RECEIVED

By Alameda County Environmental Health at 2:40 pm, Jun 19, 2014

Don Lindsey 1406 Webster St Alameda, CA 94501

June 17, 2014

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: **Perjury Statement-**2014 Sub-Slab Vapor Depressurization System Performance Report Searway Property (SLIC Case No. RO0002584) 649 Pacific Avenue Alameda, California

Dear Mr. Wickham,

"I declare under penalty of perjury, that the information and / or recommendations contained in the attached document or report are true and correct to the best of my knowledge."

Timber Dell Properties, LLC

Donald W. Lindsey, member

June 18, 2014 Trinity Project: 103.001.001

Mr. Jerry Wickham Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Parkway, Suite 250 Alameda, CA 94502-6577

Re: 2014 Sub-Slab Vapor Depressurization System Performance Report Searway Property 649 Pacific Avenue Alameda, California

Dear Mr. Wickham:

Trinity Source Group, Inc. (Trinity) has prepared this 2014 Sub-Slab Vapor Depressurization System *Performance Report (Report)* on behalf of Timber Del Properties, for the referenced site (Figure 1). The operations and maintenance (O&M) activities are described in the following sections.

The sub-slab vapor depressurization (SSVD) system was installed at the existing commercial building at the site in order to prevent volatile organic compounds (VOCs) from migrating from the sub-slab area into indoor air. The SSVD system was installed in 2008 and operates continuously. Monitoring is currently conducted annually.

SUB-SLAB VAPOR DEPRESSURIZATION SYSTEM DESCRIPTION

Sub-slab air is withdrawn from the sub-slab material by means of an applied vacuum. The extracted air is routed through piping and discharged to the atmosphere.

The SSVD system includes two horizontal extraction wells located near former depressurization points DPT-1 and DPT-2, with extraction well pipe runs trenched to nearby walls. The pipe runs continue up to the first floor ceiling, where they are manifolded together and connected to a suction fan located in the attic. The exhaust air is piped to the southwest corner of the roof and discharged through a 6-foot tall stack. Vacuum is applied to the extraction wells using an electric fan blower equipped with a flow meter. The SSVD system was originally constructed with carbon treatment, but the carbon was removed in May 2009 due to very low VOC influent concentrations. Former depressurization point locations are shown on Figure 2. The system layout is presented on Figure 3. The Sub-Slab System Process and Instrumentation Diagram is shown on Figure 4.

Sub-slab extraction system influent and effluent analytical data are summarized in Table 1. Sub-slab

extraction system influent throughput and mass removal of VOCs are summarized in Table 2. Sub-slab extraction system effluent throughput and discharge of VOCs are summarized in Table 3.

The Sub-Slab System Extraction Well Detail is shown on Figure 5. Each extraction well is a 3-foot long, 4-inch diameter, horizontal slotted PVC casing, which is connected to 4-inch diameter PVC blank pipe runs. The slotted pipe is set in the middle of the sub-base material. PVC screen extends across the sub-base material.

The Sub-Slab System Monitoring Point Detail is shown on Figure 6. The monitoring points (VS-1 through VS-22) were constructed in accordance with the design specifications presented in the EPA document, "Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site using Basement and Sub-Slab Air Samples" (EPA 600 R-05/147, March 2006). These monitoring points have proven to be effective in sample collection and measuring the pressure field established by an applied vacuum. Monitoring point locations are shown on Figure 2.

The Bay Area Air Quality Management District (BAAQMD) application number is 17506 and the plant number is 18970. The Permit to Operate is included in Attachment A. On March 19, 2012 Trinity requested a change in monitoring frequency from quarterly to annually, which was granted by BAAQMD. An approval letter of the monitoring frequency change is included in Attachment B.

SSVD SYSTEM O&M SUMMARY

Date of O&M Event:	March 11, 2014
Sample Containers:	1-Liter Tedlar Bags
Sample Collection Point:	Effluent
System Conditions:	System running and passed smoke pen test for O&M event

Trinity collected an effluent sample and delivered it to Torrent Laboratory, Inc., a California-certified laboratory (ELAP# 1991). The sample was analyzed for VOCs according to EPA Method TO-15 and Stoddard solvent according to EPA Method TO-3 during this annual sampling event. The O&M field data sheets are included in Attachment C and the certified analytical report is included in Attachment D.

SSVD SYSTEM PERFORMANCE

- SSVD has discharged a total of approximately 1.10 pounds of VOCs from March 25, 2013 to March 11, 2014, during approximately 351 days of operation.
- VOC removal rate for the period of March 25, 2013 to March 11, 2014 is 0.00314 pounds per day.
- The system is performing as expected with removal of VOCs and depressurization of the sub-slab area.
- System was observed under performing in its current settings (Fan Speed 1); flow was not measurable using handheld anemometer. The blower unit was disassembled and inspected for obstructions or other problems, and none were observed. The blower unit

was re-assembled, and blower intensity was increased to Fan Speed 2, where measurable flow was observed. The blower was left on Fan Speed 2.

- VOC concentrations have generally declined since start-up.
- The low concentrations of VOCs discharged to the atmosphere are well within the permitted discharge allowed for specific compounds and for the total limit of 10 pounds per day. No violations of the BAAQMD permit have occurred.
- All effluent VOC concentrations from March 25, 2013 to March 11, 2014 are less than Commercial Land Use Site-Specific Screening Levels¹ (Table 1). It should be noted that the Site-Specific Screening Levels have been updated to utilize the December 2013 Environmental Screening Levels (ESLs) issued by the San Francisco Bay Regional Water Quality Control Board. For each VOC, the Commercial Indoor Air ESL was selected, and divided by the Site-Specific Attenuation Factor, to derive the Site-Specific Screening Level.

RECOMMENDATIONS

All effluent VOC concentrations are less than commercial Site-Specific Screening Levels. In a letter dated September 9, 2013, Alameda County Department of Environmental Health (ACEH) stated that additional work would be necessary to verify the Site-Specific Screening Levels. Trinity recommends proceeding with work detailed in the April 23, 2014 *Work Plan for Additional Sub-Slab Attenuation Factor Testing* to verify the Site-Specific Screening Levels.

Should you have any questions regarding this *Report*, please call Trinity at (831) 426-5600.

Sincerely,

TRINITY SOURCE GROUP, INC. A California Corporation

Information, conclusions, and recommendations made by Trinity in this document regarding this site have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

Debra J. Moser, PG, CEG, CHG Senior Geologist

Eric Choi Staff Scientist

¹ Trinity Source Group, Inc., Sub-Slab Attenuation Factor Determination Summary Report, September 20, 2010.

Mr. Jerry Wickham Timber Del Properties SSVD 0&M Report June 18, 2014

DISTRIBUTION

A copy of this report has been forwarded to:

Mr. Don Lindsey Timber Del Properties, LLC 2424 Central Avenue Alameda, CA 94501 Ms. Miranda Vega The Mechanics Bank 1999 Harrison St., Suite 810 Oakland, CA 94612

Attachments:

- Table 1 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data
- Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs
- Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs
- Figure 1 Site Location Map
- Figure 2 Monitoring Well and Sub-Slab Vapor Probe Location Map
- Figure 3 Sub-Slab Depressurization System Layout
- Figure 4 Sub-Slab Depressurization System Process and Instrumentation Diagram
- Figure 5 Sub-Slab Depressurization System Extraction Well Detail
- Figure 6 Sub-Slab Vapor Monitoring Point Detail
- Attachment A BAAQMD Permit to Operate
- Attachment B BAAQMD Correspondence
- Attachment C O&M Field Data Sheets
- Attachment D Certified Analytical Report, Chain-of-Custody and GeoTracker Upload Documentation

TABLES

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method TO-3(MOD)			EP	A Meth	od TO-	15			
		, ,			Carbon						
Sample Date	Sample Location	Stoddard µg/m ³	Benzene µg/m ³	Chloroform µg/m ³	Tetrachloride µg/m ³	PCE µg/m ³	TCE µg/m ³	VC µg/m ³	2-Butanone µg/m ³	Acetone µg/m ³	Notes
9/10/2008	Influent	4,900 ^c	<80	560	3,900	2,600	<130	<64	300	<480	
0,10,2000	Effluent	610 ^{c, d}	<1.8	<3.9	29	17	<1.1	<0.5	<0.88	71	k
9/11/2008	Influent	2,400 ^c	<32	480	3,200	2,500	<54	<26	260	<190	е
	Effluent	710 ^c	<1.8	<3.9	<1.9	<2.6	<1.1	<0.5	14	180	e
10/10/2008	Influent	960 ^b	65	110	880	880	<5.4	<2.6	27	51	1
10,10,2000	Effluent	740 ^b	<3.2	54	200	13	<5.4	<2.6	<3.0	25	m
11/6/2008	Influent	1,700 ^a	<1.6	58	690	520	<2.7	<1.3	23	62	f
11/0/2000	Effluent	2,800 ^a	1.9	53	770	14	<2.7	<1.3	6.5	37	g
12/4/2008	Influent	2,400 ^h	20	110	780	1,100	<6.7	<3.2	110	<24	i
, ,,_0000	Effluent	2,100 ^h	18	120	1,100	40	<5.4	<2.6	82	<19	j
1/2/2009	Influent	<3,500	<16	26	560	800	<27	<13	<15	<95	n
	Effluent	<3,500	<8.0	73	920	220	<13	<6.4	<7.4	<48	0
2/9/2009	Influent	2,300 ^p	<3.2	64	480	680	<5.4	<2.6	9.6	29	t
	Effluent	1,800 ^p	<3.2	<4.9	10	<6.8	<5.4	<2.6	<3.0	20	S
5/20/2009	Influent			Carb	on Vessels Re	moved; I	nfluent no	o longer sa	impled.		
	Effluent	1,800 ^q	<4.5	<9.8	<4.7	<6.4	<2.6	<1.2	<2.2	<2.9	r
8/7/2009	Effluent	4,500 ^u	<1.6	<2.4	<3.2	<3.4	<2.7	<1.3	2.0	24	v
11/6/2009	Effluent	2,400 ^u	5.4	85	670 [×]	1,100 ^x	<2.7	<1.3	<1.5	84	w
2/2/2010	Effluent	2,000 ^y	5.6	40	280	430	<2.7	<1.3	<1.5	31	z
5/5/2010	Effluent	<400	2.24	77.4	562	857	<5.4	<2.6	<1.5	34.9	aa

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method TO-3(MOD)			EP	A Meth	od TO-1	5			
Sample Date	Sample Location	Stoddard µg/m ³	Benzene µg/m³	Chloroform µg/m ³	Carbon Tetrachloride µg/m ³	PCE µg/m ³	TCE μg/m ³	VC µg/m ³	2-Butanone µg/m³	Acetone µg/m³	Notes
8/5/2010	Effluent	<400	6.78	75.8	<6.3	686	<11	<5.2	<3.0	48	ab, ac
11/30/2010	Effluent	<350	<3.2	<9.8	259	290	<11	<5.2	<3.0	<19	ad
2/22/2011	Effluent	<350	<3.2	26.8	235	261	<11	<5.2	<3.0	27.4	ae
6/1/2011	Effluent	<350	<3.2	25.5	254	354	<11	<5.2	<3.0	62.4	af
8/25/2011	Effluent	<350	<3.2	37.9	287	332	<11	<5.2	<3.0	<19	r, ag
11/21/2011	Effluent	<350	<3.2	26.4	355	635	<11	<5.2	<3.0	<19	
3/6/2012	Effluent	<700	<3.2	44.3	447	626	<11	<5.2	<3.0	<19	r, ah
3/25/2013	Effluent	<700	<3.2	38.5	567	578	<11	<5.2	<3.0	<38	r
3/11/2014	Effluent	<700	2.21	27.3	229	366	<5.4	<2.6	<1.5	36.5	ai

	Screen	ning Levels f	or Indoor A	ir (µg/m³)	- Resider	ntial Prope	rty Use	
100	0.084	0.46	0.058	0.41	0.59	0.031	N/A	31,000
Site-Specific Screening Levels for Sub-Slab Vapor (µg/m ³) - Residential Property Use*								
242,718	204	1,117	141	995	1,432	75	N/A	75,242,718
Screening Levels for Indoor Air (µg/m ³) - Commercial Property Use								
100	0.42	2.3	0.29	2.1	3.0	0.16	N/A	31,000
Site-Specific Screening Levels for Sub-Slab Vapor (µg/m³) - Commercial Property Use*								
Site-S	Specific Scr	eening Leve	Is for Sub-S	lab Vapor	'(µg/m³) ∍	 Commerce 	ial Propert	y Use*

Notes:

Stoddard = Total petroleum hydrocarbons as gasoline.

PCE = Tetrachloroethylene or Perchloroethylene

TCE = Trichloroethylene

VC = Vinyl Chloride

VOCs = Volatile Organic Compounds

MTBE = Methyl tertiary butyl ether

TBA = Tert-Butanol

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method TO-3(MOD)			EP	A Meth	od TO-1	15			
		, ,			Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m ³	µg/m³	µg/m ³	µg/m ³	µg/m³	µg/m ³	µg/m³	µg/m³	µg/m³	
otes Continue		10	10	10	10	10	10	10		10	
	= Tert amyl m	nethyl ether									
		s per cubic mete	r, also equiva	alent to parts p	er billion (ppb)						
		aboratory analyti									
	 No sample 										
	•			•	U U				standard pattern		
b		romatogram does						l). Reporte	d value due to		
	•	f non-gasoline co	•	0	•		line.				
		al Stoddard (disc									
d		imit increased du					to the MDL				
	•	alues between th					o the MDI				
		imit increased du s detected are: C							7		
T					1,2,4-trimetryide	enzene 2.s	θµg/m , m,	5-xylene 4.	/μg/m,		
		chloride 4.5 µg/n				. 3 .		3			
		s detected are: C									
h		romatogram does				attern. Re	eported value	ue due to p	presence of		
		rd solvent compo				م _ م م ال دال		3			
I		s detected are: 1									
		ene 48 µg/m³, etl									
j								າ°, 4-ethyl t	oluene 35 µg/m³,	,	
		ene 45 µg/m³, m,p			e 44 µg/m³, and	toluene 38	30 µg/m³				
		detected is: m,p									
I							g/m³, m,p-x	ylene 53 µ	g/m ³ , MTBE 220	µg/m³,	
	o-xylene 22	2 µg/m³, TBA 55	µg/m³, TAME	21 µg/m ³ , and	l toluene 82µg/m	1 ³					
m	= Other VOC	s detected are: N	/ITBE 180 µg	/m ³ , TAME 8.4	µg/m ³ , and tolue	ene 7.3 µg	J/m ³				
n	= Toluene de	tected at a conce	entration of 3	7 µg/m³							
0	= Toluene de	tected at a conce	entration of 2	9 µg/m³							
р	= Hydrocarbo	ons responded w	ithin range of	C5-C12 quan	tified as Stoddar	d Solvent	but sample	chromato	gram does not m	atch	
	requested f	uel standard pat	tern. TPH va	lue due to pres	sence of heavy e	end unider	ntified hydro	ocarbon pe	eaks.		
q	•	orted as a Stodda		•	U U		•	fuel patter	n.		
		alue due to indiv	-		• •	-					
	-	ng limts were rais			eceived (tedlar b	ag). Resu	Its reported	I to the MD	L.		
		as detected at a o									
		as detected at a c									
u	•	orted as a Stodda		•	Ũ		•		•		
	Result due	to individual pea	ks of unident	ified compound	ds within C5-C12	2 range qu	antified as	Stoddard	Solvent.		

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method TO-3(MOD)			EP	A Meth	od TO-1	5			
		_			Carbon						
Sample	Sample	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Notes
Date	Location	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	
otes Continu	ed:										
v	= Other VOC	s detected are: 1	,2,4-Trimethy	lbenzene 5.9	µg/m³ , isopropa	nol 21 µg/r	m ³ and tolue	ene 2.3 µ	g/m ³		
w	= Other VOC	s detected are: 1	,2,4-Trimethy	lbenzene 140	µg/m ³ , 1,3,5-Tri	methylber	nzene 38 µg	ı/m ³ ,			
	4-Ethyl Tolu	uene 130 µg/m ³ ,	ethylbenzene	e 83 μg/m ³ , tota	al xylenes 322 µ	g/m ³ , meth	ylene chlor	ide 8.1 µg/	′m ³		
	t-butyl alco	ohol 29 µg/m ³ , tol	uene 35 µg/m	1 ³ .							
х	= Outside of o	calibration range	but within wo	orking range of	the instrument.	Due to he	old time res	trictions, n	o diluted analysi	s was performe	ed.
		ddard Solvent re			•	• •					
z		s detected are: 1									
		ulfide 4.1 µg/m ³ ,							nd Toluene 15µg	J/m ³	
aa		s detected are: T									
		ene 19.5 µg/m³,									
ab		s detected are: C							,p-Xylene 24.3 μ	g/m³,	
).4 µg/m³, 1,3,5-⊺									
ac		for stoddard sol	vents are rep	orted using the	eir MDL, reportin	g limit was	s raised due	e to insuffic	cient sample volu	ime received	
	(tedlar bag	/		(3) X I	10 5 (3		0.00	/ 3			
		s detected are: T			-	and o-Xyle	ene 6.02 µg	/m².			
		ly other VOC det				3					
		s detected are: 0 rce Group, Inc, S		10 /		10	Donort Con	tombor 20	2010	Note that calcu	lation
		enzene and viny					tepon, sep	lember 20,	, 2010.	Note that calcu	llation
		s detected are: 0		•				1 11 ug/n	n ³		
		s detected are: N						; 4.4 i µg/ii			
		s detected are: H							luono 25 5 ua/m ³	3	
a		-Pentanone 4.39								,	
		ethylbenzene 10		Denzene 3.03	рулп, пі,р-лую	ne 55.5 h	g/m, 0-Ayle	πο 12.4 μί	y/m, and		

Table 2 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

Since Previous Event 0.04 1.00	Removed Since Previous Event 76.53 1,836.73	Cumulative Cubic Meters Removed 76.53 1.913.27	Total VOCs μg/m ³ 12,260 8,840	Pounds VOCs Removed Since Last Event 0.00207		Total Pounds VOCs Removed 0.00207	Comments
Event 0.04 1.00	Event 76.53	Removed 76.53	μg/m ³ 12,260	Last Event 0.00207	per Day	Removed	
0.04 1.00	76.53	76.53	12,260	0.00207			System sampled 1-hou
1.00					0.04964	0.00207	System sampled 1-hou
	1,836.73	1.913.27	0 0 1 0				-,
		.,	0,040	0.03580	0.03580	0.03786	
29.00	53,265.31	55,178.57	3,443	0.40430	0.01394	0.44217	
27.00	49,591.84	104,770.41	3,103	0.33923	0.01256	0.78140	
28.00	51,428.57	156,198.98	5,511	0.62483	0.02232	1.40623	
29.00	53,265.31	209,464.29	1,423	0.16710	0.00576	1.57333	
38.00	69,795.92	279,260.20	3,568	0.54906	0.01445	2.12238	
100.00	183,673.47	462,933.67	1,800	0.72886	0.00729	2.85125	
	38.00	38.0069,795.92100.00183,673.47	38.0069,795.92279,260.20100.00183,673.47462,933.67	38.0069,795.92279,260.203,568100.00183,673.47462,933.671,800	38.0069,795.92279,260.203,5680.54906100.00183,673.47462,933.671,8000.72886	38.0069,795.92279,260.203,5680.549060.01445100.00183,673.47462,933.671,8000.728860.00729	38.00 69,795.92 279,260.20 3,568 0.54906 0.01445 2.12238

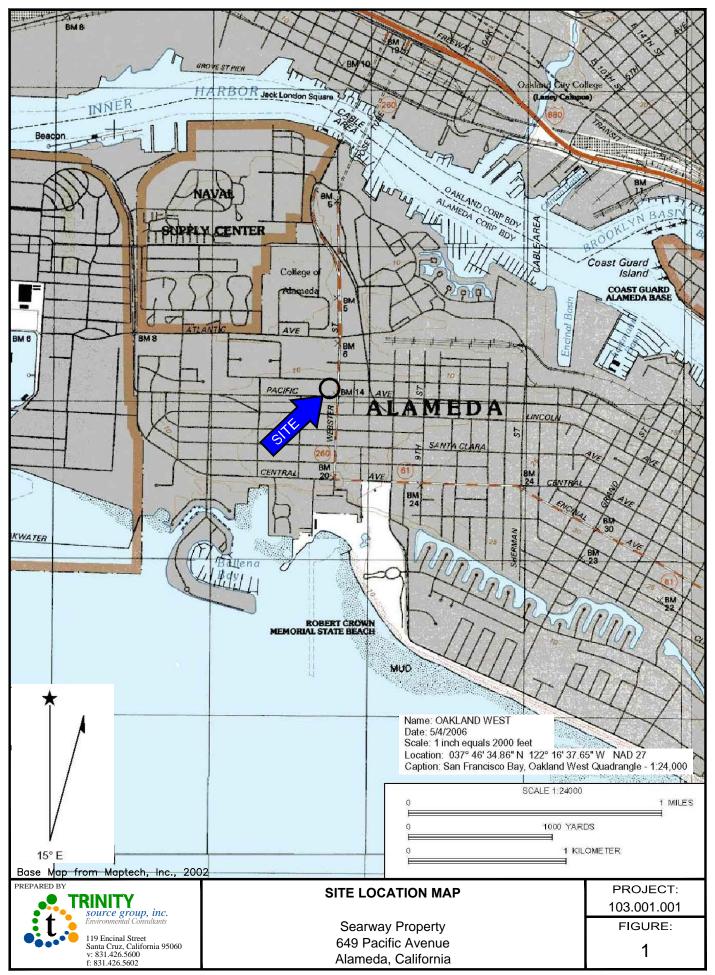
Notes:

CFM = cubic feet per minute

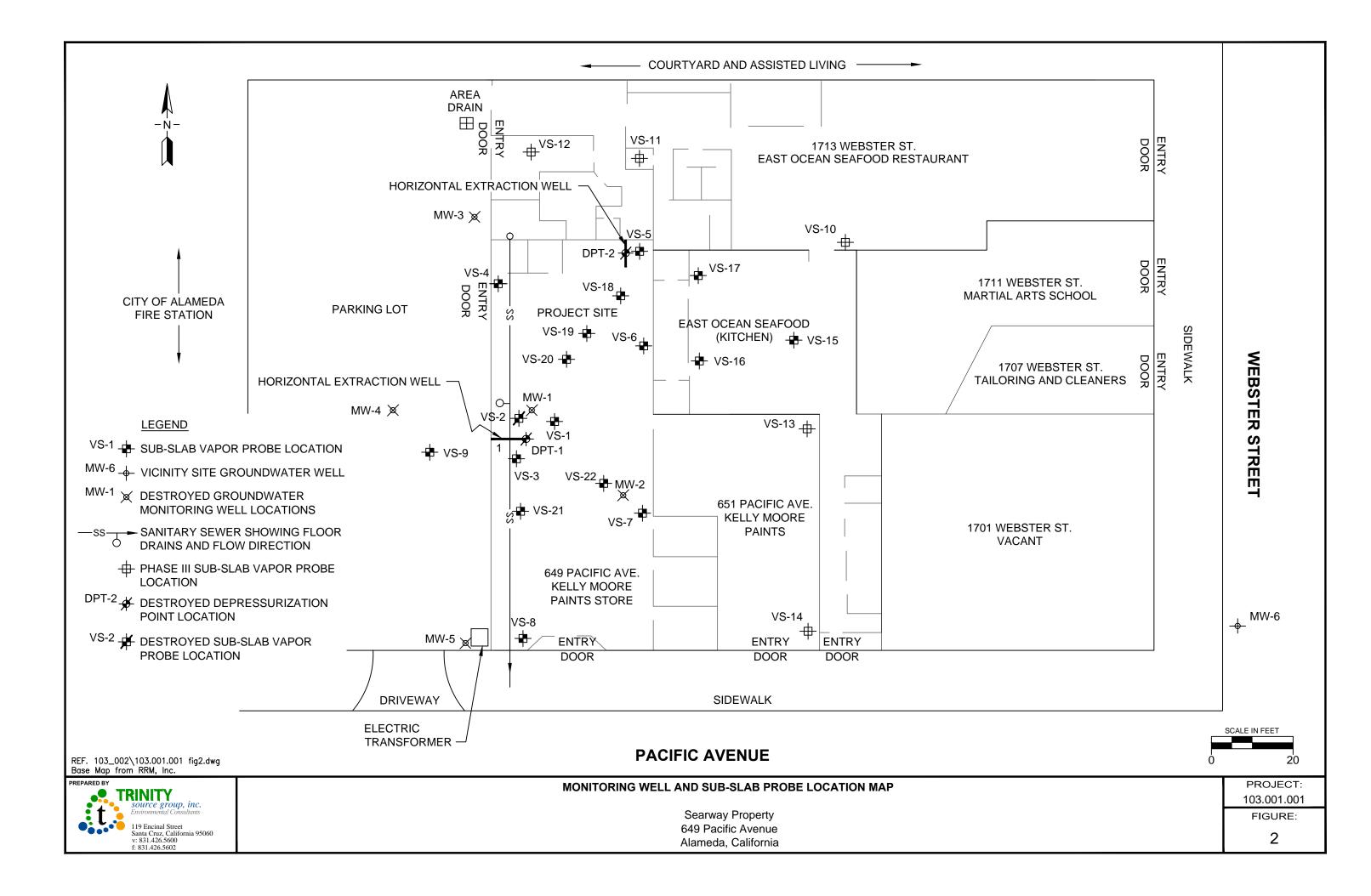
 $\mu g/m^3$ = micrograms per cubic meters

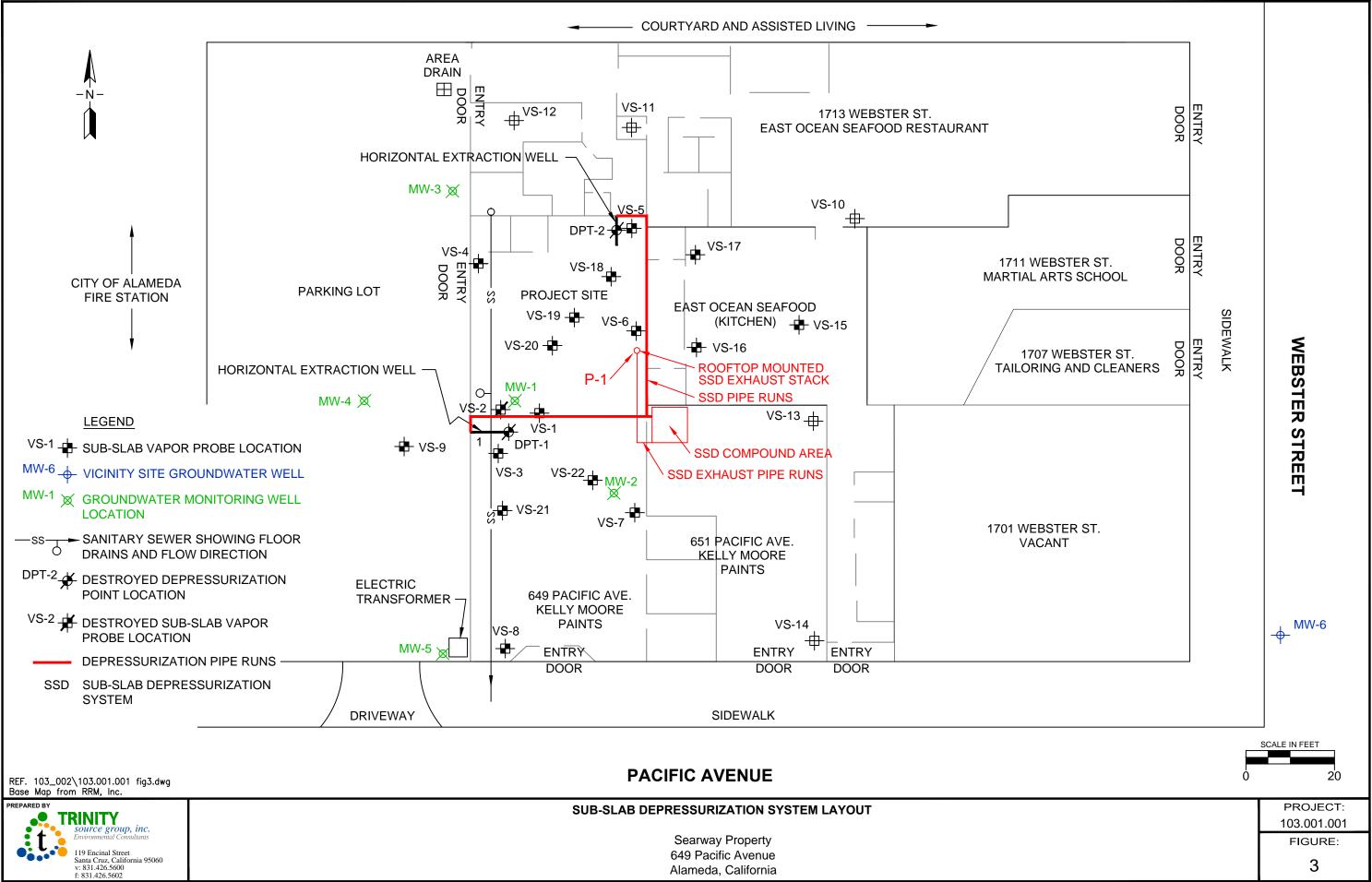
VOCs = volatile organic compounds

* = Treatment system removed on May 20, 2009.

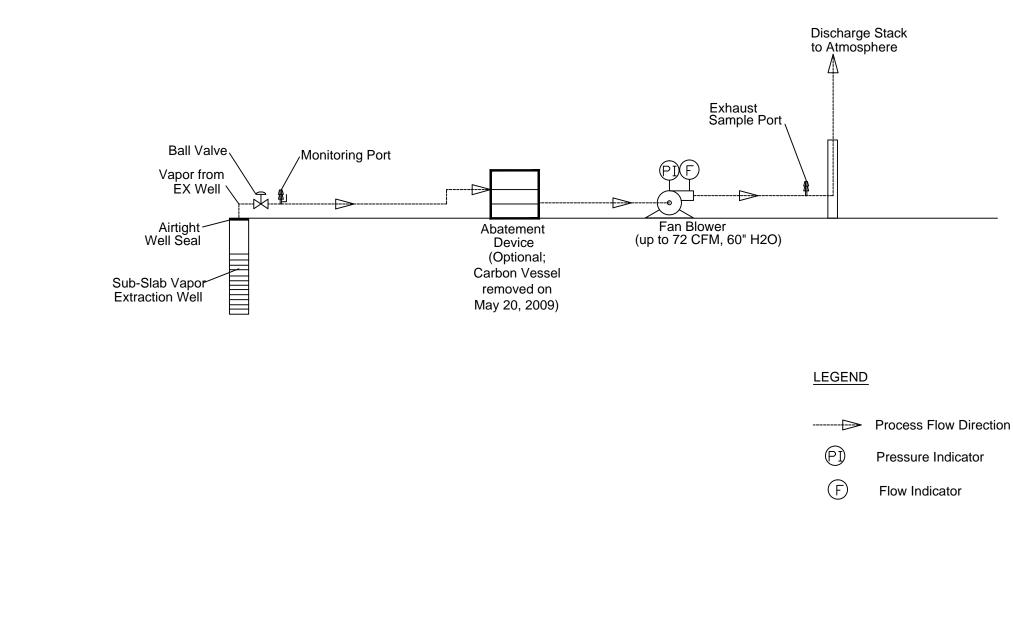

Table 3 Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs

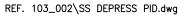
Searway Property 649 Pacific Avenue Alameda, California


		Days Operated	Cubic Meters		Effluent			Cumulative	
	Average	Since	Discharged Since	Cumulative	Total	Pounds VOCs	Pounds	Total Pounds	
	Flow Rate	Previous	Previous	Cubic Meters	VOCs	Discharged Since	VOCs Discharged	VOCs	Comments
Date	CFM	Event	Event	Discharged	µg/m³	Last Event	per Day	Discharged	
9/10/2008	45	0.04	76.53	76.53	731.1	0.00012	0.00296	0.00012	
9/11/2008	45	1.00	1,836.73	1,913.27	904	0.00366	0.00366	0.00378	
10/10/2008	45	29.00	53,265.31	55,178.57	1,227.7	0.14417	0.00497	0.14795	
11/6/2008	45	27.00	49,591.84	104,770.41	3,720.5	0.40676	0.01507	0.55471	
12/4/2008	45	28.00	51,428.57	156,198.98	4,249.6	0.48181	0.01721	1.03652	
1/2/2009	45	29.00	53,265.31	209,464.29	1,242.0	0.14585	0.00503	1.18237	
2/9/2009	45	38.00	69,795.92	279,260.20	1,834.5	0.28228	0.00743	1.46465	
5/20/2009	45	100.00	183,673.47	462,933.67	1,800.0	0.72886	0.00729	2.19351	
8/7/2009	45	79.00	145,102.04	608,035.71	4,555.2	1.45716	0.01845	3.65067	
11/6/2009	45	91.00	167,142.86	775,178.57	5,129.5	1.89012	0.02077	5.54079	
2/2/2010	45	88.00	161,632.65	936,811.22	3,290.7	1.17259	0.01332	6.71338	
5/5/2010	45	92.00	168,979.59	1,105,790.82	1,682.5	0.62679	0.00681	7.34017	
8/5/2010	45	92.00	168,979.59	1,274,770.41	1,015.8	0.37840	0.00411	7.71857	
11/30/2010	45	117.00	214,897.96	1,489,668.37	684.5	0.32430	0.00277	8.04287	
2/22/2011	45	84.00	154,285.71	1,643,954.08	566.6	0.19272	0.00229	8.23559	
6/1/2011	45	99.00	181,836.73	1,825,790.82	799.4	0.32047	0.00324	8.55606	
8/25/2011	45	85.00	156,122.45	1,981,913.27	716.5	0.24661	0.00290	8.80268	
11/21/2011	45	88.00	161,632.65	2,143,545.92	1,016.4	0.36218	0.00412	9.16485	
3/6/2012	45	106.00	194,693.88	2,338,239.80	1,216.0	0.52193	0.00492	9.68678	
3/25/2013	45	384.00	705,306.12	3,043,545.92	1,183.5	1.84023	0.00479	11.52702	
3/11/2014	45	351.00	644,693.88	3,688,239.80	776.1	1.10299	0.00314	12.63000	

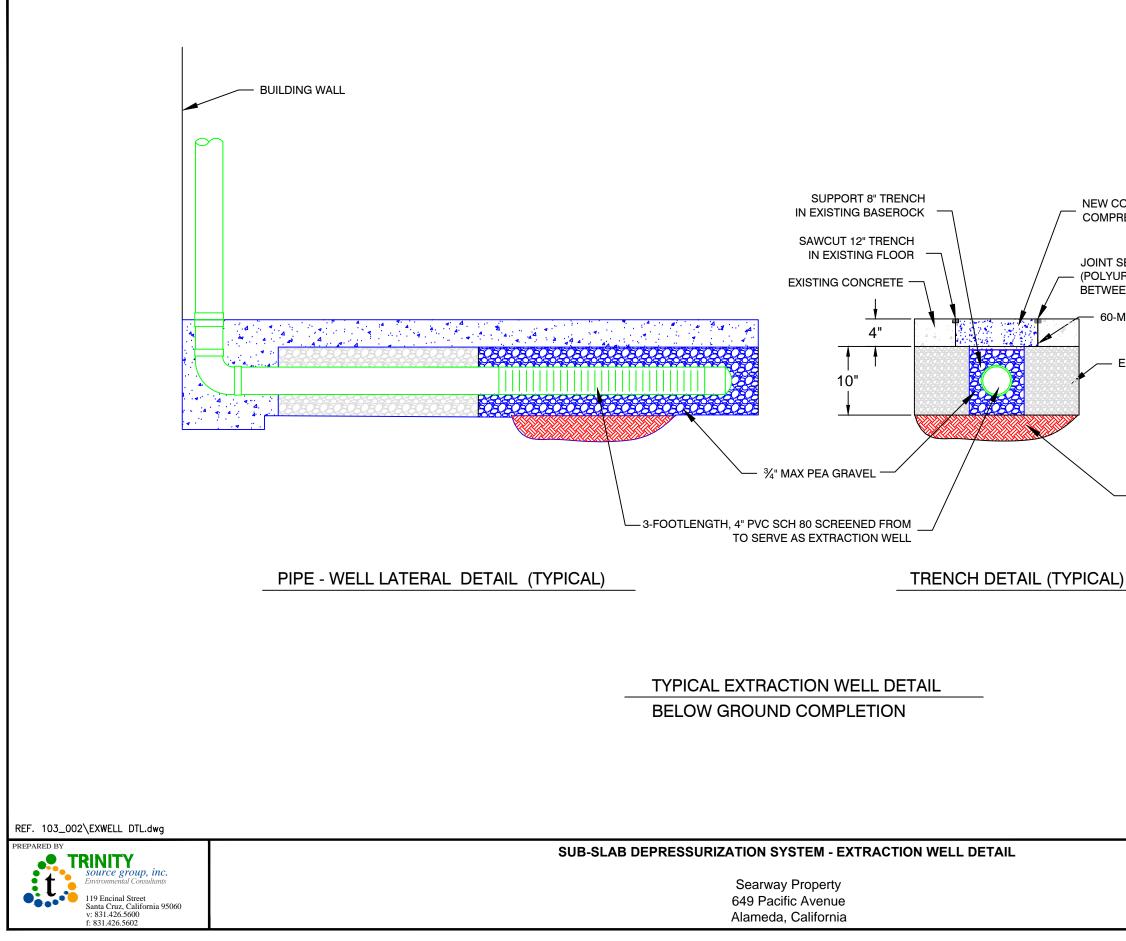

Notes:

CFM = cubic feet per minute µg/m³ = micrograms per cubic meters VOCs = volatile organic compounds **FIGURES**


REF. 103_002\103.001.001 fig1.dwg



SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS AND INSTRUMENTATION DIAGRAM



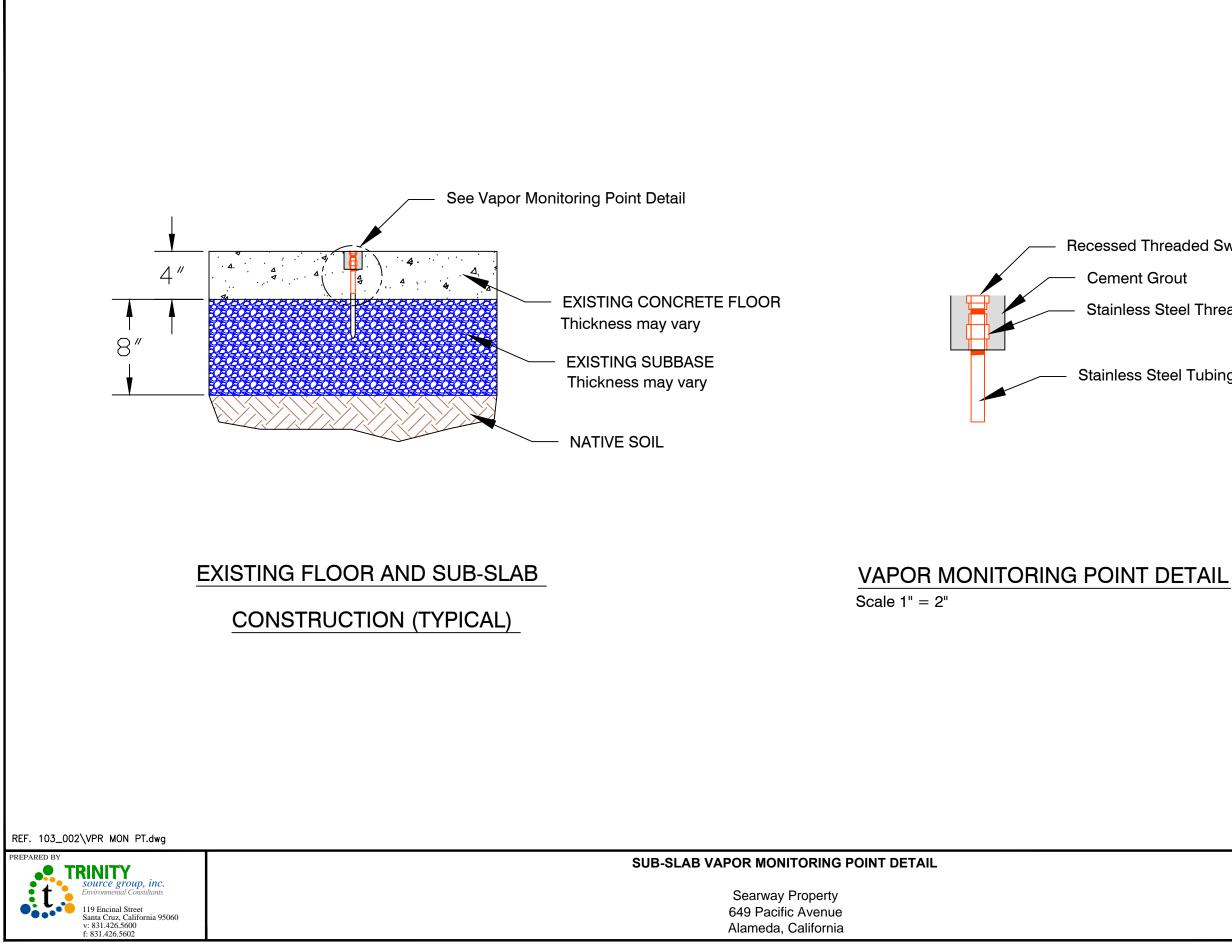
SUB-SLAB DEPRESSURIZATION SYSTEM - PROCESS AND INSTRUMENTATION DIAGRAM

Searway Property 649 Pacific Avenue Alameda, California

Pressure Indicator

[PROJECT:
	103.001.001
	FIGURE:
	4

NEW CONCRETE 2500 psi COMPRESSIVE STRENGTH @ 28 DAYS


JOINT SEALANT (POLYURETHANE OR EQUIVALENT, @ JOINTS BETWEEN NEW AND EXISTING CONCRETE)

60-MIL HDPE VAPOR BARRIER

EXISTING SUBGRADE (BASEROCK)

- NATIVE SOIL

PROJECT:
103.001.001
FIGURE:
5

Recessed Threaded Swagelok Cap

Cement Grout

Stainless Steel Threaded Swagelok Fitting

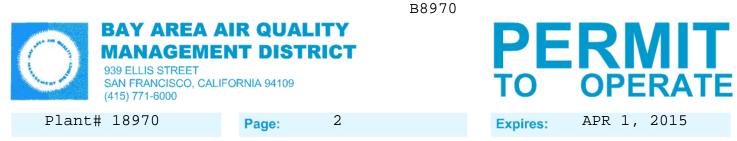
Stainless Steel Tubing

PROJECT:
103.001.001
FIGURE:
6

ATTACHMENT A

BAAQMD – PERMIT TO OPERATE

B8970 BAY AREA AIR QUALITY MANAGEMENT DISTRICT 939 ELLIS STREET SAN FRANCISCO, CALIFORNIA 94109 (415) 771-6000 Plant# 18970 Page: 1 Expires: APR 1, 2015


This document does not permit the holder to violate any District regulation or other law.

Searway Property 2424 Central Avenue Alameda, CA 94501

Location: 649 Pacific Avenue Alameda, CA 94501

S# DESCRIPTION [Schedule] PAID ----- 1 1 CHEM> Contaminated soil remediation, Contaminated soil vapor 1408 Sub-Slab Venting System [G1] ------ 1 Permit Source, 0 Exempt Sources *** See attached Permit Conditions ***

The operating parameters described above are based on information supplied by permit holder and may differ from the limits set forth in the attached conditions of the Permit to Operate. The limits of operation in the permit conditions are not to be exceeded. Exceeding these limits is considered a violation of District regulations subject to enforcement action.

This document does not permit the holder to violate any District regulation or other law.

*** PERMIT CONDITIONS ***

COND# 23992 applies to S# 1

1. In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinyl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- 2. To determine compliance with Condition 1, the operator of this source shall:
 - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 92 days on a quarterly basis.

Written authorization must be received from the District before any change in sampling frequency.

- b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
- c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed

B8970 BAY AREA AIR QUALITY MANAGEMENT DISTRICT 939 ELLIS STREET SAN FRANCISCO, CALIFORNIA 94109 (415) 771-6000 Plant# 18970 Page: 3 Expires: APR 1, 2015

This document does not permit the holder to violate any District regulation or other law.

*** PERMIT CONDITIONS ***

in condition 1 as well as the total volatile organic compounds.

- 3. The operator of this source shall maintain the following information in a District-approved log for each month of operation of the source:
 - a. dates of operation;
 - b. exhaust flow rate:
 - c. exhaust sampling date;
 - d. analysis results;
 - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- 4. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
 - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
 - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

END OF CONDITIONS

	rea Air Quality ement District	**	SOURCE	EMISSIONS	**			LANT #18 ar 29, 2	
S# 	Source Description				Anr PART 	NUAL AN ORG 	verage NOx 	lbs/day SO2 	СО
1	Sub-Slab Venting System				-	.1	-	-	-
	ΤΟΤΑΙS					.1			

ATTACHMENT B

BAAQMD - CORRESPONDENCE

APR 0 F 2012

BY:

March 28, 2012

BAY AREA Air Quality

MANAGEMENT

DISTRICT

ALAMEDA COUNTY Tom Bates Scott Haggerty Jennifer Hosterman Nate Miley (Secretary)

CONTRA COSTA COUNTY John Gioia (Chairperson) David Hudson Mary Piepho Mark Ross

> MARIN COUNTY Katie Rice

NAPA COUNTY Brad Wagenknecht

SAN FRANCISCO COUNTY John Avalos Edwin M. Lee Eric Mar

SAN MATEO COUNTY Carole Groom Carol Klatt

SANTA CLARA COUNTY Susan Garner Ash Kalra (Vice-Chair) Liz Kniss Ken Yeager

SOLANO COUNTY James Spering

SONOMA COUNTY Susan Gorin Shirlee Zane

Jack P. Broadbent EXECUTIVE OF FICER/APCO Trinity Source Group, Inc. 500 Chestnut Street, Suite 225 Santa Cruz, CA 95060

Attention: Cora E. Olson

Application No.:17506Plant No.18970Equipment Location:18970Searway Property649Pacific AvenueAlameda, CA18970

Dear Applicant:

The District has reviewed your request, dated March 19, 2012 to change the monitoring frequency from quarterly to annually. Based on the information provided, an annual monitoring schedule is both reasonable from the District's perspective and will also grant your firm the flexibility requested. Be aware that you can monitor your systems more frequently if desired.

Please keep a copy of this letter and the attached revised operating conditions (COND#23992) as verification that a monitoring schedule of annually has been approved by the District for the site subject to P/O (Plant #18970).

Please include your application number with any correspondence with the District. The District's regulations may be viewed online at <u>www.baaqmd.gov</u> If you have any questions on this matter, please call me at (415) 749-4630.

Very truly yours,

Flora W Chan Air Quality Engineer II

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

COND# 23992 -----

 In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinyl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- To determine compliance with Condition 1, the operator of this source shall:
 - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 365 days on an annual basis. Written authorization must be received from the District before any change in sampling frequency.
 - b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
 - c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed in condition 1 as well as the total volatile organic compounds.

Application No. 17506 Permit Condition No. 23992 649 Pacifica Avenue in Alameda

- 3. The operator of this source shall maintain the following information in a District-approved log for each year of operation of the source:
 - a. dates of operation;
 - b. exhaust flow rate:
 - c. exhaust sampling date;d. analysis results;

 - e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- non-compliance with these conditions shall be 4. Any reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
 - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
 - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation.

ATTACHMENT C

O&M FIELD DATA SHEETS

Page _____ of 12.

Sub-Slab Depressurization System------ O&M Data

Client: Timber Del Properties, L.L.C.	Project #: 103.001.001
Address: 649 Pacific Ave. Alameda CA	Date: <u>5</u> /////4 Personnel: £ (,) (,
Arrival System Status: On Off If Off Explain Why?	
Departure System Status: (On) Off If Off Explain Why?	
Vapor Concentration Readings in Parts Per Million Vapor (PPM) Tedlar Bag Collected? Yes / No Sumr Collected? Yes / No Effluent (After Vacuum Unit Collected? Yes / No Effluent (After Vacuum Unit Collected? Yes / No Effluent (Before Vacuum Unit)	na Vessel Collected? Yes / No t)
Effluent Flow Rate (read from digital readout on vacuum control)	45FPM-95CFM
Effluent Flow Rate and Temperature (measured with hand held	Anemometer in discharge pipe slot)
.0/210 FPM	65.4 Degrees F
(4" dTa PIPE) Vacuum (measured at influent sample port) Not Measure	el -inches of mercury (-in Hg)
Smoke Pen Leak Test (Pass) Fail	
Notes: • All subslab probe location Using smalle pen, influence	ns chicked for influence observed @ : 2001 of 3 -spel
upen annual! (ys cFm) Unit read Speed 1: 45 FPM; in duip pan emptred. , upen depen	~3gallens of condensate two set with to spel 2
Substab proves tested (small pen) in system SEFFLUENT SGMPLIS collected (set spell: influence noted call pulles
sample port	11

Signature

ATTACHMENT D

CERTIFIED ANALYTICAL REPORT, CHAIN-OF-CUSTODY AND GEOTRACKER UPLOAD DOCUMENTATION

David Reinsma Trinity Source Group 500 Chestnut St,Suite 225 Santa Cruz, California 95060 Tel: 831-426-5600;Cell 831-227 4724 Fax: 831-426-5602 Email: dar@tsgcorp.net

RE: SSDPS 2014 Annual Sampling

Work Order No.: 1403059

Dear David Reinsma:

Torrent Laboratory, Inc. received 2 sample(s) on March 11, 2014 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

attom

March 18, 2014

Date

Patti Sandrock QA Officer

Date: 3/18/2014

Client: Trinity Source Group Project: SSDPS 2014 Annual Sampling Work Order: 1403059

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

This report shall not be reproduced, except in full, without the written approval of Torrent Analytical, Inc.

Sample Result Summary

Report prepared for:	David Reinsma				Date	Received: 03/11/14
	Trinity Source Group				Date I	Reported: 03/18/14
Effluent						1403059-001A
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u> ug/m3
Acetone		ETO15	1	0.88	19	36.5
Hexane		ETO15	1	0.53	1.8	3.50
tert-Butanol		ETO15	1	0.91	8.4	17.1
Chloroform		ETO15	1	1.2	4.9	27.3
Carbon Tetrachloride		ETO15	1	0.86	3.2	229
Tetrahydrofuran		ETO15	1	0.30	1.5	2.46
Benzene		ETO15	1	0.69	1.6	2.21
Toluene		ETO15	1	0.95	1.9	25.5
4-Methyl-2-Pentanone (MIBK)		ETO15	1	0.85	2.1	4.39
Tetrachloroethylene		ETO15	1	0.91	3.4	366
Ethyl Benzene		ETO15	1	0.99	2.2	5.89
m,p-Xylene		ETO15	1	1.6	4.3	33.5
o-Xylene		ETO15	1	0.81	2.2	12.4
1,2,4-Trimethylbenzene		ETO15	1	0.69	2.5	10.3

SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	oup								ived: 03/11 rted: 03/18	
Client Sample ID:	Effluent				Lab Sa	ample ID:		1403059-001	٨		
Project Name/Location:	SSDPS 2014	Annual Sa	ampling			e Matrix:		Air			
Project Number:					•						
Date/Time Sampled:	03/11/14 / 10:	20			Certifie	ed Clean V	NO # :				
Canister/Tube ID:						ed PSI:		0.0			
	0.00										
Collection Volume (L):	0.00				Correc	ted PSI :		0.0			
Tag Number:	SSDPS 2014	Annual Sa	ampling								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Dichlorodifluoromethane	ETO15	NA	03/12/14	1	1.5	5.0	ND	ND		419715	NA
1,1-Difluoroethane	ETO15	NA	03/12/14	1	0.50	1.4	ND	ND		419715	NA
1,2-Dichlorotetrafluoroethane	ETO15	NA	03/12/14	1	4.9	14	ND	ND		419715	NA
Chloromethane	ETO15	NA	03/12/14	1	0.32	1.1	ND	ND		419715	NA
Vinyl Chloride	ETO15	NA	03/12/14	1	0.67	2.6	ND	ND		419715	NA
1,3-Butadiene	ETO15	NA	03/12/14	1	0.45	1.1	ND	ND		419715	NA
Bromomethane	ETO15	NA	03/12/14	1	0.72	2.0	ND	ND		419715	NA
Chloroethane	ETO15	NA	03/12/14	1	0.50	1.3	ND	ND		419715	NA
Trichlorofluoromethane	ETO15	NA	03/12/14	1	1.8	5.6	ND	ND		419715	NA
1,1-Dichloroethene	ETO15	NA	03/12/14	1	0.61	2.0	ND	ND		419715	NA
Freon 113	ETO15	NA	03/12/14	1	0.85	3.9	ND	ND		419715	NA
Carbon Disulfide	ETO15	NA	03/12/14	1	0.81	3.1	ND	ND		419715	NA
2-Propanol (Isopropyl Alcohol)	ETO15	NA	03/12/14	1	0.97	20	ND	ND		419715	NA
Methylene Chloride	ETO15	NA	03/12/14	1	0.58	28	ND	ND		419715	NA
Acetone	ETO15	NA	03/12/14	1	0.88	19	36.5	15.21		419715	NA
trans-1,2-Dichloroethene	ETO15	NA	03/12/14	1	0.64	2.0	ND	ND		419715	NA
Hexane	ETO15	NA	03/12/14	1	0.53	1.8	3.50	1.00		419715	NA
МТВЕ	ETO15	NA	03/12/14	1	0.87	1.8	ND	ND		419715	NA
tert-Butanol	ETO15	NA	03/12/14	1	0.91	8.4	17.1	4.07		419715	NA
Diisopropyl ether (DIPE)	ETO15	NA	03/12/14	1	0.88	2.1	ND	ND		419715	NA
1,1-Dichloroethane	ETO15	NA	03/12/14	1	0.75	2.1	ND	ND		419715	NA
ETBE	ETO15	NA	03/12/14	1	0.68	2.1	ND	ND		419715	NA
cis-1,2-Dichloroethene	ETO15	NA	03/12/14	1	0.54	2.0	ND	ND		419715	NA
Chloroform	ETO15	NA	03/12/14	1	1.2	4.9	27.3	5.57		419715	NA
Vinyl Acetate	ETO15	NA	03/12/14	1	0.57	1.8	ND	ND		419715	NA
Carbon Tetrachloride	ETO15	NA	03/12/14	1	0.86	3.2	229	36.35		419715	NA
1,1,1-Trichloroethane	ETO15	NA	03/12/14	1	0.85	2.8	ND	ND		419715	NA
2-Butanone (MEK)	ETO15	NA	03/12/14	1	0.63	1.5	ND	ND		419715	NA
Ethyl Acetate	ETO15	NA	03/12/14	1	0.74	1.8	ND	ND		419715	NA
Tetrahydrofuran	ETO15	NA	03/12/14	1	0.30	1.5	2.46	0.82		419715	NA
Benzene	ETO15	NA	03/12/14	1	0.69	1.6	2.21	0.69		419715	NA
TAME	ETO15	NA	03/12/14	1	0.36	2.1	ND	ND		419715	NA
1,2-Dichloroethane (EDC)	ETO15	NA	03/12/14	1	0.99	2.1	ND	ND		419715	NA
Trichloroethylene	ETO15	NA	03/12/14	1	1.4	5.4	ND	ND		419715	NA
1,2-Dichloropropane	ETO15	NA	03/12/14	1	1.3	4.6	ND	ND		419715	NA

SAMPLE RESULTS

Report prepared for:	David Reinsma Trinity Source Gro	up								ived: 03/11 rted: 03/18	
Client Sample ID:	Effluent				Lab Sa	ample ID:	14	03059-001A			
Project Name/Location:	SSDPS 2014	Annual Sa	ampling			• e Matrix:	Ai	r			
Project Number:					•						
Date/Time Sampled:	03/11/14 / 10::	20			Certifie	ed Clean V	NO # :				
Canister/Tube ID:					Receiv	ed PSI :		0.0			
Collection Volume (L):	0.00					ted PSI :		0.0			
		Annual C	maliaa		Conce			0.0			
Tag Number:	SSDPS 2014	Annual Sa	ampling								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Bromodichloromethane	ETO15	NA	03/12/14	1	0.89	3.4	ND	ND		419715	NA
1,4-Dioxane	ETO15	NA	03/12/14	1	1.2	3.6	ND	ND		419715	NA
trans-1,3-Dichloropropene	ETO15	NA	03/12/14	1	0.87	2.3	ND	ND		419715	NA
Toluene	ETO15	NA	03/12/14	1	0.95	1.9	25.5	6.71		419715	NA
4-Methyl-2-Pentanone (MIBK)	ETO15	NA	03/12/14	1	0.85	2.1	4.39	1.07		419715	NA
cis-1,3-Dichloropropene	ETO15	NA	03/12/14	1	1.1	2.3	ND	ND		419715	NA
Tetrachloroethylene	ETO15	NA	03/12/14	1	0.91	3.4	366	53.82		419715	NA
1,1,2-Trichloroethane	ETO15	NA	03/12/14	1	0.93	2.8	ND	ND		419715	NA
Dibromochloromethane	ETO15	NA	03/12/14	1	1.7	4.3	ND	ND		419715	NA
1,2-Dibromoethane (EDB)	ETO15	NA	03/12/14	1	2.0	7.7	ND	ND		419715	NA
2-Hexanone	ETO15	NA	03/12/14	1	1.1	4.1	ND	ND		419715	NA
Ethyl Benzene	ETO15	NA	03/12/14	1	0.99	2.2	5.89	1.37		419715	NA
Chlorobenzene	ETO15	NA	03/12/14	1	0.71	2.3	ND	ND		419715	NA
1,1,1,2-Tetrachloroethane	ETO15	NA	03/12/14	1	1.0	3.5	ND	ND		419715	NA
m,p-Xylene	ETO15	NA	03/12/14	1	1.6	4.3	33.5	7.79		419715	NA
o-Xylene	ETO15	NA	03/12/14	1	0.81	2.2	12.4	2.88		419715	NA
Styrene	ETO15	NA	03/12/14	1	0.69	2.2	ND	ND		419715	NA
Bromoform	ETO15	NA	03/12/14	1	1.1	5.0	ND	ND		419715	NA
1,1,2,2-Tetrachloroethane	ETO15	NA	03/12/14	1	0.70	3.5	ND	ND		419715	NA
4-Ethyl Toluene	ETO15	NA	03/12/14	1	0.82	2.5	ND	ND		419715	NA
1,3,5-Trimethylbenzene	ETO15	NA	03/12/14	1	0.76	2.5	ND	ND		419715	NA
1,2,4-Trimethylbenzene	ETO15	NA	03/12/14	1	0.69	2.5	10.3	2.10		419715	NA
1,4-Dichlorobenzene	ETO15	NA	03/12/14	1	0.65	3.0	ND	ND		419715	NA
1,3-Dichlorobenzene	ETO15	NA	03/12/14	1	0.84	3.0	ND	ND		419715	NA
1,2-Dichlorobenzene	ETO15	NA	03/12/14	1	0.91	3.0	ND	ND		419715	NA
Hexachlorobutadiene	ETO15	NA	03/12/14	1	2.4	5.5	ND	ND		419715	NA
1,2,4-Trichlorobenzene	ETO15	NA	03/12/14	1	3.4	7.4	ND	ND		419715	NA
Naphthalene	ETO15	NA	03/12/14	1	1.5	5.2	ND	ND		419715	NA
(S) 4-Bromofluorobenzene	ETO15	NA	03/12/14	1	65	135	112 %			419715	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Stoddard Sol.	ETO3	NA	03/14/14	2	350	700	ND	ND		419739	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

MB Summary Report

Work Order:	1403059	Prep M	lethod:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy		ETO15	Anal	zed Date:	03/12/14	Analytical	419715
Units:	ppbv	Metho	d:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	0.30	1.00	ND					
1,1-Difluoroethan	e	0.18	10.0	ND					
1,2-Dichlorotetraf	luoroethane	0.70	2.00	ND					
Chloromethane		0.15	0.500	ND					
Vinyl Chloride		0.26	1.00	ND					
1,3-Butadiene		0.20	0.500	ND					
Bromomethane		0.18	0.500	ND					
Chloroethane		0.19	0.500	ND					
Trichlorofluorome	thane	0.32	1.00	ND					
1,1-Dichloroether	ne	0.15	0.500	ND					
Freon 113		0.11	0.500	ND					
Carbon Disulfide		0.26	1.00	ND					
2-Propanol (Isopr		0.39	8.00	ND					
Methylene Chlorid	de	0.17	8.00	ND					
Acetone		0.37	8.00	ND					
trans-1,2-Dichloro	bethene	0.16	0.500	ND					
Hexane		0.15	0.500	ND					
MTBE		0.24	0.500	ND					
tert-Butanol		0.22	2.00	ND					
Diisopropyl ether	(DIPE)	0.21	0.500	ND					
1,1-Dichloroethar	ne	0.18	0.500	ND					
ETBE		0.16	0.500	ND					
cis-1,2-Dichloroet	hene	0.13	0.500	ND					
Chloroform		0.25	1.00	ND					
Vinyl Acetate		0.16	0.500	ND					
Carbon Tetrachlo		0.14	0.500	ND					
1,1,1-Trichloroeth		0.15	0.500	ND					
2-Butanone (MEK	()	0.21	0.500	ND					
Ethyl Acetate		0.21	0.500	ND					
Tetrahydrofuran		0.10	0.500	ND					
Benzene		0.21	0.500	ND					
TAME		0.086	0.500	ND					
1,2-Dichloroethar		0.24	0.500	ND					
Trichloroethylene		0.26	1.00	ND					
1,2-Dichloropropa		0.29	1.00	ND					
Bromodichlorome	ethane	0.13	0.500	ND					
1,4-Dioxane		0.35	1.00	ND					
trans-1,3-Dichloro	propene	0.19	0.500	ND					
Toluene		0.25	0.500	ND					
4-Methyl-2-Penta	none (MIBK)	0.21	0.500	ND					
cis-1,3-Dichloropi	ropene	0.25	0.500	ND					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

MB Summary Report

Work Order:	1403059	Prep l	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy		ETO15	Anal	yzed Date:	03/12/14	Analytical	419715
Units:	ppbv	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Tetrachloroethyle	ne	0.13	0.500	ND					
1,1,2-Trichloroeth	ane	0.17	0.500	ND					
Dibromochlorome	thane	0.20	0.500	ND					
1,2-Dibromoethar	ne (EDB)	0.27	1.00	ND					
2-Hexanone		0.27	1.00	ND					
Ethyl Benzene		0.23	0.500	ND					
Chlorobenzene		0.15	0.500	ND					
1,1,1,2-Tetrachlor	oethane	0.15	0.500	ND					
m,p-Xylene		0.38	1.00	ND					
o-Xylene		0.19	0.500	ND					
Styrene		0.16	0.500	ND					
Bromoform		0.11	0.500	ND					
1,1,2,2-Tetrachlor	oethane	0.10	0.500	ND					
4-Ethyl Toluene		0.17	0.500	ND					
1,3,5-Trimethylbe	nzene	0.15	0.500	ND					
1,2,4-Trimethylbe		0.14	0.500	ND					
1,4-Dichlorobenze		0.11	0.500	ND					
1,3-Dichlorobenze	ene	0.14	0.500	ND					
1,2-Dichlorobenze	ene	0.15	0.500	ND					
Hexachlorobutadi	ene	0.22	0.500	ND					
1,2,4-Trichlorober	nzene	0.46	1.00	ND					
Naphthalene		0.28	1.00	ND					
(S) 4-Bromofluoro	benzene			113					
Work Order:	1403059	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy Metho		ETO3	Anal	yzed Date:	03/14/14	Analytical Batch:	419739
Units:	ppbv	ineth							
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH-Gasoline		50	100	ND					
Stoddard Sol.		50	100	ND					

LCS/LCSD Summary Report

					000 0	ummary	Report	Raw value	es are used in	quality contro	ol assessmen
Work Order:	1403059		Prep Metho	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix:	Air		Analytical	ETO15	5	Analyze	d Date:	03/12/14	Analytic	al 419 ⁻	715
Units:	ppbv		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene		0.15	0.500	ND	20	86.4	91.5	5.68	65 - 135	30	
Benzene		0.21	0.500	ND	20	91.5	99.2	8.03	65 - 135	30	
Trichloroethylene		0.26	1.00	ND	20	96.3	102	6.19	65 - 135	30	
Toluene		0.25	0.500	ND	20	97.7	104	6.29	65 - 135	30	
Chlorobenzene		0.15	0.500	ND	20	89.6	93.4	4.21	65 - 135	30	
(S) 4-Bromofluorobe	enzene			ND	20	95.0	95.0		65 - 135		
Work Order:	1403059		Prep Metho	od: NA		Prep Da	te:	NA	Prep Bat	t ch: NA	
Matrix:	Air		Analytical	ETO3		Analyze	d Date:	03/14/14	Analytic	al 419 ⁻	739
Units:	ppbv		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH-Gasoline		50	100	ND	500	108	109	0.424	50 - 150	30	

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

12:30

Client Name: Trinity Source Group	Date and Time Received: <u>3/11/2014</u>
Project Name: SSDPS 2014 Annual Sampling	Received By: <u>ke</u>
Work Order No.: <u>1403059</u>	Physically Logged By: <u>ke</u>
	Checklist Completed By: ke
	Carrier Name: Client Drop Off
Chain of Custod	y (COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Rec	eipt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	d Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Temperature: <u>0</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>na</u>	pH Adjusted by: <u>na</u>

																•-			-	7
. Д			483 Sinclair Frontaç Milpitas, CA 95035			C	Н		OF	CI	JST	חס	Y			LAB	WORK	ORDE	NO	
13	210		Phone: 408.263.525 AX: 408.263.8293		(N	OTE: SHA	-			-		-			١Ē	1	030			
			www.torrentlab.com	1	Cin			and all the same												
Compar	ny Name:	Frinity Saure	e Group,	Inc.		Env.) н 🗋			L			_				1			
Address	5000	LHESTNUT ST	. STE 2	25				Purpos	se: \$\$	DPS	; 20	14 ,	ĄNI	VOLA	ĽC	Ch/M	181	AMPL	ING	
City: S	ANTA	CRUZ	State: CA	Zip	Code: C	1506	0				/ Comm									
		426-5600									.D:S		60(215	04	B				
REPORT	TTO: DAV	ID REINSMA	SAMPLER: EFIC	CHI CHI	01			P.O. #	103	.00	1.00	<u> </u>	E		absti	rini	tye	gma	i .a	m.
TURNAR	ROUND TIME	:	SAMPLE TYPE		REPORT	FORMAT:	PD	2									· ·	-		
🔲 10 Wa	ork Days 🔲	4 Work Days 🔲 1 Work Day	Storm Water	Air Other		evel IV	STODDAR	Sca										ALYSI		
7 Wor	rk Days 🔲	3 Work Days 🔲 Noon - Nxt 🛛	Day Waste Water Ground Water Soil	_ Other	C La EDF Excel	/ EDD	00	Full									REQU	JESTI	ED.	ζ.
X5 Wor	rk Days 🔲	2 Work Days 2 - 8 Hours	Soil		-		351	55								1				
LAB ID	CANISTER I.D.	CLIENT'S SAMPLE I.D.	SAMPLED	MATRIX	# OF CONT	CONT TYPE	103	10-12									REM	ARKS		
DIA	And	EFFLUENT	3/11/14C [020	AIR	2	1L Tedlar	X	\times									No. of Concession, Name		14 mil	8
199																×" :	195 1	241.	1.1	Ч Г
AND -		Lines. Let articles														- AND -	The second second	Net Contraction	Sen 2 mil	FORRENT LAB
Rad Lord	- Standard															- Allelan		Star .	a line	<u>D</u>
100	14. 16.															1. C. w.	lar age	ж т. с. 2	1. S. S.	
	i i i															1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the second	a Sala	and the second	
	3 9 8																	4.	<u> </u>	
10																			8	
	0																		4	
			-															-1-		
Reling	wished By:	Pringet	(Lan) Date: /	1.1	Time:	20		ved By:	P		Print:	-		Date:			Time:			
Palin	quished By:	$\sim \frac{2 HC}{Print}$	CYWI 3/1 Date:	44	Time:	20	-	ved By:	w	B	Laty Print:	ne E	-V04/	Date:	-)]-	14	Time:	2:30	ر ا	
2	quisiteu by:	F100.	Date.		l'inte.		Necel	iou by.						bule.						
Were Sa	mples Receiv	ved in Good Condition?	Yes 🔲 NO Sa	amples on lo	ce? 🔲 Y	es UNO	Metho	d of Ship	ment	Dlo	ff		S	ample se	eals inta	ct?	Yes	NO	-N/A	
NOTE: S		are discarded by the labora	tory 30 days from dat	e of receipt	unless oth	er arrange	nen	ts are ma				Temp	VI	BI Vá		je	_(of		
Log In By	y:		Date:		Log In Rev	iewed By:					Da	e		<u>, ()</u>		-		-		
														۰.						

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

•

GEOTRACKER ESI

UPLOADING A EDF FILE

Proces	sing is complete. No errors were found!
Your	file has been successfully submitted!
<u>Submittal Type:</u>	EDF
<u>Report Title:</u>	2014 Sub-Slab Depressurization System O&M Report
<u>Report Type:</u>	Operation and Maintenance Plan/Monitoring Report
Facility Global ID:	SL0600150413
Facility Name:	SEARWAY PROPERTY
<u>File Name:</u>	TSG 1403059 SSDPS EDF.zip
Organization Name:	Trinity Source Group, Inc.
<u>Username:</u>	TRINITY SOURCE GROUP
IP Address:	69.198.129.110
Submittal Date/Time:	3/20/2014 1:03:59 PM
Confirmation Number:	5869927585
	VIEW QC REPORT

Copyright © 2014 State of California