

ENVIRONMENTAL ENGINEERING, INC 6620 Owens Drive, Suite A • Pleasanton, CA 94588-3334 TEL (925) 734-6400 • FAX (925) 734-6401

RECEIVED By lopprojectop at 4:14 pm, May 24, 2006

Project: 2841

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Fuel Leak Case No. RO0002585, Wente Winery Site Located at 5565 Tesla Road, Livermore, California

Dear Mr. Wickham:

May 24, 2006

SOMA's "Second Quarter 2006 Groundwater Monitoring Report" for the subject site has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have any questions or comments.

Sincerely,

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

cc: Mr. Aris Krimetz w/report enclosure

ENVIRONMENTAL ENGINEERING, INC 6620 Owens Drive, Suite A • Pleasanton, CA 94588-3334 TEL (925)734-6400 • FAX(925)734-6401

Second Quarter 2006 Groundwater Monitoring Report

WENTE WINERY

5565 Tesla Road

Livermore, California

May 24, 2006

Project 2841

Prepared for

Mr. Aris Krimetz 5565 Tesla Road Livermore, California

Prepared by

SOMA Environmental Engineering, Inc. 6620 Owens Drive, Suite A Pleasanton, California

CERTIFICATION

This report has been prepared by SOMA Environmental Engineering, Inc. on behalf of Mr. Aris Krimetz, for Wente Winery, which is located at 5565 Tesla Road, Livermore, California to comply with the requirements of the Alameda County Environmental Health Services and the California Regional Water Quality Control Board for the Second Quarter 2006 groundwater monitoring event.

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

SOMA Environmental Engineering, Inc.

TABLE OF CONTENTS

CERI	TIFICATION	I
TABL	LE OF CONTENTS	II
LIST	OF FIGURES	III
LIST	OF TABLES	III
LIST	OF APPENDICES	III
1.0	INTRODUCTION	1
1.1 1.2 1.3	SITE DESCRIPTION Previous Activities and Investigations Regional Hydrogeologic Features	
2.0	RESULTS	2
2.1 2.2 2.3	FIELD MEASUREMENTS Sampling of Off-Site Well at 5443 Tesla Road Laboratory Analysis	
3.0	CONCLUSIONS AND RECOMMENDATIONS	5

List of Figures

Figure 1:	Site vicinity map.

- Figure 2: Map showing locations of newly installed wells, temporary well boreholes, and previous soil borings installed by Clayton Group.
- Figure 3: Groundwater elevation contour map in feet. May 5, 2006.
- Figure 4: Contour map of TPH-d concentrations in groundwater. May 5, 2006.

List of Tables

Table 1:	Historical Groundwater Elevation Data and Analytical Results for					
	Hydrocarbons, BTEX, & MtBE					
Table 2:	Historical Groundwater Analytical Results for Gasoline Oxygenates &					
	Lead Scavengers					
Table 3:	Historical Analytical Results for Volatile Organic Compounds					
	Analyses in Groundwater Samples					
Table 4:	Historical Groundwater Analytical Results for Metals					

List of Appendices

- Appendix A: SOMA's Groundwater Monitoring Procedures
- Appendix B: Table of Elevations & Coordinates on Monitoring Wells Measured by Harrington Surveys, Inc., and Field Measurements of Physical, Chemical & Biodegradation Parameters of the Groundwater Samples at Time of Sampling
- Appendix C: Chain of Custody Form and Laboratory Report
- Appendix D: Specifications for Off-site well at 5443 Tesla Road

1.0 INTRODUCTION

This monitoring report has been prepared by SOMA Environmental Engineering, Inc. (SOMA) on behalf of Mr. Aris Krimetz, for Wente Winery, which is located at 5565 Tesla Road, Livermore, California. Figure 1 shows the location of the Site.

This report summarizes the results of the Second Quarter 2006 groundwater monitoring event conducted at the Site on May 5, 2006. This report also includes the laboratory analytical results on the groundwater samples.

A natural attenuation study was conducted during this monitoring event. The objective of the natural attenuation study was to evaluate whether the petroleum hydrocarbons found in the groundwater were biodegrading.

These activities were performed in accordance with the general guidelines of the California Regional Water Quality Control Board (CRWQCB) and the Alameda County Environmental Health Services (ACEHS). Appendix A details the groundwater monitoring procedures used during this monitoring event.

1.1 Site Description

West of the winery buildings is an enclosed maintenance and agricultural storage area with a former underground storage tank (UST) pit that contained one gasoline and one diesel UST. The USTs were replaced with three aboveground storage tanks (ASTs), with a total capacity of 4,000 gallons. An on-site potable water supply well provides backup potable drinking water and processed water for the winery facility. This water supply well is located south of and presumably upgradient from the former USTs area.

1.2 Previous Activities and Investigations

In 1987, two fuel USTs were removed from the Site. There is no information regarding the condition of the tank or evidence of leakage. In 1990, the ACEHS issued a notice of violation (NOV) for discharging waste sludge into an open ditch adjacent to a former steam-cleaning bay.

Clayton Environmental Consultants (Clayton) conducted a Phase I Environmental Site Assessment of the maintenance and storage areas. The Phase I study revealed the existence of the former USTs, former waste discharge area, and a number of agricultural storage areas.

In 2003, Clayton performed a subsurface investigation at the Site to implement the recommendations of the Phase I report. As shown in Figure 2, boreholes were advanced near the ASTs and near other RECs. The study indicated that a fuel release in the former UST area impacted the groundwater. In the former steam-cleaning bay, gasoline and motor oil-range petroleum hydrocarbons were detected in the groundwater. Figure 2 illustrates the locations of the soil borings.

Wente then retained SOMA to review Clayton's report. SOMA subsequently submitted a workplan that included a vicinity well survey, a regional hydrogeologic study, and an additional site characterization. The site characterization included sampling and evaluating the water quality of the on-site water supply well, installing monitoring wells, and additional lithologic characterization to better define the shallow/perched water-bearing zone.

On May 5, 2005, SOMA oversaw Woodward Drilling (Woodward) install three monitoring wells, MW-1 through MW-3, as shown in Figure 2. On May 20, 2005, Woodward developed the newly installed wells.

On June 24, 2005, SOMA oversaw Woodward drill two confirmatory boreholes (B-9 and B-10). The purpose of this investigation was to confirm the presence of petroleum hydrocarbons in the soil and groundwater next to the former USTs and to evaluate the current soil and groundwater conditions in close proximity of the former steam cleaning area. The results of this investigation are presented in SOMA's report entitled, "Phase I: Soil and Groundwater Investigation, Wente Winery, at 5565 Tesla Road, Livermore, California," dated July 25, 2005.

1.3 Regional Hydrogeologic Features

The subject site is located in the Livermore Valley Groundwater Basin (LVGB). The LVGB consists of a structural trough that is an important source of irrigation water for the Livermore Valley. In the western part of the basin up to 40 feet of clay caps these water-bearing sediments. The water-bearing zone is predominantly a permeable unit consisting of sand and gravel in a clayey sand matrix. The potentiometric surface of valley-fill groundwater near the Site is at approximately 20 to 30 feet below ground surface (bgs).

The groundwater flow in the valley-fill and underlying Livermore Formations is to the northwest/north. The nearby water supply wells west of and presumably downgradient from the Site are potentially exposed to the on-site contaminant plume.

There is one on-site well and five wells in the properties immediately west of and presumably downgradient from the Site. North/northeast of and presumably up/cross gradient from the subject site there are seven wells within 2,000 feet of the investigation area. Approximately 1,800 feet south of the Site there is another water supply well. Available records indicate that six of the seven wells located north/northeast of and within 2,000 feet of the Site may be used as drinking water wells.

2.0 Results

The following sections provide the results of the field measurements and laboratory analyses for the May 5, 2006 groundwater monitoring event.

2.1 Field Measurements

Table 1 presents the depths to groundwater, as well as the corresponding groundwater elevations for the monitoring wells. The depths to groundwater ranged from 5.23 feet in well MW-1 to 5.94 feet in well MW-3. The corresponding groundwater elevations ranged from 609.93 feet in well MW-1 to 611.38 feet in well MW-3.

The groundwater elevation contour map is displayed in Figure 3. The groundwater flows north to northwesterly across the Site, at a gradient of approximately 0.010 feet/feet. The flow direction has remained consistent, however, the groundwater gradient increased slightly.

Refer to Table 1 for the historical site-wide groundwater elevation trends.

The field notes in Appendix B show the detailed measurements of the physical and chemical parameters of the groundwater for each well during this monitoring event. The more positive the redox potential of an electron acceptor, the more energetically favorable is the reaction utilizing that electron acceptor. The most energetically preferred electron acceptor for redox reactions is dissolved oxygen (DO). Evaluating the distribution of electron acceptors can provide evidence of where and to what extent hydrocarbon biodegradation is occurring.

DO concentrations ranged from 7.20 mg/L in well MW-3 to 11.80 mg/L in the offsite supply well. However, the DO concentration in the off-site supply well may be erroneous. The purging of the off-site supply well was conducted using an active downhole pump. The high DO level in this well could be the result of this active pumping station within the well.

Oxygen reduction potential (ORP) showed positive redox potentials throughout the Site. As previously noted, positive redox potentials are more energetically favorable in utilizing electron acceptors during chemical reactions. This promotes the removal of organic mass from the contaminated groundwater by indigenous bacteria in the subsurface during the release of the transfer of electrons.

2.2 Sampling of Off-Site Well at 5443 Tesla Road

On May 5, 2006, SOMA contacted Wente Vineyards (Wente) to inform them that the off-site well needed to be sampled. SOMA's field personnel began extracting groundwater from the well using the downhole pump within the well. Water passed through a flow cell during purging; within the flow cell, measurements for DO, pH, temperature, electrical conductivity, turbidity, and ORP were recorded using a U-22 meter. This method reduced the intrusion of oxygen from ambient air into the groundwater samples. A groundwater sample was collected when all of the field parameters stabilized. This occurred when approximately 38 gallons of groundwater had been purged. The field measurements taken from the supply well during purging activities is shown in Appendix B. Based on the information supplied by Wente, the total depth of this well is 125 feet bgs. The pump was installed at 100 feet bgs in the year of 1972. The water from this well is used solely for irrigation of the vineyards. The letter referencing the off-site supply well and piping diagram of the pump are included in Appendix D.

2.3 Laboratory Analysis

The historical total petroleum hydrocarbons as gasoline (TPH-g), total petroleum hydrocarbons as diesel (TPH-d), total petroleum hydrocarbons as motor oil (TPH-mo), benzene, toluene, ethylbenzene, and total xylenes (BTEX), and Methyl tertiary Butyl Ether (MtBE) groundwater analytical results are shown in Table 1.

All TPH-g, TPH-mo, BTEX, and MtBE constituents were below the laboratory reporting limit throughout the Site.

TPH-d was below the laboratory reporting limit in the off-site supply well. The highest TPH-d concentration was detected in well MW-1 at 70 ug/L. However, the TPH-d analytical result in the groundwater sample collected from well MW-1 did not resemble the standard diesel pattern. Heavier hydrocarbons were also present during analytical testing, in well MW-1, which may have contributed to the overall TPH-d result. The laboratory designated the irregular chromatographic pattern, which did not match the diesel standard, using a "Y" flag; the presence of the heavier hydrocarbons was denoted by using an "H" flag; see the laboratory report in Appendix C for further clarification.

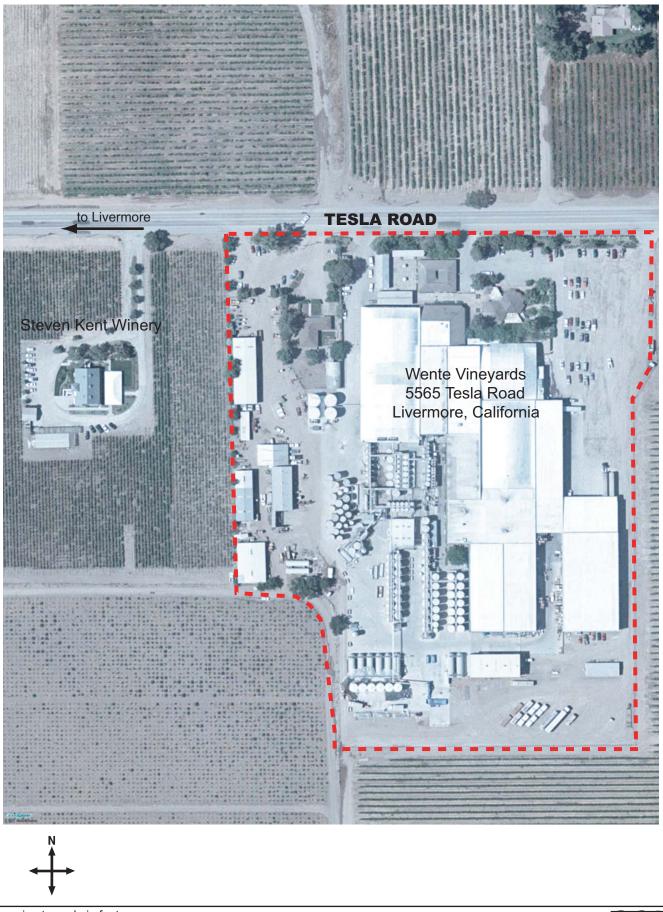
Figure 4 displays the contour map of TPH-d concentrations in groundwater. As illustrated in Figure 4, TPH-d has only minimally impacted the groundwater throughout the Site.

Table 2 shows the analytical results for gasoline oxygenates and lead scavengers. All gasoline oxygenates and lead scavengers were below the laboratory reporting limit in all of the groundwater samples collected during this monitoring event.

Table 3 shows the historical concentrations of volatile organic compounds (VOCs) in the groundwater. Tetrachloroethene, 1,1,1-Trichloroethane, Cis-1,2-dichloroethene, Trans-1,2-dichloroethene, vinyl chloride, 1,2-Dichloropropane, and 1,1-Dichloroethene were all below the laboratory reporting limit in the groundwater samples collected from the on and off-site supply wells. All other VOCs were also below the laboratory reporting throughout the Site.

Table 4 shows the historical concentrations of metals in the groundwater. Cadmium, chromium, and nickel were all below the laboratory reporting limit in the samples collected from both supply wells. Lead was detected at 26 ug/L in both of the supply wells. Zinc was below the laboratory reporting limit in the on-site supply well and detected in the off-site supply well at 750 ug/L.

Appendix C includes the laboratory report and chain-of-custody (COC) form for this monitoring event.

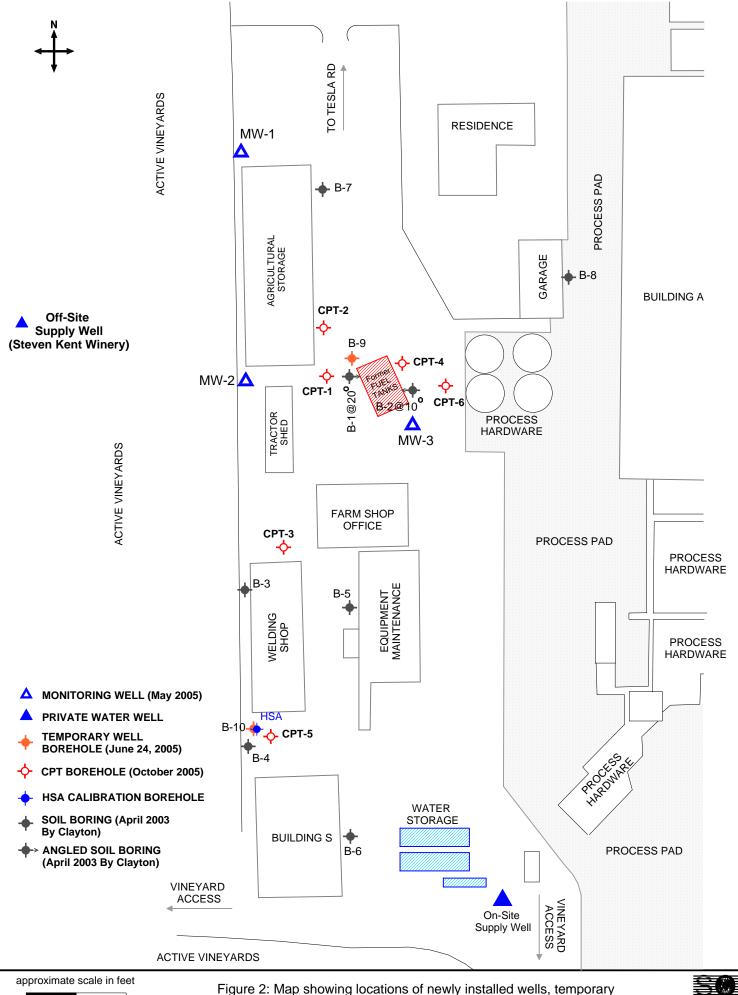

3.0 Conclusions and Recommendations

The results of the Second Quarter 2006 groundwater monitoring event can be summarized as follows:

- The groundwater flow direction has remained north to northwesterly across the Site, however, the groundwater gradient slightly increased.
- Based on the results of the bio-attenuation study, indigenous bacteria have effectively removed organic mass from any impacted groundwater in the subsurface. This is evidenced by the high DO levels and positive redox potentials observed throughout the Site.
- TPH-d was detected at low levels; however, the sample results may have been misrepresentative. The highest constituent was zinc.
- In previous monitoring events, chlorinated solvents, which included chloromethane and chloroethane, were detected; however, during this monitoring event no chlorinated solvents were detected.

Based on the results from this monitoring event, SOMA recommends that a no further action status be adopted in connection with the petroleum hydrocarbon and VOC contamination in the groundwater at this site. Upon concurrence from the ACEHS, all site wells will be properly decommissioned by SOMA.

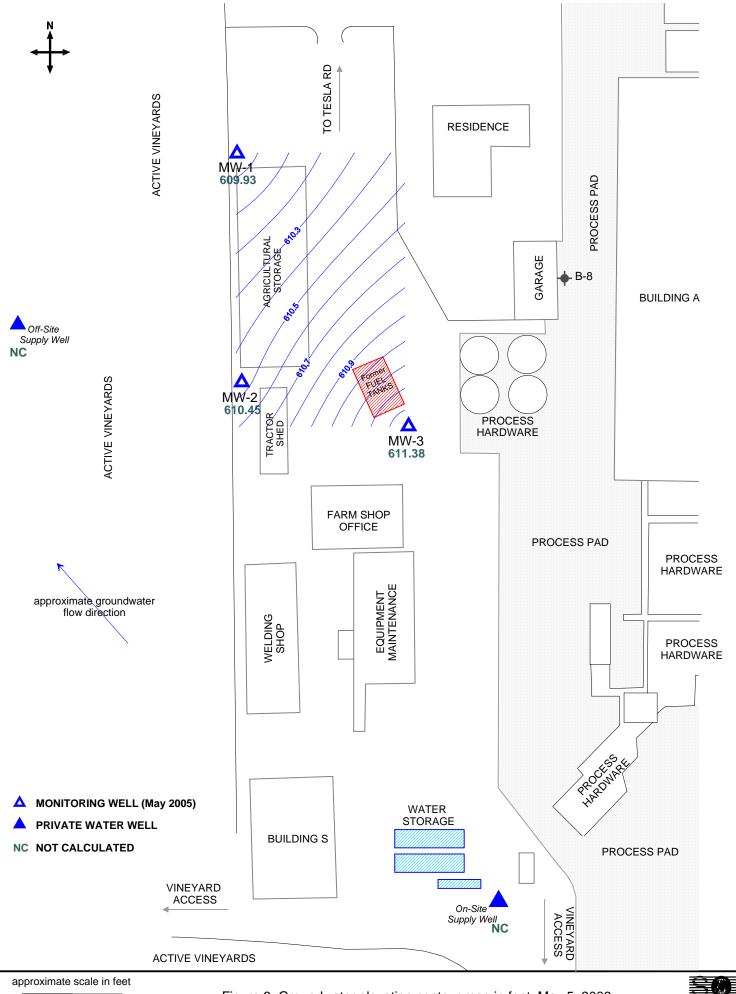
FIGURES


approximate scale in feet

0

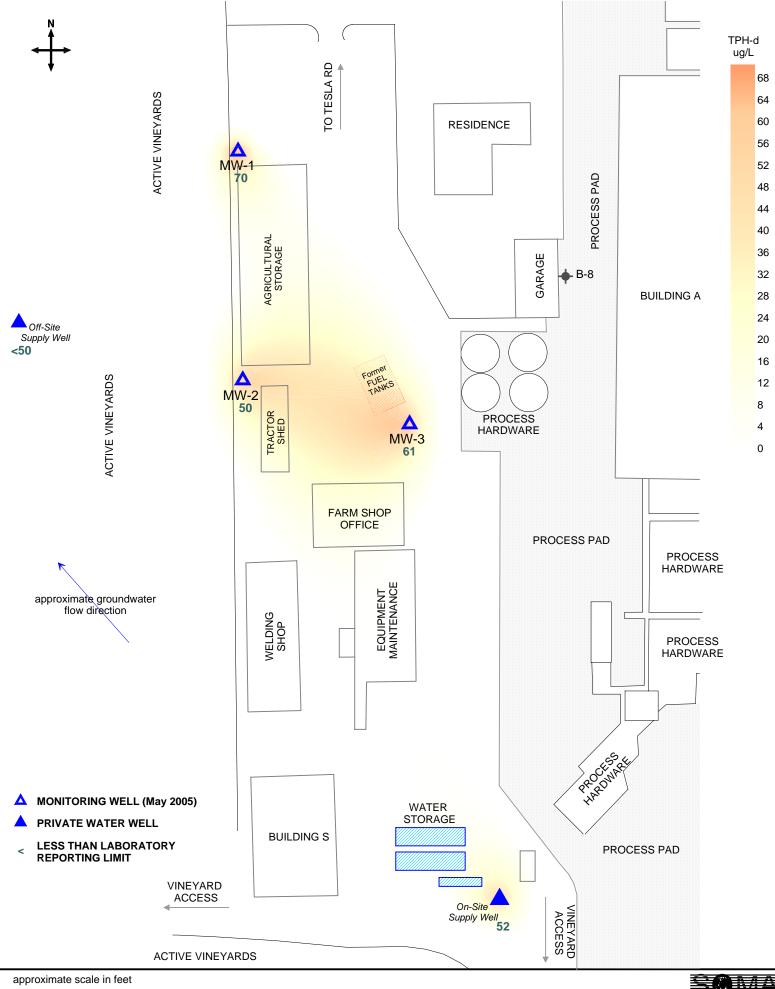
50 100

Figure 1: Site vicinity map.



0 25 50

Figure 2: Map showing locations of newly installed wells, temporary well boreholes, and previous soil borings installed by Clayton group.



0 25 50

Figure 3: Groundwater elevation contour map in feet. May 5, 2006.

0 25 50

Figure 4: Contour map of TPH-d concentrations in groundwater. May 5, 2006.

TABLES

SOMA Environmental Engineering, Inc.

Table 1Historical Groundwater Elevation Data & Analytical ResultsHydrocarbons, BTEX, & MtBEWente Vineyards5565 Tesla Road, Livermore, California

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)
MW-1	5/20/2005	615.16	6.10	609.06	<200	<50	320 YZ	<0.5	<0.5	<0.5	<1.0	<0.5
	9/13/2005	615.16	9.19	605.97	<50	<50	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	615.16	8.90	606.26	<50	150 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	615.16	6.29	608.87	<50	<50	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	615.16	5.23	609.93	<50	70 HY	<300	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2	5/20/2005	616.03	6.69	609.34	<200	<50	<300	<0.5	<0.5	<0.5	<1.0	<0.5
	9/13/2005	616.03	9.30	606.73	<50	<50	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	616.03	9.20	606.83	<50	<50	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	616.03	6.52	609.51	<50	76.5 ^{D35}	657 ^{D06}	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	616.03	5.58	610.45	<50	50 HY	<300	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3	5/20/2005	617.32	7.04	610.28	<200	680	<300	<0.5	1.58	<0.5	<1.0	<0.5
	9/13/2005	617.32	9.61	607.71	<50	300 Y	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	11/28/2005	617.32	9.60	607.72	<50	150 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006	617.32	7.06	610.26	<50	<50	322 ^{D06}	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	617.32	5.94	611.38	<50	61 HY	<300	<0.5	<0.5	<0.5	<0.5	<0.5
B-9	6/24/2005	NA	NA	NA	1.850.000	540.000 LY	<24,000	3.820	114.000	40.400	177,700	<462
	0/2 1/2000				.,,			-,	,	,	,	
B-10	6/24/2005	NA	NA	NA	<200	<50	<300	<0.5	4.23	1.10	4.03	<0.5
							1				-	
Dnsite Supply Well	5/20/2005	NS	NM	NC	<200	<50	<300	<0.5	0.85	<0.5	<1.0	<0.5
	11/28/2005	NS	NM	NC	<50	100 YZ	<300	<0.5	<2.0	<0.5	<1.0	<0.5
	2/13/2006 5/5/2006	NS NS	NM NM	NC NC	<50 <50	91.8 52 Y	<250 < 300	<0.5 <0.5	<2.0 <0.5	<0.5 <0.5	<1.0 <0.5	<0.5 <0.5

Table 1Historical Groundwater Elevation Data & Analytical ResultsHydrocarbons, BTEX, & MtBEWente Vineyards5565 Tesla Road, Livermore, California

Monitoring Well	Date	Top of Casing (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	TPH-d (μg/L)	TPH-mo (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L)
Offsite Supply Well	5/20/2005	NS	NM	NC	<200	<50	<300	0.77	1.08	<0.5	<1.0	<0.5
	11/28/2005	NS	NM	NC	<5,380	120 YZ	<300	<53.8	<215	<53.8	<108	<53.8
	1/16/2006	NS	9.65	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	NS	NM	NC	<50	<50	<250	<0.5	<2.0	<0.5	<1.0	<0.5
	5/5/2006	NS	NM	NC	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5

- 1) The wells were installed on May 5, 2005 and developed by Woodward Drilling on May 20, 2005.
- 2) A grab sample was collected after the well development on May 20, 2005.
- 3) A grab sample was also collected from the water well, southeast of the water stoarge units on May 20, 2005.
- 4) The wells were surveyed by Harrington Surveys of Walnut Creek, CA on June 5, 2005.
- 5) A grab sample was collected from the borings on June 24, 2005.
- 6) The groundwater elevation for the May 2005 sampling was based on the survey data of Harrington Surveys.
- 7) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt. Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- NA: Not Applicable. B-9 and B-10 are boring locations and are not surveyed.
- NC: Not calculated.
- NM: Not Measured
- NS: Not surveyed. The onsite well is a private well.
- TPH-d: Total hydrocarbons as diesel
- TPH-g: Total hydrocarbons as gasoline
- TPH-mo:Total hydrocarbons as motor oil
- H: Heavier hydrocarbons contributed to the quanitation
- L: Lighter weight hydrocarbons contributed to the quanitation
- Y: Sample exhibits chromatographic pattern which does not resemble standard
- Z: Sample exhibits unknown single peaks or peaks.
- <: Not Detected above the laboratory reporting limit.
- D35: Sample does not display fuel pattern. Sample contains several discrete peaks. (1Q06 diesel)
- D06: Sample chromatographic pattern does not resemble fuel standard used for quantitation. (1Q06, motor oil)

Table 2Historical Groundwater Analytical ResultsGasoline Oxygenates & Lead Scavengers
Wente Vineyards5565 Tesla Road, Livermore, California

Monitoring	Date	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
Well		(μ g/L)	(μ g/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-1	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3	9/13/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Onsite Supply Well	11/28/2005	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Offsite Supply Well	11/28/2005	<269	<53.8	<53.8	<215	<53.8	<215
	1/16/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<2.5	<0.5	<0.5	<2.0	<0.5	<2.0
	5/5/2006	<10	<0.5	<0.5	<0.5	<0.5	<0.5

Table 2Historical Groundwater Analytical ResultsGasoline Oxygenates & Lead Scavengers
Wente Vineyards5565 Tesla Road, Livermore, California

Monitoring	Date	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
Well		(μg/L)	(μ g/L)	(μ g/L)	(μg/L)	(μ g/L)	(μ g/L)

Notes:

1) A grab sample was collected after well development on May 20, 2005.

2) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt. Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.

<: Not Detected above the laboratory reporting limit.

Gasoline Oxygenates:

TBA: tertiary Butyl Alcohol DIPE: Di-Isopropyl Ether ETBE: Ethyl tertiary Butyl Ether TAME: Methyl tertiary Amyl Ether Lead Scavengers: EDB: 1,2-Dibromoethane 1,2-DCA: 1,2-Dichloroethane

Table 3Historical Analytical Results For Volatile Organic Compound
Analyses in Groundwater Samples
Wente Vineyards5565 Tesla Road, Livermore, California

Monitoring Well	Date	PCE (μg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	Vinyl Chloride (μg/L)	1,2-DCP (μg/L)	1,1-DCE (μg/L)
MW-1	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3	9/13/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Onsite								
Supply Well	11/28/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Table 3Historical Analytical Results For Volatile Organic Compound
Analyses in Groundwater Samples
Wente Vineyards5565 Tesla Road, Livermore, California

Monitoring	Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	1,2-DCP	1,1-DCE
Well		(μg/L)						
Offsite Supply Well	11/28/2005	<53.8	<53.8	<53.8	<53.8	<53.8	<53.8	<53.8
	1/16/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2/13/2006	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5/5/2006	<0.5						

Notes:

1) A grab sample was collected after well development on May 20, 2005. However, the first time volatile organic compounds (VOCs) were analyzed was during the Third Quarter 2005 monitoring event.

2) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt.Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.

<: Not detected above the laboratory reporting limit.

Volatile orga	nic compounds (VOCs)				
PCE:	tetrachloroethene	TCE:	1,1,1-trichloroethane		
cis-1,2-DCE	: cis-1,2-dichloroethene	trans-1,2-DCE: trans-1,2-dichloroethene			
vinyl chloride)	1,2-DCP:	1,2-dichloropropane		
1,1-DCE:	1,1-dichloroethene				

Table 4Historical Groundwater Analytical ResultsMetalsWente Vineyards

5565 Tesla Road, Livermore, California

Monitoring Well	Date	Cadmium (μg/L)	Chromium (μg/L)	Lead (µg/L)	Nickel (µg/L)	Zinc (μg/L)
MW-1	9/13/2005	<5.0	<10	<3.0	<20	27
MW-2	9/13/2005	<5.0	<10	<3.0	<20	23
MW-3	9/13/2005	<5.0	<10	<3.0	<20	<20
B-10	6/24/2005	12	930	82	3,600	800
Onsite Supply Well	11/28/2005	<5.0	<10	<3.0	<20	62
	2/13/2006	<5.0	<10	<3.0	<20	<20
	5/5/2006	<5.0	<10	26	<20	<20
Offsite Supply Well	11/28/2005	<5.0	<10	<3.0	<20	830
	1/16/2006	<5.0	<10	8.30	<20	650
	2/13/2006	<5.0	15	<3.0	<20	1700
	5/5/2006	<5.0	<10	26	<20	750

Notes:

1) Metals were tested at boring B-10 on June 24, 2005.

- Due to the results from B-10, the Alameda County Environmental Health Services requested that SOMA further analyze the wells for metals in a letter dated Sept. 19, 2005.
 SOMA collected grab samples from the wells on September 29, 2005.
- 3) The only time metals were tested in wells MW-1 to MW-3 was in the Third Quarter 2005.
- 4) The supply wells were first added to the quarterly events in the Fourth Quarter 2005. The off-site water supply well was re-sampled on January 16, 2006, based on the directive of Alameda County Environmental Health Dpt.Tetrahydrofuran was detected at 19,700 ug/L and chloroethane was detected at 380 ug/L during the 4Q05 Monitoring Event.
- <: Not Detected above the laboratory reporting limit.

Appendix A

SOMA's Groundwater Monitoring Procedures

Field Activities

On May 5, 2006, SOMA's field crew conducted a groundwater monitoring event in accordance with the procedures and guidelines of the Alameda County Environmental Health Services and the California Regional Water Quality Control Board. Figure 2 shows the locations of the wells.

Water Level Measurements

On May 5, 2006, a total of three monitoring wells (MW-1 to MW-3) were measured for depth to groundwater. On May 5, 2006, additional field measurements and grab groundwater samples were collected from all of the monitoring wells, as well as, an onsite supply well and off-site supply well.

Prior to measuring the groundwater depth at each monitoring well, equalization with the surrounding aquifer was achieved. The well cap was removed each well, and the pressure in each well was then allowed to dissipate. This allowed for a more stable water table level within the well. After a few minutes, and once the water level in the well stabilized, the depth to groundwater in each monitoring well was measured from the top of the casing to the nearest 0.01 foot using an electric sounder.

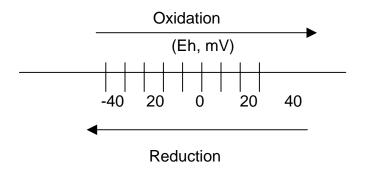
The depth to groundwater in each monitoring well was measured from the top of the casing to the nearest 0.01 foot using an electric sounder. Harrington Surveys Inc., of Walnut Creek, surveyed the Site on June 3, 2005. The survey datum was based on an elevation of 566.57 NAVD 88. Top of casing elevation data and the depth to groundwater in each monitoring well was used to calculate the groundwater elevation.

The survey data is included in Appendix B for the monitoring wells. The survey was conducted to comply with EDF requests for electronic reporting of data to the State Water Resources Control Board (SWRCB) Database.

Purging and Field Measurements

Prior to collecting samples, each monitoring well was purged using a battery operated 2-inch diameter pump (Model ES-60 DC). At the supply wells, groundwater was extracted using an active pump within the well.

During the purging activities, in order to obtain accurate measurements of groundwater parameters and especially to avoid the intrusion of oxygen from ambient air into the groundwater samples, field measurements were conducted insitu (i.e., down-hole inside each monitoring well). To minimize the intrusion of air into the water at each supply well, extracted groundwater was discharged through a flow cell.


The groundwater parameters such as DO, pH, temperature, EC, turbidity, and the ORP were measured in-situ using a Horiba, Model U-22 multi-parameter instrument. The equipment was calibrated at the Site using standard solutions and procedures provided by the manufacturer.

The pH of groundwater has an effect on the activity of microbial populations in the groundwater. The groundwater temperature affects the metabolic activity of bacteria. The groundwater conductivity (EC) is directly related to the concentration of ions in solution.

There is a strong correlation between the turbidity level and the biological oxygen demand of natural water bodies. The main purpose for checking the turbidity level is to provide a general overview of the extent of the suspended solids in the groundwater.

ORP (oxidation reduction potential) is the measure of the potential for an oxidation or reduction process to occur. In the oxidation process a molecule or ion loses one or several electrons. In the reduction process a molecule or ion gains one or several electrons. The unit of the redox potential is the Volt or m-Volt. The most important redox reaction in petroleum contaminated groundwater is the oxidation of petroleum hydrocarbons in the presence of bacteria and free molecular oxygen. Because the solubility of O_2 in water is low (9 mg/L at 25 °C and 11 mg/L at 5 °C), and because the rate of O_2 replenishment in subsurface environments is limited, DO can be entirely consumed, when the oxidation of only a small amount of petroleum hydrocarbons occurs.

Oxidation of petroleum hydrocarbons can still occur, when all the dissolved O_2 in the groundwater is consumed, however, the oxidizing agents (i.e., the constituents that undergo reduction) now become NO⁻₃, MnO₂, Fe (OH)₃, SO₄²⁻ and others (Freeze and Cherry, 1979). As these oxidizing agents are consumed, the groundwater environment becomes more and more reduced. If the process proceeds far enough, the environment may become so strongly reduced that the petroleum hydrocarbons may undergo anaerobic degradation, resulting in the production of methane and carbon dioxide. The concept of oxidation and reduction in terms of changes in oxidation states is illustrated below.

The purging of the wells continued until the parameters for DO, pH, temperature, EC, turbidity, and redox stabilized or three casing volumes were purged.

Sampling

On May 5, 2006, for sampling purposes, after purging, a disposable polyethylene bailer was used to collect sufficient samples from each monitoring well for laboratory analyses. Samples from the supply wells were collected using the active downhole pumps.

The groundwater sample was transferred to four 40-mL VOA vials and preserved with hydrochloric acid. The vials were then sealed to prevent the development of air bubbles within the headspace. The groundwater sample was also transferred into a one-liter non-preserved amber glass container. The groundwater samples from each supply well were further transferred into a 250 milliliter poly container. All groundwater samples were placed in an ice chest along with a chain of custody (COC) form. On May 5, 2006, upon completion of the monitoring event, SOMA's field crew delivered the groundwater samples to Curtis and Tompkins in Berkeley, California.

Laboratory Analysis

Curtis and Tompkins, a state certified laboratory, analyzed the groundwater samples at both the monitoring wells and supply wells for TPH-g, TPH-d, TPH-mo, BTEX, MtBE, gasoline oxygenates, lead scavengers, and volatile organic compounds (VOCs). The supply wells were further monitored for metals.

EPA Method 5030B was used to prepare the samples for TPH-g, BTEX, MtBE, gasoline oxygenates, lead scavengers, and VOCs; and analyzed using EPA Method 8260B. EPA Method 3520C was used to prepare the samples for TPH-d and TPH-mo; and analyzed using Method 8015B. Metals, which included cadmium, chromium, lead, nickel, and zinc were prepared using EPA Method 3010A and analyzed using EPA Method 6010B. The metals were also filtered at the laboratory to verify a more accurate reading.

Appendix B

Table of Elevations & Coordinates on Monitoring Wells

Measured by Harrington Surveys, Inc.,

and

Field Measurements of Physical, Chemical, & Biodegradation

Parameters of the Groundwater Samples

at Time of Sampling

Harrington Surveys Inc.

Land Surveying & Mapping 2278 Larkey Lane, Walnut Creek, Ca. 94597 Phone (925)935-7228 Fax (925)935-5118 Cell (925)788-7359 E-Mail (ben5132@pacbell.net)

SOMA ENVIRONMENTAL ENGINEERING 2680 BISHOP DR. # 203 SAN RAMON, CA. 94583 JUNE 05, 2005

ATTN: ELENA

5565 TESLA ROAD, LIVERMORE CA.

SURVEY REPORT

CONTROLING POINTS FOR SURVEY:

CALIFORNIA HPGN MONUMENT 04 FL, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NAD 83. NORTH 2,085,087.52 - EAST 6,213,127.18, LAT. N37°42'56.31172" W121°42'18.00018". ELEVATION 566.57, NAVD 88,

CALIFORNIA HPGN MONUMENT 04 FK, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NORTH 2,055,842.44 - EAST 6,189,298.07, LAT N37°38'02.07933", W121°47'09.51080" ELEVATION 637.80NAVD 88,

INSTRUMENTATION: TRIMBLE GPS, MODEL 5800 AND LEICA TCA 1800, 1" HORZ. & VERT. OBSERVATION: EPOCH = 180.

FIELD SURVEY: JUNE 03, 2005.

BEN HARRINGTON PLS 5132

MONITORING WELLS

HARRINGTON SURVEYS INC. 2278 LARKEY LANE, WALNUT CREEK CA.

5565 TESLA RD.

JOB#2528 6-**0**5-05

LIVERM	IORE, CA.			925	5-935-7228	
	NORTH	EAST	ELEV.	LATITUDE	LONGITUDE	
1	2085287.52	6213127.18	566.57	37ø42'56.31176"N	121ø42'18.00017"W	FD. 04 FL HPGN
2	2085287.52	6213127.18	566.57	37ø42'56.31175"N	121ø42'18.00016"W	FD. 04 FL HPGN
10	2066759.37	6206469.09	615.16	37ø39'52.28484"N	121ø43'37.83506"W	MW-1 V N. PVC
11	2066759.71	6206469.01	615.52	37ø39'52.28825"N	121ø43'37.83609"W	MW-1 PUNCH N RIM
12	2066753.85	6206471.51	615.55	37ø39'52.23057''N	121ø43'37.80414"W	BLG COR
13	2066753.67	6206512.16	615.56	37ø39'52.23412"N	121ø43'37.29847"W	BLG COR
14	2066628.15	6206469.65	616.03	37ø39'50.98763"N	121ø43'37.80672"W	MW-2 V N. PVC
15	2066628.55	6206469.61	616.38	37ø39'50.99158"N	121ø43'37.80724''W	MW-2 PUNCH N. RIM
16	2066632.94	6206516.64	616.48	37ø39'51.04109"N	121ø43'37.22314"W	5.0 E BLG COR
17	2066600.85	6206566.19	617.32	37ø39'50.73030''N	121ø43'36.60162"W	MW-3 V N. PVC
18	2066601.16	6206566.10	617.54	37ø39'50.73332"N	121ø43'36.60286"W	MW-3 PUNCH N. RIM
19	2066610.25	6206564.10	617.64	37ø39'50.82300"N	121ø43'36.62917"W	FC COR
20	2066604.40	6206549.81	617.66	37ø39'50.76325"N	121ø43'36.80598"W	FC COR
21	2066629.00	6206539.65	617.75	37ø39'51.00516''N	121ø43'36.93629"W	FC COR
22	2066634.86	6206554.19	617.86	37ø39'51.06493"N	121ø43'36.75646"W	FC COR
3	2080138.47	6208815.78	552.46	37ø42'04.85555"N	121ø43'10.81967"W	FD. Z 927
4	2080138.48	6208815.77	552.45	37ø42'04.85566"N	121ø43'10.81976"W	FD. Z 927
5	2055842.44	6189298.07	637.79	37ø38'02.07930''N	121ø47'09.51084''W	FD. 4 FK HPGN
6	2055842.43	6189298.07	637.82	37ø38'02.07924"N	121ø47'09.51088"W	FD. 4 FK HPGN
7	2066813.66	6206542.08	615.00	37ø39'52.83104"N	121ø43'36.93627''W	SET RB\GATE
	2066813.64	6206542.08	614.98	37ø39'52.83084"N	121ø43'36.93616"W	SET RB\GATE
	2066806.93	6206470.38	615.04	37ø39'52.75518"N	121ø43'37.82678"W	SET 6.D NW YARD
23	2066806.93	6206470.38	615.07	37ø39'52.75523"N	121ø43'37.82680"W	SET 6.D NW YARD
						T.
			1			TED LAND CO
		· ·				AND
						A A A A A A A A A A A A A A A A A A A
						10 10
						A EX M
						6-30-0
						OF CALIFORNIA

ENVIRONMENTAL ENGINEERING, INC

Well No.:Casing Diameter:_____Depth of Well:_____Top of Casing Elevation:_____Depth to Groundwater:_____Groundwater Elevation:_____Water Column Height:_____Purged Volume:_____

. می

Mw-1	_
2	inch
14.80	ft
615.16	ft
5-23	ft
609.93	ft
9.57	ft
6.5	gallons

Project No.:2841Address:Wente Vineyards
5565 Tesla Rd, LivermoreDate:5/5/06Sampler:John Lohman
Tony Perini

Purging Method:	Bailer 🗆		Pump 🗠
Sampling Method:	Bailer 🗠		Pump 🗆
Color:	No 🗹	Yes 🗆	Describe
Sheen:	No 🗹	Yes 🗆	Describe
Odor:	No 🗹	Yes 🗅	Describe

Field Measurements:

Time	Volume	D.O.	рН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(µS/cm)	NTU	
10:05 Any	star lef	S pres	ging n	ell			
10:06 Am	1.0	7.70	6.84	14.91	1650	999	103
10:08 AM	4.0	8.00	6.87	14.86	1650	493	105
10:10 AM	6.5	7.90	6.85	14.84	1650	347	107
10:12 AM	Samp	les					

ENVIRONMENTAL ENGINEERING, INC

Well No.: Casing Diameter: Depth of Well: Top of Casing Elevation: Depth to Groundwater: Groundwater Elevation: Water Column Height: Purged Volume:

MWZ	_
2	inch
14,90	ft
616.03	ft
5.58	ft
610.45	ft
9,32	ft
10	gallons

Project No.:2841Address:Wente Vineyards5565 Tesla Rd, LivermoreDate:5/5/06Sampler:John LohmanTony Perini

3 - <u>-</u>

Purging Method:	Baile	r 🗆		Pump 🗭
Sampling Method:	Baile	r 🕵		Pump 🗆
Color:	No	Þ	Yes	Describe
Sheen:	No	Ì. I	Yes	Describe
Odor:	No	ø	Yes	Describe

Field Measurements:

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(µS/cm)	NTU	
10:18 Am	STAR	T PL	F6E				
10:20 Am	1.0	7.85	6.36	15.75	1700	411	102
10:22 Am	4.0	7.68	6.33	15.76	1700	267	106
10:25 AM	7	7.70	6.69	15.78	1700	229	108
10:28 Am	10	7.75	6.70	15.80	1700	197	110
10:30 Am	Samp	eleo	_				

.

ENVIRONMENTAL ENGINEERING, INC

0

Well No.: Casing Diameter: Depth of Well: Top of Casing Elevation: Depth to Groundwater: Groundwater Elevation: Water Column Height: Purged Volume:

а .

۸.

MWS	_
2	inch
13.35	ft
617,32	ft
5.94	ft
611.38	ft
7.41	ft
10	- gallons

Project No.:2841Address:Wente Vineyards5565 Tesla Rd, LivermoreDate:5/5/06Sampler:John LohmanTony Perini

•.'

11 L

۰.

Purging Method:	Bailer 🗆	Pump ⊅∕
Sampling Method:	Bailer 🕸	Pump 🗆
Color:	No 🗗	Yes 🗆 Describe
Sheen:	No 🗹	Yes 🗆 Describe
Odor:	No 🖬	Yes 🗆 Describe

Field Measurements:

Time	Volume	D.O.	рН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(µS/cm)	NTU	
10:38 AM	START	PUF	26E				
10:40 Am	1.0	7.70	6.87	16.12	1700	999	103
10:42 AM	4.0	7.40	6.87	16.12	1700	371	106
10:44 AM	8.0	7.20	6.84	16.12	1700	279	108
10:48 m	SANP	LES					

ENVIRONMENTAL ENGINEERING, INC

off she supply well Project No.: 2841 Well No.: Address: Wente Vineyards **Casing Diameter:** inch Depth of Well: ft 5565 Tesla Rd, Livermore NM Top of Casing Elevation: ft Date: 5/5/06 NS Depth to Groundwater: NM ft Sampler: John Lohman Groundwater Elevation: NC ft **Tony Perini** Water Column Height: ft 38 **Purged Volume:** gallons

Purging Method:	Bailer 🗆	Pump D on-site purp
Sampling Method:	Bailer 🗆	Pump a on-site pump
Color:	No 🛱	Yes 🗆 Describe
Sheen:	No 🎽	Yes 🗆 Describe
Odor:	No 🗹	Yes 🗆 Describe

Field Measurements:

Time	Volume (gallons)	D.O. mg/L	рН	Temp °C	E.C. (μS/cm)	Turb. NTU	ORP
8:52 AM	starter	pur.	orng u	e//			
9:00 Am	12	13.65	5.13	7.94	1840	278	140
9:03 Am	20	11.63	5.84	17.61	172	385	122
9:08 An	30	11.97	6.21	17.87	1690	577	108
9:12 Am	38	11.80	6.20	17.95	1690	473	102
9:15 Am	SAMP	LES					
		5					

Notes: NE- not calculated reyes masuno NM-not

inch

ft

ft

ft

ft

ft

gallons

Onsitewell Well No.: **Casing Diameter:** Depth of Well: NM Top of Casing Elevation: NS Depth to Groundwater: NM NL Groundwater Elevation: Water Column Height: 32 **Purged Volume:**

Project No.: 2841 Address: Wente Vineyards 5565 Tesla Rd, Livermore Date: 5/5/06 Sampler: John Lohman Tony Perini

Purging Method:	Bailer 🗅		Pump poonsite
Sampling Method:	Bailer 🗆		Pump & ousite
Color:	No 🍯	Yes 🗆	Describe
Sheen:	No 🛒	Yes 🗆	Describe
Odor:	No 🕅	Yes 🗆	Describe

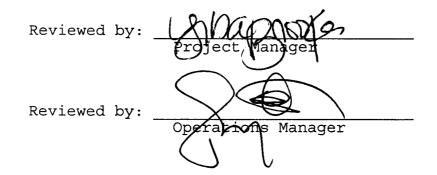
Field Measurements:

Time	Volume	D.O.	рН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(µS/cm)	NTU	
9:30 Am	STAR	FP	URGE				
9:33 Am	8	PO	6.29	17,52	1670	167	99
9:36 AN	24	10	6.21	17,30	1680	102	99
9:34 Am	32	1D	6.28	17.39	1670	103	99
9:40 AM	SAMPL	ES]	

NC-not calculates NS- not surveyes NM- not measures

Appendix C

Chain of Custody Form and Laboratory Report


ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 6620 Owens Dr. Suite A Pleasanton, CA 94588

Date: 22-MAY-06 Lab Job Number: 186645 Project ID: 2841 Location: 5565 Tesla Rd, Livermore

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

This package may be reproduced only in its entirety.

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 186645 SOMA Environmental Engineering Inc. 2841 5565 Tesla Rd, Livermore 05/05/06 05/05/06

This hardcopy data package contains sample and QC results for five water samples, requested for the above referenced project on 05/05/06. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High recoveries were observed for a number of analytes in the MS/MSD for batch 113303; the parent sample was not a project sample, the LCS was within limits, the associated RPDs were within limits, and these analytes were not detected at or above the RL in the associated samples. No other analytical problems were encountered.

Metals (EPA 6010B):

No analytical problems were encountered.

	• •	С	HA	IN (Q	F	(CUSTO)[יכ	Y											Pag	ge _	[_of)
Cur	tis & Tompkins, Ltd.]																		Ar	naly	/se	S			
Analy	vtical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax		C&T LOGIN # 186645 Sampler: Tony Berin! (John Lohman				<u>مم</u> ـــــــــــــــــــــــــــــــــــ		_			t)		scavengers												
Projec	t No: 2841		Report To: Tony Perini							_			DB lis		lead s											
Projec	t Name: 5565 Tesla Rd, Liv	erm	more Company : SOMA Environmental							_			(full 8260B list)		∞											
Turna	ound Time: Standard			Telep	ho	ne:		925-734-6400)					-			(full		lates	g						
	Fax: 925-734-6401								_	m	-mo	anics		yger	826(
r						Mati	rix		F	Pres	erv	ativ	/e]	1260	ТРР	Orgé		Ő	1BE						
Lab No.	Sample ID.	s	ampling Time		Soil	Water	waste	# of Containers	HCL	H ₂ SO ₄	HNO ₃	ICE	none		TPH-g 8260B	трн-д / трн-то	Volatile Organics	Metals	Gasoline Oxygenates	BTEXM						
-\	- Off-site Supply Well			-15		*		4-VOAs/ 1 L Amber/ 250 ml Poly	*		*	*	*		*	*	*	*	*							
-5	On-site Supply Well		· 9:	40		*		4-VOAs/ 1 L Amber/ 250 ml Poly	*		*	*	*		*	*	*	*	*							
13	MW-1		10	:IZ		*		4-VOAs/ 1-L Amber	*			*	*		*	*				×						
-4	MW-2		10	: 30		*		4-VOAs/ 1-L Amber	*			*	*		*	*				*			ŀ			
-5	MW-3			j:48		*		4-VOAs/ 1-L Amber	*			*	*		*	*				*						
Notes	EDF OUTPUT REQUIRI							UISHED BY:			<u> </u>						IVED	BV								
	VOCs and Metals for supply wells Metals include cadmium, chromium, lead nickel, and zinc GasOx to include ethanol						N	1) .	₹ ?	51		TE/1			10	e &	2) .	ian		5 5	510	D	ATE/	: 35 /TIME
7	11k- 0.45 Macro													ΓΙΜΕ			,							D	ATE/	/TIME

. . ,**t** :

•

Lisa Brooker

From:"Tony Perini" <tperini@somaenv.com>To:@ctberk.com>Sent:Wednesday, May 17, 2006 9:41 AMSubject:Livermore

For SOMA's Project ID 2841-Livermore, I need to have an additional volatile organics analysis for wells MW-1 to MW-3, full target list. Can this be added to the exiting analysis that has already been run for wells MW-1 to MW-3. The analysis for the supply wells is complete. The C&T lab ID for this project is 186645-Livermore.

CHAIN OF CUSTODY

	tis & Tompkins, Ltd.																	Ar	naiy	/ses	5			
Anal	vlical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax						1 <u>×1;1;4</u> ~		i	•.							scavengers							
Projec	t No: 2841	é .	Repo				Tony Perini		L-44	*:11	(11)			ĺ	(full 8260B list)		d sca							
	t Name: 5565 Tesla Rd, Live	ermore		omparty : SOMA Environmental						3260		& lead												
Turna	round Time: Standard	-	Telep	ephone: 925-734-6400								ates	B											
			Fax:	x: 925-734-6401			8	0 E F	anics		ygen	8260												
				Γ	Mat	trix		F	res	erv	ati	/e	260	臣	D 20		Ő	ΗË				Ì		
Lab No.	Sample ID.	Sampling Time		Soil	Water	Waste	# of Containers	НСГ	H ₂ SO ₄	HN03	ы Б	none	TPH-0 8260B	TPH-d / TPH-mo	Volatile Organics	Metals	Gasoline Oxygenates	BTEX/MtBE 8260B						
-\	Off-site Supply Well	515/ck	15 Am				4-VOAs/1 L Amber/250 ml Poly	•		•	*	*	•	•	•	*	•							
. J	On-site Supply Well		40 A A		÷		4-VOAs/ 1 L Amber/ 250 ml Poly	*		*	*	·	·	•		•	*							
:3	MW-1	[<i>C</i> :	IZA		·		4-VOAs/ 1-L Amber	•			•	•	•	•	×		x	•						
-4	MW-2	10	: 3G		•		4-VOAs/ 1-L Amber	•			•	•	•	•	×		x	*					Ţ	Π
-5	MW-3	10	:45 4		•		4-VOAs/ 1-L Amber	•			•	*	•	•	x		ĸ	•						
Notes	EDF OUTPUT REQUIRE	L ED	<u> </u>	R	ELI ELI		LUISHED BY:	L	L	L	L			ECE	IVED	BY	<u> </u> ':			Ш				니
	Vers and Metals for supply wells Metals include cadmium, chromium, lead nickel, and zinc GasOx to include ethanol Filts - 0.45 millso				[] []	Xi	- 3		35		5"/(DA	26 TE/TH		1) m &	2) NY	ian	5 n	5 5	10			35 TIME
F				-							DA	TE/TI	ME									D	ATE/	TIME
	· · · · · · · · · · · · · · · · · · ·										DA'	TE/TI	ME	_								D	ATE/	τιμε

Reu 03 06 11:23a

.

З.

*

ס גי ני

¢.

Reµ

17

90

10:33a

٩. N

T	otal Extracta	ble Hydroca	rbons
		-	
Lab #: 186645		Location:	5565 Tesla Rd, Livermore
Client: SOMA Environmental En	ngineering Inc.	Prep:	EPA 3520C
Project#: 2841		Analysis:	EPA 8015B
Matrix: Water		Sampled:	05/05/06
Units: ug/L		Received:	05/05/06
Diln Fac: 1.000		Prepared:	05/08/06
Batch#: 113167		Analyzed:	05/10/06
Field ID: OFF-SITE SUPPLY	Y WELL	Lab ID:	186645-001
Type: SAMPLE			
Analyte	Result		RL
Diesel C10-C24	ND		50
Motor Oil C24-C36	ND		300
Surrogate	%REC Limits		
Hexacosane	115 65-130		
	LITT T	Lab ID:	186645-002
Field ID: ON-SITE SUPPLY Type: SAMPLE	METT	Lab ID:	100040-002
Type: SAMPLE			
Analyte	Result		RL
Diesel C10-C24	52 Y		50
Motor Oil C24-C36	ND		300
Surrogate	%REC Limits		
Hexacosane	118 65-130		
Incracobulic			
		Ich ID:	186645-003
Field ID: MW-1		Lab ID:	T00043-003
Type: SAMPLE			
Analyte	Result		RL
Diesel C10-C24	70 Н У		50
Motor Oil C24-C36	ND		300
Surrogate	%REC Limits		
Hexacosane	114 65-130		

H= Heavier hydrocarbons contributed to the quantitation

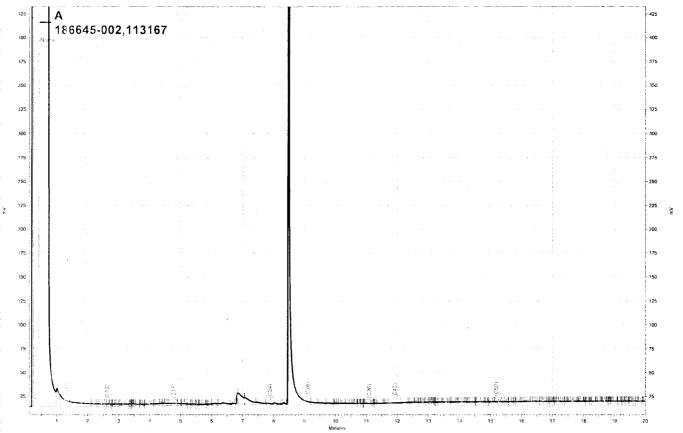
Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

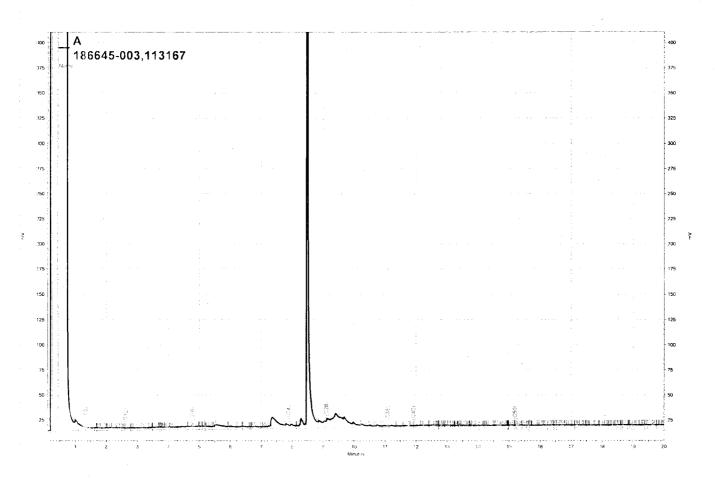
RL= Reporting Limit

Page 1 of 2

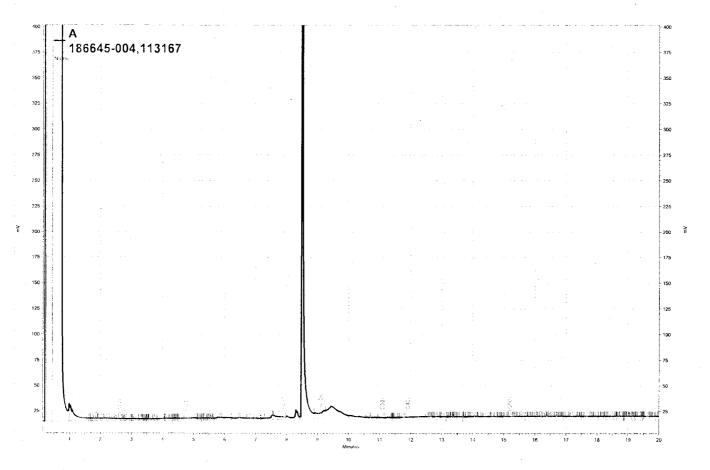
		Total Ext	racta	ble Hvdr	ocarbor	ns
				-		
Lab #:	186645			Location	:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering	Inc.	Prep:		EPA 3520C
Project#:	2841			Analysis		EPA 8015B
Matrix:	Water			Sampled:		05/05/06
Units:	ug/L			Received		05/05/06
Diln Fac:	1.000			Prepared		05/08/06
Batch#:	113167			Analyzed	:	05/10/06
Field ID:	MW - 2			Lab ID:		186645-004
	SAMPLE			Hab ID.		100043 004
Type:	SAMPLE					
	Analyte	Res	ult	-	RL	
Diesel C10			50 H Y	Y	50	
Motor Oil	C24-C36	ND			300	
	Surrogate	%REC Li	mits			
Hexacosane	e	117 65	-130			
Field ID:	MW - 3			Lab ID:		186645-005
Type:	SAMPLE			202 12		
Type:						
	Analyte	Res	ult		RL	
Diesel Clo			61 H Y	Y	50	
Motor Oil	C24-C36	ND	·		300	
	Surrogate	%REC Li	mits			
Hexacosan			-130			
Inchaoobuin						
				a]		
Type:	BLANK			Cleanup	Method:	EPA 3630C
Lab ID:	QC338954					
	Analyte	Rea	ult		RL	
Diesel Cl		ND			50	
Motor Oil		ND			300	
500000000000000000000000000000000000000	Surrogate	%REC Li	mits			
Hexacosan			mics -130			
	<u> </u>	<u> </u>	. 10			

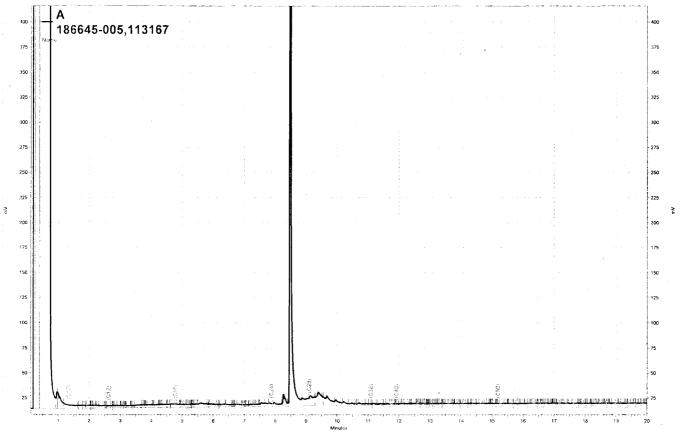

H= Heavier hydrocarbons contributed to the quantitation

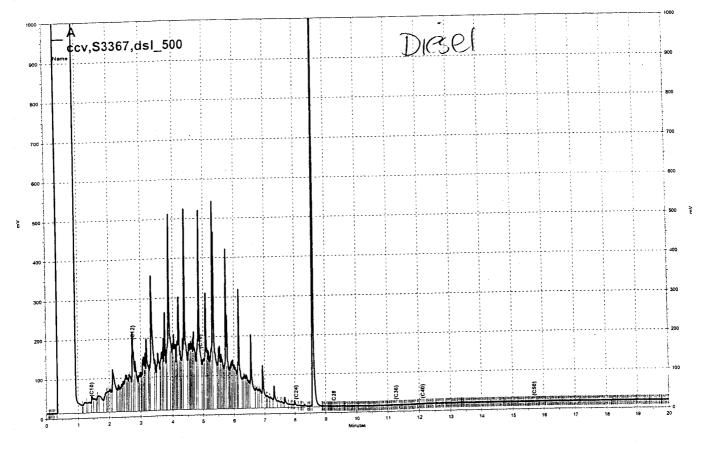
Y= Sample exhibits chromatographic pattern which does not resemble standard

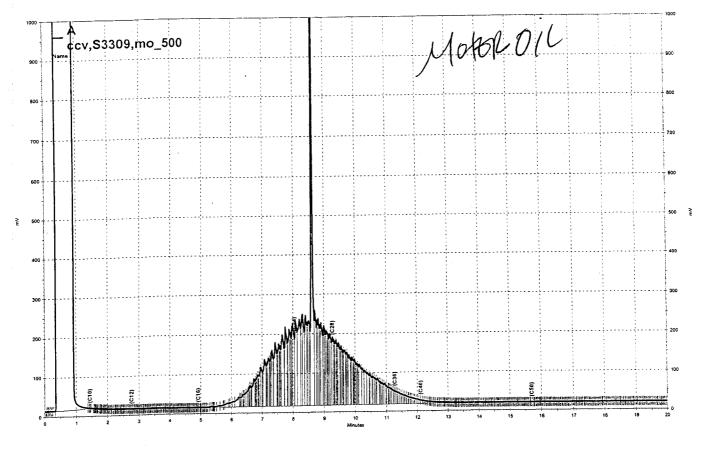

ND= Not Detected

RL= Reporting Limit


Page 2 of 2


--- \\Lims\gdrive\ezchrom\Projects\GC11A\Data\129a070, A


----- \\Lims\gdrive\ezchrom\Projects\GC11A\Data\129a069_A


-- \\Lims\gdrive\ezchrom\Projects\GC11A\Data\129a068, A

- \\Lims\gdrive\ezchrom\Projects\GC11A\Data\129a063, A

-\Lims\gdrive\ezchrom\Projects\GC17A\Data\130a004, A

		Total Extracta	ble Hydrocarbo	ns	
Lab #:	186645		Location:	5565 Tesla Ro	d, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 3520C	
Project#:	2841		Analysis:	EPA 8015B	
Matrix:	Water		Batch#:	113167	
Units:	ug/L		Prepared:	05/08/06	
Diln Fac:	1.000		Analyzed:	05/10/06	
Type: Lab ID:	BS QC338955 Analyte	Spiked	Cleanup Method:		Limits
Diesel Cl(2,500		89	
Dieser er	5-024	2,500	2,215	0.9	61-133
	Surrogate	%REC Limits			
Hexacosane		98 65-130			
Type: Lab ID:	BSD QC338956		Cleanup Method:	EPA 3630C	
	Analyte	Spiked	Result	%REC	Limits RPD Lim
Diesel C10	0-C24	2,500	2,732	109	61-133 21 31
Hexacosane	Surrogate	%REC Limits 123 65-130			

	Gasoline	by GC/MS	
Lab #:	186645	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2841	Analysis:	EPA 8260B
Field ID:	OFF-SITE SUPPLY WELL	Diln Fac:	1.000
Lab ID:	186645-001	Sampled:	05/05/06
Matrix:	Water	Received:	05/05/06
Units:	ug/L		

Analyte	Re	sult RL	Batch#	Analyzed
Gasoline C7-C12	ND	50		05/12/06
Freon 12	ND	1.0		05/11/06
tert-Butyl Alcohol (TBA)	ND	10		05/11/06
Chloromethane	ND	1.0		
	ND			05/11/06
Isopropyl Ether (DIPE)	ND	0.5		05/11/06
Vinyl Chloride		0.5		05/11/06
Bromomethane	ND	1.0		05/11/06
Ethyl tert-Butyl Ether (ETBE)	ND	0.5		05/11/06
Chloroethane	ND	1.0		05/11/06
Methyl tert-Amyl Ether (TAME)	ND	0.5		05/11/06
Trichlorofluoromethane	ND	1.0		05/11/06
Ethanol	ND	1,000		05/11/06
Acetone	ND	10		05/11/06
Freon 113	ND	5.0	113303	05/11/06
1,1-Dichloroethene	ND	0.5	113303	05/11/06
Methylene Chloride	ND	10	113303	05/11/06
Carbon Disulfide	ND	0.5		05/11/06
MTBE	ND	0.5		05/11/06
trans-1,2-Dichloroethene	ND	0.5		05/11/06
Vinyl Acetate	ND	10		05/11/06
1,1-Dichloroethane	ND	0.5	113303	05/11/06
2-Butanone	ND	10		05/11/06
cis-1,2-Dichloroethene	ND	0.5		05/11/06
2,2-Dichloropropane	ND	0.5		05/11/06
Chloroform	ND	0.5		05/11/06
Bromochloromethane	ND	0.5		
1,1,1-Trichloroethane	ND	0.5		05/11/06
	ND			05/11/06
1,1-Dichloropropene		0.5		05/11/06
Carbon Tetrachloride	ND	0.5		05/11/06
1,2-Dichloroethane	ND	0.5		05/11/06
Benzene	ND	0.5		05/11/06
Trichloroethene	ND	0.5		05/11/06
1,2-Dichloropropane	ND	0.5		05/11/06
Bromodichloromethane	ND	0.5		05/11/06
Dibromomethane	ND	0.5		05/11/06
4-Methyl-2-Pentanone	ND	10		05/11/06
cis-1,3-Dichloropropene	ND	0.5	113303	05/11/06
Toluene	ND	0.5	113303	05/11/06
trans-1,3-Dichloropropene	ND	0.5	113303	05/11/06
1,1,2-Trichloroethane	ND	0.5	113303	05/11/06
2-Hexanone	ND	10	113303	05/11/06
1,3-Dichloropropane	ND	0.5	113303	05/11/06
Tetrachloroethene	ND	0.5	113303	05/11/06
Dibromochloromethane	ND	0.5		05/11/06
1,2-Dibromoethane	ND	0.5		05/11/06
Chlorobenzene	ND	0.5		05/11/06
1,1,1,2-Tetrachloroethane	ND	0.5		05/11/06
Ethylbenzene	ND	0.5		05/11/06
m, p-Xylenes	ND	0.5		
o-Xylene	ND	0.5		05/11/06
	ND			05/11/06
Styrene Bromoform		0.5		05/11/06
	ND	1.0		05/11/06
Isopropylbenzene	ND	0.5		05/11/06
1,1,2,2-Tetrachloroethane	ND	0.5		05/11/06
1,2,3-Trichloropropane	ND	0.5	113303	05/11/06

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Gasoline	by GC/MS			
Lab #: 186645		Location:	5565	Tesla Rd,	Livermore
Client: SOMA Environmental	Engineering Inc.	Prep:	EPA 5	030B	
Project#: 2841		Analysis:	EPA 8	260B	
Field ID: OFF-SITE SU	PPLY WELL	Diln Fac:	1.000		
Lab ID: 186645-001		Sampled:	05/05	/06	
Matrix: Water		Received:	05/05	/06	
Units: ug/L					
				0000000	
Analyte	Result		RL		Analyzed
Propylbenzene Bromobenzene	ND		0.5		05/11/06
	ND		0.5		05/11/06
1,3,5-Trimethylbenzene 2-Chlorotoluene	ND		0.5		05/11/06
4-Chlorotoluene	ND ND		0.5		05/11/06
			0.5		05/11/06
tert-Butylbenzene	ND ND		0.5		05/11/06
sec-Butylbenzene	ND		0.5		05/11/06
			0.5		05/11/06
para-Isopropyl Toluene	ND ND		0.5		05/11/06
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND		0.5	112203	05/11/06
			0.5	112203	05/11/06
n-Butylbenzene 1,2-Dichlorobenzene	ND ND		0.5	112202	05/11/06
1,2-Dibromo-3-Chloropropane	ND			112202	05/11/06
1,2,4-Trichlorobenzene	ND		2.0 0.5	112202	05/11/06
Hexachlorobutadiene	ND			112202	05/11/06
Naphthalene	ND		0.5 2.0	112202	05/11/06 05/11/06
1,2,3-Trichlorobenzene	ND ND		0.5	112202	05/11/06
			0.5	113303	03/11/00
Surrogate		Batch# Analyz	ed		
Dibromofluoromethane	111 80-120	113303 05/11/	06		
1,2-Dichloroethane-d4	101 80-130	113303 05/11/	06		
Toluene-d8	103 80-120	113303 05/11/	06		
Bromofluorobenzene	107 80-122	113303 05/11/	06		

ND= Not Detected RL= Reporting Limit Page 2 of 2

Curtis & Tompkins, Ltd.

Gasolir	e by GC/MS	
Lab #: 186645 Client: SOMA Environmental Engineering Inc Project#: 2841	Location: 5565 Tesla Prep: EPA 5030B Analysis: EPA 8260B	Rd, Livermore
Field ID:ON-SITE SUPPLY WELLLab ID:186645-002Matrix:WaterUnits:ug/L	Diln Fac: 1.000 Sampled: 05/05/06 Received: 05/05/06 Analyzed: 05/12/06	Hannan an a
Analyte Result	RL Batcl	h#
Gasoline C7-C12 ND Freon 12 ND	50 11330	
tert-Butyl Alcohol (TBA) ND	1.0 $1133(10 1133($	
Chloromethane ND	1.0 11330	
Isopropyl Ether (DIPE) ND	0.5 11330	
Vinyl Chloride ND	0.5 11330	03
Bromomethane ND	1.0 11330	-
Ethyl tert-Butyl Ether (ETBE) ND	0.5 11330	
Chloroethane ND	1.0 11330	
Methyl tert-Amyl Ether (TAME) ND Trichlorofluoromethane ND	0.5 11330	
Trichlorofluoromethane ND Ethanol ND	1.0 11330	
Acetone ND	1,000 11330 10 11330	
Freon 113 ND	5.0 1133(
1 1 Dichlereethere	5.0 11550	

Bronomethane ND 1.0 113303 Ethyl tetr-Butyl Ether (ETER) ND 0.5 113303 Chloroethane ND 1.0 113303 Methyl tetr-Amyl Ether (TAME) ND 0.5 113303 Trichlorofluoromethane ND 1.0 113303 Breach ND 1.00 113303 Acetone ND 1.0 113303 Acetone ND 1.0 113303 Methylene Chloride ND 0.5 113303 Carbon Disulfide ND 0.5 113303 MTBB ND 0.5 113303 Vinyl Acetate ND 0 113303 2-Butanone ND 0.5 113303 2.1-Dichloroethane ND 0.5 113303 2.2-Dichloropropane ND 0.5 113303 2.2-Dichloropropane ND 0.5 113303 2.2-Dichloropropane ND 0.5 113303 2.2-Dichloropropane	Vinyl Chloride	ND	0.5	113303	1
Ethyl tert-Butyl Ether (ETEE) ND 0.5 113303 Methyl tert-Amyl Ether (TAME) ND 0.5 113303 Methyl tert-Amyl Ether (TAME) ND 1.0 113303 Ethanol ND 1.0 113303 Ethanol ND 1.0 113303 Acetone ND 10 113303 Frecon 113 ND 5.0 113303 Mathylene Chloride ND 0.5 113303 Carbon Disulfide ND 0.5 113303 Vinyl Acetate ND 0.5 113303 Vinyl Acetate ND 0.5 113303 2-Butanone ND 0.5 113303 2/2-Dichloroethane ND 0.5 113303 2/2-Dichloropropane ND 0.5 113303 2/2-Dichloropropane ND 0.5 113303 2/2-Dichloropropane ND 0.5 113303 2/2-Dichloropropane ND 0.5 113303 2/2-Dich		ND			1
Chloroethane ND 1.0 113303 Methyl tert-Amyl Ether (TAME) ND 0.5 113303 Trichlorofluoromethane ND 1.0 113303 Rehanol ND 1.00 113303 Acetone ND 0.5 113303 Acetone ND 0.5 113303 Acetone ND 0.5 113303 Methyl lene Chloride ND 0.5 113303 Methyl lene Chloride ND 0.5 113303 Watyl Acetate ND 0.5 113303 Vinyl Acetate ND 0.5 113303 Vinyl Acetate ND 0.5 113303 2-Butanone ND 0.5 113303 2-Pichloropropane ND 0.5 113303 2.2-Dichloroethane ND 0.5 113303 1.1.1-Tichloroethane ND 0.5 113303 1.2.2-Dichloropropane ND 0.5 113303 1.2.2-Dichloroethane	Ethyl tert-Butyl Ether (ETBE)	ND			
Methyl tert-Rayl Ether (TAME) ND 0.5 113303 Trichlorofluorofluoromethane ND 1.0 113303 Ethanol ND 10 113303 Acetone ND 10 113303 Frecon 113 ND 5.0 113303 Methylene Chloride ND 0.5 113303 MTBE ND 0.5 113303 WTRBE ND 0.5 113303 Vinyl Acetate ND 0.5 113303 2-Bucanone ND 0.5 113303 2-Jochloroethane ND 0.5 113303 1.1-Dichloroethane ND		ND			1
Trichlorofluoromethane ND 1.0 11303 Bthanol ND 1,000 113303 Acetone ND 10 113303 Acetone ND 0.0 113303 Acetone ND 0.5 113303 1.1-Dichloroethene ND 0.5 113303 Carbon Disulfide ND 0.5 113303 Carbon Disulfide ND 0.5 113303 trans-1, 2-Dichloroethene ND 0.5 113303 trans-1, 2-Dichloroethene ND 0.5 113303 2, 2-Dichloroethane ND 0.5 113303 2, 2-Dichloroethane ND 0.5 113303 2, 2-Dichloropopane ND 0.5 113303 1, 1-Trichloroethane ND 0.5 113303 1, 1Dichloropropene ND 0.5 113303 1, 1Dichloropropene ND 0.5 113303 1, 2-Dichloropropene ND 0.5 113303	Methyl tert-Amyl Ether (TAME)				
Ethanol ND 1,000 13303 Acetone ND 10 113303 Freen 113 ND 5.0 113303 Methylene Chloride ND 0.5 113303 Carbon Disulfide ND 0.5 113303 MTRE ND 0.5 113303 Vinyl Acetate ND 0.5 113303 Vinyl Acetate ND 0.5 113303 2-Butanone ND 0.5 113303 2-Pichloroethane ND 0.5 113303 2-Pichloropropane ND 0.5 113303 1.1.1-Tichloroethane ND 0.5 113303 1.2.2-Dichloroptopene ND 0.5 113303 1.3.1.1-Trichloroethane ND 0.5 113303 1.2.2-Dichloroethane ND 0.5 113303 1.3.1.2-Trichloroethane ND 0.5 113303 1.2.2-Dichloropropene ND 0.5 113303 1.2.2-Dichloropropene					
Acetome ND 10 13303 Freen 113 ND 5.0 113303 1,1-Dichloroethene ND 0.5 113303 Carbon Disulfide ND 0.5 113303 Carbon Disulfide ND 0.5 113303 Carbon Disulfide ND 0.5 113303 trans-1,2-Dichloroethene ND 0.5 113303 trans-1,2-Dichloroethene ND 0.5 113303 2,2-Dichloroethene ND 0.5 113303 2,2-Dichloroethane ND 0.5 113303 Chloropropane ND 0.5 113303 1,1-Dichoroethane ND 0.5 113303 1,1,1-Trichloroethane ND 0.5 113303 1,2-Dichloropropene ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 <td< td=""><td>Ethanol</td><td></td><td></td><td></td><td></td></td<>	Ethanol				
Freen 113 ND 5.0 113303 1,1-Dichoroethene ND 0.5 113303 Methylene Chloride ND 0.5 113303 MTBE ND 0.5 113303 MTDE ND 0.5 113303 MTDE ND 0.5 113303 Vinyl Acetate ND 0.5 113303 2-Butanone ND 0.5 113303 2-Dichloroethane ND 0.5 113303 2.2-Dichloroethane ND 0.5 113303 2.2-Dichloroethane ND 0.5 11303 1.1-Dichloroptopane ND 0.5 11303 1.1.1-Trichloroethane ND 0.5 11303 1.2-Dichloroptopene ND	Acetone		•		
1,1-Dichloroethene ND 0.5 11303 Methylene Chloride ND 0.5 11303 Carbon Disulfide ND 0.5 11303 WTBE ND 0.5 11303 trans-1,2-Dichloroethene ND 0.5 11303 vinyl Acetate ND 0.5 11303 2-butanone ND 0.5 113303 2-butanone ND 0.5 113303 2,2-Dichloroethene ND 0.5 113303 2,2-Dichloroptopane ND 0.5 113303 1,1,-Trichloroethane ND 0.5 113303 1,1,1-Trichloroptopane ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloropene ND 0.5 113303 1,2-Dichloropene	Freon 113				
Methylene Chloride ND 10 113303 Carbon Disulfide ND 0.5 113303 MTBE ND 0.5 113303 MTRE ND 0.5 113303 Vinyl Acetate ND 0.5 113303 1.1-Dichloroethane ND 0.5 113303 2-Butanone ND 0.5 113303 2.2-Dichloroptopane ND 0.5 113303 Chloroform ND 0.5 113303 1.1-Trichloroethane ND 0.5 113303 1.1.1-Trichloroethane ND 0.5 113303 1.1.2-Dichloroptopane ND 0.5 113303 1.1.2-Dichloroptopane ND 0.5 113303 1.1.2-Dichloroptopene ND 0.5 113303 1.2-Dichloroptopene ND 0.5 113303 1.2-Dichloroptopane ND 0.5 113303 1.2-Dichloroptopene ND 0.5 113303 1.2-Dichloropropen	1,1-Dichloroethene				
Carbon Disulfide ND 0.5 11303 MTBE ND 0.5 113303 trans-1,2-Dichloroethene ND 10 113303 1.1-Dichloroethane ND 0.5 113303 2.Butanone ND 0.5 113303 cis-1,2-Dichloroethane ND 0.5 113303 Carbon Tetrachloride ND 0.5 113303 1,1-1-Trichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 Dibromomethane ND 0.5 113303					
MTEE ND 0.5 11303 trans-1,2-Dichloroethene ND 0.5 113303 1,1-Dichloroethane ND 0.5 113303 2-Butanone ND 0.5 113303 2-Butanone ND 0.5 113303 2,2-Dichloroethene ND 0.5 113303 2,2-Dichloropropane ND 0.5 113303 2,2-Dichloropropane ND 0.5 113303 Chloroform ND 0.5 113303 1,1-Dichloropropane ND 0.5 113303 1,1-Dichloropropane ND 0.5 113303 1,1-Dichloropropane ND 0.5 113303 1,2-Dichloropethane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Di					
trans-1,2-Dichloroethene ND 0.5 13303 Vinyl Acetate ND 10 113303 1.1-Dichloroethane ND 0.5 113303 2-Butanone ND 0.5 113303 2-Joichloroethene ND 0.5 113303 2,2-Dichloroethene ND 0.5 113303 2,2-Dichloroethane ND 0.5 113303 1,1,1-Trichloroethane ND 0.5 113303 1,1,1-Trichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303					
Vinyl Acetate ND 10 113303 1,1-Dichloroethane ND 0.5 113303 2-Butanone ND 0.5 113303 2-Juchloroethane ND 0.5 113303 2,2-Dichloropropane ND 0.5 113303 2,2-Dichloropropane ND 0.5 113303 Bromochloromethane ND 0.5 113303 1,1-Dichloropethane ND 0.5 113303 1,1-Dichloropropene ND 0.5 113303 1,2-Dichloropethane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303	trans-1.2-Dichloroethene				
1,1-Dichloroethane ND 0.5 11303 2-Butanone ND 10 113303 cis-1,2-Dichloroethene ND 0.5 113303 2,2-Dichloropropane ND 0.5 113303 2,2-Dichloropropane ND 0.5 113303 Bromochloromethane ND 0.5 113303 1,1,1-Trichloroethane ND 0.5 113303 1,1-Dichloropropene ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 Benzene ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropene ND 0.5 113303 1,2-Dichloropropene ND 0.5 113303 1,2-Dichloropropene ND 0.5 113303 1,2-Dichloropropene ND 0.5 113303 1,1					
2-Butanone ND 10 113303 cis-1,2-Dichloroptopane ND 0.5 113303 2,2-Dichloroptopane ND 0.5 113303 Chloroform ND 0.5 113303 Bromochloromethane ND 0.5 113303 1,1-Dichloroptopene ND 0.5 113303 1,1-Dichloroptopene ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroptopane ND 0.5 113303 1,2-Dichloroptopene ND 0.5 113303 1,2-Trichloroptopene ND 0.5 113303 1,2-Trichloropthane ND 0.5 113303	1.1-Dichloroethane				
cis-1,2-Dichloropthene ND 0.5 113303 2,2-Dichloropropane ND 0.5 113303 Chloroform ND 0.5 113303 Bromochloromethane ND 0.5 113303 1,1,1-Trichloropthane ND 0.5 113303 1,1-Dichloropthane ND 0.5 113303 1,2-Dichloropthane ND 0.5 113303					
2.2-Dichloropropane ND 0.5 113303 Chloroform ND 0.5 113303 Bromochloromethane ND 0.5 113303 1,1-Dichloropropene ND 0.5 113303 1,1-Dichloropropene ND 0.5 113303 Carbon Tetrachloride ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 Benzene ND 0.5 113303 Trichloroethane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Identification ND </td <td></td> <td></td> <td></td> <td></td> <td>1</td>					1
Chloroform ND 0.5 113303 Bromochloromethane ND 0.5 113303 1,1Trichloroethane ND 0.5 113303 1,1Dichloropropene ND 0.5 113303 1,1Dichloropropene ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 2-Dichloroethane ND 0.5 113303 Benzene ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Bromodichloropropane ND 0.5 113303 1,2-Dichloropropene ND 0.5 113303 1-4-Methyl-2-Pentanone ND 10 113303 1-arbichloropropene ND 0.5 113303 1-1,2-Trichloroethane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303					1
Bromochloromethane ND 0.5 113303 1,1.1-Trichloroethane ND 0.5 113303 1,1.1-Dichloropropene ND 0.5 113303 Carbon Tetrachloride ND 0.5 113303 Carbon Tetrachloride ND 0.5 113303 J.2-Dichloropthane ND 0.5 113303 Benzene ND 0.5 113303 Trichloroethane ND 0.5 113303 J.2-Dichloropropane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 d-Methyl-2-Pentanone ND 0.5 113303 cis-1,3-Dichloropropene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 j.1,2-Trichloroethane ND 0.5 113303 j.3-Dichloropropane ND 0.5 113303 j.1,2-Dichloropropane ND 0.5 113303 j.2-Bichloroethane ND 0.5 113303	Chloroform				I
1,1,1-Trichloroethane ND 0.5 113303 1,1-Dichloropropene ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 Benzene ND 0.5 113303 1,2-Dichloroptopane ND 0.5 113303 1,3-Dichloroptopene ND 0.5 113303 1,1,2-Trichloroptopane ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,2-Dichloroptopane ND 0.5 113303 1,2-Dib					
1,1-Dichloropropene ND 0.5 113303 Carbon Tetrachloride ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 Benzene ND 0.5 113303 Trichloroethene ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 bibromomethane ND 0.5 113303 deficitionomethane ND 0.5 113303 4-Methyl-2-Pentanone ND 0.5 113303 cis-1,3-Dichloropropene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromochhane ND 0.5 113303 1,2-Dichloropthane ND 0.5 113303					
Carbon Tetrachloride ND 0.5 113303 1,2-Dichloroethane ND 0.5 113303 Benzene ND 0.5 113303 Trichloroethene ND 0.5 113303 1,2-Dichloroppane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 0ibromomethane ND 0.5 113303 4-Methyl-2-Pentanone ND 0.5 113303 cis-1, 3-Dichloropropene ND 0.5 113303 trans-1, 3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
1,2-Dichloroethane ND 0.5 113303 Benzene ND 0.5 113303 Trichloroethene ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 4-Methyl-2-Pentanone ND 0.5 113303 cis-1,3-Dichloropropene ND 0.5 113303 rtans-1,3-Dichloropropene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromocthane ND 0.5 113303 1,2-Dibromocthane ND 0.5 113303 1,1,2-Tertachloroethane ND 0.5 113303 <					
Benzene ND 0.5 113303 Trichloroethene ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Dibromomethane ND 0.5 113303 Dibromomethane ND 0.5 113303 d-Methyl-2-Pentanone ND 0.5 113303 cis-1,3-Dichloropropene ND 0.5 113303 Toluene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromochloromethane ND 0.5 113303 1,2-Dibromochlaromethane ND 0.5 113303 1,2-Dibromochlaromethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303					
Trichloroethene ND 0.5 113303 1,2-Dichloropropane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Dibromomethane ND 0.5 113303 4-Methyl-2-Pentanone ND 0.5 113303 cis-1,3-Dichloropropene ND 0.5 113303 roluene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromochhane ND 0.5 113303 1,2-Dibromochane ND 0.5 113303 1,1,2-Tetrachloroethane ND 0.5 113303 1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303					
1,2-Dichloropropane ND 0.5 113303 Bromodichloromethane ND 0.5 113303 Dibromomethane ND 0.5 113303 Dibromomethane ND 0.5 113303 d-Methyl-2-Pentanone ND 0 113303 cis-1,3-Dichloropropene ND 0.5 113303 Toluene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloroptropane ND 0.5 113303 1,3-Dichloroptropane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 m,p-Xylenes ND 0.5 113303 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Bromodichloromethane ND 0.5 113303 Dibromomethane ND 0.5 113303 Dibromomethane ND 0.5 113303 d-Methyl-2-Pentanone ND 10 113303 cis-1,3-Dichloropropene ND 0.5 113303 Toluene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 2-Hexanone ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 m,p-Xylenes ND 0.5 113303 <					
Dibromomethane ND 0.5 113303 4-Methyl-2-Pentanone ND 10 113303 cis-1, 3-Dichloropropene ND 0.5 113303 cis-1, 3-Dichloropropene ND 0.5 113303 trans-1, 3-Dichloropropene ND 0.5 113303 trans-1, 3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 Tetrachloroethene ND 0.5 113303 Dibromochloromethane ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 o-Xylene ND 0.5 113303 o-Xylene ND 0.5 1	Bromodichloromethane				
4-Methyl-2-Pentanone ND 10 113303 cis-1,3-Dichloropropene ND 0.5 113303 Toluene ND 0.5 113303 Toluene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 10 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 0-Xylenes ND 0.5 113303 0-Xylene ND 0.5 113303 0-Xylene ND 0.5 113303 0-Xylene ND <td></td> <td></td> <td></td> <td></td> <td></td>					
cis-1,3-Dichloropropene ND 0.5 113303 Toluene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 10 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,2-Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 0-Xylene ND 0.5 113303 0-Xylene ND 0.5 113303 0-Xylene ND 0.5 113303					
Toluene ND 0.5 113303 trans-1, 3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 10 113303 1,3-Dichloropropane ND 0.5 113303 retrachloroethene ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 chlorobenzene ND 0.5 113303 i,1,1,2-Tetrachloroethane ND 0.5 113303 o-Xylene ND 0.5 113303 o-Xylene ND 0.5 113303 styrene ND 0.5 113303 styrene ND 1.0 113303 styrene					
trans-1,3-Dichloropropene ND 0.5 113303 1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 10 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 Tetrachloroethene ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 o-Xylene ND 0.5 113303 o-Xylene ND 0.5 113303 styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrach					1
1,1,2-Trichloroethane ND 0.5 113303 2-Hexanone ND 10 113303 1,3-Dichloropropane ND 0.5 113303 1,3-Dichloropropane ND 0.5 113303 Tetrachloroethene ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 0-Xylenes ND 0.5 113303 0-Xylene ND 0.5 113303 1sopropylbenzene ND 1.0 113303 1,1,2,2-Tetrachloroethane ND					
2-Hexanone ND 10 113303 1,3-Dichloropropane ND 0.5 113303 Tetrachloroethene ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 Ethylbenzene ND 0.5 113303 m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 0.5 113303 Isopropylbenzene ND 0.5 113303 Isopropylbenzene ND 0.5 113303 Isopropylbenzene ND 0.5 113303	1.1.2-Trichloroethane				
1,3-Dichloropropane ND 0.5 113303 Tetrachloroethene ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 Ethylbenzene ND 0.5 113303 m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					
Tetrachloroethene ND 0.5 113303 Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 Chlorobenzene ND 0.5 113303 Chlorobenzene ND 0.5 113303 1,1,2-Tetrachloroethane ND 0.5 113303 Ethylbenzene ND 0.5 113303 m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					1
Dibromochloromethane ND 0.5 113303 1,2-Dibromoethane ND 0.5 113303 Chlorobenzene ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 Ethylbenzene ND 0.5 113303 m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303	Tetrachloroethene				
1,2-Dibromoethane ND 0.5 113303 Chlorobenzene ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 Ethylbenzene ND 0.5 113303 m, p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					
Chlorobenzene ND 0.5 113303 1,1,1,2-Tetrachloroethane ND 0.5 113303 Ethylbenzene ND 0.5 113303 m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 1.0 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					
1,1,1,2-Tetrachloroethane ND 0.5 113303 Ethylbenzene ND 0.5 113303 m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 styrene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 1.0 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					ł
Ethylbenzene ND 0.5 113303 m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 styrene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 1.0 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					
m,p-Xylenes ND 0.5 113303 o-Xylene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 0.5 113303 Isopropylbenzene ND 1.0 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					ļ
o-Xylene ND 0.5 113303 Styrene ND 0.5 113303 Bromoform ND 1.0 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					1
Styrene ND 0.5 113303 Bromoform ND 1.0 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					
Bromoform ND 1.0 113303 Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					
Isopropylbenzene ND 0.5 113303 1,1,2,2-Tetrachloroethane ND 0.5 113303					
1,1,2,2-Tetrachloroethane ND 0.5 113303					1
					I
<u>U.5</u> 113303	1.2.3-Trichloropropane				1
	L12/2/3 HIGHIOLOPLOPANC		<u></u>	<u></u>	

ND= Not Detected RL= Reporting Limit Page 1 of 2

.

	Gasoline	by GC/MS		
Tab # 100045				- 1
Lab #: 186645		Location:	5565 Tesla Rd,	Livermore
Client: SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#: 2841		<u>Analysis:</u>	EPA 8260B	
Field ID: ON-SITE SUPP	SPA MEPP	Diln Fac:	1.000	
Lab ID: 186645-002		Sampled:	05/05/06	
Matrix: Water		Received:	05/05/06	
Units: ug/L		<u>Analyzed:</u>	05/12/06	
Analyte				
Propylbenzene	Result ND		RL Batch#	
Bromobenzene	ND		0.5 113303	
1,3,5-Trimethylbenzene	ND		0.5 113303	
2-Chlorotoluene	ND ND		0.5 113303	
4-Chlorotoluene	ND ND		0.5 113303	
tert-Butylbenzene	ND ND		0.5 113303	
1,2,4-Trimethylbenzene	ND ND		0.5 113303	
sec-Butylbenzene			0.5 113303	
para-Isopropyl Toluene	ND ND		0.5 113303	
1,3-Dichlorobenzene			0.5 113303	
1,4-Dichlorobenzene	ND		0.5 113303	
n-Butylbenzene	ND		0.5 113303	
1,2-Dichlorobenzene	ND		0.5 113303	
	ND		0.5 113303	
1,2-Dibromo-3-Chloropropane	ND		2.0 113303	
Hexachlorobutadiene	ND		0.5 113303	
Naphthalene	ND ND		0.5 113303	
1,2,3-Trichlorobenzene	ND ND		2.0 113303	
		http:///	0.5 113303	
Surrogate	%REC Limits	Batch#		
Dibromofluoromethane		113303		
1,2-Dichloroethane-d4		113303		Ĩ
Toluene-d8		113303		
Bromofluorobenzene		113303		

ND= Not Detected RL= Reporting Limit Page 2 of 2

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841		Analysis:	EPA 8260B
Field ID:	MW-1		Batch#:	113312
Lab ID:	186645-003		Sampled:	05/05/06
Matrix:	Water		Received:	05/05/06
Units:	ug/L		Analyzed:	05/11/06
Diln Fac:	1.000			

Gasoline C7-C12 ND 50 Preon 12 ND 1.0 tert-Butyl Alcohol (TEA) ND 10 Choromethane ND 1.0 Isopropyl Ether (DIPE) ND 0.5 Vinyl Chloride ND 1.0 Stoppyl Ether (DIPE) ND 0.5 Trichlorofluoromethane ND 1.0 Methyl tert-Auryl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1.0 Acetone ND 1.0 Freen 113 ND 5.0 1.1-Dichloroethene ND 0.5 Uringl Acetate ND 0.5 Chloroporpane ND 0.5 Stomochoromethane ND 0.5 Stomochoromethane ND 0.5 Chloroethene ND 0.5 Charlon Coromethane ND 0.5 Charlon Coromethane ND 0.5 Chloroporpane ND 0.5 Chroon Choromethane ND<	Analyte	Dee	ult RL
Freen 12 ID 1.0 Chloromethane ND 1.0 Chloromethane ND 0.5 Vinyl Chloride ND 0.5 Bromomethane ND 0.5 Bromomethane ND 0.5 Bromomethane ND 0.5 Bromomethane ND 0.5 Marking Lett-Rutyl Ether (TAME) ND 0.5 Marking Lett-Amyl Ether (TAME) ND 0.5 Acetone ND 1.0 0.5 Freen 113 ND 5.0 1.1-Dichlorothene ND 0.5 MTBE ND 0.5 5 1.1-Dichlorothene ND 0.5 I.1-Dichloropethane ND 0.5 5 1.1-1-Tichloropethane ND 0.5 I.1-1-Tichloropethane ND 0.5 5 1.1-1-Tichloropethane			
tert-Butyl Alcohol (TBA) ND 10 Isopropyl Ether (DTFB) ND 0.5 Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Bromomethane ND 0.5 Bromomethane ND 1.0 Ethyl tert-Butyl Ether (ETBE) ND 0.5 Chloromethane ND 1.0 Methyl tert-Amyl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1.0 Aceston ND 1.0 Aceton ND 0.5 Methyl tert-Amyl Ether (TAME) ND 0.5 Methylene Chloride ND 0.0 Carbon Disulfide ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 Chloroform ND 0.5 J-Dichloroethane ND 0.5 J-Dichloropthane ND 0.5 J-Lochloropthane ND			
Chloromethane ND 1.0 Lisoproyl Ether (DIFE) ND 0.5 Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Ethyl tert-Butyl Ether (BTBE) ND 0.5 Methyl tert-Auyl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1.0 Ethanol ND 1.0 Acetone ND 1.0 Freeno 113 ND 0.5 Mathylere Chlorosthene ND 0.5 Mathylere Chlorosthene ND 0.5 Vinyl Acetate ND 0.5 Putanone ND 0.5 Chlorosthane ND 0.5 Storoform ND 0.5 Storoform ND 0.5 Chlorosthane ND 0.5 Chlorosthane ND 0.5 Chlorosthane ND 0.5 Chlorosthane ND 0.5 Storoform ND 0.5 Storoform ND 0.5 Storoformethane ND 0.5 Storoformethane ND 0.5 Storoformethane ND 0.5 Storoformethane ND 0			
Isopropyl Event Dip Dip Dip Bromomethane ND 1.0 Bromomethane ND 1.0 Bromomethane ND 1.0 Ethyl tert-Butyl Ether (ETBE) ND 0.5 Chloroethane ND 1.0 Methyl tert-Amyl Ether (TAME) ND 1.0 Ditanol 0.5 1.00 Acetone ND 1.00 Acetone ND 0.0 Acetone ND 0.5 Methylene Chloride ND 0.5 Carbon 0.5 5 Vinyl Acetate ND 0.5 2.Puichloroethane ND 0.5 2.Puichloroethane ND 0.5 2.puichlorophane ND 0.5 2.puichlorophane ND 0.5 2.puichlorophane ND 0.5 1.l.j.hritichloroethane ND 0.5 1.l.j.prichlorophane ND 0.5 1.l.j.pritichlorophane			
Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Ethyl tert-Butyl Ether (ETBE) ND 0.5 Chloroethane ND 1.0 Methyl tert-Amyl Ether (TAME) ND 0.5 Trichloroofluoromethane ND 1.0 Ethanol ND 1.0 Acetone ND 1.0 Freeno 113 ND 5.0 1.1-Dichloroethene ND 0.5 Methylene Chordethene ND 0.5 Vinyl Acetate ND 0.5 Putanone ND 0.5 Putoromethane ND 0.5 Chloroethane ND 0.5 2.2-Dichloroethane ND 0.5 2.2-Dichloropropane ND 0.5 Stomochloromethane ND 0.5 Stomochloromethane ND 0.5 I.1-Dichloroethane ND 0.5 I.2-Dichloropropane ND 0.5 Stomochloromethane ND			
Bromonethane ND 1.0 Ethyl tert-Butyl Ether (TAME) ND 0.5 Chloroethane ND 1.0 Methyl tert-Amyl Ether (TAME) ND 1.00 Brain (Component Anne ND 1.00 Trichlorofluoromethane ND 1.00 Preon 113 ND 5.0 1.1-Dichloroethene ND 0.5 Methyl ner Chloride ND 0.5 Trans-1.2-Dichloroethene ND 0.5 Trans-1.2-Dichloroethene ND 0.5 Trans-1.2-Dichloroethene ND 0.5 Trans-1.2-Dichloroethane ND 0.5 Z-Butanone ND 0.5 Chloroporpane ND 0.5 Stronochloromethane ND 0.5 Stronochloroporpane ND 0.5 Arbon Terachloride ND 0.5 Arbon Terachloride ND 0.5 J.1-Dichloroethane ND 0.5 J.2-Dichloroporpane ND 0.5			
Ethyl tert-Butyl Ether (ETBE) ND 0.5 Chloroethane ND 1.0 Methyl tert-Amyl Ether (TAME) ND 1.0 Stanol ND 1.0 Ethanol ND 1.000 Acetone ND 1.0 Freen 113 ND 0.5 Methylene Chloride ND 0.5 Methylene Chloroethene ND 0.5 MTBE ND 0.5 Trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 Chloroethane ND 0.5 Chloroform ND 0.5 Chloroform ND 0.5 Chloroform ND 0.5 Chloroform ND 0.5 Strichloroethane ND 0.5 J.1-Tichloroethane ND 0.5 J.2-Dichloroethane ND 0.5 J.1-Trichloroethane ND 0.5 J.2-Dichloroethane ND 0.5 J.2-Dichloroethane	-		
Chloroethane ND 1.0 Methyl tert-Amyl Ether (TAME) ND 1.0 Strichlorofluoromethane ND 1.00 Sthanol ND 1.00 Acetone ND 1.00 Freon 113 ND 0.5 Methylene Chloride ND 0.5 Wathylene Chloride ND 0.5 Trans-1,2-Dichloroethene ND 0.5 Wathylene Chloride ND 0.5 Vinyl Acetate ND 0.5 2.2-Dichloroethene ND 0.5 Chloroform ND 0.5 Storoform ND 0.5 Schoorform ND 0.5 <td></td> <td></td> <td></td>			
Methyl tert-Amyl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1.000 Acetone ND 1.000 Acetone ND 10 Freen 113 ND 0.5 Methylene Chloride ND 0.5 Methylene Chlorothene ND 0.5 MTBE ND 0.5 Trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2-Joichloroethane ND 0.5 2-Joichloroethane ND 0.5 2-Joichloroptopane ND 0.5 Chloroform ND 0.5 Stromochloromethane ND 0.5 1,1-Trichloroethane ND 0.5 1,2-Dichloropropene ND 0.5 1,2-Dichloroptopene ND 0.5 1,1-Trichloroethane ND 0.5 1,2-Dichloroptopene ND 0.5 1,2-Dichloroptopene ND <td></td> <td></td> <td></td>			
Trichlorofluoromethane ND 1.0 Ethanol ND 1,000 Acetone ND 10 Freon 113 ND 0.5 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 Trischon Disulfide ND 0.5 MTRE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 Chloroptomethane ND 0.5 1,1-Trichloroethane ND 0.5 Carbon Tetrachloride ND 0.5 Benzene ND 0.5 Benzene ND 0.5 Dibromomethane ND 0.5 1,2-Dichloropropane ND 0.5 Benzene ND 0.5 Dibromomethane ND 0.5 1,2-Dichloropropane ND </td <td></td> <td></td> <td></td>			
Ethanol ND 1,000 Acetome ND 10 Preon 113 ND 5.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 Methylene Chloride ND 0.5 MTBB ND 0.5 Vinyl Acetate ND 0.5 Yinyl Acetate ND 0.5 Yinyl Acetate ND 0.5 Z-Butanone ND 0.5 Z-Polichloroethene ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 Schooldrongepene ND 0.5 Artichloroptopene ND 0.5 Schooldrongepene ND 0.5 Arbitoroptopane ND 0.5 Benzene ND 0.5 Bromodichoromethane ND 0.5 Ioroporpane ND 0.5 Bromodichoromethane ND 0.5 Ioroichoro	Methyl tert-Amyl Ether (TAME)		
AcetoneND10Freen 113ND51,1-DichloroetheneND0.5Methylene ChlorideND0.5Carbon DisulfideND0.5trans-1,2-DichloroetheneND0.5trans-1,2-DichloroetheneND0.52.ButanoneND0.5ChloroporpaneND0.5ChloropthaneND0.5ChloropthaneND0.5ChloropthaneND0.5ChloropthaneND0.5ChloropthaneND0.5ChloropthaneND0.5ChloropthaneND0.5ChloropthaneND0.5ChloropthaneND0.51,1-TrichloropthaneND0.51,1-DichloropthaneND0.51,1-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.5TrichloropthaneND0.5DibromothaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5 <td></td> <td></td> <td></td>			
Freen 113ND51.1-DichloroetheneND0.5Methylene ChlorideND0.5MTBEND0.5MTBEND0.5Vinyl AcetateND0.52.ButanoneND0.52.PutchloroethaneND0.52.PutchloropethaneND0.52.PutchloropethaneND0.52.PutchloropethaneND0.52.PutchloropethaneND0.5ChloropopaneND0.52.PutchloropethaneND0.51.1-DichloropethaneND0.52.PutchloropethaneND0.52.PutchloropethaneND0.51.1-DichloropethaneND0.52.PutchloropethaneND0.52.PutchloropethaneND0.52.PutchloropethaneND0.5BenzeneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.51.2-DichloropropaneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-DichloropropeneND0.51.2-Dichloropropene <td></td> <td></td> <td>1,000</td>			1,000
1,1-DichloroetheneND0.5Methylene ChlorideND0.5MTBEND0.5MTBEND0.5Vinyl AcetateND0.52-ButanoneND0.52-ButanoneND0.52-JoichloroethaneND0.52-JoichloroethaneND0.52-JoichloroethaneND0.52-JoichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TichloroethaneND0.5Carbon TetrachlorideND0.51,2-DichloropopaneND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.5StromodichloromethaneND0.5I,2-DichloropopaneND0.5I,2-DichloropopaneND0.5I,2-DichloropopaneND0.5I,2-DichloropropaneND0.5I,2-DichloropropaneND0.5I,2-DichloropropaneND0.5I,2-DichloropropaneND0.5I,1-TrichloroethaneND0.5I,1-Z-TichloropropaneND0.5I,1,2-Tichl			
Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.5Carbon DisulfideND0.52,2-DichloroethaneND0.5ChloropopaneND0.5ChloropopaneND0.51,1-TrichloroethaneND0.51,1-TrichloroethaneND0.51,1-DichloropopaneND0.51,1-DichloropopaneND0.51,1-DichloropopaneND0.51,1-DichloropopaneND0.51,1-DichloropopaneND0.51,1-DichloropopaneND0.51,2-DichloropopaneND0.5Carbon TetrachlorideND0.51,2-DichloropopaneND0.5PrichloropopaneND0.51,2-DichloropopaneND0.5DibromoethaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrickloropopaneND0.5PrickloropopaneND0.5PrickloropopaneND0.5PrickloropopaneND0.5PrickloropopaneND0.5PrickloropopaneND0.5PrickloropopaneND0.5PrickloropopaneND0.5 <td></td> <td></td> <td>5.0</td>			5.0
Carbon DisulfideND0.5MTBEND0.5trans-1, 2-DichloroetheneND0.51,1-DichloroethaneND0.52-ButanoneND0.52-ButanoneND0.52-JutanoneND0.52,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.5StronchloromethaneND0.51,1-TrichloroethaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.5Strans-1,3-DichloropropaneND0.5trans-1,3-DichloropropaneND0.5trans-1,3-DichloropropaneND0.52-HexanoneND0.51,2-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.5 <tr< td=""><td></td><td></td><td>0.5</td></tr<>			0.5
MTBEND0.5Vinyl AcetateND0.5Vinyl AcetateND0.5Vinyl AcetateND0.52-ButanoneND0.52-ButanoneND0.5(2,2-DichlorooptheneND0.5ChloroopropaneND0.5ChloroopropaneND0.51,1-TrichloroethaneND0.51,1-TrichloroethaneND0.51,1-DichloropopeneND0.51,1-DichloropopeneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.5BromodichloromethaneND0.51,2-DichloropopaneND0.5DibromomethaneND0.5TrichloropopaneND0.5JourneND0.51,2-DichloropropeneND0.5TolueneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND </td <td></td> <td></td> <td>10</td>			10
trans-1,2-DichloroetheneD0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.52-ButanoneND0.52-DichloroethaneND0.52,2-DichloropropaneND0.5BromochloromethaneND0.51,1-TichloroethaneND0.51,1-TichloroethaneND0.51,1-TichloroethaneND0.51,2-DichloropropeneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.5BenzeneND0.5BromodichloromethaneND0.5BenzeneND0.5TrichloroethaneND0.5DibromomethaneND0.5DibromothaneND0.5DibromothaneND0.5TolueneND0.51,2-TichloroptopeneND0.51,2-TichloroptopeneND0.51,1,2-TrichloroptopeneND0.51,1,2-TrichloroptopeneND0.51,1,2-TrichloroptopeneND0.51,2-DichloroptopeneND0.51,1,2-TrichloroethaneND0.51,2-DichloroptopaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,2-DichloroptopaneND0.51,1,1,2-TetrachloroethaneND0.5 <td< td=""><td></td><td>ND</td><td>0.5</td></td<>		ND	0.5
Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.52-ButanoneND0.52,2-DichlorogropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloropopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopeneND0.51,1,2-TrichloroptopeneND0.51,1,2-TrichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,1-1,2-Tetrachloroet		ND	0.5
1,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroethaneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1.1-TrichloropropeneND0.51,1.1-TrichloropropeneND0.51,2-DichloropropeneND0.51,2-DichloropropeneND0.51,2-DichloropropeneND0.51,2-DichloropropeneND0.51,2-DichloropropaneND0.5BenzeneND0.5BromodichloromethaneND0.51,2-DichloropropaneND0.5DibromomethaneND0.5DibromomethaneND0.5TolueneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropethaneND0.5DibromochloromethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND	trans-1,2-Dichloroethene	ND	0.5
2-ButanoneND10cis-1,2-DichloroptheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.5(1,1-DichloropropeneND0.5Carbon TetrachlorideND0.5Carbon TetrachloropeneND0.5Carbon TetrachlorideND0.5Carbon TetrachloropeneND0.5Carbon TetrachloropeneND0.5Carbon TetrachloropeneND0.5TrichloropethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5DibromomethaneND0.5TrichloropropeneND0.5I,1,2-TichloropropeneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.5DibromochloromethaneND0.5DibromochloromethaneND0.51,1,2-TetrachloropthaneND0.5DibromochloromethaneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5ChlorobenzeneND0.5	Vinyl Acetate	ND	10
cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1.1-TrichloroethaneND0.5(arbon TetrachlorideND0.5(arbon TetrachlorideND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloroethaneND0.51,2-DichloroethaneND0.5BenzeneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,3-DichloroptopeneND0.5TolueneND0.51,1,2-TrichloroptopeneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HorobethaneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.5 <td< td=""><td>1,1-Dichloroethane</td><td>ND</td><td>0.5</td></td<>	1,1-Dichloroethane	ND	0.5
cis-1,2-DichloroptopaneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1.1-TrichloroethaneND0.5(arbon TetrachlorideND0.5(arbon TetrachlorideND0.5BenzeneND0.5TrichloroptopaneND0.5BenzeneND0.51,2-DichloropthaneND0.5PrichloropthaneND0.51,2-DichloropthaneND0.5PrichloroptopaneND0.51,2-DichloropthaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,3-DichloroptopeneND0.5TolueneND0.51,1,2-TrichloroptopeneND0.51,1,3-DichloroptopeneND0.52-HexanoneND0.51,3-DichloroptopaneND0.52-HexanoneND0.51,3-DichloroptopaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5 <t< td=""><td>2-Butanone</td><td>ND</td><td>10</td></t<>	2-Butanone	ND	10
2,2-DichloropropaneND0.5BromochloromethaneND0.5BromochloromethaneND0.51,1-JithloropethaneND0.5(1,1-DichloropropeneND0.5Carbon TetrachlorideND0.5BenzeneND0.5BromodichloromethaneND0.5J.2-DichloroptopaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5J.2-DichloroptopaneND0.5StrichloroptopaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5J.1-DichloropropeneND0.5J.12-DichloropropaneND0.5J.12-DichloropropaneND0.5Jobs NomethaneND0.5Jobs NomethaneND0.5J.2-DichloropropaneND0.5J.2-DichloropropaneND0.5J.2-DichloropropaneND0.5J.2-DichloropropaneND0.5J.2-DichloropropaneND0.5J.2-DichloropropaneND0.5J.2-DichloropropaneND0.5 <td< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td></td></td<>	cis-1,2-Dichloroethene	ND	
Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1.1-Trichloroethane ND 0.5 1,1.1-Dichloropropene ND 0.5 1,1.1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 Benzene ND 0.5 Trichloroethane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 Dibromomethane ND 0.5 Other Science ND 0.5 Toluene ND 0.5 Toluene ND 0.5 1,2-Dichloropropene ND 0.5 1,1.2-Trichloropropene ND 0.5 1,3-Dichloropropene ND 0.5 1,3-Dichloropropane ND 0.5 Tetrachloroethane ND 0.5 1,1.2-Trichloropropane ND 0.5 Dibromochlane ND 0.5 Dibromochlane ND		ND	
BromochloromethaneND0.51,1TrichloroethaneND0.51,1DichloropropeneND0.5Carbon TetrachlorideND0.51,2DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5TolueneND0.5TolueneND0.51,3DichloropropeneND0.51,3DichloropropeneND0.51,3DichloropropeneND0.51,3DichloropropeneND0.51,3DichloropropeneND0.51,3DichloropropeneND0.51,1.,2TrichloroethaneND0.51,2DibromoethaneND0.51,1.,2TrichloroethaneND0.51,1.,2TrichloroethaneND0.51,2DibromoethaneND0.51,1.,2TrichloroethaneND0.51,2DibromoethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2TetrachloroethaneND0.51,1.,2Tetrachloroethan	Chloroform	ND	
1,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloroethaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5John ParkerND0.5John ParkerND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5John ParkerND0.5StyreneND0.5StyreneND0.5 <td>Bromochloromethane</td> <td></td> <td></td>	Bromochloromethane		
1,1-DichloropropeneND0.5Carbon TetrachlorideND0.5BenzeneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5JobromoethaneND0.54-Methyl-2-PentanoneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloropropeneND0.51,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,2-DibromoethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.5<	1,1,1-Trichloroethane		
Carbon TetrachlorideND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloroethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5JohropropaneND0.5JohropropaneND0.5JohropropaneND0.5JohropropaneND0.5JohropropeneND0.5TolueneND0.5TrichloropropeneND0.5Trins-1, 3-DichloropropeneND0.52-HexanoneND0.52-HexanoneND0.5DibromochloropropaneND0.5DibromochloropthaneND0.51, 1, 2-TrichloropropaneND0.52-HexanoneND0.51, 2-DibromochloromethaneND0.5DibromochloromethaneND0.51, 1, 2-TetrachloroethaneND0.51, 1, 2-TetrachloroethaneND0.51, 1, 1, 2-TetrachloroethaneND0.50-XyleneND0.50-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5IsopropylbenzeneND0.5			
1,2-DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5JohromethaneND0.5JohromethaneND0.5JohromethaneND0.5JohromethaneND0.5JohromethaneND0.5TolueneND0.5TolueneND0.51,1,2-TrichloropropeneND0.52-HexanoneND0.51,3-DichloropropaneND0.5TetrachloroethaneND0.5DibromochloromethaneND0.5I,2-DibromoethaneND0.5J,2-DibromoethaneND0.5L,2-DibromoethaneND0.5L,1,1,2-TetrachloroethaneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.			
BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5JohromethaneND0.5-A-Methyl-2-PentanoneND0.5TolueneND0.5TolueneND0.51,2-DichloropropeneND0.51,2-TrichloroethaneND0.52-HexanoneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.5DibromochloromethaneND0.5DibromochloromethaneND0.51,2-DibromochloromethaneND0.51,2-DibromochloromethaneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55t			
TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5bibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.5DibromochloromethaneND0.5DibromochloropthaneND0.51,2-DibrooethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5ChlorobenzeneND0.5trylenesND0.5StyreneND0.5StyreneND0.5StyreneND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND0.5StoreeND <td></td> <td></td> <td></td>			
1,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5JibromomethaneND0.5cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.52-HexanoneND0.52-HexanoneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.51,3-DichloropropaneND0.5TetrachloroetheneND0.51,2-DibromochloromethaneND0.51,2-DibromoethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.5<			
BromodichloromethaneND0.5DibromomethaneND0.5A-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.52-HexanoneND0.52-HexanoneND0.51,3-DichloropropaneND0.5TetrachloroethaneND0.5DibromochloromethaneND0.51,2-DibromochloromethaneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.5r,1,1,2-TetrachloroethaneND0.5xylenesND0.5styreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5 <t< td=""><td></td><td></td><td></td></t<>			
DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.51,3-DichloropropaneND0.5TetrachloroethaneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5StyreneND0.5BromoformND0.5Br	Bromodichloromethane		
4-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroethaneND0.5DibromochloromethaneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.51,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5StyreneND0.5<			
cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.51,1,2-TetrachloroethaneND0.51,2-DibromoethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.50-XylenesND0.5StyreneND0.5BromoformND0.5BromoformND0.5StyreneND0.5BromoformND0.5StyreneND0.5StyreneND0.5BromoformND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5			
TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroethaneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.52+HylbenzeneND0.550.50.550.50.560.50.570.50.570.50.58ND0.590.50.59ND0.59ND0.59ND0.59ND0.59ND0.59ND0.59ND0.59ND0.59 <td></td> <td></td> <td></td>			
trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.55thylbenzeneND0.50-XylenesND0.5StyreneND0.5BromoformND0.5BromoformND0.5IsopropylbenzeneND0.5IsopropylbenzeneND0.5	Toluene		
1,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,2-TetrachloroethaneND0.5t,1,1,2-TetrachloroethaneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5JsopropylbenzeneND0.5ND1.01.0IsopropylbenzeneND0.5			
2-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5ND0.5StyreneND0.5StyreneND0.5ND0.5BromoformND1.0IsopropylbenzeneND0.5			
1,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND1.0IsopropylbenzeneND0.5			
TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND1.0IsopropylbenzeneND0.5			
DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5			
1,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5			
ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5			
1,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5			
EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND1.0IsopropylbenzeneND0.5			
m,p-XylenesND0.5o-XyleneND0.5styreneND0.5BromoformND1.0IsopropylbenzeneND0.5			
o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5	1		
StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5			
Bromoform ND 1.0 Isopropylbenzene ND 0.5			
Isopropylbenzene ND 0.5			0.5
			1.0
			0.5
	1,1,2,2-Tetrachloroethane	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841		Analysis:	EPA 8260B
Field ID:	MW-1		Batch#:	113312
Lab ID:	186645-003		Sampled:	05/05/06
Matrix:	Water		Received:	05/05/06
Units:	ug/L		Analyzed:	05/11/06
Diln Fac:	1.000	r		

Analyte	Result	RL
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
	·····	
Surrogate	%REC Limits	
Dibromofluoromethane	100 80-120	
1,2-Dichloroethane-d4	95 80-130	
Toluene-d8	101 80-120	
Bromofluorobenzene	119 80-122	

ND= Not Detected RL= Reporting Limit Page 2 of 2

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841	0 0	Analysis:	EPA 8260B
Field ID:	MW-2		Batch#:	113312
Lab ID:	186645-004		Sampled:	05/05/06
Matrix:	Water		Received:	05/05/06
Units:	ug/L		Analyzed:	05/11/06
Diln Fac:	1.000			,,

Gasoline C7-C12 ND 50 Freen 12 ND 1.0 tert-Putyl Alcohol (TBA) ND 10 Idopter (DIPE) ND 0.5 Unyl Chloride ND 0.5 Bhyl there ND 0.5 Chloromethane ND 0.5 Chloronethane ND 1.0 Methyl tert-Amyl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1.0 Ethanol ND 1.0 Acetone ND 1.0 Freen 113 ND 0.5 Methylene Chlorothene ND 0.5 Machale ND 0.5 Trichloroethane ND 0.5 Vinyl Acetate ND 10 1.1-Dichloroethane ND 0.5 Schoordnormethane ND 0.5 Chloropropane ND 0.5 Chloroethane ND 0.5 Chloroethane ND 0.5 <t< th=""><th>Analyte</th><th>Resu</th><th>lt RL</th></t<>	Analyte	Resu	lt RL
Freen 12 ND 1.0 Chloromethane ND 1.0 Chloromethane ND 0.5 Vinyl Chloride ND 0.5 Bromomethane ND 0.5 Endmomethane ND 0.5 Bromomethane ND 0.5 Bromomethane ND 0.5 Bromomethane ND 1.0 Britol test-Amyl Ether (TAME) ND 1.0 Britol test-Amyl Ether (TAME) ND 1.0 Britol test-Amyl Ether (TAME) ND 1.0 Methylene Chloride ND 1.0 Methylene Chloride ND 1.0 Carbon Disulfide ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 J.1-Dichloroethane ND 0.5 J.2-Dichloropopane ND 0.5 J.3-Dichloropopane ND 0.5 Chloroform ND 0.5 J.1-Dichloropopane ND 0.5 J.2-Dichloropopane ND 0.5			
tert-Putyl Alcohol (TBA) ND 10 Isopropyl Ether (DIFB) ND 0.5 Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Bromomethane ND 0.5 Bromomethane ND 0.5 Chloromethane ND 1.0 Bromomethane ND 1.0 Ethyl tert-Butyl Ether (TEMB) ND 0.5 Trichlorofluoromethane ND 1.0 Ethanol ND 1.0 Acetone ND 1.0 Acetone ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 2.Puichloroethane ND 0.5 2.Puichloroethane ND 0.5 2.Puichloroethane ND 0.5 2.Puichloroethane ND 0.5 1.1Tichloroethane ND 0.5			
Chloromethane ND 1.0 Isopropyl Rther (DIPE) ND 0.5 Vinyl Chloride ND 0.5 Ernomethane ND 0.5 Enthyl tert-Butyl Ether (ETBE) ND 0.5 Mithol tert-Amyl Ether (TAME) ND 0.5 Mithol tert-Amyl Ether (TAME) ND 0.5 Prion 113 ND 1.0 Acetone ND 1.00 Preon 113 ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 J.1-Dichloroethane ND 0.5 J.2-Dichloroethane ND 0.5 J.1-Dichloroptopane ND 0.5 J.1-Dichloroptopane ND 0.5 J.2-Dichloroptopane ND 0.5 J.1-Dichloroptopane ND 0.5 J.2-Dichloroptopane ND 0.5 J.2-Dichloroptopane ND 0.5 J.1-Dichloroptopane ND 0.5 </td <td></td> <td></td> <td></td>			
Isopropyl Bther (DIPE) ND 0.5 Bromomethane ND 1.0 Sthyl tert-Butyl Ether (BTBE) ND 1.0 Methyl tert-Anyl Ether (TAME) ND 1.0 Methyl tert-Anyl Ether (TAME) ND 1.0 Bramonol ND 1.0 Rethyl tert-Anyl Ether (TAME) ND 1.0 Acetone ND 1.00 Preon 113 ND 0.0 Carbon Da Chloride ND 0.5 Trans-1, 2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 Chloroethane ND 0.5 Vinyl Acetate ND 0.5 Chloroform ND 0.5 Schloropropane ND 0.5 Vinyl Acetate ND 0.5 J.1-Dichloroethane ND 0.5 J.2-Dichloroethane ND 0.5 J.1.1-Trichloroethane ND 0.5 J.2-Dichloropropene <td></td> <td></td> <td></td>			
Vinjl Chloride ND 0.5 Bromomethane ND 1.0 Ethyl tert-Butyl Ether (ETBE) ND 0.5 Chloroethane ND 1.0 Methyl tert-Anyl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1.0 Ethanol ND 1.0 Acetone ND 1.0 Freon 113 ND 5.0 Acetone ND 0.5 Methylane Chloride ND 0.5 MTBE ND 0.5 MTBE ND 0.5 Trayl Acetate ND 0.5 L'holoroethane ND 0.5 Chloroptome ND 0.5 Chloroptomethane ND 0.5 Charboroptome ND 0.5 Ch			
Brokomethane ND 1.0 Ethyl tert-Butyl Ether (STEN) ND 0.5 Chloroethane ND 1.0 Methyl tert-Anyl Ether (TAME) ND 1.0 Sthanol ND 1.00 Acetone ND 1.00 Freen 113 ND 0.5 Methyl tert-Anyl Ether (TAME) ND 0.0 Acetone ND 0.0 Trichloroethene ND 0.5 Methylene Chloride ND 0.5 Trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 Patonone ND 0.5 Chlorooform ND 0.5 Bromochloromethane ND 0.5 Chlorooform ND 0.5 I.1-Dichloroothane ND 0.5 Stromochloromethane ND 0.5 I.1-Jichloroothane ND 0.5 I.2-Dichloroopropane ND 0.5 I.2-Dichloroopropane ND			
Ethyl tert-Butyl Ether (ETBE) ND 0.5 Chloroethane ND 1.0 Methyl tert-Awyl Ether (TAME) ND 0.5 Trichloroethane ND 1.00 Ethanol ND 1.00 Acetone ND 1.0 From 113 ND 5.0 1.1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 1.1-Dichloroethane ND 0.5 2-Butanone ND 0.5 1.1-Trichloroethane ND 0.5 1.2-Dichloroethane ND 0.5 1.1.1-Trichloroethane ND 0.5 1.2-Dichloroethane ND 0.5			
Chloroethane ND 1.0 Methyl tert-Awyl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1.0 Ethanol ND 1.00 Acetone ND 1.0 Freon 113 ND 0.5 Methylene Chloride ND 0.5 Mathylene Chloride ND 0.5 Trison Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 2,2-Dichloropethane ND 0.5 2,2-Dichloropethane ND 0.5 Chloropform ND 0.5 2,2-Dichloropethane ND 0.5 Chloropform ND 0.5 1,1-Dichloropethane ND 0.5 1,2-Dichloropethane ND 0.5 2,2-Dichloropethane ND 0.5 1,2-Dichloropethane ND 0.5 1,2-Dichloropethane ND			
Methyl tert-Awyl Ether (TAME) ND 0.5 Trichlorofluoromethane ND 1,000 Acetone ND 10 Preon 113 ND 5.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2-Joichloroethene ND 0.5 2-Joichloroptopane ND 0.5 2-Joichloropthane ND 0.5 1.1-Trichloropthane ND 0.5 1.2-Dichloroptopane ND 0.5 1.2-Dichloropthane ND			
Trichlorofluoromethane ND 1.0 Ethanol ND 1,000 Acetone ND 10 Freon 113 ND 0.5 Nethylene Chloride ND 0.5 Methylene Chloride ND 0.5 Trians-1, 2-Dichloroethene ND 0.5 Trans-1, 2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 Chloroethane ND 0.5 Chloroform ND 0.5 I, 1-Prichloroethane ND 0.5 1, 1-Prichloroethane ND 0.5 1, 1-Dichloropopane ND 0.5 1, 1-Dichloropopane ND 0.5 1, 2-Dichloroethane ND 0.5 1, 2-Dichloropopane ND 0.5 Prichloropopane ND 0.5 Strans-1,			
Ethanol ND 1,000 Acetome ND 10 Preon 113 ND 5.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 Trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2/a-Dichloroethene ND 0.5 Chloroptome ND 0.5 Chloroptomethane ND 0.5 Chloroptomethane ND 0.5 1,1-Dichloroptopane ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroptopane ND 0.5			
AcetoneND10Preon 113ND0Carbon DisulfideND0.5Methylene ChlorideND0.5Carbon DisulfideND0.5TTBEND0.5trans-1,2-DichloroetheneND0.5trans-1,2-DichloroetheneND0.52-ButanoneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroethaneND0.52,2-DichloroethaneND0.51,1,1-TrichelroethaneND0.51,1,1-TrichelroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloropopaneND0.5DibromoethaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,1,2-TrichloroethaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.5 <t< td=""><td></td><td></td><td></td></t<>			
Freen 113 ND 5.0 1.1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBB ND 0.5 trans-1,2-Dichloroethene ND 0.5 trans-1,2-Dichloroethane ND 0.5 z-Butanone ND 0.5 2-Butanone ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Dichloropthane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Dichloropthane ND 0.5 Carbon Tetrachloride ND 0.5 Benzene ND 0.5 Bromochloromethane ND 0.5 Stroichloropthane ND 0.5 Bromochlororopthane ND 0.5 Bromochlororopthane ND 0.5 Dibromomethane ND 0.5 1,2-Dichloropropane ND 0.5 1,			
1,1-DichloroetheneND0Methylene ChlorideND0.5MTBEND0.5MTBEND0.5Vinyl AcetateND0.52-ButanoneND0.52-ButanoneND0.52-JoichloroetheneND0.52-DichloroetheneND0.52-JoichloroetheneND0.52-JoichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.52-JoichloropropaneND0.5Carbon TetrachlorideND0.52-JoichloropropaneND0.5PromochloromethaneND0.52-JoichloropropaneND0.52-JoichloropropaneND0.51,1-TrichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,3-Dichlorop			
Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1, 2-DichloroetheneND101,1-DichloroethaneND10-ButanoneND0.5ChloroformND0.5ChloroformND0.5StromochloromethaneND0.51,1-DichloroethaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-IrtichloroethaneND0.51,1-IrtichloroethaneND0.51,1-DichloropopaneND0.51,1-DichloropopaneND0.51,1-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.5StromodichloromethaneND0.5IntelloropopaneND0.5TrichloropopaneND0.5TrichloropopaneND0.5TrichloropopaneND0.5TrichloropopaneND0.5TrichloropopaneND0.5TrichloropopaneND0.5TrichloropopaneND0.5TrichloropopaneND0.5TolueneND0.51,1,2-TrichloropopaneND <td< td=""><td></td><td></td><td></td></td<>			
Carbon DisulfideND0.5MTBEND0.5trans-1, 2-DichloroetheneND0.51,1-DichloroethaneND0.52-ButanoneND0.52,2-DichloroptopaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,2-DichloropropeneND0.51,2-DichloropropeneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroptopeneND0.51,2-DichloroptopeneND0.51,2-DichloroptopeneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-DichloroptopaneND0.51,2-TrichloroptopeneND0.51,2-TrichloroptopeneND0.51,1-TrichloroptopeneND0.51,1,2-TrichloroptopeneND0.52-RexanoreND0.51,3-DichloropropaneND0.51,3-DichloroptopaneND0.52-RexanoreND0.51,3-DichloroptopaneND0.51,2-TrichloroethaneND0.51,2-DibromoethaneND0.51,3-DichloroptopaneND </td <td></td> <td></td> <td></td>			
MTBEND0.5trans-1, 2-DichloroetheneND0.51,1-DichloroethaneND0.52-ButanoneND0.52,2-DichloropetheneND0.5ChloroformND0.5ChloroformND0.5ChloropopaneND0.51,1-TrichloroethaneND0.5(1,1-TrichloroethaneND0.5(1,1-DichloropopaneND0.5Carbon TetrachlorideND0.5Carbon TetrachloroethaneND0.5(1,2-DichloropopaneND0.5Carbon TetrachlorideND0.5Carbon TetrachloroethaneND0.5PrichloropopaneND0.5Carbon TetrachlorideND0.5ChloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopaneND0.5PrichloropopopeneND0.5PrichloropopopeneND0.5PrickanoneND0.5PrickanoneND0.5 <td></td> <td></td> <td></td>			
trans-1,2-DichloroetheneD0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.52-DichloroethaneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloroptopeneND0.5Carbon TetrachlorideND0.5BenzeneND0.5FrichloroptopaneND0.5BenzeneND0.5BrithloroethaneND0.5BenzeneND0.5StrichloroptopaneND0.5BromodichloromethaneND0.5StrichloroptopaneND0.5BromodichloromethaneND0.5StrichloroptopaneND0.5StrichloroptopaneND0.5JohromomethaneND0.5StrinchloroptopaneND0.5StrinchloroptopeneND0.5TolueneND0.5TolueneND0.51,1,2-TrichloroptopeneND0.51,2-DichloroptopeneND0.51,3-DichloroptopeneND0.51,3-DichloroptopeneND0.51,3-DichloroptopeneND0.51,2-DichloroptopeneND0.51,3-DichloroptopeneND0.51,3-DichloroptopeneND0.51,1,1,2-Tetrachloroethane <t< td=""><td></td><td></td><td></td></t<>			
Vinyl AcetateND11,1-DichloroethaneND0.52-ButanoneND0.52,2-DichloroptopaneND0.5(2,2-DichloroptopaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-DichloroptopaneND0.5(1,1-TrichloroethaneND0.5(1,1-DichloroptopaneND0.5(2,2-DichloroptopaneND0.5(1,1-DichloroptopaneND0.5(1,1-DichloroptopaneND0.5(2,2-DichloroptopaneND0.5Carbon TetrachlorideND0.5BenzeneND0.5TrichloroptopaneND0.5J2-DichloroptopaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5J2-DichloroptopaneND0.5J2-DichloroptopaneND0.5TolueneND0.5trans-1, 3-DichloroptopaneND0.5J3-DichloroptopaneND0.5J1,1-2-TrichloroptopaneND0.5J2-DibromoethaneND0.5J3-DichloroptopaneND0.5J3-DichloroptopaneND0.5J3-DichloroptopaneND0.5J3-DichloroptopaneND0.5J3-DichloroptopaneND0.5J3-DichloroptopaneND0.5J3-DichloroptopaneND0.5J3-DichloroptopaneND			
1,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.5(1,1-TrichloroethaneND0.5(1,2-DichloropropeneND0.5(2arbon TetrachlorideND0.5FrichloroethaneND0.5PenzeneND0.5FrichloroethaneND0.5J,2-DichloropropaneND0.5PenzeneND0.5PromodichloromethaneND0.5JohnomethaneND0.5DibromomethaneND0.5JohnomethaneND0.5JohnomethaneND0.5JohnomethaneND0.5JohnomethaneND0.5JohnomethaneND0.5JohnomethaneND0.5JohnomethaneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5JohnopoppeneND0.5			
2-ButanoneND10cis-1,2-DichloroptheneND0.5(2,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,2-DichloroethaneND0.51,2-DichloropropaneND0.51,2-DichloropropeneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.5BenzeneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5JibromomethaneND0.5JibromomethaneND0.5Inclusor0.50.5			
cis-1,2-DichloroptopaneND0.52,2-DichloroptopaneND0.5BromochloromethaneND0.5BromochloromethaneND0.51,1.TrichloroptopeneND0.51,1.DichloroptopeneND0.5Carbon TetrachlorideND0.5BenzeneND0.5BenzeneND0.5BromodichloromethaneND0.5BenzeneND0.5BromodichloroptopaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5Jaber ND0.50.5BromodichloropropaneND0.5BromodichloropropaneND0.5Ide Statistics0.50.5Strans-1, 3-DichloropropeneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChloroptopaneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5ChlorobenzeneND0.5<			
2,2-DichloropropaneND0.5ChloroformND0.5ChloroformethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.51,2-DichloropropaneND0.5SenzeneND0.5TrichloroetheneND0.5BromodichloromethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5J.2-DichloropropeneND0.5TrichloroethaneND0.5DibromomethaneND0.5J.3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloropropeneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,2-DichloropropaneND0.51,1,2-TrichloroethaneND0.51,2-DichloropropaneND0.51,1,2-TrichloroethaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND			
ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropopeneND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.5JordenbergenND0.5BromodichloromethaneND0.5BromodichloropopaneND0.5BromodichloropopaneND0.5JordenbergenND0.5TolueneND0.5TolueneND0.5TolueneND0.51,1,2-TrichloropropeneND0.52-HexanoneND0.52-HexanoneND0.51,3-DichloropropeneND0.52-HexanoneND0.52-HexanoneND0.51,2-DibromoethaneND0.5DibromochloromethaneND0.5ChlorobenzeneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-Tetra			
BromochloromethaneND0.51,1.1.TrichloroethaneND0.5(1,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5TolueneND0.51,1.2-TrichloropthaneND0.51,1.2-TrichloropthaneND0.51,1.2-TrichloropthaneND0.51,1.2-TrichloropthaneND0.52-HexanoneND0.51,2-DichloropropaneND0.51,1.2-TrichloroethaneND0.52-HexanoneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,2-TetrachloroptopaneND0.51,2-TetrachloroethaneND0.51,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.52HylbenzeneND0.52HylbenzeneND0.52HylenesND0.53HylenesND0.53HylenesND0.53HylenesND0.53HylenesND0.53HylenesND0.53HylenesND0.53HylenesND0.53Hylene			
1,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.52-DichloroethaneND0.5BenzeneND0.5TrichloroethaneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5DibromomethaneND0.5TrichloropropaneND0.5DibromomethaneND0.5John SchleineND0.5TolueneND0.5TrichloropropeneND0.5TolueneND0.5Trans-1, 3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.5DibromochhaneND0.5DibromochaneND0.51,2-DirokloromethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND0.51,1,2-TetrachloroethaneND<			0.5
1,1-DichloropropeneND0.5Carbon TetrachlorideND0.5Carbon TetrachlorideND0.5BenzeneND0.5TrichloroethaneND0.5TrichloropropaneND0.5BromodichloromethaneND0.5J.2-DichloropropaneND0.5BromodichloromethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromomethaneND0.5JobromoethaneND0.5JobromoethaneND0.5JobromoethaneND0.5JobromoethaneND0.5JobromoethaneND0.5JobromoethaneND0.5JobromoethaneND0.5StyreneND0.5StyreneND0.5StyreneND0.5BromoformND0.5BromoformND0.5BromoformND0.5BromoformND0.5StyreneND0.5BromoformND0.5BromoformND			0.5
Carbon TetrachlorideND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5ObserverND0.5John CharlesND0.5John CharlesND0.5ChlorobenzeneND0.5John CharlesND0.5StyreneND0.5StyreneND0.5StyreneND0.5BromodormND0.5StyreneND0.5BromodormND0.5John CharlesND0.5StyreneND0.5BromodormND0.5StyreneND<			0.5
1,2-DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloropropeneND0.52-HexanoneND0.51,1,2-TrichloroptopeneND0.51,2-DibromoethaneND0.51,1,2-TrichloroptopeneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,1,2-TetrachloroethaneND0.55thylbenzeneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.55tyreneND0.58romoformND0.58romoformND0.59romoformND0.59romoformND0.59romoformND0.59romoformND0.59romoformND0.59romoformND0.59romoformND0.59romoformND0.5 <t< td=""><td></td><td></td><td>0.5</td></t<>			0.5
BenzeneND0.5TrichloroetheneND0.5TrichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND0.5TolueneND0.5TolueneND0.5trans-1, 3-DichloropropeneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.5DibromochloropropaneND0.5DibromochloromethaneND0.51, 1, 2-TrichloropthaneND0.52-HexanoneND0.52-HexanoneND0.51, 1, 2-TrichloropthaneND0.51, 1, 2-TetrachloroethaneND0.51, 1, 2-TetrachloroethaneND0.51, 1, 1, 2-TetrachloroethaneND0.51, 1, 1, 2-TetrachloroethaneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.55typeneND0.5 <td></td> <td></td> <td></td>			
TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5JibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.51,2-TrichloroethaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,2-DibromoethaneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.52,2-DibromoethaneND0.52,2-DibromoethaneND0.53,2-DichloropeneND0.53,2-DichloropeneND0.53,2-DibromoethaneND0.53,2-DibromoethaneND0.53,2-DibromoethaneND0.53,3-DichloropeneND0.53,3-DichloropeneND0.53,3-DichloropeneND0.53,3-DichloropeneND0.53,3-DichloropeneND0.53,3-DichloropeneND0.53,3-DichloropeneND0.53,3-DichloropeneND <td></td> <td></td> <td>0.5</td>			0.5
1,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloropropeneND0.52-HexanoneND0.51,3-DichloropropaneND101,3-DichloropropaneND0.5TetrachloroethaneND0.51,2-DibromochloromethaneND0.51,2-DibromochloromethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.5thylbenzeneND0.5chlorobenzeneND0.5chlylenesND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5styreneND0.5 <tr< td=""><td></td><td></td><td>0.5</td></tr<>			0.5
BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroethaneND0.5DibromochloromethaneND0.5DibromochloromethaneND0.51,2-DibromochlaroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.5chlorobenzeneND0.5thylenzeneND0.5stypene <td< td=""><td></td><td></td><td></td></td<>			
DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroethaneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.55ND0.55ND0.55StyreneND0.56ND0.57ND0.510.50.5			0.5
4-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroethaneND0.51,2-DibromochloromethaneND0.51,2-DibromoethaneND0.51,2-DibromoethaneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.5n,p-XylenesND0.5or XyleneND0.5BromoformND0.5BromoformND0.5BromoformND0.5StyreneND0.5StoreneND0.5 </td <td></td> <td></td> <td>0.5</td>			0.5
cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,2-TetrachloroethaneND0.5ChlorobenzeneND0.5EthylbenzeneND0.5m,p-XylenesND0.5StyreneND0.5StyreneND0.5BromoformND0.5StyreneND<			0.5
TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StyreneND0.5StopropylbenzeneND0.5ND0.50.5StyreneND0.			10
trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5xylenesND0.5StyreneND0.5StyreneND0.5StyreneND0.5StopropylbenzeneND0.5StopropylbenzeneND0.5			0.5
1,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5			0.5
2-HexanoneND101,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5	trans-1,3-Dichloropropene		0.5
1,3-DichloropropaneND0.5TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5			0.5
TetrachloroetheneND0.5DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5			10
DibromochloromethaneND0.51,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND0.5IsopropylbenzeneND0.5	1,3-Dichloropropane		0.5
1,2-DibromoethaneND0.5ChlorobenzeneND0.51,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5	Tetrachloroethene		0.5
ChlorobenzeneND0.51,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5		ND	0.5
1,1,1,2-TetrachloroethaneND0.5EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5		ND	0.5
EthylbenzeneND0.5m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5		ND	0.5
m,p-XylenesND0.5o-XyleneND0.5StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5			0.5
o-Xylène ND 0.5 Styrene ND 0.5 Bromoform ND 1.0 Isopropylbenzene ND 0.5	4		0.5
StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5		ND	0.5
StyreneND0.5BromoformND1.0IsopropylbenzeneND0.5		ND	
Bromoform ND 1.0 Isopropylbenzene ND 0.5		ND	0.5
Isopropylbenzene ND 0.5		ND	
1,1,2,2-Tetrachloroethane ND 0.5	Isopropylbenzene		
	1,1,2,2-Tetrachloroethane	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841		Analysis:	EPA 8260B
Field ID:	MW - 2		Batch#:	113312
Lab ID:	186645-004		Sampled: Received:	05/05/06
Matrix:	Water		Received:	05/05/06
Units:	ug/L		Analyzed:	05/11/06
Diln Fac:	1.000			, ,

Analyte		Result	RL
1,2,3-Trichloropropane	NI)	0.5
Propylbenzene	NI)	0.5
Bromobenzene	NI)	0.5
1,3,5-Trimethylbenzene	NI)	0.5
2-Chlorotoluene	NI)	0.5
4-Chlorotoluene	NI)	0.5
tert-Butylbenzene	NI)	0.5
1,2,4-Trimethylbenzene	NI)	0.5
sec-Butylbenzene	NI	}	0.5
para-Isopropyl Toluene	NI)	0.5
1,3-Dichlorobenzene	NI)	0.5
1,4-Dichlorobenzene	NI)	0.5
n-Butylbenzene	NI)	0.5
1,2-Dichlorobenzene	NI)	0.5
1,2-Dibromo-3-Chloropropane	NI)	2.0
1,2,4-Trichlorobenzene	NI	1	0.5
Hexachlorobutadiene	NI	1	0.5
Naphthalene	NI	1	2.0
1,2,3-Trichlorobenzene	NI	I	0.5
· · · · · · · · · · · · · · · · · · ·			
Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-120	
1,2-Dichloroethane-d4	98	80-130	
Toluene-d8	103	80-120	
Bromofluorobenzene	120	80-122	

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841	5 5	Analysis:	EPA 8260B
Field ID:	MW - 3		Batch#:	113312
Lab ID:	186645-005		Sampled:	05/05/06
Matrix:	Water		Received:	05/05/06
Units:	ug/L		Analyzed:	05/11/06
Diln Fac:	1.000		4	,,

1		D.V.
Analyte Gasoline C7-C12	Result ND	RL 50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	
		10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Ethanol	ND	1,000
Acetone	ND	10
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND ND	
1,1,1,2-Tetrachloroethane	ND	0.5 0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND ND	
o-Xylene	ND	0.5
Styrene		0.5
Bromoform	ND	0.5
	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

		Gasoline	by GC/MS		
Lab #:	186645		Location:	5565 Tesla Rd, Li	vermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	2841		Analysis:	EPA 8260B	1
Field ID:	MW-3		Batch#:	113312	
Lab ID:	186645-005		Sampled:	05/05/06	[
Matrix:	Water		Received:	05/05/06	
Units:	ug/L		Analyzed:	05/11/06	
Diln Fac:	1.000		1	,,	
	Analyte	Result	1	8L	
1,2,3-Tric	chloropropane	ND		0.5	
Propylbenz	zene	ND		0.5	

Propylbenzene	NE	0.5
Bromobenzene	NE	
1,3,5-Trimethylbenzene	NE	
2-Chlorotoluene	NE	
4-Chlorotoluene	NE	
tert-Butylbenzene	NE	0.5
1,2,4-Trimethylbenzene	NE	
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	210
1,2,3-Trichlorobenzene	ND	0.5
	5. IS 13. PS	
Surrogate Dibromofluoromethane	103	Limits 80-120
1,2-Dichloroethane-d4	97	80-120
Toluene-d8	101	80-130
Bromofluorobenzene	119	80-120
		00 122

Batch QC Report

		Gasoline	by GC/MS	
Project#:	186645 SOMA Environmental 2841	Engineering Inc.	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC339479 Water ug/L		Diln Fac: Batch#: Analyzed:	1.000 113303 05/11/06

Analyte	Result	RL
Gasoline C7-C12	NA	a vez
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	
Vinyl Chloride	ND	0.5
· · ·		0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans+1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	
		0.5
2,2-Dichloropropane Chloroform	ND	0.5
	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND ND	0.5
Tetrachloroethene		
Dibromochloromethane	ND	0.5
	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 2

	Gasoline	by GC/MS	
Lab #: Client: Project#:	186645 SOMA Environmental Engineering Inc. 2841	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC339479 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 113303 05/11/06

Analyte	Result	RL
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Ethanol	ND	1,000
Surrogate	%REC Limits	
Dibromofluoromethane	112 80-120	
1,2-Dichloroethane-d4	107 80-130	
Toluene-d8	104 80-120	
Bromofluorobenzene	<u>110 80-122</u>	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 2

Batch QC Report

		Gasoline	by GC/MS	
Lab #: Client:	186645 SOMA Environmental	Engineering Inc.	Location: Prep:	5565 Tesla Rd, Livermore EPA 5030B
Project#:	2841	ge.	Analysis:	EPA 8260B
Type: Lab ID:	BLANK		Diln Fac:	1.000
	QC339480		Batch#:	113303
Matrix:	Water		Analyzed:	05/11/06
Units:	uq/L		-	

Analyte	Result	RL
Gasoline C7-C12	NA	<u></u>
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	1.0
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	
Vinyl Chloride		0.5
Bromomethane	ND	0.5
	ND	1.0
Ethyl tert-Butyl Ether (ETBE) Chloroethane	ND	0.5
	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND ·	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
		V.5

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 2

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC339480		Batch#:	113303
Matrix:	Water		Analyzed:	05/11/06
Units:	ug/L		4	

Analyte	Result	RL
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Ethanol	ND	1,000
Surrogate	%REC Limits	
Dibromofluoromethane	106 80-120	
1,2-Dichloroethane-d4	96 80-130	
Toluene-d8	101 80-120	
Bromofluorobenzene	106 80-122	

		Gasoline	by GC/MS	
Lab #: Client: Project#:	186645 SOMA Environmental 2841	Engineering Inc.	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC339520 Water ug/L		Diln Fac: Batch#: Analyzed:	1.000 113312 05/11/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	
Bromomethane	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	1.0
Chloroethane		0.5
	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Ethanol	ND	1,000
Acetone	ND	10
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m, p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	
Isopropylbenzene	ND	1.0
<u>1,1,2,2-Tetrachloroethane</u>	ND ND	0.5
		0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

		Gasoline	by GC/MS	
Lab #: Client: Project#:	186645 SOMA Environmental 2841	Engineering Inc.	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC339520 Water ug/L		Diln Fac: Batch#: Analyzed:	1.000 113312 05/11/06

Analyte	Resul	RL
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Surrogate	%REC Limit	
Dibromofluoromethane	100 80-12	
1,2-Dichloroethane-d4	94 80-13	
Toluene-d8	100 80-12	
Bromofluorobenzene	111 80-12	22

Batch QC Report

		Gaso	line	by GC/MS	
Lab #:	186645			Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#:	2841			Analysis:	EPA 8260B
Type:	BLANK			Diln Fac:	1.000
Lab ID:	QC339737			Batch#:	113365
Matrix:	Water			Analyzed:	05/12/06
Units:	ug/L			-	

Analyte	Res	ult RL
Gasoline C7-C12	ND	50
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	
		1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	
		0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylène	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

Batch QC Report

		Gasoline	by GC/MS	
Lab #: Client: Project#:	186645 SOMA Environmental 2841	Engineering Inc.	Location: Prep: Analysis:	5565 Tesla Rd, Livermore EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC339737 Water ug/L		Diln Fac: Batch#: Analyzed:	1.000 113365 05/12/06

Analyte	Result	RL
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Ethanol	ND	1,000
Surrogate	%REC Limit	
Dibromofluoromethane	97 80-12	
1,2-Dichloroethane-d4	95 80-13	
Toluene-d8	101 80-12	
Bromofluorobenzene	119 80-12	2

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841		Analysis:	EPA 8260B
Type:	LCS		Diln Fac:	1.000
Lab ID:	QC339478		Batch#:	113303
Matrix:	Water		Analyzed:	05/11/06
Units:	ug/L			

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	143.9	115	64-141
Isopropyl Ether (DIPE)	25.00	26.26	105	68-123
Ethyl tert-Butyl Ether (ETBE)	25.00	28.46	114	77-129
Methyl tert-Amyl Ether (TAME)	25.00	26.16	105	77-120
1,1-Dichloroethene	25.00	29.86	119	77-128
Benzene	25.00	26.45	106	80-120
Trichloroethene	25.00	26.42	106	80-120
Toluene	25.00	26.66	107	80-120
Chlorobenzene	25.00	25.06	100	80-120

Surrogate	*REC	Limits	
Dibromofluoromethane	106	80-120	
1,2-Dichloroethane-d4	98	80-130	
Toluene-d8	103	80-120	
Bromofluorobenzene	98	80-122	

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841		Analysis:	EPA 8260B
Type:	LCS		Diln Fac:	1.000
Lab ID:	QC339517		Batch#:	113312
Matrix:	Water		Analyzed:	05/11/06
Units:	ug/L			

Analyte	Spiked	Result	%REC	! Limits
tert-Butyl Alcohol (TBA)	125.0	123.4	99	64-141
Isopropyl Ether (DIPE)	25.00	24.46	98	68-123
Ethyl tert-Butyl Ether (ETBE)	25.00	23.69	95	77-129
Methyl tert-Amyl Ether (TAME)	25.00	24.06	96	77-120
1,1-Dichloroethene	25.00	28.97	116	77-128
Benzene	25.00	25.48	102	80-120
Trichloroethene	25.00	27.55	110	80-120
Toluene	25.00	27.56	110	80-120
Chlorobenzene	25.00	26.17	105	80-120

Surrogate	%REC	Limits		
Dibromofluoromethane	100	80-120		
1,2-Dichloroethane-d4	94	80-130		
Toluene-d8	102	80-120		
Bromofluorobenzene	106	80-122		

	Gasolir	ne by GC/MS	
Lab #:	186645	Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental Engineering Inc	. Prep:	EPA 5030B
Project#:	2841	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	113312
Units:	ug/L	Analyzed:	05/11/06
Diln Fac:	1.000		

			QC339518		Lab ID:			BS	Туре:
8	Limits	%REC		Result		Spiked		Analyte	
0	70-130	00	10	998.2		1,000		7-C12	Gasoline
						Limits	%REC	Surrogate	
						80-120	99	oromethane	Dibromof
						80-130	95	roethane-d4	1,2-Dich]
						80-120	102		Toluene-c
						80-122	108	obenzene	Bromofluc
			QC339519		Lab ID:			BSD	Гуре:
s RPD Lim	Limits	&REC	81	Result		Spiked		Analyte	
0 4 20	70-130	04	104	1,037		1,000		7-C12	Gasoline
) 4	70-130	04	104	1,037			%REC	Surrogate	Gasoline

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	94	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	109	80-122

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2841		Analysis:	EPA 8260B
Matrix:	Water		Batch#:	113365
Units:	ug/L		Analyzed:	05/12/06
Diln Fac:	1.000		_	

Гурe:	BS			Lab ID:	QC3	39735	
	Analyte		Spiked	R	esult	%RBC	Limits
Gasoline	C7-C12		1,000	1	,046	105	70-130
	Surrogate	%REC	' Limits				
Dibromofl	Surrogate uoromethane	%REC 100	Limits 80-120				
	uoromethane oroethane-d4	100	80-120				

Type: BS	BSD		Lab ID:	QC339736					
Analyte	•	Spiked	Result		REC 1	imi	ts	RPE	Lim
Gasoline C7-C12		1,000	1,038	104	4 7	70-1	.30	1	20
Surrogat	.e %	REC Limits							
Dibromofluorometha	ane 96	80-120				000000000000000000000000000000000000000		0000000000000	
1,2-Dichloroethane	e-d4 94	80-130							
Toluene-d8	10	1 80-120							
Bromofluorobenzene	e 10	8 80-122							I

		Gasoline	by GC/MS	
Lab #:	186645		Location:	5565 Tesla Rd, Livermore
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
	2841		Analysis:	EPA 8260B
Matrix:	Water		Batch#:	113365
Units:	ug/L		Analyzed:	05/12/06
Diln Fac:	1.000			

Type: BS			Lab ID:	QC33	9733	
Analyte		Spiked		Result	%REC	Limite
tert-Butyl Alcohol (TBA)		125.0		119.3	95	64-141
Isopropyl Ether (DIPE)		25.00		24.71	99	68-123
Ethyl tert-Butyl Ether (ETBE)		25.00		23.87	95	77-129
Methyl tert-Amyl Ether (TAME)		25.00		24.22	97	77-120
1,1-Dichloroethene		25.00		28.16	113	77-128
Benzene		25.00		25.80	103	80-120
Trichloroethene		25.00		27.39	110	80-120
Toluene		25.00		26.84	107	80-120
Chlorobenzene		25.00		25.98	104	80-120
Surrogate	*REC					
Dibromofluoromethane	102	80-120				
1,2-Dichloroethane-d4	96	80-130				
Toluene-d8	101	80-120				
Bromofluorobenzene	110	80-122				

Type: BSD	L	ab ID: QC33	39734			
Analyte tert-Butyl Alcohol (TBA) Isopropyl Ether (DIPE) Ethyl_tert-Butyl Ether (ETBE		Result 114.5 24.15 23.87	92 97 95	Limits 64-141 68-123 77-129	RPD 4 2 0	Lim 22 20 20
Methyl tert-Amyl Ether (TAME 1,1-Dichloroethene Benzene Trichloroethene Toluene	25.00 25.00 25.00 25.00 25.00	24.07 28.37 26.39 27.49 27.43	96 113 106 110 110	77-120 77-128 80-120 80-120 80-120	1 2 0 2	20 20 20 20 20
Chlorobenzene Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	25.00 %REC Limits 99 80-120 94 80-130 100 80-120 106 80-122	27.06	108	80-120	4	20

		Gaso	oline	by GC/MS	
Lab #: 18664				Location:	5565 Tesla Rd, Livermore
Client: SOMA	Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#: 2841				Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZZ			Batch#:	113303
MSS Lab ID:	186523-018			Sampled:	05/02/06
Matrix:	Water			Received:	05/02/06
Units:	ug/L			Analyzed:	05/11/06
Diln Fac:	4.000			· · · · · · · · · · · · · · · · · · ·	

Type: MS		Lab	D ID:	QC339547		
Analyte	MSS	Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TB	A)	<3.764	500.0	745.2	149 *	68-148
Isopropyl Ether (DIPE)		<0.2101	100.0	132.8	133 *	74-125
Ethyl tert-Butyl Ether	(ETBE)	<0.2999	100.0	136.1	136 *	80-131
Methyl tert-Amyl Ether	(TAME)	<0.1295	100.0	111.7	112	78-120
1,1-Dichloroethene		<0.3416	100.0	135.0	135 *	77-129
Benzene		0.5612	100.0	116.1	116	80-122
Trichloroethene		<0.2895	100.0	116.5	117	77-123
Toluene		<0.2511	100.0	118.1	118	80-120
Chlorobenzene		<0.3155	100.0	105.4	105	80-120
Surrogate	*REC	8 R K S 116 R of 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
Dibromofluoromethane	116	80-120				
1,2-Dichloroethane-d4	112	80-130				
Toluene-d8	107	80-120				
Bromofluorobenzene	98	80-122				

Type: MSD		Lal	D ID:	QC339548			
Analyte		Spiked	Resul	t %R1	Kenning Frank	RPD	Lim
tert-Butyl Alcohol (TB	A)	500.0	709	.9 142	68-148	5	23
Isopropyl Ether (DIPE)		100.0	127	.8 128	* 74-125	4	20
Ethyl tert-Butyl Ether	(ETBE)	100.0	131	.1 131	80-131	4	20
Methyl tert-Amyl Ether	(TAME)	100.0	110	.2 110	78-120	1	20
1,1-Dichloroethene		100.0	127	.5 128	77-129	6	20
Benzene		100.0	110	.5 110	80-122	5	20
Trichloroethene		100.0	110	.3 110	77-123	5	20
Toluene		100.0	112	.0 112	80-120	5	20
Chlorobenzene		100.0	101	.4 101	80-120	4	20
Surrogate	%REC	Limits					
Dibromofluoromethane	114	80-120					
1,2-Dichloroethane-d4	111	80-130					
Toluene-d8	106	80-120					
Bromofluorobenzene	99	80-122					

*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

		Gasoline	by GC/MS	
Lab #: 18664			Location:	5565 Tesla Rd, Livermore
	Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#: 2841			Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZZ		Diln Fac:	1.000
MSS Lab ID:	186563-005		Batch#:	113312
Matrix:	Water		Sampled:	05/03/06
Units:	ug/L		Received:	05/03/06

Type: Lab ID: MS QC339521

MSS Result %REC Analyte Spiked Result Limits tert-Butyl Alcohol (TBA) <1.348 125.0 121.8 97 68-148 Isopropyl Ether (DIPE) 25.00 <0.02749 24.77 99 74-125 Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) <0.03408 25.00 24.02 96 80-131 <0.05699 25.00 23.56 94 78-120 1,1-Dichloroethene 25.00 30.19 77-129 <0.08940 121 Benzene 0.04090 25.00 26.80 107 80-122 Trichloroethene 25.00 0.2048 28.64 114 77-123 Toluene <0.05252 25.00 27.11 108 80-120 Chlorobenzene <0.04954 25.00 26.45 106 80-120 Surrogate %REC Limits Dibromofluoromethane 100 80-120 1,2-Dichloroethane-d4 94 80-130 Toluene-d8 102 80-120 Bromofluorobenzene 108 80-122

Analyzed:

05/11/06

Type: MSD Analyzed: 05/12/06 Lab ID: QC339522 Analyte Spiked Result RPD %REC Limits Lìm tert-Butyl Alcohol (TBA) 125.0 117.7 94 68-148 3 23 Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 25.00 24.51 98 74-125 20 1 25.00 23.59 80-131 94 2 20 25.00 23.72 95 78-120 1 20 1,1-Dichloroethene 25.00 30.30 77-129 121 0 20 Benzene 25.00 26.82 107 80-122 0 20 Trichloroethene 25.00 28.09 112 77-123 2 20 Toluene 25.00 27.19 109 80-120 0 20 Chlorobenzene 25.00 26.55 106 80-120 0 20 Surrogate %REC Limits Dibromofluoromethane 99 80-120 1,2-Dichloroethane-d4 95 80-130 Toluene-d8 101 80-120 Bromofluorobenzene 109 80-122

in a state of the							
	D:	issolved M	etals	Analytica	1 Report		
Lab #:	186645			Location:	556	5 Tesla Rd, I	ivermore
Client:	SOMA Environmental	Fngineering	The			3010A	11 / 01 110 2 0
		Engineering	Inc.				
Project#:				Analysis:		6010B	
Units:	ug/L			Received:		05/06	
Diln Fac:	1.000			Prepared:		08/06	
Batch#:	113151			Analyzed:	05/	08/06	
Sampled:	05/05/06						
· · · · · · · · · · · · · · · · · · ·	<u></u>						
Field ID:	OFF-SITE SUP	PLY WELL		Lab ID:	186	645-001	
Type :	SAMPLE			Matrix:	Filt	trate	
44							
	Analyte	Res	ult		RL		
Cadmium		ND	<u></u>		5.0		
Chromium	and the second					and the second	and a second
		ND			10		
Lead			26		3.0		
Nickel	an an taona an taon an an taon	ND			20		a a second a
Zinc	and the second	7	50		20		
in a state of the							
Non-statistical statistical stat statistical statistical statis							
Field ID:	ON-SITE SUPPI	LY WELL		Lab ID:	1860	545-002	
Type:	SAMPLE			Matrix:	Filt	rate	
	and the second secon						
	Analyte	Res	ult		RL		
Cadmium		ND			5.0		
Chromium		ND			10		
Lead			26		3.0		
Nickel		ND	20		20		
Zinc		ND					
Lainc	<u> </u>	ND			20		an a
han an tao ka tao an Managara ka ka tao ang tao ang Mangara ka ka ka ka tao ang tao ang							
Type:	BLANK			Matrix:	Wate	er	
Lab ID:	QC338875						
	Analyte		ult		RL		
Cadmium		ND			5.0		
Chromium		ND			10		
Lead		ND			3.0		
Nickel		ND			20		
Zinc		ND			20		
		- /		••••		····	
a de la composición de							
and the second sec							
ND= Not Det	the second se						
RL= Reporti	ing Limit						
age 1 of 1							4.0

Curtis & Tompkins, Ltd.

Batch QC Report

a far an an tair an an tair.

Dissolved Metals Analytical Report Lab #: 186645 Location: 5555 Tesla Rd, Livermore Project#: 2841 Analysis: EPA 6010B Matrix: Water Batch#: 113151 Units: ug/L Prepared: 05/08/06 Diln Fac: 1.000 Analyzed: 05/08/06 Sympe: BS Lab ID: QC338876 Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Nickel 500.0 498.49 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 498.4 97 80-120 Since 500.0 498.4 97 80-120 Vype: BSD Lab ID: QC338677									
Client: SOMA Environmental Engineering Inc. Prep: EPA 3010A Project#: 2841 Analysis: EPA 6010B Matrix: Water Batch#: 113151 Units: ug/L Prepared: 05/08/06 Diln Fac: 1.000 Analyzed: 05/08/06 Fype: BS Lab ID: QC338876 Cadmium 50.00 49.69 99 80-120 Cadmium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 495.5 99 80-120 Since 500.0 495.5 99 80-120 Vickel 500.0 495.5 99 80-120 Since 500.0 495.5 99 80-120 Vickel 50.00 51.79 104 80-120 4 Zinc 50.00 51.79 104 80-120 4 20 Cadmium 50.00 201.4 101 80-120 4 20 Chromiu		Dis	ssolved Metals	Analytic	al Repo	rt			
Client: SOMA Environmental Engineering Inc. Prep: EPA 3010A Project#: 2841 Analysis: EPA 6010B Matrix: Water Batch#: 113151 Units: ug/L Prepared: 05/08/06 Diln Fac: 1.000 Analyzed: 05/08/06 Fype: BS Lab ID: QC338876 Cadmium 50.00 49.69 99 80-120 Cadmium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 495.5 99 80-120 Since 500.0 495.5 99 80-120 Vickel 500.0 495.5 99 80-120 Since 500.0 495.5 99 80-120 Vickel 50.00 51.79 104 80-120 4 Zinc 50.00 51.79 104 80-120 4 20 Cadmium 50.00 201.4 101 80-120 4 20 Chromiu									
Project#: 2841 Analysis: EPA 6010B Matrix: Water Batch#: 113151 Units: ug/L Prepared: 05/08/06 Diln Fac: 1.000 Analyzed: 05/08/06 Fype: BS Lab ID: QC338876 Cadmium Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Nickel 500.0 494.4 97 80-120 Nickel 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Ype: BSD Lab ID: QC338877 V				Location:			d, Liver	more	
Matrix: Water Batch#: 113151 Units: ug/L Prepared: 05/08/06 Diln Fac: 1.000 Analyzed: 05/08/06 Type: BS Lab ID: QC338876 Analyte Spiked Result %REC Limits Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Yppe: BSD Lab ID: QC338877 Cadmium 50.00 51.79 104 80-120 Cadmium 200.0 201.4 101 80-120 4 Cadmium 200.0 201.4 101 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 <td< td=""><td>Client: SOMA Env</td><td>vironmental H</td><td>Engineering Inc.</td><td>Prep:</td><td>E</td><td>PA 3010A</td><td></td><td></td><td></td></td<>	Client: SOMA Env	vironmental H	Engineering Inc.	Prep:	E	PA 3010A			
Units: ug/L Prepared: 05/08/06 Diln Fac: 1.000 Analyzed: 05/08/06 Type: BS Lab ID: QC338876 Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Ype: BSD Lab ID: QC338877 Type: BSD Lab ID: QC338877 Malyte Spiked Result %REC Limits RPD Limits Maint 50.00 51.79 104 80-120 20 Cadmium 50.00 51.79 104 80-120 4 20 Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 20 20 Lead 100.0 504.2 101 <td></td> <td></td> <td></td> <td></td> <td>E</td> <td>PA 6010B</td> <td></td> <td></td> <td></td>					E	PA 6010B			
Diln Fac: 1.000 Analyzed: 05/08/06 Type: BS Lab ID: QC338876 Analyte Spiked Result %REC Limits Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Ype: BSD Lab ID: QC338877 Malyte Spiked Result %REC Limits RPD Lim Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120									
Image: Pype: BS Lab ID: QC338876 Analyte Spiked Result %REC Limits Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Fype: BSD Lab ID: QC338877 Fype: BSD Lab ID: QC338877 Cadmium 50.00 51.79 104 80-120 Cadmium 200.0 201.4 101 80-120 4 Lead 100.0 113.7 114 80-120 4 20		-							
Analyte Spiked Result %REC Limits Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 50.00 495.5 99 80-120 Zinc 500.0 50.79 104 80-120 101 Ype: BSD Lab ID: QC33887 Vertain 20 Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 <	Diln Fac:	1.000		Analyzed:	0	5/08/06			
Analyte Spiked Result %REC Limits Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 50.00 495.5 99 80-120 Zinc 500.0 50.79 104 80-120 100.0 Yppe: BSD Lab ID: QC338877 Vertice Vertice Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Analyte Spiked Result %REC Limits Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 50.00 495.5 99 80-120 Zinc 500.0 50.79 104 80-120 101 Ype: BSD Lab ID: QC33887 Vertain 20 Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 <									
Analyte Spiked Result %REC Limits Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 495.5 99 80-120 Zinc 500.0 50.00 495.5 99 80-120 Zinc 500.0 50.79 104 80-120 101 Ype: BSD Lab ID: QC33887 Vertain 20 Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 <									
Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Fype: BSD Lab ID: QC338877 Kaalyte Spiked Result %REC Limits RPD Lim Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 Nickel 500.0 504.2 101 80-120 4 20	Type: BS	5		Lab ID:	Q	C338876			
Cadmium 50.00 49.69 99 80-120 Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Fype: BSD Lab ID: QC338877 Kaalyte Spiked Result %REC Limits RPD Lim Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 Nickel 500.0 504.2 101 80-120 4 20				·····					
Chromium 200.0 193.5 97 80-120 Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Fype: BSD Lab ID: QC338877 Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 4 20 Nickel 500.0 504.2 101 80-120 4 20		9				***************************************		<u></u>	
Lead 100.0 108.1 108 80-120 Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Fype: BSD Lab ID: QC338877 Ventors Analyte Spiked Result %REC Limits RPD Lim Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 Nickel 500.0 504.2 101 80-120 4 20	Land A. Sandara a second second second								
Nickel 500.0 484.4 97 80-120 Zinc 500.0 495.5 99 80-120 Fype: BSD Lab ID: QC338877 Limits RPD Lim Analyte Spiked Result %REC Limits RPD Lim Cadmium 50.00 51.79 104 80-120 4 20 Chromium 200.0 201.4 101 80-120 4 20 Lead 100.0 113.7 114 80-120 5 20 Nickel 500.0 504.2 101 80-120 4 20									
Zinc500.0495.59980-120Type:BSDLab ID:QC338877AnalyteSpikedResult%RECLimitsRPDCadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420									
Type;BSDLab ID:QC338877AnalyteSpikedResult%RECLimitsRPDCadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420									
AnalyteSpikedResult%RECLimitsRPDLimCadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420	Zinc		500.0		495.5	99	80-120		
AnalyteSpikedResult%RECLimitsRPDLimCadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420									
AnalyteSpikedResult%RECLimitsRPDLimCadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420									
AnalyteSpikedResult%RECLimitsRPDLimCadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420				z - h TD	<u> </u>	7 222077			
Cadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420	туре: в:	עכ		Lab ID:	Q	C338877			
Cadmium50.0051.7910480-120420Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420			Cathod		Deen 16	9-DFC			
Chromium200.0201.410180-120420Lead100.0113.711480-120520Nickel500.0504.210180-120420		•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000000000000000000000000000000000000000			
Lead100.0113.711480-120520Nickel500.0504.210180-120420									
Nickel 500.0 504.2 101 80-120 4 20									
								-	
								_	
					51110		00 110		
		• •							

PDD- Polative Percent Differen

RPD= Relative Percent Difference

Page 1 of 1

5.0

Curtis & Tompkins, Ltd.

Batch QC Report

			Analytica	l Repor	t		
	D:	issolved Metals	-				
Lab #: 186645			Location:	55	65 Tesla	Rd, Liverr	nore
and the second		Engineering Inc.	Prep:		A 3010A		
Project#: 2841			Analysis:		A 6010B		
Field ID:	ZZZZZZZZZZ		Batch#:		3151		
MSS Lab ID:	186583-001		Sampled:		/01/06		
Matrix:	Water		Received:		/04/06		
Units:	ug/L		Prepared:		/08/06		
Diln Fac:	1.000		Analyzed:		/08/06		
Ype: I	MS		Lab ID:	QC	338878		
Analyte		MSS Result	Spiked		Result	%REC	Limits
Cadmium		<0.5500	50.00		47.99	96	80-120
Chromium		3.701	200.0		191.2	94	80-120
Lead		24.72	100.0		122.0	97	70-120
Nickel		6.272	500.0		455.2	90	77-120
Zinc	·	26.77	500.0		500.3	95	74-123
ype:	1SD		Lab ID:	QC	338879		
		Sniked				0 1/m/+s	PDD 1.1m
Analy		Spiked		esult	%RE		
Analy Cadmium		50.00		esult 44.55	%RE (80-120	7 20
Analy Cadmium Chromium		50.00 200.0		esult 44.55 176.9	%RE 89 87	80-120 80-120	7 20 8 20
Analy Cadmium Chromium Lead		50.00 200.0 100.0		esult 44.55 176.9 113.0	%RE 89 87 88	80-120 80-120 70-120	7 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel		50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel		50.00 200.0 100.0		esult 44.55 176.9 113.0	%RE 89 87 88	80-120 80-120 70-120	7 20 8 20 8 20
Analy Cadmium Chromium		50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel		50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel		50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	28	50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	28	50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	28	50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	5 e	50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	5 e	50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	5 e	50.00 200.0 100.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	2 e	50.00 200.0 100.0 500.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 8 20
Analy Cadmium Chromium Lead Nickel Zinc	2 e	50.00 200.0 100.0 500.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120	7 20 8 20 8 20 8 20 7 20
Analy Cadmium Chromium Lead Nickel Zinc	2 e	50.00 200.0 100.0 500.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120 74-123	7 20 8 20 8 20 8 20 7 20
Analy Cadmium Chromium Lead Nickel Zinc	2 e	50.00 200.0 100.0 500.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120 74-123	7 20 8 20 8 20 8 20 7 20
Analy Cadmium Chromium Lead Nickel Zinc	2 e	50.00 200.0 100.0 500.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120 74-123	7 20 8 20 8 20 8 20 7 20
Analy Cadmium Chromium Lead Nickel Zinc	2 e	50.00 200.0 100.0 500.0 500.0		esult 44.55 176.9 113.0 422.0 464.9	%RE 89 87 88 88 83	80-120 80-120 70-120 77-120 74-123	7 20 8 20 8 20 8 20 7 20

RPD= Relative Percent Difference

Page 1 of 1

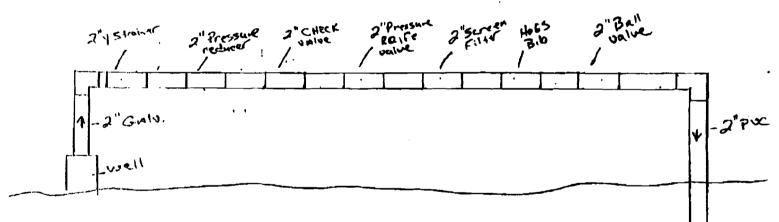
Appendix D

Specifications for Off-site well at 5443 Tesla Road

Mansour Sepehr

From: Aris Krimetz [aris@wentevineyards.com]

Sent: Thursday, February 16, 2006 5:06 PM


To: Mansour Sepehr (E-mail)

Subject: 5443 Tesla Road

Mansour-

According to documents provided by the previous owner, the total depth of the well is 125', and the pump is at 100'. It was installed about 1972 by the previous owner. We only re-piped on the well discharge side and connected it to the irrigation system, removing it from the potable system when we purchased the property in 1995/96. The potable water for the property is supplied from a municipal source.

Aris Krimetz Director of Engineering Wente Vineyards 5565 Tesla Road Livermore, CA 94550 Office: 925 456 2313 Cell: 925 519 9010 arisk@wentevineyards.com www.wentevineyards.com

• •

.. . . .

The water from the well was used for stri. of the vinyards. But the well has not been used for ABout one year. And there are no plans to use the well in the near future

->

TO IT. MAIN LINE