June 30, 2016

Ms. Anne Jurek Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: **Perjury Statement-**2016 Sub-Slab Vapor Depressurization System Performance Report Searway Property (SLIC Case No. RO0002584) 649 Pacific Avenue Alameda, California

Dear Ms. Jurek,

"I declare under penalty of perjury, that the information and / or recommendations contained in the attached document or report are true and correct to the best of my knowledge."

Timber Dell Properties, LLC

DocuSigned by: thin BD4B60078F0043D...

Donald W. Lindsey, member

June 30, 2016 Trinity Project: 103.001.001

Ms. Anne Jurek Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Parkway, Suite 250 Alameda, CA 94502-6577

Re: 2016 Sub-Slab Vapor Depressurization System Performance Report Searway Property 649 Pacific Avenue Alameda, California

Dear Ms. Jurek:

Trinity Source Group, Inc. (Trinity) has prepared this 2016 Sub-Slab Vapor Depressurization System *Performance Report (Report)* on behalf of Timber Del Properties, for the referenced site (Figure 1). The operations and maintenance (O&M) activities are described in the following sections.

The sub-slab vapor depressurization (SSVD) system was installed at the existing commercial building at the site in order to prevent volatile organic compounds (VOCs) from migrating from the sub-slab area into indoor air. The SSVD system was installed in 2008 and operates continuously. Monitoring is currently conducted annually.

SUB-SLAB VAPOR DEPRESSURIZATION SYSTEM DESCRIPTION

Sub-slab air is withdrawn from the sub-slab material by means of an applied vacuum. The extracted air is routed through piping and discharged to the atmosphere.

The SSVD system includes two horizontal extraction wells located near former depressurization points DPT-1 and DPT-2, with extraction well pipe runs trenched to nearby walls. The pipe runs continue up to the first floor ceiling, where they are manifolded together and connected to a suction fan located in the attic. The exhaust air is piped to the southwest corner of the roof and discharged through a 6-foot tall stack. Vacuum is applied to the extraction wells using an electric fan blower equipped with a flow meter. The SSVD system was originally constructed with carbon treatment, but the carbon was removed in May 2009 due to very low VOC influent concentrations. The system layout is presented on Figure 2. The Sub-Slab System Process and Instrumentation Diagram is shown on Figure 3.

Sub-slab extraction system influent and effluent analytical data are summarized in Table 1. Sub-slab extraction system influent throughput and mass removal of VOCs are summarized in Table 2. Sub-slab

www.trinitysourcegroup.com

extraction system effluent throughput and discharge of VOCs are summarized in Table 3.

The Sub-Slab System Extraction Well Detail is shown on Figure 4. Each extraction well is a 3-foot long, 4-inch diameter, horizontal slotted PVC casing, which is connected to 4-inch diameter PVC blank pipe runs. The slotted pipe is set in the middle of the sub-base material. PVC screen extends across the sub-base material.

The Sub-Slab System Monitoring Point Detail is shown on Figure 5. The monitoring points (VS-1 through VS-22) were constructed in accordance with the design specifications presented in the EPA document, *"Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site using Basement and Sub-Slab Air Samples"* (EPA 600 R-05/147, March 2006). These monitoring points have proven to be effective in sample collection and measuring the pressure field established by an applied vacuum. Monitoring point locations are shown on Figure 2.

The Bay Area Air Quality Management District (BAAQMD) application number is 17506 and the plant number is 18970. The Permit to Operate is included in Attachment A. On March 19, 2012 Trinity requested a change in monitoring frequency from quarterly to annually, which was granted by BAAQMD. An approval letter of the monitoring frequency change is included in Attachment B.

SSVD SYSTEM O&M SUMMARY

Date of O&M Event:	March 10, 2016
Sample Containers:	1-Liter Tedlar Bag
Sample Collection Point:	Effluent
System Conditions:	System running and passed smoke pen test for O&M event

Trinity collected an effluent sample and delivered it to Torrent Laboratory, Inc., a California-certified laboratory (ELAP# 1991). The sample was analyzed for VOCs and Stoddard solvent according to EPA Method TO-15 during this annual sampling event. The O&M field data sheets are included in Attachment C and the certified analytical report is included in Attachment D. The laboratory noted that for the TPH Stoddard analysis; "No Stoddard solvent standard was available at the time of analysis for quantitation. Sample was quantitated against a gasoline standard. Individual peaks do not match either gasoline or Stoddard solvent pattern."

SSVD SYSTEM PERFORMANCE

- SSVD has discharged a total of approximately 9.09 pounds of VOCs from March 11, 2015 to March 10, 2016, during approximately 365 days of operation.
- VOC removal rate for the period of March 11, 2015 to March 10, 2016 is 0.02893 pounds per day.
- The system is performing as expected with removal of VOCs and depressurization of the sub-slab area.

- The low concentrations of VOCs discharged to the atmosphere are well within the permitted discharge allowed for specific compounds and for the total limit of 10 pounds per day. No violations of the BAAQMD permit have occurred.
- All effluent VOC concentrations from March 11, 2015 to March 10, 2016 are less than Residential and Commercial Land Use Site-Specific Screening Levels¹ (Table 1). It should be noted that the Site-Specific Screening Levels have been updated to utilize the February 2016 Revision 3 Environmental Screening Levels (ESLs) issued by the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). For each VOC, the Residential and Commercial Indoor Air ESLs were selected, and divided by the appropriate Site-Specific Attenuation Factor, to derive the Site-Specific Screening Level.
- In addition to updating ESL concentrations, in the February 2016 ESL update, the SFBRWQCB adopted default sub-slab vapor to indoor air attenuation factors (SSIA AFs). In the December 2013 ESL update, the SFBRWQCB did not provide default SSIA AFs and instead recommended site-specific assessments to establish SSIA AFs as needed. The February 2016 update adopted default SSIA AFs derived using a vapor-flux approach previously used in 2003 to 2008 SFBRWQCB ESLs with climate-adjusted inputs. The vapor-flux approach is based on the vapor-entry-to-building component of the Johnson and Ettinger model (Johnson and Ettinger, 1991). Climate-adjusted inputs to the model are based on regional-adjusted climate inputs for soil vapor entry rates to indoor air and indoor air to outdoor air exchange rates proposed by Brewer et al. 2014². The adopted commercial and residential SSIA AFs are 0.001 and 0.002, respectively, and are included in the derivation of sub-slab vapor ESLs. All effluent VOC concentrations from March 11, 2015 to March 10, 2016 are less than SFBRWQCB default commercial and residential ESLs with the exception of carbon tetrachloride, which only exceeds the residential ESL.

RECOMMENDATIONS

All effluent VOC concentrations are less than residential and commercial Site-Specific Screening Levels. Additionally, all effluent VOC concentrations are less than SFBRWQCB commercial ESLs. Therefore, Trinity recommends that the site be considered for case closure.

¹ Trinity Source Group, Inc., Sub-Slab Attenuation Factor Determination Summary Report, September 20, 2010.

² Brewer, R., J. Nagashima, M. Rigby and M. Schmidt, and Harry O'Neill, 2014. Estimation of Generic Subslab Attenuation Factors for Vapor Intrusion Investigations. Groundwater Monitoring & Remediation, December 15.

Should you have any questions regarding this Report, please call Trinity at (831) 426-5600.

Sincerely,

TRINITY SOURCE GROUP, INC. A California Corporation

Information, conclusions, and recommendations made by Trinity in this document regarding this site have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

luos

Debra J. Moser, PG, CEG, CHG Senior Geologist

frú Choi

Eric Choi Project Scientist

DISTRIBUTION A copy of this report has been forwarded to:

Mr. Don Lindsey Timber Del Properties, LLC 1406 Webster Street Alameda, CA 94501 Ms. Miranda Vega The Mechanics Bank 1999 Harrison St., Suite 810 Oakland, CA 94612 Ms. Anne Jurek Timber Del Properties 2016 SSVD System Performance Report June 30, 2016

Attachments:

- Table 1 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data
- Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs
- Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs
- Figure 1 Site Location Map
- Figure 2 Sub-Slab Depressurization System Layout
- Figure 3 Sub-Slab Depressurization System Process and Instrumentation Diagram
- Figure 4 Sub-Slab Depressurization System Extraction Well Detail
- Figure 5 Sub-Slab Vapor Monitoring Point Detail
- Attachment A BAAQMD Permit to Operate
- Attachment B BAAQMD Correspondence

Attachment C – O&M Field Data Sheets

Attachment D – Certified Analytical Report, Chain-of-Custody and GeoTracker Upload Documentation TABLES

Searway Property
649 Pacific Avenue
Alameda, California

		EPA Method TO-3(MOD)*			EP	A Meth	od TO-	15			
	• •	• • • • ·	_	<u> </u>	Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m⁻	µg/m²	µg/m°	µg/m²	µg/m°	µg/m°	µg/m°	µg/m²	µg/m²	
9/10/2008	Influent	4,900 ^c	<80	560	3,900	2,600	<130	<64	300	<480	
	Effluent	610 ^{c, d}	<1.8	<3.9	29	17	<1.1	<0.5	<0.88	71	k
9/11/2008	Influent	2,400 ^c	<32	480	3,200	2,500	<54	<26	260	<190	е
	Effluent	710 ^c	<1.8	<3.9	<1.9	<2.6	<1.1	<0.5	14	180	е
10/10/2008	Influent	960 ^b	65	110	880	880	<5.4	<2.6	27	51	Ι
	Effluent	740 ^b	<3.2	54	200	13	<5.4	<2.6	<3.0	25	m
11/6/2008	Influent	1,700 ^a	<1.6	58	690	520	<2.7	<1.3	23	62	f
	Effluent	2,800 ^a	1.9	53	770	14	<2.7	<1.3	6.5	37	g
12/4/2008	Influent	2,400 ^h	20	110	780	1,100	<6.7	<3.2	110	<24	i
	Effluent	2,100 ^h	18	120	1,100	40	<5.4	<2.6	82	<19	j
1/2/2009	Influent	<3,500	<16	26	560	800	<27	<13	<15	<95	n
	Effluent	<3,500	<8.0	73	920	220	<13	<6.4	<7.4	<48	0
2/9/2009	Influent	2,300 ^p	<3.2	64	480	680	<5.4	<2.6	9.6	29	t
	Effluent	1,800 ^p	<3.2	<4.9	10	<6.8	<5.4	<2.6	<3.0	20	S
5/20/2009	Influent			Carbo	on Vessels Re	moved; li	nfluent no	longer sa	mpled.		
	Effluent	1,800 ^q	<4.5	<9.8	<4.7	<6.4	<2.6	<1.2	<2.2	<2.9	r
8/7/2009	Effluent	4,500 ^u	<1.6	<2.4	<3.2	<3.4	<2.7	<1.3	2.0	24	v

						IIIIa					
		EPA Method TO-3(MOD)*			EP	A Meth	od TO-1	15			
Sample Date	Sample Location	Stoddard µg/m ³	Benzene µg/m³	Chloroform µg/m ³	Carbon Tetrachloride µg/m ³	PCE µg/m ³	TCE µg/m ³	VC µg/m ³	2-Butanone μg/m³	Acetone µg/m³	Notes
11/6/2009	Effluent	2,400 ^u	5.4	85	670 [×]	1,100 ^x	<2.7	<1.3	<1.5	84	w
2/2/2010	Effluent	2,000 ^y	5.6	40	280	430	<2.7	<1.3	<1.5	31	Z
5/5/2010	Effluent	<400	2.24	77.4	562	857	<5.4	<2.6	<1.5	34.9	aa
8/5/2010	Effluent	<400	6.78	75.8	<6.3	686	<11	<5.2	<3.0	48	ab, ac
11/30/2010	Effluent	<350	<3.2	<9.8	259	290	<11	<5.2	<3.0	<19	ad
2/22/2011	Effluent	<350	<3.2	26.8	235	261	<11	<5.2	<3.0	27.4	ae
6/1/2011	Effluent	<350	<3.2	25.5	254	354	<11	<5.2	<3.0	62.4	af
8/25/2011	Effluent	<350	<3.2	37.9	287	332	<11	<5.2	<3.0	<19	r, ag
11/21/2011	Effluent	<350	<3.2	26.4	355	635	<11	<5.2	<3.0	<19	
3/6/2012	Effluent	<700	<3.2	44.3	447	626	<11	<5.2	<3.0	<19	r, ah
3/25/2013	Effluent	<700	<3.2	38.5	567	578	<11	<5.2	<3.0	<38	r
3/11/2014	Effluent	<700	2.21	27.3	229	366	<5.4	<2.6	<1.5	36.5	ai
3/11/2015	Effluent	<200 ^{ak, al}	<3.4 ^{an}	<6.2 ^{an}	<4.3 ^{an}	890 ^{an}	<6.9 ^{an}	<3.3 ^{an}	<3.1 ^{an}	43.3 ^{am, an}	aj, ao
3/10/2016	Effluent	6,900 ^{aq}	<3.2 ^{ap}	14.6 ^{ap}	56.1 ^{ap}	173 ^{ap}	<11 ^{ap}	<5.2 ^{ap}	<3.0 ^{ap}	<38 ^{ap}	ar

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method TO-3(MOD)*			EP	A Meth	od TO-′	15			
					Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	
	Scree	ening Levels f	or Indoor A	ir-Direct Exp	osure Human	Risk Le	vels ¹ (µg/	/m³) - Re	sidential Prop	erty Use	
		140	0.097	0.012	0.067	0.48	0.68	0.036	N/A	32,000	
		Site-S	Specific Sci	eening Leve	Is for Sub-Sla	b Vapor	(µg/m ³)	- Residen	tial Property	Use**	
		339,806	235	29	163	1,165	1,650	87	N/A	77,669,903	
			SFBRW	QCB Sub-Sla	ab Vapor ESL	s ¹ (µg/m ³) - Resid	ential Pro	operty Use		
		68,000	48	61	33	240	240	4.7	2,600,000	16,000,000	
	Scree	ning Levels fo	or Indoor Ai	r-Direct Exp	osure Human	Risk Lev	vels ¹ (µg/	m ³) - Cor	nmercial Pro	perty Use	
		570	0.42	0.53	0.29	2.1	3.0	0.16	N/A	140,000	
		Site-	Specific Sc	reening Leve	els for Sub-Sla	ab Vapor	[.] (µg/m³)	- Comme	rcial Property	/ Use	
		1,383,495	1,019	1,286	704	5,097	7,282	388	N/A	339,805,825	
			SFBRWO	QCB Sub-Sla	b Vapor ESLs	¹ (µg/m ³) - Comm	nercial Pr	operty Use		
		57,500	420	530	290	2,100	3,000	160	22,000,000	140,000,000	

Notes:

Stoddard = Total petroleum hydrocarbons as gasoline.

* = Method TO-3 (mod) no longer offered by laboratory, Stoddard to be analyzed by Method TO-15 as of 2015 O&M event.

PCE = Tetrachloroethylene or Perchloroethylene

TCE = Trichloroethylene

VC = Vinyl Chloride

VOCs = Volatile Organic Compounds

MTBE = Methyl tertiary butyl ether

TBA = Tert-Butanol

TAME = Tert amyl methyl ether

 $\mu g/m^3$ = micrograms per cubic meter, also equivalent to parts per billion (ppb)

< = Less than laboratory analytical method reporting limit.

		EPA Method									
		10-3(MOD)*			EP	A Meth	od TO-1	5			
			_		Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m°	µg/m°	µg/m°	µg/m°	µg/m°	µg/m°	µg/m°	µg/m°	µg/m°	
Notes Continue	ed:										
NS	= No sample	collected									
a	= Result repo	orted as Stoddar	d Solvent, bu	t sample chror	natogram does i	not resemb	ole Stoddar	d Solvent	standard pattern.		
D	= Sample chr	f non gooding of	s not resembl	e Stoddard So	E C12 guopitifor	attern (po:	ssibly aged). Reported	d value due to		
C	– Not a typic	al Stoddard (disc	prote light en	Inin range of C	Stoddard range)	1 85 9850	me.				
d	= Reporting li	imit increased du	le to low initia	l pressure in c	anister, Results	reported	to the MDI				
-	Reported v	alues between th	ne MDL and F	RL should be c	onsidered as est	imated.					
е	- Reporting li	imit increased du	ie to low initia	I pressure in c	anister. Results	reported to	o the MDL.				
f	= Other VOC	s detected are: C	Carbon Disulfi	de 7.7 μ g/m ³ ,	1,2,4-trimethylb	enzene 2.9	9 µg/m³, m	p-xylene 4	.7 μg/m³,		
	methylene	chloride 4.5 µg/n	n ³ , and toluer	ne 30 µg/m ³ .							
g	= Other VOC	s detected are: C	Carbon Disulfi	rbon Disulfide 7.5 μ g/m ³ , m,p-xylene 3.6 μ g/m ³ , and toluene 27 μ g/m ³ .							
h	 Sample chr non-stodda 	omatogram doe: rd solvent comp	does not resemble Stoddard solvent standard pattern. Reported value due to presence of oppounds within range of C7-C12								
i	= Other VOC	s detected are: 1	,2,4-trimethy	benzene 66 µ	g/m ³ , 1,3,5-trime	thylbenze	ne 14 µg/m	1 ³ ,			
	4-ethvl tolu	ene 48 µɑ/m³. et	hvl benzene	49 µa/m ³ . m.p	- xvlene 270 µa/r	n ³ . o-xvler	ne 54 µa/m ³	and tolue	ne 490 µa/m ³		
i	= Other VOC	s detected are: 1	.2.4-trimethv	benzene 38 u	a/m ³ . 1.3.5-trime	thvlbenze	ne 7.6 µa/r	n ³ . 4-ethvl	toluene 35 µg/m	3.	
,	ethvl benze	ene 45 µa/m ³ . m.	p-xvlene 240	ua/m ^{3,} o-xvler	ie 44 µg/m ³ . and	toluene 3	80 µa/m ³	, ,	1.0	,	
k	= Other VOC	detected is: m.p	-xvlene 4.1 u	a/m ³	13, 3						
	= Other VOC	s detected are:1	2,4-trimethyll	oenzene 8.2 µ	g/m ³ , 4-ethyl tolu	uene 8.8 u	g/m ³ , m,p-:	xylene 53 ı	ug/m ³ , MTBE 220) µg/m ³ ,	
	o-xylene 22	rlene 22 µg/m ³ , TBA 55 µg/m ³ , TAME 21 µg/m ³ , and toluene 82µg/m ³									
m	= Other VOC	s detected are: N	итве 180 µq	/m ³ , TAME 8.4	$\mu q/m^3$, and tolu	ene 7.3 µ	g/m ³				
n	= Toluene de	tected at a conc	entration of 3	7 µg/m ³			, ,				
0	= Toluene de	tected at a conc	entration of 2	9 μg/m ³							
р	= Hydrocarbo	ons responded w	ithin range of	C5-C12 quant	ified as Stoddar	d Solvent	but sample	chromatog	gram does not ma	atch	
	requested f	uel standard pat	tern. TPH va	lue due to pres	sence of heavy e	end unider	ntified hydro	carbon pe	aks.		
q	= Result repo	orted as a Stodda	ard solvent bu	t sample chroi	matogram does	not match	requested	fuel patterr	۱.		
	Reported va	alue due to indiv	idual non-targ	get peaks (hea	vy end) within ra	nage of C	5-C12.				

		EPA Method									
					EP	A Meth		10			
	. .		_		Carbon					_	
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m°	µg/m°	µg/m³	µg/m°	µg/m°	µg/m³	µg/m°	µg/m°	µg/m³	
Notes Continu	ed:										
l i	= The reporting	ng limts were rai	sed due to lin	nited sample re	eceived (tedlar b	ag). Resul	ts reported	to the MD	L.		
S	= Toluene wa	as detected at a o	concentration	of 4.5 µg/m ³							
t	= Toluene wa	as detected at a o	concentration	of 5.7 µg/m ³							
U	= Result repo	orted as a Stodda	ard solvent bu	t sample chror	matogram does	not match	requested	fuel standa	ard pattern.		
	Result due	to individual pea	ks of unident	ified compound	ds within C5-C12	2 range qu	antified as	Stoddard S	Solvent.		
v	= Other VOC	s detected are: 1	,2,4-Trimeth	lbenzene 5.9	µg/m³, isopropa	nol 21 µg/	m ³ and tol	uene 2.3 j	µg/m³		
w	= Other VOC	s detected are: 1	,2,4-Trimeth	lbenzene 140/	µg/m ³ , 1,3,5-Tı	imethylbe	nzene 38 µ	ıg/m³,			
	4-Ethyl Tol	uene 130 µg/m³,	ethylbenzen	e 83 µg/m³, tot	al xylenes 322 µ	lg/m ³ , met	hylene chlo	oride 8.1 µç	g/m ³		
	t-butyl alco	ohol 29 µg/m ³ , to	luene 35 µg/ı	n ³ .							
×	= Outside of	calibration range	but within we	but within working range of the instrument. Due to hold time restrictions, no diluted analysis was performed.							
у	= TPH as Sto	oddard Solvent re	nt result due to unidentified compounds within range quantified as Stoddard Solvent.								
Z	= Other VOC	s detected are: 1	,2,4-Trimeth	lbenzene 120/	µg/m ³ , 1,3,5-Tr	methylber	nzene 40 µg	g/m³, 4-Eth	yl Toluene 120	µg/m³,	
	Carbon dis	ulfide 4.1 µg/m ³ ,	Isopropanol	21 µg/m³, total	-xylene 171 µg/	m ³ , Tert-b	utyl Alcoho	l 13µg/m ^{3,} a	and Toluene 15	ug/m ³	
aa	= Other VOC	s detected are: 7	ert-butanol 6	3.8 µg/m³, Tol	uene 10.3 µg/m	³ , total-Xyl	ene 30.01	µg/m³,			
	4-ethyl tolu	ene 19.5 µg/m ³ ,	1,3,5-Trimeth	ylbenzene 8.1	8 µg/m ³ , and 1,	2,4-Trimet	hylbenzene	e 17.2 μg/m	າ ³ .		
ab	= Other VOC	s detected are: C	Carbon Disulf	de 12.4 µg/m ³	, tert-Butanol 10	9 µg/m³, ⁻	Foluene 21	.7 µg/m ³ , n	n,p-Xylene 24.3	µg/m³,	
	o-xylene 10).4 µg/m ³ , 1,3,5- ⁻	Trimethylben	zene 5.88 µg/n	n ³ , 1,2,4-Trimeth	ylbenzene	e 15.5 µg/m	1 ³ .			
ac	= The results (tedlar bag	for stoddard sol	ard solvents are reported using their MDL, reporting limit was raised due to insufficient sample volume received								
ad	= Other VOC	s detected are: 7	oluene 116	ıg/m ³ , m,p-Xyl	ene 13.5 µg/m ³ ,	and o-Xyl	ene 6.02 µ	g/m ³ .			
ae	= Toluene on	ly other VOC de	tected at a co	ncentration of	16.4 µg/m ³ .						
at	= Other VOC	s detected are: 0	Carbon Disulf	de 6.63 µg/m ³	, and Toluene 9	6.9 µg/m ³ .					
**	= Trinity Sour	rce Group, Inc, S	Sub-Slab Atte	nuation Factor	Determination S	Summary I	Report , Se	ptember 20	0, 2010.	Note that calcu	lation
	errors for b	enzene and viny	I chloride scr	eening levels h	ave been correc	ted					
ag	= Other VOC	s detected are: C	Carbon Disulf	de 29.1 µg/m ³	, tert-Butanol 26	.1 µg/m ³ ,	and Toluer	ne 4.41 µg/	m ³		
ah	= Other VOC	s detected are: N	/lethylene Ch	loride 23.5 µg/	m ³ , and Toluene	e 75.2 µg/ı	m ³				
ai	aj = Other VOCs detected are: Hexane 3.50 µg/m ³ , tert-Butanol 17.1 µg/m ³ , Tetrahydrofuran 2.46 µg/m ³ , Toluene 25.5 µg/m ³ ,										

		EPA Method TO-3(MOD)*			EP	A Meth	od TO-1	15			
					Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	
Notes Continue	d:										
	4-Methyl-2	-Pentanone 4.39	∫µg/m³, Ethyl	benzene 5.89	µg/m ³ , m,p-Xyl	ene 33.5 µ	ıg/m³, o-Xy	lene 12.4 µ	ıg/m³, and		
	1,2,4-Trim	ethylbenzene 10	.3µg/m ^{3.}								
aj =	The results	shown below ar	e reported us	ing their MDL							
ak =	Method TO	-3 (mod) no long	er offered by	laboratory, sa	mple analyzed b	y Method	TO-15.				
al =	Reporting li	mits were raised	due to limite	d sample volui	me received (ted	lar bag)					
am =	Indicates a quantitative	value between t	he method MI	DL and PQL a	nd that the repor	ted conce	ntration she	ould be cor	nsidered as estim	nated rather tha	an
an =	Reporting li	mits were raised	due to high o	concentration of	of target analyte						
ao =	other VOCs	s detected: 4-Me	thyl-2-Pentan	one (MIBK): 5	.13 µg/m ³ , tert-E	utanol: 54	.0 µg/m3				
ap =	Reporting li	mit elevated due	to insufficien	t sample quar	tity (tedlar bag).						
aq =	E TPHg Resu	It due to individu	al peaks of n	on-gasoline co	onmpounds withi	n gasoline	e quantitativ	e range.			
ar =	The laborat	ory noted: Analy	tical commen	t for TO15, No	te: No stoddard	solvent wa	as available	e at the tim	e of analysis for	quantitation.	
	Sample wa	s quantitated aga	ainst a gasolir	ne standard. I	ndividual peaks	do not ma	tch either g	asoline or	stoddard solvent	pattern.	
1 =	http://www.	waterboards.ca.	gov/sanfranci	scobay/water_	issues/programs	/esl.shtml					

Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

		Days Operated	Cubic Meters		Influent			Cumulative	
	Average	Since	Removed Since	Cumulative	Total	Pounds VOCs	Pounds	Total Pounds	6
	flow rate	Previous	Previous	Cubic Meters	VOCs	Removed Since	VOCs Removed	VOCs	Comments
Date	CFM	Event	Event	Removed	µg/m³	Last Event	per Day	Removed	
9/10/2008	45	0.04	76.53	76.53	12,260	0.00207	0.04964	0.00207	System sampled 1-hour
9/11/2008	45	1.00	1,836.73	1,913.27	8,840	0.03580	0.03580	0.03786	
10/10/2008	45	29.00	53,265.31	55,178.57	3,443	0.40430	0.01394	0.44217	
11/6/2008	45	27.00	49,591.84	104,770.41	3,103	0.33923	0.01256	0.78140	
12/4/2008	45	28.00	51,428.57	156,198.98	5,511	0.62483	0.02232	1.40623	
1/2/2009	45	29.00	53,265.31	209,464.29	1,423	0.16710	0.00576	1.57333	
2/9/2009	45	38.00	69,795.92	279,260.20	3,568	0.54906	0.01445	2.12238	
5/20/2009	45	100.00	183,673.47	462,933.67	1,800	0.72886	0.00729	2.85125	
			Treatme	ent System Rem	oved				

Notes:

CFM = cubic feet per minute

 $\mu g/m^3 =$ micrograms per cubic meters

VOCs = volatile organic compounds

* = Treatment system removed on May 20, 2009.

Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

		Days Operated	Cubic Meters		Effluent			Cumulative	
	Average	Since	Discharged Since	Cumulative	Total	Pounds VOCs	Pounds	Total Pounds	
	Flow Rate	Previous	Previous	Cubic Meters	VOCs	Discharged Since	VOCs Discharged	VOCs	Comments
Date	CFM	Event	Event	Discharged	µg/m³	Last Event	per Day	Discharged	
9/10/2008	45	0.04	76.53	76.53	731.1	0.00012	0.00296	0.00012	
9/11/2008	45	1.00	1,836.73	1,913.27	904	0.00366	0.00366	0.00378	
10/10/2008	45	29.00	53,265.31	55,178.57	1,227.7	0.14417	0.00497	0.14795	
11/6/2008	45	27.00	49,591.84	104,770.41	3,720.5	0.40676	0.01507	0.55471	
12/4/2008	45	28.00	51,428.57	156,198.98	4,249.6	0.48181	0.01721	1.03652	
1/2/2009	45	29.00	53,265.31	209,464.29	1,242.0	0.14585	0.00503	1.18237	
2/9/2009	45	38.00	69,795.92	279,260.20	1,834.5	0.28228	0.00743	1.46465	
5/20/2009	45	100.00	183,673.47	462,933.67	1,800.0	0.72886	0.00729	2.19351	
8/7/2009	45	79.00	145,102.04	608,035.71	4,555.2	1.45716	0.01845	3.65067	
11/6/2009	45	91.00	167,142.86	775,178.57	5,129.5	1.89012	0.02077	5.54079	
2/2/2010	45	88.00	161,632.65	936,811.22	3,290.7	1.17259	0.01332	6.71338	
5/5/2010	45	92.00	168,979.59	1,105,790.82	1,682.5	0.62679	0.00681	7.34017	
8/5/2010	45	92.00	168,979.59	1,274,770.41	1,015.8	0.37840	0.00411	7.71857	
11/30/2010	45	117.00	214,897.96	1,489,668.37	684.5	0.32430	0.00277	8.04287	
2/22/2011	45	84.00	154,285.71	1,643,954.08	566.6	0.19272	0.00229	8.23559	
6/1/2011	45	99.00	181,836.73	1,825,790.82	799.4	0.32047	0.00324	8.55606	
8/25/2011	45	85.00	156,122.45	1,981,913.27	716.5	0.24661	0.00290	8.80268	
11/21/2011	45	88.00	161,632.65	2,143,545.92	1,016.4	0.36218	0.00412	9.16485	
3/6/2012	45	106.00	194,693.88	2,338,239.80	1,216.0	0.52193	0.00492	9.68678	
3/25/2013	45	384.00	705,306.12	3,043,545.92	1,183.5	1.84023	0.00479	11.52702	
3/11/2014	45	351.00	644,693.88	3,688,239.80	776.1	1.10299	0.00314	12.63000	
3/11/2015	45	365.00	670,408.16	4,358,647.96	992.4	1.46674	0.00402	14.09674	
3/10/2016	45	365.00	670,408.16	5,029,056.12	7,143.7	10.55819	0.02893	24.65493	1

Notes:

CFM =	cubic feet per	minute	
, 3			

 μ g/m³ = micrograms per cubic meters

VOCs = volatile organic compounds

1 = The laboratory noted: Analytical comment for T)15, Note: No stoddard solvent standard was available at the time of analysis for quantitation. Sample was quantitated against a gasoline standard. Individual peaks do not match either gasoline or stoddard solvent pattern.

FIGURES

REF. 103_002\103.001.001 fig1.dwg

SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS AND INSTRUMENTATION DIAGRAM

PROJECT:
103.001.001
FIGURE:
3

NEW CONCRETE 2500 psi COMPRESSIVE STRENGTH @ 28 DAYS

JOINT SEALANT (POLYURETHANE OR EQUIVALENT, @ JOINTS BETWEEN NEW AND EXISTING CONCRETE)

60-MIL HDPE VAPOR BARRIER

EXISTING SUBGRADE (BASEROCK)

- NATIVE SOIL

PROJECT:
103.001.001
FIGURE:
4

Recessed Threaded Swagelok Cap

Cement Grout

Stainless Steel Threaded Swagelok Fitting

Stainless Steel Tubing

PROJECT:
103.001.001
FIGURE:
5

ATTACHMENT A

BAAQMD – PERMIT TO OPERATE

Searway Property 1406 Webster Street Alameda, CA 94501

Location: 649 Pacific Avenue Alameda, CA 94501

S#	DESCRIPTION [Schedule]	PAID
1	CHEM> Contaminated soil remediation, Contaminated soil vapor Sub-Slab Venting System [G1]	1673
~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~

1 Permitted Source

*** See attached Permit Conditions ***

The operating parameters described above are based on information supplied by permit holder and may differ from the limits set forth in the attached conditions of the Permit to Operate. The limits of operation in the permit conditions are not to be exceeded. Exceeding these limits is considered a violation of District regulations subject to enforcement action.



*** PERMIT CONDITIONS ***

#### COND# 23992 applies to S# 1

1. In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinyl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- 2. To determine compliance with Condition 1, the operator of this source shall:
  - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 92 days on a quarterly basis.

Written authorization must be received from the District before any change in sampling frequency.

- b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
- c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed

 06/17/16
 Bay area air quality management district

 939 ELLIS STREET
 939 ELLIS STREET

 SAN FRANCISCO, CALIFORNIA 94109
 (415) 771-6000

 Plant# 18970
 Page:
 3

 Expires:
 APR 1, 2017

 This document does not permit the holder to violate any District regulation or other law.

*** PERMIT CONDITIONS ***

______

in condition 1 as well as the total volatile organic compounds.

- 3. The operator of this source shall maintain the following information in a District-approved log for each month of operation of the source:
  - a. dates of operation;
  - b. exhaust flow rate:
  - c. exhaust sampling date;
  - d. analysis results;
  - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- 4. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
  - 5.The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
  - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

END OF CONDITIONS

Bay Area Air Quality Management District		**	SOURCE	EMISSIONS	**		H D	PLANT : May 18	₿18970 , 2016
			000000		A	nnual A	Average	lbs/	day
S#	Source Description				PART	ORG	NOx	SO2	CO
						124	777	277	
1	Sub-Slab Venting System					.1	-		-
	TOTALS					.1			

## ATTACHMENT B

**BAAQMD - CORRESPONDENCE** 

房(CET客)王型)選 APR 0 5 2012

BY: .................



March 28, 2012

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

ALAMEDA COUNTY Tom Bates Scott Haggerty Jennifer Hosterman Nate Miley (Secretary)

CONTRA COSTA COUNTY John Gioia (Chairperson) David Hudson Mary Piepho Mark Ross

> MARIN COUNTY Katie Rice

NAPA COUNTY Brad Wagenknecht

SAN FRANCISCO COUNTY John Avalos Edwin M. Lee Eric Mar

SAN MATEO COUNTY Carole Groom Carol Klatt

SANTA CLARA COUNTY Susan Garner Ash Kalra (Vice-Chair) Liz Kniss Ken Yeager

SOLANO COUNTY James Spering

SONOMA COUNTY Susan Gorin Shirlee Zane

Jack P. Broadbent

Trinity Source Group, Inc. 500 Chestnut Street, Suite 225 Santa Cruz, CA 95060

Attention: Cora E. Olson

Application No.:17506Plant No.18970Equipment Location:Searway Property649Pacific AvenueAlameda, CA

Dear Applicant:

The District has reviewed your request, dated March 19, 2012 to change the monitoring frequency from quarterly to annually. Based on the information provided, an annual monitoring schedule is both reasonable from the District's perspective and will also grant your firm the flexibility requested. Be aware that you can monitor your systems more frequently if desired.

Please keep a copy of this letter and the attached revised operating conditions (COND#23992) as verification that a monitoring schedule of annually has been approved by the District for the site subject to P/O (Plant #18970).

Please include your application number with any correspondence with the District. The District's regulations may be viewed online at <u>www.baaqmd.gov</u> If you have any questions on this matter, please call me at (415) 749-4630.

Very truly yours,

Flora W Chan Air Quality Engineer II

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

COND# 23992 -----

 In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinyl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- 2. To determine compliance with Condition 1, the operator of this source shall:
  - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 365 days on an annual basis. Written authorization must be received from the District before any change in sampling frequency.
  - b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
  - c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed in condition 1 as well as the total volatile organic compounds.

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

- 3. The operator of this source shall maintain the following information in a District-approved log for each year of operation of the source:
  - a. dates of operation;
  - b. exhaust flow rate:
  - c. exhaust sampling date;
  - d. analysis results;
  - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- 4. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
  - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
  - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

## ATTACHMENT C

## **O&M FIELD DATA SHEETS**

Trinity Source Group, Inc.

119 Encinal St. Santa Cruz, CA 95060 Page _ l of _ l

P: 831.426.5600 F: 831.426.5602

SCANNED ub-Slab Depressurization System------ O&M Data

		Deta: 21	la III.			
Address: 649 Pacific Ave. Alameda C	A	Date: 310/16				
		Personnel.	SV			
Arrival System Status: On/ Off	If Off Explain Why?					
Departure System Status: On Off	If Off Explain Why?					
Tedlar Bag Collected? Yes No	1:30 Summa Vesse	I Collected?	Yes / No			
nfluent initial Summa Vacuum NA	Influent Final Summa Vacuum	NA	Time			
Effluent initial Summa Vacuum NA	Effluent Final Summa Vacuum	NA	Time			
/apor Concentration Readings in Parts I	Per Million Vapor (PPMV) using P	hoto Ionization	Detector (PID)			
Collected? Yes / No Effl	uent (After Vacuum Unit)		PPMV 🔿 ()			
Collected? Yes / No	ent (Before Vacuum Unit)		PPMV 00			
		(F	A			
Effluent Flow Rate (read from digital read	dout on vacuum control) SPD	6 4	₩ 289 300			
4"DR. PUC						
Efflluent Flow Rate and Temperature (m	easured with hand held Anemom	eter in dischar	ge pipe slot)			
295 FPM = ~	26 CFM	De	egrees F 73.1			
/acuum (measured at influent sample po	ort) $-0.18$ -inch	nes of mercury	(-in Hg)			
$\sim$	1					
Smake Don Look Test	Fail					
Silloke Pell Leak Test Pass	/					
Smoke Pell Leak Test Pass						
Smoke Pen Leak Test Pass						
	at Socie viena de					
Notes: System operating	at Sp. 6 upon at	rival (300	DeFm).~Sgallens			
Notes: System operating of condensate emp	at Sp. 6 upon an fiel from catch t	rival (300	D cFm).~G gallow			
votes: System operating of condensate emp 7 substate probes test	at Sp. 6 upon an fiel from catch t ed for influence wis p	rival (30x ray. nothe pen	) c.Fm).~~ 5. gallens (v.s-1,vs-4,vs-s,vs-6,vs			
Votes: System operating of condensate emp 7 substate probes teste US-203. Influence observe	at Sp. 6 upon an tied from catch t ed for influence will so ed in all probes exce	rival (30x ray note pen ept VS-1	) c.F.M).~9 gallons (VS-1,VS-4,VS-5,VS-6,VS L.			
Notes: System operating of condensate emp 7 subulat probes tests US-203. Influence observe System Operating at	at Spi 6 upon an tied from catch t ed for influence wijsp ed in all probes exce Sip.6 upon dep	rival (30x ray. notice pen apt 15-1 arting.	) c.Fm).~5.gallens (vs-1,vs-4,vs-s,vs-6,vs L.			
Notes: System operating of condensate emp 7 substate probes tester US-203. Influence observed System Operating at All SSDPS OTM a	at Sp. 6 upon an fiel from catch t ed for influence wilso ed in all probes exce Syp. 6 upon dep citivities performed	rival (30x ray. note pen opt VS-1 drforp. under ob	D c Fm). ~ G gallons (VS-1, VS-4, VS-5, VS-6, VS L.			
Notes: System operating of condensate emp 7 substate probes teste Us-203. Fathence observe System operating at -All SSDPS OTM a ADOP Jugat (ACDE)	at Spr 6 upon an tied from catch t ed for influence wijsp ed in all probes exce Syp. 6 upon dep activities performed	rival (30x ray. notice pen apt 15-1 drforp. under ob	D c.F.m). ~ 5 gallens (vs-1,vs-4,vs-s,vs-6,vs L. servation of			
Notes: System operating of condensate emp 7 substate probes tester VS-203. Influence observed System Operating at All SSDPS OTM a Anne Juret (ACDET	at Sp. 6 upon an tied from catch t ed for influence wijson ed in all probes exce Syp. 6 upon dep activities performed	rival (300 ray. note pen opt VS-1 drforp. under ob	D.c.F.M).~9.g.allens (VS-1,VS-4,VS-5,VS-6,VS - secvation of			
Notes: System operating of condensate emp 7 substate probes teste Us-203. Fattuence observe System operating at -All SSDPS OTM a Anne Jurek (ACDET	at Spr 6 upon an tied from catch t ed for influence wijsp ed in all probes exce Syp. 6 upon dep ctivities performed	rival (30x ray. notice pen apt VS-1 drforp. under ob	2 c.Fm).~5 gallens (vs-1,vs-4,vs-s,vs-6,vs L. servation of			
Notes: System operating of condensate emp 7 substate probes tester VS-203. Influence observed System Operating at All SSDPS OTM a Anne Juret (ACDET	at Sp. 6 upon an tied from catch t ed for influence wijsp ed in all probes exce Syp. 6 upon dep activities performed	rival (300 ray. note pen opt VS-1 artonp. under ob	D.c.F.M). ~ G.g.allens (US-1,US-4,US-5,VS-6,US  servation of			
Notes: System operating of condensate emp 7 substate probes teste Us-203. Influence observe System operating at -All SSDPS Oth a Anne Jurek (ACDET	at Spr 6 upon an tied from catch t ed for influence wijsp ed in all probes exce Syp. 6 upon dep ctivities performed	rival (30x ray. notice pen apt VS-1 drforp. under ob	DeFm).~5.gallens (vs-1,vs-4,vs-s,vs-6,vs - servation of signature			

## ATTACHMENT D

## CERTIFIED ANALYTICAL REPORT, CHAIN-OF-CUSTODY AND GEOTRACKER UPLOAD DOCUMENTATION



David Reinsma Trinity Source Group 119 Encinal Street Santa Cruz, California 95060 Tel: 831-426-5600;Cell 831-227 4724 Fax: 831-426-5602 Email: dar@tsgcorp.net

RE: SSDPS O & M Event 2016

Work Order No.: 1603070

Dear David Reinsma:

Torrent Laboratory, Inc. received 1 sample(s) on March 10, 2016 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sa.

March 15, 2016

Date

Patti Sandrock QA Officer



Date: 3/15/2016

Client: Trinity Source Group Project: SSDPS O & M Event 2016 Work Order: 1603070

## CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Analytical Comment for TO15, Note:No stoddard solvent standard was available at the time of analysis for quantitation. Sample was quantitated against a gasoline standard. Individual peaks do not match either gasoline or stoddard solvent pattern.

This report shall not be reproduced, except in full, without the written approval of Torrent Analytical, Inc.



## Sample Result Summary

Report prepared for: Effluent	David Reinsma Trinity Source Group				Date F Date F	Received: 03/10/16 Reported: 03/15/16 1603070-001A
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u> ug/m3
TPH-Gasoline		ETO15	10	400	1800	6900
Chloroform Carbon Tetrachloride Tetrachloroethylene		ETO15 ETO15 ETO15	2 2 2	2.5 1.7 1.8	9.8 6.3 6.8	14.6 56.1 173



## SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	up						C C	Date Recei Date Repo	ved: 03/10 rted: 03/15	/16 /16
Client Sample ID: Project Name/Location:	Effluent SSDPS 0 & N	I Event 20	116		Lab Sa Sampl	ample ID: e Matrix:	16 Air	03070-001A			
Project Number:	02/10/16 / 11.	20			Contific	d Clean V	NO # .				
Date/Time Sampled.	03/10/10/11.	30			Dentine		wo # .				
Canister/Tube ID:					Receiv	ed PSI :	(	J.U			
Collection Volume (L):	0.00				Correc	ted PSI :	(	0.0			
Tag Number:	649 Pacific Av	′e.									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Dichlorodifluoromethane	ETO15	NA	03/10/16	2	3.0	10	ND	ND		429280	NA
1,1-Difluoroethane	ETO15	NA	03/10/16	2	1.0	2.7	ND	ND		429280	NA
1,2-Dichlorotetrafluoroethane	ETO15	NA	03/10/16	2	9.9	28	ND	ND		429280	NA
Chloromethane	ETO15	NA	03/10/16	2	0.64	2.1	ND	ND		429280	NA
Vinyl Chloride	ETO15	NA	03/10/16	2	1.3	5.2	ND	ND		429280	NA
1,3-Butadiene	ETO15	NA	03/10/16	2	0.89	2.2	ND	ND		429280	NA
Bromomethane	ETO15	NA	03/10/16	2	1.4	3.9	ND	ND		429280	NA
Chloroethane	ETO15	NA	03/10/16	2	1.0	2.6	ND	ND		429280	NA
Trichlorofluoromethane	ETO15	NA	03/10/16	2	3.6	11	ND	ND		429280	NA
1,1-Dichloroethene	ETO15	NA	03/10/16	2	1.2	4.0	ND	ND		429280	NA
Freon 113	ETO15	NA	03/10/16	2	1.7	7.7	ND	ND		429280	NA
Carbon Disulfide	ETO15	NA	03/10/16	2	1.6	6.2	ND	ND		429280	NA
2-Propanol (Isopropyl Alcohol)	ETO15	NA	03/10/16	2	1.9	40	ND	ND		429280	NA
Methylene Chloride	ETO15	NA	03/10/16	2	1.2	56	ND	ND		429280	NA
Acetone	ETO15	NA	03/10/16	2	1.8	38	ND	ND		429280	NA
trans-1,2-Dichloroethene	ETO15	NA	03/10/16	2	1.3	4.0	ND	ND		429280	NA
Hexane	ETO15	NA	03/10/16	2	1.1	3.5	ND	ND		429280	NA
МТВЕ	ETO15	NA	03/10/16	2	1.7	3.6	ND	ND		429280	NA
tert-Butanol	ETO15	NA	03/10/16	2	1.8	17	ND	ND		429280	NA
Diisopropyl ether (DIPE)	ETO15	NA	03/10/16	2	1.8	4.2	ND	ND		429280	NA
1,1-Dichloroethane	ETO15	NA	03/10/16	2	1.5	4.1	ND	ND		429280	NA
ETBE	ETO15	NA	03/10/16	2	1.4	4.2	ND	ND		429280	NA
cis-1,2-Dichloroethene	ETO15	NA	03/10/16	2	1.1	4.0	ND	ND		429280	NA
Chloroform	ETO15	NA	03/10/16	2	2.5	9.8	14.6	2.98		429280	NA
Vinyl Acetate	ETO15	NA	03/10/16	2	1.1	3.5	ND	ND		429280	NA
Carbon Tetrachloride	ETO15	NA	03/10/16	2	1.7	6.3	56.1	8.90		429280	NA
1,1,1-Trichloroethane	ETO15	NA	03/10/16	2	1.7	5.5	ND	ND		429280	NA
2-Butanone (MEK)	ETO15	NA	03/10/16	2	1.3	3.0	ND	ND		429280	NA
Ethyl Acetate	ETO15	NA	03/10/16	2	1.5	3.6	ND	ND		429280	NA
Tetrahydrofuran	ETO15	NA	03/10/16	2	0.60	3.0	ND	ND		429280	NA
Benzene	ETO15	NA	03/10/16	2	1.4	3.2	ND	ND		429280	NA
TAME	ETO15	NA	03/10/16	2	0.72	4.2	ND	ND		429280	NA
1,2-Dichloroethane (EDC)	ETO15	NA	03/10/16	2	2.0	4.1	ND	ND		429280	NA
Trichloroethylene	ETO15	NA	03/10/16	2	2.8	11	ND	ND		429280	NA
1,2-Dichloropropane	ETO15	NA	03/10/16	2	2.6	9.2	ND	ND		429280	NA



## SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	up						[ [	Date Recei Date Repo	ived: 03/10 rted: 03/15	)/16 5/16
Client Sample ID: Project Name/Location: Project Number:	Effluent SSDPS O & N	I Event 20	016		Lab Sa Sampl	ample ID: e Matrix:	16 Ai	603070-001A r			
Date/Time Sampled:	03/10/16 / 11:	30			Certifie	ed Clean V	VO # :				
Canister/Tube ID:					Receiv	ed PSI ·		0.0			
Collection Volume (L):	0.00				Correc	ted PSI		0.0			
Tag Number:	649 Pacific A				001100			0.0			
Tag Nulliber.	0491 acilie Av	с.									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Bromodichloromethane	ETO15	NA	03/10/16	2	1.8	6.7	ND	ND		429280	NA
1,4-Dioxane	ETO15	NA	03/10/16	2	2.5	7.2	ND	ND		429280	NA
trans-1,3-Dichloropropene	ETO15	NA	03/10/16	2	1.7	4.5	ND	ND		429280	NA
Toluene	ETO15	NA	03/10/16	2	1.9	3.8	ND	ND		429280	NA
4-Methyl-2-Pentanone (MIBK)	ETO15	NA	03/10/16	2	1.7	4.1	ND	ND		429280	NA
cis-1,3-Dichloropropene	ETO15	NA	03/10/16	2	2.3	4.5	ND	ND		429280	NA
Tetrachloroethylene	ETO15	NA	03/10/16	2	1.8	6.8	173	25.44		429280	NA
1,1,2-Trichloroethane	ETO15	NA	03/10/16	2	1.9	5.5	ND	ND		429280	NA
Dibromochloromethane	ETO15	NA	03/10/16	2	3.5	8.5	ND	ND		429280	NA
1,2-Dibromoethane (EDB)	ETO15	NA	03/10/16	2	4.1	15	ND	ND		429280	NA
NOTE: Reporting limit elevate	ed due to insufficient	sample qu	uantity (tedla	r bag).							
2-Hexanone	ETO15	NA	03/10/16	2	2.2	8.2	ND	ND		429280	NA
Ethyl Benzene	ETO15	NA	03/10/16	2	2.0	4.3	ND	ND		429280	NA
Chlorobenzene	ETO15	NA	03/10/16	2	1.4	4.6	ND	ND		429280	NA
1,1,1,2-Tetrachloroethane	ETO15	NA	03/10/16	2	2.1	6.9	ND	ND		429280	NA
m,p-Xylene	ETO15	NA	03/10/16	2	3.2	8.6	ND	ND		429280	NA
o-Xylene	ETO15	NA	03/10/16	2	1.6	4.3	ND	ND		429280	NA
Styrene	ETO15	NA	03/10/16	2	1.4	4.4	ND	ND		429280	NA
Bromoform	ETO15	NA	03/10/16	2	2.2	10	ND	ND		429280	NA
1,1,2,2-Tetrachloroethane	ETO15	NA	03/10/16	2	1.4	6.9	ND	ND		429280	NA
4-Ethyl Toluene	ETO15	NA	03/10/16	2	1.6	4.9	ND	ND		429280	NA
1,3,5-Trimethylbenzene	ETO15	NA	03/10/16	2	1.5	4.9	ND	ND		429280	NA
1,2,4-Trimethylbenzene	ETO15	NA	03/10/16	2	1.4	4.9	ND	ND		429280	NA
1,4-Dichlorobenzene	ETO15	NA	03/10/16	2	1.3	6.0	ND	ND		429280	NA
1,3-Dichlorobenzene	ETO15	NA	03/10/16	2	1.7	6.0	ND	ND		429280	NA
1,2-Dichlorobenzene	ETO15	NA	03/10/16	2	1.8	6.0	ND	ND		429280	NA
Hexachlorobutadiene	ETO15	NA	03/10/16	2	4.8	11	ND	ND		429280	NA
1,2,4-Trichlorobenzene	ETO15	NA	03/10/16	2	6.8	15	ND	ND		429280	NA
Naphthalene	ETO15	NA	03/10/16	2	2.9	10	ND	ND		429280	NA
(S) 4-Bromofluorobenzene	ETO15	NA	03/10/16	2	65	135	87.1 %			429280	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com



## SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	oup						נ נ	Date Rece Date Repo	ived: 03/ ² rted: 03/ ²	0/16 5/16
Client Sample ID:	Effluent	A Event 20	16		Lab Sample ID:			603070-001A			
Project Name/Location: Project Number:	33DP3 0 & P	SSDPS O & M Event 2016					F				
Date/Time Sampled:	03/10/16 / 11:	:30			Certified Clean WO # :						
Canister/Tube ID:					Received PSI : 0.0						
Collection Volume (L):	0.00				Corrected PSI: 0.0						
Tag Number:	649 Pacific Av	ve.									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytica Batch	Prep Batch
TPH-Gasoline	ETO15	NA	03/10/16	10	400	1800	6900	1,960.23	x	429294	NA
NOTE: x-TPHg result due t	o individual peaks of no	on-gasolin	e compound	ls withi	n gasoline	quantitati	ve range.				



## **MB Summary Report**

Work Order:	1603070	Prep I	Method:	NA	Prep Date:		NA	Prep Batch:	NA
Matrix:	Air	Analy Metho	tical	ETO15	Analyzed Date:		03/10/16	Analytical Batch:	429280
Units:	ppbv	methe	<i>.</i>					Buton	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluoromet	hane	0.30	1.00	ND					
1,1-Difluoroethane		0.18	10.0	ND					
1,2-Dichlorotetraflue	oroethane	0.70	2.00	ND					
Chloromethane		0.15	0.500	ND					
Vinyl Chloride		0.26	1.00	ND					
1,3-Butadiene		0.20	0.500	ND					
Bromomethane		0.18	0.500	ND					
Chloroethane		0.19	0.500	ND					
Trichlorofluorometh	ane	0.32	1.00	ND					
1,1-Dichloroethene		0.15	0.500	ND					
Freon 113		0.11	0.500	ND					
Carbon Disulfide		0.26	1.00	ND					
2-Propanol (Isoprop	yl Alcohol)	0.39	10.0	ND					
Methylene Chloride	1	0.17	8.00	ND					
Acetone		0.37	8.00	ND					
trans-1,2-Dichloroe	thene	0.16	0.500	ND					
Hexane		0.15	0.500	ND					
MTBE		0.24	0.500	ND					
tert-Butanol		0.22	2.00	ND					
Diisopropyl ether (D	DIPE)	0.21	0.500	ND					
1,1-Dichloroethane		0.18	0.500	ND					
ETBE		0.16	0.500	ND					
cis-1,2-Dichloroethe	ene	0.13	0.500	ND					
Chloroform		0.25	1.00	ND					
Vinyl Acetate		0.16	0.500	ND					
Carbon Tetrachlorid	le	0.14	0.500	ND					
1,1,1-Trichloroethar	ne	0.15	0.500	ND					
2-Butanone (MEK)		0.21	0.500	ND					
Ethyl Acetate		0.21	0.500	ND					
Tetrahydrofuran		0.10	0.500	ND					
Benzene		0.21	0.500	ND					
TAME		0.086	0.500	ND					
1,2-Dichloroethane	(EDC)	0.24	0.500	ND					
Trichloroethylene		0.26	1.00	ND					
1,2-Dichloropropan	e	0.29	1.00	ND					
Bromodichlorometh	ane	0.13	0.500	ND					
1,4-Dioxane		0.35	1.00	ND					
trans-1,3-Dichlorop	ropene	0.19	0.500	ND					
Toluene		0.25	0.500	ND					
4-Methyl-2-Pentanc	one (MIBK)	0.21	0.500	ND					
cis-1,3-Dichloroprop	pene	0.25	0.500	ND					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com



## **MB Summary Report**

Work Order:	1603070	Prep I	Method: NA		Prep Date:		NA	Prep Batch:	NA
Matrix:	Air	Analy	Analytical Method:		Anal	yzed Date:	03/10/16	Analytical	429280
Units:	ppbv	Metho						Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Tetrachloroethylene		0.13	0.500	ND					
1,1,2-Trichloroethan	е	0.17	0.500	ND					
Dibromochlorometha	ane	0.20	0.500	ND					
1,2-Dibromoethane	(EDB)	0.27	1.00	ND					
2-Hexanone		0.27	1.00	ND					
Ethyl Benzene		0.23	0.500	ND					
Chlorobenzene		0.15	0.500	ND					
1,1,1,2-Tetrachloroe	thane	0.15	0.500	ND					
m,p-Xylene		0.38	1.00	ND					
o-Xylene		0.19	0.500	ND					
Styrene		0.16	0.500	ND					
Bromoform		0.11	0.500	ND					
1,1,2,2-Tetrachloroethane		0.10	0.500	ND					
4-Ethyl Toluene		0.17	0.500	ND					
1,3,5-Trimethylbenz	ene	0.15	0.500	ND					
1,2,4-Trimethylbenzene		0.14	0.500	ND					
1,4-Dichlorobenzene		0.11	0.500	ND					
1,3-Dichlorobenzene		0.14	0.500	ND					
1,2-Dichlorobenzene		0.15	0.500	ND					
Hexachlorobutadien	е	0.22	0.500	ND					
1,2,4-Trichlorobenzene		0.46	1.00	ND					
Naphthalene		0.28	1.00	ND					
(S) 4-Bromofluorobe	enzene			85.3					
Work Order:	1603070	Prep	Method:	NA	Prep Date:		NA	Prep Batch:	NA
Matrix:	Air	Analy	Analytical ET		Analyzed Date:		03/10/16	Analytical	429294
Units:	ppbv	Method:						Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH-Gasoline		11	50.0	ND					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com



## LCS/LCSD Summary Report

								Raw valu	es are used in	quality contro	l assessment.
Work Order:	1603070		Prep Method: NA			Prep Da	te:	NA	NA Prep Batch: NA		
Matrix:	Air		Analytical	ETO1	5	Analyzed Date:		03/10/16	Analytical 429280		
Units:	ppbv		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethe	ne	0.15	0.500	ND	8	111	108	2.63	65 - 135	30	
Benzene		0.21	0.500	ND	8	102	111	8.60	65 - 135	30	
Trichloroethylene 0.26		1.00	ND	8	98.6	107	8.38	65 - 135 30			
Toluene 0.25		0.500	ND	8	102	116	12.5	65 - 135	30		
Chlorobenzene		0.15	0.500	ND	8	96.8	101	4.55	65 - 135	30	
(S) 4-Bromofluor	obenzene			ND	8	105	106		65 - 135		
Work Order:	1603070		Prep Meth	Prep Method: NA		Prep Da	te:	NA Prep Batch: NA			
Matrix:	Air		Analytical	ETO1	ETO15		Analyzed Date:		Analytical 429294		
Units:	ppbv		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH-Gasoline		11	50.0	ND	500	89.0	95.5	7.05	50 - 150	30	



## Laboratory Qualifiers and Definitions

#### **DEFINITIONS:**

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

**Duplicate** - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

**Practical Quantitation Limit (PQL)** - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

**Tentatively Identified Compound (TIC)** - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

#### LABORATORY QUALIFIERS:

**B** - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

**E** - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

**NR** - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.



## Sample Receipt Checklist

Client Name: Trinity Source Group	Date and Time Received: 3/10/2016 14:30
Project Name: SSDPS O & M Event 2016	Received By: <u>ke</u>
Work Order No.: <u>1603070</u>	Physically Logged By: Idi
	Checklist Completed By: Idi
	Carrier Name: Client Drop Off
Chain of Custod	y (COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Rec	eipt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	d Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>



ABORATORY, INC. 483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293 www.torrentlab.com				• NO	• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •								LAB WORK ORDER NO [603070	
Company Name:	Trinity Sour	e Group,	Tac.		Env.	] н 🖸	Food 🔲	Special Pro	ject Name/	#: SSDPS	6 OHN	Eve	At 2016	
Address: 119	Encinal Stree	4 11					Purpose	ə:					1 60.0	
City: Santa	Cruz	State:	Zip	Code:	9506	()	Special	Instruction	ns / Comme	ents:				
Telephone: 831	-426-5600	Cell:												
REPORT TO: Da	vid Reinsma		)				P.O. #:	103.0	501.00	1	EMAIL:	abstri	nitvogmail.a	
TURNAROUND TIME		SAMPLE TYPE		REPORT	FORMAT:	- (	had						1 ,	
10 Work Days       7 Work Days       5 Work Days	4 Work Days 1 Work Day 3 Work Days Noon - Nxt D 2 Work Days 2 - 8 Hours	lay Storm Water Waste Water Ground Wate Soil	Air Wipe Other	Excel/ EDF CC Le	EDD evel III evel IV	0-16 FU	-15 Sta						ANALYSIS REQUESTED	
LAB ID CANISTER	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	F	10						REMARKS	
Alda	Effluent	3/10/16	Arr	1	I-L Tedlar	X	X							
								_		-		-		
									_					
													-	
Relinquished By	Print: Sypewcer	Davis Date: 31	10/16	Time:	14:32	Receiv	ed By:	Eurs	Kathit	t Evarts	Date: 3-10	-16	Time: 141,30	
Relinquished By:	Print:	Date:		Time:		Receiv	ed By:		Print:		Date:		Time:	
Nere Samples Receive NOTE: Samples are di g In By:	ed in Good Condition?	Yes NO S days from date of 1	amples on lo	ce? 2 Ye s other arra	es DNO	Method are made 3/10	d of Shipm	In Reviewe	OFF	Temp S	ample seals °C Da	intact?	Yes NO N/	

# GEOTRACKER ESI

#### **UPLOADING A EDF FILE**

	SUCCESS
	Processing is complete. No errors were found! Your file has been successfully submitted!
<u>Submittal Type:</u>	EDF
<u>Report Title:</u>	2016 SUBSLAB VAPOR DEPRESSURIZATION SYSTEM PERFORMANCE REPORT
<u>Report Type:</u>	Operation and Maintenance Plan/Monitoring Report
Facility Global ID:	SL0600150413
Facility Name:	SEARWAY PROPERTY
<u>File Name:</u>	TSG 1603070 EDF.zip
Organization Name:	Trinity Source Group, Inc.
<u>Username:</u>	TRINITY SOURCE GROUP
IP Address:	63.249.96.11
Submittal Date/Time:	6/30/2016 10:31:29 AM
<u>Confirmation</u> Number:	7564051032
	VIEW QC REPORT
	VIEW DETECTIONS REPORT

Copyright © 2016 State of California

# GEOTRACKER ESI

**UPLOADING A GEO_REPORT FILE** 

	SUCCESS						
Your GEO_REPORT file has been successfully submitted!							
Submittal Type:	ubmittal Type: GEO_REPORT						
<u>Report Title:</u>	2016 SUBSLAB VAPOR DEPRESSURIZATION SYSTEM PERFORMANCE REPORT						
<u>Report Type:</u>	Operation and Maintenance Plan/Monitoring Report						
Report Date:	6/30/2016						
Facility Global ID:	SL0600150413						
Facility Name:	SEARWAY PROPERTY						
File Name:	103_2016 SSVD System Performance Report_6.30.16.pdf						
Organization Name:	Trinity Source Group, Inc.						
<u>Username:</u>	TRINITY SOURCE GROUP						
IP Address:	63.249.96.11						
Submittal Date/Time:	6/30/2016 4:16:12 PM						
Confirmation Number:	8539999604						

Copyright © 2016 State of California