RECEIVED

By dehloptoxic at 8:50 am, Sep 12, 2006

Project: 2841

September 11, 2006

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Fuel Leak Case No. RO0002585, Wente Winery

Site Located at 5565 Tesla Road, Livermore, California

Dear Mr. Wickham:

SOMA's "Third Quarter 2006 Groundwater Monitoring Report" for the subject site has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have any questions or comments.

Sincerely,

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

cc: Mr. Aris Krimetz w/report enclosure

Third Quarter 2006 Groundwater Monitoring Report

WENTE WINERY
5565 Tesla Road
Livermore, California

September 11, 2006

Project 2841

Prepared for

Mr. Aris Krimetz 5565 Tesla Road Livermore, California

Prepared by

SOMA Environmental Engineering, Inc. 6620 Owens Drive, Suite A Pleasanton, California

CERTIFICATION

This report has been prepared by SOMA Environmental Engineering, Inc. on behalf of Mr. Aris Krimetz, for Wente Winery, which is located at 5565 Tesla Road, Livermore, California to comply with the requirements of the Alameda County Environmental Health Services and the California Regional Water Quality Control Board for the Third Quarter 2006 groundwater monitoring event.

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

Certification Statement

Claimant Name	lente	Vice C	<u>hairm</u> an
5565 Tesla Street Address	RA L,		94550 Zip

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report were prepared under my direction and to the best of my knowledge true and correct.

Signature Signature

9-11-06

Date

TABLE OF CONTENTS

CERT	ΓΙFICATION	1
	LE OF CONTENTS	
	OF FIGURES	
	OF TABLES	
	OF APPENDICES	
	INTRODUCTION	
1.1		
1.2 1.3		
	RESULTS	
2.1		3
2.2 2.3		
3.0	CONCLUSIONS AND RECOMMENDATIONS	5

List of Figures

Figure 1: Site vicinity map.

Figure 2: Map showing locations of newly installed wells, temporary well

boreholes, and previous soil borings installed by Clayton Group.

Figure 3: Groundwater elevation contour map in feet. August 15, 2006.

List of Tables

Table 1: Historical Groundwater Elevation Data and Analytical Results for

Hydrocarbons, BTEX, & MtBE

Table 2: Historical Groundwater Analytical Results for Gasoline Oxygenates &

Lead Scavengers

Table 3: Historical Analytical Results for Volatile Organic Compounds

Analyses in Groundwater Samples

Table 4: Historical Groundwater Analytical Results for Metals

List of Appendices

Appendix A: SOMA's Groundwater Monitoring Procedures

Appendix B: Table of Elevations & Coordinates on Monitoring Wells Measured by

Harrington Surveys, Inc., and Field Measurements of Physical,

Chemical & Biodegradation Parameters of the Groundwater Samples

at Time of Sampling

Appendix C: Chain of Custody Form and Laboratory Report

Appendix D: Specifications for Off-site well at 5443 Tesla Road

1.0 INTRODUCTION

This monitoring report has been prepared by SOMA Environmental Engineering, Inc. (SOMA) on behalf of Mr. Aris Krimetz, for Wente Winery, which is located at 5565 Tesla Road, Livermore, California. Figure 1 shows the location of the Site.

This report summarizes the results of the Third Quarter 2006 groundwater monitoring event conducted at the Site on August 15, 2006. This report also includes the laboratory analytical results on the groundwater samples.

A natural attenuation study was conducted during this monitoring event. The objective of the natural attenuation study was to evaluate whether the petroleum hydrocarbons found in the groundwater were biodegrading.

These activities were performed in accordance with the general guidelines of the California Regional Water Quality Control Board (CRWQCB) and the Alameda County Environmental Health Services (ACEHS). Appendix A details the groundwater monitoring procedures used during this monitoring event.

1.1 Site Description

West of the winery buildings is an enclosed maintenance and agricultural storage area with a former underground storage tank (UST) pit that contained one gasoline and one diesel UST. The USTs were replaced with three aboveground storage tanks (ASTs), with a total capacity of 4,000 gallons. An on-site potable water supply well provides backup potable drinking water and processed water for the winery facility. This water supply well is located south of and presumably upgradient from the former UST area.

1.2 Previous Activities and Investigations

In 1987, two fuel USTs were removed from the Site. There is no information regarding the condition of the tank or evidence of leakage. In 1990, the ACEHS issued a notice of violation (NOV) for discharging waste sludge into an open ditch adjacent to a former steam-cleaning bay.

Clayton Environmental Consultants (Clayton) conducted a Phase I Environmental Site Assessment of the maintenance and storage areas. The Phase I study revealed the existence of the former USTs, former waste discharge area, and a number of agricultural storage areas.

In 2003, Clayton performed a subsurface investigation at the Site to implement the recommendations of the Phase I report. As shown in Figure 2, boreholes were advanced near the ASTs and near other RECs. The study indicated that a fuel release in the former UST area impacted the groundwater. In the former steam-cleaning bay, gasoline and motor oil-range petroleum hydrocarbons were detected in the groundwater. Figure 2 illustrates the locations of the soil borings.

Wente then retained SOMA to review Clayton's report. SOMA subsequently submitted a workplan that included a vicinity well survey, a regional hydrogeologic study, and an additional site characterization. The site characterization included sampling and evaluating the water quality of the on-site water supply well, installing monitoring wells, and additional lithologic characterization to better define the shallow/perched water-bearing zone.

On May 5, 2005, SOMA oversaw Woodward Drilling (Woodward) install three monitoring wells, MW-1 through MW-3, as shown in Figure 2. On May 20, 2005, Woodward developed the newly installed wells.

On June 24, 2005, SOMA oversaw Woodward drill two confirmatory boreholes (B-9 and B-10). The purpose of this investigation was to confirm the presence of petroleum hydrocarbons in the soil and groundwater next to the former USTs and to evaluate the current soil and groundwater conditions in close proximity of the former steam cleaning area. The results of this investigation are presented in SOMA's report entitled "Phase I: Soil and Groundwater Investigation, Wente Winery, at 5565 Tesla Road, Livermore, California," dated July 25, 2005.

1.3 Regional Hydrogeologic Features

The subject site is located in the Livermore Valley Groundwater Basin (LVGB). The LVGB consists of a structural trough that is an important source of irrigation water for the Livermore Valley. In the western part of the basin up to 40 feet of clay caps these water-bearing sediments. The water-bearing zone is predominantly a permeable unit consisting of sand and gravel in a clayey sand matrix. The potentiometric surface of valley-fill groundwater near the Site is at approximately 20 to 30 feet below ground surface (bgs).

The groundwater flow in the valley-fill and underlying Livermore Formations is to the northwest/north. The nearby water supply wells west of and presumably downgradient from the Site are potentially exposed to the on-site contaminant plume.

There is one on-site well and five wells in the properties immediately west of and presumably downgradient from the Site. North/northeast of and presumably up/cross gradient from the subject site there are seven wells within 2,000 feet of the investigation area. Approximately 1,800 feet south of the Site there is another water supply well. Available records indicate that six of the seven wells located north/northeast of and within 2,000 feet of the Site may be used as drinking water wells.

2.0 Results

The following sections provide the results of the field measurements and laboratory analyses for the August 15, 2006 groundwater monitoring event.

2.1 Field Measurements

Table 1 presents the depths to groundwater, as well as the corresponding groundwater elevations for the monitoring wells. The depths to groundwater ranged from 7.54 feet in well MW-1 to 8.53 feet in well MW-3. The corresponding groundwater elevations ranged from 607.62 feet in well MW-1 to 608.79 feet in well MW-3.

The groundwater elevation contour map is displayed in Figure 3. The groundwater flows north to northwesterly across the Site, at a gradient of approximately 0.005 feet/feet. The flow direction has remained consistent; however, the groundwater gradient has decreased.

Refer to Table 1 for the historical site-wide groundwater elevation trends.

The field notes in Appendix B show the detailed measurements of the physical and chemical parameters of the groundwater for each well during this monitoring event. The more positive the redox potential of an electron acceptor, the more energetically favorable is the reaction utilizing that electron acceptor. The most energetically preferred electron acceptor for redox reactions is dissolved oxygen (DO). Evaluating the distribution of electron acceptors can provide evidence of where and to what extent hydrocarbon biodegradation is occurring.

DO concentrations ranged from 8.30 mg/L in well MW-3 to 10.60 mg/L in the offsite supply well. Oxygen reduction potential (ORP) showed positive redox potentials throughout the Site. As previously noted, positive redox potentials are more energetically favorable in utilizing electron acceptors during chemical reactions. This promotes the removal of organic mass from the contaminated groundwater by indigenous bacteria in the subsurface during the release of the transfer of electrons.

2.2 Sampling of Off-Site Well at 5443 Tesla Road

On August 15, 2006, SOMA contacted Wente to inform them that the off-site well needed to be sampled. SOMA's field personnel began extracting groundwater from the well using the downhole pump within the well. During purging, measurements for DO, pH, temperature, electrical conductivity, and turbidity were recorded using a U-10 meter. Measurements for ORP were recorded using a hand held Hanna ORP meter. A groundwater sample was collected when all of the field parameters stabilized. This occurred when approximately 36 gallons of groundwater had been purged.

The field measurements taken from the supply well during purging activities is shown in Appendix B. Based on the information supplied by Wente, the total depth of this well is 125 feet bgs. In 1972 the pump was installed at 100 feet bgs. The water from this well is used solely for irrigation of the vineyards. The letter

referencing the off-site supply well and piping diagram of the pump are included in Appendix D.

2.3 Laboratory Analysis

The historical total petroleum hydrocarbons as gasoline (TPH-g), total petroleum hydrocarbons as diesel (TPH-d), total petroleum hydrocarbons as motor oil (TPH-mo), benzene, toluene, ethylbenzene, and total xylenes (BTEX), and Methyl tertiary Butyl Ether (MtBE) groundwater analytical results are shown in Table 1.

All TPH-g, TPH-mo, BTEX, and MtBE constituents were below the laboratory reporting limit throughout the Site.

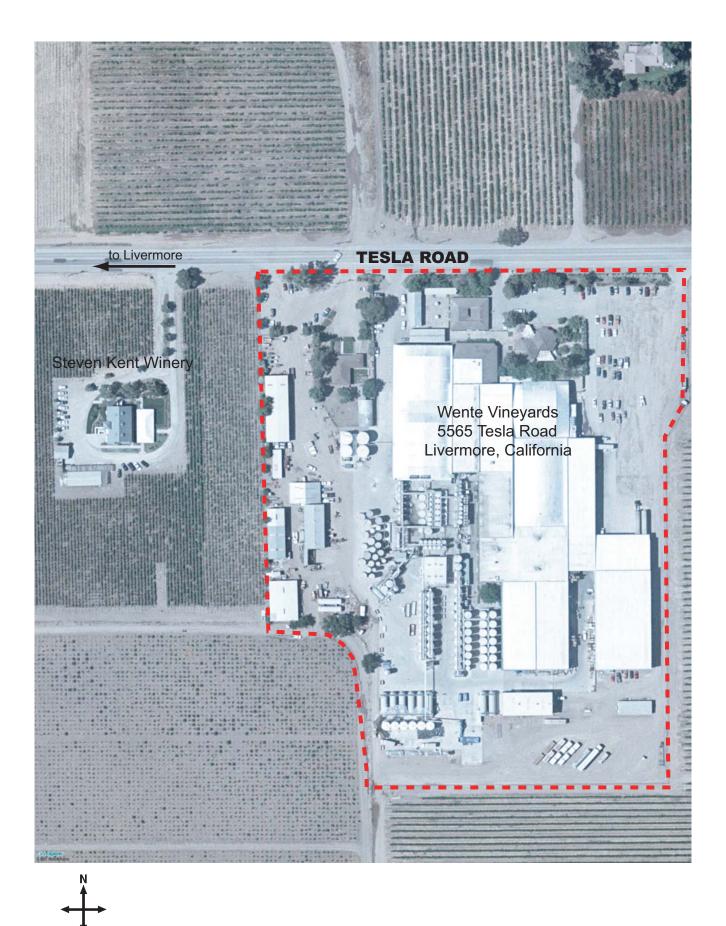
TPH-d was detected in wells MW-3 and the on-site supply well at 76 ug/L and 95 ug/L, respectively; TPH-d was below the laboratory reporting limit in the off-site supply well and wells MW-1 and MW-2. However, the TPH-d analytical results in the groundwater samples collected from wells MW-3 and the on-site supply well varied due to the presence of irregular chromatographic patterns, the presence of heavier hydrocarbons, and analytical peaks during laboratory testing. The laboratory report is shown in Appendix C and provides further clarification on the variations.

Table 2 shows the analytical results for gasoline oxygenates and lead scavengers. All gasoline oxygenates and lead scavengers were below the laboratory reporting limit in all of the groundwater samples collected during this monitoring event.

Table 3 shows the historical concentrations of volatile organic compounds (VOCs) in the groundwater. Tetrachloroethene, 1,1,1-Trichloroethane, Cis-1,2-dichloroethene, Trans-1,2-dichloroethene, vinyl chloride, 1,2-Dichloropropane, and 1,1-Dichloroethene were all below the laboratory reporting limit in the groundwater samples collected from the on and off-site supply wells. All other VOCs were also below the laboratory reporting throughout the Site.

Table 4 shows the historical concentrations of metals in the groundwater. Cadmium, chromium, and lead were all below the laboratory reporting limit in the samples collected from both supply wells. Nickel was detected at 34 ug/L in the onsite supply well and was below the laboratory reporting limit in the off-site supply well. Zinc was detected in the on-site supply well and off-site supply well at 60 ug/L and 1,200 ug/L, respectively.

Appendix C includes the laboratory report and chain-of-custody (COC) form for this monitoring event.


3.0 Conclusions and Recommendations

The results of the Third Quarter 2006 groundwater monitoring event can be summarized as follows:

- The groundwater flow direction has remained north to northwesterly across the Site; however, the groundwater gradient has decreased.
- Based on the results of the bio-attenuation study, indigenous bacteria have effectively removed organic mass from the impacted groundwater in the subsurface. This is evidenced by the high DO levels and positive redox potentials observed throughout the Site.
- All hydrocarbons, with the exception of trace TPH-d concentrations in well MW-3 and the on-site supply well, as well as, all gasoline oxygenates and VOCs were below the laboratory reporting limit. Zinc was detected in both supply wells. The maximum zinc concentration was detected in the off-site supply well. During this monitoring event nickel was detected for the first time in the on-site supply well.
- Based on the Cal DHS primary MCL level for summary of drinking water screening levels for human toxicity, nickel has a rating of 100 ug/L; zinc has a rating of 5,000 ug/L. Based on the criteria, both nickel and zinc are below these levels in the supply wells.
- In previous monitoring events, chlorinated solvents, which included chloromethane and chloroethane, were detected in the groundwater. However during this monitoring event no chlorinated solvents were detected.
- Based on the previous detection of tetrahydrofuran in the off-site supply well, on August 23, 2006 the ACEHS requested analysis of this compound. However, tetrahydrofuran was not detected in either of the supply wells during this monitoring.

Based on the results from this monitoring event, SOMA recommends that a no further action status be adopted in connection with the petroleum hydrocarbon and VOC contamination in the groundwater at this site. Upon concurrence from the ACEHS, all site wells will be properly decommissioned by SOMA.

FIGURES

ENVIRONMENTAL ENGINEERING, INC. SAN RAMON CA (925) 244 6600

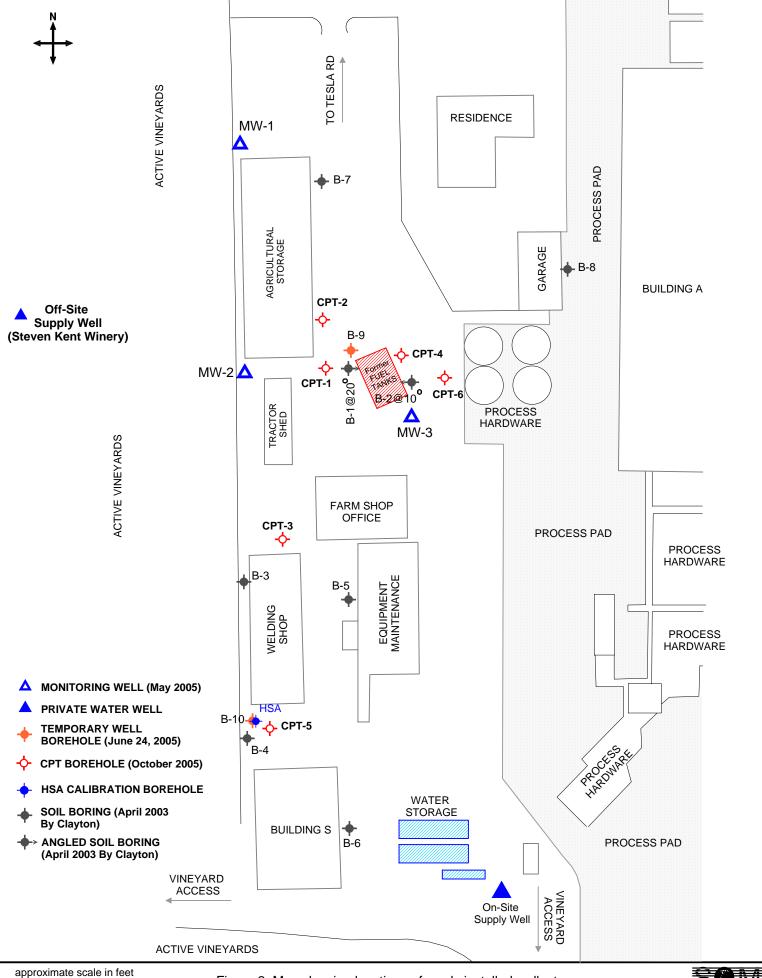


Figure 2: Map showing locations of newly installed wells, temporary well boreholes, and previous soil borings installed by Clayton group.

50

25

0

ENVIRONMENTAL ENGINEERING, INC. SAN RAMON CA (925) 244 6600

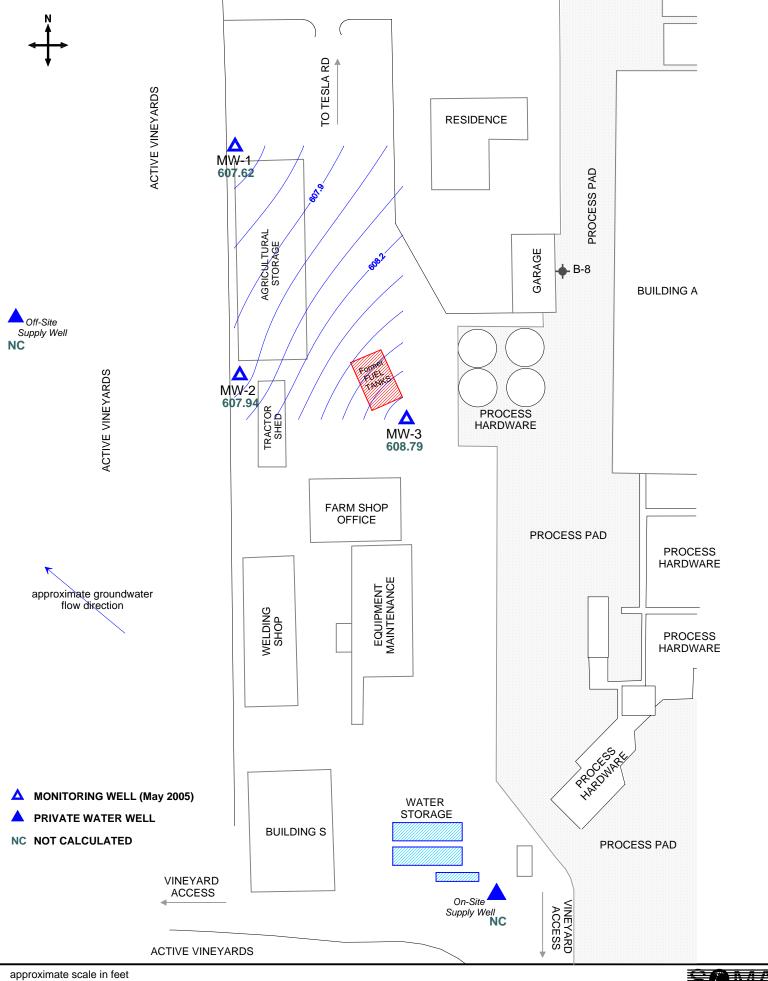


Figure 3: Groundwater elevation contour map in feet. August 15, 2006.

0

25

50

ENVIRONMENTAL ENGINEERING, INC. SAN RAMON CA (925) 244 6600

TABLES

Table 1 Historical Groundwater Elevation Data & Analytical Results Hydrocarbons, BTEX, & MtBE Wente Vineyards

5565 Tesla Road, Livermore, California

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)
MW-1	5/20/2005	615.16	6.10	609.06	<200	<50	320 YZ	<0.5	<0.5	<0.5	<1.0	<0.5
	9/13/2005	615.16	9.19	605.97	<50	.<50	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	615.16	8.90	606.26	<50	150 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5
[2/13/2006	615.16	6.29	608.87	<50	<50	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	615.16	5.23	609.93	<50	70 HY	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	615.16	7.54	607.62	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2	5/20/2005	616.03	6.69	609.34	<200	<50	<300	<0.5	<0.5	<0.5	<1.0	<0.5
	9/13/2005	616.03	9.30	606.73	<50	<50	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	616.03	9.20	606.83	<50	<50	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	616.03	6.52	609.51	<50	76.5 D35	657 D06	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	616.03	5.58	610.45	<50	50 HY	<300	<0.5	< 0.5	<0.5	<0.5	<0.5
	8/15/2006	616.03	8.09	607.94	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3	5/20/2005	617.32	7.04	610.28	<200	680	<300	<0.5	1.58	<0.5	<1.0	<0.5
	9/13/2005	617.32	9.61	607.71	<50	300 Y	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	617.32	9.60	607.72	<50	150 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	617.32	7.06	610.26	<50	<50	322 ^{D06}	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	617.32	5.94	611.38	<50	61 HY	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	617.32	8.53	608.79	<50	76 HY	<300	<0.5	<0.5	<0.5	<0.5	<0.5
B-9	6/24/2005	NA	NA	NA	1,850,000	540,000 LY	<24,000	3,820	114,000	40,400	177,700	<462
B-10	CIDAIRDOL	NA	NA	NA	<200	<50	<300	<0.5	4.23	1.10	4.03	<0.5
B-10	6/24/2005	IVA	INA	INA	~200	100	-300	40.3	4.20		4.05	-0.0
Onsite Supply Well	5/20/2005	NS	NM	NC	<200	<50	<300	<0.5	0.85	<0.5	<1.0	<0.5
	11/28/2005	NS	NM	NC	<50	100 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	NS	NM	NC	<50	91.8	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	NS	NM	NC	<50	52 Y	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	NS	NM	NC	<50	95 YZ	<300	<0.5	<0.5	<0.5	<0.5	<0.5

Table 1

Historical Groundwater Elevation Data & Analytical Results Hydrocarbons, BTEX, & MtBE

Wente Vineyards

5565 Tesla Road, Livermore, California

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)
Offsite Supply Well	5/20/2005	NS	NM	NC	<200	<50	<300	0.77	1.08	<0.5	<1.0	<0.5
	11/28/2005	NS	NM	NC	<5,380	120 YZ	<300	<53.8	<215	<53.8	<108	<53.8
	1/16/2006	NS	9.65	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	NS	NM	NC	<50	<50	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5

Notes:

- 1) The wells were installed on May 5, 2005 and developed by Woodward Drilling on May 20, 2005.
- A grab sample was collected after the well development on May 20, 2005.
- 3) A grab sample was also collected from the water well, southeast of the water stoarge units on May 20, 2005.
- 4) The wells were surveyed by Harrington Surveys of Walnut Creek, CA on June 5, 2005.
- 5) A grab sample was collected from the borings on June 24, 2005.
- 6) The groundwater elevation for the May 2005 sampling was based on the survey data of Harrington Surveys.
- The supply wells were first added to the quarterly events in the Fourth Quarter 2005.

The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt.

Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.

NA: Not Applicable. B-9 and B-10 are boring locations and are not surveyed.

NC: Not calculated.

NM: Not Measured

NS: Not surveyed. The onsite well is a private well.

TPH-d: Total hydrocarbons as diesel TPH-g: Total hydrocarbons as gasoline TPH-mo:Total hydrocarbons as motor oil

H: Heavier hydrocarbons contributed to the quanitation

L: Lighter weight hydrocarbons contributed to the quanitation

Y: Sample exhibits chromatographic pattern which does not resemble standard

Z: Sample exhibits unknown single peaks or peaks.

Not Detected above the laboratory reporting limit.

D35: Sample does not display fuel pattern. Sample contains several discrete peaks. (1Q06 diesel)

D06: Sample chromatographic pattern does not resemble fuel standard used for quantitation. (1Q06, motor oil)

Table 2
Historical Groundwater Analytical Results
Gasoline Oxygenates & Lead Scavengers
Wente Vineyards

5565 Tesla Road, Livermore, California

Monitoring Well	Date	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)
MW-1	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	10,300						Control of the Control
MW-2	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
etolika eta eta							
MW-3	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Onsite Supply Well	11/28/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
5 N # 180 8F	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5

Table 2 Historical Groundwater Analytical Results Gasoline Oxygenates & Lead Scavengers

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring	Date	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
Well		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Offsite Supply Well	11/28/2005	<269	<53.8	<53.8	<215	<53.8	<215
	1/16/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5

Notes:

- 1) A grab sample was collected after well development on May 20, 2005.
- 2) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt. Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- <: Not Detected above the laboratory reporting limit.

Gasoline Oxygenates:

TBA: tertiary Butyl Alcohol
DIPE: Di-Isopropyl Ether
ETBE: Ethyl tertiary Butyl Ether
TAME: Methyl tertiary Amyl Ether

Lead Scavengers: EDB: 1,2-Dibromoethane

1,2-DCA: 1,2-Dichloroethane

Table 3 Historical Analytical Results For Volatile Organic Compound Analyses in Groundwater Samples

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring Well	Date	PCE (μg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	Vinyl Chloride (μg/L)	1,2-DCP (μg/L)	1,1-DCE (μg/L)
MW-1	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
- 1	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
			E CONTRACTOR OF THE PARTY OF TH		Study & Spilling	A TRANSPORT		
MW-2	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
** Abording the state 1200	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Onsite		10000		20 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	0000 5000	* 200 TV 1 TWEET	200000000000000000000000000000000000000
Supply Well	11/28/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Table 3

Historical Analytical Results For Volatile Organic Compound **Analyses in Groundwater Samples**

Wente Vineyards

5565 Tesla Road, Livermore, California

Monitoring Well	Date	PCE (μg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	Vinyl Chloride (μg/L)	1,2-DCP (μg/L)	1,1-DCE (μg/L)
Offsite Supply Well	+5000C0VCC20C4CXXXXXXX		<53.8	<53.8	<53.8	<53.8	<53.8	<53.8
	1/16/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	8/15/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Notes:

- 1) A grab sample was collected after well development on May 20, 2005. However, the first time volatile organic compounds (VOCs) were analyzed was during the Third Quarter 2005 monitoring event.
- 2) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt. Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- <: Not detected above the laboratory reporting limit.

Volatile organic compounds (VOCs)

tetrachloroethene PCF:

1,1,1-trichloroethane

cis-1,2-DCE: cis-1,2-dichloroethene

trans-1,2-DCE: trans-1,2-dichloroethene

vinyl chloride 1,1-DCE:

1,1-dichloroethene

1,2-DCP:

TCE:

1,2-dichloropropane

Table 4 Historical Groundwater Analytical Results Metals

Wente Vineyards 5565 Tesla Road, Livermore, California

Monitoring Well	Date	Cadmium (μg/L)	Chromium (μg/L)	Lead (μg/L)	Nickel (μg/L)	Zinc (μg/L)
MW-1	9/13/2005	<5.0	<10	<3.0	<20	27
MW-2	9/13/2005	<5.0	<10	<3.0	<20	23
MW-3	9/13/2005	<5.0	<10	<3.0	<20	<20
						200
B-10	6/24/2005	12	930	82	3,600	800
				di di Sandan		
Onsite Supply Well	11/28/2005	<5.0	<10	<3.0	<20	62
	2/13/2006	<5.0	<10	<3.0	<20	<20
	5/5/2006	<5.0	<10	26	<20	<20
	8/15/2006	<5.0	<10	<3.0	34	60
Offsite Supply Well	11/28/2005	<5.0	<10	<3.0	<20	830
100 91 400 400 400	1/16/2006	<5.0	<10	8.30	<20	650
	2/13/2006	<5.0	15	<3.0	<20	1700
	5/5/2006	<5.0	<10	26	<20	750
2.000	8/15/2006	<5.0	<10	<3.0	<20	1,200

- 1) Metals were tested at boring B-10 on June 24, 2005.
- 2) Due to the results from B-10, the Alameda County Environmental Health Services requested that SOMA further analyze the wells for metals in a letter dated Sept. 19, 2005. SOMA collected grab samples from the wells on September 29, 2005.
- 3) The only time metals were tested in wells MW-1 to MW-3 was in the Third Quarter 2005.
- 4) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt.Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- <: Not Detected above the laboratory reporting limit.

Appendix A

SOMA's Groundwater Monitoring Procedures

Field Activities

On August 15, 2006, SOMA's field crew conducted a groundwater monitoring event in accordance with the procedures and guidelines of the Alameda County Environmental Health Services and the California Regional Water Quality Control Board. Figure 2 shows the locations of the wells.

Water Level Measurements

On August 15, 2006, a total of three monitoring wells (MW-1 to MW-3) were measured for depth to groundwater. On August 15, 2006, additional field measurements and grab groundwater samples were collected from all of the monitoring wells, as well as, an onsite supply well and off-site supply well.

Prior to measuring the groundwater depth at each monitoring well, equalization with the surrounding aquifer was achieved. The well cap was removed from each well, and the pressure in each well was then allowed to dissipate. This allowed for a more stable water table level within the well. After a few minutes, and once the water level in the well stabilized, the depth to groundwater in each monitoring well was measured from the top of the casing to the nearest 0.01 foot using an electric sounder.

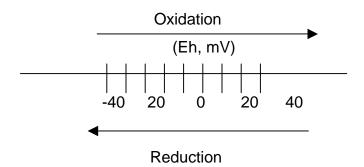
The depth to groundwater in each monitoring well was measured from the top of the casing to the nearest 0.01 foot using an electric sounder. Harrington Surveys Inc., of Walnut Creek, surveyed the Site on June 3, 2005. The survey datum was based on an elevation of 566.57 NAVD 88. Top of casing elevation data and the depth to groundwater in each monitoring well was used to calculate the groundwater elevation.

The survey data is included in Appendix B for the monitoring wells. The survey was conducted to comply with EDF requests for electronic reporting of data to the State Water Resources Control Board (SWRCB) Database.

Purging and Field Measurements

Prior to collecting samples, each monitoring well was purged using a disposable polyethylene bailer. At the supply wells, groundwater was extracted using an active pump within the well.

During the purging activities, groundwater parameters such as DO, pH, temperature, EC, and turbidity were measured using a Horiba, Model U-10 multiparameter instrument. ORP was measured using a hand held Hanna ORP meter. The equipment was calibrated at the Site using standard solutions and procedures provided by the manufacturer.


The pH of groundwater has an effect on the activity of microbial populations in the groundwater. The groundwater temperature affects the metabolic activity of

bacteria. The groundwater conductivity (EC) is directly related to the concentration of ions in solution.

There is a strong correlation between the turbidity level and the biological oxygen demand of natural water bodies. The main purpose for checking the turbidity level is to provide a general overview of the extent of the suspended solids in the groundwater.

ORP (oxidation reduction potential) is the measure of the potential for an oxidation or reduction process to occur. In the oxidation process a molecule or ion loses one or several electrons. In the reduction process a molecule or ion gains one or several electrons. The unit of the redox potential is the Volt or m-Volt. The most important redox reaction in petroleum contaminated groundwater is the oxidation of petroleum hydrocarbons in the presence of bacteria and free molecular oxygen. Because the solubility of O_2 in water is low (9 mg/L at 25 °C and 11 mg/L at 5 °C), and because the rate of O_2 replenishment in subsurface environments is limited, DO can be entirely consumed, when the oxidation of only a small amount of petroleum hydrocarbons occurs.

Oxidation of petroleum hydrocarbons can still occur, when all the dissolved O_2 in the groundwater is consumed, however, the oxidizing agents (i.e., the constituents that undergo reduction) now become NO_3 , MnO_2 , Fe $(OH)_3$, SO_4^{2-} and others (Freeze and Cherry, 1979). As these oxidizing agents are consumed, the groundwater environment becomes more and more reduced. If the process proceeds far enough, the environment may become so strongly reduced that the petroleum hydrocarbons may undergo anaerobic degradation, resulting in the production of methane and carbon dioxide. The concept of oxidation and reduction in terms of changes in oxidation states is illustrated below.

The purging of the wells continued until the parameters for DO, pH, temperature, EC, turbidity, and redox stabilized or three casing volumes were purged.

Sampling

On August 15, 2006, for sampling purposes, after purging, a disposable polyethylene bailer was used to collect sufficient samples from each monitoring

well for laboratory analyses. Samples from the supply wells were collected using the active downhole pumps.

The groundwater sample was transferred to four 40-mL VOA vials and preserved with hydrochloric acid. The vials were then sealed to prevent the development of air bubbles within the headspace. The groundwater sample was also transferred into a one-liter non-preserved amber glass container. The groundwater samples from each supply well were further transferred into a 250-milliliter poly container. All groundwater samples were placed in an ice chest along with a chain of custody (COC) form. On August 15, 2006, upon completion of the monitoring event, SOMA's field crew delivered the groundwater samples to Curtis and Tompkins in Berkeley, California.

Laboratory Analysis

Curtis and Tompkins, a state certified laboratory, analyzed the groundwater samples at both the monitoring wells and supply wells for TPH-g, TPH-d, TPH-mo, BTEX, MtBE, gasoline oxygenates, lead scavengers, and volatile organic compounds (VOCs). The supply wells were further monitored for metals.

EPA Method 5030B was used to prepare the samples for TPH-g, BTEX, MtBE, gasoline oxygenates, lead scavengers, and VOCs; and analyzed using EPA Method 8260B. EPA Method 3520C was used to prepare the samples for TPH-d and TPH-mo; and analyzed using Method 8015B. Metals, which included cadmium, chromium, lead, nickel, and zinc were prepared using EPA Method 3010A and analyzed using EPA Method 6010B. The metals were also filtered at the laboratory to verify a more accurate reading.

Appendix B

Table of Elevations & Coordinates on Monitoring Wells
Measured by Harrington Surveys, Inc.,

and

Field Measurements of Physical, Chemical, & Biodegradation
Parameters of the Groundwater Samples
at Time of Sampling

Harrington Surveys Inc.

Land Surveying & Mapping

2278 Larkey Lane, Walnut Creek, Ca. 94597 Phone (925)935-7228 Fax (925)935-5118 Cell (925)788-7359 E-Mail (ben5132@pacbell.net)

SOMA ENVIRONMENTAL ENGINEERING 2680 BISHOP DR. # 203 SAN RAMON, CA. 94583 JUNE 05, 2005

ATTN: ELENA

5565 TESLA ROAD, LIVERMORE CA.

SURVEY REPORT

CONTROLING POINTS FOR SURVEY:

CALIFORNIA HPGN MONUMENT 04 FL, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NAD 83. NORTH 2,085,087.52 - EAST 6,213,127.18, LAT. N37°42'56.31172" W121°42'18.00018". ELEVATION 566.57, NAVD 88,

CALIFORNIA HPGN MONUMENT 04 FK, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NORTH 2,055,842.44 - EAST 6,189,298.07, LAT N37°38'02.07933", W121°47'09.51080" ELEVATION 637.80NAVD 88,

INSTRUMENTATION:

TRIMBLE GPS, MODEL 5800 AND LEICA TCA 1800, 1" HORZ. & VERT. OBSERVATION: EPOCH = 180.

FIELD SURVEY: JUNE 03, 2005.

BEN HARRINGTON PLS 5132

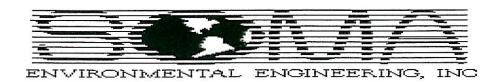
HARRINGTON SURVEYS INC. 2278 LARKEY LANE, WALNUT CREEK CA. 925-935-7228


JOB#2528 6-05-05

	IORE, CA.			928	5-935-7228	
	NORTH	EAST	ELEV.	LATITUDE	LONGITUDE	
	2085287.52	6213127.18	566.57	37ø42'56.31176"N	121ø42'18.00017"W	FD. 04 FL HPGN
2	2085287.52	6213127.18	566.57	37ø42'56.31175"N	121ø42'18.00016"W	FD. 04 FL HPGN
10	2066759.37	6206469.09	615.16	37ø39'52.28484"N	121ø43'37.83506"W	MW-1 V N. PVC
11	2066759.71	6206469.01	615.52	37ø39'52.28825"N	121ø43'37.83609"W	MW-1 PUNCH N RIM
12	2066753.85	6206471.51	615.55	37ø39'52.23057"N	121ø43'37.80414"W	BLG COR
13	2066753.67	6206512.16	615.56	37ø39'52.23412"N	121ø43'37.29847"W	BLG COR
14	2066628.15	6206469.65	616.03	37ø39'50.98763"N	121ø43'37.80672"W	MW-2 V N. PVC
15	2066628.55	6206469.61	616.38	37ø39'50.99158"N	121ø43'37.80724"W	MW-2 PUNCH N. RIM
16	2066632.94	6206516.64	616.48	37ø39'51.04109"N	121ø43'37.22314"W	5.0 E BLG COR
17	2066600.85	6206566.19	617.32	37ø39'50.73030"N	121ø43'36.60162"W	MW-3 V N. PVC
18	2066601.16	6206566.10	617.54	37ø39'50.73332"N	121ø43'36.60286''W	MW-3 PUNCH N. RIM
19	2066610.25	6206564.10	617.64	37ø39'50.82300"N	121ø43'36.62917"W	FC COR
20	2066604.40	6206549.81	617.66	37ø39'50.76325"N	121ø43'36.80598"W	FC COR
21	2066629.00	6206539.65	617.75	37ø39'51.00516"N	121ø43'36.93629"W	FC COR
22	2066634.86	6206554.19	617.86	37ø39'51.06493"N	121ø43'36.75646"W	FC COR
3	2080138.47	6208815.78	552.46	37ø42'04.85555"N	121ø43'10.81967"W	FD. Z 927
4	2080138.48	6208815.77	552.45	37ø42'04.85566"N	121ø43'10.81976"W	FD. Z 927
5	2055842.44	6189298.07	637.79	37ø38'02.07930"N	121ø47'09.51084"W	FD4 FK HPGN
6	2055842.43	6189298.07	637.82	37ø38'02.07924"N	121ø47'09.51088"W	FD4 FK HPGN
7	2066813.66	6206542.08	615.00	37ø39'52.83104"N	121ø43'36.93627"W	SET RB\GATE
8	2066813.64	6206542.08	614.98	37ø39'52.83084"N	121ø43'36.93616"W	SET RB\GATE
9	2066806.93	6206470.38	615.04	37ø39'52.75518"N	121ø43'37.82678"W	SET 6.D NW YARD
23	2066806.93	6206470.38	615.07	37ø39'52.75523"N	121ø43'37.82680"W	SET 6.D NW YARD
-						1
						CO LAND C
						HARM
						11/10/17/ 31
						5132
						16-30-01
						OF CALIFORNIA

Well No.:	Mu	1-1			Ρ	roject No.:	2841
Casing Diameter:		2	inch			Address:	Wente Vineyards
Depth of Well:	14-	80	ft				5565 Tesla Rd, Livermore
Top of Casing Elevation:	615	-16	ft			Date:	8/15/06
Depth to Groundwater:	7.5	4	ft			Sampler:	Tony Perini
Groundwater Elevation:	60	7.62	ft				Masoud Marsai
Water Column Height:	7.	26	ft				
Purged Volume:		5	gallons				
Purging Method:	Bailer					Pump 🗆	
Sampling Method:	Bailer					Pump	
Color:	No			Yes		Describe	douby
Sheen:	No			Yes		Describe	
Odor:	No	ď		Yes		Describe	

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
12:23 PM	SH	PH	PURGE	D			
12:26	2	7.23	7.72	22-30	16.90	88.7	+70
12:29	5	8-31	7.74	21.80	16.90	999	+50
12:29 12:30 pm	Samp	les					


well No.:	mu	-2	_		P	roject No.:	2041
Casing Diameter:		2	inch			Address:	Wente Vineyards
Depth of Well:	14.	90	_ft				5565 Tesla Rd, Livermore
Top of Casing Elevation:	616	.03	ft			Date:	8/15/06
Depth to Groundwater:	8.	09	ft			Sampler:	Tony Perini
Groundwater Elevation:	60	7.94	ft				Masoud Marsai
Water Column Height:	6.	81	_ft				
Purged Volume:	¥	4	gallons				
Purging Method:	Bailer	. 🗷				Pump	
Sampling Method:	Bailer	· 🗹				Pump □	
Camping Metrica.	Dano.					. чр	
0.1	X1			V	_	Danawiha	1-1.
Color:	No			Yes	口	Describe	crouly
Sheen:	No			Yes		Describe	
		~			30-92		
Odor:	No	d		Yes		Describe	

Time	Volume	D.O.	рН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
11:32 AM	Startes	s pres	9799 L	ell.			
11:36 Am	2	8.96	7.44	22.20	2130	999	58
11:32 AM 11:36 AM 11:40 AM	4	8.52	7-44	22.10	2/20	999	58
11:43 Am	Samp	Ves					
	/						

Well No.:	M	W-3			Pro	oject No.:	2841
Casing Diameter:	,	2.	_inch		A	Address:	Wente Vineyards
Depth of Well:	13	.35	_ft				5565 Tesla Rd, Livermore
Top of Casing Elevation:	61	7.32	_ft			Date:	8/15/06
Depth to Groundwater:	8	.53	_ft		S	Sampler:	Tony Perini
Groundwater Elevation:	60	8.79	_ft				Masoud Marsai
Water Column Height:	4.	82	_ft				
Purged Volume:		4	gallons				
Purging Method:	Baile	r			F	Pump 🗆	
Sampling Method:	Baile	r 🗹			F	Pump 🗆	
Color:	No			Yes		Describe	muldy
Sheen:	No			Yes		Describe	
Odor:	No	Ø		Yes	_ <u>_</u>	Describe	

Time	Volume	D.O.	рН	Temp	E.C.	Turb.	ORP
	(galions)	mg/L		°C	(μS/cm)	NTU	
11:58 Am	Starte	s pur	ring we	//			
12:00 PM	/	8-14	7:59	22.7	1700	2.96	+72
12:02 PM	2	DF	24				
12:04	4	8-30	7.56	22.20	1690	9.99	+59
	<u> </u>						
12:06 PM		Sa	MPLE				

Well No.:	on-sik suff	dy well	Project No.: 2841
Casing Diameter:		_inch	Address: Wente Vineyards
Depth of Well:	NM	_ft	5565 Tesla Rd, Livermore
Top of Casing Elevation:	NS	_ft	Date: 8/15/06
Depth to Groundwater:	NM	ft	Sampler: Tony Perini
Groundwater Elevation:	NC	_ft	Masoud Marsai
Water Column Height:	vm	_ft	
Purged Volume:	24	gallons	
Purging Method:	Bailer □		Pump on site pump
Compling Mathed	Bailer □		Pump = 07-site pump
Sampling Method:	Dallel 🗆		Fullip 13 14 3/10 purity
	*		
Color:	No 🗆	Ye	es 🗆 Describe
Sheen:	No 🗹	Ye	es Describe
Oneen.	NO 🗅	16	Describe
Odor:	No 🗗	Ye	es 🗆 Describe

Time	Volume	D.O.	рН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
11 Am	1 far	ks pu	rame u	24			
11 Am 11=04 AM	12	8.82	1.60		1580	3	14
11:08 AM	24	8.86	7.61	21.40	1570	2	13
11:10 AM	Samp	KES					

Notes:

N: not calculates NM: not measures ns: not surveyed

Well No.:	offile supply	ucll		Project No.:	2841
Casing Diameter:		inch		Address:	Wente Vineyards
Depth of Well:	NM	_ft			5565 Tesla Rd, Livermore
Top of Casing Elevation:	NS	_ft		Date:	8/15/06
Depth to Groundwater:	NM	_ft		Sampler:	Tony Perini
Groundwater Elevation:	NC	_ft			Masoud Marsai
Water Column Height:	vn	_ft			
Purged Volume:	36	_gallons			
Purging Method: Sampling Method:	Bailer □ Bailer □		Vaa		active pump
Color:	No □		Yes	☑ Describe	cloudy
Sheen:	No 🗹		Yes	□ Describe	
Odor:	No 🗹		Yes	□ Describe	

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(galions)	mg/L		°C	(μS/cm)	NTU	
10:20 Am	startes	pura,	ny well	Y			
10:25 Am	12	10.33	7.30	20.00	1420	277	4
10: 35 AM	24	10.37	7.64	19.00	1560	72	-4
10:43 Am	36	10.60	7.68	18.80	1570	413	-4
10:45 AM	same	les					

Notes: NM: 10+ measures NC: not calculates

NS: not surveyed

Appendix C

Chain of Custody Form a	and Laboratory Report
-------------------------	-----------------------

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc.
6620 Owens Dr.
Suite A
Pleasanton, CA 94588

Date: 29-AUG-06 Lab Job Number: 188744 Project ID: 2841

Location: 5565 Tesla Rd, Livermore

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

roject Manager

Reviewed by:

Operations Wanager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of _____

CASE NARRATIVE

Laboratory number:

188744

Client:

SOMA Environmental Engineering Inc.

Project:

2841

Location:

5565 Tesla Rd, Livermore

Request Date:

08/15/06

Samples Received:

08/15/06

This hardcopy data package contains sample and QC results for five water samples, requested for the above referenced project on 08/15/06. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B):

Low recoveries were observed for a number of analytes in the MS/MSD for batch 116570; the parent sample was not a project sample, and the associated RPDs were within limits. Zinc was detected above the RL in the method blank for batch 116492; this analyte was detected in the sample at a level at least ten times that of the blank. No other analytical problems were encountered.

CHAIN OF CUSTODY

Analyses

Gasoline Oxygenates & lead scavengers BTEXMIBE 8260B

Volatile Organics (full 8260B list)

Metals

TPH-d / TPH-mo

TPH-g 8260B

HNO3 ICE nane

		the second of the latest the second		
Curtis	0	Tan	-lila-	1 4-5
4 -1111113	~	11 () (11)	EDM BITS	
- MILLO	~	4 -14	PICELIA	

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax

Project Name: 5565 Tesla Rd, Livermore

Project No: 2841

C&T LOGIN # _____

Sampler: Tony Perint / Marsai

Tony Perini Report To:

SOMA Environmental Company:

Turnaround Time: Standard Telephone: 925-734-6400

> Fax: 925-734-6401

Preservative Matrix HCL H₂SO₄ Sampling Date # of Lab Sample ID. Time Containers No. 4-VOAs/ 1 L 8/11/06 Off-site Supply Well Amber/250

mi Poly 10 KAM 4-VOAs/1 L Amber/ 250 On-site Supply Well 110 10 ml Poly 4-VOAs/ 1-L MW-1 1230/10 Amber 4-VOAs/ 1-L

1143 AM MW-2 J 1206 PM MW-3

Notes: EDF OUTPUT REQUIRED VOCs and Metals for supply wells Metals include cadmium, chromium, lead

nickel, and zinc

GasOx to include ethanol FAR- 0.45 MELO

RELINQUISHED BY:

Amber

4-VOAs/ 1-L

Amber

DATE/TIME PECETUEBO DATE/TIME

DATE/TIME

RECEIVED BY: PEUNQUISHED 29=

DATE/TIME

REZID On ICELL

CURTIS & TOMPKINS, LTD. BERKELEY LOGIN CHANGE FORM Client Request: By: TON PCTINI'
Login Review ______ Data Review Reason for change: Client/Acct: SOMA Current Previous Client ID Matrix Lab ID Add/Cancel Lab ID Analysis Holddate Duedate 188744-001 Water THF to 8260 Letme know when I can know the II client to expect -002 -003Thx. 005

CURTIS & TOMPKINS, LTD. BERKELEY LOGIN CHANGE FORM Reason for change: Client Request: By: Tony Penni Date/Time: 8 16 145pm Initials: LDB Login Review Data Review Client/Acct: SOMA Current Previous Client ID Lab ID Matrix Add/Cancel Lab ID Analysis Holddate Duedate Cancel -002

Total Extractable Hydrocarbons 5565 Tesla Rd, Livermore Location: 188744 Lab #: EPA 3520C Client: SOMA Environmental Engineering Inc. Prep: Analysis: EPA 8015B Project#: 2841 08/15/06 Sampled: Matrix: Water 08/15/06 Units: Received: ug/L 08/16/06 Prepared: Diln Fac: 1.000 08/17/06 Batch#: 116448 Analyzed:

Field ID:

OFF-SITE SUPPLY WELL

Lab ID:

188744-001

Type:

SAMPLE

Analyte	Result	RL.	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	Y 00000000000

Hexacosane	88	65-130	
Surrogate	%REC	2 Limits	

Field ID:

ON-SITE SUPPLY WELL

Lab ID:

188744-002

Type:

SAMPLE

Analyte	Result	RL .	
Diesel C10-C24	95 Y Z	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Dimits
Hexacosane	89	65-130

Field ID:

MW-1

Lab ID:

188744-003

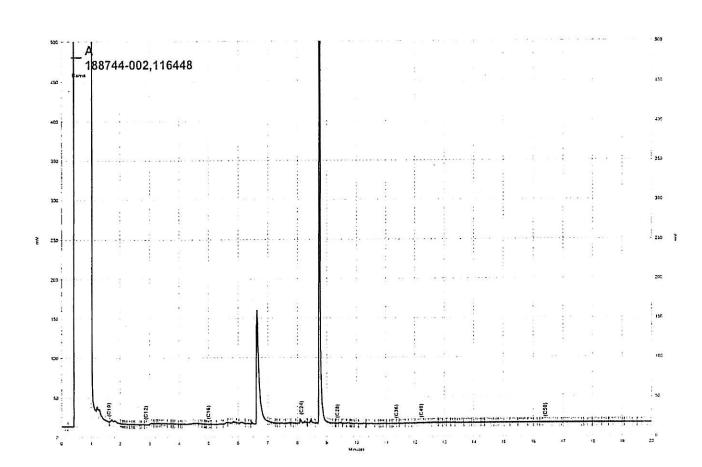
Type:

SAMPLE

Analyte	Result	· RL
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

Surrogaté	%REC	Limits
Hexacosane	87	65-130

H= Heavier hydrocarbons contributed to the quantitation


Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

\Lims\gdrive\ezchrom\Projects\GC17A\Data\228a053, A

ON-SITE SUPPLUMELL.

Total Extractable Hydrocarbons Lab #: 188744 Location: 5565 Tesla Rd, Livermore Client: SOMA Environmental Engineering Inc. EPA 3520C Prep: Analysis: EPA 8015B Project#: 2841 Matrix: Water Sampled: 08/15/06 Units: Received: 08/15/06 ug/L Diln Fac: 1.000 Prepared: 08/16/06 Batch#: 116448 Analyzed: 08/17/06

Field ID:

MW-2

Lab ID:

188744-004

Type:

SAMPLE

Analyte	Result	RL.	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate %REC Limits	TTossagana	88	CE 130
	Surrogate	%REC	Limits

Field ID:

MW-3

Lab ID:

188744-005

Type:

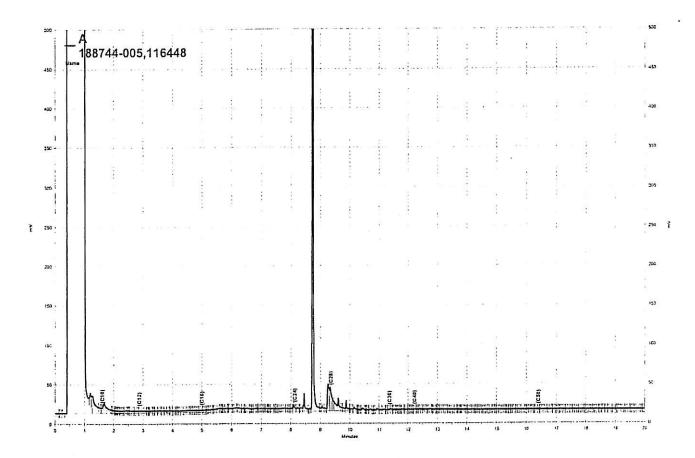
SAMPLE

Analyte	Result	RL	
Diesel C10-C24	76 H Y	50	
Motor Oil C24-C36	ND	300	PART 1997 PART 1

Surrogate	%REC	Limits
Hexacosane	87	65-130

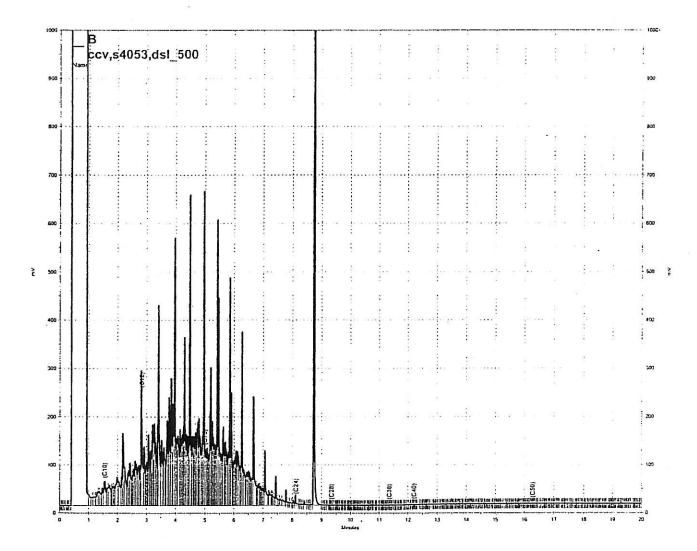
Type:

BLANK

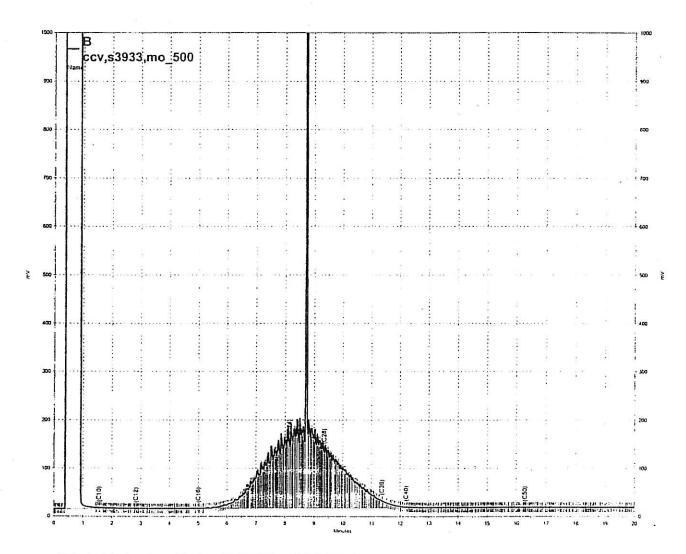

Lab ID:

QC352041

Analyte	Result	RL	
Diesel C10-C24	ND	50	,
Motor Oil C24-C36	ND	300	


Surrogate	%REC	Limits	
Hexacosane	97	65-130	

- H= Heavier hydrocarbons contributed to the quantitation
- Y= Sample exhibits chromatographic pattern which does not resemble standard
- Z= Sample exhibits unknown single peak or peaks
- ND= Not Detected
- RL= Reporting Limit


\Lims\gdrive\ezchrom\Projects\GC17A\Data\228a056, A

MW-3

\Lims\gdrive\ezchrom\Projects\GC15B\Data\228b003, B

Diosel

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\228b004, B

Motor Oil

		Total Extracta	ble Hudrocar	thons
		Total Extracta		5565 Tesla Rd, Livermore
Lab #:	188744		Location:	
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 3520C
Project#:	2841		Analysis:	EPA 8015B
Matrix:	Water		Batch#:	116448
Units:	ug/L		Prepared:	08/16/06
Diln Fac:	1.000		Analyzed:	08/17/06

Type: BS

Lab ID: QC352042

Analyte	Spiked	Result	%RE(] Limits	
Diesel C10-C24	2,500	2,398	96	61-133	

Surrogate	*REC	Limits
Hexacosane	96	65-130

Type:

BSD

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,291	92	61-133	5	31

Surrogate	%REC	Limits	
Hexacosane	93	65-130	

	Gasoline	by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	OFF-SITE SUPPLY WELL 188744-001 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	116404 08/15/06 08/15/06 08/15/06

Analyte	Result	RI
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	0.5
	ND	0.5
1,1-Dichloroethene	ND	10
Methylene Chloride		0.5
Carbon Disulfide	ND	
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
		0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5

	Gasoline	by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	OFF-SITE SUPPLY WELL 188744-001 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	116404 08/15/06 08/15/06 08/15/06

Analyte	Result	RL	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-120	
1,2-Dichloroethane-d4	104	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	105	80-122	

	Gasoline	by GC/MS	
	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	ON-SITE SUPPLY WELL 188744-002 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	116404 08/15/06 08/15/06 08/15/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	1.0
Chloroethane		
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
	RIE .	0.5
1,3-Dichloropropane Tetrachloroethene	ND ND	0.5
Dibromochloromethane		
1 2-Dibromosthane	ND	0.5 0.5
1,2-Dibromoethane	ND	
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5

3.2

	Gasoline	by GC/MS	
Lab #:	188744	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:		Analysis:	EPA 8260B
Field ID:	ON-SITE SUPPLY WELL	Batch#:	116404
Lab ID:	188744-002	Sampled:	08/15/06
Matrix:	Water	Received:	08/15/06
Units:	ug/L	Analyzed:	08/15/06
Diln Fac:	1.000		12 mare 1000 100 100 100

Analyte	Result	RL
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Tetrahydrofuran	ND	100

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-120
1,2-Dichloroethane-d4	105	80-130
Toluene-d8	97	80-120
Bromofluorobenzene	105	80-122

	Gasoline	by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	MW-1 188744-003 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	116404 08/15/06 08/15/06 08/15/06

Analyte	Resu	
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	1.0
Trichlorofluoromethane	ND	10
Acetone	ND	0.5
Freon 113	ND	0.5
1,1-Dichloroethene		10
Methylene Chloride	ND	
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10 _
cis-1,2-Dichloroethene	ND	0,5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
gis 1 3 Dighloropropos	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	55.0 (CT) (CT)	10
2-Hexanone	ND	0.5
1,3-Dichloropropane	ND	
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5

	Gasoline	by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	MW-1 188744-003 Water .ug/L 1.000	Batch#: Sampled: Received: Analyzed:	116404 08/15/06 08/15/06 08/15/06

Analyte	Result	RL
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butvlbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Tetrahydrofuran	ND	100

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-120	
1,2-Dichloroethane-d4	104	80-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	102	80-122	

ine by GC/MS	
Location:	5565 Tesla Rd, Livermore
Inc. Prep:	EPA 5030B EPA 8260B
Batch#:	116404
Sampled:	08/15/06
	08/15/06
Analyzed:	08/15/06
	Inc. Prep: Analysis: Batch#:

Treen 12	Analyte	Result	RL
Freen 12	Gasoline C7-C12	ND	50
Lett-Butyl Alcohol (TEA)		ND	1.0
Chloromethane	tert-Butvl Alcohol (TBA)	ND	10
Isopropyl Ether (DIPE)		ND	1.0
Vinyl Chlorotchane			0.5
Brommethane	Vinyl Chloride		0.5
Ethyl tert-Butyl Ether (ETBE)			1.0
Chloroethane			
Methyl text-amyl Ether (TAME) ND			5 25
Trichlorofluoromethane			
Acetone			
Precord 1.3			
1.1-Dichloroethene			
Methylene Chloride			
Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 cis-1,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1,1-Trichloropropene ND 0.5 1,1,1-Trichloropropene ND 0.5 1,2-Dichloropropene ND 0.5 1,2-Dichloropropene ND 0.5 1,2-Dichloropropene ND 0.5 2,4-Methyl-2-Pentanone ND 0.5 2,5-Dichloropropene ND 0.5 1,			
MTBE ND			
Trans-1,2-Dichloroethene			. 5. 7. 7.
Vinyl Acetate			
1,1-Dichloroethane			
2-Butanone	Vinyl Acetate		
cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloropropane ND 0.5 1,2-Dichloropropane ND 0.5 Benzene ND 0.5 Trichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 Bromodichloromethane ND 0.5 Ubromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Toluene ND 0.5 1,1,2-Trichloropropane ND 0.5 1,3-Dichloropropane ND 0.5 1,3-Dichloropropane ND	1,1-Dichloroethane		
2,2-Dichloropropane	2-Butanone	ND	
Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloroethane ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloropropane ND 0.5 Benzene ND 0.5 Trichloropropane ND 0.5 Benzene ND 0.5 Benzene ND 0.5 Dibromomethane ND 0.5 Dibromomethane ND 0.5 Dibromomethane ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Trichloropropane ND 0.5 Tetras-1,3-Dichloropropene ND 0.5 1,1-2-Trichloroethane ND 0.5 1,1-2-Trichloroethane ND 0.5 1,1-2-Trichloroethane ND 0.5 1,1-2-Trichloropropene ND 0.5 1,1-2-Trichloropropene ND 0.5 1,1-2-Trichloroethane ND 0.5 1,1-1-Dichloropropene ND 0.5 Tetrachloroethane ND 0.5	cis-1,2-Dichloroethene	ND	
Chloroform	2,2-Dichloropropane	ND	0.5
1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloroethane ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Bromodichloromethane ND 0.5 Bromodichloropropene ND 0.5 Bromodichloropropene ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Trichloropropene ND 0.5 Trichloropropene ND 0.5 Toluene ND 0.5 Trichloropropene ND 0.5 Trichloropropene ND 0.5 Toluene ND 0.5 T-Trichloropropene ND 0.5 T-Trichloropropane ND 0.5 T-Trichloropropane ND 0.5 Tetrachloroethane ND 0.5 Tetrachloroethane ND 0.5 Tetrachloroethene ND 0.5 Tetrachloroethene ND 0.5 Tetrachloroethene ND 0.5 Thibromochloromethane ND 0.5		ND	0.5
1,1,1-Trichloroethane	Bromochloromethane	ND	0.5
1,1-Dichloropropene		ND	0.5
Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 trans-1,3-Dichloropropene ND 0.5 trans-1,3-Dichloropropene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethane ND 0.5 Tetrachloroethane ND 0.5 Tetrachloroethane ND 0.5 Chlorobenzene ND 0.5 1,1,2-Tetrachloroethane ND 0.5 Ehylbenzene ND 0.5 ND			0.5
1,2-Dichloroethane			
Benzene		502	0.5
Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 1,1,2-Trichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Tetrachloroethene ND 0.5 Chlorobenzene ND 0.5 1,1,2-Tetrachloroethane ND 0.5 1,2-Dibromoethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 Ethylbenzene ND 0.5 Ethylbenzene ND 0.5 Sylenes ND 0.5 Sylenes ND 0.5 Sylene ND 0.5 Syrene ND 0.5			
1,2-Dichloropropane		£3323589	
Bromodichloromethane			
Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Bromoform ND 0.5 Bromoform ND 0.5 Bromoform ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5	Bromodiahloromothano		
4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloropropane ND 0.5 Tetrachloromethane ND 0.5 1,2-Dibromoethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Bromoform ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Bromoform ND 0.5 Bromoform ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 Dibromochloromethane ND 0.5 Chlorobenzene ND 0.5 Chlorobenzene ND 0.5 Ethylbenzene ND 0.5 Ethylbenzene ND 0.5 Ethylbenzene ND 0.5 Styrene ND 0.5 Storopylbenzene ND 0.5 I,1,2-Tetrachloroethane ND 0.5 Styrene ND 0.5			
trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5	Cis-1,3-Dichioropropene	Z1550	
1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
2-Hexanone ND 10 1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 0.5 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
1,3-Dichloropropane ND 0.5 Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
Tetrachloroethene ND 0.5 Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
Dibromochloromethane ND 0.5 1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
1,2-Dibromoethane ND 0.5 Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
Chlorobenzene ND 0.5 1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
1,1,1,2-Tetrachloroethane ND 0.5 Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
Ethylbenzene ND 0.5 m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
m,p-Xylenes ND 0.5 o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
o-Xylene ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5		50 Y 100 Y 1	
Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5			
Bromoform ND 1.0 Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5		AND THE RESERVE AND THE RESERV	
Isopropylbenzene ND 0.5 1,1,2,2-Tetrachloroethane ND 0.5	Styrene		
1,1,2,2-Tetrachloroethane ND 0.5	Bromoform	ND	
1,1,2,2-Tetrachloroethane ND 0.5	Isopropylbenzene	ND	0.5
		ND	0.5
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,2,3-Trichloropropane	ND	0.5

		Gasoline	by GC/MS	
Lab #:	188744		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:			Analysis:	EPA 8260B
Field ID:	MW-2		Batch#:	116404
Lab ID:	188744-004		Sampled:	08/15/06
Matrix:	Water		Received:	08/15/06
Units:	ug/L		Analyzed:	08/15/06
Diln Fac:	1.000			

Analyte	Result	RL	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0,5	
1,3-Dichlorobenzene	ND	0.5	•
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-120
1,2-Dichloroethane-d4	106	80-130
Toluene-d8	97	80-120
Bromofluorobenzene	106	80-122

	Gasoline	by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	MW-3 188744-005 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	116404 08/15/06 08/15/06 08/15/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
	ND	0.5
Vinyl Chloride	ND	1.0
Bromomethane	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	1.0
Chloroethane (MINE)	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	1.0
Trichlorofluoromethane		10
Acetone	ND	0.5
Freon 113	ND	0.5
1,1-Dichloroethene	ND	10
Methylene Chloride	ND	
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	. 10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
	ND	10
4-Methyl-2-Pentanone	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND ND	0.5
1,1,2-Trichloroethane	ND ND	10
2-Hexanone		0.5
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5

	Gasoline	e by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	MW-3 188744-005 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	116404 08/15/06 08/15/06 08/15/06

Analyte	Result	RL:	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits
Dibromofluoromethane	106	80-120
1,2-Dichloroethane-d4	109	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	102	80-122

	Gasoline	by GC/MS	1986 - 1984 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC351890 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 116404 08/15/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
	ND	0.5
1,1-Dichloropropene Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
		0.5
1,2-Dichloropropane	ND ND	0.5
Bromodichloromethane		
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ИD	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5

	Gasolin	e by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC351890 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 116404 08/15/06

Analyte	Result	RL	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	0.5	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	
Tetrahydrofuran	ND	100	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-120
1,2-Dichloroethane-d4	102	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	102	80-122

Jacon go		by GC/MS	
Lab #: Client: Project#:	188744 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	116404 08/15/06

Type:

BS

Lab ID:

QC351886

Analyte	Spiked	Result	%REC	Limite
tert-Butyl Alcohol (TBA)	125.0	103.0	82	64-141
Isopropyl Ether (DIPE)	25.00	22.96	92	68-123
Ethyl tert-Butyl Ether (ETBE)	25.00	23.83	95	77-129
Methyl tert-Amyl Ether (TAME)	25.00	25.79	103	77-120
1,1-Dichloroethene	25.00	26.92	108	77-128
Benzene	25.00	25.32	101	80-120
Trichloroethene	25.00	25.02	100	80-120
Toluene	25.00	26.64	107	80-120
Chlorobenzene	25.00	24.57	98	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	103	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	101	80-122

Type:

BSD

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	102.0	82	64-141	1	22
Isopropyl Ether (DIPE)	25.00	21.07	84	68-123	9	20
Ethyl tert-Butyl Ether (ETBE)	25.00	22.73	91	77-129	5	20
Methyl tert-Amyl Ether (TAME)	25.00	23.22	93	77-120	11	20
1,1-Dichloroethene	25.00	27.13	109	77-128	1	20
Benzene	25.00	24.64	99	80-120	3	20
Trichloroethene	25.00	24.20	97	80-120	3	20
Toluene	25.00	25.19	101	80-120	6	20
Chlorobenzene	25.00	24.78	99	80-120	1	20

Surrogate	SREC	Limits	
Dibromofluoromethane	99	80-120	
1,2-Dichloroethane-d4	99	80-130	
Toluene-d8	100	80-120	
Bromofluorobenzene	101	80-122	

	Gasoline	by GC/MS	
Lab #:	188744	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2841	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	116404
Units:	ug/L	Analyzed:	08/15/06
Diln Fac:	1.000		

Type:

BS

Lab ID: QC351888

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,238	124	70-130

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-120
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	99	80-122

Type:

BSD

Analyte	Spiked	Result	%REC	Limits	RPI	Lim
Gasoline C7-C12	1,000	1,214	121	70-130	2	20

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-120
1,2-Dichloroethane-d4	101	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	104	80-122

Dissolved Metals Analytical Report 5565 Tesla Rd, Livermore EPA 3010A Location: Lab #: 188744 Client: SOMA Environmental Engineering Inc. Prep: EPA 6010B Project#: 2841 Analysis: 08/15/06 08/15/06 Units: Sampled: ug/L Diln Fac: 1.000 Received:

Field ID: Type: Lab ID:

Matrix:

OFF-SITE SUPPLY WELL

SAMPLE 188744-001 Filtrate

Batch#: Prepared: Analyzed:

116492 08/17/06 08/18/06

Result RL Analyte ND Cadmium 5.0 Chromium ND 10 ND 3.0 Lead 20 Nickel ND 1,200 20 Zinc

Field ID:

ON-SITE SUPPLY WELL

SAMPLE 188744-002

Batch#: Prepared: Analyzed: 116570 08/20/06 08/20/06

Type: Lab ID: Matrix:

Filtrate

Analyte Result RL Cadmium ND 5.0 Chromium ND 10 Lead ND 3.0 Nickel 34 20 Zinc 60 20

Type: Lab ID: Matrix: BLANK QC352209 Filtrate Batch#: Prepared: Analyzed:

116492 08/17/06 08/18/06

Result Analyte RL Cadmium ND 5.0 Chromium ND 10 Lead ND 3.0 Nickel ND 20 Zinc 23 20

Type: Lab ID: Matrix: BLANK QC352565 Water

Batch#: Prepared: Analyzed:

116570 08/20/06 08/20/06

Analyte Result RL Cadmium ND 5.0 Chromium ND 10 Lead ND 3.0 Nickel ND 20 Zinc ND 20

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Dissolved Metals	Analytical	Report
Lab #:	188744	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 3010A
Project#:	2841	Analysis:	EPA 6010B
Matrix:	Filtrate	Batch#:	116492
Units:	ug/L	Prepared:	08/17/06
Diln Fac:	1.000	Analyzed:	08/18/06

Type:

BS

Lab ID:

QC352210

Analyte	Spiked	Result	%REC	Limits
Cadmium	50.00	53.64	107	80-120
Chromium	200.0	212.7	106	80-120
Lead	100.0	98.57	99	80-120
Nickel	500.0	524.7	105	80-120
Zinc	500.0	552.1	110	80-120

Type: BSD

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium	50.00	53.36	107	80-120	1	20
Chromium	200.0	211.1	106	80-120	1	20
Lead	100.0	98.41	98	80-120	0	20
Nickel	500.0	520.9	104	80-120	1	20
Zinc	500.0	549.4	110	80-120	0	20

	Dissolved Metals	Analytical	Report
Lab #:	188744	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 3010A
Project#: :	2841	Analysis:	EPA 6010B
Field ID:	OFF-SITE SUPPLY WELL	Batch#:	116492
MSS Lab ID	: 188744-001	Sampled:	08/15/06
Matrix:	Filtrate	Received:	08/15/06
Units:	ug/L	Prepared:	08/17/06
Diln Fac:	1.000	Analyzed:	08/18/06

Type: MS

Lab ID: QC352212

Analyte	MSS Result	Spiked	Result	*REC	Limits
Cadmium	<1.677	50.00	51.09	102	80-120
Chromium	<1.753	200.0	209.1	105	80-120
Lead	0.5627	100.0	95.79	95	70-120
Nickel	3.381	500.0	500.8	99	77-120
Zinc	1,151	500.0	1,648	99	74-123

Type: MSD

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium	50.00	51.19	102	80-120	0	20
Chromium	200.0	210.0	105	80-120	0	20
Lead	100.0	94.71	94	70-120	1	20
Nickel	500.0	504.6	100	77-120	1	20
Zinc	500.0	1,685	107	74-123	2	20

	Dissolved Metals	Analytical	Report
Lab #:	188744	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 3010A
Project#:	2841	Analysis:	EPA 6010B
Matrix:	Water	Batch#:	116570
Units:	ug/L	Prepared:	08/20/06
Diln Fac:	1.000	Analyzed:	08/20/06

Type:

Lab ID: QC352566

Analyte	Spiked	Result	%REC	Limits
Cadmium	50.00	56.01	112	80-120
Chromium	200.0	205.3	103	80-120
Lead	100.0	98.38	98	80-120
Nickel	500.0	539.7	108	80-120
Zinc	500.0	560.9	112	80-120

Type:

BSD

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium	50.00	55.51	111	80-120	1	20
Chromium	200.0	205.5	103	80-120	0	20
Lead	100.0	97.98	98	80-120	0	20
Nickel	500.0	524.2	105	80-120	3	20
Zinc	500.0	544.2	109	80-120	3	20

r*-30030-00040704230-0003-00040			AND AND DESCRIPTION OF THE PARTY OF THE PART	
		Dissolved Metals	Analytical	l Report
Lab #:	188744	<u> </u>	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environment	al Engineering Inc.	Prep:	EPA 3010A
Project#:	2841		Analysis:	EPA 6010B
Field ID:	ZZZZZZZZZ	Z	Batch#:	116570
MSS Lab II	D: 188840-00	1	Sampled:	08/17/06
Matrix:	Water		Received:	08/18/06
Units:	uq/L		Prepared:	08/20/06
Diln Fac:	1.000		Analyzed:	08/20/06

Type:

MS

Lab ID: QC352568

Analyte	MSS Result	Spiked	Result	*REC	Limits
Cadmium	<0.5500	50.00	23.53	47 *	80-120
Chromium	22.83	200.0	127.8	53 *	80-120
Lead	1.264	100.0	45.82	45 *	70-120
Nickel	547.7	500.0	822.1	55 *	77-120
Zinc	90.82	500.0	321.7	46 *	74-123

Type: MSD

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium	50.00	27.96	56 *	80-120	17	20
Chromium	200.0	148.2	63 *	80-120	15	20
Lead	100.0	46.08	45 *	70-120	1	20
Nickel	500.0	868.5	64 *	77-120	5	20
Zinc	500.0	358.1	53 *	74-123	11	20

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL EDF CHECK - NO ERRORS

ORGANIZATION NAME:

Curtis & Tompkins, Ltd.

USER NAME:

CTBERK

DATE CHECKED:

8/29/2006 6:02:59 PM

GLOBAL ID:

NOT SELECTED

FILE UPLOADED:

188744.zip

No errors were found in your EDF upload file.

If you want to submit this file to the SWRCB, choose the "Upload EDD" option in the above menu and follow the instructions.

When you complete the submittal process, you will be given a confirmation number for your submittal.

Because you have not chosen a facility, field point names have not been checked.

Logged in as CTBERK (LABORATORY)

CONTACT SITE ADMINISTRATOR.

Appendix D

Specifications for Off-site well at 5443 Tesla Road

Mansour Sepehr

From: Aris Krimetz [aris@wentevineyards.com]

Sent: Thursday, February 16, 2006 5:06 PM

To: Mansour Sepehr (E-mail)

Subject: 5443 Tesla Road

Mansour-

According to documents provided by the previous owner, the total depth of the well is 125', and the pump is at 100'. It was installed about 1972 by the previous owner. We only re-piped on the well discharge side and connected it to the irrigation system, removing it from the potable system when we purchased the property in 1995/96. The potable water for the property is supplied from a municipal source.

Aris Krimetz

Director of Engineering Wente Vineyards 5565 Tesla Road Livermore, CA 94550 Office: 925 456 2313

Cell: 925 519 9010

arisk@wentevineyards.com www.wentevineyards.com

future

JE. 15 PAL FEE - DE 2361