RECEIVED

5:11 pm, Jun 13, 2012

Alameda County Environmental Health

June 11, 2012

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Perjury Statement-Well Destruction and 2012 Sub-Slab Vapor Depressurization System Operations & Maintenance Report Searway Property (SLIC Case No. RO0002584) 649 Pacific Avenue Alameda, California

Dear Mr. Wickham:

"I declare under penalty of perjury, that the information and / or recommendations contained in the attached document or report are true and correct to the best of my knowledge."

Timber Dell Properties, LLC

Donald W. Lindsey, member

June 12, 2012 Trinity Project: 103.001.001

Mr. Jerry Wickham Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Parkway, Suite 250 Alameda, CA 94502-6577

Re: Well Destruction and 2012 Sub-Slab Vapor Depressurization System Operations & Maintenance Report Timber Del Properties Kelley Moore Paint Store 649 Pacific Ave Alameda, California

Dear Mr. Wickham:

Trinity Source Group, Inc. (Trinity) has prepared this *Well Destruction and 2012 Sub-Slab Vapor Depressurization System Operations & Maintenance Report (Report)* on behalf of Timber Del Properties, for the referenced site (Figure 1). The well destruction and operations and maintenance (O&M) activities are described in the following sections.

WELL DESTRUCTION

Timber Del Properties obtained permission from the Alameda County Environmental Health Services (ACEHS) in a letter dated September 14, 2011, to destroy existing Wells MW-1 through MW-5. A copy of the ACEHS letter is included in Attachment A of this *Report.* A former monitoring well location map is presented on Figure 2.

The scope of work completed for completing the well destruction is described below. The well destruction work and oversight was performed by Trinity, a California-licensed drilling contractor (C-57 #913467).

Prefield Activities

Trinity obtained well destruction permits from the Alameda County Public Works Agency (ACPWA). Permits are included in Attachment B.

A site-specific Health and Safety Plan (HASP) was prepared, and reviewed with field personnel prior to beginning onsite work.

Trinity informed ACPWA staff of the field work schedule at least 24 hours before work was conducted.

Well Destruction

On October 6, 2011, Trinity destroyed Wells MW-1 through MW-5. The well destruction process included the following tasks. Portland cement was tremied into the wells up to the ground surface. Verbal approval was given from ACPWA inspector, Vicky Hamlin, that no pressure grouting was required. If the Portland cement settled, the wells were topped off with additional Portland cement. The remaining well vault and surface concrete/asphalt was removed at each well, and the well casing was exposed and cut two feet below grade. The resulting holes were backfilled and compacted with approved backfill material.

Well Completion Reports for the destroyed monitoring wells have been submitted to the ACPWA, and are included in Attachment C. Historic groundwater data is available in earlier reports.

Inspections

An inspector from the ACPWA was present for destruction of Wells MW-3 and MW-4, and returned at a later time and date to inspect surface completions.

Investigation-Derived Wastes

The concrete and metal removed from well destruction was properly disposed at Trinity's facility.

SUB-SLAB VAPOR DEPRESSURIZATION (SSVD) SYSTEM OPERATION AND MAINTENANCE SUMMARY

Dates of O&M Events:	August 25, 2011, November 21, 2011, and March 6, 2012
Sample Containers:	1-Liter Tedlar Bags
Sample Collection Point:	Effluent
System Conditions:	System running and passed smoke pen test for all O&M dates

The O&M field data sheets are included in Attachment D and the certified analytical report is included in Attachment E.

SUB-SLAB VAPOR DEPRESSURIZATION SYSTEM DESCRIPTION

Sub-slab extraction system influent and effluent analytical data are summarized in Table 1. Sub-slab extraction system influent throughput and mass removal of VOCs are summarized in Table 2. Sub-slab extraction system effluent throughput and discharge of VOCs are summarized in Table 3. The system layout is presented on Figure 3. The system includes two horizontal extraction wells located near former extraction points DPT-1 and DPT-2, with extraction well pipe runs trenched to nearby walls. The pipe runs continue up to the first floor ceiling, where they are manifolded together and connected to a suction fan located in the attic. The exhaust air is piped to the southwest corner of the roof and discharged through a 3-foot tall stack. Vacuum is applied to the extraction wells using an electric fan blower equipped with a flow meter.

The Sub-Slab System Process and Instrumentation Diagram is shown on Figure 4. Sub-slab air is withdrawn from the sub-slab material by means of an applied vacuum. The extracted air is routed

through piping and discharged to the atmosphere. The SSVD System was originally constructed with carbon treatment, but the carbon was removed in May 2009 due to very low VOC influent concentrations. Pipes are fitted with ball valves to regulate flow and sample ports were installed to allow for sample collection and flow measurements.

The Sub-Slab System Extraction Well Detail is shown on Figure 5. Each extraction well is a 3-foot long, 4-inch diameter, horizontal slotted PVC casing, which is connected to 4-inch diameter PVC blank pipe runs. The slotted pipe is set in the middle of the sub-base material. PVC screen extends across the sub-base material.

The Sub-Slab System Monitoring Point Detail is shown on Figure 6. The monitoring points (VS-1 through VS-22) were constructed in accordance with the design specifications presented in the EPA document, "Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site using Basement and Sub-Slab Air Samples" (EPA 600 R-05/147, March 2006). These monitoring points have proven to be effective in sample collection and measuring the pressure field established by an applied vacuum.

The Bay Area Air Quality Management District (BAAQMD) application number is 17506 and the plant number is 18970. The Permit to Operate is included in Attachment F. On March 19, 2012 Trinity requested a change in monitoring frequency from quarterly to annually, which was granted by BAAQMD. An approval letter of the monitoring frequency change is included in Attachment G.

SUB-SLAB VAPOR DEPRESSURIZATION SYSTEM RESULTS

- SSVD has discharged a total of approximately 0.88 pounds of VOCs from August 25, 2011 to March 6, 2012, during approximately 194 days of operation.
- VOC removal rate for the period of August 25, 2011 to March 6, 2012 ranged from 0.00290 to 0.00492 pounds per day.
- The system is performing as expected with removal of VOCs and depressurization of the sub-slab area.
- VOC concentrations have generally declined since start-up.
- All effluent VOC concentrations from August 25, 2011 to March 6, 2012 are less than Site-Specific Screening Levels¹ except carbon tetrachloride (Table 2).
- The low concentrations of VOCs discharged to the atmosphere are well within the permitted discharge allowed for specific compounds and for the total limit of 10 pounds per day. No violations of the BAAQMD permit have occurred.

RECOMMENDATIONS

Continue SSVD system operation and maintenance until VOC concentrations are consistently below acceptable closure levels. Additional remediation besides SSVD system operation is not recommended.

¹ Trinity Source Group, Inc., Sub-Slab Attenuation Factor Determination Summary Report, September 20, 2010.

Should you have any questions regarding this Report, please call Trinity at (831) 426-5600.

Sincerely,

TRINITY SOURCE GROUP, INC. A California Corporation

Information, conclusions, and recommendations made by Trinity in this document regarding this site have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

luos

Debra J. Moser, PG, CEG, CHG Senior Geologist

prú Choi

Eric Choi Staff Scientist

DISTRIBUTION

A copy of this report has been forwarded to:

Mr. Don Lindsey Timber Del Properties, LLC 2424 Central Avenue Alameda, CA 94501 Ms. Miranda Vega The Mechanics Bank 1999 Harrison St., Suite 810 Oakland, CA 94612

Attachments:

- Table 1 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data
- Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal Of VOCs
- Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Remova Of VOCs
- Figure 1 Site Location Map
- Figure 2 Former Well Location Map
- Figure 3 System Layout
- Figure 4 Sub-Slab Vapor Depressurization Process and Instrumentation Diagram
- Figure 5 Sub-Slab System Extraction Well Detail
- Figure 6 Sub-Slab System Monitoring Point Detail

Attachment A – ACEHS Correspondence Attachment B – Well Destruction Permit *Mr. Jerry Wickham Timber Del Properties Well Destruction and O&M Report June 12, 2012*

> Attachment C – Well Completion Reports Attachment D – O&M Field Data Sheets Attachment E – Certified Analytical Report, Chain-of-Custody and GeoTracker Upload Documentation Attachment F – BAAQMD – Permit to Operate Attachment G – BAAQMD Correspondence

TABLES

Searway Property 649 Pacific Avenue Alameda, California

_			EPA Method TO-3(MOD)	l 	EPA Method TO-15									
-	Sample Date	Sample Location	Stoddard µg/m ³	Benzene µg/m ³	Chloroform µg/m ³	Carbon Tetrachloride µg/m ³	PCE µg/m ³	TCE µg/m ³	VC µg/m ³	2-Butanone μg/m ³	Acetone µg/m ³	Notes		
-	9/10/2008	Influent Effluent	4,900 ^c 610 ^{c, d}	<80 <1.8	560 <3.9	3,900 29	2,600 17	<130 <1.1	<64 <0.5	300 <0.88	<480 71	k		
	9/11/2008	Influent Effluent	2,400 ^c 710 ^c	<32 <1.8	480 <3.9	3,200 <1.9	2,500 <2.6	<54 <1.1	<26 <0.5	260 14	<190 180	e e		
	10/10/2008	Influent Effluent	960 ^b 740 ^b	65 <3.2	110 54	880 200	880 13	<5.4 <5.4	<2.6 <2.6	27 <3.0	51 25	l m		
	11/6/2008	Influent Effluent	1,700 ^a 2,800 ^a	<1.6 1.9	58 53	690 770	520 14	<2.7 <2.7	<1.3 <1.3	23 6.5	62 37	f g		
	12/4/2008	Influent Effluent	2,400 ^h 2,100 ^h	20 18	110 120	780 1,100	1,100 40	<6.7 <5.4	<3.2 <2.6	110 82	<24 <19	i j		
	1/2/2009	Influent Effluent	<3,500 <3,500	<16 <8.0	26 73	560 920	800 220	<27 <13	<13 <6.4	<15 <7.4	<95 <48	n o		
	2/9/2009	Influent Effluent	2,300 ^p 1,800 ^p	<3.2 <3.2	64 <4.9	480 10	680 <6.8	<5.4 <5.4	<2.6 <2.6	9.6 <3.0	29 20	t s		
	5/20/2009	Influent Effluent	1,800 ^q	<4.5	Carbo <9.8	n Vessels Ren <4.7	noved; In <6.4	fluent no <2.6	longer san <1.2	npled. <2.2	<2.9	r		
	8/7/2009	Effluent	4,500 ^u	<1.6	<2.4	<3.2	<3.4	<2.7	<1.3	2.0	24	v		
	11/6/2009	Effluent	2,400 ^u	5.4	85	670 [×]	1,100 ^x	<2.7	<1.3	<1.5	84	w		
	2/2/2010	Effluent	2,000 ^y	5.6	40	280	430	<2.7	<1.3	<1.5	31	z		
	5/5/2010	Enluent	<400	Z.Z4	11.4	202	80 <i>1</i>	<0.4	<2.0	<1.5	34.9	aa		

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method TO-3(MOD)		EPA Method TO-15								
Sample Date	Sample Location	Stoddard µg/m ³	Benzene µg/m³	Chloroform µg/m ³	Carbon Tetrachloride µg/m ³	PCE µg/m ³	TCE µg/m ³	VC µg/m ³	2-Butanone μg/m ³	Acetone µg/m ³	Notes	
8/5/2010	Effluent	<400	6.78	75.8	<6.3	686	<11	<5.2	<3.0	48	ab, ac	
11/30/2010	Effluent	<350	<3.2	<9.8	259	290	<11	<5.2	<3.0	<19	ad	
2/22/2011	Effluent	<350	<3.2	26.8	235	261	<11	<5.2	<3.0	27.4	ae	
6/1/2011	Effluent	<350	<3.2	25.5	254	354	<11	<5.2	<3.0	62.4	af	
8/25/2011	Effluent	<350	<3.2	37.9	287	332	<11	<5.2	<3.0	<19	r, ag	
11/21/2011	Effluent	<350	<3.2	26.4	355	635	<11	<5.2	<3.0	<19		
3/6/2012	Effluent	<700	<3.2	44.3	447	626	<11	<5.2	<3.0	<19	r, ah	

Site-Specific Screening Levels for Sub-Slab Vapor (µg/m³) - Residential Property Use*									
24,272	204	1,117	46	995	2,913	75	N/A	1,601,942	
Site-Specific Screening Levels for Sub-Slab Vapor (µg/m ³) - Commercial Property Use*									
33,981	340	1,869	75	1,675	4,854	126	N/A	2,233,010	

Notes:

- Stoddard = Total petroleum hydrocarbons as gasoline.
- PCE = Tetrachloroethylene or Perchloroethylene
 - TCE = Trichloroethylene
 - VC = Vinyl Chloride
 - VOCs = Volatile Organic Compounds
 - MTBE = Methyl tertiary butyl ether
 - TBA = Tert-Butanol
 - TAME = Tert amyl methyl ether
 - μ g/m³ = micrograms per cubic meter, also equivalent to parts per billion (ppb)
 - < = Less than laboratory analytical method reporting limit.
 - NS = No sample collected
 - a = Result reported as Stoddard Solvent, but sample chromatogram does not resemble Stoddard Solvent standard pattern.
 - b = Sample chromatogram does not resemble Stoddard Solvent standard pattern (possibly aged). Reported value due to presence of non-gasoline compounds within range of C5-C12 quanitifed as Gasoline.
 - c = Not a typical Stoddard (discrete light end peaks within Stoddard range)

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method									
		TO-3(MOD)			EP	A Metho	od TO-1	5			
			8		Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	
Notes continu	ed:										
	d = Reporting l	imit increased d	ue to low initia	l pressure in c	anister. Results	reported t	to the MDL				
	Reported v	alues between t	he MDL and F	L should be c	onsidered as est	imated.					
	e = Reporting l	imit increased d	ue to low initia	I pressure in c	anister. Results	reported to	o the MDL.		3		
	f = Other VOCs detected are: Carbon Disulfide 7.7 μg/m², 1,2,4-trimethylbenzene 2.9 μg/m², m,p-xylene 4.7 μg/m²,										
	methylene	chloride 4.5 µg/r	n°, and toluen	e 30 µg/m².		2		2			
	g = Other VOC	s detected are:	Carbon Disulfi	de 7.5 µg/m³, ı	m,p-xylene 3.6 μ	g/m°, and	toluene 27	µg/m².			
	n = Sample chi	romatogram doe	s not resembl	e Stoddard so	lvent standard pa	attern. Re	ported valu	le due to p	resence of		
	non-stodda	ird solvent comp	ounds within I	ange of C7-C	12. 			1			
	I = Other VOC	s detected are:	1,2,4-trimetny	benzene 66 µ	g/m, 1,3,5-trimer	nyibenzer	ie 14 µg/m	,	. 3		
	4-ethyl tolu	ene 48 µg/m², et	hyl benzene 4	l9 μg/m², m,p-x	kylene 270 μg/m	', o-xylene	e 54 μg/m² a	and toluene	e 490 µg/m°		
	j = Other VOC	s detected are:	1,2,4-trimethy	benzene 38 µ	g/m, 1,3,5-trimet	hylbenzer	ne 7.6 µg/m	r, 4-ethyl to	oluene 35 µg/m³,		
	ethyl benze	ene 45 µg/m³, m,	p-xylene 240	µg/m³, o-xylene	e 44 µg/m³, and	toluene 38	60 μg/m³				
	k = Other VOC	detected is: m,p	o-xylene 4.1 μ	g/m²					0		
	I = Other VOC	s detected are:1	,2,4-trimethyll	penzene 8.2 µ	g/m³, 4-ethyl tolu	ene 8.8 µg	g/m³, m,p-x	ylene 53 µo	g/m ³ , MTBE 220	µg/m³,	
	o-xylene 22	2 µg/m³, TBA 55	µg/m³, TAME	21 µg/m ³ , and	l toluene 82µg/m	3					
r	n = Other VOC	s detected are:	ИТВЕ 180 µg	′m³, TAME 8.4	µg/m ³ , and tolue	ene 7.3 µg	/m ³				
	n = Toluene de	tected at a conc	entration of 3	7 µg/m³							
	o = Toluene de	tected at a conc	entration of 2	θμg/m³							
	o = Hydrocarbo	ons responded w	ithin range of	C5-C12 quant	tified as Stoddar	d Solvent I	but sample	chromatog	gram does not m	atch	
	requested f	fuel standard par	ttern. TPH va	lue due to pres	sence of heavy e	nd uniden	tified hydro	carbon pe	aks.		
	q = Result repo	orted as a Stodd	ard solvent bu	t sample chror	matogram does i	not match	requested	tuel patterr	٦.		
	r – The reported v	alue due to indivi	isod duo to lin	jet peaks (nea	vy end) within ra	nage or Ca	5-612. ts reported	to the MD	ı		
		ng lints were rai	concentration	of 4.5 µg/m^3		ay). Itesui	is reputied		L.		
	t = Toluono wa	as detected at a	concentration	of 5.7 $\mu g/m^3$							
	I = Result repo	orted as a Stodd	ard solvent bu	t sample chror	matogram does i	not match	requested	fuel standa	ard nattern		
	Result due	to individual per	aks of unident	fied compound	ds within C5-C12	2 range gu	antified as	Stoddard St	Solvent.		
	v = Other VOC	s detected are:	1.2.4-Trimethy	lbenzene 5.9	ug/m ³ . isopropar	nol 21 µa/n	n ³ and tolue	ene 2.3 u	a/m ³		
,	v = Other VOC	s detected are:	1.2.4-Trimethy	lbenzene 140	ua/m ³ . 1.3.5-Tri	nethvlben	zene 38 uc	ı/m ³ .	5		
	4-Ethyl Tol	uene 130 µa/m ³ .	ethvlbenzene	83 µg/m ³ , tota	al xvlenes 322 uc	a/m ³ . meth	vlene chlor	, ide 8.1 μα/	′m³		
	t-butyl alco	bol 29 $\mu a/m^3$ to	luene 35 ua/n	3.		,,	,				
	x = Outside of	calibration range	but within wo	orking range of	the instrument.	Due to ho	old time res	trictions. no	o diluted analvsi	s was perform	ied.
	y = TPH as Sto	oddard Solvent r	esult due to u	nidentified corr	pounds within ra	ange quan	tified as St	oddard Sol	lvent.		
	z = Other VOC	s detected are:	1,2,4-Trimethy	lbenzene 120	µg/m³, 1,3,5-Trir	nethylbenz	zene 40 µg	/m ³ , 4-Ethy	l Toluene 120 µg	g/m ³ ,	
	Carbon dis	ulfide 4.1 µg/m ³ ,	Isopropanol 2	21 µg/m ³ , total-	xylene 171 µg/m	³ , Tert-but	tyl Alcohol	13µg/m ^{3,} ar	nd Toluene 15µg	ı/m ³	

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method									
		TO-3(MOD)			EP	A Metho	od TO-1	5			
					Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	
Notes continued	Notes continued:										
aa =	Other VOC	s detected are:	Fert-butanol 6	3.8 µg/m³, Tolu	iene 10.3 μg/m³,	total-Xyle	ne 30.01 µ	g/m³,			
	4-ethyl tolu	ene 19.5 µg/m ³ ,	1,3,5-Trimeth	ylbenzene 8.18	3 μg/m³, and 1,2	,4-Trimeth	ylbenzene ⁻	17.2 µg/m³			
ab =	Other VOC	s detected are: (Carbon Disulfi	de 12.4 µg/m³,	tert-Butanol 109	9 μg/m³, Τ	oluene 21.7	ˈµg/m³, m,	p-Xylene 24.3 µ	g/m³,	
	o-xylene 10).4 μg/m ³ , 1,3,5- ⁻	Frimethylbenz	ene 5.88 µg/m	³ , 1,2,4-Trimethy	/lbenzene	15.5 µg/m ³ .				
ac =	The results = (tedlar bag	for stoddard sol).	vents are rep	orted using the	ir MDL, reportin	g limit was	raised due	to insuffic	ient sample volu	ime received	
ad =	Other VOC	s detected are: -	Γoluene 116 μ	g/m³, m,p-Xyle	ene 13.5 µg/m³, a	and o-Xyle	ne 6.02 µg/	′m³.			
ae =	Toluene on	ly other VOC de	tected at a co	ncentration of	16.4 µg/m³.						
af =	Other VOC	s detected are: (Carbon Disulfi	de 6.63 µg/m³,	and Toluene 96	6.9 μg/m ³ .					
* =	Trinity Sour	ce Group, Inc, S	ub-Slab Atter	uation Factor	Determination S	ummary F	Report, Sept	ember 20,	2010.	Note that calc	culation
	errors for benzene and vinyl chloride screening levels have been corrected										
ag =	ag = Other VOCs detected are: Carbon Disulfide 29.1 μg/m³, tert-Butanol 26.1 μg/m³, and Toluene 4.41 μg/m³										
ah =	Other VOC	s detected are: I	Aethylene Ch	oride 23.5 µg/	m ³ , and Toluene	75.2 µg/m	3 I				

Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

		Days Operated	Cubic Meters		Influent			Cumulative		
	Average	Since	Removed Since	Cumulative	Total	Pounds VOCs	Pounds	Total Pounds	3	
	flow rate	Previous	Previous	Cubic Meters	VOCs	Removed Since	VOCs Removed	VOCs	Comments	
Date	CFM	Event	Event	Removed	µg/m³	Last Event	per Day	Removed		
9/10/2008	45	0.04	76.53	76.53	12,260	0.00207	0.04964	0.00207	System sampled 1-hour	
9/11/2008	45	1.00	1,836.73	1,913.27	8,840	0.03580	0.03580	0.03786		
10/10/2008	45	29.00	53,265.31	55,178.57	3,443	0.40430	0.01394	0.44217		
11/6/2008	45	27.00	49,591.84	104,770.41	3,103	0.33923	0.01256	0.78140		
12/4/2008	45	28.00	51,428.57	156,198.98	5,511	0.62483	0.02232	1.40623		
1/2/2009	45	29.00	53,265.31	209,464.29	1,423	0.16710	0.00576	1.57333		
2/9/2009	45	38.00	69,795.92	279,260.20	3,568	0.54906	0.01445	2.12238		
5/20/2009	45	100.00	183,673.47	462,933.67	1,800	0.72886	0.00729	2.85125		
	Treatment System Removed									

Notes:

CFM = cubic feet per minute

 $\mu g/m^3 =$ micrograms per cubic meters

VOCs = volatile organic compounds

* = Treatment system removed on May 20, 2009.

Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

		Days Operated	Cubic Meters	i 	Effluent			Cumulative	
	Average	Since	Discharged Since	Cumulative	Total	Pounds VOCs	Pounds	Total Pounds	
	Flow Rate	Previous	Previous	Cubic Meters	VOCs	Discharged Since	VOCs Discharged	VOCs	Comments
Date	CFM	Event	Event	Discharged	µg/m³	Last Event	per Day	Discharged	
9/10/2008	45	0.04	76.53	76.53	731.1	0.00012	0.00296	0.00012	
9/11/2008	45	1.00	1,836.73	1,913.27	904	0.00366	0.00366	0.00378	
10/10/2008	45	29.00	53,265.31	55,178.57	1,227.7	0.14417	0.00497	0.14795	
11/6/2008	45	27.00	49,591.84	104,770.41	3,720.5	0.40676	0.01507	0.55471	
12/4/2008	45	28.00	51,428.57	156,198.98	4,249.6	0.48181	0.01721	1.03652	
1/2/2009	45	29.00	53,265.31	209,464.29	1,242.0	0.14585	0.00503	1.18237	
2/9/2009	45	38.00	69,795.92	279,260.20	1,834.5	0.28228	0.00743	1.46465	
5/20/2009	45	100.00	183,673.47	462,933.67	1,800.0	0.72886	0.00729	2.19351	
8/7/2009	45	79.00	145,102.04	608,035.71	4,555.2	1.45716	0.01845	3.65067	
11/6/2009	45	91.00	167,142.86	775,178.57	5,129.5	1.89012	0.02077	5.54079	
2/2/2010	45	88.00	161,632.65	936,811.22	3,290.7	1.17259	0.01332	6.71338	
5/5/2010	45	92.00	168,979.59	1,105,790.82	1,682.5	0.62679	0.00681	7.34017	
8/5/2010	45	92.00	168,979.59	1,274,770.41	1,015.8	0.37840	0.00411	7.71857	
11/30/2010	45	117.00	214,897.96	1,489,668.37	684.5	0.32430	0.00277	8.04287	
2/22/2011	45	84.00	154,285.71	1,643,954.08	566.6	0.19272	0.00229	8.23559	
6/1/2011	45	99.00	181,836.73	1,825,790.82	799.4	0.32047	0.00324	8.55606	
8/25/2011	45	85.00	156,122.45	1,981,913.27	716.5	0.24661	0.00290	8.80268	
11/21/2011	45	88.00	161,632.65	2,143,545.92	1,016.4	0.36218	0.00412	9.16485	
3/6/2012	45	106.00	194,693.88	2,338,239.80	1,216.0	0.52193	0.00492	9.68678	
Notes:									
CFM =	cubic feet p	er minute							
$\mu g/m^3 =$	micrograms	s per cubic meter	S						Ì
VOCs =	volatile ora;	anic compounds							l

FIGURES

SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS AND INSTRUMENTATION DIAGRAM

PREPARED B

t

PROJECT: 103.001.001 FIGURE: 4

NEW CONCRETE 2500 psi COMPRESSIVE STRENGTH @ 28 DAYS

(POLYURETHANE OR EQUIVALENT, @ JOINTS BETWEEN NEW AND EXISTING CONCRETE)

60-MIL HDPE VAPOR BARRIER

EXISTING SUBGRADE (BASEROCK)

NATIVE SOIL

PROJECT:
103.001.001
FIGURE:
5

EXISTING FLOOR AND SUB-SLAB

CONSTRUCTION (TYPICAL)

VAPOR MONITORING POINT DETAIL

Scale 1" = 2"

REF. 103_002\VPR MON PT.DWG

SUB-SLAB VAPOR MONITORING POINT DETAIL

Searway Property 649 Pacific Avenue Alameda, California Recessed Threaded Swagelok Cap

Stainless Steel Threaded Swagelok Fitting

Stainless Steel Tubing

PROJECT:
103.001.001
FIGURE:
6

ATTACHMENT A

ACEHS CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

September 14, 2011

Mr. Donald Lindsey Timber Del Properties, LLC 2424 Central Avenue Alameda, CA 94501 (Sent via E-mail to: <u>donlindsey@jps.net</u>)

FILE COPY

Mr. Carl Searway 3032 Dakota Street Oakland, CA 94602

Subject: Well Decommissioning for SLIC Case No. RO0002584 and GeoTracker Global ID SL0600150413, Searway Property, 649 Pacific Avenue, Alameda, CA 94501

Dear Mr. Lindsey and Mr. Searway:

In correspondence dated August 25, 2011, Alameda County Environmental Health (ACEH) staff concurred with discontinuation of groundwater monitoring for the site based on long-term groundwater monitoring results. The recommendation to discontinue groundwater monitoring was presented in a report entitled, "Annual 2010 Groundwater Monitoring and Sub-Slab Vapor Depressurization System Performance Report," dated July 25, 2011 (Report). This Report, which was prepared on behalf of Mr. Lindsey by Trinity Source Group, Inc., also recommended continued operation of the sub-slab vapor depressurization system.

A request to decommission the monitoring wells was made in a telephone conversation by Mr. David Reinsma of Trinity Group on September 6, 2011. We have no objection to decommissioning of the monitoring wells given the discontinuation of groundwater monitoring. Decommissioning of the monitoring wells does not represent case closure or closure of a portion of the case. A Spills, Leaks, Investigations, and Cleanups (SLIC) case remains open with ACEH to provide regulatory oversight for the continued operation of the sub-slab depressurization system.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

• July 30, 2012 - Annual Sub-slab Vapor Depressurization System Performance Report

Mr. Donald Lindsey Mr. Carl Searway RO0002584 September 14, 2011 Page 2

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at <u>jerry.wickham@acgov.org</u>. Online case files are available for review at the following website: <u>http://www.acgov.org/aceh/index.htm</u>. If your email address does not appear on the cover page of this notification ACEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

Sincerely,

Jury Wichdram

Digitally signed by Jerry Wickham DN: cn=Jerry Wickham, o=Alameda County Environmental Health, ou, email=jerry.wickham@acgov.org, c=US Date: 2011.09.14 11:34:43 -07'00'

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachment: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: David Reinsma, Trinity Source Group, 500 Chestnut Street, Suite 225, Santa Cruz, CA 95060 (Sent via E-mail to: <u>dar@tsgcorp.net</u>)

Debra Moser, Trinity Source Group, 500 Chestnut Street, Suite 225, Santa Cruz, CA 95060 (Sent via E-mail to: <u>dim@tsgcorp.net</u>)

Donna Drogos, ACEH (Sent via E-mail to: <u>donna.drogos@acgov.org</u>) Jerry Wickham, ACEH (Sent via E-mail to: <u>jerry.wickham@acgov.org</u>)

GeoTracker, eFile

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). SWRCB website for more information on requirements Please visit the these (http://www.waterboards.ca.gov/water issues/programs/ust/electronic submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alemente County Environmental Cleanus	REVISION DATE: July 20, 2010				
Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005				
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010				
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions				

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO# Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>deh.loptoxic@acgov.org</u>
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT B

WELL DESTRUCTION PERMIT

Cora Olson

From: wells@acpwa.org

Sent: Friday, September 09, 2011 12:06 PM

To: Cora Olson

Subject: Alameda County PWA Permits Application Confirmation

Thank you for your Permit Application. Your Application Confirmation Id is: 1315595172282 Submit Date is: Fri Sep 09 12:06:12 PDT 2011 Project Site City/Location: Alameda / 649 Pacific Avenue Project Start Date: 10/03/2011 Completion Date: 10/07/2011

NOTE: This only confirms receipt of the application, this is NOT an approved Permit. REMINDER: We must receive a site map from you or your permit will not be approved. If you have already submitted your site map and required documents, please disregard the reminder. You will be notified separately once the receipt of your map is logged.

If any required documents are missing, you will be contacted by the Water Resources Unit.

To view application status, go to the Tracking page.

**If above 'Tracking' link does not work for you, copy and paste this url directly to browser: https://www.acgov.org/pwapermitsecomm_app/TrackAppServlet? email=co@tsgcorp.net&appid=1315595172282

If you have questions, contact us at wells@acpwa.org, please include your application confirmation number.

Thank you, Public Works Agency - Water Resources

Your Application:

Project Information

City of Project Site:	Alameda	Site Location:	649 Pacific Avenue					
Start Date:	10/03/2011	Completion Date:	10/07/2011					
Applicant Information								
Business / Name:	Trinity Source Group - Cora Olson	Phone Number:	831-426-5600 x					
Address:	500 Chestnut Street Suite 225 Santa Cruz, CA 95060							
VAL	. for Down 14							

Work Applying for Permit

Work Type	Driller	# of Wells	Fees	Cost
Well Destruction-Monitoring	Trinity Source Group - Lic# 913467	5	\$ 397.00 per well	\$ 1,985.00
			Application Total:	\$ 1,985.00

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939									
Application Approved	on: 09/19/2011 By jamesy	Permit Numbers: W2011-0584 to W2011-0588 Permits Valid from 10/03/2011 to 10/07/2011							
Application Id:	1315595172282	City of Project Site: Alameda							
Site Location: Project Start Date: Assigned Inspector:	10/03/2011 Contact Vicky Hamlin at (510) 670-5443 or vicky	Completion Date:10/07/2011 kyh@acpwa.org							
Applicant:	Trinity Source Group - Cora Olson 500 Chestnut Street, Suite 225, Santa Cruz, CA	Phone: 831-426-5600							
Property Owner:	Don Lindsey 2424 Central Avenue, Alameda, CA 94501	Phone: 510-520-3453							
Client: Contact:	** same as Property Owner ** Cora Olson	Phone: 831-426-5602 x17 Cell: 831-325-1259							

	Total Due:	\$1985.00
Receipt Number: WR2011-0277	Total Amount Paid:	\$1985.00
Payer Name : Catherine C Byrne	Paid By: VISA	PAID IN FULL

Works Requesting Permits:

Well Destruction-Monitoring - 5 Wells Driller: Trinity Source Group - Lic #: 913467 - Method: press

Specifications

Pormit #	lesued Date	Evniro Dato	Owner Well	Hole Diam	Casing	Seal Denth	Max Denth	State Well #	Orig	DWR #
rennu #	ISSUED Date	Cybire Date	Id	noie Diam.	Diam.	Seal Depth	max. Depth	State Well #	Permit #	D1 1(#
W2011- 0584	09/19/2011	01/01/2012	MW-1	8.00 in.	2.00 in.	4.50 ft	20.00 ft	No Records	W04-1265	No Records
W2011- 0585	09/19/2011	01/01/2012	MW-2	8.00 in.	2.00 in.	4.50 ft	20.00 ft	No Records	W04-1266	No Records
W2011- 0586	09/19/2011	01/01/2012	MW-3	8.00 in.	2.00 in.	4.50 ft	20.00 ft	No Records	W04-1267	No Records
W2011- 0587	09/19/2011	01/01/2012	MW-4	8.00 in.	2.00 in.	4.50 ft	20.00 ft	No Records	W04-1268	No Records
W2011- 0588	09/19/2011	01/01/2012	MW-5	8.00 in.	2.00 in.	4.50 ft	20.00 ft	No Records	W04-1269	No Records

Specific Work Permit Conditions

1. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

2. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

3. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

Work Total: \$1985.00

Alameda County Public Works Agency - Water Resources Well Permit

4. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

7. Remove the Christy box or similar structure.

Destroy well by grouting neat cement with a tremie pipe or pressure grouting (25 psi for 5min.) to the bottom of the well and by filling with neat cement to three (3-5) feet below surface grade. Allow the sealing material to spill over the top of the casing to fill any annular space between casing and soil.

After the seal has set, backfill the remaining hole with concrete or compacted material to match existing conditions.

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Cora Olson

From: Hamlin, Vicky [vickyh@acpwa.org]

Sent: Tuesday, September 27, 2011 5:20 PM

To: Cora Olson

Subject: W2011-0584 to W2011-0588, 649 Pacific Avenue, Alameda

Please contact me at the numbers below to schedule grout inspection. Thanks-

Victoria Hamlin ESA Alameda County Public Works Agency Water Resources Section 399 Elmhurst Street Hayward, CA 94544 Ph: 510-670-5443 Fax: 510-782-1939 vickyh@acpwa.org www.acgov.org/pwa/wells

=

ATTACHMENT C

WELL COMPLETION REPORTS

FILE COPY

October 27, 2011 Trinity Project: 103.001.001

Alameda County Public Works Agency Water Resources Well Permit 399 Elmhurst Street Hayward, CA 94544-1395

Re: Well Completion Report Submittals Timber Del Properties (Kelly Moore Paint Store) 649 Pacific Ave Alameda, California

To Vicky Hamlin:

Trinity Source Group, Inc. (Trinity), on behalf of Timber Del Properties, is pleased to submit well completion reports for the destroyed wells, Well MW-1, through MW-5 at the Kelly Moore Paint Store, located at 649 Pacific Ave, in Alameda, California.

If you have any questions please call me at (831) 426-5600, thank you.

Sincerely,

nú Choi

Eric Choi Staff Scientst

Enclosures: Well Completion Report (5)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

ATTACHMENT D

O&M FIELD DATA SHEETS

Sub-Slab Depressurization System-

Client: Timber Del Properties, L.L.C.	Project #: 103.001.001					
Address: 649 Pacific Ave. Alameda CA	Date: 6/11/1 8/25/11					
	Personnel: EC					
Arrival System Status: Qr / Off If Off Explain Why?						
Departure System Status: (Op// Off If Off Explain Why?						
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Pl	noto Ionization Detector (PID)					
Tedlar Bag Collected? Yes / No Summa Vessel	Collected? Yes / No					
Collected? Yes 7 No Effluent (After Vacuum Unit)	PPMV					
Collected? Collected? Collected?	139 PPMV					
Effluent Flow Rate (read from digital readout on vacuum control)	-FPM 4S C-FM					
Г						
Effluent Flow Rate and Temperature (measured with hand held Anemome	ter in discharge pipe slot)					
65 FPM +C	Degrees F					
	-					
Vacuum (measured at influent sample port)	es of mercury (-in Hg)					
Smoke Pen Leak Test Pass Eail						
Notes:						
-ener the trad, ~ 1/2 callon a	E HID Calledid					
- Trap is working well , no the This us	the Sirstrin 15					
CAN SPOLL : 4SCEM						
- Sample calleted from efficient cample a	+ 8-8/11/6 1730					
stripe prover a transferration of the						
	A					
	11, M.					
-	W					

Page ____ of ____

Sub-Slab Depressurization System------ O&M Data

Address: 649 Pacific Ave. Alameda CA Date: 1 21 1 Personnel: 9 9 0ff If Off Explain Why? 1
Personnel: Ý (Arrival System Status: Op / Off If Off Explain Why? Departure System Status: Op / Off If Off Explain Why? Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Photo Ionization Detector (PID) Tedlar Bag Collected? Yes / No Summa Vessel Collected? Yes / No Collected? Yes / No Effluent (After Vacuum Unit) PPMV Collected? Yes / No Influent (Before Vacuum Unit) PPMV
Arrival System Status: Op / Off If Off Explain Why? Departure System Status: Op / Off If Off Explain Why? Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Photo Ionization Detector (PID) TedIar Bag Collected? Yes / No Summa Vessel Collected? Yes / No Collected? Yes / No Effluent (After Vacuum Unit) PPMV Collected? Yes / No Influent (Before Vacuum Unit) PPMV
Departure System Status: Op / Off If Off Explain Why? Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Photo Ionization Detector (PID) Tedlar Bag Collected? Yes / No Summa Vessel Collected? Yes / No Collected? Yes / No Effluent (After Vacuum Unit) PPMV Collected? Yes / No
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Photo Ionization Detector (PID) Tedlar Bag Collected? Yes / No Summa Vessel Collected? Yes / No Collected? Yes / No Effluent (After Vacuum Unit) PPMV Collected? Yes / No Influent (Before Vacuum Unit) PPMV
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Photo Ionization Detector (PID) Tedlar Bag Collected? Yes / No Summa Vessel Collected? Yes / No Collected? Yes / No Effluent (After Vacuum Unit) PPMV Collected? Yes / No Influent (Before Vacuum Unit) PPMV
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Photo Ionization Detector (PID) Tedlar Bag Collected? Yes / No Summa Vessel Collected? Yes / No Collected? Yes / No Effluent (After Vacuum Unit) PPMV Collected? Yes / No Influent (Before Vacuum Unit) PPMV
Tedlar Bag Collected? JYes No Summa Vessel Collected? Yes No Collected? Yes Ves Effluent (After Vacuum Unit) PPMV Collected? Yes Influent (Before Vacuum Unit) PPMV
Collected? Yes No Effluent (After Vacuum Unit) PPMV Collected? Yes No Influent (Before Vacuum Unit) 0,000 PPMV
Collected? Yes // No / Influent (Before Vacuum Unit) () / ///// PPMV
Effluent Flow Rate (read from digital readout on vacuum control)
Effluent Flow Pate and Temperature (measured with hand hald Anomemates in discharge size shat)
Degrees F 5 11 L
Vacuum (measured at influent sample port)
Smoke Pen Leak Test Fass Fail
Notes:
- cupty tho trap, ~ Igallon of the collected
- Trap 15 horking helling that in system is an
SPOL 4SCFM
-sample collected from atthent sample part on 11/21/11 CIOYS
her.

Signature

Page ____ of ____

Sub-Slab Depressurization System------ O&M Data

Client: Timber Del Properties, L.L.C.	Project #: 103.001.001				
Address: 649 Pacific Ave. Alameda CA	Date: 3/6/12				
	Personnel: £				
Arrival System Status: 0/ / Off If Off Explain Why?					
Departure System Status, On / Off If Off Explain Why?					
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) usi	ng Photo Ionization Detector (PID)				
Tedlar Bag Collected? JYes / No Summa Ve	essel Collected? Yes / No				
Collected? Yes / No. Effluent (After Vacuum Unit)	PPMV				
Collected? Yes / No : Influent (Before Vacuum Unit)	PPMV				
Effluent Flow Rate (read from digital readout on vacuum control)	EDM LICIEM				
Efflluent Flow Rate and Temperature (measured with hand held Anen	nometer in discharge pipe slot)				
203 FPM	Degrees F S9.1°F				
Vacuum (measured at influent sample port) NU	-inches of mercury (-in Hg)				
Smoke Pen Leak Test Pas Fail					
Notes:					
- photo the trap , ~7 callence called	1 itrapic inching				
high ha Ha in sustein sustein is	m Spal 1 - 46 c.fm				
- Real from the spread of start is					
- sample cellected from effluent such	210 part on \$/s/1201175				
and a start white should all					
	-				
	10				
	///				
	- 4ºVA				
	Signature				

ATTACHMENT E

CERTIFIED ANALTYICAL REPORT, CHAIN-OF-CUSTODY AND GEOTRACKER UPLOAD DOCUMENTATION

David Reinsma Trinity Source Group 500 Chestnut St,Suite 225 Santa Cruz, California 95060 Tel: 831-426-5600;Cell 831-227 4724 Fax: 831-426-5602 Email: dar@tsgcorp.net

RE: 649 Pacific Ave.

Work Order No.: 1203040

Dear David Reinsma:

Torrent Laboratory, Inc. received 1 sample(s) on March 06, 2012 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

G.Gueorguieva Sr. Project Manager

March 13, 2012

Date

Client: Trinity Source Group Project: 649 Pacific Ave. Work Order: 1203040

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Sample Result Summary

Report prepared for:	David Reinsma Trinity Source Group				Date I Date I	Received: 03/06/ [.] Reported: 03/13/ [.] 1203040-0	12 12 01A
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u> <u>ug/m3</u>	
Methylene Chloride		ETO15	2	1.2	7.0	23.5	
Chloroform		ETO15	2	2.5	9.8	44.3	
Carbon Tetrachloride		ETO15	2	1.7	6.3	447	
Toluene		ETO15	2	1.9	3.8	75.2	
Tetrachloroethylene		ETO15	2	1.8	6.8	626	

SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	up						[[Date Recei Date Repo	ived: 03/06 rted: 03/13	/12 /12
Client Sample ID:	Effluent				Lab Sa	ample ID:	1	203040-001A			
Project Name/Location:	649 Pacific Av	e.			Sampl	e Matrix:	S	Soil Vapor	-		
Project Number:					camp	o matrixi		ion rapo.			
Date/Time Sampled:	03/06/12 / 11:	25			Cortifie	d Clean \	NO # ·				
Conjeter/Tube ID:	00/00/12/11.	20			Dessiv		<i>w w w w w w w w w w</i>	0.0			
Carlister/Tube ID:	0.00				Receiv			0.0			
Collection Volume (L):	0.00				Correc	ted PSI :		0.0			
Tag Number:	649 Pacific Av	e., Alame	da, CA								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Dichlorodifluoromethane	ETO15	NA	03/07/12	2	3.0	10	ND	ND		408726	NA
1,1-Difluoroethane	ETO15	NA	03/07/12	2	1.0	2.7	ND	ND		408726	NA
1,2-Dichlorotetrafluoroethane	ETO15	NA	03/07/12	2	9.9	28	ND	ND		408726	NA
Chloromethane	ETO15	NA	03/07/12	2	0.64	2.1	ND	ND		408726	NA
Vinyl Chloride	ETO15	NA	03/07/12	2	1.3	5.2	ND	ND		408726	NA
1,3-Butadiene	ETO15	NA	03/07/12	2	0.89	2.2	ND	ND		408726	NA
Bromomethane	ETO15	NA	03/07/12	2	1.4	3.9	ND	ND		408726	NA
Chloroethane	ETO15	NA	03/07/12	2	1.0	2.6	ND	ND		408726	NA
Trichlorofluoromethane	ETO15	NA	03/07/12	2	3.6	11	ND	ND		408726	NA
1,1-Dichloroethene	ETO15	NA	03/07/12	2	1.2	4.0	ND	ND		408726	NA
Freon 113	ETO15	NA	03/07/12	2	1.7	7.7	ND	ND		408726	NA
Carbon Disulfide	ETO15	NA	03/07/12	2	1.6	6.2	ND	ND		408726	NA
2-Propanol (Isopropyl Alcohol)	ETO15	NA	03/07/12	2	1.9	20	ND	ND		408726	NA
Methylene Chloride	ETO15	NA	03/07/12	2	1.2	7.0	23.5	6.71		408726	NA
Acetone	ETO15	NA	03/07/12	2	1.8	19	ND	ND		408726	NA
trans-1,2-Dichloroethene	ETO15	NA	03/07/12	2	1.3	4.0	ND	ND		408726	NA
Hexane	ETO15	NA	03/07/12	2	1.1	3.5	ND	ND		408726	NA
МТВЕ	ETO15	NA	03/07/12	2	1.7	3.6	ND	ND		408726	NA
tert-Butanol	ETO15	NA	03/07/12	2	1.8	17	ND	ND		408726	NA
Diisopropyl ether (DIPE)	ETO15	NA	03/07/12	2	1.8	4.2	ND	ND		408726	NA
1,1-Dichloroethane	ETO15	NA	03/07/12	2	1.5	4.1	ND	ND		408726	NA
ETBE	ETO15	NA	03/07/12	2	1.4	4.2	ND	ND		408726	NA
cis-1,2-Dichloroethene	ETO15	NA	03/07/12	2	1.1	4.0	ND	ND		408726	NA
Chloroform	ETO15	NA	03/07/12	2	2.5	9.8	44.3	9.04		408726	NA
Vinyl Acetate	ETO15	NA	03/07/12	2	1.1	3.5	ND	ND		408726	NA
Carbon Tetrachloride	ETO15	NA	03/07/12	2	1.7	6.3	447	70.95		408726	NA
1,1,1-trichloroethane	ETO15	NA	03/07/12	2	1.7	5.5	ND	ND		408726	NA
2-Butanone (MEK)	ETO15	NA	03/07/12	2	1.3	3.0	ND	ND		408726	NA
Ethyl Acetate	ETO15	NA	03/07/12	2	1.5	3.6	ND	ND		408726	NA
Tetrahydrofuran	ETO15	NA	03/07/12	2	0.60	3.0	ND	ND		408726	NA
Benzene	ETO15	NA	03/07/12	2	1.4	3.2	ND	ND		408726	NA
TAME	ETO15	NA	03/07/12	2	0.72	4.2	ND	ND		408726	NA
1,2-Dichloroethane (EDC)	ETO15	NA	03/07/12	2	2.0	4.1	ND	ND		408726	NA
Trichloroethylene	ETO15	NA	03/07/12	2	2.8	11	ND	ND		408726	NA
1,2-Dichloropropane	ETO15	NA	03/07/12	2	2.6	9.2	ND	ND		408726	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	oup							Date Recei Date Repo	ived: 03/06 rted: 03/13	6/12 3/12
Client Sample ID: Project Name/Location:	Effluent 649 Pacific Ave.				Lab Sa Sampl	ample ID: le Matrix:	1 S	203040-001 <i>/</i> Soil Vapor	Ą		
Date/Time Sampled	03/06/12 / 11	25			Certifie	ed Clean V	NO # ·				
Capistor/Tuba ID:	00/00/12/11	20			Pocoiv			0.0			
Collection Volume (L)	0.00				Corroo			0.0			
	0.00				Correc	ieu FSI.		0.0			
Tag Number:	649 Pacific Av	/e., Alame	eda, CA								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Bromodichloromethane	ETO15	NA	03/07/12	2	1.8	6.7	ND	ND	1	408726	NA
1,4-Dioxane	ETO15	NA	03/07/12	2	2.5	7.2	ND	ND		408726	NA
trans-1,3-Dichloropropene	ETO15	NA	03/07/12	2	1.7	4.5	ND	ND		408726	NA
Toluene	ETO15	NA	03/07/12	2	1.9	3.8	75.2	19.79		408726	NA
4-Methyl-2-Pentanone (MIBK)	ETO15	NA	03/07/12	2	1.7	4.1	ND	ND		408726	NA
cis-1,3-Dichloropropene	ETO15	NA	03/07/12	2	2.3	4.5	ND	ND		408726	NA
Tetrachloroethylene	ETO15	NA	03/07/12	2	1.8	6.8	626	92.06		408726	NA
1,1,2-Trichloroethane	ETO15	NA	03/07/12	2	1.9	5.5	ND	ND		408726	NA
Dibromochloromethane	ETO15	NA	03/07/12	2	3.5	8.5	ND	ND		408726	NA
1,2-Dibromoethane (EDB)	ETO15	NA	03/07/12	2	4.1	15	ND	ND		408726	NA
2-Hexanone	ETO15	NA	03/07/12	2	2.2	8.2	ND	ND		408726	NA
Ethyl Benzene	ETO15	NA	03/07/12	2	2.0	4.3	ND	ND		408726	NA
Chlorobenzene	ETO15	NA	03/07/12	2	1.4	4.6	ND	ND		408726	NA
1,1,1,2-Tetrachloroethane	ETO15	NA	03/07/12	2	2.1	6.9	ND	ND		408726	NA
m,p-Xylene	ETO15	NA	03/07/12	2	3.2	8.6	ND	ND		408726	NA
o-Xylene	ETO15	NA	03/07/12	2	1.6	4.3	ND	ND		408726	NA
Styrene	ETO15	NA	03/07/12	2	1.4	4.4	ND	ND		408726	NA
Bromoform	ETO15	NA	03/07/12	2	2.2	10	ND	ND		408726	NA
1,1,2,2-Tetrachloroethane	ETO15	NA	03/07/12	2	1.4	6.9	ND	ND		408726	NA
4-Ethyl Toluene	ETO15	NA	03/07/12	2	1.6	4.9	ND	ND		408726	NA
1,3,5-Trimethylbenzene	ETO15	NA	03/07/12	2	1.5	4.9	ND	ND		408726	NA
1,2,4-Trimethylbenzene	ETO15	NA	03/07/12	2	1.4	4.9	ND	ND		408726	NA
1,4-Dichlorobenzene	ETO15	NA	03/07/12	2	1.3	6.0	ND	ND		408726	NA
1,3-Dichlorobenzene	ETO15	NA	03/07/12	2	1.7	6.0	ND	ND		408726	NA
Benzyl Chloride	ETO15	NA	03/07/12	2	1.2	5.2	ND	ND		408726	NA
1,2-Dichlorobenzene	ETO15	NA	03/07/12	2	1.8	6.0	ND	ND		408726	NA
Hexachlorobutadiene	ETO15	NA	03/07/12	2	4.8	11	ND	ND		408726	NA
1.2.4-Trichlorobenzene	ETO15	NA	03/07/12	2	6.8	15	ND	ND		408726	NA
Naphthalene	ETO15	NA	03/07/12	2	2.9	10	ND	ND		408726	NA
(S) 4-Bromofluorobenzene	ETO15	NA	03/07/12	2	65	135	131 %			408726	NA
· ·											

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	oup							Date Recei Date Repo	ived: 03 rted: 03	3/06/12 3/13/12	<u>2</u> 2
Client Sample ID: Project Name/Location:	Effluent 649 Pacific A	ve.			Lab Sampl	Lab Sample ID:			A			
Project Number: Date/Time Sampled:	03/06/12 / 11	03/06/12 / 11:25					Certified Clean WO # :					
Collection Volume (L):	0.00 649 Pacific A	ve. Alame	eda, CA		Correc	ted PSI :		0.0				
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analyti Batcl	cal F h B	Prep atch
The results shown below Stoddard Sol. NOTE: Reporting limit was	are reported using ETO3 raised due to limited sa	<i>their ML</i> NA ample volu	DL. 03/07/12	4 I (tedla	700 Ir bag).	1400	ND	ND		40872	27	NA

MB Summary Report

Work Order:	1203040	Prep I	Method:	NA	Prep Date:		NA	Prep Batch:	NA	
Matrix:	Air	Analy	tical	ETO15	Analyzed Date:		03/07/12	Analytical Batch:	408726	
Units:	ppbv	Wethe	u.					Batch.		
				Method	Lah					
Parameters		MDL	PQL	Blank Conc.	Qualifier					
Dichlorodifluoromet	nane	0.30	1.00	ND						
1,1-Difluoroethane		0.18	0.500	ND						
1,2-Dichlorotetrafluc	oroethane	0.70	2.00	ND						
Chloromethane		0.15	0.500	ND						
Vinyl Chloride		0.26	1.00	ND						
1,3-Butadiene		0.20	0.500	ND						
Bromomethane		0.18	0.500	ND						
Chloroethane		0.19	0.500	ND						
Trichlorofluorometha	ane	0.32	1.00	ND						
1,1-Dichloroethene		0.15	0.500	ND						
Freon 113		0.11	0.500	ND						
Carbon Disulfide		0.26	1.00	ND						
2-Propanol (Isoprop	vl Alcohol)	0.39	4.00	ND						
Methylene Chloride	,	0.17	0.500	ND						
Acetone		0.37	4.00	ND						
trans-1.2-Dichloroet	hene	0.16	0.500	ND						
Hexane		0.15	0.500	ND						
MTBE		0.24	0.500	ND						
tert-Butanol		0.22	2.00	ND						
Diisopropyl ether (D	IPE)	0.21	0.500	ND						
1.1-Dichloroethane	,	0.18	0.500	ND						
ETBE		0.16	0.500	ND						
cis-1.2-Dichloroethe	ne	0.13	0.500	ND						
Chloroform		0.25	1.00	ND						
Vinvl Acetate		0.16	0.500	ND						
Carbon Tetrachlorid	e	0.14	0.500	ND						
1.1.1-Trichloroethar	e	0.15	0.500	ND						
2-Butanone (MEK)		0.21	0.500	ND						
Ethyl Acetate		0.21	0.500	ND						
Tetrahydrofuran		0.10	0.500	ND						
Benzene		0.21	0.500	ND						
TAME		0.086	0.500	ND						
1.2-Dichloroethane	(EDC)	0.24	0.500	ND						
Trichloroethylene	()	0.26	1.00	ND						
1,2-Dichloropropane)	0.29	1.00	ND						
Bromodichlorometh	ane	0.13	0.500	ND						
1,4-Dioxane		0.35	1.00	ND						
trans-1,3-Dichloropr	opene	0.19	0.500	ND						
Toluene		0.25	0.500	ND						
4-Methyl-2-Pentano	ne (MIBK)	0.21	0.500	ND						
cis-1,3-Dichloroprop	ene	0.25	0.500	ND						

MB Summary Report

Work Order: 1203040	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix: Air	Analy	tical	ETO15	Anal	vzed Date:	03/07/12	Analytical	408726
Units: ppbv	Metho	d:					Batch:	
Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier				
Tetrachloroethylene	0.13	0.500	ND					
1,1,2-Trichloroethane	0.17	0.500	ND					
Dibromochloromethane	0.20	0.500	ND					
1,2-Dibromoethane (EDB)	0.27	1.00	ND					
2-Hexanone	0.27	1.00	ND					
Ethyl Benzene	0.23	0.500	ND					
Chlorobenzene	0.15	0.500	ND					
1,1,1,2-Tetrachloroethane	0.15	0.500	ND					
m,p-Xylene	0.38	1.00	ND					
o-Xylene	0.19	0.500	ND					
Styrene	0.16	0.500	ND					
Bromoform	0.11	0.500	ND					
1,1,2,2-Tetrachloroethane	0.10	0.500	ND					
4-Ethyl Toluene	0.17	0.500	ND					
1,3,5-Trimethylbenzene	0.15	0.500	ND					
1,2,4-Trimethylbenzene	0.14	0.500	ND					
1,4-Dichlorobenzene	0.11	0.500	ND					
1,3-Dichlorobenzene	0.14	0.500	ND					
Benzyl Chloride	0.12	0.500	ND					
1,2-Dichlorobenzene	0.15	0.500	ND					
Hexachlorobutadiene	0.22	0.500	ND					
1,2,4-Trichlorobenzene	0.46	1.00	ND					
Naphthalene	0.28	1.00	ND					
(S) 4-Bromofluorobenzene			133					
Work Order: 1203040	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix: Air	Analy	tical	ETO3	Anal	vzed Date:	03/07/12	Analytical	408727
Units: ppbv	Metho	d:					Batch:	
Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH-Gasoline	50	100	ND					
Stoddard Sol.	50	100	ND					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

LCS/LCSD Summary Report

								Raw valu	es are used in	quality contro	ol assessment.		
Work Order:	1203040		Prep Method: NA			Prep Date: NA			Prep Batch: NA				
Matrix:	Air		Analytical	ETO1	5	Analyze	d Date:	03/07/12	Analytic	al 408 ⁻	726		
Units:	ppbv		Method:						Batch:				
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier		
1,1-Dichloroether	ne	0.15	0.500	ND	20	100	105	5.01	65 - 135	30			
Benzene		0.21	0.500	ND	20	102	105	2.56	65 - 135	30			
Trichloroethylene	!	0.26	1.00	ND	20	95.2	99.0	3.97	65 - 135	30			
Toluene		0.25	0.500	ND	20	100	94.1	6.33	65 - 135	30			
Chlorobenzene		0.15	0.500	ND	20	94.5	88.2	6.90	65 - 135	30			
(S) 4-Bromofluoro	obenzene			ND	20	105	85.0		65 - 135				
Work Order:	1203040		Prep Meth	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA			
Matrix:	Air		Analytical	ETO3	5	Analyze	d Date:	03/07/12 Analytical 408727		727			
Units:	ppbv		Method:						Batch:				
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier		
TPH-Gasoline		50	100	ND	500	84.6	89.2	5.26	50 - 150	30			

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Client Name: <u>Trinity Source Group</u> Project Name: <u>649 Pacific Ave.</u>

Work Order No.: 1203040

Sample Receipt Checklist

Date and Time Received: <u>3/6/2012</u> <u>12:35</u> Received By: <u>NG</u> Physically Logged By: <u>NG</u> Checklist Completed By: <u>NG</u> Carrier Name: <u>Client Drop Off</u>

Chain of Custody (COC) Information

Chain of custody present?	Yes	
Chain of custody signed when relinquished and received?	Yes	
Chain of custody agrees with sample labels?	Yes	
Custody seals intact on sample bottles?	Not Present	
Sample Re	ceipt Information	
Custody seals intact on shipping container/cooler?	Not Present	
Shipping Container/Cooler In Good Condition?	Yes	
Samples in proper container/bottle?	Yes	
Samples containers intact?	Yes	
Sufficient sample volume for indicated test?	Yes	
Sample Preservation a	nd Hold Time (HT) Information	
All samples received within holding time?	Yes	
Container/Temp Blank temperature in compliance?	Temperature:	°C
Water-VOA vials have zero headspace?	No VOA vials submitted	
Water-pH acceptable upon receipt?	<u>N/A</u>	
pH Checked by:	pH Adjusted by:	

Login Summary Report

Client ID:	TL5109	Trinity Source Group			QC Level:		
Project Name:	649 Pacific Ave				TAT Reques	ted: 5+ day:0)
Project # :					Date Receiv	ed: 3/6/2012	2
Report Due Date:	3/13/2012				Time Receiv	ed: 12:35	
Comments:							
Work Order # :	1203040						
WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Sa</u> <u>Disposal</u> On	mple <u>Test</u> Hold <u>On Hold</u>	<u>Requested</u> Tests	Subbed
1203040-001A	Effluent	03/06/12 11:25	Air			EDF A_TO-15Full-A A_TO-3TPPH A_TO-15Full-B	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Compan	LABORATORY, INC.	483 Sinclair Fronta Milpitas, CA 9503; Phone: 408.263.52 FAX: 408.263.8293 www.torrentlab.com	ge Road 5 58 58 n 1 N/C	(•NO	TE: SHA	CHA ADED A	REAS	OF ARE F	CL OR TO	JST		USE C	DNLY •) [/	LAB WOF	RK ORDE	r no - O	
Address	SOD CHESTIMT	ST. 5417	(110C.	,	Purpo	ose: ℃	DPC		+M	- A	M	vel	RIA	via	L	4		
CitySA	NTACENZ St	ate: (A	Zip Code	95060	Spec	al Instru	ctions /	Comm	ents:		<u>/ </u>	5.7			ζ.			Ĩ
Telepho	19 (B1)426-5600 FAX	(31) 426-5	60L	0000	G	cha	10	#	SLO	060	010	SN	113					T
REPORT	TO: DAVE REINSMA	SAMPLER: ER	CCHC))	P.0.	#:1/)3	:00	11,0	WI	E	EMAIL:	Labs	trini	tye	Smail	1.01	2	1
TURNAR	OUND TIME:	SAMPLE TYPE	: <i>1</i>	REPORT	ORMAT	-		$t^{2^{i_1}}$.				· · ·	×		1.3	1		
10 Wo 7 Work	k Days 3 Work Days Noon - N Days 2 Work Days 2 - 8 Hou Days 1 Work Day Other	rs Storm Water Ground Water Soil	Other	QC Leve	el IV EDD	s studior	Fullscon				ы. т				RE	NALYS QUEST	is Ted	
LAB ID	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT	10	SIO	÷.		е н 1717	ss ,×™	ана 1	··· ·		RE	MARKS	ч 2].
<i>0</i> 01A	EFFLUENT	36/120	AIR	1 1	LTech	X	Ý							1.000		19 10 10 10 10 10 10 10 10 10 10 10 10 10	産を	internation of the
	- -			÷ 1	÷			,							unpolity of	A STORE	Billine.	LAB
A single						* .		2						1	御意	ないの	Sel west for	RENT
Table of	,													5		支援	Lange Contract	TORF
御谷殿				1		×								400	of the sought	Second Second		the sum trans-
The states								;							under sta		Monthly .	Section of a
Summer of State				4		a a	τî.	141				÷, ,			and County	an Anglan	Sec. 1	Louis de general
															の時	18. N	Bide 4	All Michael
the article															and a		din e	and a fill of the
1	Λ													1		and the second	N. Marrie	109.00
2 Reling	ushed By: Print: Print: Uished By: Print: Print:	Date: 31(Date:	In	Time 22	35	Receiv Receiv	ed By:	Kee	las	Print: Print: Print:	NAVA V	IN G	Date: 3~6 Date:	6.12	Tim	e: 12:3	5	
Were Sar NOTE: Sa Log In By	nples Received in Good Condition? mples are discarded by the labo	Yes NO S pratory 30 days from da	amples on le	ce? Yes unless other og In Review	arrangt wed By:	Method	of Shipr s are ma	ment	1	/ <i>0</i>	te:	Si	ample se	eals intact	? 🗋 Yes _/			i i

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: EDF - Monitoring Report - Quarterly SUBSLABDEPRESURIZATIONSYSTEMAIRDATA-3Q2011 SL0600150413 SEARWAY PROPERTY TSG 1108167 649 Pacific Ave EDF.zip Trinity Source Group, Inc. TRINITY SOURCE GROUP 69.198.129.110 5/7/2012 1:26:46 PM 6443647265

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2012 State of California

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: EDF - Monitoring Report - Quarterly SUBSLABDEPRESURIZATIONSYSTEMAIRDATA-4Q2011 SL0600150413 SEARWAY PROPERTY TSG 1111150 649 Pacific Ave EDF-4Q11.zip Trinity Source Group, Inc. TRINITY SOURCE GROUP 69.198.129.110 5/7/2012 1:27:50 PM 9886199235

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2012 State of California

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: EDF - Monitoring Report - Annually SUBSLABDEPRESURIZATIONSYSTEMAIRDATA-1Q2012 SL0600150413 SEARWAY PROPERTY TSG 1203040 649 Pacific Ave EDF.zip Trinity Source Group, Inc. TRINITY SOURCE GROUP 69.198.129.110 5/7/2012 1:28:54 PM 1902221620

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2012 State of California

ATTACHMENT F

BAAQMD – PERMIT TO OPERATE

06/04/12 B8970 **BAY AREA AIR QUALITY** PERMIT MANAGEMENT DISTRICT 939 ELLIS STREET SAN FRANCISCO, CALIFORNIA 94109 OPERATE (415) 771-6000 Plant# 18970 1 APR 1, 2013 Page: Expires: This document does not permit the holder to violate any District regulation or other law. Don Lindsey Searway Property 2424 Central Avenue Alameda, CA 94501 Location: 649 Pacific Avenue Alameda, CA 94501

S#	DESCRIPTION	[Schedule]	PAID
1	CHEM> Contaminated soil remediation Sub-Slab Venting System	Paid Thru 04-01-13	1185
~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	~~~~

1 Permit Source, 0 Exempt Sources

*** See attached Permit Conditions ***

The operating parameters described above are based on information supplied by permit holder and may differ from the limits set forth in the attached conditions of the Permit to Operate. The limits of operation in the permit conditions are not to be exceeded. Exceeding these limits is considered a violation of District regulations subject to enforcement action.



This document does not permit the holder to violate any District regulation or other law.

#### *** PERMIT CONDITIONS ***

#### COND# 23992 applies to S# 1

1. In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinyl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- 2. To determine compliance with Condition 1, the operator of this source shall:
  - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 92 days on a quarterly basis.

Written authorization must be received from the District before any change in sampling frequency.

- b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
- c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed



This document does not permit the holder to violate any District regulation or other law.

#### *** PERMIT CONDITIONS ***

_____

in condition 1 as well as the total volatile organic compounds.

- 3. The operator of this source shall maintain the following information in a District-approved log for each month of operation of the source:
  - a. dates of operation;
  - b. exhaust flow rate:
  - c. exhaust sampling date;
  - d. analysis results;
  - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- 4. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
  - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
  - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

END OF CONDITIONS

Bay A Manag	area Air Quality gement District	**	SOURCE	EMISSIONS	**		F A	LANT ‡ pr 28,	18970 2012
					Aı	nnual .	Average	lbs/d	lay
S#	Source Description				PART	ORG	NOx	SO2	CO
						-			
1	Sub-Slab Venting System				-	.1	<u> </u>	-	-
	TOTALS					.1			

## ATTACHMENT G

## BAAQMD CORRESPONDENCE



BY: .....



March 28, 2012

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

ALAMEDA COUNTY Tom Bates Scott Haggerty Jennifer Hosterman Nate Miley (Secretary)

CONTRA COSTA COUNTY John Gioia (Chairperson) David Hudson Mary Piepho Mark Ross

> MARIN COUNTY Katie Rice

NAPA COUNTY Brad Wagenknecht

SAN FRANCISCO COUNTY John Avalos Edwin M. Lee Eric Mar

SAN MATEO COUNTY Carole Groom Carol Klatt

SANTA CLARA COUNTY Susan Garner Ash Kalra (Vice-Chair) Liz Kniss Ken Yeager

SOLANO COUNTY James Spering

SONOMA COUNTY Susan Gorin Shirlee Zane

Jack P. Broadbent EXECUTIVE OFFICER/APCO Trinity Source Group, Inc. 500 Chestnut Street, Suite 225 Santa Cruz, CA 95060

Attention: Cora E. Olson

Application No.:17506Plant No.18970Equipment Location:Searway Property649Pacific AvenueAlameda, CA

Dear Applicant:

The District has reviewed your request, dated March 19, 2012 to change the monitoring frequency from quarterly to annually. Based on the information provided, an annual monitoring schedule is both reasonable from the District's perspective and will also grant your firm the flexibility requested. Be aware that you can monitor your systems more frequently if desired.

Please keep a copy of this letter and the attached revised operating conditions (COND#23992) as verification that a monitoring schedule of annually has been approved by the District for the site subject to P/O (Plant #18970).

Please include your application number with any correspondence with the District. The District's regulations may be viewed online at <u>www.baaqmd.gov</u> If you have any questions on this matter, please call me at (415) 749-4630.

Very truly yours,

Flora W Chan Air Quality Engineer II

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

COND# 23992 -----

 In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinyl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- To determine compliance with Condition 1, the operator of this source shall:
  - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 365 days on an annual basis. Written authorization must be received from the District before any change in sampling frequency.
  - b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
  - c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed in condition 1 as well as the total volatile organic compounds.

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

- The operator of this source shall maintain the following information in a District-approved log for each year of operation of the source:
  - a. dates of operation;
  - b. exhaust flow rate:
  - c. exhaust sampling date;
  - d. analysis results;
  - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- 4. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
  - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
  - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.