RECEIVED

9:02 am, Jul 17, 2008

July 15, 2008

Alameda County Environmental Health

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Fuel Leak Case No. RO0002585, Wente Winery

Site Located at 5565 Tesla Road, Livermore, California

Dear Mr. Wickham:

SOMA's "Second Quarter 2008 Groundwater Monitoring Report" for the subject site has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have any questions or comments.

Sincerely,

Mansour Sepenr, Ph.D., PE Principal Hydrogeologist

cc: Mr. Aris Krimetz w/report enclosure

Second Quarter 2008 Groundwater Monitoring Report

Wente Winery 5565 Tesla Road Livermore, California

July 15, 2008

Project 2841

Prepared for:

Mr. Aris Krimetz 5565 Tesla Road Livermore, California

CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this report on behalf of Mr. Aris Krimetz for Wente Winery, located at 5565 Tesla Road, Livermore, California, to comply with requirements of Alameda County Environmental Health Services and the California Regional Water Quality Control Board for the Second Quarter 2008 groundwater monitoring event.

Mansour Sepehr, PhD, PE Principal Hydrogeologist

TABLE OF CONTENTS

CERTIFICATION	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	iii
LIST OF TABLES	iii
LIST OF APPENDICES	iii
INTRODUCTION Site Description Previous Activities and Investigations Regional Hydrogeologic Features Field Activities and Laboratory Analysis for Second Quarter 2008 Groundwater Monitoring 1.4.1 Field Activities 1.4.2 Laboratory Analysis	1 2 3
2. RESULTS	4
3 CONCLUSIONS AND RECOMMENDATIONS	6

LIST OF FIGURES

Figure 1: Site Vicinity Map

Figure 2: Map Showing Locations of Monitoring Wells, Temporary Well

Boreholes, and Previous Soil Borings Installed by Clayton Group

Figure 3: Groundwater Elevation Contour Map in Feet

June 24, 2008

LIST OF TABLES

Table 1: Historical Groundwater Elevation Data and Analytical Results for

Hydrocarbons, BTEX, and MtBE

Table 2: Historical Groundwater Analytical Results for Gasoline Oxygenates

and Lead Scavengers

Table 3: Historical Analytical Results for Volatile Organic Compounds

Table 4: Historical Groundwater Analytical Results for Metals

LIST OF APPENDICES

Appendix A: Standard Operating Procedures for Conducting Groundwater

Monitoring Activities

Appendix B: Table of Elevations and Coordinates for Monitoring Wells Surveyed

by Harrington Surveys Inc. and Field Measurements of Physical, Chemical and Biodegradation Parameters of the Groundwater

Samples at Time of Sampling

Appendix C: Specifications for Off-site Well at 5443 Tesla Road

Appendix D: Chain of Custody Form and Laboratory Report

1. INTRODUCTION

SOMA Environmental Engineering, Inc. (SOMA) has prepared this report on behalf of Mr. Aris Krimetz for Wente Winery, located at 5565 Tesla Road, Livermore, California (Figure 1).

This report summarizes results of the Second Quarter 2008 groundwater monitoring event conducted at the site on June 24, 2008, and includes laboratory analysis results for the groundwater samples.

1.1 Site Description

West of the winery buildings is an enclosed maintenance and agricultural storage area with a former underground storage tank (UST) pit that contained one gasoline and one diesel UST. The USTs were replaced with three aboveground storage tanks (ASTs), with a total capacity of 4,000 gallons. An on-site potable water supply well provides backup potable drinking water and processed water for the winery facility. This water supply well is located south of, and presumably upgradient from, the former UST area.

1.2 Previous Activities and Investigations

1987: Two fuel USTs were removed from the site. There is no information regarding their condition or evidence of leakage. In 1990, Alameda County Environmental Health Services (ACEHS) issued a notice of violation for discharging waste sludge into an open ditch adjacent to a former steam-cleaning bay.

Clayton Environmental Consultants (Clayton) conducted a Phase I Environmental Site Assessment of the maintenance and storage areas that revealed the existence of the former USTs, former waste discharge area, and a number of agricultural storage areas.

<u>2003</u>: Clayton performed a subsurface investigation at the site to implement the recommendations of the Phase I report. As shown in Figure 2, boreholes were advanced near the ASTs and near other recognized environmental concerns. The study indicated that a fuel release in the former UST area impacted the groundwater. In the former steam-cleaning bay, gasoline- and motor-oil–range petroleum hydrocarbons were detected in the groundwater. Figure 2 shows soil boring locations.

Wente then retained SOMA to review Clayton's report. SOMA subsequently submitted a workplan that included a vicinity well survey, a regional hydrogeologic study, and an additional site characterization. The site characterization included sampling and evaluating water quality of the on-site

water supply well, installing monitoring wells, and additional lithologic characterization to better define the shallow/perched water-bearing zone.

May 2005: On May 5, 2005, SOMA oversaw drilling by Woodward Drilling (Woodward) of three monitoring wells, MW-1 through MW-3 (Figure 2). On May 20, 2005, Woodward developed the newly installed wells.

June 24, 2005: SOMA oversaw drilling by Woodward of two confirmatory boreholes, B-9 and B-10. The purpose of this investigation was to confirm the presence of petroleum hydrocarbons in the soil and groundwater next to the former USTs and to evaluate the current soil and groundwater conditions in close proximity to the former steam-cleaning area. Results of this investigation are presented in SOMA's report entitled "Phase I: Soil and Groundwater Investigation, Wente Winery, at 5565 Tesla Road, Livermore, California," dated July 25, 2005.

SOMA's report of November 1, 2007, "Remedial Soil Excavation," presented plans for installation of an additional monitoring well in the area south of the welding shop. In accordance with the ACEHS request, that well was moved west of the proposed site and a second monitoring well was also installed upgradient of the off-site water supply well (Figure 2).

March 12, 2008: SOMA oversaw installation of two monitoring wells (MWS-1 and MWS-2) within the Upper WBZ by WDC Exploration & Wells (WDC).

March 20, 2008: SOMA oversaw development of the newly installed monitoring wells (MWS-1 and MWS-2) by WDC.

1.3 Regional Hydrogeologic Features

The site is located in the Livermore Valley Groundwater Basin. This basin consists of a structural trough that is an important source of irrigation water for the Livermore Valley. In the western part of the basin up to 40 feet of clay caps these water-bearing sediments. The water-bearing zone is a predominantly permeable unit consisting of sand and gravel in a clayey sand matrix. The potentiometric surface of valley-fill groundwater near the subject site is at approximately 20 to 30 feet below ground surface (bgs).

The groundwater flow in the valley-fill and underlying Livermore Formations is to the northwest/north. The nearby water supply wells west of, and presumably downgradient from, the site are potentially exposed to the on-site contaminant plume.

In addition to one on-site well, five wells are located in the properties immediately west of, and presumably downgradient from, the site. North/northeast of, and presumably up/cross-gradient from the site are seven wells within 2,000 feet of the investigation area. Approximately 1,800 feet south of the site is another water

supply well. Available records indicate that six of the seven wells located north/northeast, and within 2,000 feet, of the site may be used as drinking water wells.

1.4 Field Activities and Laboratory Analysis for Second Quarter 2008 Groundwater Monitoring

1.4.1 Field Activities

On June 24, 2008, SOMA's field crew conducted a groundwater monitoring event in accordance with procedures and guidelines of ACEHS and the California Regional Water Quality Control Board (CRWQCB). Figure 2 shows well locations.

Field measurements and grab groundwater samples were collected from two monitoring wells (MWS-1 and MWS-2), an on-site and an off-site supply well. Depths to groundwater were also measured for monitoring wells MW-1 through MW-3. Depths to groundwater at the supply wells were not measured because these wells were inaccessible. Existing pumps and caps prevented measurement of the groundwater elevations.

(Note Regarding Supply Wells: Based on information supplied by Wente, total depth of the off-site supply well is 125 feet bgs. SOMA is currently obtaining information for the on-site supply well. In 1972, the pump was installed at 100 feet bgs. The water from this well is used solely for irrigation of the vineyards. Correspondence referencing the off-site supply well and a piping diagram of the pump are included in Appendix C.)

SOMA's field personnel extracted groundwater from both the on- and off-site supply wells using the downhole pump within each well. The off-site supply well is located at 5443 Tesla Road. Approximately 70 gallons of groundwater were purged from each supply well. After the purge cycle was terminated, a groundwater sample was collected from each well.

Appendix A describes standard monitoring procedures followed by SOMA personnel during this event. Appendix B contains details of field measurements taken.

A natural attenuation study was conducted during this monitoring event, to determine whether petroleum hydrocarbons found in the groundwater were biodegrading.

1.4.2 Laboratory Analysis

Curtis & Tompkins, Ltd., a California state-certified laboratory, analyzed groundwater samples for the following: total petroleum hydrocarbons as gasoline

(TPH-g) and as diesel (TPH-d); benzene, toluene, ethylbenzene, total xylenes (collectively termed BTEX,); methyl tertiary-butyl ether (MtBE); gasoline oxygenates and lead scavengers; volatile organic compounds (VOCs); and metals.

EPA Method 5030B was used to prepare samples for TPH-g, BTEX, MtBE, gasoline oxygenates, lead scavengers, and VOCs, which were analyzed using EPA Method 8260B. EPA Method 3520C was used to prepare samples for TPH-d, which was analyzed using Method 8015B.

Metals, which included cadmium, chromium, lead, nickel, and zinc were prepared using EPA Method 3010A and analyzed using EPA Method 6010B and 7470A.

Appendix C contains chain of custody documentation and laboratory analytical reports for this monitoring event.

2. RESULTS

Following are results of field measurements and laboratory analyses for the June 24, 2008 groundwater monitoring event. Based on the ACEHS directive in correspondence of December 11, 2007, sampling has been revised to include newly installed monitoring wells MWS-1 and MWS-2 and supply wells on a quarterly basis and sampling of previously existing on-site monitoring wells (MW-1 through MW-3) has been temporarily discontinued. However, depths to groundwater were measured for wells MW-1 to MW-3. This report details sampling of the supply wells and newly installed monitoring wells MWS-1 and MWS-2.

2.1 Field Measurements

Table 1 presents depths to groundwater and corresponding groundwater elevations for the monitoring wells. Depth to groundwater ranged from 8.24 feet in MW-1 to 11.11 feet in MWS-2. Corresponding groundwater elevations ranged from 602.85 feet in MWS-2 to 608.18 feet in MW-3. Figure 3 displays the groundwater elevation contour map. In general the groundwater flows southwesterly across the site toward well MWS-2, with an average gradient of 0.0178 feet/feet. Refer to Table 1 for historical site-wide groundwater elevation trends.

Field notes in Appendix B show detailed measurements of physical and chemical parameters of the groundwater for each well during this monitoring event. The more positive the redox potential of an electron acceptor, the more energetically favorable is the reaction utilizing that electron acceptor. The most energetically preferred electron acceptor for redox reactions is dissolved oxygen (DO).

Evaluating the distribution of electron acceptors can provide evidence of where, and to what extent, hydrocarbon biodegradation is occurring.

Upon equalization of the surrounding aquifer at the well locations and termination of the purge cycle, DO concentrations ranged from 0.70 mg/L at MWS-2 to 1.05 mg/L at the off-site supply well. Oxygen reduction potential (ORP) showed positive redox potentials in all tested wells. Positive redox potentials are more energetically favorable in utilizing electron acceptors during chemical reactions. This promotes removal of organic mass from contaminated groundwater by indigenous bacteria in the subsurface during release of the transfer of electrons.

2.2 Laboratory Analysis

Historical groundwater analysis results are shown in Table 1 for the following: TPH-g, TPH-d, TPH as motor oil (TPH-mo), BTEX, and MtBE.

During this monitoring event, TPH-g, TPH-d, BTEX, and MtBE constituents were below the laboratory-reporting limit in all groundwater samples except for TPH-d, which was detected in groundwater samples collected from the on-site supply well at 71 μ g/L. However, TPH-d analytical results in the groundwater samples collected from on-site supply well varied due to the presence of chromatographic patterns which did not resemble standard. The laboratory report is shown in Appendix D and provides further clarification on the variations. Based on the ACEHS directive dated December 11, 2007, analysis for TPH-mo is no longer required.

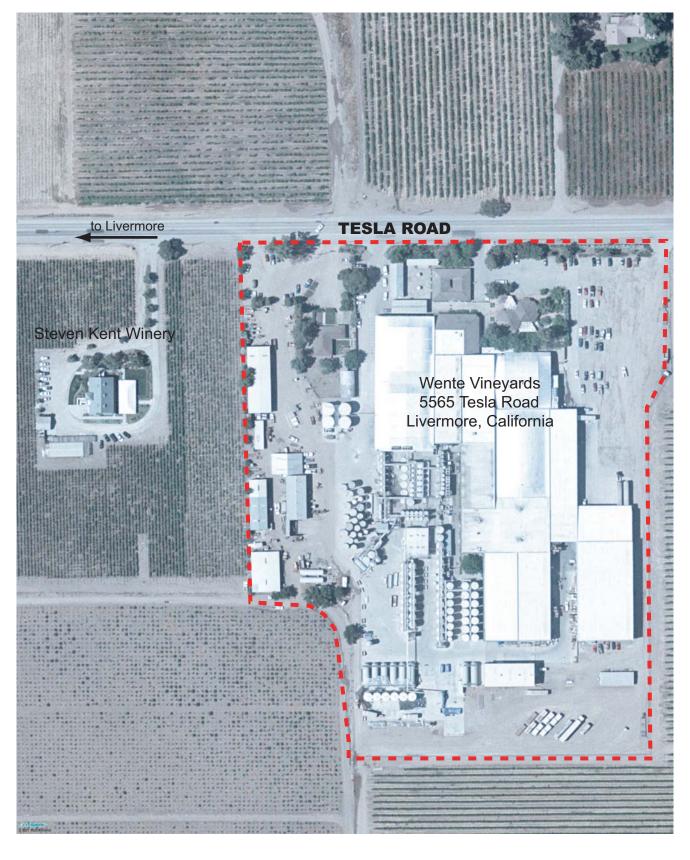
Table 2 shows analytical results for gasoline oxygenates and lead scavengers, all of which were below the laboratory-reporting limit in all groundwater samples.

Table 3 shows historical concentrations of VOCs in the groundwater. Tetrachloroethene, 1,1,1-trichloroethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride, 1,2-dichloropropane, and 1,1-dichloroethene were below the laboratory-reporting limit in all groundwater samples collected during this monitoring event. All other VOCs were below the laboratory-reporting limit in tested wells.

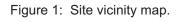
Table 4 shows historical concentrations of metals in the groundwater. Metal concentrations were as follows:

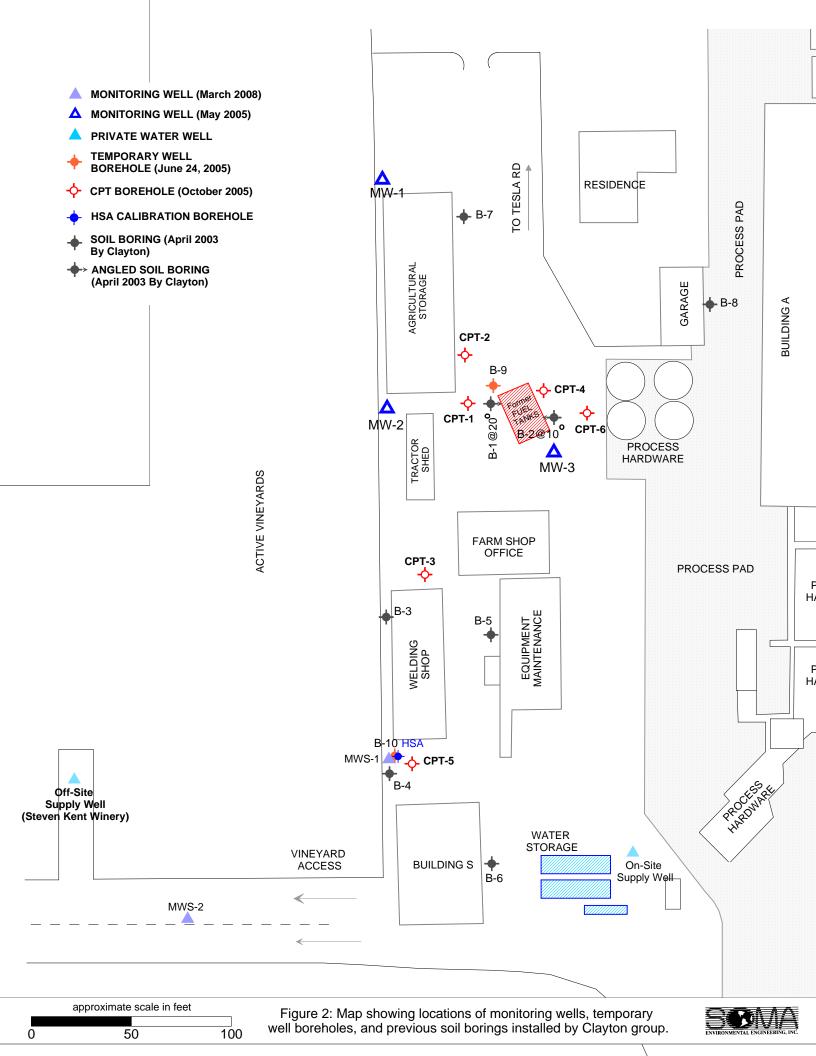
- In the on-site supply well and well MWS-2, all cadmium, chromium, lead, nickel, and zinc analytes were below the laboratory-reporting limit.
- In the off-site supply well, cadmium and nickel were below the laboratory-reporting limit. Chromium, lead, and zinc were detected at 9.7 μg/L, 8.1 μg/L, and 910 μg/L, respectively.

 In well MWS-1, all cadmium, chromium, and nickel analytes were below the laboratory-reporting limit. Lead and zinc were detected at 5.9 μg/L and 33 μg/L, respectively.


Appendix D includes the laboratory report and chain-of-custody documentation for this monitoring event.

3. CONCLUSIONS AND RECOMMENDATIONS


Results of the Second Quarter 2008 groundwater monitoring event are summarized below.


- The groundwater flow direction appears to be southwesterly across the site, at a gradient of 0.0178 feet/feet.
- Based on results of the bioattenuation study, indigenous bacteria have effectively removed organic mass from the impacted groundwater in the subsurface. This is evidenced by the positive redox potentials observed in the water supply wells.
- All tested analytes were below the laboratory-reporting limit in well MWS-2 and the on-site water supply well, except for trace concentrations of TPH-d in the on-site supply well. Chromium, lead, and zinc were detected in the off-site supply well. Lead and zinc were detected in monitoring well MWS-1.
- Based on CRWQCB Environmental Screening Levels (ESLs) for groundwater used as a drinking water source, the allowable chromium, lead, nickel and zinc concentrations in groundwater are 50, 15, 100 and 5000 µg/L, respectively. Comparison of ESL values with concentrations of chromium, lead, nickel and zinc in the off-site water supply well and tested monitoring wells indicates that all metal concentrations are well below the applicable water quality criteria.
- In the past, chlorinated solvents including chloromethane and chloroethane were detected in the groundwater. During the last several monitoring events, no chlorinated solvents were detected.
- Based on the previous detection of tetrahydrofuran in the off-site supply well, on August 23, 2006 the ACEHS requested that analysis of this compound be continued. No tetrahydrofuran was detected during this monitoring event or the several previous quarterly sampling events.
- Due to the low to nondetectable levels of chemicals of concern, SOMA recommends that no further action (NFA) status be adopted by ACEHS for the site.

FIGURES

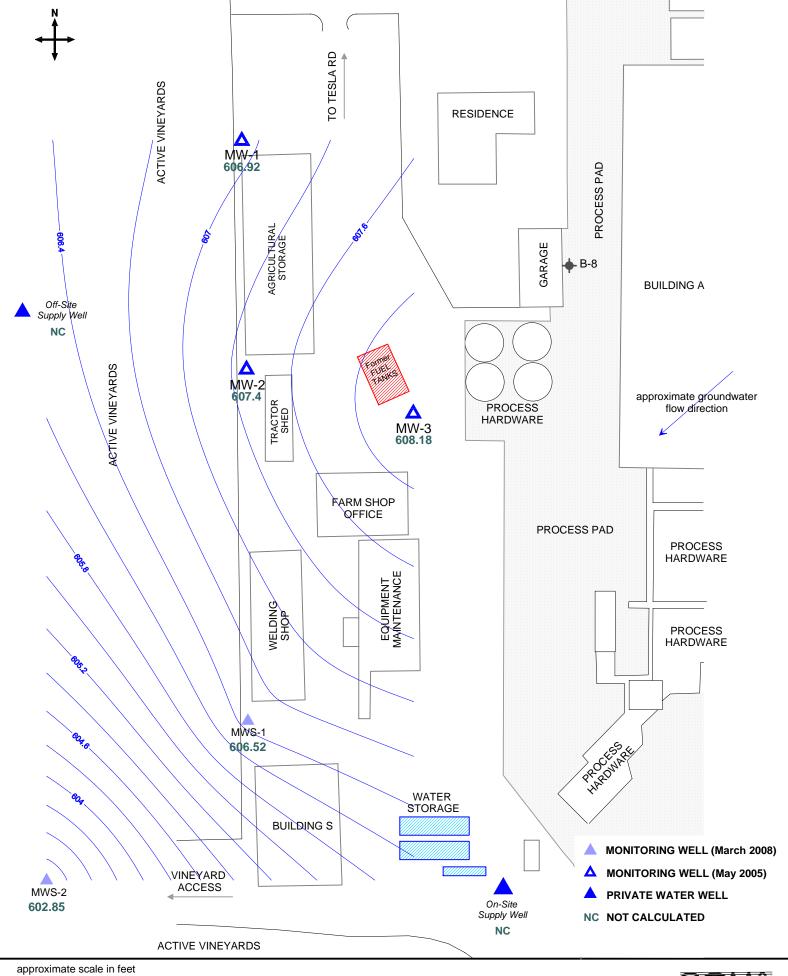


Figure 3: Groundwater Elevation Contour Map in Feet. June 24, 2008.

TABLES

Table 1 Historical Groundwater Elevation Data & Analytical Results Hydrocarbons, BTEX, & MtBE Wente Vineyards

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)
MW-1	5/20/2005	615.16	6.10	609.06	<200	<50	320 YZ	<0.5	<0.5	<0.5	<1.0	<0.5
	9/13/2005	615.16	9.19	605.97	<50	<50	<300	< 0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	615.16	8.90	606.26	<50	150 YZ	<300	< 0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	615.16	6.29	608.87	<50	<50	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	615.16	5.23	609.93	<50	70 HY	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	615.16	7.54	607.62	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	615.16	8.97	606.19	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	615.16	NM	NM	NA	NA	NA	NA	NA	NA	NA	NA
	3/26/2008	615.16	6.34	608.82	NA	NA	NA	NA	NA	NA	NA	NA
	6/24/2008	615.16	8.24	606.92	NA	NA	NA	NA	NA	NA	NA	NA
								-				
MW-2	5/20/2005	616.03	6.69	609.34	<200	<50	<300	<0.5	<0.5	<0.5	<1.0	<0.5
	9/13/2005	616.03	9.30	606.73	<50	<50	<300	< 0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	616.03	9.20	606.83	<50	<50	<300	< 0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	616.03	6.52	609.51	<50	76.5 D35	657 ^{D06}	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	616.03	5.58	610.45	<50	50 HY	<300	< 0.5	<0.5	<0.5	< 0.5	<0.5
	8/15/2006	616.03	8.09	607.94	<50	<50	<300	< 0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	616.03	9.00	607.03	<50	<50	<300	< 0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	616.03	NM	NM	NA	NA	NA	NA	NA	NA	NA	NA
	3/26/2008	616.03	6.75	609.28	NA	NA	NA	NA	NA	NA	NA	NA
	6/24/2008	616.03	8.63	607.40	NA	NA	NA	NA	NA	NA	NA	NA
MW-3	5/20/2005	617.32	7.04	610.28	<200	680	<300	<0.5	1.58	<0.5	<1.0	<0.5
	9/13/2005	617.32	9.61	607.71	<50	300 Y	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	617.32	9.60	607.72	<50	150 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5

Table 1 Historical Groundwater Elevation Data & Analytical Results Hydrocarbons, BTEX, & MtBE Wente Vineyards

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)
MW-3 cont	2/13/2006	617.32	7.06	610.26	<50	<50	322 ^{D06}	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	617.32	5.94	611.38	<50	61 HY	<300	<0.5	<0.5	<0.5	<0.5	< 0.5
	8/15/2006	617.32	8.53	608.79	<50	76 HY	<300	< 0.5	<0.5	<0.5	<0.5	< 0.5
	11/2/2006	617.32	9.39	607.93	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	617.32	NM	NM	NA	NA	NA	NA	NA	NA	NA	NA
	3/26/2008	617.32	7.14	610.18	NA	NA	NA	NA	NA	NA	NA	NA
	6/24/2008	617.32	9.14	608.18	NA	NA	NA	NA	NA	NA	NA	NA
MWS-1	3/26/2008	616.86	8.49	608.37	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	616.86	10.34	606.52	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5
MWS-2	3/26/2008	613.96	8.80	605.16	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	613.96	11.11	602.85	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5
B-9	6/24/2005	NA	NA	NA	1,850,000	540,000 LY	<24,000	3,820	114,000	40,400	177,700	<462
B-10	6/24/2005	NA	NA	NA	<200	<50	<300	<0.5	4.23	1.10	4.03	<0.5
Onsite Supply Well	5/20/2005	NS	NM	NC	<200	<50	<300	<0.5	0.85	<0.5	<1.0	<0.5
	11/28/2005	NS	NM	NC	<50	100 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	NS	NM	NC	<50	91.8	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	NS	NM	NC	<50	52 Y	<300	< 0.5	<0.5	<0.5	<0.5	< 0.5
	8/15/2006	NS	NM	NC	<50	95 YZ	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	4/30/2007	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	8/8/2007	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	10/29/2007	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	3/26/2008	NS	NM	NC	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	NS	NM	NC	<50	71 Y	NA	<0.5	<0.5	<0.5	<0.5	<0.5

Table 1 Historical Groundwater Elevation Data & Analytical Results Hydrocarbons, BTEX, & MtBE

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)
Offsite Supply Well	5/20/2005	NS	NM	NC	<200	<50	<300	0.77	1.08	<0.5	<1.0	<0.5
	11/28/2005	NS	NM	NC	<5,380	120 YZ	<300	<53.8	<215	<53.8	<108	<53.8
	1/16/2006	NS	9.65	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	NS	NM	NC	<50	<50	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	NS	NM	NC	<50	<50	<300	< 0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	4/30/2007	NS	NM	NC	<50	<50	<300	< 0.5	<0.5	<0.5	<0.5	<0.5
Offsite												
Supply Well	8/8/2007	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
cont.												
	10/29/2007	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	3/26/2008	NS	NM	NC	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	NS	NM	NC	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5

Table 1

Historical Groundwater Elevation Data & Analytical Results Hydrocarbons, BTEX, & MtBE

Wente Vineyards

5565 Tesla Road, Livermore, California

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)	
--------------------	------	----------------------------	-----------------------------------	------------------------------------	-----------------	-----------------	------------------	-------------------	-------------------	-----------------------------	----------------------------	----------------	--

Notes:

- 1) The wells were installed on May 5, 2005 and developed by Woodward Drilling on May 20, 2005.
- 2) A grab sample was collected after the well development on May 20, 2005.
- 3) A grab sample was also collected from the water well, southeast of the water stoarge units on May 20, 2005.
- 4) The wells were surveyed by Harrington Surveys of Walnut Creek, CA on June 5, 2005.
- 5) A grab sample was collected from the borings on June 24, 2005.
- 6) The groundwater elevation for the May 2005 sampling was based on the survey data of Harrington Surveys.
- 7) The supply wells were first added to the quarterly events in the Fourth Quarter 2005.
 - The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt.
 - Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- 8) Wells MWS-1 and MWS-2 were installed on February 8, 2008 and were developed on February 13, 2008 by Gregg Drilling.
- NA: Not Applicable. B-9 and B-10 are boring locations and are not surveyed.
- NC: Not calculated.
 NM: Not Measured
- NS: Not surveyed. The onsite well is a private well.
- TPH-d: Total hydrocarbons as diesel
- TPH-g: Total hydrocarbons as gasoline
- TPH-mo:Total hydrocarbons as motor oil
- H: Heavier hydrocarbons contributed to the quanitation
- L: Lighter weight hydrocarbons contributed to the quanitation
- Y: Sample exhibits chromatographic pattern which does not resemble standard
- Z: Sample exhibits unknown single peaks or peaks.
- Not Detected above the laboratory reporting limit.
- D35: Sample does not display fuel pattern. Sample contains several discrete peaks. (1Q06 diesel)
- D06: Sample chromatographic pattern does not resemble fuel standard used for quantitation. (1Q06, motor oil)

As of the First Quarter 2007, supply wells are to be analyzed on a quarterly basis and sampling of monitoring wells is temporarily discontinued.

Table 2 Historical Groundwater Analytical Results Gasoline Oxygenates & Lead Scavengers Wente Vineyards

Monitoring Well	Date	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)
MW-1	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	< 0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	< 0.5	<0.5	<0.5	<0.5
	11/2/2006	<10	<0.5	< 0.5	<0.5	<0.5	<0.5
	1/30/2007	NA	NA	NA	NA	NA	NA
MW-2	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	< 0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	< 0.5	<0.5	<0.5	<0.5
	11/2/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	NA	NA	NA	NA	NA	NA

Table 2 Historical Groundwater Analytical Results Gasoline Oxygenates & Lead Scavengers Wente Vineyards

Monitoring Well	Date	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)
MW-3	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	NA	NA	NA	NA	NA	NA
MWS-1	3/26/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5
MWS-2	3/26/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Onsite Supply Well	11/28/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	4/30/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/8/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	10/29/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	3/26/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5

Table 2 Historical Groundwater Analytical Results Gasoline Oxygenates & Lead Scavengers Wente Vineyards

Monitoring Well	Date	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)
Offsite Supply Well	11/28/2005	<269	<53.8	<53.8	<215	<53.8	<215
	1/16/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	4/30/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/8/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	10/29/2007	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	3/26/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	<10	<0.5	<0.5	<0.5	<0.5	<0.5

Table 2

Historical Groundwater Analytical Results Gasoline Oxygenates & Lead Scavengers

Wente Vineyards

5565 Tesla Road, Livermore, California

Monitoring	Date	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
Well		(μ g/L)					

Notes:

- 1) A grab sample was collected after well development on May 20, 2005.
- 2) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt. Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- <: Not Detected above the laboratory reporting limit.</p>
 As of the First Quarter 2007, supply wells are to be analyzed on a quarterly basis and sampling of monitoring wells is temporarily discontinued.

Gasoline Oxygenates:

TBA: tertiary Butyl Alcohol DIPE: Di-Isopropyl Ether ETBE: Ethyl tertiary Butyl Ether TAME: Methyl tertiary Amyl Ether Lead Scavengers:

EDB: 1,2-Dibromoethane 1,2-DCA: 1,2-Dichloroethane

Table 3 Historical Analytical Results For Volatile Organic Compounds

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring Well	Date	PCE (μg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	Vinyl Chloride (μg/L)	1,2-DCP (μg/L)	1,1-DCE (μg/L)
MW-1	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	NA	NA	NA	NA	NA	NA	NA
MW-2	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	NA	NA	NA	NA	NA	NA	NA
MW-3	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	11/2/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1/30/2007	NA	NA	NA	NA	NA	NA	NA
MWS-1	3/26/2008	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MWS-2	3/26/2008	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2008	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Table 3 Historical Analytical Results For Volatile Organic Compounds

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring Well	Date	PCE (μg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	Vinyl Chloride (μg/L)	1,2-DCP (μg/L)	1,1-DCE (μg/L)
Onsite Supply Well	11/28/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006 5/5/2006 8/15/2006 11/2/2006 1/30/2007 4/30/2007 8/8/2007 10/29/2007 3/26/2008 6/24/2008	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Offsite Supply Well	11/28/2005	<53.8	<53.8	<53.8	<53.8	<53.8	<53.8	<53.8
	1/16/2006 2/13/2006 5/5/2006 8/15/2006 11/2/2006 1/30/2007 4/30/2007 8/8/2007 10/29/2007 3/26/2008 6/24/2008	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Table 3 Historical Analytical Results For Volatile Organic Compounds

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring	Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	1,2-DCP	1,1-DCE
Well	Date	(μ g/L)	(μ g/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)

Notes:

- 1) A grab sample was collected after well development on May 20, 2005. However, the first time volatile organic compounds (VOCs) were analyzed was during the Third Quarter 2005 monitoring event.
- 2) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt.Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- <: Not detected above the laboratory reporting limit.

As of the First Quarter 2007, supply wells are to be analyzed on a quarterly basis and monitoring wells are analyzed semi-annually.

Volatile organic compounds (VOCs)

1,1-DCE: 1,1-dichloroethene

Table 4 Historical Groundwater Analytical Results Metals

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring Well	Date	Cadmium (μg/L)	Chromium (μg/L)	Lead (μg/L)	Nickel (μg/L)	Zinc (μg/L)
MW-1	9/13/2005	<5.0	<10	<3.0	<20	27
MW-2	9/13/2005	<5.0	<10	<3.0	<20	23
MW-3	9/13/2005	<5.0	<10	<3.0	<20	<20
MWS-1	3/26/2008 6/24/2008	<5.0 <5.0	9.9 <5.0	<3.0 5.9	17 <5.0	30 33
MWS-2	3/26/2008 6/24/2008	<5.0 <5.0	7.9 <5.0	<3.0 <3.0	22 <5.0	<20 <20
B-10	6/24/2005	12	930	82	3,600	800
Onsite Supply Well	11/28/2005	<5.0	<10	<3.0	<20	62
	2/13/2006	<5.0	<10	<3.0	<20	<20
	5/5/2006	<5.0	<10	26	<20	<20
	8/15/2006	<5.0	<10	<3.0	34	60
	11/2/2006	<5.0	<10	<3.0	<20	<20
	1/30/2007	<1.0	2.30	<1.0	1.9	31
	4/30/2007	<5.0	<5.0	<3.0	<5.0	<20
	8/8/2007	<5.0	<5.0	<3.0	<5.0	610
	10/29/2007	<5.0	<5.0	<3.4	<5.0	24
	3/26/2008	<5.0	<5.0	<3.0	<5.0	<20
	6/24/2008	<5.0	<5.0	<3.0	<5.0	<20

Table 4 Historical Groundwater Analytical Results Metals

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring Well	Date	Cadmium (μg/L)	Chromium (μg/L)	Lead (μg/L)	Nickel (μg/L)	Zinc (μg/L)
Offsite Supply Well	11/28/2005	<5.0	<10	<3.0	<20	830
	1/16/2006	<5.0	<10	8.30	<20	650
	2/13/2006	< 5.0	15	<3.0	<20	1700
	5/5/2006	< 5.0	<10	26	<20	750
	8/15/2006	<5.0	<10	<3.0	<20	1,200
	11/2/2006	<5.0	<10	<3.0	<20	1,300
	1/30/2007	<1.0	<1.0	<1.0	4.0	7,200
	4/30/2007	< 5.0	<5.0	<3.0	<5.0	720
	8/8/2007	< 5.0	<5.0	3	<5.0	570
	10/29/2007	<5.0	8.7	<3.4	7.8	710
	3/26/2008	<5.0	11.0	4.8	5.6	620
	6/24/2008	<5.0	9.7	8.1	<5.0	910

Notes:

- 1) Metals were tested at boring B-10 on June 24, 2005.
- 2) Due to the results from B-10, the Alameda County Environmental Health Services requested that SOMA further analyze the wells for metals in a letter dated Sept. 19, 2005. SOMA collected grab samples from the wells on September 29, 2005.
- 3) The only time metals were tested in wells MW-1 to MW-3 was in the Third Quarter 2005.
- 4) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt.Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- <: Not Detected above the laboratory reporting limit.

APPENDIX A

Standard Operating Procedures for Conducting Groundwater Monitoring Activities

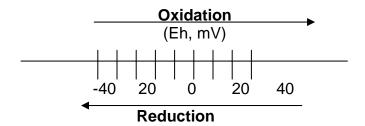
Standard Operating Procedures for Conducting Groundwater Monitoring Activities

Water Level Measurements

Prior to measurement of groundwater depth at each well, equalization with the surrounding aquifer must be achieved. Initially, the well cap is removed and the pressure is allowed to dissipate, creating a more stable water table level within the well. After about 10-15 minutes, once the water level in the well stabilizes, the depth to groundwater is measured from the top of the casing to the nearest 0.01 foot using an electric sounder.

Purging and Field Measurements

Prior to sample collection, each well is purged using a battery-operated, 2-inch-diameter pump (Model ES-60 DC). During purging, groundwater is measured for parameters such as dissolved oxygen (DO), pH, temperature, electrical conductivity (EC), and oxygen-reduction potential (ORP) using a Hanna HI-9828 multi-parameter instrument. Turbidity is measured using a Hanna HI-98703 portable turbidimeter. The equipment is calibrated at the Site using standard solutions and procedures provided by the manufacturer.


The pH of groundwater has an effect on the activity of microbial populations in the groundwater. The groundwater temperature affects the metabolic activity of bacteria. The groundwater EC is directly related to the concentration of total dissolved solids (TDS) in solution.

There is a strong correlation between the turbidity level and the biological oxygen demand of natural water bodies. The main purpose for checking the turbidity level is to provide a general overview of the extent of the suspended solids in the groundwater.

ORP is the measure of the potential for an oxidation or reduction process to occur. In the oxidation process, a molecule or ion loses one or several electrons. In the reduction process, a molecule or ion gains one or several electrons. The unit of the redox potential is the volt or millivolt. The most important redox reaction in petroleum-contaminated groundwater is the oxidation of petroleum hydrocarbons in the presence of bacteria and free molecular oxygen. Because the solubility of O_2 in water is low (9 mg/L at 25 °C and 11 mg/L at 5 °C), and because the rate of O_2 replenishment in subsurface environments is limited, DO can be entirely consumed when the oxidation of only a small amount of petroleum hydrocarbons occurs.

Oxidation of petroleum hydrocarbons can still occur when all the dissolved O_2 in the groundwater is consumed; however, the oxidizing agents (i.e., the constituents that undergo reduction) now become NO_3 , MnO_2 , Fe $(OH)_3$, SO_4^{2-} and others (Freeze and Cherry, 1979). As these oxidizing agents are consumed, the groundwater environment becomes more and more reduced. If the process

advances far enough, the environment may become so strongly reduced that the petroleum hydrocarbons undergo anaerobic degradation, resulting in the production of methane and carbon dioxide. The concept of oxidation and reduction in terms of changes in oxidation states is illustrated below.

Purging of wells continues until the parameters for DO, pH, temperature, EC, turbidity, and redox stabilize, or three casing volumes are purged.

Once stabilization occurs, the groundwater samples are also tested on-site for ferrous iron (Fe⁺²), nitrate (NO₃⁻), and sulfate (SO₄⁻²) concentrations.

Fe⁺², NO₃, and SO₄-2 are measured colorimetrically using the Hach Colorimeter Model 890, a microprocessor-controlled photometer suitable for colorimetric testing in the laboratory or the field. The required reagents for each specific test are provided in AccuVac ampuls.

Sampling

For sampling purposes, after purging a disposable polyethylene bailer is used to collect sufficient samples from each monitoring well for laboratory analyses. Groundwater samples are transferred into 40-mL VOA vials and preserved with hydrochloric acid. The vials are sealed to prevent air bubbles from developing within the headspace. For TPH-d analysis, groundwater samples are collected using 1-L, amber, nonpreserved glass containers. Samples are placed in an ice-filled cooler and maintained at 4°C. A chain of custody form for all samples is prepared to accompany the samples, which are promptly delivered to a California state-certified analytical laboratory.

APPENDIX B

Table of Elevations and Coordinates for Monitoring Wells Surveyed by Harrington Survey Inc. and

Field Measurements of Physical, Chemical, and Biodegradation Parameters of the Groundwater Samples at Time of Sampling

SURVEY REPORT 5565 Tesla Road, Livermore, CA. GSI JN: 02-08-108

THE ATTACHED GEODETIC COORDINATES WERE ESTABLISHED FROM A GPS FIELD SURVEY UNDER MY DIRECT SUPERVISION.

COORDINATES SHOWN HEREON ARE GEODETIC DECIMAL DEGREE NAD 83 VALUES.

ELEVATIONS SHOWN HEREON ARE NAVD 88 BASED UPON THE NATIONAL GEODETIC SURVEY BENCHMARK DESIGNATION 'A-210 RESET' HAVING AN ELEVATION OF 125.228 FEET.

DATE OF SURVEY: April 1, 2008

Ralph W. Guida IV, PLS 7076 MY LICENSE EXPIRES 12/31/08

DATE: 4/04/2008 **JOB NUMBER 0208108** DATE OF SURVEY 4/01/08 **INSTRUMENT LIECA SR520**

TABLE OF ELEVATIONS & COORDINATES ON MONITORING WELLS SOMA ENVIRONMENTAL, PROJECT - 5565 TESLA ROAD, LIVERMORE, CA

MWS-2	2,066,310.08	6,206,333,74	613.96	NOTCH NORTH SIDE
	37° 39' 48.8" N	121° 43' 37" W	616.99	GROUND NORTH SIDE
-	37.663558155	121.727163920	617.07	RIM NORTH SIDE
MWS-1	2066407.83	6206468.10	616.86	NOTCH NORTH SIDE
WELL ID#	NORTHING (ft.) LATITUDE	EASTING (ft.) LONGITUDE	ELEVATION (ft.)	DESCRIPTION

HORIZONTAL AND VERTICAL CONTROL BASED ON HARRINGTON SURVEY DATED 6-03-2006

CALIFORNIA HPGN MONUMENT 04 FL, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NAD 83. NORTH 2,085,087.52' - EAST 6,213,127.18' ELEVATION 566.57, NAVD 88.

CALIFORNIA HPGN MONUMENT 04 FK, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NAD 83. NORTH 2,055,8426.44' - EAST 6,189,298.07' ELEVATION 637.80', NAVD 88.

Harrington Surveys Inc.

Land Surveying & Mapping

2278 Larkey Lane, Walnut Creek, Ca. 94597 Phone (925)935-7228 Fax (925)935-5118 Cell (925)788-7359 E-Mail (ben5132@pacbell.net)

SOMA ENVIRONMENTAL ENGINEERING 2680 BISHOP DR. # 203 SAN RAMON, CA. 94583 JUNE 05, 2005

ATTN: ELENA

5565 TESLA ROAD, LIVERMORE CA.

SURVEY REPORT

CONTROLING POINTS FOR SURVEY:

CALIFORNIA HPGN MONUMENT 04 FL, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NAD 83. NORTH 2,085,087.52 - EAST 6,213,127.18, LAT. N37°42'56.31172" W121°42'18.00018". ELEVATION 566.57, NAVD 88,

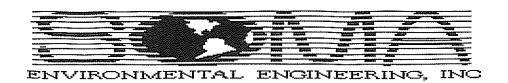
CALIFORNIA HPGN MONUMENT 04 FK, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NORTH 2,055,842.44 - EAST 6,189,298.07, LAT N37°38'02.07933", W121°47'09.51080" ELEVATION 637.80NAVD 88,

INSTRUMENTATION:

TRIMBLE GPS, MODEL 5800 AND LEICA TCA 1800, 1" HORZ. & VERT. OBSERVATION: EPOCH = 180.

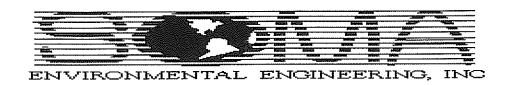
FIELD SURVEY: JUNE 03, 2005.

BEN HARRINGTON PLS 5132

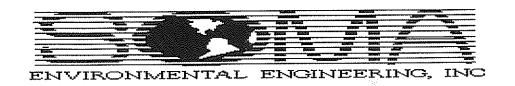


LIVERMORE, CA.

HARRINGTON SURVEYS INC. 2278 LARKEY LANE, WALNUT CREEK CA. 925-935-7228


JOB#2528 6-**0**5-05

PT.# NORTH EAST ELEV. LATITUDE LONGITUDE 1 2085287.52 6213127.18 566.57 37ø42′56.31176′N 121ø42′18.00017′W FD. 04 FL HPGN 2 2085287.52 6213127.18 566.57 37ø42′56.31175′N 121ø42′18.00016′W FD. 04 FL HPGN 10 2066759.37 6206469.09 615.16 37ø39′52.28484′N 121ø43′37.83506′W MW-1 V N. PVC 11 2066759.71 6206469.01 615.52 37ø39′52.28825′N 121ø43′37.83609′W MW-1 PUNCH N 12 2066753.85 6206471.51 615.55 37ø39′52.28425′N 121ø43′37.83609′W MW-1 PUNCH N 13 2066753.67 6206512.16 615.56 37ø39′52.23412′N 121ø43′37.29847′W BLG COR 14 2066628.15 6206469.65 616.03 37ø39′50.98763′N 121ø43′37.29847′W MW-2 V N. PVC 15 2066628.55 6206469.61 616.38 37ø39′50.99158′N 121ø43′37.80672′W MW-2 V N. PVC 16 206600.85 6206566.19 617.32 37ø39′50.73330′N 121ø43′37.22314′W 5.0 E BLG COR 17 2066600.85 6206566.19 617.54 37ø39′50.73330′N 121ø43′36.60162′W MW-3 V N. PVC 18 2066610.16 6206566.10 617.64 37ø39′50.82300′N 121ø43′36.60286′W MW-3 PUNCH N 19 2066601.25 6206564.10 617.64 37ø39′50.73332′N 121ø43′36.60286′W MW-3 PUNCH N 20 2066604.40 6206549.81 617.66 37ø39′50.76325′N 121ø43′36.693629′W FC COR 21 2066629.00 6206539.65 617.75 37ø39′51.00516′N 121ø43′36.93629′W FC COR 22 2066634.86 6206554.19 617.86 37ø39′51.00516′N 121ø43′36.93629′W FC COR 23 2066634.86 6206554.19 617.86 37ø39′51.00516′N 121ø43′36.93629′W FC COR 24 2066634.86 6206554.19 617.86 37ø39′50.76325′N 121ø43′36.93629′W FC COR 25 2066634.86 620654.98 615.08 37ø39′51.00516′N 121ø43′36.93629′W FD. Z 927 26 206663.66 610 610 610 610 610 610 610 610 610 6	
2 2085287.52 6213127.18 566.57 37ø42'56.31175''N 121ø42'18.00016''W FD. 04 FL HPGN 10 2066759.37 6206469.09 615.16 37ø39'52.28484''N 121ø43'37.83506''W MW-1 V N. PVC 11 2066759.71 6206469.01 615.52 37ø39'52.28825''N 121ø43'37.83609''W MW-1 PUNCH N 12 2066753.85 6206471.51 615.55 37ø39'52.23057''N 121ø43'37.80414''W BLG COR 13 2066753.67 6206512.16 615.56 37ø39'50.23057''N 121ø43'37.80474''W BLG COR 14 2066628.15 6206469.65 616.03 37ø39'50.98763''N 121ø43'37.80672''W MW-2 V N. PVC 15 2066628.55 6206469.61 616.38 37ø39'50.73030''N 121ø43'37.82314''W 5.0 E BLG COR 17 2066600.85 6206566.10 617.54 37ø39'50.73332''N 121ø43'36.60162''W MW-3 V N. PVC 18 2066601.25 6206566.10 617.64 37ø39'50.73332''N 121ø43'36.60286''W MW-3 PUNCH N 19 2066601.25	
10 2066759.37 6206469.09 615.16 37ø3952.28484"N 121ø43'37.83506"W MW-1 V N. PVC 11 2066759.71 6206469.01 615.52 37ø3952.28825"N 121ø43'37.83609"W MW-1 PUNCH N 12 2066753.85 6206471.51 615.55 37ø3952.23057"N 121ø43'37.80414"W BLG COR 13 2066753.67 6206512.16 615.56 37ø3952.23412"N 121ø43'37.29847"W BLG COR 14 2066628.15 6206469.65 616.03 37ø39'50.98763"N 121ø43'37.29847"W MW-2 V N. PVC 15 2066628.55 6206469.61 616.38 37ø39'50.99168"N 121ø43'37.80724"W MW-2 PUNCH N 16 2066628.55 6206566.46 616.48 37ø39'51.04109"N 121ø43'37.22314"W 5.0 E BLG COR 17 2066600.85 6206566.19 617.32 37ø39'50.73030"N 121ø43'36.60162"W MW-3 V N. PVC 18 2066601.16 6206566.10 617.54 37ø39'50.73030"N 121ø43'36.60268"W MW-3 PUNCH N 19 2066610.25 6206564.10 617.64 37ø39'50.73030"N 121ø43'36.60291"W FC COR 20 206604.40 6206549.81 617.66 37ø39'50.76325"N 121ø43'36.93629"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.93629"W FD Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07990"N 121ø47'09.51088"W FD Z 927 5 2055842.44 6189298.07 637.82 37ø38'02.07990"N 121ø47'09.51088"W FD A FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.75518"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.	
11 2066759.71 6206469.01 615.52 37ø3952.28825"N 121ø43'37.83609"W MW-1 PUNCH N 12 2066753.85 6206471.51 615.55 37ø3952.23057"N 121ø43'37.80414"W BLG COR 13 2066753.67 6206512.16 615.56 37ø39'52.23412"N 121ø43'37.29847"W BLG COR 14 2066628.15 6206469.65 616.03 37ø39'50.98763"N 121ø43'37.80724"W MW-2 V N. PVC 15 2066628.55 6206469.61 616.38 37ø39'50.99158"N 121ø43'37.22314"W 5.0 E BLG COR 16 2066632.94 6206516.64 616.48 37ø39'50.73030"N 121ø43'37.22314"W 5.0 E BLG COR 17 2066600.85 6206566.19 617.32 37ø39'50.73030"N 121ø43'36.60162"W MW-3 PUNCH N 19 2066601.16 6206566.10 617.54 37ø39'50.76325"N 121ø43'36.60286"W MW-3 PUNCH N 19 2066604.40 620654.10 617.64 37ø39'50.76325"N 121ø43'36.80598"W FC COR 21 2066629.00 6206534.86 6	
12 2066753.85 6206471.51 615.55 37ø39'52.23057"N 121ø43'37.80414"W BLG COR 13 2066753.67 6206512.16 615.56 37ø39'52.23412"N 121ø43'37.29847"W BLG COR 14 2066628.15 6206469.65 616.03 37ø39'50.98763"N 121ø43'37.80672"W MW-2 V N. PVC 15 2066628.55 6206469.61 616.38 37ø39'50.99158"N 121ø43'37.80724"W MW-2 PUNCH N 16 2066632.94 6206516.64 616.48 37ø39'51.04109"N 121ø43'37.22314"W 5.0 E BLG COR 17 2066600.85 6206566.19 617.32 37ø39'50.73030"N 121ø43'37.22314"W 5.0 E BLG COR 18 2066601.16 6206566.10 617.54 37ø39'50.73030"N 121ø43'36.60162"W MW-3 V N. PVC 18 2066601.25 6206564.10 617.64 37ø39'50.73332"N 121ø43'36.62917"W FC COR 20 2066604.40 6206549.81 617.66 37ø39'51.0516"N 121ø43'36.80598"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.75646"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.75646"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'36.75646"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85556"N 121ø43'10.81967"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø43'36.93627"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.79 37ø38'02.07930"N 121ø43'36.93627"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83004"N 121ø43'36.93627"W SET RB\GATE 8 2066806.93 6206470.38 615.04 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.04 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
13 2066753.67 6206512.16 615.56 37ø39'52.23412"N 121ø43'37.29847"W BLG COR 14 2066628.15 6206469.65 616.03 37ø39'50.98763"N 121ø43'37.80672"W MW-2 V N. PVC 15 2066628.55 6206469.61 616.38 37ø39'50.99158"N 121ø43'37.80724"W MW-2 PUNCH N 16 2066632.94 6206516.64 616.48 37ø39'50.73030"N 121ø43'36.60162"W MW-3 V N. PVC 18 2066601.16 6206566.19 617.54 37ø39'50.73332"N 121ø43'36.60286"W MW-3 PUNCH N 19 2066610.25 6206564.10 617.64 37ø39'50.82300"N 121ø43'36.60286"W MW-3 PUNCH N 20 2066604.40 6206549.81 617.66 37ø39'50.82300"N 121ø43'36.80598"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.005493"N 121ø43'36.93629"W FC COR 3 2080138.47 6208815.77 552.45	1 RIM
14 2066628.15 6206469.65 616.03 37ø39'50.98763"N 121ø43'37.80672"W MW-2 V N PVC 15 2066628.55 6206469.61 616.38 37ø39'50.99158"N 121ø43'37.80724"W MW-2 PUNCH N 16 2066632.94 6206516.64 616.48 37ø39'51.04109"N 121ø43'37.22314"W 5.0 E BLG COR 17 2066600.85 6206566.19 617.32 37ø39'50.73030"N 121ø43'36.60162"W MW-3 V N PVC 18 2066601.16 6206566.10 617.54 37ø39'50.73332"N 121ø43'36.60286"W MW-3 PUNCH N 19 2066610.25 6206564.10 617.64 37ø39'50.82300"N 121ø43'36.60296"W FC COR 20 2066604.40 6206549.81 617.66 37ø39'51.00516"N 121ø43'36.93629"W FC COR 21 2066629.00 6206554.19 617.86 37ø39'51.006493"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.006493"N 121ø43'36.93629"W FC COR 3 2080138.47 6208815.77 552.45<	
15 2066628.55 6206469.61 616.38 37ø39'50.99158'N 121ø43'37.80724'W MW-2 PUNCH N 16 2066632.94 6206516.64 616.48 37ø39'51.04109'N 121ø43'37.22314'W 5.0 E BLG COR 17 2066600.85 6206566.19 617.32 37ø39'50.73030'N 121ø43'36.60162'W MW-3 V N PVC 18 2066601.16 6206566.10 617.54 37ø39'50.73332'N 121ø43'36.60286'W MW-3 PUNCH N 19 2066610.25 6206564.10 617.64 37ø39'50.73332'N 121ø43'36.60286'W MW-3 PUNCH N 20 2066604.40 6206549.81 617.66 37ø39'50.76325'N 121ø43'36.80598'W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516'N 121ø43'36.93629'W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493'N 121ø43'36.75646''W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85566''N 121ø43'10.81967'W FD. Z 927 4 2080438.48 6208815.77 552.4	
16 2066632.94 6206516.64 616.48 37ø39'51.04109"N 12¹ø43'37.22314"W 5.0 E BLG COR 17 2066600.85 6206566.19 617.32 37ø39'50.73030"N 12¹ø43'36.60162"W MW-3 V N PVC 18 2066601.16 6206566.10 617.54 37ø39'50.73332"N 12¹ø43'36.60286"W MW-3 PUNCH N 19 2066610.25 6206564.10 617.64 37ø39'50.82300"N 12¹ø43'36.60286"W FC COR 20 2066604.40 6206549.81 617.66 37ø39'50.76325"N 12¹ø43'36.80598"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 12¹ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.00516"N 12¹ø43'36.75646"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 12¹ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 12¹ø43'10.81967"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 12¹ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 12¹ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 12¹ø43'36.93616"W SET RB\GATE 8 2066806.93 6206470.38 615.04 37ø39'52.75523"N 12¹ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 12¹ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07	
17 2066600.85 6206566.19 617.32 37ø39'50.73030"N 121ø43'36.60162"W MW-3 V N PVC 18 2066601.16 6206566.10 617.54 37ø39'50.73332"N 121ø43'36.60286"W MW-3 PUNCH N 19 2066610.25 6206564.10 617.64 37ø39'50.82300"N 121ø43'36.62917"W FC COR 20 2066604.40 6206549.81 617.66 37ø39'50.76325"N 121ø43'36.80598"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.00516"N 121ø43'36.75646"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85556"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93616"W SET RB\GATE 8 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82680"W SET G.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 24 2080138.48 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 24 2080138.48 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 24 2080138.48 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA 24 24 24 24 24 24 24 24 24 24 24 24 24	
18 2066601.16 6206566.10 617.54 37ø39'50.73332"N 121ø43'36.60286"W MW-3 PUNCH N 19 2066610.25 6206564.10 617.64 37ø39'50.82300"N 121ø43'36.62917"W FC COR 20 2066604.40 6206549.81 617.66 37ø39'50.76325"N 121ø43'36.80598"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.93629"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51088"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø43'36.93627"W SET RB\GATE 8 2066813.64 6206542.08 615.00	
19 2066610.25 6206564.10 617.64 37ø39'50.82300"N 121ø43'36.62917"W FC COR 20 2066604.40 6206549.81 617.66 37ø39'50.76325"N 121ø43'36.80598"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.006493"N 121ø43'36.75646"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93627"W SET RB\GATE 8 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
20 2066604.40 6206549.81 617.66 37ø39'50.76325"N 121ø43'36.80598"W FC COR 21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.75646"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82680"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07	1. RIM
21 2066629.00 6206539.65 617.75 37ø39'51.00516"N 121ø43'36.93629"W FC COR 22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.75646"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93616"W SET RB\GATE 8 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82668"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
22 2066634.86 6206554.19 617.86 37ø39'51.06493"N 121ø43'36.75646"W FC COR 3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93616"W SET RB\GATE 8 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
3 2080138.47 6208815.78 552.46 37ø42'04.85555"N 121ø43'10.81967"W FD. Z 927 4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93627"W SET RB\GATE 8 2066813.64 6206542.08 614.98 37ø39'52.83084"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
4 2080138.48 6208815.77 552.45 37ø42'04.85566"N 121ø43'10.81976"W FD. Z 927 5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93627"W SET RB\GATE 8 2066813.64 6206542.08 614.98 37ø39'52.83084"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	en e
5 2055842.44 6189298.07 637.79 37ø38'02.07930"N 121ø47'09.51084"W FD. 4 FK HPGN 6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93627"W SET RB\GATE 8 2066813.64 6206542.08 614.98 37ø39'52.83084"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
6 2055842.43 6189298.07 637.82 37ø38'02.07924"N 121ø47'09.51088"W FD. 4 FK HPGN 7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93627"W SET RB\GATE 8 2066813.64 6206542.08 614.98 37ø39'52.83084"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
7 2066813.66 6206542.08 615.00 37ø39'52.83104"N 121ø43'36.93627"W SET RB\GATE 8 2066813.64 6206542.08 614.98 37ø39'52.83084"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	J
8 2066813.64 6206542.08 614.98 37ø39'52.83084"N 121ø43'36.93616"W SET RB\GATE 9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	J
9 2066806.93 6206470.38 615.04 37ø39'52.75518"N 121ø43'37.82678"W SET 6.D NW YA 23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
23 2066806.93 6206470.38 615.07 37ø39'52.75523"N 121ø43'37.82680"W SET 6.D NW YA	
LA COLA	·RD
The state of the s	
TO LA	
	1
	NO W
	HAD CONTROL OF THE PARTY OF THE
	11/12/2
	31
513	1 17
6-30	
OF CO.	HIFORIT


Well No.:	MWS-1		Project	No.: 2841
Casing Diameter:		_inch	Addre	ess: Wente Vineyards
Depth of Well:	25.29	_ft		5565 Tesla Rd, Livermore
Top of Casing Elevation:	616.86	_ft	D	ate: June 24, 2008
Depth to Groundwater:	10.34	_ft	Samp	ler: Eric Gassner-Wollwage
Groundwater Elevation:	606.52	_ft		Ruchi Mathur
Water Column Height:	24.95	_ft		
Purged Volume:	12	_gallons		
Purging Method:	Bailer □		Pump	
r arging method.			ı amp	, _
Sampling Method:	Bailer 🗸		Pump	. 🗆
Color:	No □	Yes	Descr	tibe Cloudy
Sheen:	No 🗡	Yes	□ <u>Descr</u>	ribe
Odor:	No 🗹	Yes	□ <u>Descr</u>	ribe

Time	Volume (gallons)	D.O. mg/L	рН	Temp °C	E.C. (μS/cm)	Turb. NTU	ORP
1257	Start	ed Du	reging.	well			
12\$8	3	08-0	8.31	18.41	(244	627	-42.6
1259	6	0.73	7.04	18.56	1294	zy 7	-9,5
0100	·q	0.72	6.99	18.59	1295	648	+7.3
0101	12	0.71	6.95	18.62	1284	641	45.6
0102	Samp	led					

Well No.:	MWS-2	_		P	Project No.: 2841
Casing Diameter:	2	inch			Address: Wente Vineyards
Depth of Well:	26.39	ft			5565 Tesla Rd, Livermore
Top of Casing Elevation:	613.96	ft			Date: June 24, 2008
Depth to Groundwater:		ft			Sampler: Eric Gassner Wollwage
Groundwater Elevation:	602.85	ft			Ruchi Mathur
Water Column Height:	15.28	ft			
Purged Volume:	6	gallons			
Purging Method: Sampling Method:	Bailer □ Bailer □				Pump Pump
Color: Sheen:	No □		Yes Yes		
Odor:	No 💆		Yes		Describe

Time	Volume (gallons)	D.O. mg/L	рН	Temp °C	E.C. (μS/cm)	Turb. NTU	ORP
@ 1516	Stool	ted.	Durgi	nos			
1517	3	0.40	8.07	19.12	(055	540	+0.4
1518	6	0.70	7.20	19.06	1122	563	+16.3
1524	Sampl	ed					
	1						

Well No.:	Onsile Supp	y well		Pr	roject No.: 2841
Casing Diameter:		inch_			Address: Wente Vineyards
Depth of Well:	NM	ft			5565 Tesla Rd, Livermore
Top of Casing Elevation:	MS	_ft			Date: June 24, 2008
Depth to Groundwater:	MM	ft			Sampler: Eric Gassner-Wollwage
Groundwater Elevation:	<u> MC</u>	ft			Ruchi Mathur
Water Column Height:	NN	ft			
Purged Volume:	70	gallons			
Purging Method:	Bailer □				Pump of Active pump
Sampling Method:	Bailer □				Pump O Aport
Color:	No 🗷		Yes		Describe
Sheen:	No 🗹		Yes		Describe
Odor:	No 🗹		Yes		Describe

Time	Volume (gallons)	D.O. mg/L	рН	Temp °C	E.C. (μS/cm)	Turb. NTU	ORP
(356	Startes		ingwel	1			
1356	20	0.93	7.83	27.19	1219	53.2	-17.7
1400	35	0.76	7.38	27.52	1192	17.4	+3.6
1402	So	0.84	7.18	23.58	1262	13.5	+12.1
1404	70	0.94	7.38	22.5	1283	12.9	416.8
1410	Sample	d					

well No.:	Offsike Sy	gray week	Project No.: 2841
Casing Diameter:		_inch	Address: Wente Vineyards
Depth of Well:	126	_ft	5565 Tesla Rd, Livermore
Top of Casing Elevation:	NS	_ft	Date: June 24, 2008
Depth to Groundwater:	MM	ft	Sampler: Eric Gassner-Wollwage
Groundwater Elevation:	NC	_ft	Ruchi Mathur
Water Column Height:	нМ	ft	
Purged Volume:	70	_gallons	
Purging Method:	Bailer □		Pump & Active well
Sampling Method:	Bailer □	*	Pump & Active well
Color: Sheen: Odor:	No □ No ☑	Yes Yes Yes	□ Describe □ Describe □ Describe

Time	Volume (gallons)	D.O. mg/L	рН	Temp °C	E.C. (μS/cm)	Turb. NTU	ORP
1/35	Starte	of po	1-1-12	e ne	4		
1145	20	091	8.19	20.49	1243	457	+62:6
1150	35	1.13	810	22.94	1232	230	445.0
1155	50	0.89	7.72	25.42	-1158	156	+36.9
1159	70	1.05	7.65	22.05	1243	141	+30
1205	Jarapl	ed		*			
	.:			sa si			

APPENDIX C

Specifications for Off-site well at 5443 Tesla Road

5445 Teslu Road

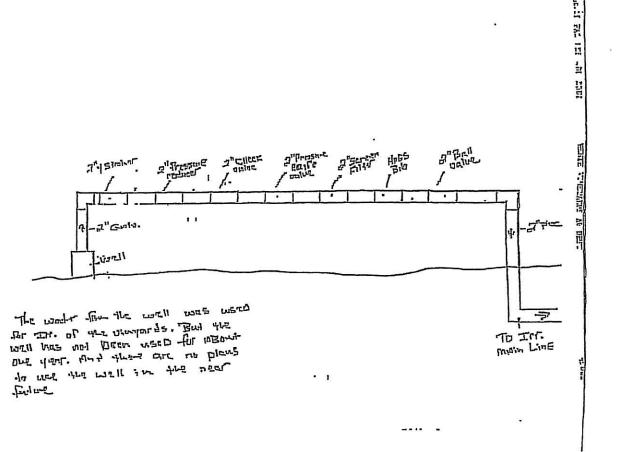
Page I of I

Mensour Sepehr

From: Aris (Crimetz [eris@wentevineyaris.com]

Bent: Thursday, February 16, 2006 6:06 PM

To: Mensour Sepair (E-mail)


Subject: 6449 Tesla Road

Mansour-

According to documents provided by the previous owner, the total depth of the well is 125°, and the pump is at 100°, it was installed about 1672 by the previous owner. We only re-piped on the well discharge side and connected it to the integation system, removing it from the potablesystem when we pumbased the property in 1885/86. The potable water for the property is supplied from a municipal source.

•

Aria Krimetz Director of Engineering Wente Vineyarde 5565 Testa Road Livarmore, CA 84560 Olline: 925 456 2813 Call: 925 678 8010 arisk@wentevineyarde.com www.wentevineyarde.com

APPENDIX D

Chain of Custody Form and Laboratory Report

CHAIN OF CUSTODY

1 of 1 Page _

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878

0011050

Analyses

	,						-	11 14 11		Ÿ				79	941611114446					200000000000000		10000			
	2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax	erkeley, CA 94710						100				A	scavengers												
Projec	t No: 2841	4		Report To: Joyce Bobek										B list)	7470A							Ì			
			Company: SOMA Environmental									8260	3 and	& lead											
			Telep	hoı	ne:			925-734-6400								(full	6010B	Oxygenates						-	
			Fax:					925-734-6401						m		anics	tals 6	yger							
					Mat	trix			F	res	erv	ativ	е	8260B	315) rg	Me	0.000			- 1	1			
Lab No.	Sample ID.	Sampling Time		Soil	Water	Waste		# of Containers	HCL	H ₂ SO ₄	HNO ₃	SE	none	TPH-g 8%	TPH-d 8015	Volatile Organics (full 8260B list)	CAM 17 Metals	Gasoline							
1	Off-site Supply Well	6/26/2008	12:05		*			4-VOAs/ 1 L Amber/ 2-250 ml Poly	*		*	*	*	*	*	*	*	*							
2	On-site Supply Well	6/26/2008)	4.10		*			4-VOAs/11 Ambers/ 	*		*	*	*	*	*	*	*	*							
3	MWS-1	6/2008	13:02		*			4-VOAs/ 1L Ambers/ 2-250 ml Poly	*		*	*	*	*	*	*	*	*							
4	MWS-2	6/24/2008	15:24		*			4-VOAs/ 1L Ambers/ 2-250 ml Poly	*		*	*	*	*	*	*	*	*			_	\perp			
						-								-			\vdash			Н	+	+	+	+	-
Notes:	EDF OUTPUT REQUIRE	D		RE	ELII	NG L	JIS	SHED BY:								VED I									
	Metals include cadmium, cl nickel, and zinc	hromium, lea	ıd	<	\leq		<u></u>	578	_	6/2	5/6	DAT	575°	E	2	ze	2		6/2	5/06	g /		5°	ATE/T	IME
GasOx to include ethanol					_						DAT	E/TIM	E									D/	ATE/T	'IME	
	THF MtBE											DAT	E/TIM	E									D/	ATE/T	ГІМЕ

COOLER RECEIPT CHECKLIST

Login # 204250 Date Received 6/25/08 Number of coolers Client Project 5565 Tesla Rd, Guerrare
Date Opened 6/25 By (print) KWellbrock (sign) Mulliant Date Logged in J By (print) J (sign)
1. Did cooler come with a shipping slip (airbill, etc)? YES Shipping info
2A. Were custody seals present?
Cloth material Cardboard Styrofoam Paper towels 7. If required, was sufficient ice used? Samples should be < or = 6°C
Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?
COMMENTS 15-14 On-Site Sipply Well UDA; with B-bble 12-COC sample date is 3/24/2008 — Sample IDS are 6/24/08 localed in 18/13-Poured off metals container for On-Site apply well because per sonly 2 12 ambers were sent from 6/25/08 @ 1825

SOP Volume:

Client Services

Section:

1.1.2

Rev. 5 Number 1 of 3

Effective: 19 May 2008

Page:

1 of IC:\Documents and Settings\carol\Local Settings\Temporary Internet Files\Content.IE5\Q6BXTRDB\Coole

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 204250 ANALYTICAL REPORT

SOMA Environmental Engineering Inc. Project : 2841

6620 Owens Dr. Location: 5565 Tesla Rd, Livermore

Pleasanton, CA 94588 Level : II

<u>Sample ID</u>	<u>Lab ID</u>
OFF-SITE SUPPLY WELL	204250-001
ON-SITE SUPPLY WELL	204250-002
MWS-1	204250-003
MWS-2	204250-004

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>07/10/2008</u>

Signature: ______ Senior Program Manager

NELAP # 01107CA

Date: <u>07/08/2008</u>

CASE NARRATIVE

Laboratory number: 204250

Client: SOMA Environmental Engineering Inc.

Project: 2841

Location: 5565 Tesla Rd, Livermore

Request Date: 06/25/08 Samples Received: 06/25/08

This hardcopy data package contains sample and QC results for four water samples, requested for the above referenced project on 06/25/08. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7470A):

No analytical problems were encountered.

Total Extractable Hydrocarbons Lab #: 204250 Location: 5565 Tesla Rd, Livermore EPA 3520C Client: SOMA Environmental Engineering Inc. Prep: Project#: 2841 Analysis: EPA 8015B Matrix: Water Sampled: 06/24/08 06/25/08 Units: ug/L Received: Diln Fac: 1.000 06/26/08 Prepared: Batch#: 139725 Analyzed: 06/30/08

Field ID: OFF-SITE SUPPLY WELL Lab ID: 204250-001

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
Hexacosane 100 63-130

Field ID: ON-SITE SUPPLY WELL Lab ID: 204250-002

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 71 Y
 50

Surrogate %REC Limits
Hexacosane 103 63-130

Field ID: MWS-1 Lab ID: 204250-003

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
Hexacosane 84 63-130

Field ID: MWS-2 Lab ID: 204250-004

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
Hexacosane 93 63-130

Type: BLANK Lab ID: QC448372

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
Hexacosane 104 63-130

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

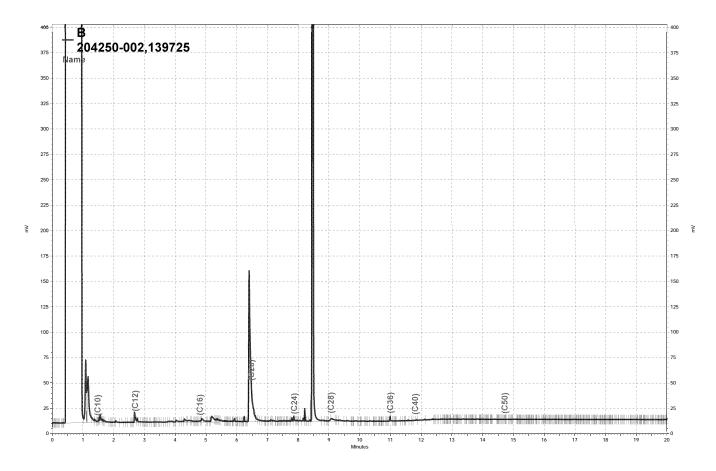
RL= Reporting Limit

Page 1 of 1

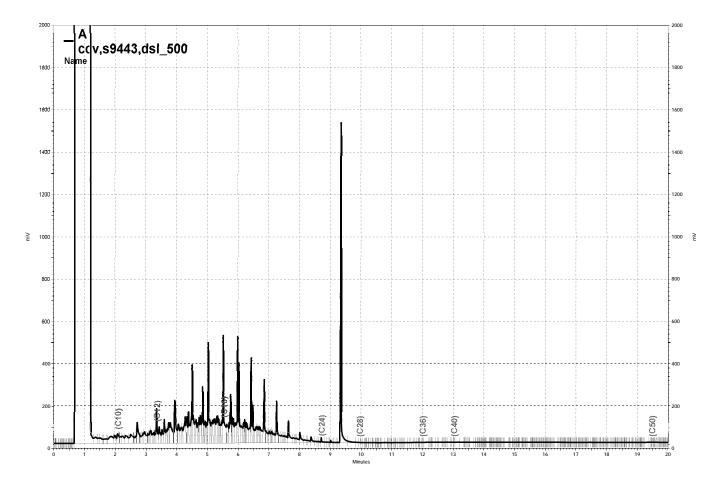
	Total Extracta	ble Hydrocar	bons
Lab #:	204250	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 3520C
Project#:	2841	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	139725
Units:	ug/L	Prepared:	06/26/08
Diln Fac:	1.000	Analyzed:	06/30/08

Type: BS Lab ID: QC448373

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	1,748	70	61-120


Surrogate %REC	Limits
lexacosane 97	63-130

Type: BSD Lab ID: QC448374


Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	1,535	61	61-120	13	29

Surrogate	%REC	Limits
Hexacosane	8.2	63-130

13.0

\Lims\gdrive\ezchrom\Projects\GC14B\Data\181b028, B

\Lims\gdrive\ezchrom\Projects\GC11A\Data\181a035, A

Gasoline by GC/MS					
Lab #: 204250 Client: SOMA Environmental Engineering Inc. Project#: 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B			
Field ID: OFF-SITE SUPPLY WELL Lab ID: 204250-001 Matrix: Water Units: ug/L Diln Fac: 1 000	Batcĥ#: Sampled: Received: Analyzed:	139926 06/24/08 06/25/08 07/02/08			

Gasoline C7-C12	Analyte	Result	RT.
Freon 12			
Lett-Butyl Alcohol (TBA)			
Chloromethame			
Isopropy Ether (DIPE)			
Vinyl Chloroide			
Bromomethane			
Sthy tert-Buty Ether (ETBE)			
Chlorothane			
Methyl text-Amyl Ether (TAME)			
Trichlorofluoromethane ND			
Sthanol			
Acetone			
Tree			
1.1-Dichloroethene			
Methylene Chloride			
Carbon Disulfide			
MTBE ND			= 7
Trans-1,2-Dichloroethene			
Vinyl Acetate			
1.1-Dichloroethane			
2-butanone			= *
cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Bromodichloropropene ND 0.5 4-Methyl-2-Pentanone ND 0.5 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Tithloropropene ND 0.5 <			
2,2-Dichloropropane			
Chloroform			
Bromochloromethane			
1,1,1-Trichloroethane			
1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromochloromethane ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m, P-Xylenes ND 0			
Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Toluene ND 0.5 1,1,2-Trichloropropene ND 0.5 2,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 2-Hexanone ND 0.5 Tetrachloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 Chlorobenzene ND 0.5 1,1,2-Tetrachloroethane ND 0.5 Chlorobenzene ND 0.5			
1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 2-Hexanone ND 0.5 Tetrachloropropane ND 0.5 Tetrachloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 ttylenes ND 0.5 m,p-Xylenes ND 0.5			
Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5			
Trichloroethene			
1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Bromoform ND 0.5 Bromoform ND 0.5 Bromoform ND 0.5			
Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5			
Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5			
4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 O-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5			
cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5			
Toluene			
trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
1,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5			
2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
1,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5			
Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5			
Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
1,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5			
Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5			
Bromoform ND 1.0 Isopropylbenzene ND 0.5	_		
Isopropylbenzene ND 0.5			
<u>Living Availet accompanie</u>	1.1.2.2-Tetrachloroethane	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

Gasoline by GC/MS					
Lab #:	204250	Location:	5565 Tesla Rd, Livermore		
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B		
Project#:	2841	Analysis:	EPA 8260B		
Field ID:	OFF-SITE SUPPLY WELL	Batch#:	139926		
Lab ID:	204250-001	Sampled:	06/24/08		
Matrix:	Water	Received:	06/25/08		
Units:	uq/L	Analyzed:	07/02/08		
Diln Fac:	1.000	•			

Analyte	Result	RL	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-123
1,2-Dichloroethane-d4	98	76-138
Toluene-d8	99	80-120
Bromofluorobenzene	99	80-120

	Gasoline by GC/MS					
Lab #:	204250	Location:	5565 Tesla Rd, Livermore			
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B			
Project#:	2841	Analysis:	EPA 8260B			
Field ID:	ON-SITE SUPPLY WELL	Batch#:	139926			
Lab ID:	204250-002	Sampled:	06/24/08			
Matrix:	Water	Received:	06/25/08			
Units:	uq/L	Analyzed:	07/03/08			
Diln Fac:	1.000	-				

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Ethanol	ND	1,000
Acetone	ND	10
Freon 113	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
I, I, Z, Z = I E C I a C I I I O I O E C I I A I I E	עווד	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

Gasoline by GC/MS				
Lab #:	204250	Location:	5565 Tesla Rd, Livermore	
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B	
Project#:		Analysis:	EPA 8260B	
Field ID:	ON-SITE SUPPLY WELL	Batch#:	139926	
Lab ID:	204250-002	Sampled:	06/24/08	
Matrix:	Water	Received:	06/25/08	
Units:	uq/L	Analyzed:	07/03/08	
Diln Fac:	1.000			

Analyte	Result	RL	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-123	
1,2-Dichloroethane-d4	99	76-138	
Toluene-d8	99	80-120	
Bromofluorobenzene	100	80-120	

of 2 16.1

Gasoline by GC/MS					
Lab #:	204250	Location:	5565 Tesla Rd, Livermore		
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B		
Project#:	2841	Analysis:	EPA 8260B		
Field ID:	MWS-1	Batch#:	139926		
Lab ID:	204250-003	Sampled:	06/24/08		
Matrix:	Water	Received:	06/25/08		
Units:	ug/L	Analyzed:	07/03/08		
Diln Fac:	1.000	-			

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Ethanol	ND	1,000
Acetone	ND	10
Freon 113	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
I, I, Z, Z = I E C I a C I I I O I O E C I I A I I E	עווד	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

Gasoline by GC/MS					
Lab #:	204250		Location:	5565 Tesla Rd, Livermore	
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	2841	5	Analysis:	EPA 8260B	
Field ID:	MWS-1		Batch#:	139926	
Lab ID:	204250-003		Sampled:	06/24/08	
Matrix:	Water		Received:	06/25/08	
Units:	ug/L		Analyzed:	07/03/08	
Diln Fac:	1.000		•		

Analyte	Result	RL	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits	
Dibromofluoromethane	94	80-123	
1,2-Dichloroethane-d4	99	76-138	
Toluene-d8	100	80-120	
Bromofluorobenzene	99	80-120	

ge 2 of 2

Gasoline by GC/MS					
Lab #:	204250	Location:	5565 Tesla Rd, Livermore		
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B		
Project#:	2841	Analysis:	EPA 8260B		
Field ID:	MWS-2	Batch#:	139926		
Lab ID:	204250-004	Sampled:	06/24/08		
Matrix:	Water	Received:	06/25/08		
Units:	ug/L	Analyzed:	07/03/08		
Diln Fac:	1.000	_			

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Ethanol	ND	1,000
Acetone	ND	10
Freon 113	ND ND	0.5
1,1-Dichloroethene	ND ND	0.5
Methylene Chloride	ND ND	10
		0.5
Carbon Disulfide	ND	0.5
MTBE	ND	
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND ND	0.5
I, I, Z, Z = I ECL aCIII OL OECII alle	עוו	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

Gasoline by GC/MS					
Lab #:	204250		Location:	5565 Tesla Rd, Livermore	
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	2841		Analysis:	EPA 8260B	
Field ID:	MWS-2		Batch#:	139926	
Lab ID:	204250-004		Sampled:	06/24/08	
Matrix:	Water		Received:	06/25/08	
Units:	ug/L		Analyzed:	07/03/08	
Diln Fac:	1.000		•		

Analyte	Result	RL	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-123	
1,2-Dichloroethane-d4	100	76-138	
Toluene-d8	100	80-120	
Bromofluorobenzene	100	80-120	

Date CII QC	1101-01-0		
	Gasoline	by GC/MS	
Lab #: Client: Project#:	204250 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC449156 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 139926 07/02/08

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Ethanol	ND	1,000
Acetone	ND	10
Freon 113	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Gasoline	by GC/MS	
Lab #: Client: Project#:	204250 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC449156 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 139926 07/02/08

Analyte	Result	RL	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-123
1,2-Dichloroethane-d4	97	76-138
Toluene-d8	97	80-120
Bromofluorobenzene	97	80-120

	Gasoline	by GC/MS	
Lab #: Client: Project#:	204250 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	139926 07/02/08

Type: BS Lab ID: QC449157

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	100.0	93.84	94	55-158
Isopropyl Ether (DIPE)	20.00	18.19	91	63-122
Ethyl tert-Butyl Ether (ETBE)	20.00	19.18	96	62-133
Methyl tert-Amyl Ether (TAME)	20.00	19.88	99	69-137
1,1-Dichloroethene	20.00	19.94	100	77-132
Benzene	20.00	19.22	96	80-120
Trichloroethene	20.00	18.43	92	80-120
Toluene	20.00	19.90	99	80-121
Chlorobenzene	20.00	19.69	98	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	94	80-123	
1,2-Dichloroethane-d4	94	76-138	
Toluene-d8	97	80-120	
Bromofluorobenzene	90	80-120	

Type: BSD Lab ID: QC449158

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	100.0	90.90	91	55-158	3	20
Isopropyl Ether (DIPE)	20.00	17.55	88	63-122	4	20
Ethyl tert-Butyl Ether (ETBE)	20.00	18.71	94	62-133	3	20
Methyl tert-Amyl Ether (TAME)	20.00	19.19	96	69-137	4	20
1,1-Dichloroethene	20.00	18.43	92	77-132	8	20
Benzene	20.00	17.87	89	80-120	7	20
Trichloroethene	20.00	16.77	84	80-120	9	20
Toluene	20.00	18.18	91	80-121	9	20
Chlorobenzene	20.00	18.64	93	80-120	5	20

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-123
1,2-Dichloroethane-d4	93	76-138
Toluene-d8	98	80-120
Bromofluorobenzene	91	80-120

Gasoline by GC/MS					
Lab #:	204250	Location:	5565 Tesla Rd, Livermore		
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B		
Project#:	2841	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	139926		
Units:	ug/L	Analyzed:	07/02/08		
Diln Fac:	1.000				

Type: BS Lab ID: QC449159

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	882.2	88	70-130

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-123
1,2-Dichloroethane-d4	95	76-138
Toluene-d8	97	80-120
Bromofluorobenzene 8	88	80-120

Type: BSD Lab ID: QC449160

	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Ga	soline C7-C12	1,000	833.5	83	70-130	6	20

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-123
1,2-Dichloroethane-d4	94	76-138
Toluene-d8	98	80-120
Bromofluorobenzene	90	80-120

California Title 26 Metals					
Lab #: 204250		Project#:	2841		
Client: SOMA Env	rironmental Engineering Inc.	Location:	5565 Tesla Rd, Livermore		
Field ID:	OFF-SITE SUPPLY WELL	Diln Fac:	1.000		
Lab ID:	204250-001	Sampled:	06/24/08		
Matrix:	Water	Received:	06/25/08		
Units:	ug/L	Prepared:	06/26/08		

Analyte	Result	RL	Batch#	Analyzed	Prep	Analysis
Antimony	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Arsenic	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Barium	150	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Beryllium	ND	2.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cadmium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Chromium	9.7	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cobalt	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Copper	37	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Lead	8.1	3.0	139703	06/27/08	EPA 3010A	EPA 6010B
Mercury	ND	0.20	139713	06/26/08	METHOD	EPA 7470A
Molybdenum	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Nickel	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Selenium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Silver	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Thallium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Vanadium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Zinc	910	20	139703	06/27/08	EPA 3010A	EPA 6010B

Page 1 of 1 2.0

California Title 26 Metals					
Lab #: 204250		Project#:	2841		
Client: SOMA Env	ironmental Engineering Inc.	Location:	5565 Tesla Rd, Livermore		
Field ID:	ON-SITE SUPPLY WELL	Diln Fac:	1.000		
Lab ID:	204250-002	Sampled:	06/24/08		
Matrix:	Water	Received:	06/25/08		
Units:	ug/L	Prepared:	06/26/08		

Analyte	Result	RL	Batch#	Analyzed	Prep	Analysis
Antimony	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Arsenic	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Barium	130	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Beryllium	ND	2.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cadmium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Chromium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cobalt	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Copper	6.6	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Lead	ND	3.0	139703	06/27/08	EPA 3010A	EPA 6010B
Mercury	ND	0.20	139713	06/26/08	METHOD	EPA 7470A
Molybdenum	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Nickel	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Selenium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Silver	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Thallium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Vanadium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Zinc	ND	20	139703	06/27/08	EPA 3010A	EPA 6010B

Page 1 of 1 3.0

California Title 26 Metals						
Lab #: 204250		Project#:	2841			
Client: SOMA En	vironmental Engineering Inc.	Location:	5565 Tesla Rd, Livermore			
Field ID:	MWS-1	Diln Fac:	1.000			
Lab ID:	204250-003	Sampled:	06/24/08			
Matrix:	Water	Received:	06/25/08			
Units:	ug/L	Prepared:	06/26/08			

Analyte	Result	RL	Batch#	Analyzed	Prep	Analysis
Antimony	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Arsenic	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Barium	310	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Beryllium	ND	2.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cadmium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Chromium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cobalt	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Copper	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Lead	5.9	3.0	139703	06/27/08	EPA 3010A	EPA 6010B
Mercury	ND	0.20	139713	06/26/08	METHOD	EPA 7470A
Molybdenum	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Nickel	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Selenium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Silver	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Thallium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Vanadium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Zinc	33	20	139703	06/27/08	EPA 3010A	EPA 6010B

Page 1 of 1 4.1

California Title 26 Metals						
Lab #: 204250		Project#:	2841			
Client: SOMA En	vironmental Engineering Inc.	Location:	5565 Tesla Rd, Livermore			
Field ID:	MWS-2	Diln Fac:	1.000			
Lab ID:	204250-004	Sampled:	06/24/08			
Matrix:	Water	Received:	06/25/08			
Units:	ug/L	Prepared:	06/26/08			

Analyte	Result	RL	Batch#	Analyzed	Prep	Analysis
Antimony	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Arsenic	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Barium	230	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Beryllium	ND	2.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cadmium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Chromium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Cobalt	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Copper	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Lead	ND	3.0	139703	06/27/08	EPA 3010A	EPA 6010B
Mercury	ND	0.20	139713	06/26/08	METHOD	EPA 7470A
Molybdenum	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Nickel	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Selenium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Silver	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Thallium	ND	10	139703	06/27/08	EPA 3010A	EPA 6010B
Vanadium	ND	5.0	139703	06/27/08	EPA 3010A	EPA 6010B
Zinc	ND	20	139703	06/27/08	EPA 3010A	EPA 6010B

Page 1 of 1 5.0

California Title 26 Metals				
Lab #:	204250	Location:	5565 Tesla Rd, Livermore	
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 3010A	
Project#:	2841	Analysis:	EPA 6010B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC448278	Batch#:	139703	
Matrix:	Water	Prepared:	06/26/08	
Units:	ug/L	Analyzed:	06/27/08	

Analyte	Result	RL	
Antimony	ND	10	
Arsenic	ND	5.0	
Barium	ND	5.0	
Beryllium	ND	2.0	
Cadmium	ND	5.0	
Chromium	ND	5.0	
Cobalt	ND	5.0	
Copper	ND	5.0	
Lead	ND	3.0	
Molybdenum	ND	5.0	
Nickel	ND	5.0	
Selenium	ND	10	
Silver	ND	5.0	
Thallium	ND	10	
Vanadium	ND	5.0	
Zinc	ND	20	

California Title 26 Metals					
Lab #:	204250	Engineering Inc.	Location:	5565 Tesla Rd, Livermore	
Client:	SOMA Environmental		Prep:	EPA 3010A	
Project#:	2841		Analysis:	EPA 6010B	
Matrix:	Water		Batch#:	139703	
Units:	ug/L		Prepared:	06/26/08	
Diln Fac:	1.000		Analyzed:	06/27/08	

Type: BS Lab ID: QC448279

Analyte	Spiked	Result	%REC	Limits
Antimony	500.0	492.8	99	80-120
Arsenic	100.0	104.5	105	80-120
Barium	2,000	1,919	96	80-120
Beryllium	50.00	53.71	107	80-120
Cadmium	50.00	49.10	98	80-120
Chromium	200.0	191.6	96	80-120
Cobalt	500.0	450.7	90	80-120
Copper	250.0	228.7	91	80-120
Lead	100.0	99.68	100	80-120
Molybdenum	400.0	407.6	102	80-120
Nickel	500.0	472.3	94	80-120
Selenium	100.0	96.23	96	80-120
Silver	50.00	47.78	96	80-120
Thallium	100.0	96.87	97	80-120
Vanadium	500.0	484.7	97	80-120
Zinc	500.0	480.0	96	80-120

Type: BSD Lab ID: QC448280

Spiked	Result	%REC	Limits	RPD	Lim
500.0	503.5	101	80-120	2	20
100.0	109.0	109	80-120	4	20
2,000	1,955	98	80-120	2	20
50.00	54.76	110	80-120	2	20
50.00	50.15	100	80-120	2	20
200.0	195.1	98	80-120	2	20
500.0	461.3	92	80-120	2	20
250.0	234.3	94	80-120	2	20
100.0	102.4	102	80-120	3	20
400.0	418.3	105	80-120	3	20
500.0	479.3	96	80-120	1	20
100.0	99.71	100	80-120	4	20
50.00	48.79	98	80-120	2	20
100.0	101.3	101	80-120	4	20
500.0	494.2	99	80-120	2	20
500.0	494.1	99	80-120	3	20
	500.0 100.0 2,000 50.00 200.0 200.0 500.0 250.0 100.0 400.0 500.0 100.0 50.00 100.0	500.0 503.5 100.0 109.0 2,000 1,955 50.00 54.76 50.00 50.15 200.0 195.1 500.0 461.3 250.0 234.3 100.0 418.3 500.0 479.3 100.0 99.71 50.00 48.79 100.0 101.3 500.0 494.2	500.0 503.5 101 100.0 109.0 109 2,000 1,955 98 50.00 54.76 110 50.00 50.15 100 200.0 195.1 98 500.0 461.3 92 250.0 234.3 94 100.0 102.4 102 400.0 418.3 105 500.0 479.3 96 100.0 99.71 100 50.00 48.79 98 100.0 101.3 101 500.0 494.2 99	500.0 503.5 101 80-120 100.0 109.0 109 80-120 2,000 1,955 98 80-120 50.00 54.76 110 80-120 50.00 50.15 100 80-120 200.0 195.1 98 80-120 500.0 461.3 92 80-120 250.0 234.3 94 80-120 100.0 102.4 102 80-120 400.0 418.3 105 80-120 500.0 479.3 96 80-120 100.0 99.71 100 80-120 50.00 48.79 98 80-120 100.0 101.3 101 80-120 500.0 494.2 99 80-120	500.0 503.5 101 80-120 2 100.0 109.0 109 80-120 4 2,000 1,955 98 80-120 2 50.00 54.76 110 80-120 2 50.00 50.15 100 80-120 2 200.0 195.1 98 80-120 2 500.0 461.3 92 80-120 2 250.0 234.3 94 80-120 2 100.0 102.4 102 80-120 3 400.0 418.3 105 80-120 3 500.0 479.3 96 80-120 1 100.0 99.71 100 80-120 1 50.00 48.79 98 80-120 2 100.0 101.3 101 80-120 4 500.0 494.2 99 80-120 2

California Title 26 Metals				
Lab #: 2042	250		Location:	5565 Tesla Rd, Livermore
Client: SOMA	A Environmental	Engineering Inc.	Prep:	EPA 3010A
Project#: 2841	L		Analysis:	EPA 6010B
Field ID:	ZZZZZZZZZ		Batch#:	139703
MSS Lab ID:	204240-004		Sampled:	06/25/08
Matrix:	Water		Received:	06/25/08
Units:	ug/L		Prepared:	06/26/08
Diln Fac:	1.000		Analyzed:	06/27/08

Type: MS Lab ID: QC448281

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<2.749	500.0	497.2	99	78-120
Arsenic	<0.7600	100.0	104.2	104	80-126
Barium	296.6	2,000	2,188	95	80-120
Beryllium	0.2261	50.00	53.30	106	80-120
Cadmium	<1.469	50.00	46.58	93	80-120
Chromium	<0.4838	200.0	186.6	93	80-120
Cobalt	< 0.5933	500.0	421.3	84	80-120
Copper	< 0.9723	250.0	225.9	90	80-120
Lead	3.608	100.0	96.64	93	77-120
Molybdenum	1.736	400.0	401.2	100	80-120
Nickel	<1.497	500.0	435.0	87	79-120
Selenium	3.963	100.0	97.33	93	80-125
Silver	<1.605	50.00	47.00	94	72-120
Thallium	3.573	100.0	95.79	92	77-120
Vanadium	<0.9127	500.0	479.2	96	80-120
Zinc	<4.210	500.0	465.7	93	78-122

Type: MSD Lab ID: QC448282

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	500.0	494.0	99	78-120	1	20
Arsenic	100.0	104.4	104	80-126	0	20
Barium	2,000	2,197	95	80-120	0	20
Beryllium	50.00	53.27	106	80-120	0	20
Cadmium	50.00	46.36	93	80-120	0	20
Chromium	200.0	186.9	93	80-120	0	20
Cobalt	500.0	418.9	84	80-120	1	20
Copper	250.0	224.9	90	80-120	0	20
Lead	100.0	96.64	93	77-120	0	20
Molybdenum	400.0	399.5	99	80-120	0	20
Nickel	500.0	436.1	87	79-120	0	20
Selenium	100.0	98.55	95	80-125	1	20
Silver	50.00	47.09	94	72-120	0	20
Thallium	100.0	95.78	92	77-120	0	20
Vanadium	500.0	479.1	96	80-120	0	20
Zinc	500.0	463.3	93	78-122	1	20

California Title 26 Metals					
Lab #:	204250		Location:	5565 Tesla Rd, Livermore	
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD	
Project#:	2841		Analysis:	EPA 7470A	
Analyte:	Mercury		Diln Fac:	1.000	
Type:	BLANK		Batch#:	139713	
Lab ID:	QC448316		Prepared:	06/26/08	
Matrix:	Water		Analyzed:	06/26/08	
Units:	ug/L				

Result	RL	
ND	0.20	

Page 1 of 1

California Title 26 Metals				
Lab #:	204250	Location:	5565 Tesla Rd, Livermore	
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD	
Project#:	2841	Analysis:	EPA 7470A	
Analyte:	Mercury	Batch#:	139713	
Matrix:	Water	Prepared:	06/26/08	
Units:	ug/L	Analyzed:	06/26/08	
Diln Fac:	1.000			

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC448317	5.000	4.500	90	80-120		
BSD	QC448318	5.000	4.700	94	80-120	4	20

California Title 26 Metals								
Lab #: 2042	250	Location:	5565 Tesla Rd, Livermore					
Client: SOMA	Environmental Engineering Inc.	Prep:	METHOD					
Project#: 2841		Analysis:	EPA 7470A					
Analyte:	Mercury	Batch#:	139713					
Field ID:	ZZZZZZZZZ	Sampled:	06/25/08					
MSS Lab ID:	204233-001	Received:	06/25/08					
Matrix:	Water	Prepared:	06/26/08					
Units:	ug/L	Analyzed:	06/26/08					
Diln Fac:	1.000							

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC448323	<0.04502	5.000	4.970	99	77-126		
MSD	QC448324		5.000	4.780	96	77-126	4	20