Timber Dell Properties, LLC 1255 Sherman St. Alameda, Ca. 94501

RECEIVED

1:49 pm, Feb 23, 2009

Alameda County Environmental Health

February 11, 2009

Regarding Second Semi-Annual 2008 Groundwater Monitoring and Sub-Slab Vapor Depressurization System Startup and Performance Report SLIC Case No. R00002584 649 Pacific Avenue Alameda, Ca. 94501

I declare under perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Timber Dell Properties, LLC

Donald W. Lindsey, member

February 20, 2009 Project 103.001.001

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-5577

 Re: Second Semi-Annual 2008 Groundwater Monitoring and Sub-Slab Vapor Depressurization System Startup and Performance Report Searway Property
 649 Pacific Avenue Alameda, California

Dear Mr. Wickham:

This letter, prepared by Trinity Source Group, Inc. (Trinity) on behalf of Timber Del Properties, LLC, presents the results of the second semi-annual 2008 groundwater-monitoring event conducted at the referenced site (Figures 1 and 2) on December 4, 2008. This report also includes a sub-slab vapor depressurization system (SSVD) startup and performance and summary. This summary includes: the SSVD description, operations and maintenance activities, monitoring of the SSVD, a SSVD discussion, a permit section and a proposed modifications section.

During the second semi-annual 2008 groundwater monitoring event Trinity conducted measurements of depth to groundwater, visual observation of the presence or absence of free product, groundwater purging, and collection of groundwater samples. Collected groundwater samples were analyzed by Torrent Laboratory, Inc.; a California Department of Health Services certified laboratory (ELAP #1991) located in Milpitas, California.

Groundwater level and analytical results are summarized in Table 1. Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data are summarized in Table 2. Summary of Sub-Slab Extraction (SVE) System Influent Throughput and Discharge of Volatile Organic Compounds (VOCs) are summarized in Table 3. Summary of Sub-Slab Extraction System Effluent Throughput and Mass Removal of VOCs are summarized in Table 4. Sub-Slab Vapor Depressurization Data are summarized in Table 5. Field and analytical procedures are presented in Attachment A. Copies of field data sheets for the reporting period are included in

Attachment B. Certified analytical reports, chain-of-custody and GeoTracker upload documentation are included in Attachment C. Purge water disposal documentation is presented in Attachment D. The Permit to Operate the SSVD is included in Attachment E.

GROUNDWATER MONITORING RESULTS

On December 4, 2008, depth-to-groundwater was measured and groundwater samples were collected from on-site monitoring Wells MW-1 through MW-5. Well locations are shown on Figure 2. Dissolved oxygen was also measured using a hand-held instrument. All groundwater samples were analyzed for the presence of Stoddard solvent range total petroleum hydrocarbons (TPHss) and full list of volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) 8260B. Field and analytical procedures are presented as Attachment A.

Groundwater Elevation, Flow Direction and Gradient

Depth-to-groundwater data was subtracted from surveyed reference elevations to determine groundwater elevations. Groundwater level and elevation data since March 2005 are summarized on Table 1. Groundwater elevations measured on December 4, 2008, ranged from 7.11 feet above mean sea level (msl) in Well MW-3 to 7.41 feet above msl in Well MW-4. Groundwater elevations have decreased an average of 1.21 feet compared to the first semi-annual 2008 monitoring event. The apparent groundwater flow directions are primarily to the northeast with gradients ranging from of 0.002 feet per feet to 0.006 feet per feet. Depth-to-groundwater and elevation data are summarized in Table 1, field data sheets are included as Attachment B, and the groundwater elevation contour map prepared for the December 4, 2008 monitoring event is presented as Figure 3.

Groundwater Analytical Data

TPHss: The laboratory detected no TPHss above the method reporting limits in groundwater samples collected from Wells MW-1 through MW-5.

Because this is a TPHss site and not a TPHg site, TPHg analysis in site wells has been suspended since December 2006.

VOCs: In analyzing the full list of EPA 8260B compounds, the laboratory detected the following VOCs in the following wells. In Wells MW-3 and MW-5, benzene was detected above the method reporting limit at concentrations of 0.83 parts per billion (ppb) and 0.64 ppb, respectively. In Well MW-3, Ethyl-benzene was detected above the method reporting limit at a concentration of 0.58 ppb. In Wells MW-1 and MW-2, tetrachloroethene (PCE) was detected above the method reporting limit at concentrations of 3.11 ppb and 1.95 ppb, respectively. In Well MW-1, Trichloroethene (TCE) was detected above the method reporting limit at a concentration of 0.60 ppb. Analytical results collected since March 2005 are summarized in Table 1.

Various other VOCs were detected in one or more wells, as noted on Table 1 and the laboratory reports. A chemical concentration map for the current monitoring event is shown as Figure 4. Dissolved oxygen levels measured on December 4, 2008, ranged from 0.41 parts per million (ppm) in Well MW-3 to 1.77 ppm in Well MW-4.

The certified analytical laboratory reports, chain-of-custody, and GeoTracker upload documentation for the current sampling event are contained in Attachment C.

SUB-SLAB VAPOR DEPRESSURIZATION TREATMENT SYSTEM

Description

The system layout is presented on Figure 5. The system includes two horizontal extraction wells located near former extraction points DPT-1 and DPT-2, with extraction well pipe runs trenched to nearby walls. The pipe runs continue up to the first floor ceiling, where they are manifolded together and connected to a suction fan located in the roof attic. The extraction vapor is treated with carbon using a vessel located in the attic. The exhaust air is piped to the southwest corner of the roof and discharged through a 3-foot tall stack. Vacuum is applied to the extraction wells using an electric fan blower will be equipped with a flow meter.

The Sub-Slab System Process and Instrumentation Diagram is shown on Figure 6. Sub-slab air is withdrawn from the sub-slab material by application of an applied vacuum. The extracted air is routed through piping and discharged to the atmosphere following carbon treatment. Pipes are fitted with ball valves to regulate flow and sample ports were installed to allow for sample collection and flow measurements.

The Sub-Slab System Extraction Well Detail is shown on Figure 7. Each extraction well is a 3-foot long, 4-inch diameter, horizontal slotted PVC casing, which is connected to 4-inch diameter PVC blank pipe runs. The slotted pipe is set in the middle of the sub-base material. PVC screen extends across the sub-base material. The pipe runs were increased to 4-inch diameter from the 2-inch pipe diameter used in the diagnostic tests to reduce frictional losses and increase air flow rates.

The Sub-Slab System Monitoring Point Detail is shown on Figure 8. The monitoring points (VS-1 through VS-22) were already installed and were constructed in accordance with the design specifications presented in the EPA document, "*Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site using Basement and Sub-Slab Air Samples*" (EPA 600 R-05/147, March 2006). These monitoring points have proven to be effective in sample collection and measuring the pressure field established by an applied vacuum.

Sub-Slab Vapor Depressurization System Start-up Operations

The SSVD system was started up on September 10 and 11, 2008. On September 10, 2008, vapor sampling ports were installed at the influent and effluent locations on the SSVD and the SSVD was turned on and started up. A Sensa phone alarm system was activated to alert staff at Kelly Moore Paint Store if the power to the SSVD goes out. Staff at the Kelly Moore Paint Store have been requested to immediately call Trinity if the alarm sounds, so that the SSVD can be re-started when applicable. In addition, the piping joints and system areas were inspected and any areas indicating the potential for leakage were repaired and/or caulked. A smoke pen leak test was then performed to check for possible leaks on or near piping joints and system areas. This leak test consists of observing for any deflections in the smoke which indicates a leak exists (fail). The smoke pen leak test indicated no leaks.

On September 11, 2008, the system was up and running upon arrival. A magnehelic gauge was used to measure vapor sampling points (VS-1 through VS-8) as a test to ensure system was running properly. The effluent flow rate, read from a digital readout on the vacuum control was set to approximately 45 cubic feet per minute (cfm). The initial daily influent and effluent concentrations as measured using a photo-ionization detector (PID), were measured at 1.05 parts per million volume (ppmv), and 0.60 ppmv, respectively. Influent and effluent air samples were collected into 6-liter Summa canisters Vessels and submitted to Torrent Laboratory, Inc., for analysis for total petroleum hydrocarbons as stoddard solvent (TPHss) using EPA Method TO-3 (MOD) and a full scan of VOCs using EPA Method TO-15. Analytical data and mass removal calculations for TPHss and other detected VOCs are summarized on Tables 3 and 4. In addition, the smoke pen leak test was employed to check for possible leaks on or near piping joints and system areas. The smoke pen leak test indicated no leaks.

Sub-Slab Vapor Depressurization System Operation and Maintenance Activities

During the fourth quarter reporting period, Trinity performed a total of four operation and maintenance (O&M) events. Each O&M visit typically included checking SSVD status and inspecting SSVD condition, recording the effluent flow rate from the digital readout on the vacuum control, collecting influent and effluent samples into 6-liter Summa canisters or 1-liter Tedlar bags and submitting the samples to the laboratory for analysis for purgeable hydrocarbons as stoddard solvent (TPHss), and full scan of VOCs. Influent and effluent analytical data are summarized on Table 2 and mass throughput data are summarized in Tables 3 and 4. Field data sheets are included in Attachment B. Certified analytical reports and chain-of-custody documentation are included in Attachment C. In addition, during two of the O&M visits relative pressure vacuum influence was measured by using a magnehelic gauge, and a smoke pen was

used to make subjective observations of vacuum influence. Results are presented on the field data sheets in Attachment C.

On September 25, 2008 the SSVD was running upon arrival and checked and inspected. The effluent flow rate was recorded as 45 cfm and influent and effluent concentrations were measured using a PID meter at 1.00 ppmv and 0.40 ppmv respectively. With the exceptions of VS-2 which was destroyed during extraction well installation activities, and VS-10 because access to the neighboring restaurant was denied, relative pressure vacuum influence data was recorded from vapor sampling points VS-1 through VS-22 by using a magnehelic gauge that provided vacuum gage readings in inches of water (inch of H_2O). Vacuum readings are summarized on Table 5, and illustrated on Figure 9. A smoke pen vacuum influence test was also performed to further provide evidence of vacuum influence occurring at the vapor sampling points. In this test, the deflection of smoke observed at a vapor sampling point indicates that a relative pressure vacuum exists (pass), and if no deflection is observed then no vacuum influence exists (fail). The magnehelic gauge readings and the subjective observations using the smoke pen were in agreement. In addition, a smoke pen leak test was employed to test for possible leaks on or near piping joints and system areas. The smoke pen leak test indicated no leaks.

On October 10, 2008, the SSVD was running upon arrival and checked and inspected. and was running upon arrival. The effluent flow rate was recorded at 45 cfm and influent and effluent concentrations were recorded using a PID meter as 0.180 ppmv in the influent and 0.160 ppmv in the effluent. Airbag samples were collected from the influent and effluent ports using 1-liter Tedlar bags and submitted to the laboratory for analysis. In addition, the SSVD and surrounding piping joint areas passed the smoke pen leak test.

On November 6, 2008, the SSVD was running upon arrival and checked and inspected. The effluent flow rate was recorded at 45 cfm and influent and effluent concentrations were recorded using a PID meter as 0.24 ppmv in the influent and 0.16 ppmv in the effluent. Samples were collected from the influent and effluent ports in 1-liter Tedlar Bags and submitted to the laboratory for analysis. In addition, the SSVD and surrounding piping joint areas passed the smoke pen leak test.

On December 4, 2008, the SSVD was running upon arrival and checked and inspected. The effluent flow rate was recorded at 45 cfm and influent and effluent concentrations were recorded using a PID meter as 0.20 ppmv in the influent and <0.020 ppmv in the effluent. Samples were collected at the influent and effluent ports in 1-liter Tedlar bags and submitted to the laboratory for analysis. Vapor sampling points VS-1 through VS-22, with the exception of VS-2, were measured with a magnehelic gauge to measure relative pressure vacuum influence. These results were recorded and are summarized on Table 5 and Figure 10. A smoke pen was also used to further provide evidence of vacuum influence occurring at the vapor sampling points, as described above. The magnehelic gauge readings and the subjective observations using the

smoke pen were in agreement. In addition, a smoke pen leak test was performed at and near piping joints and system areas. The smoke pen leak test indicated no leaks.

Sub-Slab Vapor Depressurization System Performance Discussion

The SSVD has removed a total of approximately 1.39 pounds of VOCs since initial start-up on September 10, 2008 through December 4, 2008, a period of approximately 85 days of operation.

The system is performing as expected with removal of VOCs and depressurization of the sub-slab area. Figures 9 and 10 illustrate the general extent of SSVD influence.

Permitting

The low concentrations of VOCs discharged to the atmosphere are well within the permitted discharge allowed for specific compounds and for the total limit of 10 pounds per day. No violations of the BAAQMD permit have occurred.

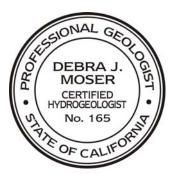
The BAAQMD application number is 17506 and the plant number is 18970. The Permit to Operate is included in Attachment E.

Proposed Modifications

- Based on SSVD performance through December 4, 2008, Trinity proposes the Monitoring and vapor sample collection will be changed from a monthly to quarterly frequency.
- Reporting of the Sub-Slab Vapor Depressurization O&M and System Status will be performed semi-annually concurrently with the semi-annual groundwater sampling events instead of on a quarterly basis.
- Because influent VOC concentrations are very low, Trinity proposes unabated SSVD vapor discharge.

These modifications will be implemented after approval by the appropriate regulatory agency.

DISTRIBUTION


A copy of this report has been forwarded to:

Mr. Don Lindsey Timber Del Properties, LLC 2424 Central Avenue Alameda, CA 94501 Ms. Georgia Turner The Mechanics Bank 1999 Harrison St., Suite 100 Oakland, CA 94612

Should you have any questions regarding the contents of this document, please do not hesitate to call Trinity at (831) 426-5600.

Sincerely,

TRINITY SOURCE GROUP, INC.

Debra J. Moser, PG, CEG, CHG Senior Geologist

ATTACHMENTS:

Misay Waldenan

Missy Waldman Staff Scientist

Table 1: Groundwater Elevation and Analytical Data Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data Table 2: Summary of Sub-Slab Extraction System Influent Throughput and Mass Table 3: Removal of VOCs Table 4: Summary of Sub-Slab Extraction System Effluent Througput and Mass Removal of VOCs Table 5: Sub-Slab Vapor Depressurization Data Figure 1: Site Location Map Figure 2: Monitoring Well and Sub-Slab Vapor Probe Location Map Figure 3: Groundwater Elevation Contour Map – December 4, 2008 Figure 4: Chemical Concentration In Groundwater Map – December 4, 2008 Figure 5: Sub-Slab Depressurization System Layout

TRINITY

Figure 6:	Sub-Slab Depressurization System-Process and Instrumentation Diagram
Figure 7:	Sub-Slab Depressurization System- Extraction Well Detail
Figure 8:	Sub-Slab Vapor Monitoring Point Detail
Figure 9:	Sub-Slab Vapor Depressurization System Pressure Relative Influence
	Map, September 25, 2008
Figure 10:	Sub-Slab Vapor Depressurization System Pressure Relative Influence Map,
	December 4, 2008
Attachment A:	Field and Analytical Procedures
Attachment B:	Field Data Sheets
Attachment C:	Certified Analytical Reports, Chain-of-Custody and GeoTracker Upload
	Documentation
Attachment D:	Disposal Documentation
Attachment E:	Permit to Operate

TABLES

Table 1 Groundwater Elevation and Analytical Data

Searway Property 649 Pacific Avenue Alameda, California

Well Number MW-1	Date Sampled 03/01/05 06/30/05 09/26/05 12/27/05 06/02/06 12/21/06 06/04/07 12/05/07 12/14/07	Well Elevation (ft, MSL) 15.18	Depth to Water (ft) 5.64 5.77 6.57 7.89 5.33 6.37 6.36 7.03 6.86	Groundwater Elevation (ft, MSL) 9.54 9.41 8.61 7.29 9.85 8.81 8.82 8.15 8.32	Dissolved Oxygen (ppm)	TPHss EPA 8015 (ppb) 550 210 190 <50 <50 <49 <47 <48	TPHg EPA 8015 (ppb) <50 <50 560 ¹ 26 ¹ <25 ¹ 	Benzene EPA 8020 (ppb) <0.5 <0.50 ³ <0.50 ³ <0.50 ³ <0.50 ³ <0.50 ³ <0.50 ¹ <0.50 ¹	Toluene EPA 8020 (ppb) 0.73 <0.50 <0.50 ¹ 2.5 ² <0.50 ¹ <0.50 ¹ 1.8 ¹ <0.50 ³	Ethyl- benzene EPA 8020 (ppb) <0.5 <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹	Xylenes total EPA 8020 (ppb) <0.5 <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ -0.50 ¹ -0.50 ¹	Fuel Oxygenates EPA 8260B (ppb) ND All ND All ND All ND All	Vinyl Chloride EPA 8260B (ppb) <0.50 <0.50 <0.50 <0.50	PCE EPA 8260B (ppb) <0.50 5.0 2.9 3.9 	TCE EPA 8260B (ppb) <0.50 0.85 0.52 0.98	Chloroform EPA 8260B (ppb) <0.50 <0.50 <0.50 <0.50 <0.50	Other VOCs EPA 8260B (ppb) ND All ND All ND All ND All ND All
	06/16/08		6.61	8.57	0.07	<50		< 0.501	<0.50 ¹	< 0.50 ¹	<1.0 ¹	ND All	<0.50	3.5	0.78	<0.50	ND All
	12/04/08		7.82	7.36	0.50	<50 ¹		< 0.50 ¹	<0.50 ¹	<0.50 ¹	<1.50 ¹	ND All	<0.50	3.11	0.60	<0.50	ND AII
MW-2	03/01/05 06/30/05 09/26/05 12/27/05 06/02/06 12/21/06 06/04/07 12/05/07 12/14/07 06/16/08	15.21	5.60 5 84 6.63 6.01 5.34 6.43 6.40 7.10 7.00 6.56	9.61 9.37 8.58 9.20 9.87 8.78 8.61 8.61 8.21 8.21 8.65	 0.08 2.13 0.51 0.47 0.51	<50 <50 <50 110 <50 <49 <47 <48 <50	<50 <50 <25 ¹ 320 ^{1.3} <25 ³ 	<0.5 <0.50 <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹	0.53 <0.50 <0.50 ¹ 2.9 ² <0.50 ¹ <0.50 ¹ 1.4 ¹ <0.50 ¹	<0.5 <0.50 <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹	<0.5 <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ 2.2 ¹ <0.50 ¹ <1.0 ¹	 ND All ND All ⁵ ND All ND All ND All	 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	 <0.50 2.8 2.6 3.5 2.8	 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	 ND All ND All ND All ND All ND All
	12/04/08		7.91	7.30	0.59	<50 ¹	~ **	<0.50 ¹	<0.50 ¹	<0.50 ¹	<1.50 ¹	ND AII	<0.50	1.95	<0.50	<0.50	ND AII
MVV-3	03/01/05 06/30/05 09/26/05 12/27/05 06/02/06 12/21/06 06/04/07 12/05/07 12/14/07 06/16/08 12/04/08	15.11	5.71 6.11 6.93 6.28 5.69 6.72 6.72 7.34 7.20 6.96 8.00	9.40 9.00 8.18 8.83 9.42 8.39 7.77 7.91 8.15 7.11	 0.15 0.33 0.57 0.54 1.88 1.77	<50 <50 <50 <50 <48 <48 <48 <50 < 50	<50 <50 <25 ¹ 29 ¹ <25 ¹ 	<0.5 <0.50 <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ 0.83	<0.5 <0.50 <0.50 ¹ 2.9 ¹² <0.50 ¹ <0.50 ¹ 1.7 ¹ <0.50 ¹ <0.50 ¹	<0.5 <0.50 <0.50 ³ <0.50 ³ <0.50 ¹ 0.52 ¹ <0.50 ¹ <0.50 ¹ 0.58	<0.5 <0.50 <0.50 ¹ <0.50 ¹ <0.50 ¹ <0.50 ¹ 2.8 ¹ <0.50 ¹ <1.0 ¹ <1.50 ¹	ND AII ND AII ND AII ND AII ND AII - ND AII MTBE 0.61	 <0.50 <0.50 <0.50 <0.50 <0.50 < 0. 50	 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	 <0.50 <0.50 0.66 <0.50 <0.50 < 0. 50	ND AII ND AII ND AII ND AII ND AII ND AII ND AII

Table 1 Groundwater Elevation and Analytical Data

Searway Property 649 Pacific Avenue Alameda, California

Well		Well Elevation (ft, MSL)	Depth to Water (ft)	Groundwater Elevation (ft, MSL)	Dissolved Oxygen (ppm)	TPHss EPA 8015 (ppb)	TPHg EPA 8015 (ppb)	Benzene EPA 8020 (ppb)	Toluene EPA 8020 (ppb)	Ethyl- benzene EPA 8020 (ppb)	Xylenes total EPA 8020 (ppb)	Fuel Oxygenates EPA 8260B (ppb)	Vinyl Chloride EPA 8260B (ppb)	PCE EPA 8260B (ppb)	TCE EPA 8260B (ppb)	Chloroform EPA 8260B (ppb)	Other VOCs EPA 8260B (ppb)
MW-4	03/01/05	15.02	5.30	9.72	~-	<50	<50	<0.5	<0.5	<0.5	<0.5						~~
	06/30/05		5.56	9.46		<50	<50	<0.50	<0.50	<0.50	<0.50						
	09/26/05		6.40	8.62		<50	<25 ¹	<0.501	< 0.50 ¹	< 0.50 ¹	<0.50 ¹	-					
	12/27/05		5.64	9.38		<50	<25 ¹	<0.501	3.1 ¹²	<0.50 ¹	<0,50 ¹						
	06/02/06		4.90	10.12		<50	<25 ¹	<0.50 ¹	<0.50	<0.50 ¹	<0.50 ¹	ND All	<0.50	<0.50	<0.50	<0.50	ND AII
	12/21/06		6.13	8.89	0.13	<48		< 0.50	<0.501	<0.50	<0.50	ND AII	<0.50	<0.50	<0.50	<0.50	ND All
	06/04/07		6.21	8,81	2.16	<48		<0.501	2.4	0.62 ¹	3.3 ¹	ND AII	<0.50	<0.50	<0.50	<0.50	ND All
	12/05/07		6.86	8.16	0.46	-		< 0.501	<0.501	<0.50	< 0.50 ¹	ND All	<0.50	<0.50	<0.50	<0.50	ND All
	12/14/07		6,70	8.32	0.44	<48			-						~~		
	06/16/08		6,43	8.59	0.47	<50		< 0.50 ¹	< 0.50 ¹	<0.50 ¹	<1.0 ¹	ND AII	<0.50	<0.50	<0.50	<0.50	ND AII
	12/04/08		7.61	7.41	0.41	<50 ¹		<0.50 ¹	<0.50 ¹	<0.50 ¹	<1.50 ¹	ND AII	<0.50	<0.50	<0.50	<0.50	ND All
MW-5	03/01/05	14.79	5.06	9,73		<50	<50	<0,5	<0.5	<0.5	<0.5						
	06/30/05		5.24	9.55		<50	<50	<0.50	<0.50	<0,50	<0.50	VB 87.		***			
	09/26/05		6.11	8.68		<50	<25 ¹	<0.50	<0.50	<0.50	<0.50						
	12/27/05		5.35	9.44		<50	<251	<0.50	3.4 ¹²	<0.50	<0.50						
	06/02/06		4,70	10.09	ND AII	<50	<251	<0.50	< 0.50 ¹	< 0.501	<0.50 ³	ND All	<0.50	<0.50	<0.50	<0.50	ND AII
	12/21/06		5.91	8.88	0.16	<48		<0.50	< 0.50 ¹	<0.501	< 0.50 ¹	ND All	<0.50	<0.50	<0.50	0.92	ND All
	06/04/07		5.87	8.92	0.51	<47		< 0.501	1.8 ¹	< 0.50	2.3 ¹	ND All	<0.50	<0.50	<0.50	<0.50	ND All
	12/05/07		6.62	8.17	0.38			<0.50 ¹	<0.501	<0.50 ¹	<0.501	ND All	<0.50	<0.50	<0.50	<0.50	ND All
	12/14/07		6.48	8.31	0.31	<48			1	1	4						
	06/16/08		6.15	8.64	0.56	<50		<0.501	<0.501	< 0.50 ¹	<1.0 ¹	ND All	<0.50	<0.50	<0.50	<0.50	ND AII
	12/04/08		7.42	7.37	1.30	<50 ¹		0.64 ¹	<0.50 ¹	<0.50 ¹	<1.50 ¹	ND All	<0.50	<0.50	<0.50	<0.50	ND AII
Notes:										~	- not dotor	ted at or abov	o appailiad d	stantion limit .	- I		
	= total petr-	oleum hyd	ocarbons	as Stoddard so	vent						= not analy		e specified u		SHOWH		
	•	-		as gasoline							= not detec						
	= tetrachlor			and generative								according to I	PA Method	8260B			
TCE	= trichloroe	thene									-	id detected in I			onsidered lat	oratory conta	mination
VOCs	= volatile o	rganic com	pounds								-	y noted atypic:	•				
	= feet	-										at 0.55 ppb		-prile parten	,		
MSL	= mean sea	a level										Butyl Ether at	1.0 ppb				
ppb	= parts per	billion										ichloroethene					
ppm	= parts per	million								Ŷ							
EPA 8015	= analysis (performed	according	to EPA Method	8015 modifi	ed, unless o	therwise no	ted									
				to EPA Method													

Table 2 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

Searway Property 649 Pacific Avenue Alameda, California

		EPA Method TO-3(MOD)			EPA I	Method	TO-15				
Sample Date	Sample Location	Stoddard μg/m³	Benzene μg/m ³	Chloroform μg/m ³	Carbon Tetrachloride µg/m³	PCE µg/m³	TCE μg/m³	VC μg/m ³	2-Butanone μg/m ³	Acetone µg/m ³	Notes
9/10/2008	Influent	4.900 ^c	<80	560	3.900	2,600	<130	<64	300	<480	
	Effluent	610 ^{c. d}	<1.8	<3.9	29	17	<1.1	<0.5	<0.88	71	k
9/11/2008	Influent	2.400 ^c	<32	480	3.200	2.500	<54	<26	260	<190	e
	Effluent	710 [°]	<1.8	<3.9	<1.9	<2.6	<[,]	<0.5	14	180	e
10/10/2008	Influent	960 ^b	65	110	880	880	<5.4	<2.6	27	51	1
	Effluent	740 ⁶	<3.2	54	200	13	<5,4	<2.6	<3.0	25	m
11/6/2008	Influent	1.700 ^a	<1.6	58	690	520	<2.7	<1.3	23	62	ſ
	Effluent	2.800 ^a	1.9	53	770	14	<2.7	<1.3	6.5	37	<u>g</u>
12/4/2008	Influent	2.400 ^h	20	110	780	1.100	<6.7	<3.2	110	<24	i
	Effluent	2,100 ^h	18	120	1.100	40	<5.4	<2.6	82	<19	j

Table 2 Summary of Sub-Slab Extraction System Influent and Effluent Analytical Data

Sample	Sample			649	rway Property Pacific Avenue neda, California Carbon						
Date	Location	Stoddard	Benzene	Chloroform	Tetrachloride	PCE	TCE	VC	2-Butanone	Acetone	Note:
		μg/m³	μg/m ³	μg/m ³	μg/m ³	µg/m³	μg/m ³	μg/m ³	μg/m ³	μg/m ³	
lotes:											
	Total petrol	eum hydrocarb	ons as gasolir	ie.							
PCE =	Tetrachloro	bethylene or Per	rehloroethylei	ne							
	Trichloroeth	~									
	Vinyl Chlor										
	-	ganic Compoun	nds								
	Tert-Butano	ary butyl ether									
	Tert amyl m										
	-	s per cubic met	or								
		boratory analyt		- 	3						
	No sample			stronte mine	-						
	•		d Solvent, bu	sample chror	natogram does n	not resemt	ole Stodda	urd Solver	nt standard pat	lern.	
b =	Sample chro	omatogram doe:	s not resemble	e Stoddard So	lvent standard pa	attern (po	ssibly age				
					C5-C12 quanitife		oline.				
					1 Stoddard range						
					canister. Resul		d to the M	IDL.			
					considered as est						
				-	canister, Result	-			. –		
					. 1.2.4-trimethyl	benzene 2	.9 μg/m".	m.p-xyle	ene 4.7 μg/m°.		
		hloride 4.5 µg/1									
					. m.p-xylene 3.6						
		matogram does d solvent comp			vent standard pa `12.	ttern. Re	ported val	lue due to	presence of		
i =	Other VOCs	detected are: 1	1.2.4-trimethy	lbenzene 66 µ	g/m ³ . 1.3.5-trim	ethylbenz	ene 14 µg	m^3 .			
	4-ethyl tolue	me 48 μg/m ³ . e	htyl benzene -	49 μg/m ³ . m.p	-xylene 270 µg/	m ³ . o-xyle	ene 54 µg	$/m^3$ and to	oluene 490 µg/	m ³	
j =	Other VOCs	detected are: I	.2.4-trimethy	lbenzene 38 µ	g/m ³ , 1.3.5-trim	ethvlbenz	ene 7.6 µ	₂/m³. 4-e	thyl toluene 35	μg/m ³ .	
					ne 44 μg/m ³ , and	-	• •	**			
		detected is: m,p									
					g/m ³ , 4-ethyl tol	11000 8 8 9	$u_0/m^3 = m$	n vuloro	53 un (m ³ MT	DE 220 ma/	
					and toluene 82µg		րբ/ու . ու	p-xylone	ου μερια , IMT	or 220 µg/	
	a_vivlana '''	$\mu \alpha /m^2 T D \wedge 55$	Sugar TAN	13. 'll +10/me' -	and to be on a \$7 as	a lana?					

Table 3 Summary of Sub-Slab Extraction System Influent Throughput and Mass Removal of VOCs

Searway Property 649 Pacific Avenue Alameda, California

Date	Average flow rate CFM	Days Operated Since Previous Event	Cubic Meters Removed Since Previous Event	Cumulative Cubic Meters Removed	Influent Total VOCs µg/m ³	Pounds VOCs Removed Since Last Event	Pounds VOCs Removed per Day	Cumulative Total Pounds VOCs Removed
9/10/2008	45	0.04	76.53	76.53	12,260	0.00207	0.04964	0.00207
9/11/2008	45	1.00	1,836.73	1,913.27	8,840	0.03580	0.03580	0.03786
10/10/2008	45	29.00	53,265.31	55,178.57	3,443	0.40430	0.01394	0.44217
11/6/2008	45	27.00	49,591.84	104,770.41	3,102.8	0.33923	0.01256	0.78140
12/4/2008	45	28.00	51,428.57	156,198.98	5,401	0.61236	0.02187	1.39375

Notes:

CFM = cubic feet per minute $\mu g/m^3$ = micrograms per cubic meters

VOCs = volatile organic compounds

Table 4Summary of Sub-Slab Extraction System EffluentThroughput and Discharged of VOCs

Searway Property 649 Pacific Avenue Alameda, California

Date	Average Flow Rate CFM	Days Operated Since Previous Event	Cubic Meters Discharged Since Previous Event	Cumulative Cubic Meters Discharged	Effluent Total VOCs μg/m ³	Pounds VOCs Discharged Since Last Event	Pounds VOCs Discharged per Day	Cumulative Total Pounds VOCs Discharged
9/10/2008	45	0.04	76.53	76.53	731.1	0.00012	0.00296	0.00012
9/11/2008	45	1.00	1,836,73	1,913.27	904	0.00366	0.00366	0.00378
10/10/2008	45	29.00	53,265.31	55,178.57	3,720.5	0.43689	0.01507	0.44067
11/6/2008	45	27.00	49,591.84	104,770.41	4,249.6	0.46461	0.01721	0.90528
12/4/2008	45	28.00	51,428.57	156,198.98	1,227.7	0.13920	0.00497	1.04448

Notes:

 CFM = cubic feet per minute	
μg/m ³ = micrograms per cubic meters	
VOCs = volatile organic compounds	

Table 5 Sub-Slab Vapor Depressurization Data

Searway Property 649 Pacific Avenue Alameda, California

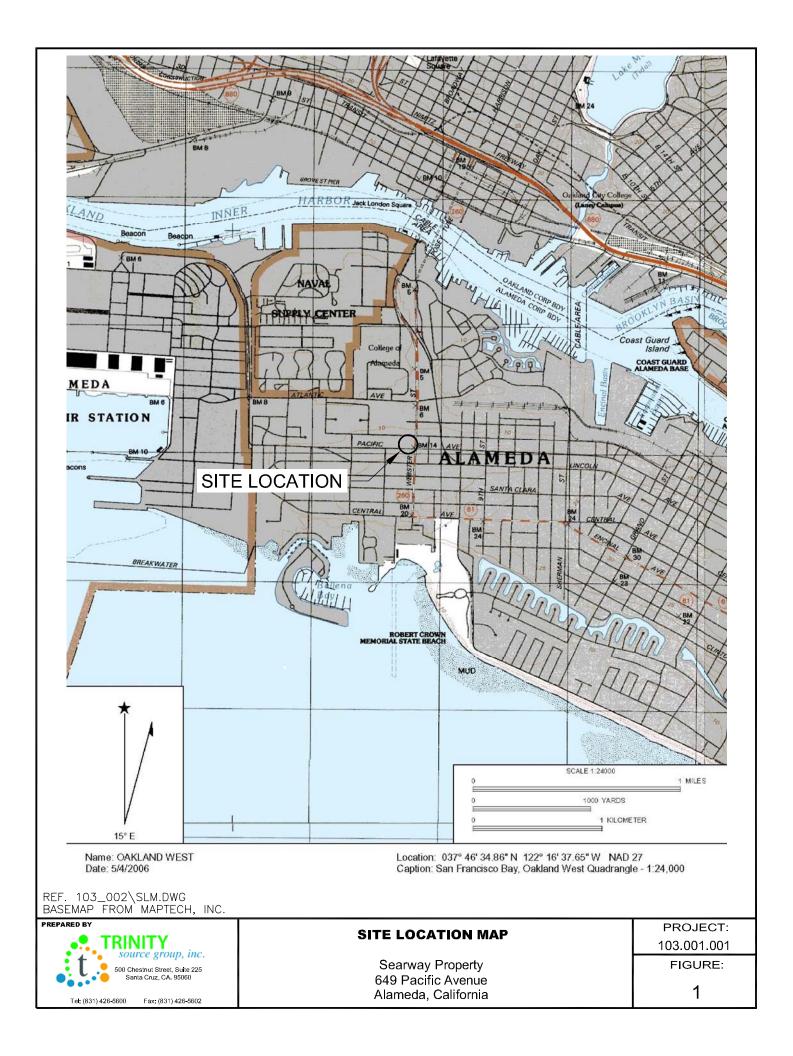
					-							· · · · · · · · · · · · · · · · · · ·	Observa	tion Wells									1
Date	Flow	VS-1	VS-2	VS-3	VS-4	VS-5	VS-6	VS-7	VS-8	VS-9	VS-10	VS-11	VS-12	VS-13	VS-14	VS-15	VS-16	VS-17	VS-18	VS-19	VS-20	VS-21	VS-22
	Rate	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vaeuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vaeuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum
	(cfm)	(in. H ₂ O)	(in. H ₂ O)	(in, H ₂ O)	$(in. H_2O)$	(in. H ₂ O)	(in. H ₂ O)	(in, H ₂ O)	(in, H ₂ O)	(in, H_2O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in, H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in, H ₂ O)	(in. H ₂ O)				
9/25/2008	45	-0.13		-0.14	<0.001	-0.06	-0.03	< 0.001	< 0.001	< 0.001		-0.03	-0.05	< 0.001	< 0.001	<0.001	-0.03	-0.03	-0.15	-0.05	0.11	-0.02	+0.02 ^a
12/4/2008	45	-0.16		-0.17	< 0.001	-0.07	-0.04	-0.03	<0.001	<0.001	0.03	0.05	0.04	<0.001	<0.001	0.03	0.05	0.05	-0.20	-0.07	-0.12	-0.03	-0.02

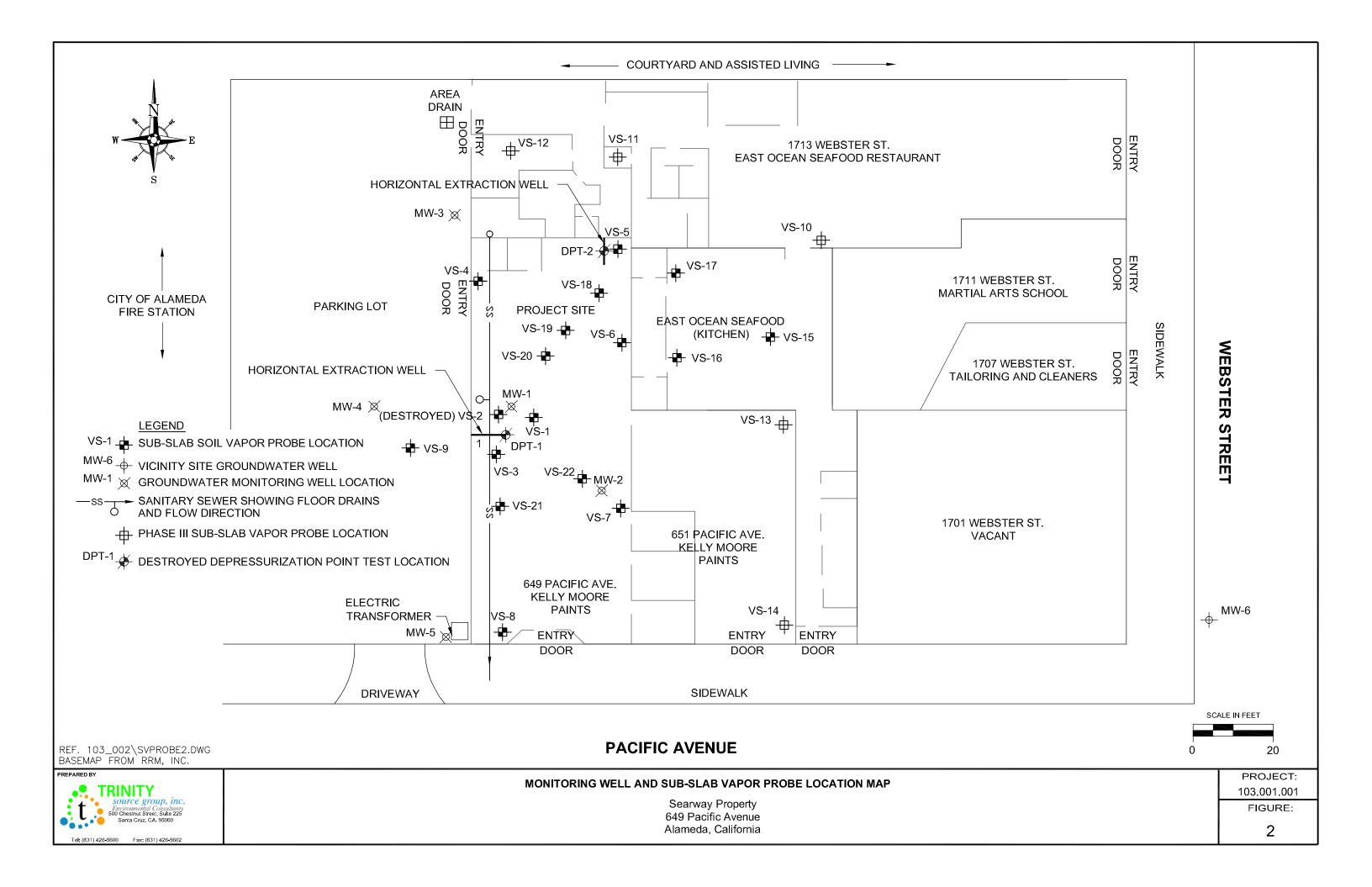
Notes:

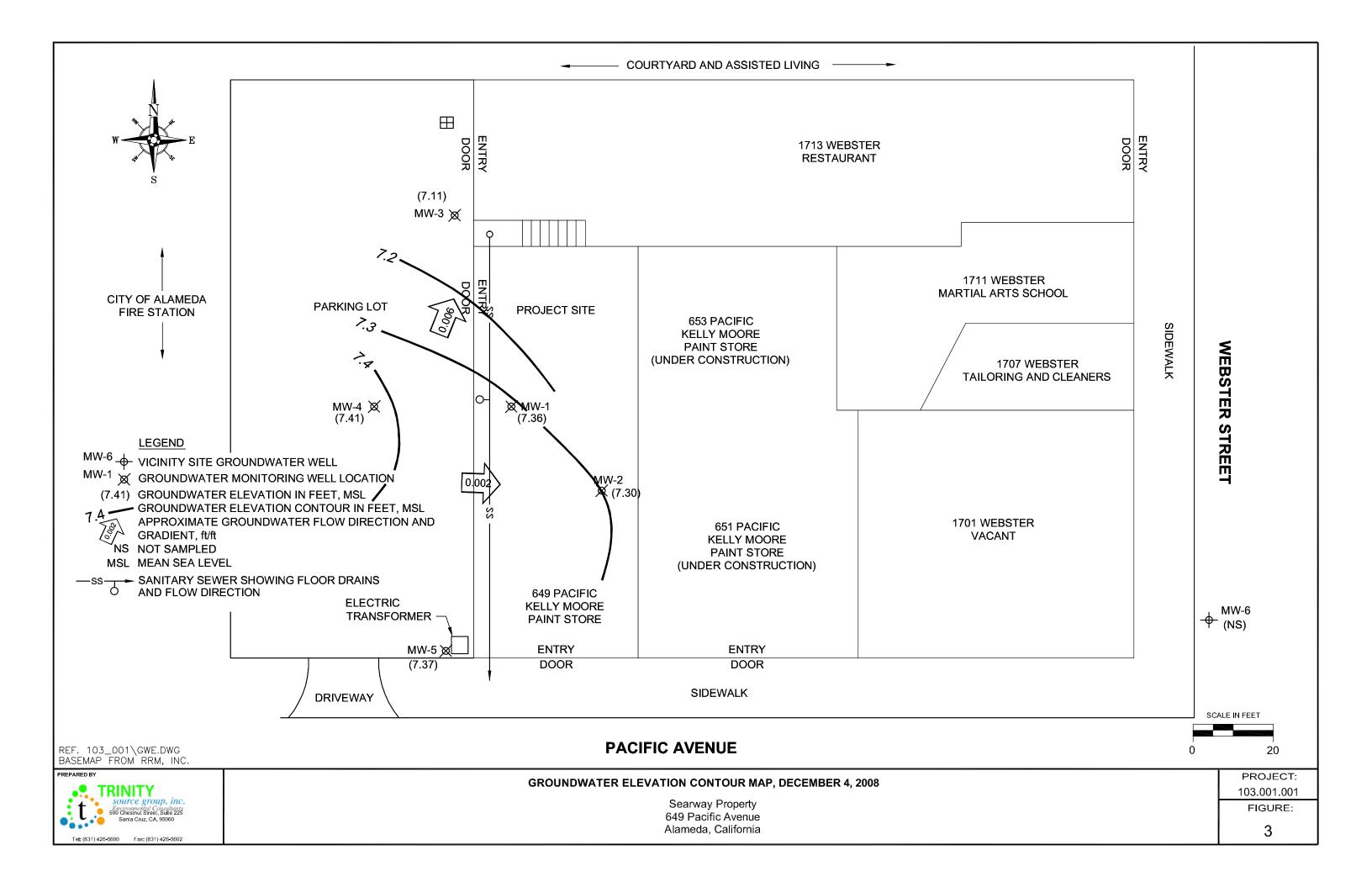
in. H₂O = inches water

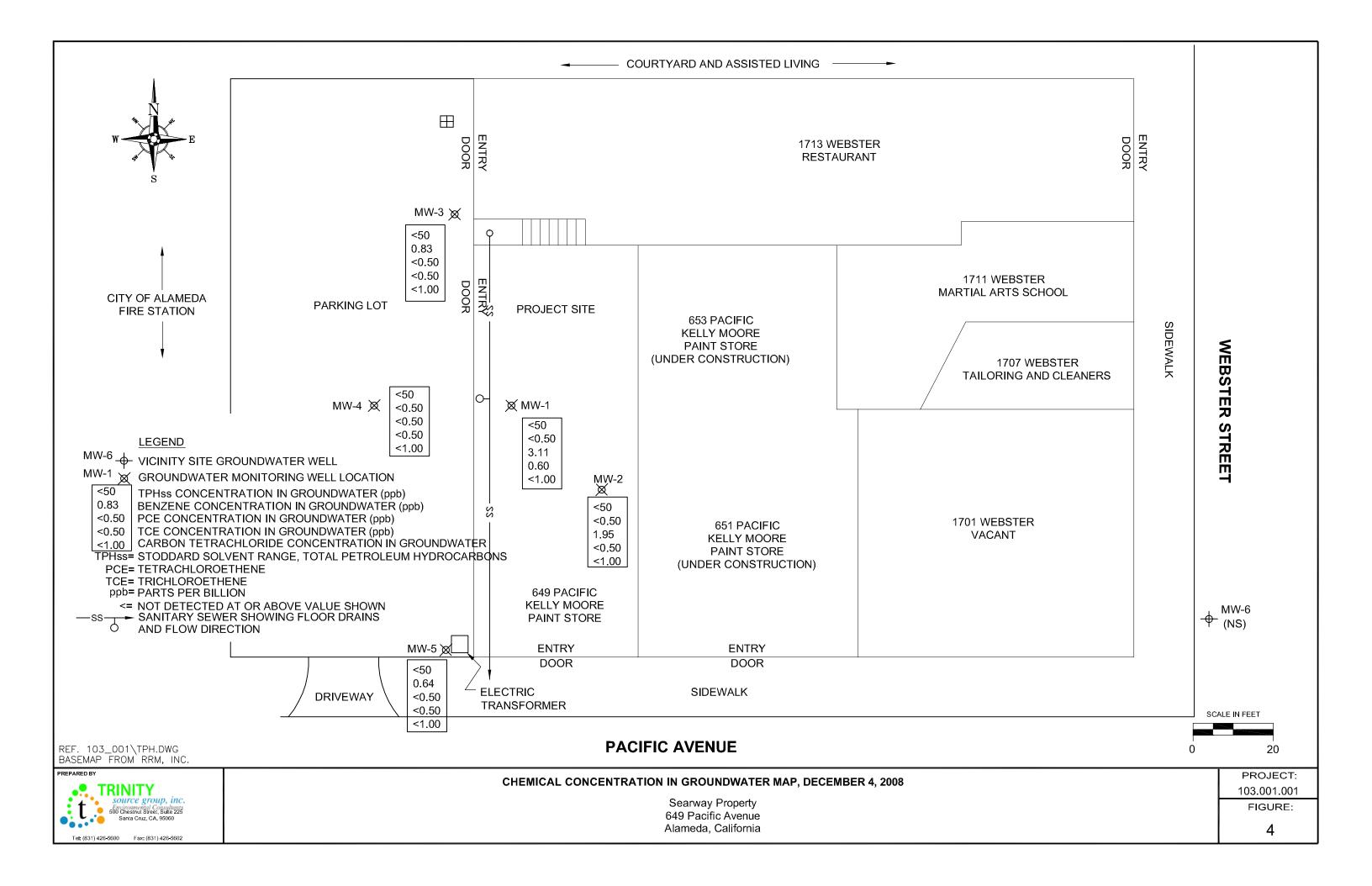
ft = feet

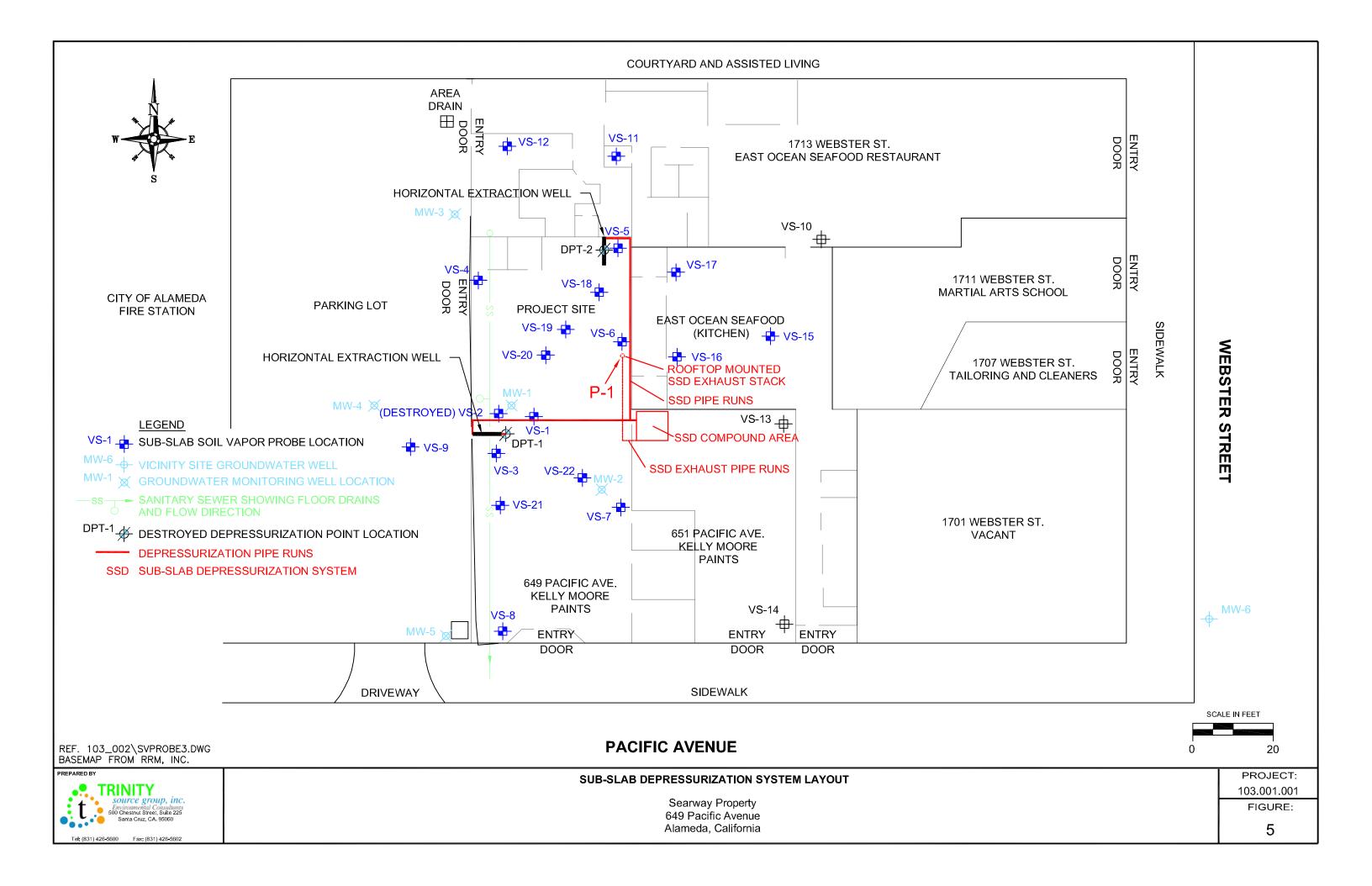
cfm =cubic feet meter

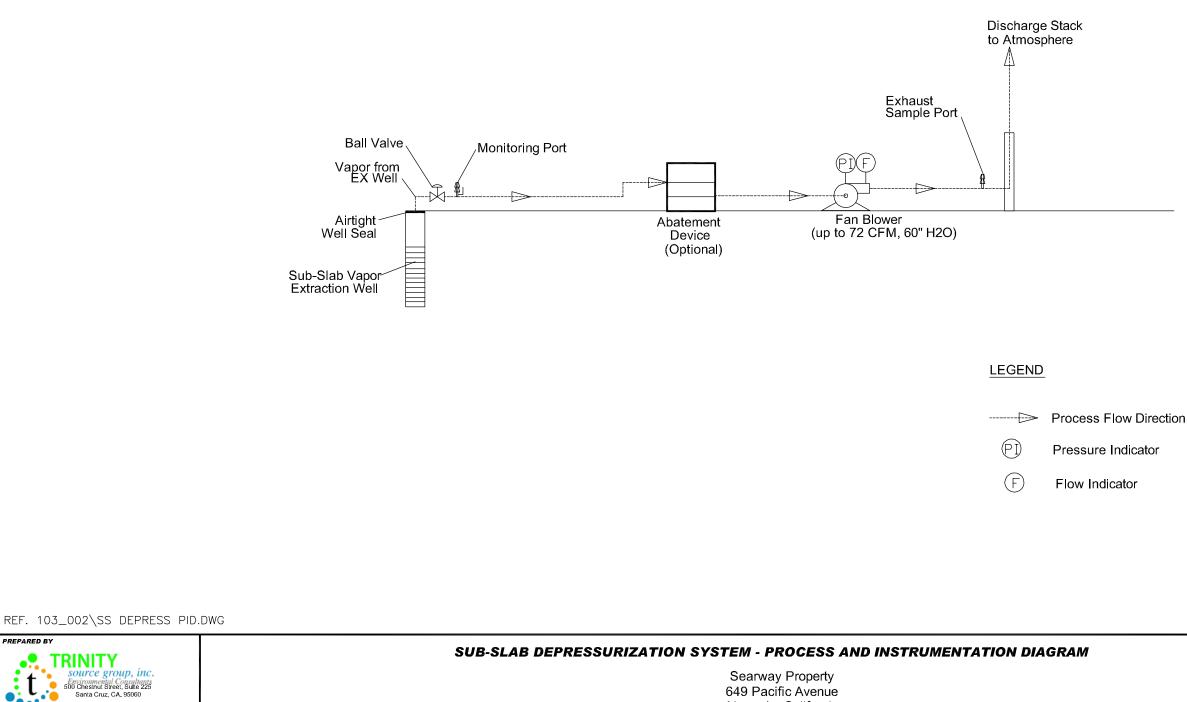

(--) or NM = not analyzed or measured


 $H_20 = water$


VS = vapor sampling


a = positive pressure may be due to paint mixing machine at this location


FIGURES



SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS AND INSTRUMENTATION DIAGRAM

Tel: (831) 426-5600 Fax: (831) 426-5602

TRINITY

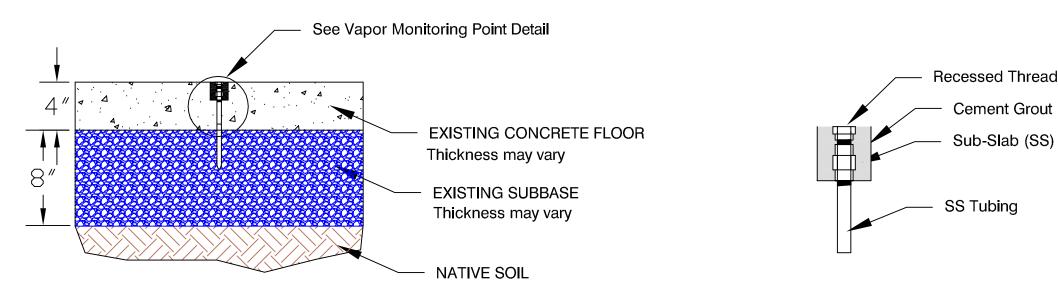
PREPARED BY

Alameda, California

PROJECT:

103.001.001

FIGURE:


6

NEW CONCRETE 2500 psi COMPRESSIVE STRENGTH @ 28 DAYS

PROJECT:
103.001.001
FIGURE:
7

NATIVE SOIL

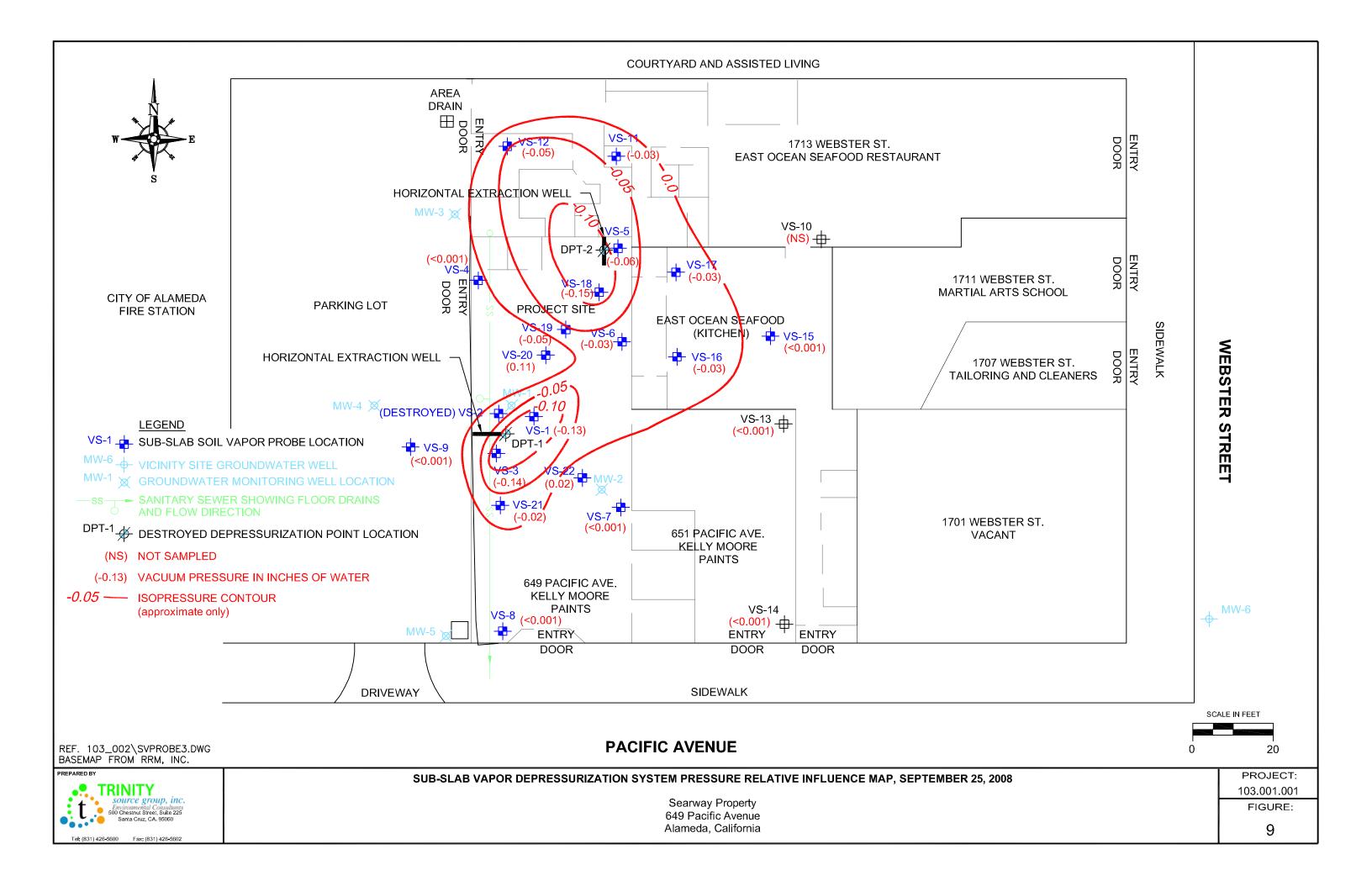
EXISTING FLOOR AND SUB-SLAB

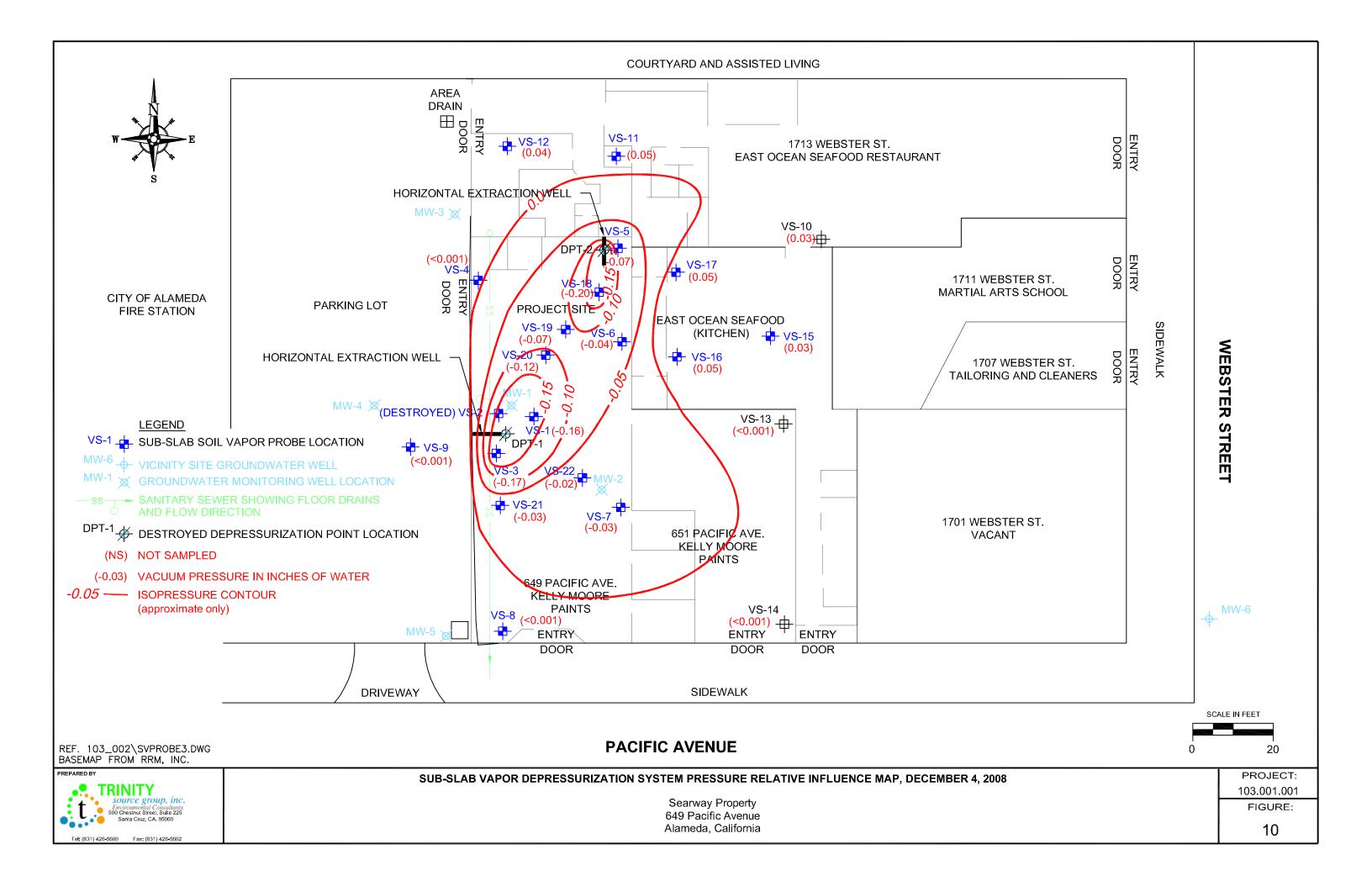
CONSTRUCTION (TYPICAL)

VAPOR MONITORING POINT DETAIL

Scale 1" = 2"

REF. 103_002\VPR MON PT.DWG




SUB-SLAB VAPOR MONITORING POINT DETAIL

Searway Property 649 Pacific Avenue Alameda, California Recessed Threaded Swagelok Cap

Sub-Slab (SS) Threaded Swagelok Fitting

PROJECT:
103.001.001
FIGURE:
8

ATTACHMENT A

FIELD AND ANALYTICAL PROCEDURES

FIELD PROCEDURES

Groundwater Level and Total Depth Determination

A water level indicator is lowered down the well and a measurement of the depth to water from an established reference point on the casing is taken. The indicator probe is used to sound the bottom of the well and a measurement of the total depth of the well is taken. Both the water level and total depth measurements are taken to the nearest 0.01-foot.

Visual Analysis of Groundwater

Prior to purging and sampling groundwater-monitoring wells, a water sample is collected from each well for subjective analysis. The visual analysis involves gently lowering a clean, disposable polyethylene bailer to approximately one-half the bailer length past the water table interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating product or the appearance of a petroleum product sheen. If measurable free product is noted in the bailer, a water/product interface probe is used to determine the thickness of the free product to the nearest 0.01-foot. The thickness of free product is determined by subtracting the depth to product from the depth to water.

Monitoring Well Purging and Sampling

Monitoring wells are purged by removing approximately four casing volumes of water from the well using a clean disposable bailer or electrical submersible purge pump equipped with a flow-through cell. Purge volumes are calculated prior to purging. During purging, the temperature, pH, and electrical conductivity of the purge water are monitored. Dissolved oxygen is also measured in the flow-through cell. The well is considered to be sufficiently purged when the four casing volumes have been removed; the temperature, pH, and conductivity values have stabilized to within 10% of the initial readings; and the groundwater being removed is relatively free of suspended solids. After purging, groundwater levels are allowed to stabilize to within 80% of the initial water level reading. A water sample is then collected from each well with a clean, disposable polyethylene bailer. If the well is bailed or pumped dry prior to removing the minimum amount of water, the groundwater is allowed to recharge. If the well has recharged to within 80% of the initial depth to water reading within two hours, the well will continue to be purged until the minimum volume of water has been removed. If the well has not recharged to at least 80% of the initial depth to water reading within two hours, the well is considered to contain formational water and a groundwater sample is collected. Groundwater removed from the well is stored in 55-gallon drums at the site and labeled pending disposal.

In wells where free product is detected, the wells will be bailed to remove the free product. An estimate of the volume of product and water will be recorded. If the free product thickness is reduced to the point where a measurable thickness is no longer present in the well, a groundwater sample will be collected. If free product persists throughout the purging process, a final free product thickness measurement will be taken and a groundwater sample will not be collected.

Groundwater samples are stored in 40-milliliter vials so that air passage through the sample is minimized (to prevent volatilization of the sample). The vial is tilted and filled slowly until an

upward convex meniscus forms over the mouth of the vial. The Teflon[™] side of the septum (in cap) is then placed against the meniscus, and the cap is screwed on tightly. The sample is then inverted and the bottle is tapped lightly to check for air bubbles. If an air bubble is present in the vial, the cap is removed and more sample is transferred from the bailer. The vial is then resealed and rechecked for air bubbles. The sample is then appropriately labeled and stored on ice from the time of collection through the time of delivery to the laboratory. The chain-of-custody form is completed to ensure sample integrity. Groundwater samples are transported to a state-certified laboratory and analyzed within the U.S. Environmental Protection Agency-specified hold times for the specified analytes.

ATTACHMENT B

FIELD DATA SHEETS

Field Data Sheet Depth to Water Data Form

-8

6

Site Information 103.001.00 / Project Number 4/08 TH Y Protect 121 INIT par for Dat source group, inc. Environmental Consultants ALAMEDA MO <u>CA</u> 500 Chestaux Street, Suite 223 Santa Cira, CA 45060 County State r 133 436.3600 1 833 426 3662 Water Level Equipment Measured by:_ AU Electronic Indicator Name Notes: MW-1+2 are ruside bld. □Oil Water Interface Probe

Other (Specify)

Well ID	DTW Order	Time (2400)	Total Depth	First DTW (toc or tob)	Second DTW (toc or tob)	Depth to SPH (toc or tob)	SPH Thickness	Notes: (describe
							(toc or tob)	SPH)
MW-1	514	1445	20.1	7 0 -	- 00			
_	here	1443		7.82	7.82	None		
MW-2	4	1430	19.8	7.91	7:91	10.re		
MN-3	Z	1222	18.9	8.00	~ . ^ ^			
		1002		0.00	8.00	None		
<u>MW-4</u>	3	1224	20.08	7.61	7.61	MORE		
MW-5	155	1220	19.9	7.42	7.42	None		
				NIC	1970	MOAR		
					·····			
					M ₁₀			
								· · · · · · · · · · · · · · · · · · ·
								······································
				·		71-1		
				Signatu	ire (JAN.	A.L	

source group, inc. Environmental Consultants

500 Chestnut Street, Suite 225 Santa Cruz, California 95060

Well Purge and Sampling Log

PaciFic Ave, Alameda Site: 649 Sampler:)AN BIRCH Project #: 103 001.001 08 Date: (2

Well ID:	MW	-5
----------	----	----

Well Diameter		TD BT	oc	DTW BTC	C	Purge	Equipment	Sampl	e Equipment
21		1.1	2	19.9		12VR)(121	٥C
Purge Volume Calculati	on]							· · · · · · · · · · · · · · · · · · ·
166 -	1	:0	<u></u>	Gallons per	ę o		Number of m	1	~

$TD_{1'} - DTW_{1'} + = 12.5 \times \text{Linear Foot} \qquad 16 = 2.07 \times \text{Casings} \qquad = 6.2$

Time (24 hour)	1221	1226	1231	1235		
Gallons Purged	2	4	6	8		
DO (mg/L)	1.24	1.1D	1.37	1.30		
рН	6.96	7:03	7.18	7.20		
Temperature (°C)	21.9	21.9	21.9	21.9		
Conductivity (umhos/cm ²)	35/00	345	330	331		
ORP (mV)	-31	-21	-16	-14		
Visual Description						
Other NTVS	41.41	16.11	15.21	11.17		
Other						

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
-AA14/-5	1235		1000	Awin		TPH SS
V	1235	5	YO	VOA-	Hel	82601

Notes:		
	Casing Diameter	Gailons per Linear Foot
-	1.25"	0.077
	1.5"	0.10
	2"	0.16
	3"	0.37
	3.5"	0.50
	4"	0.65
	6"	1.46
	8"	2.60

SOURCE GROUP, INC. Environmental Consultants

500 Chestnut Street, Suite 225 Santa Cruz, California 95060

Well Purge and Sampling Log

Par bur Aver Mamida Site: Sampler: わの 75 108 Project #: 103.001.001 4 $\int 2$ Date:

Well ID: MW-3

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2=	18.9	800	IZVOC	MUPC

TD <u>189</u> - DTW S = <u>109</u> Gallons pe Linear Foo	
--	--

Time (24 hour)	1300	130Y	1311	1318	1321	1324	
Gallons Purged		2	3	Ý	5	6	
DO (mg/L)	1:55	1.70	3.02	3.01	2.07	1.77	
рН	7.44	7.56	7.57	7.59	7.59	7.59	
Temperature (°C)	20.8	20.8	Z1.2	21.3	21.3	21.3	· · · · · · · · · · · · · · · · · · ·
Conductivity (umhos/cm ²)	877	836	824	814	817	817	
ORP (mV)	36	31	35	38	41	42	· · · · · · · · · · · · · · · · · · ·
Visual Description							
Other	309.1	267.1	75.6	66.2	41.4	22-2	·····
Other							

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
MAL, 2	1324	5	XOm1	NO4	Hel	8260 B
MND	1324	1	100D	Aug	<u> </u>	TPHSS

Notes:		
	Casing Diameter	Gallons per Linear Foot
	1.25"	0.077
	1.5"	0.10
	2"	0.16
	3"	0.37
	3.5"	0.50
	4"	0.65
	6"	1.46
	8"	2.60

Source group, inc. Environmental Consultants

500 Chestnut Street, Suite 225 Santa Cruz, California 95060

Well Purge and Sampling Log

n Ave, Alameda 63 Site: Sampler: $\nabla \Box$ IRC 4/08 12 103.001.00/ Project #:-30 Date:

Well ID: MN - J

Well Diameter	ТО ВТОС	DTW BTOC	Purge Equipment	Sample Equipment
27-	20.08	7.61	12VOC	12VDC
Purge Volume Calculatio	n			

1			
	тр <u>20.1</u> ртw <u>7</u> 6	13.5 x Gallons per Linear Foot	$\frac{16}{23} = \frac{23}{23} \times \frac{100}{2} = \frac{16}{5} \times \frac{8}{5}$ gallons

Time (24 hour)	1339	1343	1348	1353	1359	
Gallons Purged	l	4	6	8	(0	
DO (mg/L)	1.78	0.43	0.44	0.42	041	
рН	7.36	7.48	7-60	7.62	7-62	
Temperature (°C)	21.5	22.1	22.1	22.1	22.1	
Conductivity (umhos/cm ²)	552	554	540	519	517	
ORP (mV)	17.1	9-L	ť	th	Å	
Visual Description ORP		33	41	J7	48	
Other NHVS	19.2	9.2	7.2	9.0	6.2	
Other						

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
MARICAL	1359	5	40	VOA	1tcl	82606
1º1W - 7	1359		1000	Ambr		TPHSS

Notes:		
	Casing Diameter	Gallons per Linear Foot
	1.25"	0.077
	1.5"	0.10
	2"	0.16
	3"	0.37
	3.5"	0.50
	4"	0.65
	6"	1.46
	8"	2.60

SOURCE GROUP, inc. Environmental Consultants

500 Chestnut Street, Suite 225 Santa Cruz, California 95060

Well Purge and Sampling Log

649 Site: Paufre Manuda Sampler: Project #: 103.001-00/ Date: [ໍາ 6%

Well ID: MW - 2

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
	19.B	7.91	IZVOC	12100

Purge Volume Calculation			
TD DTW=	Gallons per x Linear Foot	Number of x Casings =g	gallons

Time (24 hour)	1436	1211	1417	1452	1455	1500	
Gallons Purged	l	2	3	5	م	8	
DO (mg/L)	2-03	1.15	0.94	0-64	0-61	0.59	
рН	7.73	7.10	7-37	7.34		7-32	
Temperature (°C)	21.1	21.5	21-5	21.5	21.6	215	
Conductivity (umhos/cm ²)	521	510	508	504	503	503	
ORP (mV)	86	91	92	93	94	95	
Visual Description							
Other	51-6	26-2	12.9	8.91	7.11	7.26	
Other							

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
Murs	1500	5	VUA	ton	Hil	82600
1.M 7	1500		Amor	1000		THESS

Notes:		
	Casing Diameter	Gallons per Linear Foot
	1.25"	0.077
	1.5"	0.10
	2"	0.16
	3"	0.37
	3.5"	0.50
	4"	0.65
	6"	1.46
	8"	2.60

SOURCE GROUP, inc. Environmental Consultants

500 Chestnut Street, Suite 225 Santa Cruz, California 95060

٦

Well Purge and Sampling Log

Pary Aul, ameda 10 Site: Ō M Sampler: Project #: 107 001.001 2 Date:

Well ID: MW ~

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2=	20.10	7.82	IZVOL	12VDC

,				
1	Purge	Volume	Calcula	tion

TD 20.1 - DTW 7.8 = 13.7 x Linear Fi	
--------------------------------------	--

Time (24 hour)	1512	1517	1521	1525	1528	1530	
Gallons Purged	(2	4	5	7	8	
DO (mg/L)	2.38	1.14	0.47	0.73	0.61	0.50	
рН	7.37	7.35	7.37	7.39	7,10	7.41	
Temperature (°C)	21.2	21.6	216	21-6	21.6	21.6	
Conductivity (umhos/cm ²)	507	507	505	502	V83	482	
ORP (mV)	109	/ [[113	/14	116	118	
Visual Description	14.6	12-6	8.91	7.07	6.21	5.20	
Other							
Other							

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
	1530	5	YOM	UDA	1+0	82605
	1530		1000	Amby		TPHSS
		1			*	······································

Notes:		
	Casing Diameter	Gallons per Linear Foot
	1.25"	0.077
	1.5"	0.10
	2"	0.16
	3"	0.37
	3.5"	0.50
	4"	0.65
	6"	1.46
	8"	2.60

Page ____ of ____

Sub-Slab Depressurization System-

Client: Timber Del Properties, L.L.C.	Project #: 103.001.001
Address: 649 Pacific Ave. Alameda CA	Date: 9 10/08
	Personnel: EC DJB
Arrival System Status: On / Off If Off Explain Why? \5+d	ay turning system on
Departure System Status: 07 / Off If Off Explain Why?	
Tedlar Bag Collected? Yes / No Summa V	/essel Collected? (Yes) / No
$\sqrt{1}$ Influent initial Summa Vacuum -30 Influent Final Summa Vac	uum - 5 Time 240
Effluent initial Summa Vacuum ~\$0 Effluent Final Summa Vac	
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) us	
Collected? (Yes) No Effluent (After Vacuum Unit)	0.870 PPMV
Collected? (Yes) No I Influent (Before Vacuum Unit)	(,87 PPMV
Effluent Flow Rate (read from digital readout on vacuum control)	45 FPM
Effluent Flow Rate and Temperature (measured with hand held Ane	mometer in discharge pipe slot)
78 FPM	Degrees F & Z. Z
Vacuum (moneyred at influent complex soft)	
Vacuum (measured at influent sample port)	-inches of mercury (-in Hg)
Smoke Pen Leak Test (Pass) Fail	
Notes: START-UP@1155 @ 45CFM Start Sampling INFLORNT@	(Next stepup is 85)
Start Sampling INFLORNT@	1200
Start Sampling EFFIVENTO 1	205

Glgnature

Sub-Slab Depressurization System-

Project #: 103.001.001
Date: 9/11/08
Personnel: EDIC CHOI
nma Vessel Collected? (Yes) / No
na Vacuum - 5 Time \ 350
na Vacuum ~5 Time 1400
IV) using Photo Ionization Detector (PID)
nit) 0.600 PPMV
Init) LOS PPMV
11/1
DI) 45 CFM FPM
d Anemometer in discharge pipe slot)
الازیو ها الحصر.
FLS Degrees F
-inches of mercury (-in Hg)
il
<u> </u>
<u> </u>
- UNLEL

Signature

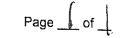
Page l of l

,

509 Chestnut Street, Suite 225 Santa Cruz, California 95060 v: 831.426.5600 f: 831.426.5602

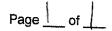
Page <u>/</u> of <u>/</u>

Sub-Slab Depressurization System-


1 小的海上

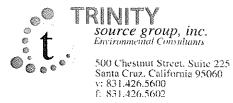
Client: Timber Del Properties, L.L.C.	Project #: 103.001.001
Address: 649 Pacific Ave. Alameda CA	Date: 9/25/08 THURS
	Personnel: DAN BIR(1+
Arrival System Status: (On) Off If Off Explain Why?	
Departure System Status: On / Off If Off Explain Why?	
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Pl	hoto Ionization Detector (PID)
Tedlar Bag Collected? IYes (No) Summa Vessel	
Collected? Yes / No Effluent (After Vacuum Unit)	
Collected? Yes / (No ²) Influent (Before Vacuum Unit)	1.00 PPMV
Effluent Flow Rate (read from digital readout on vacuum control)	45 EPAT-CFM
Effluent Flow Rate and Temperature (measured with head built he	
Effluent Flow Rate and Temperature (measured with hand held Anemome 7 2 FPM 7	
(<u> S</u> ⊂ Degrees F
Vacuum (measured at influent sample port) \mathcal{NM} -inch	es of mercury (-in Hg)
	te en mereury (-in rig)
Smoke Pen Leak Test (Pass) Fail	
TEST ALL VS POINTS THIS UISI	+ (DATa Below)
Notes:	
	SCA I ICHARINA
	IsPoint/State / in H20
VS-1/ Pass/-13 VS-8/ Fail/2.001 + VS-2/ DESTROYED VS-9/ Fail/2.001 1	15-14/ DUPLICATE
NG 2/ Real III LIFE ID / WE WILL	15-15/ Fail/ 6.001
VS-3/Pass/.14 VS-10/NOT TESHID X I	<u>VS-16/ Pass/=:03</u>
	VS-17 / Pass 1-:03
	VS-18/Pass 1-15
115 - 7 (Eq. (1) op () 11 (1) (= 1)	<u>VS-19/ Pass/.05</u>
No Della Line al La	US-20/ Pass 1-+ Ott .11
* Restauranteur won't allow access (Lunch time).	15-21/Pass 1-102
	VS-22/Fail/+.02*;
has to do with paint mixing machine . located directly atop this point.	SADUL_
10ratell allecter aton that and the	Signature

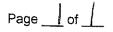
TRINITY source group, inc. Environmental Consultants


500 Chestnut Street, Suite 225 Santa Cruz, California 95060 v: 831.426.5600 f: 831.426.5602

Sub-Slab Depressurization System-

Client: Timber Del Properties, L.L.C.	Project #: 103.001.001
Address: 649 Pacific Ave. Alameda CA	Date: 10/10/08
	Personnel: DTTS
Arrival System Status: On Off If Off Explain Why?	
Departure System Status: (Or) Off If Off Explain Why?	a an an ann an an ann an an ann an an an
Tedlar Bay Collected Que ENFLUENT	
Tedlar Bag Collected? (Yes No EFFIvent Summa Vessel	Collected? Yes No
Influent initial Summa Vacuum Influent Final Summa Vacuum	Time
Effluent initial Summa Vacuum Effluent Final Summa Vacuum	Time
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) using Ph	oto Ionization Detector (PID)
Collected? (Yes) No Effluent (After Vacuum Unit)	160 PPMV
Collected? Yes No Influent (Before Vacuum Unit)	180 PPMV
Effluent Flow Rate (read from digital readout on vacuum control)	45 EPM-CFM
Effluent Flow Data and Tax	
Effluent Flow Rate and Temperature (measured with hand held Anemomet	
T FPM ·	79.0 Degrees F
Vacuum (measured at influent sample port) NM -inche	
-Inche	es of mercury (-in Hg)
Smoke Pen Leak Test (Pass) Fail	
Notes: Collect 1st monthly sampling a	wint in Florent
and enployed samples in 1 Life	1 teclloin
Leave card w/ Paint store people a	ad asy there
to call if the alarm rings.	et ask them




Sub-Slab Depressurization System-

Client: Timber Del Properties, L.L.C.	Project #: 103.001.001
Address: 649 Pacific Ave. Alameda CA	Date: \\/6/08
	Personnel: EC
Arrival System Status: (On) / Off If Off Explain Why?	
Departure System Status: (On) / Off If Off Explain Why?	
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) usir	g Photo Ionization Detector (PID)
	ssel Collected? Yes / No
Collected? (Yes / No Effluent (After Vacuum Unit)	0.160 PPMV
Collected? (Yes / No Influent (Before Vacuum Unit)	0.240 PPMV
Effluent Flow Rate (read from digital readout on vacuum control)	45 EPHTCFM
Effiluent Flow Rate and Temperature (measured with hand held Anem	
FPM	68.6 Degrees F
Vacuum (measured at influent sample port)	
Vacuum (measured at influent sample port) NM -	inches of mercury (-in Hg)
Smoke Pen Leak Test (Pass) Fail	
Notes:	
collected and monthly sampling event	influent and efficient
Samples in 1 Liter tedlar bags	
· Asked Store statito nutify TRINITY if System. gave then buginess card.	they beau alarma figure
grateminau them business card.	0
	· · · · · · · · · · · · · · · · · · ·
	ternt'h.

Signature

•

Sub-Slab Depressurization System-

Client: Timber Del Properties, L.L.C.	Project #: 103.001.001
Address: 649 Pacific Ave. Alameda CA	Date: 12/4/08
5	Personnel: OJB(RCH
Arrival System Status: On Off If Off Explain Why?	
Departure System Status: On / Off If Off Explain Why?	
- IN Plurent	+EFFLWAT (Z)
June 19 June 1	a Vessel Collected? Yes / (No'/
Influent initial Summa Vacuum Influent Final Summa V	
Effluent initial Summa Vacuum Effluent Final Summa V	-
Vapor Concentration Readings in Parts Per Million Vapor (PPMV) Collected? Yes No	
Collected? Yes No Influent (Before Vacuum Unit)	0.200 PPMV
Effluent Flow Rate (read from digital readout on vacuum control)	4S FAMT CFM
	YS FAM CFM
Effluent Flow Rate and Temperature (measured with hand held A	nemometer in discharge nine slot)
7 S FPM	70 Degrees F
	7 9 Degrees 1
Vacuum (measured at influent sample port)	-inches of mercury (-in Hg)
Smoke Pen Leak Test Pass See defails Faity	Performed.
X	
USED MAGNEHELIC + SMOKE AGA to NELD.	I VALUUM INFIMMACE @ VSS.
19. VI: 11- ISMAKE LIND : 1000	- 0 B
Notes point in H20/SMOKE VSPaint / in H20/SMOK	t VSPoint / in Hzo / smoke teat
V5-10/0.03 / NOTDONE V5-11-:16 (Pars	VS-8/ L:001/ Fail
VS-11/0.05/ Pars VS-2/ Autroyed -	- V5-13/6.001/Fail
VS-12/0:04/ Pars VS-3/17/ Pars	NS-11/2:001/FAIL
V5-17/0.05/ Pass VS-4/2.001 / Fair	
VS-15 10.03/ Pars US-5/07/ Pars	115-19/07/Pass
V5-16/0.05/PAN V5-6/-04/Par	2 VS-20/-12/Pass
US-9/6.001/Fail US-7'03/Par	VS-21/03/ Pars
	VS-22/- 02/ Pass
	Signature M

ATTACHMENT C

CERTIFIED ANALYTICAL REPORTS, CHAIN-OF-CUSTODY AND GEOTRACKER UPLOAD DOCUMENTATION

September 19, 2008

David Reinsma Trinity Source Group 500 Chestnut St,Suite 225 Santa Cruz, CA 95060

TEL: (831) 426-5600 FAX (831) 685-1219

RE: 649 Pacific Ave, Alameda

Dear David Reinsma:

Order No.: 0809071

Torrent Laboratory, Inc. received 4 samples on 9/11/2008 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

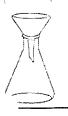
Sincerely,

9/10/00 Laboratory Difector

3

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road * Milpitas, CA * Phone: (408) 2635258 * Fax: (408) 263-8293 Visit us ar www.torrentlab.com email: analysis@torrentlab.com


Report Prepaired For: David Reinsma Trinity Source G	Date F Date F		9/11/2008 9/19/2008			
and the second	Summa	ry Report				
influent	Toxic Organics in Air by	oxic Organics in Air by EPA TO-15				0809071-001A
Parameter	Preped	Analyzed	Result	Lab <u>RL</u>	Unit	
2-Butanone (MEK)	9/12/2008	9/12/2008	300	74	µg/m³	
Carbon Tetrachloride	9/12/2008	9/12/2008	3900	160	µg/m³	
Chloroform	9/12/2008	9/12/2008	560	120	µg/m³	
Tetrachloroethene	9/12/2008	9/12/2008	2600	170	µg/m³	
nfluent	TO-3 (Mod)Air ug/m3			Lab		0809071-001A
Parameter	Preped	Analyzed	Result	RL	<u>Unit</u>	
Stoddard Solvent (C7-C12)	9/12/2008	9/12/2008	4900	700	µg/m³	
Effluent Toxic Organics in Air by EPA TO-15				Lab	_	0809071-002A
Parameter	Preped	Analyzed	Result	<u>RL</u>	<u>Unit</u>	
Acetone	9/12/2008	9/12/2008	71	1.1	µg/m³	
Carbon Tetrachloride	9/12/2008	9/12/2008	29	1.9	µg/m³	
m,p-Xylene	9/12/2008	9/12/2008	4.1	0.98	μg/m³	
Tetrachloroethene	9/12/2008	9/12/2008	17	2.6	µg/m³	
ffluent	TO-3 (Mod)Air ug/m3			Lab	ID:	0809071-002A
Parameter	Preped	Analyzed	<u>Result</u>	<u>RL</u>	<u>Unit</u>	
Stoddard Solvent (C7-C12)	9/11/2008	9/11/2008	610	350	μg/m³	
nfluent	Toxic Organics in Air by	EPA TO-15		Lab	D:	0809071-003A
Parameter	Preped	Analyzed	Result	<u>RL</u>	<u>Unit</u>	
2-Butanone (MEK)	9/12/2008	9/12/2008	260	30	μg/m³	
Carbon Tetrachloride	9/12/2008	9/12/2008	3200	63	µg/m³	
Chloroform	9/12/2008	9/12/2008	480	49	µg/m³	
Tetrachloroethene	9/12/2008	9/12/2008	2500	68	µg/m³	
fluent	TO-3 (Mod)Air ug/m3			Lab	D:	0809071-003A
Parameter	Preped	Analyzed	Result	RL	<u>Unit</u>	
Stodard Solvent (C7-C12)	9/12/2008	9/12/2008	2400		µg/m³	
ffluent	Toxic Organics in Air by	EPA TO-15		Lab		0809071-004A
Parameter	Preped	Analyzed	Result	<u>RL</u>	<u>Unit</u>	
2-Butanone (MEK)	9/12/2008	9/12/2008	14		µg/m³	

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road * Milpitas, CA * Phone: (408) 2635258 * Fax: (408) 263-8293 Visit us ar www.torrentlab.com email: analysis@torrentlab.com

Report Prepaired For: David Reinsma Trinity Source Group					eceived: eported:	9/11/2008 9/19/2008
		Summa	ry Report			
Effluent		Toxic Organics in Air by	EPA TO-15		Lab ID:	0809071-004A
Parameter		Preped	Analyzed	Result	<u>RL Un</u>	it
Acetone		9/12/2008	9/12/2008	180	1.1 μg/	′m³
Effluent		TO-3 (Mod)Air ug/m3			Lab ID:	0809071-004A
Parameter		Preped	Analyzed	Result	<u>RL Un</u>	it
Stoddard Solvent ((C7-C12)	9/11/2008	9/11/2008	710	700 µg/	/m³

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: David Reinsma

Trinity Source Group

Client Sample ID:	Influent
Sample Location:	649 Pacific Ave, Alameda
Sample Matrix:	AIR
Date/Time Sampled	9/10/2008 12:40:00 PM

Date Received: 9/11/2008 **Date Reported:** 9/19/2008

Lab Sample ID: 0809071-001 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	9/12/2008	1.99	50	100	ND	hð/w₃	R17327
1,1,1,2-Tetrachloroethane	TO-15	9/12/2008	3.44	50	170	ND	hð\uu hð\uu	R17327
1,1,1-Trichloroethane	TO-15	9/12/2008	2.73	50	140	ND	μg/m³	R17327
1,1,2,2-Tetrachloroethane	TO-15	9/12/2008	3.44	50	170	ND	hð\w ₃	R17327
1,1,2-Trichloroethane	TO-15	9/12/2008	2.73	50	140	ND	hð\uu hð\uu	R17327
1,1-Dichloroethane	TO-15	9/12/2008	2.03	50	100	ND	μg/m³	R17327
1,2,4-Trichlorobenzene	TO-15	9/12/2008	3.56	50	180	ND	μg/m³	R17327
1,2,4-Trimethylbenzene	TO-15	9/12/2008	2.46	50	120	ND	μg/m³	R17327
1,2-Dibromoethane(Ethylene dibromide)	TO-15	9/12/2008	3.84	50	190	ND	µg/m³	R17327
1,2-Dichlorobenzene	TO-15	9/12/2008	3.01	50	150	ND	µg/m³	R17327
1 ?-Dichloroethane	TO-15	9/12/2008	2.03	50	100	ND	μg/m³	R17327
Dichloropropane	TO-15	9/12/2008	2.31	50	120	ND	μg/m³	R17327
1,3,5-Trimethylbenzene	TO-15	9/12/2008	2.46	50	120	ND	μg/m³	R17327
1,3-Butadiene	TO-15	9/12/2008	4.44	50	220	ND	µg/m³	R17327
1,3-Dichlorobenzene	TO-15	9/12/2008	3.01	50	150	ND	ug/m³	R17327
1,4-Dichlorobenzene	TO-15	9/12/2008	3.01	50	150	ND	µg/m³	R17327
1,4-Dioxane	TO-15	9/12/2008	1.8	50	90	ND	μg/m ^a	R17327
2-Butanone (MEK)	TO-15	9/12/2008	1.48	50	74	300	ug/m³	R17327
2-Hexanone	TO-15	9/12/2008	2.05	50	100	ND	µg/m³	R17327
4-Ethyl Toluene	TO-15	9/12/2008	2.46	50	120	ND	µg/m³	R17327
4-Methyl-2-Pentanone (MIBK)	TO-15	9/12/2008	2.05	50	100	ND	µg/m³	R17327
Acetone	TO-15	9/12/2008	9.52	50	480	ND	µg/m³	R17327
Benzene	TO-15	9/12/2008	1.6	50	80	ND	µg/m³	R17327
Bromodichloromethane	TO-15	9/12/2008	3.35	50	170	ND	µg/m³	R17327
Bromoform	TO-15	9/12/2008	5.17	50	260	ND	μg/m³	R17327
Bromomethane	TO-15	9/12/2008	1.94	50	97	ND	µg/m³	R17327
Carbon Disulfide	TO-15	9/12/2008	1.56	50	78	ND	μg/m³	R17327
Carbon Tetrachloride	TO-15	9/12/2008	3.15	50	160	3900	µg/m³	R17327
Chlorobenzene	TO-15	9/12/2008	2.3	50	120	ND)	µg/m³	R17327
Chloroethane	TO-15	9/12/2008	1.32	50	66	ND	µg/mª	R17327
Chloroform	TO-15	9/12/2008	2.44	50	120	560	µg/m³	R17327
Chloromethane	TO-15	9/12/2008	1.04	50	52	ND	µg/m³	R17327
cis-1,2-dichloroethene	TO-15	9/12/2008	1.98	50	99	ND	µg/m³	R17327
sis-1,3-Dichloropropene	TO-15	9/12/2008	2.27	50	110	ND	µg/m³	R17327
Dibromochloromethane	TO-15	9/12/2008	4.26	50	210	ND	μg/m³	R17327
Dichlorodifluoromethane	TO-15	9/12/2008	2.48	50	120	ND	hð\wa hð\wa	R17327

Lese analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

2

Trinity Source Group

Client Sample ID:	Influent
mple Location:	649 Pacific Ave, Alameda
Sample Matrix:	AIR

Date/Time Sampled 9/10/2008 12:40:00 PM

Date Received: 9/11/2008 **Date Reported:** 9/19/2008

Lab Sample ID: 0809071-001 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Diisopropyl ether (DIPE)	TO-15	9/12/2008	2.09	50	100	ND	µg/m³	
Ethyl Acetate	TO-15	9/12/2008	1.8	50	90	ND	µg/m³	R17327
Ethyl Benzene	TO-15	9/12/2008	2.17	50	110	ND	µg/m³	R17327
Ethyl tert-butyl ether (ETBE)	TO-15	9/12/2008	2.09	50	100	ND	µg/m³	R17327
Freon 113	TO-15	9/12/2008	3.83	50	190	ND	µg/m³	R17327
Hexachlorobutadiene	TO-15	9/12/2008	5.34	50	270	ND	µg/m³	R17327
Hexane	TO-15	9/12/2008	14.1	50	700	ND	µg/m³	R17327
Isopropanol	TO-15	9/12/2008	16.4	50	820	ND	µg/m³	R17327
m,p-Xylene	TO-15	9/12/2008	2.05	50	100	ND	µg/m³	R17327
Methylene Chloride	TO-15	9/12/2008	3.61	50	180	ND	µg/m³	R17327
MTBE	TO-15	9/12/2008	1.81	50	90	ND	µg/m³	R17327
Naphthalene	TO-15	9/12/2008	2.62	50	130	ND	µg/m³	R17327
o-xylene	TO-15	9/12/2008	2.17	50	110	ND	µg/m³	R17327
Styrene	TO-15	9/12/2008	2.13	50	110	ND	µg/m³	R17327
t-Butyl alcohol (t-Butanol)	TO-15	9/12/2008	6.06	50	300	ND	µg/m³	R17327
tert-Amyl methyl ether (TAME)	TO-15	9/12/2008	2.09	50	100	ND	µg/m³	R17327
Tetrachloroethene	TO-15	9/12/2008	3.39	50	170	2600	µg/m³	R17327
Toluene	TO-15	9/12/2008	1.89	50	94	ND	µg/m³	R17327
s-1,2-Dichloroethene	TO-15	9/12/2008	1.98	50	99	ND	µg/m³	R17327 R17327
Trichloroethene	TO-15	9/12/2008	2.69	50	130	ND	µg/m³	R17327 R17327
Trichlorofluoromethane	TO-15	9/12/2008	2.48	50	120	ND	µg/m³	R17327
Vinyl Acetate	TO-15	9/12/2008	1.76	50	88	ND	µg/m³	R17327 R17327
Vinyl Chloride	TO-15	9/12/2008	1.28	50	64	ND	µg/m³	R17327
Surr: 4-Bromofluorobenzene	TO-15	9/12/2008	0	50	65-135	101	%REC	R17327 R17327
Stoddard Solvent (C7-C12)	TO-3(MOD)	9/12/2008	352	2	700	4900x-	µg/m³	G17327

Note: x - Not typical Stoddard (discrete light end peaks within Stoddard range).

Trinity Source Group

Client Sample ID:Effluentmple Location:649 Pacific Ave, AlamedaSample Matrix:AlR

Date/Time Sampled 9/10/2008 12:40:00 PM

Date Received: 9/11/2008 **Date Reported:** 9/19/2008

Lab Sample ID: 0809071-002 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical
	incenou	Analyzeu		1'actor				Batch
1,1 - Dichloroethene	TO-15	9/12/2008	0.794	2	1.6	ND	µg/m³	R17327
1,1,1,2-Tetrachloroethane	TO-15	9/12/2008	0.687	2	1.4	ND	µg/m³	R17327
1,1,1-Trichloroethane	TO-15	9/12/2008	0.819	2	1.6	ND	µg/m³	R17327
1,1,2,2-Tetrachloroethane	TO-15	9/12/2008	1.0305	2	2.1	ND	µg/m³	R17327
1,1,2-Trichloroethane	TO-15	9/12/2008	1.0374	2	2.1	ND	µg/m³	R17327
1,1-Dichloroethane	TO-15	9/12/2008	0.6885	2	1.4	ND	µg/m³	R17327
1,2,4-Trichlorobenzene	TO-15	9/12/2008	0.4984	2	1.0	ND	µg/m³	R17327
1,2,4-Trimethylbenzene	TO-15	9/12/2008	0.8856	2	1.8	ND	μg/m³	R17327
1,2-Dibromoethane(Ethylene dibromide)	TO-15	9/12/2008	1.0752	2	2.2	ND	µg/m³	R17327
1,2-Dichlorobenzene	TO-15	9/12/2008	0.601	2	1.2	ND	µg/m³	R17327
1,2-Dichloroethane	TO-15	9/12/2008	0.648	2	1.3	ND	μg/m³ ~	R17327
1,2-Dichloropropane	TO-15	9/12/2008	1.0164	2	2.0	ND	µg/m³	R17327
1,3,5-Trimethylbenzene	TO-15	9/12/2008	0.6888	2	1.4	ND	µg/m³	R17327
1,3-Butadiene	TO-15	9/12/2008	0.5967	2	1.2	ND	μg/m³	R17327
1,3-Dichlorobenzene	TO-15	9/12/2008	0.3606	2	0.72	ND	μg/m³	R17327
1,4-Dichlorobenzene	TO-15	9/12/2008	0.6611	2	1.3	ND	μg/m³	R17327
1,4-Dioxane	TO-15	9/12/2008	0.504	2	1.0	ND	hð\w ₃	R17327
utanone (MEK)	TO-15	9/12/2008	0.4425	2	0.88	ND	µg/m³	R17327
dexanone	TO-15	9/12/2008	0.861	2	1.7	ND	hð\wa hð\wa	R17327
4-Ethyl Toluene	TO-15	9/12/2008	0.738	2	1.5	ND	μg/m³	R17327
4-Methyl-2-Pentanone (MIBK)	TO-15	9/12/2008	0.656	2	1.3	ND	µg/m³	R17327
Acetone	TO-15	9/12/2008	0.5712	2	1.1	71	hð\uu hð\uu	R17327 R17327
Benzene	TO-15	9/12/2008	0.8932	2	1.8	NĎ	μg/m³	R17327
Bromodichloromethane	TO-15	9/12/2008	0.871	2	1.7	ND	μg/m³	R17327
Bromoform	TO-15	9/12/2008	1.7578	2	3.5	ND		
Bromomethane	TO-15	9/12/2008	0.776	2	1.6	ND	µg/m³	R17327
Carbon Disulfide	TO-15	9/12/2008	0.4976	2	1.0	ND	µg/m³	R17327
Carbon Tetrachloride	TO-15	9/12/2008	0.9435	2	1.9	29)	µg/m³	R17327
Chlorobenzene	TO-15	9/12/2008	0.4232	2	0.85	ND	µg/m³	R17327
Chloroethane	TO-15	9/12/2008	0.396	2	0.79	ND	µg/m³	R17327
Chloroform	TO-15	9/12/2008	1.952	2	3.9		µg/m³	R17327
Chloromethane	TO-15	9/12/2008	0.7245	2	5.9 1.4	ND	µg/m³	R17327
cis-1,2-dichloroethene	TO-15	9/12/2008	0.5544	2	1.4	ND	µg/m³	R17327
cis-1,3-Dichloropropene	TO-15	9/12/2008	0.3632	2		ND	µg/m³	R17327
Dibromochloromethane	TO-15	9/12/2008	0.9372		0.73	ND	µg/m³	R17327
Dichlorodifluoromethane	TO-15	9/12/2008	0.9372	2	1.9	ND	µg/m³	R17327
Diisopropyl ether (DIPE)	TO-15	9/12/2008	0.6688	2	1.5	ND	µg/m³	R17327
Ethyl Acetate	TO-15	9/12/2008	0.4248	2	1.3	ND	µg/m³	R17327
Ethyl Benzene	TO-15	9/12/2008		2	0.85	ND	µg/m³	R17327
Ethyl tert-butyl ether (ETBE)	TO-15	9/12/2008	0.31062	2	0.62	ND	µg/m³	R17327
Freon 113	TO-15		0.6688	2	1.3	ND	µg/m³	R17327
Hexachlorobutadiene	TO-15 TO-15	9/12/2008	0.9192	2	1.8	ND	µg/m³	R17327
	TO-15 TO-15	9/12/2008	1.8139	2	3.6	ND	µg/m³	R17327
Action and bases were norfermed	10-15	9/12/2008	1.7952	2	3.6	ND	µg/m³	R17327

Lese analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 3 of 9

Trinity Source Group

Client Sample ID:	Effluent
mple Location:	649 Pacific Ave, Alameda
Sample Matrix:	AIR
Date/Time Sampled	9/10/2008 12:40:00 PM

Date Received: 9/11/2008 Date Reported: 9/19/2008

Lab Sample ID: 0809071-002 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropanol	TO-15	9/12/2008	1.6359	2	3.3	ND	µg/m³	R17327
m,p-Xylene	TO-15	9/12/2008	0.492	2	0.98	4.1 J	µg/m³	R17327
Methylene Chloride	TO-15	9/12/2008	0.6859	2	1.4	ND	µg/m³	R17327
MTBE	TO-15	9/12/2008	0.5054	2	1.0	ND	µg/m³	R17327
Naphthalene	TO-15	9/12/2008	2.62	2	5.2	ND	µg/m³	R17327
o-xylene	TO-15	9/12/2008	0.62062	2	1.2	ND	µg/m³	R17327
Styrene	TO-15	9/12/2008	0.639	2	1.3	ND	µg/m³	R17327
-Butyl alcohol (t-Butanol)	TO-15	9/12/2008	0.4898	2	0.98	ND	hð\w ₃	R17327
ert-Amyl methyl ether (TAME)	TO-15	9/12/2008	0.6688	2	1.3	ND	µg/m³	R17327
Tetrachloroethene	TO-15	9/12/2008	1.2882	2	2.6		µg/m³	R17327
Toluene	TO-15	9/12/2008	0.5278	2	1.1	ND	hð\un	R17327
rans-1,2-Dichloroethene	TO-15	9/12/2008	0.5544	2	1.1	ND	µg/m³	R17327
Trichloroethene	TO-15	9/12/2008	0.52626	2	1.1	ND	µg/m³	R17327
Trichlorofluoromethane	TO-15	9/12/2008	0.693	2	1.4	ND	µg/m³	R17327
Vinyl Acetate	TO-15	9/12/2008	0.64064	2	1.3	ND	µg/m³	R17327
Vinyl Chloride	TO-15	9/12/2008	0.24832	2	0.50	ND	µg/m³	R17327
Surr: 4-Bromofluorobenzene	TO-15	9/12/2008	0	2	65-135	102	%REC	R17327

te: Reporting limit increased due to low initial pressure in canister. Results reported to the MDL. Reported values between the MDL and RL ...ould be considered as estimated and are flagged with the appropriate "J" qualifier. 9/11/2008

176

2

350

610 x, J

µg/m³

G17327

TO-3(MOD)

Stoddard Solvent (C7-C12)

Note: Reporting limit increased due to low initial pressure in canister. Results reported to the MDL. Reported values between the MDL and RL should be considered as estimated and are flagged with the appropriate "J" qualifier. x - Not typical Stoddard (discrete light end peaks within Stoddard range).

.ese analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Trinity Source Group

Client Sample ID:Influentmple Location:649 Pacific Ave, AlamedaSample Matrix:AIRDate/Time Sampled9/11/2008 1:50:00 PM

a de la companya de l

Date Received: 9/11/2008 **Date Reported:** 9/19/2008

Lab Sample ID: 0809071-003 Date Prepared:

Parameters	Analysis Method	Date	RL	Dilution	MRL	Result	Units	Analytical
	Methou	Analyzed		Factor				Batch
1,1 - Dichloroethene	TO-15	9/12/2008	1.99	20	40	ND	µg/m³	R17327
1,1,1,2-Tetrachloroethane	TO-15	9/12/2008	3.44	20	69	ND	µg/m³	R17327
1,1,1-Trichloroethane	TO-15	9/12/2008	2,73	20	55	ND	µg/m³	R17327
1,1,2,2-Tetrachloroethane	TO-15	9/12/2008	3.44	20	69	ND	µg/m³	R17327
1,1,2-Trichloroethane	TO-15	9/12/2008	2.73	20	55	ND	μg/m³	R17327
1,1-Dichloroethane	TO-15	9/12/2008	2.03	20	41	ND	μg/m³	R17327
1,2,4-Trichlorobenzene	TO-15	9/12/2008	3.56	20	71	ND	µg/m³	R17327
1,2,4-Trimethylbenzene	TO-15	9/12/2008	2.46	20	49	ND	µg/m³	R17327
1,2-Dibromoethane(Ethylene dibromide)	TO-15	9/12/2008	3.84	20	77	ND	hð\u	R17327
1,2-Dichlorobenzene	TO-15	9/12/2008	3.01	20	60	ND	µg/m³	R17327
1,2-Dichloroethane	TO-15	9/12/2008	2.03	20	41	ND	µg/m³	R17327
1,2-Dichloropropane	TO-15	9/12/2008	2.31	20	46	ND	μg/m³	R17327
1,3,5-Trimethylbenzene	TO-15	9/12/2008	2.46	20	49	ND	µg/m³	R17327
1,3-Butadiene	TO-15	9/12/2008	4.44	20	89	ND	µg/m³	R17327
1,3-Dichlorobenzene	TO-15	9/12/2008	3.01	20	60	ND	µg/m³	R17327
1,4-Dichlorobenzene	TO-15	9/12/2008	3.01	20	60	ND	µg/m³	R17327
1,4-Dioxane	TO-15	9/12/2008	1.8	20	36	ND	µg/m³	R17327
utanone (MEK)	TO-15	9/12/2008	1.48	20	30	260	µg/m³	R17327
∠-Hexanone	TO-15	9/12/2008	2.05	20	41	ND		
4-Ethyl Toluene	TO-15	9/12/2008	2.46	20	49	ND	µg/m³ µg/m³	R17327
4-Methyl-2-Pentanone (MIBK)	TO-15	9/12/2008	2.05	20	41	ND	µg/m²	R17327
Acetone	TO-15	9/12/2008	9.52	· 20	190	ND		R17327
Benzene	TO-15	9/12/2008	1.6	20	32	ND	µg/m³	R17327
Bromodichloromethane	TO-15	9/12/2008	3.35	20	67	ND	µg/m³	R17327
Bromoform	TO-15	9/12/2008	5.17	20	100	ND	µg/m³	R17327
Bromomethane	TO-15	9/12/2008	1.94	20	39	ND	µg/m³	R17327
Carbon Disulfide	TO-15	9/12/2008	1.56	20	31		µg/m³	R17327
Carbon Tetrachloride	TO-15	9/12/2008	3.15	20	63	ND	µg/m³	R17327
Chlorobenzene	TO-15	9/12/2008	2.3	20	46	<u>(3200)</u>	µg/m³	R17327
Chloroethane	TO-15	9/12/2008	1.32	20	46 26	ND	µg/m³	R17327
Chloroform	TO-15	9/12/2008	2.44	20		ND	µg/m³	R17327
Chloromethane	TO-15	9/12/2008	1.04	20	49	<u>(480</u>	µg/m³	R17327
cis-1,2-dichloroethene	TO-15	9/12/2008	1.98		21	ND	µg/m³	R17327
cis-1,3-Dichloropropene	TO-15	9/12/2008	2.27	20	40	ND	µg/m³	R17327
Dibromochloromethane	TO-15	9/12/2008		20	45	ND	µg/m³	R17327
Dichlorodifluoromethane	TO-15	9/12/2008	4.26	20	85	ND	µg/m³	R17327
Diisopropyl ether (DIPE)	TO-15		2.48	20	50	ND	µg/m³	R17327
Ethyl Acetate	TO-15 TO-15	9/12/2008 9/12/2008	2.09	20	42	ND	µg/m³	R17327
Ethyl Benzene	TO-15		1.8	20	36	ND	µg/m³	R17327
Ethyl tert-butyl ether (ETBE)	TO-15	9/12/2008	2.17	20	43	ND	µg/m³	R17327
Freon 113		9/12/2008	2.09	20	42	ND	µg/m³	R17327
Hexachlorobutadiene	TO-15	9/12/2008	3.83	20	77	ND	µg/m³	R17327
Hexachiorobutadiene ' 'nxane	TO-15	9/12/2008	5.34	20	110	ND	µg/m³	R17327
vane	TO-15	9/12/2008	14.1	20	280	ND	µg/m³	R17327

...ese analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 5 of 9

Trinity Source Group

Client Sample ID:	Influent
mple Location:	649 Pacific Ave, Alameda
Sample Matrix:	AIR
Date/Time Sampled	9/11/2008 1:50:00 PM

Date Received: 9/11/2008 **Date Reported:** 9/19/2008

Lab Sample ID: 0809071-003 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropanol	TO-15	9/12/2008	16.4	20	330	ND	µg/m³	R17327
m,p-Xylene	TO-15	9/12/2008	2.05	20	41	ND	µg/m³	R17327
Methylene Chloride	TO-15	9/12/2008	3.61	20	72	ND	µg/m³	R17327
MTBE	TO-15	9/12/2008	1.81	20	36	ND	µg/m³	R17327
Naphthalene	TO-15	9/12/2008	2.62	20	52	ND	µg/m³	R17327
o-xylene	TO-15	9/12/2008	2.17	20	43	ND	µg/m³	R17327
Styrene	TO-15	9/12/2008	2.13	20	43	ND	µg/m³	R17327
t-Butyl alcohol (t-Butanol)	TO-15	9/12/2008	6.06	20	120	ND	µg/m³	R17327
tert-Amyl methyl ether (TAME)	TO-15	9/12/2008	2.09	20	42	ND	µg/m³	R17327
Tetrachloroethene	TO-15	9/12/2008	3.39	20	68	2500	µg/m³	R17327
Toluene	TO-15	9/12/2008	1.89	20	38	ND	μg/m³	R17327
trans-1,2-Dichloroethene	TO-15	9/12/2008	1.98	20	40	ND	µg/m³	R17327
Trichloroethene	TO-15	9/12/2008	2.69	20	54	ND	hð\w ₃	R17327
Trichlorofluoromethane	TO-15	9/12/2008	2.48	20	50	ND	μg/m³	R17327
Vinyl Acetate	TO-15	9/12/2008	1.76	20	35	ND	µg/m³	R17327
Vinyl Chloride	TO-15	9/12/2008	1.28	20	26	ND	µg/m³	R17327
Surr: 4-Bromofluorobenzene	TO-15	9/12/2008	0	20	65-135	97.2	%REC	R17327
Stoddard Solvent (C7-C12)	TO-3(MOD)	9/12/2008	352	2	700	2400x	µg/m³	G17327

Note: x - Not typical Stoddard (discrete light end peaks within Stoddard range).

Trinity Source Group

Client Sample ID:Effluentmple Location:649 Pacific Ave, AlamedaSample Matrix:AIR

Date/Time Sampled 9/11/2008 2:00:00 PM

Date Received: 9/11/2008 **Date Reported:** 9/19/2008

Lab Sample ID: 0809071-004 Date Prepared:

		r			a dia 11.	a da anti-		gina Trans
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	9/12/2008	0.794	2	1.6	ND	µg/m³	R17327
1,1,1,2-Tetrachloroethane	TO-15	9/12/2008	0.687	2	1.4	ND	μg/m³	R17327
1,1,1-Trichloroethane	TO-15	9/12/2008	0.819	2	1.6	ND	µg/m³	R17327
1,1,2,2-Tetrachloroethane	TO-15	9/12/2008	1.0305	2	2.1	ND	μg/m³	R17327
1,1,2-Trichloroethane	TO-15	9/12/2008	1.0374	2	2,1	ND	μg/m³	R17327
1,1-Dichloroethane	TO-15	9/12/2008	0.6885	2	1.4	ND	μg/m³	R17327
1,2,4-Trichlorobenzene	TO-15	9/12/2008	0.4984	2	1.0	ND	μg/m³	R17327
1,2,4-Trimethylbenzene	TO-15	9/12/2008	0.8856	2	1.8	ND	µg/m³	R17327
1,2-Dibromoethane(Ethylene dibromide)	TO-15	9/12/2008	1.0752	2	2.2	ND	µg/m³	R17327
1,2-Dichlorobenzene	TO-15	9/12/2008	0.601	2	1.2	ND	µg/m³	R17327
1,2-Dichloroethane	TO-15	9/12/2008	0.648	2	1.3	ND	µg/m³	R17327
1,2-Dichloropropane	TO-15	9/12/2008	1.0164	2	2.0	ND	µg/m³	R17327
1,3,5-Trimethylbenzene	TO-15	9/12/2008	0.6888	2	1.4	ND	µg/m³	R17327
1,3-Butadiene	TO-15	9/12/2008	0.5967	2	1.2	ND	µg/m³	R17327
1,3-Dichlorobenzene	TO-15	9/12/2008	0.3606	2	0.72	ND	µg/m³	R17327
1,4-Dichlorobenzene	TO-15	9/12/2008	0.6611	2	1.3	ND	µg/m³	R17327
1,4-Dioxane	TO-15	9/12/2008	0.504	2	1.0	ND	μg/m³	R17327
utanone (MEK)	TO-15	9/12/2008	0.4425	2	0.88	14	µg/m³	R17327
lexanone	TO-15	9/12/2008	0.861	2	1.7	ND	µg/m³	R17327
4-Ethyl Toluene	TO-15	9/12/2008	0.738	2	1.5	ND	µg/m³	R17327
4-Methyl-2-Pentanone (MIBK)	TO-15	9/12/2008	0.656	2	1.3	ND	µg/m³	R17327
Acetone	TO-15	9/12/2008	0.5712	2	1.1	180	-	
Benzene	TO-15	9/12/2008	0.8932	2	1.8	ND ¹²	µg/m³	R17327
Bromodichloromethane	TO-15	9/12/2008	0.871	2	1.7	ND	µg/m³	R17327
Bromoform	TO-15	9/12/2008	1.7578	2	3.5	ND	µg/m³	R17327
Bromomethane	TO-15	9/12/2008	0.776	2	1.6	ND	µg/m³	R17327
Carbon Disulfide	TO-15	9/12/2008	0.4976	2	1.0		µg/m³	R17327
Carbon Tetrachloride	TO-15	9/12/2008	0.9435	2	1.9	ND	µg/m³	R17327
Chlorobenzene	TO-15	9/12/2008	0.4232	2	0.85	ND	µg/m³	R17327
Chloroethane	TO-15	9/12/2008	0.396	2	0.85	ND	µg/m³	R17327
Chloroform	TO-15	9/12/2008	1.952	2		ND	µg/m³	R17327
Chloromethane	TO-15	9/12/2008	0.7245	2	3.9	ND	µg/m³	R17327
cis-1,2-dichloroethene	TO-15	9/12/2008	0.5544	2	1.4	ND	µg/m³	R17327
cis-1,3-Dichloropropene	TO-15	9/12/2008 9/12/2008	0.3632		1,1	ND	µg/m³	R17327
Dibromochloromethane	TO-15	9/12/2008		2	0.73	ND	µg/m³	R17327
Dichlorodifluoromethane	TO-15	9/12/2008	0.9372	2	1.9	ND	µg/m³	R17327
Diisopropyl ether (DIPE)	TO-15		0.7425	2	1.5	ND	µg/m³	R17327
Ethyl Acetate	TO-15 TO-15	9/12/2008	0.6688	2	1.3	ND	µg/m³	R17327
Ethyl Benzene		9/12/2008	0.4248	2	0.85	ND	µg/m³	R17327
Ethyl tert-butyl ether (ETBE)	TO-15	9/12/2008	0.31062	2	0.62	ND	µg/m³	R17327
Freon 113	TO-15	9/12/2008	0.6688	2	1.3	ND	µg/m³	R17327
	TO-15	9/12/2008	0.9192	2	1.8	ND	µg/m³	R17327
Hexachlorobutadiene	TO-15	9/12/2008	1.8139	2	3.6	ND	µg/m³	R17327
''rxane	TO-15	9/12/2008	1.7952	2	3.6	ND	µg/m³	R17327

Lese analyses were performed according to State of California Environmental Laboratory

Accreditation program, Certificate # 1991

Trinity Source Group

Client Sample ID:Effluentmple Location:649 Pacific Ave, AlamedaSample Matrix:AIRDate/Time Sampled9/11/2008 2:00:00 PM

Date Received: 9/11/2008 **Date Reported:** 9/19/2008

Lab Sample ID: 0809071-004 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropanol	TO-15	9/12/2008	1.6359	2	3.3	ND	µg/m³	L R17327
m,p-Xylene	TO-15	9/12/2008	0.492	2	0.98	ND	µg/m³	R17327
Methylene Chloride	TO-15	9/12/2008	0.6859	2	1.4	ND	µg/m³	R17327
MTBE	TO-15	9/12/2008	0.5054	2	1.0	ND	µg/m³	R17327
Naphthalene	TO-15	9/12/2008	2.62	2	5.2	ND	µg/m³	R17327
o-xylene	TO-15	9/12/2008	0.62062	2	1.2	ND	µg/m³	R17327
Styrene	TO-15	9/12/2008	0.639	2	1.3	ND	µg/m³	R17327
t-Butyl alcohol (t-Butanol)	TO-15	9/12/2008	0.4898	2	0.98	ND	µg/m³	R17327
tert-Amyl methyl ether (TAME)	TO-15	9/12/2008	0.6688	2	1,3	ND	µg/m³	R17327
Tetrachloroethene	TO-15	9/12/2008	1.2882	2	2,6	ND	µg/m³	R17327
Toluene	TO-15	9/12/2008	0.5278	2	1.1	ND	µg/m³	R17327
trans-1,2-Dichloroethene	TO-15	9/12/2008	0.5544	2	1.1	ND	µg/m³	R17327
Trichloroethene	TO-15	9/12/2008	0.52626	2	1.1	ND	µg/m³	R17327
Trichlorofluoromethane	TO-15	9/12/2008	0.693	2	1.4	ND	µg/m³	R17327
Vinyl Acetate	TO-15	9/12/2008	0.64064	2	1.3	ND	µg/m³	R17327
Vinyl Chloride	TO-15	9/12/2008	0.24832	2	0.50	ND	µg/m³	R17327
Surr: 4-Bromofluorobenzene	TO-15	9/12/2008	0	2	65-135	103	%REC	R17327
ote: Reporting limit increased due to	low initial pressure in c	anister. Results r	eported to the	e MDL.				
Stoddard Solvent (C7-C12)	TO-3(MOD)	9/11/2008	352	2	700	710x	µg/m⁰	G17327

Note: x - Not typical Stoddard (discrete light end peaks within Stoddard range).

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
l∽q/kg	Milligram per kilogram (ppm, part per million).
∟/ر	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
ac	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

CLIENT: Trinity Source Group Work Order: 0809071

Project: 649 Pacific Ave, Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: G17327

Sample ID MB-G	SampType: MBLK	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 9/11/2008	RunNo: 17327		
Client ID: ZZZZZ	Batch ID: G17327	TestNo: TO-3(MOD)	Analysis Date: 9/11/2008	SeqNo: 248290		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	ND	50				
Sample ID LCS-G	SampType: LCS	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 9/11/2008	RunNo: 17327		
Client ID: ZZZZZ	Batch ID: G17327	TestNo: TO-3(MOD)	Analysis Date: 9/11/2008	SeqNo: 248291		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	485.0	100 500 0	97.0 50 150			
Sample ID LCSD-G	SampType: LCSD	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 9/12/2008	RunNo: 17327		
Client ID: ZZZZZ	Batch ID: G17327	TestNo: TO-3(MOD)	Analysis Date: 9/12/2008	SeqNo: 248292		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	492.7	100 500 0	98.5 50 150 485	1.59 30		
Sample ID MB-SS	SampType: MBLK	TestCode: TO-3SS (MO Units: µg/m ³	Prep Date: 9/11/2008	RunNo: 17327		
Client ID: ZZZZZ	Batch ID: G17327	TestNo: TO-3(MOD)	Analysis Date: 9/11/2008	SeqNo: 248775		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Stoddard Solvent (C7-C12)	ND	180				

Oualifiers:

Value above quantitation range Ε ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded Н R

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 1 of 7

RPD outside accepted recovery limits S

CLIENT: Trinity Source Group Work Order: 0809071

Project: 649 Pacific Ave, Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17327

Sample ID MB	SampType:	MBLK	TestCoc	e: TO-15	Units: ppbv		Prep Dat	te: 9/12/2	008	RunNo: 17327			
Client ID: ZZZZZ	Batch ID:	R17327	TestN	o: TO-15			Analysis Dat	ie: 9/12/20	008	SeqNo: 24	8211		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1 - Dichloroethene		ND	0.20										
1,1,1,2-Tetrachloroethane		ND	0.10										
1,1,1-Trichloroethane		ND	0.15										
1,1,2,2-Tetrachloroethane		ND	0.15										
1,1,2-Trichloroethane		ND	0.19										
1,1-Dichloroethane		ND	0.17										
1,2,4-Trichlorobenzene		ND	0.070										
1,2,4-Trimethylbenzene		ND	0.18										
1,2-Dibromoethane(Ethylene dibro	omide	ND	0.14										
1.2-Dichlorobenzene		ND	0.10										
1,2-Dichloroethane		ND	0.16										
1,2-Dichloropropane		ND	0.22										
1,3,5-Trimethylbenzene		ND	0.14										
1.3-Butadiene		ND	0.27										
1,3-Dichlorobenzene		ND	0.060										
1,4-Dichlorobenzene		ND	0.11										
1,4-Dioxane		ND	0.14										
2-Butanone (MEK)		ND	0.15										
2-Hexanone		ND	0.21						v				
4-Ethyl Toluene		ND	0.15										
4-Methyl-2-Pentanone (MIBK)		ND	0.16										
Acetone		ND	0.24										
Benzene		ND	0.28										
Bromodichloromethane		ND	0.13										
Bromoform		ND	0.17										
Bromomethane		ND	0.20										
Carbon Disulfide		ND	0.16										
Carbon Tetrachloride		ND	0.15										
Chlorobenzene		ND	0.092										
Chloroethane		ND	0.15										
Chloroform		ND	0.40										

Qualifiers:

Value above quantitation range Е ND Not Detected at the Reporting Limit H Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits J

S

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 2 of 7

CLIENT: Trinity Source Group Work Order: 0809071

649 Pacific Ave, Alameda **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R17327

Sample ID MB	SampType: MBLK	TestCod	e: TO-15	Units: ppbv		Prep Dat	e: 9/12/2	008	RunNo: 173	327	
Client ID: ZZZZZ	Batch ID: R17327	TestN	o: TO-15			Analysis Dat	e: 9/12/2	008	SeqNo: 248	3211	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.35									
cis-1,2-dichloroethene	ND	0.14									
cis-1,3-Dichloropropene	ND	0.080									
Dibromochloromethane	ND	0.11									
Dichlorodifluoromethane	ND	0.15									
Diisopropyl ether (DIPE)	ND	0,16									
Ethyl Acetate	ND	0.12									
Ethyl Benzene	ND	0.093									
Ethyl tert-butyl ether (ETBE)	ND	0.16									
Freon 113	ND	0.12									
Hexachlorobutadiene	ND	0.17									
Hexane	ND	0.51									
Isopropanol	ND	0.40									
m,p-Xylene	ND	0.12									
Methylene Chloride	ND	0.19									
МТВЕ	ND	0.14									
Naphthalene	ND	0.50									
o-xylene	ND	0.14									
Styrene	ND	0.15									
t-Butyl alcohol (t-Butanol)	ND	0.16									
tert-Amyi methyl ether (TAME)	ND	0.16									
Tetrachloroethene	ND	0.19									
Toluene	ND	0.14									
trans-1,2-Dichloroethene	ND	0.14									
Trichloroethene	ND	0.098									
Trichlorofluoromethane	ND	0.14									
Vinyl Acetate	ND	0.18									
Vinyl Chloride	ND	0.097									
Surr: 4-Bromofluorobenzene	20.26	0	20	0	101	65	135				

Qualifiers:

E Value above quantitation range

Holding times for preparation or analysis exceeded Ή R

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 3 of 7

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

CLIENT: Trinity Source Group 0809071 Work Order:

Project: 649 Pacific Ave, Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17327

Sample ID LCS	SampType: LCS	TestCo	de: TO-15	Units: ppbv		Prep Dat	e: 9/11/20	08	RunNo: 17	327	
Client ID: ZZZZZ	Batch ID: R17327	Test	lo: TO-15			Analysis Dat	e: 9/11/20	08	SeqNo: 24	8212	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	22.50	0.50	20	· 0	112	65	135				
1,1,1,2-Tetrachloroethane	19.80	0.50	20	0	99.0	65	135				
1,1,1-Trichloroethane	20.04	0.50	20	0	100	65	135				
1,1,2,2-Tetrachloroethane	22.18	0.50	20	0	111	65	135				
1,1,2-Trichloroethane	22.08	0.50	20	0	110	65	135				
1,1-Dichloroethane	22.25	0.50	20	0	111	65	135				
1,2,4-Trichlorobenzene	19.30	0.50	20	0	96.5	65	135				
1.2.4-Trimethylbenzene	20.38	0.50	20	0	102	65	135				
1,2-Dibromoethane(Ethylene dibron	nide 20.58	0.50	20	0	103	65	135				
1,2-Dichlorobenzene	21.70	0.50	20	0	108	65	135				
1,2-Dichloroethane	21.23	0.50	20	0	106	65	135				
1,2-Dichloropropane	20.92	0.50	20	0	105	65	135				
1,3,5-Trimethylbenzene	20.09	0.50	20	0	100	65	135				
1,3-Butadiene	21.93	2.0	20	0	110	65	135				
1,3-Dichlorobenzene	21.20	0.50	20	0	106	65	135				
1,4-Dichlorobenzene	21.85	0.50	20	0	109	65	135				
1,4-Dioxane	21.07	0.50	20	0	105	65	135				
2-Butanone (MEK)	23.66	0.50	20	0	118	65	135				
2-Hexanone	22.03	0.50	20	0	110	65	135				
4-Ethyl Toluene	20.31	0.50	20	0	102	65	135				
4-Methyl-2-Pentanone (MIBK)	21.70	0.50	20	0	108	65	135				
Acetone	25.00	4.0	20	0	125	65	135				
Benzene	21.04	0.50	20	0	105	65	135				
Bromodichloromethane	20.59	0.50	20	0	103	65	135				
Bromoform	20.77	0.50	20	0	104	65	135				
Bromomethane	23.18	0.50	20	0	116	65	135				
Carbon Disulfide	22.99	0.50	20	0	115	65	135				
Carbon Tetrachloride	20.18	0.50	20	0	101	65	135				
Chlorobenzene	21.95	0.50	20	0	110	65	135			•	
Chloroethane	22.91	0.50	20	0	115	65	135				
Chloroform	21.73	0.50	20	0	109	65	135				

Qualifiers:

E Value above quantitation range H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

S

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 4 of 7

CLIENT: Trinity Source Group Work Order: 0809071

649 Pacific Ave, Alameda **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R17327

Sample ID LCS	SampType: LCS	TestCo	de: TO-15	Units: ppbv		Prep Dat	te: 9/11/2(008	RunNo: 17	327	
Client ID: ZZZZZ	Batch ID: R17327	Test	No: T O-15			Analysis Dat	te: 9/11/20	008	SeqNo: 24	8212	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-dichloroethene	21.88	0.50	20	0	109	65	135				
cis-1,3-Dichloropropene	20.90	0.50	20	0	104	65	135				
Dibromochloromethane	20.99	0.50	20	0	105	65	135				
Diisopropyl ether (DIPE)	22.38	0.50	20	0	112	65	135				
Ethyl Acetate	22.30	0.50	20	0	112	65	135				
Ethyl Benzene	20.19	0.50	20	0	101	65	135				
Ethyl tert-butyl ether (ETBE)	23.28	0.50	20	0	116	65	135				
Freon 113	20.39	0.50	20	0	102	65	135				
Hexachlorobutadiene	18.97	0.50	20	0	94.8	65	135				
Hexane	22.17	2.0	20	0	111	65	135				
Isopropanol	26.75	4.0	20	0	134	65	135				
m,p-Xylene	42.52	0.50	40	0	106	65	135				
Methylene Chloride	23.44	1.0	20	0	117	65	135				
МТВЕ	22.41	0.50	20	0	112	65	135				
Naphthalene	18.89	5.0	20	0	94.4	65	135				
o-xylene	22.04	0.50	20	0	110	65	135				
Styrene	20.81	0.50	20	0	104	65	135				
t-Butyl alcohol (t-Butanol)	23.34	2.0	20	0	117	65	135				
tert-Amyl methyl ether (TAME)	21.54	0.50	20	0	108	65	135				
Tetrachioroethene	20.86	0.50	20	0	104	65	135				
Toluene	20.31	0.50	20	0	102	65	135				
trans-1,2-Dichloroethene	22.23	0.50	20	0	111	65	135				
Trichloroethene	21.06	0.50	20	0	105	65	135				
Trichlorofluoromethane	23.82	0.50	20	0	119	65	135				
Vinyl Acetate	26.87	0.50	20	0	134	65	135				
Vinyl Chloride	16.94	0.50	20	0	84.7	65	135				
Surr: 4-Bromofluorobenzene	19.92	0	20	0	99.6	65	135				

Qualifiers:

Value above quantitation range Е

Holding times for preparation or analysis exceeded н

Analyte detected below quantitation limits J

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

R

Spike Recovery outside accepted recovery limits Page 5 of 7

CLIENT:

Project:

Work Order:

Trinity Source Group 0809071

649 Pacific Ave, Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17327

Sample ID LCSD	SampType: LCSD	TestCo	de: TO-15	Units: ppbv		Prep Dat	e: 9/12/20	08	RunNo: 17327		
Client ID: ZZZZZ	Batch ID: R17327	Test	lo: TO-15			Analysis Dat	e: 9/12/20	08	SeqNo: 24	8215	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	23.40	0.50	20	0	117	65	135	22.5	3.92	30	
1,1,1,2-Tetrachloroethane	21.35	0.50	20	0	107	65	135	19.8	7.53	30	
1,1,1-Trichloroethane	21.07	0.50	20	0	105	65	135	20.04	5.01	30	
1,1,2,2-Tetrachloroethane	23.59	0.50	20	0	118	65	135	22.18	6.16	30	
1,1,2-Trichloroethane	22.39	0.50	20	0	112	65	135	22.08	1.39	30	
1,1-Dichloroethane	23.36	0.50	20	0	117	65	135	22.25	4.87	30	
1,2,4-Trichlorobenzene	20.09	0.50	20	0	100	65	135	19.3	4.01	30	
1,2,4-Trimethylbenzene	22.16	0.50	20	0	111	65	135	20.38	8.37	30	
1,2-Dibromoethane(Ethylene dibrom	ide 21.18	0.50	20	0	106	65	135	20.58	2.87	30	
1,2-Dichlorobenzene	22.94	0.50	20	0	115	65	135	21.7	5.56	30	
1,2-Dichloroethane	20.95	0.50	20	0	105	65	135	21.23	1.33	30	
1,2-Dichloropropane	20.98	0.50	20	0	105	65	135	20.92	0.286	30	
1,3,5-Trimethylbenzene	22.46	0.50	20	0	112	65	135	20.09	11.1	30	
1,3-Butadiene	23.43	2.0	20	0	117	65	135	21.93	6.61	30	
1,3-Dichlorobenzene	23.01	0.50	20	0	115	65	135	21.2	8.19	30	
1,4-Dichlorobenzene	23.32	0.50	20	0	117	65	135	21.85	6.51	30	
1,4-Dioxane	20.79	0.50	20	0	104	65	135	21.07	1.34	30	
2-Butanone (MEK)	22.43	0.50	20	0	112	65	135	23.66	5.34	30	
2-Hexanone	22.31	0.50	20	0	112	65	135	22.03	1.26	30	
4-Ethyl Toluene	22.00	0.50	20	0	110	65	135	20.31	7.99	30	
4-Methyl-2-Pentanone (MIBK)	20.88	0.50	20	0	104	65	135	21.7	3.85	30	
Acetone	23.14	4.0	20	0	116	65	135	25	7.73	30	
Benzene	22.56	0.50	20	0	113	65	135	21.04	6.97	30	
Bromodichloromethane	20.59	0.50	20	0	103	65	135	20.59	0	30	
Bromoform	21.17	0.50	20	0	106	65	135	20.77	1.91	30	
Bromomethane	23.24	0.50	20	0	116	65	135	23.18	0.259	30	
Carbon Disulfide	22.38	0.50	20	0	112	65	135	22.99	2.69	30	
Carbon Tetrachloride	21.06	0.50	20	0	105	65	135	20.18	4.27	30	
Chlorobenzene	23.13	0.50	20	0	116	65	135	21.95	5.24	30	
Chloroethane	22.06	0.50	20	0	110	65	135	22.91	3.78	30	
Chloroform	22.55	0.50	20	0	113	65	135	21.73	3.70	30	

Qualifiers:

E Value above quantitation range Н Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits J

S

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 6 of 7

CLIENT:

Work Order:

Trinity Source Group 0809071

Project:

649 Pacific Ave, Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17327

Sample ID LCSD	SampType: LCSD	TestCo	de: T O-15	Units: ppbv		Prep Da	te: 9/12/20	008	RunNo: 17	327	
Client ID: ZZZZZ	Batch ID: R17327	Test	No: TO-15			Analysis Da	te: 9/12/20	08	SeqNo: 24	B215	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-dichloroethene	23.16	0.50	20	0	116	65	135	21.88	5.68	30	
cis-1,3-Dichloropropene	21.17	0.50	20	0	106	65	135	20.9	1.28	30	
Dibromochloromethane	22.26	0.50	20	0	111	65	135	20.99	5.87	30	
Diisopropyl ether (DIPE)	20.98	0.50	20	0	105	65	135	22.38	6.46	30	
Ethyl Acetate	21.30	0.50	20	0	106	65	135	22.3	4.59	30	
Ethyl Benzene	22.43	0.50	20	0	112	65	135	20.19	10.5	30	
Ethyl tert-butyl ether (ETBE)	22.62	0.50	20	0	113	65	135	23.28	2.88	30	
Freon 113	20.61	0.50	20	0	103	65	135	20.39	1.07	30	
Hexachlorobutadiene	19.78	0.50	20	0	98.9	65	135	18.97	4.18	30	
Hexane	21.13	2.0	20	0	106	65	135	22.17	4.80	30	
Isopropanol	19.74	4.0	20	0	98.7	65	135	26.75	30.2	30	
m,p-Xylene	44.66	0.50	40	0	112	65	135	42,52	4.91	30	
Methylene Chloride	22.72	1.0	20	0	114	65	135	23.44	3.12	30	
MTBE	22.60	0.50	20	0	113	65	135	22.41	0.844	30	
Naphthalene	21.25	5.0	20	0	106	65	135	18.89	11.8	30	
o-xylene	22.10	0.50	20	0	110	65	135	22.04	0.272	30	
Styrene	21.48	0.50	20	0	107	65	135	20.81	3.17	30	
t-Butyl alcohol (t-Butanol)	22.67	2.0	20	0	113	65	135	23.34	2.91	30	
tert-Amyl methyl ether (TAME)	20.31	0.50	20	0	102	65	135	21.54	5.88	30	
Tetrachloroethene	21.37	0.50	20	0	107	65	135	20.86	2.42	30	
Toluene	20.90	0.50	20	0	104	65	135	20.31	2.86	30	
trans-1,2-Dichloroethene	23.53	0.50	20	0	118	65	135	22.23	5.68	30	
Trichloroethene	21.32	0.50	20	0	107	65	135	21.06	1.23	30	
Trichlorofluoromethane	21.39	0.50	20	0	107	65	135	23.82	10.7	30	
Vinyl Acetate	21.28	0.50	20	0	106	65	135	26,87	23.2	30	
Vinyl Chloride	25.45	0.50	20	0	127	65	135	16,94	40.2	30	R
Surr: 4-Bromofluorobenzene	21.32	0	20	0	107	65	135	0	0	30	

Qualifiers:

Е Value above quantitation range H Holding times for preparation or analysis exceeded R

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 7 of 7

ND Not Detected at the Reporting Limit RPD outside accepted recovery limits \mathbf{S}

	LABORATORY, INC.		35 5258 93	• NC	(DTE: SH								NLY•)			к		
Compa	INY Name: THNITY SOURCE	5 GROUP, INC.		······································	Loca	ation of S	Samplin	g: 64	9 Par	ific	Ave	Ala	neda	4),				
Addres	s: 500 (HESTNUT ST.	SUITE 225			Purp	ose: \$	stem	. sta	ivtu	n j	st + 7	2nd	Jay	- <u>+-</u> \	•			
City: Se		State: CA	Zip Code	:95060		cial Instr				• •								
	one: (871) 426-5660 FA																	
	TTO: DANE REINSMA	SAMPLER: ERI	C CHO	1	P.0	. #:				, <u> </u>	EMAIL:	DAR	ets	Scor	P. K	DET		
	ROUND TIME:	SAMPLE TYP	E:	REPORT	FORMAT	;									4			
🚺 7 Wo	ork Days 🔲 3 Work Days 🔲 Noon - t rk Days 🛄 2 Work Days 🛄 2 - 8 Ho rk Days 🔲 1 Work Day 💭 Other	E1	🚺 Other	QC Lev EDF Excel /		51-	stoddard solvents									ALYSIS WESTE		
LAB ID	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	5	0-3	, ,	ы .	-					REN	IARKS		
DOIA	INFLUENT	allolure	A		Liter Umma	X	×	,									· · ·	
002A	EFFLUENT	9/10/05@ 1240	A	16	Liter	X	X			-					· .			LAB
				r f	<u> </u>										· ·	· · · · · · · · · · · · · · · · · · ·		
003A	[NFLUEN T	9/11/08 @	A		Lanna	Х	\prec		· · · ·					· · · · · · · · · · · · · · · · · · ·				FORRENT
004A	EFFLUENT	9/11/05@ 1400	A	16	Liter Ummg	X	×											
· · · · · ·			· · ·															
		•														• ••• •• •• •		
	ΛΛ Ι												د .					
1 Refinqu	uished By: ERICLY	10) Datel	08	Time: 455	•	Receive	ed By:	105		Print:	AVIA	, D	ate: 9/11/	12	Time;	55		
2 Relingu	lished By: Print:	Date:		Time:		Receive	d By:	Mar Sec		Print:			ate:	<u>~0</u>	Time:			
			mples on Ice		/				rap	off		Sam	ple seals	intact?	Yes) no 门	N/A	
NOTE: Sar Log In By:		atory 30 days from date Date:	· · · · · · · · · · · · · · · · · · ·	nless other a a In Review		iments	are mac	le.		_ 00 Date	`;			Page		of	<u></u>	

October 17, 2008

David Reinsma Trinity Source Group 500 Chestnut St, Suite 225 Santa Cruz, CA 95060

TEL: (831) 426-5600 FAX: (831) 685-1219

RE: 103.005.004/649 Pacific Ave Alameda

Order No.: 0810077

Dear David Reinsma:

Torrent Laboratory, Inc. received 2 samples on 10/10/2008 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Director

<u>10/17/0</u> Date

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: David Reinsma

Trinity Source Group

Date Received: 10/10/2008 **Date Reported:** 10/17/2008

Lab Sample ID: 0810077-001 Date Prepared:

Client Sample ID:	Effluent
Sample Location:	649 Pacific Ave Alameda
Sample Matrix:	AIR
Date/Time Sampled	10/10/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytica Batch
1,1 - Dichloroethene	TO-15	10/13/2008	1.99	2	4.0	ND	µg/m³	R17596
1,1,1,2-Tetrachloroethane	TO-15	10/13/2008	3.44	2	6.9	ND	μg/m³	R17596
1,1,1-Trichloroethane	TO-15	10/13/2008	2.73	2	5.5	ND	µg/m³	R17596
1,1,2,2-Tetrachloroethane	TO-15	10/13/2008	3.44	2	6.9	ND	µg/m³	R17596
1,1,2-Trichloroethane	TO-15	10/13/2008	2.73	2	5.5	ND	µg/m³	R17596
1,1-Dichloroethane	TO-15	10/13/2008	2.03	2	4.1	ND	µg/m³	R17596
1,1-Difluoroethane	TO-15	10/13/2008	27	2	54	ND	µg/m³	R17596
1,2,4-Trichlorobenzene	TO-15	10/13/2008	3.56	2	7.1	ND	µg/m³	R17596
1,2,4-Trimethylbenzene	TO-15	10/13/2008	2.46	2	4.9	ND	μg/m³	R17596
1,2-Dibromoethane(Ethylene dibromide)	TO-15	10/13/2008	3.84	2	7.7	ND	hâ/mª	R17596
1,2-Dichlorobenzene	TO-15	10/13/2008	3.01	2	6.0	ND	µg/m³	R17596
1,2-Dichloroethane	TO-15	10/13/2008	2.03	2	4.1	ND	µg/m³	R17596
1,2-Dichloropropane	TO-15	10/13/2008	2.31	2	4.6	ND	µg/m³	R17596
1,3,5-Trimethylbenzene	TO-15	10/13/2008	2.46	2	4.9	ND	µg/m³	R17596
1,3-Butadiene	TO-15	10/13/2008	4.44	2	8.9	ND	µg/m³	R17596
1,3-Dichlorobenzene	TO-15	10/13/2008	3.01	2	6.0	ND	µg/m³	R17596
1,4-Dichlorobenzene	TO-15	10/13/2008	3.01	2	6.0	ND	µg/m³	R17596
1,4-Dioxane	TO-15	10/13/2008	1.8	2	3.6	ND	µg/m³	R17596
2-Butanone (MEK)	TO-15	10/13/2008	1.48	2	3.0	ND	μg/m³	R17596
2-Hexanone	TO-15	10/13/2008	2.05	2	4.1	ND	µg/m³	R17596
4-Ethyl Toluene	TO-15	10/13/2008	2.46	2	4.9	ND	µg/m³	R17596
4-Methyl-2-Pentanone (MIBK)	TO-15	10/13/2008	2.05	2	4.1	ND	µg/m³	R17596
Acetone	TO-15	10/13/2008	9.52	2	19	25	µg/m³	R17596
Benzene	TO-15	10/13/2008	1.6	2	3.2	ND	µg/m³	R17596
Bromodichloromethane	TO-15	10/13/2008	3.35	2	6.7	ND	µg/m³	R17596
Bromoform	TO-15	10/13/2008	5.17	2	10	ND	µg/m³	R17596
Bromomethane	TO-15	10/13/2008	1.94	2	3.9	ND	µg/m³	R17596
Carbon Disulfide	TO-15	10/13/2008	1.56	2	3.1	ND	µg/m³	R17596
Carbon Tetrachloride	TO-15	10/13/2008	3,15	2	6.3	(200	μg/m³	R17596
Chlorobenzene	TO-15	10/13/2008	2.3	2	4.6	ND	μg/m³	R17596
Chloroethane	TO-15	10/13/2008	1.32	2	2.6	ND	µg/m³	R17596
Chloroform	TO-15	10/13/2008	2.44	2	4.9	54	µg/m³	R17596
Chloromethane	TO-15	10/13/2008	1.04	2	2.1	ND	µg/m³	R17596
cis-1,2-dichloroethene	TO-15	10/13/2008	1.98	2	4.0	ND	µg/m²	R17596
cis-1,3-Dichloropropene	TO-15	10/13/2008	2.27	2	4.5	ND		
Dibromochloromethane	TO-15	10/13/2008	4.26	2	4.5 8.5	ND	µg/m³ µg/m³	R17596 R17596

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 1 of 5

Trinity Source Group

Client Sample ID:EffluentSample Location:649 Pacific Ave AlamedaSample Matrix:AIRDate/Time Sampled10/10/2008

Date Received: 10/10/2008 **Date Reported:** 10/17/2008

Lab Sample ID: 0810077-001 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Dichlorodifluoromethane	TO-15	10/13/2008	2.48	2	5.0	ND	μg/m³	R17596
Díisopropyl ether (DIPE)	TO-15	10/13/2008	2.09	2	4.2	ND	µg/m³	R17596
Ethyl Acetate	TO-15	10/13/2008	1.8	2	3.6	ND	µg/m³	R17596
Ethyl Benzene	TO-15	10/13/2008	2.17	2	4.3	ND	µg/m³	R17596
Ethyl tert-butyl ether (ETBE)	TO-15	10/13/2008	2.09	2	4.2	ND	µg/m³	R17596
Freon 113	TO-15	10/13/2008	3.83	2	7.7	ND	μg/m³	R17596
Hexachlorobutadiene	TO-15	10/13/2008	5.34	2	11	ND	µg/m³	R17596
Hexane	TO-15	10/13/2008	14.1	2	28	ND	µg/m³	R17596
Isopropanol	TO-15	10/13/2008	16.4	2	33	ND	µg/m³	R17596
m,p-Xylene	TO-15	10/13/2008	2.05	2	4.1	ND	µg/m³	R17596
Methylene Chloride	TO-15	10/13/2008	3.61	2	7.2	ND	µg/m³	R17596
MTBE	TO-15	10/10/2008	1.81	10	18	180	µg/m³	R17574
Naphthalene	TO-15	10/13/2008	2.62	2	5.2	ND	µg/m³	R17596
o-xylene	TO-15	10/13/2008	2.17	2	4.3	ND	µg/m³	R17596
Styrene	TO-15	10/13/2008	2.13	2	4.3	ND	µg/m³	R17596
t-Butyl alcohol (t-Butanol)	TO-15	10/13/2008	6.06	2	12	ND	µg/m³	R17596
tert-Amyl methyl ether (TAME)	TO-15	10/13/2008	2.09	2	4.2	8.4	µg/m³	R17596
Tetrachloroethene	TO-15	10/13/2008	3.39	2	6,8	13	µg/m³	R17596
Toluene	TO-15	10/13/2008	1.89	2	3.8	7.3	µg/m³	R17596
trans-1,2-Dichloroethene	TO-15	10/13/2008	1.98	2	4.0	ND	µg/m³	R17596
Trichloroethene	TO-15	10/13/2008	2.69	2	5.4	ND	μg/m³	R17596
Trichlorofluoromethane	TO-15	10/13/2008	2.48	2	5.0	ND	µg/m³	R17596
Vinyl Acetate	TO-15	10/13/2008	1.76	2	3.5	ND	µg/m³	R17596
Vinyl Chloride	TO-15	10/13/2008	1.28	2	2.6	ND	µg/m³	R17596
Surr: 4-Bromofluorobenzene	TO-15	10/13/2008	0	2	65-135	97.8	%REC	R17596
Surr: 4-Bromofluorobenzene	TO-15	10/10/2008	0	10	65-135	104	%REC	R17574
Stoddard Solvent (C7-C12)	TO-3(MOD)	10/13/2008	352	2	700	740x	µg/m³	G17596

Note: x- Sample chromatogram does not resemble Stoddard solvent standard pattern (possibly aged). Reported value due to presence of non-gasoline compounds within range of C5-C12 quantified as Gasoline.

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Trinity Source Group

Client Sample ID:	Influent
Sample Location:	649 Pacific Ave Alameda
Sample Matrix:	AIR
Date/Time Sampled	10/10/2008
	· · · · · ·

Date Received: 10/10/2008 **Date Reported:** 10/17/2008

Lab Sample ID: 0810077-002 Date Prepared:

Parameters 1,1 - Dichloroethene 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Difluoroethane	Analysis Method TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15	Date Analyzed 10/13/2008 10/13/2008 10/13/2008 10/13/2008 10/13/2008 10/13/2008	RL 1.99 3.44 2.73 3.44	Dilution Factor 2 2	MRL 4.0 6.9	Result ND ND	Units µg/m³	Analytical Batch R17596
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Difluoroethane	TO-15 TO-15 TO-15 TO-15 TO-15	10/13/2008 10/13/2008 10/13/2008 10/13/2008	3.44 2.73	2			µg/m³	R17596
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Difluoroethane	TO-15 TO-15 TO-15 TO-15	10/13/2008 10/13/2008 10/13/2008	2.73	2	6.9	NID	. 0	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Difluoroethane	TO-15 TO-15 TO-15	10/13/2008 10/13/2008		~		INL/	µg/m³	R17596
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Difluoroethane	TO-15 TO-15	10/13/2008	3.44	2	5.5	ND	μg/m³	R17596
1,1-Dichloroethane 1,1-Difluoroethane	TO-15			2	6.9	ND	μg/m³	R17596
1,1-Difluoroethane		10/13/2000	2.73	2	5.5	ND	μg/m³	R17596
	TO-15	10/10/2000	2.03	2	4.1	ND	µg/m³	R17596
		10/13/2008	27	2	54	ND	µg/m³	R17596
1,2,4-Trichlorobenzene	TO-15	10/13/2008	3.56	2	7.1	ND	µg/m³	R17596
1,2,4-Trimethylbenzene	TO-15	10/13/2008	2.46	2	4.9	8.2	µg/m³	R17596
1,2-Dibromoethane(Ethylene dibromide)	TO-15	10/13/2008	3.84	2	7.7	ND	µg/m³	R17596
1,2-Dichlorobenzene	TO-15	10/13/2008	3.01	2	6.0	ND	µg/m³	R17596
1,2-Dichloroethane	TO-15	10/13/2008	2.03	2	4.1	ND	μg/m³	R17596
1,2-Dichloropropane	TO-15	10/13/2008	2.31	2	4.6	ND	μg/m³	R17596
1,3,5-Trimethylbenzene	TO-15	10/13/2008	2.46	2	4.9	ND	µg/m³	R17596
1,3-Butadiene	TO-15	10/13/2008	4.44	2	8.9	ND	µg/m³	R17596
1,3-Dichlorobenzene	TO-15	10/13/2008	3.01	2	6.0	ND	µg/m³	R17596
1,4-Dichlorobenzene	TO-15	10/13/2008	3.01	2	6.0	ND	µg/m³	R17596
1,4-Dioxane	TO-15	10/13/2008	1.8	2	3.6	ND	μg/m³	R17596
2-Butanone (MEK)	TO-15	10/13/2008	1,48	2	3.0	(27)	μg/m³	R17596
2-Hexanone	TO-15	10/13/2008	2.05	2	4.1	ND	μg/m³	R17596
4-Ethyl Toluene	TO-15	10/13/2008	2.46	2	4.9	< _{8.8}	μg/m³	R17596
4-Methyl-2-Pentanone (MIBK)	TO-15	10/13/2008	2.05	2	4.1	ND	µg/m³	R17596
Acetone	TO-15	10/13/2008	9.52	2	19	51	μg/m³	R17596
Benzene	TO-15	10/13/2008	1.6	2	3.2	65	µg/m³	R17596
Bromodichloromethane	TO-15	10/13/2008	3.35	2	6.7	ND	µg/m³	R17596
Bromoform	TO-15	10/13/2008	5.17	2	10	ND	μg/m³	R17596
Bromomethane	TO-15	10/13/2008	1.94	2	3,9	ND	µg/m³	R17596
Carbon Disulfide	TO-15	10/13/2008	1.56	2	3.1	ND	µg/m³	R17596
Carbon Tetrachloride	TO-15	10/10/2008	3.15	50	160	880	µg/m³	R17574
Chlorobenzene	TO-15	10/13/2008	2.3	2	4.6	ND	µg/m³	R17596
Chloroethane	TO-15	10/13/2008	1.32	2	2.6	ND	µg/m³	R17596
Chloroform	TO-15	10/13/2008	2.44	2	4.9	110	µg/m³	R17596
Chloromethane	TO-15	10/13/2008	1.04	2	2.1	ND	µg/m³	R17596
cis-1,2-dichloroethene	TO-15	10/13/2008	1.98	2	4.0	ND	μg/m³	R17596
cis-1,3-Dichloropropene	TO-15	10/13/2008	2.27	2	4.5	ND	µg/m³	R17596
Dibromochloromethane	TO-15	10/13/2008	4.26	2	8.5	ND	µg/m³	R17596
Dichlorodifluoromethane	TO-15	10/13/2008	2.48	2	5.0	ND	µg/m³	R17596
Diisopropyl ether (DIPE)	TO-15	10/13/2008	2.09	2	4.2	ND	µg/m³	R17596
Ethyl Acetate	TO-15	10/13/2008	1.8	2	3.6	ND	μg/m³	R17596
Ethyl Benzene	TO-15	10/13/2008	2.17	2	4.3	ND	µg/m³	R17596
Ethyl tert-butyl ether (ETBE)	TO-15	10/13/2008	2.09	2	4.2	ND	µg/m³	R17596
Freon 113	TO-15	10/13/2008	3.83	2	7.7	ND	µg/m³	R17596
Hexachlorobutadiene	TO-15	10/13/2008	5.34	2	11	ND	µg/m³	R17596

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 3 of 5

Trinity Source Group

Client Sample ID:	Influent
Sample Location:	649 Pacific Ave Alameda
Sample Matrix:	AIR
Date/Time Sampled	10/10/2008
	· · · · · · · · · · · · · · · · · · ·

Date Received: 10/10/2008 **Date Reported:** 10/17/2008

Lab Sample ID: 0810077-002 Date Prepared:

			(· ·	en staar	·	· · · · · · · · · · · · · · · · · · ·
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	10/13/2008	14.1	2	28	ND	hð\w ₃	R17596
Isopropanol	TO-15	10/13/2008	16.4	2	33	ND	µg/m³	R17596
m,p-Xylene	TO-15	10/13/2008	2.05	2	4.1	53	µg/m³	R17596
Methylene Chloride	TO-15	10/13/2008	3.61	2	7.2	ND	µg/m³	R17596
MTBE	TO-15	10/10/2008	1.81	50	90	(220)	µg/m³	R17574
Naphthalene	TO-15	10/13/2008	2.62	2	5.2	ND	µg/m³	R17596
o-xylene	TO-15	10/13/2008	2.17	2	4.3	22)	µg/m³	R17596
Styrene	TO-15	10/13/2008	2.13	2	4.3	ND	μg/m³	R17596
t-Butyl alcohol (t-Butanol)	TO-15	10/13/2008	6.06	2	12	55	µg/m³	R17596
tert-Amyl methyl ether (TAME)	TO-15	10/13/2008	2.09	2	4.2	21	µg/m³	R17596
Tetrachloroethene	TO-15	10/10/2008	3.39	50	170	880	µg/m³	R17574
Toluene	TO-15	10/13/2008	1.89	2	3.8	82	μg/m³	R17596
trans-1,2-Dichloroethene	TO-15	10/13/2008	1.98	2	4.0	ND	µg/m²	R17596
Trichloroethene	TO-15	10/13/2008	2.69	2	5.4	ND	µg/m³	R17596
Trichlorofluoromethane	TO-15	10/13/2008	2.48	2	5.0	ND	µg/m³	R17596
Vinyl Acetate	TO-15	10/13/2008	1.76	2	3.5	ND	µg/m³	R17596
Vinyl Chloride	TO-15	10/13/2008	1.28	2	2.6	ND	μg/m³	R17596
Surr: 4-Bromofluorobenzene	TO-15	10/13/2008	0	2	65-135	97.6	%REC	R17596
Surr: 4-Bromofluorobenzene	TO-15	10/10/2008	0	50	65-135	104	%REC	R17574
Stoddard Solvent (C7-C12)	TO-3(MOD)	10/13/2008	352	2	700	960x	µg/m³	G17596

Note: x- Sample chromatogram does not resemble Stoddard solvent standard pattern (possibly aged). Reported value due to presence of non-gasoline compounds within range of C5-C12 quantified as Gasoline.

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate,
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control,
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

Trinity Source Group CLIENT: 0810077 Work Order: Project: 103.005.004/649 Pacific Ave Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: G17596

	A 7 115-17			
Sample ID: MB-G17596	SampType: MBLK	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 10/13/2008	RunNo: 17596
Client ID: ZZZZZ	Batch ID: G17596	TestNo: TO-3(MOD)	Analysis Date: 10/13/2008	SeqNo: 252615
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	ND	100		
Sample ID: LCS-G17596	SampType: LCS	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 10/13/2008	RunNo: 17596
Client ID: ZZZZZ	Batch ID: G17596	TestNo: TO-3(MOD)	Analysis Date: 10/13/2008	SeqNo: 252616
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	484.6	100 500 0	96.9 50 150	
Sample ID: LCSD-G17596	SampType: LCSD	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 10/13/2008	RunNo: 17596
Client ID: ZZZZZ	Batch ID: G17596	TestNo: TO-3(MOD)	Analysis Date: 10/13/2008	SeqNo: 252617
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	498.8	100 500 0	99.8 50 150 484.6	2.89 30
Sample ID: MBLK	SampType: MBLK	TestCode: TO-3SS (MOD Units: µg/m ³	Prep Date: 10/13/2008	RunNo: 17596
Client ID: ZZZZZ	Batch ID: G17596	TestNo: TO-3(MOD)	Analysis Date: 10/13/2008	SeqNo: 252840
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Analyte			<u> </u>	

R

RPD outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: MB-R17574	SampType: MBLK								RunNo: 175	574	
Client ID: ZZZZZ	Batch ID: R17574	TestN	lo: TO-15			Analysis Da	te: 10/9/20	108	SeqNo: 251	937	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	ND	0.50									
1,1,1,2-Tetrachloroethane	ND	0.50									
1,1,1-Trichloroethane	ND	0.50									
1,1,2,2-Tetrachloroethane	ND	0.50									
1,1,2-Trichloroethane	ND	0.50									
1,1-Dichloroethane	ND	0.50									
1,2,4-Trichlorobenzene	ND	0.50									
1,2,4-Trimethylbenzene	ND	0.50									
1,2-Dibromoethane(Ethylene dibron	nide ND	0.50									
1,2-Dichlorobenzene	ND	0.50									
1,2-Dichloroethane	ND	0.50									
1,2-Dichloropropane	ND	0.50									
1,3,5-Trimethylbenzene	ND	0.50									
1,3-Butadiene	ND	2.0									
1,3-Dichlorobenzene	ND	0.50									
1,4-Dichlorobenzene	ND	0.50									
1,4-Dioxane	ND	0.50									
2-Butanone (MEK)	ND	0.50									
2-Hexanone	ND	0.50									
4-Ethyl Toluene	ND	0.50									
4-Methyl-2-Pentanone (MIBK)	ND	0.50									
Acetone	ND	4.0									
Benzene	ND	0.50									
Bromodichloromethane	ND	0.50									
Bromoform	ND	0.50									
Bromomethane	ND	0.50									
Carbon Disulfide	ND	0.50									
Carbon Tetrachloride	ND	0.50									
Chlorobenzene	ND	0.50									
Chloroethane	ND	0.50									
Chloroform	ND	0.50									

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: MB-R17574	SampType: MBLK	TestCoo	le: TO-15	Units: ppbv		Prep Da	te: 10/9/20)08	RunNo: 175	574	
Client ID: ZZZZZ	Batch ID: R17574	TestN	lo: TO-15			Analysis Da	te: 10/9/20	008	SeqNo: 251	937	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.50									
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
Hexane	ND	2.0									
Isopropanol	ND	4.0									
m,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
MTBE	ND	0.50									
Naphthalene	ND	5.0									
o-xylene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl Acetate	ND	0.50									
Vinyl Chloride	ND	0.50									
Surr: 4-Bromofluorobenzene	20.37	0	20	0	102	65	135				

Qualifiers:

3

Recovery of the MS and/or MSD was out of control due t = 4 R

Spike Recovery outside accepted recovery limits

S

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

RPD outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: MB1-R17574	SampType: MBLK	TestCoo	le: TO-15	Units: ppbv		Prep Da	ite: 10/10/2	2008	RunNo: 175	574	
Client ID: ZZZZZ	Batch ID: R17574	TestN	lo: TO-15			Analysis Da	te: 10/10/2	2008	SeqNo: 252	2251	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1 - Dichloroethene	ND	0.50								·	
1,1,1,2-Tetrachloroethane	ND	0.50									
1,1,1-Trichloroethane	ND	0.50									
1,1,2,2-Tetrachloroethane	ND	0.50									
1,1,2-Trichloroethane	ND	0.50									
1,1-Dichloroethane	ND	0.50									
1,2,4-Trichlorobenzene	ND	0.50									
1,2,4-Trimethylbenzene	ND	0.50									
1,2-Dibromoethane(Ethylene dibrom	nide ND	0.50									
1,2-Dichlorobenzene	ND	0.50									
1,2-Dichloroethane	ND	0.50									
1,2-Dìchloropropane	ND	0.50									
1,3,5-Trimethylbenzene	ND	0.50									
1,3-Butadiene	ND	2.0									
1,3-Dichlorobenzene	ND	0.50									
1,4-Dichlorobenzene	ND	0.50									
1,4-Dioxane	ND	0.50									
2-Butanone (MEK)	ND	0.50									
2-Hexanone	ND	0.50									
4-Ethyl Toluene	ND	0.50									
4-Methyl-2-Pentanone (MIBK)	ND	0.50									
Acetone	ND	4.0									
Benzene	ND	0.50									
Bromodichloromethane	ND	0.50									
Bromoform	ND	0.50									
Bromomethane	ND	0.50									
Carbon Disulfide	ND	0.50									
Carbon Tetrachloride	ND	0.50									
Chlorobenzene	ND	0.50									
Chioroethane	ND	0.50									
Chloroform	ND	0.50									

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: MB1-R17574	SampType: MBLK	Testuo	de: TO-15	Units: ppbv		Prep Da	ite: 10/10/2	2008	RunNo: 17	574	
Client ID: ZZZZZ	Batch ID: R17574	Test	No: T O-15			Analysis Da	ite: 10/10/2	2008	SeqNo: 252	2251	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.50				· · ·	<u> </u>				
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
Hexane	ND	2.0									
Isopropanol	ND	4.0									
m,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
MTBE	ND	0.50									
Naphthalene	ND	5.0									
o-xylene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl Acetate	ND	0.50									
Vinyl Chloride	ND	0.50									
Surr: 4-Bromofluorobenzene	20.44	0	20	0	102	65	135				

Qualifiers:

Recovery of the MS and/or MSD was out of control due t 4 3

S

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

Spike Recovery outside accepted recovery limits

CLIENT: Trinity Source Group Work Order:

0810077

Project:

103.005.004/649 Pacific Ave Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: LCS-R17574	SampType: LCS	TestCo	de: TO-15	Units: ppbv				08	RunNo: 17	574	
Client ID: ZZZZZ	Batch ID: R17574	Test	No: T O-15			Analysis Da	te: 10/9/20	08	SeqNo: 25	1938	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	19.57	0.50	20	0	97.8	65	135				
1,1,1,2-Tetrachloroethane	19.50	0.50	20	0	97.5	65	135				
1,1,1-Trichloroethane	19.79	0.50	20	0	99.0	65	135				
1,1,2,2-Tetrachloroethane	18.76	0.50	20	0	93.8	65	135				
1,1,2-Trichloroethane	18.93	0.50	20	0	94.6	65	135				
1,1-Dichloroethane	20.23	0.50	20	0	101	65	135				
1,2,4-Trichlorobenzene	16.23	0.50	20	0	81.2	65	135				
1,2,4-Trimethylbenzene	19.36	0.50	20	0	96.8	65	135				
1,2-Dibromoethane(Ethylene dibrom	nide 19.48	0.50	20	0	97.4	65	135				
1,2-Dichlorobenzene	19.48	0.50	20	0	97.4	65	135				
1,2-Dichloroethane	20.00	0.50	20	0	100	65	135				
1,2-Dichloropropane	19.82	0.50	20	0	99.1	65	135				
1,3,5-Trimethylbenzene	19.25	0.50	20	0	96.2	65	135				
1,3-Butadiene	21.27	2.0	20	0	106	65	135				
1,3-Dichlorobenzene	19.78	0.50	20	0	98.9	65	135				
1,4-Dichlorobenzene	19.78	0.50	20	0	98.9	65	135				
1,4-Dioxane	21.54	0.50	20	0	108	65	135				
2-Butanone (MEK)	20.95	0.50	20	0	105	65	135				
2-Hexanone	20.13	0.50	20	0	101	65	135				
4-Ethyl Toluene	19.09	0.50	20	0	95.4	65	135				
4-Methyl-2-Pentanone (MIBK)	20.13	0.50	20	0	101	65	135				
Acetone	25.85	4.0	20	0	129	65	135				
Benzene	20.72	0.50	20	0	104	65	135				
Bromodichloromethane	19.11	0.50	20	0	95.6	65	135				
Bromoform	18.74	0.50	20	0	93.7	65	135				
Bromomethane	20.69	0.50	20	0	103	65	135				
Carbon Disulfide	19.90	0.50	20	0	99.5	65	135				
Carbon Tetrachloride	18.98	0.50	20	0	94.9	65	135				
Chlorobenzene	19.84	0.50	20	0	99.2	65	135				
Chloroethane	20.88	0.50	20	0	104	65	135				
Chloroform	19.25	0.50	20	0	96.2	65	135				

Qualifiers:

3

R RPD outside accepted recovery limits

Recovery of the MS and/or MSD was out of control due t 4 The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result S Spike Recovery outside accepted recovery limits

Trinity Source Group **CLIENT:** Work Order: 0810077

Project:

103.005.004/649 Pacific Ave Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: LCS-R17574	SampType: LCS	TestCo	de: TO-1 5	Units: ppbv	s: ppbv Prep Date: 10/9/2008 Analysis Date: 10/9/2008				RunNo: 175	574	
Client ID: ZZZZZ	Batch ID: R17574	Test	No: TO-15			Analysis Da	te: 10/9/20	08	SeqNo: 251	938	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	19.79	0.50	20	0	99.0	65	135				
cis-1,2-dichloroethene	20.37	0.50	20	0	102	65	135				
cis-1,3-Dichloropropene	20.47	0.50	20	0	102	65	135				
Dibromochloromethane	19.36	0.50	20	0	96.8	65	135				
Diisopropyl ether (DIPE)	21.31	0.50	20	0	107	65	135				
Ethyl Acetate	20.50	0.50	20	0	103	65	135				
Ethyl Benzene	19.40	0.50	20	0	97.0	65	135				
Ethyl tert-butyl ether (ETBE)	20.81	0.50	20	0	104	65	135				
Freon 113	19.77	0.50	20	0	98.8	65	135				
Hexachlorobutadiene	17.10	0.50	20	0	85.5	65	135				
Hexane	19.65	2.0	20	0	98.2	65	135				
Isopropanol	25.37	4.0	20	0	127	65	135				
m,p-Xylene	40.26	0.50	40	0	101	65	135				
Methylene Chloride	20.22	1.0	20	0	101	65	135				
MTBE	21.89	0.50	20	0	109	65	135				
Naphthalene	16.85	5.0	20	0	84.2	65	135				
o-xylene	20.39	0.50	20	0	102	65	135				
Styrene	19.31	0.50	20	0	96.6	65	135				
t-Butyl alcohol (t-Butanol)	21.68	2.0	20	0	108	65	135				
tert-Amyl methyl ether (TAME)	21.41	0.50	20	0	107	65	135				
Tetrachloroethene	19.08	0.50	20	0	95.4	65	135				
Toluene	19.61	0.50	20	0	98.0	65	135				
trans-1,2-Dichloroethene	20.28	0.50	20	0	101	65	135				
Trichloroethene	20.38	0.50	20	0	102	65	135				
Trichlorofluoromethane	19.03	0.50	20	0	95.2	65	135				
Vinyl Acetate	23.30	0.50	20	0	116	65	135				
Vinyl Chloride	21.81	0.50	20	0	109	65	135				
Surr: 4-Bromofluorobenzene	20.40	0	20	0	102	65	135				

Qualifiers:

R

Recovery of the MS and/or MSD was out of control due t 4 3 RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: LCSD-R17574	SampType: LCSD	TestCo	de: TO-15	Units: ppbv	Prep Date: 10/9/2008				RunNo: 17	574	
Client ID: ZZZZZ	Batch ID: R17574	Test	lo: TO-15			Analysis Da	te: 10/9/20	08	SeqNo: 25	939	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	21.14	0.50	20	0	106	65	135	19.57	7.71	30	
1.1,1,2-Tetrachloroethane	19.42	0.50	20	0	97.1	65	135	19,5	0.411	30	
1,1,1-Trichloroethane	20.20	0.50	20	0	101	65	135	19.79	2.05	30	
1,1,2,2-Tetrachloroethane	19.34	0.50	20	0	96.7	65	135	18.76	3.04	30	
1,1,2-Trichloroethane	19.58	0.50	20	0	97.9	65	135	18.93	3.38	30	
1,1-Dichloroethane	20.32	0.50	20	0	102	65	135	20.23	0.444	30	
1,2,4-Trichlorobenzene	16.72	0.50	20	0	83.6	65	135	16.23	2.97	30	
1,2,4-Trimethylbenzene	19.67	0.50	20	0	98.4	65	135	19.36	1.59	30	
1,2-Dibromoethane(Ethylene dibrom	ide 19.49	0.50	20	0	97.5	65	135	19.48	0.0513	30	
1,2-Dichlorobenzene	19.97	0.50	20	0	99.8	65	135	19.48	2.48	30	
1,2-Dichloroethane	19.65	0.50	20	0	98.2	65	135	20	1.77	30	
1,2-Dichloropropane	20.83	0.50	20	0	104	65	135	19.82	4.97	30	
1,3,5-Trimethylbenzene	19.73	0.50	20	0	98.6	65	135	19.25	2.46	30	
1,3-Butadiene	21.54	2.0	20	0	108	65	135	21.27	1.26	30	
1,3-Dichlorobenzene	20.33	0.50	20	0	102	65	135	19.78	2.74	30	
1,4-Dichlorobenzene	20.56	0.50	20	0	103	65	135	19.78	3.87	30	
1,4-Dioxane	22.30	0.50	20	0	112	65	135	21.54	3.47	30	
2-Butanone (MEK)	22.06	0.50	20	0	110	65	135	20.95	5.16	30	
2-Hexanone	21.14	0.50	20	0	106	65	135	20.13	4.89	30	
4-Ethyl Toluene	19.65	0.50	20	0	98.2	65	135	19.09	2.89	30	
4-Methyl-2-Pentanone (MIBK)	20.68	0.50	20	0	103	65	135	20.13	2.70	30	
Acetone	26.98	4.0	20	0	135	65	135	25.85	4.28	30	
Benzene	21.10	0.50	20	0	106	65	135	20.72	1.82	30	
Bromodichloromethane	18.78	0.50	20	0	93.9	65	135	19.11	1.74	30	
Bromoform	19.15	0.50	20	0	95.8	65	135	18.74	2.16	30	
Bromomethane	21.02	0.50	20	0	105	65	135	20.69	1.58	30	
Carbon Disulfide	20.49	0.50	20	0	102	65	135	19.9	2.92	30	
Carbon Tetrachloride	18.67	0.50	20	0	93.4	65	135	18.98	1.65	30	
Chlorobenzene	20.23	0.50	20	0	101	65	135	19.84	1.95	30	
Chloroethane	21.32	0.50	20	0	107	65	135	20.88	2.09	30	
Chloroform	19.67	0.50	20	0	98.4	65	135	19.25	2.16	30	

Qualifiers:

3 R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Recovery of the MS and/or MSD was out of control due t 4 The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

ANALYTICAL QC SUMMARY REPORT

BatchID: R17574

Sample ID: LCSD-R17574	SampType: LCSD	TestCo	de: TO-1 5	Units: ppbv		Prep Da	te: 10/9/20	08	RunNo: 17:	574	
Client ID: ZZZZZ	Batch ID: R17574	Test	No: T O-15			Analysis Da	te: 10/9/20	08	SeqNo: 251	1939	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	20.06	0.50	20	0	100	65	135	19.79	1.36	30	
cis-1,2-dichloroethene	20.42	0.50	20	0	102	65	135	20.37	0.245	30	
cis-1,3-Dichloropropene	20.51	0.50	20	0	103	65	135	20.47	0.195	30	
Dibromochloromethane	18.86	0.50	20	0	94.3	65	135	19.36	2.62	30	
Diisopropyl ether (DIPE)	21.75	0.50	20	0	109	65	135	21.31	2.04	30	
Ethyl Acetate	21.27	0.50	20	0	106	65	135	20.5	3.69	30	
Ethyl Benzene	19.54	0.50	20	0	97.7	65	135	19.4	0.719	30	
Ethyl tert-butyl ether (ETBE)	21.60	0.50	20	0	108	65	135	20.81	3.73	30	
Freon 113	20.32	0.50	20	0	102	65	135	19.77	2.74	30	
Hexachlorobutadiene	17.09	0.50	20	0	85.4	65	135	17.1	0.0585	30	
Hexane	20.01	2.0	20	0	100	65	135	19.65	1.82	30	
Isopropanol	26.62	4.0	20	0	133	65	135	25.37	4.81	30	
m,p-Xylene	41.22	0.50	40	0	103	65	135	40.26	2.36	30	
Methylene Chloride	20.05	1.0	20	0	100	65	135	20.22	0.844	30	
MTBE	21.86	0.50	20	0	109	65	135	21.89	0.137	30	
Naphthalene	17.25	5.0	20	0	86.2	65	135	16.85	2.35	30	
o-xylene	20.71	0.50	20	0	104	65	135	20.39	1.56	30	
Styrene	19.54	0.50	20	0	97.7	65	135	19.31	1.18	30	
t-Butyl alcohol (t-Butanol)	21.67	2.0	20	0	108	65	135	21.68	0.0461	30	
tert-Amyl methyl ether (TAME)	21.14	0.50	20	0	106	65	135	21.41	1.27	30	
Tetrachloroethene	19.03	0.50	20	0	95.2	65	135	19.08	0.262	30	
Toluene	19.52	0.50	20	0	97.6	65	135	19.61	0.460	30	
trans-1,2-Dichloroethene	21.13	0.50	20	0	106	65	135	20.28	4.11	30	
Trichloroethene	20.18	0.50	20	0	101	65	135	20.38	0.986	30	
Trichlorofluoromethane	20.69	0.50	20	0	103	65	135	19.03	8.36	30	
Vinyl Acetate	24.26	0.50	20	0	121	65	135	23.3	4,04	30	
Vinyl Chloride	20.97	0.50	20	0	105	65	135	21.81	3.93	30	
Surr: 4-Bromofluorobenzene	20.65	0	20	0	103	65	135	0	0	30	

Qualifiers:

R

3

Recovery of the MS and/or MSD was out of control due t 4 The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 9 of 15

ANALYTICAL QC SUMMARY REPORT

BatchID: R17596

Sample ID: mb	SampType: MBLK			Units: ppbv		Prep Da	ite: 10/13/2	2008	RunNo: 17596			
Client ID: ZZZZZ	Batch ID: R17596	TestN	lo: TO-15			Analysis Da	ite: 10/13/2	2008	SeqNo: 252	293		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1 - Dichloroethene	ND	0.50										
1,1,1,2-Tetrachloroethane	ND	0.50										
1,1,1-Trichloroethane	ND	0.50										
1,1,2,2-Tetrachloroethane	ND	0.50										
1,1,2-Trichloroethane	ND	0.50										
1,1-Dichloroethane	ND	0.50										
1,2,4-Trichlorobenzene	ND	0.50										
1,2,4-Trimethylbenzene	ND	0.50										
1,2-Dibromoethane(Ethylene dibrom	nide ND	0.50										
1,2-Dichlorobenzene	ND	0.50										
1,2-Dichloroethane	ND	0.50										
1,2-Dichloropropane	ND	0.50										
1,3,5-Trimethylbenzene	ND	0.50										
1,3-Butadiene	ND	2.0										
1,3-Dichlorobenzene	ND	0.50										
1,4-Dìchlorobenzene	ND	0.50										
1,4-Dioxane	ND	0.50										
2-Butanone (MEK)	ND	0.50										
2-Hexanone	ND	0.50										
4-Ethyl Toluene	ND	0.50										
4-Methyl-2-Pentanone (MIBK)	ND	0.50										
Acetone	ND	4.0										
Benzene	ND	0.50										
Bromodichloromethane	ND	0.50										
Bromoform	ND	0.50										
Bromomethane	ND	0.50										
Carbon Disulfide	ND	0.50										
Carbon Tetrachloride	ND	0.50										
Chlorobenzene	ND	0.50										
Chloroethane	ND	0.50										
Chloroform	ND	0.50										

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

S

ANALYTICAL QC SUMMARY REPORT

BatchID: R17596

Sample ID: mb	SampType: MBLK	TestCo	de: TO-15	Units: ppbv		Prep Da	ate: 10/13/2	2008	RunNo: 17	596	
Client ID: ZZZZZ	Batch ID: R17596	Test	No: TO-15			Analysis Da	ate: 10/13/2	2008	SeqNo: 25	2293	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.50									
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
Hexane	ND	2.0									
Isopropanol	ND	4.0									
m,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
MTBE	ND	0.50									
Naphthalene	ND	5.0									
o-xylene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl Acetate	ND	0.50									
Vinyl Chloride	ND	0.50									
Surr: 4-Bromofluorobenzene	18.85	0	20	0	94.2	65	135				

3

S Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

CLIENT: Trinity Source Group Work Order:

0810077

ANALYTICAL QC SUMMARY REPORT

Project:

103.005.004/649 Pacific Ave Alameda

BatchID: R17596

Sample ID: LCS	SampType: LCS	TestCoo	ie: T O-15	Units: ppbv		Prep Date	e: 10/13/2	008	RunNo: 17	596	
Client ID: ZZZZZ	Batch ID: R17596	TestN	lo: TO-15			Analysis Date	e: 10/13/2	800	SeqNo: 25	2294	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	20.49	0.50	20	0	102	65	135				
1,1,1,2-Tetrachloroethane	18.87	0.50	20	0	94.4	65	135				
1,1,1-Trichloroethane	21.05	0.50	20	0	105	65	135				
1,1,2,2-Tetrachloroethane	17.94	0.50	20	0	89.7	65	135				
1,1,2-Trichloroethane	17.63	0.50	20	0	88.2	65	135				
1,1-Dichloroethane	21.39	0.50	20	0	107	65	135				
1,2,4-Trichlorobenzene	15.97	0.50	20	0	79.8	65	135				
1,2,4-Trimethylbenzene	18.95	0.50	20	0	94.8	65	135				
1.2-Dibromoethane(Ethylene dibr	romide 18.70	0.50	20	0	93.5	65	135				
1,2-Dichlorobenzene	19.17	0.50	20	0	95.8	65	135				
1,2-Dichloroethane	19.90	0.50	20	0	99.5	65	135				
1,2-Dichloropropane	20.36	0.50	20	0	102	65	135				
1,3,5-Trimethylbenzene	19.00	0.50	20	0	95.0	65	135				
1,3-Butadiene	20.71	2.0	20	0	104	65	135				
1,3-Dichlorobenzene	19.11	0.50	20	0	95.6	65	135				
1,4-Dichlorobenzene	19.48	0.50	20	0	97.4	65	135				
1,4-Dioxane	21.26	0.50	20	0	106	65	135				
2-Butanone (MEK)	21.81	0.50	20	0	109	65	135				
2-Hexanone	18.50	0.50	20	0	92.5	65	135				
4-Ethyl Toluene	18.13	0.50	20	0	90.7	65	135				
4-Methyl-2-Pentanone (MIBK)	20.10	0.50	20	0	100	65	135				
Acetone	21.61	4.0	20	0	108	65	135				
Benzene	21.97	0.50	20	0	110	65	135				
Bromodichloromethane	18.79	0.50	20	0	94.0	65	135				
Bromoform	17.49	0.50	20	0	87.5	65	135				
Bromomethane	21.04	0.50	20	0	105	65	135				
Carbon Disulfide	18.88	0.50	20	0	94.4	65	135				
Carbon Tetrachloride	19.96	0.50	20	0	99.8	65	135				
Chlorobenzene	19.76	0.50	20	0	98.8	65	135				
Chloroethane	17.08	0.50	20	0	85.4	65	135				
Chloroform	15.82	0.50	20	0	79.1	65	135				

Qualifiers:

3

R RPD outside accepted recovery limits

Recovery of the MS and/or MSD was out of control due t 4 Spike Recovery outside accepted recovery limits

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

S

CLIENT: Trinity Source Group Work Order: 0810077 **Project:**

103.005.004/649 Pacific Ave Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17596

Sample ID: LCS SampType: LCS		TestCo	de: T O-15	Units: ppbv		Prep Da	te: 10/13/2	2008	RunNo: 17	596	
Client ID: ZZZZZ	Batch ID: R17596	Test	No: TO-15	-		Analysis Da	te: 10/13/2	8008	SeqNo: 252	2294	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	15.93	0.50	20	0	79.6	65	135				
cis-1,2-dichloroethene	21.10	0.50	20	0	106	65	135				
cis-1,3-Dichloropropene	20.28	0.50	20	0	101	65	135				
Dibromochloromethane	18.17	0.50	20	0	90.8	65	135				
Diisopropyl ether (DIPE)	20.10	0.50	20	0	100	65	135				
Ethyl Acetate	17.44	0.50	20	0	87.2	65	135				
Ethyl Benzene	19.43	0.50	20	0	97.2	65	135				
Ethyl tert-butyl ether (ETBE)	21.41	0.50	20	0	107	65	135				
Freon 113	20.07	0.50	20	0	100	65	135				
Hexachlorobutadiene	17.12	0.50	20	0	85.6	65	135				
Hexane	19.53	2.0	20	0	97.6	65	135				
Isopropanol	26.00	4.0	20	0	130	65	135				
m,p-Xylene	40.50	0.50	40	0	101	65	135				
Methylene Chloride	20.74	1.0	20	0	104	65	135				
MTBE	21.34	0.50	20	0	107	65	135				
Naphthalene	16.01	5.0	20	0	80.0	65	135				
o-xylene	19.66	0.50	20	0	98.3	65	135				
Styrene	19.32	0.50	20	0	96.6	65	135				
t-Butyl alcohol (t-Butanol)	14.23	2.0	20	0	71.2	65	135				
tert-Amyl methyl ether (TAME)	20.07	0.50	20	0	100	65	135				
Tetrachloroethene	18.97	0.50	20	0	94.8	65	135				
Toluene	19.37	0.50	20	0	96.8	65	135				
trans-1,2-Dichloroethene	20.76	0.50	20	0	104	65	135				
Trichloroethene	20.20	0.50	20	0	101	65	135				
Trichlorofluoromethane	20.12	0.50	20	0	101	65	135				
Vinyl Acetate	24.29	0.50	20	0	121	65	135				
Vinyl Chloride	19.68	0.50	20	0	98.4	65	135				
Surr: 4-Bromofluorobenzene	18.92	0	20	0	94.6	65	135				

Qualifiers:

Recovery of the MS and/or MSD was out of control due t 4 3

S

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

BatchID: R17596

Sample ID: LCSD	SampType: LCSD	TestCo	de: T O-15	Units: ppbv	Prep Date: 10/13/2008			RunNo: 17596			
Client ID: ZZZZZ	Batch ID: R17596	Test	No: TO-15			Analysis Da	le: 10/13/2	008	SeqNo: 252	2295	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HìghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	18.34	0.50	20	0	91.7	65	135	20.49	11.1	30	
1,1,1,2-Tetrachloroethane	19.21	0.50	20	0	96.0	65	135	18.87	1.79	30	
1,1,1-Trichloroethane	21.18	0.50	20	0	106	65	135	21.05	0.616	30	
1,1,2,2-Tetrachloroethane	18.69	0.50	20	0	93.4	65	135	17.94	4.10	30	
1,1,2-Trichloroethane	18.94	0.50	20	0	94.7	65	135	17.63	7.16	30	
1,1-Dichloroethane	21.51	0.50	20	0	108	65	135	21.39	0.559	30	
1,2,4-Trichlorobenzene	16.61	0.50	20	0	83.0	65	135	15.97	3.93	30	
1,2,4-Trimethylbenzene	19.29	0.50	20	0	96.5	65	135	18.95	1.78	30	
1,2-Dibromoethane(Ethylene dibromi	de 18.58	0.50	20	0	92.9	65	135	18.7	0.644	30	
1,2-Dichlorobenzene	19.71	0.50	20	0	98.6	65	135	19.17	2.78	30	
1,2-Dichloroethane	19.58	0.50	20	0	97.9	65	135	19.9	1.62	30	
1,2-Dichloropropane	20.75	0.50	20	0	104	65	135	20.36	1.90	30	
1,3,5-Trimethylbenzene	19.42	0.50	20	0	97.1	65	135	19	2.19	30	
1,3-Butadiene	22.20	2.0	20	0	111	65	135	20.71	6.94	30	
1,3-Dichlorobenzene	19.54	0.50	20	0	97.7	65	135	19.11	2.23	30	
1,4-Dichlorobenzene	19.84	0.50	20	0	99.2	65	135	19.48	1.83	30	
1,4-Dioxane	21.68	0.50	20	0	108	65	135	21.26	1.96	30	
2-Butanone (MEK)	22.30	0.50	20	0	112	65	135	21.81	2.22	30	
2-Hexanone	19.35	0.50	20	0	96.8	65	135	18.5	4.49	30	
4-Ethyl Toluene	18.64	0.50	20	0	93.2	65	135	18.13	2.77	30	
4-Methyl-2-Pentanone (MIBK)	20.65	0.50	20	0	103	65	135	20.1	2.70	30	
Acetone	24.50	4.0	20	0	122	65	135	21.61	12.5	30	
Benzene	22.72	0.50	20	0	114	65	135	21.97	3.36	30	
Bromodichloromethane	19.08	0.50	20	0	95.4	65	135	18.79	1.53	30	
Bromoform	18.35	0.50	20	0	91.8	65	135	17.49	4.80	30	
Bromomethane	21.91	0.50	20	0	110	65	135	21.04	4.05	30	
Carbon Disulfide	20.29	0.50	20	0	101	65	135	18.88	7.20	30	
Carbon Tetrachloride	19.80	0.50	20	0	99.0	65	135	19.96	0.805	30	
Chlorobenzene	19.89	0.50	20	0	99.4	65	135	19.76	0.656	30	
Chloroethane	18.08	0.50	20	0	90.4	65	135	17.08	5.69	30	
Chloroform	16.29	0.50	20	0	81.4	65	135	15.82	2.93	30	

Qualifiers:

3Recovery of the MS and/or MSD was out of control due t4RRPD outside accepted recovery limitsS

Spike Recovery outside accepted recovery limits

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

S Spike Recovery ou

CLIENT: Trinity Source Group Work Order: 0810077 **Project:**

103.005.004/649 Pacific Ave Alameda

ANALYTICAL QC SUMMARY REPORT

BatchID: R17596

Sample ID: LCSD	SampType: LCSD	TestCo	de: TO-15	Units: ppbv	bv Prep Date: 10/13/2008			008	RunNo: 175	596	
Client ID: ZZZZZ	Batch ID: R17596	Test	No: TO-15			Analysis Da	te: 10/13/2	800	SeqNo: 252	2295	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	17.80	0.50	20	0	89.0	65	135	15.93	11.1	30	
cis-1,2-dichloroethene	22.18	0.50	20	0	111	65	135	21.1	4.99	30	
cis-1,3-Dichloropropene	21.04	0.50	20	0	105	65	135	20.28	3.68	30	
Dibromochloromethane	18.99	0.50	20	0	95.0	65	135	18.17	4.41	30	
Diisopropyl ether (DIPE)	21.17	0.50	20	0	106	65	135	20.1	5.19	30	
Ethyl Acetate	21.62	0.50	20	0	108	65	135	17.44	21.4	30	
Ethyl Benzene	19.22	0.50	20	0	96.1	65	135	19.43	1.09	30	
Ethyl tert-butyl ether (ETBE)	22.46	0.50	20	0	112	65	135	21.41	4.79	30	
Freon 113	20.39	0.50	20	0	102	65	135	20.07	1.58	30	
Hexachlorobutadiene	16.63	0.50	20	0	83.2	65	135	17.12	2.90	30	
Hexane	20.82	2.0	20	0	104	65	135	19.53	6.39	30	
Isopropanol	24.43	4.0	20	0	122	65	135	26	6.23	30	
m,p-Xylene	39.43	0.50	40	0	98.6	65	135	40.5	2.68	30	
Methylene Chloride	21.20	1.0	20	0	106	65	135	20.74	2.19	30	
MTBE	21.77	0.50	20	0	109	65	135	21.34	1.99	30	
Naphthalene	16.47	5.0	20	0	82.4	65	135	16.01	2.83	30	
o-xylene	19.91	0.50	20	0	99.6	65	135	19.66	1.26	30	
Styrene	19.22	0.50	20	0	96.1	65	135	19.32	0.519	30	
t-Butyl alcohol (t-Butanol)	16.23	2.0	20	0	81.2	65	135	14.23	13.1	30	
tert-Amyl methyl ether (TAME)	20.30	0.50	20	0	102	65	135	20.07	1.14	30	
Tetrachloroethene	18.71	0.50	20	0	93.6	65	135	18.97	1.38	30	
Toluene	19.90	0.50	20	0	99.5	65	135	19.37	2.70	30	
trans-1,2-Dichloroethene	21.55	0.50	20	0	108	65	135	20.76	3.73	30	
Trichloroethene	21.53	0.50	20	0	108	65	135	20.2	6.37	30	
Trichlorofluoromethane	21.50	0.50	20	0	108	65	135	20.12	6.63	30	
Vinyl Acetate	25.89	0.50	20	0	129	65	135	24.29	6.38	30	
Vinyl Chloride	20.99	0.50	20	0	105	65	135	19.68	6,44	30	
Surr: 4-Bromofluorobenzene	17.55	0	20	0	87.8	65	135	0	0	30	

Qualifiers:

3 Recovery of the MS and/or MSD was out of control due t 4

Spike Recovery outside accepted recovery limits S

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

RPD outside accepted recovery limits R

	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.529 FAX: 408.263.8293 www.torrentlab.com	58	• NO	C TE: SHA	CHA	e in an		iller a fan sjoe soere is ferste		ومليه ومحاله ماله منهور والح		ONLY		LAB WORK 0	RDER NO	
Company Name: TRINITY SDU	REC GROV.	P INC	•••	Locat	ion of Sa	ampling	: 6	44	Pac	ihi	and	2	Mai	meda	CA -	7
Address: 500 Chestnut Sti	neet Suit	ē 22	5	Purpo	se: 5	16	sla	6 4	lat	inc	SU	Hen	n	meda		
City: Santa Cruz sta	ate: (A	Zip Code:	95060) Speci	al Instru	ctions /	Comm	ents:			1		-			
Telephone: 831-4265605AX	: 426-56	20														
REPORT TO: DANG REINDAMA	SAMPLER: D	n BI	rel_	P.O. #	#: /2	03.	005	00	4	EMAIL:	dai	ret.	39 W	IP.Nt		
TURNAROUND TIME:	SAMPLE TYPE		REPORT F	ORMAT:		A B B B B C	Gel			s		10	, , , , , , , , , , , , , , , , , , ,			
10 Work Days 3 Work Days Noon - No 7 Work Days 2 Work Days 2 - 8 Hour 5 Work Days 1 Work Day Other		Air. Other	QC Leve	el IV EDD	EPA 8260B - Full List EPA 8260B - 8010 List	THP gas BTEX	THP Diese! Si-Gel Motor Oil	Pesticide - 8081	PCB - 8082	Metals CAM - 17	B270 Full List PAHs Only	TO-3 Studieu	-15 11/1 San		YSIS STED	
LAB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE								2	Ŕ	REMAR	ĸs	
ODIA EFFLUENT	10/10/08	AIR	27	<i>tedlay</i>								Х	X			
001A EFFLUENT 002A IN FLUENT	10/10/08	AIV	2+	udlars								\mathbf{X}	X			LAB
			*													
					•											TORRENT
	ни ^н ичитининининин ч <i>ог оз</i> и ушихуши ²	*********************************												man mang balan dalam 4 mini semua katal dalam yang mang mang mang mang mang mang mang m		
1 Relingdisher 59 Prints	W Br Date:	12/01	^{Time:} /53	'S	Receive		 		Print:	VAVI	-	Date:	0/08	Time: 15	25	
Relinquished By: Print:	Date: /	/-/-	Time:		Receive	d By:			Print:	<u></u> .		Date:	<u>-/ v ð</u>	Time:		
Were Samples Received in Good Condition?		n hagi vajni izri na konstru		arrangę	7	of Shipn are mad		D/1	Date	e:	Sa	mple se	eals intacl	1? [] Yes [] N ()of	D 🖉 N/A	

November 13, 2008

David Reinsma Trinity Source Group 500 Chestnut St.Suite 225 Santa Cruz, CA 95060

TEL: (831) 426-5600 FAX (831) 685-1219

RE:

Dear David Reinsma:

Order No.: 0811032

Torrent Laboratory, Inc. received 2 samples on 11/6/2008 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Director Date

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for:David Reinsma
Trinity Source GroupDate Received:11/6/2008Client Sample ID:EFFLUENTLab Sample ID:0811032-001Sample Location:649 Pacific Ave.Alameda.CADate Prepared:Sample Matrix:AIRI1/6/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	11/7/2008	1.99	1	2.0	ND		D47004
1,1,1,2-Tetrachloroethane	TO-15	11/7/2008	3.44	1	3.4	ND	µg/m³	R17831
1,1,1-Trichloroethane	TO-15	11/7/2008	2.73	1	2.7	ND	µg/m³	R17831
1,1,2,2-Tetrachloroethane	TO-15	11/7/2008	3.44	1	3.4	ND	µg/m³	R17831
1,1,2-Trichloroethane	TO-15	11/7/2008	2.73	1	2.7	ND	µg/m³	R17831
1,1-Dichloroethane	TO-15	11/7/2008	2.03	1	2.0	ND	µg/m³	R17831
1,1-Difluoroethane	TO-15	11/7/2008	27	1	2.0	ND	µg/m³	R17831
1,2,4-Trichlorobenzene	TO-15	11/7/2008	3.56	1	3.6		µg/m³	R17831
1,2,4-Trimethylbenzene	TO-15	11/7/2008	2.46	1	3.6 2.5	ND	µg/m³	R17831
1,2-Dibromoethane(Ethylene	TO-15	11/7/2008	3.84	1		ND	µg/m³	R17831
dibromide)			0.04	ŧ	3.8	ND	µg/m³	R17831
-Dichlorobenzene	TO-15	11/7/2008	3.01	1	3.0	ND	µg/m³	R17831
1,2-Dichloroethane	TO-15	11/7/2008	2.03	1	2.0	ND	μg/m³	R17831
1,2-Dichloropropane	TO-15	11/7/2008	2.31	1	2.3	ND	µg/m³	R17831
1,3,5-Trimethylbenzene	TO-15	11/7/2008	2.46	1	2.5	ND	µg/m³	R17831
1,3-Butadiene	TO-15	11/7/2008	4.44	1	4.4	ND	µg/m³	R17831
1,3-Dichlorobenzene	TO-15	11/7/2008	3.01	1	3.0	ND	µg/m³	R17831
1,4-Dichlorobenzene	TO-15	11/7/2008	3.01	1	3.0	ND	µg/m³	R17831
1,4-Díoxane	TO-15	11/7/2008	1.8	1	1.8	ND	µg/m³	R17831
2-Butanone (MEK)	TO-15	11/7/2008	1.48	1	1.5	6.5	μg/m³	R17831
2-Hexanone	TO-15	11/7/2008	2.05	1	2.0	ND	µg/m³	
4-Ethyl Toluene	TO-15	11/7/2008	2.46	1	2.5	ND		R17831
4-Methyl-2-Pentanone (MIBK)	TO-15	11/7/2008	2.05	1	2.0	ND ND	µg/m³	R17831
Acetone	TO-15	11/7/2008	9.52	1	2.0 9.5	37	µg/m³	R17831
Benzene	TO-15	11/7/2008	1.6	1	1.6	1.9	µg/m³	R17831
Bromodichloromethane	TO-15	11/7/2008	3.35	1	3.4	ND	µg/m³	R17831
Bromoform	TO-15	11/7/2008	5,17	1	5.2	ND	µg/m³	R17831
Bromomethane	TO-15	11/7/2008	1.94	1	1.9	ND	µg/m³	R17831
Carbon Disulfide	TO-15	11/7/2008	1.56	1	1.6	(7.5)	µg/m³	R17831
Carbon Tetrachloride	TO-15	11/7/2008	3.15	10	32	A	µg/m³	R17831
Chlorobenzene	TO-15	11/7/2008	2.3	1	32 2.3	770	µg/m³	R17831
Chloroethane	TO-15	11/7/2008	1.32	1		ND	µg/m³	R17831
Chloroform	TO-15	11/7/2008	2.44	1	1.3	ND	µg/m³	R17831
Chloromethane	TO-15	11/7/2008	2.44 1.04	1	2.4	53.	µg/m³	R17831
cis-1,2-díchloroethene	TO-15	11/7/2008	1.04	1	1.0	ND	µg/m³	R17831
cis-1,3-Dichloropropene	TO-15	11/7/2008	2.27	-	2.0	ND	µg/m³	R17831
hromochloromethane	TO-15	11/7/2008		1	2.3	ND	µg/m³	R17831
· ···· ·	10 10	11/1/2000	4.26	1	4.3	ND	µg/m³	R17831

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 1 of 5

Report prepared for: David Reinsma

AIR

11/6/2008

Trinity Source Group

^{~'}lient Sample ID: ample Location: Sample Matrix:

Date/Time Sampled

EFFLUENT

649 Pacific Ave.Alameda.CA

Date Received: 11/6/2008 **Date Reported:** 11/13/2008

Lab Sample ID: 0811032-001 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Dichlorodifluoromethane	TO-15	11/7/2008	2.48	1	2.5	ND		
Diisopropyl ether (DIPE)	TO-15	11/7/2008	2.09	1	2.1	ND	µg/m³	R17831
Ethyl Acetate	TO-15	11/7/2008	1.8	1	1.8	ND	µg/m³	R17831
Ethyl Benzene	TO-15	11/7/2008	2.17	1	2.2	ND	µg/m³	R17831
Ethyl tert-butyl ether (ETBE)	TO-15	11/7/2008	2.09	1	2.2	ND	µg/m³	R17831
Freon 113	TO-15	11/7/2008	3.83	1	3.8	ND	µg/m³	R17831
Hexachlorobutadiene	TO-15	11/7/2008	5.34	1	5.8 5.3		µg/m³	R17831
Hexane	TO-15	11/7/2008	14.1	1	5.5 14	ND	µg/m³	R17831
Isopropanot	TO-15	11/7/2008	16.4	1	14 16	ND	µg/m³	R17831
m,p-Xylene	TO-15	11/7/2008	2.05	1		ND	µg/m³	R17831
Methylene Chloride	TO-15	11/7/2008	3.61	1	2.0	3.6	µg/m³	R17831
МТВЕ	TO-15	11/7/2008	1.81	1	3.6	ND	µg/m³	R17831
Naphthalene	TO-15	11/7/2008	2.62	1	1.8	ND	µg/m³	R17831
o-xylene	TO-15	11/7/2008	2.02	1	2.6	ND	µg/m³	R17831
Styrene	TO-15	11/7/2008	2.17	1	2.2	ND	µg/m³	R17831
t-Butyl alcohol (t-Butanol)	TO-15	11/7/2008	6.06	1	2.1	ND	µg/m³	R17831
tert-Amyl methyl ether (TAME)	TO-15	11/7/2008	2.09	1	6.1	ND	µg/m³	R17831
rachloroethene	TO-15	11/7/2008	3.39	1	2.1	ND	µg/m³	R17831
uene	TO-15	11/7/2008	1.89	1	3.4	.14 ,	µg/m³	R17831
trans-1,2-Dichloroethene	TO-15	11/7/2008	1.98	1	1.9	27	µg/m³	R17831
Trichloroethene	TO-15	11/7/2008	2.69	1	2.0	ND	µg/m³	R17831
Trichlorofluoromethane	TO-15	11/7/2008	2.09	•	2.7	ND	µg/m³	R17831
Vinyl Acetate	TO-15	11/7/2008	2.40 1.76	1	2,5	ND	µg/m³	R17831
Vinyl Chloride	TO-15	11/7/2008	1.78	1	1.8	ND	µg/m³	R17831
Surr: 4-Bromofluorobenzene	TO-15	11/7/2008		1	1.3	ND	µg/m³	R17831
Surr: 4-Bromofluorobenzene	TO-15	11/7/2008	0	10	65-135	83.8	%REC	R17831
	10-10	11/12000	0	1	65-135	78.3	%REC	R17831
Stoddard Solvent (C7-C12)	TO-3(MOD)	11/6/2008	352	2	700	2800x	µg/m³	G17831

Note: x- Result reported as Stoddard Solvent, but sample chromatogram does not resemble Stoddard solvent standard pattern.

a nese analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: David Reinsma

Trinity Source Group

'ient Sample ID:INFLUENT...ample Location:649 Pacific Ave.Alameda.CASample Matrix:AIRDate/Time Sampled11/6/2008

Date Received: 11/6/2008 **Date Reported:** 11/13/2008

Lab Sample ID: 0811032-002 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	11/7/2000	1.00					Daten
1,1,1,2-Tetrachloroethane	TO-15	11/7/2008	1.99	1	2.0	ND	µg/m³	R17831
1,1,1-Tríchloroethane	TO-15	11/7/2008	3.44	1	3.4	ND	µg/m³	R17831
1,1,2,2-Tetrachloroethane	TO-15 TO-15	11/7/2008	2.73	1	2.7	ND	µg/m³	R17831
1,1,2-Trichloroethane	TO-15	11/7/2008	3.44	1	3.4	ND	µg/m³	R17831
1,1-Dichloroethane	TO-15 TO-15	11/7/2008	2.73	1	2.7	ND	µg/m³	R17831
1,1-Difluoroethane		11/7/2008	2.03	1	2.0	ND	µg/m³	R17831
1,2,4-Trichlorobenzene	TO-15	11/7/2008	27	1	27	ND	µg/m³	R17831
1,2,4-Trimethylbenzene	TO-15	11/7/2008	3.56	1	3.6	ND	µg/m³	R17831
1,2-Dibromoethane(Ethylene	TO-15	11/7/2008	2.46	1	2.5	ر 2,9	µg/m³	R17831
dibromide)	TO-15	11/7/2008	3.84	1	3.8	ND	µg/m³	R17831
1,2-Dichlorobenzene	TO-15	11/7/2008	3.01	1	3.0	ND	µg/m³	R17831
1,2-Dichloroethane	TO-15	11/7/2008	2.03	1	2.0	ND	µg/m³	R17831
1,2-Dichloropropane	TO-15	11/7/2008	2.31	1	2.3	ND	µg/m³	R17831
1,3,5-Trimethylbenzene	TO-15	11/7/2008	2.46	1	2,5	ND	µg/m³	R17831
1,3-Butadiene	TO-15	11/7/2008	4.44	1	4.4	ND	µg/m³	R17831
1,3-Dichlorobenzene	TO-15	11/7/2008	3.01	1	3.0	ND		R17831 R17831
Dichlorobenzene	TO-15	11/7/2008	3.01	1	3.0	ND	µg/m³	
Dioxane	TO-15	11/7/2008	1.8	1	1.8		µg/m³	R17831
2-Butanone (MEK)	TO-15	11/7/2008	1.48	1	1.5	ND 22	µg/m³	R17831
2-Hexanone	TO-15	11/7/2008	2.05	1	2.0	23/	µg/m³	R17831
4-Ethyl Toluene	TO-15	11/7/2008	2.46	1	2.5	ND	µg/m³	R17831
4-Methyl-2-Pentanone (MIBK)	TO-15	11/7/2008	2.05	1		ND	μg/m³	R17831
Acetone	TO-15	11/7/2008	9.52	1	2.0	ND	µg/m³	R17831
Benzene	TO-15	11/7/2008	1.6	1	9.5	<u>.62</u>),	µg/m³	R17831
Bromodichloromethane	TO-15	11/7/2008	3.35	1	1.6	ND	µg/m³	R17831
Bromoform	TO-15	11/7/2008	5.17	1	3.4	ND	µg/m³	R17831
Bromomethane	TO-15	11/7/2008	1.94		5.2	ND	µg/m³	R17831
Carbon Disulfide	TO-15	11/7/2008	1.56	1	1.9	ND	µg/m³	R17831
Carbon Tetrachloride	TO-15	11/7/2008		1	1.6	\underline{J}	µg/m³	R17831
Chlorobenzene	TO-15	11/7/2008	3.15 2,3	10	32	690	µg/m³	R17831
Chloroethane	TO-15	11/7/2008		1	2.3	ND	hð/w₃	R17831
Chloroform	TO-15	11/7/2008	1.32	1	1.3	ND	µg/m³	R17831
Chloromethane	TO-15	11/7/2008	2.44	1	2.4	580	µg/m³	R17831
cis-1,2-dichloroethene	TO-15		1.04	1	1.0	ND	µg/m³	R17831
cis-1,3-Dichloropropene	TO-15	11/7/2008	1.98	1	2.0	ND	µg/m³	R17831
Dibromochloromethane	TO-15	11/7/2008	2.27	1	2.3	ND	µg/m³	R17831
Dichlorodifluoromethane	TO-15	11/7/2008	4.26	1	4.3	ND	µg/m³	R17831
Diisopropyl ether (DIPE)	TO-15	11/7/2008	2.48	1	2.5	ND	µg/m³	R17831
Ethyl Acetate	TO-15	11/7/2008	2.09	1	2.1	ND	µg/m³	R17831
Ethyl Benzene		11/7/2008	1.8	1	1.8	ND	µg/m³	R17831
Ethyl tert-butyl ether (ETBE)	TO-15	11/7/2008	2.17	1	2.2	ND	µg/m³	R17831
Freon 113	TO-15	11/7/2008	2.09	1	2.1	ND	µg/m³	R17831
achlorobutadiene	TO-15	11/7/2008	3.83	1	3.8	ND	µg/m³	R17831
i hese analyses were performed a	TO-15	11/7/2008	5.34	1	5.3	ND	µg/m³	R17831

i hese analyses were performed according to State of California Environmental Laboratory

Accreditation program, Certificate # 1991

Page 3 of 5

Report prepared for: David Reinsma

Trinity Source Group

~'ient Sample ID:	INFLUENT
ample Location:	649 Pacific Ave.Alameda.CA
Sample Matrix:	AIR
Date/Time Sampled	11/6/2008

Date Received: 11/6/2008 **Date Reported:** 11/13/2008

Lab Sample ID: 0811032-002 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	11/7/2008	14.1	1		ND	110/m3	D47004
isopropanol	TO-15	11/7/2008	16.4	1	16	ND	µg/m³	R17831
m,p-Xylene	TO-15	11/7/2008	2.05	1	2.0	(4.7).	µg/m³	R17831
Methylene Chloride	TO-15	11/7/2008	3.61	1	3.6	and the second s	µg/m³	R17831
MTBE	TO-15	11/7/2008	1.81	1	3.8 1.8	4.5	µg/m³	R17831
Naphthalene	TO-15	11/7/2008	2.62	1	1.6 2.6	ND	µg/m³	R17831
o-xylene	TO-15	11/7/2008	2.17	1	2.0	ND	µg/m³	R17831
Styrene	TO-15	11/7/2008	2.13	1		ND	µg/m³	R17831
-Butyl alcohol (t-Butanol)	TO-15	11/7/2008	6.06	1	2.1	ND	µg/m³	R17831
ert-Amyl methyl ether (TAME)	TO-15	11/7/2008	2.09	1	6.1	ND	µg/m³	R17831
Fetrachloroethene	TO-15	11/7/2008	2.09	1	2.1	ND	µg/m³	R17831
Foluene	TO-15	11/7/2008		10	34	520	µg/m³	R17831
rans-1,2-Dichloroethene	TO-15	11/7/2008	1.89	1	1.9	<u>_</u> 30 '	µg/m³	R17831
richloroethene	TO-15		1.98	1	2.0	ND	µg/m³	R17831
richlorofluoromethane	TO-15	11/7/2008	2.69	1	2.7	ND	µg/m³	R17831
/invl Acetate	TO-15	11/7/2008	2.48	1	2.5	ND	µg/m³	R17831
/invl Chloride	-	11/7/2008	1.76	1	1.8	ND	µg/m³	R17831
Purr: 4-Bromofluorobenzene	TO-15	11/7/2008	1.28	1	1.3	ND	µg/m³	R17831
Surr: 4-Bromofluorobenzene	TO-15	11/7/2008	0	1	65-135	76.5	%REC	R17831
oun. 4-bromolidorobenzene	TO-15	11/7/2008	0	10	65-135	88.4	%REC	R17831
Stoddard Solvent (C7-C12)	TO-3(MOD)	11/6/2008	352	2	700	1700x	µg/m³	G17831

Note: x- Result reported as Stoddard Solvent, but sample chromatogram does not resemble Stoddard solvent standard pattern.

t hese analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 4 of 5

Definitions, legends and Notes

Note	D	escription			
ug/kg	Microgram per kilogram (ppb, part per billion).				
ug/L	Microgram per liter (ppb, part per billion).				
ר/kg	Milligram per kilogram (ppm, part per million).				
L/L	Milligram per liter (ppm, part per million).				
LCS/LCSD	Laboratory control sample/laboratory control sample	duplicate			
MDL	Method detection limit.				
MRL	Modified reporting limit. When sample is subject to d	illution reporting limit times diluti	on footer viole		
MS/MSD	Matrix spike/matrix spike duplicate.	in the second seco	on lactor yier	IS IVINC.	
N/A	Not applicable.	. · · · · ·	÷		
ND	Not detected at or above detection limit.				
NR	Not reported,				
QC	Quality Control.				
RL	Reporting limit.	· · · ·			
% RPD	Percent relative difference.			1. A.	
э	pH was measured immediately upon the receipt of th	ne sample, but it was still done o	utside the held	ting time	
sub	Analyzed by subcontracting laboratory, Lab Certifica	te #	utatue ine noit	ung ame.	

Torrent Laboratory, Inc.

CLIENT: Trinity Source Group Work Order: 0811032 **Project:**

.....

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB-2	SampType: MBLK	TestCod	e: TO-14A	Units: ppbv	Prep Date: 11/5/2008			5/2008	RunNo: 17831			
Client ID: ZZZZZ	Batch ID: R17831	TestN	o: TO-14			Analysis Da	ate: 11/	5/2008	SeqNo: 25	6125		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual	
1,1 - Dichloroethene	ND	0.50									·	
1,1,1-Trichioroethane	ND	0.50										
1,1,2,2-Tetrachloroethane	ND	0.50										
1,1,2-Trichloroethane	ND	0.50										
1,1-Dichloroethane	ND	0.50										
1,2-Dichlorobenzene	ND	0.50										
1,2-Dichloroethane	ND	0.50										
1,2-Dichloropropane	ND	0.50										
1,3-Dichlorobenzene	ND	0.50										
1,4-Dichlorobenzene	ND	0.50										
Benzene	ND	0.50										
Carbon Tetrachloride	ND	0.50					-					
Chlorobenzene	ND	0.50										
Chloroform	ND	0.50										
Chloromethane	ND	0.50										
is-1,2-dichloroethene	ND	0.50										
is-1,3-Dichloropropene	ND	0.50										
Dichlorodifluoromethane	ND	0.50										
Ethyl Benzene	ND	0.50										
reon 113	ND	0.50										
sopropanol	ND	10										
1,p-xylene	ND	1.0										
1ethylene Chloride	ND	0.50										
1TBE	ND	0.50										
-xylene	ND	0.50										
etrachloroethene	ND	0.50										
oluene	ND	0.50										
ans-1,2-Dichloroethene	ND	0.50										
richloroethene	ND	0.50										
richlorofluoromethane	ND	0.50										
	e quantitation range ed at the Reporting Limit			times for preparation tside accepted recovery	-	exceeded	J S	Analyte detected be Spike Recovery out	•	overy limits	e I of	

CLIENT: Trinity Source Group Work Order: 0811032

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB-2	SampType	MBLK	TestCo	de: TO-14A	Units: ppbv		Prep Da	te: 11/5/	2008	RunNo: 17	'831	
Client ID: ZZZZZ	Batch ID:	R17831	Test	No: TO-14			Analysis Da	te: 11/5/	2008	SeqNo: 25	6125	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl Chloride		ND	0.50									
Surr: 4-Bromofluorobenzene		15.70	0	20	0	78.5	65	135	ō			
Sample ID MB	SampType:	MBLK	TestCo	de: TO-15	Units: ppbv		Prep Dat	e: 11/3/2	2008	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID:	R17831	Test∤	lo: T O-15			Analysis Dat	e: 11/3/2	2008	SeqNo: 25	5923	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene		ND	0.50							······		
1,1,1,2-Tetrachloroethane		ND	0.50									
1,1,1-Trìchloroethane		ND	0.50									
1,1,2,2-Tetrachloroethane		ND	0.50									
1,1,2-Trichloroethane		ND	0.50									
1,1-Dichloroethane		ND	0.50									
1,2,4-Trichlorobenzene		ND	0.50									
1,2,4-Trimethylbenzene		ND	0.50									
1,2-Dibromoethane(Ethylene dibron	nide	ND	0.50									
1,2-Dichlorobenzene		ND	0.50									
1,2-Dichloroethane		ND	0.50									
1,2-Dichloropropane		ND	0.50									
1,3,5-Trimethylbenzene		ND	0.50									
1,3-Butadiene		ND	2.0									
1,3-Dichlorobenzene		ND	0.50									
1,4-Dichlorobenzene		ND	0.50									
1,4-Dioxane		ND	0.50									
2-Butanone (MEK)		ND	0.50									
2-Hexanone		ND	0.50									
-Ethyl Toluene		ND	0.50									
I-Methyl-2-Pentanone (MIBK)		ND	0.50									
Acetone		ND	4.0									
3enzene		ND	0.50									
Bromodichloromethane		ND	0.50									
Qualifiers: E Value above qua ND Not Detected at t			~~~~		g times for preparation uside accepted recover		exceeded		Analyte detected b Spike Recovery ou	•	covery limits	re 2 of

,

CLIENT: Trinity Source Group Work Order:

Project:

0811032

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB	SampType: MBLK	TestCode: TO-15	Units: ppbv	Prep Date: 11/3/2008	RunNo: 17831
Client ID: ZZZZZ	Batch ID: R17831	TestNo: TO-15		Analysis Date: 11/3/2008	SeqNo: 255923
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RP	D Ref Val %RPD RPDLimit Qual
Bromoform	ND	0.50			
Bromomethane	ND	0.50			
Carbon Disulfide	ND	0.50			
Carbon Tetrachloride	ND	0.50			
Chlorobenzene	ND	0.50			
Chloroethane	ND	0.50			
Chloroform	ND	0.50			
Chloromethane	ND	0.50			
cis-1,2-dichloroethene	ND	0.50			
cis-1,3-Dichloropropene	ND	0.50			
Dibromochloromethane	ND	0.50			
Dichlorodifluoromethane	ND	0.50			
Diisopropyl ether (DIPE)	ND	0.50			
Ethyl Acetate	ND	0.50			
Ethyl Benzene	ND	0.50			
Ethyl tert-butyl ether (ETBE)	ND	0.50			
Freon 113	ND	0.50			
Hexachlorobutadiene	ND	0.50			
Нехале	ND	2.0			
Isopropanol	ND	4.0			
m,p-Xylene	ND	0.50			
Methylene Chloride	ND	1.0			
МТВЕ	ND	0.50			
Naphthalene	ND	0.50			
o-xylene	ND	0.50			
Styrene	ND	0.50			
-Butyl alcohol (t-Butanol)	ND	2.0			
tert-Amyl methyl ether (TAME)	ND	0.50			
Tetrachloroethene	ND	0.50			
Toluene	ND	0.50			
rans-1,2-Dichloroethene	ND	0.50			
Qualifiers: E Value above q	quantitation range	H Holdin	g times for preparation of	r analysis exceeded J Analyte	e detected below quantitation limits
ND Not Detected a	at the Reporting Limit	R RPD o	itside accepted recovery	limits S Spike R	tecovery outside accepted recovery limits Page 3 of

CLIENT:Trinity Source GroupWork Order:0811032Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB	SampType:	MBLK	TestCo	de: TO-15	Units: ppbv		Prep Dat	e: 11/3/20	008	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID:	R17831	Testi	No: TO-15			Analysis Dat	e: 11/3/20	008	SeqNo: 25	5923	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene		ND	0.50									
Trichlorofluoromethane		ND	0.50									
Vinyl Acetate		ND	0.50									
Vinyl Chloride		ND	0.50									
Surr: 4-Bromofiuorobenzene		17.54	0	20	0	87.7	65	135				
Sample ID MB-1	SampType:	MBLK	TestCoo	le: TO-15	Units: ppbv		Prep Date	e: 11/4/20	08	RunNo: 17	331	
Client ID: ZZZZZ	Batch ID:	R17831	TestN	lo: TO-15			Analysis Date	e: 11/4/20	08	SeqNo: 25	5109	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene		ND	0.50		******							
1,1,1,2-Tetrachloroethane		ND	0.50									
1,1,1-Trichloroethane		ND	0.50									
1,1,2,2-Tetrachloroethane		ND	0.50									
1,1,2-Trichloroethane		ND	0.50									
1,1-Dichloroethane		ND	0.50									
1,2,4-Trichlorobenzene		ND	0.50									
1,2,4-Trimethylbenzene		ND	0.50									
1,2-Dibromoethane(Ethylene dibrom	nide	ND	0.50									
1,2-Dichlorobenzene		ND	0.50									
1,2-Dichloroethane		ND	0.50									
1,2-Dichloropropane		ND	0.50									
1,3,5-Trimethylbenzene		ND	0.50									
1,3-Butadiene		ND	2.0									
1,3-Dichlorobenzene		ND	0.50									
1,4-Dichlorobenzene		ND	0.50									
,4-Dioxane		ND	0.50									
2-Butanone (MEK)		ND	0.50									
2-Hexanone		ND	0.50									
-Ethyl Toluene		ND	0.50									
I-Methyl-2-Pentanone (MIBK)		ND	0.50									
4-Ethyl Toluene 4-Methyl-2-Pentanone (MIBK) Qualifiers: E Value above qua ND Not Detected at t	e	ND			times for preparation tside accepted recover	-	exceeded		nalyte detected b bike Recovery ou	•		ŗe

Work Order: 0811032 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB-1	SampType: MBLK	TestCo	de: T O-15	Units: ppbv		Prep Da	ite: 11/4/2	008	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID: R17831	TestՒ	lo: TO-15			Analysis Da	ate: 11/4/2	008	SeqNo: 25	6109	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	ND	4.0									
Benzene	ND	0.50									
Bromodichloromethane	ND	0.50									
Bromoform	ND	0.50									
Bromomethane	ND	0.50									
Carbon Disulfide	ND	0.50									
Carbon Tetrachloride	ND	0.50									
Chlorobenzene	ND	0.50									
Chloroethane	ND	0.50									
Chloroform	ND	0.50									
Chloromethane	ND	0.50									
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
Hexane	ND	2.0									
Isopropanol	ND	4.0									
m,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
МТВЕ	ND	0.50									
Naphthalene	ND	0.50									
o-xylene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									

Qualifiers:

Value above quantitation range 12

Holding times for preparation or analysis exceeded Н R

Analyte detected below quantitation limits J S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

CLIENT: Trinity Source Group Work Order: 0811032

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB-1	SampType:	MBLK	TestCo	de: TO-15	Units: ppbv		Prep Da	te: 11/4/2	2008	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID:	R17831	Test	No: TO-15			Analysis Da	te: 11/4/2	2008	SeqNo: 25	6109	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimi	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachloroethene		ND	0.50		···							
Toluene		ND	0.50									
trans-1,2-Dichloroethene		ND	0.50									
Trichloroethene		ND	0.50									
Trichlorofluoromethane		ND	0.50									
Vinyl Acetate		ND	0.50									
Vinyl Chloride		ND	0.50									
Surr: 4-Bromofluorobenzene		17.20	0	20	0	86.0	65	135				
Sample ID MB-3	SampType:	MBLK	TestCod	de: TO-15	Units: ppbv		Prep Dal	e: 11/6/2	008	RunNo: 178	331	
Client ID: ZZZZZ	Batch ID:	R17831	TestN	lo: TO-15			Analysis Dat	e: 11/6/2	008	SeqNo: 256	348	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
I,1 - Dichloroethene		ND	0.50									
1,1,1,2-Tetrachloroethane		ND	0.50									
1,1,1-Trichloroethane		ND	0.50									
1,1,2,2-Tetrachloroethane		ND	0.50									
1,1,2-Trichloroethane		ND	0.50									
I,1-Dichloroethane		ND	0.50									
,2,4-Trichlorobenzene		ND	0.50									
,2,4-Trimethylbenzene		ND	0.50									
,2-Dibromoethane(Ethylene dibro	mide	ND	0.50									
,2-Dichlorobenzene		ND	0.50									
,2-Dichloroethane		ND	0.50									
,2-Dichloropropane		ND	0.50									
,3,5-Trimethylbenzene		ND	0.50									
,3-Butadiene		ND	2.0									
,3-Dichlorobenzene		ND	0.50									
,4-Dichlorobenzene		ND	0.50									
,4-Díoxane		ND	0.50									
,+-DioAdric		ND	0.50									

CLIENT: Trinity Source Group Work Order: 0811032

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB-3	SampType: MBLK	TestCo	de: TO-15	Units: ppbv		Prep Da	nte: 11/6/2	800	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID: R17831	TestN	lo: TO-15			Analysis Da	ite: 11/6/2	008	SeqNo: 25	6348	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
2-Hexanone	ND	0.50									
4-Ethyl Toluene	ND	0.50									
4-Methyl-2-Pentanone (MIBK)	ND	0.50									
Acetone	ND	4.0									
Benzene	ND	0.50									
Bromodichloromethane	ND	0.50									
Bromoform	ND	0.50									
Bromomethane	ND	0.50									
Carbon Disulfide	ND	0.50									
Carbon Tetrachloride	ND	0.50									
Chlorobenzene	ND	0.50									
Chloroethane	ND	0.50									
Chloroform	ND	0.50									
Chloromethane	ND	0.50									
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
texane	ND	2.0									
sopropanol	ND	4.0									
n,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
MTBE	ND	0.50									
Naphthalene	ND	0.50									
p-xylene	ND	0.50									

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits Page 7 of 12 S

CLIENT: Trinity Source Group Work Order: 0811032 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID MB-3	SampType: MBLK	TestCo	de: T O-15	Units: ppbv		Prep Da	te: 11/6/2	008	RunNo: 17	7831	
Client ID: ZZZZZ	Batch ID: R17831	Test	No: TO-15			Analysis Da	te: 11/6/2	908	SeqNo: 25	56348	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl Acetate	ND	0.50									
Vinyl Chloride	ND	0.50									
Surr: 4-Bromofluorobenzene	15.49	0	20	0	77.4	65	135				
Sample ID LCS	SampType: LCS	TestCod	e: TO-15	Units: ppbv		Prep Dat	e: 11/3/20	08	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID: R17831	TestN	o: TO-15			Analysis Dat	e: 11/3/20	08	SeqNo: 25	5924	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	20.86	0.50	20	0	104	65	135				
1,1,1,2-Tetrachloroethane	17.51	0.50	20	0	87.6	65	135				
1,1,1-Trichloroethane	21.87	0.50	20	0	109	65	135				
1,1,2,2-Tetrachloroethane	19.25	0.50	20	0	96.2	65	135				
,1,2-Trichloroethane	18.98	0.50	20	0	94.9	65	135				
1,1-Dichloroethane	21.99	0.50	20	0	110	65	135				
,2,4-Trichlorobenzene	17.53	0.50	20	0	87.6	65	135				
,2,4-Trimethylbenzene	18.47	0.50	20	0	92.4	65	135				
,2-Dibromoethane(Ethylene dibrom	ide 19.23	0.50	20	0	96.2	65	135				
					00.0	65	405				
,2-Dichlorobenzene	18.65	0.50	20	0	93.3	00	135				
	18.65 18.41	0.50 0.50	20 20	0	93.3 92.0	65	135				
,2-Dichloroethane											
,2-Dichloroethane ,2-Dichloropropane	18.41	0.50	20	0	92.0	65	135				
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Butadiene	18.41 19.98	0.50 0.50	20 20	0 0	92.0 99.9	65 65	135 135				

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits Page 8 of 12 S

Work Order: 0811032

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID LCS	SampType: LCS	TestCo	de: TO-15	Units: ppbv		Prep Dat	e: 11/3/20	800	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID: R17831	Testř	No: TO-15			Analysis Dat	e: 11/3/2(008	SeqNo: 25	5924	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	18.45	0.50	20	0	92.2	65	135				
1,4-Dioxane	18.47	0.50	20	0	92.4	65	135				
2-Butanone (MEK)	21.10	0.50	20	0	106	65	135				
2-Hexanone	19.56	0.50	20	0	97.8	65	135				
4-Ethyl Toluene	18.35	0.50	20	0	91.8	65	135				
4-Methyl-2-Pentanone (MIBK)	18.16	0.50	20	0	90.8	65	135				
Acetone	20.78	4.0	20	0	104	65	135				
Benzene	23.02	0.50	20	0	115	65	135				
Bromodichloromethane	18.44	0.50	20	0	92.2	65	135				
Bromoform	19.09	0.50	20	0	95.4	65	135				
Bromomethane	22.72	0.50	20	0	114	65	135				
Carbon Disulfide	22.33	0.50	20	0	112	65	135				
Carbon Tetrachloride	22.19	0.50	20	0	111	65	135				
Chlorobenzene	19.22	0.50	20	0	96.1	65	135				
Chloroethane	22.84	0.50	20	0	114	65	135				
Chloroform	21.86	0.50	20	0	109	65	135				
Chloromethane	16.26	0.50	20	0	81.3	65	135				
cis-1,2-dichloroethene	21.19	0.50	20	0	106	65	135				
cis-1,3-Dichloropropene	17.85	0.50	20	0	89.2	65	135				
Dibromochloromethane	19.09	0.50	20	0	95.4	65	135				
Diisopropyl ether (DIPE)	22.41	0.50	20	0	112	65	135				
Ethyl Acetate	21.30	0.50	20	0	106	65	135				
Ethyl Benzene	19.30	0.50	20	0	96.5	65	135				
Ethyl tert-butyl ether (ETBE)	21.75	0.50	20	0	109	65	135				
Freon 113	20.45	0.50	20	0	102	65	135				
Hexachlorobutadiene	17.01	0.50	20	0	85.0	65	135				
Нехале	22.42	2.0	20	0	112	65	135				
Isopropanol	22.33	4.0	20	0	112	65	135				
m,p-Xylene	37.46	0.50	40	0	93.6	65	135				
Methylene Chloride	18.86	1.0	20	0	94.3	65	135				
MTBE	22.97	0.50	20	0	115	65	135				

Qualifiers:

Value above quantitation range E

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits Page 9 of 12

Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Batch ID: R17831 Result 19.32	Testf PQL	No: TO-15			Analysis Date	e: 11/3/2(າດຂ	SeaNo: 29	5024			
	PQL				-			SeqNo: 255924				
19-32		SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
The The Real	0.50	20	0	96.6	65	135	· · · · · · · · · · · · · · · · · · ·					
18.48	0.50	20	0	92.4	65	135						
18.44	0.50	20	0	92.2	65	135						
21.64	2.0	20	0	108	65	135						
18.49	0.50	20	0	92.5	65	135						
17.79	0.50	20	0	89.0	65	135						
17.79	0.50	20	0	89.0	65	135						
21.72	0.50	20	0	109	65	135						
17.44	0.50	20	0	87.2	65	135						
14.83	0.50	20	0	74.2	65	135						
22.60	0.50	20	0	113	65	135						
23.48	0.50	20	0	117	65	135						
19.23	0	20	0	96.2	65	135						
SampType: LCSD	TestCod	e: TO-15	Units: ppbv		Prep Date	: 11/4/20	08	RunNo: 17	831			
Batch ID: R17831	TestN	o: TO-15			Analysis Date	: 11/4/20	08	SeqNo: 25	5925			
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
20.75	0.50	20	0	104	65	135	20.86	0.529	30			
16.88	0.50	20	0	84.4	65	135	17.51	3.66	30			
20.50	0.50	20	0	103	65	135	21.87	6.47	30			
20.12	0.50	20	0	101	65	135	19.25	4.42	30			
20.45	0.50	20	0	102	65	135	18.98	7.46	30			
22.56	0.50	20	0	113	65	135	21.99	2.56	30			
17.61	0.50	20	0	88.0	65	135	17.53	0.455	30			
17,94	0.50	20	0	89.7	65	135	18.47		30			
de 19.26	0.50	20	0	96.3	65	135		0.156				
19.00	0.50	20	0	95.0	65			1.86				
18.69	0.50	20	0	93.4								
20,41	0.50	20	0	102								
17.93	0.50	20	0	89.7	65	135	18.57	3.51	30			
•	18.49 17.79 17.79 21.72 17.44 14.83 22.60 23.48 19.23 SampType: LCSD Batch ID: R17831 Result 20.75 16.88 20.50 20.45 22.56 17.61 17.94 de 19.26 19.00 18.69 20.41	18.49 0.50 17.79 0.50 17.79 0.50 21.72 0.50 17.44 0.50 14.83 0.50 22.60 0.50 23.48 0.50 9.23 0 SampType: LCSD TestCod Batch ID: R17831 TestN Result PQL 20.75 0.50 20.50 0.50 20.50 20.50 20.50 0.50 20.50 20.50 20.50 0.50 20.50 20.50 20.50 0.50 20.50 20.50 20.50 0.50 20.45 0.50 20.45 0.50 22.56 0.50 17.94 0.50 17.94 0.50 19.00 0.50 18.69 0.50 20.41 0.50 17.93 0.50	18.49 0.50 20 17.79 0.50 20 17.79 0.50 20 21.72 0.50 20 17.44 0.50 20 17.44 0.50 20 17.44 0.50 20 14.83 0.50 20 22.60 0.50 20 22.60 0.50 20 22.60 0.50 20 23.48 0.50 20 19.23 0 20 Batch ID: R17831 TestCode: TO-15 Batch ID: R17831 TestNo: TO-15 Result PQL SPK value 20.75 0.50 20 20.50 0.50 20 20.50 0.50 20 20.45 0.50 20 20.45 0.50 20 17.61 0.50 20 17.94 0.50 20 19.00 0.50 20 <td>18.49 0.50 20 0 17.79 0.50 20 0 17.79 0.50 20 0 21.72 0.50 20 0 17.44 0.50 20 0 14.83 0.50 20 0 22.60 0.50 20 0 22.60 0.50 20 0 23.48 0.50 20 0 3ampType: LCSD TestCode: TO-15 Units: ppbv Batch ID: R17831 TestNo: TO-15 Units: ppbv 20.75 0.50 20 0 20.75 0.50 20 0 20.75 0.50 20 0 20.75 0.50 20 0 20.75 0.50 20 0 20.45 0.50 20 0 20.45 0.50 20 0 22.56 0.50 20 0 22.56</td> <td>18.49 0.50 20 0 92.5 17.79 0.50 20 0 89.0 17.79 0.50 20 0 89.0 21.72 0.50 20 0 89.0 21.72 0.50 20 0 109 17.44 0.50 20 0 87.2 14.83 0.50 20 0 74.2 22.60 0.50 20 0 113 23.48 0.50 20 0 117 19.23 0 20 0 96.2 SampType: LCSD TestCode: TO-15 Units: ppbv Batch ID: R17831 TestNo: TO-15 %REC 20.75 0.50 20 0 104 16.88 0.50 20 0 104 16.88 0.50 20 0 101 20.45 0.50 20 0 101 20.45 0.50<td>18.49 0.50 20 0 92.5 65 17.79 0.50 20 0 89.0 65 17.79 0.50 20 0 89.0 65 21.72 0.50 20 0 89.0 65 17.44 0.50 20 0 87.2 65 14.83 0.50 20 0 74.2 65 22.60 0.50 20 0 113 65 23.48 0.50 20 0 117 65 19.23 0 20 0 96.2 65 SampType: LCSD TestCode: TO-15 Units: ppbv Prep Date Batch ID: R17831 TestNo: TO-15 Analysis Date Analysis Date 20.75 0.50 20 0 104 65 20.45 0.50 20 0 104 65 20.50 0.50 20 0 101 65</td><td>18.49 0.50 20 0 92.5 65 135 17.79 0.50 20 0 89.0 65 135 17.79 0.50 20 0 89.0 65 135 21.72 0.50 20 0 89.0 65 135 21.72 0.50 20 0 87.2 65 135 14.43 0.50 20 0 74.2 65 135 22.60 0.50 20 0 113 65 135 32.48 0.50 20 0 117 65 135 19.23 0 20 0 96.2 65 135 3ampType: LCSD TestCole: TO-15 Units: ppby Prep Date: 11/4/20 Batch ID: R17831 TestNo: TO-15 Analysis Date: 11/4/20 20.75 0.50 20 0 104 65 135 20.12 0.50 20 0 104 65 135 <</td><td>18.490.5020092.56513517.790.5020089.06513521.720.502001096513517.440.5020087.26513514.830.5020074.26513522.600.502001136513523.480.502001176513519.23020096.265135Batch ID:R17831TestNo: TO-15Units: ppbvPrep Date:11/1/2008ResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimitRPD Ref Val20.750.502001016513520.8616.880.502001046513521.8720.750.502001016513511.8720.120.502001016513511.8720.450.502001136513511.9220.450.502001136513511.9220.450.5020088.06513511.9220.450.5020089.76513511.9220.450.5020089.76513519.2317.610.5020089.7<t< td=""><td>18.49 0.50 20 0 92.5 65 135 17.79 0.50 20 0 89.0 65 135 17.79 0.50 20 0 89.0 65 135 21.72 0.50 20 0 89.0 65 135 17.44 0.50 20 0 87.2 65 135 22.60 0.50 20 0 113 65 135 23.48 0.50 20 0 117 65 135 39.23 0 20 0 96.2 65 135 30 20 0 96.2 65 135 11/1/2008 RunNo: 17 Batch ID: R17831 TestNo: T0-15 Units: ppbv Prep Date: 11/4/2008 SeqNo: 25 16.88 0.50 20 0 104 65 135 20.86 0.529 16.88 0.50 20 0 103 65 135 21.87 6.47 20.15 0.50 2</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<></td></td>	18.49 0.50 20 0 17.79 0.50 20 0 17.79 0.50 20 0 21.72 0.50 20 0 17.44 0.50 20 0 14.83 0.50 20 0 22.60 0.50 20 0 22.60 0.50 20 0 23.48 0.50 20 0 3ampType: LCSD TestCode: TO-15 Units: ppbv Batch ID: R17831 TestNo: TO-15 Units: ppbv 20.75 0.50 20 0 20.75 0.50 20 0 20.75 0.50 20 0 20.75 0.50 20 0 20.75 0.50 20 0 20.45 0.50 20 0 20.45 0.50 20 0 22.56 0.50 20 0 22.56	18.49 0.50 20 0 92.5 17.79 0.50 20 0 89.0 17.79 0.50 20 0 89.0 21.72 0.50 20 0 89.0 21.72 0.50 20 0 109 17.44 0.50 20 0 87.2 14.83 0.50 20 0 74.2 22.60 0.50 20 0 113 23.48 0.50 20 0 117 19.23 0 20 0 96.2 SampType: LCSD TestCode: TO-15 Units: ppbv Batch ID: R17831 TestNo: TO-15 %REC 20.75 0.50 20 0 104 16.88 0.50 20 0 104 16.88 0.50 20 0 101 20.45 0.50 20 0 101 20.45 0.50 <td>18.49 0.50 20 0 92.5 65 17.79 0.50 20 0 89.0 65 17.79 0.50 20 0 89.0 65 21.72 0.50 20 0 89.0 65 17.44 0.50 20 0 87.2 65 14.83 0.50 20 0 74.2 65 22.60 0.50 20 0 113 65 23.48 0.50 20 0 117 65 19.23 0 20 0 96.2 65 SampType: LCSD TestCode: TO-15 Units: ppbv Prep Date Batch ID: R17831 TestNo: TO-15 Analysis Date Analysis Date 20.75 0.50 20 0 104 65 20.45 0.50 20 0 104 65 20.50 0.50 20 0 101 65</td> <td>18.49 0.50 20 0 92.5 65 135 17.79 0.50 20 0 89.0 65 135 17.79 0.50 20 0 89.0 65 135 21.72 0.50 20 0 89.0 65 135 21.72 0.50 20 0 87.2 65 135 14.43 0.50 20 0 74.2 65 135 22.60 0.50 20 0 113 65 135 32.48 0.50 20 0 117 65 135 19.23 0 20 0 96.2 65 135 3ampType: LCSD TestCole: TO-15 Units: ppby Prep Date: 11/4/20 Batch ID: R17831 TestNo: TO-15 Analysis Date: 11/4/20 20.75 0.50 20 0 104 65 135 20.12 0.50 20 0 104 65 135 <</td> <td>18.490.5020092.56513517.790.5020089.06513521.720.502001096513517.440.5020087.26513514.830.5020074.26513522.600.502001136513523.480.502001176513519.23020096.265135Batch ID:R17831TestNo: TO-15Units: ppbvPrep Date:11/1/2008ResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimitRPD Ref Val20.750.502001016513520.8616.880.502001046513521.8720.750.502001016513511.8720.120.502001016513511.8720.450.502001136513511.9220.450.502001136513511.9220.450.5020088.06513511.9220.450.5020089.76513511.9220.450.5020089.76513519.2317.610.5020089.7<t< td=""><td>18.49 0.50 20 0 92.5 65 135 17.79 0.50 20 0 89.0 65 135 17.79 0.50 20 0 89.0 65 135 21.72 0.50 20 0 89.0 65 135 17.44 0.50 20 0 87.2 65 135 22.60 0.50 20 0 113 65 135 23.48 0.50 20 0 117 65 135 39.23 0 20 0 96.2 65 135 30 20 0 96.2 65 135 11/1/2008 RunNo: 17 Batch ID: R17831 TestNo: T0-15 Units: ppbv Prep Date: 11/4/2008 SeqNo: 25 16.88 0.50 20 0 104 65 135 20.86 0.529 16.88 0.50 20 0 103 65 135 21.87 6.47 20.15 0.50 2</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<></td>	18.49 0.50 20 0 92.5 65 17.79 0.50 20 0 89.0 65 17.79 0.50 20 0 89.0 65 21.72 0.50 20 0 89.0 65 17.44 0.50 20 0 87.2 65 14.83 0.50 20 0 74.2 65 22.60 0.50 20 0 113 65 23.48 0.50 20 0 117 65 19.23 0 20 0 96.2 65 SampType: LCSD TestCode: TO-15 Units: ppbv Prep Date Batch ID: R17831 TestNo: TO-15 Analysis Date Analysis Date 20.75 0.50 20 0 104 65 20.45 0.50 20 0 104 65 20.50 0.50 20 0 101 65	18.49 0.50 20 0 92.5 65 135 17.79 0.50 20 0 89.0 65 135 17.79 0.50 20 0 89.0 65 135 21.72 0.50 20 0 89.0 65 135 21.72 0.50 20 0 87.2 65 135 14.43 0.50 20 0 74.2 65 135 22.60 0.50 20 0 113 65 135 32.48 0.50 20 0 117 65 135 19.23 0 20 0 96.2 65 135 3ampType: LCSD TestCole: TO-15 Units: ppby Prep Date: 11/4/20 Batch ID: R17831 TestNo: TO-15 Analysis Date: 11/4/20 20.75 0.50 20 0 104 65 135 20.12 0.50 20 0 104 65 135 <	18.490.5020092.56513517.790.5020089.06513521.720.502001096513517.440.5020087.26513514.830.5020074.26513522.600.502001136513523.480.502001176513519.23020096.265135Batch ID:R17831TestNo: TO-15Units: ppbvPrep Date:11/1/2008ResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimitRPD Ref Val20.750.502001016513520.8616.880.502001046513521.8720.750.502001016513511.8720.120.502001016513511.8720.450.502001136513511.9220.450.502001136513511.9220.450.5020088.06513511.9220.450.5020089.76513511.9220.450.5020089.76513519.2317.610.5020089.7 <t< td=""><td>18.49 0.50 20 0 92.5 65 135 17.79 0.50 20 0 89.0 65 135 17.79 0.50 20 0 89.0 65 135 21.72 0.50 20 0 89.0 65 135 17.44 0.50 20 0 87.2 65 135 22.60 0.50 20 0 113 65 135 23.48 0.50 20 0 117 65 135 39.23 0 20 0 96.2 65 135 30 20 0 96.2 65 135 11/1/2008 RunNo: 17 Batch ID: R17831 TestNo: T0-15 Units: ppbv Prep Date: 11/4/2008 SeqNo: 25 16.88 0.50 20 0 104 65 135 20.86 0.529 16.88 0.50 20 0 103 65 135 21.87 6.47 20.15 0.50 2</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	18.49 0.50 20 0 92.5 65 135 17.79 0.50 20 0 89.0 65 135 17.79 0.50 20 0 89.0 65 135 21.72 0.50 20 0 89.0 65 135 17.44 0.50 20 0 87.2 65 135 22.60 0.50 20 0 113 65 135 23.48 0.50 20 0 117 65 135 39.23 0 20 0 96.2 65 135 30 20 0 96.2 65 135 11/1/2008 RunNo: 17 Batch ID: R17831 TestNo: T0-15 Units: ppbv Prep Date: 11/4/2008 SeqNo: 25 16.88 0.50 20 0 104 65 135 20.86 0.529 16.88 0.50 20 0 103 65 135 21.87 6.47 20.15 0.50 2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits Page 10 of 12

Work Order:

Project:

0811032

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

SampType: LCSD	TestCo	de: TO-15	Units: ppbv		Prep Da	te: 11/4/20	008	RunNo: 17	831	
Batch ID: R17831	Testi	No: T O-15			Analysis Dat	e: 11/4/20	008	SeqNo: 25	5925	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
20.81	2.0	20	0	104	65	135	21.91	5.15	30	
18.96	0.50	20	0	94.8	65	135	18.69	1.43	30	
19.24	0.50	20	0	96.2	65	135	18.45	4.19	30	
16.92	0.50	20	0	84.6	65	135	18.47	8.76	30	
21.15	0.50	20	0	106	65	135		0.237	30	
19.74	0.50	20	0	98.7	65	135		0.916	30	
17.34	0.50	20	0	86.7						
18.19	0.50	20	0	91.0						
24.87	4.0	20	0	124		135				
21.76	0.50	20	0	109		135		the.		
18.44	0.50	20	0	92.2	65	135	18.44			
18.75	0.50	20	0	93.8	65	135	19.09			
22.63	0.50	20	0	113	65	135				
19.54	0.50	20	0	97.7	65	135				
21.43	0.50	20	0	107	65	135				
19.66	0.50	20	0	98.3	65	135	19.22	2.26		
19.65	0.50	20	0	98.2	65	135				
21.61	0.50		0	108	65	135				
16.74	0.50	20	0	83.7	65					
21.44	0.50	20	0	107	65					
17.75	0.50	20	0	88.8	65					
20.47	0.50	20	0		65					
21.53	0.50	20	0	108	65					
21.47	0.50	20	0	107	65					
18.56	0.50	20	0	92.8	65					
22.27	0.50	20	0	111	65					
19.13	0.50	20	0	95.7						
17.19	0.50	20	0	86.0						
20.64	2.0	20	0	103						
20.53	4.0		0	103						
37.04	0.50	40	0	92.6	65	135	37.46	1.13	30	
	Batch ID: R17831 Result 20.81 18.96 19.24 16.92 21.15 19.74 17.34 18.19 24.87 21.76 18.44 18.75 22.63 19.54 21.43 19.66 19.65 21.61 16.74 21.43 19.66 19.65 21.61 16.74 21.44 17.75 20.47 21.53 21.47 18.56 22.27 19.13 17.19 20.64 20.53	Batch ID: R17831 Test Result PQL 20.81 2.0 18.96 0.50 19.24 0.50 19.24 0.50 21.15 0.50 19.24 0.50 21.15 0.50 19.74 0.50 17.34 0.50 24.87 4.0 21.76 0.50 24.87 4.0 21.76 0.50 18.44 0.50 22.63 0.50 21.43 0.50 21.43 0.50 21.43 0.50 21.43 0.50 21.43 0.50 21.43 0.50 21.44 0.50 21.61 0.50 21.61 0.50 21.44 0.50 21.53 0.50 21.47 0.50 21.47 0.50 21.47 0.50 21.47	Batch ID: R17831 TestNo: TO-15 Result PQL SPK value 20.81 2.0 20 18.96 0.50 20 19.24 0.50 20 16.92 0.50 20 115 0.50 20 19.74 0.50 20 19.74 0.50 20 19.74 0.50 20 19.74 0.50 20 19.74 0.50 20 17.34 0.50 20 18.19 0.50 20 24.87 4.0 20 21.76 0.50 20 18.44 0.50 20 19.54 0.50 20 19.65 0.50 20 19.66 0.50 20 19.65 0.50 20 19.65 0.50 20 19.65 0.50 20 19.65 0.50 20	Batch ID: R17831 TestNo: TO-15 Result PQL SPK value SPK Ref Val 20.81 2.0 20 0 18.96 0.50 20 0 18.96 0.50 20 0 18.96 0.50 20 0 19.24 0.50 20 0 16.92 0.50 20 0 21.15 0.50 20 0 19.74 0.50 20 0 19.74 0.50 20 0 18.19 0.50 20 0 24.87 4.0 20 0 18.44 0.50 20 0 18.44 0.50 20 0 19.54 0.50 20 0 19.54 0.50 20 0 19.65 0.50 20 0 19.65 0.50 20 0 19.65 0.50	Batch ID: R17831 TestNo: TO-15 Result PQL SPK value SPK Ref Val %REC 20.81 2.0 20 0 104 18.96 0.50 20 0 94.8 19.24 0.50 20 0 96.2 16.92 0.50 20 0 84.6 21.15 0.50 20 0 98.7 17.34 0.50 20 0 98.7 17.34 0.50 20 0 91.0 24.87 4.0 20 0 124 21.76 0.50 20 0 19.2 18.44 0.50 20 0 193.8 22.63 0.50 20 0 97.7 21.43 0.50 20 0 98.2 19.65 0.50 20 0 98.2 21.43 0.50 20 0 107 19.66	Batch ID: R17831 TestNo: TO-15 Analysis Date Result PQL SPK value SPK Ref Val %REC LowLimit 20.81 2.0 20 0 104 65 18.96 0.50 20 0 94.8 65 19.24 0.50 20 0 96.2 65 16.92 0.50 20 0 86.6 65 17.34 0.50 20 0 86.7 65 17.34 0.50 20 0 91.0 65 18.49 0.50 20 0 92.2 65 18.19 0.50 20 0 92.2 65 18.44 0.50 20 0 93.8 65 21.76 0.50 20 0 97.7 65 18.44 0.50 20 0 97.7 65 19.66 0.50 20 0 98.2 65	Batch ID: R17831 TestNo: TO-15 Analysis Date: 114/20 Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit 20.81 2.0 20 0 104 65 135 18.96 0.50 20 0 94.8 65 135 19.24 0.50 20 0 84.6 65 135 19.74 0.50 20 0 84.6 65 135 19.74 0.50 20 0 86.7 65 135 17.34 0.50 20 0 98.7 65 135 18.19 0.50 20 0 124 65 135 21.76 0.50 20 0 133 65 135 21.76 0.50 20 0 97.7 65 135 22.63 0.50 20 0 97.7 65 135 <t< td=""><td>Batch ID: R17831 TestNo: TO-15 Analysis Date: 11/4/2008 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 20.81 2.0 20 0 104 65 135 21.91 18.96 0.50 20 0 94.8 65 135 18.69 19.24 0.50 20 0 94.8 65 135 18.47 16.92 0.50 20 0 84.6 65 135 18.47 21.15 0.50 20 0 86.7 65 135 18.55 17.34 0.50 20 0 91.0 65 135 18.45 24.76 0.50 20 0 124 65 135 20.272 18.44 0.50 20 0 92.2 66 135 20.272 18.44 0.50 20 0 97.7 65</td></t<> <td>Batch ID: R17831 TestNo: TO-15 Analysis Date: 11/1/2008 SeqNo: 25 Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD 20.81 2.0 20 0 104 65 135 21.91 5.15 18.96 0.50 20 0 94.8 65 135 18.45 4.19 16.92 0.50 20 0 84.6 65 135 18.47 8.76 21.15 0.50 20 0 86.7 65 135 18.45 4.19 17.34 0.50 20 0 86.7 65 135 18.35 5.66 18.19 0.50 20 0 122 65 135 18.44 0.78 21.76 0.50 20 0 92.2 65 135 19.09 1.80 18.44 0.50 20 0 97.7 65</td> <td>Batch ID: RT7831 TestNo: TO-15 Analysis Date: 11/4/2008 SeqNo: 25592 Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD RPDLinit 20.81 2.0 20 0 104 65 135 18.69 1.43 30 18.96 0.50 20 0 96.2 65 135 18.45 4.19 30 19.24 0.50 20 0 84.6 65 135 18.45 4.19 30 16.92 0.50 20 0 86.7 65 135 18.45 5.66 30 11.7.4 0.50 20 0 104 65 135 18.16 0.165 30 24.87 4.0 20 0 124 65 135 18.44 0 30 21.76 0.50 20 0 135 135 18.44 <t< td=""></t<></td>	Batch ID: R17831 TestNo: TO-15 Analysis Date: 11/4/2008 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 20.81 2.0 20 0 104 65 135 21.91 18.96 0.50 20 0 94.8 65 135 18.69 19.24 0.50 20 0 94.8 65 135 18.47 16.92 0.50 20 0 84.6 65 135 18.47 21.15 0.50 20 0 86.7 65 135 18.55 17.34 0.50 20 0 91.0 65 135 18.45 24.76 0.50 20 0 124 65 135 20.272 18.44 0.50 20 0 92.2 66 135 20.272 18.44 0.50 20 0 97.7 65	Batch ID: R17831 TestNo: TO-15 Analysis Date: 11/1/2008 SeqNo: 25 Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD 20.81 2.0 20 0 104 65 135 21.91 5.15 18.96 0.50 20 0 94.8 65 135 18.45 4.19 16.92 0.50 20 0 84.6 65 135 18.47 8.76 21.15 0.50 20 0 86.7 65 135 18.45 4.19 17.34 0.50 20 0 86.7 65 135 18.35 5.66 18.19 0.50 20 0 122 65 135 18.44 0.78 21.76 0.50 20 0 92.2 65 135 19.09 1.80 18.44 0.50 20 0 97.7 65	Batch ID: RT7831 TestNo: TO-15 Analysis Date: 11/4/2008 SeqNo: 25592 Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD RPDLinit 20.81 2.0 20 0 104 65 135 18.69 1.43 30 18.96 0.50 20 0 96.2 65 135 18.45 4.19 30 19.24 0.50 20 0 84.6 65 135 18.45 4.19 30 16.92 0.50 20 0 86.7 65 135 18.45 5.66 30 11.7.4 0.50 20 0 104 65 135 18.16 0.165 30 24.87 4.0 20 0 124 65 135 18.44 0 30 21.76 0.50 20 0 135 135 18.44 <t< td=""></t<>

Qualifiers:

Value above quantitation range E

Н Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits Page 11 of 12 S

Work Order: 0811032

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R17831

Sample ID LCSD	SampType: LCSD	TestCo	de: TO-15	Units: ppbv		Prep Dat	e: 11/4/20	108	RunNo: 17	831	
Client ID: ZZZZZ	Batch ID: R17831	TestN	No: TO-15			Analysis Dat	e: 11/4/2(800	SeqNo: 25	5925	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methylene Chloride	19.47	1.0	20	0	97.4	65	135	18.86	3.18	30	
MTBE	21.61	0.50	20	0	108	65	135	22.97	6.10	30	
Naphthalene	18.40	0.50	20	0	92.0	65	135	19.32	4.88	30	
o-xylene	18.70	0.50	20	0	93.5	65	135	18.48	1.18	30	
Styrene	18.44	0.50	20	0	92.2	65	135	18,44	0	30	
t-Butyl alcohol (t-Butanol)	21.67	2.0	20	0	108	65	135	21.64	0.139	30	
tert-Amyl methyl ether (TAME)	18.44	0.50	20	0	92.2	65	135	18.49	0.271	30	
Tetrachloroethene	17.86	0.50	20	0	89.3	65	135	17.79	0.393	30	
Toluene	17.06	0.50	20	0	85.3	65	135	17.79	4.19	30	
trans-1,2-Dichloroethene	21.33	0.50	20	0	107	65	135	21.72	1.81	30	
Trichloroethene	18.10	0.50	20	0	90.5	65	135	17.44	3.71	30	
Trichlorofluoromethane	20.05	0.50	20	0	100	65	135	14.83	29.9	30	
Vinyl Acetate	20.93	0.50	20	0	105	65	135	22.6	7.67	30	
Vinyl Chloride	24.13	0.50	20	0	121	65	135	23.48	2.73	30	
Surr: 4-Bromofluorobenzene	17.82	0	20	0	89.1	65	135	0	0	30	

Qualifiers: Value above quantitation range E.

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded Н R

J Analyte detected below quantitation limits

 \mathbf{S}

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits Page 12 of 12

Torrent Laboratory, Inc.

WORK ORDER Summary

Client ID: TRINITY SOURCE GROUP(NEW)

Project:

QC Level:

Comments: 5 day TAT! Received 2 tedlars.

Sample ID	Client Sample ID	Collection Date	Date Received	Date Due	Matrix	Test Code	HId	MS	SEL	Sub	Storage
0811032-001A	EFFLUENT	11/6/2008	11/6/2008	11/12/2008	Air	TO-15 UG/M3		\square			ORG
				11/12/2008		TO-3SS (MOD) U					ORG
0811032-002A	INFLUENT			11/12/2008		TO-15 UG/M3		[-]	Ī		ORG
				11/12/2008		TO-3SS (MOD) U			· ·		ORG

Page 1 of 1

07-Nov-08

Work Order 0811032

12

	LABORATORY, INC.		inclair Fronta is, CA 9503(:: 408.263.52 108.263.8293 orrentlab.con	5 258 3		NOTE: S						-			• •	~	vor, <u>rder</u>	-
Compa	Ny Name: TRINITY SOUT	RCE G	ROUP, 1	NC.		Loc	ation of	Samplin	g: 64	19 P1	KIF'	ic A'	VE	, A)	AMF			
Address	500 CHESTNUT ST	کی .آ	Uite 2	25		Pur	pose: ζ	ub-s	SLAN	> VE	ITME	NGS	SYS	TEN		-		-
			A .		9506		ecial Inst											
Telepho	one: (831) 426-5600 FAX	<: (83)) 426-5	602														
REPORT	TTO: DAVE REINSMA	SAMP	LER: ERIC	CHOI		P.0	o.#:\0	3.009	5.00	4		EMAIL:	DAR	Let.	56607	29.1	JET	
TURNAF	ROUND TIME:	S	AMPLE TYPE		REPOR	T FORMA							- x	-				
	ork Days 🔲 3 Work Days 🔲 Noon - N k Days 🔲 2 Work Days 💭 2 - 8 Hou k Days 🔲 1 Work Day 💭 Other		Storm Water Waste Water Ground Water Soil	Other	QC L EDF	evel IV	-3 Stoddard	-15 Full									ANALYSIS REQUESTE	
LAB ID	CLIENT'S SAMPLE I.D.		E / TIME MPLED	MATRIX	# OF CONT	CONT TYPE		2									REMARKS	
-	EFFLUENT	11/5/0	8	AIR	2	TEDLA	- X.	X								001	A, 00 A, 007	'B
	INFLUENT	11/6	/08	AIR	2	TERAP	- X	X			-					007	A .cui	RR
1				· · · · · · · · · · · · · · · · · · ·		,	4 · · ·									. ,		
		<u> </u>	-															RRE
					7											·		P
		``				· .												
														· · · · ·		· · · · · · · · · · · · · · · · · · ·		
	$- \int \int dx$																	
1 Reling	uished BE: Print: EFIC	CHOI	Date:	8	Time:) pm	Receiv	ed By:	2 ai	tra	Print:			Date:	610	8 Tir	ne: 137.Pr	
2 Reling	uished By: Print:		Date:		Time:	· / · · ·	Receiv	ed By:	J	Per	Print:			Date:	<u> </u>		ne:	
Were Sam NOTE: Sa Log In By:	mples are discarded by the labor	Yes [· · · · · · · · · · · · · · · · · · ·		er arrange		of Shipn		Ð	Date		Sa	mple se	als intact	_	s 🗌 NO 🔲 I	N/A

December 11, 2008

David Reinsma Trinity Source Group 500 Chestnut St,Suite 225 Santa Cruz, CA 95060

TEL: (831) 426-5600 FAX (831) 685-1219

RE: 103.001.001/649 Pacific Ave.Pacifica

Dear David Reinsma:

Order No.: 0812033

Torrent Laboratory, Inc. received 5 samples on 12/4/2008 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

atory Director

12/11/08

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road * Milpitas, CA * Phone: (408) 2635258 * Fax: (408) 263-8293 Visit us ar www.torrentlab.com email: analysis@torrentlab.com

Report Prepaired For: David Reinsma Trinity Source Group	þ			eceíved: eported:	12/4/2008 12/11/2008
	Summa	ary Report			
MW-5	VOLATILES by GC/MS			Lab ID:	0812033-001A
Parameter	Preped	Analyzed	Result	<u>RL</u> Unit	
Benzene	12/8/2008	12/8/2008	0.640	0.500 µg/l	
MW-3	VOLATILES by GC/MS			Lab ID:	0812033-002A
Parameter	Preped	Analyzed	Result	<u>RL Unit</u>	
Benzene	12/8/2008	12/8/2008	0.830	0.500 µg/l	
Ethylbenzene	12/8/2008	12/8/2008	0.580	0.500 μg/l	
Methyl tert-butyl ether (MTBE)	12/8/2008	12/8/2008	0.610	0.500 µg/l	
MW-2	VOLATILES by GC/MS			Lab ID:	0812033-004A
Parameter	Preped	<u>Analyzed</u>	Result	<u>RL Unit</u>	
Tetrachloroethene	12/10/2008	12/10/2008	1.95	0.500 µg/L	
MW-1	VOLATILES by GC/MS			Lab ID:	0812033-005A
Parameter	Preped	Analyzed	Result	<u>RL</u> Unit	
Tetrachloroethene	12/10/2008	12/10/2008	3.11	0.500 µg/L	
Trichloroethene	12/10/2008	12/10/2008	0.600	0.500 µg/l	

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: David Reinsma

Trinity Source Group

 Date Received:
 12/4/2008

 Date Reported:
 12/11/2008

Client Sample ID:MW-5Sample Location:SL0600150413Sample Matrix:GROUNDWATERDate/Time Sampled12/4/2008 12:35:00 PM

Lab Sample ID: 0812033-001 Date Prepared: 12/8/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	
1,1,1-Trichloroethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
1,1,2,2-Tetrachloroethane	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
1,1,2-Trichloroethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,1-Dichloroethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,1-Dichloroethene	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
1,1-Dichloropropene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,2,3-Trichlorobenzene	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
1,2,3-Trichloropropane	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
1,2,4-Trichlorobenzene	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
1,2,4-Trimethylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
1,2-Dibromo-3-chloropropane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/⊏ µg/L	R18094
1,2-Dibromoethane (EDB)	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/⊑ µg/Ľ	R18094
1,2-Dichlorobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
1,2-Dichloroethane (EDC)	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,2-Dichloropropane	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
1,3,5-Trimethylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,3-Dichlorobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/∟	R18094
1,3-Dichloropropene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,4-Dichlorobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
2,2-Dichloropropane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
2-Chloroethyl vinyl ether	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
2-Chlorotoiuene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
4-Chlorotoluene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
4-Isopropyltoluene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Acetone	SW8260B	12/8/2008	10	1	10.0	ND	µg/L	R18094
Benzene	SW8260B	12/8/2008	0.5	1	0.50	0.64	µg/L	R18094
Bromobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Bromochloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Bromodichloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Bromoform	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
Bromomethane	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
Carbon tetrachloride	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
Chlorobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Chloroform	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Chloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
cis-1,2-Dichloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 1 of 11

Trinity Source Group

Client Sample ID:	MW-5
Sample Location:	SL0600150413
Sample Matrix:	GROUNDWATER
Date/Time Sampled	12/4/2008 12:35:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-001 Date Prepared: 12/8/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
cis-1,3-Dichloropropene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Dibromochloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Dibromomethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Dichlorodifluoromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Diisopropyl ether (DIPE)	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Ethyl tert-butyl ether (ETBE)	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Ethylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Freon-113	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
Hexachlorobutadiene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Isopropylbenzene	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
Methyl tert-butyl ether (MTBE)	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Methylene chloride	SW8260B	12/8/2008	5	1	5.00	ND	μg/L	R18094
Naphthalene	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
n-Butylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
n-Propylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
sec-Butylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Styrene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
t-Butyl alcohol (t-Butanol)	SW8260B	12/8/2008	5	1	5.00	ND	µg/L	R18094
tert-Amyl methyl ether (TAME)	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
tert-Butylbenzene	SW8260B	12/8/2008	0.5	1	0.50	NĎ	µg/L	R18094
Tetrachloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Toluene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
trans-1,2-Dichloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
trans-1,3-Dichloropropene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Trichloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Trichlorofluoromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Vinyl chloride	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Xylenes, Total	SW8260B	12/8/2008	1.5	1	1.50	ND	μg/L	R18094
Surr: Dibromofluoromethane	SW8260B	12/8/2008	0	1	61.2-131	86.6	%REC	R18094
Surr: 4-Bromofluorobenzene	SW8260B	12/8/2008	0	1	64.1-120	89.4	%REC	R18094
Surr: Toluene-d8	SW8260B	12/8/2008	0	1	75.1-127	89.1	%REC	R18094
TPH (Mineral Spirits)	SW8260B(TPH)	12/8/2008	50	1	50	ND	µg/L	T18094
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	12/8/2008	0	1	58.4-133	94.0	%REC	T18094

Note: No Mineral Spirit(Stoddard Solvent) was detected.

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Client Sample ID:	MW-3
Sample Location:	No SiO2 clean upSL0600150413

Sample Matrix:GROUNDWATERDate/Time Sampled12/4/2008 1:24:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-002 Date Prepared: 12/8/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
1,1,1-Trichloroethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,1,2,2-Tetrachloroethane	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
1,1.2-Trichloroethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
1,1-Dichloroethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,1-Dichloroethene	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
1,1-Dichloropropene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
1,2,3-Trichlorobenzene	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
1,2,3-Trichloropropane	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
1,2,4-Trichlorobenzene	SW8260B	12/8/2008	1	1	1.00	ND	µg/∟	R18094
1,2,4-Trimethylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND		
1,2-Dibromo-3-chloropropane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
1,2-Dibromoethane (EDB)	SW8260B	12/8/2008	0.5	1	0.50		µg/L	R18094
1.2-Dichlorobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
1,2-Dichloroethane (EDC)	SW8260B	12/8/2008	0.5	1		ND	µg/L	R18094
1,2-Dichloropropane	SW8260B	12/8/2008	1	1	0.50	ND	hð\r	R18094
1,3,5-Trimethylbenzene	SW8260B	12/8/2008		1	1.00	ND	µg/L	R18094
1,3-Dichlorobenzene	SW8260B		0.5	1	0.50	ND	µg/L	R18094
		12/8/2008	0.5	1	0.50	ND	µg/L	R18094
1,3-Dichloropropene 1,4-Dichlorobenzene	SW8260B SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
		12/8/2008	0.5	1	0.50	ND	µg/L	R18094
2,2-Dichloropropane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
2-Chloroethyl vinyl ether	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
2-Chlorotoluene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
4-Chlorotoluene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
4-Isopropyltoluene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Acetone	SW8260B	12/8/2008	10	1	10.0	ND	µg/L	R18094
Benzene	SW8260B	12/8/2008	0.5	1	0.50	0.83	µg/L	R18094
Bromobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Bromochloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Bromodichloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Bromoform	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
Bromomethane	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
Carbon tetrachloride	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
Chlorobenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Chloroform	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Chloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
cis-1,2-Dichloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
cis-1,3-Dichloropropene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Dibromochloromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Dibromomethane	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Dichlorodifluoromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Diisopropyl ether (DIPE)	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 3 of 11

Trinity Source Group

Client Sample ID:	MW-3
Sample Location:	No SiO2 clean upSL0600150413
Sample Matrix:	GROUNDWATER
Date/Time Sampled	12/4/2008 1:24:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-002 Date Prepared: 12/8/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Ethylbenzene	SW8260B	12/8/2008	0.5	1	0.50	0.58	μg/L	R18094
Freon-113	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
Hexachlorobutadiene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Isopropylbenzene	SW8260B	12/8/2008	1	1	1.00	ND	µg/L	R18094
Methyl tert-butyl ether (MTBE)	SW8260B	12/8/2008	0.5	1	0.50	0.61	μg/L	R18094
Methylene chloride	SW8260B	12/8/2008	5	1	5.00	ND	µg/L	R18094
Naphthalene	SW8260B	12/8/2008	1	1	1.00	ND	μg/L	R18094
n-Butylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
n-Propylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
sec-Butylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Styrene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
t-Butyl alcohol (t-Butanol)	SW8260B	12/8/2008	5	1	5.00	ND	µg/L	R18094
tert-Amyl methyl ether (TAME)	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
tert-Butylbenzene	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Tetrachloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Toluene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
trans-1,2-Dichloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
trans-1,3-Dichloropropene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Trichloroethene	SW8260B	12/8/2008	0.5	1	0.50	ND	µg/L	R18094
Trichlorofluoromethane	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Vinyl chloride	SW8260B	12/8/2008	0.5	1	0.50	ND	μg/L	R18094
Xylenes, Total	SW8260B	12/8/2008	1.5	1	1.50	ND	μg/L	R18094
Surr: Dibromofluoromethane	SW8260B	12/8/2008	0	1	61.2-131	101	%REC	R18094
Surr: 4-Bromofluorobenzene	SW8260B	12/8/2008	0	1	64.1-120	85.4	%REC	R18094
Surr: Toluene-d8	SW8260B	12/8/2008	0	1	75.1-127	97.5	%REC	R18094
TPH (Mineral Spirits)	SW8260B(TPH)	12/8/2008	50	1	50	ND	μg/L	T18094
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	12/8/2008	0	1	58.4-133	87.9	%REC	T18094

Note: No Mineral Spirit(Stoddard Solvent) was detected.

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Client Sample ID:	MW-4
Sample Location:	SL0600150413
Sample Matrix:	GROUNDWATER
Date/Time Sampled	12/4/2008 1:59:00 PM
· · · · · · · · · · · · · · · · · · ·	· ·

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample 1D: 0812033-003 Date Prepared: 12/9/2008

· · · · · · · · · · · ·	н. Т	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
1,1,1-Trichloroethane	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1,1,2,2-Tetrachloroethane	SW8260B	12/9/2008	1	1	1.00	ND	µg/L	F18094
1,1,2-Trichloroethane	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1,1-Dichloroethane	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1,1-Dichloroethene	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
1,1-Dichloropropene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1,2,3-Trichlorobenzene	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
1,2,3-Trichloropropane	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
1,2,4-Trichlorobenzene	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
1,2,4-Trimethylbenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
1,2-Dibromo-3-chloropropane	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
1,2-Dibromoethane (EDB)	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1,2-Dichlorobenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1,2-Dichloroethane (EDC)	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
1,2-Dichloropropane	SW8260B	12/9/2008	1	1	1.00	ND	µg/L	F18094
1,3,5-Trimethylbenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1,3-Dichlorobenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
1,3-Dichloropropene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
I,4-Dichlorobenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
2,2-Dichloropropane	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
2-Chloroethyl vinyl ether	SW8260B	12/9/2008	1	1	1.00	ND	µg/L	F18094
2-Chlorotoluene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
1-Chlorotoluene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
I-Isopropyltoluene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
Acetone	SW8260B	12/9/2008	10	1	10.0	ND	μg/L	F18094
Benzene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
Bromobenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
Bromochloromethane	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
Bromodichloromethane	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
Bromoform	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
Bromomethane	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
Carbon tetrachloride	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094
Chlorobenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094
Chloroform	SW8260B	12/9/2008	0.5	1	0.50	ND		F18094
Chloromethane	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L μg/L	F18094
cis-1,2-Dichloroethene	SW8260B	12/9/2008	0.5	1	0.50	ND		
bis-1,3-Dichloropropene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094
Dibromochloromethane	SW8260B	12/9/2008	0.5	, 1	0.50	ND	µg/L	F18094
Dibromomethane	SW8260B	12/9/2008	0.5	1	0.50		µg/L	F18094
Dichlorodifluoromethane	SW8260B	12/9/2008	0.5	1	0.50		µg/L	F18094
Diisopropyl ether (DIPE)	SW8260B	12/9/2008	0.5	1			μg/L	F18094
Ethyl tert-butyl ether (ETBE)	SW8260B			1	0.50	ND	µg/L	F18094
unyi tert-butyi etnel (ETDE)	3002000	12/9/2008	0.5	1	0.50	ND	µg/L	F18094

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 5 of 11

Client Sample ID:	MW-4
Sample Location:	SL0600150413
Sample Matrix:	GROUNDWATER
Date/Time Sampled	12/4/2008 1:59:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-003 Date Prepared: 12/9/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch	
Ethylbenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	hð/r	F18094	
Freon-113	SW8260B	12/9/2008	1	1	1.00	ND	μg/L	F18094	
Hexachlorobutadiene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094	
Isopropylbenzene	SW8260B	12/9/2008	1	1	1.00	ND	µg/L	F18094	
Methyl tert-butyl ether (MTBE)	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094	
Methylene chloride	SW8260B	12/9/2008	5	1	5.00	ND	µg/L	F18094	
Naphthalene	SW8260B	12/9/2008	1	1	1.00	ND	µg/L	F18094	
n-Butylbenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
n-Propylbenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094	
sec-Butylbenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094	
Styrene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
t-Butyl alcohol (t-Butanol)	SW8260B	12/9/2008	5	1	5.00	ND	µg/L	F18094	
tert-Amyl methyl ether (TAME)	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094	
tert-Butylbenzene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
Tetrachloroethene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
Toluene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
trans-1,2-Dichloroethene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094	
trans-1,3-Dichloropropene	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
Trichloroethene	SW8260B	12/9/2008	0.5	1	0.50	ND	µg/L	F18094	
Trichlorofluoromethane	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
Vinyl chloride	SW8260B	12/9/2008	0.5	1	0.50	ND	μg/L	F18094	
Xylenes, Total	SW8260B	12/9/2008	1.5	1	1.50	ND	µg/L	F18094	
Surr: Dibromofluoromethane	SW8260B	12/9/2008	0	1	61.2-131	87.2	%REC	F18094	
Surr: 4-Bromofluorobenzene	SW8260B	12/9/2008	0	1	64.1-120	116	%REC	F18094	
Surr: Toluene-d8	SW8260B	12/9/2008	0	1	75.1-127	88.8	%REC	F18094	
TPH (Mineral Spirits)	SW8260B(TPH)	12/9/2008	50	1	50	ND	ug/l	T18094	
Surr: 4-Bromofilurobenzene	SW8260B(TPH)	12/9/2008	0	1	58.4-133	103	µg/L %REC		
	=::::::::::::::::::::::::::::::::::::::		U	ł	2014-122	100	TORES	T18094	

Note: No Mineral Spirit(Stoddard Solvent) was detected.

Client Sample ID:	MW-2
Sample Location:	SL0600150413
Sample Matrix:	GROUNDWATER
Date/Time Sampled	12/4/2008 3:00:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-004 Date Prepared: 12/10/2008

		4		100 C 101	1. S.	1. A. A. A.	1. A. A.	
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,1,1-Trichloroethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
1,1,2,2-Tetrachloroethane	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
1,1,2-Trichloroethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
1,1-Dichloroethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
1,1-Dichloroethene	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
1,1-Dichloropropene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
1,2,3-Trichlorobenzene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,2,3-Trichloropropane	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,2,4-Trichlorobenzene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,2,4-Trimethylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
1,2-Dibromo-3-chloropropane	SW8260B	12/10/2008	0.5	1	0.50	ND		F18094
1,2-Dibromoethane (EDB)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
1,2-Dichlorobenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	
1,2-Dichloroethane (EDC)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
1,2-Dichloropropane	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
1,3,5-Trimethylbenzene	SW8260B	12/10/2008	0.5	1	0.50		µg/L	F18094
1,3-Dichlorobenzene	SW8260B	12/10/2008	0.5	1		ND	µg/L	F18094
1,3-Dichloropropene	SW8260B	12/10/2008	0.5	1	0.50 0.50	ND	µg/L	F18094
1.4-Dichlorobenzene	SW8260B	12/10/2008	0.5	1		ND	µg/L	F18094
2,2-Dichloropropane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
2-Chloroethyl vinyl ether	SW8260B	12/10/2008	1	1	0.50	ND	µg/L	F18094
2-Chlorotoluene	SW8260B	12/10/2008	0.5		1.00	ND	µg/L	F18094
4-Chlorotoluene	SW8260B	12/10/2008		1	0.50	ND	µg/L	F18094
4-Isopropyltoluene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Acetone	SW8260B		0.5	1	0.50	ND	µg/L	F18094
Benzene	SW8260B	12/10/2008	10 0.5	1	10.0	ND	µg/L	F18094
Bromobenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Bromochloromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
		12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Bromodichloromethane Bromoform	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
Bromomethane	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
Carbon tetrachloride	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
Chlorobenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Chloroform	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Chloromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
cis-1,2-Dichloroethene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
cis-1,3-Dichloropropene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Dibromochloromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Dibromomethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Dichlorodifluoromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Diisopropyl ether (DIPE)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Ethyl tert-butyl ether (ETBE)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 7 of 11

Client Sample ID:MW-2Sample Location:SL0600150413Sample Matrix:GROUNDWATERDate/Time Sampled12/4/2008 3:00:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-004 Date Prepared: 12/10/2008

Parameters	Analysis Method	Date	RL	Dilution	MRL	Result	Ilmite	· · · · · · · · · · · · · · · · · · ·
Ethylhenzene		Analyzed		Factor		ixcount	Units	Analytical Batch
La	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Freon-113	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
Hexachlorobutadiene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Isopropylbenzene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
Methyl tert-butyl ether (MTBE)	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Methylene chloride	SW8260B	12/10/2008	5	1	5.00	ND	μg/L	F18094
Naphthalene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
n-Butylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
n-Propylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
sec-Butylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Styrene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
t-Butyl alcohol (t-Butanol)	SW8260B	12/10/2008	5	1	5.00	ND	μg/L	F18094
tert-Amyl methyl ether (TAME)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
tert-Butylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Tetrachloroethene	SW8260B	12/10/2008	0.5	1	0.50	1.95	μg/L	F18094
Toluene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
trans-1,2-Dichloroethene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
trans-1,3-Dichloropropene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Trichloroethene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Trichlorofluoromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Vinyl chloride	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Xylenes, Total	SW8260B	12/10/2008	1.5	1	1.50	ND	μg/L	F18094
Surr: Dibromofluoromethane	SW8260B	12/10/2008	0	1	61.2-131	88.3	%REC	F18094
Surr: 4-Bromofluorobenzene	SW8260B	12/10/2008	0	1	64.1-120	105	%REC	F18094
Surr: Toluene-d8	SW8260B	12/10/2008	0	1	75.1-127	96.0	%REC	F18094
TPH (Mineral Spirits) SV	V8260B(TPH)	12/10/2008	50	1	50	ND	µg/L	T18094
· · ·	V8260B(TPH)	12/10/2008	0	1	58.4-133	107	%REC	T18094

Note: No Mineral Spirit(Stoddard Solvent) was detected.

Client Sample ID:	MW-1
Sample Location:	SL0600150413
Sample Matrix:	GROUNDWATER
Date/Time Sampled	12/4/2008 3:30:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-005 Date Prepared: 12/10/2008

		A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		and the second second	1. A. A.			
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
1,1,1-Trichloroethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
1,1,2,2-Tetrachloroethane	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,1,2-Trichloroethane	SW8260B	12/10/2008	0.5	1	0,50	ND	μg/L	F18094
1,1-Dichloroethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
1,1-Dichloroethene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,1-Dichloropropene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
1,2,3-Trichlorobenzene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,2,3-Trichloropropane	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,2,4-Trichlorobenzene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
1,2,4-Trimethylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094 F18094
1,2-Dibromo-3-chloropropane	SW8260B	12/10/2008	0.5	1	0.50	ND		F18094
1,2-Díbromoethane (EDB)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	
1.2-Dichlorobenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
1,2-Dichloroethane (EDC)	SW8260B	12/10/2008	0.5	1	0.50		µg/L	F18094
1,2-Dichloropropane	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
1,3,5-Trimethylbenzene	SW8260B	12/10/2008	0.5	1		ND	µg/L	F18094
1.3-Dichlorobenzene	SW8260B	12/10/2008	0.5 0.5		0.50	ND	µg/L	F18094
1,3-Dichloropropene	SW8260B	12/10/2008		1	0.50	ND	µg/L	F18094
1,4-Dichlorobenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
2,2-Dichloropropane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
2-Chloroethyl vinyl ether	SW8260B		0.5	1	0.50	ND	µg/L	F18094
2-Chlorotoluene	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
4-Chlorotoluene		12/10/2008	0.5	1	0.50	ND	µg/L	F18094
	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
4-Isopropyltoluene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Acetone	SW8260B	12/10/2008	10	1	10.0	ND	μg/L	F18094
Benzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Bromobenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Bromochloromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Bromodichloromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Bromoform	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
Bromomethane	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
Carbon tetrachloride	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
Chlorobenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Chloroform	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Chloromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
cis-1,2-Dichloroethene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
cis-1,3-Dichloropropene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Dibromochloromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Dibromomethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Dichlorodifluoromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Diisopropyl ether (DIPE)	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Ethyl tert-butyl ether (ETBE)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 9 of 11

Client Sample ID:MW-1Sample Location:SL0600150413Sample Matrix:GROUNDWATERDate/Time Sampled12/4/2008 3:30:00 PM

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812033-005 Date Prepared: 12/10/2008

Parameters	Analysis	Date	RL	Dilution	MRL	Result	Units	Analytical
	Method	Analyzed	KL2	Factor	ITTICL	Result	Units	Batch
Ethylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Freon-113	SW8260B	12/10/2008	1	1	1.00	ND	µg/L	F18094
Hexachlorobutadiene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
sopropylbenzene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
Methyl tert-butyl ether (MTBE)	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Methylene chloride	SW8260B	12/10/2008	5	1	5.00	ND	μg/L	F18094
Naphthalene	SW8260B	12/10/2008	1	1	1.00	ND	μg/L	F18094
n-Butylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
n-Propylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
sec-Butylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Styrene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
-Butyl alcohol (t-Butanol)	SW8260B	12/10/2008	5	1	5.00	ND	μg/L	F18094
ert-Amyl methyl ether (TAME)	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
ert-Butylbenzene	SW8260B	12/10/2008	0.5	1	0.50	ND	µg/L	F18094
Tetrachloroethene	SW8260B	12/10/2008	0.5	1	0.50	3.11	µg/L	F18094
Toluene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
rans-1,2-Dichloroethene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
rans-1,3-Dichloropropene	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Trichloroethene	SW8260B	12/10/2008	0.5	1	0.50	0.60	μg/L	F18094
Trichlorofluoromethane	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
/inyl chloride	SW8260B	12/10/2008	0.5	1	0.50	ND	μg/L	F18094
Xylenes, Total	SW8260B	12/10/2008	1.5	1	1.50	ND	µg/L	F18094
Surr: Dibromofluoromethane	SW8260B	12/10/2008	0	1	61.2-131	85.2	%REC	F18094
Surr: 4-Bromofluorobenzene	SW8260B	12/10/2008	0	1	64.1-120	111	%REC	F18094
Surr: Toluene-d8	SW8260B	12/10/2008	0	1	75.1-127	88.4	%REC	F18094
TPH (Mineral Spirits)	SW8260B(TPH)	12/10/2008	50	1	50	ND	μg/L	T18094
, , , ,	SW8260B(TPH)	12/10/2008			~~		н 9 , г	110034

Note: No Mineral Spirit(Stoddard Solvent) was detected.

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

_

CLIENT:Trinity Source GroupWork Order:0812033

Project: 103.001.001/649 Pacific Ave.Pacifica

ANALYTICAL QC SUMMARY REPORT

BatchID: F18094

Sample ID MB_F18094	SampType: MBLK	TestCoo	le: 8260B_W	Units: µg/L		Prep Da	ate: 12/9/2	008	RunNo: 18	094	
Client ID: ZZZZZ	Batch ID: F18094	TestN	lo: SW8260B			Analysis Da	ate: 12/9/2	008	SeqNo: 26	0123	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	1.00									
1,1,1-Trichloroethane	ND	0.500									
1,1,2,2-Tetrachloroethane	ND	1.00									
1,1,2-Trichloroethane	ND	0.500									
1,1-Dichloroethane	ND	0.500									
1,1-Dichloroethene	ND	1.00									
1,1-Dichloropropene	ND	0.500									
1,2,3-Trichlorobenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	1.00									
1,2,4-Trimethylbenzene	ND	0.500									
1,2-Dibromo-3-chloropropane	ND	0.500									
1,2-Dibromoethane (EDB)	ND	0.500									
1,2-Dichlorobenzene	ND	0.500									
1,2-Dichloroethane (EDC)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
1,3,5-Trimethylbenzene	ND	0.500									
1,3-Dichlorobenzene	ND	0.500									
1,4-Dichlorobenzene	ND	0.500									
2,2-Dichloropropane	ND	0.500									
2-Chloroethyl vinyl ether	ND	1.00									
2-Chlorotoluene	ND	0.500									
4-Chlorotoluene	ND	0.500									
4-Isopropyltoluene	ND	0.500									
Acetone	ND	10.0									
Benzene	ND	0.500									
Bromobenzene	ND	0.500									
Bromochloromethane	ND	0.500									
Bromodichloromethane	ND	0.500									
Bromoform	ND	1.00									
•	quantitation range I at the Reporting Limit			g times for preparatio utside accepted recove	-	s exceeded		Analyte detected b Spike Recovery or		ecovery limits	age 1 oj

103.001.001/649 Pacific Ave.Pacifica Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: F18094

Sample ID MB_F18094	SampType: MBLK	TestCod	le: 8260B_W	Units: µg/L		Prep Da	ate: 12/9	2008	RunNo: 18	094	
Client ID: ZZZZZ	Batch ID: F18094	TestN	lo: SW8260B			Analysis Da	nte: 12/9	2008	SeqNo: 26	0123	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLim	it RPD Ref Val	%RPD	RPDLimit	Qual
Bromomethane	ND	1.00									
Carbon tetrachloride	ND	1.00									
Chlorobenzene	ND	0.500									
Chloroform	ND	0.500									
Chloromethane	ND	0.500									
cis-1,2-Dichloroethene	ND	0.500									
cis-1,3-Dichloropropene	ND	0.500									
Dibromochloromethane	ND	0.500									
Dibromomethane	ND	0.500									
Dichlorodifluoromethane	ND	0.500									
Diisopropyl ether (DIPE)	ND	0.500									
Ethyl tert-butyl ether (ETBE)	ND	0.500									
Ethylbenzene	ND	0.500									
Freon-113	ND	1.00									
Hexachlorobutadiene	ND	0.500									
Isopropylbenzene	ND	1.00									
Methyl tert-butyl ether (MTBE)	ND	0.500									
Methylene chloride	ND	5.00									
Naphthalene	ND	1.00									
n-Butylbenzene	ND	0.500									
n-Propylbenzene	ND	0.500									
sec-Butylbenzene	ND	0.500									
Styrene	ND	0.500									
t-Butyl alcohol (t-Butanol)	ND	5.00									
tert-Amyl methyl ether (TAME)	ND	0.500									
tert-Butylbenzene	ND	0.500									
Tetrachloroethene	ND	0.500									
Toluene	ND	0.500									
trans-1,2-Dichloroethene	ND	0.500									
trans-1,3-Dichloropropene	ND	0.500									
Trichloroethene	ND	0.500									
	quantitation range at the Reporting Limit			g times for preparatio itside accepted recove		exceeded	J S	Analyte detected b Spike Recovery of		ecovery limits	age 2 oj

103.001.001/649 Pacific Ave.Pacifica Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: F18094

Sample ID MB_F18094	SampType: MBLK	TestCo	de: 8260B_W	Units: µg/L		Prep Da	te: 12/9/2	008	RunNo: 18	094	
Client ID: ZZZZZ	Batch ID: F18094	Test	No: SW8260 E	3		Analysis Da	te: 12/9/2	008	SeqNo: 26	0123	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Trichlorofluoromethane	ND	0.500									
Vinyl chloride	ND	0.500									
Xylenes, Total	ND	1.50									
Surr: Dibromofluoromethane	12.69	0	11.36	0	112	61.2	131				
Surr: 4-Bromofluorobenzene	12.84	0	11.36	0	113	64.1	120				
Surr: Toluene-d8	11.11	0	11.36	0	97.8	75.1	127				
Sample ID LCS_F18094	SampType: LCS	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	te: 12/9/2	008	RunNo: 18	094	
Client ID: ZZZZZ	Batch ID: F18094	Test	No: SW8260E	1		Analysis Dat	te: 12/9/2	008	SeqNo: 26	0124	
Anaiyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1-Dichloroethene	14.10	1.00	17.04	0	82.7	61.4	129				
Benzene	14.48	0.500	17.04	0	85.0	66.9	140				
Chlorobenzene	14.35	0.500	17.04	0	84.2	73.9	137				
Toluene	14.33	0.500	17.04	0	84.1	76.6	123				
Trichloroethene	14.03	0.500	17.04	0	82.3	69.3	144				
Surr: Dibromofluoromethane	9.810	0	11.36	0	86.4	61.2	131				
Surr: 4-Bromofluorobenzene	12.70	0	11.36	0	112	64.1	120				
Surr: Toluene-d8	11.25	0	11,36	0	99.0	75.1	127				
Sample ID LCSD_F18094	SampType: LCSD	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	e: 12/10/2	2008	RunNo: 18	094	
Client ID: ZZZZZ	Batch ID: F18094	Test	Vo: SW8260B			Analysis Dat	e: 12/10/2	2008	SeqNo: 26	0125	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1-Dichloroethene	14.42	1.00	17.04	0	84.6	61.4	129	14.1	2.24	20	
Benzene	14.53	0.500	17.04	0	85.3	66.9	140	14.48	0.345	20	
Chlorobenzene	15.46	0.500	17.04	0	90.7	73.9	137	14.35	7.45	20	
Toluene	15.02	0.500	17.04	0	88.1	76.6	123	14.33	4.70	20	
Frichloroethene	15.29	0.500	17.04	0	89.7	69.3	144	14.03	8.59	20	
Surr: Dibromofiuoromethane	10.14	0	11.36	0	89.3	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	11.30	0	11.36	0	99.5	64.1	120	0	0	0	
Qualifiers: E Value above	quantitation range		H Holdiı	ag times for preparatio	n or analysi	s exceeded	J.	Analyte detected b	elow quantitatio	on limits	

ND Not Detected at the Reporting Limit

ng u г ргерага R RPD outside accepted recovery limits Analyte detected second processes of the second proces of the second processes of the second processes of the sec

CLIENT: Trinity Source Group Work Order: 0812033 103.001.001/649 Pacific Ave, Pacifica **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: F18094

Sample ID LCSD_F18094	SampType: LCSD	TestCod	le: 8260B_W	Units: µg/L		Prep Da	te: 12/10/2	2008	RunNo: 18	094	
Client ID: ZZZZZ	Batch ID: F18094	TestN	lo: SW8260B			Analysis Da	te: 12/10/2	2008	SeqNo: 26	0125	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Toluene-d8	10.64	0	11.36	0	93.7	75.1	127	0	0	0	

Holding times for preparation or analysis exceeded Н R RPD outside accepted recovery limits

J

S

103.001.001/649 Pacific Ave.Pacifica Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R18094

Sample ID MB_R18094	SampType: MBLK	TestCo	de: 8260B_W	Units: µg/L		Prep Da	te: 12/8/2	2008	RunNo: 18	094	
Client ID; ZZZZZ	Batch ID: R18094	Testi	No: SW8260 B	;		Analysis Da	te: 12/8/2	8008	SeqNo: 25	9954	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	1.00				·					
1,1,1-Trichloroethane	ND	0.500									
1,1,2,2-Tetrachloroethane	ND	1.00									
1,1,2-Trichloroethane	ND	0.500									
1,1-Dichloroethane	ND	0.500									
1,1-Dichloroethene	ND	1.00									
1,1-Dichloropropene	ND	0.500									
1,2,3-Trichlorobenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	1.00									
1,2,4-Trimethylbenzene	ND	0.500									
1,2-Dibromo-3-chloropropane	ND	0.500									
1,2-Dibromoethane (EDB)	ND	0.500									
1,2-Dichlorobenzene	ND	0.500									
1,2-Dichloroethane (EDC)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
1,3,5-Trimethylbenzene	ND	0.500									
1,3-Dichlorobenzene	ND	0.500									
1,4-Dichlorobenzene	ND	0.500									
2,2-Dichloropropane	ND	0.500									
2-Chloroethyl vinyl ether	ND	1.00									
2-Chlorotoluene	ND	0.500									
4-Chlorotoluene	ND	0.500									
4-Isopropyltoluene	ND	0.500									
Acetone	ND	10.0									
Benzene	ND	0.500									
Bromobenzene	ND	0.500									
Bromochloromethane	ND	0.500									
Bromodichloromethane	ND	0.500									
Bromoform	ND	1.00									
	ND	1.00									

Project: 103.001.001/649 Pacific Ave.Pacifica

ANALYTICAL QC SUMMARY REPORT

BatchID: R18094

Sample ID MB_R18094	SampType: MBLK	TestCoo	le: 8260B_W	Units: µg/L		Prep Da	ite: 12/8/2	008	RunNo: 180)94	
Client ID: ZZZZZ	Batch ID: R18094	TestN	lo: SW8260B			Analysis Da	ite: 12/8/2	800	SeqNo: 259	9954	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon tetrachloride	ND	1.00									
Chlorobenzene	ND	0.500									
Chloroform	ND	0.500									
Chloromethane	ND	0.500									
cis-1,2-Dichloroethene	ND	0.500									
cis-1,3-Dichloropropene	ND	0.500									
Dibromochloromethane	ND	0.500									
Dibromomethane	ND	0.500									
Dichlorodifluoromethane	ND	0.500									
Diisopropyl ether (DIPE)	ND	0.500									
Ethyl tert-butyl ether (ETBE)	ND	0.500									
Ethylbenzene	ND	0.500									
Freon-113	ND	1.00									
Hexachlorobutadiene	ND	0.500									
Isopropylbenzene	ND	1.00									
Methyl tert-butyl ether (MTBE)	ND	0.500									
Methylene chloride	ND	5.00									
Naphthalene	ND	1.00									
n-Butylbenzene	ND	0.500									
n-Propylbenzene	ND	0.500									
sec-Butylbenzene	ND	0.500									
Styrene	ND	0.500									
t-Butyl alcohol (t-Butanol)	ND	5.00									
tert-Amyl methyl ether (TAME)	ND	0.500									
tert-Butylbenzene	ND	0.500									
Tetrachloroethene	ND	0.500									
Toluene	ND	0.500									
trans-1,2-Dichloroethene	ND	0.500									
trans-1,3-Dichloropropene	ND	0.500									
Trichloroethene	ND	0.500									
Trichlorofluoromethane	ND	0.500									

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits Page 6 of 8

0812033

Project: 103.001.001/649 Pacific Ave.Pacifica

ANALYTICAL QC SUMMARY REPORT

BatchID: R18094

Sample ID MB_R18094	SampType: MBLK	TestCo	de: 8260B_W	Units: µg/L		Prep Date	e: 12/8/2	008	RunNo: 18	3094	
Client ID: ZZZZZ	Batch ID: R18094	Test	No: SW8260B	i		Analysis Date	e: 12/8/2	008	SeqNo: 2	59954	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	ND	0.500									
Xylenes, Total	ND	1.50									
Surr: Dibromofluoromethane	10.10	0	11.36	0	88,9	61.2	131				
Surr: 4-Bromofluorobenzene	11.83	0	11.36	0	104	64.1	120				
Surr: Toluene-d8	12.01	0	11.36	0	106	75.1	127				
Sample ID LCS_R18094	SampType: LCS	TestCo	de: 8260B_W	Units: µg/L		Prep Date	e: 12/8/2 0	008	RunNo: 18094		
Client ID: ZZZZZ	Batch ID: R18094	Test	lo: SW8260B			Analysis Date	e: 12/8/20	008	SeqNo: 25	59955	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	15.96	1.00	17.04	0	93.7	61.4	129				
Benzene	16.36	0.500	17.04	0	96.0	66.9	140				
Chlorobenzene	17.74	0.500	17.04	0	104	73.9	137				
Toluene	17,53	0.500	17.04	0	103	76.6	123				
Trichloroethene	16.25	0.500	17.04	0	95.4	69.3	144				
Surr: Dibromofluoromethane	9.860	0	11.36	0	86.8	61.2	131				
Surr: 4-Bromofluorobenzene	9.660	0	11.36	0	85.0	64.1	120				
Surr: Toluene-d8	10.55	0	11.36	0	92.9	75.1	127				
Sample ID LCSD_R18094	SampType: LCSD	TestCoc	le: 8260B_W	Units: µg/L		Prep Date	e: 12/8/20)08	RunNo: 18094		
Client ID: ZZZZZ	Batch ID: R18094	TestN	lo: SW8260B			Analysis Date	e: 12/8/20)08	SeqNo: 25	9957	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	14.76	1.00	17.04	0	86.6	61.4	129	15.96	7.81	20	
Benzene	14.57	0.500	17.04	0	85.5	66.9	140	16.36	11.6	20	
Chlorobenzene	14.90	0.500	17.04	0	87.4	73.9	137	17.74	17.4	20	
Toluene	14,58	0.500	17.04	0	85.6	76.6	123	17.53	18.4	20	
Trichloroethene	14.50	0.500	17.04	0	85.1	69.3	144	16.25	11.4	20	
Surr: Dibromofluoromethane	10.80	0	11.36	0	95.1	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	9.970	0	11.36	0	87.8	64.1	120	0	0	0	
Surr: Toluene-d8	9.950	0	11.36	0	87.6	75.1	127	0	0	0	
Qualifiers: E Value above quantitation range H Holding			g times for preparation	ı or analysi	s exceeded	J /	Analyte detected b	clow quantitation	on limits		

ND Not Detected at the Reporting Limit

tor prepara R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits Page 7 of 8

103.001.001/649 Pacific Ave.Pacifica **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: T18094

Sample ID MB_T18094	SampType: MBLK	TestCode: TPPH_W_GC Units: µg/L	Prep Date: 12/9/2008	RunNo: 18094
Client ID: ZZZZZ	Batch ID: T18094	TestNo: SW8260B(TP	Analysis Date: 12/9/2008	SeqNo: 260053
Analyte	Result	PQL. SPK value SPK Ref Vai	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Mineral Spirits) Surr: 4-Bromofllurobenzene	ND 12.45	50 0 11.6 0	107 58.4 133	
Sample ID LCS_T18094 Client ID: ZZZZZ	SampType: LCS Batch ID: T18094	TestCode: TPPH_W_GC Units: μg/L TestNo: SW8260B(TP	Prep Date: 12/9/2008 Analysis Date: 12/9/2008	RunNo: 18094 SeqNo: 260054
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Surr: 4-Bromofllurobenzene	11.97	0 11.6 0	103 58.4 133	
Sample ID LCSD_T18094 Client ID: ZZZZZ	SampType: LCSD Batch ID: T18094	TestCode: TPPH_W_GC Units: µg/L TestNo: SW8260B(TP	Prep Date: 12/9/2008 Analysis Date: 12/9/2008	RunNo: 18094 SeqNo: 260055
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Surr: 4-Bromofllurobenzene	14.67	0 11.6 0	126 58.4 133 0	0 20

 \mathbf{S}

483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.529 FAX: 408.263.8293	58 • NOTE		NORK ORDER NO					
Company Name: TRINITY SOURCE GROUP,]							
Address: 500 Chestnut St.	7-1 C	Location of Sampling: 649 keyfic Ave, Pacifica Purpose: Scuri Annual ground werter Sampling						
City: Synta Cluz State: (4	Zip Code: 95060	by Special Instructions / Comments:						
Telephone: 426-5600 FAX: 426-56		SLD600150413						
REPORT TO: Dave REINDING SAMPLER: DU		P.O. #: 103.001.001 EMAIL: dar@tsgcor	pingt					
TURNAROUND TIME: SAMPLE TYPE:	•							
10 Work Days 3 Work Days Noon - Nxt Day Storm Water 7 Work Days 2 Work Days 2 - 8 Hours Waste Water 5 Work Days 1 Work Day Other Soil	Air Other Excel / EDI	ALAL ALAUD ALAUD <tr< td=""><td>ANALYSIS REQUESTED</td></tr<>	ANALYSIS REQUESTED					
LAB ID CLIENT'S SAMPLE I.D. DATE / TIME SAMPLED	MATRIX # OF C CONT T		REMARKS					
-001A MW-5 12-4-08	WGA	VOAS X X						
-002A MW-3 (324			AB					
-003A MW-4) 1359								
-004A MW-2 / 1500			TORRENT					
-00SAMW-1 \$ 1530	t V i	$\forall X$ \land \land \land						
1997 (2019) (2								
1 Relinquits have the Brint: book Date: 12/4	DX Time SG	S Received By: Print: Dulsa Date; 12/4/08	rime: 7656					
2 Relinquished By: Print: Date:	Time:		Time:					
Were Samples Received in Good Condition? Yes NO Sa NOTE: Samples are discarded by the laboratory 30 days from date Log In By: Date:		arrang ments are made.	/es NO N/A					

December 11, 2008

David Reinsma Trinity Source Group 500 Chestnut St,Suite 225 Santa Cruz, CA 95060

TEL: (831) 426-5600 FAX (831) 685-1219

RE: 103.005.004

Dear David Reinsma:

Order No.: 0812031

Torrent Laboratory, Inc. received 2 samples on 12/4/2008 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.


Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

oratory Director

12/11/08 Date

Sample Matrix:

Date/Time Sampled

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: David Reinsma

Trinity Source Group

EFFLUENT Client Sample ID: Sample Location:

12/4/2008

649Pacific Ave.Alameda AIR

Date Received: 12/4/2008 Date Reported: 12/11/2008

Lab Sample ID: 0812031-001 **Date Prepared:** 12/4/2008

				a a a a a a a a a a a a a a a a a a a	 		н. Каларанан (т. 1997) (т.	· · · ·
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,1,1,2-Tetrachloroethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,1,1-Trichloroethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,1,2,2-Tetrachloroethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,1,2-Trichloroethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,1-Dichloroethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,2,4-Trichlorobenzene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,2,4-Trimethylbenzene	TO-15	12/4/2008	0.5	2	1.0	7.8	ppbv	T18043
1,2-Dibromoethane(Ethylene dibromide)	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,2-Dichlorobenzene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,2-Dichloroethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,2-Dichloropropane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,3,5-Trimethylbenzene	TO-15	12/4/2008	0.5	2	1.0	1.5	ppbv	T18043
1,3-Butadiene	TO-15	12/4/2008	2	2	4.0	ND	ppbv	T18043
1,3-Dichlorobenzene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,4-Dichlorobenzene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
1,4-Dioxane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
2-Butanone (MEK)	TO-15	12/4/2008	0.5	2	1.0	28	ppbv	T18043
2-Hexanone	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
4-Ethyl Toluene	TO-15	12/4/2008	0.5	2	1.0	7.0	ppbv	T18043
4-Methyl-2-Pentanone (MIBK)	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Acetone	TO-15	12/4/2008	4	2	8.0	ND	ppbv	T18043
Benzene	TO-15	12/4/2008	0.5	2	1.0	5.8	ppbv	T18043
Bromodichloromethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Bromoform	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Bromomethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppby	T18043
Carbon Disulfide	TO-15	12/4/2008	0.5	2	1.0	ND	vdqq	T18043
Carbon Tetrachloride	TO-15	12/4/2008	0.5	2	1.0	180	vdqq	T18043
Chlorobenzene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Chloroethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Chloroform	TO-15	12/4/2008	0.5	2	1.0	24	ppbv	T18043
Chloromethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
cis-1,2-dichloroethene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
cis-1,3-Dichloropropene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Dibromochloromethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Dichlorodifluoromethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 1 of 9

Trinity Source Group

Client Sample ID:EFFLUENTSample Location:649Pacific Ave.AlamedaSample Matrix:AIRDate/Time Sampled12/4/2008

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812031-001 Date Prepared: 12/4/2008

						a de la companya de l La companya de la comp		
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Diisopropyl ether (DIPE)	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Ethyl Acetate	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Ethyl Benzene	TO-15	12/4/2008	0.5	2	1.0	10	ppbv	T18043
Ethyl tert-butyl ether (ETBE)	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Freon 113	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Hexachlorobutadiene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Hexane	TO-15	12/4/2008	2	2	4.0	ND	ppbv	T18043
Isopropanol	TO-15	12/4/2008	4	2	8.0	ND	ppbv	T18043
m,p-Xylene	TO-15	12/4/2008	0.5	2	1.0	55	ppbv	T18043
Methylene Chloride	TO-15	12/4/2008	1	2	2.0	ND	ppbv	T18043
МТВЕ	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Naphthalene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
o-xylene	TO-15	12/4/2008	0.5	2	1.0	10	ppbv	T18043
Styrene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
t-Butyl alcohol (t-Butanol)	TO-15	12/4/2008	2	2	4.0	ND	ppbv	T18043
tert-Amyl methyl ether (TAME)	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Tetrachloroethene	TO-15	12/4/2008	0.5	2	1.0	5.9	ppbv	T18043
Toluene	TO-15	12/4/2008	0.5	2	1.0	100	ppbv	T18043
trans-1,2-Dichloroethene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Trichloroethene	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Trichlorofluoromethane	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Vinyl Acetate	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Vinyl Chloride	TO-15	12/4/2008	0.5	2	1.0	ND	ppbv	T18043
Surr: 4-Bromofluorobenzene	TO-15	12/4/2008	0	2	65-135	96.0	%REC	T18043

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Trinity Source Group

Client Sample ID:	EFFLUENT
Sample Location:	649Pacific Ave.Alameda
Sample Matrix:	AIR
Date/Time Sampled	12/4/2008

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812031-001 Date Prepared: 12/4/2008

				the second se						
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch		
1,1 - Dichloroethene	TO-15	12/4/2008	1.99	2	4.0	ND	µg/m³	T18043		
1,1,1,2-Tetrachloroethane	TO-15	12/4/2008	3.44	2	6.9	ND	µg/m³	T18043		
1,1,1-Trichloroethane	TO-15	12/4/2008	2.73	2	5.5	ND	µg/m³	T18043		
1,1,2,2-Tetrachloroethane	TO-15	12/4/2008	3.44	2	6.9	ND	µg/m³	T18043		
1,1,2-Trichloroethane	TO-15	12/4/2008	2.73	2	5.5	ND	µg/m³	T18043		
1,1-Dichloroethane	TO-15	12/4/2008	2.03	2	4.1	ND	μg/m³	T18043		
1,1-Difluoroethane	TO-15	12/4/2008	27	2	54	ND	μg/m³	T18043		
1,2,4-Trichlorobenzene	TO-15	12/4/2008	3.56	2	7.1	ND	μg/m³	T18043		
1,2,4-Trimethylbenzene	TO-15	12/4/2008	2.46	2	4.9	38	µg/m³	T18043		
1,2-Dibromoethane(Ethylene dibromide)	TO-15	12/4/2008	3.84	2	7.7	ND	µg/m³	T18043		
1,2-Dichlorobenzene	TO-15	12/4/2008	3.01	2	6.0	ND	µg/m³	T18043		
1,2-Dichloroethane	TO-15	12/4/2008	2.03	2	4.1	ND	µg/m³	T18043		
1,2-Dichloropropane	TO-15	12/4/2008	2.31	2	4.6	ND	µg/m³	T18043		
1,3,5-Trimethylbenzene	TO-15	12/4/2008	2.46	2	4.9	(7.6)	µg/m³	T18043		
1,3-Butadiene	TO-15	12/4/2008	4.44	2	8.9	ND	µg/m³	T18043		
1,3-Dichlorobenzene	TO-15	12/4/2008	3.01	2	6.0	ND	µg/m³	T18043		
1,4-Dichlorobenzene	TO-15	12/4/2008	3.01	2	6.0	ND	µg/m³	T18043		
1,4-Dioxane	TO-15	12/4/2008	1.8	2	3.6	ND	µg/m³	T18043		
2-Butanone (MEK)	TO-15	12/4/2008	1.48	2	3.0	82	µg/m³	T18043		
2-Hexanone	TO-15	12/4/2008	2.05	2	4.1	ND	µg/m³	T18043		
4-Ethyl Toluene	TO-15	12/4/2008	2.46	2	4,9	35	µg/m³	T18043		
4-Methyl-2-Pentanone (MIBK)	TO-15	12/4/2008	2.05	2	4.1	ND	µg/m³	T18043		
Acetone	TO-15	12/4/2008	9.52	2	19	ND	µg/m³	T18043		
Benzene	TO-15	12/4/2008	1.6	2	3.2	18	µg/m³	T18043		
Bromodichloromethane	TO-15	12/4/2008	3.35	2	6.7	ND	µg/m³	T18043		
Bromoform	TO-15	12/4/2008	5.17	2	10	ND	µg/m³	T18043		
Bromomethane	TO-15	12/4/2008	1.94	2	3.9	ND	µg/m³	T18043		
Carbon Disulfide	TO-15	12/4/2008	1.56	2	3.1	ND	µg/m³	T18043		
Carbon Tetrachloride	TO-15	12/4/2008	3.15	2	6.3	1100	µg/m³	T18043		
Chlorobenzene	TO-15	12/4/2008	2.3	2	4.6	ND	µg/m³	T18043		
Chloroethane	TO-15	12/4/2008	1.32	2	2.6	ND	µg/m³	T18043		
Chloroform	TO-15	12/4/2008	2.44	2	4.9	120	µg/m³	T18043		
Chloromethane	TO-15	12/4/2008	1.04	2	2.1	ND	µg/m³	T18043		
cis-1,2-dichloroethene	TO-15	12/4/2008	1.98	2	4.0	ND	µg/m³	T18043		
cis-1,3-Dichloropropene	TO-15	12/4/2008	2.27	2	4.5	ND	µg/m³	T18043		
Dibromochloromethane	TO-15	12/4/2008	4.26	2	8.5	ND	μg/m³	T18043		
Dichlorodifluoromethane	TO-15	12/4/2008	2.48	2	5.0	ND	µg/m³	T18043		
Diisopropyl ether (DIPE)	TO-15	12/4/2008	2.09	2	4.2	ND	µg/m³	T18043		
Ethyl Acetate	TO-15	12/4/2008	1.8	2	3.6	ND	µg/m³	T18043		
Ethyl Benzene	TO-15	12/4/2008	2.17	2	4.3	45	µg/m³	T18043		
Ethyl tert-butyl ether (ETBE)	TO-15	12/4/2008	2.09	2	4.2	ND	µg/m³	T18043		
Freon 113	TO-15	12/4/2008	3.83	2	7,7	ND	µg/m³	T18043		
Hexachlorobutadiene	TO-15	12/4/2008	5.34	2	11	ND	µg/m³	T18043		
				-			-9/11	. 100-10		

These analyses were performed according to State of California Environmental Laboratory

Accreditation program, Certificate # 1991

Page 3 of 9

Trinity Source Group

Client Sample ID:	EFFLUENT
Sample Location:	649Pacific Ave.Alameda
Sample Matrix:	AIR
Date/Time Sampled	12/4/2008
	· .

Lab Sample ID: 0812031-001 Date Prepared: 12/4/2008

	· · · · ·							
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	12/4/2008	14.1	2	28	ND	µg/m³	T18043
Isopropanol	TO-15	12/4/2008	16.4	2	33	ND.	µg/m³	T18043
m,p-Xylene	TO-15	12/4/2008	2.05	2	4.1	240	µg/m³	T18043
Methylene Chloride	TO-15	12/4/2008	3.61	2	7.2	ND	µg/m³	T18043
MTBE	TO-15	12/4/2008	1.81	2	3.6	ND	µg/m³	T18043
Naphthalene	TO-15	12/4/2008	2.62	2	5.2	ND	µg/m³	T18043
o-xylene	TO-15	12/4/2008	2.17	2	4.3	(44 ⁾	µg/m³	T18043
Styrene	TO-15	12/4/2008	2.13	2	4.3	ND	µg/m³	T18043
t-Butyl alcohol (t-Butanol)	TO-15	12/4/2008	6.06	2	12	ND	µg/m³	T18043
tert-Amyl methyl ether (TAME)	TO-15	12/4/2008	2.09	2	4.2	ND	µg/m³	T18043
Tetrachloroethene	TO-15	12/4/2008	3.39	2	6.8	40	µg/m³	T18043
Toluene	TO-15	12/4/2008	1.89	2	3.8	380	µg/m³	T18043
trans-1,2-Dichloroethene	TO-15	12/4/2008	1.98	2	4.0	ND	µg/m³	T18043
Trichloroethene	TO-15	12/4/2008	2.69	2	5.4	ND	µg/m³	T18043
Trichlorofluoromethane	TO-15	12/4/2008	2.48	2	5.0	ND	µg/m³	T18043
Vinyl Acetate	TO-15	12/4/2008	1.76	2	3.5	ND	µg/m³	T18043
Vinyl Chloride	TO-15	12/4/2008	1.28	2	2.6	ND	µg/m³	T18043
Surr: 4-Bromofluorobenzene	TO-15	12/4/2008	0	2	65-135	96.0	%REC	T18043
Stoddard Solvent (C7-C12)	TO-3(MOD)	12/5/2008	100	4	400	590x	ppbv	S18043
Note: x- Sample chromatogram does compounds within range of C7-C12.	not resemble Stoddard	solvent standard p	attern. Rej	orted value di	ue to presen	ce of non-Stoo	Idard solvent	
Stoddard Solvent (C7-C12)	TO-3(MOD)	12/5/2008	352	4	1400	2100x	µg/m³	S18043

Note: x- Sample chromatogram does not resemble Stoddard solvent standard pattern. Reported value due to presence of non-Stoddard solvent compounds within range of C7-C12.

Trinity Source Group

Client Sample ID:	INFLUENT
Sample Location:	649Pacific Ave.Alameda
Sample Matrix:	AIR
Date/Time Sampled	12/4/2008

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812031-002 Date Prepared: 12/4/2008

				1997 - 1997 -				
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,1,1,2-Tetrachloroethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,1,1-Trichloroethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,1,2,2-Tetrachloroethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,1,2-Trichloroethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,1-Dichloroethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,2,4-Trichlorobenzene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,2,4-Trimethylbenzene	TO-15	12/4/2008	0.5	2.5	1.2	13	ppbv	T18043
1,2-Dibromoethane(Ethylene dibromide)	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,2-Dichlorobenzene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,2-Dichloroethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,2-Dichloropropane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,3,5-Trimethylbenzene	TO-15	12/4/2008	0.5	2.5	1.2	2.9	ppbv	T18043
1,3-Butadiene	TO-15	12/4/2008	2	2.5	5.0	ND	ppbv	T18043
1,3-Dichlorobenzene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,4-Dichlorobenzene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
1,4-Dioxane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
2-Butanone (MEK)	TO-15	12/4/2008	0.5	2.5	1.2	37	ppbv	T18043
2-Hexanone	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
4-Ethyl Toluene	TO-15	12/4/2008	0.5	2.5	1.2	9.8	ppbv	T18043
4-Methyl-2-Pentanone (MIBK)	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Acetone	TO-15	12/4/2008	4	2.5	10	ND	ppbv	T18043
Benzene	TO-15	12/4/2008	0.5	2.5	1.2	6.3	ppbv	T18043
Bromodichloromethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Bromoform	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Bromomethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Carbon Disulfide	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Carbon Tetrachloride	TO-15	12/4/2008	0.5	2.5	1.2	120	ppbv	T18043
Chlorobenzene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Chloroethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Chloroform	TO-15	12/4/2008	0.5	2.5	1.2	22	ppbv	T18043
Chloromethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
cis-1,2-dichloroethene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
cis-1,3-Dichloropropene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Dibromochloromethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Dichlorodifluoromethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Diisopropyl ether (DIPE)	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Ethyl Acetate	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Ethyl Benzene	TO-15	12/4/2008	0.5	2.5	1.2	1,1	ppbv	T18043
Ethyl tert-butyl ether (ETBE)	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Freon 113	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Hexachlorobutadiene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Hexane	TO-15	12/4/2008	2	2.5	5.0	ND	ppbv	T18043
-				2/0	2.0		****	. 10040

These analyses were performed according to State of California Environmental Laboratory

Accreditation program, Certificate # 1991

Page 5 of 9

Trinity Source Group

Client Sample ID:	INFLUENT
Sample Location:	649Pacific Ave.Alameda
Sample Matrix:	AIR
Date/Time Sampled	12/4/2008
and the second	

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812031-002 Date Prepared: 12/4/2008

1				1. <u>1</u> . 1	and the second			
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropanol	TO-15	12/4/2008	4	2.5	10	ND	ppbv	T18043
m,p-Xylene	TO-15	12/4/2008	0.5	2.5	1.2	62	ppbv	T18043
Methylene Chloride	TO-15	12/4/2008	1	2.5	2.5	ND	ppbv	T18043
MTBE	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Naphthalene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
o-xylene	TO-15	12/4/2008	0.5	2.5	1.2	12	ppbv	T18043
Styrene	TO-15	12/4/2008	0.5	2.5	1.2	ND	vdqq	T18043
t-Butyl alcohol (t-Butanol)	TO-15	12/4/2008	2	2.5	5.0	ND	ppbv	T18043
tert-Amyl methyl ether (TAME)	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Tetrachloroethene	TO-15	12/4/2008	0.5	2.5	1.2	170	ppbv	T18043
Toluene	TO-15	12/4/2008	0.5	2.5	1.2	130	ppbv	T18043
trans-1,2-Dichloroethene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Trichloroethene	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Trichlorofluoromethane	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Vinyl Acetate	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Vinyl Chloride	TO-15	12/4/2008	0.5	2.5	1.2	ND	ppbv	T18043
Surr: 4-Bromofluorobenzene	TO-15	12/4/2008	0	2.5	65-135	98.4	%REC	T18043

Trinity Source Group

Client Sample ID:INFLUENTSample Location:649Pacific Ave.AlamedaSample Matrix:AIRDate/Time Sampled12/4/2008

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812031-002 Date Prepared: 12/4/2008

	· · · ·	-			1.1			· ·
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	12/4/2008	1.99	2.5	5.0	ND	µg/m³	T18043
1,1,1,2-Tetrachloroethane	TO-15	12/4/2008	3.44	2.5	8.6	ND	µg/m³	T18043
1,1,1-Trichloroethane	TO-15	12/4/2008	2.73	2.5	6.8	ND	µg/m³	T18043
1,1,2,2-Tetrachloroethane	TO-15	12/4/2008	3.44	2.5	8.6	ND	µg/m³	T18043
1,1,2-Trichloroethane	TO-15	12/4/2008	2.73	2.5	6.8	ND	µg/m³	T18043
1,1-Dichloroethane	TO-15	12/4/2008	2.03	2.5	5.1	ND	µg/m³	T18043
1,1-Difluoroethane	TO-15	12/4/2008	27	2.5	68	ND	µg/m³	T18043
1,2,4-Trichlorobenzene	TO-15	12/4/2008	3.56	2.5	8.9	ND	µg/m³	T18043
1,2,4-Trimethylbenzene	TO-15	12/4/2008	2.46	2.5	6.2	66	μg/m³	T18043
1,2-Dibromoethane(Ethylene dibromide)	TO-15	12/4/2008	3.84	2.5	9.6	ND	µg/m³	T18043
1,2-Dichlorobenzene	TO-15	12/4/2008	3.01	2.5	7.5	ND	µg/m³	T18043
1,2-Dichloroethane	TO-15	12/4/2008	2.03	2.5	5.1	ND	µg/m³	T18043
1,2-Dichloropropane	TO-15	12/4/2008	2.31	2.5	5.8	ND	µg/m³	T18043
1,3,5-Trimethylbenzene	TO-15	12/4/2008	2.46	2.5	6.2	14	µg/m³	T18043
1.3-Butadiene	TO-15	12/4/2008	4.44	2.5	11	ND	μg/m³	T18043
1,3-Dichlorobenzene	TO-15	12/4/2008	3.01	2.5	7.5	ND	µg/m³	T18043
1,4-Dichlorobenzene	TO-15	12/4/2008	3.01	2.5	7.5	ND	µg/m³	T18043
1,4-Dioxane	TO-15	12/4/2008	1.8	2.5	4.5	ND	μg/m³	T18043
2-Butanone (MEK)	TO-15	12/4/2008	1.48	2.5	3.7	110	µg/m³	T18043
2-Hexanone	TO-15	12/4/2008	2.05	2.5	5.1	ND	μg/m³	T18043
4-Ethyl Toluene	TO-15	12/4/2008	2.46	2.5	6.2	48	μg/m³	T18043
4-Methyl-2-Pentanone (MIBK)	TO-15	12/4/2008	2.05	2.5	5.1	ND	μg/m³	T18043
Acetone	TO-15	12/4/2008	9.52	2.5	24	ND		T18043
Benzene	TO-15	12/4/2008	1.6	2.5	4.0	20	µg/m³	T18043
Bromodichloromethane	TO-15	12/4/2008	3.35	2.5	8.4	20 ND	µg/m³	T18043
Bromoform	TO-15	12/4/2008	5.17	2.5	13	ND	µg/m³	
Bromomethane	TO-15	12/4/2008	1.94	2.5	4.8	ND	µg/m³	T18043
Carbon Disulfide	TO-15	12/4/2008	1.54	2.5	3.9	ND	µg/m³	T18043
Carbon Tetrachloride	TO-15	12/4/2008	3.15	2.5	3.9 7,9	780	µg/m³	T18043
Chlorobenzene	TO-15	12/4/2008	2.3	2.5			µg/m³	T18043
Chloroethane	TO-15	12/4/2008			5.8	ND	µg/m³	T18043
Chloroform	TO-15		1.32	2.5	3.3	ND	µg/m³	T18043
Chloromethane	TO-15	12/4/2008 12/4/2008	2.44	2.5	6.1	110	µg/m³	T18043
cis-1,2-dichloroethene	TO-15		1.04	2.5	2.6	ND	µg/m³	T18043
		12/4/2008	1.98	2.5	5.0	ND	µg/m³	T18043
cis-1,3-Dichloropropene Dibromochloromethane	TO-15	12/4/2008	2.27	2.5	5.7	ND	µg/m³	T18043
	TO-15	12/4/2008	4.26	2.5	11	ND	µg/m³	T18043
Dichlorodifluoromethane	TO-15	12/4/2008	2.48	2.5	6.2	ND	µg/m³	T18043
Diisopropyl ether (DIPE) Ethyd Aggeteta	TO-15	12/4/2008	2.09	2.5	5.2	ND	µg/m³	T18043
Ethyl Acetate	TO-15	12/4/2008	1.8	2.5	4.5	ND	µg/m³	T18043
Ethyl Benzene	TO-15	12/4/2008	2.17	2.5	5.4	49	µg/m³	T18043
Ethyl tert-butyl ether (ETBE)	TO-15	12/4/2008	2.09	2.5	5.2	ND	µg/m³	T18043
Freon 113	TO-15	12/4/2008	3.83	2.5	9.6	ND	µg/m³	T18043
Hexachlorobutadiene	TO-15	12/4/2008	5.34	2.5	13	ND	µg/m³	T18043

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Page 7 of 9

Trinity Source Group

Client Sample ID:INFLUENTSample Location:649Pacific Ave.AlamedaSample Matrix:AlRDate/Time Sampled12/4/2008

Date Received: 12/4/2008 **Date Reported:** 12/11/2008

Lab Sample ID: 0812031-002 Date Prepared: 12/4/2008

				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 A A A			
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	12/4/2008	14.1	2.5	35	ND	µg/m³	T18043
Isopropanol	TO-15	12/4/2008	16.4	2.5	41	ND	µg/m³	T18043
m,p-Xylene	TO-15	12/4/2008	2.05	2.5	5.1	270	µg/m³	T18043
Methylene Chloride	TO-15	12/4/2008	3.61	2.5	9.0	ND	µg/m³	T18043
MTBE	TO-15	12/4/2008	1.81	2.5	4.5	ND	µg/m³	T18043
Naphthalene	TO-15	12/4/2008	2.62	2.5	6.6	ND	µg/m³	T18043
o-xylene	TO-15	12/4/2008	2.17	2.5	5.4	54	µg/m³	T18043
Styrene	TO-15	12/4/2008	2.13	2.5	5.3	ND	µg/m³	T18043
t-Butyl alcohol (t-Butanol)	TO-15	12/4/2008	6.06	2.5	15	ND	µg/m³	T18043
tert-Amyl methyl ether (TAME)	TO-15	12/4/2008	2.09	2.5	5.2	ND	µg/m³	T18043
Tetrachloroethene	TO-15	12/4/2008	3.39	2.5	8.5	1100	µg/m³	T18043
Toluene	TO-15	12/4/2008	1.89	2.5	4.7	< 490	µg/m³	T18043
trans-1,2-Dichloroethene	TO-15	12/4/2008	1.98	2.5	5.0	ND	µg/m³	T18043
Trichloroethene	TO-15	12/4/2008	2.69	2.5	6.7	ND	µg/m³	T18043
Trichlorofluoromethane	TO-15	12/4/2008	2.48	2.5	6.2	ND	µg/m³	T18043
Vinyl Acetate	TO-15	12/4/2008	1.76	2.5	4.4	ND	µg/m³	T18043
Vinyl Chloride	TO-15	12/4/2008	1.28	2.5	3.2	ND	µg/m³	T18043
Surr: 4-Bromofluorobenzene	TO-15	12/4/2008	0	2.5	65-135	98.4	%REC	T18043
Stoddard Solvent (C7-C12)	TO-3(MOD)	12/5/2008	100	5	500	690x	ppbv	S18043
Note: x- Sample chromatogram does r compounds within range of C7-C12.	ot resemble Stoddard	solvent standard p	battern. Rep	ported value du	ie to preser	ice of non-Stoc	dard solvent	
Stoddard Solvent (C7-C12)	TO-3(MOD)	12/5/2008	352	5	1800	2400x	µg/m³	S18043

Note: x- Sample chromatogram does not resemble Stoddard solvent standard pattern. Reported value due to presence of non-Stoddard solvent compounds within range of C7-C12.

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
8	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

Date: 11-Dec-08

CLIENT: Trinity Source Group 0812031 Work Order: Project: 103.005.004

ANALYTICAL QC SUMMARY REPORT

BatchID: S18043

Sample ID MB-S18043	SampType: MBLK	TestCode: TO-3SS (MO	Units: ppbv		Prep Da	ite: 12/5/20	008	RunNo: 18	043	
Client ID: ZZZZZ	Batch ID: S18043	TestNo: TO-3(MOD)			Analysis Da	ite: 12/5/20)08	SeqNo: 26	0110	
Analyte	Result	PQL SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Stoddard Solvent (C7-C12)	ND	100								

Value above quantitation range **Qualifiers:** E ND Not Detected at the Reporting Limit Н Holding times for preparation or analysis exceeded RPD outside accepted recovery limits R

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits Page 1 of 9 S

CLIENT: Trinity Source Group 0812031 Work Order: 103.005.004 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

Sample ID MB-T18043	SampType: MBLK	TestCode: TO-15	Units: ppbv	Prep Date: 12/3/2008			RunNo: 18043		
Client ID: ZZZZZ	Batch ID: T18043	TestNo: TO-15		Analysis Dal	te: 12/3/200	8	SeqNo: 2597	83	
Analyte	Result	PQL SPK val	ue SPK Ref Val	%REC LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	ND	0.50		,					
1,1,1,2-Tetrachloroethane	ND	0.50							
1,1,1-Trichloroethane	ND	0.50							
1,1,2,2-Tetrachloroethane	ND	0.50							
1,1,2-Trichloroethane	ND	0.50							
1,1-Dichloroethane	ND	0.50							
1,2,4-Trichlorobenzene	ND	0.50							
1,2,4-Trimethylbenzene	ND	0.50							
1,2-Dibromoethane(Ethylene dibrom	nide ND	0.50							
1,2-Dichlorobenzene	ND	0.50							
1,2-Dichloroethane	ND	0.50							
1,2-Dichloropropane	ND	0.50							
1,3,5-Trimethylbenzene	ND	0.50							
1,3-Butadiene	ND	2.0							
1,3-Dichlorobenzene	ND	0.50							
1,4-Dichlorobenzene	ND	0.50							
1,4-Dioxane	ND	0.50							
2-Butanone (MEK)	ND	0.50							
2-Hexanone	ND	0.50							
4-Ethyl Toluene	ND	0.50							
4-Methyl-2-Pentanone (MIBK)	ND	0.50							
Acetone	ND	4.0							
Benzene	ND	0.50							
Bromodichloromethane	ND	0.50							
Bromoform	ND	0.50							
Bromomethane	ND	0.50							
Carbon Disulfide	ND	0.50							
Carbon Tetrachloride	ND	0.50							
Chlorobenzene	ND	0.50							
Chloroethane	ND	0.50							
Chloroform	ND	0.50							
Qualifiers: E Value above qua	infitation range	Н Но	olding times for preparation	n or analysis exceeded	J An	alyte detected be	clow quantitation	limits	
	the Reporting Limit	R RI	D outside accepted recove	ery limits	S Spi	ike Recovery ou	tside accepted ree	overy limits Pa	ige 2 of

CLIENT: Trinity Source Group Work Order: 0812031 103.005.004 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

Sample ID MB-T18043	SampType: MBLK	TestCode	រៈ T Ö-15	Units: ppbv		Prep Date	e: 12/3/2	008	RunNo: 180)43	
Client ID: ZZZZZ	Batch ID: T18043	TestNo	o: TO-15			Analysis Date	: 12/3/2	008	SeqNo: 259	9783	
Analyte	Result	PQL	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.50									
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
Hexane	ND	2.0									
Isopropanol	ND	4.0									
m,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
MTBE	ND	0.50									
Naphthalene	ND	0.50									
o-xylene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohoi (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
Tetrachloroethene	ND	0.50									
Toiuene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl Acetate	ND	0.50									
Vinyl Chloride	ND	0.50									
Surr: 4-Bromofluorobenzene	17.64	0	20	0	88.2	65	135				

Qualifiers:

Е Value above quantitation range Н Holding times for preparation or analysis exceeded R

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 3 of 9

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

CLIENT: Trinity Source Group Work Order: 0812031 103.005.004 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

	SampType: MBLK	TestCode: TO-1		•	ite: 12/4/2008	RunNo: 18043		
Client ID: ZZZZZ	Batch ID: T18043	TestNo: TO-1	5	Analysis Da	ite: 12/4/2008	SeqNo: 260103		
Analyte	Result	PQL SPK v	alue SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual	
1,1 - Dichloroethene	ND	0.50						
1,1,1,2-Tetrachloroethane	ND	0.50						
1,1,1-Trichloroethane	ND	0.50						
1,1,2,2-Tetrachloroethane	ND	0.50						
1,1,2-Trichloroethane	ND	0.50						
1,1-Dichloroethane	ND	0.50						
1,2,4-Trichlorobenzene	ND	0.50						
1,2,4-Trimethylbenzene	ND	0.50						
1.2-Dibromoethane(Ethylene dibrom	iide ND	0.50						
1,2-Dichlorobenzene	ND	0.50						
1,2-Dichloroethane	ND	0.50						
1,2-Dichloropropane	ND	0.50						
1,3,5-Trimethylbenzene	ND	0.50						
1,3-Butadiene	ND	2.0						
1,3-Dichlorobenzene	ND	0.50						
,4-Dichlorobenzene	ND	0.50						
,4-Dioxane	ND	0.50						
2-Butanone (MEK)	ND	0.50						
2-Hexanone	ND	0.50						
I-Ethyl Toluene	ND	0.50						
-Methyl-2-Pentanone (MIBK)	ND	0.50						
Acetone	ND	4.0						
Benzene	ND	0.50						
Bromodichloromethane	ND	0.50						
Bromoform	ND	0.50						
Bromomethane	ND	0.50						
Carbon Disulfide	ND	0.50						
Carbon Tetrachloride	ND	0.50						
Chlorobenzene	ND	0.50						
Chloroethane	ND	0.50						
Chloroform	ND	0.50						

Trinity Source Group **CLIENT:** Work Order: 0812031 Project: 103.005.004

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

Sample ID MB1-T18043	SampType: MBLK	TestCoc	le: TO-15	Units: ppbv		Prep Da	te: 12/4/2	008	RunNo: 18	043	
Client ID: ZZZZZ	Batch ID: T18043	TestN	lo: TO-15			Analysis Da	te: 12/4/2	008	SeqNo: 26	0103	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.50									
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
Hexane	ND	2.0									
Isopropanol	ND	4.0									
m,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
MTBE	ND	0.50									
Naphthalene	ND	0.50									
o-xylene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl Acetate	ND	0.50									
Vinyl Chloride	ND	0.50									
Surr: 4-Bromofluorobenzene	18.47	0	20	0	92.4	65	135				

Qualifiers:

Е Value above quantitation range h Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits Page 5 of 9

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

CLIENT: Trinity Source Group Work Order: 0812031 Project: 103.005.004

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

Sample ID LCS-T18043 S	ampType: LCS	TestCo	de: TO-15	Units: ppbv		Prep Date	: 12/3/200	08	RunNo: 18	043	
Client ID: ZZZZZ	Batch ID: T18043	Test	lo: TO-15			Analysis Date	: 12/3/200	08	SeqNo: 25	9845	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	18.26	0.50	20	0	91.3	65	135				
1,1,1,2-Tetrachloroethane	17.70	0.50	20	0	88.5	65	135				
1,1,1-Trichloroethane	19.57	0.50	20	0	97.8	65	135				
1,1,2,2-Tetrachloroethane	17.54	0.50	20	0	87.7	65	135				
1,1,2-Trichloroethane	17.72	0.50	20	0	88.6	65	135				
1,1-Dichloroethane	20.91	0.50	20	0	105	65	135				
1,2,4-Trichlorobenzene	15.07	0.50	20	0	75.4	65	135				
1,2,4-Trimethylbenzene	17.47	0.50	20	0	87.4	65	135				
1,2-Dibromoethane(Ethylene dibromi	de 18.20	0.50	20	0	91.0	65	135				
1,2-Dichlorobenzene	18.14	0.50	20	0	90.7	65	135				
1,2-Dichloroethane	18.02	0.50	20	0	90.1	65	135				
1,2-Dichloropropane	20.67	0.50	20	0	103	65	135				
1,3,5-Trimethylbenzene	18.13	0.50	20	0	90.7	65	135				
1,3-Butadiene	18.20	2.0	20	0	91.0	65	135				
1,3-Dichlorobenzene	17.74	0.50	20	0	88.7	65	135				
1,4-Dichlorobenzene	18.25	0.50	20	0	91.2	65	135				
1,4-Dioxane	18.65	0.50	20	0	93.3	65	135				
2-Butanone (MEK)	20.80	0.50	20	0	104	65	135				
2-Hexanone	18.60	0.50	20	0	93.0	65	135				
4-Ethyl Toluene	17.39	0.50	20	0	87.0	65	135				
4-Methyl-2-Pentanone (MIBK)	18.52	0.50	20	0	92.6	65	135				
Acetone	17.69	4.0	20	0	88.4	65	135				
Benzene	20.42	0.50	20	0	102	65	135				
Bromodichloromethane	17.63	0.50	20	0	88.2	65	135				
Bromoform	16.92	0.50	20	0	84.6	65	135				
Bromomethane	19.27	0.50	20	0	96.4	65	135				
Carbon Disulfide	15.23	0.50	20	0	76.2	65	135				
Carbon Tetrachloride	18.87	0.50	20	0	94.4	65	135				
Chlorobenzene	19.06	0.50	20	0	95.3	65	135				
Chloroethane	19.24	0.50	20	0	96.2	65	135				
Chloroform	19.06	0.50	20	0	95.3	65	135				

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

Analyte detected below quantitation limits Analyte detected second accepted recovery limits Spike Recovery outside accepted recovery limits Page 6 of 9 S

Trinity Source Group CLIENT: Work Order: 0812031 103.005.004 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

Sample ID LCS-T18043	SampType: LCS	TestCo	de: T O-15	Units: ppbv		Prep Da	te: 12/3/20	08	RunNo: 18	043	
Client ID: ZZZZZ	Batch ID: T18043	Test	lo: TO-15			Analysis Da	te: 12/3/20	08	SeqNo: 25	9845	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	17.97	0.50	20	0	89.8	65	135				
cis-1,2-dichloroethene	20.59	0.50	20	0	103	65	135				
cis-1,3-Dichloropropene	17.74	0.50	20	0	88.7	65	135				
Dibromochloromethane	17.02	0.50	20	0	85.1	65	135				
Diisopropyl ether (DIPE)	20.15	0.50	20	0	101	65	135				
Ethyl Acetate	20.40	0.50	20	0	102	65	135				
Ethyl Benzene	18.40	0.50	20	0	92.0	65	135				
Ethyl tert-butyl ether (ETBE)	20.65	0.50	20	0	103	65	135				
Freon 113	18.54	0.50	20	0	92.7	65	135				
Hexachlorobutadiene	14.65	0.50	20	0	73.2	65	135				
Hexane	20.13	2.0	20	0	101	65	135				
Isopropanol	23.32	4.0	20	0	117	65	135				
m,p-Xylene	35.11	0.50	40	0	87.8	65	135				
Methylene Chloride	20.12	1.0	20	0	101	65	135				
MTBE	19.54	0.50	20	0	97.7	65	135				
Naphthalene	15.21	0.50	20	0	76.0	65	135				
o-xylene	17.47	0.50	20	0	87.4	65	135				
Styrene	16.99	0.50	20	0	85.0	65	135				
t-Butyl alcohol (t-Butanol)	17.14	2.0	20	0	85,7	65	135				
tert-Amyl methyl ether (TAME)	17.66	0.50	20	0	88.3	65	135				
Tetrachloroethene	16.68	0.50	20	0	83.4	65	135				
Toluene	17.74	0.50	20	0	88.7	65	135				
trans-1,2-Dichloroethene	21.49	0.50	20	0	107	65	135				
Trichloroethene	17.62	0.50	20	0	88.1	65	135				
Trichlorofluoromethane	19.52	0.50	20	0	97.6	65	135				
Vinyl Acetate	17.98	0.50	20	0	89.9	65	135				
Vinyl Chloride	20.94	0.50	20	0	105	65	135				
Surr: 4-Bromofluorobenzene	18.66	0	20	0	93.3	65	135				

Qualifiers:

Value above quantitation range E

Holding times for preparation or analysis exceeded н

J Analyte detected below quantitation limits

S

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 7 of 9

Trinity Source Group **CLIENT:** Work Order: 0812031

103.005.004 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

Sample ID LCSD-T18043	SampType: LCSD	TestCod	je: TO-15	Units: ppbv		Prep Dat	e: 12/4/20	108	RunNo: 18	043	
Client ID: ZZZZZ	Batch ID: T18043	TestN	lo: TO-15			Analysis Dat	e: 12/4/20	08	SeqNo: 259	9846	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	18.66	0.50	20	0	93.3	65	135	18.26	2.17	30	
1,1,1,2-Tetrachloroethane	17.01	0.50	20	0	85.0	65	135	17.7	3.98	30	
1,1,1-Trichloroethane	18.87	0.50	20	0	94.4	65	135	19.57	3.64	30	
1,1,2,2-Tetrachloroethane	16.84	0.50	20	0	84.2	65	135	17.54	4.07	30	
1,1,2-Trichloroethane	16.74	0.50	20	0	83.7	65	135	17.72	5.69	30	
1,1-Dichloroethane	18.64	0.50	20	0	93.2	65	135	20.91	11.5	30	
1,2,4-Trichlorobenzene	14.50	0.50	20	0	72.5	65	135	15.07	3.86	30	
1,2,4-Trimethylbenzene	17.22	0.50	20	0	86.1	65	135	17.47	1.44	30	
1,2-Dibromoethane(Ethylene dibro	mide 17.61	0.50	20	0	88.0	65	135	18.2	3.30	30	
1,2-Dichlorobenzene	16.55	0.50	20	0	82.8	65	135	18.14	9.17	30	
1,2-Dichloroethane	17.61	0.50	20	0	88.0	65	135	18.02	2.30	30	
1,2-Dichloropropane	17.64	0.50	20	0	88.2	65	135	20.67	15.8	30	
1,3,5-Trimethylbenzene	17.27	0.50	20	0	86.4	65	135	18.13	4.86	30	
1,3-Butadiene	19.39	2.0	20	0	97.0	65	135	18.2	6.33	30	
1,3-Dichlorobenzene	16.94	0.50	20	0	84,7	65	135	17.74	4.61	30	
1,4-Dichlorobenzene	17.06	0.50	20	0	85.3	65	135	18.25	6.74	30	
1,4-Dioxane	18.39	0.50	20	0	92.0	65	135	18.65	1.40	30	
2-Butanone (MEK)	16.51	0.50	20	0	82.6	65	135	20.8	23.0	30	
2-Hexanone	17.96	0.50	20	0	89.8	65	135	18.6	3.50	30	
4-Ethyl Toluene	16.96	0.50	20	0	84.8	65	135	17.39	2.50	30	
4-Methyl-2-Pentanone (MIBK)	17.65	0.50	20	0	88.2	65	135	18.52	4.81	30	
Acetone	20.24	4.0	20	0	101	65	135	17.69	13.4	30	
Benzene	19.08	0.50	20	0	95.4	65	135	20.42	6.78	30	
Bromodichloromethane	17.17	0.50	20	0	85.8	65	135	17.63	2.64	30	
Bromoform	16.52	0.50	20	0	82.6	65	135	16.92	2.39	30	
Bromomethane	18.97	0.50	20	0	94.8	65	135	19.27	1.57	30	
Carbon Disulfide	18.70	0.50	20	0	93.5	65	135	15.23	20.5	30	
Carbon Tetrachloride	18.38	0.50	20	0	91.9	65	135	18.87	2.63	30	
Chlorobenzene	17.89	0.50	20	0	89.4	65	135	19.06	6.33	30	
Chloroethane	20.67	0.50	20	0	103	65	135	19.24	7.17	30	
Chloroform	18.21	0.50	20	0	91.0	65	135	19.06	4.56	30	

Qualifiers:

Е Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits Page 8 of 9

Trinity Source Group CLIENT: Work Order: 0812031 103.005.004 Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: T18043

Sample ID LCSD-T18043	SampType: LCSD	TestCo	ie: TO-15	Units: ppbv		Prep Da	te: 12/4/20	08	RunNo: 18	043	
Client ID: ZZZZZ	Batch ID: T18043	Test№	lo: TO-15			Analysis Da	te: 12/4/20	08	SeqNo: 25	9846	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	15.14	0.50	20	0	75.7	65	135	17.97	17,1	30	
cis-1,2-dichloroethene	18.36	0.50	20	0	91.8	65	135	20.59	11.5	30	
cis-1,3-Dichloropropene	17.57	0.50	20	0	87.8	65	135	17.74	0.963	30	
Dibromochloromethane	16.87	0.50	20	0	84.4	65	135	17.02	0.885	30	
Diisopropyl ether (DIPE)	19.80	0.50	20	0	99.0	65	135	20.15	1.75	30	
Ethyl Acetate	18.64	0.50	20	0	93.2	65	135	20.4	9.02	30	
Ethyl Benzene	17.94	0.50	20	0	89.7	65	135	18.4	2.53	30	
Ethyl tert-butyl ether (ETBE)	19.07	0.50	20	0	95.4	65	135	20.65	7.96	30	
Freon 113	18.47	0.50	20	0	92.4	65	135	18.54	0.378	30	
Hexachlorobutadiene	14.08	0.50	20	0	70.4	65	135	14.65	3.97	30	
Hexane	18.77	2.0	20	0	93.8	65	135	20.13	6.99	30	
Isopropanol	20.99	4.0	20	0	105	65	135	23.32	10.5	30	
m,p-Xylene	36.55	0.50	40	0	91.4	65	135	35.11	4.02	30	
Methylene Chloride	19.06	1.0	20	0	95.3	65	135	20.12	5.41	30	
MTBE	19.25	0.50	20	0	96.2	65	135	19.54	1.50	30	
Naphthalene	15.00	0.50	20	0	75.0	65	135	15.21	1.39	30	
o-xylene	17.62	0.50	20	0	88.1	65	135	17.47	0.855	30	
Styrene	17.36	0.50	20	0	86.8	65	135	16.99	2.15	30	
t-Butyl alcohol (t-Butanol)	17.17	2.0	20	0	85.8	65	135	17.14	0.175	30	
tert-Amyl methyl ether (TAME)	17.55	0.50	20	0	87.8	65	135	17.66	0.625	30	
Tetrachioroethene	17.06	0.50	20	0	85.3	65	135	16.68	2.25	30	
Toluene	17.11	0.50	20	0	85.6	65	135	17.74	3.62	30	
trans-1,2-Dichloroethene	18.94	0.50	20	0	94.7	65	135	21.49	12.6	30	
Trichloroethene	17.46	0.50	20	0	87.3	65	135	17.62	0.912	30	
Trichlorofluoromethane	15.59	0.50	20	0	78.0	65	135	19.52	22.4	30	
Vinyl Acetate	18.61	0.50	20	0	93.0	65	135	17.98	3.44	30	
Vinyl Chloride	20.74	0.50	20	0	104	65	135	20.94	0.960	30	
Surr: 4-Bromofluorobenzene	18.47	0	20	0	92.4	65	135	0	0	30	

Qualifiers:

Ε Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

R

Spike Recovery outside accepted recovery limits Page 9 of 9

Torrent	483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293		CHAIN OF CUSTODY LAB WORK ORDER N DED AREAS ARE FOR TORRENT LAB USE ONLY 08/203/	0
LABORATORY, INC.	www.torrentlab.com	And a second sec]
Company Name: TRINITY		1Pinc Locat		
Address: 500 Chiothu	t st. 225		SE SUB-SLAB VENTING System	
			al Instructions / Comments:	
Telephone: 426-56,00 FAX			LESULTS IN BOTH UNITS PLASE.	
REPORT TO: DAVE KEINSME	SAMPLER: DTD	IR(H P.O.	# 103.005.004 EMAIL: dar@tsgcolp.not	、
TURNAROUND TIME:	SAMPLE TYPE:	REPORT FORMAT:	Gel BE States ist	
10 Work Days 🛄 3 Work Days 🛄 Noon - Nx			B - Full List B - 8010 List B - 17 B - 17 <t< td=""><td></td></t<>	
7 Work Days 2 Work Days 2 - 8 Hour	's Ground Water Other	Excel / EDD	8260B - Full List 8260B - 8010 List gas BTEX enates T MTBE Diesel St-Gel rr Oil rr Oil - 8082 - 8081 - 8081 - 8081 - 8081 - 8081 - 8081 - 8082 - 8087 - 8082 - 8087 - 807 - 8087 - 8087	
🗴 Work Days 🔲 1 Work Day 🔲 Other	Soil		EPA 8260B - Full EPA 8260B - 80 EPA 8260B - 80 THP gas Dovygenates Motor Oil Motor Oil PCB - 8082 PCB - 8082 B270 Full List DYS DYS DYS DYS DYS DYS DYS	
LAB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED MATRIX	# OF CONT CONT TYPE	EPA 82608 EPA 82608 EPA 82608 THP gas Oxygenates Motor Oil Metals D PS10 PAHS Only B270 Full Li PAHS Only TO PAHS Only TO TO PAHS Only	
- 201AEFFlorent	12/4/08 4	1 tellar		
002AINFLUENT	12/4/08 A	1 tedlar		LAB
				TORRENT
				ORR
	>			
भागे रहे हैं।	ж , сток стор у , да ,	-36. (279		·· w .
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				
Relinguished By: Print: A	(/ , / , / Date: / / _ 2		Received By: Print: Date: Date: Time: Autor L.D. Turbar 12/11/08 110:55	
1 AL OHN		Time: 695		
Relinquished By: Print:	Date: l	Time:	Received By: Print: Date: Time:	
Were Samples Received in Good Condition?			Method of Shipment DO Sample seals intact? Yes NO NO N	//A
NOTE: Samples are discarded by the labor	atory 30 days from date of receipt ur	nless other arrange	ments are made Page of	

7

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

	,,,,,	1
Submittal Type:	GEO_WELL	
<u>Submittal</u> <u>Title:</u>	SECONDSEMI- ANNUAL2008GROUNDWATERMONITORINGANDSYSTEMSTARTUPANDPERFORMANCEREPORT	
Facility Global ID:	SL0600150413	
<u>Facility</u> Name:	SEARWAY PROPERTY	
File Name:	GEO_WELL.zip	
Organization Name:	Trinity Source Group, Inc.	
Username:	TRINITY SOURCE GROUP	
IP Address:	69.198.129.110	
Submittal Date/Time:	1/26/2009 10:57:05 AM	
Confirmation Number:	6414993762	

UPLOADING A EDF FILE

SUCCESS							
	Processing is complete. No errors were found! Your file has been successfully submitted!						
Submittal Type:	EDF - Monitoring Report - Semi-Annually						
Submittal Title:	SECONDSEMI- ANNUAL2008GROUNDWATERMONITORINGANDSYSTEMSTARTUPPERFORMANCEREPORT						
<u>Facility</u> Global ID:	SL0600150413						
Facility Name:	SEARWAY PROPERTY						
File Name:	EDF.zip						
Organization Name:	Trinity Source Group, Inc.						
<u>Username:</u> IP Address:	TRINITY SOURCE GROUP 69.198.129.110						
Submittal Date/Time:	1/23/2009 4:11:26 PM						
Confirmation Number:	7722054600						
	VIEW QC REPORT						
	VIEW DETECTIONS REPORT						

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number:

REM_OM_R SUB-SLABDEPRESSURIZATIONSTARTUPANDSTATUSREPORT D: SL0600150413 SEARWAY PROPERTY EDF.zip me: Trinity Source Group, Inc. TRINITY SOURCE GROUP 69.198.129.110 Time: 9/22/2008 11:55:29 AM imber: 3527324855 VIEW_QC REPORT

VIEW DETECTIONS REPORT

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number:

REM_R SUB-SLABDEPRESSURIZATIONSYSTEMPERFORMANCEREPORT SL0600150413 SEARWAY PROPERTY EDF.zip Trinity Source Group, Inc. TRINITY SOURCE GROUP 69.198.129.110 10/22/2008 10:14:41 AM Er: 6855782628

VIEW QC REPORT

VIEW DETECTIONS REPORT

UPLOADING A EDF FILE

	SUCCESS
Processing Your file h	is complete. No errors were found! as been successfully submitted!
Submittal Type:	EDF - Remedial Progress Report
Submittal Title:	SUB-SLABSYSTEMPERFORMANCEREPOR
Facility Global ID:	SL0600150413
Facility Name:	SEARWAY PROPERTY
File Name:	EDF.zip
Organization Name:	Trinity Source Group, Inc.
<u>Username:</u>	TRINITY SOURCE GROUP
IP Address:	69.198.129.110
Submittal Date/Time:	1/21/2009 4:04:24 PM
Confirmation Number:	5903530299
	VIEW QC REPORT
VIE	W DETECTIONS REPORT

UPLOADING A GEO_REPORT FILE

	SUCCESS
	Your GEO_REPORT file has been successfully submitted!
Submittal Type:	GEO_REPORT
Report Title:	SECONDSEMI-ANNUAL2008GROUNDWATERMONITORINGANDSUB- SLABVAPORDEPRESSURIZATIONSYSTEMSTARTUPANDPERFORMANCEREPORT
Report Type:	Monitoring Report - Semi-Annually
Report Date:	2/20/2009
Facility Global ID:	SL0600150413
Facility Name:	SEARWAY PROPERTY
File Name:	GEO_REPORT.pdf
Username:	Trinity Source Group, Inc.
Username:	TRINITY SOURCE GROUP
IP Address:	69.198.129.110
Submittal Date/Time:	2/20/2009 11:01:06 AM
Confirmation Number:	1231764853

ATTACHMENT D

DISPOSAL DOCUMENTATION

NORTH VALLEY OIL COMPANY

Serving Your Environmental Needs

P.O. Box 1225 Alviso, CA 95002 (408) 945-7762 FAX (408) 946-3694 EPA ID #CAL 000 027 759 CHP-PUC #CA 80522 DTSC #3027

www.nvoil.com

Øð (00/

SHIPPING	1ª	and the second second second second	1000 100 100 100 100 100

6714

INVOICE #

DATE

CUSTOMER NAME

NAME FERRY MOSADS		NAME REMAINTLY STORAGE ELESS
ADDRESS 1 4 Martin		ADDRESS
CITY MANELY STATE		CITY STATE ZIP
PHONE NO	PO#	CONTACT PERSON
CUSTOMER EPA ID#	E C	By signing below, generator certifies this EPA ID# is correct and active.

Consolidated Manifest - Consolidated manifesting record keeping - Generators must keep consolidated manifesting receipts for at least 3 years from date of shipment.

PRODUCT PROPER SHIPPING DESCRIPTION	WASTE CODE	MANIFEST NUMBER	QUANTITY	AMOUNT
Chlor-D-Tect Testing of PPM				
Used Oil-Non-RCRA Hazardous Waste Liquid	221		Gal	
Oily Water-Non-RCRA Hazardous Waste Liquid	221	COD625706BF	Gal	92.03
Used Automotive Antifreeze-Non-RCRA Hazardous Waste Liquid	134		Gal	
- Culton Oli Halidos Over 1000 PPM	741	1		
Drum Oily Debris Non-RCRA				
Drum Drained Used Oil Filters	+		55 Gal	
Empty Drum Pick-Up Delivery			Drum	
Hours / Hourly Charge for Standby or Travel			<u> </u>	1500
·		Net 30 Days	TOTAL	241.0

DESIGNATED FACILITY - TSDF: Some facilities may ship oil out of state for processing and recycling

Bayside Oil II Inc.
 Evergreen Oil Inc.
 Riverbank Oil Transfer, LLC.
 Clean Harbors San Jose LLC.
 Greenleaf Environmental Services
 Commercial Filter Recycling
 Other ______

210 Encinal Way, Santa Cruz, CA 95060
6880 Smith Ave., Newark, CA 94560
5300 Claus Road, Riverbank, CA 95367
1021 Berryessa Rd., San Jose, CA 95133
3474 Toyon Cir., Valley Springs, CA 95252
33210 Western Ave., Union City, CA 94587

EPA ID # CAD 088 838 222 EPA ID # CAD 980 887 418 EPA ID # CAL 000 190 816 EPA ID # CAL 000 214 411 EPA ID # CAL 000 0214 411 EPA ID # CAL 000 091 507

Thank You

AS AN AUTHORIZED REPRESENTATIVE OF THE GENERATOR, I HEREBY CERTIFY: that our used oil storage tank(s) and/or drum(s) contain only used oil; that this used oil is subject to regulation hazardous materials and/or hazardous wastes. I also certify that on other used oil collector or other entity has advised me, or anyone in my company, that this used oil is or may be contaminated with transportation charges and testing charge to be generator's responsibility. In the event of any litigation arising from this agreement, the prevailing party shall be entitled to reasonable autorneys fee and cost.

Generator certifies that the above named waste stream has not been mixed with any other waste Furthermore it has established a program to reduce the volume & toxicity of waste

DRIVER SIGNATURE _

GENERATOR SIGNATURE

ATTACHMENT E

PERMIT TO OPERATE

0)	EG	Ē	0 10	E	n
	JUN	1.	∎ 200	8	
By_				Ĺ	1

May 5, 2008

BAY AREA AIRQUALITY MANAGEMENT DISTRICT

SINCE 1955

ALAMEDA COUNTY Tom Bates Scott Haggerty Janet Lockhart Nate Miley

CONTRA COSTA COUNTY John Giola Mark Ross Michael Shimansky Gayle B. Uilkema

MARIN COUNTY Harold C. Brown, Jr.

NAPA COUNTY Brad Wagenknecht (Secretary)

£ ANCISCO COUNTY Chris Daly Jake McGoldrick Gavin Newsom

SAN MATEO COUNTY Jerry Hill (Chair) Carol Klatt

SANTA CLARA COUNTY Erin Garner Yoriko Kishimoto Liz Kniss Patrick Kwok

SOLANO COUNTY John F. Silva

SONOMA COUNTY Tim Smith Pamela Torliatt (Vice-Chair)

Jack P. Broadbent EXECUTIVE OFFICER/APCO

> REC Enclosure

Application Number: 17506 Plant Number: 18970 Equipment Location: 649 Pacific Avenue Alameda, CA 94501

Dear Applicant:

S-1

Searway Property 2424 Central Avenue

Alameda, CA 94501

Attention: Don Lindsey

Enclosed is your Permit to Operate the following:

Sub-Slab Venting System IQAIR GCX VOC, 270 SCFM Max Capacity

The equipment described above is subject to condition no. 23992.

All Permits should be posted in a clearly visible and accessible place on or near the equipment to be operated, or kept available for inspection at any time. Operation of this equipment in violation of District Regulations or

In the absence of specific permit conditions to the contrary, the throughputs, fuel and material consumption, capacities, and hours of operation described in your permit application will be considered maximum allowable limits. A new permit will be required before any increase in these parameters, or change in raw material

Please include your permit number with any correspondence with the District. If you have any questions on this matter please call Robert E Cave, Air Quality Engineer II at (415) 749-5048.

Very truly yours,

Jack P. Broadbent Executive Officer/APCO

Jang for SBL bv

Engineering Division

The Air District is a Certified Green Business

Printed using sog-based inks on 100% post-consumer recycled content paper

939 Ellis Street • San Francisco California 94109 • 415.771.6000 • WWW.BAAQMD.GOV

BAY AREA AIRQUALITY

MANAGEMENT

DISTRICT

SINCE 1955

PERMIT TO OPERATE

PLANT No. 18970

SOURCE No. 1

Searway Property

IS HEREBY GRANTED A PERMIT TO OPERATE THE FOLLOWING EQUIPMENT

Sub-Slab Venting System IQAIR GCX VOC, 270 SCFM Max Capacity

LOCATED AT:

649 Pacific Avenue

Alameda, CA 94501

Subject to attached condition no. 23992.¹

JACK P. BROADBENT EXECUTIVE OFFICER/APCO

Permit Issue DateMay 5, 2008Reported Start Up DateApril 9, 2008Permit Expiration DateApril 9, 2009

Sten E. NSBL

Right of Entry

The Air Pollution Control Officer of the Bay Area Air Quality Management District, the Chairman of the California Air Resources Board, the Regional Administrator of the Environmental Protection Agency, and/or their designees, upon presentation of credentials, shall be granted the right of entry to any premises on which an air pollution source is located for the purposes of : i) the inspection of the source ii) the sampling of materials used at the source iii) the conduction of an emissions source test iv) the inspection of any records required by District rule or permit condition.

Permit Expiration

In accordance with Regulation 3-408, a Permit to Operate is valid for 12 months from the date of issuance or other time period as approved by the APCO. Use of this Permit to Operate is authorized by the District until the later of: the Permit Expiration Date or the Permit Renewal Date. Permit to operate fees will be prorated as described in Regulation 3-402 when the permit is renewed.

This permit does not authorize violation of the rules and regulations of the BAAQMD or the Health and Safety Code of the State of California. District regulations may be viewed on line at <u>www.baaqmd.gov</u>. This permit is not transferable to another person without approval from the District. It is the responsibility of the permit holder to have knowledge of and be in compliance with all District Rules and Regulations. *I. Compliance with conditions contained in this permit does not mean that the permit holder is currently in compliance with District Rules and Regulations.*

Permit Holder Must Sign Here

The Air District is a Certified Green Business Printed using soy-based inks on 100% post-consumer recycled content paper

939 Ellis Street - San Francisco California 94109 - 415.771.6000 - WWW.BAAQMD.GOV

S-1

Plant Name: Searway Property

Sub-Slab Venting System

Condition No. 23992 Plant No. 18970

Application No. 17506

 In no event shall emissions to the atmosphere of the following compounds exceed the corresponding emission limits in pounds per day:

Toxic Compound Emissions in #/day

Benzene	1.8E-2
Chloroform	9.3E-2
Carbon Tetrachloride	1.2E-2
Methylene Chloride	4.9E-1
Perchloroethylene	8.2E-2
Trichloroethylene	2.5E-1
Vinyl Chloride	6.6E-3

In addition, emissions of total volatile organic compounds shall not exceed 10 pounds per day. Soil vapor flow rate shall not exceed 72 scfm. [basis: Reg. 2-1-316, 2-2-301, 8-47-113]

- To determine compliance with Condition 1, the operator of this source shall:
 - a. Analyze exhaust gas to determine the concentration of the compounds listed in Condition 1 and the total volatile organic compounds present for each of the first two days of operation. Thereafter, the exhaust gas shall be analyzed to determine the concentration of the compounds listed in condition 1 and total volatile organic compounds present once every 31 days. After 3 months of operation, the operator may propose for District review that the sampling schedule be reduced from monthly to quarterly (at least once every 92 days of operation). Written authorization must be received from the District before any change in sampling frequency.
 - b. Emissions in pounds per day shall be calculated for those compounds listed in condition 1 as well as the total volatile organic compounds.
 - c. Submit to the District's Engineering Division the test results and emission calculations for the first two days of operation within one month of the testing date. Samples shall be analyzed according to modified EPA test methods TO-15 or equivalent to determine the concentrations those compounds listed in condition 1 as well as the total volatile organic compounds.
- 3. The operator of this source shall maintain the following information in a District-approved log for each month of operation of the source:

Page 3 of 4

Plant Name: Searway Property

S-1 Sub-Slab Venting System

Condition No. 23992 Plant No. 18970

Application No. 17506

- a. dates of operation;
- b. exhaust flow rate:
- exhaust sampling date;
 analysis results;
- e. calculated emissions of POC and listed compounds in pounds per day.

Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg. 1-523]

- 4. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.
 - 5. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Authority to Construct/Permit to Operate. All measurements, records and data required to be maintained by the applicant shall be retained for at least two years following the date the data is recorded. [basis: Reg. 1-523]
 - 6.Upon final completion of the remediation project, the operator of Source S-1 shall notify the district within two weeks of decommissioning the operation. End of Conditions