RECEIVED

By Alameda County Environmental Health 3:48 pm, Jun 30, 2017

June 30, 2017

Mr. Paresh Khatri Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Acknowledgement Statement2017 Sub-Slab Vapor Depressurization System Performance Report
Searway Property (SLIC Case No. RO0002584)
649 Pacific Avenue
Alameda, California

Dear Mr. Khatri,

@ makey

"I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website".

Timber Dell Properties, LLC

Donald W. Lindsey, member

June 30, 2017

Trinity Project: 103.001.001

Mr. Paresh Khatri Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Parkway, Suite 250 Alameda, CA 94502-6577

Re: 2017 Sub-Slab Vapor Depressurization System Performance Report

Searway Property 649 Pacific Avenue Alameda, California

Dear Mr. Khatri:

Trinity Source Group, Inc. (Trinity) has prepared this 2017 Sub-Slab Vapor Depressurization System Performance Report (Report) on behalf of Timber Del Properties, for the referenced site (Figure 1). The operations and maintenance (O&M) activities are described in the following sections.

The sub-slab vapor depressurization (SSVD) system was installed at the existing commercial building at the site in order to prevent volatile organic compounds (VOCs) from migrating from the sub-slab area into indoor air. The SSVD system was installed in 2008 and operates continuously. Monitoring is currently conducted annually.

SUB-SLAB VAPOR DEPRESSURIZATION SYSTEM DESCRIPTION

Sub-slab air is withdrawn from the sub-slab material by means of an applied vacuum. The extracted air is routed through piping and discharged to the atmosphere.

The SSVD system includes two horizontal extraction wells located near former depressurization points DPT-1 and DPT-2, with extraction well pipe runs trenched to nearby walls. The pipe runs continue up to the first floor ceiling, where they are connected to a manifold and then a suction fan located in the attic. The exhaust air is piped to the southwest corner of the roof and discharged through a 6-foot tall stack. Vacuum is applied to the extraction wells using an electric fan blower equipped with a flow meter. The SSVD system was originally constructed with carbon treatment, but the carbon was removed in May 2009 due to very low VOC influent concentrations. The system layout is presented on Figure 2. The Sub-Slab System Process and Instrumentation Diagram is shown on Figure 3.

Mr. Paresh Khatri Timber Del Properties 2016 SSVD System Performance Report June 30, 2017

Sub-slab extraction system influent and effluent analytical data are summarized in Table 1. Sub-slab extraction system influent throughput and mass removal of VOCs are summarized in Table 2. Sub-slab extraction system effluent throughput and discharge of VOCs are summarized in Table 3.

The Sub-Slab System Extraction Well Detail is shown on Figure 4. Each extraction well is a 3-foot long, 4-inch diameter, horizontal slotted PVC casing, which is connected to 4-inch diameter PVC blank pipe runs. The slotted pipe is set in the middle of the sub-base material. PVC screen extends across the sub-base material.

The Sub-Slab System Monitoring Point Detail is shown on Figure 5. The monitoring points (VS-1 through VS-22) were constructed in accordance with the design specifications presented in the EPA document, "Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site using Basement and Sub-Slab Air Samples" (EPA 600 R-05/147, March 2006). These monitoring points have proven to be effective in sample collection and measuring the pressure field established by an applied vacuum. Monitoring point locations are shown on Figure 2.

The Bay Area Air Quality Management District (BAAQMD) application number is 17506 and the plant number is 18970. In February 2017, Trinity provided information to BAAQMD necessary to acquire an updated Permit to Operate (PTO) for the SSVD system. It is our understanding that the BAAQMD invoice for the updated PTO was submitted to Timber Del Properties former address at 2424 Central Avenue in Alameda which is currently vacant. Correct billing information has recently been submitted to BAAQMD, and after payment is received, BAAQMD will submit an updated PTO. The PTO will be submitted to the Alameda County Health Care Services Agency under separate cover. The 2016 Permit to Operate is included in Attachment A for reference.

On March 19, 2012 Trinity requested a change in monitoring frequency from quarterly to annually, which was granted by BAAQMD. An approval letter of the monitoring frequency change is included in Attachment B.

SSVD SYSTEM O&M SUMMARY

Date of O&M Event: May 26, 2017
Sample Containers: 1-Liter Tedlar Bag

Sample Collection Point: Effluent

System Conditions: System running and passed smoke pen test for O&M event

Trinity collected an effluent sample and delivered it to Torrent Laboratory, Inc., a California-certified laboratory (ELAP# 1991). The sample was analyzed for Stoddard solvent and a full scan of VOCs using Method TO-15 during this annual sampling event. The O&M field data sheets are included in Attachment C and the certified analytical report is included in Attachment D. The laboratory noted that for the TPH Stoddard analysis; "Does not match typical gasoline pattern. TPH value includes amount of non-target compounds within gasoline range. The chromatogram pattern does not indicate the presence of Stoddard solvent in the sample."

Mr. Paresh Khatri Timber Del Properties 2016 SSVD System Performance Report June 30, 2017

SSVD SYSTEM PERFORMANCE

- SSVD has discharged a total of approximately 9.86 pounds of VOCs from March 10, 2016 to May 26, 2017, during approximately 442 days of operation.
- VOC removal rate for the period of March 10, 2016 to May 26, 2017 is 0.02231 pounds per day.
- The system is performing as expected with removal of VOCs and depressurization of the sub-slab area.
- The low concentrations of VOCs discharged to the atmosphere are well within the permitted discharge allowed for specific compounds and for the total limit of 10 pounds per day. No violations of the BAAQMD permit have occurred.
- The Residential and Commercial Indoor Air Environmental Screening Levels¹ (ESLs) for each VOC were divided by the calculated Site-Specific Attenuation Factor to derive the Site-Specific Screening Levels. All effluent VOC concentrations from May 26, 2017 are less than Residential and Commercial Land Use Site-Specific Screening Levels² (Table 1).
- Effluent VOC concentrations were also compared directly to the corresponding Residential and Commercial Sub-Slab/Soil Gas Vapor ESLs. The only exceedance was for carbon tetrachloride at a concentration of 110 micrograms per cubic meter (μg/m³) which exceeded the Residential ESL of 33 μg/m³ but not the Commercial ESL of 290 μg/m³.

RECOMMENDATIONS

Based on the SSVD performance from March 10, 2016 to May 26, 2017, we recommend continued operation of the SSVD in its current configuration, and continued annual performance monitoring.

¹ San Francisco Bay Regional Water Quality Control Board, *Environmental Screening Levels*, February 2016 (Revision 3).

² Trinity Source Group, Inc., Sub-Slab Attenuation Factor Determination Summary Report, September 20, 2010.

Mr. Paresh Khatri Timber Del Properties 2016 SSVD System Performance Report June 30, 2017

Should you have any questions regarding this *Report*, please call Trinity at (831) 426-5600.

Sincerely,

TRINITY SOURCE GROUP, INC. A California Corporation

Information, conclusions, and recommendations made by Trinity in this document regarding this site have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

Dana McCarthy, PG Project Geologist

Brady Nagle Project Manager

DISTRIBUTION

A copy of this report has been forwarded to:

Mr. Don Lindsey Timber Del Properties, LLC 1406 Webster Street Alameda, CA 94501 Ms. Miranda Vega The Mechanics Bank 1999 Harrison St., Suite 810 Oakland, CA 94612

Attachments:

Table 1 – Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

Table 2 – Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs

Table 3 – Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs

Figure 1 – Site Location Map

Figure 2 – Sub-Slab Depressurization System Layout

Figure 3 – Sub-Slab Depressurization System - Process and Instrumentation Diagram

Figure 4 – Sub-Slab Depressurization System - Extraction Well Detail

Figure 5 – Sub-Slab Vapor Monitoring Point Detail

Attachment A – BAAQMD – Permit to Operate

Attachment B – BAAQMD – Correspondence

Attachment C – O&M Field Data Sheets

Attachment D – Certified Analytical Report, Chain-of-Custody and GeoTracker Upload Documentation

TABLES

Table 1
Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

		EPA Method TO-3/TO-15*				EPA Met	hod TO-1	5			
Sample Date	Sample Location	Stoddard µg/m³	Benzene µg/m³	Chloroform µg/m³	Carbon Tetrachloride µg/m³	PCE µg/m³	TCE µg/m³	VC µg/m³	2-Butanone μg/m³	Acetone μg/m³	Notes
9/10/2008	Influent Effluent	4,900 ^c 610 ^{c, d}	<80 <1.8	560 <3.9	3,900 29	2,600 17	<130 <1.1	<64 <0.5	300 <0.88	<480 71	k
9/11/2008	Influent	2,400°	<32	480	3,200	2,500	<54	<26	260	<190	e
	Effluent	710°	<1.8	<3.9	<1.9	<2.6	<1.1	<0.5	14	180	e
10/10/2008	Influent	960 ^b	65	110	880	880	<5.4	<2.6	27	51	l
	Effluent	740 ^b	<3.2	54	200	13	<5.4	<2.6	<3.0	25	m
11/6/2008	Influent	1,700 ^a	<1.6	58	690	520	<2.7	<1.3	23	62	f
	Effluent	2,800 ^a	1.9	53	770	14	<2.7	<1.3	6.5	37	g
12/4/2008	Influent	2,400 ^h	20	110	780	1,100	<6.7	<3.2	110	<24	i
	Effluent	2,100 ^h	18	120	1,100	40	<5.4	<2.6	82	<19	j
1/2/2009	Influent	<3,500	<16	26	560	800	<27	<13	<15	<95	n
	Effluent	<3,500	<8.0	73	920	220	<13	<6.4	<7.4	<48	o
2/9/2009	Influent	2,300 ^p	<3.2	64	480	680	<5.4	<2.6	9.6	29	t
	Effluent	1,800 ^p	<3.2	<4.9	10	<6.8	<5.4	<2.6	<3.0	20	s
5/20/2009	Influent Effluent	1,800 ^q	<4.5	Car <9.8	bon Vessels Ro <4.7	emoved; <6.4	Influent no	o longer sa <1.2	ampled. <2.2	<2.9	r
8/7/2009	Effluent	4,500 ^u	<1.6	<2.4	<3.2	<3.4	<2.7	<1.3	2.0	24	V
11/6/2009	Effluent	2,400 ^u	5.4	85	670 ^x	1,100 ^x	<2.7	<1.3	<1.5	84	W

Table 1
Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

		EPA Method TO-3/TO-15*			l	EPA Met	hod TO-1	5			
Sample Date	Sample Location	Stoddard µg/m³	Benzene µg/m³	Chloroform µg/m³	Carbon Tetrachloride µg/m³	PCE μg/m³	TCE µg/m³	VC µg/m³	2-Butanone μg/m³	Acetone μg/m³	Notes
2/2/2010	Effluent	2,000 ^y	5.6	40	280	430	<2.7	<1.3	<1.5	31	Z
5/5/2010	Effluent	<400	2.24	77.4	562	857	<5.4	<2.6	<1.5	34.9	aa
8/5/2010	Effluent	<400	6.78	75.8	<6.3	686	<11	<5.2	<3.0	48	ab, ac
11/30/2010	Effluent	<350	<3.2	<9.8	259	290	<11	<5.2	<3.0	<19	ad
2/22/2011	Effluent	<350	<3.2	26.8	235	261	<11	<5.2	<3.0	27.4	ae
6/1/2011	Effluent	<350	<3.2	25.5	254	354	<11	<5.2	<3.0	62.4	af
8/25/2011	Effluent	<350	<3.2	37.9	287	332	<11	<5.2	<3.0	<19	r, ag
11/21/2011	Effluent	<350	<3.2	26.4	355	635	<11	<5.2	<3.0	<19	
3/6/2012	Effluent	<700	<3.2	44.3	447	626	<11	<5.2	<3.0	<19	r, ah
3/25/2013	Effluent	<700	<3.2	38.5	567	578	<11	<5.2	<3.0	<38	r
3/11/2014	Effluent	<700	2.21	27.3	229	366	<5.4	<2.6	<1.5	36.5	ai
3/11/2015	Effluent	<200 ^{ak, al}	<3.4 ^{an}	<6.2 ^{an}	<4.3 ^{an}	890 ^{an}	<6.9 ^{an}	<3.3 ^{an}	<3.1 ^{an}	43.3 ^{am, an}	aj, ao
3/10/2016	Effluent	6,900 ^{aq}	<3.2 ^{ap}	14.6 ^{ap}	56.1 ^{ap}	173 ^{ap}	<11 ^{ap}	<5.2 ^{ap}	<3.0 ^{ap}	<38 ^{ap}	ar
5/26/2017	Effluent	4,770 ^{as}	<1.6	31	110	190	<2.7	<1.3	<1.5	350	at

Table 1
Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

Searway Property 649 Pacific Avenue Alameda, California

					-						
		EPA Method TO-3/TO-15*				EPA Met	hod TO-1	5			
					Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	μg/m ³	μg/m³	μg/m³	μg/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m ³	
	0		£	Ain Dine of Ev		Dialat	1-1 (a side which Duck	a a mba a la a	
	Scre				•				esidential Prop		
		140	0.097	0.12	0.067	0.48	0.48	0.0093	5,200	32,000	
		Site	-Specific So	creening Lev	els for Sub-S	lab Vapo	r (µg/m³)	- Reside	ntial Property	Use**	
		339,806	235	291	163	1,165	1,165	23	N/A	77,669,903	
			SFBRV	VQCB Sub-S	lab Vapor ESI	Ls¹ (µg/m	າ³) -Resi	dential Pi	roperty Use		
		68,000	48	61	33	240	240	4.7	2,600,000	16,000,000	
	Scre	ening Levels	for Indoor A	Air-Direct Ex	posure Huma	n Risk Le	evels¹ (µg	_J /m³) - Co	mmercial Pro	perty Use	
		570	0.42	0.53	0.29	2.1	3.0	0.16	22,000	140,000	
		Site	-Specific S	creening Lev	vels for Sub-S	lab Vapo	or (µg/m³)	- Comm	ercial Propert	y Use	
		1,383,495	1,019	1,286	704	5,097	7,282	388	N/A	339,805,825	
			SFBRW	/QCB Sub-S	ab Vapor ESL	.s¹ (µg/m	³) - Com	mercial P	roperty Use	·	
		570,000	420	530	290	2,100	3,000	160	22,000,000	140,000,000	

Notes:

Stoddard = Total petroleum hydrocarbons as gasoline.

* = Stoddard analyzed by Method TO-15 during the 2015, 2016, and 2017 O&M sampling events; see Note ak

PCE = Tetrachloroethylene or Perchloroethylene

TCE = Trichloroethylene

VC = Vinyl Chloride

VOCs = Volatile Organic Compounds

MTBE = Methyl tertiary butyl ether

TBA = Tert-Butanol

TAME = Tert amyl methyl ether

μg/m³ = Micrograms per cubic meter

< = Less than laboratory analytical method reporting limit.

Table 1 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

		EPA Method TO-3/TO-15*				EPA Met	hod TO-1	5			
					Carbon						
Sample	Sample	Stoddard	Benzene		Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Note
Date	Location	μg/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m³	μg/m³	μg/m³	μg/m ³	μg/m ³	
lotes Continu	ied:										
	s = No sample										
	•			•	•				standard pattern.		
b	•	•			lvent standard p	**). Reported	d value due to		
	-	-	•	-	5-C12 quanitifed		line.				
	• •	,	•	•	Stoddard range)						
a					anister. Results		to the MDL	•			
0	•				onsidered as est anister. Results		o the MDI				
					1,2,4-trimethylb			n vylono 4	1.7 µa/m³		
'		chloride 4.5 µg/r			1,2,4-uiiileuiyibi	SHZEHE Z.	σ μg/iii , iii	,p-xylerie 4	r.7 μg/III ,		
~	•	. •		. •	m,p-xylene 3.6 į	ıa/m³ on	toluono 2	7 ua/m³			
•					vent standard p	-			resence of		
"	•	rd solvent comp				auciii. ixe	porteu vait	ie due to p	ileselice oi		
i				-	g/m ³ , 1,3,5-trime	thylhenze	ne 14 ua/n	3			
'			-	-	-xylene 270 μg/n	-			no 400 ua/m³		
:									toluene 35 μg/m ³	3	
J			•	•	ie 44 µg/m³, and	•	. •	ii , 4-euiyi	toluene 35 µg/m	,	
	•	. •		. •	ie 44 µg/iii , aiio	toluene 3	ου μθ/ιιι				
		detected is: m,p			/3 4	0 0 .		udana FO i	/m-3 MTDE 000	3	
ı							ıg/m , m,p-	xyiene 53	µg/m³, MTBE 220	μg/m ,	
					toluene 82µg/n		, 3				
					μg/m³, and tolu	ene 7.3 µ	g/m ⁻				
		tected at a conc		. •							
		tected at a conc		. •							
р	•	•	•	•			•		gram does not ma	atch	
	•	•		•	sence of heavy e		-	-			
q	•			•	matogram does i vy end) within ra		-	iuei paileri	1.		

Table 1 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

		EPA Method TO-3/TO-15*				EPA Met	hod TO-1	5			
					Carbon						
Sample Date	Sample Location	Stoddard µg/m³	Benzene µg/m³	Chloroform µg/m ³	Tetrachloride µg/m³	PCE µg/m³	TCE µg/m³	VC µg/m³	2-Butanone µg/m³	Acetone μg/m³	Notes
Notes Contin	ued:										
	r = The reportir	ng limts were rai	sed due to lin	nited sample re	ceived (tedlar b	ag). Resul	lts reported	to the MD	L.		
	s = Toluene wa	s detected at a	concentration	of 4.5 µg/m ³							
	t = Toluene wa	s detected at a	concentration	of 5.7 μ g/m ³							
	u = Result repo	rted as a Stodda	ard solvent bเ	it sample chroi	matogram does	not match	requested	fuel standa	ard pattern.		
	Result due	to individual pea	aks of unident	ified compound	ds within C5-C12	2 range qu	antified as	Stoddard S	Solvent.		
	v = Other VOCs	s detected are: ′	1,2,4-Trimeth	lbenzene 5.9	µg/m³ , isopropa	nol 21 µg/	m³ and tol	uene 2.3 ¡	µg/m³		
\	v = Other VOCs	s detected are:	1,2,4-Trimeth	lbenzene 140	$\mu g/m^3$, 1,3,5-Tr	imethylbe	nzene 38 µ	ıg/m³,			
					al xylenes 322 μ	g/m³, met	hylene chl	oride 8.1 µg	g/m³		
	t-butyl alco	hol 29 µg/m³, to	luene 35 µg/r	n ³ .							
		•							o diluted analysis	$was\ performed.$	
	-				pounds within ra						
									nyl Toluene 120 μ		
				. •			•	. •	and Toluene 15µզ	g/m³	
а				. •	uene 10.3 µg/m	•		. •	2		
	-			-	8 μg/m ³ , and 1,		-			•	
а									n,p-Xylene 24.3 μ	g/m³,	
	•		•	. •	n ³ , 1,2,4-Trimeth	•					
	(tedlar bag).	·						cient sample volu	me received	
					ene 13.5 µg/m³,	and o-Xyl	ene 6.02 µ	g/m³.			
а	e = Toluene onl	ly other VOC de	tected at a co	ncentration of	16.4 µg/m³.						
a	f = Other VOCs	s detected are: (Carbon Disulf	de 6.63 µg/m³	, and Toluene 9	6.9 µg/m³.					
*	-					-	-	-), 2010. Note that	calculation	
		-		-	ave been correc			ollows:			
					udy-determined						
	,				, tert-Butanol 26			ne 4.41 µg/	m³		
а	n = Other VOCs	s detected are: I	Methylene Ch	loride 23.5 µg/	m³, and Toluene	e 75.2 μg/r	ท³				

Table 1 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

		EPA Method TO-3/TO-15*				EPA Met	hod TO-1	5			
					Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	μg/m³	μg/m ³	μg/m³	μg/m ³	μg/m³	μg/m ³	μg/m ³	μg/m ³	μg/m³	
Notes Continue	ed:										
ai	= Other VOC	s detected are: I	Hexane 3.50 ¡	ug/m³, tert-Buta	anol 17.1 µg/m³,	Tetrahydi	rofuran 2.40	6 μg/m³, Τ	oluene 25.5 µg/m	3,	
					µg/m³, m,p-Xyl						
	1,2,4-Trime	ethylbenzene 10	.3µg/m ^{3.}								
aj	= The results	shown below ar	e reported us	ing their MDL							
ak	= Method TO	-3 (mod) no long	ger offered by	laboratory, sa	mples collected	in 2015, 2	016, and 20	017 analyz	ed by Method TO	-15.	
al	= Reporting li	mits were raised	d due to limite	d sample volur	me received (ted	lar bag)					
am	= Indicates a	value between t	he method M	DL and PQL a	nd that the repor	ted conce	ntration sh	ould be co	nsidered as estim	ated rather than	quantitative
			-		of target analyte						
ao	= Other VOC	s detected: 4-Me	ethyl-2-Pentar	none (MIBK): 5	i.13 μg/m³, tert-l	3utanol: 5	4.0 µg/m³				
ар	= Reporting li	mit elevated due	e to insufficier	it sample quan	itity (tedlar bag).						
aq	= TPHg Resu	ılt due to individı	ual peaks of n	on-gasoline co	nmpounds withi	n gasoline	quantitativ	∕e range.			
ar		•							e of analysis for q	•	
			_				-		stoddard solvent	-	
as		-	• •	-				-	et compounds with	nin	
					dicate that prese						2
									ıe: 31 µg/m³, m,p-	-xylene: 4.1 µg/r	m³
1	= Environmer	ntal Screening L	evels, San Fr	ancisco Regior	nal Water Quality	Control E	Board, Febi	ruary 2016	(Rev.3)		

Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

	·	Days Operated	Cubic Meters		Influent			Cumulative	
	Average	Since	Removed Since	Cumulative	Total	Pounds VOCs	Pounds	Total Pounds	3
	flow rate	Previous	Previous	Cubic Meters	VOCs	Removed Since	VOCs Removed	VOCs	Comments
Date	CFM	Event	Event	Removed	μg/m³	Last Event	per Day	Removed	
9/10/2008	45	0.04	76.53	76.53	12,260	0.00207	0.04964	0.00207	System sampled 1-hour
9/11/2008	45	1.00	1,836.73	1,913.27	8,840	0.03580	0.03580	0.03786	
10/10/2008	45	29.00	53,265.31	55,178.57	3,443	0.40430	0.01394	0.44217	
11/6/2008	45	27.00	49,591.84	104,770.41	3,103	0.33923	0.01256	0.78140	
12/4/2008	45	28.00	51,428.57	156,198.98	5,511	0.62483	0.02232	1.40623	
1/2/2009	45	29.00	53,265.31	209,464.29	1,423	0.16710	0.00576	1.57333	
2/9/2009	45	38.00	69,795.92	279,260.20	3,568	0.54906	0.01445	2.12238	
5/20/2009	45	100.00	183,673.47	462,933.67	1,800	0.72886	0.00729	2.85125	
			Treatme	ent System Rem	oved				

Notes:

CFM = cubic feet per minute

 μ g/m³ = micrograms per cubic meters

VOCs = volatile organic compounds

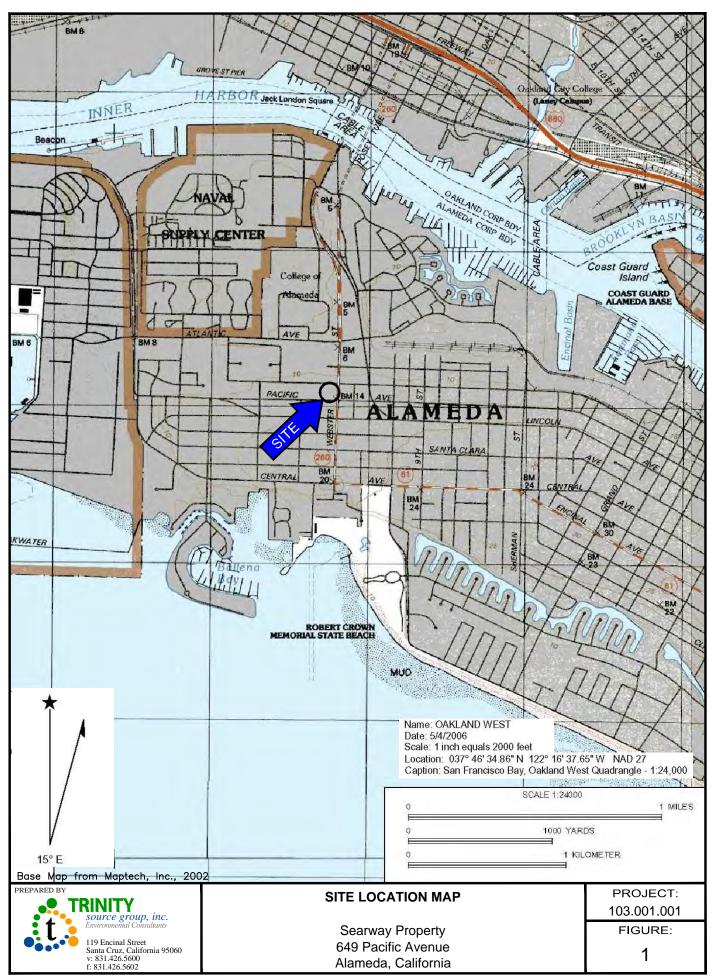
* = Treatment system removed on May 20, 2009.

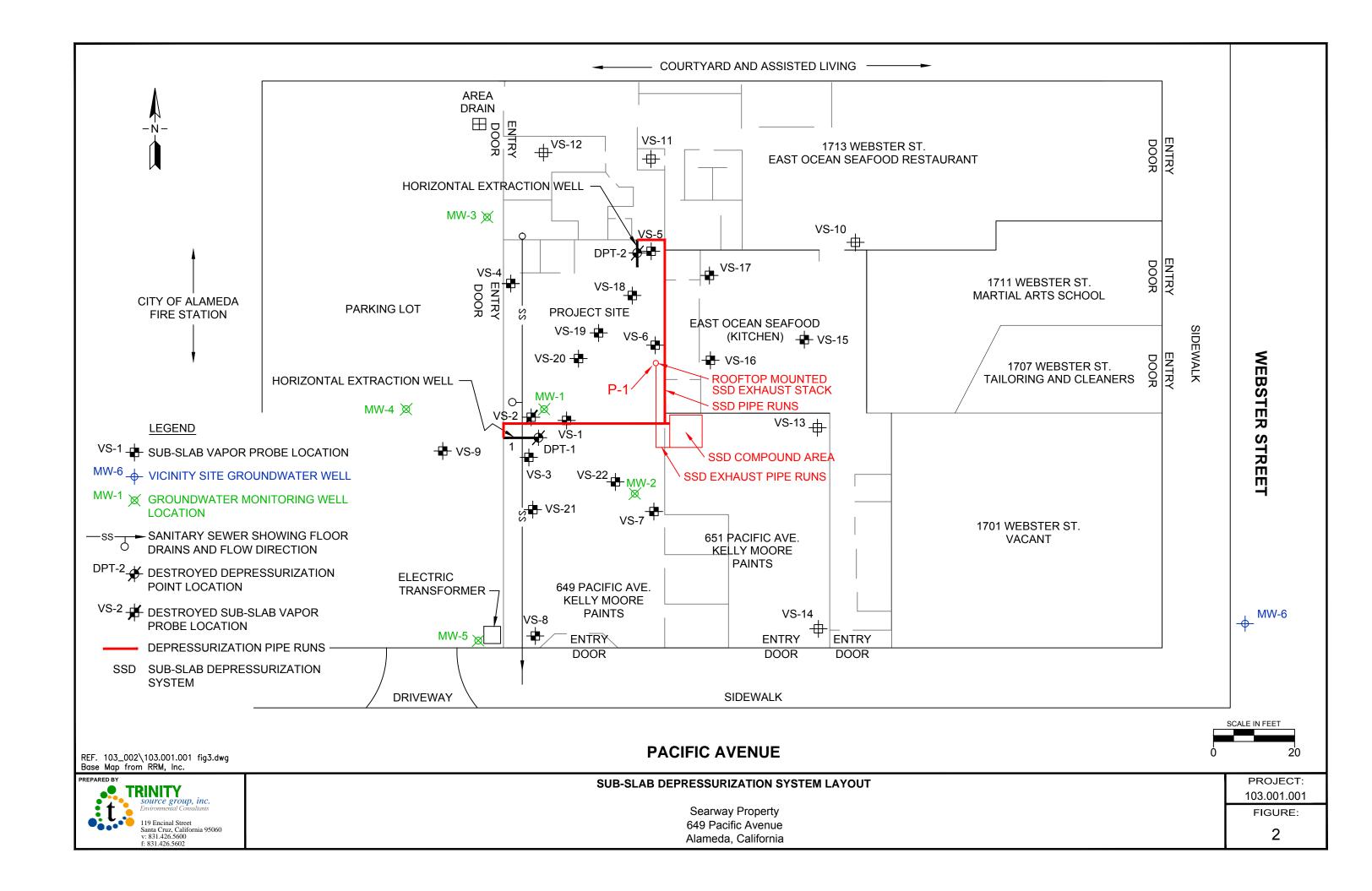
Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

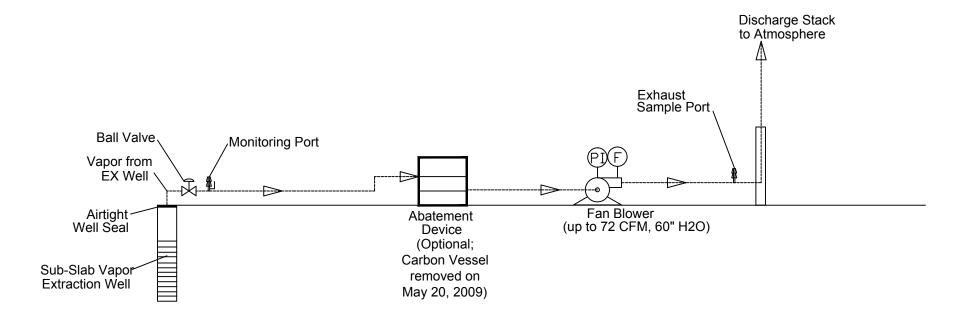
		Days Operated	Cubic Meters		Effluent			Cumulative	
	Average	Since	Discharged Since	Cumulative	Total	Pounds VOCs	Pounds	Total Pounds	
	Flow Rate	Previous	Previous	Cubic Meters	VOCs	Discharged Since	VOCs Discharged	VOCs	Comment
Date	CFM	Event	Event	Discharged	μg/m³	Last Event	per Day	Discharged	
9/10/2008	45	0.04	76.53	76.53	731.1	0.00012	0.00296	0.00012	
9/11/2008	45	1.00	1,836.73	1,913.27	904	0.00366	0.00366	0.00378	
10/10/2008	45	29.00	53,265.31	55,178.57	1,227.7	0.14417	0.00497	0.14795	
11/6/2008	45	27.00	49,591.84	104,770.41	3,720.5	0.40676	0.01507	0.55471	
12/4/2008	45	28.00	51,428.57	156,198.98	4,249.6	0.48181	0.01721	1.03652	
1/2/2009	45	29.00	53,265.31	209,464.29	1,242.0	0.14585	0.00503	1.18237	
2/9/2009	45	38.00	69,795.92	279,260.20	1,834.5	0.28228	0.00743	1.46465	
5/20/2009	45	100.00	183,673.47	462,933.67	1,800.0	0.72886	0.00729	2.19351	
8/7/2009	45	79.00	145,102.04	608,035.71	4,555.2	1.45716	0.01845	3.65067	
11/6/2009	45	91.00	167,142.86	775,178.57	5,129.5	1.89012	0.02077	5.54079	
2/2/2010	45	88.00	161,632.65	936,811.22	3,290.7	1.17259	0.01332	6.71338	
5/5/2010	45	92.00	168,979.59	1,105,790.82	1,682.5	0.62679	0.00681	7.34017	
8/5/2010	45	92.00	168,979.59	1,274,770.41	1,015.8	0.37840	0.00411	7.71857	
11/30/2010	45	117.00	214,897.96	1,489,668.37	684.5	0.32430	0.00277	8.04287	
2/22/2011	45	84.00	154,285.71	1,643,954.08	566.6	0.19272	0.00229	8.23559	
6/1/2011	45	99.00	181,836.73	1,825,790.82	799.4	0.32047	0.00324	8.55606	
8/25/2011	45	85.00	156,122.45	1,981,913.27	716.5	0.24661	0.00290	8.80268	
11/21/2011	45	88.00	161,632.65	2,143,545.92	1,016.4	0.36218	0.00412	9.16485	
3/6/2012	45	106.00	194,693.88	2,338,239.80	1,216.0	0.52193	0.00492	9.68678	
3/25/2013	45	384.00	705,306.12	3,043,545.92	1,183.5	1.84023	0.00479	11.52702	
3/11/2014	45	351.00	644,693.88	3,688,239.80	776.1	1.10299	0.00314	12.63000	
3/11/2015	45	365.00	670,408.16	4,358,647.96	992.4	1.46674	0.00402	14.09674	
3/10/2016	45	365.00	670,408.16	5,029,056.12	7,143.7	10.55819	0.02893	24.65493	1
5/26/2017	45	442.00	811,836.73	5,840,892.86	5,510.2	9.86195	0.02231	34.51689	2

Notes:

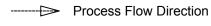

CFM = cubic feet per minute


 μ g/m³ = micrograms per cubic meters

VOCs = volatile organic compounds

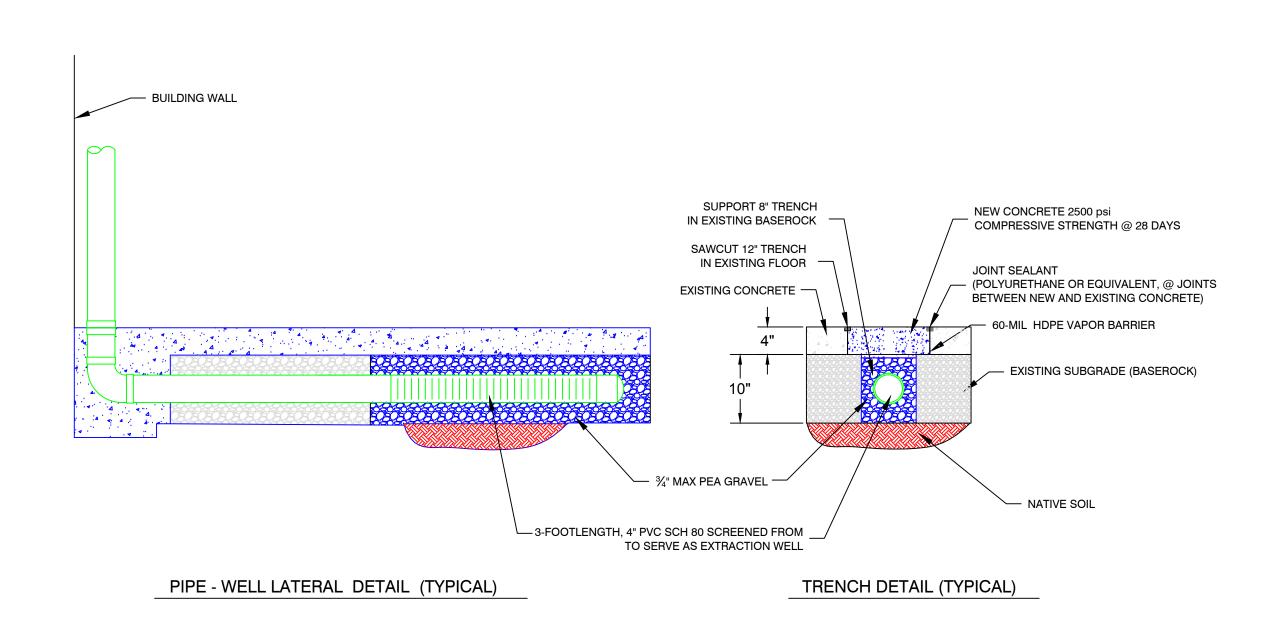

- 1 = The laboratory noted: Analytical comment for T)15, Note: No stoddard solvent standard was available at the time of analysis for quantitation. Sample was quantitated against a gasoline standard. Individual peaks do not match either gasoline or stoddard solvent pattern.
- 2 = The laboratory noted: Does not match typical gasoline pattern. TPH value includes amount of non-target compounds within gasoline range. The chromatogram pattern does not indicate that presence of Stoddard in the sample.

FIGURES



SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS AND INSTRUMENTATION DIAGRAM

LEGEND



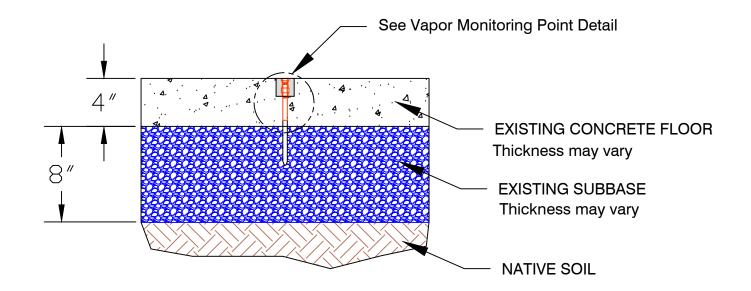
PI Pressure Indicator

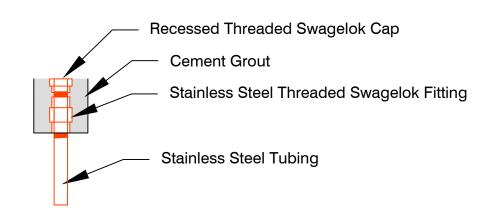
Flow Indicator

REF. 103_002\SS DEPRESS PID.dwg

TYPICAL EXTRACTION WELL DETAIL **BELOW GROUND COMPLETION**

REF. 103_002\EXWELL DTL.dwg




SUB-SLAB DEPRESSURIZATION SYSTEM - EXTRACTION WELL DETAIL

PROJECT: 103.001.001

Searway Property 649 Pacific Avenue Alameda, California FIGURE:

4

EXISTING FLOOR AND SUB-SLAB

CONSTRUCTION (TYPICAL)

VAPOR MONITORING POINT DETAIL

Scale 1" = 2"

REF. 103_002\VPR MON PT.dwg

SUB-SLAB VAPOR MONITORING POINT DETAIL

PROJECT: 103.001.001

Searway Property 649 Pacific Avenue Alameda, California FIGURE:

5

ATTACHMENT A

BAAQMD - PERMIT TO OPERATE

Plant# 18970

Page: 1

Expires: APR 1, 2017

This document does not permit the holder to violate any District regulation or other law.

Searway Property 1406 Webster Street Alameda, CA 94501

Location: 649 Pacific Avenue

Alameda, CA 94501

S#	DESCRIPTION [Schedule]	PAID
1	CHEM> Contaminated soil remediation, Contaminated soil vapor Sub-Slab Venting System [G1]	1673

1 Permitted Source

*** See attached Permit Conditions ***

The operating parameters described above are based on information supplied by permit holder and may differ from the limits set forth in the attached conditions of the Permit to Operate. The limits of operation in the permit conditions are not to be exceeded. Exceeding these limits is considered a violation of District regulations subject to enforcement action.

Plant# 18970

Page: 2

Expires: APR 1, 2017

This document does not permit the holder to violate any District regulation or other law.

*** PERMIT CONDITIONS ***

COND# 23992 applies to S# 1

In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene 1.8E-2 Chloroform 9.3E-2 Carbon Tetrachloride 1.2E-2 Methylene Chloride 4.9E-1 Perchloroethylene 8.2E-2 Trichloroethylene 2.5E-1 Vinyl Chloride 6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. vapor flow rate shall not exceed 72 scfm. [basis: Req. 2-1-316, 2-2-301, 8-47-113]

- To determine compliance with Condition 1, the operator of this source shall:
 - Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 92 days on a quarterly basis.

Written authorization must be received from the District before any change in sampling frequency.

- Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
- Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed

Plant# 18970

Page: 3

Expires: APR 1, 2017

This document does not permit the holder to violate any District regulation or other law.

*** PERMIT CONDITIONS ***

in condition 1 as well as the total volatile organic compounds.

- 3. The operator of this source shall maintain the following information in a District-approved log for each month of operation of the source:
 - dates of operation;
 - b. exhaust flow rate:
 - c. exhaust sampling date;
 - d. analysis results;
 - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Req. 1-523]

- non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
 - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Req. 1-523]
 - 6. Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

END OF CONDITIONS

	a Air Quality ent District	* *	SOURCE	EMISSIONS	**			LANT #1 lay 18,	
					Aı	nnual A	verage	lbs/da	ay
S# Sc	ource Description				PART	ORG	NOx	SO2	CO
1 St	ub-Slab Venting System				-	.1	-	- "	-
Т	OTALS					.1			

ATTACHMENT B

BAAQMD - CORRESPONDENCE

BAY AREA

AIR QUALITY

MANAGEMENT

DISTRICT

ALAMEDA COUNTY
Tom Bates
Scott Haggerty
Jennifer Hosterman
Nate Miley
(Secretary)

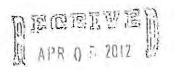
CONTRA COSTA COUNTY
John Gioia
(Chairperson)
David Hudson
Mary Piepho

MARIN COUNTY Katie Rice

Mark Ross

NAPA COUNTY Brad Wagenknecht

SAN FRANCISCO COUNTY John Avalos Edwin M. Lee Eric Mar


SAN MATEO COUNTY Carole Groom Carol Klatt

SANTA CLARA COUNTY Susan Garner Ash Kalra (Vice-Chair) Liz Kniss Ken Yeager

SOLANO COUNTY James Spering

SONOMA COUNTY Susan Gorin Shirlee Zane

Jack P. Broadbent EXECUTIVE OFFICER/APCO

BY:

March 28, 2012

Trinity Source Group, Inc. 500 Chestnut Street, Suite 225 Santa Cruz, CA 95060

Attention: Cora E. Olson

Application No.: 17506
Plant No. 18970
Equipment Location:
Searway Property
649Pacific Avenue
Alameda, CA

Dear Applicant:

The District has reviewed your request, dated March 19, 2012 to change the monitoring frequency from quarterly to annually. Based on the information provided, an annual monitoring schedule is both reasonable from the District's perspective and will also grant your firm the flexibility requested. Be aware that you can monitor your systems more frequently if desired.

Please keep a copy of this letter and the attached revised operating conditions (COND#23992) as verification that a monitoring schedule of annually has been approved by the District for the site subject to P/O (Plant #18970).

Please include your application number with any correspondence with the District. The District's regulations may be viewed online at www.baaqmd.gov If you have any questions on this matter, please call me at (415) 749-4630.

Very truly yours,

Flora W Chan Air Quality Engineer II Application No. 17506
Permit Condition No. 23992
649 Pacifica Avenue in Alameda

 In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinvl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- 2. To determine compliance with Condition 1, the operator of this source shall:
 - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 365 days on an annual basis. Written authorization must be received from the District before any change in sampling frequency.
 - b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
 - c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed in condition 1 as well as the total volatile organic compounds.

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

- 3. The operator of this source shall maintain the following information in a District-approved log for each year of operation of the source:
 - a. dates of operation;
 - b. exhaust flow rate:
 - c. exhaust sampling date;
 - d. analysis results;
 - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- 4. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
 - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
 - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

ATTACHMENT C

O&M FIELD DATA SHEETS

RINITY source group, inc. Environmental Consultants

119 Encinal Street Santa Cruz. California 95060 v: 831.426.5600 f: 831.426.5602

FIELD DATA SHI	E	E٦
----------------	---	----

Client: Tuber Del	Project #: 103
Job Address: 649 Pacific Ave, Alameda	Date: 5/26/17
Weather Conditions: everage	Personnel: Ball Rice
Equipment at Site: Truck	Telegrinoi: Diri Pite
Arrival Time: 10 3 0	
Departure Time:	
FIELD NOTES	
8:00 load egoipment of Office step Citle	Lacoprolat
7:00 Deport office	
10:30 Arrive 045,40.	
16:45 Collected System readings and air Samp	r of
Drawne d Ko water	1-3
11:00 ROI mensye wests	
12:00 Deported Site to deliver Sompres a	and er
1300 Arvived of torrect labs	THE VI
14:45 Armed & Trait,	
	11

Trinity Source Group, Inc.

119 Encinal St.

Santa Cruz, CA 95060

P: 831.426.5600 F: 831.426.5602

Page ___ of ___

Sub-Slab Depressurization System------ O&M Data

Client: Timber Del Properties, L.L.	C. Project #: 103.001.001
Address: 649 Pacific Ave. Alameda C	
Arrival System Status: On / Off	If Off Explain Why?
Departure System Status: On / Off	If Off Explain Why?
Tedlar Bag Collected? Yes / No	Summa Vessel Collected? Yes / No
Influent initial Summa Vacuum NA	Influent Final Summa Vacuum NA Time NA
Effluent initial Summa Vacuum MA	Effluent Final Summa Vacuum // Time //
Collected? Yes / No Effl	Per Million Vapor (PPMV) using Photo Ionization Detector (PID) luent (After Vacuum Unit) PPMV PPMV PPMV O
Effluent Flow Rate (read from digital rea	dout on vacuum control) 300 FPM CFM
Efflluent Flow Rate and Temperature (m	neasured with hand held Anemometer in discharge pipe slot) 72.4 Degrees F
Vacuum (measured at influent sample p	ort) -0.15 -inches of mercury (-in Hg)
Smoke Pen Leak Test Pass	Fail

Signature

ATTACHMENT D

CERTIFIED ANALYTICAL REPORT, CHAIN-OF-CUSTODY AND GEOTRACKER UPLOAD DOCUMENTATION

David Reinsma Trinity Source Group 119 Encinal Street Santa Cruz, California 95060 Tel: 831-426-5600;Cell 831-227 4724

Fax: 831-426-5602 Email: dar@tsgcorp.net

RE: 649 Pacific Ave, Alameda

Work Order No.: 1705208

Dear David Reinsma:

Torrent Laboratory, Inc. received 1 sample(s) on May 26, 2017 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Patti L Sandrock

QA Officer

June 01, 2017

Date

Total Page Count: 13 Page 1 of 13

Date: 6/1/2017

Client: Trinity Source Group

Project: 649 Pacific Ave, Alameda

Work Order: 1705208

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

This report shall not be reproduced, except in full, without the written approval of Torrent Analytical, Inc.

Total Page Count: 13 Page 2 of 13

Sample Result Summary

Report prepared for: David Reinsma Date Received: 05/26/17

Trinity Source Group Date Reported: 06/01/17

Effluent 1705208-001

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results ug/m3
Hexane	ETO15	1	0.46	1.8	7.9
tert-Butanol	ETO15	1	0.62	1.5	14
Chloroform	ETO15	1	0.97	2.4	31
Carbon Tetrachloride	ETO15	1	1.1	3.1	110
1,2-Dichloroethane (EDC)	ETO15	1	0.42	2.0	2.2
Toluene	ETO15	1	0.75	1.9	31
Tetrachloroethylene	ETO15	1	1.5	3.4	190
m,p-Xylene	ETO15	1	0.98	2.2	4.1
Acetone	ETO15	5	2.0	60	350
TPH-Gasoline	TO-15	1	40	180	4770

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 3 of 13

SAMPLE RESULTS

Report prepared for: David Reinsma **Date/Time Received:** 05/26/17, 1:00 pm

Trinity Source Group Date Reported: 06/01/17

Client Sample ID: Effluent Lab Sample ID: 1705208-001A

Project Name/Location: 649 Pacific Ave, Alameda Sample Matrix: Air

Project Number: 103.001.001

Date/Time Sampled: 05/26/17 / 10:43 Certified Clean WO #:

Canister/Tube ID: Received PSI:
Collection Volume (L): Corrected PSI:

SDG:

Prep Method: TO15-P Prep Batch Date/Time: 5/30/17 6:43:00PM

Prep Batch ID: 7107 Prep Analyst: BALI

Parameters:	Analysis Method	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Q Analyze	d Time	Ву	Analytical Batch
Dichlorodifluoromethane	ETO15	1.00	1.6	2.5	ND	ND	05/31/17	13:52	BA	424445
1,1-Difluoroethane	ETO15	1.00	0.35	14	ND	ND	05/31/17	13:52	BA	424445
1,2-Dichlorotetrafluoroethane	ETO15	1.00	28	56	ND	ND	05/31/17	13:52	BA	424445
Chloromethane	ETO15	1.00	2.0	4.1	ND	ND	05/31/17	13:52	BA	424445
Vinyl Chloride	ETO15	1.00	0.23	1.3	ND	ND	05/31/17	13:52	BA	424445
1,3-Butadiene	ETO15	1.00	0.34	1.1	ND	ND	05/31/17	13:52	BA	424445
Bromomethane	ETO15	1.00	0.66	1.9	ND	ND	05/31/17	13:52	BA	424445
Chloroethane	ETO15	1.00	0.81	1.3	ND	ND	05/31/17	13:52	BA	424445
Trichlorofluoromethane	ETO15	1.00	0.56	2.8	ND	ND	05/31/17	13:52	BA	424445
1,1-Dichloroethene	ETO15	1.00	0.83	2.0	ND	ND	05/31/17	13:52	BA	424445
Freon 113	ETO15	1.00	1.0	3.8	ND	ND	05/31/17	13:52	BA	424445
Carbon Disulfide	ETO15	1.00	0.37	1.6	ND	ND	05/31/17	13:52	BA	424445
2-Propanol (Isopropyl Alcohol)	ETO15	1.00	1.3	12	ND	ND	05/31/17	13:52	BA	424445
Methylene Chloride	ETO15	1.00	0.70	10	ND	ND	05/31/17	13:52	BA	424445
trans-1,2-Dichloroethene	ETO15	1.00	0.48	2.0	ND	ND	05/31/17	13:52	BA	424445
Hexane	ETO15	1.00	0.46	1.8	7.9	2.24	05/31/17	13:52	BA	424445
MTBE	ETO15	1.00	0.44	1.8	ND	ND	05/31/17	13:52	BA	424445
tert-Butanol	ETO15	1.00	0.62	1.5	14	4.62	05/31/17	13:52	BA	424445
Diisopropyl ether (DIPE)	ETO15	1.00	0.74	2.1	ND	ND	05/31/17	13:52	BA	424445
1,1-Dichloroethane	ETO15	1.00	0.54	2.0	ND	ND	05/31/17	13:52	BA	424445
ETBE	ETO15	1.00	0.33	2.1	ND	ND	05/31/17	13:52	BA	424445
cis-1,2-Dichloroethene	ETO15	1.00	0.83	2.0	ND	ND	05/31/17	13:52	BA	424445
Chloroform	ETO15	1.00	0.97	2.4	31	6.35	05/31/17	13:52	BA	424445
Vinyl Acetate	ETO15	1.00	0.76	1.8	ND	ND	05/31/17	13:52	BA	424445
Carbon Tetrachloride	ETO15	1.00	1.1	3.1	110	17.49	05/31/17	13:52	BA	424445
1,1,1-Trichloroethane	ETO15	1.00	0.79	2.7	ND	ND	05/31/17	13:52	BA	424445
2-Butanone (MEK)	ETO15	1.00	0.39	1.5	ND	ND	05/31/17	13:52	BA	424445
Ethyl Acetate	ETO15	1.00	0.48	1.8	ND	ND	05/31/17	13:52	BA	424445
Tetrahydrofuran	ETO15	1.00	0.45	1.5	ND	ND	05/31/17	13:52	BA	424445
Benzene	ETO15	1.00	0.44	1.6	ND	ND	05/31/17	13:52	BA	424445
TAME	ETO15	1.00	0.67	2.1	ND	ND	05/31/17	13:52	BA	424445
1,2-Dichloroethane (EDC)	ETO15	1.00	0.42	2.0	2.2	0.54	05/31/17	13:52	BA	424445
Trichloroethylene	ETO15	1.00	0.81	2.7	ND	ND	05/31/17	13:52	BA	424445

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 4 of 13

SAMPLE RESULTS

Report prepared for: David Reinsma Date/Time Received: 05/26/17, 1:00 pm

Trinity Source Group Date Reported: 06/01/17

Client Sample ID: Effluent Lab Sample ID: 1705208-001A

Project Name/Location: 649 Pacific Ave, Alameda Sample Matrix: Air

Project Number: 103.001.001

Date/Time Sampled: 05/26/17 / 10:43 Certified Clean WO #:

Canister/Tube ID: Received PSI:
Collection Volume (L): Corrected PSI:

SDG:

Prep Method:TO15-PPrep Batch Date/Time:5/30/176:43:00PM

Prep Batch ID: 7107 Prep Analyst: BALI

Parameters:	Analysis Method	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Q Analyze	d Time	Ву	Analytical Batch
1,2-Dichloropropane	ETO15	1.00	0.76	2.3	ND	ND	05/31/1	7 13:52	BA	424445
Bromodichloromethane	ETO15	1.00	0.74	3.4	ND	ND	05/31/1	7 13:52	BA	424445
1,4-Dioxane	ETO15	1.00	1.8	3.6	ND	ND	05/31/1	7 13:52	BA	424445
trans-1,3-Dichloropropene	ETO15	1.00	1.1	2.3	ND	ND	05/31/1	7 13:52	BA	424445
Toluene	ETO15	1.00	0.75	1.9	31	8.22	05/31/1	7 13:52	BA	424445
4-Methyl-2-Pentanone (MIBK)	ETO15	1.00	0.75	2.1	ND	ND	05/31/1	7 13:52	BA	424445
cis-1,3-Dichloropropene	ETO15	1.00	0.42	2.3	ND	ND	05/31/1	7 13:52	BA	424445
Tetrachloroethylene	ETO15	1.00	1.5	3.4	190	28.02	05/31/1	7 13:52	BA	424445
1,1,2-Trichloroethane	ETO15	1.00	0.58	2.7	ND	ND	05/31/1	7 13:52	BA	424445
Dibromochloromethane	ETO15	1.00	1.1	4.3	ND	ND	05/31/1	7 13:52	BA	424445
1,2-Dibromoethane (EDB)	ETO15	1.00	0.74	3.8	ND	ND	05/31/1	7 13:52	BA	424445
2-Hexanone	ETO15	1.00	0.65	2.1	ND	ND	05/31/1	7 13:52	BA	424445
Ethyl Benzene	ETO15	1.00	0.63	2.2	ND	ND	05/31/1	7 13:52	BA	424445
Chlorobenzene	ETO15	1.00	0.60	2.3	ND	ND	05/31/1	7 13:52	BA	424445
1,1,1,2-Tetrachloroethane	ETO15	1.00	0.84	3.4	ND	ND	05/31/1	7 13:52	BA	424445
m,p-Xylene	ETO15	1.00	0.98	2.2	4.1	0.94	05/31/1	7 13:52	BA	424445
o-Xylene	ETO15	1.00	0.30	2.2	ND	ND	05/31/1	7 13:52	BA	424445
Styrene	ETO15	1.00	0.46	2.1	ND	ND	05/31/1	7 13:52	BA	424445
Bromoform	ETO15	1.00	1.3	5.2	ND	ND	05/31/1	7 13:52	BA	424445
1,1,2,2-Tetrachloroethane	ETO15	1.00	0.82	3.4	ND	ND	05/31/1	7 13:52	BA	424445
4-Ethyl Toluene	ETO15	1.00	0.55	2.5	ND	ND	05/31/1	7 13:52	BA	424445
1,3,5-Trimethylbenzene	ETO15	1.00	0.30	2.5	ND	ND	05/31/1	7 13:52	BA	424445
1,2,4-Trimethylbenzene	ETO15	1.00	0.60	2.5	ND	ND	05/31/1	7 13:52	BA	424445
1,4-Dichlorobenzene	ETO15	1.00	0.75	3.0	ND	ND	05/31/1	7 13:52	BA	424445
1,3-Dichlorobenzene	ETO15	1.00	1.3	3.0	ND	ND	05/31/1	7 13:52	BA	424445
1,2-Dichlorobenzene	ETO15	1.00	1.1	3.0	ND	ND	05/31/1	7 13:52	BA	424445
Hexachlorobutadiene	ETO15	1.00	1.9	5.3	ND	ND	05/31/1	7 13:52	BA	424445
1,2,4-Trichlorobenzene	ETO15	1.00	2.2	3.7	ND	ND	05/31/1	7 13:52	BA	424445
Naphthalene	ETO15	1.00	1.3	2.6	ND	ND	05/31/1	7 13:52	BA	424445
(S) 4-Bromofluorobenzene	ETO15	1.00	50	150	100 %		05/31/1	7 13:52	BA	424445

Total Page Count: 13 Page 5 of 13

SAMPLE RESULTS

Report prepared for: David Reinsma Date/Time Received: 05/26/17, 1:00 pm

Trinity Source Group Date Reported: 06/01/17

Client Sample ID: Effluent Lab Sample ID: 1705208-001A

Project Name/Location: 649 Pacific Ave, Alameda Sample Matrix: Air

Project Number: 103.001.001

Date/Time Sampled: 05/26/17 / 10:43 Certified Clean WO #:

Canister/Tube ID: Received PSI:
Collection Volume (L): Corrected PSI:

SDG:

Prep Method: TO15-P Prep Batch Date/Time: 5/30/17 6:43:00PM

Prep Batch ID: 7107 Prep Analyst: BALI

Parameters:	Analysis Method	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Q	Analyzed	Time	Ву	Analytical Batch
Acetone	ETO15	5.00	2.0	60	350	147.06		05/31/17	14:41	BA	424445
(S) 4-Bromofluorobenzene	ETO15	5.00	50	150	110 %			05/31/17	14:41	BA	424445

 Prep Method:
 TO15-GRO
 Prep Batch Date/Time:
 5/30/17
 6:28:00PM

Prep Batch ID: 7110 Prep Analyst: BALI

Parameters:	Analysis Method	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Q	Analyzed	Time	Ву	Analytical Batch
TPH-Gasoline	TO-15	1 00	40	180	4770	1 355 11	x	05/31/17	13:52	BA	424445

IOTE: x - Does not match typical gasoline pattern. TPH value includes amount of non-target compounds within gasoline quantitative range.

The chromatogram pattern does not indicate the presence of Stoddard solvent in the sample.

Total Page Count: 13

Page 6 of 13

MB Summary Report

Work Order: 1705208 Prep Method: TO15-P Prep Date: 05/30/17 Prep Batch: 7107 Matrix: Air Analytical Method: ETO15 Analyzed Date: 5/31/2017 Analytical 424445 Batch: Units: ppbv

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	0.32	0.50	ND		
1,1-Difluoroethane	0.13	5.0	ND		
1,2-Dichlorotetrafluoroethane	4.0	8.0	ND		
Chloromethane	0.99	2.0	ND		
Vinyl Chloride	0.088	0.50	ND		
1,3-Butadiene	0.15	0.50	ND		
Bromomethane	0.17	0.50	ND		
Chloroethane	0.31	0.50	ND		
Trichlorofluoromethane	0.099	0.50	ND		
1,1-Dichloroethene	0.21	0.50	ND		
Freon 113	0.13	0.50	ND		
Carbon Disulfide	0.12	0.50	ND		
2-Propanol (Isopropyl Alcohol)	0.52	5.0	ND		
Methylene Chloride	0.20	3.0	2.4		
Acetone	0.17	5.0	0.28		
trans-1,2-Dichloroethene	0.12	0.50	ND		
Hexane	0.13	0.50	ND		
MTBE	0.12	0.50	ND		
tert-Butanol	0.20	0.50	ND		
Diisopropyl ether (DIPE)	0.18	0.50	ND		
1,1-Dichloroethane	0.13	0.50	ND		
ETBE	0.078	0.50	ND		
cis-1,2-Dichloroethene	0.21	0.50	ND		
Chloroform	0.20	0.50	ND		
Vinyl Acetate	0.22	0.50	ND		
Carbon Tetrachloride	0.18	0.50	ND		
1,1,1-Trichloroethane	0.15	0.50	ND		
2-Butanone (MEK)	0.13	0.50	ND		
Ethyl Acetate	0.13	0.50	ND		
Tetrahydrofuran	0.15	0.50	ND		
Benzene	0.14	0.50	ND		
TAME	0.16	0.50	ND		
1,2-Dichloroethane (EDC)	0.10	0.50	ND		
Trichloroethylene	0.15	0.50	ND		
1,2-Dichloropropane	0.17	0.50	ND		
Bromodichloromethane	0.11	0.50	ND		
1,4-Dioxane	0.50	1.0	ND		
trans-1,3-Dichloropropene	0.23	0.50	ND		
Toluene	0.20	0.50	0.37		
4-Methyl-2-Pentanone (MIBK)	0.18	0.50	ND		
cis-1,3-Dichloropropene	0.093	0.50	ND		
Tetrachloroethylene	0.22	0.50	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 7 of 13

TPH-Gasoline

11

50

12

MB Summary Report

Work Order:	1705208	Prep Method:	TO15-P	Prep Date:	05/30/17	Prep Batch:	7107
Matrix:	Air	Analytical	ETO15	Analyzed Date:	5/31/2017	Analytical	424445
Units:	ppbv	Method:				Batch:	

Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
1,1,2-Trichloroethar	ne	0.11	0.50	ND					
Dibromochlorometh	ane	0.13	0.50	ND					
1,2-Dibromoethane	(EDB)	0.096	0.50	ND					
2-Hexanone		0.16	0.50	ND					
Ethyl Benzene		0.15	0.50	ND					
Chlorobenzene		0.13	0.50	ND					
1,1,1,2-Tetrachloroe	ethane	0.12	0.50	ND					
m,p-Xylene		0.23	0.50	ND					
o-Xylene		0.070	0.50	ND					
Styrene		0.11	0.50	ND					
Bromoform		0.13	0.50	ND					
1,1,2,2-Tetrachloro	ethane	0.12	0.50	ND					
4-Ethyl Toluene		0.11	0.50	ND					
1,3,5-Trimethylbenz	zene	0.061	0.50	ND					
1,2,4-Trimethylbenz	zene	0.12	0.50	ND					
1,4-Dichlorobenzen	е	0.12	0.50	ND					
1,3-Dichlorobenzen	е	0.22	0.50	ND					
1,2-Dichlorobenzen	е	0.18	0.50	ND					
Hexachlorobutadier	ne	0.17	0.50	ND					
1,2,4-Trichlorobenz	ene	0.29	0.50	ND					
Naphthalene		0.24	0.50	ND					
(S) 4-Bromofluorob	enzene			100					
Work Order:	1705208	Prep I	Method:	TO15-GRO	Prep	Date:	05/30/17	Prep Batch:	7110
Matrix:	Air	Analy		ETO15	Analy	zed Date:	5/31/2017	Analytical	424445
Units:	ppbv	Metho	od:					Batch:	

Units:	ppbv	Metho	od: 			Batch:
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 8 of 13

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1705208	Prep Method:	TO15-P	Prep Date:	05/30/17	Prep Batch:	7107	
Matrix:	Air	Analytical	ETO15	Analyzed Date:	5/31/2017	Analytical	424445	
Units:	ppbv	Method:				Batch:		

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.21	0.50	ND	8.00	115	119	3.32	65 - 135	30	
Benzene	0.14	0.50	ND	8.00	123	116	6.17	65 - 135	30	
Trichloroethylene	0.15	0.50	ND	8.00	121	115	5.09	65 - 135	30	
Toluene	0.20	0.50	ND	8.00	122	125	2.12	65 - 135	30	
Chlorobenzene	0.13	0.50	ND	8.00	123	121	2.26	65 - 135	30	
(S) 4-Bromofluorobenzene				20.0	97.0	103		50 - 150		

Work Order:	1705208	Prep Method:	TO15-GRO	Prep Date:	05/30/17	Prep Batch:	7110
Matrix:	Air	Analytical Method:	ETO15	Analyzed Date:	5/31/2017	Analytical Batch:	424445
Units:	ppbv	wethou.				Daton.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH-Gasoline	11	50	12	500	97.9	85.4	13.5	65 - 135	30	

Total Page Count: 13 Page 9 of 13

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit/Reporting Limit/Limit of Quantitation (PQL/RL/LOQ) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs/RLs/LODs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/m3, mg/m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the analyte is found in the associated method or preparation blank
- D Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- ND Not Detected at a concentration greater than the PQL/RL or, if reported to the MDL, at greater than the MDL.
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Total Page Count: 13 Page 10 of 13

Sample Receipt Checklist

Client Name: Trinity Source Group Date and Time Received: 5/26/2017 1:00:00PM

Project Name: 649 Pacific Ave, Alameda Received By: NG

Work Order No.: 1705208 Physically Logged By: Katherene Evans

Checklist Completed By:

Carrier Name: Client Drop Off

Chain of Custody (COC) Information

Chain of custody present? Yes

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? Yes
Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test? Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Temperature: °C

Water-VOA vials have zero headspace? No VOA vials submitted

Water-pH acceptable upon receipt? N/A

pH Checked by: na pH Adjusted by: na

Comments:

Tedlar bags rec'd at ambient temperature

Total Page Count: 13 Page 11 of 13

Login Summary Report

Client ID: TL5109 Trinity Source Group QC Level: Ш

Project Name: 649 Pacific Ave, Alameda **TAT Requested:** 3 Day Std:3

5/26/2017 Project #: 103.001.001 **Date Received:**

Report Due Date: 6/1/2017

Work Order #: 1705208

Comments:

WO Sample ID <u>Client</u> Collection **Matrix** Scheduled Sample Test Requested **Subbed**

Air

Time Received:

1:00 pm

Sample ID Date/Time <u>Disposal</u> <u>On Hold</u> <u>On Hold</u> <u>Tests</u> 1705208-001A 05/26/17 10:43

VOC_A_TO15 VOC_A_TO15GRO

TO15, Stoddard Solvent Sample Note:

Effluent

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

 Torrent	
LABORATORY, INC.	

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 RESET FAX: 408.263.8293

CHAIN OF CUSTODY

LAB WORK ORDER NO

	tions / Com		EMAIL: labsi	trinity@gmail.com	ANALYSIS REQUESTED
TO-12 Full Scan	01.001		EMAIL: labs	trinity@gmail.con	ANALYSIS REQUESTED
TO-15 Full Scan			EMAIL: labst	trinity@gmail.con	ANALYSIS REQUESTED
TO-15 Full Scan			EMAIL: labst	trinity@gmail.com	ANALYSIS REQUESTED
TO-15 Full Scan	TO-15 Stoddard				REQUESTED
	TO-16 Stoddard				REQUESTED
	X TO				REMARKS
r × ;	X				
			1 1		
1 1					
T			7		
		5	1 7 -		
7	1				
Pessiva	d Dur	Delete		Date	Time:
				5-26-17	V2.150.500
Receive	d By:	Print:		Date:	Time:
•	Received NO Method of e -ments		Received By: Print:	Received By: Print: NO Method of Shipment e -ments are made.	Received By: Print: Date: NO Method of Shipment No. 16 Sample seals intact?

Total Page Count: 13 Page 13 of 13