

RECEIVED

1:34 pm, May 17, 2007

Alameda County
Environmental Health

May 17, 2007

Donna Drogos LOP Program Manager Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577

Dear Ms. Drogos:

Subject:

Remedial Investigation Report and

Source Removal Work Plan

Reference:

Earthgrains Baking Companies, Inc.

955 Kennedy Street

Oakland, California 94606

RO #0002569

On behalf of Earthgrains Baking Companies, Inc., PSC Environmental Services (PSC) is pleased to submit the enclosed *Remedial Investigation Report and Source Removal Work Plan* for the above-referenced facility. PSC subcontracted ETIC Engineering, Inc. (ETIC) to prepare this report and work plan in response to electronic mail correspondence with the Alameda County Health Care Services Agency.

If you have any questions concerning this document, then please contact Thomas Neely of ETIC at (925) 602-4710 (x 17).

Respectfully,

PSC Environmental Services

Scott Jander Project Manager

cc:

Melvin Siegel - Earthgrains Baking Companies, Inc.

Thomas Neely - ETIC Engineering, Inc.

Remedial Investigation Report and Source Removal Work Plan

Earthgrains Baking Companies, Inc. 955 Kennedy Street Oakland, California 94606

RO #0002569

May 2007

Prepared For:

PSC Environmental Services 210 West Sand Bank Road Columbia, Illinois 62236

Prepared By:

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, California 94523

Remedial Investigation Report and Source Removal Work Plan

Earthgrains Baking Companies, Inc. 955 Kennedy Street Oakland, California 94606

RO #0002569

May 2007

Prepared For:

PSC Environmental Services 210 West Sand Bank Road Columbia, Illinois 62236

Prepared By:

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, California 94523

Tracy A. Tob Project Geologist

Thomas E. Neely, PG, CHG, REA II

Program Manager

May 15, 2007

Date

May 15, 2.007

Date

TABLE OF CONTENTS

LIST (OF FIGURES	iii
LIST	OF TABLES	iii
LIST	OF APPENDIXES	iii
	RAL INFORMATION	
1.0	INTRODUCTION	
2.0	SITE BACKGROUND	2.
2.1	DESCRIPTION OF SITE AND VICINITY	
2.2	REGIONAL GEOLOGY AND HYDROGEOLOGY	
2.3	LOCAL GEOLOGY AND HYDROGEOLOGY	
2.4	TOPOGRAPHY AND SURFACE WATER	
3.0	UST HISTORY	1
3.1	HISTORICAL ENVIRONMENTAL CASE FOR THE SITE	
3.2	CURRENT ENVIRONMENTAL CASE FOR THE SITE	
4.0	REMEDIAL INVESTIGATIONPRE-FIELD ACTIVITIES	
4.1	DRILLING, SOIL SAMPLING, AND LABORATORY ANALYSES	
4.2	GRAB GROUNDWATER SAMPLING AND LABORATORY ANALYSES	
4.3	DISPOSAL OF INVESTIGATIVE-DERIVED WASTE	
5.0	HYDROGEOLOGIC DATA EVALUATION	
6.0	ANALYTICAL DATA EVALUATION	
6.1		
-	.1.1 Petroleum Hydrocarbons	
	.1.2 MTBE	
6.2		
	.2.1 Petroleum Hydrocarbons	
7.0	SITE CONCEPTUAL MODEL	
7.1	CHEMICALS-OF-CONCERN AND AFFECTED MEDIA	
7.2	SOURCES OF CONTAMINATION	
7.3	TRANSPORT MECHANISMS	
7.4	POTENTIAL EXPOSURE PATHWAYS AND RECEPTORS	15
8.0	SOURCE REMOVAL WORK PLAN	17
8.1	PRE-FIELD ACTIVITIES	
8.2	PARTIAL REMOVAL OF TRUCK WASH BUILDING	18

8.3	REMOVAL OF OIL/WATER SEPARATOR SYSTEM	18
8.4	SOIL EXCAVATION	19
8.5	EXCAVATION DEWATERING	19
8.6	SOIL AND GROUNDWATER SAMPLING AND ANALYSES	20
8.7	SITE RESTORATION	20
8.8	WASTE CONTAINMENT AND DISPOSAL	21
8.9	DATA EVALUATION AND REPORTING	21
9.0	SENSITIVE RECEPTOR SURVEY AND CONDUIT STUDY	21
10.0	SCHEDULE	21
11.0	REFERENCES	22

FIGURES

TABLES

APPENDIXES

LIST OF FIGURES

Figure 1.	Site Location and Topographic Map
Figure 2.	Site Vicinity Map
Figure 3.	Site Map Showing Sampling Locations and Traces of Geologic Cross-Sections
Figure 4.	Geologic Cross-Sections A-A' and B-B'
Figure 5.	Geologic Cross-Section C-C'
Figure 6.	Geologic Cross-Section D-D'
Figure 7.	Site Map Showing TPH-d in Soil
Figure 8.	Site Map Showing TPH-d in Groundwater
Figure 9.	Site Map Showing MTBE in Groundwater
Figure 10.	Site Conceptual Model Schematic Diagram
Figure 11.	Exposure Pathway Flow Chart
Figure 12.	Site Map Showing Proposed Excavation Areas

LIST OF TABLES

Table 1.	Soil Sample Analytical Data – Petroleum Hydrocarbons and MTBE
Table 2.	Soil Sample Analytical Data – Physical Parameters
Table 3.	Groundwater Sample Analytical Data

LIST OF APPENDIXES

Appendix A.	Regulatory Correspondence
Appendix B.	Permits
Appendix C.	Boring Logs
Appendix D.	Laboratory Analytical Reports and Chain-of-Custody Documentation
Appendix E.	Recommended Minimum Verification Analyses for Underground Storage Tank
	Leaks

GENERAL INFORMATION

Site Location

Earthgrains Baking Companies, Inc. 955 Kennedy Street
Oakland, California 94606

Alameda County Township 2 South, Range 3 West, Section 7 of the Mt. Diablo Baseline and Meridian

Responsible Party

Earthgrains Baking Companies, Inc. 955 Kennedy Street
Oakland, California 94606

Melvin Siegel Environmental Manager (510) 436-5350 melvin.siegel@saralee.com

Owner's Representative

PSC Environmental Services 210 West Sand Bank Road Columbia, Illinois 62236

Scott Jander Project Manager (618) 281-1546 sjander@pscnow.com

Environmental Consultant

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, California 94523

Thomas Neely Program Manager (925) 602-4710 tneely@eticeng.com

Regulatory Agency

Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577

Donna Drogos LOP Program Manager (510) 567-6721 donna.drogos@acgov.org

1.0 INTRODUCTION

On behalf of PSC Environmental Services (PSC), ETIC Engineering, Inc. (ETIC) has prepared this *Remedial Investigation Report and Source Removal Work Plan* for the Earthgrains Baking Companies, Inc. (Earthgrains) facility located at 955 Kennedy Street in Oakland, California (Figure 1). The report details the results of the investigation activities performed during March 2007, and includes geologic cross-sections, a site conceptual model, a work plan for source removal, and a proposed sensitive receptor survey and conduit study.

The March 2007 investigation was performed in accordance with the *Remedial Investigation Work Plan* dated February 8, 2007, and as approved by Alameda County Health Care Services Agency (ACHCSA) by electronic mail (email) correspondence dated April 4, 2007. The email correspondence from ACHCSA is included in Appendix A. The objective of this subsurface investigation was to further evaluate the lateral extent of petroleum hydrocarbons in soil and groundwater at the site (Site) in preparation for remediation. To achieve this objective, ETIC performed the following activities:

- Drilled 4 soil borings (E41 through E44) in the vicinity of the former truck maintenance garage in the northwestern corner of the Site;
- Drilled 8 soil borings (E45 through E52) south and southwest of the former diesel pump island removed in 2005;
- Collected soil and groundwater samples for laboratory analyses;
- Compiled and evaluated the hydrogeologic and laboratory analytical data; and
- Prepared a written investigation report for PSC.

The scope of work for source removal was determined based on the results of the soil and groundwater quality investigation in September 2006 and remedial investigation in March 2007. The objective of the proposed work is to mitigate residual petroleum hydrocarbons in the vicinity of the former diesel pump island removed in 2005 and near the former truck maintenance garage in the northwestern corner of the Site. To achieve this objective, ETIC will perform the following activities:

- Excavate impacted soil in the area of the former diesel pump island and truck maintenance garage and extract groundwater from the remedial excavations;
- Partially remove the truck wash building;
- Excavate and remove the oil/water separator system, which is located in the truck wash building and near the source of diesel impacts in the subsurface;
- Collect and analyze soil and groundwater samples from the remedial excavations to evaluate the effectiveness of remediation:
- Backfill the excavations with clean imported backfill material, and perform final site restoration activities; and
- Properly dispose of debris generated from the partial removal of the truck wash building, excavated soil, and extracted groundwater.

2.0 SITE BACKGROUND

2.1 DESCRIPTION OF SITE AND VICINITY

The Site occupies approximately five acres of land in Oakland, California (Figure 1). Earthgrains (formerly Kilpatrick's Bakeries, Inc.) currently owns and operates a 105,000 square-foot plant consisting of a bakery, product distribution center, and retail outlet store at the Site (Figure 2). An asphalt-paved parking area and driveway border the eastern and western sides of the Site and six truck loading docks are situated in the northwestern portion of the facility. A stand-alone truck wash building is located west of the plant and a truck maintenance garage was formerly located in the northwestern corner of the Site (Figure 3). The Site is bounded by Dennison Street to the north, Frederick Street to the south, Kennedy Street to the east, and King Street to the west. Surrounding properties to the north, south, and west of the Site are industrial and commercial businesses. Interstate 880 is located due east of Kennedy Street.

2.2 REGIONAL GEOLOGY AND HYDROGEOLOGY

The Site is located in the East Bay Plain Subbasin of the Santa Clara Valley Groundwater Basin. The East Bay Plain Subbasin is a northwest trending alluvial plain bounded on the north by San Pablo Bay, on the east by the contact with Franciscan Basement rock, and on the south by the Niles Cone Groundwater Basin. The East Bay Plain Basin extends beneath San Francisco Bay to the west. Numerous creeks including San Pablo Creek, Wildcat Creek, San Leandro Creek, and San Lorenzo Creek flow from the western slope of the Coast Ranges westward across the plain and into the San Francisco Bay. The East Bay Plain Subbasin aquifer system consists of unconsolidated deposits of Quaternary age. Deposits include the early Pleistocene Santa Clara Formation, the late Pleistocene Alameda Formation, the early Holocene Temescal Formation, and Artificial Fill. The cumulative thickness of the unconsolidated deposits is about 1,000 feet (Department of Water Resources (DWR) 2003).

Early Pleistocene Santa Clara Formation

The Santa Clara Formation consists of alluvial fan deposits inter-fingered with lake, swamp, river channel, and flood plain deposits. The formation ranges from 300 to 600 feet thick (DWR 2003).

Late Pleistocene Alameda Formation

The Alameda Formation includes a sequence of alluvial fan deposits. The formation was deposited primarily in an estuarine environment and ranges from 26 to 245 feet thick (DWR 2003).

Early Holocene Temescal Formation

The Temescal Formation is an alluvial deposit consisting primarily of silt and clay with some gravel layers. The formation ranges from 1 to 50 feet thick (DWR 2003).

Artificial Fill

Artificial fill is found mostly along the bay front and wetlands areas and is derived primarily from dredging as well as quarrying, construction, demolition debris, and municipal waste. The fill ranges in thickness from 1 to 50 feet with the thickest deposits found closer to San Francisco Bay (DWR 2003).

2.3 LOCAL GEOLOGY AND HYDROGEOLOGY

Historical boring logs indicate that the Site is underlain by varying amounts of clay, silt, sand, and gravel. The predominant soil types beneath the Site consist primarily of clay and silty clay. During drilling activities performed at the Site in the 1990's, groundwater was first encountered within a sand and gravel layer located at depths of 18 to 26 feet below-ground-surface (BGS). Reportedly, in some borings, a small amount of perched groundwater was encountered in a thin sandy and silty lens located between 10 and 12 feet BGS. In September 2006, groundwater was first encountered in the soil borings at depths ranging from approximately 9.5 to 24 feet BGS. Groundwater in some of the borings was subsequently measured at approximately 9 to 19 feet BGS. Figure 3 shows the traces of four geologic cross-sections prepared from the logs of borings drilled at the Site. Figures 4, 5, and 6 illustrate the four cross-sections. Historical monitoring data indicate that groundwater flows generally toward the southwest with a hydraulic gradient ranging from approximately 0.005 to 0.01 feet-per-linear foot (ft/ft).

2.4 TOPOGRAPHY AND SURFACE WATER

The land surface slopes towards the west and southwest in the vicinity of the Site at approximately 0.5 foot per 100 feet. The elevation of the Site is approximately 15 feet above mean sea level.

Brooklyn Basin, an estuary of San Francisco Bay that lies between Oakland (to the east) and Coast Guard Island (to the west), is located approximately 1,000 feet southwest of the Site. Sausal Creek flows generally to the south, and empties into San Francisco Bay approximately 4,400 feet southeast of the Site. Sausal Creek appears to be contained in an underground culvert for approximately the final 1.3 miles of its course. An unnamed creek flows into the Brooklyn Basin approximately 1,800 feet to the northwest of the Site near the intersection of 12th Street and 19th Avenue (Sowers 2000).

3.0 UST HISTORY

Earthgrains operated eight underground storage tank (UST) systems at the Site from 1967 to 2005. A UST system includes the storage tank, associated vent and product piping, dispenser, dispensing island, and ancillary equipment. Earthgrains installed one 10,000-gallon gasoline, one 10,000-gallon diesel, and one 350-gallon waste oil UST systems adjacent to the former truck maintenance garage in 1967. Earthgrains installed four 10,000-gallon diesel UST systems in a common excavation along the western boundary of the Site in 1977 (Figures 2 and 3). The four diesel tanks provided a back-up fuel system for the bakery ovens in the plant. Earthgrains removed the seven UST systems for permanent closure from 1989 to 1991 and installed one replacement 10,000-gallon diesel UST system (the eighth UST system) in 1991. The diesel tank was installed in the former excavation of the 10,000-gallon gasoline and diesel tanks (Figures 2 and 3). The new STI-P₃[®] tank was constructed of dual-wall steel and protected with a fiberglass-reinforced plastic (FRP) coating on the secondary tank (John Mathes & Associates, Inc. 1991). Earthgrains removed the 10,000-gallon diesel UST system (Tank #8) for permanent closure in 2005. The Alameda County Department of Environmental Health (ACDEH) closed the first environmental case for the Site in 1996.

3.1 HISTORICAL ENVIRONMENTAL CASE FOR THE SITE

Removal of Four 10,000-Gallon Diesel UST Systems

Earthgrains removed four 10,000-gallon diesel tanks for permanent closure on October 11, 1989. The approximate location of the former tanks is shown on Figures 2 and 3. The diesel tanks provided a back-up fuel system for the bakery ovens in the plant. During the UST removal activities, diesel-impacted soil was excavated and removed from the common tank excavation for offsite disposal. Following excavation activities, soil samples were collected from the floor and sidewalls of the common tank excavation and submitted for laboratory analyses. Laboratory analytical data indicate that total petroleum hydrocarbons quantified as diesel (TPH-d) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were not detected in the confirmation soil samples (John Mathes & Associates, Inc. 1990). One water sample collected from the northern portion of the common tank excavation at a depth of approximately 18 feet BGS contained TPH-d at 49 milligrams-per-liter, but did not contain detectable concentrations of BTEX (John Mathes & Associates, Inc. 1990). Earthgrains submitted UST closure documentation to the ACDEH in December 1989.

Removal of 10,000-Gallon Gasoline and Diesel UST Systems

Earthgrains removed one 10,000-gallon gasoline and one 10,000-gallon diesel UST systems for permanent closure on December 12, 1990. The gasoline and diesel tanks shared a common excavation south of the former truck maintenance garage (Figures 2 and 3). During the closure activities, petroleum-hydrocarbon impacted soil was excavated and removed for offsite disposal. Soil samples were collected from the common excavation and submitted for laboratory analyses. Laboratory analytical data indicate that total petroleum hydrocarbons

quantified as gasoline (TPH-g), TPH-d, and BTEX were not detected in the confirmation soil samples. One groundwater sample collected from the common tank excavation at a depth of approximately 17 to 18 feet BGS contained toluene at 0.7 micrograms-per-liter (μ g/L), ethylbenzene at 2.6 μ g/L, and total xylenes at 2.3 μ g/L. TPH-g, TPH-d, and benzene were not detected in the groundwater sample (John Mathes & Associates, Inc. 1991). Following excavation and sampling, a 6-inch diameter well of unknown construction (designated NSMW-1) was installed (Burlington Environmental, Inc. 1993). At this time, one new 10,000-gallon diesel tank was installed in the excavation, replacing the two previous 10,000-gallon tanks. The new 10,000-gallon STI-P₃® tank was installed between December 1990 and January 1991 (John Mathes & Associates, Inc. 1991).

Removal of 350-Gallon Waste Oil UST System

Earthgrains removed one 350-gallon waste oil UST system for permanent closure on January 28, 1991. The waste oil tank was located south of the former truck maintenance garage near King Street (Figures 2 and 3). Approximately 25 cubic yards of impacted soil were excavated and removed for offsite disposal. One soil sample was collected from the excavation at 8 feet BGS and submitted for laboratory analyses. Laboratory analytical data indicate that TPH-g, TPH-d, total oil and grease, BTEX, polychlorinated biphenyls, creosote, volatile organic compounds, and semi-volatile organic compounds were not detected in the confirmation soil sample (John Mathes & Associates, Inc. 1991).

Soil and Groundwater Investigations

In August 1992, Burlington Environmental, Inc. (Burlington) installed groundwater monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5 to assess the extent of petroleum hydrocarbons in the shallow soil and groundwater beneath the Site (Figure 3).

Groundwater monitoring wells MW-1 and MW-2 were installed downgradient of the four former diesel tanks, along the western property line. Monitoring well MW-3 was installed downgradient of the former gasoline and diesel tanks near the former truck maintenance garage. Monitoring well MW-4 was located downgradient of the former waste oil tank near the western property line. Monitoring well MW-5 was situated upgradient of the former gasoline and diesel tanks in the northern portion of the Site.

From September 1992 to December 1994, groundwater samples were collected from the five wells on nearly a quarterly basis. TPH-d was detected sporadically at concentrations up to 460 μ g/L in MW-1, 720 μ g/L in MW-2, 100 μ g/L in MW-4, and 100 μ g/L in MW-5.

Total petroleum hydrocarbons quantified as motor oil (TPH-mo) was detected sporadically at concentrations up to 470 μ g/L in MW-1, 710 μ g/L in MW-2, 290 μ g/L in MW-3, 690 μ g/L in MW-4, and 1,800 μ g/L in MW-5.

TPH-g was detected occasionally at concentrations up to 54 μ g/L in MW-5.

One groundwater sample collected from MW-1 contained toluene at 0.35 μ g/L. One groundwater sample collected from MW-5 contained benzene at 0.39 μ g/L, toluene at 0.39 μ g/L, and total xylenes at 0.56 μ g/L. The BTEX compounds were not detected in the other samples. By the December 1994 sampling event, petroleum hydrocarbons were no longer detected in the groundwater samples.

Groundwater samples collected from MW-4 and MW-5 also contained trichloroethene (TCE) up to 39 μ g/L, cis-1,2-dichloroethene (cis-1,2-DCE) up to 65 μ g/L, vinyl chloride up to 1.2 μ g/L, carbon disulfide up to 6.4 μ g/L, chloroform up to 1.3 μ g/L, and carbon tetrachloride up to 1.6 μ g/L.

In a report dated January 19, 1995, Burlington noted that ACDEH agreed that the source of TCE and cis-1,2-DCE was offsite (Burlington Environmental, Inc. 1995).

Tier 1 Risk Assessment and Case Closure

In July 1995, PSC submitted a Tier 1 Risk Assessment to address TCE and cis-1,2-DCE contamination in groundwater and to support closure of the environmental case (Philip Environmental Services Corporation 1995b).

By correspondence dated March 4, 1996, ACDEH closed the environmental case for the Site and requested that the monitoring wells be decommissioned. The wells were decommissioned in April 1996, as documented in the "Notification of Well Abandonment," dated April 4, 1996 (Philip Environmental Services Corporation 1996).

3.2 CURRENT ENVIRONMENTAL CASE FOR THE SITE

Diesel Pump Island Modification

The original pump island associated with the 10,000-gallon diesel UST system was installed northeast of the tank location. Earthgrains removed the diesel pump island and installed a new pump island, island canopy, and approximately 110 feet of dual-wall FRP product piping south of the truck wash building in 1995 (Figures 2 and 3). Earthgrains upgraded the diesel dispensing system during March 2003 in order to comply with under-dispenser containment requirements. PSC submitted a *Pump Island Modification and Testing Report* dated May 21, 2003 to the Oakland Fire Department summarizing the pump island modifications and secondary-containment testing performed on the dispensing system.

Two soil borings (Probe Hole-1 and Probe Hole-2) were drilled adjacent to the pump island on April 9, 2003 to assess potential petroleum-hydrocarbon impact from the diesel dispenser and the underground motor oil product piping. Soil sample Probe Hole-1 was collected adjacent to the diesel product piping at a depth of approximately 4.5 feet BGS and sample Probe Hole-2 was collected adjacent to the new motor oil underground product piping at a depth of

approximately 3.5 feet BGS. At the direction of the Oakland Fire Department, PSC collected one soil sample from each soil boring for laboratory analyses (Philip Environmental Services Corporation 2005).

Soil samples were collected inside six-inch long brass sample cylinders and submitted to Severn Trent Laboratories, Inc. (STL) for analyses. The BTEX compounds were not detected in the sample collected from Probe Hole-1. Total extractable petroleum hydrocarbons (TEPH) quantified as diesel were detected at 3,300 milligrams-per-kilogram (mg/kg) in the sample collected from Probe Hole-1. TEPH quantified as motor oil was not detected in the sample collected from Probe Hole-2 (Philip Environmental Services Corporation 2005). The analytical data for the soil samples are presented in Table 1.

Removal of 10,000-Gallon Diesel UST System

The City of Oakland Fire Prevention Bureau issued Tank Permit Number T05-0002 on January 19, 2005, authorizing removal of the 10,000-gallon diesel UST system for permanent closure. Earthgrains contracted West Star Environmental, Inc. (West Star) to perform the removal activities and PSC to perform the closure assessment work. PSC subcontracted Castle Analytical Laboratory (Castle) to perform the analytical testing services.

On March 8, 2005, West Star excavated and removed the diesel product piping. Following removal of the diesel product piping, PSC collected one soil sample every 20 feet along the piping trench floor at a depth of approximately 4 feet below pavement surface. The trench soil samples were collected inside six-inch long brass sample cylinders using a backhoe bucket. Following collection, the brass cylinder ends were covered with Teflon tape and polyethylene caps. Soil samples were submitted to Castle for laboratory analyses. The BTEX compounds, fuel oxygenates [di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), and tertiary butyl alcohol (TBA)), and fuel additives (ethylene dibromide (EDB) and ethylene dichloride (EDC)] were not detected in the trench soil samples. Sample Trench-5 contained TPH-g at 48 mg/kg and TPH-d at 1,700 mg/kg. However, Castle noted that the hydrocarbons detected in the gasoline range appeared to be diesel. TPH-g and TPH-d were not detected in the other trench samples. The analytical data for the soil samples are presented in Table 1.

On March 9, 2005, West Star excavated and removed the diesel tank. Soil samples (Excavation-1 and Excavation-2) were collected from the northern and southern endwalls of the tank excavation at the soil-groundwater interface. Soil samples were collected inside clean six-inch long brass sample cylinders using a backhoe bucket. The samples were analyzed by Castle. TPH-g, TPH-d, BTEX, and the five fuel oxygenates were not detected in either soil sample.

One groundwater sample (Excavation Water) was collected from the excavation. The sample was analyzed by Castle. The groundwater sample contained TPH-g at 130 μ g/L, TPH-d at

 $6,100~\mu g/L$, and MTBE at $2.7~\mu g/L$. However, the laboratory noted that the hydrocarbons detected in the gasoline range appeared to be diesel. The BTEX compounds, DIPE, ETBE, TAME, TBA, EDB, and EDC were not detected in the groundwater sample. The analytical data for the excavation water sample are presented in Table 3.

On April 15, 2005, PSC submitted the *Underground Storage Tank Unauthorized Release* (Leak) / Contamination Site Report to the Oakland Fire Department.

Soil and Groundwater Quality Investigation

In September 2006, ETIC performed a soil and groundwater quality investigation at the Site (ETIC 2006d). ETIC directed the field activities associated with drilling 40 soil borings (E1 through E40) and collecting 131 soil samples and 38 groundwater samples from the borings for laboratory analyses. Historical soil sampling locations are shown on Figure 3.

Diesel was the primary chemical detected in soil and groundwater samples collected during this investigation. TPH-d was detected in the soil samples at concentrations up to 8,300 mg/kg. For soil, the highest concentrations of TPH-d were detected in the samples collected in the vicinity of the former diesel pump island and southern portion of the former diesel product piping trench. In general, the highest concentrations of TPH-d were detected in soil at depths of less than 16 feet. Elevated levels of TPH-d were also detected in the soil samples collected from borings E1 and E2 drilled near the former truck maintenance garage at depths of 11.5 and 12 feet, respectively. The depths of the elevated concentrations in soil in borings E1 and E2 coincided with the depth to groundwater and diesel impact detected in groundwater. The analytical data for the soil samples are provided in Table 1. TPH-d concentrations in soil are shown on Figure 7.

Four soil samples were analyzed for physical parameters. The analytical data for physical parameters are provided in Table 2.

TPH-d was detected in the groundwater samples at concentrations up to 3,500,000 μ g/L. The highest concentrations of TPH-d in groundwater were detected in the samples collected in the vicinity of the former diesel pump island and southern portion of the former diesel product piping trench. Elevated levels of TPH-d were also detected in the groundwater samples collected from borings E1 and E2. The analytical data for groundwater samples are provided in Table 3. TPH-d concentrations in groundwater are shown on Figure 8. MTBE concentrations in groundwater are shown on Figure 9.

Remedial Investigation

On March 28 and 29, 2007, ETIC performed a remedial investigation at the Site. ETIC directed the field activities associated with drilling 12 soil borings (E41 through E52). Soil and groundwater samples were collected from the borings for laboratory analyses. Sampling locations are shown on Figure 3. The results of the investigation are presented in this report.

4.0 REMEDIAL INVESTIGATION

The objective of this investigation was to further assess soil and groundwater quality to evaluate the lateral extent of diesel impact in the subsurface in preparation for remediation. To achieve this objective, the following activities were performed:

- Field preparation;
- Drilling, soil sampling, and laboratory analyses;
- Grab groundwater sampling and laboratory analyses;
- Evaluating the hydrogeologic and analytical data;
- Preparing updated geologic cross-sections; and
- Developing a site conceptual model, using data from the September 2006 soil and groundwater quality investigation and the March 2007 remedial investigation.

4.1 PRE-FIELD ACTIVITIES

Prior to drilling, the proposed soil boring locations were marked and checked for the presence of underground utilities by Underground Service Alert. Subdynamic Locating Services, a private utility-locating contractor, was also hired to check for the presence of underground utilities. Drilling permits were obtained from the Alameda County Public Works Agency, Water Resources Section (ACPWA), and encroachment permits were obtained from the City of Oakland. The permits are included in Appendix B. A site specific health and safety plan was prepared prior to the commencement of field activities. The plan was implemented during the drilling and sampling events.

4.2 DRILLING, SOIL SAMPLING, AND LABORATORY ANALYSES

On March 28 and 29, 2007, twelve soil borings (E41 through E52) were drilled and samples were collected for laboratory analyses to further evaluate the environmental quality of soil and groundwater near the former truck maintenance garage in the northwestern corner of the Site, and in the vicinity of the former diesel pump island near the existing truck wash building at the Site. The locations of the borings are presented on Figure 3.

Each boring was hand augered to a depth of approximately 4 to 8 feet BGS to check for the presence of subsurface utilities prior to drilling. Drilling was performed by Vironex of Pacheco, California, a C57-licensed contractor, using a Geoprobe 6610 direct-push rig equipped with 5-foot long drive rods and a 2.25-inch diameter by 5-foot long Macro Core sampler containing new acetate liners. The depths of the borings ranged from 15 to 28 feet. All drilling equipment and sampling tools were decontaminated prior to beginning the field program. Reusable sampling equipment was thoroughly washed with a Liqui-Nox solution, rinsed with tap water, and then rinsed with distilled water prior to each use. An ETIC geologist supervised all drilling and sampling activities. Soil samples were examined for lithologic

identification, and visible signs of contamination, in accordance with the Unified Soil Classification System and the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), ASTM Designation D2488 (ASTM 2000), and the observations were recorded on the boring logs. Copies of the boring logs are included in Appendix C. Technical guidance for the program was provided by a California Professional Geologist.

A photoionization detector (PID) was used to monitor for organic vapors. Measurements of headspace vapors from soil samples were recorded on the boring logs. If any unusual stains or odors were evident in the soil, additional samples were collected for laboratory analyses.

Soil samples were collected for laboratory analyses from each boring. Samples designated for laboratory analyses were selected in general accordance with the *Remedial Investigation Work Plan* (ETIC, 2007).

The samples were cut directly from the Geoprobe acetate liners. The liners were sealed, labeled, stored on ice in a thermally-insulated cooler, and transported under chain-of-custody protocol to Kiff Analytical (Kiff), a state-certified laboratory, in Davis, California. Kiff analyzed the soil samples for TPH-g, BTEX, and MTBE using EPA Method 8260B and for TPH-d using EPA Method 8015M with a silica gel clean-up. Kiff also analyzed soil samples collected from borings drilled in the vicinity of the former truck maintenance garage and from borings downgradient of the oil/water separator for TPH-mo by EPA Method 8015M with a silica gel clean-up.

4.3 GRAB GROUNDWATER SAMPLING AND LABORATORY ANALYSES

A groundwater sample was collected from eleven of the twelve borings (E41 through E48 and E50 through E52), using new disposable tubing equipped with a check valve. No measurable water was detected in temporary PVC casing set in soil boring E49. The samples were collected in clean 40-mL, hydrochloric-acid-preserved VOAs supplied by the analytical laboratory. The sample containers were sealed, labeled, stored on ice in a cooler, and transported under chain-of-custody protocol to Kiff. Kiff analyzed the grab groundwater samples for TPH-g, BTEX, and MTBE using EPA Method 8260B and for TPH-d using EPA Method 8015 with a silica gel clean-up. Groundwater samples collected from soil borings E41 through E46 were also analyzed for TPH-mo using EPA Method 8015M with a silica gel clean-up.

All reusable groundwater sampling equipment was thoroughly washed with a Liqui-Nox solution, rinsed with tap water, and then rinsed with distilled water prior to each use.

The completed borings were filled and sealed with a grout mixture consisting of neat cement, in accordance with ACPWA and California Department of Water Resources (DWR) requirements.

4.4 DISPOSAL OF INVESTIGATIVE-DERIVED WASTE

Waste derived from the subsurface investigation was contained in a Department of Transportation (DOT)-approved 55-gallon drum stored temporarily at the Site. One soil sample (DRUM1) collected from the drum was analyzed by Kiff for TPH-g, BTEX, and MTBE by EPA Method 8260B, for TPH-d and TPH-mo by EPA Method 8015M, and for total lead by EPA Method 6010B. The investigative-derived waste will be profiled, and delivered by PSC to an approved disposal facility.

In anticipation of soil excavation with offsite disposal, three composite soil samples were formed from select discrete samples from each of the following depths: approximately 5, 10, and 15 feet BGS. The composite samples were analyzed for the Leaking Underground Fuel Tank (LUFT) five metals (cadmium, chromium, lead, nickel, and zinc) and leachable chromium for characterization purposes. The laboratory reports and chain-of-custody documentation are included in Appendix D.

5.0 HYDROGEOLOGIC DATA EVALUATION

Figure 3 illustrates the traces of four geologic cross-sections prepared from logs of borings drilled at the Site. Figures 4, 5, and 6 present the four cross-sections, illustrating the lithology and stratigraphy beneath the Site. Cross-sections A-A', B-B', and C-C' have a general west-to-east orientation and cross-section D-D' has a general south-to-north orientation.

Soil encountered in the 12 borings (E41 through E52) drilled on March 28 and 29, 2007, consisted mainly of clay, silt, sand, and gravel. The predominant soil types beneath the Site consist primarily of clay and silty clay. Copies of the soil boring logs are included in Appendix C.

In the northernmost soil borings drilled during this investigation (E41 through E44), soil generally consisted of silty clay from grade to approximately 23 to 24 feet BGS. The silty clay was underlain by gravelly sand to at least 25 feet BGS, the total depth of boring E41. Groundwater was first encountered in these borings at depths ranging from approximately 21 to 24 feet BGS. Groundwater in these borings was subsequently measured at depths ranging from approximately 8 to 19 feet BGS.

In soil borings E45, E46, and E49 drilled west of the Site, soil generally consisted of silty clay or clay to approximately 26 feet BGS. The silty clay and clay were underlain by clayey sand, silty sand, and/or sandy silt to 28 feet BGS in borings E45 and E46, the maximum depth explored. Groundwater was first encountered in borings E45 and E46 between approximately 23 and 24 feet BGS and was subsequently measured in boring E45 at approximately 20 feet BGS. Groundwater did not accumulate in boring E49.

Soil borings E47 and E50 were drilled south-southwest of the former diesel pump island in the excavation for the four former 10,000-gallon diesel tanks. Soil encountered in these borings generally consisted of pea gravel fill to approximately 4 feet BGS, clayey sand from 4 feet BGS to between approximately 9 and 12 feet BGS. The clayey sand was underlain by clay or silty clay ranging from 0.5 feet to nearly 4 feet in thickness. The clay was underlain by sand encountered between approximately 13 and 15 feet BGS, the maximum depth explored in these borings. Groundwater was first encountered in borings E47 and E50 at depths ranging from approximately 9 to 13 feet BGS and was subsequently measured in both borings at approximately 9.5 feet BGS.

Soil borings E48, E51, and E52 were drilled south-southeast of the former diesel pump island. Soil encountered in these borings consisted primarily of silty clay and clayey silt with lenses of silty and gravelly sand encountered between approximately 8 and 9.5 feet BGS in E48 and E51. Borings E51 and E52 were terminated at 20 feet BGS. The silt and clay encountered in boring E48 was underlain by gravelly sand from approximately 23.5 to 24 feet BGS and by sandy clay from 24 to 25 feet BGS, the total depth of boring E48. Groundwater was first encountered in these borings between approximately 14.5 and 23.5 feet BGS and was subsequently measured at depths ranging from approximately 10 to 14.5 feet BGS.

Soil encountered during this investigation was generally consistent with soil types identified during previous soil investigations at the Site. During the September 2006 investigation in the northwestern portion of the Site, silty sand was encountered at approximately 9.5 to 10.5 feet BGS in boring E3. Additionally, gravelly sand and silty sand were encountered at depths greater than 23 feet BGS in borings E1 and E3, respectively. In the vicinity of the former diesel pump island and existing truck wash building, sandy and gravelly layers were generally encountered at depths beginning at 5 to 10 feet BGS. These layers ranged from approximately 1 to 5 feet in thickness.

6.0 ANALYTICAL DATA EVALUATION

6.1 ANALYTICAL DATA FOR SOIL

A total of 61 soil samples were collected from the borings and analyzed for petroleum hydrocarbons during this investigation. The analytical data are presented in Table 1. During a previous investigation, soil samples were collected and analyzed for physical parameters which are presented in Table 2.

6.1.1 Petroleum Hydrocarbons

TPH-d was detected in the soil samples collected during this investigation at concentrations up to 1,800 mg/kg. In general, the highest concentrations of TPH-d were detected in soil at depths between approximately 8.5 and 15.5 feet BGS. Figure 7 illustrates the concentrations of TPH-d

in soil.

TPH-g was detected in the five of the soil samples at concentrations up to 29 mg/kg. However, the highest concentrations of TPH-g were detected in samples that contained elevated levels of TPH-d. Furthermore, the concentrations of TPH-g did not exceed the most stringent Environmental Screening Level (ESL) of 100 mg/kg established for soil (SFBRWQCB, 2005).

TPH-mo was detected in seven of the soil samples at concentrations up to 180 mg/kg. TPH-mo was not detected in samples collected below 10 feet BGS in any boring. The concentrations of TPH-mo did not exceed the most stringent ESL of 500 mg/kg established for soil.

Laboratory analytical data indicate that BTEX was not detected in any of the soil samples collected during this remedial investigation.

6.1.2 MTBE

MTBE was not detected in soil samples collected during this remedial investigation.

6.2 ANALYTICAL DATA FOR GROUNDWATER

During this investigation, a total of 11 grab groundwater samples were collected from borings E41 through E48 and E50 through E52. Groundwater analytical data are presented in Table 3.

6.2.1 Petroleum Hydrocarbons

TPH-d was detected in the groundwater samples at concentrations up to 22,000 μ g/L (boring E47). The highest concentrations of TPH-d were detected in the samples collected in the excavation for the four former 10,000-gallon diesel tanks, downgradient of the former diesel pump island. Elevated levels of TPH-d were also detected in the sample collected from boring E42 near the former truck maintenance garage. TPH-d concentrations in groundwater are shown on Figure 8.

TPH-g was detected in two of the groundwater samples (E41 and E43) at concentrations up to 59 μ g/L. However, the hydrocarbons reported as TPH-g did not exhibit a typical gasoline chromatographic pattern. Furthermore, the concentrations of TPH-g did not exceed the most stringent ESL of 100 μ g/L established for groundwater.

Toluene was detected in groundwater sample E46 at 0.84 μ g/L and was not detected in the other samples. The Maximum Contaminant Level (MCL) established for toluene in drinking water is 150 μ g/L. Benzene, toluene, and ethylbenzene were not detected in any of the groundwater samples.

6.2.2 MTBE

MTBE was detected in groundwater samples collected from borings E41 and E46 at concentrations up to 2.4 μ g/L. MTBE concentrations in groundwater are shown on Figure 9. The MCL established for MTBE in drinking water is 13 μ g/L.

7.0 SITE CONCEPTUAL MODEL

7.1 CHEMICALS-OF-CONCERN AND AFFECTED MEDIA

Analytical data from historical and current soil and groundwater sampling indicate the subsurface beneath the Site is impacted by the presence of petroleum hydrocarbons. Diesel is the primary chemical detected in soil and groundwater samples collected at the Site. The residual impact in soil has been identified at depths of 2 or more feet BGS, with the highest concentrations detected at depths shallower than 16 feet BGS.

TPH-d, TPH-g, TPH-mo, and MTBE have been detected in soil samples collected in the site vicinity. BTEX has not been detected in the soil samples. Concentrations of TPH-d up to 8,300 mg/kg have been detected and are highest in the vicinity of the former diesel pump island and southern portion of the former diesel product piping trench. TPH-g has been detected in some of the soil samples collected at the Site at concentrations up to 140 mg/kg. However, TPH-g is generally detected in the samples with the highest concentrations of TPH-d. TPH-mo has been detected at concentrations up to 180 mg/kg, primarily in soil samples collected between 5 and 10 feet BGS in borings drilled near the former truck maintenance garage in the northern portion of the Site. None of the concentrations of TPH-mo exceed the most stringent ESL of 500 mg/kg established for soil. MTBE has been detected in two soil samples at 15 and 20 feet BGS at concentrations up to 0.020 mg/kg. Neither concentration exceeded the most stringent ESL for MTBE of 0.023 mg/kg.

TPH-d, TPH-g, TPH-mo, toluene, xylenes, and MTBE have been detected in grab groundwater samples collected from soil borings drilled in the site vicinity. TPH-d is the primary chemical detected in groundwater and has been detected at concentrations up to 3,500,000 μ g/L in the vicinity of the former diesel pump island and southern portion of the former diesel product piping trench. In the area of the former truck maintenance garage, TPH-d has been detected at concentrations up to 360,000 μ g/L. TPH-g has been detected in some of the groundwater samples at concentrations up to 560 μ g/L. However, the detection of TPH-g generally did not exhibit a typical gasoline chromatographic pattern and was often detected in the samples with the highest TPH-d concentrations. TPH-mo was also detected in three of the grab groundwater samples at concentrations up to 750 μ g/L. However, the detection of TPH-mo was generally associated with elevated diesel concentrations and did not exhibit a typical motor oil chromatographic pattern. Toluene was detected in one groundwater sample at 0.84 μ g/L.

Xylenes were detected in one groundwater sample at 1.4 μ g/L. MTBE was detected in several groundwater samples at concentrations up to 22 μ g/L.

Due to the volatility of some petroleum hydrocarbon compounds, soil vapor beneath the Site may also be impacted.

7.2 SOURCES OF CONTAMINATION

In March 2003, Earthgrains upgraded the diesel dispensing system for the 10,000-gallon UST. Soil samples were collected in April 2003 and analyzed which identified elevated levels of TPH-d in soil. The diesel dispensing system and associated product piping were removed in March 2005. The former diesel pump island and southern portion of the former diesel product piping trench is one source of contamination, as indicated by historical and current analytical data. In addition, elevated levels of TPH-d detected in saturated soil and groundwater in the vicinity of the former truck maintenance garage indicate a second unidentified source in the northwestern portion of the Site.

7.3 TRANSPORT MECHANISMS

In 2006 and 2007, the residual TPH-d impact was primarily detected in soil samples collected between 2 and 16 feet BGS and in groundwater samples collected from the shallow aquifer. Petroleum hydrocarbons remain in the vadose zone in the immediate vicinity of the former diesel dispensing island and associated piping. Residual petroleum hydrocarbon constituents in the vadose zone can leach to groundwater or volatilize into soil vapor.

The primary transport mechanisms for the residual contamination in the shallow aquifer are advection, adsorption, desorption, and volatilization. Residual contamination in the vicinity of the former diesel dispensing system and the unidentified source near the former truck maintenance garage can be transported with groundwater primarily through advection. Elevated concentrations of TPH-d in groundwater at borings E47 and E50 are likely due to the preferential movement of diesel through the permeable backfill present in the former excavation for the four 10,000-gallon USTs.

The soil and groundwater data indicate that both media are affected in the shallow aquifer, and consequently adsorption and desorption between the two phases may be occurring. Petroleum hydrocarbon constituents may volatilize from soil and/or groundwater into soil vapor. Volatilization of petroleum hydrocarbon constituents from soil and groundwater into the vapor pore space may result in subsequent migration to the ground surface.

7.4 POTENTIAL EXPOSURE PATHWAYS AND RECEPTORS

Potential exposure pathways and receptors at the Site and vicinity were evaluated based on current and potential future usage. The Site is an active commercial/industrial property, with

nearby land used for commercial, industrial, and residential purposes. The Site is bound to the north by Dennison Street, to the south by Frederick Street, to the east by Kennedy Street, and to the west by King Street. Interstate 880 is located due east of Kennedy Street. An asphalt-paved parking area and driveway and concrete-paved truck loading dock area are adjacent to the western side of the 105,000 square-foot bakery building at the Site.

Potentially-complete exposure pathways and receptors have been identified for the Site, with the following criteria:

- A source and mechanism of chemical release;
- One or more retention or transport media (e.g., soil, groundwater, soil vapor, air, or surface water);
- A point of potential contact with the impacted medium (referred to as the exposure point); and
- An exposure route at the point of contact (e.g., inhalation, ingestion, or dermal contact).

Figure 10 illustrates a schematic diagram of the site conceptual model, and Figure 11 shows the exposure pathway flowchart. Site-specific, potentially-complete exposure pathways and potential receptors are depicted on the figures, and are summarized as follows:

- Dermal contact with or incidental ingestion of contaminated soil through excavation (onsite residential, commercial, or industrial receptors or construction workers);
- Inhalation of chemicals volatilizing from soil or groundwater to indoor or outdoor air (onsite or offsite residential, commercial, or industrial receptors or construction workers);
- Dermal contact with or incidental ingestion of contaminated groundwater from a potential current or future water supply well (onsite or offsite residential, commercial, or industrial receptors or construction works); and
- Dermal contact with or incidental ingestion of contaminated surface water (offsite residential, commercial, or industrial receptors or construction workers).

Residual TPH-d impacts exist as shallow as approximately 2 feet BGS in the vicinity of the former diesel dispensing system removed in 2005. Due to the shallow impacts, occupants or construction workers could potentially be subject to direct exposure to residual petroleum hydrocarbons at the Site if pavement were removed and soil excavated.

The vapor intrusion pathway from impacted soil and/or groundwater to outdoor or indoor air is complete. A future soil vapor investigation and intrusion study will be performed to evaluate the potential health risks associated with indirect exposure via inhalation of volatiles from the subsurface.

Dermal contact with or ingestion of impacted groundwater is a potential human health risk for site occupants. Installation of a shallow water-producing well within the contaminant plume could create a direct and complete exposure pathway. A survey of water-producing wells present in the site vicinity will demonstrate whether this exposure pathway is currently complete. As part of a future sensitive receptor survey (proposed in Section 9.0), a well search will be performed to determine whether there are any water supply wells in the vicinity of the Site. Construction workers may also have direct exposure to the residual contamination in groundwater, if excavation and/or dewatering activities occur in the future.

Should contaminated groundwater discharge to surface water, there would be a potentially-complete exposure pathway for offsite receptors or construction workers. As part of the proposed sensitive receptor survey for the Site, surface water bodies will be identified to evaluate the potential for impact from the groundwater contaminant plume.

8.0 SOURCE REMOVAL WORK PLAN

The objective of the proposed work is to mitigate residual petroleum hydrocarbons in the vicinity of the former diesel pump island that was removed in 2005 and near the former truck maintenance garage in the northwestern corner of the Site. To address residual TPH-d impacts in soil and groundwater at the Site, ETIC proposes to remove the sources by excavating soil in the vicinity of the former diesel dispensing system, the oil/water separator system, and the four former 10,000-gallon diesel USTs (in the southern portion of the Site) and near the former truck maintenance garage (in the vicinity of soil borings E1 and E2) and by dewatering the excavations. The proposed excavations correspond to onsite areas where TPH-d has been detected in soil at concentrations exceeding 500 mg/kg (the non-drinking water, commercial/industrial ESL) or TPH-d has been detected in groundwater at concentrations exceeding 2,500 μ g/L (the non-drinking water, commercial/industrial ESL for gross contamination). The proposed excavations are shown on Figure 12. The scope of services will include the following activities:

- Field preparation;
- Partial removal of the truck wash building;
- Removal of the oil/water separator system;
- Soil excavation;
- Excavation dewatering;
- Soil and groundwater sampling and analyses;
- Site restoration;
- Waste disposal; and
- Data evaluation and reporting.

8.1 PRE-FIELD ACTIVITIES

Prior to beginning field activities, ETIC will arrange for access to the Site and a schedule which will accommodate onsite bakery operations. Once site access has been arranged, the location of each excavation will be marked and checked for the presence of underground utilities by Underground Service Alert. A private utility-locating contractor will also be hired to identify the presence of underground utilities. Appropriate permits for the partial removal of the truck wash building, excavation, and grading will be obtained from the City of Oakland. A shoring plan will be designed by a licensed and qualified engineer and will be submitted with the grading permit application to the City of Oakland. A traffic control plan will be prepared and an encroachment permit will be obtained from the City of Oakland for ingress and egress to the Site from the sidewalk and street on the eastern boundary of the Site along King Street. Temporary fencing will be installed to control access to the work area and vehicular and pedestrian traffic will be managed in accordance with the traffic control plan. A health and safety plan will be prepared and implemented during field activities.

8.2 PARTIAL REMOVAL OF TRUCK WASH BUILDING

A portion of the proposed remedial excavation lies underneath the existing truck wash building near the former diesel pump island and product piping, which has been identified as a source of diesel impacts in the subsurface. In order to access soil in this area, ETIC will oversee removal of the southern portion of the truck wash building at the Site. Siding, I-beams, and other scrap metal generated during demolition will be transported to a recycling facility. The concrete footings for the building will be excavated and transported to a recycling facility. Additional demolition-related debris will be transported to an appropriate disposal or recycling facility.

8.3 REMOVAL OF OIL/WATER SEPARATOR SYSTEM

The oil/water separator system is located within the area impacted by the diesel release in the vicinity of the former dispenser. ETIC will oversee the excavation and removal of the oil/water separator system located in the southern portion of the truck wash building. The oil/water separator system consists of a settling sump and a two-chambered grease trap. The settling sump measures approximately 8 feet long by 3 feet wide with a sloped bottom ranging from 3 feet BGS at the southern end to 3.5 feet BGS at the northern end. The settling sump flows into the grease trap. The grease trap measures approximately 6 feet long by 3 feet wide by 5.75 feet deep.

Prior removal, the thickness of any liquid, sludge, or sediment present in each component of the oil/water separator system will be measured and recorded. The contents of the oil/water separator system will be removed, and each component will be pressure washed with a biodegradeable cleaning solution. The cleaning rinsate will then be removed and contained in 55-gallon drums, pending offsite disposal. The dimensions of the each component will be

measured and recorded. The interior of each component will be inspected for cracks, seams, holes, and evidence of leakage.

The concrete pavement will be saw-cut around the perimeter of the oil/water separator system. A backhoe or excavator equipped with a hydraulic hammer attachment will be used to demolish each component of the system. The debris will be excavated and placed on and covered with plastic sheeting, pending transportation to an appropriate recycling or disposal facility.

One soil sample will be collected from the base of the excavation for each component of the oil/water separator system. The three soil samples will be submitted for laboratory analyses. Details concerning sampling and laboratory analyses are described in Section 8.6.

8.4 SOIL EXCAVATION

Soil and groundwater data indicate that elevated levels of TPH-d are present in the vicinity of former soil borings E1 and E2, which were drilled in the area formerly occupied by the truck maintenance garage in the northwestern portion of the Site. ETIC proposes to excavate soil in the vicinity of borings E1 and E2. The proposed excavation measures approximately 30 feet long by 10 feet wide and is shown on Figure 12. This excavation will extend to approximately 14 feet BGS. Soil and groundwater data also indicated the presence of elevated concentrations of TPH-d in the vicinity of the former diesel dispensing system, the oil/water separator system, and the four former 10,000-gallon diesel USTs. The proposed excavation encompasses these impacted areas and will extend to approximately 14 feet BGS (Figure 12).

Prior to excavation, shoring will be installed at the perimeter of the proposed excavation in accordance with the approved shoring plan.

Soil samples will be collected approximately every 20 linear feet along all excavation sidewalls at a depth corresponding to the soil/groundwater interface. If groundwater has not accumulated in the bottom of the excavations, soil samples will also be collected from the floor of each excavation at a density of at least one sample per 400 square feet. Soil sampling details and laboratory analyses are described in Section 8.6.

Soil generated during excavation may be directly loaded into trucks for offsite disposal or stockpiled on and covered with plastic sheeting and temporarily stored onsite until transported to an approved disposal facility.

8.5 EXCAVATION DEWATERING

Each excavation will be dewatered to remediate affected groundwater, to provide stability for the excavations, and to allow for proper backfilling and compaction. Groundwater will be pumped into a holding tank, removed from the tank as necessary, and transported to a licensed treatment or disposal facility. If present, groundwater samples will be collected from the excavations. Details concerning sampling and laboratory analyses are described in Section 8.6.

8.6 SOIL AND GROUNDWATER SAMPLING AND ANALYSES

Soil samples will be collected from the excavation for the settling sump, the two-chambered grease trap, and the remedial excavations. A PID will be used to monitor for organic vapors. Measurements of headspace vapors from soil samples will be recorded. If any unusual stains or odors are evident in the soil, additional samples may be collected for laboratory analyses. Soil samples will be collected using 6-inch diameter stainless steel liners. The sample liners will be filled in a manner to eliminate headspace. The liners will be sealed with Teflon sheets and plastic end caps, labeled, stored on ice in a thermally insulated cooler, and transported under chain-of-custody protocol to a state-certified analytical laboratory. All reusable sampling equipment will be thoroughly washed with a Liqui-Nox solution, rinsed with tap water, and then rinsed with distilled water after each use.

Soil samples collected from the oil/water separator system will be analyzed according to the Recommended Minimum Verification Analyses for Underground Storage Tank Leaks, which is included in Appendix E. Usage of the oil/water separator system most closely resembles that for a used oil tank; therefore, the proposed laboratory analyses for soil samples collected during the sump removal are in general accordance with the recommendations for a used oil tank. The soil samples collected from the oil/water separator system will be analyzed for TPH-g by EPA Method 8260B; TPH-d and TPH-mo by EPA Method 8015M; total oil and grease by EPA Method 9070; volatile organic compounds (VOCs) including BTEX, five fuel oxygenates (DIPE, ETBE, MTBE, TAME, and TBA), and two fuel additives (EDB and EDC) by EPA Method 8260B; polynuclear aromatic hydrocarbons (PNAs) by EPA Method 8270D; polychlorinated biphenyls (PCBs) by EPA Method 8082 or 8270D; and the LUFT five metals (cadmium, chromium, lead, nickel, and zinc) by EPA Method 6010.

Soil samples collected from the remedial excavations will be analyzed for TPH-d by EPA Method 8015M with a silica gel clean-up.

If groundwater is present, groundwater samples will be collected from the excavations using new pre-cleaned disposable bailers. The samples will be collected in clean 40-mL, hydrochloric-acid-preserved VOAs supplied by the analytical laboratory. The sample containers will be sealed, labeled, stored on ice in a cooler, and transported under chain-of-custody protocol to the laboratory. Groundwater samples will be analyzed for TPH-d by EPA Method 8015M with a silica gel clean-up.

8.7 SITE RESTORATION

Upon completion of source removal activities, the remedial excavations will be backfilled, compacted, and resurfaced. Any water in the excavations will be extracted to allow proper

backfilling of the excavations. Clean fill will be imported and used to backfill each excavation. The fill will be placed in 12-inch lifts and compacted. Field density testing will be performed to ensure that the compaction meets or exceeds minimum requirements. The site will be restored to pre-excavation conditions and provide for adequate drainage. The excavations will backfilled and the surface restored with concrete pavement.

8.8 WASTE CONTAINMENT AND DISPOSAL

Sludge, sediment, and/or rinsate water derived from oil/water separator system removal activities will be contained in DOT-approved drums and stored temporarily at the Site. Excavated soil may be directly loaded into truck for offsite disposal or stockpiled on, and covered with, plastic sheeting, pending arrangements for disposal. Samples of the waste will be collected and submitted for laboratory analyses, in accordance with disposal facility requirements. Groundwater pumped from the excavations, if present, will be temporarily stored in an onsite holding tank until transported to an approved disposal treatment or disposal facility. All waste will be profiled and delivered to approved disposal facilities. Metals, concrete, and other demolition debris will be transported to an appropriate recycling facility.

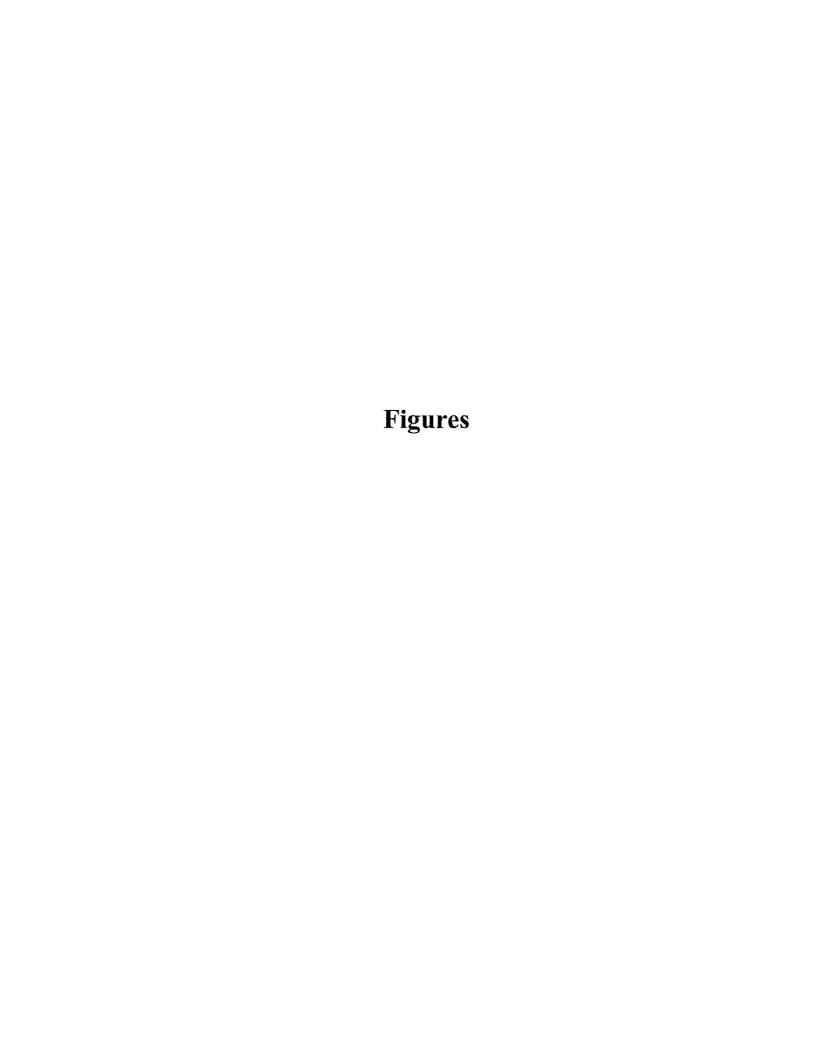
8.9 DATA EVALUATION AND REPORTING

ETIC will prepare a written report describing the oil/water separator system removal and the remedial excavation activities. Field procedures and laboratory methods will be described in the source removal report, and technical data collected during the sampling program will be tabulated and evaluated. The report will also include a narrative summary of field and analytical data. Based on the effectiveness of source removal, recommendations may be presented for post-remediation monitoring and closure tasks.

9.0 SENSITIVE RECEPTOR SURVEY AND CONDUIT STUDY

ETIC proposes to perform a sensitive receptor survey for the Site and vicinity. As part of the sensitive receptor survey, a well search will be performed and bodies of surface water will be identified within 2,000 feet of the Site. Local receptors such as schools and residential areas will be identified in the site vicinity. A conduit study will be performed to identify and evaluate subsurface utilities in the immediate vicinity. The results of the sensitive receptor survey and conduit study will be presented in a written report, and will assist in the evaluation of potentially-complete exposure pathways for the residual TPH-d impacts at the Site.

10.0 SCHEDULE


Upon approval of the proposed work, ETIC will obtain permits for partial removal of the truck wash building, removal of the oil/water separator, soil excavation, and grading from the City of

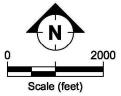
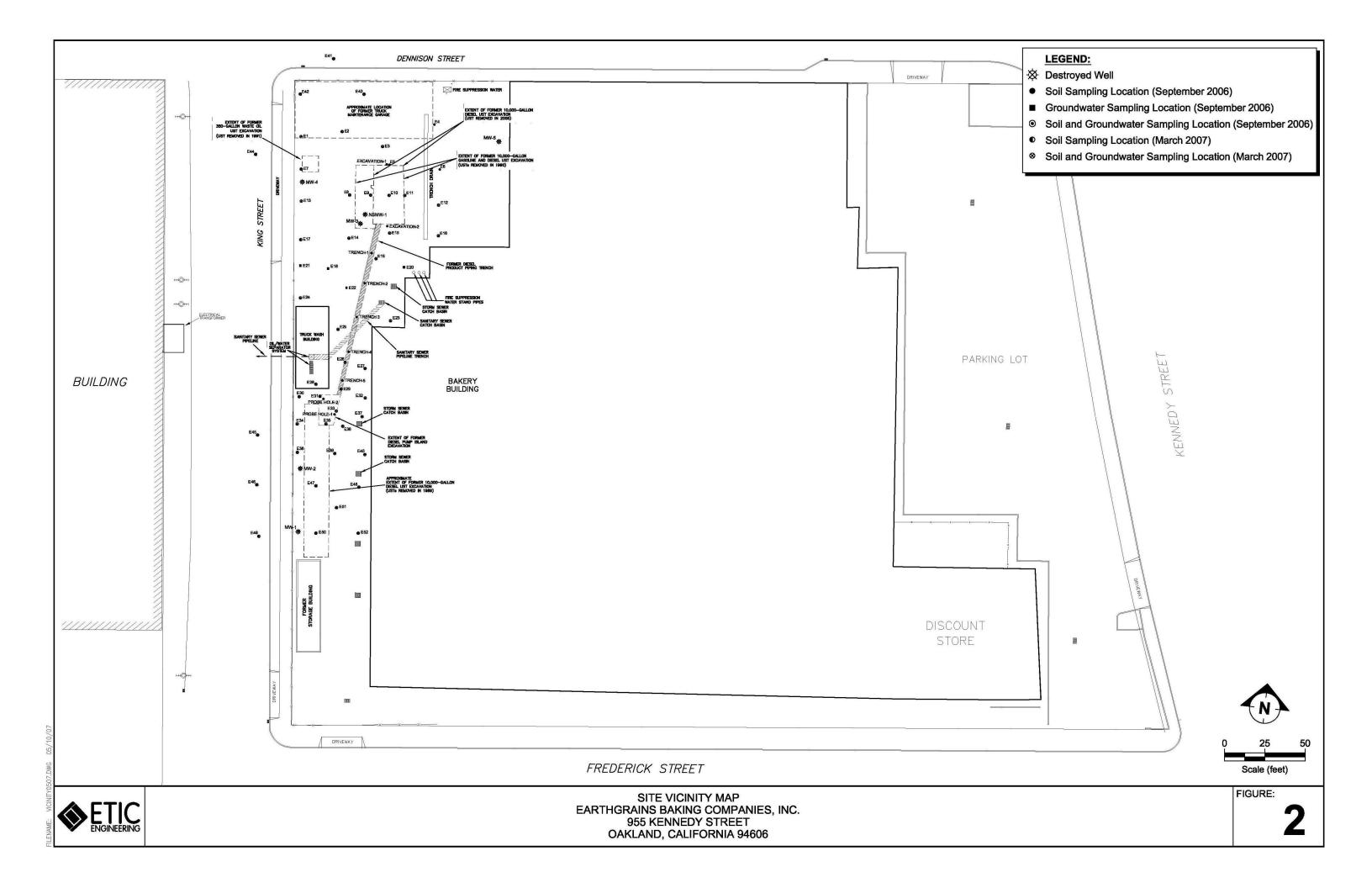
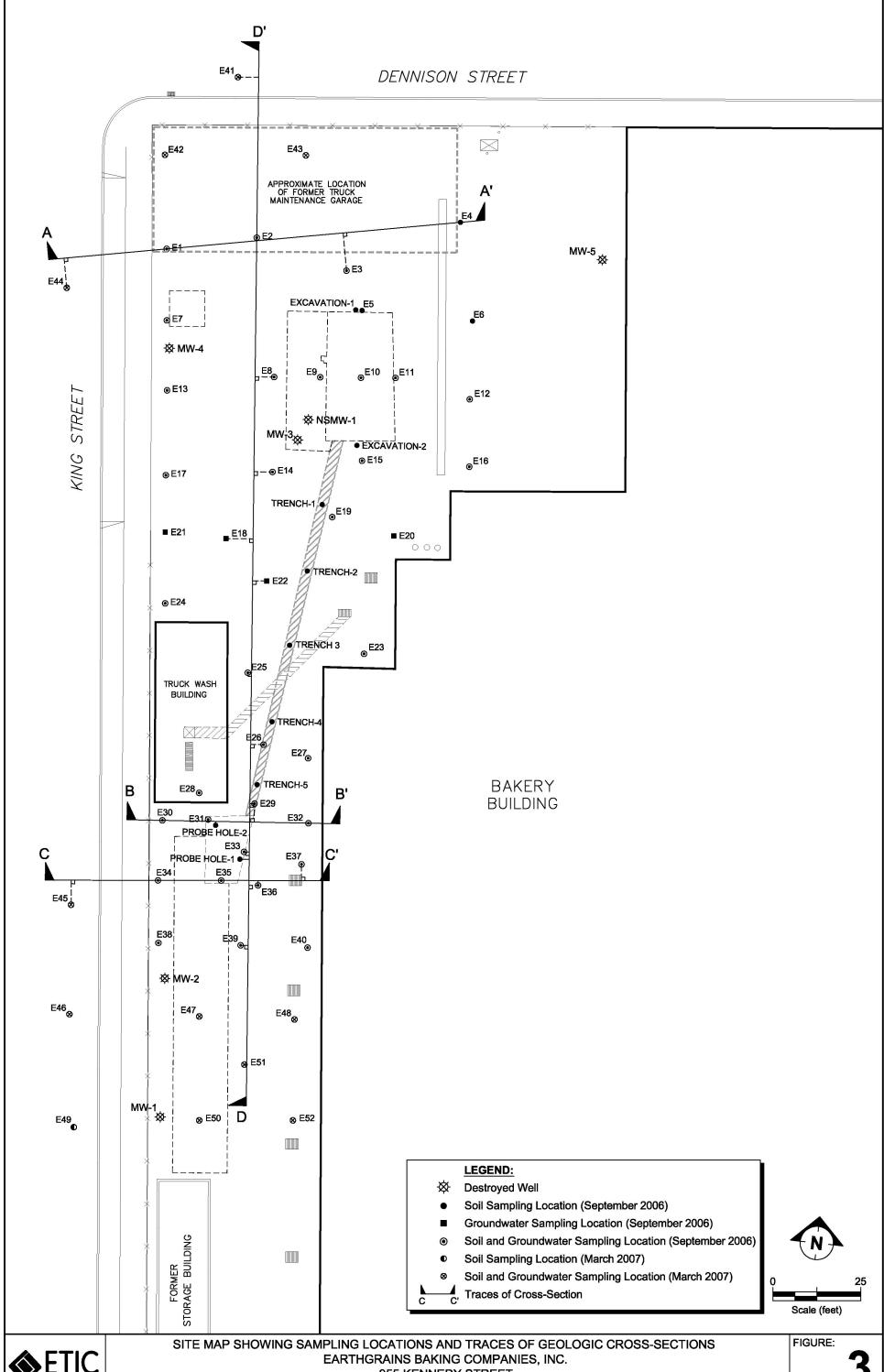
Oakland. Once the shoring plan is approved and the appropriate permits are obtained from the City of Oakland, ETIC will schedule excavation activities at the Site. Field activities will be performed over a period of approximately 7 to 8 weeks. A written report summarizing the results of remedial efforts will be completed approximately 120 days following the receipt of analytical data for soil and groundwater samples collected during remediation activities.

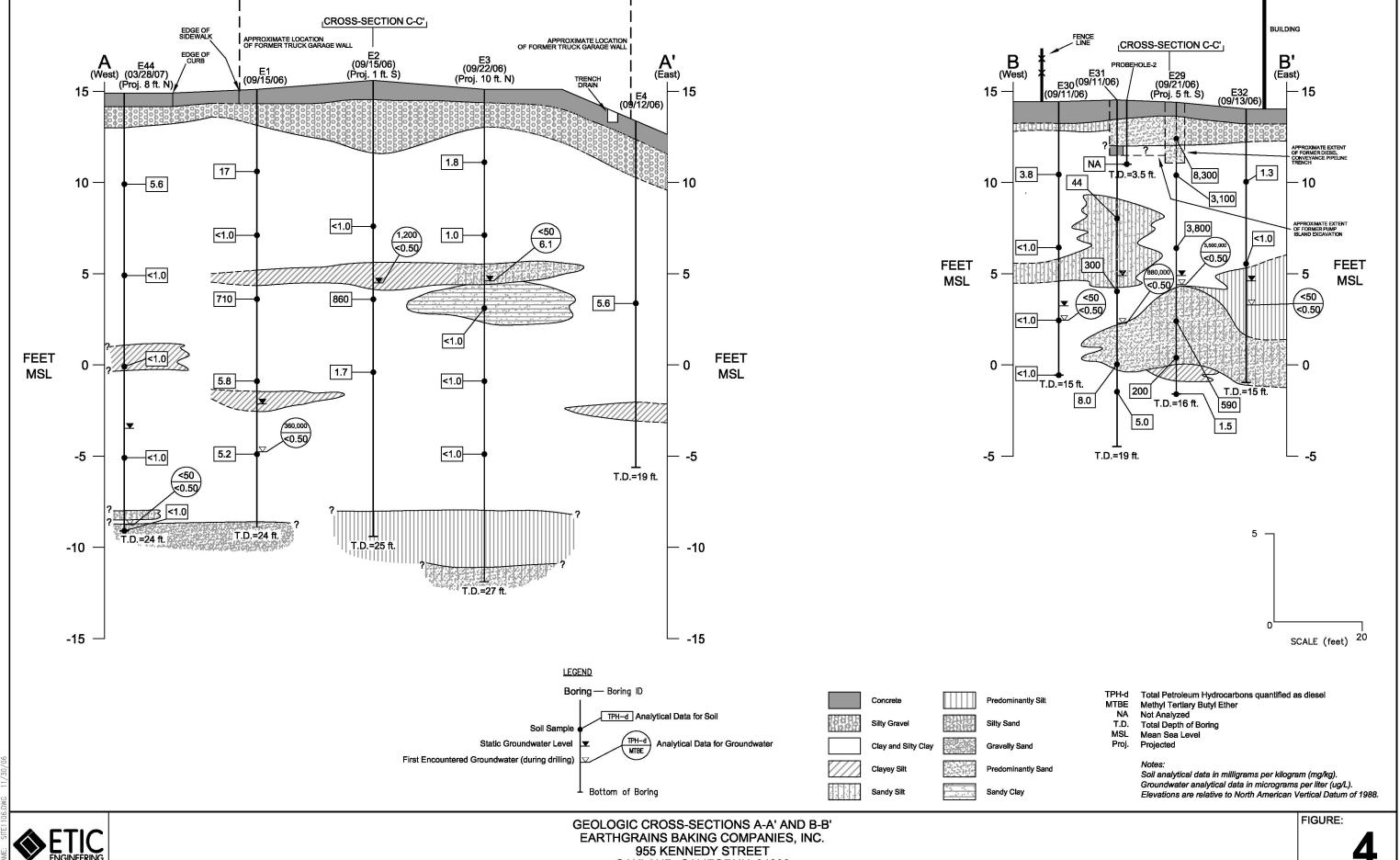
11.0 REFERENCES

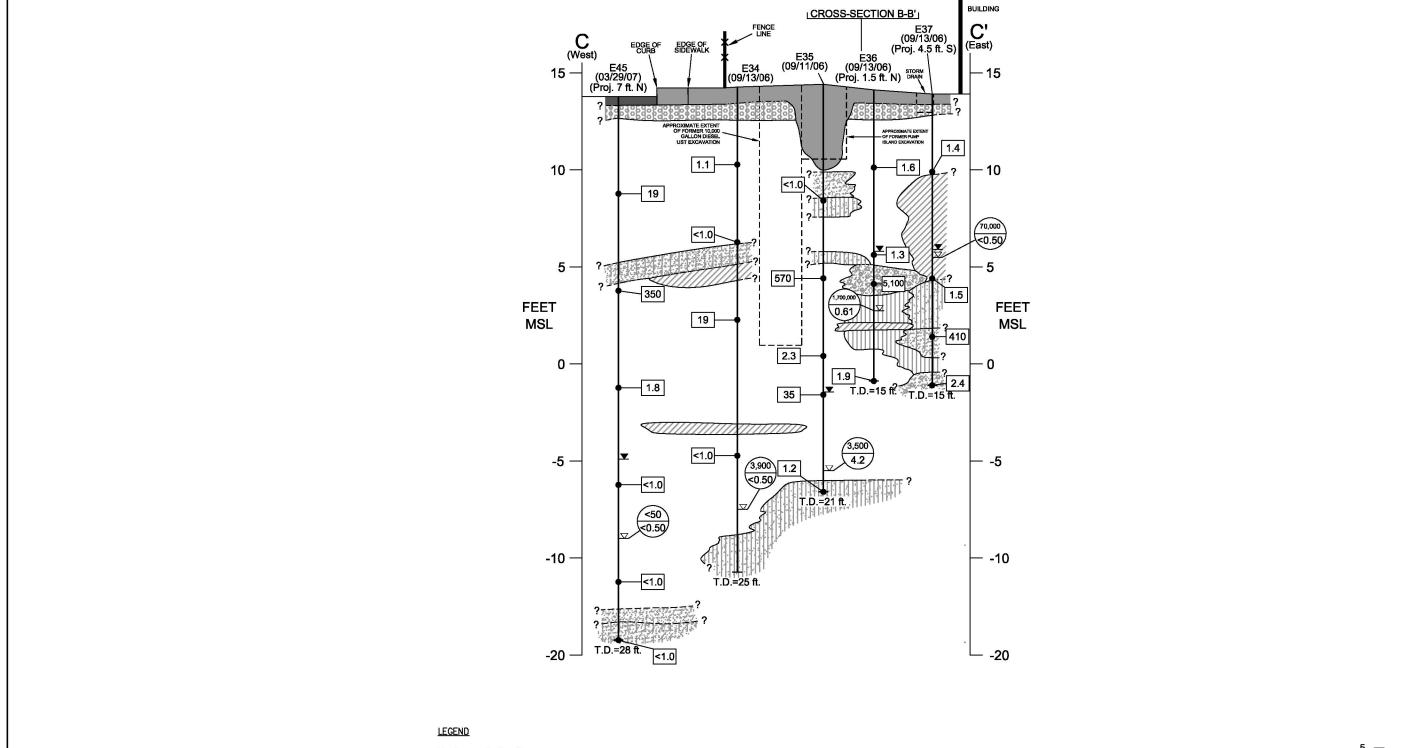
- American Society for Testing and Materials (ASTM), 2000. Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), ASTM, West Conshohocken, Pennsylvania.
- Alameda County Health Care Services Agency, 2003. Notice of Responsibility, RO #0002569, Sara Lee Bakery, 955 Kennedy Street, Oakland, CA 94606, August 19, 2003.
- Alameda County Health Care Services Agency, 2006. Approval Letter for Work Plan Addendum for Soil and Groundwater Quality Investigation, RO #0002569, Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, CA 94606, August 25, 2006.
- Donna Drogos, 2007. Electronic Mail Correspondence Regarding Approval of Remedial Investigation Work Plan, RO #0002569, Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, CA 94606, April 4, 2007.
- Burlington Environmental Inc., 1993. Soil and Groundwater Investigation Report, 955 Kennedy Street, Oakland, California, Burlington Environmental Project No. CTI106/412, January 5, 1993.
- Burlington Environmental Inc., 1995. Fourth Quarter 1994 Groundwater Monitoring Report and Request for UST Case Closure, 955 Kennedy Street, Oakland, California, Burlington Environmental Project No. 121382/125971, January 19, 1995.
- Department of Water Resources (DWR), 2003. California's Groundwater, Bulletin 118, Update 2003, San Francisco Bay Hydrologic Region, Santa Clara Valley Groundwater Basin, East Bay Plain Subbasin, DWR, Sacramento, California.
- ETIC Engineering Inc., 2006a. Work Plan for Soil and Groundwater Quality Investigation, Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, California 94606, RO# 0002569, April 14, 2006.
- ETIC Engineering Inc., 2006b. Work Plan Addendum for Soil and Groundwater Quality Investigation, Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, California 94606, RO# 0002569, August 11, 2006.

- ETIC Engineering Inc., 2006c. Electronic mail correspondence, ETIC to Mr. Don Hwang of ACHCSA, Regarding Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, California 94606, RO# 0002569, August 25, 2006.
- ETIC Engineering Inc., 2006d. Soil and Groundwater Quality Investigation Report, Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, California 94606, RO# 0002569, December 21, 2006.
- ETIC Engineering Inc., 2007. Remedial Investigation Work Plan, Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, California 94606, RO# 0002569, February 8, 2007.
- John Mathes & Associates, Inc., 1990. Draft Site Assessment Work Plan, 955 Kennedy Street, Oakland, California, John Mathes & Associates Project No. 121382/4002, February 1990.
- John Mathes & Associates, Inc., 1991. Underground Storage Tank Closure and Installation Report, 955 Kennedy Street, Oakland, California, John Mathes & Associates Project No. 121382/5810, June 7, 1991.
- Philip Environmental Services Corporation, 1995a. Well Destruction Report, 955 Kennedy Street, Oakland, California, PSC Project No. CTI106/125971, July 7, 1995.
- Philip Environmental Services Corporation, 1995b. Tier 1 Risk Assessment, 955 Kennedy Street, Oakland, California, PSC Project No. 121382/125971, July 25, 1995.
- Philip Environmental Services Corporation, 1996. Notification of Well Abandonment, 955 Kennedy Street, Oakland, California, PSC Project No. CTI106/125971.7052, April 4, 1996.
- Philip Environmental Services Corporation, 2005. UST System Closure Report for Earthgrains Baking Companies, Inc., 955 Kennedy Street, Oakland, California, PSC Project No. 62402797, April 15, 2005.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), 2005. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables, Interim Final, February 2005.
- Sowers, Janet M., 2000. Creek and Watershed Map of Oakland and Berkeley. The Oakland Museum of California.

SOURCE: USGS Topographic Map

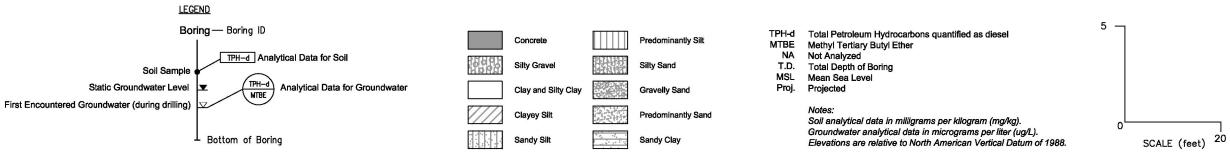
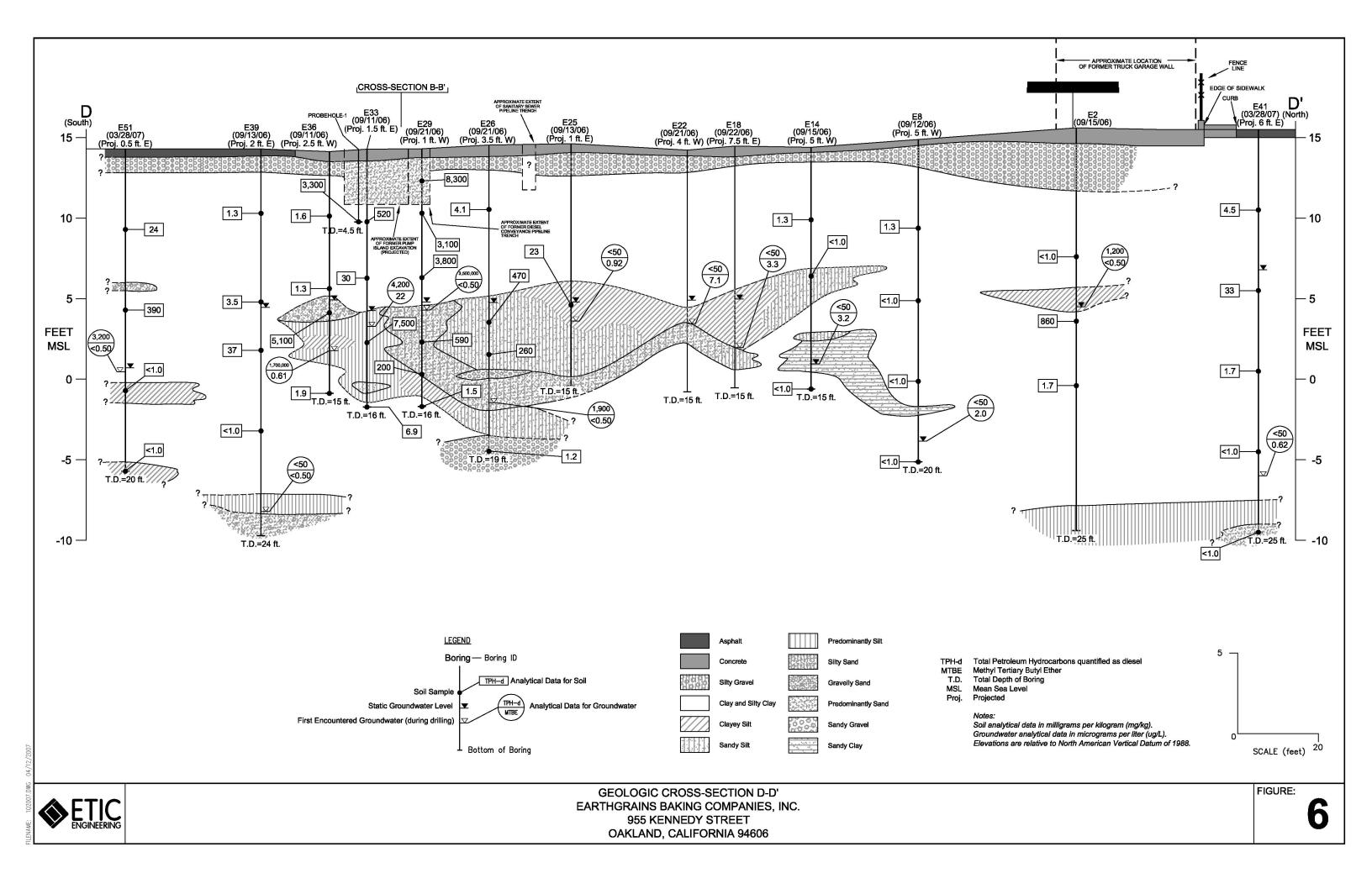
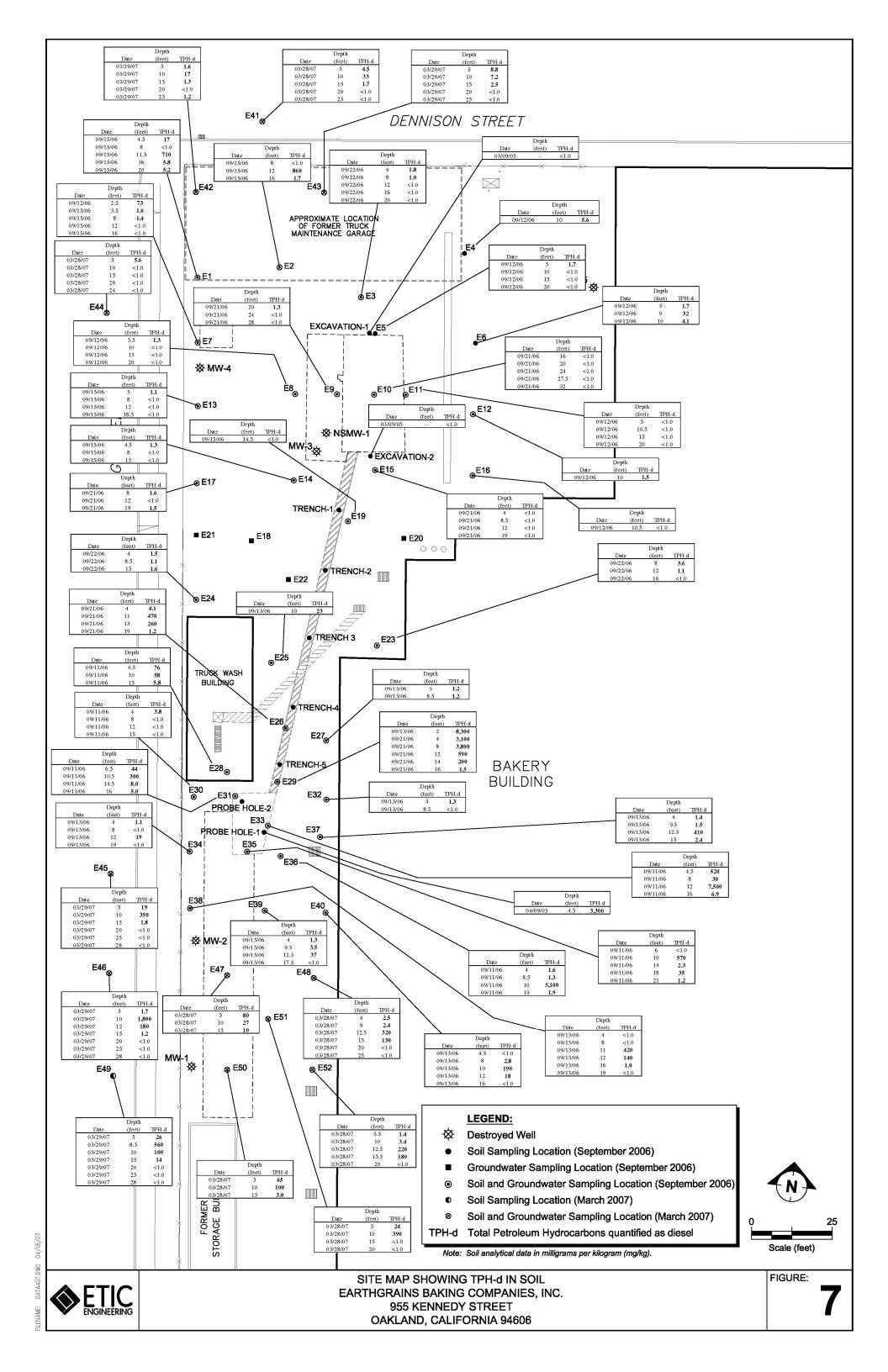
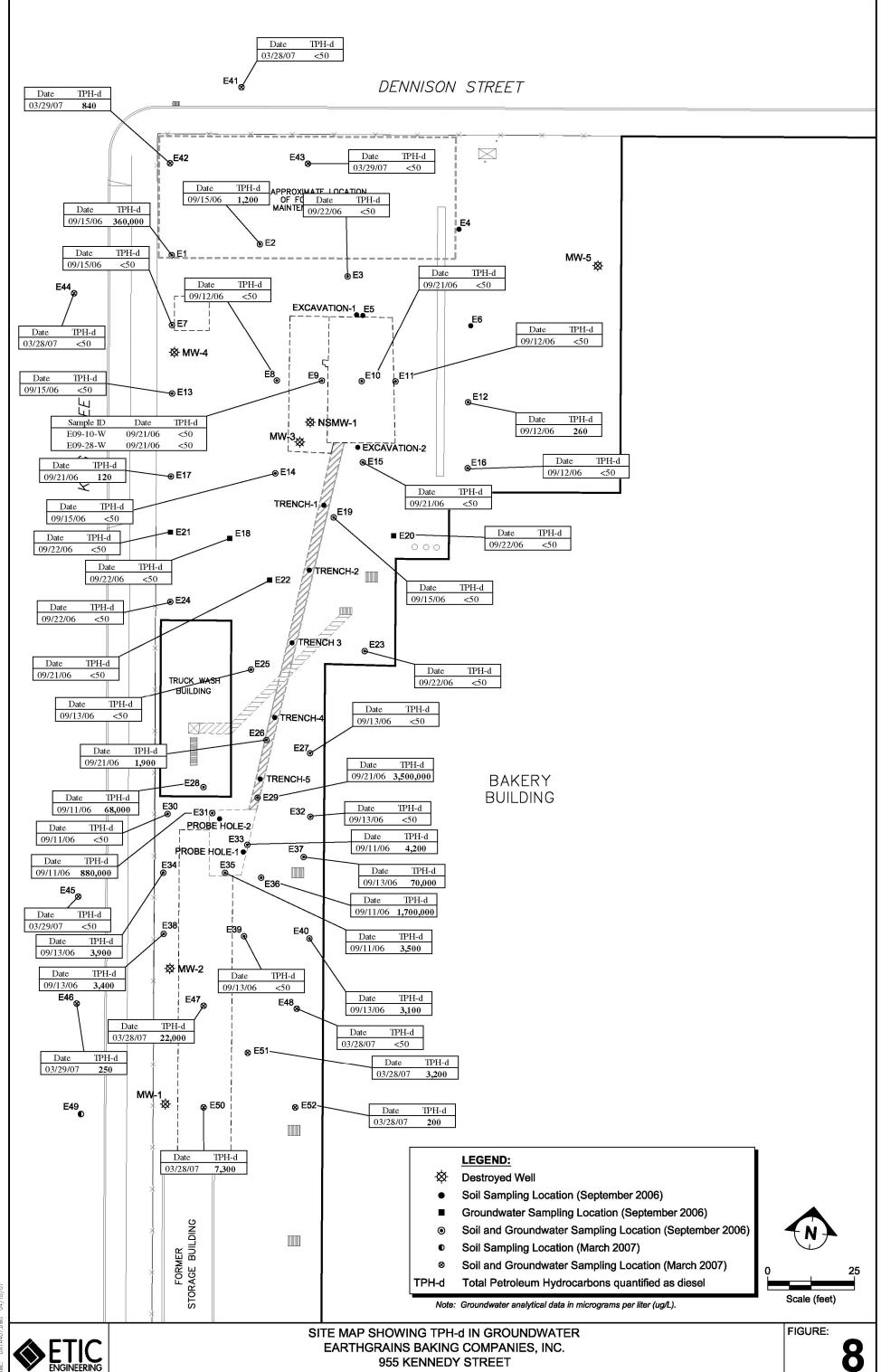

FIGURE:

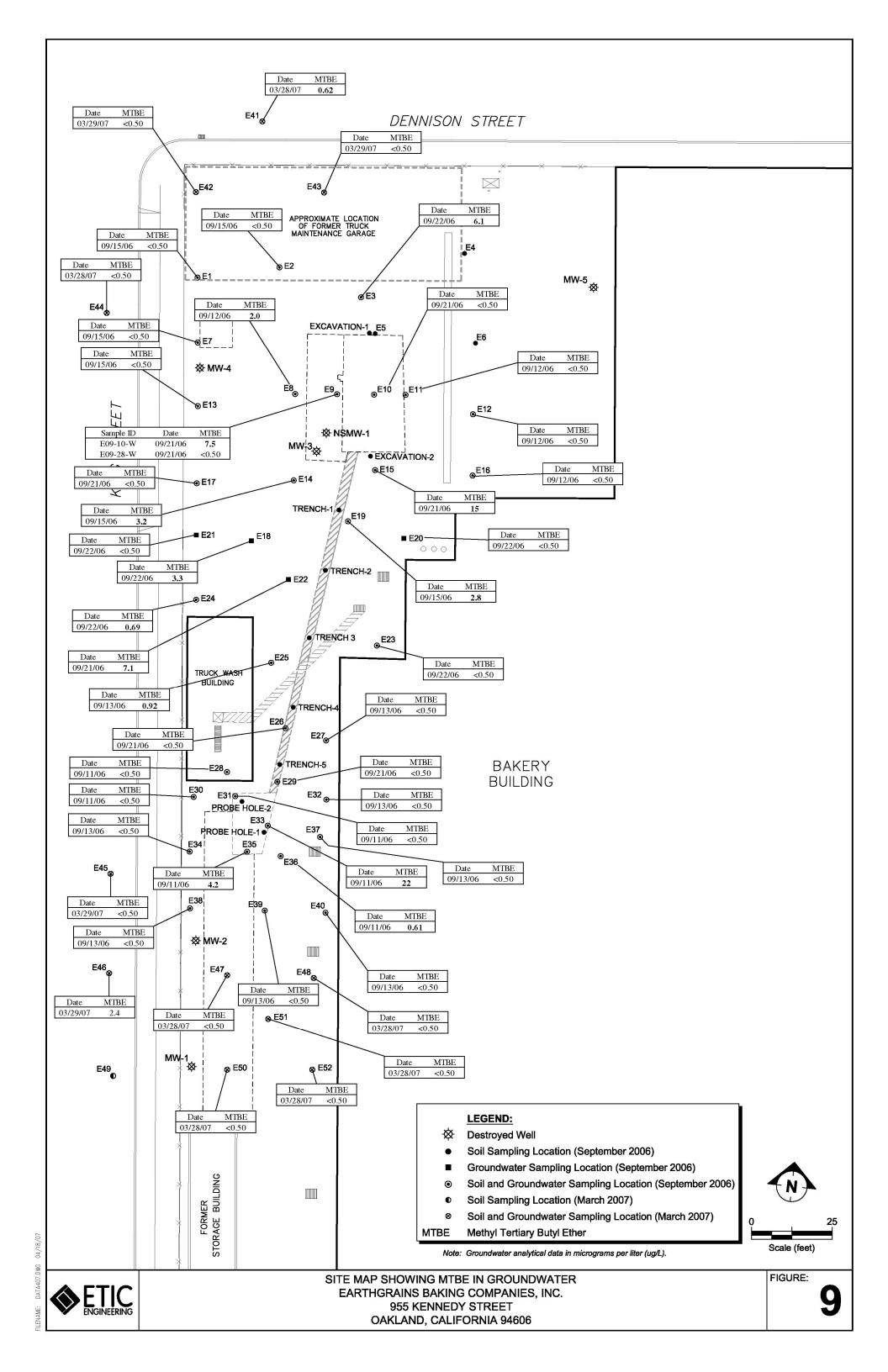


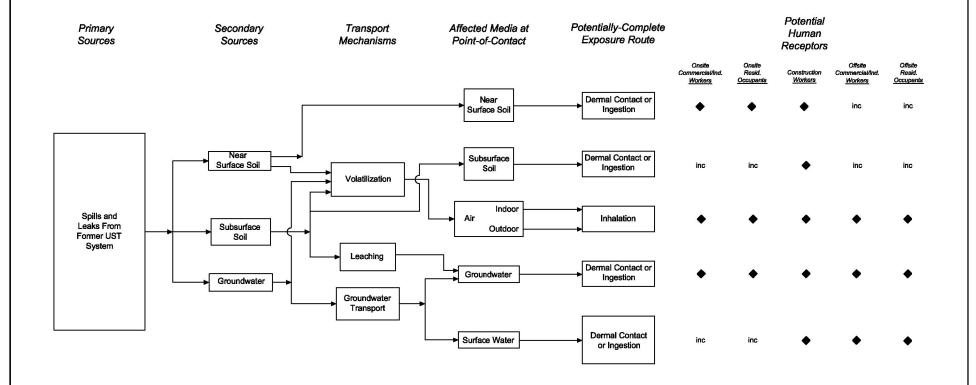
955 KENNEDY STREET

OAKLAND, CALIFORNIA 94606

OAKLAND, CALIFORNIA 94606


FIGURE:



OAKLAND, CALIFORNIA 94606

Note: Not to Scale.

LEGEND

Potentially-Complete Exposure Pathway

inc Incomplete Exposure Pathway

EXPOSURE PATHWAY FLOW CHART EARTHGRAINS BAKING COMPANIES, INC. 955 KENNEDY STREET OAKLAND, CALIFORNIA 94606 FIGURE:

11

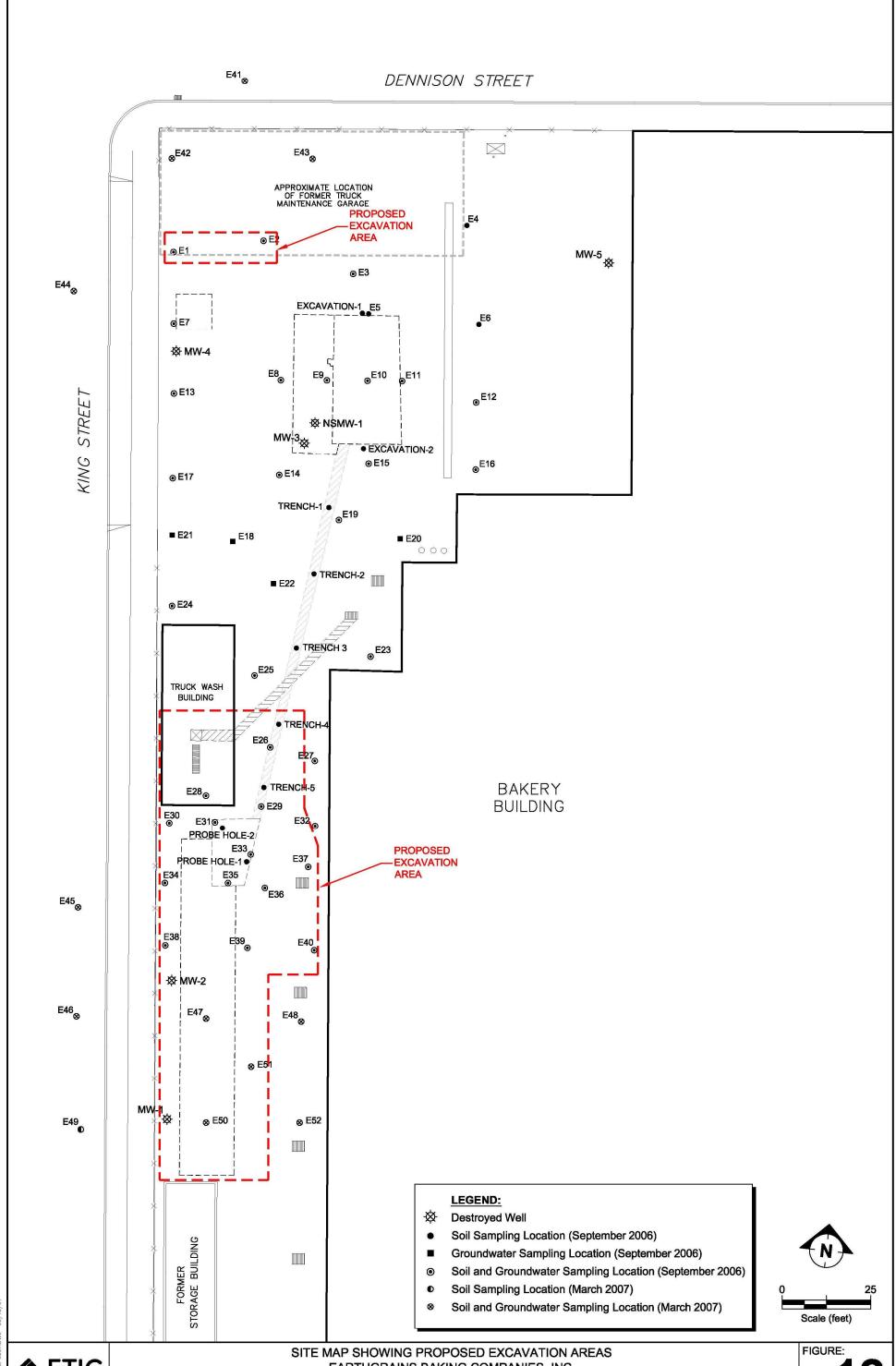


TABLE 1. SOIL SAMPLE ANALYTICAL DATA
PETROLEUM HYDROCARBONS AND MTBE
Earthgrains Baking Companies, Inc.
955 Kennedy Street
Oakland, California 94606

						Concentrati	ion (mg/kg)			
		Depth			Ethyl-	Total	(8/8)			
Sample ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
PROBE HOLE-1	04/09/03	4.5	< 0.62	< 0.62	< 0.62	< 0.62	NA	NA	3,300*	NA
PROBE HOLE-2	04/09/03	3.5	NA	NA	NA	NA	NA	NA	NA	< 50
TRENCH-1	03/08/05	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	<1.0	<1.0	NA
TRENCH-2	03/08/05	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	<1.0	<1.0	NA
TRENCH-3	03/08/05	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	<1.0	<1.0	NA
TRENCH-4	03/08/05	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	<1.0	<1.0	NA
TRENCH-5	03/08/05	4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.010	48†	1,700	NA
EXCAVATION-1	03/09/05		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	<1.0	<1.0	NA
EXCAVATION-2	03/09/05		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	<1.0	<1.0	NA
E1	09/15/06	4.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	4.0	17#	NA
E1	09/15/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E1	09/15/06	11.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	3.5	710	NA
E1	09/15/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	5.8	NA
E1	09/15/06	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	5.2	NA
E2	09/15/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E2	09/15/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	8.0	860	NA
E2	09/15/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.7	NA
E3	09/22/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.8‡	NA
E3	09/22/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.0#	NA
E3	09/22/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E3	09/22/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E3	09/22/06	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E4	09/12/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	5.6‡	NA
E5	09/12/06	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.7‡	NA
E5	09/12/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E5	09/12/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.017	<1.0	<1.0	NA
E5	09/12/06	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.020	<1.0	<1.0	NA
E6	09/12/06	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.7‡	NA
E6	09/12/06	9	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	32‡	NA
<u>E6</u>	09/12/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	4.1‡	NA
E7	09/12/06	2.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	2.6	73**	NA
E7	09/15/06	3.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.6‡	NA
E7	09/15/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.4‡	NA
E7	09/15/06	12	NA	NA	NA	NA	NA	NA	<1.0	NA
E7	09/15/06	16	NA	NA 10.0050	NA 10.0050	NA	NA 10.0050	NA	<1.0	NA
E8	09/12/06	5.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.3‡	NA
E8	09/12/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E8	09/12/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<1.0	<1.0	NA
<u>E8</u>	09/12/06	20	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	<1.0	NA NA
E9	09/21/06	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<1.0	1.3‡	NA
E9	09/21/06	24	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<1.0	<1.0	NA
E9	09/21/06	28	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA

TABLE 1. SOIL SAMPLE ANALYTICAL DATA
PETROLEUM HYDROCARBONS AND MTBE
Earthgrains Baking Companies, Inc.
955 Kennedy Street
Oakland, California 94606

Sample D							Concentrati	ion (mg/kg)			
E10			Depth			Ethyl-	Total				
E10	Sample ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
E10	E10	09/21/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E10	E10	09/21/06	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E10	E10	09/21/06	24	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E11	E10	09/21/06	27.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E11	E10	09/21/06	32	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E11	E11	09/12/06	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E11	E11	09/12/06	10.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E12	E11	09/12/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E13	E11	09/12/06	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E13	E12	09/12/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.5‡	NA
E13	E13	09/15/06	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.1‡	NA
E13	E13	09/15/06	8	NA	NA	NA	NA	NA	NA	<1.0	NA
E14	E13	09/15/06	12	NA	NA	NA	NA	NA	NA	<1.0	NA
E14 09/15/06 8 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 <1.0 <1.0 NA E14 09/15/06 15 <0.0050	E13	09/15/06	18.5	NA	NA	NA	NA	NA	NA	<1.0	NA
E14 09/15/06 15 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 <1.0 NA E15 09/21/06 4 <0.0050	E14	09/15/06	4.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.3‡	NA
E15	E14	09/15/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E15 09/21/06 8.5 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 1.0 < 1.0 NA E15 09/21/06 12 < 0.0050	E14	09/15/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E15 09/21/06 12 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 <1.0 NA E15 09/21/06 19 <0.0050	E15	09/21/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E15 09/21/06 19 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 <1.0 NA E16 09/12/06 10.5 <0.0050	E15	09/21/06	8.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E16 09/12/06 10.5 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 <1.0 NA E17 09/21/06 8 NA 1.0 1.0 1.0 NA	E15	09/21/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E17 09/21/06 8 NA NA NA NA NA NA NA 1.6‡ NA E17 09/21/06 12 NA 1.5‡ NA E19 09/15/06 14.5 <0.0050	E15	09/21/06	19	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E17 09/21/06 12 NA	E16	09/12/06	10.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		<1.0	NA
E17 09/21/06 19 NA NA NA NA NA NA 1.5‡ NA E19 09/15/06 14.5 <0.0050	E17	09/21/06		NA	NA	NA	NA	NA	NA	1.6‡	NA
E19 09/15/06 14.5 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 <1.0 NA E23 09/22/06 8 <0.0050	E17	09/21/06		NA	NA	NA		NA	NA	<1.0	NA
E23 09/22/06 8 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	E17	09/21/06	19	NA	NA	NA	NA	NA	NA	1.5‡	NA
E23 09/22/06 12 <0,0050 <0.0050 <0.0050 <0.0050 <1.0 1.1‡ NA E23 09/22/06 16 <0.0050			14.5	< 0.0050		< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	
E23 09/22/06 16 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 <1.0 NA E24 09/22/06 4 <0.0050		09/22/06	8	< 0.0050	< 0.0050	< 0.0050		< 0.0050	<1.0	3.6‡	NA
E24 09/22/06 4 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 1.5‡ NA E24 09/22/06 8.5 <0.0050	E23	09/22/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.1‡	NA
E24 09/22/06 8.5 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 1.1‡ NA E24 09/22/06 15 <0.0050		09/22/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	<1.0	NA
E24 09/22/06 15 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 1.6‡ NA E25 09/13/06 10 <0.0050	E24	09/22/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.5#	NA
E25 09/13/06 10 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 23‡ NA E26 09/21/06 4 <0.0050		09/22/06		< 0.0050	< 0.0050		< 0.0050	< 0.0050	<1.0	1.1‡	NA
E26 09/21/06 4 <0.0050										•	
E26 09/21/06 11 <0.0050	E25		10				< 0.0050		<1.0		
E26 09/21/06 13 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005		09/21/06	4	< 0.0050		< 0.0050	< 0.0050	< 0.0050	<1.0	4.1‡	<10
E26 09/21/06 19 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 1.2 <10 E27 09/13/06 5 <0.0050											
E27 09/13/06 5 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 1.2‡ NA E27 09/13/06 8.5 <0.0050											
E27 09/13/06 8.5 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 1.2‡ NA E28 09/11/06 10 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 76‡ NA E28 09/11/06 10 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 58‡ NA											
E28 09/11/06 4.5 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 76‡ NA E28 09/11/06 10 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 58‡ NA											
E28 09/11/06 10 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 58‡ NA											
										-	
E28 09/11/06 15 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 NA 5.8+ NA										_	
220 0,717700 10 0.0000 0.0000 0.0000 1011 0.00	E28	09/11/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	5.8‡	NA

TABLE 1. SOIL SAMPLE ANALYTICAL DATA
PETROLEUM HYDROCARBONS AND MTBE
Earthgrains Baking Companies, Inc.
955 Kennedy Street
Oakland, California 94606

						Concentrati	on (mg/kg)			
		Depth			Ethyl-	Total	<u> </u>			
Sample ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
E29	09/13/06	2	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	8,300	NA
E29	09/21/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	31	3,100	< 20
E29	09/21/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	140	3,800	< 20
E29	09/21/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	4.7	590	17††
E29	09/21/06	14	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	6.9	200	<10
E29	09/21/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	1.5	<10
E30	09/11/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	3.8‡	NA
E30	09/11/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E30	09/11/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E30	09/11/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E31	09/11/06	6.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	44‡	NA
E31	09/11/06	10.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	300	NA
E31	09/11/06	14.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	8.0	NA
E31	09/11/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	5.0	NA
E32	09/13/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.3‡	NA
E32	09/13/06	8.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E33	09/11/06	4.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	520	NA
E33	09/11/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	30	NA
E33	09/11/06	12	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	NA	7,500	NA
E33	09/11/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	6.9	NA
E34	09/13/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.1‡	NA
E34	09/13/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E34	09/13/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	19	NA
E34	09/13/06	19	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E35	09/11/06	6	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E35	09/11/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	570	NA
E35	09/11/06	14	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	2.3	NA
E35	09/11/06	18	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	35	NA
E35	09/11/06	21	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.2‡	NA
E36	09/11/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.6†	NA
E36	09/11/06	8.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.3‡	NA
E36	09/11/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	5,100	NA
E36	09/11/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.9	NA
E37	09/13/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.4‡	NA
E37	09/13/06	9.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.5‡	NA
E37	09/13/06	12.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	410	NA
E37	09/13/06	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	2.4‡	NA
E38	09/13/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E38	09/13/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E38	09/13/06	11	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	420	NA
E38	09/13/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	140	NA
E30			2.3000		2.3020					- 1

TABLE 1. SOIL SAMPLE ANALYTICAL DATA
PETROLEUM HYDROCARBONS AND MTBE
Earthgrains Baking Companies, Inc.
955 Kennedy Street
Oakland, California 94606

						Concentrati	ion (mg/kg)			
		Depth			Ethyl-	Total				
Sample ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
E38	09/13/06	19	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E39	09/13/06	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	1.3‡	NA
E39	09/13/06	9.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	3.5	NA
E39	09/13/06	12.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	37	NA
E39	09/13/06	17.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E40	09/13/06	4.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E40	09/13/06	8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	2.8‡	NA
E40	09/13/06	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	190	NA
E40	09/13/06	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	18	NA
E40	09/13/06	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	<1.0	NA
E41	03/28/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	4.5‡	19
E41	03/28/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	33‡	180
E41	03/28/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.7‡	< 10
E41	03/28/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E41	03/28/07	25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E42	03/29/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.6‡	< 10
E42	03/29/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	17	15
E42	03/29/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.3	< 10
E42	03/29/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E42	03/29/07	25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.2*	< 10
E43	03/29/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	8.8‡	29
E43	03/29/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	7.2‡	23
E43	03/29/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	2.5‡	< 10
E43	03/29/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E43	03/29/07	25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E44	03/28/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	5.6‡	20
E44	03/28/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E44	03/28/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E44	03/28/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E44	03/28/07	24	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E45	03/29/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	19‡	92
E45	03/29/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	1.4	350	< 10
E45	03/29/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.8	< 10
E45	03/29/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E45	03/29/07	25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E45	03/29/07	28	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E46	03/29/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.7	< 10
E46	03/29/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	29	1,800	< 10
E46	03/29/07	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	21	180	< 10
E46	03/29/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.2	< 10
E46	03/29/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E46	03/29/07	25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10

TABLE 1. SOIL SAMPLE ANALYTICAL DATA PETROLEUM HYDROCARBONS AND MTBE Earthgrains Baking Companies, Inc.

955 Kennedy Street Oakland, California 94606

						Concentrati	ion (mg/kg)			
		Depth			Ethyl-	Total				
Sample ID	Date	(feet)	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
E46	03/29/07	28	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	< 10
E47	03/28/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	80‡	NA
E47	03/28/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	27‡	NA
E47	03/28/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	10	NA
E48	03/28/07	4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	2.5‡	NA
E48	03/28/07	9	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	2.4	NA
E48	03/28/07	12.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	2.1	320	NA
E48	03/28/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	1.0	130	NA
E48	03/28/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA
E48	03/28/07	25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA
E49	03/29/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	26‡	NA
E49	03/29/07	8.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	560	NA
E49	03/29/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	100	NA
E49	03/29/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	14‡	NA
E49	03/29/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA
E49	03/29/07	25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA
E49	03/29/07	28	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA
E50	03/28/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	65‡	NA
E50	03/28/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	100‡	NA
E50	03/28/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	3.0	NA
E51	03/28/07	5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	24‡	NA
E51	03/28/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	390	NA
E51	03/28/07	15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA
E51	03/28/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA
E52	03/28/07	5.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	1.4‡	NA
E52	03/28/07	10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	3.4*	NA
E52	03/28/07	12.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	220	NA
E52	03/28/07	15.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	180	NA
E52	03/28/07	20	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	< 1.0	NA

TPH-mo	Total Petroleum Hydrocarbons quantified as motor oil.
NA	Not Analyzed.
*	The pattern exhibited by the hydrocarbons detected did not match the laboratory's diesel standard.
†	The laboratory indicated a "non-gasoline pattern; appears to be diesel."
#	The hydrocarbons reported as TPH-d do not exhibit a typical diesel chromatographic pattern. These hydrocarbons are lower boiling than typical diesel fuel.
‡	The hydrocarbons reported as TPH-d do not exhibit a typical diesel chromatographic pattern. These hydrocarbons are higher boiling than typical diesel fuel.
**	Some of the hydrocarbons detected are higher boiling and some are lower boiling than typical diesel fuel.
††	The hydrocarbons reported as TPH-mo do not exhibit a typical motor oil chromatographic pattern. These hydrocarbons are lower boiling than typical motor oil.
‡ ‡	DRUM1,2,3,4 was a 4-point composite sample of investigation-derived soil waste. Lead was also detected in DRUM1,2,3,4 at 9.95 mg/kg.

TABLE 2. SOIL SAMPLE ANALYTICAL DATA

PHYSICAL PARAMETERS

Earthgrains Baking Companies, Inc.

955 Kennedy Street

Oakland, California 94606

Sample ID	Date	Depth (feet)	Bulk Density (g/cm ³)	Porosity (Volume %)	Air-Filled Void Space (Volume %)	Moisture (Dry Weight %)	Total Organic Carbon (mg/kg)
E8	09/12/06	4	1.9	43	3.3	21	14,000
		7	2.0	36	3.2	16	3,400
E36	09/11/06	6.5	1.9	41	3.3	20	2,400
		9.5	1.9	33	18	8.0	4,500

g/cm³ Grams per cubic centimeter.

% Percentage.

mg/kg Milligrams per kilogram.

Notes: Bulk Density and Porosity are determined using SSSA#5.

Air-Filled Void Space is determined using API 40RP.

Moisture determined by ASTM 2216-92.

Total Organic Carbon determined using Method SM5310B.

TABLE 3. GROUNDWATER SAMPLE ANALYTICAL DATA Earthgrains Baking Companies, Inc. 955 Kennedy Street Oakland, California 94606

					Concentra	tion (µg/L)		
				Ethyl-	Total	· · ·	/		
Sample ID	Date	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
Excavation Water	3/8/05	< 0.50	< 0.50	< 0.50	< 0.50	2.7	130*	6,100	NA
E1	9/15/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	560	360,000	NA
E2	9/15/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	1,200	NA
E3	9/22/06	< 0.50	< 0.50	< 0.50	< 0.50	6.1	< 50	< 50	NA
E7	9/15/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	62‡	< 50	NA
E8	9/12/06	< 0.50	< 0.50	< 0.50	< 0.50	2.0	< 50	< 50	NA
E09-10-W	9/21/06	< 0.50	< 0.50	< 0.50	< 0.50	7.5	< 50	< 50	NA
E09-28-W	9/21/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	94‡	< 50	NA
E10-32-W	9/21/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	94‡	< 50	NA
E11	9/12/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E12	9/12/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	260**	NA
E13	9/15/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E14	9/15/06	< 0.50	< 0.50	< 0.50	< 0.50	3.2	< 50	< 50	NA
E15	9/21/06	< 0.50	< 0.50	< 0.50	< 0.50	15	< 50	< 50	NA
E16	9/12/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E17	9/21/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	120**	NA
E18	9/22/06	< 0.50	< 0.50	< 0.50	< 0.50	3.3	< 50	< 50	NA
E19	9/15/06	< 0.50	< 0.50	< 0.50	< 0.50	2.8	< 50	< 50	NA
E20	9/22/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E21	9/22/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E22	9/21/06	< 0.50	< 0.50	< 0.50	< 0.50	7.1	< 50	< 50	NA
E23	9/22/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E24	9/22/06	< 0.50	< 0.50	< 0.50	< 0.50	0.69	< 50	< 50	NA
E25	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	0.92	< 50	< 50	NA
E26	9/21/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	1,900	NA
E27	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E28	9/11/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	68,000	NA
E29	9/21/06	< 0.50	< 0.50	< 0.50	1.4	< 0.50	290	3,500,000	NA
E30	9/11/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	< 50	NA
E31	9/11/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	880,000	NA
E32	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	< 50	NA
E33	9/11/06	< 0.50	< 0.50	< 0.50	< 0.50	22	NA	4,200	NA
E34	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	3,900	NA
E35	9/11/06	< 0.50	< 0.50	< 0.50	< 0.50	4.2	NA	3,500	NA

TABLE 3. GROUNDWATER SAMPLE ANALYTICAL DATA Earthgrains Baking Companies, Inc. 955 Kennedy Street Oakland, California 94606

					Concentra	tion (µg/L)		
				Ethyl-	Total				
Sample ID	Date	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-g	TPH-d	TPH-mo
E36	9/11/06	< 0.50	< 0.50	< 0.50	< 0.50	0.61	NA	1,700,000	NA
E37	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	70,000	NA
E38	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	3,400	NA
E39	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	< 50	NA
E40	9/13/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	3,100	NA
E41	3/28/07	< 0.50	< 0.50	< 0.50	< 0.50	0.62	59‡	< 50	180***
E42	3/29/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	840	240
E43	3/29/07	< 0.50	0.51	< 0.50	< 0.50	< 0.50	53‡	< 50	<100
E44	3/28/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100
E45	3/29/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	<100
E46	3/29/07	< 0.50	0.84	< 0.50	< 0.50	2.4	< 50	250**	750***
E47	3/28/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	22,000	NA
E48	3/28/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	< 50	NA
E50	3/28/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	7,300	NA
E51	3/28/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	3,200	NA
E52	3/28/07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	200	NA
DW††	9/22/06	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 50	2,600	<100
								•	

µg/L	Micrograms per liter.
MTBE	Methyl Tertiary Butyl Ether.
TPH-g	Total Petroleum Hydrocarbons quantified as gasoline.
TPH-d	Total Petroleum Hydrocarbons quantified as diesel.
TPH-mo NA	Total Petroleum Hydrocarbons quantified as motor oil. Not Analyzed.
*	The laboratory indicated a "non-gasoline pattern; appears to be diesel."
†	The concentration of MTBE in the sample was 2.7 µg/L when analyzed by EPA Method 8020
	and 1.9 µg/L when analyzed by EPA Method 8260.
‡	The hydrocarbons reported as TPH-g do not exhibit a typical gasoline chomatographic
	pattern.
**	The hydrocarbons reported as TPH-d do not exhibit a typical diesel chromatographic
	pattern. These hydrocarbons are higher boiling than typical diesel fuel.
***	The hydrocarbons reported as TPH-mo do not exhibit a typical motor oil chromatographic
	pattern. There are discrete peaks which may or may not be petroleum related.
††	DW was a sample of investigation-derived water waste. Lead was not detected in sample DW.

Appendix A Regulatory Correspondence

From:

"Drogos, Donna, Env. Health" <donna.drogos@acgov.org>

To:

"Thomas Neely" <TNeely@eticeng com>

Date:

4/4/2007 5:45 PM

Subject:

RE: Earthgrains, 955 Kennedy Street, Oakland, CA, RO#0002569

Hi Tom,

I reviewed the proposed boring locations on your map & these appear sufficient.

Please send me an SWI report documenting the results of your investigation by June 4, 2007.

Thanks, Donna

Donna L. Drogos, PE LOP Program Manager Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

510-567-6721 donna.drogos@acgov org

----Original Message----

From: Thomas Neely [mailto:TNeely@eticeng.com]

Sent: Monday, March 26, 2007 4:02 PM

To: Drogos, Donna, Env. Health

Cc: Scott Jander

Subject: Fwd: Earthgrains, 955 Kennedy Street, Oakland, CA, RO#0002569

Hi Donna,

I'm not sure whether you received this email, so I am sending it again.

Let me know if you have any questions,

Thank you for taking the time on March 1, 2007, to discuss with me the current environmental case for the Earthgrains Baking Companies, Inc. (Earthgrains) site located at 955 Kennedy Street in Oakland, California. This electronic mail correspondence summarizes the content of our telephone conversation.

During our telephone conversation, we reviewed the Remedial

Investigation Work Plan, dated February 8, 2007, prepared by ETIC Engineering, Inc. (ETIC) and submitted by PSC Environmental Services (PSC). The purpose of the remedial investigation is to further evaluate the extent of petroleum hydrocarbons in soil and groundwater at the site in preparation for remediation.

We also reviewed the analytical data obtained from the subsurface investigation performed at the Earthgrains site in September 2006, and documented in the Soil and Groundwater Quality Investigation Report, dated December 21, 2006. The primary contaminant of concern identified during the investigation was total petroleum hydrocarbons quantified as diesel (TPH-d) Elevated concentrations of TPH-d were detected in soil and groundwater in the vicinity of the former diesel pump island and southern portion of the former diesel product piping trench. Elevated levels of TPH-d were also detected in groundwater in the northwestern corner of the Earthgrains site. In general, the highest concentrations of TPH-d were detected in soil at depths of less than 16 feet below grade. Based upon the analytical data obtained during the investigation, the vertical extent of petroleum-hydrocarbon impacts is adequately defined. ETIC also concluded in the December 21, 2006 report that further delineation of the lateral extent of petroleum hydrocarbons in the subsurface is necessary.

For the remedial investigation, ETIC proposes to drill 11 soil borings to collect soil and groundwater samples for laboratory analyses to evaluate the lateral extent of petroleum hydrocarbons in the subsurface. The proposed locations of seven of the soil borings are south and southwest (downgradient) of the former diesel pump island and the previous sampling locations. The proposed locations of four of the soil borings are generally north and west of former borings E1 and E2, where TPH-d was detected in soil and groundwater samples collected in September 2006.

Based upon our review of the investigation report and work plan, you suggested the following tasks be performed:

- 1) Add one soil boring and stagger its location relative to the proposed grid-like pattern in the area south of the former diesel pump island and former borings E38, E39, and E40. To accomplish this, a twelfth soil boring is proposed and is shown on Figure 9 and attached to this electronic mail correspondence.
- 2) Consider analyzing samples near the oil/water separator in the truck wash building for solvents and related compounds. To accomplish this, ETIC will collect soil and/or groundwater samples during removal of the oil/water separator and soil excavation planned in that area

These soil samples will be analyzed for volatile organic compounds (VOCs) and other analytes that correspond to the standard waste oil analytical protocol

3) Prepare a geologic cross-section through the former diesel pump island area parallel to and south of B-B' for the site conceptual model. The cross-section will be prepared following the remedial investigation activities.

ETIC has scheduled drilling and sampling activities for the remedial investigation on Wednesday and Thursday, March 28 and 29, 2007. The findings of the remedial investigation will be evaluated and presented to you in a Remedial Investigation Report.

The data from the investigation will also be used to complete a remediation plan for diesel-impacted soil and groundwater. Based upon discussions with PSC, Sara Lee Bakery Group, Inc. (Sara Lee), and Earthgrains, ETIC tentatively plans to excavate impacted soil and extract groundwater from the remedial excavations during May 2007. ETIC also intends to permanently remove the oil/water separator in the truck wash building during the remedial excavation activities. The proposed remediation schedule will accommodate the production activities at the Earthgrains bakery. During our telephone conversation, you indicated that ETIC may proceed with these source removal activities.

Also, ETIC is currently performing a survey to identify potential sensitive receptors at the Earthgrains site and in the site vicinity. The findings from the sensitive receptor survey will be presented to you in a separate written report. ETIC will implement the remaining tasks described in the recommendations section of the Soil and Groundwater Quality Investigation Report, following completion of the excavation and site restoration activities

ETIC and PSC appreciate your time in reviewing this project work plan. If you agree with the above-referenced investigation and source removal activities, then please reply to this electronic mail with your approval. Your formal response will be required in order for Sara Lee to claim fund reimbursement on the proposed corrective-action activities at the site

Thank you for your attention to these matters

Respectfully yours,

Tom Neely

Thomas Neely, PG, CHG, REA II ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523 (925) 602-4710 ext. 17 tneely@eticeng.com

Thomas Neely, PG, CHG, REA II ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523 (925) 602-4710 ext. 17 tneely@eticeng.com Appendix B

Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 02/13/2007 By jamesy

Permit Numbers: W2007-0154

Phone: 925-602-4716

Phone: 510-436-5350

Permits Valid from 03/13/2007 to 05/15/2007

City of Project Site: Oakland

Completion Date: 05/15/2007

Application Id: 1171044732908

Site Location: 955 Kennedy St, Oakland, CA 94606

Project Start Date: 03/13/2007

ETIC Engineering - Thomas Neely

2285 Morello Avenue, Pleasant Hill, CA 94523

Property Owner: Earth Grains Parking Companies Inc. 955 Kennedy St., Oakland, CA 94606

Client: ** same as Property Owner **

Total Due: \$200.00
Receipt Number: WR2007-0073 Total Amount Paid: \$200.00

Payer Name : ETIC Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Geotechnical Study/CPT's - 15 Boreholes

Driller: Vironex Drilling - Lic #: 705927 - Method: other Work Total: \$200.00

Specifications

Applicant:

Permit Issued Dt Expire Dt # Hole Diam Max Depth

Number Boreholes

W2007- 02/13/2007 06/11/2007 15 2.00 in 25.00 ft

0154

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6 Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544

For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa org

For Drilling Permit information and process contact James Yoo at

Phone: 510-670-6633 FAX: 510-782-1939 Email: <u>Jamesy@acpwa.org</u>

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460

Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460

Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000

Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least ten (10) working days prior to the planned start of work. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300 00 per well

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact James Yoo at 510-670-6633 to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm, Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. NO refunds shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks

Applicants who cancel a drilling permit application after a permit has been issued will then be charged a service fee of \$50 00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500 00 (Five Hundred Dollars) are available at this office or any County Offices If the amount is exceeded, a Board letter and Minute Order must accompany the claim Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (www.acgov.org/pwa/wells/index.shtml) for links to additional forms.

CITY OF OAKLAND . Community and Economic Development Agency

25C Frank H Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • FAX (510) 238-2263

Job Site 955 KENNEDY ST Parcel# 019 -0058-001-01 Appl# X0700245

Descr soil boring on Dennison St

Permit Issued 03/09/07

Work Type EXCAVATION-PRIVATE P

USA #

Acctq#:

Util Fund #:

Phone#

Lic# --License Classes--

Owner KILPATRICKS BAKERIES Contractor VIRONEX INC

Applent

(510) 568-7676 705927 C57

Arch/Engr

Agent ETIC/ A MATTHEW

(925) 602-4710

Applic Addr 2110 ADAMS AVE, SAN LEANDRO, CA, 94577

\$414.25 TOTAL FEES PAID AT ISSUANCE

\$61.00 Applic \$300.00 Permit

\$.00 Process

\$34.30 Rec Mgmt \$.00 Invstg

\$.00 Gen Plan \$.00 Other

\$18.95 Tech Enh

JOB SITE

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • FAX (510) 238-2263

Job Site 955 KENNEDY ST Parcel# 019 -0058-001-01 Appl# X0700246

Descr soil boring on King St Permit Issued 03/09/07

Work Type EXCAVATION-PRIVATE P

ADDRESS:

USA # Util Co. Job #

Util Fund #:

Applic Addr 2110 ADAMS AVE, SAN LEANDRO, CA, 94577

Applent Phone# Lic# --License Classes--

Owner KILPATRICKS BAKERIES Contractor VIRONEX INC (510) 568-7676 705927 C57 X

Arch/Engr

Agent ETIC/ A MATTHEW (925) 602-4710

\$414.25 TOTAL FEES PAID AT ISSUANCE \$61.00 Applic \$300.00 Permit \$.00 Process \$34.30 Rec Mgmt \$.00 Gen Plan \$.00 Invstg

\$18.95 Tech Enh \$.00 Other

JOB SITE

PERMITS

APPLICATION FOR TRAFFIC CONTROL PLAN

City of Oakland

Public Works Agency Transportation Services Division Transportation Services Fee: \$100/hour (Check or Money Order Only)

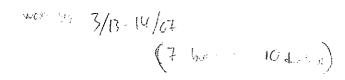
Check the box that apply:

- ☑ New Application (Utility, Excavation)
- ☐ Renewal Application
- ☐ New Development w/ Mgmt Plan
- City of Oakland Project

Please read the following:

- 1. Processing time for a Traffic Control Application is a minimum of 10 working days
- 2. Traffic Control review is scheduled only on Tuesdays and Thursdays from 8:30am thru 11:30am by appointment only.
- 3. A scheduled appointment by phone or email with a TSD staff member is necessary to discuss any and all traffic control application and plans
- 4. Please call ahead to confirm that the traffic control application is ready for pickup @ 510-238-3467
- 5. Businesses and residences adjacent to the work area must be provided 72 hour advance notice
- 6. A completed traffic control application may be faxed to (510) 238-7415.
- 7 Incomplete traffic control applications will not be processed and will be returned to applicant.
- 8. The initial approval for a traffic control plan is 1 month, the renewal submittal may be approved up to 3 months.
- 9. The traffic control provision dates cannot be changed or extended if work has already commenced.
- 10 Upon receiving TSD approval of the traffic control plan, the applicant (or contractor) shall proceed to the Building Services Division of CEDA to obtain an "Obstruction Permit" CEDA is located at 250 Frank Ogawa Plaza, 2nd Floor, Oakland, CA 94612

Contact Person: THOMAS	DEELY	Phone: <u>925-602-4710</u>)
Name of Company: ETICE	Name FRING	Fax: <u>925-602-47</u> 2	· ()
Address of Company: 2285 M	ORELLO AVENUE / PIEA	KANT HILL CA 945	1
Describe type of work to be performed;	5 boungaid - diami		estination levice
Some dave () Myll	1 LANGER TRANS TO 1	be operated at a time.	[NATA_
rale in Danker	a Lame.		
Location of work: KINGS	DENIVEY Between* DENIVEY N S+ Between* KING S	ON ST. And FREDERICK ST. And COLTON ST.	
* Name the streets that are the boundaries of		,	***************************************
Work date (s): $\frac{3/(3/0.7 - 3/15/i)}{12/0.7 - 3/15/i}$) 7 ⊠ Mon-Fri ☐ Sat-Sun Work Hou	rrs: to	
		30	
Please Follow these Step	s to Complete a Traffic Cor	ntrol Plan	
•	Il streets adjacent to the site MUST be inclur work is located for every street that is ad	· · ·	
B. Include Street Names, Direct	on of Traffic on the Street, and No	orth Arrow	
C. Show Existing Number of La	nes in all Directions (with any paveme	ent arrows)	
D. Check the Box(s) that Apply: Lane Closure Street Closures (must provide of	All checked items MUST be shown of Use of Median (etour plan) Use Parking Lane	on the drawing ☐ Sidewalk Closure (must provide pedestrian walk way)	
	widths (curb to curb). lane widths, sidewalk	k widths, and work area dimension formation will not be accepted or processe	ed.)


RENEWAL PROCESS: Resubmit a completed Traffic Control Application with the old approved plan (with the necessary modifications / changes to the plans)

F. Show the Name and Locations of all advanced warning devices, flaggers, delineators, warning and construction signs to be used

FOR HELP in constructing a traffic control plan please refer to the "WATCH" hand book or chapter 5 of the MUTCD manual available online at: http://www.dot.ca.gov/hq/traffops/signtech/signdel/chp5/chap5 htm

For our Website: http://www.oaklandpw.com/transportation/traffic_control_plan.htm

Home

About Us

Departments

Volunteer

Key Services

Transportation Services Division

250 Frank H. Ogawa. Suite 4344, Oakland. CA 94612 (510) 238-3466 Traffic Maintenance: (510) 615-5976

Transportation Home

> Home > Departments > Design and Construction Services Department > Transportation Services Division > Application for Traffic Control Plan

- Application for Traffic Control Plan
- Bicycling
- Guardrail Information
- Residential Permit Parking
- Uptown Traffic Management Plan

Related Information from Public Works:

- ACTIA (Measure B) Projects
- **Bus Shellers**
- Contract Administration
- Engineering
- Incident Reports
- Measure DD
- Standard Details for Public Works Construction
- Street Lights
- Street Maintenance
- Sustainability
- Traffic Signals

Application for Traffic Control Plan

To obtain an encroachment, obstruction, or excavation permit, you are required to submit a completed application form and a traffic control plan.

You are not required to submit an application if all of the following conditions are met:

- 1. The work does not involve obstructing a travel lane or intersection.
- 2. A minimum of five feet six inches is left unobstructed on all sidewalks

If you are only doing work in the parking lane, you do not need to file an application Depending on the nature of work and size of work area, proposed work in the parking lane may require the closure or partial closure of an adjacent travel lane, in which case

an application is required. To application of forund?

The fee for review and approval of a traffic control plan is \$100 per hour. We DO NOT A TO THE TO THE TOTAL THE TOTA accept credit cards, debit cards, or cash. We ONLY accept checks or money orders payable to the "City of Oakland"

You may submit your applications via:

- Fax @: 510-238-7415

• In person @: 250 Frank H Ogawa Plaza Suite 4344, Oakland CA 94612-2033

It takes a minimum of 10 working days to process an application. To the second to The day the application must be picked up, please call ahead of time for confirmation, otherwise applications will not be ready

· Our phone # is (510) 238-3466

Upon approval of your application please proceed to the 2nd floor to obtain your permit.

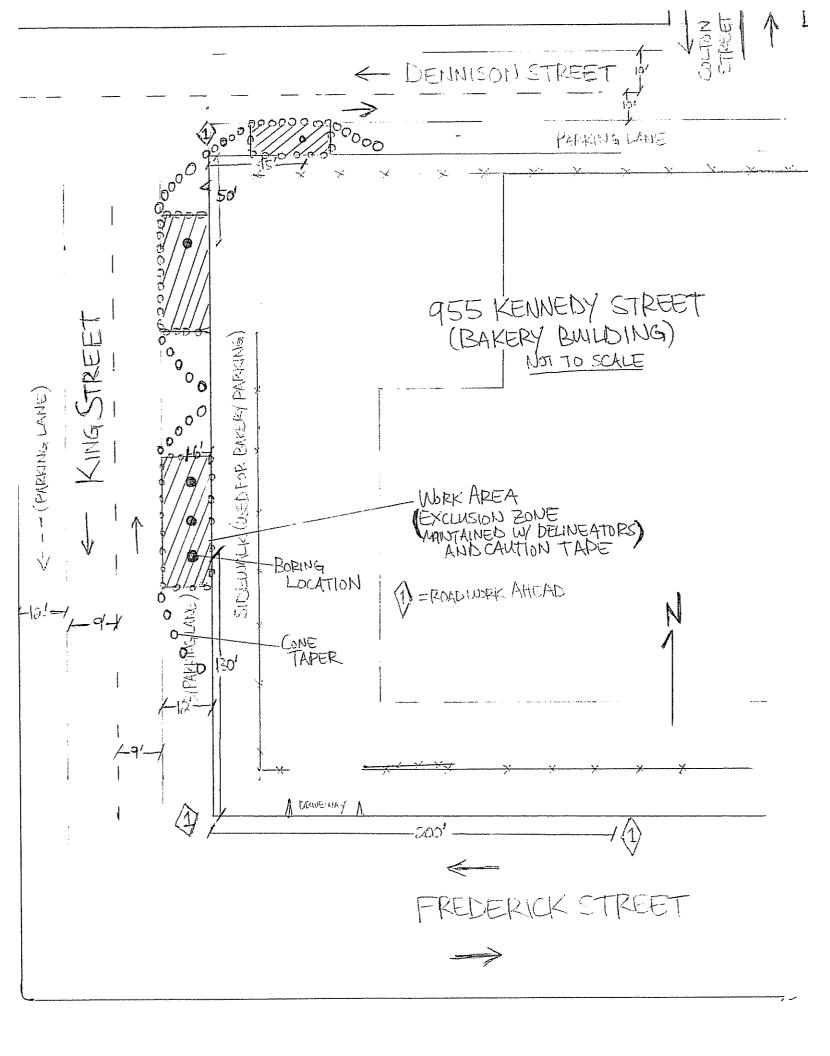
For information in preparing a traffic control plan, refer to the Work Area Traffic Control Handbook (WATCH) or Chapter 5 of the Manual on Uniform Traffic Control (MUTCD) manual which is available at:

http://www.dot.ca.gov/hq/traffops/signtech/signdet/chp5/chap5.htm

- · Application Form (Excel format)
- · Supplemental Information:
 - o Typical Traffic Control Plan Without Detour (pdf format)
 - Typical Traffic Control Plan With Detour (pdf format)
 - Typical Traffic Control Plan for Sidewalk Closures (pdf format)

This page was last updated or reviewed on: Tuesday, November 28, 2006 Copyright © City of Oakland All Rights Reserved

013/13:3/14-come explain in 10de TAT


"an elbag - " raher : "

Vacinity on owler

as like it west fairer

Marin, be wer Kuppyles

Approx (10 nd part or

Appendix C

Boring Logs

Screened Casing

UNIFIED SOIL CLASSIFICATION SYSTEM DESCRIPTIONS AND SYMBOLS USED ON ETIC DRILL LOGS

Igneous

Open

Hole

		CLIENT	SITE	NUMBER	LC	CATION	
ETIC		PSC - Sara Le	e	Oakland		955 Kenned Dakland, C	
Engineering, Inc.		DRILLING AND SAMPLING METHOD	Hand-auge	red to 8 feet bgs with 5-foot long Ma			
LOG OF SOIL BORING:	41	SAMPLING METHOD				1	
COORDINATES:			⊻ 21	y 8.2	***************************************	START	FINISH
ELEVATION TOP OF CASING:		TIME	1140	1150		TIME	TIME
CASING BELOW SURFACE:		DATE	3/28/07	3/28/07		1035	1200
DRILLING COMPANY: Vironex LICENSE NUMBER: 705927		REFERENCE	GS	GS		- DATE 3/28/07	DATE 3/28/07
INCHES	s	GURFACE CONDITIONS		<u> </u>			
DRIVEN RECOVER BLOWS / 6" SAMPLER OVA READING DEPTH (feet) MR SAMPLE ARR SAMPLE SOIL SAMPLE	GRAPHIC LOG			Asphalt	Re	naired by	<u>};</u>
BLOW SAMP SAMP OVA READ OPT (feet)		DESCRIPTION BY:		T. lob		77 U	<u> </u>
2-	ASPHALT	3" Asphalt)
6 6 10		SILTY CLAY, black (5Y					
24 24 - 9 9		Color change to mottled (10YR 3/4), little fine sar	very dark gr nd	ay (10YR 3/1) :	and dark ye	llowish brown	
60 60 - 11- 12- 12-		Change to no fine sand,					
13-11-11-11-11-11-11-11-11-11-11-11-11-1		Change to moist					
60 60 - 16-		Change to dry					
17- 17- 17-							
60 60 - 16 - 17 - 18 - 19 - 0 1 20 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1		Same as above					

Secretary of		A							CLIENT		SITE NUMBER	LOCATION	
	eering	COLUMN TO SERVICE SERV							PSC - Sara Lee	9	Oakland	955 Kennedy Stree Oakland, CA 94606	
INCH						ا ا		***************************************	LOG OF SOIL BORI	NG:			
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAMPLE	SOIL SAMPLE	RECOVERED	GRAPHIC LOG			E41		
60	60								SILTY CLAY, very dark grayish brown (2.5Y 3/2), soft, low plasticity, some fine to				
		-		<u> </u>				medium sand, moist Change to firm, wet					
				22									
				23-									
				2.0					SILT W/ GRAVEL, mottled very dark gray (10YR 3/1) and dark yellowish brown (10YR 3/4), medium stiff, some subrounded gravel to 0 5" diameter, moist				
				24					Increase in gravel frequency. little fine to medium sand				
	~*····································		0 1	25	$\ \cdot \ $	X	•	sw <u>:</u>	GRAVELLY SAND, dark grayish brown (2.5Y 4/2), loose, fine to medium sand, subrounded gravel to 0.5" diameter, little silt, wet Boring terminated at 25 feet. Boring filled and sealed with grout consisting of neat cement				
				26									
						-							
				27									
				28									
	~~~~			29	-		_						
							-						
				30									
				31-									
				32									
							-						
			***************************************	33									
				34			-						
			****	35									
	***************************************		······································	36	1								
				37—	$\left\{  \right $								
				38									
	<u> </u>			39									
				40									
				41-			]						
						***************************************							
				42-									
				43-			_						
				44									
1		1		1		ΙĹ	J						

	ga magaa								CLIENT		SITE	NUMBER	LC	OCATION	
		C							PSC - Sara Le	е		Oakland		955 Kenne	
	neering								DRILLING AND SAMPLING METHOD	Har S Ger	nd-auger oprobe v	red to 4 feet bgs with 5-foot long N	Direct push 6	Dakland, C 6610 Limited Acc ar Acetate Liner	cess
LOG	OF SC	IL BOI	RING:			4	2		OWNER FIND ME LEON			2 .voc long IV			-
COO	RDINA	TEQ.							WATER LEVEL	<b>⊽</b> 2	24	<b>▼</b> 12.66			
		TOP	OF CA	SING:	:				TIME	15	520	1530		START TIME	FINISH TIME
	****	LOW							DATE	3/2	9/07	3/29/07		1500 - DATE	1545 DATE
		OMPA UMBE							REFERENCE	G	3S	GS		3/29/07	3/29/07
INC	HES	ئ ۋ	,n		PLE	E .		SU	RFACE CONDITIONS						
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	E.	A SAL	SAMPLI IVERED	GRAPHIC LOG					Concrete	Re	weigh pr	<u> </u>
BO	REG	BLO	SA SA	DEPTH (feet)	WATE	RECC	GR7	DE	SCRIPTION BY:			T. lob		3/1/0	
				0		CC	ONCRE	E8	" Concrete					`	
<u></u>				1-				s	ILTY CLAY, black (5Y	2 5/1)	, mediu	ım stiff, low pl	asticity, dry		
				2											
				3											
	<u> </u>			4		_									
				5											
60	60		0.2	***************************************		Χ									
		-		6-					olor change to mottled 10YR 3/4)	very o	dark gra	ay (10YR 3/1)	and dark ye	llowish brown	1
				7—											
			***************************************	8											
				9											
				10		X									
60	60	-	01				CL								
		-		11											
				12 <b>-</b>					'alor abanga ta vega de	elc ===	, (4n\/r	) (14) Allahi -	Marian III.	denourban and	or
				13-	***************************************			U	Color change to very da	ik graj	y ( IUY I	vorij, siignt p	euoæum ny	arocarbon od	GI .
			***************************************	14				С	Color change to mottled	very (	dark gra	ay (10YR 3/1)	and dark ye	llowish brown	1
<u>;</u>				15-	***************************************	X		(*	10YR 3/4), no odor	*	-	,			
60	60	_	0.1	16-				С	Color change to very da	rk bro	wn (10՝	YR 2/2). firm			
								c	Color change to mottled	very (			and dark ye	ellowish brown	1
3				17—				(	10YR 3/4). medium stif	Ť					
60				18											
1			0.0	19											
5			0.6	20		X									

piller programme							CLIENT	SITE NUMBER	LOCATION
	neering	g, Inc.					PSC - Sara Lee	Oakland	955 Kennedy Street Oakland, CA 94606
<del></del>	HES	T			L	<u> </u>	LOG OF SOIL BORING	•	
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	WATER SAMPLE	GRAPHIC LOG	EGG OF GOIL BORING.	E42	
60	60			21			SILTY CLAY, same as above	with color change to very c	lark brown (10YR 2/2)
				22		CL	Color change to mottled very (10YR 3/4)	dark gray (10YR 3/1) and d	ark yellowish brown
	and the state of t			23-					
	***************************************			∇ 24-			Change to soft, wet		
		<u> </u>	0.1	25			Boring terminated at 25 feet cement	Boring filled and sealed will	th grout consisting of neat
				26					
				27					
				28					
				29-					
				30-					
				32-	***************************************				
				33-					
		ļ		34—					
				35					
				36					
				37—		H			
				- 38					
				- 39					
				40					
	<u> </u>		•	41-		H			
				42					
				43-					
				44-			Transcential and the second se		
				45-					Dago 2 of

81.54			*****				************	CLIENT		SITE	NUMBER	L	OCATION	
								PSC - Sara Le	e		Oakland		955 Kenne Oakland, C	
Engir	neering OF SC	g, Înc.	RING:		E	4	3	DRILLING AND SAMPLING METHOD	Han S Geo	d-auger probe v	red to 4 feet bgs with 5-foot long N	Direct push ( Macro Core Cle	5610 Limited Accept Acc	eess s
000	RDINA	TEC.						WATER LEVEL	ӯ 2	4	<b>▼</b> 19.0			
I	ATION		OF CA	ASING	i:			TIME	14	35	1445		START TIME	FINISH TIME
ļ	NG BE							DATE	3/29	9/07	3/29/07		1415	1510
I	LING ( NSE N				K			REFERENCE	G	S	GS		3/29/07	DATE 3/29/07
<b> </b>	HES	l			PIE	<u> </u>	,,	SURFACE CONDITIONS				I		<u> </u>
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	SAMPLE TER SAM	OVERE	GRAPHIC LOG	DESCRIPTION BY:			Concrete	Re	uned by	<b>)</b>
<u> </u>	<u>₩</u>	SA	8분		MAT	SO	53				T. lob		71/0	4
				0		CC	ONCRET	E8" Concrete						
				1				SILTY CLAY, black (10	YR 2/1)	, medi	ium stiff, low p	olasticity, dry	′	
				2	***	-								
				3										
				4	***************************************									
						-								
60	60		0.1	5		X								
		-		6	***************************************									
		-		7				Color change to mottled YR 3/4)	ı very d	ark gra	ay (10YR 3/1)	and dark ye	ellowish brown	(10
				8-										
				9										
***************************************				10		X								
60	60	-	0.1	10			CL							
		-		11										
		-		12-				Calcium deposits 12 to	12 5 fe	et				
ļ				13										
	ļ			14-										
				15		X.		Change to moist						
60	60		0.1	10-				Change to dry						
3		-		16										
[		-		17—										
				18		1967								
3 				¥ 19—		4								
LUG UF 301t BURNING 34-04h BLOFY ETIL-GOU			0.1	20		X								
ــــاد					Ш		<u> </u>							

	THE	A						CLIENT	SITE NUMBER	LOCATION
Engin	eering	G, Inc.						PSC - Sara Lee	Oakland	955 Kennedy Stree Oakland, CA 9460
INC		رة ما			ä			LOG OF SOIL BORIN		
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEРТН (feet)	AIR SAMPLE WATER SAM	SOIL SAMPLE RECOVERED	GRAPHIC LOG		E43	
60	60	*		21~~~				SILTY CLAY, same as abo	ove with color change to very	dark brown (10YR 2/2)
		-		22-				Color change to mottled ve YR 3/4)	ery dark gray (10YR 3/1) and	dark yellowish brown (10
				23						
			—0.1—	[▼] 24 25		X	sw:		reenish gray (10YR 4/1), loos ded gravel to 0.5" diameter. et Boring filled and sealed w	
				26	:			cement.	ec bornig illeo ano sealeo w	nin grout consisting of neat
				27						
			***************************************	28	***					
				29 30						
				31						
				32						
			***************************************	33—						
				34— 35—						
				36—						
***************************************				37						
				38						
				39— 40—						
	***************************************			41						
			***************************************	42						
				43						
			***************************************	44— 45—						

- Artista									CLIENT		SITE	NUMBER	LC	OCATION	**************************************
									PSC - Sara Le	е		Oakland		955 Kenne	
	neering								DRILLING AND SAMPLING METHOD		Ind-auger	ed to 8 feet bgs with 5-foot long M	Direct push 6	Oakland, C 3610 Limited Acc par Acetate Liner	ess
LOG	OF SC	IL BOI	RING:			=4	4		SAMPLING METHOD	3 0	20p1050 V	an o look long w	1000 0010 010	ar modulo amor	•
COO	RDINA	TEQ.							WATER LEVEL	Ā	23	<b>▼</b> 18.3	***************************************		***************************************
	ATION		OF CA	ASING	<b>3</b> :				TIME	0	950	1000		START TIME	FINISH TIME
CASI	NG BE	LOW :	SURF	ACE:					DATE	03/	28/07	03/28/07	······································	0830	1030
ı	LING C NSE N				X			-	REFERENCE	(	GS	GS		3/28/07	DATE 3/28/07
<b> </b>	HES	[		1321	l lu			SU	RFACE CONDITIONS						L
l New	RECOVER	BLOWS / 6" SAMPLER	OVA READING	I I	ALIPLE R SALIPI	AMPLE	GRAPHIC LOG					Asphalt	R	basine	لي:
DRIVEN	REC	BLO	OVA	DEPTH (feet)	AIR SAI	SOIL	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DE	SCRIPTION BY:			T. lob	-	27 N	w
			·····	0			ASPHAL	_  .⊤ ʒˈ	" Asphalt	4. 6.	510	ata ata da a a cara de de	7 51/5 0/01	,	$\mathcal{L}$
				1			P.GM		ILTŸ GRAVEL (aggreg ravel to 1" diameter, dr		ase IIII).	, dark brown (	7 DIK 3/3), i	ioose, anguia	Г
				2			-90	,	II TV OLAV, blant, (EV	0 54	بالمسسد ١				
				,				,	ILTY CLAY, black (5Y	Z. 0/ 1	), meaic	ım sun, low pı	asucity, dry		
				3											
***************************************				4	***************************************										
				5		X									
6	6		8.2	6			-/////								
				7											
				,											
24	24			8			CL		hange to mottled very tile fine sand	dark	gray (10	YR 3/1) and c	dark yellowis	sh brown (10Y	R 3/4).
		-		9	$\left\{ \left[ \right] \right\}$										
		-		10-	$\left  \cdot \right $	$\vee$									
60	60	_	14	11											
		-							hange to moist, calcium	n dep	oosits				
				12											
				13											
<u> </u>	<u></u>		*************	14				C	LAYEY SILT, mottled	very o	lark gra	y (10YR 3/1) a	and dark yel	lowish brown	(10YR
3				15			ML	3	/4), soft, very low plast	city.	ittle sub	angular grave	el to 0 75" dia	ameter, moist	to wet
48 2	48		0.2			Ă									
2.0				16-					ILTY CLAY, mottled ve /4). stiff. little fine sand				nd dark yello	wish brown (1	0YR
				17											
2				<u>¥</u> 18—											
] ] ]				19		***************************************		,	olor change to very da	rk ors	ıvish hr	own (2.5Y 3/2)	) medium et	iff	
106 OF 501L BORNING SI-OAK BLIGHT BUILDING OF 501L B	60	-		20	***************************************				and the second section of the second section of the second section sec	ყ. c	. ,	···· (£ 0 ° 0/2)	,		
ゴ <u>ー</u>	<u> </u>	L	<u> </u>												

5, 15151 S								CLIENT	SITE NUMBER	LOCATION
	neering							PSC - Sara Lee	Oakland	955 Kennedy Street Oakland, CA 94606
INC	HES	 			T T			LOG OF SOIL BORING		
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SALIPLE WATER SALIPL	SOIL SAMPLE	GRAPHIC LOG		E44	
		-				X				
		-	27	21				SILTY CLAY, same as above	e with color change to mottle	id very dark gray (10VR
			21					3/1) and dark yellowish brow	n (10YR 3/4)	a very dank gray (10 : K
			***************************************	22						
				∑ ₂₃				Change to soft SILTY SAND, mottled (10YR	2 3/1) and (10VD 3/4), modiu	m danca fina cand wat
						$\nabla$	SM ZZCLZZ SW:	SILTY CLAY, same as above	e. stiff	
			—2 4—	24-			- SW:	GRAVELLY SAND, dark gra- subrounded sand, subrounded	yish brown (2.5Y 4/2), loose,	fine to coarse
				25				Boring terminated at 24 feet neat cement.	Boring filled and sealed wit	h a grout consisting of
								neat coment.		
				26		-				
				27						
				2.,		-				
			*******	28						
	-			20		-				
				29						
				30		-				
						-				
				31-						
				32-		-				
						-				
				33	1		,			
				34						
	A									
				35-	1	-				
				36			]			
	**************************************					-	-			
				37-	1	-				
				38-						
	***************************************									
*******				39-	$\left\{ \right\}$	-				
				40			1			
				40-						
				41-		-				
						-	1			
				42			]			
				43-		-				
						-				
				44						
				45			]			

LOCATION CLIENT SITE NUMBER PSC - Sara Lee Oakland 955 Kennedy Street Oakland, CA 94606 Hand-augered to 8 feet bgs. Direct push 6610 Limited Access Geoprobe with 5-foot long Macro Core Clear Acetate Liners DRILLING AND SAMPLING METHODS E45 LOG OF SOIL BORING: WATER LEVEL \[
\textstyle
\textst 24 **y** 19.9 COORDINATES: START FINISH **ELEVATION TOP OF CASING:** TIME 1035 1045 TIME TIME CASING BELOW SURFACE: 0945 1115 DATE 3/29/07 03/29/07 DATE DATE DRILLING COMPANY: Vironex REFERENCE GS GS 3/29/07 3/29/07 LICENSE NUMBER: 705927 SURFACE CONDITIONS INCHES BLOWS / 6" SAMPLER RECOVER OVA READING GRAPHIC LOG Asphalt DRIVEN DEPTH (feet) DESCRIPTION BY: T. lob 0-ASPHALT 3" Asphalt GM. SILTY GRAVEL (aggregate base fill), dark brown (7.5YR 3/3), loose. angular gravel to 1" diameter, dry SILTY CLAY, black (10YR 2/1), firm to medium stiff, low plasticity, dry 1-2-3~ 0.15-6-8-Color change to mottled very dark gray (10YR 3/1) and dark yellowish brown 24 24 (10YR 3/4) SM SILTY SAND W/ TRACE CLAY, mottled (10YR 3/1) and (10YR 3/4), loose, fine to 9medium sand, wet -SILTY CLAY, dark greenish gray (GLEY 5GY 3/1), soft, low plasticity. slight 10petroleum hydrocarbon odor, moist 60 60 0.9 Change to firm 11-Same as above w/ little coarse subrounded sand 12-SILTY CLAY, mottled very dark gray (10YR 3/1) and dark yellowish brown (10YR 3/4), medium stiff, low plasticity, dry 13-5/11/07 14-ETIC.GDT 0.1 15-60 60 SL-OAK BL.GPJ 16-17 BORING 18-SOIL 19-04 LOGOF 20

Æ			***************************************	*************				CLIENT	SITE NUMBER	LOCATION
Engir	neerin	g, Inc.						PSC - Sara Lee	Oakland	955 Kennedy Street Oakland, CA 94606
	RECOVER S	BLOWS / 6" SAMPLER	OVA READING	 	APLE	SOIL SAMPLE	GRAPHIC LOG	LOG OF SOIL BORING	E45	
DRIVEN	SH C	BLO	REA	DEPTH (feet)	AIR S	SOILS	GRA LOG			
60	60									
				21-				SILTY CLAY, same as abo	ve	
		<u> </u>		22						
				23	-		CL			
	<u> </u>			[▼] 24-						
			0.9			X		Change to wet		
36	36		·······	25-	1					
		-		26-	$\left\{ \left. \right  \right.$			CLAYEY SAND, dark yello	wish brown (10YR 3/6)	loose, fine to coarse sand
		-		27	$\left  \ \right $		//SC//	1 moist		
			-0 1-	28		X	sm LLL			ose, fine to medium sand, little
		<u> </u>					_	neat cement.	i. Boring illed and seal	led with a grout consisting of
				- 29						
				30-	1					
				31	$\left  \cdot \right $					
				32						
	rerethantethreretanteth									
				- 33						
				34-	1					
				35	-					
				36						
	***************************************						_			
				37						
				38	1					
				39-	$\left  \cdot \right $		-			
	-			40-						
	***************************************	***************************************								
				41-						
				42	1					
	1			43-	$\left  \cdot \right $		_			
				44						
							_			
	1	1	1	45	11					Page 2 d

Affice the second									CLIENT		SITE	NUMBER	LC	CATION	
			i						PSC - Sara Le	е		Oakland		955 Kenne	
	neering								DRILLING AND	Ha	and-auge	red to 8 feet bgs	Direct push 6	Dakland, C. 610 Limited Acc	ess
	OF SC		DINIC:		F	= 4	6		SAMPLING METHOD		eoprobe v	vith 5-foot long N	Macro Core Cle	ar Acetate Liner	5
LOG	OF SC	AL DO	KING.		<b>i</b> .	1	rO	-				T		<b>I</b>	
coo	RDINA	TES:						-	WATER LEVEL	Δ	23	▼ DRY		START	FINISH
1	/ATIO				}:				TIME	1	140			TIME	TIME
	NG BE				*********		***************************************		DATE	3/2	29/07			1115	1200
	LING ( NSE N				Х				REFERENCE	(	GS			3/29/07	DATE 3/29/07
	HES				u			su	RFACE CONDITIONS			J			<u> </u>
	RECOVER	BLOWS / 6" SAMPLER	OVA READING	I I	N. PLE	AMPLE	GRAPHIC LOG					Asphalt	Re	merical b	),·
DRIVEN	FE	BLO	NEA REA	DEPTH (feet)	AIRS	SOILS	A P P P P P P P P P P P P P P P P P P P	DE	SCRIPTION BY:			T. lob			\\
				0		-			" Asphalt					_	0
				1			GM .	gr	ILTY GRAVEL (aggreg ravel to 1" diameter, dr	V				-	•
					***************************************	-		5	ILTY CLAY, black (10)	'K ZI	ı). mea	ium stiπ, iow p	Diasticity, dry		
				2	ļ										
				3	***************************************										
	ļ			4											
			Annual Property Control of the Contr	5-		-									
6	6		0.1	] 5-		X									
***************************************				6		-									
				7											
				8											
24	24		And the second		***************************************			S	ILTY CLAY, mottled da rown (10YR 3/6), soft, l	irk gr ow pl	eenish ( lasticity:	gray (GLEY 50 slightly moist	GY 3/1) and	dark yellowish	1
		-		9				C	olor change to dark gre ydrocarbon odor	enisl	h gray (	GLEY 5GY 3/	1). strong pe	troleum	
······································		-	-10 9-	10		X		1	hange to firm						
60	60	-		11					J						
			***************************************	, ,	***************************************	$\nabla$		С	hange to medium stiff						
			-30 7	12-	-										
***************************************			-	13-		1		C	hange to no odor						
10/07				14		77 - 68%									
SDT S			***************************************			$\nabla$									
60 ETIC.	60		0.1	15-											
	1	-		16											
AK B		~		17											
) IS 0			***************************************			4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -									
30Kin	<b> </b>			18											
LOG OF SOIL BORING SL-OAK BL.GPJ ETIC.GDT 5/10/07				19	***************************************	5									
0.00 	<u> </u>		0.8	20-		X									
ـــــــــــــــــــــــــــــــــــــ	1	L	1	Į	ــــــــــــــــــــــــــــــــــــــ			L							

		A						CLIENT		SITE NUMBER	LOCATION
	neering							PSC - Sara Lee	•	Oakland	955 Kennedy Stree Oakland, CA 94606
INC	HES	6" ?			u	1		LOG OF SOIL BORI	NG:		
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	MATER SAMPLE	SOIL SAMPLI RECOVERED	GRAPHIC LOG			E46	
60	60							CLAV dark graviah brav	(10	NO 4/2) modium stiff love	alaatistu allahtu, malat
		-		21	1			CLAT. dark grayish blow	11 (10	YR 4/2), medium stiff. low	plasticity, slightly moist
		-		22							
				24.							
				[▼] 23				SILTY CLAY/CLAYEY S	ILT, r	mottled grayish brown (10Y	R 5/2) and dark yellowish
				24				brown (10YR 3/6), soft to	firm,	, low plasticity, wet	•
				2-4			ML/CL				
	 		0 1	25	$\left\{ \right\}$	A		OLAY design		Maria Array - Co.	-11-1-11
36	36	-		26				1		YR 4/2), soft, low plasticity gravish brown (10YR 4/2)	
		<del>-</del>		20			//sc/	(10YR 3/6). medium den	se, fir	grayish brown (10YR 4/2) a ne to coarse sand. wet	and dark youthout brown
		-		27			444	SANDY SILT, mottled da	rk gra	ayish brown (10YR 4/2) and et	d dark yellowish brown
			2.2	28		X	ML.				
			ha ha	20				Boring terminated at 28 f neat cement.	eet	Boring filled and sealed wit	h a grout consisting of
				29			_				
				30			]				
				30····							
······································				31		-	-				
				32—			1				
			·	32-			]				
				33		-	1				
				34							
				34							
······				35		-	1				
				ാറ							
				36							
			:	37		-					
				38							
				36							
				39		-					
				40							
				40							
····				41		-					
				47		-	]				
				42							
				43		1	<b>V</b>				
				4.4			***************************************				
				44							
			···	45		-					

67	toputi				·			CLIENT	SITE	NUMBER	LC	CATION	
								PSC - Sara Le	e	Oakland		955 Kenne Dakland, C	
	neering							DRILLING AND SAMPLING METHOD		red to 3 feet bgs. with 5-foot long M	Direct push 6	610 Limited Acc	cess
LOG	OF SC	IL BOI	RING:			=4	7		·			***************************************	
coo	RDINA	TES:						WATER LEVEL	▽ 13.25	<b>▼</b> 9.66			
ELEV	/ATION	N TOP			3:			TIME	1520	1532		START TIME	FINISH TIME
	NG BE			·				DATE	03/28/07	03/28/07		1500 DATE	1545 DATE
	LING ( NSE N				Х			REFERENCE	GS	GS		3/28/07	3/28/07
1	HES I AS	.p. K.	(1)			D E E	O	SURFACE CONDITIONS		Concrete		- 0.	
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	SAMPLI	IL SALIP	GRAPHIC LOG	DESCRIPTION BY:		***************************************	<u> </u>	world b	$\tilde{\lambda}_{i}$
<u> </u>	<u> </u>	± 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10	Ó₩	93.9	AIR	SOL				T. lob	-		
							تات	TE7" Concrete GRAVEL (pea gravel fill	), gray (5Y 6	'1), loose, rour	nded gravel l	to 0 5" diame	ter. dry
				1				,			-		·
	<del> </del>			2	1		o (GP	g					
24	24			3	$\left  \cdot \right $								
24	24	-		4	$\left\{  \right $		2////	CLAYEY SAND. very da	ark grayish bi	own (2.5Y 3/2	), medium d	ense, mediun	n to
		-		5	$\Big   \Big $	X		coarse sand, dry					
60	60	_	0.1	6									
				7			//sc/						
				8									
				9 <b>Y</b>				SILTY CLAY, very dark medium to coarse sand	grayish brow	n (10YR 3/2),	firm, very lov	w plasticity, lit	ttle
			0.1	10	$\left\  \cdot \right\ $	X		medium to coarse sand	. slightly mois	st			
60		-	0.1	11	$\left  \cdot \right $								
		-		12									
	33			_{C7} 13-				CLAY, very dark grayisł	n brown (10Y	R 3/2), firm. lo	w plasticity.	moist	
				-¥-		00,000	(1/1////	SAND. very dark gray (	5Y 3/1). loose	e, fine to mediu	ım sand, we	t	
			***************************************	14		V	SP						
			0.1	15	-			Boring terminated at 15 neat cement	feet. Boring	filled and seal	ed with a gro	out consisting	of
				16			]						
				17		-							
				18									
				19									
	1			20-			1						

6.85									CLIENT		SITE	NUMBER	L	OCATION	
								***************************************	PSC - Sara Le	е		Oakland		955 Kenne	
Engin	eering OF SO	g, Inc.				E4	8		DRILLING AND SAMPLING METHOD		d-auger oprobe v	ed to 4 feet bgs vith 5-foot long N	Direct push	Oakland, C 6610 Limited Acc ear Acetate Liner	cess
COO	RDINA	TEC						_	WATER LEVEL	<u>v</u> 2:	35	<b>▼</b> 14.0			
	'ATION		OF CA	ASING	3:			-	TIME	13	35	1345		STARTTIME	FINISH TIME
	NG BE								DATE	03/2	28/07	03/28/07		1315	1415
	LING C NSE N				X				REFERENCE	G	S	GS		- DATE 3/28/07	DATE 3/28/07
INCI	HES	BLOWS / 6" SAMPLER	<u> </u>		PLE	SAMPLE MPLE ERED	D H	SUF	RFACE CONDITIONS			Concrete	R.	eveired !	`` ````
DRIVEN	RECOVER	BLOW	OVA READING	DEPTH (feet)	AIR SA	SOIL SP RECOVI	GRAPHIC LOG	DES	SCRIPTION BY:			T. lob		N EL	علاقه
60	6-60		-0.1-	0			ONCRET	SII Cc 3/4	Concrete  LTY CLAY, black (5Y  blor change to mottled 4)  LTY SAND W/ GRAVI	dark (	gray (10	OYR 4/1) and	dark yellowi	se, fine to coal	
60	60	-	12	9— 10— 11— 12—		X	ML	CL	LTY CLAY, greenish betroleum hydrocarbon o	wn (2	5Y 4/4) 5GY 2:	, soft, moist		•	
60				¥ 14—				CL	AY, very dark brown (	10YR	2/2), h	ard. very low	plasticity. no	o odor, dry	
SE-OAN BLUE	60		03	16 17 18	**************************************	X 12 12 12 12 12 12 12 12 12 12 12 12 12	CL	Cc (10	olor change to mottled 0YR 3/4)	very c	lark bro	own (10YR 2/;	2) and dark	yellowish brow	⁄n
LOG OF SOIL BORING		***************************************	0.1	19 20	**************************************	X									

E	7	A	l					CLIENT		SITE NUMBER	LOCATION
	neering							PSC - Sara Le	e	Oakland	955 Kennedy Street Oakland, CA 94606
INC	HES	50 m	·n			ш		LOG OF SOIL BOR	ING:		
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAMPLE WATER SAMPLE	SOIL SAMPLE RECOVERED	GRAPHIC LOG			E48	
60	60	-		21			CL	SILTY CLAY, very dark	brown	(10YR 2/2), soft. low plasti	icity, slightly moist
		-		22			ML	CLAYEY SILT, very dar	k gray	ish brown (10YR 3/2). soft,	low plasticity, moist
				23—			∴sw:::	GRAVELLY SAND W/I	LITTLE ded gra	E CLAY, very dark grayish bavel to 0.75" diameter, mois rown (2.5Y 4/2), hard, low p	prown (2.5Y 4/2), loose, st
			-0.4-	25		X				rown (2.5Y 4/2), hard, low p Boring filled and sealed with	
				26-							
				27 28							
••••				29							
				30							
				31							
				33		_					
				34							
				35 36							
				37							
				38 39							
				40							
				41							
***************************************	***************************************			42— 43—							
······································				44							
			<b></b>	45							

							CLIENT SITE NUMBER LOCATION						
	IC	Į.					PSC - Sara Lee Oakland 955 Kennedy St						
Engineer	ing, Inc.						DRILLING AND Hand-augered to 4 feet bgs Direct push 6610 Limited Access SAMPI ING METHODS Geoprobe with 5-foot long Macro Core Clear Acetate Liners	-000					
LOG OF	SOIL BO	RING:		ľ	=4	<b>19</b>	SAMPLING METHODS Geoprobe with 5-foot long Macro Core Clear Acetate Liners						
							WATER LEVEL ☑ DRY						
COORDI		OF CA	ASINIC	١.			START FIN	VISH -					
CASING				٠,			1240	= 325					
DRILLING	S COMP	ANY: V	'irone:	Χ	••••••		DATE DATE DATE						
LICENSE	NUMBE	R: 705	927	Т	7.7	1		9/07					
INCHES	3 / 6" ER	9 NG		J.E.	PLE	를 일	Asphalt Revoiced by;						
DRIVEN	BLOWS / 6" SAMPLER	OVA READING DEPTH (feet) AR SAMPLE WATER SAMP SOIL SAMPLE RECOVERED GRAPHIC				RAPI OG	DESCRIPTION BY:  T. lob	,					
	800	Оц. ———	0-	45	T			<u></u>					
***************************************	*************************	**************************************		***************************************		ASPHAL GM							
			1—			-/////	SILTY CLAY, black (10YR 2/1), medium stiff, low plasticity, dry						
			2—	-									
			3	-	1	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>							
			4										
		***************************************	5										
6 6		1.3	J		X								
48 48	,		6				Color change to mottled very dark grayish brown (10YR 3/2) and dark yellowish brown (10YR 3/6)						
	-		7										
	-		8				Color change to dark greenish gray (GLEY 5Y 3/1, slight petroleum hydrocarbon						
		0.4	9—		X		odor						
A A STEEL AND A ST		_			$\nabla$								
60 60	,	8 0	10-				Color change to mottled very dark grayish brown (10YR 3/2) and dark yellowish						
	-		11				brown (10YR 3/6), no odor						
	-		12-										
			13										
20/03													
55 10			14										
50 60 60	<u> </u>	0.1-	15		Å								
- SO   BO	-		16				Change to very stiff						
DAK BI			17										
S S L-(													
BORIN			18										
LOG OF SOIL BORING SL-OAK BL.GPJ ETIC.GDT 5/10/07			19	-									
0 90		0.1	20	$\  \ $	X								

E		IA						CLIENT		SITE NUMBER	LOCATION
		C g, Inc.						PSC - Sara Lee		Oakland	955 Kennedy Stree Oakland, CA 94606
INC	HES · œ	6"	40		4 10			LOG OF SOIL BORIN	VG:		
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAMPLE WATER SAM	SOIL SAMPL RECOVERED	GRAPHIC LOG			E49	
60	60	-		21			CL	CLAY, dark grayish browr	า (10)	YR 4/2), stiff, low plasticity.	dry
		-		22—			CL-ML	CLAYEY SILT/ SILTY CL slightly moist	AY, o	olive brown (2 5Y 4/3), very	soft. low plasticity.
				23				dark vellowish brown (10)	/R 3/6	0, mottled very dark grayisl 6), soft, low plasticity, fine Inded gravel to 0 5" diame	to coarse grained
				24—		X	CL	Change to firm			
36	36		0.1	25				CLAYEY SILT/ SILTY CL	AY, o	ilive brown (2.5Y 4/3). soft.	low plasticity, slightly
		-		26			AAAAAAA CL-ML AAAAAAA	moist			
				27		V	CL	dark yellowish brown (10)	SAND /R 3/6	), mottled very dark grayist 6), soft, low plasticity, fine	n brown (10YR 3/2) and to coarse grained
			<del></del> 0 1	28				subrounded sand, dry		Boring filled and sealed with	
				29							
				30			- The state of the				
				31			***************************************				
				32							
				33— 34—							
				35—							
				36							
				37		-					
				38							
				39			]   				
				40	***************************************						
				41							
				42							
				43							
				44							
				45		-					

Г		independing to								CLIENT		SITE	NUMBER	LC	CATION	••••••		
			G	1						PSC - Sara Le	е		Oakland		955 Kenne			
į		eering	_							DRILLING AND		nd-augei	red to 3 feet bgs	Direct push 6	Dakland, C 610 Limited Acc	ess		
	OG (	OF SC	II BOI	RING:		E	Ξ5	0		SAMPLING METHOD	S Ge	oprobe v	vith 5-foot long N	lacro Core Cle	ar Acetate Liner	S		
'		0, 00	'L DO	· · · · · · ·				. •		WATER LEVEL	- n	25	L 05					
		RDINA									<u>.</u> ⊈ 9		<b>y</b> 9.5	*******************************	START	FINISH		
		'ATION NG BE				3:				TIME	14	440	1450		TIME 1430	TIME 1515		
_		_ING (								DATE	3/2	8/07	3/28/07	·*************************************	DATE	DATE		
- 1		NSE N				·				REFERENCE         GS         GS         3/28/07         3/28/0								
	INC		/ 6" ER	U U		រក់ <u>ខ្</u> នុ		a U	SL	IRFACE CONDITIONS  Concrete								
	DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	SAMPL	IL SAME	GRAPHIC LOG		ESCRIPTION BY:								
-	ä	2		Q K.	58	AIR	++	1		T. lob								
			~~~				[	ONCRE	ı tı	Concrete GRAVEL (pea gravel fill), gray (5YR 6/1), loose, rounded gravel to 0.5" diameter,								
r					1					ry), gray	/ (31K)	o/ i), loose, fo	unoeo grave	i to u.s. diami	eter,		
-					2	$\left\{ \left[\right] \right\}$		100	e e									
-			3- J. GP.															
	24	24	_		4				5									
							∇] } c	CLAYEY SAND, very da	rk gra	ayish br	own (10YR 4/	1). loose. me	edium to coar:	se		
F	60			-2.8-	5				s	sand, little subrounded gravel to 0 75" diameter, dry								
-					6		-											
-		42			7	$\left \cdot \right $												
			*****		8		, V.			Increase to some subrounded gravel to 0.75" diameter								
								//sc/) lr	ncrease to some subrou	ınded	gravel	to 0.75" diam	eter				
					▼ 9) 	Change to wet								
-			***************************************	1.1-	10		Ä											
-	60		2		- 11													
_					12-													
										LAY, very dark grayish	brow	n (10Yf	R 3/2), stiff, lo	w plasticity,	slightly moist			
<u>~</u>		30			- 13				9	SAND. very dark gray (5								
5/11/				<u> </u>	14			SP										
7C,GD1				-2.5	15		X		l e	foring terminated at 15	feet	Boring	filled and seal	led with a gr	out consisting	of		
25 E					16			1		eat cement.		J						
K BL.			·····															
SL-OA					17													
- RING					18													
LOG OF SOIL BORING SL-OAK BL.GPJ ETIC.GDT 5/11/07			19-															
00 P					20													
۲L				L		Ш		1	J									

								I	CLIENT	***************************************	SITE	NUMBER	TLC	CATION	
		C	•					ļ	PSC - Sara Le	е		Oakland		955 Kenne	
Engir	neering	g, Inc.							DRILLING AND	Ha	nd-augei	ed to 5 feet bgs	Direct push 6	Dakland, C 610 Limited Acc	cess
~		_	DINIO:			5	1		SAMPLING METHOD		oprobe v	ith 5-foot long M	lacro Core Clea	ar Acetate Liner	s
LOG	Ur SC	IL BOI	KING:		ă	_ U	7 1							1	
coo	RDINA	TES:							WATER LEVEL	및 1	4.5	▼ 14.3		START	FINISH
1		1 TOP			:				TIME	1€	315	1622		TIME	TIME
		LOW			***************************************	*********			DATE	3/2	8/07	3/28/07		1550	1640
		COMP/ UMBE			(REFERENCE	(3S	GS		3/28/07	DATE 3/28/07
	HES		17. 700	521	щ	П		SU	IRFACE CONDITIONS			L	***************************************		
<u>a</u>	RECOVER	BLOWS / 6" SAMPLER	OING	E	AIPLE R SAMPI	AMPLE	呈					Asphalt	Resk	aried Lan	
DRIVEN	REC	BLOV	OVA READING	DEPTH (feet)	AIR SA Water	SOILS	GRAPHIC LOG	DE	SCRIPTION BY:	*********		T. lob	=======================================	NC	ze)
				0-		-] T 4	" Asphalt						\bigcirc
				1					ILTÝ CLAY. black (5YF	R 2.5/	1). med	ium stiff. low	plasticity, dry	1	
				,		-									
				2-											
				3											
						-									
				4		-									
				5		X		d c	color change to mottled	very (dark gra	ayish brown (1	0YR 4/1) an	d dark yellow	rish
60	60	-	0 1	6-) b	rown (10YR 3/4), little f	ine to	mediu	n sand			
		-													
	***************************************			7—											
				8-											
								s	ame as above w/ little :	subro	unded (gravel to 0.5" o	diameter		
				9		$\overline{}$: SW:	s	RAVELLY SAND, very and, subrounded grave	l to 0.	5" diam	eter, slightly r	noist		
				10-		A,		S	ILTY CLAY, greenish b	lack (GLEY	10Y 2 5/1). me	edium stiff, lo	ow plasticity.	dry
60	60		02	11-					color change to mottled rown (10YR 3/4)	very	dark gra	ayish brown (1	0YR 4/1) an	d dark yellow	ish
		-													
				12-											
				13-				<u> </u>	color change to dark gre	enich	i dtav (i	GLEY 10Y 3/1). little medii	ım to coarse	sand
									shange to don't gre		. a. a. (A HEAD HEAD	0 000136	Lund
	1			¥ 14—					I AVEV OHT	imela -	ropalat	oray (O) EV	10V 2/4) ~~-	Edark valland	ah.
	<u> </u>			15		Ă	ML		LAYEY SILT, mottled of rown (10YR 3/4), soft, i				ioi əri) and	i dark yellowis	311 311
60	60	-	05	16				s	ILTY CLAY, mottled ve	ry da	rk grayi	sh brown (10\	'R 4/1) and (dark yellowish	1
		-				C. C. W. C.		b	rown (10YR 3/4), mediu	ım sti	ff, low p	lasticity. little	fine to medi	um sand. dry	
				17	***************************************										
	ļ			18											
				10					ILTY CLAY/ CLAYEY S	SII T /	19 5-20	l feet) very dr	ark aravieh h	10WD /10VD /	1/1)
			0.0	19				п	nedium stiff. low plastici				an grayisii Di	OWI (TOTIX 4	n 1 <i>j</i> .
<u> </u>	ļ		0.6	20		A.	CL-ML	4	oring terminated at 20	faat	Porina	filled and seal	ad with a ord	nut concietina	nf

neat cement.

	CLIENT	SITE	NUMBER	LOCATION					
ETIC	PSC - Sara Le	e	Oakland	955 Kennedy Street Oakland, CA 94606					
Engineering, Inc.	DRILLING AND SAMPLING METHOD		ed to 4 feet bgs. with 5-foot long N	Direct push 6610 Limited Access Macro Core Clear Acetate Liners					
LOG OF SOIL BORING: E52			,						
COORDINATES:	WATER LEVEL	⊈ 19	▼ 10.25	START FINISH					
ELEVATION TOP OF CASING: CASING BELOW SURFACE:	TIME	1425	1435	TIME TIME 1410 1450					
DRILLING COMPANY: Vironex	DATE	3/28/07	3/28/07	DATE DATE					
ICENSE NUMBER: 705927	REFERENCE								
DRIVEN ZE HECOVER BELOWS / 6" SAMPLER COVA READING DEPTH (feet) AN SAMPLE RECOVERED GRAPHIC LOG HECOVERED LO	SURFACE CONDITIONS	Concrete Revocal by:							
PRIVEN RECOVE SAMPLE OVA READIN DEPTH (feet) AR SAMPL MATER SAM WATER SAM SOIL SAMPL GRAPHII	DESCRIPTION BY:		T. lob	I Red					
0- CONCRET	E8" Concrete								
1- -	SILTY CLAY, black (5Y	2 5/1). mediu	ım stiff, low pl	lasticity, dry					
2-									
3-									
48 42 14	Color change to mottled brown (10YR 3/4)	very dark gra	ayish brown (1	10YR 4/1) and dark yellowish					
- 6-									
7									
8-11	Change to soft, little sub	rounded coar	se sand						
9-11									
60 60 - 10 CL	Change to slightly moist								
1.3									
11-									
3.0	Change to very dark gree hydrocarbon odor	enish gray (G	SLEY 10Y 3/1), no sand, slight petroleum					
13-	Color change to motlled brown (10YR 3/4), no od	very dark gra	ıyish brown (1	10YR 4/1) and dark yellowish					
14-	ыожн (101 K 3/4). 110 00	ບາ. ury							
15-									
60 60 - 26 16									
17-	Change to medium stiff.	slightly mois	ŧ						
18-		<u>.</u>							
▼ 19 NL	CLAYEY SILT. very dark	grayish brov	vn (10YR 3/1)), soft, fow plasticity. wet					
1.3									

Appendix D

Laboratory Analytical Reports and Chain-of-Custody Documentation

Date: 4/6/2007

Paul Anderson Philip Services Corp 210 W Sand Bank Road Columbia, IL 62236

Subject: 61 Soil Samples

Project Name: Sara Lee-Oakland Project Number: 62402797

Dear Mr. Anderson,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 4/6/2007

Subject: 61 Soil Samples
Project Name: Sara Lee-Oakland

Project Number: 62402797

Case Narrative

Hydrocarbons reported as TPH as Diesel do not exhibit a typical Diesel chromatographic pattern for samples E41 5.0', E41 10.0', E41 15.0', E42 5.0', E43 5.0', E43 10.0', E43 15.0', E44 5.0', E45 5.0', E47 5.0', E47 10.0', E48 4.0', E49 5.0', E49 15.0', E50 5.0', E50 10.0', E51 5.0', and E52 5.5',. These hydrocarbons are higher boiling than typical diesel fuel.

Hydrocarbons reported as TPH as Diesel do not exhibit a typical Diesel chromatographic pattern for samples E42 25.0' and E52 10.0'. There are discrete peaks which may or may not be petroleum related.

Approved By:

Jde Kiff

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Date: 4/6/2007

Project Name : Sara Lee-Oakland

Project Number: 62402797

Sample : **E41, 5.0'** Matrix : Soil Lab Number : 55679-01

Sample Date :3/28/2007

Sample Date :3/28/2007		N 1 = 4 = = =			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.0		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	4.5	1.0	mg/Kg	M EPA 8015	4/4/2007
TPH as Motor Oil (Silica Gel)	19	10	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	85.4		% Recovery	M EPA 8015	4/4/2007

Sample : **E41, 10.0'** Matrix : Soil Lab Number : 55679-02

Sample Date :3/28/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.7		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	33	5.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	180	40	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	76.8		% Recovery	M EPA 8015	4/3/2007

Approved By:

del Kiff

Project Number: **62402797**

Sample : **E41, 15.0'** Matrix : Soil Lab Number : 55679-03

Sample Date :3/28/2007

Sample Date :3/28/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.6		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	95.1		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	1.7	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	102		% Recovery	M EPA 8015	4/3/2007

Sample : **E41, 20.0'** Matrix : Soil Lab Number : 55679-04

Sample Date :3/28/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	102 97.8		% Recovery % Recovery	EPA 8260B EPA 8260B	3/31/2007 3/31/2007
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	4/4/2007 4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	82.7		% Recovery	M EPA 8015	4/4/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E41, 25.0'** Matrix : Soil Lab Number : 55679-05

Sample Date :3/28/2007

Sample Date :3/28/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.8		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	100		% Recovery	M EPA 8015	4/3/2007

Sample : **E42, 5.0'** Matrix : Soil Lab Number : 55679-06

Sample Date :3/29/2007

Sample Date :5/29/2007		Method				
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007	
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/30/2007	
4-Bromofluorobenzene (Surr)	93.0		% Recovery	EPA 8260B	3/30/2007	
TPH as Diesel (Silica Gel)	1.6	1.0	mg/Kg	M EPA 8015	4/6/2007	
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/6/2007	
1-Chlorooctadecane (Silica Gel Surr)	78.8		% Recovery	M EPA 8015	4/6/2007	

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Report Number: 55679

Project Number: 62402797

Sample : **E42, 10.0'** Matrix : Soil Lab Number : 55679-07

Sample Date :3/29/2007

Sample Date :3/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	96.7		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	17	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	15	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	92.1		% Recovery	M EPA 8015	4/3/2007

Sample : **E42, 15.0'** Matrix : Soil Lab Number : 55679-08

Sample Date :3/29/2007

Sample Date :5/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	93.4		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	1.3	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	87.1		% Recovery	M EPA 8015	4/3/2007

Approved By:

Report Number: 55679

Date: 4/6/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: 62402797

Sample : **E42, 20.0'** Matrix : Soil Lab Number : 55679-09

Sample Date :3/29/2007

Sample Date :3/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	93.7		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/4/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	81.0		% Recovery	M EPA 8015	4/4/2007

Sample : **E42, 25.0'** Matrix : Soil Lab Number : 55679-10

Sample Date :3/29/2007

Sample Date :5/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	91.3		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	1.2	1.0	mg/Kg	M EPA 8015	4/5/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/5/2007
1-Chlorooctadecane (Silica Gel Surr)	85.9		% Recovery	M EPA 8015	4/5/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Date: 4/6/2007

Project Name : Sara Lee-Oakland

Project Number: 62402797

Sample : **E43, 5.0'** Matrix : Soil Lab Number : 55679-11

Sample Date :3/29/2007

Sample Date :3/29/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.9		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	93.4		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	8.8	2.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	29	20	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	77.3		% Recovery	M EPA 8015	4/3/2007

Sample : **E43, 10.0'** Matrix : Soil Lab Number : 55679-12

Sample Date :3/29/2007

Sample Date :5/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.2		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	93.9		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	7.2	1.0	mg/Kg	M EPA 8015	4/4/2007
TPH as Motor Oil (Silica Gel)	23	10	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	109		% Recovery	M EPA 8015	4/4/2007

Approved By:

del Kiff

Project Number: **62402797**

Sample : **E43, 15.0'** Matrix : Soil Lab Number : 55679-13

Sample Date :3/29/2007

Sample Date :3/29/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	98.8		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	91.3		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	2.5	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	108		% Recovery	M EPA 8015	4/3/2007

Sample : **E43, 20.0'** Matrix : Soil Lab Number : 55679-14

Sample Date :3/29/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	99.9 92.9		% Recovery % Recovery	EPA 8260B EPA 8260B	3/31/2007 3/31/2007
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	4/5/2007 4/5/2007
1-Chlorooctadecane (Silica Gel Surr)	83.5		% Recovery	M EPA 8015	4/5/2007

Approved By:

: Joel Kiff

Report Number: 55679

Project Number: **62402797**

Sample: **E43**, **25.0**' Matrix : Soil Lab Number : 55679-15

Sample Date :3/29/2007

Sample Date :3/29/2007					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	101		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/4/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	102		% Recovery	M EPA 8015	4/4/2007

Sample : **E44**, **5.0**' Matrix : Soil Lab Number : 55679-16

Sample Date :3/28/2007

Sample Date .5/20/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	99.9		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	5.6	1.0	mg/Kg	M EPA 8015	4/4/2007
TPH as Motor Oil (Silica Gel)	20	10	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	101		% Recovery	M EPA 8015	4/4/2007

Report Number: 55679

Project Number: 62402797

Sample : **E44, 10.0'** Matrix : Soil Lab Number : 55679-17

Sample Date :3/28/2007

Sample Date :3/28/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/30/2007
4-Bromofluorobenzene (Surr)	97.5		% Recovery	EPA 8260B	3/30/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	96.1		% Recovery	M EPA 8015	4/3/2007

Sample : **E44, 15.0'** Matrix : Soil Lab Number : 55679-18

Sample Date :3/28/2007

Sample Date .5/20/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	104		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	99.9		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	126		% Recovery	M EPA 8015	4/3/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: **62402797**

Sample: E44, 20.0' Matrix : Soil Lab Number: 55679-19

Sample Date :3/28/2007

Sample Date :3/28/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.6		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.6		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	90.4		% Recovery	M EPA 8015	4/2/2007

Sample: E44, 24.0' Matrix : Soil Lab Number : 55679-20

Sample Date :3/28/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	98.8 97.7		% Recovery % Recovery	EPA 8260B EPA 8260B	3/31/2007 3/31/2007
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	< 1.0 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	4/3/2007 4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	85.0		% Recovery	M EPA 8015	4/3/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Report Number: 55679

Project Number: **62402797**

Sample : **E45**, **5.0**' Matrix : Soil Lab Number: 55679-21

Sample Date :3/29/2007

Sample Date :3/29/2007					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	98.3		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.0		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	19	1.0	mg/Kg	M EPA 8015	4/4/2007
TPH as Motor Oil (Silica Gel)	92	10	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	96.2		% Recovery	M EPA 8015	4/4/2007

Sample: E45, 10.0' Matrix : Soil Lab Number : 55679-22

Sample Date :3/29/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	1.4	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.8		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.5		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	350	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	94.3		% Recovery	M EPA 8015	4/3/2007

Report Number: 55679

Date: 4/6/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: 62402797

Sample : **E45, 15.0'** Matrix : Soil Lab Number : 55679-23

Sample Date :3/29/2007

Sample Date :3/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/2/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	4/2/2007
4-Bromofluorobenzene (Surr)	98.8		% Recovery	EPA 8260B	4/2/2007
TPH as Diesel (Silica Gel)	1.8	1.0	mg/Kg	M EPA 8015	4/2/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	108		% Recovery	M EPA 8015	4/2/2007

Sample : **E45, 20.0'** Matrix : Soil Lab Number : 55679-24

Sample Date :3/29/2007

Sample Date .5/25/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.2		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	111		% Recovery	M EPA 8015	4/2/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E45, 25.0'** Matrix : Soil Lab Number : 55679-25

Sample Date :3/29/2007

Sample Date :3/29/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	96.8		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	110		% Recovery	M EPA 8015	4/2/2007

Sample : **E45, 28.0'** Matrix : Soil Lab Number : 55679-26

Sample Date :3/29/2007

Sample Date .5/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	96.8		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/5/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/5/2007
1-Chlorooctadecane (Silica Gel Surr)	81.3		% Recovery	M EPA 8015	4/5/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E46, 5.0'** Matrix : Soil Lab Number : 55679-27

Sample Date :3/29/2007

·	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.5		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.0		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	1.7	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	88.2		% Recovery	M EPA 8015	4/3/2007

Sample : **E46, 10.0'** Matrix : Soil Lab Number : 55679-28

Sample Date :3/29/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
raiametei	value	LIIIII	Ullito	Method	AllalyZeu
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	29	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.5		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel) TPH as Motor Oil (Silica Gel)	1800 < 10	1.0 10	mg/Kg mg/Kg	M EPA 8015 M EPA 8015	4/2/2007 4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	91.6		% Recovery	M EPA 8015	4/2/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

nalytical us

Project Number: **62402797**

Sample : **E46, 12.0'** Matrix : Soil Lab Number : 55679-29

Sample Date :3/29/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
TPH as Gasoline	21	1.0	mg/Kg	EPA 8260B	4/3/2007
Toluene - d8 (Surr)	99.2		% Recovery	EPA 8260B	4/3/2007
4-Bromofluorobenzene (Surr)	95.1		% Recovery	EPA 8260B	4/3/2007
TPH as Diesel (Silica Gel)	180	1.0	mg/Kg	M EPA 8015	4/5/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/5/2007
1-Chlorooctadecane (Silica Gel Surr)	106		% Recovery	M EPA 8015	4/5/2007

Sample : **E46, 15.0'** Matrix : Soil Lab Number : 55679-30

Sample Date :3/29/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/3/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	4/3/2007
4-Bromofluorobenzene (Surr)	94.2		% Recovery	EPA 8260B	4/3/2007
TPH as Diesel (Silica Gel)	1.2	1.0	mg/Kg	M EPA 8015	4/6/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/6/2007
1-Chlorooctadecane (Silica Gel Surr)	90.1		% Recovery	M EPA 8015	4/6/2007

Approved By:

Joel Kiff

Report Number: 55679

Date: 4/6/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: 62402797

Sample : **E46, 20.0'** Matrix : Soil Lab Number : 55679-31

Sample Date :3/29/2007

Sample Date :3/29/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.8		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.8		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/3/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	109		% Recovery	M EPA 8015	4/3/2007

Sample : **E46, 25.0'** Matrix : Soil Lab Number : 55679-32

Sample Date :3/29/2007

Sample Date .5/25/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.4		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/6/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/6/2007
1-Chlorooctadecane (Silica Gel Surr)	86.9		% Recovery	M EPA 8015	4/6/2007

Approved By:

By: Joel Kif

Report Number: 55679

Date: 4/6/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: 62402797

Sample : **E46, 28.0'** Matrix : Soil Lab Number : 55679-33

Sample Date :3/29/2007

Sample Date :3/29/2007		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.2		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	107		% Recovery	M EPA 8015	4/2/2007

Sample : **E47, 5.0'** Matrix : Soil Lab Number : 55679-34

Sample Date :3/28/2007

Sample Date .5/20/2007	NA I	Method		Avantanta	Data
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.5		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	80	5.0	mg/Kg	M EPA 8015	4/6/2007
1-Chlorooctadecane (Silica Gel Surr)	90.6		% Recovery	M EPA 8015	4/6/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Report Number: 55679

Project Number: 62402797

Sample : **E47, 10.0'** Matrix : Soil Lab Number : 55679-35

Sample Date :3/28/2007

Sample Date :3/28/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.8		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	95.6		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	27	1.0	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	91.2		% Recovery	M EPA 8015	4/4/2007

Sample : **E47**, **15.0'** Matrix : Soil Lab Number : 55679-36

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	93.8		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	10	1.0	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	80.4		% Recovery	M EPA 8015	4/2/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E48, 4.0'** Matrix : Soil Lab Number : 55679-37

Sample Date :3/28/2007

Sample Date :3/28/2007	Manageman	Method		A I : -	Data
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	92.4		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	2.5	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	96.7		% Recovery	M EPA 8015	3/31/2007

Sample : **E48, 9.0'** Matrix : Soil Lab Number : 55679-38

Sample Date :3/28/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	93.4		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	2.4	1.0	mg/Kg	M EPA 8015	4/6/2007
1-Chlorooctadecane (Silica Gel Surr)	88.8		% Recovery	M EPA 8015	4/6/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E48, 12.5'** Matrix : Soil Lab Number : 55679-39

Sample Date :3/28/2007

Sample Date :3/28/2007	Magazinad	Method		Analysis	Data
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	2.1	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	99.3		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	96.0		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	320	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	102		% Recovery	M EPA 8015	3/31/2007

Sample : **E48, 15.0'** Matrix : Soil Lab Number : 55679-40

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
TPH as Gasoline	1.0	1.0	mg/Kg	EPA 8260B	4/5/2007
Toluene - d8 (Surr)	104		% Recovery	EPA 8260B	4/5/2007
4-Bromofluorobenzene (Surr)	96.9		% Recovery	EPA 8260B	4/5/2007
TPH as Diesel (Silica Gel)	130	1.0	mg/Kg	M EPA 8015	4/6/2007
1-Chlorooctadecane (Silica Gel Surr)	73.8		% Recovery	M EPA 8015	4/6/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E48, 20.0'** Matrix : Soil Lab Number : 55679-41

Sample Date :3/28/2007

Sample Date :3/28/2007	Measured	Method Reporting	11-24-	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.1		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	86.3		% Recovery	M EPA 8015	4/2/2007

Sample : **E48, 25.0'** Matrix : Soil Lab Number : 55679-42

Sample Date :3/28/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.5		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	82.4		% Recovery	M EPA 8015	3/31/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E49, 5.0'** Matrix : Soil Lab Number : 55679-43

Sample Date :3/29/2007

Sample Date :3/29/2007		Method			ъ.
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.6		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	26	1.0	mg/Kg	M EPA 8015	4/1/2007
1-Chlorooctadecane (Silica Gel Surr)	104		% Recovery	M EPA 8015	4/1/2007

Sample : **E49**, **8.5'** Matrix : Soil Lab Number : 55679-44

Sample Date :3/29/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.0		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	560	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	107		% Recovery	M EPA 8015	3/31/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: **62402797**

Sample: E49, 10.0' Matrix: Soil Lab Number: 55679-45

Sample Date :3/29/2007

Sample Date :3/29/2007	Management	Method		Avantavata	D-4-
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	96.8		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	100	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	87.8		% Recovery	M EPA 8015	3/31/2007

Sample: **E49**, **15.0**' Matrix : Soil Lab Number: 55679-46

Sample Date :3/29/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.4		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	14	2.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	83.9		% Recovery	M EPA 8015	3/31/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Report Number: 55679

Project Number: 62402797

Sample : **E49, 20.0'** Matrix : Soil Lab Number : 55679-47

Sample Date :3/29/2007

Sample Date .3/29/2007	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	104		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	100		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	91.5		% Recovery	M EPA 8015	3/31/2007

Sample : **E49**, **25.0'** Matrix : Soil Lab Number : 55679-48

Sample Date :3/29/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.3		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	119		% Recovery	M EPA 8015	4/2/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Idel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E49, 28.0'** Matrix : Soil Lab Number : 55679-49

Sample Date :3/29/2007

Sample Date :3/29/2007	Magazirad	Method		Amalysis	Data
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	105		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.5		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	82.6		% Recovery	M EPA 8015	3/31/2007

Sample : **E50, 5.0'** Matrix : Soil Lab Number : 55679-50

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.6		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	65	2.0	mg/Kg	M EPA 8015	4/6/2007
1-Chlorooctadecane (Silica Gel Surr)	101		% Recovery	M EPA 8015	4/6/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E50, 10.0'** Matrix : Soil Lab Number : 55679-51

Sample Date :3/28/2007

Sample Date :3/28/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/2/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/2/2007
Toluene - d8 (Surr)	99.6		% Recovery	EPA 8260B	4/2/2007
4-Bromofluorobenzene (Surr)	99.4		% Recovery	EPA 8260B	4/2/2007
TPH as Diesel (Silica Gel)	100	5.0	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	79.1		% Recovery	M EPA 8015	4/4/2007

Sample : **E50, 15.0'** Matrix : Soil Lab Number : 55679-52

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.6		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	3.0	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	89.8		% Recovery	M EPA 8015	3/31/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: **62402797**

Sample : **E51, 5.0'** Matrix : Soil Lab Number : 55679-53

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.2		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	24	2.0	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	85.1		% Recovery	M EPA 8015	4/4/2007

Sample : **E51, 10.0'** Matrix : Soil Lab Number : 55679-54

Sample Date :3/28/2007

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.2		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	390	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	97.1		% Recovery	M EPA 8015	3/31/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: **62402797**

Sample: **E51, 15.0'** Matrix: Soil Lab Number : 55679-55

Sample Date :3/28/2007

Sample Date :3/28/2007					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007
Toluene - d8 (Surr)	99.8		% Recovery	EPA 8260B	3/30/2007
4-Bromofluorobenzene (Surr)	96.8		% Recovery	EPA 8260B	3/30/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Silica Gel Surr)	87.2		% Recovery	M EPA 8015	4/2/2007

Sample: **E51, 20.0'** Matrix : Soil Lab Number : 55679-56

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	97.1		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	3/31/2007
1-Chlorooctadecane (Silica Gel Surr)	86.0		% Recovery	M EPA 8015	3/31/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Report Number: 55679

Project Number: 62402797

Sample : **E52, 5.5'** Matrix : Soil Lab Number : 55679-57

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Farameter					
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	98.9		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	1.4	1.0	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	94.8		% Recovery	M EPA 8015	4/3/2007

Sample : **E52, 10.0'** Matrix : Soil Lab Number : 55679-58

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/4/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	4/4/2007
4-Bromofluorobenzene (Surr)	99.3		% Recovery	EPA 8260B	4/4/2007
TPH as Diesel (Silica Gel)	3.4	1.0	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	81.8		% Recovery	M EPA 8015	4/3/2007

Approved By:

Joel Kiff

Report Number: 55679

Date: 4/6/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: **62402797**

Sample : **E52, 12.5'** Matrix : Soil Lab Number : 55679-59

Sample Date :3/28/2007

Sample Date .3/20/2007	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	99.4		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	220	1.0	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	108		% Recovery	M EPA 8015	4/3/2007

Sample : **E52, 15.5'** Matrix : Soil Lab Number : 55679-60

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/31/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/31/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	3/31/2007
4-Bromofluorobenzene (Surr)	99.9		% Recovery	EPA 8260B	3/31/2007
TPH as Diesel (Silica Gel)	180	1.0	mg/Kg	M EPA 8015	4/3/2007
1-Chlorooctadecane (Silica Gel Surr)	99.8		% Recovery	M EPA 8015	4/3/2007

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Report Number: 55679

Project Number: 62402797

Sample : **E52, 20.0'** Matrix : Soil Lab Number : 55679-61

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	3/30/2007
4-Bromofluorobenzene (Surr)	100		% Recovery	EPA 8260B	3/30/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/4/2007
1-Chlorooctadecane (Silica Gel Surr)	78.4		% Recovery	M EPA 8015	4/4/2007

Approved By:

Joel Kiff

Report Number: 55679

Date: 4/6/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 4/6/2007

QC Report : Method Blank Data

Project Name : Sara Lee-Oakland

Project Number : **62402797**

Development	Measured	Method Reportir		Analysis	Date	Davarratas	Measured	Method Reportin	ng	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed	<u>Parameter</u>	Value	Limit	Units	Method	Analyzed
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015		Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/2/2007	Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
1-Chlorooctadecane (Silica Gel Surr)	78.8		%	M EPA 8015	4/2/2007	Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
						Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	3/31/2007	Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
1-Chlorooctadecane (Silica Gel Surr)	70.3		%	M EPA 8015	3/31/2007	TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007
						Toluene - d8 (Surr)	99.5		%	EPA 8260B	3/30/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007	4-Bromofluorobenzene (Surr)	96.2		%	EPA 8260B	3/30/2007
1-Chlorooctadecane (Silica Gel Surr)	79.1		%	M EPA 8015	4/2/2007						
						Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/3/2007	Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/3/2007	Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
1-Chlorooctadecane (Silica Gel Surr)	86.0		%	M EPA 8015	4/3/2007	Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
,						Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	4/5/2007	TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007
TPH as Motor Oil (Silica Gel)	< 10	10	mg/Kg	M EPA 8015	4/5/2007	Toluene - d8 (Surr)	102		%	EPA 8260B	3/30/2007
1-Chlorooctadecane (Silica Gel Surr)	77.1		%	M EPA 8015	4/5/2007	4-Bromofluorobenzene (Surr)	98.5		%	EPA 8260B	3/30/2007
,											
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007	Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	3/30/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007	TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	3/30/2007
Toluene - d8 (Surr)	102		%	EPA 8260B	3/30/2007	Toluene - d8 (Surr)	101		%	EPA 8260B	3/30/2007
4-Bromofluorobenzene (Surr)	99.7		%	EPA 8260B	3/30/2007	4-Bromofluorobenzene (Surr)	93.7		%	EPA 8260B	3/30/2007

Approved By:

Joel Kiff

Analysis Method

Date

Analyzed

Date: 4/6/2007

<u>Units</u>

Method

Limit

Measured Value

Reporting

QC Report : Method Blank Data

Project Name: Sara Lee-Oakland

Project Number : **62402797**

	Measured	Method Reportir	ng	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/3/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/3/2007
Toluene - d8 (Surr)	101		%	EPA 8260B	4/3/2007
4-Bromofluorobenzene (Surr)	94.0		%	EPA 8260B	4/3/2007
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/4/2007
Toluene - d8 (Surr)	101		%	EPA 8260B	4/4/2007
4-Bromofluorobenzene (Surr)	96.5		%	EPA 8260B	4/4/2007

KIFF ANALYTICAL, LLC 2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

<u>Parameter</u>

Date: 4/6/2007

Project Name : Sara Lee-Oakland

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number : **62402797**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel	55679-33	<1.0	20.0	20.0	18.1	17.6	mg/Kg	M EPA 8015	4/3/07	90.7	88.0	2.95	60-140	25
TPH as Diesel	55679-56	<1.0	20.0	20.0	18.8	18.4	mg/Kg	M EPA 8015	3/31/07	94.2	92.0	2.40	60-140	25
TPH as Diesel	55679-57	1.4	20.0	20.0	18.9	18.7	mg/Kg	M EPA 8015	4/3/07	88.3	87.5	0.955	60-140	25
TPH as Diesel	55628-07	9.4	20.0	20.0	28.7	24.5	mg/Kg	M EPA 8015	4/3/07	97.7	83.2	16.0	60-140	25
TPH as Diesel	55679-10	1.4	20.0	20.0	16.6	17.6	mg/Kg	M EPA 8015	4/5/07	77.4	82.3	6.14	60-140	25
Benzene	55696-01	<0.0050	0.0400	0.0401	0.0457	0.0444	mg/Kg	EPA 8260B	3/30/07	114	111	3.08	70-130	25
Toluene	55696-01	<0.0050	0.0400	0.0401	0.0444	0.0436	mg/Kg	EPA 8260B	3/30/07	111	109	2.16	70-130	25
Tert-Butanol	55696-01	<0.0050	0.200	0.200	0.195	0.182	mg/Kg	EPA 8260B	3/30/07	97.7	91.0	7.07	70-130	25
Methyl-t-Butyl Ethe	r 55696-01	<0.0050	0.0400	0.0401	0.0446	0.0450	mg/Kg	EPA 8260B	3/30/07	111	112	0.778	70-130	25
Benzene	55679-35	<0.0050	0.0397	0.0401	0.0352	0.0366	mg/Kg	EPA 8260B	3/30/07	88.6	91.2	2.89	70-130	25
Toluene	55679-35	<0.0050	0.0397	0.0401	0.0340	0.0354	mg/Kg	EPA 8260B	3/30/07	85.8	88.3	2.83	70-130	25
Tert-Butanol	55679-35	<0.0050	0.198	0.200	0.155	0.173	mg/Kg	EPA 8260B	3/30/07	78.3	86.5	9.87	70-130	25
Methyl-t-Butyl Ethe	r 55679-35	<0.0050	0.0397	0.0401	0.0343	0.0383		EPA 8260B	3/30/07	86.4	95.6	10.0	70-130	25
Benzene	55679-17	<0.0050	0.0397	0.0397	0.0374	0.0381	mg/Kg	EPA 8260B	3/30/07	94.4	96.0	1.76	70-130	25
Toluene	55679-17	<0.0050	0.0397	0.0397	0.0371	0.0374	mg/Kg	EPA 8260B	3/30/07	93.5	94.2	0.673	70-130	25

Date: 4/6/2007

Project Name : Sara Lee-Oakland

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number : **62402797**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Tert-Butanol	55679-17	<0.0050	0.198	0.198	0.166	0.171	mg/Kg	EPA 8260B	3/30/07	83.8	86.0	2.58	70-130	25
Methyl-t-Butyl Ethe	er 55679-17	<0.0050	0.0397	0.0397	0.0358	0.0367	mg/Kg	EPA 8260B	3/30/07	90.4	92.4	2.27	70-130	25
Benzene	55666-01	<0.0050	0.0397	0.0401	0.0413	0.0408	mg/Kg	EPA 8260B	3/30/07	104	102	2.16	70-130	25
Toluene	55666-01	<0.0050	0.0397	0.0401	0.0402	0.0394	mg/Kg	EPA 8260B	3/30/07	101	98.2	3.25	70-130	25
Tert-Butanol	55666-01	<0.0050	0.198	0.200	0.194	0.192	mg/Kg	EPA 8260B	3/30/07	97.6	95.7	1.98	70-130	25
Methyl-t-Butyl Ethe	er 55666-01	<0.0050	0.0397	0.0401	0.0416	0.0411	mg/Kg	EPA 8260B	3/30/07	105	102	2.16	70-130	25
Benzene	55665-01	<0.0050	0.0399	0.0397	0.0413	0.0418	mg/Kg	EPA 8260B	4/3/07	104	105	1.84	70-130	25
Toluene	55665-01	<0.0050	0.0399	0.0397	0.0399	0.0400	mg/Kg	EPA 8260B	4/3/07	100	101	0.664	70-130	25
Tert-Butanol	55665-01	<0.0050	0.200	0.198	0.197	0.199	mg/Kg	EPA 8260B	4/3/07	98.7	100	1.62	70-130	25
Methyl-t-Butyl Ethe	er 55665-01	<0.0050	0.0399	0.0397	0.0464	0.0451	mg/Kg	EPA 8260B	4/3/07	116	114	2.18	70-130	25
Benzene	55679-58	<0.0050	0.0393	0.0399	0.0414	0.0430	mg/Kg	EPA 8260B	4/4/07	105	108	2.29	70-130	25
Toluene	55679-58	<0.0050	0.0393	0.0399	0.0398	0.0413	mg/Kg	EPA 8260B	4/4/07	101	104	2.18	70-130	25
Tert-Butanol	55679-58	<0.0050	0.196	0.200	0.173	0.173	mg/Kg	EPA 8260B	4/4/07	88.2	86.9	1.55	70-130	25
Methyl-t-Butyl Ethe	er 55679-58	<0.0050	0.0393	0.0399	0.0415	0.0423	mg/Kg	EPA 8260B	4/4/07	106	106	0.382	70-130	25

Date: 4/6/2007

Project Name : Sara Lee-Oakland

QC Report : Laboratory Control Sample (LCS)

Project Number : **62402797**

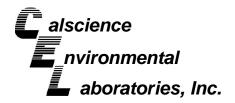
Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
TPH as Diesel	20.0	mg/Kg	M EPA 8015	4/2/07	82.8	70-130	
TPH as Diesel	20.0	mg/Kg	M EPA 8015	3/31/07	95.0	70-130	
TPH as Diesel	20.0	mg/Kg	M EPA 8015	4/2/07	91.9	70-130	
TPH as Diesel	20.0	mg/Kg	M EPA 8015	4/3/07	74.9	70-130	
TPH as Diesel	20.0	mg/Kg	M EPA 8015	4/5/07	86.4	70-130	
Benzene Toluene Tert-Butanol Methyl-t-Butyl Ether	0.0400 0.0400 0.200 0.0400	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	3/30/07 3/30/07 3/30/07 3/30/07	110 107 94.0 110	70-130 70-130 70-130 70-130	
Benzene Toluene Tert-Butanol Methyl-t-Butyl Ether	0.0400 0.0400 0.200 0.0400	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	3/30/07 3/30/07 3/30/07 3/30/07	99.4 98.7 97.6 97.8	70-130 70-130 70-130 70-130	

Approved By:

Joe Kiff

Date: 4/6/2007

Project Name : Sara Lee-Oakland


QC Report : Laboratory Control Sample (LCS)

Project Number : **62402797**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	0.0398	mg/Kg	EPA 8260B	3/30/07	98.6	70-130
Toluene	0.0398	mg/Kg	EPA 8260B	3/30/07	98.1	70-130
Tert-Butanol	0.199	mg/Kg	EPA 8260B	3/30/07	89.9	70-130
Methyl-t-Butyl Ether	0.0398	mg/Kg	EPA 8260B	3/30/07	93.6	70-130
Benzene	0.0396	mg/Kg	EPA 8260B	3/30/07	99.8	70-130
Toluene	0.0396	mg/Kg	EPA 8260B	3/30/07	96.9	70-130
Tert-Butanol	0.198	mg/Kg	EPA 8260B	3/30/07	90.5	70-130
Methyl-t-Butyl Ether	0.0396	mg/Kg	EPA 8260B	3/30/07	99.0	70-130
Benzene	0.0394	mg/Kg	EPA 8260B	4/3/07	106	70-130
Toluene	0.0394	mg/Kg	EPA 8260B	4/3/07	101	70-130
Tert-Butanol	0.197	mg/Kg	EPA 8260B	4/3/07	97.3	70-130
Methyl-t-Butyl Ether	0.0394	mg/Kg	EPA 8260B	4/3/07	116	70-130
Benzene	0.0393	mg/Kg	EPA 8260B	4/4/07	111	70-130
Toluene	0.0393	mg/Kg	EPA 8260B	4/4/07	107	70-130
Tert-Butanol	0.196	mg/Kg	EPA 8260B	4/4/07	96.9	70-130
Methyl-t-Butyl Ether	0.0393	mg/Kg	EPA 8260B	4/4/07	115	70-130

Approved By:

Joe Kiff

April 19, 2007

Joel Kiff Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Subject: **Calscience Work Order No.:** 07-04-1133

> Client Reference: Sara Lee-Oakland

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/17/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Stephen Nowak Project Manager

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

Analytical Report

Kiff Analytical 2795 2nd Street, Suite 300

2795 2nd Street, Suite 300 Davis, CA 95616-6593

Date Received: Work Order No:

Preparation: Method: Units: 04/17/07 07-04-1133 EPA 3050B

EPA 6010B mg/kg

Project: Sara Lee-Oakland

Page 1 of 1

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Composite-1 (34,37,53,57)			07-04-	1133-1	03/28/07	Solid	ICP 5300	04/17/07	04/18/07	070417L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL D	<u>)F</u> Qual
Cadmium	ND	0.500	1		Nickel			93.7	0.250	1
Chromium	59.3	0.250	1		Zinc			53.0	1.00	1
Lead	8.90	0.500	1							
Composite-2 (35,38,54,58)			07-04-	1133-2	03/28/07	Solid	ICP 5300	04/17/07	04/18/07	070417L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL D)F Qual
Cadmium	ND	0.500	1		Nickel			86.7	0.250	1
Chromium	44.9	0.250	1		Zinc			48.9	1.00	1
Lead	7.85	0.500	1							
Composite-3 (36,40,55,60)			07-04-	1133-3	03/28/07	Solid	ICP 5300	04/17/07	04/18/07	070417L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL D	<u>)F Qual</u>
Cadmium	ND	0.500	1		Nickel			123	0.250	1
Chromium	71.6	0.250	1		Zinc				1.00	1
Lead	10.3	0.500	1							
Method Blank			097-01	-002-9,14	4 N/A	Solid	ICP 5300	04/17/07	04/18/07	070417L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL D)F Qual
Cadmium	ND	0.500	1	· <u> </u>	Nickel			ND	0.250	<u> </u>
Chromium	ND	0.250	1		Zinc				1.00	1
Lead	ND	0.500	1							

Mulhan

DF - Dilution Factor

Quality Control - Spike/Spike Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: 04/17/07 07-04-1133 EPA 3050B EPA 6010B

Project Sara Lee-Oakland

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
Composite-1 (34,37,53,57)	Solid	ICP 5300	04/17/07		04/18/07	070417S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Cadmium	99	97	75-125	2	0-20	
Chromium	148	113	75-125	10	0-20	3
Lead	103	99	75-125	3	0-20	
Nickel	120	78	75-125	9	0-20	
Zinc	142	127	75-125	4	0-20	3

MMM_

Quality Control - LCS/LCS Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method:

07-04-1133 EPA 3050B EPA 6010B

N/A

Project: Sara Lee-Oakland

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzo		LCS/LCSD Batc Number	h
097-01-002-9,144	Solid	ICP 5300	04/17/07	04/18/0	7	070417L02	
<u>Parameter</u>	LCS %R	EC LCSD %	REC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Cadmium	106	106	;	80-120	0	0-20	
Chromium	105	104	:	80-120	1	0-20	
Lead	105	106	:	80-120	1	0-20	
Nickel	110	112	:	80-120	1	0-20	
Zinc	110	113	;	80-120	3	0-20	

RPD - Relative Percent Difference , CL - Control Limit

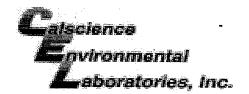
Glossary of Terms and Qualifiers

Work Order Number: 07-04-1133

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

2795 Second Street, Suite 300

Davis, CA 95616 Lab: 530.297.4800 Fax: 530.297.4808


Cal Science Environmental 7440 Lincoln Way Garden Grove, CA 92841

714-895-5494

(133

Page 1 of

		EDF Report? _X_ Yes _No										Ch	Chain-of-Custody Record and Analysis Request										
Scott Forbes																							
Company/Address:			Reco	mmer	ided but	not r	nandat	ory to	comple	te this	sect	ion:										Date due:	
Kiff Analytical, LLC			Sar	nplii	ng Coi	npa	ny Lo	g Co	de:		E	TIC		Analysis Request									
Phone No.: FAX	No.:		Glo	bal	ID:		Т	060	017	734	12												
	. No.:		ED	F De	liveral	ole t	o (En	mail Address):															
62402797	55679)	inbox@kiffanalytical.com										1					2007	, in				
Project Name:			E-mail address:																20) e			
Sara Lee-Oakland			inbox@kiffanalytical.com							S								20,	ň				
Project Address:	Sampli	ng	Container				+	rese	rvativ	_	Matrix		Metals								April 20,	For Lab Use Only	
Sample	esignation Date Tim				Sleeve	Glass Jar	HNO ₃	H ₂ SO ₄	Na ₂ S ₂ O ₃	NE SNE	ATER	SOIL		LUFT 5 N								Ā	Fo
		Time	δV	<u>-Ğ</u>	ত ব			ヹ	ž ŝ	Įž			⋖			ļ <u></u>	<u> </u>		-				
Compsite-1 (34,37,53,57)						1				1		X	Ш	Х								Х	
Compsite-2 (35,38,54,58) 3/28/06 15:20						1				1		X		Х								Х	
Compsite-3 (36,40,55,60)	3/28/06	15:25			-	1			-	1	_	Х		X			 					Х	
						1													-				·
		,				<u> </u>			_	-							ļ						
						1			-	-							-			+			
								\dashv	+	+	\vdash					+	 						
Relinquished by: Kiff Date Time Received by: Hardip Kandóla Malytical 041607 1900					y:					•	-		Remarks: Rush OK by Vic on 040607.										
Relinquished by:		Date		Time Received by:																			
Relinquished by: Date Time Received by Laboratory: Column								Bil	l to: A	ccour	nts Pa	yable											

WORK ORDER #: **07** - 0 4 - 1 1 3 3

Cooler _____ of ___

SAMPLE RECEIPT FORM

CLIENT: Kiff	DATE: 4/17/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): ° C Temperature blank ° C IR thermometer Ambient temperature.
C Temperature blank.	Initial:
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not In	ntact) : Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

May 01, 2007

Additional requested analyses are reported as a stand-alone report.

Joel Kiff Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Subject: Calscience Work Order No.: 07-04-1133

Client Reference: Sara Lee-Oakland

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/17/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories. Inc.

Stephen Nowak

Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Analytical Report

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Date Received: Work Order No: Preparation: Method: 04/17/07 07-04-1133 T22.11.5.AII EPA 6010B

Project: Sara Lee-Oakland

Page 1 of 1

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Composite-1 (34,37,53,57)		07-04-1133-1	03/28/07	Solid	ICP 5300	04/25/07	04/30/07	070427L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Chromium	0.127	0.0500	1		mg/L			
Composite-3 (36,40,55,60)		07-04-1133-3	03/28/07	Solid	ICP 5300	04/25/07	04/30/07	070427L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Chromium	0.498	0.0500	1		mg/L			
Method Blank		097-05-006-3,517	N/A	Solid	ICP 5300	04/25/07	04/27/07	070427L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Chromium	ND	0.0500	1		mg/L			

Quality Control - Spike/Spike Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: 04/17/07 07-04-1133 T22.11.5.All EPA 6010B

Project Sara Lee-Oakland

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number		
07-04-1576-7	Solid	ICP 5300	04/25/07		04/27/07	070427S02		
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers		
Chromium	97	96	75-125	0	0-20			

Mullim.

Quality Control - LCS/LCS Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: N/A 07-04-1133 T22.11.5.All EPA 6010B

Project: Sara Lee-Oakland

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
097-05-006-3,517	Solid	ICP 5300	04/25/07	04/27/07	070427L02	
Parameter	LCS %	%REC LCSD	%REC %R	REC CL RP	D RPD CL	Qualifiers
Chromium	105	5 108		30-120 3	0-20	-

Mulhan_

RPD - Relative Percent Difference , CL - Control Limit

Glossary of Terms and Qualifiers

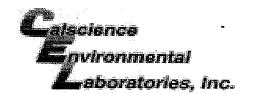
Work Order Number: 07-04-1133

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

2795 Second Street, Suite 300

Davis, CA 95616 Lab: 530.297.4800 Cal Science Environmental 7440 Lincoln Way Garden Grove, CA 92841

REVISED 4/24/07


Fax: 530.297.4808 714-895-5494 Page <u>1</u> of <u>1</u> Lab No. Project Contact (Hardcopy or PDF to): EDF Report? _X_ Yes __No **Chain-of-Custody Record and Analysis Request** Scott Forbes Company/Address: Recommended but not mandatory to complete this section: Date due: **Analysis Request** Sampling Company Log Code: Kiff Analytical, LLC **ETIC** Phone No.: FAX No.: Global ID: Chromium T0600177342 Project Number: EDF Deliverable to (Email Address): P.O. No.: Lab Use Only 55679 62402797 inbox@kiffanalytical.com May 1, 2007 Project Name: E-mail address: April 20, 2007 WET Extraction (STLC) Sara Lee-Oakland inbox@kiffanalytical.com Project Address: Sampling Container **Preservative** Matrix ō Glass Jar ZnAc₂ & NaOH LUFT 5 Metals Na₂S₂O₃ WATER Sample Amber HNO₃ NONE Sleeve SOIL Poly Air Designation Time Date X X X Compsite-1 (34,37,53,57) 1 Χ Χ 3/28/06 15:16 Compsite-2 (35.38.54.58) Х 3/28/06 15:20 X Compsite-3 (36,40,55,60) X 3/28/06 15:25 Χ Х Rush OK by Vic on 040607. Relinguished by: Date Received by: Time Do not run sample "Composite -2 (35,38,54,58)" Relinquished by: Date Time Received by: Received by Laboratory: Relinquished by: Date Accounts Payable

2795 Second Street, Suite 300

Davis, CA 95616 Lab: 530.297.4800 Fax: 530.297.4808 Cal Science Environmental 7440 Lincoln Way Garden Grove, CA 92841 714-895-5494

1															- 1	14.	-090-0	743 4		Lä	ab No.		11	_ Pa	ge <u>1 </u>	of <u>1</u>
Project Contact (Hardcopy	or PDF to	0):		Εľ	DF	R	epo	ort	?	_	X_	Yes	;	_^	lo		Chain-of-Custody Record and Analysis Request									
Scott Forbes																										
Company/Address:							but no			<u> </u>			his s	sectio	n:		1								₽ ∺	
Kiff Analytical, LLC			_	Saı	npli	ng C	omp	any	Lo	g Co	de:	,		ĒΤ	IC				Analy	ysis R	equest				Date due:	
Phone No.:	FAX No	D.:		Glo	bal	ID:			T	060	01	77:	34	2												
Project Number:	P.O. No	o.:	• • •	ED	F De	elive	rable	to	(Em	ail A	ddr	ess)	:													
62402797		55679		inbox@kiffanalytical.com								i								07	ınıy					
Project Name:				E-mail address:																		20	e 0			
Sara Lee-Oakland				inbox@kiffanalytical.com								,								0,	ns.					
Project Address:	_	Samplir	ng	Container Preservative Matri							ix	Metals								April 20, 2007	For Lab Use Only					
Sample						ave.	Amber	ss Jar	ايّ	0	5203	ZnAc ₂ & NaOH	빌	WATER	_		5								Αķ	Fo
Designation	İ	Date	Time	8 8	Poly	Sleeve	A	Ga	Ĭ	7. S.	Na	ZnAc	NONE	≸	SOIL	Α̈́	LUFT									
Compsite-1 (34,37,53	,57)	3/28/06	15:16					1					1		X		Х								Х	
Compsite-2 (35,38,54,58) 3/28/06 15:2			15:20					1					1		Χ		Х								Х	
Compsite-3 (36,40,55	,60)	3/28/06	15:25					1					1		Χ		Х								Х	
!																										
·																										
									\perp		_	ightharpoonup	_							<u> </u>		<u> </u>				
			,				1					_								<u> </u>						
							\dashv			\downarrow	_	_									ļ	<u> </u>	<u> </u>			
<u> </u>					_		\perp	\downarrow	_	4	\downarrow	\perp	_	_						<u> </u>		ļ	<u> </u>			
												\perp														
Relinquished by: Kiff Date Hardip Kandóla Analytical 04160"			Date δ41607	Tir 190	- 1	Rec	eived	l by:										Rer	narks:	Rus	h OK I	by Vic	on 04	0607		
Relinquished by: Date				Time Received by Laboratory: (0430) Bill to: Accounts Payable																						

WORK ORDER #: **07** - 0 4 - 1 1 3 3

Cooler _____ of __/__

SAMPLE RECEIPT FORM

CLIENT: Kiff	DATE: 4/17/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): ° C Temperature blank ° C IR thermometer Ambient temperature.
C Temperature blank.	Initial:
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not In	ntact) : Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

2795 2nd Street Suite 300 Davis, CA 95616 Lab: 530.297.4800

SRG # / Lab No.

55679

	Fax	: 530	.297.4802																							•					_			
Project Contact (Hardcopy or Paul Anderson, PSC Environ		rvices		Cali	iforni	ia ED	F Repo	ort?		V] Yes		N	lo		Г		(Cha	in-c	f-C	ust	ody	/ Re	эсо	rd a	anc	A t	nal _!	ysis	s Red	ques	st	
Address: 210 West Sand Ba	nk Road						mpany		Cod	e:									_			An	alys	is R	equ	Jest						Ţ	TAT	
Columbia, IL 62236 Phone: (618) 281-1546	Teom (64)	2/ 204 -	7000				Task 3											Т	T	T					Γ		13	5	T	T	TT	十		
Phone: (618) 201-1546	Fax: (618	J) 281- <i>i</i>	/020	Gio	bai ii	D: 10	060017	7342	?						l	5.0 ppb									(g)	\$	13) §				1	 12 hr	
Project #: 62402797	P.O. #:						ble To									(9)						(gg		<u></u>	Wat	ږِ	15	PA				1	□┃	yluy
				pan	ders	on@p	pscnow	/.com /	ı, eti	clab	report	ts@e	eice	ng.c	mox	8021 level						826(<u></u>	8260	nking	WSilce	7	<u> </u>				I.		se O
Project Name: Sara Lee-Oak	kland			San	npler	r <i>8</i> /9/	ature:	711	/							1 802	<u>۾</u>				_	-EPA	8260	EPA	2 Dri	2	15M)	-Lea					24 hr	For Lab Use Only
Project Address:		0	D	<u> </u>		<u>'VV</u>	<u>~/</u>	<u>Ľ</u>				<u> </u>				rEPA	0.5 p			(80g)	(80g)	EDB	EPA	List (524	(EPA 8015M)	% 8	alyze	\cdot			[[ەر لۇ
Project Address: 955 Kennedy Street	<u> </u>	San	npling	ੀ⊲⊺		ontain	er /	+	Pres	serva	ative	+	T^{M}	/atrix		<u>8</u> ≅	B) (B)	🦼	, 60 100 100 100 100 100 100 100 100 100 1	A 82	A 82	8) Suc	필	(EPA	PA8	li)	la a	િ			4	48hr	ĬĽ.
Oakland, California				40-ml HCL VOA		Poly.										MTBE (EPA 8260B) per	PA 8260B) @ 0.5 ppb	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	iesel (E	TPH as Motor Oil (EPA 8015M) W SI . 45	Filter & acidify then analyze-Lead (EPA 6010)	Lead (STLC)					
Sample Designation		Date	Time	40-m H	Sleeve	Unpres. Poly. Glass	Tedlar	豆	HNO3	None		Water	Soil	Air Sign	į	ATBE (E	MTBE (EPA	TEX (E)	PH Gas	Oxyger	Oxyger	ead Sca	/olatile ⊬	olatile C	olatile C	TPH as Diesel	PH as N	ilter & a	W.E.T. Le			ĺ	☑ 1 wk	
E41, 5.0		8/07		竹	Χ̈́	7		十	广	-	十	ť	×	∜	++	ŕ	Ź	芯	大	15			7	-	~	Þ	犮	+	5	+	+	+		0.1
E41, 10.0		1	1123	\Box	T	1	1	1	T		\top	十	T	T	+1		1	1		1							竹	十	T	\dagger	+	+		02
E41, 15.0			1130	\prod	\prod			\top	T	\prod		T	#	1	11			$\dagger \dagger$	$\dagger \dagger$	1						H	$\dagger \dagger$	T	T	T	+	\top		03
E41, 20.0			1140	\prod	T			1				1	\parallel	T	\prod			\prod	\prod	T				\Box		\parallel	\prod	\vdash	\top	†	†	\top		04
E41, 25.0		レ フ	1149		\prod			1				1	\prod	T				\prod	\prod					\Box	П	\top	\sqcap	T	<u> </u>	†	\prod	\top	$\overline{}$	05
E42, 5.0	3/1	19/07	1505		\prod	\prod							\prod					\prod	\prod					П		П	П	\top	\top			T		06
E42, 10.0			1510	\coprod								floor	\prod					\prod	\prod								\prod					7		07
E42, 15.0			1511		\coprod								\prod					\prod	\prod							\prod						I		98
E42, 20.0			1520	\coprod	\coprod	\bot	$\perp \perp$		$oxed{igspace}$	Ш		\perp	Ц	\perp	$oxed{oxed}$		Щ	\coprod	\coprod															09
E42, 25,0			1530			\perp						\perp	V	<u>/</u> _	$oxed{oxed}$		ル	1	16							y	*							10
Relinquished by			Date 3/3/5	7		Time んろ6	Receiv	ved by	у:										mark ease		sen	d the	PD)F re	nort	to:	etic	clab	reno	vrts@)eticer	20.00	·m	
Relinquished by:			Date		T	Time	Receiv	ved b	y:									1				u		,	po		0	Jica,	торо	" 1.0(%	yeu.c.	ig.cc	"""	
							\prod											Bill	to: ſ	PSC I	Enviro	onme	ntal :	Servi	ices,	210	Wes	st Sa	ınd B	lank f	Road, C	Colum	nbia, IL	
Relinquished by:			Date			Time	Receiv	ved by	y Lat	oorat	ory:		7	Ki	74	7		T				F	or La	ab U	se (Only:	: s	- 3am	ple f	Rece	eipt			
			03300	77	- 1/	1/26	R	2	m'	51	00	. :	Å	ر)	1	ίς.	1	T	emp	°C	١	nitials	3		Da	ate		Tir	ime	The	erm. ID	# C	Coolant P	resent
					`		, C		_	-	ععد	- '	, 1,	12)	<i>y</i> ' '	•	-1	1	2,0	クー	R	سمسا	$ egin{array}{c} $	07	530	o O	7	15	30) 7	12-5	<i>;</i> =T	1/25	,

2795 2nd Street Suite 300 Davis, CA 95616

Lab: 530.297.4800 Fax: 530.297.4802

SRG#/Lab No. 55679

Page 2 of 7

Project Contact (Hardcopy or Paul Anderson, PSC Environ			ices		Cali	iforr	nia E	DF !	Repor	rt?		7	Yes] No	0			_	С	hai	n-c	f-C	ust	ody	/ R	ecc	ord	an	d F	\nal	ysi:	s Re		est	
Address: 210 West Sand Ba Columbia, IL 62236	ink Ro	ad							pany L		Sode	e:										· · · ·	_	An	alys	is F	₹eq	ues	t			_			TAT	
Phone: (618) 281-1546	Fax:	(618)	281-7	020	1				00177									qdd c									٤	90	1	ווני ווני	(טרי				☐ 12 hr	
Project #: 62402797	P.O	. #:							e To (cnow.				ss): report	s@e	eice	ng.c	com	1 level @ 5.0						4 8260B)	(9)	8260B)	inking Wate	(EPA 8015M) LAN. SIL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W M M A	30 (EPA 90				☐ 24 hr	For Lab Use Only
Project Name: Sara Lee-Oal	kland				San	nple	er Sig	indi	ure:	1	7/	7						EPA 8021	@ 0.5 ppb			0B)	OB)	:D8-EP/	PA 8260	st (EPA	524.2 Dr	15M)	8015M	3	yze-Lec					r Lab L
Project Address:			Sam	pling			Conta	iner		Í	res	serva	ative	I	М	latrix	x	ē	000		<u>@</u>	\ 826	828	A & E	is (E	를	A A	\ 8 8	, Lead	<u>;</u> {	ر اقا				48hr	5
955 Kennedy Street Oakland, California					40-ml HCL VOA	ø	es. Poly.											MTBE (EPA 8260B)	MTBE (EPA 8260B)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	as Diesel (EP		a mose c	Filter & acidity then analyze-Lead (EPA 6010) W.E.T. Lead (STLC)	,			☐ 72 hr	
Sample Designation		Da	ıte	Time	40-m	Sleev	Unpres.	Glass	Tedlar	豆	HNO ₃	None		Water	Soil	<u> </u>	į	MTBE	MTBE	BTEX	TPH 6	5 Oxyg	7 Oxy	Lead S	Volatile	Volatife	Volatile	TPHa	H E E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W.E.T.				☑ 1 wk	
E43, 5.0'		3/29	107	1430	1 1	X	\prod								X	$oxed{\Box}$			X	X	_							X	_	$oxed{\mathbb{T}}$						11
E43, 10.0				1440	Ш	Ш			$oldsymbol{\perp}$						Ш				1	1	1								\prod			\prod				12
E43, 15.0				1432	Ц	Ш	Ш								Ш	L				Ц									Ш							13
E43, 20.0				1438		\perp	Ц								Ш	L												Ш								14
E43, 25.0		1		1450		Ш	Ш									\perp																				15
E44, 5.0		3/28	107	0930		\coprod	Ш																					П	\prod	Ι						16
E44, 10.0				0940		Ш	Ш																					П	\prod	\prod						17
E44, 15.0°				0945																								\prod	\prod							18
E44, 20.0				1002	Ш	Ш									Ц					Ш	Ш								\coprod	Ш						19
E44, 24.0'		<u></u>		1005			\Box								J	<u>1</u>			1	4	4							7	1	<u>/</u>						20
Relinquished by:		·		Date 3/3/5/	,		Time לכ/	26	Receiv												narks ase		sen	d the	e PC	OF re	epor	t to	: et	ticla	.brep:	orts(@etic	eng.	com	
Relinquished by:				Date			Time		Receiv	ed by	r;	_																								
								工				_						- 4		Bill	to: P	SCI	Invir							∍st S	and E	3ank	Road	, Colu	umbia, I	Ĺ
Relinquished by:				Date			Time	ا ر	Receiv	ed by	∙Lab -	orate	ory:			K	Cif	7		Ļ			Γ		or L	ab l			y:	_	mple					
				0330	07		[[2]	0	Ks	25.	m	بكإ	ory: Lee		/	qu	رمحم	tic	al	L ™	emp '	°C		nitial	S		D	ate	_	+	Time	Th	herm.	ID#	Coolant	Present

2795 2nd Street Suite 300

Davis, CA 95616

Lab: 530.297.4800 Fax: 530 297 4802

SRG#/Lab No. <u>55679</u>

Page 3 of 7

Project Contact (Hardcopy or Paul Anderson, PSC Environ		То):	3.207.4002	Cal	iforr	nia Ei	OF F	Repor	t?		V	Yes		N	10				C	hai	n-c	f-C	ust	ody	/ R	eco	ord	an	d A	∖na	lys	is F	Requ	est	
Address: 210 West Sand Ba Columbia, IL 62236	nk Ro	ad				ng Co				ode	:								r	ı		1	An	alys I	sis F	Req	ues	t T	_	$\overline{}$	$\overline{}$			TAT	
Phone: (618) 281-1546	Fax:	(618) 281	-7020			ID: T											dg o									<u>§</u>	 		3	6010)				12 h	r
Project #: 62402797	P.O	. #:				eliver son@						ss): eport	ts@	eice	eng	.com	21 level @ 5.0						A 8260B)) (90	, 8260B)	rinking Wate	(EPA 8015M) LA SINGA AL		2 12	(EPA				□ 24 h	For Lab Use Only
Project Name: Sara Lee-Oal	kland		•	Sar	nple	er Sig		// -		7/	7						EPA 8021	.5 ppb) (90)	(80)	DB-EP	PA 826	ist (EPA	524.2 D	15M)	8045K	8	lyze-Le					r Lab l
Project Address:		Sa	mpling	匚	C	onta	iner		Į	res	erva	tive	I	N	/lati	rix	ğ	0		8	82	826	8	1 SE	=	A A	8	(20)		ے اعق	3			48h	. L
955 Kennedy Street Oakland, California				HCL VOA		es. Poly.	, l			3							MTBE (EPA 8260B) per	MTBE (EPA 8260B) @ 0.5 ppb	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	as Diesel (EF		as Motor Cil	Filter & acidify then analyze-Lead	Leau (o).			72 h	r
Sample Designation		Date	Time	40-ml H	Sleev	Unpres.	Glass	ediar	오	S S S	None	İ	Water	Male Voi:	8	₹	MTBE	MTBE	BTEX	풀	5 Oxy	% Oxo	Lead	Volati	Volati	Volati	I H	1 2	֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֓֡	Filter	W.F.			₽w1	
E45, 5.0		3/29/04	0950		X										区			×	×	X							X		X	$oxed{T}$	floor	\Box			21
E45, 10.0'			1015	Ш	Ц		\perp	┸	Ц	_			┸	Щ	Ц	╧		Ц	1	Ц	<u> </u>						Ц	Ц	\perp	\perp	\perp	\perp			22
E45, 15.0			1020				\perp		Ш			\perp	┸	Щ			L	Ц	Ц	Ц						<u> </u>	Ц	Ш		\perp	\perp		\bot		23
E45, 20.0			1022		Ш		\perp		Ш			_		Ц			<u> </u>	Ц	Ш	Ц					ļ				Ц	\downarrow	\perp	_	\perp		24
E45, 25.0'			1035		Ш										Ц			Ц	Ц	Ц							Ш		Ц		\perp		\perp		25
E45, 28.0			1040		Ц								\perp		Ц			Ш	Ц	Ц						L	Ц	\perp	Ш		\perp		丄		26
E46,5,0'			0940		Ш										Ц		L	Ц	Ц	Ш								L	Ш	\perp	\perp				27
E46,10.0			1118		Ц	Ш									Ц			Ц	Ц	Ш						$oldsymbol{\perp}$	L		Щ		\perp				28
E46, 12.0			1127	L		Ш	\perp				\Box		┸	\perp	\coprod			Ц	Ц	Щ				L	L	$oldsymbol{ol}}}}}}}}}}}}}}$	Ш		\coprod	\perp	ightharpoons	\perp	\perp	<u> </u>	29
E46, 15.0		1	1124		~			<u> Т</u>							И			J	<u> </u>	7							J	<u>/\</u>	9	丄	丄		丄		30
Relinquished by:			Date 3/3/5	7		Time رُد/	ŀ	Receiv	ed by	:									-	mark ease		ser	ıd th	e Pl	OF n	еро	rt to	: e	ticla	abrer	oort	s@e	ticeng	.com	
Relinquished by:			Date			Time	F	Receiv	ed by	:									1							•				•		-	·		
																			Bill	to: F	sc	Envir	onm	ental	Sen	vice	3, 21	0 W	est	Sand	Bar	nk Ro	ad, Co	lumbia	IL
Relinquished by:			Date			Time	F	Receiv	ed by	Lab	orat	ory:		/	_	~ f	`						F	or L	ab l	Jse	Onl	y:	Sa	mple	: Re	eceip	t		
			03300	7		(12	6	$V_{\mathfrak{I}}$	27	m	S	مو		D.	1	rf ly	Łić.	a /		emp	°C		Initia	ls		ľ	Date			Time	\Box	Then	m. ID#	Coola	nt Present
							ľ	•			_	_	- 1	7	79	11/	' '	u				<u> </u>									\perp			<u></u>	

2795 2nd Street Suite 300

Davis, CA 95616 Lab: 530.297,4800 Fax: 530.297,4802

SRG#/Lab No. 55679

Project Contact (Hardcopy or PDF To): Paul Anderson, PSC Environmental Servi	ces	Calif	fornia	EDF	Report	l?	√	Yes		No)			С	hai	n-o	f-C	usto	ody	Re	CO	rd a	and	An	aly	sis R	eque	est	
Address: 210 West Sand Bank Road Columbia, IL 62236					pany Lask 3.2		ode:							T -				Ana	alys	is R	equ	est						TAT	
Phone: (618) 281-1546 Fax: (618)	281-7020	Glob	bal II): T0	500177	342		-				5.0 ppb									er)	d.	200	6010)				☐ 12 hr	
Project #: 62402797 P.O. #:					le To (E scnow.c				ts@e	eicer	ng.com	level @						A 8260B)	OB)	8260B)	524.2 Drinking Water)	2) 5)/ICa	ISI	ad (EPA6				 24 hr	Jse Only
Project Name: Sara Lee-Oakland		Sam	npler	Signa	iture:			/				EPA 8021	0.5 ppb			(B0	(80	EDB-EP	PA 826	ist (EPA	524.2 D	15M) \	4 8015N	lyze-Le					For Lab Use
Project Address:	Sampling	1	Ço	ntaine	r	Ρ	reserv	ative	I	М	atrix] ğ	0	l	8	1 826	\ 82e	A &	3) (E	ļ,	EPA	A 80	(EP/	ana	6			48hr	요
955 Kennedy Street Oakland, California		HCL VOA	9 2	. 7.0gy.	ï							MTBE (EPA 8260B)	MTBE (EPA 8260B)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA	TPH as Diesel (EPA 8015M) 😾	TPH as Motor Oil (EPA 8015M) N	Filter & acidify then analyze-Lead (EPA	W.E.T. Lead (STLC)			☐ 72 hr	
Sample Designation Da		40-ml	Sleeve	Glass	Tedla	오	HNO ₃		Water	Soil	Ąi	MTBE	MTBE	BTEX	F F	5 Oxy	7 Oxyg	Lead	Volatil	Volatile	Volatile	в ндт	тРН а	Filter 8	W.E.T			② 1 wk	
E46, 20.0 - 3/29 E46, 25.0 - 246, 28.0 - 247, 5.0 - 3/28	07 1130		XL							X			X	X	X							X	X						31
E46, 25.0	1144		\coprod						┸	Ц			Ц	Ц	7								X						32
E46,28.0	1155		Ш	\perp						Ш			Ц	Ц	Ц								X						33
E47, 5.0' 3/28	104 1516		\coprod							\coprod			Ш		Ц							\perp							34 35
E47, 10.0	1520		Ш							Ц			Ц	Ш	Ц														35
E47, 15.0	1525	Ш	Ш							Ц		L	Ш		Ш														36
E48, 4.0	1310		\coprod			Ш							Ц	Ш															37
E48, 9.0'	1325		Ш			Ш				Ш		L	Ц	Ц	Ш														38
E48, 12.5'	1330		\coprod							П			Ш	Ц	L														39
E48, 15.0°	1345	<u>ll</u>	1							4			V	Υ.	y							y							40
Relinquished by:	Date 3/3/3	7		ime '336	Receive	ed by:					-				narks ase		sen	d the	PD	F re	port	to:	etic	labre	eporl	ts@eti	ceng.	com	
Relinquished by	Date		T	ime	Receive	ed by:															-				•	_	J.		
														Bill	to: P	SC E	nviro	nme	ntal :	Serv	ices,	210	Wes	t San	d Ba	nk Roa	d, Col	umbia, I	
Relinquished by:	Date		Т	ime	Receige	ed by	Labora	tory:		_/.	N'Y	4						F	or La	ab U	se C	Only:	: S	amp	le R	eceipt			
	6330	07	1	126	Receige	حر	M8.	لمو	_ ,	Ă	refer	Hier	d	To	emp '	'C	li	nitials	3		Da	ite		Tin	ne	Therm	. ID#	Coolant	Present

2795 2nd Street Suite 300 Davis, CA 95616

Lab: 530.297.4800

Fax: 530 297 4802

SRG # / Lab No. 55679

Page 5 of 7

Project Contact (Hardcopy or Paul Anderson, PSC Environ			S	Ca	lifori	nia E	DF I	Repor	t?		7	Yes		N	0				C	ha	n-c	f-C	ust	ody	/ Re	ecc	ord	and	l Ar	naly	sis F	Requ	est	·····
Address: 210 West Sand Ba Columbia, IL 62236	nk Ro	ad						any L sk 3.2		ode	e:	,								T -			An	alys	is F	Requ	uest		— —	_			TAT	
Phone: (618) 281-1546	Fax:	(618) 28	1-7020					0177								-	5.0 ppb									<u>ع</u> ا	Ş		10)				☐ 12 hr	
Project #: 62402797	P.O	.#:						To (I				ss): report	:s@e	eice	ng.c	om	level @						A 8260B)	(B)	(8260B)	rinking Wate	A Shra		ad (EPA 6010)				☐ 24 hr	Jse Only
Project Name: Sara Lee-Oal	kland			Sai	mple	er Sig	nati	19				_					per EPA 8021	@ 0.5 ppb			(B)	0B)	DB-EP	PA 826	st (EPA	524.2 D	15M)	(EPA 8015M)	lyze-Le					For Lab Use
Project Address:		S	ampling		C	Conta	iner		F	Per	erva	itive	Ť	M	latrix		<u>8</u>	8		8	826	826	A. B. E.	3 (F		Ą	8 8	(EP/	ana				48hr	E.
955 Kennedy Street Oakland, California		• :		HCL VOA		s. Poly.											MTBE (EPA 8260B)	MTBE (EPA 8260B)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M)	TPH as Motor Oil	Filter & acidify then analyze-Lead	Lead (STLC)			 72 hr	
Sample Designation		Date	Time	40-ml	Sleeve	Unpres.	Glass	ediar	걸	HNO3	None		Water	į	<u></u> ₹		MTBE	MTBE	BTEX	TPHG	50xyg	7 Oxyg	LeadS	Volatik	Volatile	Volatik	TPHa	TPHa	Filter 8	W.E.T.			☑ 1 wk	
E48, 20,0		3/28/0	7 1400		X									\setminus				×	×	X							X							41
E48, 25.0'		4	1405											Ш				1	Ц	4							Ц							42
E49 5.0'		3/29/0	7 0930	丄	Щ				L					Ш				\Box		Ш						L	Ц							43
E49' 8.5'			1246	丄	Ш									Ш	_				L								Ц		L					44
E49, 10.0			1233		Ц		\perp							Ш					Ц										L					45
E49, 15,0°			1250		Ц									Ш				Ц	Ц	Ш							Ш							46
E49, 20.0			1254		Ш									Ц				\perp	Ц	\coprod							Ш							47
E49, 25.0'			1301	┸	Ш			┸						Ц				\perp	Ц	Ш						<u> </u>	П		L					48
E49, 28.0		سلس	1315	\perp	Ц		\perp						┸	Ц				Ш	Щ	\coprod							Ц		L					49
E50, 5,0'		3/28/			Ψ	Ш	4	1	Ļ				L	Ľ	1			√ 0	_	9							<u> </u>		L				<u></u>	50
Relinquished by:			Date Date	7		Time	76	Receiv										-,,		mark ease		sen	d th	e P[OF re	epor	t to	etic	clabi	repoi	rts@e	ticeng.	com	
			-			_	+												Bitl	to: F	PSC	Envir	onme	ental	Serv	ices	, 210	Wes	st Sa	nd Br	ank Ro	ad, Col	umbia.	īL
Relinquished by:			Date			Time	F	Receiv	ed by	/ Lat	orat	ory:				· \	7		\vdash					or L							Receip		1	
			-0330	67	7	112	6	Ko	7	~	ر2	1ac		A	lna	にし	12	al	ר	emp	°C		Initia	ls		D	ate		Ti	me	Then	n. ID#	Coolan	Present

2795 2nd Street Suite 300

Davis, CA 95616 Lab: 530.297.4800

Fax: 530.297.4802

SRG#/Lab No. ____55679

Project Contact (Hardcopy or Paul Anderson, PSC Environ				Cal	iforr	nia E	DF R	epor	t?		<u>7</u> ,	Yes		No				1	Cha	ain-	of-C	us	tod	y R	ecc	ord	and	ıA t	naly	/sis	Red	que	st	
Address: 210 West Sand Ba Columbia, IL 62236	nk Ro	ad		Sar	nplii	ng C	ompa	any L	og C	ode	:					T						Aı	naly:	sis F	Req	uest	:	_	$\overline{-}$			I	TAT	
Phone: (618) 281-1546	Fax:	(618) 281-7	020					0177			-					5.0 pob										8	_	€					☐ 12 hr	
Project #: 62402797	P.O	. #:						To (E				ss): eports	:@e	icer	g.cor	n [9/8]						8260B)	9	\$260B)	nking Water	Shee o		d (EPA 6010)						For Lab Use Only
Project Name: Sara Lee-Oak	land		·	Sar	nple	er Siç	natu	k:/		 - 		7				Der EPA 8021	@ 0.5 pob			í) () ()	DB-EPA	A 8260	t (EPA	24.2 Dri	SM)	(EPA 8015M)	/ze-Lea					24 hr	Lab U
Project Address:		San	pling		С	onta	iner			rese	erva	tive	Γ	Ма	atrix		6		é	8260	8260	8 E	IS (EF	 	PA 5	A 801	(EPA	ana				ŀ	 48hr	For
955 Kennedy Street Oakland, California				HCL VOA		es. Poly.	ر د ا			3			<u></u>			 MTBE (EPA 8260B)	MTBE (EPA 8260B)	BTEY (EPA 8260B)	BIEA (EFA 8260B) TPH Gas (FPA 8260B)	5 Oxymenates (EPA 8260R)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M)	TPH as Motor Oil	& acidify ther	W.E.T. Lead (STLC)			,	 72 hr	
Sample Designation		Date	Time	40-ml	Sleeve	Unpres.	Glass		오	NO NE	None		Water	Soil	₹	MTBE	M	Ž		Š	ò	Lead	Volatii	Volatii	Volatil	TPH 8	HE I	Filter	W.E.T				[] _{wk}	
E50, 10.0		3/28/07	1447		X		T							X			K		X				Ť	Ĺ		X		T	Ť		П	寸		51
£50. 15.0			1454											1			1	\int_{λ}								1						丁		52
E51.5.0			1660											П			\prod	П				Г				П						T		53
E51,10.0			1610											\prod																		T		54
E51, 15.0'			1620																							П						\Box		55
E51, 20.0			1628																															56
E52, 5.5'			1420																															57
E52, 10.0			1424																							Π						\Box		58
E52, 12,5'			1430											11																				59
E52, 15.5'		1	1432		V									1			J	1	ŊJ	<u> </u>						V								60
Relinquished/by:		•	Date 3/74/3	7		Time		eceive	ed by	: 								╁	emar leas		o sei	nd th	ne Pl	DF re	epor	t to	: eti	clab	repo	orts@	etice	o.co	om	
Relinquished by:			Date			Time	R	eceive	ed by	:					_			1											, -		,		•	
																		Bi	ill to:	PSC	Envi	ronm	enta	Sen	vices	, 210) We:	st Sa	and B	ank f	Road,	Colur	mbia, I	L
Relinquished by:			Date		_	Time	R	ece(V)	ed by	Labo	orato	ory:			1_	4 C4	$\overline{}$	T					For L	ab l	Jse	Only	/: 5	3am	ple F	Rece	ipt			
			0330	0	(112	6	K	کیا	ア	n×	عك	_	£	mil	H	خو(Tem	°C		Initia	ils		D	ate		Ti	ime	The	erm. IC)#	Coolant	Present

2795 2nd Street Suite 300

Davis, CA 95616 Lab: 530.297.4800

SRG#/Lab No. 55679

Page 7 of 7

			.297.4802																												•		'
Project Contact (Hardcopy of Paul Anderson, PSC Environ				Ca	liforr	nia ED	F Re	port	?		✓ Y	es		No				•	Cha	ain-	of-C	ust	ody	/ Re	эсо	rd a	and	An	aly	sis l	Requ	est	-
Address: 210 West Sand Ba Columbia, IL 62236						ng Co OAK3,			g C	ode:						╁	<u> </u>	— —					alys									TAT	
Phone: (618) 281-1546	Fax:	(618) 281-7	7020			ID: T			42			-				١,	add o.e								<u></u>	चु- र)10)				☐ 12 hi	
Project #: 62402797	P.O.	. #:		pai	nder	elivera son@	pscno	ow.c					@ei	icen	g.com	6	BUZT level (Ø 5.					A 8260B)	0B)	(8260B)	rinking Wat	With 5th	٤	ad (EPA 60	:			24 hi	Jse Only
Project Name: Sara Lee-Oal	kland			Sa	mple	er Sigr	atur	In	7							a va	< 5			(g)) (8)	OB-EP	PA 826	st (EP/	324.2 D	15M)	8015N	yze-Le					For Lab Use
Project Address:		San	npling	T	C	ontair	er	Ī	ÍΡ	rese	rvati	ve	Г	Ma	trix		E 6		ĝ	826	826	8	S (E)	<u>=</u>	Α̈́	80	EPA	anal	ایا	1		48hr	Ŗ.
955 Kennedy Street Oakland, California				40-ml HCL VOA	е	Unpres. Poly.										MITDE (EDA 82608)	MIBE (EPA 8260B) @ 05	(TOTAL) TO TO	TPH Gas (FPA 8260B)	5 Oxvgenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M) With Shice	TPH as Motor Oil (EPA 8015M)	Filter & acidify then analyze-Lead (EPA 6010)	W.E.T. Lead (STLC)			72 hr	
Sample Designation		Date	Time	40-m	Sleeve	Unpre	Tedlar		亨		None		Water	Soil	Ą	Į į	M M	1	7 E) NXO	7 Oxy	LeadS	Volatile	Volatile	Volatile	ТРНа	TPHa	Filter 8	W.E.T.			IJ 1 wk	
E52, 20.0		3/28/07	1437		X									X			×		X														61
<u> </u>				L	Ш				_										Ш														
		<u></u> .				\perp			\downarrow	\bot	_	_				┸	$\perp \downarrow$	1	\prod	\perp	_	<u> </u>										ļ	
				1		_	-	Н	_	+	\perp	\bot	<u> </u>			+	\coprod	1	₩-	$\!$	_	<u> </u>		_						\sqcup		_	
				-	Н		\vdash		\dashv	+	+	-				╀	+	+	#	₩-	+	<u> </u>					ļ			\vdash	_	ļ	
	\dashv			┢					-	+	- -	-		_		╀	+	╀	#	#-	┼	-	_		;	+				\dashv	_	<u> </u>	ļ
				╁		_	-	H	-	+	+	-	-			╁	+	╁	H_{1}	+	┼-	-				+		Н	_	\dashv	-		
				┢	Н	_		Н	\dashv	+	+	╁			+	+	$\dashv \dagger$	-	Н	+	╁	╁				\mathcal{H}				\dashv	+	 	
				T			+	Н	\dashv	\top	\dagger	\dagger	<u> </u>			\dagger	$\forall b$			+		 								\dashv	+	ļ ——	-
Relinquished	•		Date / /	<u> </u>		Time	Rec	eive	d by:								_ N7	R	emar			<u>. </u>	.			9_					1	<u> </u>	
/Vil 9/			3/3/=	2		153												P	lease	e als	ser	d the	e PC)F re	port	to:	etic	labr	epor	ts@€	ticeng	.com	
Relinquished by:			Date			Time	Rec	eive	by:																								
Polinguighed by			Data			T : -	<u> </u>											В	ill to:	PSC	Envir											umbia,	IL.
Relinquished by:			Date	مور	7	Time	Rec	ej v	ا yd ت	Labor 7	ratory	y:		l	1	4	+	L	T-		T		or L	ab U			S		_	eceip		Т.	
			033	, 0	((46		5	つ.	m	XI.	عو	_ ,	A	raly	才能	cal	\vdash	Temp °C Initials Date Time Therm. ID # Coolant Pr										Present				

Date: 04/06/2007

Paul Anderson Philip Services Corp 210 W Sand Bank Road Columbia, IL 62236

Subject: 11 Water Samples

Project Name: Sara Lee-Oakland Project Number: 62402797

Dear Mr. Anderson,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 04/06/2007

Subject: 11 Water Samples Project Name: Sara Lee-Oakland

Project Number: 62402797

Case Narrative

Hydrocarbons reported as TPH as Diesel do not exhibit a typical Diesel chromatographic pattern for sample E46. These hydrocarbons are higher boiling than typical diesel fuel.

Hydrocarbons reported as TPH as Motor Oil do not exhibit a typical Motor Oil chromatographic pattern for samples E41 and E46. There are discrete peaks which may or may not be petroleum related.

Hydrocarbons reported as TPH as Gasoline do not exhibit a typical Gasoline chromatographic pattern for samples E41 and E43.

Approved By:

Jde Kiff

Date: 04/06/2007

Project Name : Sara Lee-Oakland

Project Number: **62402797**

Sample: **E41** Matrix: Water Lab Number: 55678-01

Sample Date :03/28/2007

Sample Date :03/28/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	0.62	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	59	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	101		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	04/05/2007
TPH as Motor Oil (w/ Silica Gel)	180	100	ug/L	M EPA 8015	04/05/2007
Octacosane (Diesel Silica Gel Surr)	96.1		% Recovery	M EPA 8015	04/05/2007

Sample: **E42** Matrix: Water Lab Number: 55678-02

Sample Date :03/29/2007

Sample Date .03/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	93.0		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (w/ Silica Gel)	840	50	ug/L	M EPA 8015	04/04/2007
TPH as Motor Oil (w/ Silica Gel)	240	100	ug/L	M EPA 8015	04/04/2007
Octacosane (Diesel Silica Gel Surr)	92.1		% Recovery	M EPA 8015	04/04/2007

Approved By:

del Kiff

Date: 04/06/2007

Project Name: Sara Lee-Oakland

Project Number: **62402797**

Sample: **E43** Matrix: Water Lab Number: 55678-03

Sample Date :03/29/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	0.51	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	53	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	93.3		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	04/04/2007
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	04/04/2007
Octacosane (Diesel Silica Gel Surr)	93.6		% Recovery	M EPA 8015	04/04/2007

Sample: **E44** Matrix: Water Lab Number: 55678-04

Sample Date :03/28/2007

Sample Date .03/20/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	91.3		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	04/04/2007
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	04/04/2007
Octacosane (Diesel Silica Gel Surr)	91.4		% Recovery	M EPA 8015	04/04/2007

Approved By:

del Kiff

Date: 04/06/2007

Project Name: Sara Lee-Oakland

Project Number: 62402797

Sample : **E45** Matrix : Water Lab Number : 55678-05

Sample Date :03/29/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	92.5		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	04/04/2007
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	04/04/2007
Octacosane (Diesel Silica Gel Surr)	91.4		% Recovery	M EPA 8015	04/04/2007

Sample: **E46** Matrix: Water Lab Number: 55678-06

Sample Date :03/29/2007

Sample Date .03/29/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	0.84	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	2.4	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	93.0		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (w/ Silica Gel)	250	50	ug/L	M EPA 8015	04/04/2007
TPH as Motor Oil (w/ Silica Gel)	750	100	ug/L	M EPA 8015	04/04/2007
Octacosane (Diesel Silica Gel Surr)	109		% Recovery	M EPA 8015	04/04/2007

Approved By:

del Kiff

Date: 04/06/2007

Project Name: Sara Lee-Oakland

Project Number: **62402797**

Sample: E47 Matrix: Water Lab Number: 55678-07

Sample Date :03/28/2007

Sample Date :03/28/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/04/2007
Toluene - d8 (Surr)	97.8		% Recovery	EPA 8260B	04/04/2007
4-Bromofluorobenzene (Surr)	104		% Recovery	EPA 8260B	04/04/2007
TPH as Diesel (Silica Gel)	22000	50	ug/L	M EPA 8015	04/04/2007
Octacosane (Diesel Silica Gel Surr)	105		% Recovery	M EPA 8015	04/04/2007

Sample: E48 Matrix: Water Lab Number : 55678-08

Sample Date :03/28/2007

Sample Date :03/28/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	98.5		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	04/03/2007
Octacosane (Diesel Silica Gel Surr)	89.5		% Recovery	M EPA 8015	04/03/2007

Date: 04/06/2007

Project Name: Sara Lee-Oakland

Project Number: **62402797**

Sample: E50 Matrix: Water Lab Number: 55678-09

Sample Date :03/28/2007

Sample Date :03/28/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/02/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	04/02/2007
4-Bromofluorobenzene (Surr)	100		% Recovery	EPA 8260B	04/02/2007
TPH as Diesel (Silica Gel)	7300	50	ug/L	M EPA 8015	04/05/2007
Octacosane (Diesel Silica Gel Surr)	130		% Recovery	M EPA 8015	04/05/2007

Sample: E51 Matrix: Water Lab Number: 55678-10

Sample Date :03/28/2007

Sample Date .03/20/2007	Magazirad	Method		Amalyaia	Data
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/03/2007
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	04/03/2007
4-Bromofluorobenzene (Surr)	97.4		% Recovery	EPA 8260B	04/03/2007
TPH as Diesel (Silica Gel)	3200	50	ug/L	M EPA 8015	04/03/2007
Octacosane (Diesel Silica Gel Surr)	94.6		% Recovery	M EPA 8015	04/03/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 04/06/2007

Project Name : Sara Lee-Oakland

Project Number: 62402797

Sample: **E52** Matrix: Water Lab Number: 55678-11

Sample Date :03/28/2007

Cample Date :00/20/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/03/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/03/2007
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	04/03/2007
4-Bromofluorobenzene (Surr)	98.1		% Recovery	EPA 8260B	04/03/2007
TPH as Diesel (Silica Gel)	200	50	ug/L	M EPA 8015	04/03/2007
Octacosane (Diesel Silica Gel Surr)	92.0		% Recovery	M EPA 8015	04/03/2007

Approved By:

Joel Kiff

Date: 04/06/2007

QC Report : Method Blank Data

Project Name : Sara Lee-Oakland

Project Number : **62402797**

Parameter	Measured Value	Method Reporti Limit		Analysis Method	Date Analyzed			
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	04/03/2007			
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	04/03/2007			
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	04/03/2007			
Octacosane (Diesel Silica Gel Surr)	90.7		%	M EPA 8015	04/03/2007			
TPH as Diesel (w/ Silica Gel)	< 50	50	ug/L	M EPA 8015	04/05/2007			
TPH as Motor Oil (w/ Silica Gel)	< 100	100	ug/L	M EPA 8015	04/05/2007			
Octacosane (Diesel Silica Gel Surr)	88.0		%	M EPA 8015	04/05/2007			
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007			
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007			
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007			
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007			
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	04/02/2007			
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/02/2007			
Toluene - d8 (Surr)	101		%	EPA 8260B	04/02/2007			
4-Bromofluorobenzene (Surr)	100		%	EPA 8260B	04/02/2007			
Benzene	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007			
Toluene	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007			
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	04/04/2007			
Total Xylenes	< 0.50	0.50 ug/L 0.50 ug/L	0.50 ug/L	•	EPA 8260B	04/04/2007		
Methyl-t-butyl ether (MTBE)	< 0.50				•	•	ug/L	ug/L EPA 8260E
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	04/04/2007			
Toluene - d8 (Surr)	97.9		%	EPA 8260B	04/04/2007			
4-Bromofluorobenzene (Surr)	105		%	EPA 8260B	04/04/2007			

		Method			
	Measured	Reportir	ng	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed

Approved By:

Joel Kiff

Date: 04/06/2007

Project Name : Sara Lee-Oakland

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number : **62402797**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed		Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel	Blank	<50	1000	1000	985	984	ug/L	M EPA 8015	4/3/07	98.5	98.4	0.0834	70-130	25
TPH as Diesel	Blank	<50	1000	1000	918	841	ug/L	M EPA 8015	4/5/07	91.8	84.1	8.79	70-130	25
Benzene	55678-01	<0.50	40.0	39.8	46.7	45.1	ug/L	EPA 8260B	4/2/07	117	113	3.20	70-130	25
Toluene	55678-01	<0.50	40.0	39.8	44.8	43.5	ug/L	EPA 8260B	4/2/07	112	109	2.61	70-130	25
Tert-Butanol	55678-01	<5.0	200	199	206	204	ug/L	EPA 8260B	4/2/07	103	102	0.686	70-130	25
Methyl-t-Butyl Ethe	er 55678-01	0.62	40.0	39.8	47.5	46.2	ug/L	EPA 8260B	4/2/07	117	114	2.49	70-130	25
Benzene	55741-01	<0.50	40.0	40.0	37.9	37.4	ug/L	EPA 8260B	4/4/07	94.8	93.6	1.34	70-130	25
Toluene	55741-01	<0.50	40.0	40.0	37.5	36.9	ug/L	EPA 8260B	4/4/07	93.7	92.3	1.49	70-130	25
Tert-Butanol	55741-01	36	200	200	236	234	ug/L	EPA 8260B	4/4/07	99.6	98.5	1.08	70-130	25
Methyl-t-Butyl Ethe	er 55741-01	0.88	40.0	40.0	41.5	41.3	ug/L	EPA 8260B	4/4/07	102	101	0.548	70-130	25

QC Report : Laboratory Control Sample (LCS)

Report Number: 55678

Date: 04/06/2007

Project Name: Sara Lee-Oakland

Project Number: **62402797**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.0	ug/L	EPA 8260B	4/2/07	116	70-130
Toluene	40.0	ng/L	EPA 8260B	4/2/07	111	70-130
Tert-Butanol	200	ng/L	EPA 8260B	4/2/07	101	70-130
Methyl-t-Butyl Ether	40.0	ng/L	EPA 8260B	4/2/07	116	70-130
Benzene	40.0	ng/L	EPA 8260B	4/4/07	92.2	70-130
Toluene	40.0	ng/L	EPA 8260B	4/4/07	91.2	70-130
Tert-Butanol	200	ng/L	EPA 8260B	4/4/07	92.5	70-130
Methyl-t-Butyl Ether	40.0	ng/L	EPA 8260B	4/4/07	98.6	70-130

JOE KITT

Approved By:

KIFF ANALYTICAL, LLC

2795 2nd Street Suite 300

Davis, CA 95616 Lab: 530.297.4800 Fax: 530.297.4802

Project Contact (Hardcopy of Paul Anderson, PSC Enviro	or PDF	To):		California EDF Report? Yes No							Chain-of-Custody Record and Analysis Request																						
Address: 210 West Sand B				Sa	molir	on Co	mpany	/ L oc	· Co	do:		_			+																		
Columbia, IL 62236							Task		, 00	uc.					┢																		
Phone: (618) 281-1546	Fax:	(618) 281-7	7020	Gid	bal l	D: T	06001	7734	2							5.0 ppb									(<u>)</u>	P.	8	101			12] 2 hr	
Project #: 62402797	P.O	. #:					able To							-		©			ı			<u>@</u>		•	Wate			A 60				- I	ا ح
				pai	nders	son@	pscno	w.co	m, e	ticlab	repor	rts@	eice	ng.co		leve			1			Lead Scav.(1,2 DCA & EDB-EPA 8260B)	~	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	(EPA 8015M) W/5/10	(EPA 8015M) W S) 110	(EPA			-	_	For Lab Use Only
Project Name: Sara Lee-Oa	l akland			Sai	mple	r Sidi	nature:	-//	H	<i>y</i>					4	8027	۱					EPA	Volatile Halocarbons (EPA 8260B)	PA8	Drir	3	(<u>§</u>	acidify then analyze-Lead			24	hr	S) ∪s
		_		Mill							<u>₹</u> <u>₹</u>	odd c.o			<u>@</u>	9		PA8	st (E	524.2	15M)	8	yze			lc	7 	Ĺat					
Project Address: 955 Kennedy Street		San	npling		Ç	ontaiı	ner	7	Pre	eserv	ative	\Box	_N	atrix	7	ē d	9)		<u>@</u>	928	826	A & E	s (E	III	₽A €	A 80	(EP	an o				3hr	P.
Oakland, California	i			8 8		٠		ı	ĺ			1				809		8	826	9	(EP	20	ğ	SS	CS (E			y then ar			_	٦	
				호		Poly.							İ			8 8 ★ 5	Š	A 82	EP/	ates	ates	5,	aloca	rgan	rgan	esel	ş	ad idify			72	∟ ? hr	
				Ī	ě	ies g	₫ չ	1	ئے	ا و ا		ا	5		į			쀠	Gas	ygen	ğ	Sca	Ē	ie O	ie O	as D	as M	. اندما	:				
Sample Designation		Date	Time	40-m	Sleeve	Unpres. F	Tedlar	ξ		None		Water		¥		MTBE (EPA 8260B)	MIBE (EFA OZOUB)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	ead	/olat	/olat	/olat	TPH as Diesel	TPH as Motor Oil	Filter &	: I		I.] wk	
E41		3/28/07	1149	6				7	1			\sum_{i}				7	个	軚	X	Ť		_				Ż	X		+		+		01
E42		2/29/07	1538	6									1		1	T	T	T	T	T	\top		\exists			7	X		\top	1	1	\rightarrow	02
E43		3/29/04	1500	6				П				Π			1		П	\prod	\prod		7					T	X		1		+	_	03
E44		3/28/07	1020	6											T	П	1	П	Π				7			T	X		T		1		04
E45		3/29/07	1045	6				П				1				\Box	T	\prod	Π				1			\top	X		+-	<u> </u>	1	_	5
£46		3/29/07	1300	5										\prod	1	11	1	\prod	$\dagger \dagger$				\exists			+	X		\top	11	T	_	06
E47		3/28/07	1540	6					T							11		\prod	Π	T	7	一					-		1	11	†		7
E48		3/28/04	1345	6	_							П			T	1	T	\sqcap	\prod			\dashv							T	 	†		28
E50		3/28/07	1500	6			П									11		П	П		1	\exists							1		T		09
E51.		3/28/07	1630	6				Ŋ	7			1	1		Т	$\exists \downarrow$	小	V,	U							7			\top		1	_	0
Relinquished by:	•		Date		7	Time	Rece	ived I	by:				•	<u>I</u>			R	Rema	rks:							<u> </u>			<u> </u>		ــــــــــــــــــــــــــــــــــــــ		ᅴ
			3/2/2			/43											4,	V					00	_									
Relinquished by:			Date			Time	Rece	ived l	oy:			-	-		_		ď	rieas	e a	ISO S	ena	tne	PDI	- re	oort	to :	etic	labrepo	orts@	eticenç	J.com	1	
										-	till to	P9	C F	viror	ımer	tal C	en.	205	210	Mass	Sand F	lant !	Road, Co	alı vest-	in II								
Relinquished by:			Date	te Time Received by Laboratory:					~ (<u> </u>				<u> </u>											Jumoi	id, IL							
			A2 30	33007 1125 form Se Analytica					For Lab Use Only: Sample Receipt Temp °C Initials Date Time Therm. ID # Co				#T c~	lant Pr																			
				- (`		K	<u>~</u> د					A	nal	1	cal		7.	4			<u>~</u>		03		0	7			ρ-5		ve.	

2795 2nd Street Suite 300

Davis, CA 95616

Lab: 530.297.4800 Fax: 530.297.4802

SRG#/Lab No. <u>55678</u>

Page 2 of 2

5 10 110			.297.4002																															-		
Project Contact (Hardcopy of Paul Anderson, PSC Enviro	nmenta	al Services		Ca	lifor	nia E	DF	Repoi	rt?		√	Yes		No)				С	hai	n-o	f-C	ust	ody	/R	eco	ord	ar	ıd /	٩na	ılys	sis F	Requ	Jes	t	
Address: 210 West Sand B Columbia, IL 62236	ank Ro	oad		Sa	mpl	ing (Comp 3, Ta	oany Lask 3.2	og (Code	e:												An	alys	is F	≷eq	ues	st 1						Ţ	ΑT	
Phone: (618) 281-1546	Fax:	(618) 281-7	7020				-	00177									5.0 ppb									<u>§</u>			1	<u>(</u>)				12] 2 hr	
Project #: 62402797	P.C). #;						e To (ss): reports	s@e	eicer	ng.co	m	level @ 5.						260B)		(80B)	ding Wate				(EPA 6010)						Only
Project Name: Sara Lee-Oa	akland			Sa	mple	er Si	gnat	ure:	<u>/</u>	1	7					\dashv	EPA 80211	qdd			<u>6</u>	9)	B-EPA 8	A 8260B)	(EPA 82	4.2 Drin	V) de la composition della comp	Care C	ze-Leau				1_	4 hr	For Lab Use Only
Project Address:		San	npling	上	(Cont	aine			Pret	erva	ative	Ī	М	atrix		ě	@ 0.5)B)	8260	8260	\& ED	s (EP/	Tis III	PA 52	804	8	ζ -	anary	_				_ 8hr	For
955 Kennedy Street Oakland, California				40-ml HCL VOA		. Poly.				•							MTBE (EPA 8260B) per	MTBE (EPA 8260B)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (FPA 8015M)	Aptor Circ	irrias motor OII (ErA outom)	Fifter & acidity then analyze-Lead	ead (oir				1	ļ
Sample Designation		Date	Time	40-ml	Sleeve	Unpres. Poly.	Glass	Tedlar	亨	EONH	None		Water	Soil	Air		MTBE (E	MTBE (E	BTEX (E	ТРН Gas	5 Oxygei	7 Oxygei	Lead Sc	Volatile F	Volatile (Volatile (TPH as	A HOL	1771 00	MET 1	۳.۳ ۲.				wk	
E52		3/28/07	1430	6			\dashv		X				X					X	X	X							P		Ī	1	1	1	1	Ţ	_	//
				-	<u> </u>	Н	\dashv		}		-		╀	+	\vdash	\dashv	\dashv									_	\vdash	+	+	+	+	-	+	igapla	4	
				\vdash	-	H	\dashv	-	╂		\vdash	-	+	lacksquare	\vdash	┪	\dashv									_	╁	+	+	+	+	+	+	╀	-	
				╁╴			_	-	<u> </u>				t	┢	H	\dashv	\dashv										+	+	+	+	+	+	+	╁	\dashv	\dashv
				┢			1		ļ				Ť			1	\dashv										+	+	\dagger	+	+	+	+	╁	+	
				Γ		П							1	┢		T	7										T	\dagger	\dagger	\dagger	\dagger	+	+	十	\dagger	
																												T	T	T	T	十	1	T	1	
					_		\perp									_													$oldsymbol{\mathbb{T}}$	I	I	ightharpoons	$oxed{\bot}$			
Relinquished by:			Date	<u> </u>	<u> </u>	Time	e F	Receive	ed by	/:									Rem	arks	 :							<u> </u>				丄		<u> </u>		_
Mil []			3/345	7		_	76						_						Plea	ase a	also	sen	d the	PD	F re	por	t to	: et	ticla	brep	orts	s@et	iceng	J.con	n	
Relinquished by:			Date			Time	F	Receive	ed by	r: 																										
Relinquished by:			Date			Time	.	Receive	ed h	/ Lah	orato	201				-			Bill to	o: P:	SC E	nviro											d, Co	lumb	ia, IL	
,			03300	っフ	•	112	5	0	50 Dy	m	, , ,	عو		$^{\prime}$	イン	4	.' 		Te	mp °	с		Fi	or La	ab U		On!	y:		nple Time		ceipt	n. ID#	T C	olant Pr	resent
				((1)	~/	T°	1 /	1/	1	عو	_ 1	4n	ثركيه	tic	લ	(_							-	十		+			+		

Date: 4/6/2007

Paul Anderson Philip Services Corp 210 W Sand Bank Road Columbia, IL 62236

Subject: 1 Soil Sample

Project Name: Sara Lee-Oakland Project Number: 62402797

Dear Mr. Anderson,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Project Name : Sara Lee-Oakland

Project Number: 62402797

Sample: **DRUM 1** Matrix: Soil Lab Number: 55677-01

Sample Date :3/28/2007

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/5/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/5/2007
Toluene - d8 (Surr)	99.4		% Recovery	EPA 8260B	4/5/2007
4-Bromofluorobenzene (Surr)	97.4		% Recovery	EPA 8260B	4/5/2007
TPH as Diesel	170	1.0	mg/Kg	M EPA 8015	4/2/2007
TPH as Motor Oil	< 10	10	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Diesel Surrogate)	98.6		% Recovery	M EPA 8015	4/2/2007

Approved By:

Joel Kiff

Report Number: 55677

Date: 4/6/2007

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Analysis Method

Date

Analyzed

Date: 4/6/2007

<u>Units</u>

Method Reporting

Limit

Measured Value

QC Report : Method Blank Data

Project Name : Sara Lee-Oakland

Project Number : **62402797**

Parameter	Measured Value	Method Reportin Limit	g Units	Analysis Method	Date Analyzed
TPH as Diesel	< 1.0	1.0	mg/Kg	M EPA 8015	4/2/2007
TPH as Motor Oil	< 10	10	mg/Kg	M EPA 8015	4/2/2007
1-Chlorooctadecane (Diesel Surrogate)	73.7		%	M EPA 8015	4/2/2007
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	4/4/2007
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	4/4/2007
Toluene - d8 (Surr)	101		%	EPA 8260B	4/4/2007
4-Bromofluorobenzene (Surr)	96.5		%	EPA 8260B	4/4/2007

rpproved By:

Joel Kiff

KIFF ANALYTICAL, LLC 2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

<u>Parameter</u>

Date: 4/6/2007

Project Name: Sara Lee-Oakland

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number : **62402797**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Percent	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel	55679-57	2.0	20.0	20.0	18.8	18.8	mg/Kg	M EPA 8015	4/3/07	85.8	85.6	0.250	60-140	25
Benzene	55679-58	<0.0050	0.0393	0.0399	0.0414	0.0430	mg/Kg	EPA 8260B	4/4/07	105	108	2.29	70-130	25
Toluene	55679-58	<0.0050	0.0393	0.0399	0.0398	0.0413	mg/Kg	EPA 8260B	4/4/07	101	104	2.18	70-130	25
Tert-Butanol	55679-58	<0.0050	0.196	0.200	0.173	0.173	mg/Kg	EPA 8260B	4/4/07	88.2	86.9	1.55	70-130	25
Methyl-t-Butyl Ethe	er 55679-58	< 0.0050	0.0393	0.0399	0.0415	0.0423	mg/Kg	EPA 8260B	4/4/07	106	106	0.382	70-130	25

Date: 4/6/2007

Project Name : Sara Lee-Oakland

QC Report : Laboratory Control Sample (LCS)

Project Number : **62402797**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
TPH as Diesel	20.0	mg/Kg	M EPA 8015	4/2/07	88.8	70-130
Benzene	0.0393	mg/Kg	EPA 8260B	4/4/07	111	70-130
Toluene	0.0393	mg/Kg	EPA 8260B	4/4/07	107	70-130
Tert-Butanol	0.196	mg/Kg	EPA 8260B	4/4/07	96.9	70-130
Methyl-t-Butyl Ether	0.0393	mg/Kg	EPA 8260B	4/4/07	115	70-130

Approved By:

Joe Kiff

April 05, 2007

Joel Kiff Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Subject: Calscience Work Order No.: 07-03-2043

Client Reference: Sara Lee-Oakland

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/31/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Analytical Report

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Date Received: Work Order No: Preparation: Method:

07-03-2043 EPA 3050B EPA 6010B

03/31/07

Project: Sara Lee-Oakland

Page 1 of 1

rojecti Cara 200 Cartaria							•	ago i oi i
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
DRUM 1		07-03-2043-1	03/28/07	Solid	ICP 5300	04/02/07	04/03/07	070402L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Lead	6.46	0.500	1		mg/kg			
Method Blank		097-01-002-9,079	N/A	Solid	ICP 5300	04/02/07	04/03/07	070402L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	ND	0.500	1		mg/kg			

Quality Control - Spike/Spike Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: 03/31/07 07-03-2043 EPA 3050B EPA 6010B

Project Sara Lee-Oakland

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-03-1935-2	Solid	ICP 5300	04/02/07	04/03/07	070402S06
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD CL	Qualifiers
Lead	85	101	75-125	10 0-20	

MM.

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method:

07-03-2043 EPA 3050B EPA 6010B

N/A

Project: Sara Lee-Oakland

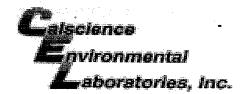
Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LCS Batch Number
097-01-002-9,079	Solid	ICP 5300	04/03/07	070403-I-09	070402L06
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL Qualifiers
Lead		25.0	24.7	99	80-120

RPD - Relative Percent Difference ,
7440 Lincoln

ce, CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 07-03-2043


Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

2795 Second Street, Suite 300 Davis, CA 95616

Lab: 530.297.4800 Fax: 530 297 4808 Cal Science Environmental 7440 Lincoln Way Garden Grove, CA 92841

/ Wildly Cical LL		1 4	۱۸. د		201.	+00	U						7	14	-895-	5494		La	ab No.	- (2	<u>,0~,</u>	/ P	age <u>1</u>	of 1		
Project Contact (Hardcor	oy or PDF	to):		E	DF	R	ер	ort	?		_x_	Yes	s	^					f-Cus			_			Requ	
Scott Forbes																				•				•	•	
Company/Address:				_			but n						this	section	n:					-					9 6	
Kiff Analytical, LLC	;			Sa	ampl	ling	Com	pan	y Lo	g C	ode:								Anal	ysis R	equest	ŧ			Date due:	
Phone No.:	FAX N	No.:		GI	loba	I ID:			Т	060	001	177	'34	2									T	T		
Project Number:	P.O. N	No.:		E	DF D	elive	erabl	e to	(Err	nail A	Addı	ress	s):			\dashv								İ		
62402797		55677	•	int	box(@ki	ffana	alyt	ical	100.	m											İ			<u> </u>	<u>ا</u> ک
Project Name:	<u> </u>			_=			dres] 		1						2007	ō
Sara Lee-Oakland				lint	box	@ki	ffana	alvt	ical	.cor	m						١ 6010		•	1					, 2	Use
Project Address:		Samplii	ng				iner				erva	ıtive	9		latr	ix	y EPA								April 6,	For Lab Use Only
Sample								Glass Jar			င်	ZnAc ₂ & NaOH		2			Lead by								Ą	For
<u> </u>				≼	Pol	Sleeve	Amber	ass	HNO3	H ₂ SO₄	Na ₂ S ₂ O ₃	\$ 5 5	NONE	WATER	SOIL	<u>.</u>	Total L									
Designation		Date	Time	1≥	1 %	Š	₹	ত	회	Ŧ	ž	Zu/	ž	8	S	₹			Ĺ	ļ	ļ			_		
DRUM 1		3/28/07	1650					1					1		1		Х	İ							×	
																				1-						
			 	+-	╁	 	H	_	\neg			\dashv				Н							+-	+		
		<u> </u>		┼┈	₩	<u> </u>		_		_		_				Ш		<u> </u>	<u> </u>				\bot		ļ	
										ľ		i														
				十	1		\vdash	_			_					\vdash			 	 		+	+-	 	-	
				┼	-			\dashv				_			_	\square			ļ							
																		i			ļ					
				1	t	-	H	\dashv	\dashv		\dashv	\dashv			\dashv	\vdash			-		 	+	+	-	+	
				ļ	_		-	_		_						Ш			ļ				<u> </u>			
																									ļ	
Relinquished by:	-XPC		Date	1	ime	Rec	eive	d by:	:									Re	marks:	.1.	<u>-1</u> ,					
	Analy	tical	033007	191																						
Date				Ti	ime	Rec	eive	d by	:																	
Relinquished by:	nquished by: Pa				ime	Rec	eive	d by	#ab	orati	9ry: Liv	K				_		Bil	to: A	ccoun	ts Pa	yable			·	
	pate 3 Billo					<u></u>		\mathcal{L}	// /		-0	VI										-				

WORK ORDER #: 07 - 0 3 - 2 0 4 3

Cooler _____ of ____

SAMPLE RECEIPT FORM

CLIENT:	DATE: 3/31/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): 7.6 °C Temperature blank. 3.6 °C IR thermometer. Ambient temperature.
°CTemperature blank.	Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not	Intact) : Not Present:
SAMPLE CONDITION:	U
Chain-Of-Custody document(s) received with samples	Initial:
COMMENTS:	

2795 2nd Street Suite 300

Davis, CA 95616 Lab: 530.297.4800 Fax: 530.297.4802

SRG # / Lab No. 55677

Page I of I

Designat Control (U.S.)	- r	ax: 530.	.297.4802	1 -																															
Project Contact (Hardcopy or Paul Anderson, PSC Environ	mental S	Services		Ca	alifor	nia E	DF I	Repor	t?		V	Yes		N	0				C	hai	n-o	f-C	ust	ody	/ R	ecc	ord	and	A t	nal	ysis	Req	ues	st	
Address: 210 West Sand Ba Columbia, IL 62236	ink Road	d						any L		Code	e:							1	<u> </u>	T			An	alys	sis F	≷eq	ues	t	_		_		Ŧ	ГАТ	
Phone: (618) 281-1546	Fax: (6	518) 281-7	7020					0177									5.0 ppb									5			<u></u>		QION			 2 hr	
Project #: 62402797	P.O. #	¥:						To (ts@	eice	ng.c	om	level @						(8260B)	B)	8260B)	nking Wate			d (EPA 60		EPA LU		[┚┃	For Lab Use Only
Project Name: Sara Lee-Oak	kland		i .	Sa	mpl	er Si	may a	ire://	7/		-					╗	EPA 8021	@ 0.5 ppb			(<u>B</u>)B)	DB-EPA	A 8260	t (EPA	24.2 Dri	5M)	(EPA 8015M)	/ze-Lea		Dy K			4 hr	Lab U
Project Address:		San	npling	T	(Conta	iner			res	erva	ative	Т	М	latrix		ě	(a)		l 🚊	826(826(\ & E	s (EF	🚆	PA 5	801	₽	anal		4			l8hr	Ρ̈́
955 Kennedy Street Oakland, California		İ		ICL VOA		. Poly.											MTBE (EPA 8260B)	MTBE (EPA 8260B)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav.(1,2 DCA & EDB-EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M)	TPH as Motor Oil (Filter & acidify then analyze-Lead (EPA 6010)	W.E.T. Lead (STLC)	ed had			 2 hr	
Sample Designation		Date	Time	40-ml HCL	Sleeve	Unpres.	Glass	ediar	고 무	آ NO N	None		Water	Soil	Air Air		MTBE (E	MTBE (E	BTEX (E	TPH Ga	5 Oxyge	7 Oxyge	ead Sca	Volatile I	/olatile (/olatile (PH as [PH as I	-ilter & a	W.E.T. L	Total		Ę	y wk	
DRUM I	3	3/28/07	1650		X								Ţ	X				Ż	Ž	X					Ĺ		X	\boxtimes		Ĺ	X		Ï	VVIX	01
				╀	-		4			\dashv			1	\perp	_				_				_				_	igspace	igspace	$oldsymbol{\perp}$			\downarrow		
				+	<u> </u>		+	-	Н	_		+	╁	_	+	Н			-								\vdash	\vdash	\vdash	╀	-	-	╀	4	_
				╁╴			\dagger					+	1	\dagger											_			<u> </u>	+	+	\forall	-	十	\dashv	
																												T			П		\dagger	寸	
				ļ_			_				_	\perp																	$oxed{\Box}$				I		
				ļ			-		H	4	4		-	+		\vdash	-						_				_		<u> </u>	igg			\bot		
				-			+		H	1	\dashv	-	╁	+	1								_	_			-	\vdash	├	\vdash	\vdash		+		-
Relinquisted by:			Date	7	<u>. </u>	Time		eceive	ed by	_				<u>.</u>						narks]						<u> </u>		<u>. </u>	<u></u>	<u> </u>	-		
Relinquished by:			Date	7_		Time	_	eceive	d by	:				-					Ple	ase a	aiso	seno	the	PD)F re	port	to:	etic	clabr	repoi	rts@	eticenç	J.COI	m	
Deline inhed h					_														Bill t	o: P	SC E	nviro	nme	ntal	Servi	ices,	210	Wes	t Sa	nd Br	ank R	oad, Co	olum'	bia, IL	\dashv
Relinquished by:	,				,	Time	R	eceive	d by	Lab	orato	ry:		V	(1	F7	2						Fo	or La	ab U	se (Only	: 8	amı	ple F	Recei	pt	_		
	0330		0330	٥	/	1/2	5/	(0	ヘン	7		وم	_	Ar	ع م (Xi	Ca	/ l		mp °			nitials				ate	_		me		rm. ID #		polant Pi	
							[<u> </u>			_			, ,		• • •		•	$oldsymbol{L} oldsymbol{L}$.4		KU		`	0	53	50	/	15	5	IR	2-5		Xc	5

Appendix E

Recommended Minimum Verification Analyses for Underground Storage Tank Leaks

RECOMMENDED MINIMUM VERIFICATION ANALYSES FOR UNDERGROUND STORAGE TANK LEAKS

For use by Unidocs Member Agencies or where approved by your Local Jurisdiction

TABLE #2 Revised March 1, 1999

HYDROCARBON LEAK	SOIL ANALYSIS WATER ANALYSIS			
HI DROCARBON DEAK	(SW-846 Method)		(Water/Waste Water Method)	
		,	•	•
Gasoline	TPHG	8015M or 8260	TPHG	8015M or 524.2/624 (8260)
(Leaded and Unleaded)	BTEX	8260	BTEX	524.2/624 (8260)
	EDB and EDC	8260	EDB and EDC	524.2/624 (8260)
	MTBE, TAME, ETBE, DIPE, and TBA by 8260 for soil and 524.2/624 (8260) for water			
	Total Lead	AA	Total Lead	AA
		Optional*		
	Organic Lead	DHS-LUFT	Organic Lead	DHS-LUFT
Unknown Fuel	TPHG	8015M or 8260	TPHG	8015M or 524.2/624 (8260)
	TPHD	8015M or 8260	TPHD	8015M or 524.2/624 (8260)
	BTEX	8260	BTEX	524.2/624 (8260)
	EDB and EDC	8260	EDB and EDC	524.2/624 (8260)
	MTBE, TAME, ETBE, DIPE, and TBA by 8260 for soil and 524.2/624 (8260) for water			
	Total Lead	AA	Total Lead	AA
		Optional		
	Organic Lead	DHS-LUFT	Organic Lead	DHS-LUFT
Diesel, Jet Fuel, Kerosene,	TPHD	8015M or 8260	TPHD	8015M or 524.2/624 (8260)
and Fuel/Heating Oil	BTEX	8260	BTEX	524.2/624 (8260)
J	EDB and EDC	8260	EDB and EDC	524.2/624 (8260)
	MTBE, TAME, ETBE, DIPE, and TBA by 8260 for soil and 524.2/624 (8260) for water			
Chlorinated Solvents	CL HC	8260	CL HC	524.2/624 (8260)
	BTEX	8260 or 8021	BTEX	524.2/624 (8260) or
				502-2/602 (8021)
Nonchlorinated Solvents	TPHD	8015M or 8260	TPHD	8015M or 524.2/624 (8260)
	BTEX	8260 or 8021	BTEX	524.2/624 (8260) or
				502.2/602 (8021)
Waste, Used, or Unknown Oil	TPHG	8015M or 8260	TPHG	8015M or 524.2/624 (8260)
	TPHD	8015M or 8260	TPHD	8015M or 524.2/624 (8260)
	O&G	9070	O&G	418.1
	BTEX	8260	BTEX	524.2/624 (8260)
	CL HC	8260	CL HC	524.2/624 (8260)
	EDB and EDC	8260	EDB and EDC	524.2/624 (8260)
	MTBE, TAME, ETBE, DIPE, and TBA by 8260 for soil and 524.2/624 (8260) for water			
	Metals (Cd, Cr, Pb, Ni, Zn) by ICAP or AA for soil water			
	PCB,† PCP,† PN	NA, CREOSOTE by 8270 for	soil and 524/625 (8	270) for water
> 10/mma				

NOTES:

- 1. 8021 replaces old methods 8020 and 8010.
- 2. 8260 replaces old method 8240.
- 3. Reference: Table B-1 in Appendix B of "Expedited Site Assessment Tools for Underground Storage Tank Sites: A Guide for Regulators" (EPA 510-B-97-001).

Optional per Regional Water Quality Control Board (Board), but local agency that regulates UST system <u>may require</u> analysis for Organic Lead. Check with your local agency regarding their requirements.

f If found, analyze for dibenzofurans (PCBs) or dioxins (PCP).