                            |              |                                  | 110     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                     |                |                                |                  | HCI    | NaOH   | VOC           | Title 2             | Hexavalı                    |             |         |            |                            |              |                                  |         |        |
| 44 - 50-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 11             |                                |                  | 3      |        | ×             |                     |                             |             |         | T          |                            | 3            |                                  |         |        |
| MW-FP78 825 9/14/16 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                     | .1             |                                | (                | 3      |        | ×             | x                   | ×                           |             |         |            | 1                          |              |                                  |         |        |
| MW-FPZ 900 9/14/18 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                     | 1              |                                | ١                | 3      |        | ×             | ×                   | X                           |             |         |            |                            |              |                                  |         |        |
| MW-FP6 945 9/14/14 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                     | 1              |                                | 1                | 3      |        | ×             | ×                   | ×                           | 1           |         | +          |                            |              |                                  |         |        |
| MW-9 1015 9/4/16 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                     | 1              |                                | (                | 3      |        | ×             | X                   | X                           |             |         | +          | -                          |              | H                                | -       |        |
| MW-FP1 1105 9/14/16 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                     | 1              |                                |                  | 3      |        | X             | X                   | x                           |             |         | +          |                            |              |                                  |         |        |
| MW-FP4B 1140 9/14/16 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                     | 1              | -                              | ·                | 3      | +      | X             | X                   | ×                           | +           |         | +          | $\dashv$                   | +            | H                                |         |        |
| MW-FP4A 1210 9/14/16 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                     | 1              |                                | 1                | 3      | +      | X             | ×                   | ×                           |             |         | $\dashv$   | +                          |              |                                  |         |        |
| MW-FP3 1235 9/4/16 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                     | 1              |                                | ,                | 3      |        | X             | ×                   | х                           |             |         | -          | +                          |              | +                                |         |        |
| MW-FP5 1305 9/14/16 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                     | 1              |                                | 1                | 3      |        | $\frac{1}{x}$ | k                   | X                           | +-          |         |            | _                          |              |                                  |         | -      |
| ampler's Name: Jereny Cairol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relinquish            | ned Ry         | / A ffi                        | liatio           |        |        |               | ate                 | Time                        |             |         |            | 3 D. / /                   | . CC.1: - +: |                                  |         | 7      |
| ampler's Company: Confluence Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kennquisii            | ied by         | / AIII                         | matro            | 11     |        |               |                     | 1355                        |             |         |            | d By / A                   | Almhati      | on                               | Date    | Tim    |
| nipment Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                     | ~              |                                | ) Fi             |        | _      | 1//           | 7/16                | 1373                        | 1           | 20      | _          | ~                          |              |                                  | 9/14/16 | 13:5   |
| hipment Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                                |                  |        |        | 1             | 100                 |                             | 1           |         |            | Y                          |              |                                  |         |        |

# **Meter Calibration Log**

| EQUIPMENT MAKE     | EQUIPMENT | SERIAL NUMBER | DATE    | TIME | TEMP OF CALIBRATION    |   | pH<br>STANDARD | pH<br>STANDARD | SPECIFIC<br>CONDUCTANCE | ORP       | DISSOLVED OXYGEN |
|--------------------|-----------|---------------|---------|------|------------------------|---|----------------|----------------|-------------------------|-----------|------------------|
| 31.89              | MODEL     |               |         |      | STANDARD (°C<br>or °F) | 4 | 7              | 10             | μS/cm                   | See Gerom |                  |
| 751                | Pro Plus  | 130101274     | 9/14/16 | 720  | 19.7                   | 4 | 7              | 10             | 1413                    | 239.1     | 99.5             |
|                    |           |               |         |      |                        |   |                |                |                         |           |                  |
|                    |           |               |         |      |                        |   |                |                |                         |           |                  |
|                    |           |               |         |      |                        |   |                |                | п =                     |           |                  |
|                    |           |               |         |      |                        |   |                |                |                         |           |                  |
|                    |           |               |         |      |                        |   |                |                |                         |           |                  |
|                    |           |               |         | 153  |                        |   |                |                |                         |           |                  |
| 1                  |           |               |         |      |                        |   |                |                |                         |           | -16              |
|                    |           |               |         |      |                        |   |                |                |                         |           | v =              |
|                    |           |               |         |      |                        |   |                |                |                         |           |                  |
|                    |           |               |         |      |                        |   |                |                |                         |           |                  |
| 1                  |           |               | -       |      |                        |   | 8              | 21             |                         |           | ~                |
|                    | -         |               | i i     |      |                        |   | × 1            |                |                         | 1         |                  |
| Name of the second | Com a     | 1.0           |         |      |                        |   |                | Wa a           | 7                       |           |                  |
|                    | H         |               |         | 74   |                        |   |                |                |                         |           |                  |

Water Level Measurements

Date: 9/14/16 Client: The source group

| Well I.D. | Time  | Dia  | Depth to<br>NAPL | Thickness<br>of NAPL | Depth to<br>water<br>(DTW) | Total<br>Depth<br>(measured) | Total<br>Depth<br>(historical) | Ref Point<br>TOC/TOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |
|-----------|-------|------|------------------|----------------------|----------------------------|------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| MW-FP1    | 1040  | 2"   |                  |                      | 17.03                      | 24.99                        | 24.94                          | 90 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |
| MW-FP2    | 658   | 2"   |                  | *                    | 15.40                      | 25.00                        | 24,90                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |         |
| MW-FP3    | 1035  | 2"   |                  |                      | 17.13                      | 25.96                        | 24,92                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
| MW-FP4A   | 1030  | 2"   | 7***             |                      | 17.29                      | 24.90                        | 24.94                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
| MW-FP4B   | 1028  | 2    |                  |                      | 17.78                      | 56.70                        | 56.66                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
| MW-FP5    | 1150  | 2"   |                  |                      | 17.27                      | 25.00                        | 24.97                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parke    | d over  |
| MW-FP6    | 914   | 2"   | =                |                      | 13.05                      | 24.65                        | 24.58                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
| MW-FP7B   | 708   | 2"   |                  |                      | 12,63                      | 49.10                        | 48.96                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
| MW-9      | 918   | 4"   |                  |                      | 1311                       | 19.00                        | )                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
| 4         |       |      |                  |                      | 697                        |                              |                                | 1 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |
|           |       |      |                  |                      |                            |                              |                                | NAME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY |          |         |
| + somp    | 1.ed  | MU   | ·FP              | 7B a                 | Mw-                        | FP2                          | Mw.9,                          | MW-FPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ng 01. | 11 well |
| due       | to ac | cess |                  |                      |                            |                              |                                | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J        |         |
|           |       |      |                  |                      |                            |                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
| d.        | Sec.  |      |                  |                      |                            |                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
|           | A-    |      |                  |                      |                            |                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
|           |       |      |                  |                      |                            |                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
|           |       |      |                  |                      |                            |                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
|           |       |      |                  |                      |                            |                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |
|           | . ,   | •    |                  |                      |                            |                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |

# **Well Maintenance Inspection Form**

| Client: 7                               | hi sou                                               | v c.e.             | 900                     | up           | Site:                                    | Fran                                       | cis P                                    | lat.                       | 109           |                  | ,           |             | -                           |                                          | Date: 9/14/                                       |
|-----------------------------------------|------------------------------------------------------|--------------------|-------------------------|--------------|------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------|---------------|------------------|-------------|-------------|-----------------------------|------------------------------------------|---------------------------------------------------|
| Job #:                                  | C1-1                                                 | 60                 | 91                      | 4            |                                          | The state of                               | Techi                                    |                            |               | _                | 1.0         | AI          | 20                          |                                          | Page / of /                                       |
|                                         |                                                      |                    |                         |              |                                          | try Indic                                  | cates De                                 | ficie                      | тсу           |                  |             |             |                             |                                          |                                                   |
| Inspection<br>Point                     | Well Inspected -<br>No Corrective<br>Action Required | Cap non-functional | Lock non-<br>functional | Lock missing | Bolts missing (# missing / # total tabs) | Tabs stripped (# stripped / # total tabs.) | Tabs broken (# broken / # of total tabs) | Annular seai<br>incomplete | Apron damaged | Rim / Lid broken | Trip Hazard | Below Grade | Other<br>(explain in notes) | Well Not Inspected<br>(explain in notes) | Notes<br>(Note any repairs made while<br>on site) |
| MW-FP1                                  | 1                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| MW-FP2                                  | /                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| MW-FP3                                  | 1                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| MW-FP4A                                 | 1                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| MW-FP4B                                 | 1                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| MW-FP5                                  | /                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| MW-FP6                                  | /                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          | 4918.                                             |
| MW-FP7B                                 | /                                                    |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| MW-9                                    | NX.                                                  |                    |                         |              |                                          | 2/2                                        |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             | i sa ni s                                |                                                   |
| *************************************** |                                                      |                    |                         |              |                                          | $\angle$                                   |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
|                                         |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |
| Notes:                                  |                                                      |                    |                         |              |                                          |                                            |                                          |                            |               |                  |             |             |                             |                                          |                                                   |

Repair codes: rt = retap/ bolts added or replaced as = annular seal repair,

|                          |                                                                       |               | ruig        | ing An    | u                    | Jan           | iipiiiig          | Data         | 31100       | <u> </u>                 |                                                         |  |
|--------------------------|-----------------------------------------------------------------------|---------------|-------------|-----------|----------------------|---------------|-------------------|--------------|-------------|--------------------------|---------------------------------------------------------|--|
| Job#:                    | Well ID: Part Pro Date: 9/14/16 Site: Former Francis Plating, Oakland |               |             |           |                      |               |                   |              |             |                          |                                                         |  |
|                          | )c<br>D: 1-2-64                                                       | -FP6          |             |           |                      |               |                   | Former F     | rancis P    | lating, Oak              | land                                                    |  |
|                          |                                                                       |               |             |           | 7.5                  |               | DTW: 1            |              |             |                          |                                                         |  |
| Purge                    | equip:                                                                | ES - diar     | m: Blad     | der Peri  | ) v                  | Vaterr        | a Positive        | Air Displac  | cement      | Ext. Syste               | em                                                      |  |
|                          |                                                                       |               |             |           |                      |               |                   | New D        |             |                          |                                                         |  |
| Purge                    | method                                                                | <b>d:</b> 3-5 | Case Volur  | ne Micro/ | Low-                 | Flow          | Extraction        | Other:       |             |                          |                                                         |  |
| Pump                     | depth/                                                                | intake        | 1º 19 21    | Multiplie | ers:                 | 1"= 0.0       | 04 2"= 0.16 3"    | = 0.37 4"= 0 | .65 5"=1.0  | 2 6"= 1.47               | Radius <sup>2</sup> X 0.163                             |  |
| (TD - D                  | ΓW X Mu                                                               | ltiplier =    | 1 Volume    |           | 80%                  | 6 Rec         | covery (TD -      | DTW X 0      | .20 + DT    | W)                       |                                                         |  |
| 1 Volum                  | ie =                                                                  | x             | 3 =         | (Total F  | urg                  | e)            |                   |              | 80%=        | The second second second | V-0.0-1-2-17-10-17-17-17-17-17-17-17-17-17-17-17-17-17- |  |
|                          |                                                                       |               |             |           | Pu<br>Rat            | rge<br>e (gal | Volume<br>Removed | DO (mg/l)    | ORP<br>(mv) | DTW                      | Notes                                                   |  |
|                          | And the second second second                                          |               | 472.9       |           |                      | 00            | a-6               | 1.31         | 110.0       | 17.25                    |                                                         |  |
| 1052                     | 21.1                                                                  | 6.45          | 452.0       | 16        |                      | ,             | 1.2               | 1.20         | 111.0       | 17.25                    |                                                         |  |
| 1055                     | 21.1                                                                  | 6.34          | 445.0       | 6         |                      |               | 1.8               | 1.18         | 1.2.4       | 17.25                    |                                                         |  |
| 1058                     | 21.0                                                                  | 6.23          | 448.7       | 5         |                      |               | 2.4               | 1.30         | 114.5       | 17.25                    |                                                         |  |
| 1101                     | 21.1                                                                  | 6.22          | 449.1       | 4         |                      | -             | 3.0               | 1.30         | 114.7       | 17.25                    |                                                         |  |
|                          |                                                                       |               | 450.7       |           |                      |               | 3.6               | 1.31         | 114.9       | 17.25                    |                                                         |  |
|                          | 7                                                                     |               |             |           |                      |               |                   |              |             |                          |                                                         |  |
| 10.27                    |                                                                       |               |             |           |                      |               |                   |              |             | - 4                      |                                                         |  |
|                          |                                                                       |               |             |           |                      |               |                   |              |             |                          |                                                         |  |
| = 1 =                    |                                                                       |               |             |           |                      |               |                   |              |             |                          |                                                         |  |
|                          |                                                                       |               |             |           |                      |               |                   |              |             |                          |                                                         |  |
| Did wel                  | l dewater                                                             | ? YES         | NQ          |           | То                   | tal vo        | lume remov        | red: 3       | .6          | (gal (L)                 |                                                         |  |
| Sample                   | method:                                                               | Disp Ba       | ailer De    | d. Tubing | Ne                   | ew Tu         | bing Ext.         | Port Of      | ther:       |                          |                                                         |  |
| Sample                   | date: 9/1                                                             | 14/16         | Sample ti   | iiic.     | DTW at sample: 17.25 |               |                   |              |             |                          |                                                         |  |
| Sample ID: Aw-FP1 MW-FP1 |                                                                       |               |             |           |                      |               | Lab: C&T          |              | Numbe       | r of bottles             | . 5                                                     |  |
| Analysi                  | s:                                                                    | VOC's,        | , Metals, C | rVI       |                      |               |                   |              |             |                          |                                                         |  |
| Equipm                   | ent blank                                                             | (ID           | @           |           | Fie                  | ld bla        | ink ID            | @            |             |                          | - 265, 311,45                                           |  |
| Duplicate ID: Pre-pu     |                                                                       |               |             |           |                      |               | ge DO:            |              | Post pu     | irge DO:                 |                                                         |  |
| Fe2 <sup>+</sup> :       |                                                                       | -             | T           |           | Pre                  | e-purç        | ge ORP:           | 1            | Post pu     | irge ORP:                |                                                         |  |
| NAPL (                   | depth:                                                                |               | Volume o    | of NAPL:  |                      |               |                   | Volum        | e remov     | ed:                      | ml                                                      |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purging And Sampling Data Sheet  Job#: C1-160914 Sampler: J Caird Client: The Source Group |            |                   |                    |                |        |                |                |             |             |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|-------------------|--------------------|----------------|--------|----------------|----------------|-------------|-------------|-----------------------------|
| Job#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1-1609                                                                                    | 914        | Sample            | r:                 | J Ca           | ird    |                | Client:        | The So      | urce Grou   | р                           |
| Well I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D: MW                                                                                      | -FPZ       | Date:             | 9/14/16            |                |        | Site:          | Former F       | rancis P    | lating, Oa  | kland                       |
| Well d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iam: 1/4                                                                                   | 1" (2)     | 3" 4"             | 6" Other:          |                |        | DTW:           | 15,40          | Total       | Depth:      | 25.00                       |
| Purge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equip:                                                                                     | ES - diar  | m: Blac           | lder Peri          | ) w            | ateri  | ra Positive    |                |             | Ext. Sys    |                             |
| disp baile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |            |                   |                    |                |        |                |                | edicated    | NA          |                             |
| Purge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |            |                   |                    |                |        | Extraction     |                |             |             |                             |
| Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | depth/                                                                                     | intake     | : 19 1            | Multipli           | ers: 1         | "= 0.0 | 04 2"= 0.16 3" | = 0.37 4"= 0   | 0.65 5"=1.0 | 02 6"= 1.47 | Radius <sup>2</sup> X 0.163 |
| (TD - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TW X Mu                                                                                    | Itiplier = | 1 Volume          |                    | 80%            | Red    | covery (TD -   | DTW X 0        | .20 + DT    | W)          |                             |
| 1 Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne =                                                                                       | x          | 3 =               | (Total F           | Purge          | )      |                |                | 80%=        | No.         |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tomas                                                                                      |            |                   |                    | Pur            | Volume |                | 000            |             |             |                             |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temp                                                                                       | nН         | Cond<br>(mS /(iS) | Turbidity<br>(NTU) | Rate<br>or(mL/ |        |                | DO (mg/l)      | ORP<br>(mv) | DTW         | Notes                       |
| 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |            | 340.3             | -                  | 200            | _      | 0.6            | 5.70           |             |             | 110103                      |
| 845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |            | 336.7             |                    |                | ,      | 1.2            |                |             | 15.40       |                             |
| 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |            | 334.2             |                    |                |        | 1.8            | 4.89           |             |             |                             |
| 851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | -          | 331.5             |                    |                |        | 2.4            | 4.33           |             |             |                             |
| 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.1                                                                                       | 6.58       | 331, 3            | 5                  |                |        | 3.0            | 4.24           | -           |             |                             |
| 857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |            | 330.2             |                    | 1              | _      | 3.6            | 4.16           | 104.9       | 15.40       | - 17                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |            |                   |                    |                |        |                |                |             |             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |            |                   |                    |                |        |                |                |             |             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |            |                   |                    |                | -      |                |                |             | ć           | 7                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | <u> </u>   |                   |                    |                |        |                |                |             |             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |            |                   |                    |                |        |                |                |             |             | 100000                      |
| Did wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dewater                                                                                    | YES        | NO                |                    | Tota           | Lvo    | lume remov     | J. 3.6         | <u> </u>    | gal Æ       |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | method:                                                                                    |            |                   | d. Tubing          |                |        | bing Ext.      |                | her:        | yai (L)     |                             |
| P. H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | date: 9/1                                                                                  |            | Sample ti         | 24                 |                | 14     | DITY LAL       | DTW at s       |             | 15.4        | 0                           |
| Sample ID: MW- FP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |            |                   |                    |                |        | Lab: C&T       |                |             | of bottles  | : 5                         |
| Analysis: VOC's, Metals, CrVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |            |                   |                    |                |        |                |                |             |             |                             |
| Equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ent blank                                                                                  | ID         | @                 |                    | Field          | bla    | nk ID          | @              |             |             |                             |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                                            |            |                   |                    |                |        | e DO:          | Post purge DO: |             |             |                             |
| Fe2 <sup>+</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |            |                   |                    |                |        | e ORP:         |                |             | rge ORP:    |                             |
| NAPL d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | epth:                                                                                      |            | Volume o          | f NAPL:            |                |        |                | Volume         | e remove    | ed:         | ml                          |

|                                                                        |           |               | Purg             | ing An    | id S  | Sar                     | npling                       | Data:        | Shee        | t            |                             |
|------------------------------------------------------------------------|-----------|---------------|------------------|-----------|-------|-------------------------|------------------------------|--------------|-------------|--------------|-----------------------------|
| Job#:                                                                  | C1-1609   | 914           |                  | r:        |       |                         |                              |              |             | urce Group   | )                           |
|                                                                        |           |               |                  | 9/14/16   |       |                         | Site:                        |              |             |              |                             |
|                                                                        |           |               |                  |           |       |                         | DTW: 17                      |              |             |              |                             |
| Purge                                                                  | equip:    | ES - diar     | m: Blac          | dder Peri | ) v   | Vaterr                  | a Positive                   | Air Displa   | cement      | Ext. Syst    | em                          |
|                                                                        |           |               |                  |           |       |                         | : OD:                        |              |             |              |                             |
| Purge                                                                  | metho     | <b>d:</b> 3-5 | Case Volu        | me Micro, | Low-  | Flow                    | Extraction                   | Other:       |             |              |                             |
| Pump                                                                   | depth/    | intake        | : 211            | Multiplie | ers:  | 1"= 0.0                 | 04 2"= 0.16 3"               | = 0.37 4"= 0 | 0.65 5"=1.0 | 02 6"= 1.47  | Radius <sup>2</sup> X 0.163 |
| (TD - DTW X Multiplier = 1 Volume 80% Recovery (TD - DTW X 0.20 + DTW) |           |               |                  |           |       |                         |                              |              |             |              |                             |
| 1 Volum                                                                | ne =      | X             | 3 =              | (Total F  | ourge | e)                      |                              |              | 80%=_       |              |                             |
| Time                                                                   | Temp      |               | Cond<br>(mS (ns) | Turbidity | Rat   | rge<br>e (gal<br>/ min) | Volume<br>Removed            | DO (mg/l)    | ORP         | DTW          | Notes                       |
| -                                                                      | 12.1      |               |                  | 8         |       | 0                       | 0.6                          | 3.24         | 119.4       | 17.30        |                             |
| 1222                                                                   | 22.1      | 6.39          | 935              | 6         | 1     |                         | 1.2                          | 3,15         | 125.9       | 17.30        |                             |
| 1225                                                                   | 22.0      | 6.35          | 927              | 5         |       |                         | 1.8                          | 3.13         | 126.9       | 17.30        |                             |
| 1228                                                                   | 22.1      | 6.28          | 922              | 5         |       |                         | 2.4                          | 3, 11        | 129.7       | 17.30        |                             |
| 1231                                                                   | 22,1      | 6.26          | 920              | 4         | _     | _                       | 3.0                          | 3.12         | 130,3       | 17.30        |                             |
|                                                                        |           |               |                  |           |       |                         |                              |              |             |              |                             |
|                                                                        |           |               |                  |           |       |                         |                              |              |             |              |                             |
| Ţ.                                                                     |           |               |                  |           |       |                         |                              |              |             |              |                             |
|                                                                        |           |               |                  |           |       |                         |                              |              |             |              |                             |
|                                                                        | -         |               |                  |           |       |                         |                              |              |             |              |                             |
|                                                                        |           |               |                  |           |       |                         |                              |              |             |              |                             |
| Did well                                                               | dewater   | ? YES         | NQ               |           | To    | tal vo                  | lume remov                   | ed: 3.       | 0 (         | gal (L)      |                             |
| Sample                                                                 | method:   | Disp Ba       | ailer De         | d. Tubing | Ne    | w Tu                    | biog Ext.                    | Port Ot      | her:        |              |                             |
| Sample                                                                 | date: 9/1 |               | Sample t         | ime: 123  | 5     |                         |                              | DTW at s     | sample:     | 17.30        |                             |
| Sample                                                                 | ID:       | MW.           | - FP3            | VVIIII V  |       |                         | Lab: C&T                     |              | Number      | r of bottles | <u>.</u> 5                  |
| Analysis                                                               | 3:        | VOC's,        | Metals, C        | rVI       |       |                         |                              |              |             |              |                             |
| Equipm                                                                 | ent blank | : ID          | @                |           | Fiel  | d bla                   | nk ID                        | @            |             |              |                             |
| Duplicate ID: Pre-put                                                  |           |               |                  |           |       |                         | Pre-purge DO: Post purge DO: |              |             |              |                             |
| Fe2 <sup>+</sup> : Pre-purge ORP: Post purge ORP:                      |           |               |                  |           |       |                         |                              |              |             |              |                             |
| NAPL d                                                                 | lepth:    |               | Volume o         | of NAPL:  |       |                         |                              | Volum        | e remove    | ed:          | ml                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               | Purg               | ing An    | u Sai                          | npling                         | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Silee       | <u> </u>    | www.merces.com              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|--------------------|-----------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------|--|
| Job#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1-1609   | 14            | Sample             | r:        | J Caird                        |                                | Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The Sou     | urce Grou   | р                           |  |
| Well I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D:MW      | -FP4A         | Date:              | 9/14/16   |                                | Site:                          | Former F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rancis P    | lating, Oa  | kland                       |  |
| Well d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iam: 1/4  | " 1" (2)      | ) 3" 4"            | 6" Other: |                                | DTW: 12                        | .19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total       | Depth:      | 24.90                       |  |
| Purge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equip:    | ES - diar     | n: Blac            | lder Peri | Waterr                         | a Positive                     | Air Displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cement      | Ext. Sys    | tem                         |  |
| disp baile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |               |                    |           |                                | : OD: (                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
| Purge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | metho     | <b>d:</b> 3-5 | Case Volu          | me Micro, | Low-Flow                       | Extraction                     | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |                             |  |
| The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |           |               |                    |           |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.65 5"=1.0 | 02 6"= 1.47 | Radius <sup>2</sup> X 0.163 |  |
| (TD - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΓW X Mu   | Itiplier =    | 1 Volume           |           | 80% Red                        | covery (TD -                   | DTW X 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .20 + DT    | W)          |                             |  |
| 1 Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne =      | x             | 3 =                | (Total F  | Purge)                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80%=_       |             |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               | Cond<br>(mS / (LS) |           | Purge<br>Rate (gai             | Volume<br>Removed<br>(gal (L)) | DO (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORP         | DTW         | Notes                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               | 2606               |           | 200                            |                                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             |             | Tellow Color                |  |
| 1157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21,2      | 6.18          | 2596               | 6         | 1                              | 1.2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 17.35       |                             |  |
| 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.5      | 6.18          | 2568               | S         |                                | 1.8                            | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139.7       | 17.35       |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               | 2502               |           |                                | 2.4                            | 1,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140.1       | 17.35       |                             |  |
| 1206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.4      | 6.20          | 2495               | 4         | 1                              | 3.0                            | 1,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141.2       | 17.35       | 1                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                    |           |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | **          |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                    |           |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                    |           |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                    |           |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                    |           |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                    |           |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
| Did well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dewater   | ? YES         | NO                 |           | Total vo                       | lume remov                     | ed: 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0           | gal (L)     |                             |  |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | method:   | Disp Ba       | ailer De           | d. Tubing | New Tu                         | bing Ext.                      | Port O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ther:       |             |                             |  |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | date: 9/1 |               | Sample t           | ime: 12   | 10                             |                                | DTW at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sample:     | 17.35       |                             |  |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID: N     | 1W-F          | -P4A               |           |                                | Lab: C&T                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number      | r of bottle | s: S                        |  |
| Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S:        | VOC's,        | Metals, C          | rVI       |                                | A                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
| Equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ent blank | . ID          | @                  |           | Field bla                      | d blank ID @                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
| Duplica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | te ID:    |               |                    |           | Pre-purge DO: Post purge DO:   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
| Fe2 <sup>+</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |               |                    |           | Pre-purge ORP: Post purge ORP: |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |                             |  |
| NAPI C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lenth:    |               | Volume o           | of NAPI · |                                |                                | Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e remove    | ed:         | ml                          |  |

**Purging And Sampling Data Sheet** Job#: C1-160914 Sampler: J Caird Client: The Source Group Well ID: MW-F/3' Date: Site: Former Francis Plating, Oakland 9/14/16 DTW: 17.78 125.96 56.70 Total Depth: **Well diam**: 1/4" 1" Q" 3" 4" 6" Other: Purge equip: ES - diam: Bladder (Peri) Waterra Positive Air Displacement Ext. System Tubing: OD: New disp bailer teflon bailer other: Dedicated NA Purge method: 3-5 Case Volume Micro/Low-Flow Extraction Other: Pump depth/ intake: 5/ Multipliers: 1"= 0.04 2"= 0.16 3"= 0.37 4"= 0.65 5"=1.02 6"= 1.47 Radius<sup>2</sup> x 0.163 (TD - DTW X Multiplier = 1 Volume 80% Recovery (TD - DTW X 0.20 + DTW) 1 Volume = × 3 = 80%= (Total Purge) Purge Volume Temp Cond ORP Turbidity Rate (gal Removed (02/°F) (mS (1)\$) DO (mg/l) DTW Time or mL/ min) рН (NTU) (mv) Notes (gal /1) 20.3 6.54 317.8 0.6 108.0 1.57 200 17.45 1121 20.6 6.51 1.2 330.8 1.17 105.0 1124 200 Dropped to 150 M/MM 17.50 1.65 1127 20.7 6.50 150 \$57.0 6 103.7 080 17.45 1130 2.10 20.76,51 509.9 0.84 103.4 17.45 20.8 6.55 2,55 4 102.4 1133 530,2 0.78 17.45 20.8 6.60 546.3 1136 4 0.76 101.9 17.45 3.0 20.8 6.62 3.45 0.74 101.8 17.45 1139 554,0 4 3.45 (gal () Did well dewater? YES Total volume removed: New Tubing Ext. Port Other: Sample method: Disp Bailer Ded. Tubing DTW at sample: 17,45 1140 Sample date: 9/14/16 Sample time: 5 FP3 MW-FP4B Sample ID: Lab: C&T Number of bottles: VOC's, Metals, CrVI Analysis: Equipment blank ID @ Field blank ID @ Duplicate ID: Pre-purge DO: Post purge DO: Fe2+: Pre-purge ORP: Post purge ORP:

Volume of NAPL:

NAPL depth:

Volume removed:

|                                                                        | Purging And Sampling Data Sheet  Job#: C1-160914 Sampler: J Caird Client: The Source Group |           |                |                                         |                                  |                |              |             |                  |                             |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|----------------|-----------------------------------------|----------------------------------|----------------|--------------|-------------|------------------|-----------------------------|--|
| Job#:                                                                  | C1-1609                                                                                    | 914       | Sample         | r:                                      | J Caird                          | 16.4           | Client:      | The So      | urce Group       | p                           |  |
| Well I                                                                 | D: MW                                                                                      | -FP5      | Date:          | 9/14/16                                 |                                  | Site:          | Former F     | rancis F    | Plating, Oa      | kland                       |  |
| Well d                                                                 | iam: 1/4                                                                                   | 1" (2     | 3" 4"          | 6" Other:                               |                                  | DTW:           | 7.27         | Total       | Depth:           | 25.00                       |  |
|                                                                        |                                                                                            |           |                |                                         | Waterr                           | a Positive     | Air Displa   | cement      | Ext. Syst        |                             |  |
| disp baile                                                             | er teflo                                                                                   | on bailer | other:         |                                         | Tubing                           | : OD:          | New (D       | edicated    | NA               |                             |  |
|                                                                        |                                                                                            |           |                |                                         |                                  | Extraction     |              |             |                  |                             |  |
| Pump                                                                   | depth/                                                                                     | intake    | : 21           | Multipli                                | ers: 1"= 0.0                     | 04 2"= 0.16 3" | = 0.37 4"= 0 | 0.65 5"=1.0 | 02 6"= 1.47      | Radius <sup>2</sup> X 0.163 |  |
| (TD - DTW X Multiplier = 1 Volume 80% Recovery (TD - DTW X 0.20 + DTW) |                                                                                            |           |                |                                         |                                  |                |              |             |                  |                             |  |
| 1 Volum                                                                | e =                                                                                        | x         | 3 =            | (Total F                                | ourge)                           |                |              | 80%=_       |                  |                             |  |
| Time                                                                   | Temp                                                                                       |           | Cond<br>(mS () | Turbidity                               | Purge<br>Rate (gal<br>or(mL/mp)) |                | DO (mg/l)    | ORP         | DTW              | Notes                       |  |
|                                                                        |                                                                                            |           | 485.4          | THE REAL PROPERTY OF                    | 200                              | 0.6            | 1.66         | -           | 17.50            |                             |  |
| 1251                                                                   | 20.7                                                                                       | 6.74      | 489.4          | 6                                       | -,                               | 1-2            | 1.49         | 122.0       | 17,50            |                             |  |
| 1254                                                                   | 20.8                                                                                       | 6.70      | 495.1          | 5                                       |                                  | 1.8            | 1.35         | 123.4       | 17.50            |                             |  |
| 1257                                                                   | 20.9                                                                                       | 6.68      | 497.8          | 5                                       |                                  | 2-4            | 1.29         | 124.0       | 17.50            |                             |  |
| 1300                                                                   | 20.9                                                                                       | 6.67      | 500.7          | 4                                       | 1                                | 3.0            | 1.23         | 124.6       | 17.50            |                             |  |
|                                                                        |                                                                                            |           |                |                                         |                                  |                | ,            |             |                  |                             |  |
|                                                                        |                                                                                            |           |                |                                         |                                  |                |              |             |                  |                             |  |
|                                                                        |                                                                                            |           |                |                                         |                                  |                |              |             |                  |                             |  |
|                                                                        |                                                                                            |           |                |                                         |                                  |                |              |             |                  |                             |  |
|                                                                        |                                                                                            |           |                |                                         |                                  |                |              |             |                  |                             |  |
|                                                                        |                                                                                            |           |                |                                         |                                  |                |              |             |                  |                             |  |
| Did well                                                               | dewater                                                                                    | ? YES     | NO             |                                         | Total vo                         | lume remov     | ed: 3.       | 0           | gal / <b>(2)</b> |                             |  |
| Sample                                                                 | method:                                                                                    | Disp Ba   | iler De        | d. Tubing                               | New Tu                           | bing Ext.      |              | her:        |                  |                             |  |
| Sample                                                                 | date: 9/1                                                                                  |           | Sample ti      | me: 13                                  | 05                               |                | DTW at s     | sample:     | 17.50            |                             |  |
| Sample                                                                 | ID: r                                                                                      | 1W-F      | =ps            | *************************************** |                                  | Lab: C&T       |              | Number      | r of bottles     | : 5                         |  |
| Analysis                                                               | :                                                                                          | VOC's,    | Metals, Ci     | ·VI                                     |                                  |                |              |             |                  |                             |  |
| Equipme                                                                | ent blank                                                                                  | ID        | @              |                                         | Field bla                        | nk ID          | @            |             |                  |                             |  |
| Duplicat                                                               |                                                                                            |           |                |                                         | Pre-purge DO: Post purge DO:     |                |              |             |                  |                             |  |
| Fe2 <sup>+</sup> :                                                     |                                                                                            |           | •              |                                         | Pre-purge ORP: Post purge ORP:   |                |              |             |                  |                             |  |
| NAPL d                                                                 | epth:                                                                                      |           | Volume o       | f NAPL:                                 |                                  |                | Volume       | e remove    | ed:              | ml                          |  |

|                    |           |            | Purg             | ing An    | d Sar                              | npling                        | Data          | Shee        | t              |                         |                  |  |
|--------------------|-----------|------------|------------------|-----------|------------------------------------|-------------------------------|---------------|-------------|----------------|-------------------------|------------------|--|
| Job#:              | C1-1609   | 914        | Sample           | r:        | J Caird                            |                               | Client:       | The So      | urce Grou      | р                       |                  |  |
| Well I             | D: MW     | -FP6       | Date:            | 9/14/16   |                                    | Site:                         | Former F      | rancis P    | lating, Oa     | akland                  |                  |  |
|                    |           |            |                  | 6" Other: |                                    |                               | 13.05         | Total       | Depth:         | 24.6                    | 5                |  |
|                    |           |            |                  |           |                                    | ra Positive                   |               |             | Ext. Sys       |                         |                  |  |
| disp baile         | er teflo  | n bailer   | other:           |           | Tubing                             | : OD: (                       | New D         | edicated    | NA             |                         |                  |  |
|                    |           |            |                  |           |                                    | Extraction                    |               |             |                |                         |                  |  |
| Pump               | depth/    | intake     | : 18             | Multipli  | ers: 1"= 0.0                       | 04 2"= 0.16 3"                | '= 0.37 4"= 0 | 0.65 5"=1.0 | 02 6"= 1.47    | Radius <sup>2</sup> X 0 | .163             |  |
| (TD - D            | TW X Mu   | ltiplier = | 1 Volume         |           | 80% Red                            | covery (TD -                  | DTW X 0       | .20 + DT    | W)             |                         | 9 - 100          |  |
| 1 Volum            | ne =      | X          | 3 =              | (Total f  | ourge)                             | _                             |               | 80%=_       |                |                         | Ever on Province |  |
| Time               | Temp      | рН         | Cond<br>(mS (45) | Turbidity | Purge<br>Rate (gal<br>or n(L/ min) |                               | DO (mg/l)     | ORP<br>(mv) | DTW            | Not                     | es               |  |
| 928                | 21.4      | 6.20       | 932              | 18        | 200                                | 0.6                           | 1.84          | 137.1       | 13.30          | Yellow                  | (,0101)          |  |
| 931                | 21.7      | 6.19       | 926              | 16        | -1                                 | 1.2                           | 1.84          | 137.3       | 13.30          |                         | i                |  |
| 934                | 21.9      | 6.19       | 894              | 15        |                                    | 1.8                           | 1.90          | 138.1       | 13.30          |                         |                  |  |
| 937                | 21.8      | 6.18       | 888              | 15        |                                    | 2.4                           | 1.86          | 138.9       | 13.30          |                         |                  |  |
| 940                | 21,8      | 6.19       | 881              | 15        | 1                                  | 3.0                           | 1.34          | 139.7       | 13.30          | _                       |                  |  |
| 7.37.67            |           |            |                  |           | '                                  |                               |               |             | r)             |                         | 277.5            |  |
|                    |           |            |                  |           |                                    |                               |               |             |                | -                       |                  |  |
|                    |           |            |                  |           |                                    |                               |               |             |                |                         |                  |  |
|                    |           |            |                  |           |                                    |                               |               |             |                |                         | 77               |  |
|                    |           |            |                  |           |                                    |                               |               |             |                |                         |                  |  |
|                    |           |            |                  |           | 1                                  |                               |               |             |                |                         |                  |  |
| Did well           | l dewater | YES        | NQ.              | 1         | Total vo                           | l<br>lume remov               | red: 3        | 0           | gal 🕡          | J                       |                  |  |
| Sample             | method:   | Disp Ba    | ailer De         | d. Tubing | New Tu                             | bing Ext.                     | Port O        | ther:       |                |                         |                  |  |
| Sample             | date: 9/1 | 4/16       | Sample t         | ime: 94   | DTW at sample: 13.30               |                               |               |             |                |                         |                  |  |
| Sample             | ID: /     | 1W -       | FP6              |           |                                    | Lab: C&T Number of bottles: 5 |               |             |                |                         |                  |  |
| Analysis           | s:        | VOC's,     | Metals, C        | rVI       |                                    |                               |               |             |                |                         |                  |  |
|                    | ent blank | ID         | @                |           | Field blank ID @                   |                               |               |             | Deat surse DO: |                         |                  |  |
| Duplica            | te ID:    |            |                  |           | Pre-purge DO: Post purg            |                               |               |             |                |                         |                  |  |
| Fe2 <sup>+</sup> : |           |            |                  |           | Pre-purg                           | ge ORP:                       |               | Post pu     | rge ORP        |                         |                  |  |

NAPL depth:

Volume of NAPL:

Volume removed:

|                    |             |            | ruig              | my A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iu Jai                           | upinig            | Data            | JIICC          | , L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|--------------------|-------------|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Job#               | : C1-160    | 914        | Sample            | r:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J Caird                          |                   | Client:         | The So         | urce Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                                     |
| Well               | ID: MU      | -FP7B      | Date:             | 9/14/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | Site:             | Former F        | -rancis F      | Plating, Oal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kland                                 |
|                    |             | _          |                   | 6" Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | DTW:              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.10                                 |
|                    | e equip:    |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | a Positive        |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    | iler teflo  |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tubing                           |                   | /               | edicated       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 2.75               |             |            |                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                  | Extraction        |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    |             |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radius <sup>2</sup> X 0.163           |
| (TD - [            | DTW X Mu    | Itiplier = | 1 Volume          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80% Red                          | covery (TD -      | DTW X 0         | ).20 + DT      | ΓW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| 1 Volu             | me =        | X          | 3 =               | (Total F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Purge)                           |                   |                 | 80%=_          | At the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the |                                       |
| Time               | Temp        | рН         | Cond<br>(mS (u\$) | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Purge<br>Rate (gal<br>o mL/ min) | Volume<br>Removed | DO (mg/l)       | ORP<br>(mv)    | DTW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notes                                 |
| 808                | 20.0        | -          | 354.7             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                              | 0.6               | 2.65            | 106.0          | 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 8041               | - 19-6      |            | 445.4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                | 1.2               | 2.09 JC         | 104.6          | 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 8014               | - 14.7      | 6.94       | 419-4             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 1.8               | 1.92            | 100.8          | 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 810                | 19.8        | 6.92       | 410.8             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 2.4               | 1.87            | 98,5           | 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 820                | 19.9        | 6.90       | 408.9             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 3.0               | 1.74            | 97.5           | 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 823                | 19.9        | 6.89       | 407.0             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                | 3.6               | 1.70            | 96             | 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 1.11               |             |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                 |                | p 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.                                    |
|                    | 3 10        |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |
|                    |             |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    |             |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                    |             |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Did we             | II dewater  | ? YES      | NO                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total vo                         | lume remov        | ed: 3,          | 6              | gal (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |
| Sample             | e method:   | Disp Ba    | iler De           | d. Tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (New Tu                          | bing) Ext.        | Port Ot         | her:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Sample             | e date: 9/1 |            | Sample ti         | me: 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                               |                   | DTW at s        | sample:        | 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Sample             | e ID:       | 11N -      | FP7B              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Lab: C&T          |                 | Number         | r of bottles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                     |
| Analys             | is:         | VOC's,     | Metals, Ci        | rVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                   |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Equipn             | nent blank  | ID         | @                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field blai                       | nk ID             | @               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Duplica            | ate ID:     |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pre-purge DO:                    |                   |                 | Post purge DO: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Fe2 <sup>+</sup> : |             |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pre-purg                         | e ORP:            | Post purge ORP: |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| NAPI               | depth:      |            | Volume o          | f NAPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                   | Volume          | e remove       | 54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ml                                    |

| Job#:      | C1-1609                                                            | 914        | Sample            | r:                 | J Caird                  |                | Client:    | The Sou  | rce Grou   | р                        |      |
|------------|--------------------------------------------------------------------|------------|-------------------|--------------------|--------------------------|----------------|------------|----------|------------|--------------------------|------|
| Well II    | D: Mh                                                              | 1-9        | Date:             | 9/14/16            |                          | Site:          | Former F   | rancis P | lating, Oa | kland                    |      |
|            |                                                                    |            |                   |                    |                          | DTW: ₹3        |            |          |            |                          | 7    |
| Purge      | equip:                                                             | ES - diar  | m: Blad           | der Peri           | Waterr                   | a Positive     | Air Displa | cement   | Ext. Sys   | tem                      |      |
| disp baile | er teflo                                                           | n bailer   | other:            |                    | Tubing                   | : OD:          | New D      | edicated | NA         |                          |      |
|            |                                                                    |            |                   |                    |                          | Extraction     |            |          |            |                          |      |
|            |                                                                    |            |                   |                    |                          | 04 2"= 0.16 3" |            |          |            | Radius <sup>2</sup> X 0. | 163  |
| TD - D     | ΓW X Mu                                                            | Itiplier = | 1 Volume          |                    | 80% Rec                  | covery (TD -   | DTW X 0    | .20 + DT | W)         |                          |      |
| 1 Volum    | ie =                                                               | X          | 3 =               | (Total F           | Purge)                   |                |            | 80%=_    |            |                          |      |
|            | Tome                                                               |            | Co                | T                  | Purge                    | Volume         |            | ORP      |            |                          |      |
| Time       | (%)/°F)                                                            | рН         | Cond<br>(mS (LS)) | Turbidity<br>(NTU) | Rate (gal<br>or mL/ min) |                | DO (mg/l)  |          | DTW        | Note                     | S    |
|            |                                                                    |            | 1429              | 25                 |                          | 0.6            | 1.72       | 145-6    | 13.15      | Yellow                   | Colo |
| 1004       | 22.0                                                               | 6.16       | 1429              | 10                 | ı                        | 1.2            |            |          | 13.15      | 1                        |      |
| 1007       | 22.2                                                               | 6.15       | 1428              | 6                  |                          | 1              | 1.42       |          |            |                          | r B  |
|            |                                                                    |            | 1426              |                    |                          | 2.4            | 1.45       | 145.1    | 13:15      |                          |      |
| 1013       | 22.1                                                               | 6.15       | 1425              | 5                  | 1                        | 3.0            | 1.47       | 145.2    | 1315       |                          |      |
|            |                                                                    |            |                   |                    |                          |                |            |          |            |                          |      |
|            |                                                                    |            |                   |                    |                          |                |            |          |            |                          |      |
|            |                                                                    |            |                   |                    |                          |                |            |          |            |                          |      |
|            |                                                                    |            |                   |                    |                          |                |            |          |            |                          |      |
|            |                                                                    | ,          |                   |                    |                          |                |            |          |            |                          | -    |
|            |                                                                    |            |                   |                    |                          |                |            |          |            |                          |      |
| Did wel    | l dewater                                                          | ? YES      | NO                |                    | Total vo                 | lume remov     | /ed: 3     | . 0      | (gal (5)   |                          | 2    |
| Sample     | Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: |            |                   |                    |                          |                |            |          |            |                          |      |
|            |                                                                    |            | Sample t          |                    | 0                        | -              | DTW at     | samnle:  | 1315       |                          |      |

MW-9 Number of bottles: Lab: C&T Sample ID:

Analysis: VOC's, Metals, CrVI

Field blank ID Equipment blank ID Pre-purge DO: Post purge DO: Duplicate ID: Post purge ORP: Fe2+: Pre-purge ORP: NAPL depth:

Volume removed: Volume of NAPL:

# APPENDIX C LABORATORY ANALYTICAL DATA





# Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

#### Laboratory Job Number 280960 ANALYTICAL REPORT

Project : 06-FP The Source Group, Inc.

3478 Buskirk Ave Location: Former Francis Plating

Level : II Pleasant Hill, CA 94523

| <u>Sample ID</u> | <u>Lab ID</u> |
|------------------|---------------|
| TB               | 280960-001    |
| MW-FP7B          | 280960-002    |
| MW-FP2           | 280960-003    |
| MW-FP6           | 280960-004    |
| MW-9             | 280960-005    |
| MW-FP1           | 280960-006    |
| MW-FP4B          | 280960-007    |
| MW-FP4A          | 280960-008    |
| MW-FP3           | 280960-009    |
| MW-FP5           | 280960-010    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: 09/28/2016

Signature: \_\_\_\_\_ Project Manager

dina.ali@ctberk.com

CA ELAP# 2896, NELAP# 4044-001



#### CASE NARRATIVE

Laboratory number: 280960

Client: The Source Group, Inc.

Project: 06-FP

Location: Former Francis Plating

Request Date: 09/14/16 Samples Received: 09/14/16

This data package contains sample and QC results for ten water samples, requested for the above referenced project on 09/14/16. The samples were received on ice and intact, directly from the field.

#### Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7470A):

No analytical problems were encountered.

#### Hexavalent Chromium by Ion Chromatograph (EPA 7199):

No analytical problems were encountered.

Page 1 of 1

09b08x

# Chain of Custody

Confluence Environmental, Inc. 3308 El Camino Ave, Suite 300 # 148 Sacramento, CA 95821

8acramento, CA 95821 916-760-7641 - main 916-773-8617 - fax www.confluence-env.com



Project Name: Former Francis Plating - Frog Pond Site, Oakland Job Number: CI - 16 0914

TAT: STANDARD 5 DAY 2 DAY 24 HOUR OTHER:

|                         |           |                  |          |          |          |                  | -                                                                                    |             |                             |                           |              |       |      |               |                                                  |           |             |                   |                    |                |              |            |             |          |                              |            |
|-------------------------|-----------|------------------|----------|----------|----------|------------------|--------------------------------------------------------------------------------------|-------------|-----------------------------|---------------------------|--------------|-------|------|---------------|--------------------------------------------------|-----------|-------------|-------------------|--------------------|----------------|--------------|------------|-------------|----------|------------------------------|------------|
|                         | -         |                  |          |          |          | ,                |                                                                                      |             |                             |                           |              |       |      |               |                                                  |           |             | I                 | to MDL for CRV     | [**            | pa           | ltere      | it blait ea | olymse s | structions: *Title 22 Metale | Special In |
|                         | ļ         |                  |          |          |          |                  |                                                                                      |             |                             | <u> </u>                  |              |       |      |               |                                                  |           |             |                   |                    |                |              |            |             |          | t Method:                    | nəmqi48    |
| 85:El DIH1)             | <b></b>   |                  |          | ~/       |          | $\sim$ e         | ,                                                                                    |             |                             | 9117                      | .,,,         |       |      |               |                                                  | ···       |             |                   | <del></del>        | Shipment Date: |              |            |             |          |                              |            |
| Date Time               | 1         | noitsil          | IJV/·    |          |          |                  | <del>'</del>                                                                         | رد_ ]<br>me |                             | 911                       |              | L     |      | U             | onen                                             | IIIV /    | Kg pa       | usinb             | Испр               | ╬              |              |            | letnen      |          | s Company: Confluence E      |            |
| <u> </u>                |           |                  | T        | П        | T        |                  |                                                                                      |             |                             |                           |              |       |      | $\overline{}$ | T .                                              | <u> </u>  | T .         | 1                 | 1                  | ╬              | T            | T          |             |          |                              | $\neg$     |
| ****                    | ╫┼        | _                | -        | $\vdash$ | ┢        |                  |                                                                                      |             | X                           | ィ                         |              |       |      | Σ             | <del>                                     </del> | <u> </u>  | <u> </u>    | 5                 |                    | ╬              | X            | ļ          | 914116      | 5081     | Sdd-MW                       |            |
|                         | ╂——       |                  | -        | -        | <u> </u> |                  |                                                                                      |             | <u> </u>                    | X                         | ×            | _     |      | ε             | 1                                                | <u> </u>  | 1           | ۶                 |                    | $\bot$         | ×            |            | 7/14/6      | 5871     | Edd-MW                       | Ъ          |
|                         |           | _                | <u> </u> | <u> </u> | <u> </u> |                  |                                                                                      |             | X                           | X                         | X            |       |      | ε             | 1                                                |           | 1           | ٤                 |                    |                | ×            |            | 91/41/6     | 0121     | WM-FP4A                      | 8          |
|                         |           |                  |          | <u> </u> |          |                  |                                                                                      |             | X                           | X                         | X            |       |      | 3             | 1                                                |           | 1           | ς                 |                    |                | ×            |            | 21/41/6     | 0 411    | MM-FPGB                      | ŧ          |
|                         |           |                  | <u> </u> |          |          |                  |                                                                                      |             | X                           | X                         | X            |       |      | ε             | )                                                |           | 1           | S                 |                    |                | ×            |            | 911+116     | 5011     |                              | 9          |
|                         |           |                  | ļ        |          |          |                  |                                                                                      |             | X                           | X                         | X            |       |      | ٤             | )                                                |           | 1           | S                 |                    |                | ×            |            | 9/14/16     | 5101     | 6-MW                         | 5          |
|                         |           |                  | <u> </u> | <u> </u> |          |                  |                                                                                      |             | ×                           | ×                         | ヾ            |       |      | 3             | 1                                                |           | ١           | 5                 |                    |                | X            |            | १३१५१८६     |          |                              | 4          |
|                         |           |                  |          | ļ        |          |                  |                                                                                      |             | ×                           | ×                         | ×            |       |      | ε             | ١                                                |           |             | 5                 |                    |                | ×            |            | 91/416      |          |                              | ٤          |
|                         |           |                  |          |          |          |                  |                                                                                      |             | ×                           | ×                         | ×            |       |      | ε             | )                                                |           | j           | S                 |                    |                | ×            |            | 21/6/16     | 578      | 8Ldd-MW                      | 7          |
|                         | <u> </u>  |                  |          | <u> </u> |          |                  |                                                                                      |             |                             |                           | X            |       |      | 3             |                                                  |           |             | 3                 |                    |                | ×            |            | 91/41/6     |          | 81                           |            |
| Notes and<br>estanments |           |                  |          |          |          |                  |                                                                                      |             | Hexavalent Chromium* (7199) | Title 22 Metals * (6010B) | VOC's (8260) |       | NaOH | HCI           | HNO;                                             | $H_2SO_4$ | Unpreserved | No. of Containers | .ом учогвтофед     | Air            | Water/Liquid | Soil/Solid | Date        | Time     | Ol əlqms2                    |            |
|                         | dn        | 010.00           |          |          | saA b    |                  |                                                                                      |             |                             |                           |              |       | ÐΛ   | ritev-        |                                                  |           |             |                   |                    |                | datri        | <b>1</b>   |             |          |                              |            |
|                         |           | orD əə<br>orD əə |          |          |          | :01 TC<br>or 50i |                                                                                      |             |                             |                           |              | HA    | DLO  | HEDY          |                                                  |           | -906        |                   | Sonsultant / PM: ' |                |              |            |             |          | 00/0                         |            |
|                         |           | CEZ              |          |          |          |                  |                                                                                      | <del></del> |                             |                           |              | Cart. | d    | ON            |                                                  |           |             |                   | nclude EDF w/      | 11             |              |            |             |          | Mike Dalquist 510-486-0900   |            |
|                         | .198-847- |                  |          |          |          |                  | II                                                                                   |             |                             |                           |              |       |      |               |                                                  | POTS      |             |                   | Isdol Simofils     |                |              |            | 01749       | ey, CA   | : 2323 Fifth Street, Berkel  | - 11       |
|                         |           | umo              | na Bro   | : Jasc   | M4 ə     | uənt             | Curtis & Tompkins  Curtis & Tompkins  Site Address: 751-785 7th St. Oakland  Conflue |             |                             |                           |              |       |      |               |                                                  |           |             |                   |                    |                |              |            |             |          |                              |            |

## **COOLER RECEIPT CHECKLIST**

| (1/14/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nber of coolers an cis Plating |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                              |
| Sate Opened 171 By (print) (sign)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cyurat                         |
| Date Logged in By (print) (sign) | dirgujen                       |
| (Sign)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MANA 9310 -                    |
| Did cooler come with a shipping slip (airbill, etc)  Shipping info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | YES 10                         |
| 2A. Were custody seals present? YES (circle) on cooler  How many Name D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )ate                           |
| 2B. Were custody seals intact upon arrival?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| <ul><li>3. Were custody papers dry and intact when received?</li><li>4. Were custody papers filled out properly (ink, signed, etc)?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MES NO                         |
| 5. Is the project identifiable from custody papers? (If so fill out top of for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orm) (YES NO                   |
| 6. Indicate the packing in cooler: (if other, describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| ☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ☐ None ☐ Paper towels          |
| 7. Temperature documentation: * Notify PM if temperature exceeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eds 6°C                        |
| Type of ice used: Wet Blue/Gel None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temp(°C) 4.2                   |
| Temperature blank(s) included? Thermometer#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| Samples received on ice directly from the field. Cooling proces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| 0. W. N. J. 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| If YES, what time were they transferred to freezer?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YES NO                         |
| 9. Did all bottles arrive unbroken/unopened?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ES) NO                        |
| 10. Are there any missing / extra samples?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES XM                         |
| 11. Are samples in the appropriate containers for indicated tests?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| <ul><li>12. Are sample labels present, in good condition and complete?</li><li>13. Do the sample labels agree with custody papers?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES NO                         |
| 14. Was sufficient amount of sample sent for tests requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO NO                          |
| 15. Are the samples appropriately preserved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES NO N/A                      |
| 16. Did you check preservatives for all bottles for each sample?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WES NO N/A                     |
| 17. Did you document your preservative check? (pH strip lot# <b>80 BD</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H 146 ) XES NO N/A             |
| 18. Did you change the hold time in LIMS for unpreserved VOAs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YES NO WA                      |
| 19. Did you change the hold time in LIMS for preserved terracores?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | YES NO WA                      |
| 21. Was the client contacted concerning this sample delivery?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YES N/A                        |
| If YES, Who was called?By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| 20. 3/3 VCAs received w/ bubble > Emm for so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. /.n i                       |
| - I will be to so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | unpre vol                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |

## Curtis & Tompkins Sample Preservation for 280960

| Sample pH: -002a b |         | <u>Sample</u> <u>pH:</u><br>d<br>e | <pre>&lt;2 &gt;9 &gt;12 Other [%] [ ] [ ]</pre> |
|--------------------|---------|------------------------------------|-------------------------------------------------|
| c<br>d<br>e        | [][][]  | -007a<br>b<br>c                    |                                                 |
| -003a<br>b<br>c    |         | d<br>e                             | [x] [ ] [ ] [ ]                                 |
| d<br>e             |         | -008a<br>b<br>c                    |                                                 |
| -004a<br>b<br>c    |         | d<br>e                             |                                                 |
| d<br>e             |         | -009a<br>b<br>c                    |                                                 |
| -005a<br>b<br>c    |         | d<br>e                             | [][][]                                          |
| d<br>e             | [ ] [ ] | -010a<br>b<br>c                    |                                                 |
| -006a<br>b<br>c    |         | d<br>e                             |                                                 |

Analyst: Date: Page 1 of 1



### Detections Summary for 280960

Results for any subcontracted analyses are not included in this summary.

Client : The Source Group, Inc.

Project : 06-FP

Location : Former Francis Plating

Client Sample ID: TB Laboratory Sample ID: 280960-001

No Detections

Client Sample ID: MW-FP7B Laboratory Sample ID: 280960-002

| Analyte             | Result | Flags | RL   | Units | Basis   | IDF   | Method    | Prep Method |
|---------------------|--------|-------|------|-------|---------|-------|-----------|-------------|
| Chloroform          | 10     |       | 0.5  | ug/L  | As Recd | 1.000 | EPA 8260B | EPA 5030B   |
| Barium              | 31     |       | 5.0  | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Chromium            | 21     |       | 5.0  | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Vanadium            | 12     |       | 5.0  | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium | 21     |       | 0.50 | uq/L  | TOTAL   | 1.000 | EPA 7199  | METHOD      |

Client Sample ID: MW-FP2 Laboratory Sample ID: 280960-003

| Analyte             | Result | Flags | RL   | Units | Basis | IDF   | Method    | Prep Method |
|---------------------|--------|-------|------|-------|-------|-------|-----------|-------------|
| Barium              | 33     |       | 5.0  | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Chromium            | 15     |       | 5.0  | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Zinc                | 28     |       | 20   | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium | 17     |       | 0.50 | uq/L  | TOTAL | 1.000 | EPA 7199  | METHOD      |

Client Sample ID: MW-FP6 Laboratory Sample ID: 280960-004

| Analyte             | Result | Flags | RL    | Units | Basis   | IDF   | Method    | Prep Method |
|---------------------|--------|-------|-------|-------|---------|-------|-----------|-------------|
| Trichloroethene     | 8.9    |       | 0.5   | ug/L  | As Recd | 1.000 | EPA 8260B | EPA 5030B   |
| Barium              | 48     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Chromium            | 18,000 |       | 500   | ug/L  | DISS.   | 100.0 | EPA 6010B | METHOD      |
| Nickel              | 35     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Silver              | 13     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium | 18,000 |       | 5,000 | ug/L  | TOTAL   | 10000 | EPA 7199  | METHOD      |

Page 1 of 3 37.0



Client Sample ID : MW-9

## Laboratory Sample ID :

280960-005

| Analyte                | Result | Flags | RL    | Units | Basis   | IDF   | Method    | Prep Method |
|------------------------|--------|-------|-------|-------|---------|-------|-----------|-------------|
| MTBE                   | 4.9    |       | 0.5   | ug/L  | As Recd | 1.000 | EPA 8260B | EPA 5030B   |
| cis-1,2-Dichloroethene | 13     |       | 0.5   | ug/L  | As Recd | 1.000 | EPA 8260B | EPA 5030B   |
| Trichloroethene        | 22     |       | 0.5   | ug/L  | As Recd | 1.000 | EPA 8260B | EPA 5030B   |
| Barium                 | 160    |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Chromium               | 9,100  |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Nickel                 | 33     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Silver                 | 8.1    |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium    | 9,000  |       | 5,000 | ug/L  | TOTAL   | 10000 | EPA 7199  | METHOD      |

Client Sample ID : MW-FP1

Laboratory Sample ID :

280960-006

| Analyte             | Result | Flags | RL   | Units | Basis | IDF   | Method    | Prep Method |
|---------------------|--------|-------|------|-------|-------|-------|-----------|-------------|
| Barium              | 39     |       | 5.0  | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Chromium            | 7.5    |       | 5.0  | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Nickel              | 11     |       | 5.0  | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium | 7.1    |       | 0.50 | ug/L  | TOTAL | 1.000 | EPA 7199  | METHOD      |

Client Sample ID : MW-FP4B

Laboratory Sample ID: 280960-007

| Analyte             | Result | Flags | RL   | Units | Basis   | IDF   | Method    | Prep Method |
|---------------------|--------|-------|------|-------|---------|-------|-----------|-------------|
| Chloroform          | 3.3    |       | 0.5  | ug/L  | As Recd | 1.000 | EPA 8260B | EPA 5030B   |
| Barium              | 29     |       | 5.0  | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Chromium            | 10     |       | 5.0  | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Vanadium            | 9.6    |       | 5.0  | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Zinc                | 300    |       | 20   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium | 9.6    |       | 0.50 | ug/L  | TOTAL   | 1.000 | EPA 7199  | METHOD      |

Client Sample ID : MW-FP4A Laboratory Sample ID :

280960-008

| Analyte                  | Result | Flags | RL    | Units | Basis   | IDF   | Method    | Prep Method |
|--------------------------|--------|-------|-------|-------|---------|-------|-----------|-------------|
| 1,1-Dichloroethene       | 1.8    |       | 1.0   | ug/L  | As Recd | 2.000 | EPA 8260B | EPA 5030B   |
| trans-1,2-Dichloroethene | 8.7    |       | 1.0   | ug/L  | As Recd | 2.000 | EPA 8260B | EPA 5030B   |
| cis-1,2-Dichloroethene   | 170    |       | 1.0   | ug/L  | As Recd | 2.000 | EPA 8260B | EPA 5030B   |
| Trichloroethene          | 140    |       | 1.0   | ug/L  | As Recd | 2.000 | EPA 8260B | EPA 5030B   |
| Barium                   | 97     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Chromium                 | 12,000 |       | 500   | ug/L  | DISS.   | 100.0 | EPA 6010B | METHOD      |
| Cobalt                   | 7.1    |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Copper                   | 20     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Molybdenum               | 14     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Nickel                   | 130    |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Zinc                     | 110    |       | 20    | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium      | 12,000 |       | 5,000 | ug/L  | TOTAL   | 10000 | EPA 7199  | METHOD      |

Page 2 of 3 37.0



Client Sample ID : MW-FP3

## Laboratory Sample ID: 280960-009

| Analyte             | Result | Flags | RL  | Units | Basis | IDF   | Method    | Prep Method |
|---------------------|--------|-------|-----|-------|-------|-------|-----------|-------------|
| Barium              | 70     |       | 5.0 | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Chromium            | 200    |       | 5.0 | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Nickel              | 20     |       | 5.0 | ug/L  | DISS. | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium | 200    |       | 13  | ug/L  | TOTAL | 25.00 | EPA 7199  | METHOD      |

Client Sample ID: MW-FP5 Laboratory Sample ID: 280960-010

| Analyte             | Result | Flags | RL    | Units | Basis   | IDF   | Method    | Prep Method |
|---------------------|--------|-------|-------|-------|---------|-------|-----------|-------------|
| Trichloroethene     | 2.7    |       | 0.5   | ug/L  | As Recd | 1.000 | EPA 8260B | EPA 5030B   |
| Barium              | 56     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Chromium            | 20,000 |       | 500   | ug/L  | DISS.   | 100.0 | EPA 6010B | METHOD      |
| Nickel              | 24     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Silver              | 17     |       | 5.0   | ug/L  | DISS.   | 1.000 | EPA 6010B | METHOD      |
| Hexavalent Chromium | 30,000 |       | 5,000 | ug/L  | TOTAL   | 10000 | EPA 7199  | METHOD      |

37.0 Page 3 of 3



| Purgeable Organics by GC/MS |                        |           |                        |  |
|-----------------------------|------------------------|-----------|------------------------|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |
| Field ID:                   | TB                     | Batch#:   | 239213                 |  |
| Lab ID:                     | 280960-001             | Sampled:  | 09/14/16               |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |
| Units:                      | ug/L                   | Analyzed: | 09/18/16               |  |
| Diln Fac:                   | 1.000                  |           |                        |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

RL= Reporting Limit

Page 1 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | TB                     | Batch#:   | 239213                 |  |  |
| Lab ID:                     | 280960-001             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/18/16               |  |  |
| Diln Fac:                   | 1.000                  | •         |                        |  |  |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 98   | 80-128 |  |
| 1,2-Dichloroethane-d4 | 112  | 75-139 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 96   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP7B                | Batch#:   | 239213                 |  |  |
| Lab ID:                     | 280960-002             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/18/16               |  |  |
| Diln Fac:                   | 1.000                  | •         |                        |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | 10     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

RL= Reporting Limit

Page 1 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP7B                | Batch#:   | 239213                 |  |  |
| Lab ID:                     | 280960-002             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/18/16               |  |  |
| Diln Fac:                   | 1.000                  | •         |                        |  |  |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 99   | 80-128 |  |
| 1,2-Dichloroethane-d4 | 113  | 75-139 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 96   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP2                 | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-003             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  |           |                        |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

ND= Not Detected RL= Reporting Limit

Page 1 of 2 7.0



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP2                 | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-003             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  |           |                        |  |  |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 100  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 96   | 75-139 |  |
| Toluene-d8            | 96   | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP6                 | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-004             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  |           |                        |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | 8.9    | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

RL= Reporting Limit

Page 1 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP6                 | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-004             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  | •         |                        |  |  |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 98   | 75-139 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 99   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2

8.0



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-9                   | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-005             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  | •         |                        |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | 4.9    | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | 13     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | 22     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

RL= Reporting Limit

Page 1 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-9                   | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-005             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  | •         |                        |  |  |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 96   | 75-139 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 97   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |
|-----------------------------|------------------------|-----------|------------------------|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |
| Field ID:                   | MW-FP1                 | Batch#:   | 239208                 |
| Lab ID:                     | 280960-006             | Sampled:  | 09/14/16               |
| Matrix:                     | Water                  | Received: | 09/14/16               |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |
| Diln Fac:                   | 1.000                  |           |                        |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

RL= Reporting Limit

Page 1 of 2



| Purgeable Organics by GC/MS |                        |           |                        |
|-----------------------------|------------------------|-----------|------------------------|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |
| Field ID:                   | MW-FP1                 | Batch#:   | 239208                 |
| Lab ID:                     | 280960-006             | Sampled:  | 09/14/16               |
| Matrix:                     | Water                  | Received: | 09/14/16               |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |
| Diln Fac:                   | 1.000                  | •         |                        |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 100  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 99   | 75-139 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 99   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2

10.0



|           | Purgeable (            | Organics by GC/ | 'MS                    |
|-----------|------------------------|-----------------|------------------------|
| Lab #:    | 280960                 | Location:       | Former Francis Plating |
| Client:   | The Source Group, Inc. | Prep:           | EPA 5030B              |
| Project#: | 06-FP                  | Analysis:       | EPA 8260B              |
| Field ID: | MW-FP4B                | Batch#:         | 239208                 |
| Lab ID:   | 280960-007             | Sampled:        | 09/14/16               |
| Matrix:   | Water                  | Received:       | 09/14/16               |
| Units:    | ug/L                   | Analyzed:       | 09/17/16               |
| Diln Fac: | 1.000                  |                 |                        |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | 3.3    | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

ND= Not Detected RL= Reporting Limit

Page 1 of 2 11.0



| Purgeable Organics by GC/MS |                        |           |                        |
|-----------------------------|------------------------|-----------|------------------------|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |
| Field ID:                   | MW-FP4B                | Batch#:   | 239208                 |
| Lab ID:                     | 280960-007             | Sampled:  | 09/14/16               |
| Matrix:                     | Water                  | Received: | 09/14/16               |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |
| Diln Fac:                   | 1.000                  | •         |                        |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 95   | 75-139 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP4A                | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-008             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 2.000                  |           |                        |  |  |

| ana luch o                | Result | RL         |  |
|---------------------------|--------|------------|--|
| Analyte Freon 12          | ND     | 2.0        |  |
| Chloromethane             | ND     | 2.0        |  |
| Vinyl Chloride            |        |            |  |
| Bromomethane              | ND     | 1.0<br>2.0 |  |
|                           | ND     |            |  |
| Chloroethane              | ND     | 2.0        |  |
| Trichlorofluoromethane    | ND     | 2.0        |  |
| Acetone                   | ND     | 20         |  |
| Freon 113                 | ND     | 10         |  |
| 1,1-Dichloroethene        | 1.8    | 1.0        |  |
| Methylene Chloride        | ND     | 20         |  |
| Carbon Disulfide          | ND     | 1.0        |  |
| MTBE                      | ND     | 1.0        |  |
| trans-1,2-Dichloroethene  | 8.7    | 1.0        |  |
| Vinyl Acetate             | ND     | 20         |  |
| 1,1-Dichloroethane        | ND     | 1.0        |  |
| 2-Butanone                | ND     | 20         |  |
| cis-1,2-Dichloroethene    | 170    | 1.0        |  |
| 2,2-Dichloropropane       | ND     | 1.0        |  |
| Chloroform                | ND     | 1.0        |  |
| Bromochloromethane        | ND     | 1.0        |  |
| 1,1,1-Trichloroethane     | ND     | 1.0        |  |
| 1,1-Dichloropropene       | ND     | 1.0        |  |
| Carbon Tetrachloride      | ND     | 1.0        |  |
| 1,2-Dichloroethane        | ND     | 1.0        |  |
| Benzene                   | ND     | 1.0        |  |
| Trichloroethene           | 140    | 1.0        |  |
| 1,2-Dichloropropane       | ND     | 1.0        |  |
| Bromodichloromethane      | ND     | 1.0        |  |
| Dibromomethane            | ND     | 1.0        |  |
| 4-Methyl-2-Pentanone      | ND     | 20         |  |
| cis-1,3-Dichloropropene   | ND     | 1.0        |  |
| Toluene                   | ND     | 1.0        |  |
| trans-1,3-Dichloropropene | ND     | 1.0        |  |
| 1,1,2-Trichloroethane     | ND     | 1.0        |  |
| 2-Hexanone                | ND     | 20         |  |
| 1,3-Dichloropropane       | ND     | 1.0        |  |
| Tetrachloroethene         | ND     | 1.0        |  |

Page 1 of 2 12.0



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP4A                | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-008             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 2.000                  | •         |                        |  |  |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 1.0 |  |
| 1,2-Dibromoethane           | ND     | 1.0 |  |
| Chlorobenzene               | ND     | 1.0 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0 |  |
| Ethylbenzene                | ND     | 1.0 |  |
| m,p-Xylenes                 | ND     | 1.0 |  |
| o-Xylene                    | ND     | 1.0 |  |
| Styrene                     | ND     | 1.0 |  |
| Bromoform                   | ND     | 2.0 |  |
| Isopropylbenzene            | ND     | 1.0 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 1.0 |  |
| 1,2,3-Trichloropropane      | ND     | 1.0 |  |
| Propylbenzene               | ND     | 1.0 |  |
| Bromobenzene                | ND     | 1.0 |  |
| 1,3,5-Trimethylbenzene      | ND     | 1.0 |  |
| 2-Chlorotoluene             | ND     | 1.0 |  |
| 4-Chlorotoluene             | ND     | 1.0 |  |
| tert-Butylbenzene           | ND     | 1.0 |  |
| 1,2,4-Trimethylbenzene      | ND     | 1.0 |  |
| sec-Butylbenzene            | ND     | 1.0 |  |
| para-Isopropyl Toluene      | ND     | 1.0 |  |
| 1,3-Dichlorobenzene         | ND     | 1.0 |  |
| 1,4-Dichlorobenzene         | ND     | 1.0 |  |
| n-Butylbenzene              | ND     | 1.0 |  |
| 1,2-Dichlorobenzene         | ND     | 1.0 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 4.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 1.0 |  |
| Hexachlorobutadiene         | ND     | 1.0 |  |
| Naphthalene                 | ND     | 1.0 |  |
| 1,2,3-Trichlorobenzene      | ND     | 1.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 96   | 75-139 |  |
| Toluene-d8            | 96   | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP3                 | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-009             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  | •         |                        |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

RL= Reporting Limit



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP3                 | Batch#:   | 239208                 |  |  |
| Lab ID:                     | 280960-009             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/17/16               |  |  |
| Diln Fac:                   | 1.000                  |           |                        |  |  |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 101  | 75-139 |  |
| Toluene-d8            | 95   | 80-120 |  |
| Bromofluorobenzene    | 99   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | MW-FP5                 | Batch#:   | 239213                 |  |  |
| Lab ID:                     | 280960-010             | Sampled:  | 09/14/16               |  |  |
| Matrix:                     | Water                  | Received: | 09/14/16               |  |  |
| Units:                      | ug/L                   | Analyzed: | 09/18/16               |  |  |
| Diln Fac:                   | 1.000                  |           |                        |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | 2.7    | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

RL= Reporting Limit



|           | Purgeable (            | Organics by GC/ | /MS                    |
|-----------|------------------------|-----------------|------------------------|
| Lab #:    | 280960                 | Location:       | Former Francis Plating |
| Client:   | The Source Group, Inc. | Prep:           | EPA 5030B              |
| Project#: | 06-FP                  | Analysis:       | EPA 8260B              |
| Field ID: | MW-FP5                 | Batch#:         | 239213                 |
| Lab ID:   | 280960-010             | Sampled:        | 09/14/16               |
| Matrix:   | Water                  | Received:       | 09/14/16               |
| Units:    | ug/L                   | Analyzed:       | 09/18/16               |
| Diln Fac: | 1.000                  |                 |                        |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 98   | 80-128 |  |
| 1,2-Dichloroethane-d4 | 113  | 75-139 |  |
| Toluene-d8            | 96   | 80-120 |  |
| Bromofluorobenzene    | 95   | 80-120 |  |

RL= Reporting Limit

Page 2 of 2



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Type:                       | BLANK                  | Diln Fac: | 1.000                  |  |  |
| Lab ID:                     | QC851963               | Batch#:   | 239208                 |  |  |
| Matrix:                     | Water                  | Analyzed: | 09/17/16               |  |  |
| Units:                      | ug/L                   |           |                        |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

ND= Not Detected

RL= Reporting Limit

Page 1 of 2



|           | Purgeable Org          | ganics by GC/MS | 3                      |
|-----------|------------------------|-----------------|------------------------|
| Lab #:    | 280960                 | Location:       | Former Francis Plating |
| Client:   | The Source Group, Inc. | Prep:           | EPA 5030B              |
| Project#: | 06-FP                  | Analysis:       | EPA 8260B              |
| Type:     | BLANK                  | Diln Fac:       | 1.000                  |
| Lab ID:   | QC851963               | Batch#:         | 239208                 |
| Matrix:   | Water                  | Analyzed:       | 09/17/16               |
| Units:    | ug/L                   |                 |                        |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 98   | 80-128 |  |
| 1,2-Dichloroethane-d4 | 92   | 75-139 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-120 |  |

ND= Not Detected

RL= Reporting Limit

Page 2 of 2



|           | Purgeable Org          | ganics by GC/MS |                        |
|-----------|------------------------|-----------------|------------------------|
| Lab #:    | 280960                 | Location:       | Former Francis Plating |
| Client:   | The Source Group, Inc. | Prep:           | EPA 5030B              |
| Project#: | 06-FP                  | Analysis:       | EPA 8260B              |
| Type:     | LCS                    | Diln Fac:       | 1.000                  |
| Lab ID:   | QC851970               | Batch#:         | 239208                 |
| Matrix:   | Water                  | Analyzed:       | 09/17/16               |
| Units:    | ug/L                   |                 |                        |

| Analyte            | Spiked | Result | %REC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 12.50  | 13.24  | 106  | 66-135 |
| Benzene            | 12.50  | 12.65  | 101  | 80-123 |
| Trichloroethene    | 12.50  | 12.72  | 102  | 80-123 |
| Toluene            | 12.50  | 12.38  | 99   | 80-121 |
| Chlorobenzene      | 12.50  | 12.37  | 99   | 80-123 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 97   | 80-128 |  |
| 1,2-Dichloroethane-d4 | 92   | 75-139 |  |
| Toluene-d8            | 95   | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-120 |  |



| Purgeable Organics by GC/MS |                        |           |                        |  |  |
|-----------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                      | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                     | The Source Group, Inc. | Prep:     | EPA 5030B              |  |  |
| Project#:                   | 06-FP                  | Analysis: | EPA 8260B              |  |  |
| Field ID:                   | ZZZZZZZZZ              | Diln Fac: | 1.000                  |  |  |
| MSS Lab ID:                 | 280900-018             | Batch#:   | 239208                 |  |  |
| Matrix:                     | Water                  | Sampled:  | 09/13/16               |  |  |
| Units:                      | ug/L                   | Received: | 09/13/16               |  |  |

Type: MS

Lab ID: QC851977

| Analyte            | MSS Result | Spiked | Result | %REC | Limits |
|--------------------|------------|--------|--------|------|--------|
| 1,1-Dichloroethene | <0.1117    | 25.00  | 27.45  | 110  | 73-129 |
| Benzene            | <0.1000    | 25.00  | 25.67  | 103  | 80-120 |
| Trichloroethene    | <0.1000    | 25.00  | 25.70  | 103  | 73-123 |
| Toluene            | <0.1000    | 25.00  | 25.10  | 100  | 80-120 |
| Chlorobenzene      | <0.1000    | 25.00  | 24.80  | 99   | 80-120 |

Analyzed: 09/17/16

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 100  | 80-128 |
| 1,2-Dichloroethane-d4 | 99   | 75–139 |
| Toluene-d8            | 96   | 80-120 |
| Bromofluorobenzene    | 98   | 80-120 |

Type: MSD Analyzed: 09/18/16

Lab ID: MSD QC851978

| Analyte            | Spiked | Result | %REC | Limits | RPD | Lim |
|--------------------|--------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 25.00  | 26.44  | 106  | 73-129 | 4   | 25  |
| Benzene            | 25.00  | 23.45  | 94   | 80-120 | 9   | 20  |
| Trichloroethene    | 25.00  | 24.00  | 96   | 73-123 | 7   | 20  |
| Toluene            | 25.00  | 23.97  | 96   | 80-120 | 5   | 21  |
| Chlorobenzene      | 25.00  | 23.71  | 95   | 80-120 | 4   | 24  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 80-128 |  |
| 1,2-Dichloroethane-d4 | 95   | 75-139 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-120 |  |



|           | Purgeable Org          | ganics by GC/MS |                        |
|-----------|------------------------|-----------------|------------------------|
| Lab #:    | 280960                 | Location:       | Former Francis Plating |
| Client:   | The Source Group, Inc. | Prep:           | EPA 5030B              |
| Project#: | 06-FP                  | Analysis:       | EPA 8260B              |
| Type:     | LCS                    | Diln Fac:       | 1.000                  |
| Lab ID:   | QC851986               | Batch#:         | 239213                 |
| Matrix:   | Water                  | Analyzed:       | 09/18/16               |
| Units:    | ug/L                   |                 |                        |

| Analyte            | Spiked | Result | %REC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 12.50  | 11.89  | 95   | 66-135 |
| Benzene            | 12.50  | 12.82  | 103  | 80-123 |
| Trichloroethene    | 12.50  | 12.00  | 96   | 80-123 |
| Toluene            | 12.50  | 12.64  | 101  | 80-121 |
| Chlorobenzene      | 12.50  | 12.50  | 100  | 80-123 |

| Surrogate             | %REC | Limits |   |
|-----------------------|------|--------|---|
| Dibromofluoromethane  | 97   | 80-128 |   |
| 1,2-Dichloroethane-d4 | 105  | 75-139 | ļ |
| Toluene-d8            | 98   | 80-120 |   |
| Bromofluorobenzene    | 96   | 80-120 |   |



|           | Purgeable Organics by GC/MS |           |                        |  |  |  |
|-----------|-----------------------------|-----------|------------------------|--|--|--|
| Lab #:    | 280960                      | Location: | Former Francis Plating |  |  |  |
| Client:   | The Source Group, Inc.      | Prep:     | EPA 5030B              |  |  |  |
| Project#: | 06-FP                       | Analysis: | EPA 8260B              |  |  |  |
| Type:     | BLANK                       | Diln Fac: | 1.000                  |  |  |  |
| Lab ID:   | QC851987                    | Batch#:   | 239213                 |  |  |  |
| Matrix:   | Water                       | Analyzed: | 09/18/16               |  |  |  |
| Units:    | ug/L                        |           |                        |  |  |  |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 1.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 1.0 |  |
| Acetone                   | ND     | 10  |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 10  |  |
| Carbon Disulfide          | ND     | 0.5 |  |
| MTBE                      | ND     | 0.5 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| Vinyl Acetate             | ND     | 10  |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| 2-Butanone                | ND     | 10  |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| 2,2-Dichloropropane       | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| Bromochloromethane        | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| 1,1-Dichloropropene       | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Benzene                   | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| Dibromomethane            | ND     | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND     | 10  |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| Toluene                   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| 2-Hexanone                | ND     | 10  |  |
| 1,3-Dichloropropane       | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |

ND= Not Detected

RL= Reporting Limit



|           | Purgeable O            | rganics by GC/ | 'MS                    |
|-----------|------------------------|----------------|------------------------|
| Lab #:    | 280960                 | Location:      | Former Francis Plating |
| Client:   | The Source Group, Inc. | Prep:          | EPA 5030B              |
| Project#: | 06-FP                  | Analysis:      | EPA 8260B              |
| Type:     | BLANK                  | Diln Fac:      | 1.000                  |
| Lab ID:   | QC851987               | Batch#:        | 239213                 |
| Matrix:   | Water                  | Analyzed:      | 09/18/16               |
| Units:    | ug/L                   |                |                        |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| Dibromochloromethane        | ND     | 0.5 |  |
| 1,2-Dibromoethane           | ND     | 0.5 |  |
| Chlorobenzene               | ND     | 0.5 |  |
| 1,1,1,2-Tetrachloroethane   | ND     | 0.5 |  |
| Ethylbenzene                | ND     | 0.5 |  |
| m,p-Xylenes                 | ND     | 0.5 |  |
| o-Xylene                    | ND     | 0.5 |  |
| Styrene                     | ND     | 0.5 |  |
| Bromoform                   | ND     | 1.0 |  |
| Isopropylbenzene            | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane   | ND     | 0.5 |  |
| 1,2,3-Trichloropropane      | ND     | 0.5 |  |
| Propylbenzene               | ND     | 0.5 |  |
| Bromobenzene                | ND     | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND     | 0.5 |  |
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | ND     | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |  |
| sec-Butylbenzene            | ND     | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | ND     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 0.5 |  |
| Naphthalene                 | ND     | 0.5 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 97   | 80-128 |  |
| 1,2-Dichloroethane-d4 | 106  | 75-139 |  |
| Toluene-d8            | 96   | 80-120 |  |
| Bromofluorobenzene    | 95   | 80-120 |  |

ND= Not Detected

RL= Reporting Limit

Page 2 of 2



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-FP7B                | Diln Fac: | 1.000                  |  |  |
| Lab ID:                              | 280960-002             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Analyte    | Result | RL   | Batch# Prepared | Analyzed Analysis  |
|------------|--------|------|-----------------|--------------------|
| Antimony   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Arsenic    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Barium     | 31     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Beryllium  | ND     | 2.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Cadmium    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Chromium   | 21     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Cobalt     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Copper     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Lead       | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Mercury    | ND     | 0.20 | 239331 09/21/16 | 09/21/16 EPA 7470A |
| Molybdenum | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Nickel     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Selenium   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Silver     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Thallium   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Vanadium   | 12     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Zinc       | ND     | 20   | 239585 09/28/16 | 09/28/16 EPA 6010B |

Page 1 of 1



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-FP2                 | Diln Fac: | 1.000                  |  |  |
| Lab ID:                              | 280960-003             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Analyte    | Result | RL   | Batch# Prepared | Analyzed Analysis  |
|------------|--------|------|-----------------|--------------------|
| Antimony   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Arsenic    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Barium     | 33     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Beryllium  | ND     | 2.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Cadmium    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Chromium   | 15     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Cobalt     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Copper     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Lead       | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Mercury    | ND     | 0.20 | 239331 09/21/16 | 09/21/16 EPA 7470A |
| Molybdenum | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Nickel     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Selenium   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Silver     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Thallium   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Vanadium   | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Zinc       | 28     | 20   | 239585 09/28/16 | 09/28/16 EPA 6010B |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-FP6                 | Units:    | ug/L                   |  |  |
| Lab ID:                              | 280960-004             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |

| Analyte    | Result | RL   | Diln Fac | Batch# Prepared Analyzed Analysis  |
|------------|--------|------|----------|------------------------------------|
| Antimony   | ND     | 10   | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Arsenic    | ND     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Barium     | 48     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Beryllium  | ND     | 2.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Cadmium    | ND     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Chromium   | 18,000 | 500  | 100.0    | 239585 09/28/16 09/28/16 EPA 6010B |
| Cobalt     | ND     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Copper     | ND     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Lead       | ND     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Mercury    | ND     | 0.20 | 1.000    | 239331 09/21/16 09/21/16 EPA 7470A |
| Molybdenum | ND     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Nickel     | 35     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Selenium   | ND     | 10   | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Silver     | 13     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Thallium   | ND     | 10   | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Vanadium   | ND     | 5.0  | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |
| Zinc       | ND     | 20   | 1.000    | 239585 09/28/16 09/28/16 EPA 6010B |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-9                   | Diln Fac: | 1.000                  |  |  |
| Lab ID:                              | 280960-005             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Analyte    | Result | RL   | Batch# Prepared | Analyzed | Analysis  |
|------------|--------|------|-----------------|----------|-----------|
| Antimony   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Arsenic    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Barium     | 160    | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Beryllium  | ND     | 2.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cadmium    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Chromium   | 9,100  | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cobalt     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Copper     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Lead       | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Mercury    | ND     | 0.20 | 239331 09/21/16 | 09/21/16 | EPA 7470A |
| Molybdenum | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Nickel     | 33     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Selenium   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Silver     | 8.1    | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Thallium   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Vanadium   | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Zinc       | ND     | 20   | 239585 09/28/16 | 09/28/16 | EPA 6010B |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-FP1                 | Diln Fac: | 1.000                  |  |  |
| Lab ID:                              | 280960-006             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Analyte    | Result | RL   | Batch# Prepared | Analyzed | Analysis  |
|------------|--------|------|-----------------|----------|-----------|
| Antimony   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Arsenic    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Barium     | 39     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Beryllium  | ND     | 2.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cadmium    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Chromium   | 7.5    | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cobalt     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Copper     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Lead       | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Mercury    | ND     | 0.20 | 239331 09/21/16 | 09/21/16 | EPA 7470A |
| Molybdenum | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Nickel     | 11     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Selenium   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Silver     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Thallium   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Vanadium   | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Zinc       | ND     | 20   | 239585 09/28/16 | 09/28/16 | EPA 6010B |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-FP4B                | Diln Fac: | 1.000                  |  |  |
| Lab ID:                              | 280960-007             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Analyte    | Result | RL   | Batch# Prepared | Analyzed | Analysis  |
|------------|--------|------|-----------------|----------|-----------|
| Antimony   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Arsenic    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Barium     | 29     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Beryllium  | ND     | 2.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cadmium    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Chromium   | 10     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cobalt     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Copper     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Lead       | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Mercury    | ND     | 0.20 | 239331 09/21/16 | 09/21/16 | EPA 7470A |
| Molybdenum | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Nickel     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Selenium   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Silver     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Thallium   | ND     | 10   | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Vanadium   | 9.6    | 5.0  | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Zinc       | 300    | 20   | 239585 09/28/16 | 09/28/16 | EPA 6010B |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-FP4A                | Units:    | ug/L                   |  |  |
| Lab ID:                              | 280960-008             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |

| Analyte    | Result | RL   | Diln Fac | Batch# Prepared | Analyzed | Analysis  |
|------------|--------|------|----------|-----------------|----------|-----------|
| Antimony   | ND     | 10   | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Arsenic    | ND     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Barium     | 97     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Beryllium  | ND     | 2.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cadmium    | ND     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Chromium   | 12,000 | 500  | 100.0    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Cobalt     | 7.1    | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Copper     | 20     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Lead       | ND     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Mercury    | ND     | 0.20 | 1.000    | 239331 09/21/16 | 09/21/16 | EPA 7470A |
| Molybdenum | 14     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Nickel     | 130    | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Selenium   | ND     | 10   | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Silver     | ND     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Thallium   | ND     | 10   | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Vanadium   | ND     | 5.0  | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |
| Zinc       | 110    | 20   | 1.000    | 239585 09/28/16 | 09/28/16 | EPA 6010B |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |
| Field ID:                            | MW-FP3                 | Diln Fac: | 1.000                  |  |  |
| Lab ID:                              | 280960-009             | Sampled:  | 09/14/16               |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Analyte    | Result | RL   | Batch# Prepared | Analyzed Analysis  |
|------------|--------|------|-----------------|--------------------|
| Antimony   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Arsenic    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Barium     | 70     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Beryllium  | ND     | 2.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Cadmium    | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Chromium   | 200    | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Cobalt     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Copper     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Lead       | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Mercury    | ND     | 0.20 | 239331 09/21/16 | 09/21/16 EPA 7470A |
| Molybdenum | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Nickel     | 20     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Selenium   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Silver     | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Thallium   | ND     | 10   | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Vanadium   | ND     | 5.0  | 239585 09/28/16 | 09/28/16 EPA 6010B |
| Zinc       | ND     | 20   | 239585 09/28/16 | 09/28/16 EPA 6010B |

Page 1 of 1



| Dissolved California Title 22 Metals |                        |           |                        |  |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |  |
| Project#:                            | 06-FP                  |           |                        |  |  |  |
| Field ID:                            | MW-FP5                 | Units:    | ug/L                   |  |  |  |
| Lab ID:                              | 280960-010             | Sampled:  | 09/14/16               |  |  |  |
| Matrix:                              | Filtrate               | Received: | 09/14/16               |  |  |  |

| Analyte    | Result | RL   | Diln Fac | Batch# B | Prepared | Analyzed | Analysis  |
|------------|--------|------|----------|----------|----------|----------|-----------|
| Antimony   | ND     | 10   | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Arsenic    | ND     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Barium     | 56     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Beryllium  | ND     | 2.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Cadmium    | ND     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Chromium   | 20,000 | 500  | 100.0    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Cobalt     | ND     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Copper     | ND     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Lead       | ND     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Mercury    | ND     | 0.20 | 1.000    | 239331 0 | 09/21/16 | 09/21/16 | EPA 7470A |
| Molybdenum | ND     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Nickel     | 24     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Selenium   | ND     | 10   | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Silver     | 17     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Thallium   | ND     | 10   | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Vanadium   | ND     | 5.0  | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |
| Zinc       | ND     | 20   | 1.000    | 239585 0 | 09/28/16 | 09/28/16 | EPA 6010B |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  | Analysis: | EPA 7470A              |  |  |
| Analyte:                             | Mercury                | Diln Fac: | 1.000                  |  |  |
| Type:                                | BLANK                  | Batch#:   | 239331                 |  |  |
| Lab ID:                              | QC852436               | Prepared: | 09/21/16               |  |  |
| Matrix:                              | Filtrate               | Analyzed: | 09/21/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Result | RL   |  |
|--------|------|--|
| ND     | 0.20 |  |

ND= Not Detected RL= Reporting Limit

Page 1 of 1



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  | Analysis: | EPA 7470A              |  |  |
| Analyte:                             | Mercury                | Batch#:   | 239331                 |  |  |
| Matrix:                              | Filtrate               | Prepared: | 09/21/16               |  |  |
| Units:                               | ug/L                   | Analyzed: | 09/21/16               |  |  |
| Diln Fac:                            | 1.000                  |           |                        |  |  |

| Type | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC852437 | 2.500  | 2.429  | 97   | 80-120 |     |     |
| BSD  | QC852438 | 2.500  | 2.448  | 98   | 80-120 | 1   | 24  |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |  |
| Project#:                            | 06-FP                  | Analysis: | EPA 7470A              |  |  |  |
| Analyte:                             | Mercury                | Batch#:   | 239331                 |  |  |  |
| Field ID:                            | ZZZZZZZZZ              | Sampled:  | 09/20/16               |  |  |  |
| MSS Lab ID:                          | 281238-001             | Received: | 09/20/16               |  |  |  |
| Matrix:                              | Water                  | Prepared: | 09/21/16               |  |  |  |
| Units:                               | ug/L                   | Analyzed: | 09/21/16               |  |  |  |
| Diln Fac:                            | 1.000                  |           |                        |  |  |  |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|------------|--------|--------|------|--------|-----|-----|
| MS   | QC852439 | <0.04000   | 2.500  | 2.588  | 104  | 60-130 |     |     |
| MSD  | QC852440 |            | 2.500  | 2.549  | 102  | 60-130 | 1   | 34  |



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  | Analysis: | EPA 7470A              |  |  |
| Analyte:                             | Mercury                | Diln Fac: | 5.000                  |  |  |
| Type:                                | BLANK                  | Batch#:   | 239331                 |  |  |
| Lab ID:                              | QC852441               | Prepared: | 09/21/16               |  |  |
| Matrix:                              | Filtrate               | Analyzed: | 09/21/16               |  |  |
| Units:                               | ug/L                   |           |                        |  |  |

| Result | RL  |  |
|--------|-----|--|
| ND     | 1.0 |  |

ND= Not Detected RL= Reporting Limit

Page 1 of 1



| Dissolved California Title 22 Metals |                           |           |                        |  |  |  |
|--------------------------------------|---------------------------|-----------|------------------------|--|--|--|
| Lab #:                               | 280960                    | Location: | Former Francis Plating |  |  |  |
| Client:                              | The Source Group, Inc.    | Prep:     | METHOD                 |  |  |  |
| Project#:                            | 06-FP Analysis: EPA 6010B |           |                        |  |  |  |
| Type:                                | BLANK                     | Diln Fac: | 1.000                  |  |  |  |
| Lab ID:                              | QC853430                  | Batch#:   | 239585                 |  |  |  |
| Matrix:                              | Filtrate                  | Prepared: | 09/28/16               |  |  |  |
| Units:                               | ug/L                      | Analyzed: | 09/28/16               |  |  |  |

| Analyte    | Result | RL  |  |
|------------|--------|-----|--|
| Antimony   | ND     | 10  |  |
| Arsenic    | ND     | 5.0 |  |
| Barium     | ND     | 5.0 |  |
| Beryllium  | ND     | 2.0 |  |
| Cadmium    | ND     | 5.0 |  |
| Chromium   | ND     | 5.0 |  |
| Cobalt     | ND     | 5.0 |  |
| Copper     | ND     | 5.0 |  |
| Lead       | ND     | 5.0 |  |
| Molybdenum | ND     | 5.0 |  |
| Nickel     | ND     | 5.0 |  |
| Selenium   | ND     | 10  |  |
| Silver     | ND     | 5.0 |  |
| Thallium   | ND     | 10  |  |
| Vanadium   | ND     | 5.0 |  |
| Zinc       | ND     | 20  |  |

ND= Not Detected RL= Reporting Limit



| Dissolved California Title 22 Metals |                        |           |                        |  |  |
|--------------------------------------|------------------------|-----------|------------------------|--|--|
| Lab #:                               | 280960                 | Location: | Former Francis Plating |  |  |
| Client:                              | The Source Group, Inc. | Prep:     | METHOD                 |  |  |
| Project#:                            | 06-FP                  | Analysis: | EPA 6010B              |  |  |
| Matrix:                              | Filtrate               | Batch#:   | 239585                 |  |  |
| Units:                               | ug/L                   | Prepared: | 09/28/16               |  |  |
| Diln Fac:                            | 1.000                  | Analyzed: | 09/28/16               |  |  |

Type: BS Lab ID: QC853431

| Analyte    | Spiked | Result | %REC | Limits |
|------------|--------|--------|------|--------|
| Antimony   | 100.0  | 80.21  | 80   | 79-120 |
| Arsenic    | 100.0  | 98.69  | 99   | 80-120 |
| Barium     | 100.0  | 99.73  | 100  | 80-120 |
| Beryllium  | 100.0  | 100.7  | 101  | 80-120 |
| Cadmium    | 100.0  | 104.4  | 104  | 80-120 |
| Chromium   | 100.0  | 101.9  | 102  | 80-120 |
| Cobalt     | 100.0  | 101.1  | 101  | 80-120 |
| Copper     | 100.0  | 96.98  | 97   | 80-120 |
| Lead       | 100.0  | 98.70  | 99   | 80-120 |
| Molybdenum | 100.0  | 94.52  | 95   | 80-120 |
| Nickel     | 100.0  | 101.2  | 101  | 80-120 |
| Selenium   | 100.0  | 102.9  | 103  | 80-120 |
| Silver     | 100.0  | 105.7  | 106  | 77-120 |
| Thallium   | 50.00  | 48.17  | 96   | 80-121 |
| Vanadium   | 100.0  | 103.7  | 104  | 80-120 |
| Zinc       | 100.0  | 96.51  | 97   | 80-120 |

Type: BSD Lab ID: QC853432

| Analyte    | Spiked | Result | %REC | Limits | RPD | Lim |
|------------|--------|--------|------|--------|-----|-----|
| Antimony   | 100.0  | 80.00  | 80   | 79-120 | 0   | 20  |
| Arsenic    | 100.0  | 97.60  | 98   | 80-120 | 1   | 20  |
| Barium     | 100.0  | 97.47  | 97   | 80-120 | 2   | 20  |
| Beryllium  | 100.0  | 98.16  | 98   | 80-120 | 3   | 20  |
| Cadmium    | 100.0  | 101.8  | 102  | 80-120 | 2   | 20  |
| Chromium   | 100.0  | 100.4  | 100  | 80-120 | 2   | 20  |
| Cobalt     | 100.0  | 98.88  | 99   | 80-120 | 2   | 20  |
| Copper     | 100.0  | 94.72  | 95   | 80-120 | 2   | 20  |
| Lead       | 100.0  | 96.16  | 96   | 80-120 | 3   | 20  |
| Molybdenum | 100.0  | 93.22  | 93   | 80-120 | 1   | 20  |
| Nickel     | 100.0  | 97.56  | 98   | 80-120 | 4   | 20  |
| Selenium   | 100.0  | 103.6  | 104  | 80-120 | 1   | 20  |
| Silver     | 100.0  | 103.1  | 103  | 77-120 | 3   | 20  |
| Thallium   | 50.00  | 47.32  | 95   | 80-121 | 2   | 20  |
| Vanadium   | 100.0  | 101.9  | 102  | 80-120 | 2   | 20  |
| Zinc       | 100.0  | 94.57  | 95   | 80-120 | 2   | 20  |



Hexavalent Chromium Lab #: 280960 Former Francis Plating Location: Client: The Source Group, Inc. Prep: METHOD EPA 7199 Project#: 06-FP Analysis: Batch#: 239097 Matrix: Water 09/14/16 Units: ug/L Received:

Field ID: MW-FP7B Diln Fac: 1.000

Type: SAMPLE Sampled: 09/14/16 08:25 Analyzed: Lab ID: 280960-002 09/14/16 14:37

Analyte Result Hexavalent Chromium 0.50 2.1

Field ID: MW-FP2 Diln Fac: 1.000

Sampled: 09/14/16 09:00 Type: SAMPLE Lab ID: 280960-003 Analyzed: 09/14/16 15:01

Analyte Result RLHexavalent Chromium 0.50 17

Field ID: MW-FP6 Diln Fac: 10,000

SAMPLE Sampled: 09/14/16 09:45 Type: Lab ID: 09/14/16 15:13 280960-004 Analyzed:

Analyte Result RLHexavalent Chromium 18,000 5,000

Field ID: MW - 9Diln Fac: 10,000

09/14/16 10:15 09/14/16 15:37 Type: SAMPLE Sampled: Lab ID: 280960-005 Analyzed:

Analyte Result Hexavalent Chromium 9,000 5,000

Field ID: MW-FP1 Diln Fac: 1.000 SAMPLE

09/14/16 11:05 Type: Sampled: Lāb ID: 09/14/16 16:01 280960-006 Analyzed:

Analyte Result Hexavalent Chromium 7.1 0.50

Field ID: MW-FP4B 1.000 Diln Fac:

09/14/16 11:40 09/14/16 16:13 Type: SAMPLE Sampled: Lab ID: 280960-007 Analyzed:

Result Analyte RLHexavalent Chromium 0.50

ND= Not Detected RL= Reporting Limit

Page 1 of 2



Hexavalent Chromium 280960 Lab #: Location: Former Francis Plating Client: The Source Group, Inc. METHOD Prep: EPA 7199 239097 Project#: 06-FP Analysis: Matrix: Water Batch#: 09/14/16 Units: ug/L Received:

Field ID: MW-FP4A Diln Fac:

10,000 09/14/16 12:10 09/14/16 16:25 Type: SAMPLE Sampled: Lab ID: 280960-008 Analyzed:

Analyte Result RL Hexavalent Chromium 5,000 12,000

Diln Fac: Field ID: MW-FP3 25.00

09/14/16 12:35 09/14/16 17:26 Type: SAMPLE Sampled: Lab ID: 280960-009 Analyzed:

Analyte Result 200 Hexavalent Chromium 13

Field ID: MW-FP5 Diln Fac: 10,000

Sampled: Type: SAMPLE 09/14/16 13:05 Lab ID: 280960-010 Analyzed: 09/14/16 17:01

Analyte Result RL Hexavalent Chromium 5,000 30,000

1.000 Type: BLANK Diln Fac:

Lab ID: 09/14/16 09:50 QC851516 Analyzed:

Analyte Result RL

Hexavalent Chromium 0.50

ND= Not Detected RL= Reporting Limit

Page 2 of 2



|             |                   | Hexavalen | t Chromium |                        |
|-------------|-------------------|-----------|------------|------------------------|
| Lab #:      | 280960            |           | Location:  | Former Francis Plating |
| Client:     | The Source Group, | Inc.      | Prep:      | METHOD                 |
| Project#:   | 06-FP             |           | Analysis:  | EPA 7199               |
| Field ID:   | MW-FP7B           |           | Batch#:    | 239097                 |
| MSS Lab ID: | 280960-002        |           | Sampled:   | 09/14/16 08:25         |
| Matrix:     | Water             |           | Received:  | 09/14/16               |
| Units:      | ug/L              |           |            |                        |

Type: Lab ID: LCS Diln Fac: 1.000

Analyzed: 09/14/16 10:02 QC851517

| Analyte             | Spiked | Result | %REC | Limits |
|---------------------|--------|--------|------|--------|
| Hexavalent Chromium | 10.00  | 10.06  | 101  | 90-110 |

Type: Diln Fac: 25.00 MS

Lab ID: QC851518 Analyzed: 09/14/16 18:27

| Analyte             | MSS Result | Spiked | Result | %REC | Limits |
|---------------------|------------|--------|--------|------|--------|
| Hexavalent Chromium | 20.51      | 250.0  | 269.3  | 99   | 85-115 |

MSD Diln Fac: 25.00

Type: Lab ID: 09/14/16 18:39 QC851519 Analyzed:

| Analyte             | Spiked | Result | %REC | Limits | RPD | Lim |
|---------------------|--------|--------|------|--------|-----|-----|
| Hexavalent Chromium | 250.0  | 272 0  | 101  | 85-115 | 1   | 2.0 |