## **RECEIVED**

By Alameda County Environmental Health 3:20 pm, Jul 01, 2016

June 30, 2016

Ms. Anne Jurek Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Perjury Statement-

2016 Sub-Slab Vapor Depressurization System Performance Report

Searway Property (SLIC Case No. RO0002584) 649 Pacific Avenue

Alameda, California

Dear Ms. Jurek,

"I declare under penalty of perjury, that the information and / or recommendations contained in the attached document or report are true and correct to the best of my knowledge."

Timber Dell Properties, LLC

DocuSigned by:

BD4B60078F0043D...

Donald W. Lindsey, member



June 30, 2016

Trinity Project: 103.001.001

Ms. Anne Jurek Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Parkway, Suite 250 Alameda, CA 94502-6577

Re: 2016 Sub-Slab Vapor Depressurization System Performance Report

Searway Property 649 Pacific Avenue Alameda, California

Dear Ms. Jurek:

Trinity Source Group, Inc. (Trinity) has prepared this 2016 Sub-Slab Vapor Depressurization System Performance Report (Report) on behalf of Timber Del Properties, for the referenced site (Figure 1). The operations and maintenance (O&M) activities are described in the following sections.

The sub-slab vapor depressurization (SSVD) system was installed at the existing commercial building at the site in order to prevent volatile organic compounds (VOCs) from migrating from the sub-slab area into indoor air. The SSVD system was installed in 2008 and operates continuously. Monitoring is currently conducted annually.

#### SUB-SLAB VAPOR DEPRESSURIZATION SYSTEM DESCRIPTION

Sub-slab air is withdrawn from the sub-slab material by means of an applied vacuum. The extracted air is routed through piping and discharged to the atmosphere.

The SSVD system includes two horizontal extraction wells located near former depressurization points DPT-1 and DPT-2, with extraction well pipe runs trenched to nearby walls. The pipe runs continue up to the first floor ceiling, where they are manifolded together and connected to a suction fan located in the attic. The exhaust air is piped to the southwest corner of the roof and discharged through a 6-foot tall stack. Vacuum is applied to the extraction wells using an electric fan blower equipped with a flow meter. The SSVD system was originally constructed with carbon treatment, but the carbon was removed in May 2009 due to very low VOC influent concentrations. The system layout is presented on Figure 2. The Sub-Slab System Process and Instrumentation Diagram is shown on Figure 3.

Sub-slab extraction system influent and effluent analytical data are summarized in Table 1. Sub-slab extraction system influent throughput and mass removal of VOCs are summarized in Table 2. Sub-slab

v: 831.426.5600

f: 831.426.5602

extraction system effluent throughput and discharge of VOCs are summarized in Table 3.

The Sub-Slab System Extraction Well Detail is shown on Figure 4. Each extraction well is a 3-foot long, 4-inch diameter, horizontal slotted PVC casing, which is connected to 4-inch diameter PVC blank pipe runs. The slotted pipe is set in the middle of the sub-base material. PVC screen extends across the sub-base material.

The Sub-Slab System Monitoring Point Detail is shown on Figure 5. The monitoring points (VS-1 through VS-22) were constructed in accordance with the design specifications presented in the EPA document, "Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site using Basement and Sub-Slab Air Samples" (EPA 600 R-05/147, March 2006). These monitoring points have proven to be effective in sample collection and measuring the pressure field established by an applied vacuum. Monitoring point locations are shown on Figure 2.

The Bay Area Air Quality Management District (BAAQMD) application number is 17506 and the plant number is 18970. The Permit to Operate is included in Attachment A. On March 19, 2012 Trinity requested a change in monitoring frequency from quarterly to annually, which was granted by BAAQMD. An approval letter of the monitoring frequency change is included in Attachment B.

#### **SSVD SYSTEM O&M SUMMARY**

Date of O&M Event: March 10, 2016
Sample Containers: 1-Liter Tedlar Bag

Sample Collection Point: Effluent

System Conditions: System running and passed smoke pen test for O&M event

Trinity collected an effluent sample and delivered it to Torrent Laboratory, Inc., a California-certified laboratory (ELAP# 1991). The sample was analyzed for VOCs and Stoddard solvent according to EPA Method TO-15 during this annual sampling event. The O&M field data sheets are included in Attachment C and the certified analytical report is included in Attachment D. The laboratory noted that for the TPH Stoddard analysis; "No Stoddard solvent standard was available at the time of analysis for quantitation. Sample was quantitated against a gasoline standard. Individual peaks do not match either gasoline or Stoddard solvent pattern."

### SSVD SYSTEM PERFORMANCE

- SSVD has discharged a total of approximately 9.09 pounds of VOCs from March 11, 2015 to March 10, 2016, during approximately 365 days of operation.
- VOC removal rate for the period of March 11, 2015 to March 10, 2016 is 0.02893 pounds per day.
- The system is performing as expected with removal of VOCs and depressurization of the sub-slab area.

- The low concentrations of VOCs discharged to the atmosphere are well within the permitted discharge allowed for specific compounds and for the total limit of 10 pounds per day. No violations of the BAAQMD permit have occurred.
- All effluent VOC concentrations from March 11, 2015 to March 10, 2016 are less than Residential and Commercial Land Use Site-Specific Screening Levels<sup>1</sup> (Table 1). It should be noted that the Site-Specific Screening Levels have been updated to utilize the February 2016 Revision 3 Environmental Screening Levels (ESLs) issued by the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). For each VOC, the Residential and Commercial Indoor Air ESLs were selected, and divided by the appropriate Site-Specific Attenuation Factor, to derive the Site-Specific Screening Level.
- In addition to updating ESL concentrations, in the February 2016 ESL update, the SFBRWQCB adopted default sub-slab vapor to indoor air attenuation factors (SSIA AFs). In the December 2013 ESL update, the SFBRWQCB did not provide default SSIA AFs and instead recommended site-specific assessments to establish SSIA AFs as needed. The February 2016 update adopted default SSIA AFs derived using a vapor-flux approach previously used in 2003 to 2008 SFBRWQCB ESLs with climate-adjusted inputs. The vapor-flux approach is based on the vapor-entry-to-building component of the Johnson and Ettinger model (Johnson and Ettinger, 1991). Climate-adjusted inputs to the model are based on regional-adjusted climate inputs for soil vapor entry rates to indoor air and indoor air to outdoor air exchange rates proposed by Brewer et al. 2014<sup>2</sup>. The adopted commercial and residential SSIA AFs are 0.001 and 0.002, respectively, and are included in the derivation of sub-slab vapor ESLs. All effluent VOC concentrations from March 11, 2015 to March 10, 2016 are less than SFBRWQCB default commercial and residential ESLs with the exception of carbon tetrachloride, which only exceeds the residential ESLs.

#### **RECOMMENDATIONS**

All effluent VOC concentrations are less than residential and commercial Site-Specific Screening Levels. Additionally, all effluent VOC concentrations are less than SFBRWQCB commercial ESLs. Therefore, Trinity recommends that the site be considered for case closure.

<sup>&</sup>lt;sup>1</sup> Trinity Source Group, Inc., Sub-Slab Attenuation Factor Determination Summary Report, September 20, 2010.

<sup>2</sup> Brewer, R., J. Nagashima, M. Rigby and M. Schmidt, and Harry O'Neill, 2014. Estimation of Generic Subslab Attenuation Factors for Vapor Intrusion Investigations. Groundwater Monitoring & Remediation, December 15.

Should you have any questions regarding this *Report*, please call Trinity at (831) 426-5600.

Sincerely,

# TRINITY SOURCE GROUP, INC. A California Corporation

Information, conclusions, and recommendations made by Trinity in this document regarding this site have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

Debra J. Moser, PG, CEG, CHG Senior Geologist DEBRA J.

MOSER

CERTIFIED
HYDROGEOLOGIST
No. 165

WAR OF CALIFORNIA

Eric Choi Project Scientist

Grilloi

#### **DISTRIBUTION**

A copy of this report has been forwarded to:

Mr. Don Lindsey Timber Del Properties, LLC 1406 Webster Street Alameda, CA 94501 Ms. Miranda Vega The Mechanics Bank 1999 Harrison St., Suite 810 Oakland, CA 94612

#### Attachments:

- Table 1 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data
- Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs
- Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs
- Figure 1 Site Location Map
- Figure 2 Sub-Slab Depressurization System Layout
- Figure 3 Sub-Slab Depressurization System Process and Instrumentation Diagram
- Figure 4 Sub-Slab Depressurization System Extraction Well Detail
- Figure 5 Sub-Slab Vapor Monitoring Point Detail
- Attachment A BAAQMD Permit to Operate
- Attachment B BAAQMD Correspondence
- Attachment C O&M Field Data Sheets
- Attachment D Certified Analytical Report, Chain-of-Custody and GeoTracker Upload Documentation

## **TABLES**

Table 1

Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

|                |                      | EPA Method<br>TO-3(MOD)*                  | EPA Method TO-15 |                     |                                  |                   |                    |                   |                     |                  |       |
|----------------|----------------------|-------------------------------------------|------------------|---------------------|----------------------------------|-------------------|--------------------|-------------------|---------------------|------------------|-------|
| Sample<br>Date | Sample<br>Location   | Stoddard<br>µg/m³                         | Benzene<br>µg/m³ | Chloroform<br>µg/m³ | Carbon<br>Tetrachloride<br>µg/m³ | PCE<br>µg/m³      | TCE<br>µg/m³       | VC<br>µg/m³       | 2-Butanone<br>μg/m³ | Acetone<br>µg/m³ | Notes |
| 9/10/2008      | Influent<br>Effluent | 4,900 <sup>c</sup><br>610 <sup>c, d</sup> | <80<br><1.8      | 560<br><3.9         | 3,900<br>29                      | 2,600<br>17       | <130<br><1.1       | <64<br><0.5       | 300<br><0.88        | <480<br>71       | k     |
| 9/11/2008      | Influent             | 2,400 <sup>c</sup>                        | <32              | 480                 | 3,200                            | 2,500             | <54                | <26               | 260                 | <190             | e     |
|                | Effluent             | 710 <sup>c</sup>                          | <1.8             | <3.9                | <1.9                             | <2.6              | <1.1               | <0.5              | 14                  | 180              | e     |
| 10/10/2008     | Influent             | 960 <sup>b</sup>                          | 65               | 110                 | 880                              | 880               | <5.4               | <2.6              | 27                  | 51               | l     |
|                | Effluent             | 740 <sup>b</sup>                          | <3.2             | 54                  | 200                              | 13                | <5.4               | <2.6              | <3.0                | 25               | m     |
| 11/6/2008      | Influent             | 1,700 <sup>a</sup>                        | <1.6             | 58                  | 690                              | 520               | <2.7               | <1.3              | 23                  | 62               | f     |
|                | Effluent             | 2,800 <sup>a</sup>                        | 1.9              | 53                  | 770                              | 14                | <2.7               | <1.3              | 6.5                 | 37               | g     |
| 12/4/2008      | Influent             | 2,400 <sup>h</sup>                        | 20               | 110                 | 780                              | 1,100             | <6.7               | <3.2              | 110                 | <24              | i     |
|                | Effluent             | 2,100 <sup>h</sup>                        | 18               | 120                 | 1,100                            | 40                | <5.4               | <2.6              | 82                  | <19              | j     |
| 1/2/2009       | Influent             | <3,500                                    | <16              | 26                  | 560                              | 800               | <27                | <13               | <15                 | <95              | n     |
|                | Effluent             | <3,500                                    | <8.0             | 73                  | 920                              | 220               | <13                | <6.4              | <7.4                | <48              | o     |
| 2/9/2009       | Influent             | 2,300 <sup>p</sup>                        | <3.2             | 64                  | 480                              | 680               | <5.4               | <2.6              | 9.6                 | 29               | t     |
|                | Effluent             | 1,800 <sup>p</sup>                        | <3.2             | <4.9                | 10                               | <6.8              | <5.4               | <2.6              | <3.0                | 20               | s     |
| 5/20/2009      | Influent<br>Effluent | 1,800 <sup>q</sup>                        | <4.5             | Carb<br><9.8        | on Vessels Re<br><4.7            | moved; lı<br><6.4 | nfluent no<br><2.6 | longer sa<br><1.2 | mpled.<br><2.2      | <2.9             | r     |
| 8/7/2009       | Effluent             | 4,500 <sup>u</sup>                        | <1.6             | <2.4                | <3.2                             | <3.4              | <2.7               | <1.3              | 2.0                 | 24               | ٧     |

Table 1

Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

|                |                    | EPA Method<br>TO-3(MOD)* |                    | EPA Method TO-15    |                                  |                    |                    |                    |                     |                        |        |  |  |  |
|----------------|--------------------|--------------------------|--------------------|---------------------|----------------------------------|--------------------|--------------------|--------------------|---------------------|------------------------|--------|--|--|--|
| Sample<br>Date | Sample<br>Location | Stoddard<br>µg/m³        | Benzene<br>µg/m³   | Chloroform<br>µg/m³ | Carbon<br>Tetrachloride<br>µg/m³ | PCE<br>µg/m³       | TCE<br>µg/m³       | VC<br>µg/m³        | 2-Butanone<br>μg/m³ | Acetone<br>µg/m³       | Notes  |  |  |  |
| 11/6/2009      | Effluent           | 2,400 <sup>u</sup>       | 5.4                | 85                  | 670 <sup>x</sup>                 | 1,100 <sup>x</sup> | <2.7               | <1.3               | <1.5                | 84                     | W      |  |  |  |
| 2/2/2010       | Effluent           | 2,000 <sup>y</sup>       | 5.6                | 40                  | 280                              | 430                | <2.7               | <1.3               | <1.5                | 31                     | Z      |  |  |  |
| 5/5/2010       | Effluent           | <400                     | 2.24               | 77.4                | 562                              | 857                | <5.4               | <2.6               | <1.5                | 34.9                   | aa     |  |  |  |
| 8/5/2010       | Effluent           | <400                     | 6.78               | 75.8                | <6.3                             | 686                | <11                | <5.2               | <3.0                | 48                     | ab, ac |  |  |  |
| 11/30/2010     | Effluent           | <350                     | <3.2               | <9.8                | 259                              | 290                | <11                | <5.2               | <3.0                | <19                    | ad     |  |  |  |
| 2/22/2011      | Effluent           | <350                     | <3.2               | 26.8                | 235                              | 261                | <11                | <5.2               | <3.0                | 27.4                   | ae     |  |  |  |
| 6/1/2011       | Effluent           | <350                     | <3.2               | 25.5                | 254                              | 354                | <11                | <5.2               | <3.0                | 62.4                   | af     |  |  |  |
| 8/25/2011      | Effluent           | <350                     | <3.2               | 37.9                | 287                              | 332                | <11                | <5.2               | <3.0                | <19                    | r, ag  |  |  |  |
| 11/21/2011     | Effluent           | <350                     | <3.2               | 26.4                | 355                              | 635                | <11                | <5.2               | <3.0                | <19                    |        |  |  |  |
| 3/6/2012       | Effluent           | <700                     | <3.2               | 44.3                | 447                              | 626                | <11                | <5.2               | <3.0                | <19                    | r, ah  |  |  |  |
| 3/25/2013      | Effluent           | <700                     | <3.2               | 38.5                | 567                              | 578                | <11                | <5.2               | <3.0                | <38                    | r      |  |  |  |
| 3/11/2014      | Effluent           | <700                     | 2.21               | 27.3                | 229                              | 366                | <5.4               | <2.6               | <1.5                | 36.5                   | ai     |  |  |  |
| 3/11/2015      | Effluent           | <200 <sup>ak, al</sup>   | <3.4 <sup>an</sup> | <6.2 <sup>an</sup>  | <4.3 <sup>an</sup>               | 890 <sup>an</sup>  | <6.9 <sup>an</sup> | <3.3 <sup>an</sup> | <3.1 <sup>an</sup>  | 43.3 <sup>am, an</sup> | aj, ao |  |  |  |
| 3/10/2016      | Effluent           | 6,900 <sup>aq</sup>      | <3.2 <sup>ap</sup> | 14.6 <sup>ap</sup>  | 56.1 <sup>ap</sup>               | 173 <sup>ap</sup>  | <11 <sup>ap</sup>  | <5.2 <sup>ap</sup> | <3.0 <sup>ap</sup>  | <38 <sup>ap</sup>      | ar     |  |  |  |

Searway Property 649 Pacific Avenue Alameda, California

|        |                                                                                        | EPA Method<br>TO-3(MOD)* |            |                   | EP                | A Meth                          | od TO-            | 15                |                   |             |       |
|--------|----------------------------------------------------------------------------------------|--------------------------|------------|-------------------|-------------------|---------------------------------|-------------------|-------------------|-------------------|-------------|-------|
|        |                                                                                        |                          |            |                   | Carbon            |                                 |                   |                   |                   |             |       |
| Sample | Sample                                                                                 | Stoddard                 | Benzene    | Chloroform        | Tetrachloride     | PCE                             | TCE               | VC                | 2-Butanone        | Acetone     | Notes |
| Date   | Location                                                                               | μg/m <sup>3</sup>        | μg/m³      | μg/m <sup>3</sup> | μg/m <sup>3</sup> | µg/m³                           | μg/m <sup>3</sup> | μg/m <sup>3</sup> | μg/m <sup>3</sup> | µg/m³       |       |
|        | Come                                                                                   |                          |            | in Dina at Fam    |                   | Diale La                        |                   | /3\ Da            | aidontial Duan    | anti Ilaa   |       |
|        | Scree                                                                                  | ening Levels fo          |            |                   |                   |                                 |                   |                   |                   |             |       |
|        |                                                                                        | 140                      | 0.097      | 0.012             | 0.067             | 0.48                            | 0.68              | 0.036             | N/A               | 32,000      |       |
|        | Site-Specific Screening Levels for Sub-Slab Vapor (µg/m³) - Residential Property Use** |                          |            |                   |                   |                                 |                   |                   |                   |             |       |
|        |                                                                                        | 339,806                  | 235        | 29                | 163               | 1,165                           | 1,650             | 87                | N/A               | 77,669,903  |       |
|        |                                                                                        |                          | SFBRW      | QCB Sub-Sla       | b Vapor ESL       | s¹ (µg/m³                       | ³) - Resid        | ential Pro        | perty Use         |             |       |
|        |                                                                                        | 68,000                   | 48         | 61                | 33                | 240                             | 240               | 4.7               | 2,600,000         | 16,000,000  |       |
|        | Scree                                                                                  | ning Levels fo           | r Indoor A | ir-Direct Exp     | osure Human       | Risk Lev                        | vels¹ (µg/        | m³) - Cor         | mmercial Prop     | perty Use   |       |
|        |                                                                                        | 570                      | 0.42       | 0.53              | 0.29              | 2.1                             | 3.0               | 0.16              | N/A               | 140,000     |       |
|        | Site-Specific Screening Levels for Sub-Slab Vapor (µg/m³) - Commercial Property Use    |                          |            |                   |                   |                                 |                   |                   |                   |             |       |
|        |                                                                                        | 1,383,495                | 1,019      | 1,286             | 704               | 5,097                           | 7,282             | 388               | N/A               | 339,805,825 |       |
|        |                                                                                        |                          | SFBRW      | QCB Sub-Sla       | b Vapor ESLs      | <sup>1</sup> (µg/m <sup>3</sup> | ) - Comm          | nercial Pr        | operty Use        |             |       |
|        |                                                                                        | 57,500                   | 420        | 530               | 290               | 2,100                           | 3,000             | 160               | 22.000.000        | 140.000.000 |       |

#### Notes:

Stoddard = Total petroleum hydrocarbons as gasoline.

\* = Method TO-3 (mod) no longer offered by laboratory, Stoddard to be analyzed by Method TO-15 as of 2015 O&M event.

PCE = Tetrachloroethylene or Perchloroethylene

TCE = Trichloroethylene

VC = Vinyl Chloride

VOCs = Volatile Organic Compounds

MTBE = Methyl tertiary butyl ether

TBA = Tert-Butanol

TAME = Tert amyl methyl ether

 $\mu g/m^3$  = micrograms per cubic meter, also equivalent to parts per billion (ppb)

< = Less than laboratory analytical method reporting limit.</p>

|                |                                                                                                                                                                                                                      | EPA Method<br>TO-3(MOD)*            |                          | EPA Method TO-15                |                                  |              |                         |                          |                     |                  |       |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|---------------------------------|----------------------------------|--------------|-------------------------|--------------------------|---------------------|------------------|-------|--|
| Sample<br>Date | Sample<br>Location                                                                                                                                                                                                   | Stoddard<br>µg/m³                   | Benzene<br>µg/m³         | Chloroform<br>µg/m <sup>3</sup> | Carbon<br>Tetrachloride<br>µg/m³ | PCE<br>µg/m³ | TCE<br>µg/m³            | VC<br>µg/m³              | 2-Butanone<br>µg/m³ | Acetone<br>µg/m³ | Notes |  |
| Notes Continu  | ed:                                                                                                                                                                                                                  |                                     |                          |                                 |                                  |              |                         |                          |                     |                  |       |  |
| NS             | NS = No sample collected                                                                                                                                                                                             |                                     |                          |                                 |                                  |              |                         |                          |                     |                  |       |  |
|                |                                                                                                                                                                                                                      |                                     |                          |                                 |                                  |              |                         |                          | standard pattern.   |                  |       |  |
| b              | •                                                                                                                                                                                                                    | omatogram doe                       |                          |                                 |                                  |              |                         | l). Reporte              | d value due to      |                  |       |  |
|                | •                                                                                                                                                                                                                    | f non-gasoline c                    | •                        | •                               | •                                |              | line.                   |                          |                     |                  |       |  |
|                |                                                                                                                                                                                                                      | al Stoddard (dis                    |                          |                                 |                                  |              | 4- 4b - MDI             |                          |                     |                  |       |  |
| a              |                                                                                                                                                                                                                      | mit increased du<br>alues between t |                          | •                               |                                  | -            | to the MDL              |                          |                     |                  |       |  |
| e              |                                                                                                                                                                                                                      |                                     |                          |                                 |                                  |              | o the MDI               |                          |                     |                  |       |  |
|                | e = Reporting limit increased due to low initial pressure in canister. Results reported to the MDL. f = Other VOCs detected are: Carbon Disulfide 7.7 μg/m³, 1,2,4-trimethylbenzene 2.9 μg/m³, m,p-xylene 4.7 μg/m³, |                                     |                          |                                 |                                  |              |                         |                          |                     |                  |       |  |
|                |                                                                                                                                                                                                                      | chloride 4.5 µg/r                   |                          |                                 | , , , .                          |              | - 1-3- ,                | ,, , , , ,               | 1.5.                |                  |       |  |
| a              | •                                                                                                                                                                                                                    | s detected are:                     |                          | . •                             | m.p-xvlene 3.6                   | ug/m³. and   | toluene 2               | 7 µg/m³.                 |                     |                  |       |  |
| _              |                                                                                                                                                                                                                      | omatogram doe                       |                          |                                 | •                                | . •          |                         | . •                      | resence of          |                  |       |  |
|                |                                                                                                                                                                                                                      | rd solvent comp                     |                          |                                 |                                  |              |                         | ·                        |                     |                  |       |  |
| i              | = Other VOC                                                                                                                                                                                                          | s detected are:                     | 1,2,4-trimethy           | benzene 66 µ                    | g/m³, 1,3,5-trim                 | ethylbenze   | ne 14 μg/n              | 1 <sup>3</sup> ,         |                     |                  |       |  |
|                | 4-ethyl tolu                                                                                                                                                                                                         | ene 48 μg/m³, e                     | thyl benzene             | 49 μg/m³, m,p                   | -xylene 270 µg/                  | m³, o-xyler  | ne 54 µg/m <sup>3</sup> | 3 and tolue              | ne 490 µg/m³        |                  |       |  |
| j              | = Other VOC                                                                                                                                                                                                          | s detected are:                     | 1,2,4-trimethy           | benzene 38 µ                    | g/m <sup>3</sup> , 1,3,5-trim    | ethylbenze   | ne 7.6 μg/r             | m <sup>3</sup> , 4-ethyl | toluene 35 µg/m     | 3,               |       |  |
|                | ethyl benze                                                                                                                                                                                                          | ne 45 μg/m³, m                      | p-xylene 240,            | μg/m <sup>3,</sup> o-xyler      | ie 44 µg/m³, an                  | d toluene 3  | 80 µg/m³                |                          |                     |                  |       |  |
| k              | = Other VOC                                                                                                                                                                                                          | detected is: m,p                    | o-xylene 4.1 μ           | g/m³                            |                                  |              |                         |                          |                     |                  |       |  |
| I              | = Other VOC                                                                                                                                                                                                          | s detected are:1                    | ,2,4-trimethyl           | penzene 8.2 μ                   | g/m <sup>3</sup> , 4-ethyl to    | uene 8.8 µ   | ıg/m³, m,p-             | xylene 53                | µg/m³, MTBE 220     | 0 μg/m³,         |       |  |
|                | o-xylene 22                                                                                                                                                                                                          | 2 μg/m³, TBA 55                     | μg/m <sup>3</sup> , TAME | 21 μg/m³, and                   | d toluene 82µg/                  | $n^3$        |                         |                          |                     |                  |       |  |
| m              | m = Other VOCs detected are: MTBE 180 μg/m³, TAME 8.4 μg/m³, and toluene 7.3 μg/m³                                                                                                                                   |                                     |                          |                                 |                                  |              |                         |                          |                     |                  |       |  |
| n              | = Toluene de                                                                                                                                                                                                         | tected at a conc                    | entration of 3           | 7 μg/m³                         |                                  |              |                         |                          |                     |                  |       |  |
|                |                                                                                                                                                                                                                      | tected at a conc                    |                          | . •                             |                                  |              |                         |                          |                     |                  |       |  |
| р              | -                                                                                                                                                                                                                    | •                                   | -                        | -                               |                                  |              | -                       |                          | gram does not m     | atch             |       |  |
|                | •                                                                                                                                                                                                                    | uel standard par                    |                          | •                               | •                                |              | •                       | •                        |                     |                  |       |  |
| q              | •                                                                                                                                                                                                                    | rted as a Stodda                    |                          | •                               | •                                |              | •                       | tuel patter              | n.                  |                  |       |  |
|                | Reported V                                                                                                                                                                                                           | alue due to indiv                   | riduai non-tarç          | jet peaks (nea                  | vy ena) witnin ra                | anage of C   | 5-012.                  |                          |                     |                  |       |  |

|                |                                               | EPA Method<br>TO-3(MOD)* |                  |                                 | EF                            | PA Meth                  | od TO-1       | 15                       |                               |                              |        |
|----------------|-----------------------------------------------|--------------------------|------------------|---------------------------------|-------------------------------|--------------------------|---------------|--------------------------|-------------------------------|------------------------------|--------|
|                |                                               |                          |                  |                                 | Carbon                        |                          |               |                          |                               |                              |        |
| Sample<br>Date | Sample<br>Location                            | Stoddard<br>µg/m³        | Benzene<br>µg/m³ | Chloroform<br>µg/m <sup>3</sup> | Tetrachloride                 | PCE<br>µg/m³             | TCE<br>μg/m³  | VC<br>µg/m³              | 2-Butanone<br>µg/m³           | Acetone<br>µg/m <sup>3</sup> | Note   |
| tes Continue   | ed:                                           |                          |                  |                                 |                               |                          |               |                          |                               |                              |        |
|                |                                               | ng limts were rai        | sed due to lin   | nited sample re                 | ceived (tedlar l              | ag). Resu                | Its reported  | to the MD                | L.                            |                              |        |
|                | •                                             | is detected at a         |                  |                                 | •                             | 0,                       | •             |                          |                               |                              |        |
|                |                                               | s detected at a          |                  |                                 |                               |                          |               |                          |                               |                              |        |
|                |                                               | rted as a Stodda         |                  | . •                             | natogram does                 | not match                | requested     | fuel standa              | ard pattern.                  |                              |        |
|                | Result due                                    | to individual pea        | aks of unident   | ified compound                  | ds within C5-C1               | 2 range qu               | antified as   | Stoddard S               | Solvent.                      |                              |        |
| V              | = Other VOC                                   | s detected are: 1        | 1,2,4-Trimeth    | /lbenzene 5.9                   | ug/m³, isoprop                | anol 21 µg/              | m³ and tolu   | uene 2.3                 | µg/m³                         |                              |        |
| W              | = Other VOC                                   | s detected are: 1        | 1,2,4-Trimeth    | lbenzene 140                    | μg/m <sup>3</sup> , 1,3,5-T   | rimethylbe               | nzene 38 µ    | ıg/m³,                   |                               |                              |        |
|                | 4-Ethyl Tolu                                  | uene 130 μg/m³,          | ethylbenzen      | e 83 µg/m³, tot                 | al xylenes 322                | ug/m³, met               | hylene chlo   | oride 8.1 µg             | g/m <sup>3</sup>              |                              |        |
|                | t-butyl alco                                  | hol 29 µg/m³, to         | luene 35 µg/ı    | n <sup>3</sup> .                |                               |                          |               |                          |                               |                              |        |
| х              |                                               |                          |                  |                                 | the instrument                | Due to ho                | old time res  | trictions, n             | o diluted analysi             | s was performe               | d.     |
| У              | = TPH as Sto                                  | ddard Solvent re         | esult due to u   | nidentified com                 | pounds within                 | ange quar                | ntified as St | oddard So                | lvent.                        |                              |        |
| z              | Other VOC:                                    | s detected are: 1        | 1,2,4-Trimeth    | lbenzene 120                    | μg/m <sup>3</sup> , 1,3,5-T   | imethylber               | nzene 40 µ    | g/m³, 4-Eth              | nyl Toluene 120               | μg/m³,                       |        |
|                | Carbon disu                                   | ulfide 4.1 µg/m³,        | Isopropanol      | 21 µg/m³, total                 | -xylene 171 µg,               | m <sup>3</sup> , Tert-b  | utyl Alcoho   | l 13μg/m <sup>3,</sup> : | and Toluene 15 <mark>լ</mark> | ug/m³                        |        |
| aa             | = Other VOC                                   | s detected are: 7        | Tert-butanol 6   | 3.8 µg/m³, Tol                  | uene 10.3 µg/m                | <sup>3</sup> , total-Xyl | ene 30.01     | μg/m³,                   |                               |                              |        |
|                | 4-ethyl tolue                                 | ene 19.5 µg/m³,          | 1,3,5-Trimeth    | ylbenzene 8.1                   | 8 μg/m <sup>3</sup> , and 1   | 2,4-Trimet               | hylbenzene    | e 17.2 μg/n              | n <sup>3</sup> .              |                              |        |
| ab             | = Other VOC                                   | s detected are: 0        | Carbon Disulf    | ide 12.4 µg/m³                  | , tert-Butanol 1              | 09 μg/m³, <sup>-</sup>   | Toluene 21    | .7 μg/m³, n              | n,p-Xylene 24.3               | μg/m³,                       |        |
|                | o-xylene 10                                   | 0.4 µg/m³, 1,3,5-        | Trimethylben     | zene 5.88 µg/m                  | n <sup>3</sup> , 1,2,4-Trimet | hylbenzene               | e 15.5 µg/m   | 1 <sup>3</sup> .         |                               |                              |        |
| ac             | <ul><li>The results<br/>(tedlar bag</li></ul> |                          | vents are rep    | orted using the                 | ir MDL, reportir              | ng limit was             | s raised due  | e to insuffic            | cient sample volu             | ume received                 |        |
| ad             | = Other VOC                                   | s detected are: 7        | Γoluene 116 μ    | ıg/m³, m,p-Xyl                  | ene 13.5 µg/m³                | , and o-Xyl              | ene 6.02 µ    | g/m³.                    |                               |                              |        |
| ae             | = Toluene on                                  | ly other VOC de          | tected at a co   | ncentration of                  | 16.4 µg/m³.                   |                          |               |                          |                               |                              |        |
| af             | = Other VOC                                   | s detected are: 0        | Carbon Disulf    | ide 6.63 µg/m³                  | , and Toluene 9               | 06.9 μg/m <sup>3</sup>   | •             |                          |                               |                              |        |
| **             | = Trinity Sour                                | ce Group, Inc, S         | Sub-Slab Atte    | nuation Factor                  | Determination                 | Summary I                | Report , Se   | ptember 20               | 0, 2010.                      | Note that calcu              | lation |
|                | errors for be                                 | enzene and viny          | l chloride scr   | eening levels h                 | ave been corre                | cted                     |               |                          |                               |                              |        |
| ag             | = Other VOC                                   | s detected are: 0        | Carbon Disulf    | ide 29.1 µg/m³                  | , tert-Butanol 2              | $6.1  \mu g/m^3$ ,       | and Toluer    | ne 4.41 µg/              | m³                            |                              |        |
|                |                                               | s detected are: N        | -                |                                 |                               |                          |               |                          |                               |                              |        |
| ai             | = Other VOC                                   | s detected are: H        | Hexane 3.50      | ug/m³, tert-Buta                | anol 17.1 µg/m <sup>3</sup>   | , Tetrahyd               | rofuran 2.4   | $6 \mu g/m^3$ , To       | oluene 25.5 μg/r              | m³,                          |        |

|                                                                                                                                           |                          | EPA Method<br>TO-3(MOD)* |                 | EPA Method TO-15 |                   |            |               |             |                   |                  |       |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------|------------------|-------------------|------------|---------------|-------------|-------------------|------------------|-------|
|                                                                                                                                           |                          |                          |                 |                  | Carbon            |            |               |             |                   |                  |       |
| Sample                                                                                                                                    | Sample                   | Stoddard                 | Benzene         | Chloroform       | Tetrachloride     | PCE        | TCE           | VC          | 2-Butanone        | Acetone          | Notes |
| Date                                                                                                                                      | Location                 | μg/m³                    | μg/m³           | μg/m³            | μg/m³             | μg/m³      | μg/m³         | μg/m³       | μg/m³             | μg/m³            |       |
| otes Continue                                                                                                                             | d:                       |                          |                 |                  |                   |            |               |             |                   |                  |       |
| 4-Methyl-2-Pentanone 4.39 μg/m³, Ethyl benzene 5.89 μg/m³, m,p-Xylene 33.5 μg/m³, o-Xylene 12.4 μg/m³, and                                |                          |                          |                 |                  |                   |            |               |             |                   |                  |       |
| 1,2,4-Trimethylbenzene 10.3µg/m <sup>3.</sup>                                                                                             |                          |                          |                 |                  |                   |            |               |             |                   |                  |       |
| aj = The results shown below are reported using their MDL                                                                                 |                          |                          |                 |                  |                   |            |               |             |                   |                  |       |
| ak =                                                                                                                                      | Method TO-               | -3 (mod) no long         | er offered by   | laboratory, sar  | nple analyzed b   | y Method   | TO-15.        |             |                   |                  |       |
| al =                                                                                                                                      | Reporting lin            | mits were raised         | due to limite   | d sample volun   | ne received (ted  | lar bag)   |               |             |                   |                  |       |
| am =                                                                                                                                      | Indicates a quantitative |                          | he method M     | DL and PQL ar    | nd that the repor | ted conce  | entration she | ould be cor | nsidered as estim | nated rather tha | an    |
| an =                                                                                                                                      | Reporting lin            | mits were raised         | I due to high o | concentration o  | f target analyte  |            |               |             |                   |                  |       |
|                                                                                                                                           |                          | detected: 4-Me           | -               |                  |                   | utanol: 54 | I.0 μg/m3     |             |                   |                  |       |
| ap = Reporting limit elevated due to insufficient sample quantity (tedlar bag).                                                           |                          |                          |                 |                  |                   |            |               |             |                   |                  |       |
| aq = TPHg Result due to individual peaks of non-gasoline conmpounds within gasoline quantitative range.                                   |                          |                          |                 |                  |                   |            |               |             |                   |                  |       |
| ar = The laboratory noted: Analytical comment for TO15, Note: No stoddard solvent was available at the time of analysis for quantitation. |                          |                          |                 |                  |                   |            |               |             |                   |                  |       |
|                                                                                                                                           |                          | -                        |                 |                  |                   |            |               |             | stoddard solvent  | -                |       |
| 1 = http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.shtml                                                         |                          |                          |                 |                  |                   |            |               |             |                   |                  |       |

# Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

|            |           | Days Operated | Cubic Meters  |              | Influent |               |              | Cumulative          |                       |
|------------|-----------|---------------|---------------|--------------|----------|---------------|--------------|---------------------|-----------------------|
|            | Average   | Since         | Removed Since | Cumulative   | Total    | Pounds VOCs   | Pounds       | <b>Total Pounds</b> | 3                     |
|            | flow rate | Previous      | Previous      | Cubic Meters | VOCs     | Removed Since | VOCs Removed | VOCs                | Comments              |
| Date       | CFM       | Event         | Event         | Removed      | μg/m³    | Last Event    | per Day      | Removed             |                       |
| 9/10/2008  | 45        | 0.04          | 76.53         | 76.53        | 12,260   | 0.00207       | 0.04964      | 0.00207             | System sampled 1-hour |
| 9/11/2008  | 45        | 1.00          | 1,836.73      | 1,913.27     | 8,840    | 0.03580       | 0.03580      | 0.03786             |                       |
| 10/10/2008 | 45        | 29.00         | 53,265.31     | 55,178.57    | 3,443    | 0.40430       | 0.01394      | 0.44217             |                       |
| 11/6/2008  | 45        | 27.00         | 49,591.84     | 104,770.41   | 3,103    | 0.33923       | 0.01256      | 0.78140             |                       |
| 12/4/2008  | 45        | 28.00         | 51,428.57     | 156,198.98   | 5,511    | 0.62483       | 0.02232      | 1.40623             |                       |
| 1/2/2009   | 45        | 29.00         | 53,265.31     | 209,464.29   | 1,423    | 0.16710       | 0.00576      | 1.57333             |                       |
| 2/9/2009   | 45        | 38.00         | 69,795.92     | 279,260.20   | 3,568    | 0.54906       | 0.01445      | 2.12238             |                       |
| 5/20/2009  | 45        | 100.00        | 183,673.47    | 462,933.67   | 1,800    | 0.72886       | 0.00729      | 2.85125             |                       |

-----\*Treatment System Removed\*------

#### Notes:

CFM = cubic feet per minute

μg/m³ = micrograms per cubic meters VOCs = volatile organic compounds

s = voiatile organic compounds

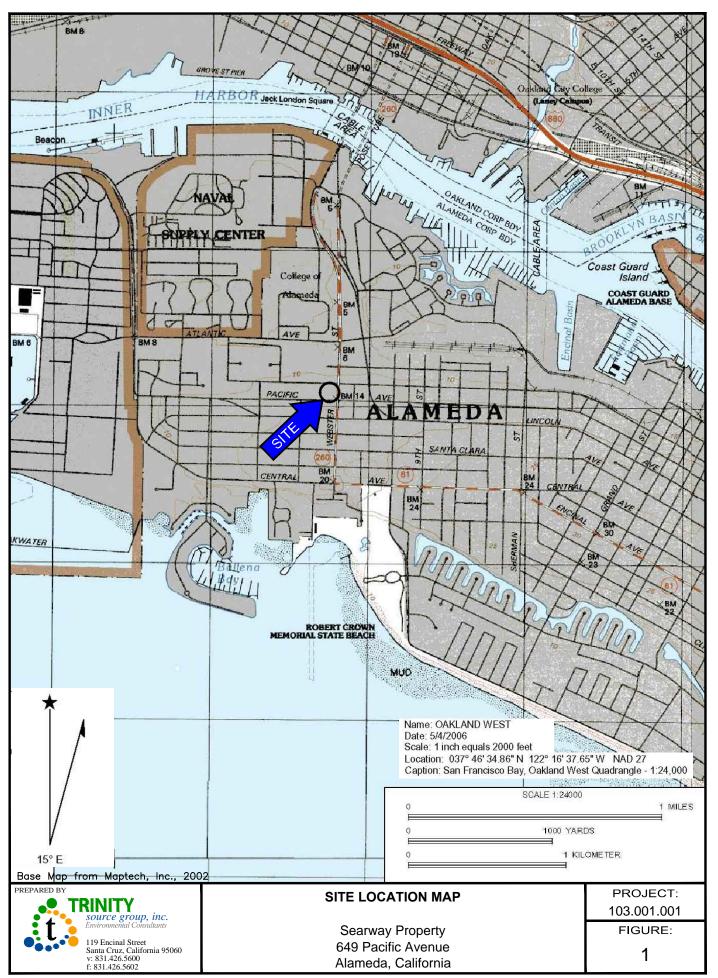
\* = Treatment system removed on May 20, 2009.

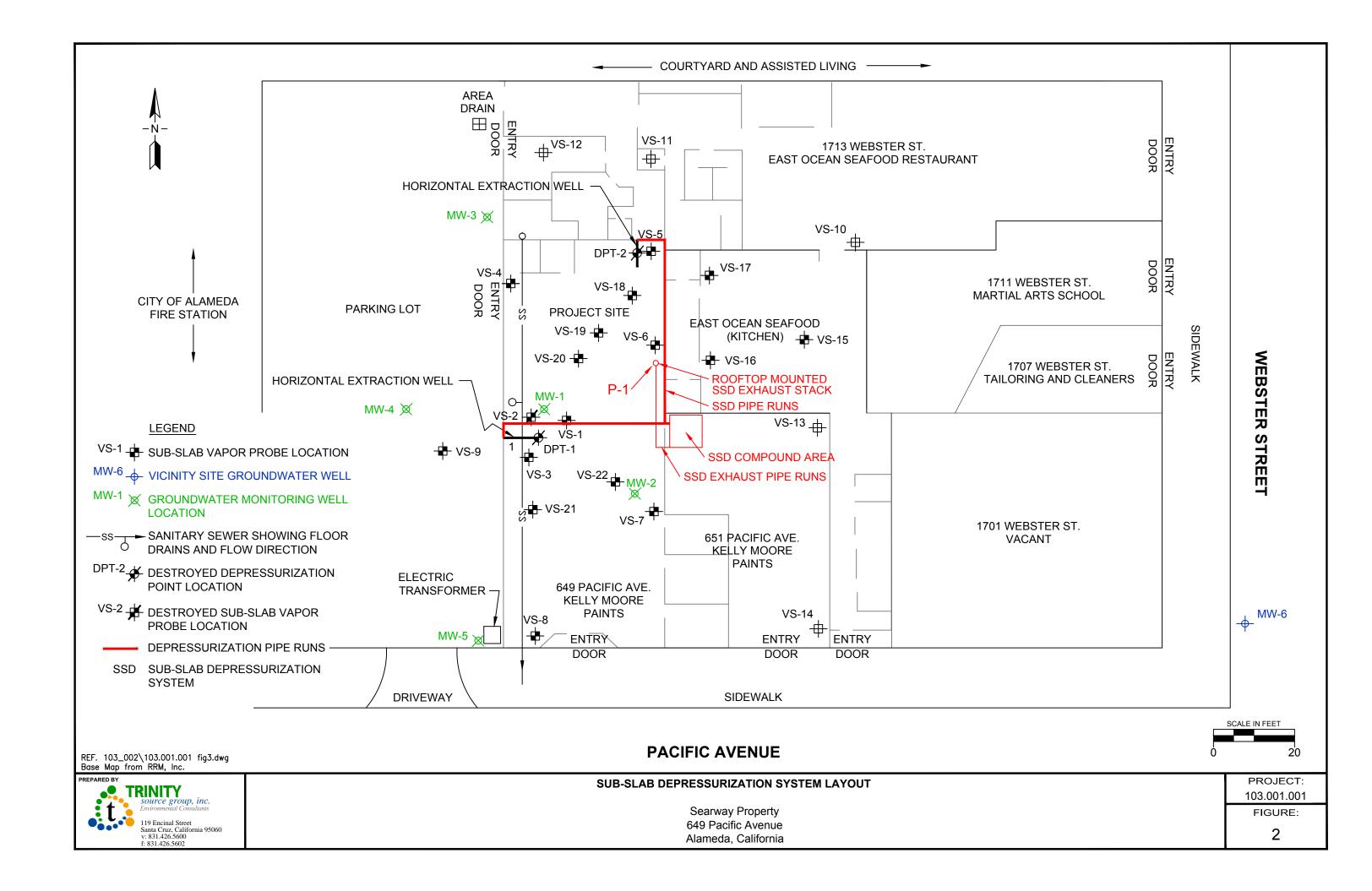
# Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

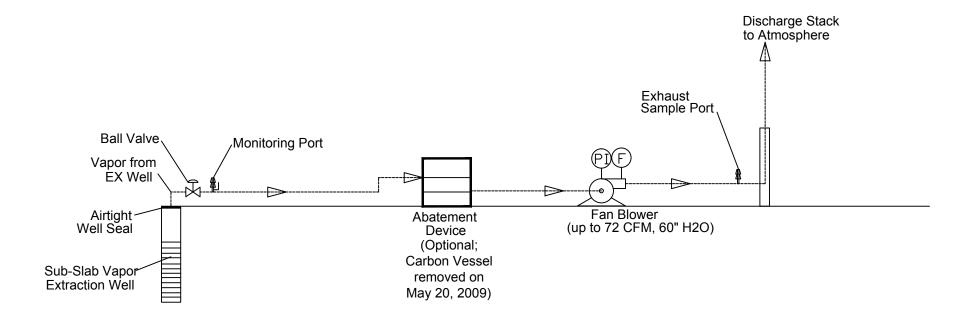
|            |           | Days Operated | Cubic Meters     |              | Effluent |                  |                 | Cumulative   |          |
|------------|-----------|---------------|------------------|--------------|----------|------------------|-----------------|--------------|----------|
|            | Average   | Since         | Discharged Since | Cumulative   | Total    | Pounds VOCs      | Pounds          | Total Pounds |          |
|            | Flow Rate | Previous      | Previous         | Cubic Meters | VOCs     | Discharged Since | VOCs Discharged | VOCs         | Comments |
| Date       | CFM       | Event         | Event            | Discharged   | μg/m³    | Last Event       | per Day         | Discharged   |          |
| 9/10/2008  | 45        | 0.04          | 76.53            | 76.53        | 731.1    | 0.00012          | 0.00296         | 0.00012      |          |
| 9/11/2008  | 45        | 1.00          | 1,836.73         | 1,913.27     | 904      | 0.00366          | 0.00366         | 0.00378      |          |
| 10/10/2008 | 45        | 29.00         | 53,265.31        | 55,178.57    | 1,227.7  | 0.14417          | 0.00497         | 0.14795      |          |
| 11/6/2008  | 45        | 27.00         | 49,591.84        | 104,770.41   | 3,720.5  | 0.40676          | 0.01507         | 0.55471      |          |
| 12/4/2008  | 45        | 28.00         | 51,428.57        | 156,198.98   | 4,249.6  | 0.48181          | 0.01721         | 1.03652      |          |
| 1/2/2009   | 45        | 29.00         | 53,265.31        | 209,464.29   | 1,242.0  | 0.14585          | 0.00503         | 1.18237      |          |
| 2/9/2009   | 45        | 38.00         | 69,795.92        | 279,260.20   | 1,834.5  | 0.28228          | 0.00743         | 1.46465      |          |
| 5/20/2009  | 45        | 100.00        | 183,673.47       | 462,933.67   | 1,800.0  | 0.72886          | 0.00729         | 2.19351      |          |
| 8/7/2009   | 45        | 79.00         | 145,102.04       | 608,035.71   | 4,555.2  | 1.45716          | 0.01845         | 3.65067      |          |
| 11/6/2009  | 45        | 91.00         | 167,142.86       | 775,178.57   | 5,129.5  | 1.89012          | 0.02077         | 5.54079      |          |
| 2/2/2010   | 45        | 88.00         | 161,632.65       | 936,811.22   | 3,290.7  | 1.17259          | 0.01332         | 6.71338      |          |
| 5/5/2010   | 45        | 92.00         | 168,979.59       | 1,105,790.82 | 1,682.5  | 0.62679          | 0.00681         | 7.34017      |          |
| 8/5/2010   | 45        | 92.00         | 168,979.59       | 1,274,770.41 | 1,015.8  | 0.37840          | 0.00411         | 7.71857      |          |
| 11/30/2010 | 45        | 117.00        | 214,897.96       | 1,489,668.37 | 684.5    | 0.32430          | 0.00277         | 8.04287      |          |
| 2/22/2011  | 45        | 84.00         | 154,285.71       | 1,643,954.08 | 566.6    | 0.19272          | 0.00229         | 8.23559      |          |
| 6/1/2011   | 45        | 99.00         | 181,836.73       | 1,825,790.82 | 799.4    | 0.32047          | 0.00324         | 8.55606      |          |
| 8/25/2011  | 45        | 85.00         | 156,122.45       | 1,981,913.27 | 716.5    | 0.24661          | 0.00290         | 8.80268      |          |
| 11/21/2011 | 45        | 88.00         | 161,632.65       | 2,143,545.92 | 1,016.4  | 0.36218          | 0.00412         | 9.16485      |          |
| 3/6/2012   | 45        | 106.00        | 194,693.88       | 2,338,239.80 | 1,216.0  | 0.52193          | 0.00492         | 9.68678      |          |
| 3/25/2013  | 45        | 384.00        | 705,306.12       | 3,043,545.92 | 1,183.5  | 1.84023          | 0.00479         | 11.52702     |          |
| 3/11/2014  | 45        | 351.00        | 644,693.88       | 3,688,239.80 | 776.1    | 1.10299          | 0.00314         | 12.63000     |          |
| 3/11/2015  | 45        | 365.00        | 670,408.16       | 4,358,647.96 | 992.4    | 1.46674          | 0.00402         | 14.09674     |          |
| 3/10/2016  | 45        | 365.00        | 670,408.16       | 5,029,056.12 | 7,143.7  | 10.55819         | 0.02893         | 24.65493     | 1        |

#### Notes:

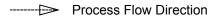

CFM = cubic feet per minute


 $\mu g/m^3$  = micrograms per cubic meters

VOCs = volatile organic compounds


1 = The laboratory noted: Analytical comment for T)15, Note: No stoddard solvent standard was available at the time of analysis for quantitation. Sample was quantitated against a gasoline standard. Individual peaks do not match either gasoline or stoddard solvent pattern.

## **FIGURES**

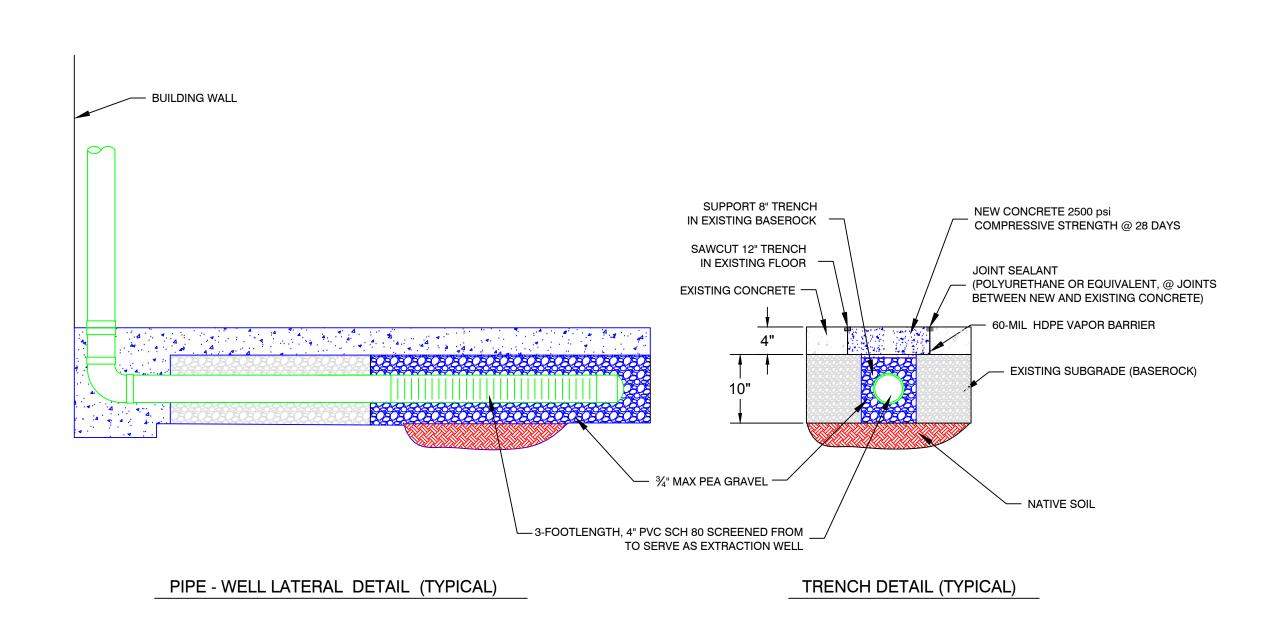





# SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS AND INSTRUMENTATION DIAGRAM



## LEGEND




PI Pressure Indicator

Flow Indicator

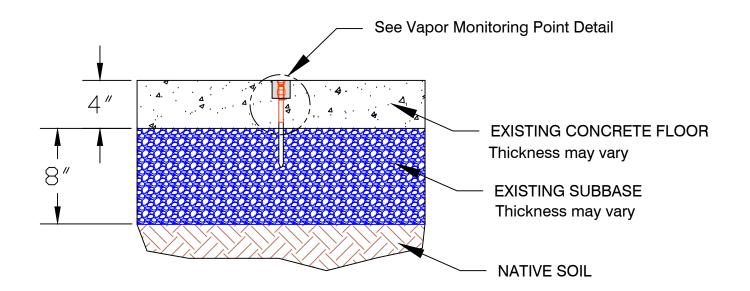
REF. 103\_002\SS DEPRESS PID.dwg





TYPICAL EXTRACTION WELL DETAIL
BELOW GROUND COMPLETION

REF. 103\_002\EXWELL DTL.dwg




SUB-SLAB DEPRESSURIZATION SYSTEM - EXTRACTION WELL DETAIL

Searway Property 649 Pacific Avenue Alameda, California PROJECT: 103.001.001

FIGURE:

4





EXISTING FLOOR AND SUB-SLAB

CONSTRUCTION (TYPICAL)

VAPOR MONITORING POINT DETAIL

Scale 1" = 2"

REF. 103\_002\VPR MON PT.dwg



SUB-SLAB VAPOR MONITORING POINT DETAIL

PROJECT: 103.001.001

Searway Property 649 Pacific Avenue Alameda, California FIGURE:

5

## **ATTACHMENT A**

## **BAAQMD – PERMIT TO OPERATE**





Plant# 18970

Page: 1

Expires: APR 1, 2017

This document does not permit the holder to violate any District regulation or other law.

Searway Property 1406 Webster Street Alameda, CA 94501

Location: 649 Pacific Avenue

Alameda, CA 94501

| S# | DESCRIPTION [Schedule]                                                                    | PAID |
|----|-------------------------------------------------------------------------------------------|------|
| 1  | CHEM> Contaminated soil remediation, Contaminated soil vapor Sub-Slab Venting System [G1] | 1673 |

1 Permitted Source

\*\*\* See attached Permit Conditions \*\*\*

The operating parameters described above are based on information supplied by permit holder and may differ from the limits set forth in the attached conditions of the Permit to Operate. The limits of operation in the permit conditions are not to be exceeded. Exceeding these limits is considered a violation of District regulations subject to enforcement action.





Plant# 18970

Page: 2

Expires: APR 1, 2017

This document does not permit the holder to violate any District regulation or other law.

\*\*\* PERMIT CONDITIONS \*\*\*

\_\_\_\_\_\_

#### **COND# 23992** applies to S# 1

In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene 1.8E-2 Chloroform 9.3E-2 Carbon Tetrachloride 1.2E-2 Methylene Chloride 4.9E-1 Perchloroethylene 8.2E-2 Trichloroethylene 2.5E-1 Vinyl Chloride 6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. vapor flow rate shall not exceed 72 scfm. [basis: Req. 2-1-316, 2-2-301, 8-47-113]

- To determine compliance with Condition 1, the operator of this source shall:
  - Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 92 days on a quarterly basis.

Written authorization must be received from the District before any change in sampling frequency.

- Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
- Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed





Plant# 18970

Page: 3

Expires: APR 1, 2017

This document does not permit the holder to violate any District regulation or other law.

\*\*\* PERMIT CONDITIONS \*\*\*

\_\_\_\_\_\_

in condition 1 as well as the total volatile organic compounds.

- 3. The operator of this source shall maintain the following information in a District-approved log for each month of operation of the source:
  - dates of operation;
  - b. exhaust flow rate:
  - c. exhaust sampling date;
  - d. analysis results;
  - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Req. 1-523]

- non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
  - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Req. 1-523]
  - 6. Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

END OF CONDITIONS

|       | a Air Quality<br>ent District | * * | SOURCE | EMISSIONS | **   |         |        | LANT #1<br>lay 18, |    |
|-------|-------------------------------|-----|--------|-----------|------|---------|--------|--------------------|----|
|       |                               |     |        |           | Aı   | nnual A | verage | lbs/da             | ay |
| S# Sc | ource Description             |     |        |           | PART | ORG     | NOx    | SO2                | CO |
|       |                               |     |        |           |      |         |        |                    |    |
| 1 St  | ub-Slab Venting System        |     |        |           | -    | .1      | -      | - "                | -  |
| Т     | OTALS                         |     |        |           |      | .1      |        |                    |    |

## **ATTACHMENT B**

## **BAAQMD - CORRESPONDENCE**



BAY AREA
AIR QUALITY

MANAGEMENT

DISTRICT

ALAMEDA COUNTY
Tom Bates
Scott Haggerty
Jennifer Hosterman
Nate Miley
(Secretary)

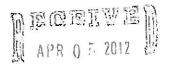
CONTRA COSTA COUNTY
John Gioia
(Chairperson)
David Hudson
Mary Piepho
Mark Ross

MARIN COUNTY Katie Rice

NAPA COUNTY Brad Wagenknecht

SAN FRANCISCO COUNTY John Avalos Edwin M. Lee Eric Mar

SAN MATEO COUNTY Carole Groom Carol Klatt


SANTA CLARA COUNTY Susan Garner Ash Kaira (Vice-Chair) Liz Kniss Ken Yeager

> SOLANO COUNTY James Spering

SONOMA COUNTY Susan Gorin Shirlee Zane

Jack P. Broadbent

EXECUTIVE OF FICER/APCO



BY: ....

March 28, 2012

Trinity Source Group, Inc. 500 Chestnut Street, Suite 225 Santa Cruz, CA 95060

Attention: Cora E. Olson

Application No.: 17506
Plant No. 18970
Equipment Location:
Searway Property
649Pacific Avenue
Alameda, CA

#### Dear Applicant:

The District has reviewed your request, dated March 19, 2012 to change the monitoring frequency from quarterly to annually. Based on the information provided, an annual monitoring schedule is both reasonable from the District's perspective and will also grant your firm the flexibility requested. Be aware that you can monitor your systems more frequently if desired.

Please keep a copy of this letter and the attached revised operating conditions (COND#23992) as verification that a monitoring schedule of annually has been approved by the District for the site subject to P/O (Plant #18970).

Please include your application number with any correspondence with the District's regulations may be viewed online at <a href="www.baaqmd.gov">www.baaqmd.gov</a> If you have any questions on this matter, please call me at (415) 749-4630.

Very truly yours,

Air Quality Engineer II

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

#### COND# 23992 ------

 In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

| Benzene              | 1.8E-2 |
|----------------------|--------|
| Chloroform           | 9.3E-2 |
| Carbon Tetrachloride | 1,2E-2 |
| Methylene Chloride   | 4.9E-1 |
| Perchloroethylene    | 8.2E-2 |
| Trichloroethylene    | 2.5E-1 |
| Vinyl Chloride       | 6.6E-3 |

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- 2. To determine compliance with Condition 1, the operator of this source shall:
  - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 365 days on an annual basis. Written authorization must be received from the District before any change in sampling frequency.
  - b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
  - c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed in condition 1 as well as the total volatile organic compounds.

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

- 3. The operator of this source shall maintain the following information in a District-approved log for each year of operation of the source:
  - a. dates of operation;
  - b. exhaust flow rate:
  - c. exhaust sampling date;d. analysis results;

  - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- non-compliance with these conditions shall be 4. Any reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
  - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
  - 6. Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

## ATTACHMENT C

## **O&M FIELD DATA SHEETS**

## Trinity Source Group, Inc.

119 Encinal St.

Santa Cruz, CA 95060

P: 831.426.5600 F: 831.426.5602



| Client: Timber Del Properties, L.L.C.                           | Project #: 103.001.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address: 649 Pacific Ave. Alameda CA                            | Date: 3/10/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                 | Personnel: SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Arrival System Status: On / Off If Off Explain Why?             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Departure System Status: On Off If Off Explain Why?             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tedlar Bag Collected? (Yes ) No (1:30 Sum                       | ma Vessel Collected? Yes / No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Influent initial Summa Vacuum NA Influent Final Summa           | a Vacuum NA Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Effluent initial Summa Vacuum NA Effluent Final Summa           | a Vacuum NA Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vapor Concentration Readings in Parts Per Million Vapor (PPM    | V) using Photo Ionization Detector (PID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Collected? Yes / No L Effluent (After Vacuum Uni                | it) PPMV 🔷 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Collected? Yes / No , Influent (Before Vacuum Ur                | nit) PPMV 🔷 🐧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                 | ŒM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Effluent Flow Rate (read from digital readout on vacuum control | SPD 6 - FPM 289 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| >4" Dra. PUC                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Efflluent Flow Rate and Temperature (measured with hand held    | Anemometer in discharge pipe slot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 795 FPM = ~26 CFM                                               | Degrees F 73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vacuum (measured at influent sample port) — 0.12                | -inches of mercury (-in Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.13                                                            | weeker the transfer of the tra |
| Smoke Pen Leak Test Pass Fail                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Notes: System operating at Sp. 6 up                             | oon arrival (300 cFm). ~ 6 gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| of condensate emptied from co                                   | itch tray.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 | W/ sprate per (45-1,45-4,45-5,45-6,45-18,45-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| US-20). Influence observed in all probes                        | except VS-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| System operating at 5p.6 upc                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - All SSDPS OFM activities perto                                | armed under observation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Anne Junek (ACDEH                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## **ATTACHMENT D**

# CERTIFIED ANALYTICAL REPORT, CHAIN-OF-CUSTODY AND GEOTRACKER UPLOAD DOCUMENTATION



David Reinsma Trinity Source Group 119 Encinal Street Santa Cruz, California 95060

Tel: 831-426-5600; Cell 831-227 4724

Fax: 831-426-5602 Email: dar@tsgcorp.net

RE: SSDPS O & M Event 2016

Work Order No.: 1603070

#### Dear David Reinsma:

Torrent Laboratory, Inc. received 1 sample(s) on March 10, 2016 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Patti Sandrock
QA Officer

March 15, 2016

Date

Total Page Count: 12 Page 1 of 12

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com



**Date:** 3/15/2016

Client: Trinity Source Group

Project: SSDPS O & M Event 2016

Work Order: 1603070

### **CASE NARRATIVE**

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Analytical Comment for TO15, Note:No stoddard solvent standard was available at the time of analysis for quantitation. Sample was quantitated against a gasoline standard. Individual peaks do not match either gasoline or stoddard solvent pattern.

This report shall not be reproduced, except in full, without the written approval of Torrent Analytical, Inc.

Total Page Count: 12 Page 2 of 12

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com



## **Sample Result Summary**

Report prepared for: David Reinsma Date Received: 03/10/16

Trinity Source Group Date Reported: 03/15/16

**Effluent** 1603070-001A

| Parameters:          | Analysis<br>Method | <u>DF</u> | MDL | <u>PQL</u> | Results<br>ug/m3 |
|----------------------|--------------------|-----------|-----|------------|------------------|
| TPH-Gasoline         | ETO15              | 10        | 400 | 1800       | 6900             |
| Chloroform           | ETO15              | 2         | 2.5 | 9.8        | 14.6             |
| Carbon Tetrachloride | ETO15              | 2         | 1.7 | 6.3        | 56.1             |
| Tetrachloroethylene  | ETO15              | 2         | 1.8 | 6.8        | 173              |

Total Page Count: 12 Page 3 of 12



### **SAMPLE RESULTS**

Report prepared for: David Reinsma Date Received: 03/10/16

Trinity Source Group Date Reported: 03/15/16

Client Sample ID: Effluent Lab Sample ID: 1603070-001A

Project Name/Location: SSDPS O & M Event 2016 Sample Matrix: Air

Project Number:

Date/Time Sampled: 03/10/16 / 11:30 Certified Clean WO #:

 Canister/Tube ID:
 Received PSI :
 0.0

 Collection Volume (L):
 0.00
 Corrected PSI :
 0.0

**Tag Number:** 649 Pacific Ave.

| Parameters:                    | Analysis<br>Method | Prep<br>Date | Date<br>Analyzed | DF | MDL<br>ug/m3 | PQL<br>ug/m3 | Results ug/m3 | Results ppbv | Lab<br>Qualifier | Analytical<br>Batch | Prep<br>Batch |
|--------------------------------|--------------------|--------------|------------------|----|--------------|--------------|---------------|--------------|------------------|---------------------|---------------|
|                                |                    |              |                  |    |              |              |               |              |                  |                     |               |
| Dichlorodifluoromethane        | ETO15              | NA           | 03/10/16         | 2  | 3.0          | 10           | ND            | ND           |                  | 429280              | NA            |
| 1,1-Difluoroethane             | ETO15              | NA           | 03/10/16         | 2  | 1.0          | 2.7          | ND            | ND           |                  | 429280              | NA            |
| 1,2-Dichlorotetrafluoroethane  | ETO15              | NA           | 03/10/16         | 2  | 9.9          | 28           | ND            | ND           |                  | 429280              | NA            |
| Chloromethane                  | ETO15              | NA           | 03/10/16         | 2  | 0.64         | 2.1          | ND            | ND           |                  | 429280              | NA            |
| Vinyl Chloride                 | ETO15              | NA           | 03/10/16         | 2  | 1.3          | 5.2          | ND            | ND           |                  | 429280              | NA            |
| 1,3-Butadiene                  | ETO15              | NA           | 03/10/16         | 2  | 0.89         | 2.2          | ND            | ND           |                  | 429280              | NA            |
| Bromomethane                   | ETO15              | NA           | 03/10/16         | 2  | 1.4          | 3.9          | ND            | ND           |                  | 429280              | NA            |
| Chloroethane                   | ETO15              | NA           | 03/10/16         | 2  | 1.0          | 2.6          | ND            | ND           |                  | 429280              | NA            |
| Trichlorofluoromethane         | ETO15              | NA           | 03/10/16         | 2  | 3.6          | 11           | ND            | ND           |                  | 429280              | NA            |
| 1,1-Dichloroethene             | ETO15              | NA           | 03/10/16         | 2  | 1.2          | 4.0          | ND            | ND           |                  | 429280              | NA            |
| Freon 113                      | ETO15              | NA           | 03/10/16         | 2  | 1.7          | 7.7          | ND            | ND           |                  | 429280              | NA            |
| Carbon Disulfide               | ETO15              | NA           | 03/10/16         | 2  | 1.6          | 6.2          | ND            | ND           |                  | 429280              | NA            |
| 2-Propanol (Isopropyl Alcohol) | ETO15              | NA           | 03/10/16         | 2  | 1.9          | 40           | ND            | ND           |                  | 429280              | NA            |
| Methylene Chloride             | ETO15              | NA           | 03/10/16         | 2  | 1.2          | 56           | ND            | ND           |                  | 429280              | NA            |
| Acetone                        | ETO15              | NA           | 03/10/16         | 2  | 1.8          | 38           | ND            | ND           |                  | 429280              | NA            |
| trans-1,2-Dichloroethene       | ETO15              | NA           | 03/10/16         | 2  | 1.3          | 4.0          | ND            | ND           |                  | 429280              | NA            |
| Hexane                         | ETO15              | NA           | 03/10/16         | 2  | 1.1          | 3.5          | ND            | ND           |                  | 429280              | NA            |
| MTBE                           | ETO15              | NA           | 03/10/16         | 2  | 1.7          | 3.6          | ND            | ND           |                  | 429280              | NA            |
| tert-Butanol                   | ETO15              | NA           | 03/10/16         | 2  | 1.8          | 17           | ND            | ND           |                  | 429280              | NA            |
| Diisopropyl ether (DIPE)       | ETO15              | NA           | 03/10/16         | 2  | 1.8          | 4.2          | ND            | ND           |                  | 429280              | NA            |
| 1,1-Dichloroethane             | ETO15              | NA           | 03/10/16         | 2  | 1.5          | 4.1          | ND            | ND           |                  | 429280              | NA            |
| ETBE                           | ETO15              | NA           | 03/10/16         | 2  | 1.4          | 4.2          | ND            | ND           |                  | 429280              | NA            |
| cis-1,2-Dichloroethene         | ETO15              | NA           | 03/10/16         | 2  | 1.1          | 4.0          | ND            | ND           |                  | 429280              | NA            |
| Chloroform                     | ETO15              | NA           | 03/10/16         | 2  | 2.5          | 9.8          | 14.6          | 2.98         |                  | 429280              | NA            |
| Vinyl Acetate                  | ETO15              | NA           | 03/10/16         | 2  | 1.1          | 3.5          | ND            | ND           |                  | 429280              | NA            |
| Carbon Tetrachloride           | ETO15              | NA           | 03/10/16         | 2  | 1.7          | 6.3          | 56.1          | 8.90         |                  | 429280              | NA            |
| 1,1,1-Trichloroethane          | ETO15              | NA           | 03/10/16         | 2  | 1.7          | 5.5          | ND            | ND           |                  | 429280              | NA            |
| 2-Butanone (MEK)               | ETO15              | NA           | 03/10/16         | 2  | 1.3          | 3.0          | ND            | ND           |                  | 429280              | NA            |
| Ethyl Acetate                  | ETO15              | NA           | 03/10/16         | 2  | 1.5          | 3.6          | ND            | ND           |                  | 429280              | NA            |
| Tetrahydrofuran                | ETO15              | NA           | 03/10/16         | 2  | 0.60         | 3.0          | ND            | ND           |                  | 429280              | NA            |
| Benzene                        | ETO15              | NA           | 03/10/16         | 2  | 1.4          | 3.2          | ND            | ND           |                  | 429280              | NA            |
| TAME                           | ETO15              | NA           | 03/10/16         | 2  | 0.72         | 4.2          | ND            | ND           |                  | 429280              | NA            |
| 1,2-Dichloroethane (EDC)       | ETO15              | NA           | 03/10/16         | 2  | 2.0          | 4.1          | ND            | ND           |                  | 429280              | NA            |
| Trichloroethylene              | ETO15              | NA           | 03/10/16         | 2  | 2.8          | 11           | ND            | ND           |                  | 429280              | NA            |
| 1,2-Dichloropropane            | ETO15              | NA           | 03/10/16         | 2  | 2.6          | 9.2          | ND            | ND           |                  | 429280              | NA            |

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 4 of 12



### **SAMPLE RESULTS**

Report prepared for: David Reinsma Date Received: 03/10/16

Trinity Source Group Date Reported: 03/15/16

Client Sample ID: Effluent Lab Sample ID: 1603070-001A

Project Name/Location: SSDPS O & M Event 2016 Sample Matrix: Air

Project Number:

**Date/Time Sampled:** 03/10/16 / 11:30 **Certified Clean WO #:** 

 Canister/Tube ID:
 Received PSI :
 0.0

 Collection Volume (L):
 0.00
 Corrected PSI :
 0.0

**Tag Number:** 649 Pacific Ave.

| Parameters:                    | Analysis<br>Method  | Prep<br>Date | Date<br>Analyzed | DF      | MDL<br>ug/m3 | PQL<br>ug/m3 | Results<br>ug/m3 | Results<br>ppbv | Lab<br>Qualifier | Analytical<br>Batch | Prep<br>Batch |
|--------------------------------|---------------------|--------------|------------------|---------|--------------|--------------|------------------|-----------------|------------------|---------------------|---------------|
| Bromodichloromethane           | ETO15               | NA NA        | 03/10/16         | 2       | 1.8          | 6.7          | ND               | ND              |                  | 429280              | NA            |
| 1,4-Dioxane                    | ETO15               | NA           | 03/10/16         | 2       | 2.5          | 7.2          | ND               | ND              |                  | 429280              | NA            |
| trans-1,3-Dichloropropene      | ETO15               | NA           | 03/10/16         | 2       | 1.7          | 4.5          | ND               | ND              |                  | 429280              | NA            |
| Toluene                        | ETO15               | NA           | 03/10/16         | 2       | 1.9          | 3.8          | ND               | ND              |                  | 429280              | NA            |
| 4-Methyl-2-Pentanone (MIBK)    | ETO15               | NA           | 03/10/16         | 2       | 1.7          | 4.1          | ND               | ND              |                  | 429280              | NA            |
| cis-1,3-Dichloropropene        | ETO15               | NA           | 03/10/16         | 2       | 2.3          | 4.5          | ND               | ND              |                  | 429280              | NA            |
| Tetrachloroethylene            | ETO15               | NA           | 03/10/16         | 2       | 1.8          | 6.8          | 173              | 25.44           |                  | 429280              | NA            |
| 1,1,2-Trichloroethane          | ETO15               | NA           | 03/10/16         | 2       | 1.9          | 5.5          | ND               | ND              |                  | 429280              | NA            |
| Dibromochloromethane           | ETO15               | NA           | 03/10/16         | 2       | 3.5          | 8.5          | ND               | ND              |                  | 429280              | NA            |
| I,2-Dibromoethane (EDB)        | ETO15               | NA           | 03/10/16         | 2       | 4.1          | 15           | ND               | ND              |                  | 429280              | NA            |
| NOTE: Reporting limit elevated | due to insufficient | sample qu    | antity (tedla    | r bag). |              |              |                  |                 |                  |                     |               |
| ?-Hexanone                     | ETO15               | NA           | 03/10/16         | 2       | 2.2          | 8.2          | ND               | ND              |                  | 429280              | NA            |
| Ethyl Benzene                  | ETO15               | NA           | 03/10/16         | 2       | 2.0          | 4.3          | ND               | ND              |                  | 429280              | NA            |
| Chlorobenzene                  | ETO15               | NA           | 03/10/16         | 2       | 1.4          | 4.6          | ND               | ND              |                  | 429280              | NA            |
| 1,1,1,2-Tetrachloroethane      | ETO15               | NA           | 03/10/16         | 2       | 2.1          | 6.9          | ND               | ND              |                  | 429280              | NA            |
| n,p-Xylene                     | ETO15               | NA           | 03/10/16         | 2       | 3.2          | 8.6          | ND               | ND              |                  | 429280              | NA            |
| o-Xylene                       | ETO15               | NA           | 03/10/16         | 2       | 1.6          | 4.3          | ND               | ND              |                  | 429280              | NA            |
| Styrene                        | ETO15               | NA           | 03/10/16         | 2       | 1.4          | 4.4          | ND               | ND              |                  | 429280              | NA            |
| Bromoform                      | ETO15               | NA           | 03/10/16         | 2       | 2.2          | 10           | ND               | ND              |                  | 429280              | NA            |
| 1,1,2,2-Tetrachloroethane      | ETO15               | NA           | 03/10/16         | 2       | 1.4          | 6.9          | ND               | ND              |                  | 429280              | NA            |
| 1-Ethyl Toluene                | ETO15               | NA           | 03/10/16         | 2       | 1.6          | 4.9          | ND               | ND              |                  | 429280              | NA            |
| 1,3,5-Trimethylbenzene         | ETO15               | NA           | 03/10/16         | 2       | 1.5          | 4.9          | ND               | ND              |                  | 429280              | NA            |
| 1,2,4-Trimethylbenzene         | ETO15               | NA           | 03/10/16         | 2       | 1.4          | 4.9          | ND               | ND              |                  | 429280              | NA            |
| I,4-Dichlorobenzene            | ETO15               | NA           | 03/10/16         | 2       | 1.3          | 6.0          | ND               | ND              |                  | 429280              | NA            |
| 1,3-Dichlorobenzene            | ETO15               | NA           | 03/10/16         | 2       | 1.7          | 6.0          | ND               | ND              |                  | 429280              | NA            |
| 1,2-Dichlorobenzene            | ETO15               | NA           | 03/10/16         | 2       | 1.8          | 6.0          | ND               | ND              |                  | 429280              | NA            |
| Hexachlorobutadiene            | ETO15               | NA           | 03/10/16         | 2       | 4.8          | 11           | ND               | ND              |                  | 429280              | NA            |
| 1,2,4-Trichlorobenzene         | ETO15               | NA           | 03/10/16         | 2       | 6.8          | 15           | ND               | ND              |                  | 429280              | NA            |
| Naphthalene                    | ETO15               | NA           | 03/10/16         | 2       | 2.9          | 10           | ND               | ND              |                  | 429280              | NA            |
| S) 4-Bromofluorobenzene        | ETO15               | NA           | 03/10/16         | 2       | 65           | 135          | 87.1 %           |                 |                  | 429280              | NA            |

Total Page Count: 12 Page 5 of 12



### **SAMPLE RESULTS**

Report prepared for: David Reinsma Date Received: 03/10/16

Trinity Source Group Date Reported: 03/15/16

Client Sample ID: Effluent Lab Sample ID: 1603070-001A

Project Name/Location: SSDPS O & M Event 2016 Sample Matrix: Air

Project Number:

Date/Time Sampled: 03/10/16 / 11:30 Certified Clean WO #:

Canister/Tube ID: Received PSI: 0.0

Collection Volume (L): 0.00 Corrected PSI: 0.0

Tag Number: 649 Pacific Ave.

| Parameters:  | Analysis<br>Method | Prep<br>Date | Date<br>Analyzed | DF | MDL<br>ug/m3 | PQL<br>ug/m3 | Results<br>ug/m3 | Results<br>ppbv | Lab<br>Qualifier | Analytical<br>Batch | Prep<br>Batch |  |
|--------------|--------------------|--------------|------------------|----|--------------|--------------|------------------|-----------------|------------------|---------------------|---------------|--|
| TPH-Gasoline | ETO15              | NA           | 03/10/16         | 10 | 400          | 1800         | 6900             | 1,960.23        | х                | 429294              | NA            |  |

NOTE: x-TPHg result due to individual peaks of non-gasoline compounds within gasoline quantitative range.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com



## **MB Summary Report**

Work Order: 1603070 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Air Analytical ETO15 Analyzed Date: 03/10/16 Analytical 429280 Method: Batch: Units: ppbv

| Parameters                     | MDL   | PQL   | Method<br>Blank<br>Conc. | Lab<br>Qualifier |
|--------------------------------|-------|-------|--------------------------|------------------|
| Dichlorodifluoromethane        | 0.30  | 1.00  | ND                       |                  |
| 1,1-Difluoroethane             | 0.18  | 10.0  | ND                       |                  |
| 1,2-Dichlorotetrafluoroethane  | 0.70  | 2.00  | ND                       |                  |
| Chloromethane                  | 0.15  | 0.500 | ND                       |                  |
| Vinyl Chloride                 | 0.26  | 1.00  | ND                       |                  |
| 1,3-Butadiene                  | 0.20  | 0.500 | ND                       |                  |
| Bromomethane                   | 0.18  | 0.500 | ND                       |                  |
| Chloroethane                   | 0.19  | 0.500 | ND                       |                  |
| Trichlorofluoromethane         | 0.32  | 1.00  | ND                       |                  |
| 1,1-Dichloroethene             | 0.15  | 0.500 | ND                       |                  |
| Freon 113                      | 0.11  | 0.500 | ND                       |                  |
| Carbon Disulfide               | 0.26  | 1.00  | ND                       |                  |
| 2-Propanol (Isopropyl Alcohol) | 0.39  | 10.0  | ND                       |                  |
| Methylene Chloride             | 0.17  | 8.00  | ND                       |                  |
| Acetone                        | 0.37  | 8.00  | ND                       |                  |
| trans-1,2-Dichloroethene       | 0.16  | 0.500 | ND                       |                  |
| Hexane                         | 0.15  | 0.500 | ND                       |                  |
| MTBE                           | 0.24  | 0.500 | ND                       |                  |
| tert-Butanol                   | 0.22  | 2.00  | ND                       |                  |
| Diisopropyl ether (DIPE)       | 0.21  | 0.500 | ND                       |                  |
| 1,1-Dichloroethane             | 0.18  | 0.500 | ND                       |                  |
| ETBE                           | 0.16  | 0.500 | ND                       |                  |
| cis-1,2-Dichloroethene         | 0.13  | 0.500 | ND                       |                  |
| Chloroform                     | 0.25  | 1.00  | ND                       |                  |
| Vinyl Acetate                  | 0.16  | 0.500 | ND                       |                  |
| Carbon Tetrachloride           | 0.14  | 0.500 | ND                       |                  |
| 1,1,1-Trichloroethane          | 0.15  | 0.500 | ND                       |                  |
| 2-Butanone (MEK)               | 0.21  | 0.500 | ND                       |                  |
| Ethyl Acetate                  | 0.21  | 0.500 | ND                       |                  |
| Tetrahydrofuran                | 0.10  | 0.500 | ND                       |                  |
| Benzene                        | 0.21  | 0.500 | ND                       |                  |
| TAME                           | 0.086 | 0.500 | ND                       |                  |
| 1,2-Dichloroethane (EDC)       | 0.24  | 0.500 | ND                       |                  |
| Trichloroethylene              | 0.26  | 1.00  | ND                       |                  |
| 1,2-Dichloropropane            | 0.29  | 1.00  | ND                       |                  |
| Bromodichloromethane           | 0.13  | 0.500 | ND                       |                  |
| 1,4-Dioxane                    | 0.35  | 1.00  | ND                       |                  |
| trans-1,3-Dichloropropene      | 0.19  | 0.500 | ND                       |                  |
| Toluene                        | 0.25  | 0.500 | ND                       |                  |
| 4-Methyl-2-Pentanone (MIBK)    | 0.21  | 0.500 | ND                       |                  |
| cis-1,3-Dichloropropene        | 0.25  | 0.500 | ND                       |                  |

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 7 of 12



TPH-Gasoline

11

50.0

ND

## **MB Summary Report**

| Work Order:        | 1603070  | Prep  | Method: | NA                       | Prep             | Date:      | NA       | Prep Batch: | NA     |
|--------------------|----------|-------|---------|--------------------------|------------------|------------|----------|-------------|--------|
| Matrix:            | Air      | Analy |         | ETO15                    | Anal             | yzed Date: | 03/10/16 | Analytical  | 429280 |
| Units:             | ppbv     | Metho | od:     |                          |                  |            |          | Batch:      |        |
| Parameters         |          | MDL   | PQL     | Method<br>Blank<br>Conc. | Lab<br>Qualifier |            |          |             |        |
| Tetrachloroethyle  | ne       | 0.13  | 0.500   | ND                       |                  |            |          |             |        |
| 1,1,2-Trichloroeth | nane     | 0.17  | 0.500   | ND                       |                  |            |          |             |        |
| Dibromochlorome    | ethane   | 0.20  | 0.500   | ND                       |                  |            |          |             |        |
| 1,2-Dibromoethar   | ne (EDB) | 0.27  | 1.00    | ND                       |                  |            |          |             |        |
| 2-Hexanone         |          | 0.27  | 1.00    | ND                       |                  |            |          |             |        |
| Ethyl Benzene      |          | 0.23  | 0.500   | ND                       |                  |            |          |             |        |
| Chlorobenzene      |          | 0.15  | 0.500   | ND                       |                  |            |          |             |        |
| 1,1,1,2-Tetrachlor | roethane | 0.15  | 0.500   | ND                       |                  |            |          |             |        |
| m,p-Xylene         |          | 0.38  | 1.00    | ND                       |                  |            |          |             |        |
| o-Xylene           |          | 0.19  | 0.500   | ND                       |                  |            |          |             |        |
| Styrene            |          | 0.16  | 0.500   | ND                       |                  |            |          |             |        |
| Bromoform          |          | 0.11  | 0.500   | ND                       |                  |            |          |             |        |
| 1,1,2,2-Tetrachlor | roethane | 0.10  | 0.500   | ND                       |                  |            |          |             |        |
| 4-Ethyl Toluene    |          | 0.17  | 0.500   | ND                       |                  |            |          |             |        |
| 1,3,5-Trimethylbe  | enzene   | 0.15  | 0.500   | ND                       |                  |            |          |             |        |
| 1,2,4-Trimethylbe  | enzene   | 0.14  | 0.500   | ND                       |                  |            |          |             |        |
| 1,4-Dichlorobenz   | ene      | 0.11  | 0.500   | ND                       |                  |            |          |             |        |
| 1,3-Dichlorobenz   | ene      | 0.14  | 0.500   | ND                       |                  |            |          |             |        |
| 1,2-Dichlorobenz   | ene      | 0.15  | 0.500   | ND                       |                  |            |          |             |        |
| Hexachlorobutad    |          | 0.22  | 0.500   | ND                       |                  |            |          |             |        |
| 1,2,4-Trichlorobe  | nzene    | 0.46  | 1.00    | ND                       |                  |            |          |             |        |
| Naphthalene        |          | 0.28  | 1.00    | ND                       |                  |            |          |             |        |
| (S) 4-Bromofluoro  | obenzene |       |         | 85.3                     |                  |            |          |             |        |
| Work Order:        | 1603070  | Prep  | Method: | NA                       | Prep             | Date:      | NA       | Prep Batch: | NA     |
| Matrix:            | Air      | Analy |         | ETO15                    | Anal             | yzed Date: | 03/10/16 | Analytical  | 429294 |
| Units:             | ppbv     | Metho | od:     |                          |                  |            |          | Batch:      |        |
| Parameters         |          | MDL   | PQL     | Method<br>Blank<br>Conc. | Lab<br>Qualifier |            |          |             |        |

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 8 of 12



## LCS/LCSD Summary Report

Raw values are used in quality control assessment.

| Work Order: | 1603070 | Prep Method: | NA    | Prep Date:     | NA       | Prep Batch: | NA     | _ |
|-------------|---------|--------------|-------|----------------|----------|-------------|--------|---|
| Matrix:     | Air     | Analytical   | ETO15 | Analyzed Date: | 03/10/16 | Analytical  | 429280 |   |
| Units:      | ppbv    | Method:      |       |                |          | Batch:      |        |   |

| Parameters        |         | MDL  | PQL         | Method<br>Blank<br>Conc. | Spike<br>Conc. | LCS %<br>Recovery | LCSD %<br>Recovery | LCS/LCSD<br>% RPD | %<br>Recovery<br>Limits | % RPD<br>Limits | Lab<br>Qualifier |
|-------------------|---------|------|-------------|--------------------------|----------------|-------------------|--------------------|-------------------|-------------------------|-----------------|------------------|
| 1,1-Dichloroethen | е       | 0.15 | 0.500       | ND                       | 8              | 111               | 108                | 2.63              | 65 - 135                | 30              |                  |
| Benzene           |         | 0.21 | 0.500       | ND                       | 8              | 102               | 111                | 8.60              | 65 - 135                | 30              |                  |
| Trichloroethylene |         | 0.26 | 1.00        | ND                       | 8              | 98.6              | 107                | 8.38              | 65 - 135                | 30              |                  |
| Toluene           |         | 0.25 | 0.500       | ND                       | 8              | 102               | 116                | 12.5              | 65 - 135                | 30              |                  |
| Chlorobenzene     |         | 0.15 | 0.500       | ND                       | 8              | 96.8              | 101                | 4.55              | 65 - 135                | 30              |                  |
| (S) 4-Bromofluoro | benzene |      |             | ND                       | 8              | 105               | 106                |                   | 65 - 135                |                 |                  |
| Work Order:       | 1603070 |      | Prep Method | d: NA                    |                | Prep Da           | te:                | NA                | Prep Bat                | tch: NA         |                  |
| Matrix:           | ۸ir     |      | Analytical  | ETO15                    |                | Analyzo           | d Date:            | 03/10/16          | Analytic                | al /201         | 204              |

| Work Order: | 1603070 | Prep Method:          | NA    | Prep Date:     | NA       | Prep Batch:       | NA     |
|-------------|---------|-----------------------|-------|----------------|----------|-------------------|--------|
| Matrix:     | Air     | Analytical<br>Method: | ETO15 | Analyzed Date: | 03/10/16 | Analytical Batch: | 429294 |
| Units:      | ppbv    | wethod.               |       |                |          | Dalcii.           |        |
|             |         |                       |       |                |          |                   |        |

| Parameters   | MDL | PQL  | Method<br>Blank<br>Conc. | Spike<br>Conc. | LCS %<br>Recovery | LCSD %<br>Recovery | LCS/LCSD<br>% RPD | %<br>Recovery<br>Limits | % RPD<br>Limits | Lab<br>Qualifier |
|--------------|-----|------|--------------------------|----------------|-------------------|--------------------|-------------------|-------------------------|-----------------|------------------|
| TPH-Gasoline | 11  | 50.0 | ND                       | 500            | 89.0              | 95.5               | 7.05              | 50 - 150                | 30              |                  |

Total Page Count: 12 Page 9 of 12



## Laboratory Qualifiers and Definitions

#### **DEFINITIONS:**

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mq/L and mq/Kq (equivalent to PPM - parts per million in liquid and solid), uq/L and uq/Kq (equivalent to PPB - parts per billion in liquid and solid), ug/m3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % ( equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

#### LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a
- X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Page 10 of 12



## Sample Receipt Checklist

Client Name: Trinity Source Group Date and Time Received: 3/10/2016 14:30

Project Name: SSDPS O & M Event 2016 Received By: ke

Work Order No.: 1603070 Physically Logged By: Idi

Checklist Completed By: Idi

Carrier Name: Client Drop Off

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? <u>Yes</u>

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

**Sample Receipt Information** 

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? <u>Yes</u>

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Yes Temperature: °C

Water-VOA vials have zero headspace? No VOA vials submitted

Water-pH acceptable upon receipt? N/A

pH Checked by: n/a pH Adjusted by: n/a

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com



| 几一 | OKI               | ont | L |
|----|-------------------|-----|---|
|    | <b>UII</b> ABORAT | ent |   |

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293

## **CHAIN OF CUSTODY**

LAB WORK ORDER NO

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY

|                                        | www.torrentlab.com           |              |              |             |          |         |            |           |        |         |        |                   |               |
|----------------------------------------|------------------------------|--------------|--------------|-------------|----------|---------|------------|-----------|--------|---------|--------|-------------------|---------------|
| pany Name: Trinity Sour                | ce Group,                    | tac.         |              | Env.        | ] H 🔲    | Food    | Special    | Project   | Name/  | #: SSDF | & a    | M EN              | ent 2016      |
| ess: 119 Encinal Stree                 | + 11                         | 5-           |              |             |          | Purpos  | se:        |           |        |         |        |                   |               |
| Santy Cruz                             | State:                       | Zip          | Code:        | 9506        | ()       | Specia  | l Instruc  | tions / ( | Comme  | nts:    |        |                   |               |
| phone: 831-426-5606                    | Cell:                        |              |              |             |          |         |            |           |        |         |        |                   |               |
| DRT TO: David Reinsma                  | SAMPLER: 5                   |              |              |             |          | P.O. #  | 103        | 2,00      | 1,00   |         | EMAIL: | Labstr            | inity Ogmail  |
| NAROUND TIME:                          | SAMPLE TYPE                  | :            | REPOR        | FORMAT:     | _ (      | led     |            |           |        | ,       |        |                   |               |
| D Work Days 🔲 4 Work Days 📗 1 Work Day | Storm Water                  | Air          | Excel        | / EDD       | NEW SAN  | Stodbod |            |           |        |         |        |                   | ANALYSIS      |
| Work Days 🙎 3 Work Days 🔲 Noon - Nxt 🛭 | Day Waste Water Ground Water | Wipe Other   | EDF QC L     | evel III    | -16      |         |            |           |        |         |        | 1                 | REQUESTE      |
| Work Days 2 Work Days 2 - 8 Hours      | Soil                         |              | ☐ QC L       |             | 0        | 2       |            |           |        |         |        |                   | 1             |
| ID CANISTER I.D. CLIENT'S SAMPLE I.D.  | DATE / TIME<br>SAMPLED       | MATRIX       | # OF<br>CONT | CONT        | F        | 10-15   |            |           |        |         |        |                   | REMARKS       |
| DIA Effluent                           | 3/10/16                      | Arr          | 1            | (-L         | V        | X       |            |           |        |         |        |                   |               |
| Littlest                               | 11:30                        | 1.050        |              | Tedlar      | _        |         |            |           |        |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           |        |         | -      |                   |               |
|                                        |                              |              |              |             |          | - 5-    |            |           |        |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           |        |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           |        |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            | -         | -      |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           |        |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           |        |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           |        |         |        |                   |               |
|                                        |                              |              | -            |             |          |         |            |           |        |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           | _      |         |        |                   |               |
|                                        |                              |              |              |             |          |         |            |           |        |         |        |                   |               |
| linquished By Print:                   | Date:                        | 10/16        | Time:        | 7 V)13      | Receiv   | red By: | ,6.        | v V       | Print: | Evan    | Date:  | 1/0 1/            | Time: 141,30  |
| linquished By: Print:                  | Date:                        | 10/16        | Time:        | 14.2        | Receiv   | red By: | wa         | ラ K       | Print: | Evan    | Date:  | 10-16             | 14',50' Time: |
| V                                      |                              |              |              |             | V/2      |         |            | 5/1       | 20     |         |        | The second second |               |
| Samples Received in Good Condition?    |                              |              |              |             |          |         | ment       | )10t      |        |         |        |                   | Yes NO        |
| y: Date:3                              | days from date of f          | eceipi unies | s ower arr   | angements a | are made | 1/10    | a la David |           | 100    | Temp    |        | Page _            | of            |

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 12 of 12

6/30/2016 GeoTracker ESI

### STATE WATER RESOURCES CONTROL BOARD

# **GEOTRACKER ESI**

**UPLOADING A EDF FILE** 

## **SUCCESS**

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: 2016 SUBSLAB VAPOR DEPRESSURIZATION SYSTEM PERFORMANCE

**REPORT** 

Report Type: Operation and Maintenance Plan/Monitoring Report

Facility Global ID: SL0600150413

Facility Name: SEARWAY PROPERTY
File Name: TSG 1603070 EDF.zip
Organization Name: Trinity Source Group, Inc.
Username: TRINITY SOURCE GROUP

IP Address: 63.249.96.11

**Submittal Date/Time:** 6/30/2016 10:31:29 AM

Confirmation 7564051032 Number:

**VIEW QC REPORT** 

**VIEW DETECTIONS REPORT** 

Copyright © 2016 State of California

6/30/2016 GeoTracker ESI

### STATE WATER RESOURCES CONTROL BOARD

# **GEOTRACKER ESI**

**UPLOADING A GEO\_REPORT FILE** 

## **SUCCESS**

Your GEO\_REPORT file has been successfully submitted!

Submittal Type: GEO\_REPORT

Report Title: 2016 SUBSLAB VAPOR DEPRESSURIZATION SYSTEM PERFORMANCE

REPORT

Report Type: Operation and Maintenance Plan/Monitoring Report

<u>Report Date:</u> 6/30/2016

Facility Global ID: SL0600150413

Facility Name: SEARWAY PROPERTY

File Name: 103\_2016 SSVD System Performance Report 6.30.16.pdf

Organization Name: Trinity Source Group, Inc.
Username: TRINITY SOURCE GROUP

<u>IP Address:</u> 63.249.96.11

**Submittal Date/Time:** 6/30/2016 4:16:12 PM

Confirmation 8539999604 Number:

Copyright © 2016 State of California