RECEIVED

4:24 pm, Dec 14, 2010

Alameda County
Environmental Health

MacArthur Boulevard Associates c/o Jay-Phares Corporation 10700 MacArthur Boulevard Oakland, CA 94605 510-562-9500

December 7, 2010

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Designation of Authorized Agents of MacArthur Boulevard Associates 10700 MacArthur Blvd. Oakland, California AEI Project # 261829 Toxics Case No. RO0002580

Dear Mr. Wickham:

ACEH has issued the following requirement:

"PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case."

This purpose of this letter is to designate and identify Jeremy Smith and Peter McIntyre of AEI Consultants, either acting alone or together, as "authorized representatives" of MacArthur Boulevard Associates, a California limited partnership, for the purpose of executing and submitting to ACEH on its behalf any cover letter or perjury statement in compliance with the above-quoted requirement.

Sincerely,

MACARTHUR BOULEVARD ASSOCIATES (a California limited partnership)

BY: JAY-PHARES CORPORATION (Its Management Agent)

Bv:

John Jay, Executive Vice President

cc: Jeremy Smith - AEI Consultants

GROUNDWATER MONITORING REPORT 2nd Semester, 2010

10700 MacArthur Boulevard Oakland, California

AEI Project No. 261829 Toxics Case No. RO0002580

Prepared For

Jay-Phares Corporation Attn: John Jay 10700 MacArthur Boulevard, Suite 200 Oakland, CA 94605

Prepared By

AEI Consultants 2500 Camino Diablo Blvd. Walnut Creek, CA 94597 (925) 746-6000

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

December 3, 2010

Jay-Phares Corporation Attn: John Jay 10700 MacArthur Blvd. Oakland, CA 94605

Subject: Semiannual Groundwater Monitoring Report

2nd Semester, 2010

10700 MacArthur Boulevard Oakland, California AEI Project No. 261829 Toxics Case No. RO0002580

Dear Mr. Jay:

AEI Consultants (AEI) has prepared this groundwater monitoring report on behalf of The Jay-Phares Corporation, the manager of the Foothill Square Shopping Center (Figure 1: Site Location Map). The documentation of groundwater quality beneath and around the site was performed to monitor the stability of the chlorinated volatile organic compound (VOC) plume beneath the property.

This report was prepared in accordance with the requirements of the Alameda County Health Care Services Agency (ACHCSA). This report summarizes the activities and results of the semi-annual monitoring activities conducted on October 22, October 25, and November 10, 2010.

Site Description and Background

The subject property (hereinafter referred to as the site or property) is located at 10700 MacArthur Boulevard (Figure 1). The site is approximately 13.5 acres in size and is currently developed with the Foothill Square Shopping Center. The shopping center consists of five buildings, together totaling approximately 155,600 square feet. The area of concern is the former Youngs Cleaners, located on the north side of the property.

The site is situated in a mixed commercial and residential area of Oakland. The site is bound by MacArthur Boulevard to the west, Foothill Boulevard to the east, and 108th Avenue to the south. An ARCO gasoline station is located adjacent to the northwest and residences to the north. Refer to Figure 2 for a site plan of the western section of the Foothill Square Shopping Center property.

Extensive site assessment activities have been conducted to date including the installation of multiple monitoring wells, soil borings, and soil vapor borings, as well as source removal excavation. The most recent investigation included additional soil vapor borings which completed vapor phase contaminate delineation for the site. An approval for pilot study site mitigation activities has been obtained from the ACHCSA, however the pilot study has yet to commence. For a complete history of previous site investigation activities as well as planned pilot study details, please refer to AEI's *Supplemental Soil Vapor Investigation Report* dated June 25, 2008.

The remainder of this report documents the activities and results of the recent groundwater sampling event.

Summary of Activities

On October 22 and 25, 2010, AEI gauged the groundwater levels in each of the accessible thirteen active groundwater monitoring wells at the site and groundwater samples were collected from nine of the wells (AMW-1, AMW-4, AMW-5, AMW-6, AMW-8, AMW-9, MW-6, MW-7, and WGR-MW-4) in accordance with the approved sampling schedule. Despite the placement of "no parking signs" by AEI, wells FHS MW-10 and FHS MW-11 were not accessible during either of these two days due to parked cars over the wells. All accessible wells were first opened and water levels allowed to equilibrate with atmospheric pressure. The depth to water from the top of the well casings was measured prior to sampling with an electric water level indicator. The wells to be sampled were then purged of at least three well volumes either using a battery powered submersible pump or bailed by hand. Field data sheets are included in Appendix A.

Temperature, pH, specific conductivity, dissolved oxygen, and oxidation-reduction potential (ORP) were measured and the turbidity was visually noted during the purging of the wells. Once the above parameters had stabilized, and the wells were allowed to recharge to a minimum of 90% of their original water volume, a water sample was collected. Groundwater samples were collected from each well using clean, disposable plastic bailers.

Groundwater samples were collected from each well to be sampled into three 40 ml volatile organic analysis (VOA) vials. The samples were capped so that neither head space nor air bubbles were visible within the sample containers. Samples were labeled with unique identifiers, stored over water ice, and placed under chain of custody. The samples were transported to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644). Groundwater samples were analyzed for halogenated volatile organic compounds (HVOCs) using EPA Method 8260.

Due to some questions regarding data quality for groundwater level measurements, the depth to groundwater was again measured on November 10, 2010. Depth to groundwater measurements were obtained from all accessible wells (wells FHS MW-10 and FHS MW-11 were again obstructed by parked cars) during the November 10, 2010 gauging event. The depth to water

from this gauging event was used to create a groundwater flow map. Depth to water data from the October sampling events is not being reported.

Field Results

Generally, the wells at the site are categorized as being screened either in a shallow water bearing zone or a deeper water bearing zone. Shallow zone wells (AMW-1, AMW-4, AMW-5, AMW-6, WGR MW2, WGR MW3, and MW-7) are screened from approximately 15 to 35 feet below ground surface (bgs), and deeper wells (AMW-8, AMW-9, WGR MW4, MW-6, and FHS MW-10 and FHS MW-11) are generally in the 35 to 60 feet bgs range. Screen intervals, where known, are presented in Table 1.

Overall, groundwater levels at the site decreased several feet in the wells since the last monitoring event. Groundwater levels in the shallow aquifer ranged from 36.48 to 51.94 feet above mean sea level (amsl) on November 10, 2010. Groundwater was determined to flow to the west at a hydraulic gradient of 0.04 feet per foot, both consistent with previous episodes. Groundwater levels in the deeper, apparently confined/semi-confined aquifer, ranged from 25.91 to 45.14 feet above msl on November 10, 2010. Groundwater flow in the deep aquifer was toward the southwest at a hydraulic gradient of 0.08 feet per foot, relatively consistent with previous findings.

Groundwater measurement data are summarized in Table 1. The groundwater elevation contours are shown in Figures 3 and 4. Refer to Appendix A for Groundwater Monitoring Well Field Sampling Forms.

Groundwater Quality

The highest concentrations of tetrachloroethene (PCE), trichloroethylene (TCE), and cis-1,2 dichloroethylene (cis-1,2 DCE) detected in groundwater from the shallow wells was from well AMW-6 at 260 micrograms per liter (μ g/L), 42 μ g/L, and 48 μ g/L, respectively. The concentration of PCE in well AMW-6 decreased since the last sampling event, back to a concentration consistent with the recent sampling events. The concentrations from the remaining shallow wells were relatively consistent with recent sampling data. The highest concentrations of PCE, TCE, and cis-1,2 DCE in the deeper zone were found in well MW-6 at 400 μ g/L, 30 μ g/L, and 26 μ g/L, respectively. PCE was also detected in well AMW-9 at a concentration of 93 μ g/L. The concentrations in MW-6 are higher than the recent results, however relatively consistent with the historical results. The PCE concentration detected in well AMW-9 is lower than recent sampling events.

A summary of groundwater quality data, including historical results, is presented in Table 2. Laboratory results and chain of custody documents are included in Appendix B. Refer to Figure 5 for a summary of VOC concentrations in the wells sampled during this event.

Summary

In general, chlorinated VOC concentrations in groundwater beneath the site appear relatively stable. The ACHCSA, in a letter dated July 10, 2008, concurred that no further characterization is necessary to investigate shallow soil vapor beneath the site and AEI may commence with the pilot testing activities at the site. The pilot testing activities are currently scheduled to take place in conjunction with site remodeling activities, which have not yet been scheduled. However, tenants in the vicinity of the proposed pilot study activities have since been relocated and the tenant spaces are currently empty. Furthermore, the units will remain empty and not be occupied until pilot study activities have been completed. The pilot study was previously due on April 16, 2010; however, the remodeling activities have not been scheduled. A new date has not been established for the pilot study; however, tenant spaces will remain vacant pending the results of the pilot study activities. The ACHCSA will be notified once a pilot study schedule has been established. The monitoring well network will continue to be sampled by AEI in accordance with the approved sampling schedule, with the next sampling event scheduled during April 2011.

Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the required information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work. If you have any questions regarding our investigation, please do not hesitate to contact either of the undersigned at (925) 746-6000.

Sincerely,

AEI Consultants

Jeremy Smith, REA II

Senior Project Manager

Robert F. Flory, PG, REA

No. 5825

Senior Project Geologist

Figures

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Groundwater Elevation Map – Shallow Wells Figure 4 Groundwater Elevation Map – Deep Wells

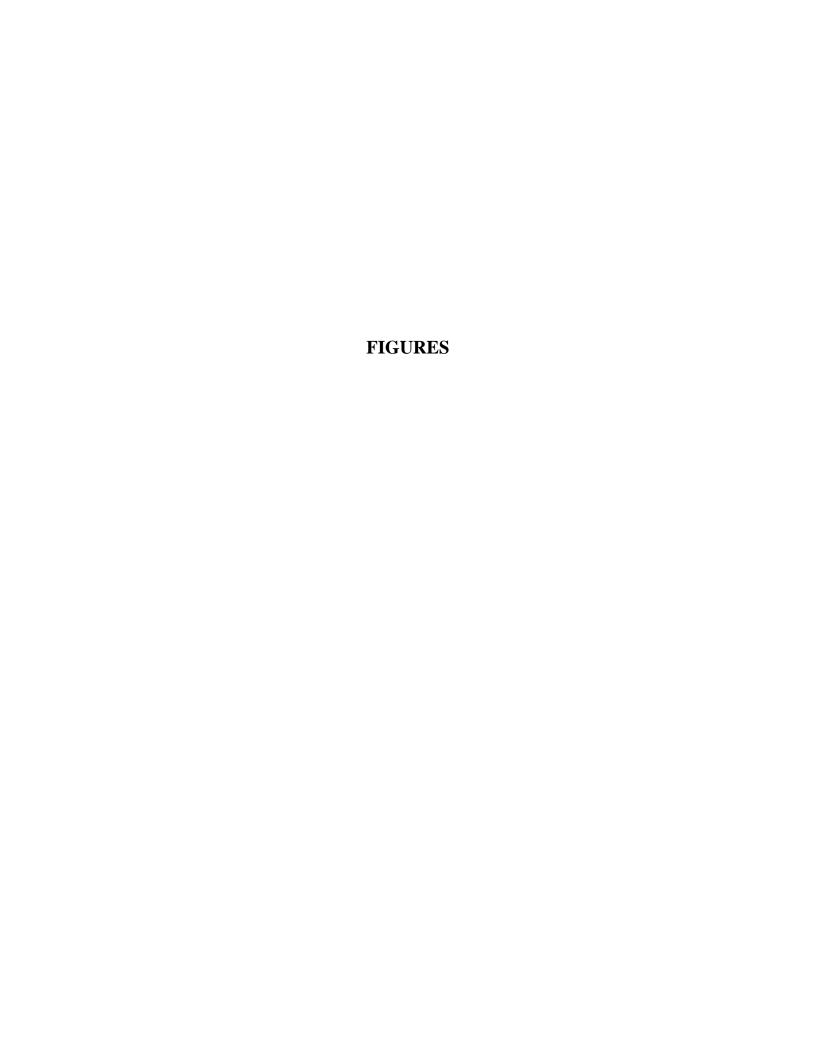
Figure 5 Groundwater Analytical Data

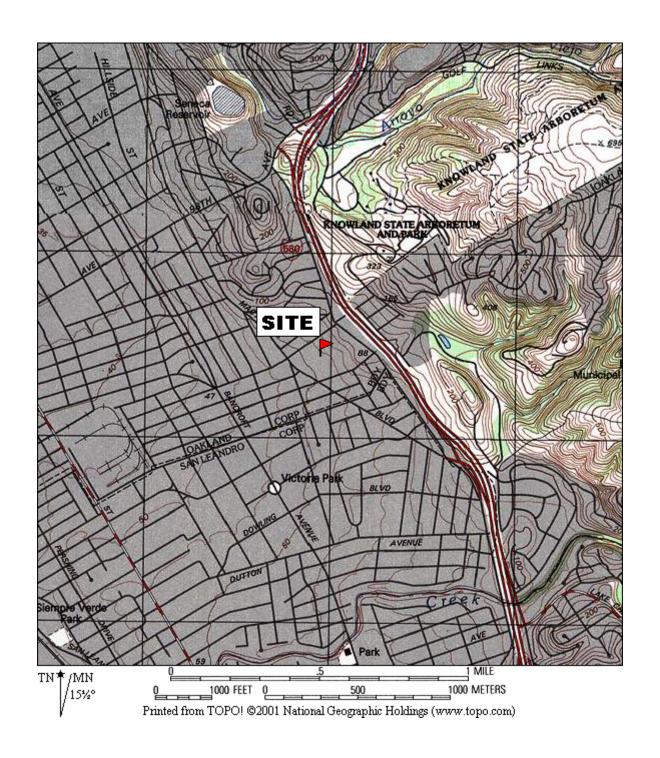
Tables

Table 1 Groundwater Level Data

Table 2 Groundwater Sample Analytical Data

Appendices

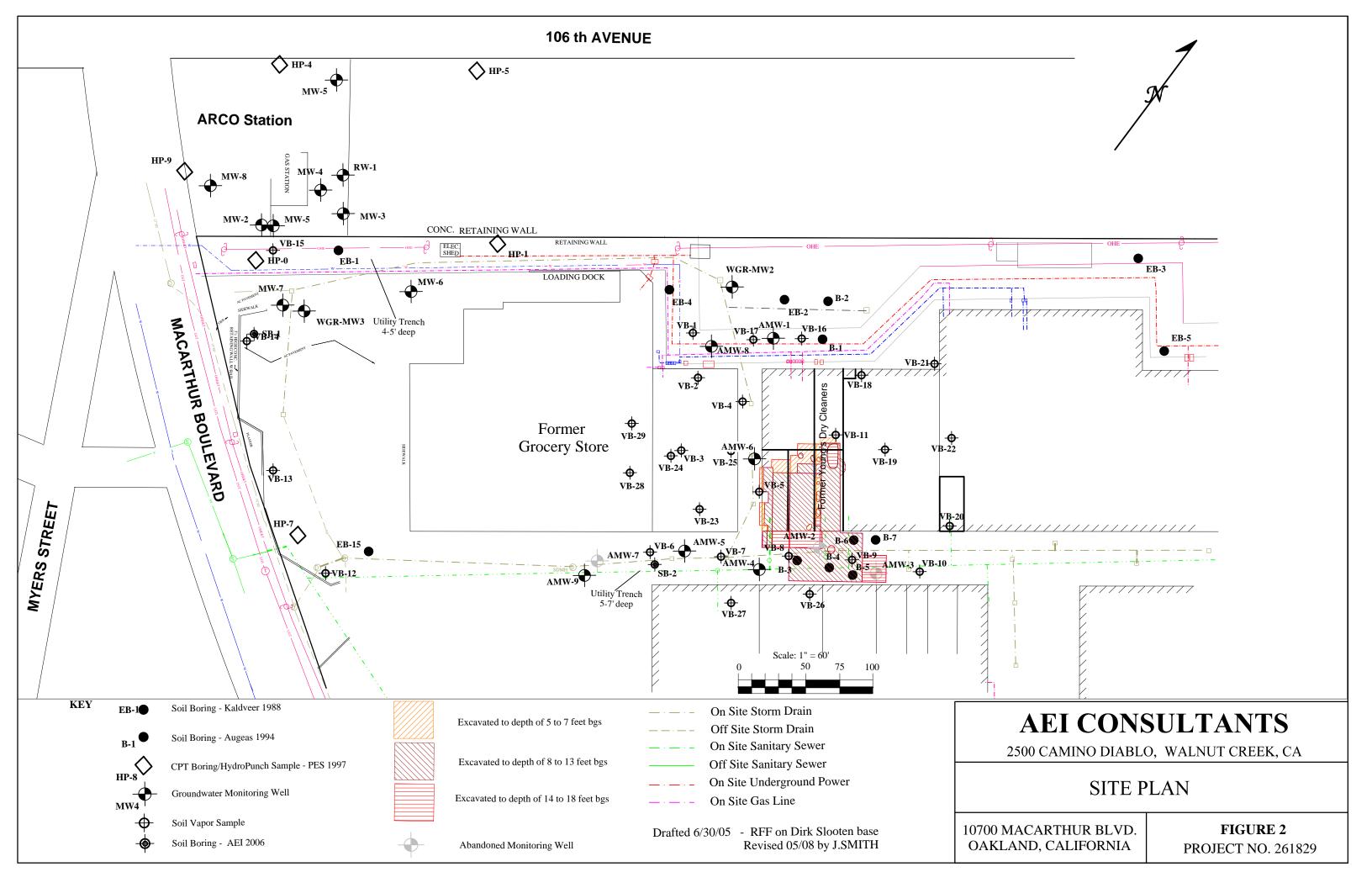

Appendix A Groundwater Monitoring Well Field Sampling Forms

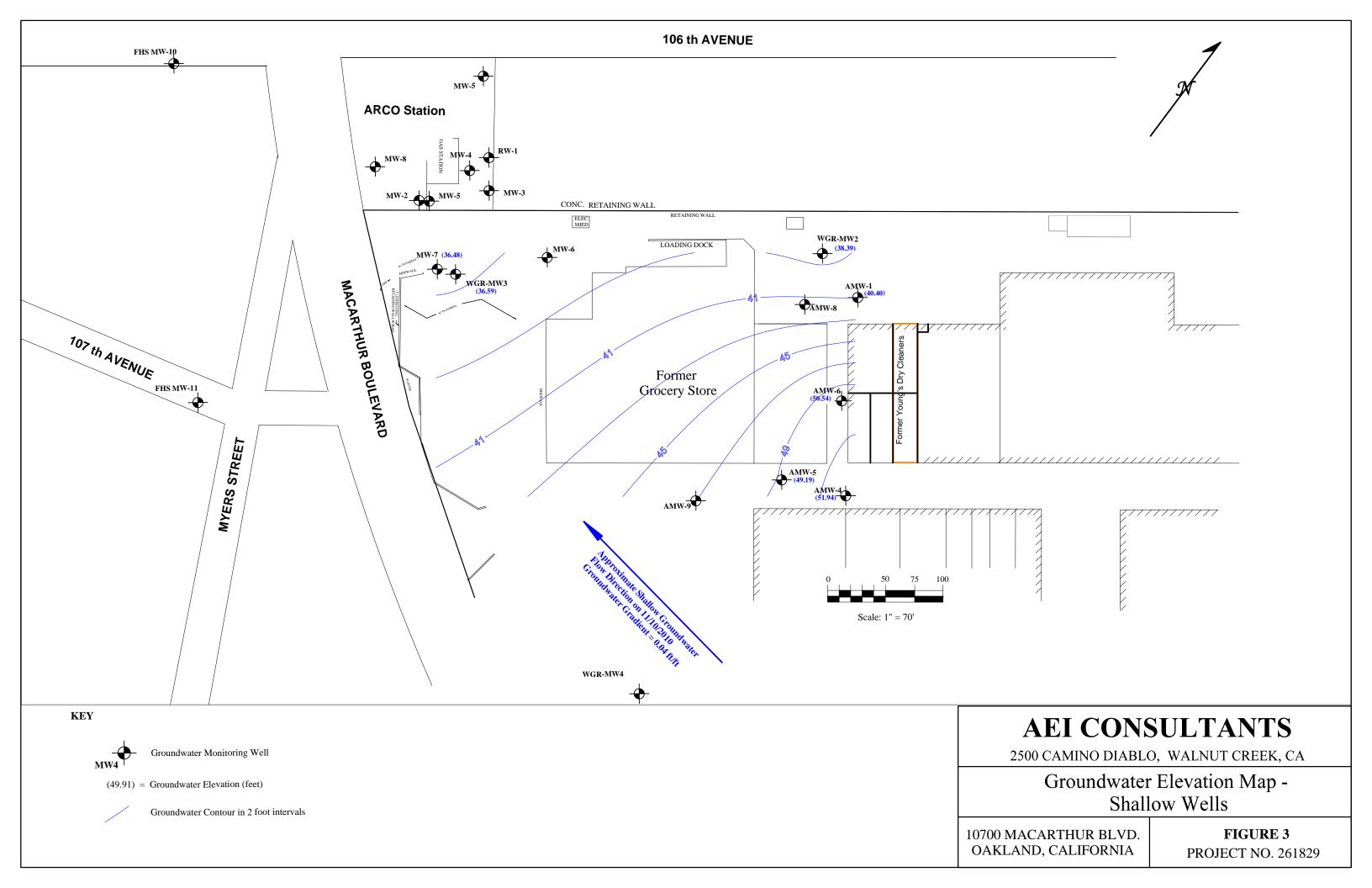

Appendix B Laboratory Analyses With Chain of Custody Documentation

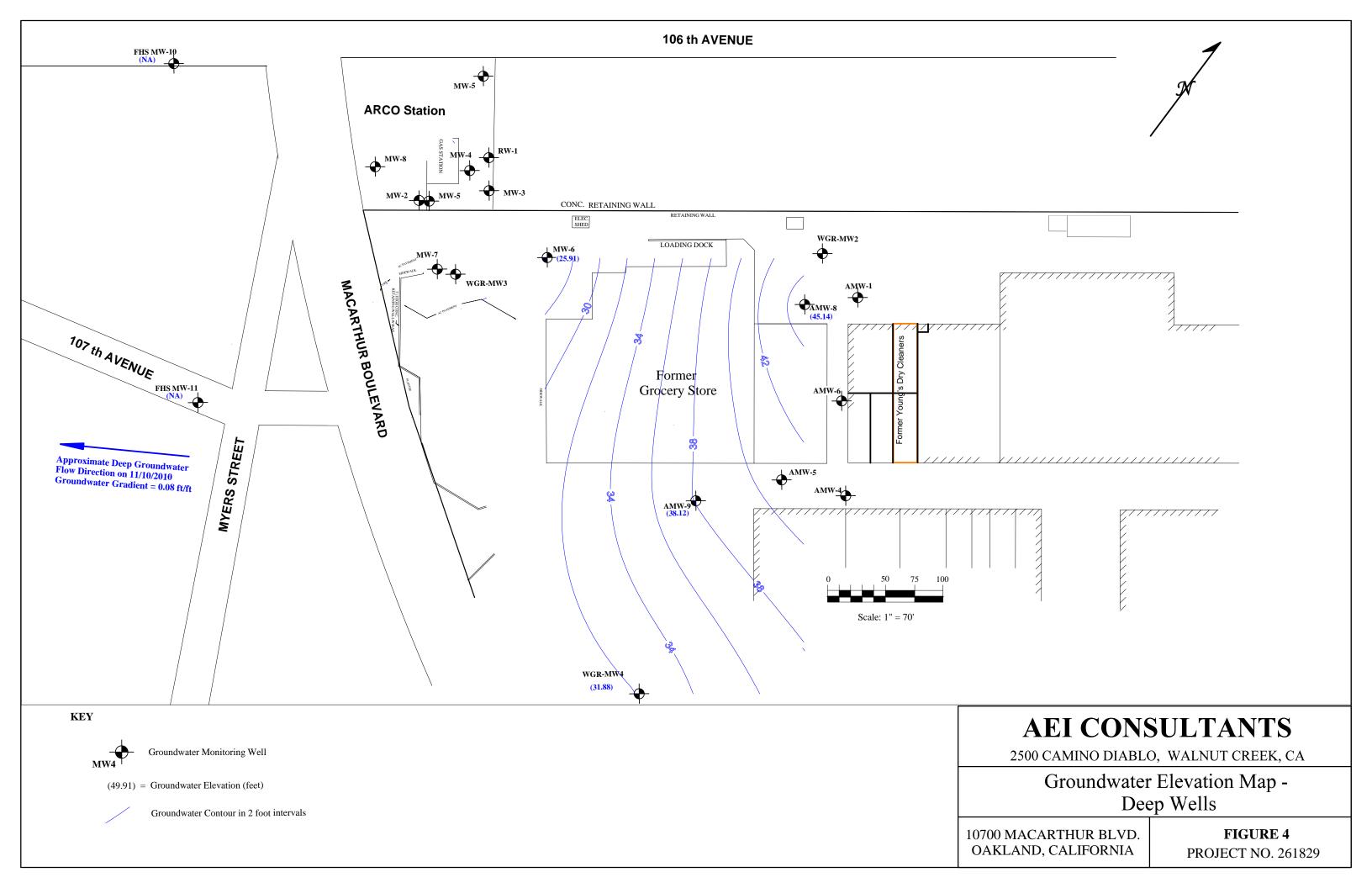
Distribution

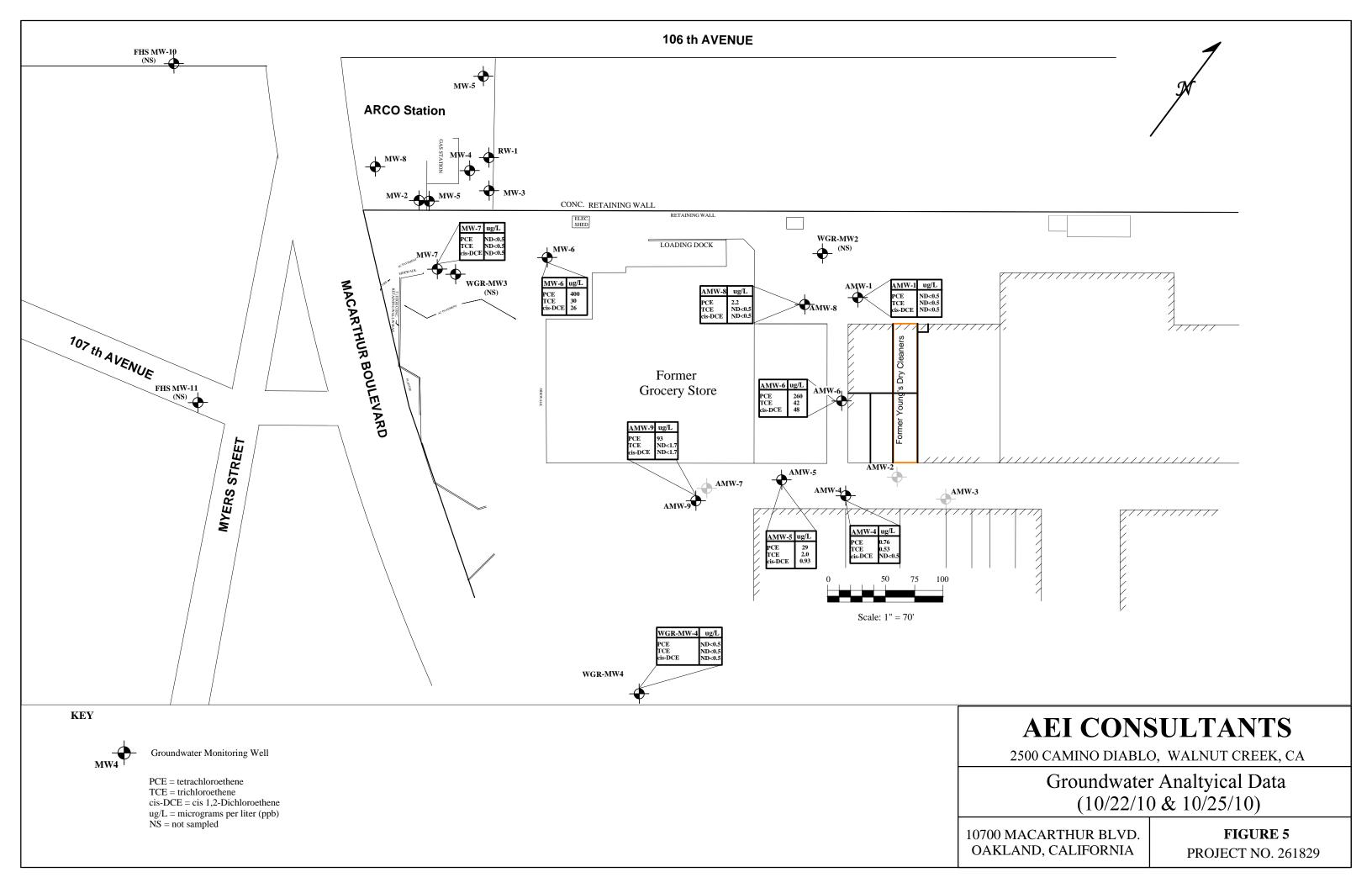
Mr. Jerry Wickham, Alameda County Health Care Services Agency, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502 (electronic copy)

Jay-Phares Corporation, Attn; John Jay, 10700 MacAurther Blvd., Oakland, California 94605 Geotracker electronic upload




AEI CONSULTANTS


2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597


SITE LOCATION MAP

10700 MACARTHUR BLVD OAKLAND, CALIFORNIA FIGURE 1
PROJECT No. 261829

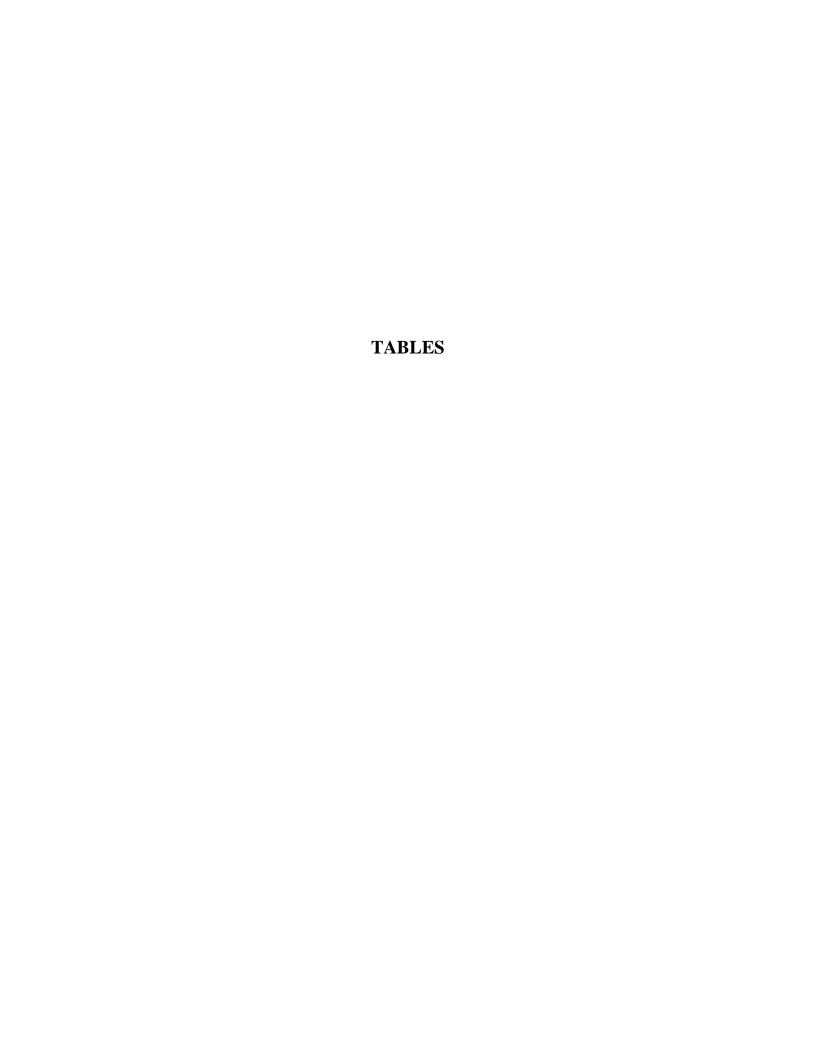


Table 1 Groundwater Level Data 10700 MacArthur Blvd., Oakland, California

Well ID (Aquifer zone)	Date	Screen Interval (ft bgs)	Well Elevation (ft msl)	Depth to Water (ft)	Groundwater Elevation (ft msl)
	1/20/1000		24.51		41.50
AMW-1	1/29/1999	24-34	64.51	23.01	41.50
(Shallow)	5/5/1999		64.51	21.25	43.26
	10/9/1999 1/20/2000		64.51 64.51	24.14 24.66	40.37 39.85
	8/8/2000		64.51	23.30	41.21
	2/15/2001		64.51	23.22	41.29
	8/29/2001		64.51	24.38	40.13
	3/12/2002		64.51	21.29	43.22
	9/27/2002		64.51	23.62	40.89
	3/25/2003		64.51	22.45	42.06
	10/2/2003		64.51	24.31	40.20
	10/17/2006		64.51	22.91	41.60
	5/3/2007		64.51	18.61	45.90
	10/17/2007		64.51	23.97	40.54
	4/1/2008		64.51	22.02	42.49
	10/2/2008		64.51	24.21	40.30
	4/2/2009		64.51	22.49	42.02
	10/2/2009		64.51	24.38	40.13
	4/9/2010		64.51	21.68	42.83
	11/10/2010		64.51	24.11	40.40
AMW-4	1/29/1999	15-25	64.79	11.51	53.28
(Shallow)	5/5/1999		64.79	10.14	54.65
(10/9/1999		64.79	12.04	52.75
	1/20/2000		64.79	13.50	51.29
	8/8/2000		64.79	11.74	53.05
	2/15/2001		64.79	12.32	52.47
	8/29/2001		64.79	12.40	52.39
	3/12/2002		64.79	10.13	54.66
	9/27/2002		64.79	12.14	52.65
	3/25/2003		64.79	11.03	53.76
	10/2/2003		64.79	12.33	52.46
	10/17/2006		64.79	12.76	52.03
	5/3/2007		64.79	11.11	53.68
	10/17/2007		64.79	12.64	52.15
	4/1/2008		64.79	11.49	53.30
	10/2/2008		64.79	13.34	51.45
	4/2/2009		64.79	12.21	52.58
	10/2/2009 4/9/2010		64.79 64.79	13.91 11.23	50.88 53.56
	11/10/2010		64.79	12.85	51.94
	11/10/2010		04.77	12.03	31.74
AMW-5	1/29/1999	20-30	64.97	13.87	51.10
(Shallow)	5/5/1999		64.97	12.83	52.14
	10/9/1999		64.97	14.25	50.72
	1/20/2000		64.97	14.91	50.06
	8/8/2000		64.97	14.14	50.83
	2/15/2001		64.97	14.32	50.65
	8/29/2001		64.97	14.72	50.25
	3/12/2002		64.97	13.12	51.85
	9/27/2002		64.97	14.62	50.35
	3/25/2003		64.97	13.45	51.52
	10/2/2003		64.97	14.74	50.23
	10/17/2006		64.97	14.15	50.82
	5/3/2007		64.97	13.92	51.05
	10/17/2007		64.97	15.06	49.91
	4/1/2008		64.97	14.14	50.83
	10/2/2008		64.97	15.72	49.25
	4/2/2009		64.97	14.62	50.35
	10/2/2009 4/9/2010		64.97 64.97	16.18 13.98	48.79 50.99
	4/9/2010 11/10/2010		64.97 64.97	15.78	30.99 49.19
	11/10/2010		04.97	15./8	49.19

Table 1: Continued

		Table 1. Co	Well	Depth	Groundwater
Well ID		Screen Interval	Elevation	to Water	Elevation
(Aquifer zone)	Date	(ft bgs)	(ft msl)	(ft)	(ft msl)
AMW-6	1/29/1999	? - 25	65.10	12.74	52.36
(Shallow)	5/5/1999	23	65.10	11.30	53.80
(Shanow)	10/9/1999		65.10	13.29	51.81
	1/20/2000		65.10	14.21	50.89
	8/8/2000		65.10	12.95	52.15
	2/15/2001		65.10	12.64	52.46
	8/29/2001		65.10	13.65	51.45
	3/12/2002		65.10	11.41	53.69
	9/27/2002		65.10	13.25	51.85
	3/25/2003		65.10	12.22	52.88
	10/2/2003		65.10	14.74	50.36
	10/17/2006		65.10	11.46	53.64
	5/3/2007		65.10	13.04	52.06
	10/17/2007		65.10	13.87	51.23
	4/1/2008		65.10	12.64	52.46
	10/2/2008		65.10	14.54	50.56
	4/2/2009		65.10	13.38	51.72
	10/2/2009		65.10	16.03	49.07
	4/9/2010		65.10	12.75	52.35
	11/10/2010		65.10	14.56	50.54
AMW-7	1/29/1999	Unknown	64.24	14.91	49.33
(Shallow)	5/5/1999		Well C	Covered during const	urction
AMW-8	1/29/1999	? - 45	64.55	16.86	47.69
(Deep)	5/5/1999		64.55	14.46	50.09
	10/9/1999		64.55	17.10	47.45
	1/20/2000		64.55	18.51	46.04
	8/8/2000		64.55	16.71	47.84
	2/15/2001		64.55	17.31	47.24
	8/29/2001		64.55	18.30	46.25
	3/12/2002		64.55	16.03	48.52
	9/27/2002		64.55	18.03	46.52
	3/25/2003		64.55	17.31	47.24
	10/2/2003		64.55	21.54	43.01
	10/17/2006		64.55	16.05	48.5
	5/3/2007		64.55	23.01	41.54
	10/17/2007		64.55	18.34	46.21
	4/1/2008		64.55	17.49	47.06
	10/2/2008		64.55	19.10	45.45
	4/2/2009		64.55	18.18	46.37
	10/2/2009		64.55	19.75	44.80
	4/9/2010		64.55 64.55	17.76 19.41	46.79 45.14
	11/10/2010		04.55	17,41	45.14

Table 1: Continued

			Well	Depth	Groundwater
Well ID	D 4	Screen Interval	Elevation	to Water	Elevation
(Aquifer zone)	Date	(ft bgs)	(ft msl)	(ft)	(ft msl)
AMW-9	1/29/1999	? - 55	63.48	23.22	40.26
(Deep)	5/5/1999	. 55	63.48	21.40	42.08
(=F)	10/9/1999		63.48	23.74	39.74
	1/20/2000		63.48	24.92	38.56
	8/8/2000		63.48	23.01	40.47
	2/15/2001		63.48	21.20	42.28
	8/29/2001		63.48	22.59	40.89
	3/12/2002		63.48	21.94	41.54
	9/27/2002		63.48	24.16	39.32
	3/25/2003		63.48	23.00	40.48
	10/2/2003		63.48	23.80	39.68
	10/17/2006		63.48	23.07	40.41
	5/3/2007		63.48	23.17	40.31
	10/17/2007		63.48	24.97	38.51
	4/1/2008		63.48	22.97	40.51
	10/2/2008		63.48	25.65	37.83
	4/2/2009		63.48	23.80	39.68
	10/2/2009		63.48	25.98	37.50
	4/9/2010		63.48	22.80	40.68
	11/10/2010		63.48	25.36	38.12
WGR MW-2	1/29/1999	23-28	63.18	23.41	39.77
(Shallow)	5/5/1999		63.18	21.41	41.77
	10/9/1999		63.18	24.62	38.56
	1/20/2000		63.18	25.24	37.94
	8/8/2000		63.18	23.41	39.77
	8/29/2001		63.18	25.09	38.09
	3/12/2002		63.18	21.86	41.32
	9/27/2002		63.18	24.69	38.49
	3/25/2003		63.18	23.71	39.47
	10/2/2003		63.18	25.13	38.05
	10/17/2006		63.18	23.91	39.27
	5/3/2007		63.18	24.11 NA	39.07 NA
	10/17/2007 4/1/2008		63.18 63.18	22.83	40.35
	10/2/2008		63.18	25.53	37.65
	4/2/2009		63.18	23.23	39.95
	10/2/2009		63.18	25.70	37.48
	4/9/2010		63.18	22.36	40.82
	11/10/2010		63.18	24.79	38.39
WGR MW-3	1/29/1999	22-27	58.34	15.81	42.53
(Shallow)	5/5/1999	22-21	58.34	18.43	39.91
(Shanow)	10/9/1999		58.34	21.38	36.96
	1/20/2000		58.34	19.76	38.58
	8/8/2000		58.34	20.88	37.46
	8/29/2001		58.34	21.22	37.12
	3/12/2002		58.34	14.80	43.54
	9/27/2002		58.34	22.32	36.02
	3/25/2003		58.34	18.07	40.27
	10/2/2003		58.34	22.22	36.12
	10/17/2006		58.34	21.85	36.49
	5/3/2007		58.34	18.37	39.97
	10/17/2007		58.34	NA	NA
	4/1/2008		58.34	18.74	39.60
	10/2/2008		58.34	23.62	34.72
	4/2/2009		58.34	17.89	40.45
	10/2/2009		58.34	22.16	36.18
	4/9/2010		58.34	15.71	42.63
	11/10/2010		58.34	21.75	36.59

Table 1: Continued

		Table 1. Co	Well	Depth	Groundwater
Well ID		Screen Interval	Elevation	to Water	Elevation
(Aquifer zone)	Date	(ft bgs)	(ft msl)	(ft)	(ft msl)
			1 1	` '	(It IIISI)
WGR MW-4	1/29/1999	23-45	60.02	26.23	33.79
(Deep)	5/5/1999		60.02	23.80	36.22
	10/9/1999		60.02	27.73	32.29
	1/20/2000		60.02	27.97	32.05
	8/8/2000		60.02	26.00	34.02
	2/15/2001		60.02	26.55	33.47
	8/29/2001		60.02	27.14	32.88
	3/12/2002		60.02	24.90	35.12
	9/27/2002		60.02	27.09	32.93
	3/25/2003		60.02	25.75	34.27
	10/2/2003		60.02	27.41	32.61
	10/17/2006		60.02	26.31	33.71
	5/3/2007		60.02	26.13	33.89
	10/17/2007		60.02	28.33	31.69
	4/1/2008		60.02	25.91	34.11
	10/2/2008		60.02	28.85	31.17
	4/2/2009		60.02	25.77	34.25
	10/2/2009		60.02	28.81	31.21
	4/9/2010		60.02	25.01	35.01
	11/10/2010		60.02	28.14	31.88
FHS MW-10	1/29/1999	42-52	52.34	23.91	28.43
(Deep)	5/5/1999		52.34	20.55	31.79
	10/9/1999		52.34	25.00	27.34
	1/20/2000		52.34	27.23	25.11
	8/8/2000		52.34	24.06	28.28
	2/15/2001		52.34	24.16	28.18
	8/29/2001		52.34	26.11	26.23
	3/12/2002		52.34	23.94	28.40
	9/27/2003		52.34	25.86	26.48
	3/25/2003		52.34	23.20	29.14
	10/6/2003		52.34	26.39	25.95
	10/17/2006		52.34	24.35	27.99
	5/3/2007		52.34	23.97	28.37
	10/17/2007		52.34	27.71	24.63
	4/1/2008		52.34	23.79	28.55
	10/2/2008		52.34	28.40	23.94
	4/2/2009		52.34	23.80	28.54
	10/2/2009		52.34	28.51	23.83
	4/9/2010		52.34	22.04	30.30
	11/10/2010		52.34	NA	NA

Table 1: Continued

		Table 1: Co	Well	Depth	Groundwater
Well ID		Screen Interval	Elevation	to Water	Elevation
(Aquifer zone)	Date	(ft bgs)	(ft msl)	(ft)	(ft msl)
FHS MW-11	1/29/1999	59-64	54.06	26.38	27.68
(Deep)	5/5/1999	5, 0.	54.06	22.72	31.34
(Беср)	10/9/1999		54.06	27.42	26.64
	1/20/2000		54.06	29.31	24.75
	8/8/2000		54.06	26.11	27.95
	2/15/2001		54.06	26.43	27.63
	8/29/2001		54.06	28.28	25.78
	3/12/2002		54.06	21.61	32.45
	9/27/2002		54.06	27.93	26.13
	3/25/2003		54.06	45.21	8.85
	10/2/2003		51.00	Well Inaccessible	0.05
	10/17/2006		54.06	26.54	27.52
	5/3/2007		54.06	26.25	27.81
	10/17/2007		54.06	29.88	24.18
	4/1/2008		54.06	26.02	28.04
	10/2/2008		54.06	30.61	23.45
	4/2/2009		54.06	26.09	27.97
	10/5/2009*		54.06	30.80	23.26
	4/9/2010		54.06	21.51	32.55
	11/10/2010		54.06	NA	NA
MW-6	1/29/1999	37.5-56	61.78	32.87	28.91
(Deep)	5/5/1999	37.3-30	61.78	29.41	32.37
(Беср)	9/10/1999		61.78	33.98	27.80
	1/20/2000		61.78	36.02	25.76
	8/8/2000		61.78	32.73	29.05
	2/15/2001		61.78	33.34	28.44
	8/29/2001		61.78	34.98	26.80
	3/12/2002		61.78	30.72	31.06
	9/27/2002		61.78	34.50	27.28
	3/25/2003		61.78	32.08	29.70
	10/2/2003		61.78	34.86	26.92
	10/17/2006		61.78	32.58	29.20
	5/3/2007		61.78	32.54	29.24
	10/17/2007		61.78	36.20	25.58
	4/1/2008		61.78	32.39	29.39
	10/2/2008		61.78	36.86	24.92
	4/2/2009		61.78	32.67	29.11
	10/2/2009		61.78	36.98	24.80
	4/9/2010		61.78	30.09	31.69
	11/10/2010		61.78	35.87	25.91
MW-7	1/20/2000	17.5-37.5	58.64	20.32	38.32
(Shallow)	8/8/2000	11.5-51.5	58.64	20.50	38.14
(Silaliow)	2/15/2001		58.64	16.95	41.69
	8/29/2001		58.64	21.61	37.03
	3/12/2002		58.64	17.03	41.61
	9/27/2002		58.64	22.73	35.91
	3/25/2003		58.64	19.09	39.55
	10/2/2003		58.64	22.46	36.18
	10/17/2006		58.64	22.19	36.45
	5/3/2007		58.64	19.52	39.12
	10/17/2007		58.64	21.49	37.15
	4/1/2008		58.64	19.73	38.91
	10/2/2008		58.64	24.64	34.00
	4/2/2009		58.64	18.60	40.04
	10/2/2009		58.64	22.60	36.04
	4/9/2010		58.64	17.57	41.07
	11/10/2010		58.64	22.16	36.48
	11/10/2010		20.04	22.10	20.70

Notes:

All well elevations are measured from the top of casing not from the ground surface.

ft msl = feet above mean sea level

* = Car parked over well, reading taken 3 days later then other wells.

NA = not available

Table 2 Groundwater Sample Analytical Data 10700 MacArthur Blvd., Oakland, California

Well (aguifer zone)	Date	Consultant	cis 1,2 DCE μg/L	trans 1,2 DCE µg/L	PCE μg/L	TCE µg/L	VHCs* μg/L
AMW-1	3/23/95	Augeus	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5
(shallow)	6/21/95	Augeus		ND<0.5	ND<0.5	ND<0.5	ND<0.5
(sharow)	9/11/95	Augeus	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	4/16/96	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	7/17/96	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/23/96	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/29/97	PES	NS	NS	NS	NS	NS
	1/20/00	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	8/8/00	AEI	NS	NS	NS	NS	NS
	2/15/01	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	8/29/01 3/12/02	AEI AEI	NS ND<0.5	NS ND<0.5	NS ND<0.5	NS ND<0.5	NS ND<0.5
	9/27/02	AEI	NS NS	NS NS	NS NS	NS NS	NS NS
	3/25/03	AEI	ND<0.5	ND<0.5	1.8	ND<0.5	ND<0.5
	10/2/03	AEI	NS	NS	NS	NS	NS
	10/17/06	AEI	ND<0.5	ND<0.5	2.2	ND<0.5	ND <rl< td=""></rl<>
	5/2/07	AEI	ND<0.5	ND<0.5	ND<0.5	0.69	ND <rl< td=""></rl<>
	10/17/07	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	4/1/08	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	10/2/08	AEI	ND<0.5	ND<0.5	0.60	ND<0.5	ND <rl< td=""></rl<>
	4/2/09	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	10/2/09	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	4/9/10	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	10/25/10	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
AMW-4	5/15/95	Augeus	NR	ND<50	2400	ND<50	NR
(shallow)	6/21/95	Augeus	NR	ND<50	2500	ND<50	NR
	9/13/95	Augeus	NR ND <10	ND<25	1100	ND<25	NR NB
	4/16/96 7/17/96	PES PES	ND<10 ND<10	ND<10 ND<10	1200 860	10 ND<10	NR NR
	10/23/96	PES	ND<0.5	ND<0.5	22	0.5	NR
	9/29/97	PES	ND<3	ND<3	340	3	NR
	1/29/99	AEI	ND<3	ND<3	100	ND<3	ND<3
	5/5/99	AEI	ND<5	ND<5	210	ND<5	ND<5
	9/10/99	AEI	10	ND<5	240	18	ND<5
	1/20/00	AEI	46	ND<2.5	97	6.2	ND<2.5
	8/8/00	AEI	ND<5	ND<5	440	8	ND<5
	2/15/01	AEI	ND<2.5	ND<2.5	81	2.6	ND<2.5
	8/29/01	AEI	ND<2.5	ND<2.5	230	4.6	ND<2.5
	3/12/02	AEI	ND<5.0	ND<5.0	190	ND<5.0	ND<5.0
	9/27/02	AEI	ND<5.0	ND<5.0	220	ND<5.0	10***
	3/25/03	AEI	1.2	ND<1.0	22	1.9	ND<1.0
	10/2/03	AEI AEI	2.8 9.9	ND<0.5 ND<0.5	50 6.5	2.8 ND<0.5	ND<0.5
	10/17/06 5/3/07	AEI	2.7	ND<0.5 ND<0.5	5.1	1.2	ND <rl ND<rl**< td=""></rl**<></rl
	10/17/07	AEI	4.0	ND<0.5	6.2	ND<0.5	ND <rl< td=""></rl<>
	4/1/08	AEI	3.3	ND<0.5	5.8	2.6	0.85**
	10/2/08	AEI	11.0	ND<1.0	34	2.9	ND <rl 3<="" td=""></rl>
							ND <rl <sup="">4</rl>
	4/2/09	AEI	2.8	ND<0.5	8.0	0.76	
	10/2/09	AEI	11	ND<0.5	4.3	0.89	ND <rl 5<="" td=""></rl>
	4/9/10 10/22/10	AEI AEI	1.9 ND<0.5	ND<0.5 ND<0.5	11 0.76	1.6 0.53	ND <rl '="" nd<rl<="" td=""></rl>
AMW-5	5/15/95	Augeus	NR	ND<0.5	1.2	ND<0.5	NR
(shallow)	6/21/95	Augeus	NR NR	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5	NR NR
	9/13/95 4/16/96	Augeus PES	ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	NR NR
	7/17/96	PES	ND<0.5	ND<0.5	0.6	ND<0.5	NR
	10/23/96	PES	ND<0.5	ND<0.5	0.8	ND<0.5	NR
	9/29/97	PES	ND<0.5	ND<0.5	13	ND<0.5	NR
	1/29/99	AEI	NA	NA	NA	NA	NA
	5/5/99	AEI	ND<1	ND<1	36	ND<1	ND<1
	9/10/99	AEI	ND<1	ND<1	35	ND<1	ND<1
	1/20/00	AEI	ND<1	ND<1	36	ND<1	ND<1
	8/8/00	AEI	ND<0.5	ND<0.5	50	0.72	ND<0.5
	2/15/01	AEI	ND<0.5	ND<0.5	26	0.76	ND<0.5
	8/29/01	AEI	ND<0.5	ND<0.5	28	0.87	ND<0.5
	3/12/02	AEI	ND<0.5	ND<0.5	25	0.75	ND<0.5
	9/27/02	AEI	ND<0.5	ND<0.5	17	ND<0.5	ND<0.5
	3/25/03	AEI AEI	ND<1.0 ND<0.5	ND<1.0	23 20	ND<1.0 0.58	ND<1.0 ND<0.5
	10/2/03 10/17/06	AEI	ND<0.5 0.68	ND<0.5 ND<0.5	20	0.58	ND<0.5 ND <rl< td=""></rl<>
	5/3/07	AEI	0.08	ND<0.5 ND<0.5	42	2.0	ND <rl ND<rl< td=""></rl<></rl
	10/17/07	AEI	1.2	ND<0.5	42	2.0	ND <rl ND<rl< td=""></rl<></rl
	4/1/08	AEI	1.7	ND<0.5	50	2.8	ND <rl< td=""></rl<>
	10/2/08	AEI	1.5	ND<1.0	46	2.3	ND <rl< td=""></rl<>
	4/2/09	AEI	ND<1.7	ND<1.7	56	2.9	ND <rl< td=""></rl<>
	10/2/09	AEI	0.87	ND<0.5	31	1.4	ND <rl< td=""></rl<>
	10/2/09 4/9/10	AEI AEI	0.87 ND<1.0	ND<0.5 ND<1.0	35	2.1	ND <rl ND<rl< td=""></rl<></rl

Well aguifer zone)	Date	Consultant	cis 1,2 DCE μg/L	trans 1,2 DCE µg/L	PCE μg/L	TCE µg/L	VHCs* μg/L
AMW-6	9/13/95	Augeus	NR	ND<25	930	ND<25	NR
(shallow)	4/16/96	PES	20	ND<10	1900	110	NR
	7/17/96	PES	ND<30	ND<30	3300	280	NR
	10/23/96	PES	ND<30	ND<30	2900	140	NR
	9/29/97	PES	220	70	4600	580	NR
	1/29/99	AEI	270	77	2400	390	ND<63
	5/5/99	AEI	370	110	2700	470	ND<71
	9/10/99	AEI	190	49	1400	250	ND<36
	1/20/00	AEI	210	ND<35	1600	270	ND<35
	8/8/00	AEI	150	56	1100	180	ND<25
	2/15/01	AEI	190	40	930	200	ND<25
	8/29/01	AEI	77	17	780	110	ND<10
	3/12/02	AEI	150	37	1300	170	ND<25
	9/27/02	AEI	67	ND<17	490	91	ND<17
	3/25/2003	AEI	94	ND<33	740	110	ND<33
	10/2/2003	AEI	66	13	440	60	ND<10
	10/17/2006	AEI	32	4.9	98	14	ND <rl< td=""></rl<>
	5/3/2007	AEI	32	ND<5.0	120	22	ND <rl< td=""></rl<>
	10/17/2007	AEI	48	8.4	140	27	ND <rl 2<="" td=""></rl>
	4/1/2008	AEI	39	6.2	140	24	ND <rl< td=""></rl<>
	10/2/2008	AEI	43	7.1	130	26	ND <rl< td=""></rl<>
	4/2/2009	AEI	50	8.1	250	37	ND <rl< td=""></rl<>
	10/2/2009	AEI	55	11	240	44	ND <rl 6<="" td=""></rl>
	4/9/2010	AEI AEI	55 56	ND<25	530	61	ND <rl ND<rl< td=""></rl<></rl
		AEI AEI	36 48	ND<25 10		42	ND <rl ND<rl< td=""></rl<></rl
	10/22/2010	ALI	40	10	260	44	NDSKL
AMW-7	9/13/95	Augeus	NR	ND<25	2350	340	NR
(shallow)	4/16/96	PES	2200	60	2300	500	NR
	7/17/96	PES	2100	ND<30	2400	530	NR
	10/23/96	PES	3100	50	3400	610	NR
	9/29/97	PES	33	20	520	100	NR
	1/29/99	AEI	22	ND<3	95	12	ND<3
	5/5/99	AEI	22		vered During Co		ND (3
	5/5/77			Wen co	rerea Daring Co.	iistraction	
AMW-8	9/13/95	Augeus	_	ND<25	95	ND<25	ND<25
(deep)	4/16/96	PES	ND<0.5	ND<0.5	0.8	ND<0.5	ND<0.5
(deep)	7/17/96	PES	ND<0.5	ND<0.5	1.6	ND<0.5	ND<0.5
	10/23/96	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/29/97	PES	ND<0.5	ND<0.5	0.7	ND<0.5	ND<0.5
	1/20/00	AEI	ND<0.5	ND<0.5	0.73	ND<0.5	ND<0.5
		AEI	NS NS	NS NS	NS	NS NS	NS NS
	8/8/00 2/15/01	AEI	ND<0.5	ND<0.5	1.7	ND<0.5	ND<0.5
	8/29/01	AEI	NS NS	NS NS	NS	NS NS	NS NS
		AEI	ND<0.5	ND<0.5	7.5	ND<0.5	ND<0.5
	3/12/02	AEI	ND<0.5 NS	ND<0.3 NS	NS	ND<0.3	ND<0.3
	9/27/02	AEI	ND<0.5	ND<0.5		ND<0.5	ND<0.5
	3/25/03	AEI AEI			ND<0.5		
	10/2/03	AEI AEI	NS ND<0.5	NS ND<0.5	NS ND<0.5	NS ND<0.5	NS ND <rl< td=""></rl<>
	10/17/06						
	5/3/07	AEI	NS	NS ND 0.5	NS	NS ND 0.5	NS
	10/17/07	AEI	ND<0.5	ND<0.5	1.6	ND<0.5	ND <rl< td=""></rl<>
	4/1/08	AEI	NS ND -0.5	NS ND -0.5	NS	NS ND -0.5	NS ND DI
	10/2/08	AEI	ND<0.5	ND<0.5	1.3	ND<0.5	ND <rl< td=""></rl<>
	4/2/09	AEI	NS	NS ND 0.5	NS	NS ND 0.5	NS
	10/2/09	AEI	ND<0.5	ND<0.5	1.4	ND<0.5	ND <rl< td=""></rl<>
	4/9/10	AEI	NS ND 40 5	NS ND -0.5	NS 2.2	NS ND -0.5	NS ND -DI
	10/25/10	AEI	ND<0.5	ND<0.5	2.2	ND<0.5	ND <rl< td=""></rl<>
AMW-9	9/13/95	A 11.00000	MD	ND -25	170	ND -25	ND
		Augeus	NR 7	ND<25	170	ND<25	NR NB
(deep)	4/16/96	PES	7 ND -2	ND<3	170	4	NR
	7/17/96	PES	ND<3	ND<3	190	4 ND-3	NR ND
	10/23/96	PES	ND<3	ND<3	190	ND<3	NR NB
	9/29/97	PES	ND<3	ND<3	110	ND<3	NR ND 4
	1/29/99	AEI	ND<4	ND<4	90	ND<4	ND<4
	5/5/99	AEI	ND<2.5	ND<2.5	94	ND<2.5	ND<2.5
	9/10/99	AEI	ND<2.1	ND<2.1	99	ND<2.1	ND<2.1
	1/20/00	AEI	ND<0.5	ND<0.5	100	ND<0.5	ND<0.5
	8/8/00	AEI	ND<2.5	ND<2.5	130	ND<2.5	ND<2.5
	2/15/01	AEI	ND<1.0	ND<1.0	69	ND<1.0	ND<1.0
	8/29/01	AEI	ND<2.5	ND<2.5	98	ND<2.5	ND<2.5
	3/12/02	AEI	ND<2.5	ND<2.5	100	ND<2.5	ND<2.5
	9/27/02	AEI	ND<5.0	ND<5.0	80	ND<5.0	ND<5.0
	3/25/03	AEI	4.1	ND<2.5	48	ND<2.5	ND<2.5
	10/2/03	AEI	4.8	<0.5	36	1.1	ND<0.5
	10/17/06	AEI	ND<1.7	ND<1.7	73	ND<1.7	ND <rl< td=""></rl<>
	5/3/07	AEI	ND<2.5	ND<2.5	86	ND<2.5	ND <rl< td=""></rl<>
	10/17/07	AEI	ND<2.5	ND<2.5	130	ND<2.5	ND <rl< td=""></rl<>
	4/1/08	AEI	ND<2.5	ND<2.5	130	ND<2.5	ND <rl< td=""></rl<>
	10/2/08	AEI	ND<2.5	ND<2.5	110	ND<2.5	ND <rl< td=""></rl<>
				NID -0.5	180	ND<2.5	ND <rl< td=""></rl<>
	4/2/09	AEI	ND<2.5	ND<2.5			
	4/2/09 10/2/09	AEI	ND<2.5	ND<2.5	140	ND<2.5	ND <rl< td=""></rl<>
	4/2/09						

Well (aguifer zone)	Date	Consultant	cis 1,2 DCE μg/L	trans 1,2 DCE µg/L	PCE μg/L	TCE µg/L	VHCs* µg/L
FHS MW-10	10/9/97	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	NR
(deep)	1/29/99	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	5/5/99	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/10/99	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	1/20/00	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	8/8/00	AEI	NS	NS	NS	NS	NS
	2/15/01	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	8/29/01	AEI	NS	NS	NS	NS	NS
	3/12/02	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/27/02	AEI	NS	NS	NS	NS	NS
	3/25/03	AEI	1.7	ND<1.0	18	2.5	5.0**
	10/6/03	AEI	ND<0.5	ND<0.5	1.4	ND<0.5	1.0**
	10/17/06	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	5/3/2007 1	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	10/17/07	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	4/1/08	AEI	ND<0.5	ND<0.5	0.88	ND<0.5	ND <rl< td=""></rl<>
	10/2/08	AEI	ND<0.5	ND<0.5	3.4	ND<0.5	1.4**
	4/2/09	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	10/2/09	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	4/9/10	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	10/22/10	AEI	NS	NS	NS	NS	NS
FHS MW-11	9/29/97	PES	ND<0.5	ND<0.5	4	ND<0.5	NR
(deep)	1/29/99	AEI	ND<0.5	ND<0.5	7	ND<0.5	ND<0.5
	5/5/99	AEI	ND<0.5	ND<0.5	7.1	ND<0.5	ND<0.5
	9/10/99	AEI	ND<0.5	ND<0.5	7.5	ND<0.5	ND<0.5
	1/20/00	AEI	ND<0.5	ND<0.5	7.5	ND<0.5	ND<0.5
	8/8/00	AEI	ND<0.5	ND<0.5	38	ND<0.5	ND<0.5
	2/15/01	AEI	ND<0.5	ND<0.5	18	ND<0.5	ND<0.5
	8/29/01	AEI	ND<0.5	ND<0.5	16	ND<0.5	ND<0.5
	3/12/02	AEI	ND<0.5	ND<0.5	13	ND<0.5	0.77**
	9/27/02	AEI	ND<1	ND<1	13	ND<1	6.4** 1.1***
	3/25/03	AEI	0.78	ND<0.5	12	0.88	4.0** 1.0****
	10/2/03			Well Inac	ccessible		
	10/17/06	AEI	ND<0.5	ND<0.5	20	ND<0.5	ND <rl< td=""></rl<>
	5/3/2007 1	AEI	ND<0.5	ND<0.5	25	1.1	ND <rl< td=""></rl<>
	10/17/07	AEI	ND<0.5	ND<0.5	31	0.71	ND <rl< td=""></rl<>
	4/1/08	AEI	ND<0.5	ND<0.5	26	0.61	ND <rl< td=""></rl<>
	10/2/08	AEI	ND<0.5	ND<0.5	31	0.74	ND <rl< td=""></rl<>
	4/2/09	AEI	ND<0.5	ND<0.5	32	0.71	ND <rl< td=""></rl<>
	10/5/09	AEI	ND<0.5	ND<0.5	32	0.70	ND <rl< td=""></rl<>
	4/9/10 10/22/10	AEI AEI	ND<1.0 NS	ND<1.0 NS	32 NS	ND<1.0 NS	ND <rl NS</rl
MW-6	3/11/95	EMCON	ND<20	ND<0.5	1300	ND<20	NR
(deep)	6/5/95	EMCON	ND<20	ND<20	2000	ND<20	NR
	8/29/95	EMCON	ND<20	ND<20	1300	ND<20	NR
	9/11/95	Augeus	NR	ND<50	2000	ND<50	NR
	11/16/95	EMCON EMCON	ND<20	ND<20	1300	ND<20	NR
	2/28/96		ND<20	ND<20	960	ND<20	NR NB
	4/16/96 5/28/96	PES EMCON	10 ND<20	10 ND<20	1400 970	10 ND<20	NR NR
	5/28/96 7/17/96	PES	ND<20 ND<5	ND<20 ND<5	590	ND<20 ND<5	NR NR
	8/19/96	EMCON	ND<5 ND<20	ND<5 ND<20	820	ND<20	NR NR
	10/23/96	PES	ND<20 ND<5	ND<20 ND<5	680	ND<20 ND<5	NR NR
	11/21/96	EMCON	ND<5 ND<20	ND<5 ND<20	680	ND<20	NR NR
	3/26/97	EMCON	ND<40	ND<40	830	ND<20 ND<40	NR NR
	5/20/97	EMCON	ND<40 ND<5	ND<5	270	ND<40 ND<5	NR
	9/29/97	PES	ND<10	ND<10	670	ND<10	NR
	1/29/99	AEI	1.4	ND<1.3	49	3	ND<1.3
	5/5/99	AEI	19	ND<11	530	38	ND<11
	9/10/99	AEI	27	ND<12	560	53	ND<12
	1/20/00	AEI	18	ND<8.5	660	31	ND<8.5
	8/8/00	AEI	98	16	1700	170	ND<5
	2/15/01	AEI	64	ND<10	650	87	ND<10
	8/29/01	AEI	19	ND<5.0	550	38	ND<5.0
	3/12/02	AEI	61	ND<20	1200	99	ND<20
	9/27/02	AEI	ND<12	ND<12	300	27	ND<12
	3/25/03	AEI	2.6	ND<2.5	49	3.8	ND<2.5
	10/2/03	AEI	13	ND<5.0	340	21	ND<5.0
	10/2/03	AEI	16	ND<5.0	320	18	ND <rl< td=""></rl<>
	5/3/07	AEI	0.92	ND<0.5	39	2.1	ND <rl ND<rl< td=""></rl<></rl
	10/17/07	AEI	10	ND<0.3 ND<5.0	310	18	ND <rl ND<rl< td=""></rl<></rl
	4/1/08	AEI	6.8	ND<1.7	76	9.2	ND <rl< td=""></rl<>
	10/2/08	AEI	21	ND<12	380	33	ND <rl< td=""></rl<>
	4/2/09	AEI	17	ND<10	420	28	ND <rl< td=""></rl<>
		AEI	22	ND<10	410	29	ND <rl< td=""></rl<>
	10/2/09						
	10/2/09 4/9/10	AEI	5.5	ND<5.0	160	10	ND <rl< td=""></rl<>

Well (aguifer zone)	Date	Consultant	cis 1,2 DCE μg/L	trans 1,2 DCE μg/L	PCE µg/L	TCE µg/L	VHCs* µg/L
MW-7	3/11/95	EMCON	NS	NS	NS	NS	NS
(shallow)	6/5/95	EMCON	ND<10	ND<10	ND<10	ND<10	ND<10
(snanow)	8/29/95	EMCON	ND<10	ND<10	ND<10	ND<10	ND<10
	9/11/95	Augeus	85	ND<50	-	ND<50	ND<50
	11/16/95	EMCON	ND<20	ND<20	ND<20	ND<20	ND<20
	2/28/96	EMCON	ND<10	ND<10	ND<10	ND<10	ND<10
	4/16/96	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	5/28/96	EMCON	ND<10	ND<10	ND<10	ND<10	ND<10
	7/17/96	PES	0.6	ND<0.5	ND<0.5	0.6	ND<0.5
	8/19/96	EMCON	ND<1	ND<1	ND<1	ND<1	ND<1
	10/23/96	PES	0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	11/21/96	EMCON	ND<10	ND<10	ND<10	ND<10	ND<10
	3/26/97	EMCON	ND<20	ND<20	ND<20	ND<20	ND<20
	5/20/97	EMCON	ND<10	ND<10	ND<10	ND<10	ND<10
	9/29/97	PES	ND<10	ND<10	ND<10	ND<10	ND<10
	1/20/00	AEI	ND<6.5	ND<6.5	ND<6.5	ND<6.5	ND<6.5
	8/8/00	AEI	NS	NS	NS	NS	NS
	2/15/01	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	8/29/01	AEI	NS	NS	NS	NS	NS
	3/12/02	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/27/02	AEI	NS	NS	NS	NS	NS
	3/25/03	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/2/03	AEI	NS	NS	NS	NS	NS
	10/17/06	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl****< td=""></rl****<>
	5/3/07	AEI	NS	NS	NS	NS	NS
	10/17/07	AEI	ND<10	ND<10	ND<10	ND<10	ND <rl< td=""></rl<>
	4/1/08	AEI	NS	NS	NS	NS	NS
	10/2/08	AEI	ND<1.0	ND<1.0	2.2	ND<1.0	ND <rl< td=""></rl<>
	4/2/09 10/2/09	AEI AEI	NS ND<0.5	NS ND<0.5	NS ND<0.5	NS ND<0.5	NS ND <rl< td=""></rl<>
	4/9/10	AEI	ND<0.5 NS	NS NS	ND<0.5 NS	ND<0.5	ND <rl NS</rl
	10/22/10	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
WGR MW-2	10/17/06	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
(Shallow)	5/3/07	AEI	NS	NS	NS	NS	NS
	10/17/07	AEI	NS	NS	NS	NS	NS
	4/1/08	AEI	NS	NS	NS	NS	NS
	10/2/08	AEI	NS	NS	NS	NS	NS
	4/2/09	AEI	NS	NS	NS	NS	NS
	10/2/09	AEI	NS	NS	NS	NS	NS
	4/9/10 10/22/10	AEI AEI	NS NS	NS NS	NS NS	NS NS	NS NS
WGR MW-3	10/17/06	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
(Shallow)	5/3/07	AEI	NS	NS	NS	NS	NS
	10/17/07	AEI	NS	NS	NS	NS	NS
	4/1/08	AEI	NS	NS	NS	NS	NS
	10/2/08	AEI	NS	NS	NS	NS	NS
	4/2/09 10/2/09	AEI AEI	NS NS	NS NS	NS NS	NS NS	NS NS
	4/9/10	AEI	NS	NS	NS	NS	NS
	10/22/10	AEI	NS	NS	NS	NS	NS
WGR MW-4	4/16/96	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
(deep)	7/17/96	PES	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5
(чесь)	10/23/96	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/29/97	PES	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	2/15/01	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	8/29/01	AEI	NS NS	NS	NS	NS	NS
	3/12/02	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/27/02	AEI	NS NS	NS	NS	NS	NS
	3/25/03	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/2/03	AEI	NS	NS	NS	NS	NS
	10/17/06	AEI	ND<0.5	ND<0.5	0.62	ND<0.5	ND <rl< td=""></rl<>
	5/3/07	AEI	NS	NS	NS	NS	NS
	10/17/07	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	4/1/08	AEI	NS	NS	NS	NS	NS
	10/2/08	AEI	ND<0.5	ND<0.5	0.55	ND<0.5	ND <rl< td=""></rl<>
	4/2/09	AEI	NS	NS	NS	NS	NS
	10/2/09	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>
	4/9/10	AEI	NS	NS	NS	NS ND 0.5	NS
	10/22/10	AEI	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <rl< td=""></rl<>

Well			cis 1,2 DCE	trans 1,2 DCE	PCE	TCE	VHCs*
(aguifer zone)	Date	Consultant	μg/L	μg/L	μg/L	μg/L	μg/L

Table 2 Notes:

Please refer to the Laboratory Analytical Data for further detailed lab information including Reporting Limits and Dilution Factors

*VHCs = All other chemicals by EPA method 601/8010 or 8260

** Chloroform (trichloromethane)

NS = Well not sampled

*** Dibromochloromethane

**** Methylene Chloride

**** bromodichloromethane

cis 1,2-Dichloroethene (cis 1,2 DCE)

trans 1,2-Dichloroethene (trans 1,2 DCE)

 1 = Reported by laboratroy without letters FHS as prefix

 2 = Vinyl Chloride detected at a concentration of 1.9 ug/L

 3 = Vinyl Chloride detected at a concentration of 2.0 ug/L

 4 = Vinyl Chloride detected at a concentration of 0.66 ug/L

 5 = Vinyl Chloride detected at a concentration of 4.0 ug/L

 6 = Vinyl Chloride detected at a concentration of 11 ug/L

 7 = Chloroform detected at a concentration of 0.69 ug/L

* Available data from AMW-7 is presented although this well was covered during 1999 construction activities

RL = Reporting Limit

NR = Not Reported

μg/L = micrograms per liter (parts per billion)
Tetrachloroethene (PCE)

Trichloroethene (TCE)

APPENDIX A

GROUNDWATER MONITORING WELL FIELD SAMPLING FORMS

Monitoring Well Number: AMW-1

Project Name:	Foothill Square	Date of Sampling: 10/25/2010
Job Number:	261829	Name of Sampler: Alma
Project Address:	10700 MacArthur Blvd., Oakland	

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")		2					
Wellhead Condition	OK	▼					
Elevation of Top of Casing (feet above msl)		64.51					
Depth of Well		45.00					
Depth to Water (from top of casing)	24.11						
Water Elevation (feet above msl)		40.40					
Well Volumes Purged		3					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	10.0						
Actual Volume Purged (gallons)	10.0						
Appearance of Purge Water							
Free Product Present?	na	Thickness (ft): -					

GROUNDWATER SAMPLES							
Number of Samples/Container Size				3-VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Groundwater hand purged using bailer - Quality measurements not collected.

Depth to water collected on November 10, 2010

Monitoring Well Number: AMW-4

Project Name:	Foothill Square	Date of Sampling:	10/22/2010
Job Number:	261829	Name of Sampler:	Alma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")	2						
Wellhead Condition	OK						
Elevation of Top of Casing (feet above msl)		64.79					
Depth of Well	25.00						
Depth to Water (from top of casing)	12.85						
Water Elevation (feet above msl)	51.94						
Well Volumes Purged		3					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	5.8						
Actual Volume Purged (gallons)							
Appearance of Purge Water							
Free Product Present?	na	Thickness (ft): -					

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		3 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments

Technician Lost Field Forms - 3 Purge volumes were removed - Groundwater Quality not available.					
Depth to water collected on November 10, 2010					

Monitoring Well Number: AMW-5

Project Name:	Foothill Square	Date of Sampling: 10/22/2010
Job Number:	261829	Name of Sampler: Alma
Project Address:	10700 MacArthur Blvd., Oakland	

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")		2				
Wellhead Condition	OK T					
Elevation of Top of Casing (feet above msl)		64.97				
Depth of Well	30.00					
Depth to Water (from top of casing)	15.78					
Water Elevation (feet above msl)	49.19					
Well Volumes Purged	3					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.8					
Actual Volume Purged (gallons)	7.0					
Appearance of Purge Water						
Free Product Present?	na	Thickness (ft): -				

GROUNDWATER SAMPLES							
Number of Samples/Container Size				3 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	2.5	18.88	7.07	1384	3.27	133.9	
	5.5	18.91	7.12	1394	2.55	125.7	
	7	18.93	7.19	1407	3.46	129.1	

Depth to water collected on November 10, 2010	

Monitoring Well Number: AMW-6

Project Name:	Foothill Square	Date of Sampling: 10	0/22/2010
Job Number:	261829	Name of Sampler: Al	ma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	OK					
Elevation of Top of Casing (feet above msl)		65.10				
Depth of Well	25.00					
Depth to Water (from top of casing)	14.56					
Water Elevation (feet above msl)		50.54				
Well Volumes Purged	3					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	5.0					
Actual Volume Purged (gallons)		5.0				
Appearance of Purge Water						
Free Product Present?	na	Thickness (ft):				

GROUNDWATER SAMPLES							
Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	1	18.33	7.22	1,398	25.00	142.7	
	3	18.29	7.21	1,406	2.17	135.0	
	4.5	18.31	7.21	1,406	2.16	133.6	
	5	18.31	7.20	1,404	1.90	133.2	

Depth to water collected on November 10, 2010		

Monitoring Well Number: AMW-8

Project Name:	Foothill Square	Date of Sampling:	10/25/2010
Job Number:	261829	Name of Sampler:	Alma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")		2				
Wellhead Condition	OK	▼				
Elevation of Top of Casing (feet above msl)		64.55				
Depth of Well		45.00				
Depth to Water (from top of casing)		19.41				
Water Elevation (feet above msl)		45.14				
Well Volumes Purged		3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		12.3				
Actual Volume Purged (gallons)		13.0				
Appearance of Purge Water						
Free Product Present?	na	Thickness (ft): -				

GROUNDWATER SAMPLES							
Number of Sampl	es/Container S	Size					
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	2	18.52	8.13	318	18.00	12.0	
	6	18.71	8.12	320	3.22	123.4	
	10.5	18.74	8.10	324	2.42	121.4	

Depth to water collected on November 10, 2010	

Monitoring Well Number: AMW-9

Project Name:	Foothill Square	Date of Sampling: 1	0/22/2010
Job Number:	261829	Name of Sampler: A	Alma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")		2				
Wellhead Condition	OK	▼				
Elevation of Top of Casing (feet above msl)		63.48				
Depth of Well		54.30				
Depth to Water (from top of casing)		25.36				
Water Elevation (feet above msl)		38.12				
Well Volumes Purged		3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		13.9				
Actual Volume Purged (gallons)		14.0				
Appearance of Purge Water						
Free Product Present?	na	Thickness (ft): -				

GROUNDWATER SAMPLES							
Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Groundwater hand purged using bailer - Quality measurements not collected.

Depth to water collected on November 10, 2010

Monitoring Well Number: WGR MW-2

Project Name:	Foothill Square	Date of Sampling:	11/10/2010
Job Number:	261829	Name of Sampler:	Alma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")		4			
Wellhead Condition	OK	▼			
Elevation of Top of Casing (feet above msl)		63.18			
Depth of Well	28.00				
Depth to Water (from top of casing)	24.79				
Water Elevation (feet above msl)	38.39				
Well Volumes Purged	NA				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		NA			
Actual Volume Purged (gallons)	Not sampled				
Appearance of Purge Water					
Free Product Present?	? na Thickness (ft): -				

GROUNDWATER SAMPLES							
Number of Sample	Number of Samples/Container Size						
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments

Well not sampled in accordance with sampling schedule					

Monitoring Well Number: WGR MW-3

Project Name:	Foothill Square	Date of Sampling:	11/10/2010
Job Number:	261829	Name of Sampler:	Alma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")	4						
Wellhead Condition	OK	_▼					
Elevation of Top of Casing (feet above msl)		58.34					
Depth of Well	27.00						
Depth to Water (from top of casing)	21.75						
Water Elevation (feet above msl)	36.59						
Well Volumes Purged	NA						
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	NA						
Actual Volume Purged (gallons)	Not sampled						
Appearance of Purge Water							
Free Product Present? na Thickness (ft): -							

	GROUNDWATER SAMPLES							
Number of Sampl	es/Container S	Size						
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments	

Well not sampled in accordance with sampling schedule		

Monitoring Well Number: WGR MW-4

Project Name:	Foothill Square	Date of Sampling: 10/22/2010
Job Number:	261829	Name of Sampler: Alma
Project Address:	10700 MacArthur Blvd., Oakland	

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6") 4							
Wellhead Condition	OK	OK					
Elevation of Top of Casing (feet above msl)		60.02					
Depth of Well	44.96						
Depth to Water (from top of casing)	28.14						
Water Elevation (feet above msl)	31.88						
Well Volumes Purged	3						
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	32.3						
Actual Volume Purged (gallons)							
Appearance of Purge Water							
Free Product Present?	na	Thickness (ft):	-				

	GROUNDWATER SAMPLES								
Number of Sample									
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments		
	5	21.64	6.27	945	1.33	131.5			
	10	21.63	6.27	941	1.34	140.6			
	14	21.65	6.33	947	1.23	139.9			
	20	21.55	6.25	1074	0.62	138.9			
	25	21.54	6.24	1106	0.56	138.8			
	30	21.51	6.15	1106	0.51	141.0			

Depth to water collected on November 10, 2010	

Monitoring Well Number: FHS MW-10

Project Name:	Foothill Square	Date of Sampling: 11/10/2010
Job Number:	261829	Name of Sampler: Alma
Project Address:	10700 MacArthur Blvd., Oakland	

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")	2						
Wellhead Condition	OK						
Elevation of Top of Casing (feet above msl)		52.34					
Depth of Well	51.94						
Depth to Water (from top of casing)							
Water Elevation (feet above msl)	52.34						
Well Volumes Purged	3						
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	24.9						
Actual Volume Purged (gallons)							
Appearance of Purge Water							
Free Product Present?	n/a	Thickness (ft): -					

	GROUNDWATER SAMPLES							
Number of Samp	oles/Container S		3 VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Vehicle parked over the well during all site visits, DTW and Sample not collected.

Monitoring Well Number: FHS MW-11

Project Name:	Foothill Square	Date of Sampling:	11/10/2010
Job Number:	261829	Name of Sampler:	Alma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA								
Well Casing Diameter (2"/4"/6")	2							
Wellhead Condition	OK		▼					
Elevation of Top of Casing (feet above msl)	54.06							
Depth of Well	64.07							
Depth to Water (from top of casing)								
Water Elevation (feet above msl)	54.06							
Well Volumes Purged	3							
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	30.8							
Actual Volume Purged (gallons)								
Appearance of Purge Water								
Free Product Present?	na	Thickness (ft):	-					

GROUNDWATER SAMPLES								
Number of Samples/Container Size			3 VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Vehicle parked over the well during all site visits, DTW and Sample not collected.

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-6

Project Name:	Foothill Square	Date of Sampling: 1	10/25/2010
Job Number:	261829	Name of Sampler: A	Alma
Project Address:	10700 MacArthur Blvd., Oakland		

MONITORING WELL DATA											
Well Casing Diameter (2"/4"/6")		2									
Wellhead Condition	OK		▼								
Elevation of Top of Casing (feet above msl)		61.78									
Depth of Well		48.69									
Depth to Water (from top of casing)		35.87									
Water Elevation (feet above msl)		25.91									
Well Volumes Purged		3									
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		6.2									
Actual Volume Purged (gallons)											
Appearance of Purge Water											
Free Product Present?	na	Thickness (ft):	-								

	GROUNDWATER SAMPLES													
Number of Sample	es/Container S	Size		3 VOAs										
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments							

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Technician Lost Field Forms - 3 Purge volumes were removed - Groundwater Quality not available.

Depth to water collected on November 10, 2010

<u>AEI CONSULTANTS</u> GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-7

Project Name:	Foothill Square	Date of Sampling: 10/20/2010
Job Number:	261829	Name of Sampler: Alma
Project Address:	10700 MacArthur Blvd., Oakland	

MONITORING WELL DATA										
Well Casing Diameter (2"/4"/6")		2								
Wellhead Condition	ОК	▼								
Elevation of Top of Casing (feet above msl)		58.64								
Depth of Well		38.00								
Depth to Water (from top of casing)	22.16									
Water Elevation (feet above msl)	36.48									
Well Volumes Purged		3								
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.6									
Actual Volume Purged (gallons)		11.0								
Appearance of Purge Water										
Free Product Present?	na	Thickness (ft): -								

	GROUNDWATER SAMPLES													
Number of Samp	les/Container S	Size		3 VOAs										
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments							
10:41	2	18.00	6.59	514	39.00	122.7								
10:47	5	19.26	6.49	515	10.40	101.0								
10:49	8	19.24	6.50	520	20.70	91.4								
11:00	10.5	19.43	6.96											

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Depth to water collected on November 10, 2010	

APPENDIX B

LABORATORY ANALYTICAL REPORT WITH CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.
"When Quality Counts"

AEI Consultants	Client Project ID: 261829; 10700 MacArthur BLVD	Date Sampled: 10/22/10
2500 Camino Diablo, Ste. #200	Oaklan, CA	Date Received: 10/22/10
2000 Cammio 214010, 5101 1/200	Client Contact: Jeremy Smith	Date Reported: 10/29/10
Walnut Creek, CA 94597	Client P.O.: #WC082675	Date Completed: 10/29/10

WorkOrder: 1010659

October 29, 2010

Dear.	Jeremy:
-------	---------

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: 261829; 10700 MacArthur BLVD Oaklan, CA,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

Telepho	McCAM	IPBELL 1534 W Pittsb	ANAI /illow Pass ourg, CA 94	Road			NC.	252	-926	59					UR OF F			JO	JNI	T				RU:	SH	-	DY □ 4 H			CO] HR		72 1		51	Ay
Report To: Jeremy Smith Bill To: same P.O. # WC082675									5						Ana	lys	s R	equ	est						(Othe	er		Com	mer	its				
Company: AEI C	Consultants													П										П				П			T	Т			
2500 (Camino Diah	olo, Suite	200													3&F																			
Walnut Creek, CA 94597 E-Mail: jasmith@aciconsultants.com										IBE	dr	&F/I								8310															
Tele: (925) 746-6	6000		F	ax: (925)	746	-6099)						8015)/MTBE	Cleanup	0 E	£							/ 003											
Project #: 261829)		P	roject	Nan	ne: I	ooth	ill S	qua	re				8015	CIC	(5520 E&F/B&F)	4		6					8270/											
Project Location:	10700 Mac	Arthur Bl	vd. Oakl	and, (CA									+ 0	a Gel	ase	Suo		8020		LY			625/8			6								
Sampler Signatur	e: //	11	2											7802	w/silica	Gre	carb		12/8		O			4 62			09/2								
		SAMP	LING		srs	1	MAT	RIX			ESE			as (602		Oil &	Hydro	99	PA 60		PCB's			y EPA			/239.2								
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	Ice	HCI	HNO3	Other	BTEX & TPH as G	(8015) TPH as Diesel	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI							
AMW-1												T	\top					X				\neg		T				\neg		\top	\top	\top			
AMW-4	146-4	1.1.1				V	+	+		V		+	+	\forall				X						\forall							+	+			
AMW-5	Anwy			2		4	,	+	\mathbf{H}	7		+	+	+	-	-	-	X				\dashv	+	+	-				\dashv	+	+	+			
AMW-6		10/22/10		1		4	+	+	\vdash	1	-	+	+		-	\dashv	-	X				\dashv	-	+	-			\dashv	+	+	+	+	_		
AMW-8	Ambr.6	10/22/10	1430	-3		X		+	Н	1		-	4		-	-	-				-	-	-	+						-	+	+			
A	MIN-8			1						X								X													1	+			
AMW-9	m4-9	10/22/10	1600	3		X				X	4							X																	
MW-6						1								- 2				X	1																
MW-7	MW-7	10/20/	1000	3		X				X			\neg					Х										-							
FHS MW-10												\exists						X																	
FHS MW-11																		X						\forall	\neg				\top	\top	\top	+			
WGR MW-4	WGF MA	10/24	0900	3		V		+	\vdash	1	-	-	+					X				\dashv	+	+					+	+	+	+			
	4/201-1111	7 10	0100			1	-	+	\vdash	//		-	+	\dashv			+	-	-			\dashv	+	\dashv	-				_	+	+	+			
								+	\vdash			-	+	-	-		-	-	-	-		\rightarrow	-	+				\dashv	-	+	+	+			
								_				_	4				-				_	-	-	-	_			-	-	_	-	+			
								1																											
Relinquished By:	_	Date:	Time: 2030	Recei	ved E	y:	1	/ «	8								0				X							vo	AS	0&G	;	мет	ALS	от	HER
Relinquished By:		Date:	Time:	Recei	ved By	y:								(DC	ON	DIT	TON		_		A	PPR	ER'	RIA					_			-	
Relinquished By:		Date:	Time:	Recei	ved By	y:						DECHLORINATED IN LAB PERSERVED IN LAB																							

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 WorkOrder: 1010659 ClientCode: AEL (925) 252-9262 WaterTrax WriteOn EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag Bill to: Report to: Requested TAT: 5 days Jeanette Brown Jeremy Smith Email: jasmith@aeiconsultants.com **AEI Consultants AEI Consultants** cc: Date Received: 10/22/2010 PO: 2500 Camino Diablo, Ste. #200 #WC082675 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 ProjectNo: 261829; 10700 MacArthur BLVD Oaklan, Walnut Creek, CA 94597 Date Printed: 10/22/2010 FAX (925) 944-2895 (925) 283-6000 CA jbrown@aeiconsultants.com Requested Tests (See legend below) Lab ID **Client ID** Collection Date Hold 2 3 5 6 9 10 12 Matrix 1 11 1010659-001 AMW-4 Water 10/22/2010 10:00 Α 1010659-002 AMW-5 10/22/2010 12:30 Α Water 1010659-003 AMW-6 Water 10/22/2010 14:30 Α 1010659-004 AMW-9 Water 10/22/2010 16:00 Α 1010659-005 MW-7 Water 10/22/2010 10:00 Α WGR MW-4 10/22/2010 9:00 1010659-006 Water Test Legend: 5 2 8010BMS W 3 7 10 6 8 12 Prepared by: Ana Venegas

Comments:

Sample Receipt Checklist

Client Name:	AEI Consultant	s			Date a	and Time Received:	10/22/2010	8:40:44 PM					
Project Name:	261829; 10700	MacArthur BLVD O	aklan,	, CA	Check	dist completed and r	eviewed by:	Ana Venegas					
WorkOrder N°:	1010659	Matrix <u>Water</u>			Carrie	r: <u>Benjamin Ysla</u>	s (MAI Courie	<u>·)</u>					
Chain of Custody (COC) Information													
Chain of custody	present?		Yes	V	No 🗆								
Chain of custody	signed when reling	uished and received?	Yes	V	No 🗆								
Chain of custody	agrees with sample	e labels?	Yes	✓	No 🗌								
Sample IDs noted	by Client on COC?		Yes	V	No 🗆								
Date and Time of	collection noted by	Client on COC?	Yes	✓	No 🗆								
Sampler's name r	noted on COC?		Yes	✓	No 🗆								
		<u>s</u>	ample	Receipt	Information	ļ							
Custody seals in	tact on shipping con	tainer/cooler?	Yes		No 🗆		NA 🔽						
Shipping containe	er/cooler in good co	ndition?	Yes	V	No 🗆								
Samples in prope	er containers/bottles	?	Yes	✓	No 🗆								
Sample containe	rs intact?		Yes	✓	No 🗆								
Sufficient sample	e volume for indicate	ed test?	Yes	✓	No 🗌								
		Sample Prese	rvatio	n and Ho	old Time (HT) Information							
All samples recei	ived within holding ti	me?	Yes	✓	No 🗌								
Container/Temp B	Blank temperature		Coole	er Temp:	13°C		NA \square						
Water - VOA vial	ls have zero headsp	pace / no bubbles?	Yes	~	No 🗆	No VOA vials subm	itted						
Sample labels ch	necked for correct p	reservation?	Yes	~	No 🗌								
Metal - pH accep	table upon receipt (p	oH<2)?	Yes		No 🗆		NA 🔽						
Samples Receive	ed on Ice?		Yes	✓	No 🗆								
		(Ice Typ	e: WE	T ICE)								
* NOTE: If the "N	No" box is checked,	see comments below.											
=====		======			====	======		======					
Client contacted:		Date contac	ted:			Contacted	by:						
Comments:													

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1010659

Extraction Method: SW5030B	Anal	Work Order: 1010659				
Lab ID	1010659-001A	1010659-002A	1010659-003A	1010659-004A	Reporting	I :: t f
Client ID	AMW-4	AMW-5	AMW-6	AMW-9		=1
Matrix	W	W	W	W	S	W
DF	1	1	10	3.3		**
Compound		Conce	entration		μg/kg	μg/L
Bromodichloromethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
Bromoform	ND	ND	ND<5.0	ND<1.7	NA	0.5
Bromomethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
Carbon Tetrachloride	ND	ND	ND<5.0	ND<1.7	NA	0.5
Chlorobenzene	ND	ND	ND<5.0	ND<1.7	NA	0.5
Chloroethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
Chloroform	ND	ND	ND<5.0	ND<1.7	NA	0.5
Chloromethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
Dibromochloromethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,2-Dibromoethane (EDB)	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,2-Dichlorobenzene	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,3-Dichlorobenzene	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,4-Dichlorobenzene	ND	ND	ND<5.0	ND<1.7	NA	0.5
Dichlorodifluoromethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,1-Dichloroethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,1-Dichloroethene	ND	ND	ND<5.0	ND<1.7	NA	0.5
cis-1,2-Dichloroethene	ND	0.93	48	ND<1.7	NA	0.5
trans-1,2-Dichloroethene	ND	ND	10	ND<1.7	NA	0.5
1,2-Dichloropropane	ND	ND	ND<5.0	ND<1.7	NA	0.5
cis-1,3-Dichloropropene	ND	ND	ND<5.0	ND<1.7	NA	0.5
trans-1,3-Dichloropropene	ND	ND	ND<5.0	ND<1.7	NA	0.5
Freon 113	ND	ND	ND<100	ND<33	NA	10
Methylene chloride	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,1,1,2-Tetrachloroethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,1,2,2-Tetrachloroethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
Tetrachloroethene	0.76	29	260	93	NA	0.5
1,1,1-Trichloroethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
1,1,2-Trichloroethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
Trichloroethene	0.53	2.0	42	ND<1.7	NA	0.5
Trichlorofluoromethane	ND	ND	ND<5.0	ND<1.7	NA	0.5
Vinyl Chloride	ND	ND	ND<5.0	ND<1.7	NA	0.5
	Su	rrogate Recoverie	s (%)	1	1	
%SS1:	98	94	87	86		
%SS2:	98	99	100	101		
%SS3:	99	98	77	78		
Comments	b1					

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

Client Project ID: 261829; 10700 **AEI Consultants** Date Sampled: 10/22/10 MacArthur BLVD Oaklan, CA Date Received: 10/22/10 2500 Camino Diablo, Ste. #200 Client Contact: Jeremy Smith Date Extracted: 10/27/10-10/28/10 Walnut Creek, CA 94597 Client P.O.: #WC082675 10/27/10-10/28/10 Date Analyzed:

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*

Lab ID 1010659-005A 1010659-006A Reporting Limit for DF = 1 Matrix W W W Compound Concentration µg/kg µg/l Compound Concentration µg/kg µg/l Compound Concentration µg/kg µg/l Compound Concentration µg/kg µg/l Compound Concentration µg/kg µg/l µg/l </th <th>Extraction Method: SW5030B</th> <th>Anal</th> <th>lytical Method: SW826</th> <th>0B</th> <th colspan="5">Work Order: 1010659</th>	Extraction Method: SW5030B	Anal	lytical Method: SW826	0B	Work Order: 1010659				
Matrix W W W B B W W B B W W	Lab ID	1010659-005A	1010659-006A						
Matrix W W W Brownodichloromethane ND ND ND NA 0.5	Client ID	MW-7	WGR MW-4						
Compound Concentration pg/kg pg/L					DF	=1			
Compound Conventration μg/kg μg/L	Matrix	W	W		c	W			
Bromodichloromethane	DF	1	1		s	VV			
Bromoform	Compound		Conc	entration	μg/kg	μg/L			
Bromoform	Bromodichloromethane	ND	ND		NA	0.5			
Carbon Tetrachloride		ND	ND		NA	0.5			
Chlorobenzene	Bromomethane	ND	ND		NA	0.5			
Chlorobenzene	Carbon Tetrachloride	ND	ND		NA	0.5			
ND		ND	ND		NA	0.5			
Chloromethane	Chloroethane	ND	ND		NA	0.5			
Dibromochloromethane ND	Chloroform	ND	ND		NA	0.5			
Dibromochloromethane ND									
1,2-Dibromoethane (EDB) ND ND NA 0.5 1,2-Dichlorobenzene ND ND NA 0.5 1,3-Dichlorobenzene ND ND NA 0.5 1,4-Dichlorobenzene ND ND NA 0.5 1,4-Dichlorodenzene ND ND NA 0.5 1,4-Dichlorodenzene ND ND NA 0.5 1,1-Dichlorodenzene ND ND NA 0.5 1,1-Dichloroethane ND ND NA 0.5 1,2-Dichloroethane ND ND NA 0.5 1,1-Dichloroethane ND ND NA 0.5 1,1-Dichloropethane ND ND NA 0.5 1,2-Dichloropropane ND ND NA 0.5 1,2-Dichloropropane ND ND NA 0.5 1,2-Dichloropropane ND ND NA 0.5 1,3-Dichloropropene ND ND NA 0.5 1,3-Dichloropropene ND ND NA 0.5 1,3-Dichloropropene ND ND NA 0.5 1,1-Tertachloroethane ND ND NA 0.5 1,1,1-Tertachloroethane ND ND NA 0.5 1,1,1-Tertachloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1-Trichloroethane ND ND NA 0.5	Dibromochloromethane	ND	ND		NA	0.5			
1,2-Dichlorobenzene									
1,3-Dichlorobenzene	1.2-Dichlorobenzene	ND	ND		NA	0.5			
Dichlorodifluoromethane	·								
Dichlorodifluoromethane	1.4-Dichlorobenzene	ND	ND		NA	0.5			
1,1-Dichloroethane									
1,1-Dichloroethene		ND	ND		NA	0.5			
1,1-Dichloroethene	1,2-Dichloroethane (1,2-DCA)	ND	ND		NA	0.5			
trans-1,2-Dichloroethene ND ND NA 0.5 1,2-Dichloropropane ND ND NA 0.5 cis-1,3-Dichloropropene ND ND NA 0.5 trans-1,3-Dichloropropene ND ND NA 0.5 Freon 113 ND ND NA 10 Methylene chloride ND ND NA 0.5 1,1,1,2-Tetrachloroethane ND ND NA 0.5 1,1,1,2-Tetrachloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA </td <td></td> <td>ND</td> <td>ND</td> <td></td> <td>NA</td> <td>0.5</td>		ND	ND		NA	0.5			
ND	cis-1,2-Dichloroethene	ND	ND		NA	0.5			
cis-1,3-Dichloropropene ND ND NA 0.5 trans-1,3-Dichloropropene ND ND NA 0.5 Freon 113 ND ND NA 10 Methylene chloride ND ND NA 0.5 1,1,1.2-Tetrachloroethane ND ND NA 0.5 1,1,2.2-Tetrachloroethane ND ND NA 0.5 Tetrachloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 %SS1: 98 97 NA 0.5 %SS2: 91 98 97	trans-1,2-Dichloroethene	ND	ND		NA	0.5			
trans-1,3-Dichloropropene ND ND NA 0.5 Freon 113 ND ND NA 10 Methylene chloride ND ND NA 0.5 1,1,1,2-Tetrachloroethane ND ND NA 0.5 1,1,2-Tetrachloroethane ND ND NA 0.5 Tetrachloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 %SS1: 98 97 NA 0.5 %SS2: 91 98 97 ND ND ND ND ND ND <t< td=""><td>1,2-Dichloropropane</td><td>ND</td><td>l .</td><td></td><td>NA</td><td>0.5</td></t<>	1,2-Dichloropropane	ND	l .		NA	0.5			
trans-1,3-Dichloropropene ND ND NA 0.5 Freon 113 ND ND NA 10 Methylene chloride ND ND NA 0.5 1,1,1,2-Tetrachloroethane ND ND NA 0.5 1,1,2-Tetrachloroethane ND ND NA 0.5 Tetrachloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 %SS1: 98 97 NA 0.5 %SS2: 91 98 97 ND ND ND ND ND ND <t< td=""><td>cis-1,3-Dichloropropene</td><td>ND</td><td>ND</td><td></td><td>NA</td><td>0.5</td></t<>	cis-1,3-Dichloropropene	ND	ND		NA	0.5			
Methylene chloride ND ND NA 0.5 1,1,1,2-Tetrachloroethane ND ND NA 0.5 1,1,2,2-Tetrachloroethane ND ND NA 0.5 Tetrachloroethane ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 Trichloroethane ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 SS1: 98 97 SSS2: 91 98 97 SSSS2: 91 98 97 SSSSS 94 102 SSSSS SSSSS 94 102 SSSSS SSSSS SSSSS SSSSS SSSSS SSSSS SSSSS SSSSSS SSSSSS SSSSSS SSSSSS SSSSSSS SSSSSS SSSSSSSS SSSSSSSSS	trans-1,3-Dichloropropene	ND	ND		NA	0.5			
1,1,1,2-Tetrachloroethane	Freon 113	ND	ND		NA	10			
1,1,2,2-Tetrachloroethane ND ND NA 0.5 Tetrachloroethene ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 Trichloroethene ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Surrogate Recoveries (%) %SS1: 98 97 %SS2: 91 98 9 %SS3: 94 102	Methylene chloride	ND	ND		NA	0.5			
Tetrachloroethene ND ND NA 0.5 1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 Trichloroethene ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Surrogate Recoveries (%) %SS1: 98 97 Image: SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	1,1,1,2-Tetrachloroethane	ND	ND		NA	0.5			
1,1,1-Trichloroethane ND ND NA 0.5 1,1,2-Trichloroethane ND ND NA 0.5 Trichloroethene ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Surrogate Recoveries (%) %SS1: 98 97 98 97 98 97 98 98 97 98 98 97 98 </td <td>1,1,2,2-Tetrachloroethane</td> <td>ND</td> <td>ND</td> <td></td> <td>NA</td> <td>0.5</td>	1,1,2,2-Tetrachloroethane	ND	ND		NA	0.5			
1,1,2-Trichloroethane ND ND NA 0.5 Trichloroethene ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Surrogate Recoveries (%) %SS1: 98 97 98 97 98 97 98 98 97 98 98 97 98<	Tetrachloroethene	ND	ND		NA	0.5			
Trichloroethene ND ND NA 0.5 Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Surrogate Recoveries (%) %SS1: 98 97 %SS2: 91 98 %SS3: 94 102	1,1,1-Trichloroethane	ND	ND		NA	0.5			
Trichlorofluoromethane ND ND NA 0.5 Vinyl Chloride ND ND NA 0.5 Surrogate Recoveries (%) %SS1: 98 97 %SS2: 91 98 %SS3: 94 102	1,1,2-Trichloroethane	ND	ND		NA	0.5			
Vinyl Chloride ND ND NA 0.5 Surrogate Recoveries (%) %SS1: 98 97 %SS2: 91 98 %SS3: 94 102	Trichloroethene	ND	ND		NA	0.5			
Surrogate Recoveries (%) %SS1: 98 97	Trichlorofluoromethane		ND		NA	0.5			
%SS1: 98 97 %SS2: 91 98 %SS3: 94 102	Vinyl Chloride	ND	ND		NA	0.5			
%SS2: 91 98 98 94 102		Su	rrogate Recoverie	es (%)		-			
%SS2: 91 98 98 94 102	%SS1:	98	97						
%SS3: 94 102	%SS2:	91	98						
			102						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 53945 WorkOrder 1010659

EPA Method SW8260B	Extraction SW5030B Spiked Sample ID: 1010583-001B														
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)					
Amaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
Chlorobenzene	ND	10	114	110	3.04	100	102	1.59	70 - 130	30	70 - 130	30			
1,2-Dibromoethane (EDB)	ND	10	102	98.8	3.13	97.2	98.2	1.03	70 - 130	30	70 - 130	30			
1,2-Dichloroethane (1,2-DCA)	ND	10	112	109	3.28	101	102	1.20	70 - 130	30	70 - 130	30			
1,1-Dichloroethene	0.82	10	117	111	4.83	96.2	97.1	0.930	70 - 130	30	70 - 130	30			
Trichloroethene	5.4	10	114	114	0	102	103	1.29	70 - 130	30	70 - 130	30			
%SS1:	89	25	92	90	2.35	93	95	1.81	70 - 130	30	70 - 130	30			
% SS2:	99	25	103	102	0.231	103	105	1.25	70 - 130	30	70 - 130	30			
%SS3:	99	2.5	83	83	0	100	105	4.37	70 - 130	30	70 - 130	30			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 53945 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1010659-001A	10/22/10 10:00 AM	10/27/10	10/27/10 10:00 PM	1010659-002A	10/22/10 12:30 PM	10/27/10	10/27/10 10:42 PM
1010659-003A	10/22/10 2:30 PM	10/28/10	10/28/10 9:39 PM	1010659-004A	10/22/10 4:00 PM	10/28/10	10/28/10 3:51 PM
1010659-005A	10/22/10 10:00 AM	10/28/10	10/28/10 1:30 AM	1010659-006A	10/22/10 9:00 AM	10/28/10	10/28/10 12:48 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

QA/QC Officer

McCampbell Analytical, Inc. "When Ovality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #261829; Foothill Square	Date Sampled: 10/25/10
2500 Camino Diablo, Ste. #200		Date Received: 10/26/10
2000 Cummo Diacio, sie 200	Client Contact: Jeremy Smith	Date Reported: 11/01/10
Walnut Creek, CA 94597	Client P.O.:	Date Completed: 11/01/10

WorkOrder: 1010695

November 01, 2010

Dear	Jeremy	<i>,</i> •

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #261829; Foothill Square,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

1010695

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD												(Н	AI	N	OI	TO			OI	Y	R	E	co	RI)							
			ILLOW P. URG, CA 9											Т	UF	N.	AR	O	JNI) T	IM	E		-		Ę			-	ı			
	ebsite: www.i	necampbe	ell.com E		main@									١.					an.		A			RUS					481			2 HF	
Te	elephone: (87	7) 252-9	262		Fax	: (92	25) 2	52-9	269	1				6	ieo	Tra	ick	er i	EDI		-												V) □
Report To:	EREMY	Samo	,	Bill T	n. Sa	me	-	An	_			_	-	-		_			A	_	weie	Re			intp	le is	eff	luen	tan		J" II Othe		Comments
Company: AE	CONST	TANTS	-	Dill I	o, Da			, -			7.						1	Т	T	NIBEE.	yala	140	que	,						-	rene		Comments
250	O'CAMIN	DIA	820											BE		E.F.					(special												Filter
WA	MIT CRE	Et. 4	4 9459	E-Ma	il: /	ASA	ACTH	0	AF I	100	1811	TAN	775	8015) / MTBE		E2					Suo							_					Samples for Metals
Tele: (925) 7	NUT CRE	20		Fax:	(925	-) ;	746	-6	09	9	C	4 191		(\$10		5520	_		8		12		3					6010 / 6020)					analysis:
Project #:	6/827		1	Projec	et Na	me:	10	01	4:11	150	24	cor	e	+ 80		39	118.1		/ 802	-	noclo		bicid			(38)		10/					Yes / No
Project Location	: 1270	MAC	ARTHU	RB	CUP	, 0	AI	TLA	NI	2,	CA			5021		, e	BS (4		602	icide	C3 A2	8	Herl	8	3	1 P	6	7.60	020				
Sampler Signatu	re: ()	0									02/1		Grease (1664 / 5520 E/B&F)	arbo		EPA	Peet	NE	sticid	D	000	SVO	PAH	9020	200.8	9/0							
7.33		SAM	PLING		13	. 1	MA'	TRE	X		ESE			9) 180	(6)	0.1 & C	Fotal Petroleum Hydrocarbons (418.1)	8	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pedicides)	EPA 608 / 8082 PCB's ONLY; Amelors / Co	507 / \$141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	\$24.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Matals (200.7 / 200.8 /	(200.7 / 200.8 / 6010 / 6020)				
	LOCATION/		T	Containers	Type Containers		Т	Т	T	1		7		23	TPH as Diesel (8015)	0	HH	\$260 (HVOCs)	0	808	2 PC	2	151	24/8	15/8	4/8	ls (2)	18 (30	8.003				
SAMPLE ID	Field Point		1	- 1	ont		- 1	١.			1			TPH	iesel	Total Petroleum	oles	0 0	STE	809	808	18	3/8	2/6	2/6	O SI	Mets	Jate	12/13				
1 1	Name	Date	Time	l o	000	ter		dag	10	6-3	1	ó	12	X&	as D	Pat	Pet	826	E/3	505	608	507	515.	524	525		117	151	(200				
16				1#	15	Water	Soil	All	8	ICE	HCL	HNO,	Other	BTEX &	TPH	Tota	Tota	EPA	MTE	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAN	LUF	Lead				
AMW-1	AMW-E AMW-C	10hod	10530	3	_	X	+	+	+	X		+	+					V														\dashv	
AMUN B	AMINI-8	17-1	01/1	5		X	+	+	-	V		\neg						0														-	
7/11/00/0	m 4)-1	192510	1200	10	-	1	+	+	-	10		+	\dashv					3			-	_							-			-	
mw 6	111-0-6	1.0/25/2	000	1>	-	A	+	+	\vdash	^		+	+		-	-		X	-			_			-	-	-		+				
			_		-	\vdash	-	+	-	H	4	+	-	_	_	_			-1						-		_	9	-	_	_	-	
			-		_		+	+	\vdash	Ш	-	4	-1	_							-								_				
					_			\perp																									
	1 12 12 12 12 12 12																																
												T																					
							1		П		\exists	\top	\top	\neg	\neg	7.																	
							+	+				+	+	-	-1												\neg	-	+	-	\exists		
							+	+	\vdash	-		+	+		-		-				\dashv			-	-	-	-	-	+	-		-	
				-		\vdash	+	+	Н	-	-	+	+	-	\dashv		-	-	-		-	-	-					-	+	-	-	-	
- 114				\vdash		\vdash	-	-	\vdash	-	-	+	+	-		-	-	-	-	_	-	-	-	-	\rightarrow	-	-	-	-	-	-1	-	
Palinaulat AP		D. L.	men.					_				Д.	4		1	1	2																
Relinquished By:	00	Date:	Time:		ved By				1	2	10				OD (ON		_	-							CON	4ME	NTS	:		
Relinquished By:	20	19/24/0 Date: /	30m	Recoi	ved B	10	FC(40	W	1	1	-	4	HE	AD S	PAC	EA	BSE		/													
Em Montott	o DW 4	26/2	1590	Freces	ved By		>	>	-	1		_							N LA		S	-/											
Relinquished By:	117/9	Date:	Time:	Recei	ved B										SER						54		7.1										
	Z ,	//	1620	7	20	+		1	/-		_		1					vo	AS	08	G	ME	TAL	s (отн	ER							
	17/9	24/10	1010	10	In	nc	C .	0		0)		1	PRE	SER	(VA)	CION	. 1	/			pH<											

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Maria Venegas

Pittsbu	rg, CA 94565-1701 252-9262					Worl	Order	: 1010	695	(ClientC	ode: A	EL				
		WaterTrax	WriteOn	✓ EDF		Excel		Fax	[✓ Email		Hard	Сору	Thir	dParty	☐ J-1	lag
	tants no Diablo, Ste. #200 ek, CA 94597	Email: jasmith@aeicons cc: PO: ProjectNo: #261829; Foothill					AE 25 Wa	00 Car alnut C	Brown ultants nino Dia reek, C/ aeicons	4 94597	7)	Date		ived:	5 c 10/26/2 10/26/2	
									Pog	uested	Tosts	(Saa la	and h	olow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1010695-001	AMW-1		Water	10/25/2010 5:30		Α	Α								Τ		
1010695-002	AMW-8		Water	10/25/2010 6:00		Α											
1010695-003	MW-6		Water	10/25/2010 8:00		Α											
	BMS_W 2	PREDF REP	ORT	3					4					5			
6	7			8				9	9				<u>-</u>	10			
11	12																

Comments:

Sample Receipt Checklist

Client Name:	AEI Consultants				Date ar	nd Time Received:	10/26/2010	4:27:04 PM
Project Name:	#261829; Foothill Squa	re			Checkl	list completed and re	eviewed by:	Maria Venegas
WorkOrder N°:	1010695 Matrix	<u>Water</u>			Carrier	: Rob Pringle (M	Al Courier)	
		Chain o	f Cus	stody (C	OC) Informat	tion		
Chain of custody	present?	١	⁄es	V	No 🗆			
Chain of custody	signed when relinquished ar	nd received?	⁄es	V	No 🗆			
Chain of custody	agrees with sample labels?	`	es/	✓	No 🗌			
Sample IDs noted	by Client on COC?	`	es/	V	No 🗆			
Date and Time of	collection noted by Client on C	COC?	⁄es	~	No \square			
Sampler's name r	noted on COC?	١	⁄es	V	No 🗆			
		<u>San</u>	nple	Receipt	Information			
Custody seals int	tact on shipping container/coo	oler?	⁄es		No 🗆		NA 🔽	
Shipping containe	er/cooler in good condition?	١	⁄es	V	No 🗆			
Samples in prope	er containers/bottles?	١	⁄es	V	No 🗆			
Sample containe	rs intact?	١	es/	✓	No 🗆			
Sufficient sample	e volume for indicated test?	١	⁄es	✓	No 🗌			
	<u>s</u>	ample Preserva	ation	and Ho	old Time (HT)	Information		
All samples recei	ived within holding time?	١	es/	✓	No 🗆			
Container/Temp I	Blank temperature	C	Coole	r Temp:	4.2°C		NA \square	
Water - VOA vial	ls have zero headspace / no	bubbles?	es/	~	No 🗆	No VOA vials subm	itted \square	
Sample labels ch	necked for correct preservation	n? \	es/	V	No 🗌			
Metal - pH accep	table upon receipt (pH<2)?	١	es/		No 🗆		NA 🗹	
Samples Receive	ed on Ice?	١	es/	~	No 🗆			
		(Ice Type:	WE	TICE)			
* NOTE: If the "N	No" box is checked, see com	ments below.						
=====	=======	=====				======		======
Client contacted:		Date contacted	l:			Contacted	by:	
0								

Extraction Method: SW5030B

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl Chloride

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Work Order: 1010695

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

NA

NA

NA

NA

NA

NA

NA

NA

NΔ

AEI Consultants	Client Project ID: #261829; Foothill	Date Sampled: 10/25/10
2500 Camino Diablo, Ste. #200	Square	Date Received: 10/26/10
2300 Callillo Diablo, Ste. #200	Client Contact: Jeremy Smith	Date Extracted: 10/27/10-10/28/10
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed: 10/27/10-10/28/10

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)* Analytical Method: SW8260B

Lab ID 1010695-001A 1010695-002A 1010695-003A Reporting Limit for Client ID AMW-1 AMW-8 MW-6 DF = 1Matrix W W W S W DF 1 1 20 Compound Concentration μg/L µg/kg 0.5 Bromodichloromethane ND ND ND<10 NA 0.5 Bromoform ND ND ND<10 NA ND ND<10 0.5 Bromomethane ND NA 0.5 Carbon Tetrachloride ND ND ND<10 NA 0.5 Chlorobenzene ND ND ND<10 NA Chloroethane NA 0.5 ND ND ND<10 Chloroform ND ND ND<10 NA 0.5 0.5 Chloromethane ND ND ND<10 NA 0.5 Dibromochloromethane ND ND ND<10 NA 1,2-Dibromoethane (EDB) ND ND ND<10 NA 0.5 0.5 1,2-Dichlorobenzene ND ND ND<10 NA 0.5 1,3-Dichlorobenzene ND NA ND ND<10 0.5 1,4-Dichlorobenzene ND ND ND<10 NA 0.5 Dichlorodifluoromethane ND ND ND<10 NA 0.5 1,1-Dichloroethane ND ND ND<10 NA 1,2-Dichloroethane (1,2-DCA) 0.5 ND ND ND<10 NA 0.5 1,1-Dichloroethene ND ND ND<10 NA 0.5 cis-1,2-Dichloroethene ND ND NA trans-1,2-Dichloroethene ND ND ND<10 NA 0.5 1,2-Dichloropropane ND ND ND<10 NA 0.5 0.5 cis-1,3-Dichloropropene ND ND ND<10 NA 0.5 trans-1,3-Dichloropropene ND ND ND<10 NA Freon 113 ND ND NA 10 ND<200

VIII VI CIII OFIGE	ND	ND	110 < 10	1171	0.5
	Su	rrogate Recoverie	es (%)		
%SS1:	91	93	87		
%SS2:	100	99	100		
%SS3:	97	91	75		
Comments	b1	b1	b1		

ND

ND

ND

ND

ND

ND

ND

ND

ND<10

ND<10

ND<10

ND<10

ND<10

ND<10

ND<10

400

30

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

ND

ND

ND

ND

ND

ND

ND

ND

ND

b1) aqueous sample that contains greater than ~1 vol. % sediment

^{*} water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 54020 WorkOrder 1010695

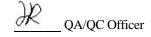
EPA Method SW8260B	thod SW8260B Extraction SW5030B Spiked Sample ID: 1010695-001A															
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)						
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD				
Chlorobenzene	ND	10	99	96.7	2.32	92.3	92.9	0.678	70 - 130	30	70 - 130	30				
1,2-Dibromoethane (EDB)	ND	10	76.2	75.3	1.18	85	82.1	3.43	70 - 130	30	70 - 130	30				
1,2-Dichloroethane (1,2-DCA)	ND	10	105	104	0.687	96.9	93.3	3.74	70 - 130	30	70 - 130	30				
1,1-Dichloroethene	ND	10	122	123	0.439	114	107	5.80	70 - 130	30	70 - 130	30				
Trichloroethene	ND	10	91	89.9	1.18	96.7	94.3	2.49	70 - 130	30	70 - 130	30				
%SS1:	91	25	87	85	2.48	98	93	4.74	70 - 130	30	70 - 130	30				
%SS2:	100	25	102	101	0.519	102	101	1.05	70 - 130	30	70 - 130	30				
%SS3:	97	2.5	78	75	4.57	100	99	1.35	70 - 130	30	70 - 130	30				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 54020 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1010695-001A	10/25/10 5:30 AM	10/27/10	10/27/10 10:05 PM	1010695-002A	10/25/10 6:00 AM	10/27/10	10/27/10 10:43 PM
1010695-003A	10/25/10 8:00 AM	10/28/10	10/28/10 10:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

