

RECEIVED By dehloptoxic at 8:57 am, Dec 13, 2006

1330 S. Bascom Ave., Suite F San Jose, CA 95128

Tel (408) 559-1248 Fax (408) 559-1224

Mr. Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: SLIC Case RO0002567, Chung Property, 2942 San Pablo Avenue, Oakland, CA Document Transmittal

Dear Mr. Wickham:

This document is being submitted to the Alameda County Environmental Health Services (ACEH) under the requirements of the SLIC case at the above referenced property. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document is true and correct to the best of my knowledge.

Sincerely,

Mr. James Chung San Pablo Auto Body

Corrective Action Plan with Additional Investigation and Groundwater Sampling Report for 2942 San Pablo Avenue Oakland, California

Performed For:

Mr. James Chung San Pablo Auto Body 2926 San Pablo Avenue Oakland, CA 94608

Prepared By:

PIERS Environmental Services, Inc. 1330 S. Bascom Avenue, Suite F San Jose, CA 95128

November 2006 Project: 6273

November 7, 2006

1330 S. Bascom Ave., Suite F San Jose, CA 95128

Tel (408) 559-1248 Fax (408) 559-1224

Mr. Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: Corrective Action Plan with Additional Investigation and Groundwater Sampling Report for 2942 San Pablo Avenue Oakland, CA

Dear Mr. Wickham:

PIERS Environmental, Inc. (PIERS) has prepared this Corrective Action Plan (CAP) for the subject site in response to a letter from Mr. Jerry Wickham of Alameda County Environmental Health Services (ACEH) dated February 8, 2006.

This CAP is intended to follow the format of the requirements presented in the California Code of Regulations, Title 23, Article 11, Section 2725, Subsection (d) for Corrective Action Plans. The feasibility study presented in this CAP has been evaluated by taking into account historical hydrogeological and chemical analytical data. Using this data, PIERS has developed a remedial action plan. This remedial action plan is presented in a conceptual form and may require modifications prior to implementation, as additional investigative work is also proposed.

This CAP also reports the results of recent additional investigative work completed to characterize the vertical and lateral extent of volatile organic compounds (VOCs), particularly trichloroethene (TCE) and its breakdown products, and metals and cyanide at the above-referenced site. This work was proposed in PIERS "Work Plan for Additional Site Characterization" dated March 27, 2006 and PIERS "Addendum to Work Plan for Additional Site Characterization and Report of Well Survey" dated April 18, 2006. The work plan and addendum were conditionally approved by ACEH in a letter dated May 4, 2005.

The scope of investigative work included 1) obtaining drilling permits from the Alameda County Public Works Agency, 2) collecting near surface soil samples and soil vapor samples using a Geoprobe drill rig; 3) installing two additional groundwater monitoring wells; 4) collecting soil, vapor and groundwater samples; 4) submitting the soil, vapor and groundwater samples for chemical analysis; 5) data analysis and interpretation; and 6) preparation of this CAP.

Environmental "Hot-Line" (800) 559-1248

SITE DESCRIPTION AND BACKGROUND

The Property is located on the eastern side of San Pablo Avenue, at the intersection with 30th Street, in the City of Oakland, Alameda County, California (see Figure 1). Previous historical research for the Property completed during a Phase I Environmental Site Assessment (ESA) indicated that a metal plating works operated on the eastern portion of the site, and a fuel dispenser island was located on the western portion of the site, near San Pablo Avenue. PIERS recommended that exploratory soil borings should be installed in the vicinities of the plating works and the fuel dispenser island. This research, and the initial soil and groundwater sampling completed based on those findings, is summarized in PIERS' ESA dated May 2003.

A previous environmental report entitled "Soil/Environmental Report, 2942 San Pablo Avenue, Oakland, California", by Globe Soil Engineers, dated November 19, 1999, had been completed for the Property. No evidence of environmental concerns was found during their investigation; however, the three exploratory soil borings installed by Globe Soil Engineers were sited without knowledge of the prior service station or plating works, and were not installed close enough to the site to pick up any compounds of concern.

Based on the initial results of soil and groundwater sampling by PIERS, two more phases of exploratory soil borings were completed. Based on the analytical results, the groundwater beneath the Property at the location of the former service station has been impacted by a release of hydrocarbons. Also, solvents, particularly TCE, were present in elevated concentrations in groundwater, and at low concentrations in soil. Based on the historical research, the solvents in soil appeared to have originated from the former metal plating works. This work was summarized in PIERS' reports entitled "Report of Additional Phase II Investigation" and "October 2003 Report of Additional Phase II Investigation" dated September 9, 2003 and October 3, 2003, respectively.

Based on those findings, a work plan entitled "Work Plan for Site Characterization" dated March 18, 2004, was prepared. The purpose of the work was to further characterize the vertical and lateral extent of volatile organic compounds (VOC), particularly trichloroethene (TCE) and its breakdown products. The work plan was reviewed and approved with revisions by Mr. Barney Chan of Alameda County Environmental Health Services (ACEH) in a letter to the Property owner, Mr. James Chung, dated March 31, 2004. Revisions to the work plan requested by Mr. Chan were summarized in PIERS' work plan addendum dated April 12, 2004. In addition, installation of three groundwater monitoring wells was proposed. The work plan addendum was subsequently verbally approved by Mr. Chan.

Following work plan approval, a cost estimate was prepared and a loan from the City of Oakland Community and Economic Development Agency (OCEDA) was obtained for the Property owner for this work.

On July 20 through 22, 2004, a Geoprobe drill rig equipped with the membrane interface probe (MIP) system was used to obtain qualitative data on total volatile organic compound (VOC) concentrations, and data on conductivity that is useful for evaluating grain size and permeability of soils. On July 22, 23, 26 and 27, 2004, additional soil borings were completed with soil and groundwater sampling, and three groundwater monitoring wells were installed. The MIP data allowed a determination of focused sampling intervals for both soil and groundwater in the borings.

The soil samples collected were primarily to characterize conditions at and near the source area, and to determine the vertical extent of soil impacts. In addition to the source area, soil samples were collected from a soil boring beneath the underground hoist and at the locations of wells MW2 and MW3. These soil samples were collected to provide additional site characterization data and to allow correlation between MIP data and laboratory analyses. The sample locations are shown on Figure 2.

This investigative work was successful in identifying a source of TCE contamination in soil. The highest concentrations in soil, which began within a few feet of the surface, correspond to an unpaved area on the eastern side of an old concrete slab from the former plating works. Initially, five soil borings had been proposed in this area. The work proceeded in an iterative manner with each new boring relocated based on previous data. Additional soil borings to those proposed were completed with both the MIP system, and with soil and groundwater sampling by Geoprobe, in an attempt to delineate this source area for possible excavation. The borings located in this area are designated as B9B through B9M. The highest concentrations and the nearest surface impacts, based on the MIP data available on site during drilling, appeared to occur in B9I, B9D, B9H, and B9G.

Three monitoring wells (MW1 through MW3) were constructed using one-inch-diameter casing with a pre-packed filter sand of #2/16 sand, and were subsequently sampled for four consecutive quarters.

This investigation identified the source of the TCE impacts in groundwater as an unpaved area just to the east of a concrete-paved area at the former metal plating works. The highest concentrations of TCE in near surface soils were found in boring B9D. The highest concentration of TCE in soil was found at boring B9I at a depth of 14 feet below grade. The TCE in the vicinity of these soil borings represents a source area that will continue to contribute to the dissolved concentrations in groundwater until the source is remediated and the surface is paved.

The primary constituent of concern (COC) in soil and groundwater at the Property is TCE and its breakdown products.

Total Petroleum Hydrocarbons (TPH) as gasoline was also detected in groundwater at the TCE source area during this investigation, in concentrations above the Environmental Screening Levels (ESLs). The highest concentration was detected at B9I at 141,000 parts per billion (ppb); however, in this and other samples the laboratory noted that this concentration was partly due to a single peak of TCE. Benzene has not been detected in any water sample collected to date above a concentration of 37 ppb (Table 2A).

Lateral migration at the Property occurs preferentially along the discontinuous layers of more permeable gravelly silt. As the depth to groundwater is approximately 15 feet below grade, there does not appear to be the potential for groundwater to encounter utilities that could act as preferential pathways.

As refusal was encountered with both the MIP sampling probe and the dual casing setup on the Geoprobe rig, the vertical extent of contamination in groundwater is not entirely defined, but appears to attenuate with depth, based on sampling at B9B and B9I at the source area.

RECENT FIELD ACTIVITIES – THIS INVESTIGATION

INSTALLATION OF WELLS MW4 AND MW5

On September 19, 2006, groundwater monitoring wells MW4 and MW5 were completed at the Property by Vironex, a state-licensed driller. Prior to drilling, a health and safety plan was prepared, the well locations were marked with white paint and Underground Service Alert (USA) was notified. Also, a permit was obtained from the Alameda County Department of Public Works (ACDPW). After completion of the monitoring wells, Department of Water Resources Well Drillers Reports were completed and sent to ACDPW. The well locations are shown on Figure 2. The boring logs and well construction logs are presented in Appendix C.

Both wells were completed using a Geoprobe 6600. Well MW4 was completed using a dual casing setup where sampling was performed within inner 2-1/4 inch rods that were contained in 3-1/4 inch rods. In well MW4, the first encountered abundant water zone was a slightly coarser (trace sand) silt layer between about 36.5 and 37.5 feet below grade, which coincided with the start of a dark green reducing zone. Upon completion of continuous soil sampling to approximately 41 feet below grade, a "prepack" well was installed to approximately 40 feet below grade. The prepack well consisted of one-inch-diameter casing with five feet of 2/16 sand contained within a wire mesh. The well was screened from approximately 35 to 40 feet below grade. The sand pack extended from approximately 34.5 to 40 feet below grade. A foam collar was placed over the sand pack and then a two-foot bentonite "packer" was placed over the foam collar, within the interval from approximately 32.5 to 34.5 feet below grade. The annulus from the surface to 32.5 feet below grade was filled with neat cement grout. A locking well box was placed at the surface.

Well MW5 was first continuously sampled for lithology using 2-1/4 inch diameter rods to approximately 40 feet below grade. The 3-1/4 inch rods were then inserted to the total depth and the well was constructed in the same manner as MW4. The lithologic conditions encountered were similar to those encountered in MW4.

During drilling on September 19, 2006, the depth to groundwater in wells MW1, MW2, and MW3 was measured at approximately 11.82 feet, 14.30 feet and 14.17 feet below the tops of the casings.

At MW4, TCE had previously been detected in samples above 10 feet below grade. To further delineate these impacts, soil samples were collected at approximately 13.5 feet, 17.5 feet and 22.5 feet below grade.

No odors or obvious evidence of contamination were observed during drilling of either of the wells. The soil samples selected for analyses were cut from the plastic liner retrieved from the sampling tool. The ends of the samples were covered with Teflon tape and plastic caps. The samples were labeled, entered on a chain of custody form, and placed in a cooler, on ice, prior to pickup by a laboratory courier for transport to the laboratory.

The drilling rods and tools were decontaminated prior to use. Soil generated was stored on site in 55-gallon drums prior characterization for proper disposal.

SURFICIAL SAMPLING

On September 19 and 20, sixteen discrete soil samples were collected at approximately 0.5 feet below grade. Locations are shown on Figure 2. A few samples were collected at approximately one foot below grade where base gravels or old pavement was thick. All of the soil samples were collected using a Geoprobe, except for four samples in the "hummocky area", which were collected by using a shovel and directly filling the brass liners. The soil samples were handled as described above. No odors or obvious evidence of contamination were observed in these soil borings, except at SS3A, where an odor of hydrocarbons was detected from approximately 2 feet below grade, and therefore an additional soil sample was collected at that depth.

Brick fragments were encountered in many of the samples, and brick paving was encountered around well MW5. In addition to some brick, the samples generally consisted of silt with gravel base rock. The laboratory was instructed to perform the metals analyses on the sediment portion of the samples.

The drilling rods and tools were decontaminated prior to use. All soil borings were sealed using neat cement grout. Soil generated was stored on site in 55-gallon drums prior to characterization for proper disposal.

SOIL VAPOR SAMPLING

On September 20, 2006, six soil vapor samples were completed at the Property in the area of former soil boring B10B and new well MW4. The soil vapor analytical data are presented in Appendix B and summarized in Table 7. The sample locations are shown on Figure 2. The soil vapor samples were collected using a Geoprobe direct push rig. An expendable drive point was advanced ahead of the drilling rods at each location to an approximate depth of 5 feet below grade. A Teflon tubing sampling line was installed into the drilling rods. The tubing was fitted with a threaded fitting that attached to a "point holder" with an O-ring to create a seal. The sampling line was capped with a vapor-tight valve. The drilling rods were then raised approximately six inches to create a void. Sampling took place after a 20 to 30-minute interval to allow conditions to equilibrate.

The soil vapor samples were collected using Summa canisters and a manifold system that allowed purging to a separate canister. After checking for air leaks, the tubing was purged of approximately three casing volumes of air and then a soil vapor sample was collected using a vacuum pump.

Hydrated bentonite was placed around the drill rods prior to sampling to halt air migration. The purging and the vapor sample collection were performed at a purge rate of between 100 and 200 milliliters per minute, using a regulator.

The drilling rods and tools were decontaminated prior to each use. All soil vapor borings were sealed using neat cement grout. Soil generated was stored on site in 55-gallon drums for proper disposal.

MONITORING AND SAMPLING AND SURVEYING OF THE WELLS

On October 9, 2006, groundwater samples were obtained from monitoring wells MW1 through MW5 at the above-referenced site. The wells were also developed by purging, and monitored. The groundwater monitoring data is summarized n Table 1 and presented in Appendix A.

The groundwater samples were collected as follows: prior to sampling, the wells were checked for depth to water, and for the presence of free product and/or sheen. No free product or sheen was noted in any of the wells.

Each well was bailed until the volume of water withdrawn was equal to at least ten well casing volumes. To assure that a representative groundwater sample was collected, periodic measurements of the temperature, pH and specific conductance were made. The sample was collected after the temperature, pH, and/or specific conductance reached relatively constant values.

Water samples were collected using new, disposable bailers. An effort was made to minimize exposure of the samples to air. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. Sample containers were obtained directly from the analytical laboratory. Sampling equipment was cleaned after its use at each sampling location. Thermometers, pH electrodes, and conductivity probes were also cleaned after sampling.

Subsequent to collection, the samples were immediately stored on ice in an appropriate ice chest. Excess water resulting from the sampling and cleaning procedures was collected and contained in pre-labeled, 55-gallon drums on-site pending receipt of laboratory analyses.

On September 26, 2006, the two new wells and three existing wells were surveyed by CSS, a licensed surveying company. The survey data is attached in Appendix D. The wells were surveyed to a new benchmark required by Geotracker, and the elevations of the tops of casings differed from previous survey data. Based on a discussion with the surveyor, it is known that there is a difference between these benchmarks and the differences between the original surveyed elevations and the new elevations is within that range.

HYDROLOGY

On October 9, 2006, the measured depth to groundwater in the three monitoring wells varied between 12.99 feet and 14.67 feet below the tops of the well casings. The depths to groundwater in the wells MW1 through MW3 increased between approximately 2.32 feet and 2.73 feet since the last event on May 12, 2005, but are within previous seasonal fluctuation ranges. On October 9, 2006, the direction of groundwater flow at the Property was to the west at an approximate gradient of 0.024 feet per foot, generally similar to previous events. Monitoring data collected this quarter is summarized on Table 1 and Figure 3.

The elevation of groundwater in MW1 appears anomalous to the other wells, and was not used in calculating the direction of groundwater flow presented on Figure 3. However, the groundwater flow direction is unchanged when the data from MW1 is used in contouring.

The measured hydraulic gradient (0.024 feet per foot) continues to be steeper compared to typical gradients along the East Bay Plain.

LABORATORY ANALYSES

Samples were transported under Chain-of-Custody procedures to McCampbell Analytical Laboratory in Pittsburg, CA. The soil samples from MW4 were analyzed for VOCs by EPA Method 8260. The surficial samples were analyzed for the CAM 17 metals, cyanide, and hexavalent chromium. Sample SS3Ad2 was analyzed for VOCs by EPA Method 8260 and for TPH as diesel and motor oil by EPA Method 8015. The laboratory analytical data are summarized in Tables 5A, 5B, and 6.

The soil vapor samples (SV1 through SV6) were analyzed for VOCs by Method TO-15. The analyses were performed by Air Toxics Limited in Folsom, California, which also provided the Summa canisters and manifolds used in collecting the samples. The soil vapor analytical results are summarized in Table 7.

The groundwater samples collected from the five monitoring wells were analyzed for VOCs by EPA Method 8260, TPH as gasoline by EPA Method 8015, the Cam 17 metal, hexavalent chromium (TTLC), and cyanide. The analytical results are summarized in Tables 2, 3, and 4. The groundwater samples for metals analyses were filtered in the field of sediment prior to transport to the analytical laboratory.

Copies of laboratory analytical results are presented in Appendix B.

ANALYTICAL RESULTS – SOIL FROM MW4 AND SS3Ad2

The analytical results of the soil samples collected from MW4 at depths of approximately 13.5 feet, 17.5 feet and 22.5 feet below grade indicated detectable concentrations of TCE and cis-1,2 dichloroethene that ranged up to 2.3 parts per million (ppm). The concentrations of TCE at 13.5 and 17.5 feet below grade in MW4 (2.3 and 1.9 ppm, respectively) were in excess of the Environmental Screening Level (ESL) of 0.73 ppm.

In SS3Ad2, where an odor of hydrocarbons was observed, TPH as diesel and motor oil were detected at concentrations of 120 ppm and 1,000 ppm, respectively. Also, Methyl-tertiary-butyl-ether (MTBE) was detected at a concentration of 0.058 ppm, and BTEX (benzene, toluene, ethylbenzene and xylenes) constituents were detected ranging from 0.060 (ethylbenzene) to 0.33 ppm (1,2,4-trimethylbenzene). These sample results are summarized on Table 6.

To further define the extent of hydrocarbon contamination at this location, a soil boring should be extended to groundwater at this location and soil samples collected at every five-foot interval and at any obvious contamination. A grab groundwater sample should also be collected. The soil samples should be analyzed for TPH as diesel and motor oil and EPA method 8260 constituents.

ANALYTICAL RESULTS – SURFICIAL SOIL SAMPLES

The analytical results of the composite soil samples collected for analyses for the CAM 17 metals, hexavalent chromium and cyanide indicated concentrations of some metals in excess of the commercial ESLs. Therefore, as proposed in the work plan, the discrete soil samples were analyzed for the particular metals that were in excess of the ESLs. These sample results are summarized on Tables 5A and 5B.

Arsenic was detected in five discrete samples at concentrations above the ESL (5.5 ppm), ranging up to 8.1 ppm. It is possible that all of the arsenic detected is naturally occurring, as it is within published background ranges, and relatively uniformly distributed.

Soil samples 3B through 3D, collected nearest the auto body shop building on the southern portion of the Property, contained elevated concentrations of cadmium, chromium, copper, and nickel. Arsenic, zinc and hexavalent chromium were also elevated (above their respective ESLs) in some of these samples. Chromium and arsenic were detected above their respective ESLs in S3A. At this location, a deeper soil sample was collected at 2 feet below grade. This sample was collected due to an odor of hydrocarbons; however, to provide vertical delineation for metals and an example of "background" concentrations in native soils, it was also analyzed for those metals that were above the ESLs in composite sample S3A-3D. The results indicated concentrations below the ESLs.

Composite soil sample S4A-S4D was collected in a hummocky area and none of the detected compounds were in excess of their respective ESLs. Based on observations during sample collection, this "hummocky area" is comprised of surficial soils that were moved from other portions of the site after the plating operation had long ceased.

Chromium was also detected above the ESL in three other discrete samples, and hexavalent chromium in one other discrete sample. Except at SS2D, these samples (SS1A and SS2A) may be representative of naturally occurring background concentrations.

To further define the extent of these metals in soil, PIERS recommends that soil samples be collected from SS3B through SS3D and at SS2D at 2 feet below grade and analyzed for those metals that exceed the ESL in the shallow samples. Also, two soil borings should be advanced in the "hummocky area" and soil samples collected at approximately 0.5 and 2.0 feet below the original grade. The samples from 2.0 feet could be placed on hold and analyzed based on the analytical results of the samples from 0.5 feet below grade, which should be analyzed for the CAM 17 metals.

Although some concentrations of metals were in excess of the "ten times rule", where the STLC test would be performed, the STLC tests were not performed at this time because additional exploration is proposed to define the vertical extent of metals in soil, and because in the future, if profiling for disposal of these soils, the concentrations of metals in the stockpiles may be less than these values.

ANALYTICAL RESULTS – MONITORING WELLS

The analytical results of the VOCS in wells MW1 through MW3 were within historical ranges (see Table 2). The concentration of TCE in MW1 decreased to 9,100 ppb, as compared to 19,000 ppb detected on May 12, 2005, the historical maximum detected. The concentration of VOCs in newly installed wells MW4 and MW5 were relatively low. The concentrations in MW1 remain elevated above the ESL where groundwater is not considered a resource. Figure 4 presented the TCE concentrations in wells.

Petroleum hydrocarbons (Table 3) were non-detectable in all of the wells except in MW1, where a single peak, that the laboratory has previously stated was TCE falling within the TPH as gasoline range, lead to a reportable result of 6,800 ppb.

The analytical results of the CAM 17 metals, hexavalent chromium and cyanide indicated concentrations below the ESL for the respective compounds, except for lead and zinc in MW2, copper in MW3 and MW5, and cyanide in MW5 (see Table 4). For the metals, because the concentrations are the same order of magnitude as the ESL, and because all of the other compounds were below the ESL and the detected metals in groundwater do not correspond to locations of elevated concentrations in soil, it is not clear that these detected concentrations are due to previous site activities. The reason is not clear for the occurrence of 22 ppb of cyanide in well MW5 while non-detectable in the other wells and below the ESLS in the soil samples. **PIERS recommends that future groundwater samples be analyzed for these compounds to confirm these findings in the wells where they were previously detected.**

The analytical results are summarized on Tables 2 through 4 and Figure 4.

ANALYTICAL RESULTS - SOIL VAPOR SAMPLING

The analytical results of the six soil vapor samples (SV1 through SV6) indicated concentrations of TCE and cis-1, 2 DCE above their respective ESLs in samples SV2 through SV4, closest to the building. However, previous soil sampling at B10 and B10B and soil sampling during this investigation at MW4 did not clearly indicate a near surface source as was encountered at the center of the Property near MW1. Therefore, the source of these contaminants is undefined, and additional investigation in this area is warranted. This investigation should be conducted in conjunction with additional investigation for metals at SS3B through SS3D and hydrocarbons at SS3A.

In order to calibrate the soil vapor data with soil analytical data, PIERS proposes collecting soil samples at approximately 5 feet below grade at the two soil vapor locations with the highest concentrations of constituents (SV4 and SV5) and analyzing these samples by EPA Method 8260. Three additional soil vapor borings would also be completed to the east and southeast of these points outside the building, and three soil vapor borings would be completed to the south of SV4, inside the building. At these locations, a soil sample would be collected at any obvious contamination and at 5 feet below grade, and then a soil vapor sample would be collected. The locations of the proposed borings are shown on Figure 5.

Numerous other compounds were detected (see laboratory sheets) but were below their respective ESLs or else there is no ESL for the compound. The results of these analyses are depicted on Table 7 and Figure 5.

FILE REVIEW FOR 958 - 28TH STREET

As proposed in PIERS' workplan, wells identified in a well survey were investigated further. PIERS had previously reported that thirty-six monitoring wells are located at 958 E. 28th Street, approximately 700 feet to the west-southwest. To better determine the location of these wells, to obtain information on the hydrogeologic conditions, and to determine if the wells have ever been sampled for VOCs, PIERS proposed to review the file.

Based on the file review, this site was a LUST case that received closure in February 1996. Eight monitoring wells were installed, and apparently have been destroyed, as this was a condition for obtaining the Remedial Action Completion Certification. There is no indication that samples from the wells were ever analyzed for the contaminants of concern for the 2942 San Pablo investigation. The depth to groundwater at this site reportedly ranged from about 10 to 16 feet below grade, with a flow direction that was generally to the south-southwest. However, as stated in the file documents, the tank pit gravel backfill may have affected the elevations in groundwater of two wells. The wells were generally screened over 10-foot to 20-foot intervals, beginning as shallow as 10 feet below grade and as deep as 18 feet below grade, and extending to 25 to 30 feet below grade. The wells appear to be screened through units of differing lithology without regard to permeability.

CORRECTIVE ACTION PLAN

IMPACT ASSESSMENT

1. The physical and chemical characteristics of the hazardous substance or its constituents, including their toxicity, persistence, and potential for migration in water, soil, and air:

Based on the analytical results for both soil and groundwater samples collected to date, the primary contaminant to be addressed by this CAP is Trichloroethylene (TCE) and its breakdown products. The analytical results of the soil and groundwater samples collected from the monitoring wells and borings indicate dissolved concentrations of these compounds. These compounds are relatively defined in soil and groundwater except for the southeastern portion adjacent to the building. These compounds are defined in soil vapor only around MW4. Additional delineation in that area is proposed but is not anticipated to significantly change this CAP, which is conceptual. Also, elevated concentrations of metals and hydrocarbons have been identified during this investigation in shallow soils, and are not completely delineated.

2. The hydrogeologic characteristics of the site and the surrounding area where the unauthorized release has migrated or might migrate:

The contaminant source on the site is considered to be the residual TCE and VOCimpacted soils and groundwater that was identified by the MIP investigation in July 2004. Although some metals have been identified above ESLs in shallow soil at the Property, they do not appear to have significantly impacted groundwater.

The subsurface soils at the Property consist predominantly of silt and clayey silt with varying amounts of gravel, and some silty clay. The gravels are highly weathered and decomposed. Three lithologic units have been defined. The first unit is comprised of the lowest permeability soils consisting predominantly of clay or silty clay (CL). This unit is defined on the cross-sections by those soils with greater than 150 milliSiemens per meter of conductivity during MIP logging. While the unit is of relatively low permeability, it is clear that the TCE at the source migrated vertically downward through up to 5 feet of thickness of these soils. The other occurrences of this unit at depth were predominantly discontinuous and less than two feet in thickness within the saturated zone (s).

The second unit is comprised of the highest permeability soils, which consisted of gravelly silt (ML). This unit is defined as those soils with less than 50 milliSiemens per meter of conductivity during MIP logging. This unit also occurs in discontinuous layers of less than several feet within the saturated zone, except in the vicinity of MIP boring B14/well MW2. At this location, the unit was encountered from approximately 32.5 feet below grade to the total depth explored (about 43 feet).

The third unit is defined as those soils of intermediate permeability, between 50 and 150 milliSiemens per meter of conductivity. These soils vary from clayey silt (ML) to silt with some gravel (ML).

The three units are gradational laterally and vertically and discontinuous laterally, typical of alluvial fan deposits. The unit of intermediate permeability could be described as layers of fining upward and coarsening upward sequences, as shown on the cross-sections.

According to "Flatland Deposits – Their Geology and Engineering Properties and Their Importance to Comprehensive Planning" by Halley et al (U. S. G. S Professional Paper 943), the Property is underlain by Late Pleistocene alluvium, which is generally described as weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand and gravel at least 150 feet thick. The alluvium was deposited in stream channels and on stream terraces in an alluvial fan setting.

Also, according to "Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties", by Sandy Figuers, dated June 15, 1998, the Property is located within the Oakland sub-area of the San Francisco Basin, a tectonic depression that is filled primarily with a sequence of coalescing alluvial fans, occurring as irregular lenses eroded from the surrounding hills. Based on cross-sections accompanying this report, the Property is underlain by over 100 feet of Yerba Buena mud, which is underlain by about 260 feet of recent alluvium. The recent alluvium is in turn underlain by about 320 feet of Santa Clara-equivalent, fine-grained, alluvial fan-derived sediments. The depth to the underlying bedrock is about 600 feet. The Yerba Buena mud is considered to be an aquitard. However, the lithologic logging and MIP work completed during this investigation are more consistent with the recent alluvium unit.

According to Figuers, the Oakland sub-basin has two main aquifers, the Merritt Sand, which does not occur in the area of the Property, and deeper gravels. North Oakland has a surface clay between two to twenty feet in thickness, and water-bearing gravels occur at 20 to 25 feet and 45 to 50 feet, which is generally consistent with this investigation. Wells in this area (no longer active) averaged 150 feet in depth.

3. The proximity and quality of nearby surface waters, wetlands, or groundwater, and the current and potential beneficial uses of these waters:

Surface Waters

Based on the USGS Topographic Map for this area (Oakland West), the nearest surface water body is Lake Merritt, which is located approximately one mile to the southeast. As this is cross-gradient to up-gradient of the Property, the subject site does not have the potential to impact the surface waters at Lake Merritt. The next closest surface waters and wetlands are located approximately 1.2 miles to the northwest, at the margin of San Francisco Bay.

According to information contained in the Water Quality Control Plan for the RWQCB, San Francisco Bay Basin (Basin Plan) dated June 21, 1995, the existing and potential beneficial uses for the San Francisco Bay are as follows:

- Ocean, Commercial, and Sport Fishing
- Estuarine Habitat
- Industrial Service Supply
- Fish Migration
- Navigation
- Preservation of Rare and Endangered Species
- Water Contact Recreation
- Non-Contact Water Recreation
- Shellfish Harvesting
- Fish Spawning (Potential)
- Wildlife Habitat

Wetlands

There are no wetlands in the vicinity of the site. The closest wetlands are at San Francisco Bay, approximately 1.2 miles to the northwest of the site.

Groundwater

The Property is located within the East Bay Plain groundwater basin. Per the Basin Plan, the existing and potential beneficial uses applicable to groundwater include municipal and domestic water supply, industrial process water supply, industrial service water supply, and agricultural water supply.

4. The potential effects of residual contamination on nearby surface water, wetlands, and groundwater:

Although the down-gradient extent of dissolved contamination at the Property is not completely defined, based on the distance (approximately 1.2 miles) of the Property from the nearest surface water or wetlands, it does not appear that the contamination at the Property would significantly impact surface water or wetlands. In addition, PIERS previously searched the available records for the presence of water-producing wells located within a half-mile radius of the site. No active production wells were located within the half-mile radius.

FEASIBILITY STUDY

The responsible party shall conduct a feasibility study to evaluate the alternatives for remedying or mitigating the actual or potential adverse effects of the unauthorized release. Each alternative shall be evaluated for cost effectiveness, and the responsible party shall propose to implement the most cost-effective corrective action:

OPTION #1 - NO REMEDIAL ACTION/LONG TERM MONITORING

COST:	Rela	atively low
TIME FRAME:		Long term
ADVANTAGES:	1)	Low annual cost 2) Minimal impact to planned development
DISADVANTAGES	:1) 2)	Source continues to impact groundwater with potential for further migration No defined project closure
CONCLUSION:	Not	a suitable approach for this site at this time.

OPTION #2 – GROUNDWATER PUMP AND TREAT

COST:	Hig	High								
TIME FRAME:	Lon	g term due to low extraction rate								
ADVANTAGES:	1) 2)	Potential for hydraulic control Could reduce dissolved concentrations in groundwater								
DISADVANTAGES:	1) 2) 3)	Not an effective method for remediating dissolved concentrations of volatile organic compounds in low permeability soils. Wells might not produce sufficient water to provide significant treatment. Would require disposal of treated water. Construction and operation costs for an extraction system would be high.								
CONCLUSION:	Not feas	an effective remedial method for this site; more sible methods are available.								

OPTION #3 - VAPOR EXTRACTION

COST:	Hig	High							
TIME FRAME:	Lon	Long term due to low extraction rate							
ADVANTAGES:	1) 2)	Could potentially remediate soil. Could reduce dissolved concentrations in groundwater.							
DISADVANTAGES:	1) 2) 3)	Not an effective method for remediating volatile organic compounds in low permeability soils. Vapor extraction wells likely would not have sufficient capture zone to provide significant treatment. Construction and operation costs for an extraction system would be high. Would require permitting for emissions.							

CONCLUSION: Not an effective remedial method for this site; more feasible methods are available.

<u>OPTION #4 – ELECTRICAL RESISTIVITY HEATING &</u> <u>VOLATILIZATION</u>

- COST: High
- TIME FRAME: Short term
- ADVANTAGES: 1) Works largely independently of permeability and lithology.
 - 2) Can be completed in relatively short duration.

DISADVANTAGES: 1) High cost

- 2) Requires permitting for emissions.
- 3) May affect adjacent parcels.
- CONCLUSION: Considered unfeasible for this site due to high costs and site logistics (small site bordered by other properties and street improvements).

<u>OPTION #5 – INJECTION OF BIODEGRADATION, OXIDATION OR</u> <u>REDUCTION REAGENTS</u>

- COST: Relatively low
- TIME FRAME: Short term, longer term with additional monitoring and re-injection
- ADVANTAGES: 1) Effective for reducing moderate to high dissolved levels of groundwater contamination.
 - 2) Monitoring of groundwater conditions can be performed and additional material injected, if required.
 - 3) Oxidizing agents containing permanganate are relatively effective in low permeability soils
- DISADVANTAGES: 1) Reagent must come in direct contact with contaminants
 - 2) May not be effective for remediating low dispersed concentrations in low permeability areas.
 - 3) Reducing agents and biodegradation enhancers not effective if little natural biodegradation occurring, reducing agents could potentially leave daughter products if breakdown incomplete.
- CONCLUSION: Oxidation (injection of permanganate) appears to be an effective remedial method for this site.

OPTION #6 - SOURCE REMOVAL

- COST: High
- TIME FRAME: Short term
- ADVANTAGES: 1) Completely effective for area excavated and for groundwater extracted during dewatering of excavation.
 - 2) Allows access for addition of reagents.
- DISADVANTAGES: 1)Not economically feasible if soil concentrations would require incineration of soils.
 - 2) Not feasible with increasing depth due to groundwater and construction considerations.
- CONCLUSION: Considered a possible remedial technique for this site if concentrations can be reduced to allow disposal at a Class II facility.

FEASIBILITY STUDY DISCUSSION

1. For all sites, each recommended alternative shall be designed to mitigate nuisance conditions and risk of fire or explosion:

A site Health and Safety Plan (HSP) will be prepared for the recommended scope of work. The HSP will be strictly followed in order to ensure site and community safety.

2. For sites where unauthorized release affects or threatens water with current or potential beneficial uses designated in water quality control plans, the feasibility study shall also identify and evaluate at least two alternatives for restoring or protecting these beneficial uses:

As previously stated in this CAP, it does not appear that the contaminants that are present at the subject site threaten any surface water or wetlands in the vicinity of the site that have a current or potential beneficial use. However, groundwater is affected, and two alternatives (addition of oxidizer and source removal) have been identified. Monitoring and sampling of the existing wells would be used to evaluate corrective action effectiveness and progress towards cleanup.

CLEANUP LEVELS

Cleanup levels for ground or surface waters, affected or threatened by the unauthorized release, shall meet the following requirements:

- (i) For waters with current or potential beneficial uses for which numerical objectives have been designated in water quality control plans, the responsible party shall propose at least two alternatives to achieve these numerical objectives.
- (ii) For waters with current or potential beneficial uses for which no numerical objectives have been designated in water quality control plans, the responsible party shall recommend target cleanup levels for long-term corrective actions to the regulatory agency for concurrence.

The final cleanup level goal for TCE in groundwater is proposed to be 5.0 ppb, the Environmental Screening Level (ESL) for areas where groundwater is considered to be a resource. It is anticipated that for any remaining residual contamination in groundwater above the cleanup goal, and for the potential for indoor air exposure, an evaluation of risk to human health and environment (risk based corrective action or RBCA) would be conducted, and mitigating measures would be designed.

REMEDIAL ACTION PLAN

Based on the various remedial alternatives evaluated in this CAP, PIERS presents the following recommendations for remedial action. Recommendations for additional investigation were presented earlier in this report. This work should be carried out first, and the findings used to reevaluate this remedial action plan and modify it, as appropriate.

Injection of Permanganate into Groundwater

A calculation of contaminant mass and determination of soil oxygen demand and other parameters would be performed to determine suitable quantities for injection. A work plan would be developed detailing pilot test procedures and the ultimate number of injection points. After injection, periodic monitoring for permanganate and TCE would be performed during regular quarterly monitoring and the need for additional injection would be evaluated on an ongoing basis. Although it would be benificial to install permanent injection points (two-inch casings) it is anticipated that this would not be feasible due to source removal and future construction excavation considerations. This step would be performed prior to any excavation as injection under pressure has the potential to resurface around the borehole.

Soil Mixing and Limited Source Removal

This work would remove or greatly reduce the highest concentrations of TCE at the source down to the level of groundwater. An area of soil mixing approximately 13 feet by 26 feet laterally and up to 17 feet deep would be completed at the source. Other areas requiring excavation for the planned facility would be identified and soil mixing would be performed at those areas. A large excavator fitted with a soil mixing wheel and hose for direct application of permanganate in solution would be used to treat the affected soils. After treatment, it is anticipated that soils in the mixed areas with remaining residual levels above screening levels, surficial soils impacted by metals, and any soil requiring excavation for construction of the new facility would be disposed of at the appropriate landfill facility.

Due to the low permeability soils and discontinuous nature and depth of the contaminant distribution, mixing and treatment of all of the TCE-impacted soil at the Property is not considered feasible. Some concentrations of TCE in excess of the ESLs would likely remain in place in soils both laterally and vertically after this work.

Mitigation of Potential for Exposure to Contaminants in Indoor Air

It is recognized that prior to construction of the new facility, and in the area of the existing building, additional investigation of soil vapor conditions would be performed, a risk assessment would be conducted, and in the case of the new building, a vapor barrier designed.

Evaluation of Progress Towards Cleanup Goals

The existing well network would be sampled on a quarterly basis to evaluate the progress towards cleanup goals and the effectiveness of the remediation.

It is anticipated that after your review of this document, and finalization of the scope of work, more detailed work plans would be prepared for each future phase and submitted for your review. If you have any questions regarding this report and CAP, please do not hesitate to contact me at (510) 593-5382.

Sincerely,

PIERS Environmental Services, Inc.

Joel G. Greger Senior Project Manager CEG # EG1633, REA # 07079

Attachments Figures 1 through 5 Tables 1 through 7 Appendices A-E

cc: Mr. James Chung, owner

Kay Pannell Chief Operations Officer REP #5800, REA-II #20236

Corrective Action Plan 2942 San Pablo Avenue, Oakland, CA November 2006 Page 19

FOR REFERENCE ONLY

Attachments -

- Figure 1 Vicinity Map
- Figure 2 Site Plan showing Locations of Surficial Samples, Wells, and Soil Vapor Borings
- Figure 3 Potentiometric Surface Map
- Figure 4 Concentrations of TCE in Groundwater Monitoring Wells
- Figure 5 Soil Vapor Data & Proposed Borings
- Table 1 Groundwater Monitoring Data
- Table 2 Groundwater Analytical Data Solvents
- Table 3 Groundwater Analytical Data Hydrocarbons
- Table 4 Groundwater Analytical Data Metals & Cyanide
- Table 5A Soil Analytical Data Metals Composite Samples
- Table 5B Soil Analytical Data Metals Discrete Samples
- Table 6 Soil Analytical Data Solvents Perimeter
- Table 7 Soil Vapor Analytical Data
- Appendix A Well Purging and Sampling Data
- Appendix B Laboratory Analytical Data Sheets and Chain of Custody
- Appendix C Boring Logs and Well Construction Diagram
- Appendix D Survey Data
- Appendix E Geotracker uploads

FIGURES

TABLES

TABLE 1GROUNDWATER MONITORING DATA2942 San Pablo Avenue, Oakland

Well No.	Date	Groundwater	Top of casing	Depth to	Well Depth	Product	Sheen	Water purged
		Elevation	Elevation	Water	_	Thickness		(gallons)
MW1	7/27/2004	13.17	26.32	13.15				0
	7/30/2004	13.12		13.20	36.55	0	No	5
	11/15/2004	13.46		12.86	36.60	0	No	1.5
	2/11/2005	15.76		10.56	36.60	0	No	1.6
	5/12/2005	15.87		10.45	36.60	0	No	1.6
	10/9/2006	18.47	31.65*	13.18	36.60	0	No	1.41
MW2	7/27/2004	9.93	24.60	14.67				0
	7/30/2004	10.30		14.30	33.10	0	No	4
	11/15/2004	10.85		13.75	33.11	0	No	1.2
	2/11/2005	12.66		11.94	33.11	0	No	1.3
	5/12/2005	12.75		11.85	33.11	0	No	1.3
	10/9/2006	15.75	29.92*	14.17	33.20	0	No	1.2
MW3	7/27/2004	11.36	25.69	14.33				0
	7/30/2004	11.50		14.40	36.00	0	No	5
	11/15/2004	12.06		13.63	36.05	0	No	1.5
	2/11/2005	13.79		11.90	36.05	0	No	1.4
	5/12/2005	13.84		11.85	36.05	0	No	1.5
	10/9/2006	16.76	31.00*	14.24	36.02	0	No	1.4
MW4	10/9/2006	18.98	31.97	12.99	40.11	0	No	1.75
MW5	10/9/2006	18.98	32.11	13.13	39.66	0	No	1.75

* The wells were resurveyed to a new benchmark on 9-26-06, see report text for discussion.

TABLE 2 GROUNDWATER ANALYTICAL DATA - SOLVENTS 2042 S Data - Solvents													
2942 San Pablo Avenue, Oakland													
Sample/ Depth (feet)	Date Sampled	TCE (ppb)	cis-1,2- DCE	Acetone (ppb)	Chloroform (ppb)								
MW1	7/30/2004	5,670	2	<10	2.1								
MW1*	11/15/2004	5,610	6	<10	2.1								
MW1**	2/11/2005	7,130	5	<10	2.6								
MW1	5/12/2005	19,000	5	<10	5.3								
MW1***	10/9/2006	9,100	3.9	<10	2.3								
MW2	7/30/2004	219	<1	51	3								
MW2	11/15/2004	15	<1	<10	< 0.5								
MW2	2/11/2005	12.5	<1	<10	< 0.5								
MW2	5/12/2005	45.6	<1	<10	< 0.5								
MW2	10/9/2006	50	4.7	<33	<1.7								
MW3	7/30/2004	6.6	<1	<10	< 0.5								
MW3	11/15/2004	11.6	<1	<10	< 0.5								
MW3	2/11/2005	20.6	<1	<10	< 0.5								
MW3	5/12/2005	16.2	<1	<10	< 0.5								
MW3	10/9/2006	6.5	1.5	<10	< 0.5								
MW4	10/9/2006	8.7	4.4	<33	<1.7								
MW5	10/9/2006	39	4.5	<10	< 0.5								
ESL		5.0/360	6.0/590	700/1500	5.0/350								

EXPLANATION: ppb = parts per billion

DCE = Dichloroethene TCE = Trichloroethene

ESL = Environmental Screening Level, groundwater is/is not a resource (Tables C/D).

* Vinyl Chloride and trans-1,2-DCE were also detected

at concentrations of 1.7 and 1 ppb, respectively.

** Vinyl Chloride was detected at a concentration of 0.7 ppb.

*** 1,1,2-TCA and carbon disulfide were also detected at concentrations of 0.65 and 2.1 ppb, respectively.

ANALYTICAL METHODS:

EPA Method 8260.

GROUNDWATER ANALYTICAL DATA - HYDROCARBONS 2942 San Pablo Avenue, Oakland												
Sample/ Depth (feet)	Date Sampled	TPH-g (ppb)	Benzene (ppb)	Ethylbenzene (ppb)	Toluene (ppb)	Xylenes (ppb)	MTBE (ppb)					
MW1	7/30/2004	2,280	<0.5	<0.5	<0.5	<1	<0.5					
	2/11/2005 5/12/2005	5,270 7,610	0.7/0.8 <0.5	<0.5 0.5/1.2	<0.5 <0.5	1.4 <1	<0.5 <0.5					
MW2	10/9/2006	6,800	<0.5	<0.5	<0.5	<0.5	<5.0					
MW2	11/15/2004 2/11/2005	<50 <50	<0.5 <0.5 <0.5	<0.5	<0.5 <0.5 <0.5	<0.5 <0.5	<0.5 <0.5 <0.5					
	5/12/2005 10/9/2006	<50 <50 <50	<0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5	<1 <0.5	<0.5 <5.0					
MW3	7/30/2004	63	<0.5	<0.5	<0.5	<1	<0.5*					
	11/15/2004 2/11/2005	<50 <50 <50	<0.5 <0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1	<0.5 <0.5					
	10/9/2006	<50	<0.5	<0.5	<0.5	<0.5	<5.0					
MW4	10/9/2006	<50	<0.5	<0.5	<0.5	<0.5	<5.0					
MW5	10/9/2006	<50	<0.5	<0.5	<0.5	<0.5	<5.0					
ESL		100/500	1.0/46	30/290	40/130	13/13	5.0/1,800					

TABLE 3

EXPLANATION:

* Di - isopropyl ether (DIPE) was detected at a concentration of 1.6 ppb.

ppb = parts per billion

Analytical results are by EPA Methods 8015 and/or 8260.

TPHg = Total Petroleum Hydrocarbons as gasoline.

ESL = Environmental Screening Level, groundwater is/is not a resource (Tables C/D).

TABLE 4 GROUNDWATER ANALYTICAL RESULTS -METALS, CYANIDE 2942 San Pablo Avenue Oakland, California

Sample	Date	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Vanadium	Zinc	Chrome 6	Cyanide
(depth)		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW1	10/9/2006	0.65	360	0.79	1.3	1.5	1.6	1.9	1.2	3.8	< 0.5	3.9	54	<0.2	<2.0
MW2	10/9/2006	< 0.5	230	0.40	3.0	1.8	2.0	6.4	0.91	12	0.59	3.5	130	< 0.2	<2.0
MW3	10/9/2006	0.57	230	0.46	1.3	1.4	4.6	2.0	1.0	3.9	< 0.5	2.4	78	0.48	<2.0
MW4	10/9/2006	3.7	420	< 0.25	0.80	< 0.5	1.0	1.0	2.2	1.7	< 0.5	0.91	36	0.34	<2.0
MW5	10/9/2006	3.1	320	< 0.25	1.1	7.1	7.1	1.1	26	3.5	1.3	3.1	72	0.26	22
ESL		36	1000	2.2	50/180	3.0	3.1	2.5	35/240	8.2	5.0	15/19	81	11	1.0

EXPLANATION:

ppb = parts per billion

Antimony, beryllium, mercury, silver and thallium were not detected in any of these samples.

ESL C/D = Environmental Screening Level from Tables C and D where groundwater is/is not a resource.

TABLE 5A SOIL ANALYTICAL RESULTS -METALS, pH, CYANIDE - COMPOSITE SAMPLES 2942 San Pablo Avenue Oakland, California

Sample (depth)	Date	Antimony (ppm)	Arsenic (nnm)	Barium (ppm)	Beryllium (ppm)	Cadmium (ppm)	Chromium (ppm)	Cobalt (ppm)	Copper (ppm)	Lead (ppm)	Mercury (nnm)	Molybdenun (ppm)	Nickel (nnm)	Selenium (ppm)	Silver (nnm)	Vanadium (ppm)	Zinc (nnm)	Chrome 6 (nnm)	Cyanide (ppm)	рН
((PP)	(FF)	(PP)	(PP)	(FF)	(PP)	(rr)	(FF)	(PP)	(PP)	(rr)	(PF)	(FF)	(FF)	(PP)	(PP)	(rr)	(rr)	
B9 (1.5')	8/20/2003	< 0.5	4.2	130	< 0.5	2.3	63.6	10.4	17.6	50.6	< 0.05	1.0	54.6	<0.5	< 0.5	26.8	71.8	0.130	< 0.40	9.56
B10 (1.5')	8/20/2003	< 0.5	5.4	188	< 0.5	5.4	55.6	6.8	72.2	27.2	< 0.05	1.4	346	<0.5	< 0.5	40.2	650	0.0046	0.44	8.05
SS1A-1D	9/19-20/2006	3.4	17	170	0.51	1.3	84	18	210	210	0.54	1.9	100	<0.5	< 0.5	100	210	< 0.8	1.5	7.98
SS2A-2D	9/19-20/2006	3.4	6.0	260	< 0.5	8.9	100	10	160	360	0.80	1.1	150	<0.5	2.0	44	430	1.9	1.3	7.58
SS3A-3D	9/19-20/2006	2.7	5.8	190	0.59	26	910	20	430	84	0.23	1.7	5400	0.71	2.9	39	750	2.2	6.1	10.88
SS4A-41D	9/19-20/2006	< 0.5	4.2	150	< 0.5	0.44	47	8.0	22	56	0.050	0.80	35	<0.5	<0.5	38	60	<0.8	1.1	7.37
								10/00												
ESL res./comm.		6.3/40	5.5/5.5	750/1500	4.0/8.0	1.7/7.4	58/58	40/80	230/230	200/750	2.5/10	40/40	150/150	10/10	20/40	110/200	600/600	1.8/1.8	100/500	
D1 1*		0.15.105	0 (11	122 1 400	0.05.0.70	0.05 1.7	22 1 570	27.460	0.1 06.4	10.4 07.1	0.05.0.00	0106	0 500	0.015.0.420	0.10.0.20	20 200	00 00(
Background*		0.15-195	0.6-11	133 - 1,400	0.25-2.70	0.05 - 1.7	23 - 1,579	2.7 - 46.9	9.1 - 96.4	12.4 - 97.1	0.05-0.90	0.1-9.6	9 - 509	0.015-0.430	0.10-8.30	39 - 288	88 - 236			
STLC		15.0	5.0	100	0.75	1.0	5.0	80.0	25.0	5.0	0.2	250.0	20.0	1.0	5.0	24.0	250.0	5.0		
SILC		13.0	5.0	100	0.75	1.0	5.0	60.0	23.0	5.0	0.2	550.0	20.0	1.0	5.0	24.0	250.0	5.0		
TTLC		500	500	10000	75	100	500	8000	2500	1000	20	3500	2000	100	500	2400	5000	500		
TILC		500	500	10000	15	100	500	0000	2500	1000	20	5500	2000	100	500	2400	3000	500		

EXPLANATION:

ppm = parts per million

* Range of background concentrations from Bradford et al, 1996.

Thallium was not detected (<0.5) in any of these samples.

TABLE 5B SOIL ANALYTICAL RESULTS - DISCRETE SAMPLES - METALS, pH, CYANIDE 2942 San Pablo Avenue Oakland, California

Sample	Date	Arsenic	Cadmium	Chromium	Copper	Nickel	Zinc	Chrome 6	pН
(depth)		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
	0/20/2002			(2)(15 (54.6	71.0	0.120	0.54
B9 (1.5')	8/20/2003	4.2	2.3	63.6	17.6	54.6	71.8	0.130	9.56
D10 (1 5)	0/20/2002				70.0	246	<	0.0046	0.05
B10 (1.5')	8/20/2003	5.4	5.4	55.6	72.2	346	650	0.0046	8.05
001 + 15	0.44.0.00.40.00.0					100			
SSIA-ID	9/19-20/2006	17	1.3	84	210	100	210	< 0.8	7.98
SSIA		5.8	NA	69	NA	NA	NA	NA	7.70
SS1B		4.1	NA	53	NA	NA	NA	NA	9.18
SSIC		4.6	NA	52	NA	NA	NA	NA	9.76
SS1D		5.3	NA	56	NA	NA	NA	NA	11.34
SS2A-2D	9/19-20/2006	6.0	8.9	100	160	150	430	1.9	7.58
SS2A		7.5	5.7	71	NA	NA	NA	1.2	9.3
SS2B		6.4	2.7	55	NA	NA	NA	< 0.8	9.45
SS2C		4.8	2.8	56	NA	NA	NA	< 0.8	8.12
SS2D		4.2	6.5	250	NA	NA	NA	9.4	6.51
SS3A-3D	9/19-20/2006	5.8	26	910	430	5400	750	2.2	10.88
SS3A		7.2	4.1	86	100	97	500	< 0.8	NA
SS3A d2'		2.8	< 0.25	30	12	22	22	< 0.8	7.78
SS3B		8.1	26	2400	850	18000	370	8.6	NA
SS3C		5.2	45	200	360	400	1800	1.0	NA
SS3D		5.2	48	150	860	700	420	6.5	NA
SS4A-41D	9/19-20/2006	4.2	0.44	47	22	35	60	< 0.8	7.37
ESL res./comm.		5.5/5.5	1.7/7.4	58/58	230/230	150/150	600/600	1.8/1.8	
Background*		0.6-11	0.05 - 1.7	23 - 1,579	9.1 - 96.4	9 - 509	88 - 236		
STLC		5	1.0	5.0	25.0	20.0	250.0	5.0	
TTLC		500	100	500	2500	2000	5000	500	

EXPLANATION:

ppm = parts per million

* Range of background concentrations from Bradford et al, 1996.

Thallium was not detected (<0.5) in any of these samples.

TABLE 6 SOIL ANALYTICAL DATA - SOLVENTS - PERIMETER												
2942 San Pablo Avenue, Oakland												
Sample/ Depth (feet)	Date Sampled	TCE (ppm)	trans-1,2- DCE	cis-1,2- DCE	Chloroform (ppm)							
B7 (1')	8/20/2003	0.022	< 0.01	< 0.01	ND							
B7 (9.5')	8/20/2003	0.0057	< 0.005	< 0.005	ND							
B7 (14.5')	8/20/2003	0.074	1.4	< 0.005	ND							
B10 (1.5')	8/20/2003	0.25	0.0065	0.029	ND							
B10B (3')	9/23/2003	0.022	0.11	0.24	ND							
B10B (6')	9/23/2003	0.046	0.016	0.11	ND							
B10B (9')	9/23/2003	0.54	< 0.033	0.22	ND							
MW4d13.5	9/19/2006	2.3	< 0.050	0.84	< 0.050							
MW4d17.5	9/19/2006	1.9	< 0.050	0.54	< 0.050							
MW4d22.5	9/19/2006	0.53	< 0.020	0.11	< 0.020							
SS3Ad2*	9/20/2006	0.45	< 0.050	0.97	< 0.050							
MW2 (7.5')	7/23/2004	0.012	< 0.005	< 0.005	0.007							
MW2 (19.1')	7/23/2004	0.065	< 0.005	< 0.005	< 0.005							
ESL - < 3m		0.46	0.67	0.19	0.27							
ESL > 3m		0.73	0.73	3.6	0.27							

EXPLANATION:

ppm = parts per million

TCE = Trichloroethene

DCE = Dichloroethene

ESL - Environmental Screening Level, Tables A /C (<3 meters), Tables B/D (> 3 meters).

* This sample also contained TPH as diesel at a concentration of 120 ppm, TPH as motor oil at 1,000 ppm, 0.058 ppm of MTBE, 0.060 ppm of ethylbenzene, 0.33 ppm of 1,2,4-trimethylbenzene, and 0.12 ppm of xylenes.
| | SOIL VAPO
2942 San
Sample | TABLE 7
OR ANALYT
Pablo Avenu
es collected or | ICAL DATA
e, Oakland
1 9-20-06 | |
|-------------------------|---------------------------------|--|--------------------------------------|-------|
| Sample/
Depth (feet) | Vinyl
Chloride | Trans-1,2-
DCE | Cis-1,2 DCE | TCE |
| SV1 d 5' | 21 | 89 | 260 | 760 |
| SV2 d 5'* | 1400 | 7500 | 11000 | 6200 |
| SV3 d 5' | 7700 | 4300 | 44000 | 11000 |
| SV4 d 5' | 3300 | 4600 | 20000 | 16000 |
| SV5 d 5' | 1900 | 7400 | 800 | 1100 |
| SV6 d 5' | 200 | 1200 | 1800 | 1400 |
| ESL | 100 | 41000 | 20000 | 4100 |

EXPLANATION: results are in micrograms per cubic meter. * duplicate sample ran, highest value shown ESL = Environmental Screening Level for shallow soil gas, commercial/ industrial use only.

Additional compounds detected in all samples, see laboratory sheets.

APPENDIX A WELL PURGING AND SAMPLING DATA

10/18/2	006 11:52	5107871	.457		JOEL GREGER	0700570492 01	PAGE 02/07
Od 16 06 0	3:39p Ma	ark Dysert			(" wa	2003070123 F	
	ԲՆՍԾ-Ն	EVEL MO	NITORE	IG DATA		Dysert Environmen	tal, Inc.
	Project Nam	e:			Date:	10-9-06 DAKLAND CA	
	Project/Site	Location: $\frac{2}{RV}$	1942 SI	IN TABLO	<u>ANC</u>		
<u>(</u>	Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (fect)	Total Well Depth (feet)	Comments	
5	MW-1	13.18			36.60	H2O IN WELL BER BECOM CASING	@ i030
2.	MW-2	14.17			33.20	@ 1035	
	MW-3	346	· · · · · · · · · · · · · · · · · · ·		36.02	@ 1040	RECHARG
પ	Mul-4	3 12.99			40.11	A LOUS HEO IN BOX, BELOW CA	RECHARGE
3	MW-5	13-13			39.66	@ 1050	RECHARGE
						ļ	
.	Р.,						

Measurements referenced to top of well casing.

Page _____ of _____

.

03:390 Mar	k Dysert		•		16	005070123		F
いこのp	~							
•								
		DYSE	RT ENVIRO	NMENTAL	., INC.	Dy	sert Enviro	onmental, Inc
		WELL	PURGING (SAMPLING	DAIN	ATE: 10-	9-06	
ROJECT:	7 GU7 -	SAN PA	Bro Ave	. .				
TE LOCATION:	4-1-1 C			TATE: C	<u> </u>			
TY: OAKLA	- Ger		<u>େ</u> ସମସାସ	DEVICE	<u> </u>			
	di auhmareil	nie piimp	peristalitic	pump t	ladder pum	p (dispor	sable bailer	
<u>ircie one</u> 12vo	NI SUUME SI	w hau h	SAMPLIN	G DEVICE	mospha ha	ilet	other	
ircle <u>one</u>	bladder pum	p 1	enstation			6		
asing diameter (ii	nches) <u>G</u>	ircie one	10.02	0.2	0.7	1.52		
asing volumes (g	allons <u>i G</u>		WELL	DATA	<u> </u>			
SAMPLER'S: 50	Ter							
VELL NUMBER	FIELD POI	NTID: M	.60		·			
A. TOTAL WELL	TER: 13	18						
C. WATER HEIGI	HT (A-B):	23.42						
D. WELL CASING	DIAMETE	<u>R: </u>						
E, CASING VOLU			17					
G. CASE VOLUN	IE (8) (CXEX	3): 1	<u> </u>					
H: 80% RECHAR	GE LEVEL	(F+B): <u> </u>	<u>3.65</u> 21 1 20	SE DATA				
CTAPT (ME- 1	2<<							_
PUMP DEPTH:	NJ(A						<u>.</u>	
FINISH TIME:	315			<u> </u>				
PUMP DEPTH:	NA		ECHARGE	/ SAMPLE	THME			
DEPTH TO WAT	ER: 13.2	5		TIME MEA	SURED:	1520		
GREATER THAT	OR EQUA	L TO 80%	RECHARG	ELEVEL (H) WATER:	325	<u> </u>	·
SAMPLE TIME:	1525	DOR: CI	EAR / NIA					
TOTAL GALLO	IS PURGED	1.4						
			<u>NELL FLUII</u> T	D PARAME	I I			
CASE VOL.	0	0.5	1		2	2.5	3	POST
2h	2.07	7.12	7.05	7.08	7.07	7.05	7.06	7.03
	22.2	21.8	21.2	20.8	20.9	20.2	20.6	20.7
	6.06	473	670	810	826	836	851	849
COND / SC	1604	<u> </u>			<u> </u>			
DTW			+		<u> </u>			
Pump Depth	1			<u> </u>				
Pump Rate		 		<u> </u>	ļ	L	ļ	<u> </u>
	1	l ·				1	1	
	1				ł .			

10/18/2006 11:52 5107871457

an a channa a mara a chan a

JOEL GREGER

603:40p M	ark Dysert	1-01		•		16 5035 7012	3	p.B
mw-2								
		DYS			L, INC.	τ)ysert Erivi	ronmental, li
						DATE: 10	-9-06	
SITE LOCATION	: 2942	SAN P	ablo A	06.				
CITY: OAKLA	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			STATE: C	4			
<u>circle one</u> 12	volt submers	sible pump	<u>PURG</u> peristalli <u>SAMPL</u>	<u>E DEVICE</u> ic pump ING DEVIC	bladder pu	mp disp	osable baik	ar and a state of the state of
çircle one	bladder pu	mp	peristaltic (pump 🤆 2	usposable t	<u>Failer</u> 6	other	
casing diaméter (inches) collons)	circle one	(10.192 (10.102	0.2	0.7	1.52		
			WE	<u>(L DATA</u>		/		
SAMPLER/S: 4			$w - 2_{-}$					
A TOTAL WELL	DEPTH:	:53.	20					
B. DEPTH TO W	ATER:		<u> </u>		<u> </u>	<u></u>	. fa r	
C. WATER HEIG	HT (A-B): G DIAMETE	<u>, (1)</u>	2					
E. CASING VOL	UME:	0.0	<u>)2</u>					
F. SINGLE CAS	VOLUME	<u>(CxE);</u>	38					
G. CASE VOLU	RE (S) (UXE	<u>x;</u> (F+0):	4.55			<u> </u>		
<u> </u>			PUR	GE DATA				<u></u>
START TIME:	140							
FINISH TIME:	1155	·····				، 		
PUMP DEPTH:	N/A							
		<u>_</u>	RECHARG	TIME MEA	SURED: 1	415	<u></u>	
GREATER THA	NOR EQUA	L TO 00%	RECHARG	E LEVEL (I	i); circle (one VES	NO	
SAMPLE TIME:	1420		/	DEPTH TO	D WATER:	1417		
SAMPLE APPE	ARANCE / C	DOR: CO	oudy /	<u>ы/а. </u>				· · · · · · · · · · · · · · · · · · ·
TOTAL GALLO			WELL FLU	ID PARAME	TERS	······		
CASE VOI	D	0.5	1	1.5	2	2.5	3	POST
	6.83	8.88	6.79	6.74	6.77	6.75	6.77	6.75
TENR	21.2	21.0	20.6	20.0	19.9	19.7	19.8	19.8
	727	702	701	681	702	669	712	743
COND/SC		+				† 	<u> </u>	
DTW			+		<u> </u>			<u> </u>
Pump Depth	ļ		+		<u> </u>		<u> </u>	
	1		1.					-
Pump Rate	1				l			

_ ___

/2005 11:52	510/8/	1457		JUE	L GREGER	4650957042	2	n⊿
X 3 (13.4 0p M	ark Dy seri					1000007912		P
. Z								
		DYS	ERT ENVIE		AL, INC. NG DATA	D	Fysert Envir	onmental, in
		WELI	_ PUKGING			DATE: 10	-9-06	~
PROJECT:	79117 4	SAN PAR	LO AVE					
SITE LOCATION:	. <u> </u>		•					
CITY: DAKLAN	0			STATE: C	A	-		
			<u>PURG</u>	E DEVICE	bladdar óu	mn diso	osable baile	r
<u>aircle one</u> 12\	olt submers	sible pump	enstam	c pump NG DEVIC	E Diaduei pu	urb and		
	hiadder nut	mo	peristaltic (disposable l	baller	other	
<u>casino diameter (</u>	inches)	circie one	0.75	ר א ²	4	6		
casing volumes (allons)	<u>circle_one</u>	0.02	ノ 0.2	0.7	1.94		
			WEL	LUAIA				
SAMPLERIS: R			W-3					
WELL NUMBER	DEPTH:	223	v02					
B. DEPTH TO W	ATER:	14.24						
C. WATER HEIG	HT (A-B):	the to	71.18			V		
D. WELL CASIN	G DIAMETE			<u></u>				
E. CASING VOL	UNE;	$\frac{1000}{(CrE)}$	44		····			
C CASE VOLUM	IE (s) (CxE	x 3):	1.32					
H: 80% RECHAR	IGE LEVEL	(F+B):	14.65					
······			PUR	<u>GE DATA</u>		<u></u>		
START TIME: 1	<u>us</u>	······································		•				·····
FUMP DEPTH:	N/A 1125							
PUMP DEPTH:	A/A							
			RECHARGE	/SAMPL	<u>E TIME</u>	700	<u> </u>	
DEPTH TO WAT	ER: 1466			TIMENE	ASURED: 1			
GREATER THAT	1255	L 10 80%	KEONAK <u>S</u>		O WATER:	1466		
SAMPLE APPE	RANCE	DOR: CA	ouby /	MA	· · · · · · · · · · · · · · · · · · ·			
TOTAL GALLON	IS PURGE	<u>: 1.40</u>	<u> </u>					· · · · · · · · · · · · · · · · · · ·
		<u> </u>	WELL FLUI	<u>d Param</u> T	ETERS	1	r	······
CASEVOL	n l	0.5	1	1.5	2	2.5	3	POST
Ph	6.29	6.65	6.70	6.75	6.86	754	733	753
	219	213	21.0	207	202	20 0	20.2	20.0
			-		1			
COND / SC	1418	753	743	752	686	6.92	6.93	6.89
	1	1						
DTW		<u> </u>		i		<u> </u>	ļ	<u> </u>
Burnn Deaths							Ì	
ramp paper	+		<u>† </u>	- <u> </u>				
Pump Rate				<u> </u>				
						•		
			-		-	-		-

·····

/2006 11:52	510787	71457		JOEL	GREGER			PAGE
а 0940n — М	ladr Dveet					1650357012	3	p.5
o ua4up 🕷	Tark Oycon							
v - H								
·		DYS	ERT ENVIE	RONMENT/	L, INC.	ſ)vsert Envi	ronmental, in
		WELL	, PURGING	i / SAMPLIN	NG DATA	- 1/3	- G - O	с.
PROJECT:		En Das	REA AUE				(- 4)	0
BITE LOCATION	1: ZAAZ -							
CITY: ONK LAN	107			STATE: C	£	·		
	<u> </u>	· · ·	PURG	E DEVICE			nerable baild	
<u>circle one</u> 12	volt submer:	sible pump	peristali	c pump we new?!				
	biodec pr	-	neristaltic.r		isposable b	aile	other	
<u>circle one</u> casino diameter i	(inches)	circle one	(0.75	2	4	6		
casing volumes ((gallons)	circle one	0.02	0.2	0.7	1.52		
			WEL	LDATA				
SAMPLER/S:			14 June 11					,
A TOTAL WELL	DEPTH:	40.1						
B. DEPTH TO W	ATER:	12.41	1					
C. WATER HEIC	HT (A-B):	77.	12		· · · · · · · · · · · · · · · · · · ·			
D. WELL CASIN	G DIAMETE							
E. CASING VOL	F VOLUME	(CxE):	54					
G. CASE VOLU	ME (s) (CxE	x 3);	16d					
H: 80% RECHA	RGE LEVEL	(F+B): 1	<u>3,53 </u>	OF DATA				
ATADT TRAFT.	1770		<u> </u>	GEUATA				
PUMP DEPTH:	N/A						<u>.</u>	
FINISH TIME:	1259					, and the second se		
PUMP DEPTH:	N/A			I SAMDI D	TIME			;
DEPTH TO MA		79	CONANOL	TIME MEA	SURED:	•		
GREATER THA	N OR EQUA	L TO 80%	RECHARG	E LEVEL (H): circle a	ne YES	(NO) /	VAITED 2HE
SAMPLE TIME:	1500			DEPTH TO	WATER:	15.79		<u></u>
SAMPLE APPE	ARANCE / C	$\frac{1}{1}$	CEAR / L/	<u>4</u>				
TOTAL GALLO		<u>در با بر</u> ا	NELL FLUI		TERS		-	
CASE VOL.	0	0.5	1	1.5	2	2.5	3	POST
_	0.05	17 27	7 72	7.3<	7 27	7 34	721	722
Ph	1.45	1.32	(, >>			L, - 1	1.21	1.20
	211	20.2	19.8	19.7	19.5	19.1	19.1	19.1
TEMP In °C		1	1	Erman.	1010	1017	996	1003
TEMP in °C	1022	1012	1007	1000	,0.0			
TEMP in °C COND / SC DTW	1022	1012	1007	1006	1010			
TEMP in °C COND / SC DTW	1022	1012	1007	1006	,0.0			
TEMP in °C COND / SC DTW Pump Depth	1022	1012	1007					
TEMP in °C COND / SC DTW Pump Depth Pump Rate	1022	1012	(00]					
TEMP in °C COND / SC DTW Pump Depth Pump Rate	1022	1012	(001					

·.

0/2006 II.JZ	51078	71457		JUE	L GREGER			PAGE
16.0341p N	lark Dysert					165035701	23	p.6
1								
$\sqrt{\omega} - S$								
								•
		-			TAL INC.		F	 •
			1 PURGIN	GISAMPL	ING DATA		Dysert Env	ironmentai, ir
		116		• • • • • • •		DATE: 10	2- 9- 0G	, a
PROJECT:	1-2942	SAN I	ABLO A	,Jଙ.				
SHE COURTER								
CITY: OAKLA	<u>du</u>			STATE: (:A	<u> </u>		
			PUR	<u>GE DEVICE</u>				time 1
circle one 12	volt subme	rsible pump	peristal	ltic pump	bladder p		posable Dali	er /
			SAMP	ING DEVIC	E	hailor	other	
<u>circle one</u>	bladder pi	ump	penstauc	Dump (alsposaule	Vancing F		
casing diameter	(inches)			$\tilde{\Sigma}$, n.	7 152	, ,	
cacing volumes (galions)	<u>circie one</u>	(U.U.)		· LJ.	1.44	-	
DAMBI COIC- 1	NICO							
WHILMMAP		DINT ID:	mw-5					
A TOTAL WELL	DEPTH:		1-66					
B. DEPTH TO W	ATER:	<u> </u>	5.13					
C. WATER HEIG	HT (A-8):		26-53					
D. WELL CASIN	G DIAMET	ER: 1						
E. CASING VOL	UME:	0.07				+ +		<u> </u>
F. SINGLE CAS	E VOLUME	(CxE):	<u>.53 _</u>					
G. CASE VOLU	ViE (s) (CxE	x 3_):	(159			÷.		
H: 80% RECHAI	KGE LEVE	_ (F+B):	13.60					
			PUR	RGE DATA				
START TIME:	1205							· ····
PUMP DEPTH:	<u>, , , , , , , , , , , , , , , , , , , </u>				• • • • •			, ,, ,, .a
PINISH TIME:	1425							
FOME DEFIN	~//		RECHARG	E/SAMPL	ETIME			
DEPTH TO WAT	ER: 22	00		TIME ME	ASURED:			
GREATER THAI	N OR EQU	AL TO 80%	RECHARG	E LEVEL (N): circle	one YES	TNO W	SALTED ZUR
SAMPLE TIME:	1440		/	DEPTH T	O WATER:	22.00		
SAMPLE APPE	RANCE / I	DDOR: CL	ouby / ~	/4			<u> </u>	
TOTAL GALLO	NS PURGE	D: 1.75					T	
, <u></u>	1		WELL FLU	D PARAM	ETERS	<u></u>	- <u></u>	
CASENO		0.5		4 6				BOST
		0.0	<u> </u>	1.2		2.3	<u> </u>	<u> </u>
Pa	1.11	7.55	7.62	7.61	764	7.70	7 66	7 100
		1		╈┯┷┷╹┠╾╴		1	<u></u>	1
TEMP in °C	20.0	19.9	19.4	20.0	19.8	19.3	19.6	193
	and		0/11	000	0			
COND / SC	1 1 1	¥67	864	868	805	841	830	849
				1	T	T	1	
	·		1				1	
DIW	1							· ·
DIAR			<u> </u>		<u> </u>	<u> </u>		
Pump Depth			1				1	
Pump Depth			1		1		1	-
Pump Depth Pump Rate			ļ					
Pump Depth Pump Rate								

APPENDIX B LABORATORY ANALYTICAL DATA SHEETS AND CHAIN OF CUSTODY

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: 2942 San Pablo	Date Sampled:	09/20/06
1330 S. Bascom Avenue, Ste. F		Date Received:	09/20/06
San Jose, CA 95128	Client Contact: Joel Greger	Date Reported:	09/27/06
San 0000, 011 /0120	Client P.O.:	Date Completed:	09/27/06

WorkOrder: 0609403

September 27, 2006

Dear Joel:

Enclosed are:

- 1). the results of 2 analyzed samples from your 2942 San Pablo project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

N	ICCAMPR	FII AN	AT 37	TIC																			[]	D	09	4C	F,
	110 PA	CLL AN 2 nd AVENUE	ALY E SOUT	ГІС, н, #D7	AL II	NC.									C	H			F (CU	ST	IO'	$\overline{\mathbf{y}}$	$\frac{V}{RE}$			
Telephone: (925) 798-162	0	94553-5	5560	Fare	(025)	700	1 (22				ΓU	RN	AR	OU	ND	TI	ME									k
Report To: Jog/	Ciano				гал.	943)	/98-	1622			6	DF	Rea	uiro	6	PD	F	_		RI	JSH	2	4 HR		48 HR	72	4 ∃R
Company: PIERS	Greger		Bill	[o: /	PER	5					+		nuy	une		oelt	(N)	orma	(al)	No		Wri	te Or	1 (D'	W) N	10	
(330 5.1	Baser	montay		6											A	nary	SIS I	Requ	lest						Other	C	om
Sanlos	CA ST	TVE 50.	rer-										3&F								z						
Tele: () 510 593	5387	~0	E-M	ail:							TBE	×	&F/E							0	111					4	
Project #:			Pax:		10	187	14	57	7	1	S)/M	18	10 E	8.1)						83	7				-	2	W
Project Location: 24	142 Sa	nach	rroje	CE INA	ime: 2	79	2 5	an P	al	5/0	801	0	(552	(41						270	14					1	2
Sampler Signature:	Tul	In	0 -1	~ ~	Dar	100	ne				20 +	31	ase	Suoc	8020		Γλ			8/8	5	6				ma	0
		MILING	-	-	-		Sama				8	2	S	<u></u>			Š	~	10			100				8	N
	SA	WIPLING	0	ers	M	ATR	IX	PRE	ETH SFR	IOD RVFD	is (60	15)	il &	ydro	A 60		CB'S	260		FPA	24	39.2				a	0
SAMPLE ID	ATION		ner	tain							as Ga	1 (8(E .		(EP	00	0 P(Ş	0.	AQ .	2	1/2				8	2
(Field Point Name)	Dat	e Timo	Itai	Con			0				Ηd1	liese	rolet	/ 80	ALY	/ 808	808	824	827	AA	Atale	/742				3	X
	- at		Cor	pe	ate		her		_ <	U ₃	X &	as L	Pet	ren 601	Ő	508	808	524	25/		N S	7240				5	to to
2 - 110			#	Ty	W So	Ai	of Si	Ice	HCH	Oth	BTE	LPH	ota	PA	TE	PA	PA (PA (PAG	WW	IFT I) pe				8)el
354A 00	1.5 9.20.	06 8: 37A	m 1	line	lev			V						Ц		ш	ш	ш	Ш а		D I	Le	R	s			~
SSYB 2		8:42A	no I	I	T:																					1	
SSYC DO	151	Tulan.			\vdash	+		×	-										K	X						P	
SSYD JI		0.7-140			X			X	1										7							1400	m
553A 10	11	8:5.14	n /		X			X											1								7
02	- 14	8:01Am		V	\times			Y			C	X					>	xF	1	_				-21)	è
																	- 1										
																			_								
													-														
la galer "									-																		
hanne (j. 1997) Maria (j. 1997)												_													- 3		
															-												
								_							ă												
elinguished By:	Dete																	-									
Jackin	Photo L	Time:	Receive	ed By:	7																						
elinquished By	Date	Tim		22	ar	2								and the second se									110	- 1			
RCO	Troke	l'ime:	Receive	a Bri						7	ICE	$/t^{\circ}$	ON		0.11			I	PRES	SER	VAT	ION	VOA	is (0&G	METALS	(
linguished By:	Date:	Time	Deri		X	5					HEA	D SI	PAC	E AF	UN_	VT /		-	APPI	ROP	RIA	TE					
XX	9/201	250	Receive	By:			T			7-	DEC	HLC	DRI	VATI	ED L	N LA	B	_ (LUN' PEI	TAL RSF	NEF	RS		D			
	-420b	1000	N	\geq	\leq			_													X Y I	50.0	LA	D			

SS3A

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

А

Page 1 of 1

(925) 252-9262	2			Wo	rkOrd	er: 06	609403		Clie	ntID: I	PESJ		EDF	YES	5		
Report to:							Bill to:						Req	uested	TAT:	į	5 days
Joel Greger Piers Environmen 1330 S. Bascom / San Jose, CA 95	tal Avenue, Ste. F 128	Email: TEL: ProjectNo: PO:	(408) 559-1248 2942 San Pable	FAX: (408)	559-12	24	Acc Pie 133 Sar	counts rs Envi 30 S. B n Jose,	Payable ronmer ascum CA 95	e ital Avenue 128	, Ste. F	.	Date Date	e Recei e Print	ived: ed:	09/2(09/2()/2006)/2006
									Re	quested	l Tests	(See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0609403-001	SS4A-4D		Soil	09/20/2006		А		Α	Α								

А

09/20/2006

Test Legend:

0609403-002

1	218_6m_S	2	8260B_S	3	CAM17MS_S	4	PREDF REPORT	5	TPH(DMO)_S
6		7		8		9		10	
11		12							

The following SampID: 0609403-001A contains testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Soil

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	CCampbell Analyti "When Ouality Counts"	ical, Inc	2.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccan 377-252-9262 Fax: 925-252-92	1701 npbell.com 69	
Piers Environ	mental	Client Pro	ject ID:	2942 S	San Pablo	Date Sampled: 09/20	/06	
1330 S. Basco	om Avenue, Ste. F					Date Received: 09/20	/06	
San Jose, CA	95128	Client Co	ntact: Jo	el Gre	eger	Date Extracted: 09/20	/06	
		Client P.C).:			Date Analyzed 09/21	/06	
	TTLC Hexa	chrome by	Alkaline	Diges	stion and IC-UV A	Analysis*		
Extraction method	SW3060A		Analytical m	ethods	E218.6m	Work C	rder: 060	09403
Lab ID	Client ID	Matrix	Extract	ion	Не	exachrome	DF	% SS
0609403-001A	SS4A-4D	S	TTL	С		ND	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	µg/L
above the reporting limit	S	TTLC	0.8	mg/Kg

Angela Rydelius, Lab Manager

* All samples are reported in mg/kg unless otherwise requested. All samples and QC were cleaned up prior to analysis.

j) reporting limit raised due to matrix interference.

McCampbell	Analytic	cal,	Inc.		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, l pell.com 77-252-92	Pittsburg, CA 94565-17 E-mail: main@mccamp 62 Fax: 925-252-9269	701 bell.com					
Piers Environmental		Clien	t Proje	ect ID:	2942 San Pablo	Date S	ampled: 09/20/0)6					
			5		-	Data P	eceived: 09/20/06						
1330 S. Bascom Avenue, Ste. I	-						leceived. 09/20/0						
		Clien	nt Cont	tact: Jo	el Greger	Date E	xtracted: 09/20/0)6					
San Jose, CA 95128		Clien	t P.O.:			Date A	nalyzed 09/26/0)6					
	Volatile Or	ragnic	s hy P	&T and	d GC/MS (Basic Target List)*								
Francisco Mada da CW5020D	volatile Of	game	S Dy I			List)	Wester	1	0.402				
Extraction Method: Sw5030B			Analy	/tical Meth	10d: SW8200B		work Or	der: 060	19403				
Lab ID					0609403-002A								
Client ID					SS3A								
Matrix		<u> </u>		Reporting	Soil				Reporting				
Compound	Concentratio	on *	DF	Limit	Compound		Concentration *	DF	Limit				
Acetone	ND<0.50)	10	0.05	Acrolein (Propenal)		ND<0.50	10	0.05				
Acrylonitrile	ND<0.20)	10	0.02	tert-Amyl methyl ether (ГАМЕ)	ND<0.050	10	0.005				
Benzene	ND<0.050	0	10	0.005	Bromobenzene		ND<0.050	10	0.005				
Bromochloromethane	ND<0.050	0	10	0.005	Bromodichloromethane		ND<0.050	10	0.005				
2-Butanone (MEK)	ND<0.030)	10	0.003	t-Butyl alcohol (TBA)		ND<0.050	10	0.005				
n-Butyl benzene	ND<0.050	0	10	0.002	sec-Butyl benzene		ND<0.050	10	0.005				
tert-Butyl benzene	ND<0.050	0	10	0.005	Carbon Disulfide		ND<0.050	10	0.005				
Carbon Tetrachloride	ND<0.050	0	10	0.005	Chlorobenzene		ND<0.050	10	0.005				
Chloroethane	ND<0.050		10	0.005	2-Chloroethyl Vinyl Ethe	r	ND<0.10	10	0.01				
Chloroform	ND<0.050	0	10	0.005	Chloromethane		ND<0.050	10	0.005				
2-Chlorotoluene	ND<0.050	0	10	0.005	4-Chlorotoluene		ND<0.050	10	0.005				
1 2-Dibromoethane (EDB)	ND<0.050	0	10	0.005	1,2-Dibromomethane	pane	ND<0.050	10	0.005				
1.2-Dichlorobenzene	ND<0.050	0	10	0.005	1.3-Dichlorobenzene		ND<0.050	10	0.005				
1,4-Dichlorobenzene	ND<0.050	0	10	0.005	Dichlorodifluoromethane		ND<0.050	10	0.005				
1,1-Dichloroethane	ND<0.050	0	10	0.005	1,2-Dichloroethane (1,2-I	DCA)	ND<0.050	10	0.005				
1,1-Dichloroethene	ND<0.050	0	10	0.005	cis-1,2-Dichloroethene		0.97	10	0.005				
trans-1,2-Dichloroethene	ND<0.050	0	10	0.005	1,2-Dichloropropane		ND<0.050	10	0.005				
1,3-Dichloropropane	ND<0.050	0	10	0.005	2,2-Dichloropropane		ND<0.050	10	0.005				
trans-1 3-Dichloropropene	ND<0.050	0	10	0.003	Diisopropyl ether (DIPE)		ND<0.050	10	0.005				
Ethylbenzene	0.0	60	10	0.005	Ethyl tert-butyl ether (ET	'BE)	ND<0.050	10	0.005				
Freon 113	ND<1.0		10	0.1	Hexachlorobutadiene		ND<0.050	10	0.005				
Hexachloroethane	ND<0.050	0	10	0.005	2-Hexanone		ND<0.050	10	0.005				
Isopropylbenzene	ND<0.050	0	10	0.005	4-Isopropyl toluene		ND<0.050	10	0.005				
Methyl-t-butyl ether (MTBE)	0.0	58	10	0.005	Methylene chloride		ND<0.050	10	0.005				
4-Methyl-2-pentanone (MIBK)	ND<0.050	0	10	0.005	n Propul honzono		0.079	10	0.005				
Styrene	ND<0.050	0	10	0.005	1 1 1 2-Tetrachloroethan	e	ND<0.050	10	0.003				
1.1.2.2-Tetrachloroethane	ND<0.050	0	10	0.005	Tetrachloroethene	0	ND<0.050	10	0.005				
Toluene	ND<0.050	0	10	0.005	1,2,3-Trichlorobenzene		ND<0.050	10	0.005				
1,2,4-Trichlorobenzene	,2,4-Trichlorobenzene ND<0.050 10 0.00						ND<0.050	10	0.005				
1,1,2-Trichloroethane	0.005	Trichloroethene		0.45	10	0.005							
Trichlorofluoromethane	Tichlorofluoromethane ND<0.050 10 0.00 2.4 Trimothylhongono 0.22 10 0.00						ND<0.050	10	0.005				
Vinyl Chloride	0.005	J5 1,5,5-1rimethylbenzene ND<0.050 10 0.00 05 Xylenes 0.12 10 0.0											
		v 1	Surro	ogate Re	coveries (%)		0.12	10	0.005				
%SS1:		94		3	%SS2:		92						
%SS3:		109					//						
Comments:													

* water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An "When Ouality	alyti _{Counts"}	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	com	
Piers Environmental		Client Pr	oject ID:	2942 Sa	an Pablo	Date Sampled:	09/20/06		
			5			Date Received:	09/20/06		
1330 S. Bascom Avenue, Ste. F		Client C	ontact: Io	el Greg	er	Date Extracted:	09/20/06		
G L GL 05100				ci oleg		Date Extracted.	0)/20/00		
San Jose, CA 95128		Client P.	0.:			Date Analyzed	09/22/06		
		С	CAM / CCR 17 Metals*						
Lab ID	06094	03-001A					Reporting Lin	nit for DF =1;	
Client ID	SS4	IA-4D					ND means r above the re	not detected porting limit	
Matrix		S					S	W	
Extraction Type	T	TLC					mg/Kg	mg/L	
		ICP-N	IS Metals,	Conce	ntration*				
Analytical Method: 6020A		Extra	action Method	1: SW305	50B	•	Work Order:	0609403	
Dilution Factor		1					1	1	
Antimony		ND					0.5	NA	
Arsenic		4.2					0.5	NA	
Barium		150					5.0	NA	
Beryllium	1	ND					0.5	NA	
Cadmium	().44					0.25	NA	
Chromium		47					0.5	NA	
Cobalt		8.0					0.5	NA	
Copper		22					0.5	NA	
Lead		56					0.5	NA	
Mercury	0	.060					0.05	NA	
Molybdenum	(0.80					0.5	NA	
Nickel		35					0.5	NA	
Selenium		ND					0.5	NA	
Silver		ND					0.5	NA	
Thallium		ND					0.5	NA	
Vanadium		38					0.5	NA	
Zinc		60					5.0	NA	
%SS:		106					<u> </u>		
Comments									
 *water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument. 	uct/oil/n wipe sam D means	on-aqueous aples in µg/v s not detecto	liquid samp vipe, filter s ed above the	ples and amples i e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mean	DISTLC / SPLP extr	acts are repo	rted in	

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

"When Ouality Counts"	<u>ical, Inc.</u>	Web: www.mccamp Telephone:	bell.com E-mail: main@mccampbell.co 877-252-9262 Fax: 925-252-9269	m
Piers Environmental	Client Project ID:	2942 San Pablo	Date Sampled: 09/20/06	
1330 S. Bascom Avenue, Ste. F			Date Received: 09/20/06	
G I GA 05100	Client Contact: Jo	el Greger	Date Extracted: 09/21/06	
San Jose, CA 95128	Client P.O.:		Date Analyzed 09/21/06	
	Chemical Oxygen	Demand (COD)*		
Lab ID Client ID	Matrix	<u> </u>	COD	DF
0609403-001A SS4A-4D	S		27,000	1

Reporting Limit for DF = 1; ND means not detected at	W	NA	
or above the reporting limit	S	250 mg/Kg	

*water/product/oil/non-aqueous liquid samples and all TCLP/STLC/DISTLC/SPLP extracts are reported in mg/L; soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

<u> </u>	Campbell Analyti	cal, Inc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: maii 377-252-9262 Fax: 92	A 94565-1701 n@mccampbell. 5-252-9269	com
Piers Environm	nental	Client Project ID: 2	2942 San	Pablo	Date Sampled:	09/20/06	
1330 S. Bascor	m Avenue, Ste. F				Date Received:	09/20/06	
San Jose CA 9	5128	Client Contact: Jo	el Greger		Date Extracted:	09/20/06	
	5120	nalytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565- Wet: www.mccampetiteom E-mail: mail@mccam Telephone: 877-253-2926 Fax: 09/20 Client Project ID: 2942 San Pablo Date Sampled: 09/20 Client Contact: Joel Greger Date Sampled: 09/20 Client P.O.: Date Analyzed 09/20 FF* Work O Client ID Matrix pH SS4A-4D S 7.37 @ 23.9 °C Image: State St					
		pł	I *				
Analytical Method:	SW9045C		Matrix		ъН	Work Order:	0609403
			Matrix				
0609403-001A	SS4A-4D		S		7.37 @ 23.9	°C	
Method Ac	curacy and Reporting Units		W		NA	രംഗ	
			5		± 0.1 , pH units (<u>س</u> -ر	

DHS ELAP Certification N° 1644

Angela Rydelius, Lab Manager

	Campbell Analyti	cal, Inc.	1534 Willow Web: www.mccan Telephone	Pass Road, Pittsburg, CA 945 npbell.com E-mail: main@mc : 877-252-9262 Fax: 925-252	65-1701 campbell.con -9269	1				
Piers Environn	nental	Client Project ID:	2942 San Pablo	Date Sampled: 09/	20/06					
1330 S. Bascor	m Avenue, Ste. F			Date Received: 09/	20/06					
San Jose, CA 9	05128	Client Contact: Jo	oel Greger	Date Extracted: 09/	20/06					
buil 3050, Crry	5120	Client P.O.:		Date Analyzed 09/	26/06					
Extraction method:	Diesel (C10-23) and Oil (C18+) Range Extrac	ctable Hydrocarbons as Diesel and Motor Oil* ods: SW8015C Work Order: 0609							
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS				
0609403-002A	SS3A	s	120,g,d,b	1000	10	100				
Rep	porting Limit for DF =1;	W	NA	NA	ug	z/L				
ab	ove the reporting limit	S	1.0	5.0	mg	/Kg				

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR E218.6m

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0609403

EPA Method: E218.6m	Extraction: SW3060A					Batchll	D: 23797	5	Spiked San	nple ID	: 0609365-0	01a		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCSD LCS-LCSD Acceptance C				e Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Hexachrome	ND	40	102	104	2.53	93.1	96.5	3.59	80 - 120	20	90 - 110	10		
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

BATCH 23797 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0609403-001	9/20/06 8:37 AM	9/20/06	9/21/06 6:19 PM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0609403

EPA Method SW8260B	E	Extraction	SW503	0B		Batchll	D: 23787	ę	Spiked Sar	nple ID	: 0609343-0	3-001A a (%) b RPD) 30)			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)			
, and you	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
tert-Amyl methyl ether (TAME	ND	0.050	101	103	2.46	105	109	3.56	70 - 130	30	70 - 130	30			
Benzene	ND	0.050	96.9	98.8	1.80	98.7	107	7.87	70 - 130	30	70 - 130	30			
t-Butyl alcohol (TBA)	ND	0.25	91.3	86.1	5.89	98.5	124	22.5	70 - 130	30	70 - 130	30			
Chlorobenzene	ND	0.050	101	101	0	93.7	99.7	6.20	70 - 130	30	70 - 130	30			
1,2-Dibromoethane (EDB)	ND	0.050	95.1	95.1	0	93.1	93.4	0.306	70 - 130	30	70 - 130	30			
1,2-Dichloroethane (1,2-DCA)	ND	0.050	115	121	4.94	119	124	4.27	70 - 130	30	70 - 130	30			
1,1-Dichloroethene	ND	0.050	116	117	0.517	108	111	3.45	70 - 130	30	70 - 130	30			
Diisopropyl ether (DIPE)	ND	0.050	117	121	2.99	116	120	3.84	70 - 130	30	70 - 130	30			
Ethyl tert-butyl ether (ETBE)	ND	0.050	111	114	3.28	111	116	3.63	70 - 130	30	70 - 130	30			
Methyl-t-butyl ether (MTBE)	0.011	0.050	90.2	93	2.50	115	120	3.87	70 - 130	30	70 - 130	30			
Toluene	ND	0.050	88.6	88.4	0.227	90.4	87.9	2.84	70 - 130	30	70 - 130	30			
Trichloroethene	ND	0.050	97.2	98.7	1.59	91.3	97	6.02	70 - 130	30	70 - 130	30			
%SS1:	112	0.050	105	106	0.689	105	103	1.47	70 - 130	30	70 - 130	30			
%SS2:	98	0.050	106	105	0.639	106	96	9.90	70 - 130	30	70 - 130	30			
%SS3:	92	0.050	106	107	0.800	109	106	2.59	70 - 130	30	70 - 130	30			
All target compounds in the Met	All target compounds in the Method Plank of this extraction batch were ND less than the method PL with the following executions:														

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exception NONE

BATCH 23787 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-002	9/20/06 8:01 AM	9/20/06	9/26/06 7:11 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Quality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil		QC Matrix: Soil WorkOrder 0									kOrder 06094	403	
EPA Method 6020A			Extract	tion SW3	050B		Bato	:hID: 23846	5	Spiked Sample ID 0609397-052A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)	
, analyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS / LCSD	RPD
Antimony	ND	50	100	99.4	0.736	10	99.2	101	1.51	75 - 125	20	80 - 120	20
Arsenic	5	50	92.7	93	0.331	10	94.2	94.9	0.761	75 - 125	20	80 - 120	20
Barium	290	500	95.7	96	0.207	100	96.4	97.8	1.48	75 - 125	20	80 - 120	20
Beryllium	0.72	50	89.5	89.6	0.110	10	98.7	102	3.36	75 - 125	20	80 - 120	20
Cadmium	ND	50	95	94.6	0.464	10	95.5	95.8	0.303	75 - 125	20	80 - 120	20
Chromium	41	50	82.5	86.6	2.47	10	90.9	92.6	1.86	75 - 125	20	80 - 120	20
Cobalt	13	50	84.5	84.1	0.328	10	95.4	99.3	3.95	75 - 125	20	80 - 120	20
Copper	24	50	89.1	91.3	1.59	10	95.2	95.3	0.105	75 - 125	20	80 - 120	20
Lead	10	50	94	93.7	0.193	10	96.4	98	1.74	75 - 125	20	80 - 120	20
Mercury	ND	2.5	102	100	1.14	0.50	103	104	1.33	75 - 125	20	80 - 120	20
Molybdenum	0.50	50	93.3	92.6	0.766	10	95	95.6	0.608	75 - 125	20	80 - 120	20
Nickel	42	50	90.7	94.3	2.01	10	93.8	94.8	1.10	75 - 125	20	80 - 120	20
Selenium	ND	50	95.6	94.3	1.28	10	93	94.4	1.49	75 - 125	20	80 - 120	20
Silver	ND	50	91.3	90.7	0.636	10	94.5	95.2	0.791	75 - 125	20	80 - 120	20
Thallium	ND	50	92.4	93.4	1.08	10	89.4	92.1	2.98	75 - 125	20	80 - 120	20
Vanadium	72	50	81.1	88.1	3.05	10	91.2	92.6	1.51	75 - 125	20	80 - 120	20
Zinc	56	500	94.3	94	0.304	100	97.7	98.6	0.917	75 - 125	20	80 - 120	20
%SS:	108	250	105	107	2.41	250	101	102	1.58	70 - 130	20	70 - 130	20

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification Nº 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6020A

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

			BATCH	23846 SUMMARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-001A	9/20/06 8:37 AM	9/20/06	9/22/06 2:29 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification Nº 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SM5220D

WorkOrder 0609403 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SM5220D Extraction SM5220D BatchID: 23796 Spiked Sample ID: 0609365-001A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD COD 3200 10000 109 104 3.45 106 99.6 6.41 90 - 110 20 90 - 110 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23796 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-001	9/20/06 8:37 AM	9/21/06	9/21/06 4:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: p	ρН					Matrix: S WorkOrder: 060940							
Method Name	e: SW9	045C		Units ±, pH units @ °C BatchID: 23847									
SampleID		Sam	ole	C	DF	Dup	/ Ser. Dil.	D	F	RD		Acce	ptance Criteria
0609403-001A		7.37 @ 2	23.9 °C		1	7.38	@ 24.0 °C	1		0.01	l		±0.05
Sample ID	Date	e Sampled	Date Extr	acted	<u>BAT</u> Date An	<u>CH 2384</u> alyzed	7 SUMMARY Sample ID		Date	Sampled	Date E	Extracted	Date Analyzed
0609403-001A	9/20/	06 8:37 AM	9/20)/06 9	9/21/06 8	3:30 PM	0609403-0	01A	9/20/0)6 8:37 AM	9	9/20/06	9/21/06 8:30 PM

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

RD = Absolute Value {Sample - Duplicate}; RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2].

DHS ELAP Certification Nº 1644

R__QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

WorkOrder 0609403 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SW8015C Extraction SW3550C BatchID: 23830 Spiked Sample ID: 0609374-005A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD TPH(d) ND 20 102 105 2.65 97.9 101 3.00 70 - 130 30 70 - 130 %SS: 92 50 102 105 2.22 103 106 2.12 70 - 130 30 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23830 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-002	9/20/06 8:01 AM	9/20/06	9/26/06 3:15 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

RPD

30

30

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: 2942 San Pablo	Date Sampled:	09/20/06
1330 S. Bascom Avenue, Ste. F		Date Received:	09/20/06
San Jose, CA 95128	Client Contact: Joel Greger	Date Reported:	09/27/06
	Client P.O.:	Date Completed:	10/03/06

WorkOrder: 0609403

October 03, 2006

Dear Joel:

Enclosed are:

- 1). the results of 2 analyzed samples from your 2942 San Pablo project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

IT IS IN THE LEAD THE INFORMATION THE INFORMATION OF THE INFORMAT		McCAM	PBELI	ΔΝΔΙ	VT			NC										H			F	CII	CT				FCI		
Telephone: (92) 798-1620 RUSH 34 HR 58 HR 721 RUSH 34 HR 58 HR 721 Compare: // Carager Bill To: // CAS Compare: // Carager Bill To: // CAS Compare: // Carager Bill To: // CAS Samples Carager Area Sock // Carager Bill To: // CAS Samples Carager Area Sock // Carager Area Area Sock // Carager Area Area Area Area Area Area Area Ar		IIICCAM	$10 2^{nd} A$	VENUE SO	UTH,	#D7		10.						TU	RN	AF	201		$\frac{1}{TH}$	U ME	L I			U		N			
Report To: Joel Grager Bill To: P/ERS Company: P/ERS Write On (RS) No Write On (RS) No Company: P/ERS Philices marked 330 S. Ballers Are Suite F Some Server 144 Some Ser	Telepho	ne: (925) 798	PACHE0 8-1620	CO, CA 945	53-550	50 F	ax: ((925)	798-1	622				/			7	PD	F			RI	JSH	i	24 H	R	₹8	HR	72 HF
Report 16: 5 221 Status Science monochild (Sompass: CHRS Genue monochild Samples Signed for Science monochild 1330 S. Baskerne How Suite for Science monochild Samples Signed for Science Monochild Sem / as C.H. 95/28 Fax: 0.500 727/1757 Project Location: 2.942 Sem / additioned Project Name: 297/28 Sampler Signature: Project Name: 297/28 Sat A J J	Deres A Trace of the	10.00	2.5	D	:11 TT -	. 0	100	20						EDF	Req	uire	ed? (Coelt	(No	orma	al))) No)	Wr	ite (Dn (I		No	
1330 S. Balscom Arec Surfer Som face Som face <t< td=""><td>Company: C/F</td><td>PS Day</td><td>mon mo-</td><td>ntal</td><td>111 1 0</td><td>: [7]</td><td>ER</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>Anar</td><td>515 1</td><td>Lequ</td><td>lest</td><td></td><td></td><td>a na an an</td><td></td><td></td><td>2</td><td>.ner</td><td></td></t<>	Company: C/F	PS Day	mon mo-	ntal	111 1 0	: [7]	ER							1				Anar	515 1	Lequ	lest			a na an			2	.ner	
Sem_loss CAP 95/29 E-Mail: Tele: 05/0 5/3-5 3-6 Fax: (0) 7/21/35 7 Project Name:	1330	S. Baser	m Av	e Suite	e F										B&F		8	Contraction of the local					1 Kal		-	10	day		1
Tele: 0.5 / 0.5 / 5 / 5 / 5 / 5 / 5 / 5 / 7 / 7 / 7 /	Sanlos	ie CA ?	9512	8 1	E-Ma	il:	1		- 14 -	() _	~~			A BE	E&F/							8310	hai			5	5	\$	See.
Project Location: 2 9 42 Sam Mathematical TL 2 9 40 Mathematical Signature: SAMPLE ID SAMPLE ID SAMPLING SAMPLE ID LocATION Date Time SAMPLE ID LocATION Field Point Name LocATION SS 4/A J. J. Solution	Tele: () 5 10 3	93538	2	F	ax: () <u>S</u>	0	200	714	57	D	17	_		520 1	418.1						10/	24		and the second second		27	5	1 th
Sampler Signature:	Project #:	7941	Sand	r Nable	Pojec	e Ivai	$\frac{1000}{0}$	_ [[[e]e	L. Se	an o	1 24	012	~	+	se (5) suo		020)	Γ			5 / 82	24		6	1	35		an
SAMPLE ID (Field Point Name) SAMPLING X X Date Time Time Time Time Time SS 4/A J O.S 920 (J 0.50) 920 (J 0.50) 920 (J 0.50) 920 (J 0.50) SS 4/B J / Z Y X X X SS 4/B J / Z Y Y X X SS 4/B J / Z Y Y X X SS 4/B J / Z Y Y X X SS 4/B J / Z Y Y X X SS 4/B J / Z Y X X X SS 4/B J / Z Y X X X SS 4/B J / Z Y X X X SS 4/B J / Z Y X X X SS 4/B J / Z Y X X X SS 4/B J / Z Y X X X S 5/A J /2 Y Z X X X S 5/A J /2 Y Z Z Z Z <	Sampler Signatur	re: Aren	11-	2			,	e						1802	Grea	carb		02 / 8	ON SON	G		A 62.	XXX		2/60		100		1/2
SAMPLE ID (Field Point Name) LOCATION Date Time Summary and the second s		17.	SAMI	PLING		LS	N	ИАТ	RIX	N DD	MET	HOD		s (60))il 🕉	łydrc		9 V 6(CB'	826		y EP.	15		239.	V	-de	έ	La
SAMPLE ID (Field Point Name) LOCATION Date Time Time <td></td> <td></td> <td></td> <td></td> <td>lers</td> <td>aine</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>as Ga el (8(</td> <td>) mn</td> <td>1 um</td> <td>010</td> <td>Y (EI</td> <td>080 1</td> <td>240</td> <td>270</td> <td>A's b</td> <td>etals</td> <td>als</td> <td>7421</td> <td>5</td> <td>2</td> <td></td> <td>3</td>					lers	aine								as Ga el (8() mn	1 um	010	Y (EI	080 1	240	270	A's b	etals	als	7421	5	2		3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE ID (Field Point Name)	LOCATION			tain	Cont			8.					Dies	etrole	etrole	1 / 8	NUC 8	8/8	4 / 8	5/8	NV/	7 M6	Met	240/	<	SE		5
x = 4 = 5 = 3 = 4 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2			Date	Time	Con	/pe (ate.	ir Dil	udg	e e	G	0N	ther	EX &	tal P	ital P	A 60	TEX (A 60	A 62	A 62	AH's	I-MA	JFT 5	ad (7	- !	20	2	8
SS 4/A J 0.5 9.20 Ul 0:37 m 1 Image # X X X SS 4/B J 8:43 m 1 X X X X SS 4/B J 1 8:43 m 1 X X X X SS 4/C J 0.5 8:49 m 1 X X X X X SS 4/D J 1 8:57 m 1 X X X X X X SS 4/D J 1 8:57 m 1 V X X X X X X X SS 3/A J 2 V 9:6/hm 1 V X X X X X X SS 3/A J 2 V 9:6/hm 1 V X					#	Ĥ	2	S A	S C		Η	H	Ó	TP	To	To	EP	8 4		EP	EF	ΡA	C/	Ц	3	R A		5	
SS 4 B J I IX X X SS 4 C J J J IX X X SS 4 D J J J J X X X SS 4 D J J J J X X X X SS 3 A J Z V Y X X X X SS 3 A J Z V Y X X X X SS 3 A J Z V Y X X X X So 3 A J Z V Y X X X X So 3 A J Z V Y X X X X So 3 A J Z V Y X X X X X X So 3 A J Z V X X X X X X X X Image: So 3 A J J J X </td <td>354A</td> <td>20.5</td> <td>9-20-06</td> <td>0:37Am</td> <td>1</td> <td>line</td> <td>4</td> <td>x</td> <td></td> <td>X</td> <td></td>	354A	20.5	9-20-06	0:37Am	1	line	4	x		X																			
SS42 J J.5 J 494m I X X SS4D J 1 J'STAM X X X SS3A J 2 Y Yold Y X X SS3A J 2 Yold Yold Y X Yold Yold Relinquished By: Date: Time: Received By: Yold	SSYB	01	/	8:43An	, /			\times		×											1	\sum	×						1 Ce
SS4D J SS4M X </td <td>SS4C</td> <td>00.5</td> <td></td> <td>8:49AM</td> <td>/</td> <td> </td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td>('</td>	SS4C	00.5		8:49AM	/			X		X																			('
SS3A J2 Y <td>554D</td> <td>01</td> <td></td> <td>8:57Am</td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>/</td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>20</td> <td></td> <td>)</td>	554D	01		8:57Am				×		X				~							/					6	20)
Reliminished By: Date: Time: Received By: ICE/t ^e PRESERVATION Pate: Time: Received By: ICE/t ^e CONTAINERS	553A	02	Y	8:0/Am				×		Ľ				X						7					- A MOT	2	ux		
Relinquished By: Date: Time: Received By: Mathematical By: Date: Time: Received By: Palinguished By: Date: Time: Received By: Mathematical By: Date: Time: Received By: Container Mathematical By: Date: T		<i>y</i>																											
Relinquished By: Date: Time: Received By: VOAS 0.8G MET Relinquished By: Date: Time: Received By: VOAS 0.8G MET Relinquished By: Date: Time: Received By: VOAS 0.8G MET Relinquished By: Date: Time: Received By: VOAS 0.8G MET																													
Relinquished By: Date: Time: Received By: VOAS 0 & G MET Relinquished By: Date: Time: Received By: VOAS 0 & G MET Relinquished By: Date: Time: Received By: VOAS 0 & G MET Relinquished By: Date: Time: Received By: VOAS 0 & G MET Relinquished By: Date: Time: Received By: VOAS 0 & G MET										-								-										8-14	
Relinquished By: Date: Time: Received By: VOAS 0&G MET Belinquished By: Date: Time: Received By: VOAS 0&G MET Belinquished By: Date: Time: Received By: VOAS 0&G MET Belinquished By: Date: Time: Received By: VOAS 0&G MET Belinquished By: Date: Time: Received By: VOAS 0&G MET Belinquished By: Date: Time: Received By: VOAS 0&G MET Belinquished By: Date: Time: Received By: VOAS 0&G MET			-																										
Relinquished By: Date: Time: Received By: Pate: Time: Received By: VOAS 0&G Mathematical Structure Preservation APPROPRIATE Contrained By: Contrained By: Contrained By: Pate: Time: Received By: Preservation APPROPRIATE Contrained By: Contrained By:																													
Relinquished By: Date: Time: Received By: Belinquished By: Pate: Time: Received By: Bit Top/c Time: Received By: CONDITION_ By: Pate: Time: Received By: CONTAINERS			gurach.											17				à											
Relinquished By: Date: Time: Received By: 1000000000000000000000000000000000000																													
Relinquished By: Date: Time: Received By: 0.101 9/2/05 1/9 0.8G MET Relinquished By: Pate: Time: Received By: VOAS 0.8G MET Relinquished By: 9/2/05 1/9 0.8G MET ICE/t° PRESERVATION APPROPRIATE Relinquished By: 9/2/05 1/9 0.8G MET ICE/t° PRESERVATION APPROPRIATE 10/05 1/9 1/2 1/9 1/2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																													
Void Void Void Void Void Void Void Void MET Relinquished By Pate: Time: Received By ICE/t° PRESERVATION APPROPRIATE Contrainers Torkic Containers Containers Containers	Relinquished By:	L	Date:	Time:	Rece	ived B	y:								·									(1		1		1
Contraining Pate: Time: Received to: 10000 10000 10000 APPROPRIATE 10000 10000 10000 CONTAINERS	yourre	Ħ	TRADE	m	4	0	¥-	and a second sec	2				_	1CE	/t°	4	and the state of t			And	ł	PRE	SER	VAT	LION	vo V	AS	0&G	METAI
HEAD SPACE ABSENT CONTAINERS	Kelinguished By		Toke	Time:	Rece	wea B	and the)			GO	OD C	ON	DIT	ION_			ł	APP	ROP	RIA	TE				
Relinguistic Ty: Dete: / Time: Received By: DECHLORINATED IN LAB PERSERVED IN LAB	Relinguished By:		Date:	Time:	Rece	ived B	y:	\approx		F	/		-	DEC	CHL	PA(DRI	LE A NAT	ED I	N LA	B		_ PE	RSE	ERV	KS	IN LA	ĀΒ		

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-926	52			Wo	rkOrd	ler: 06	509403		Clie	ntID: I	PESJ		EDF	: YES	5		
Report to:							Bill to:						Req	uested	TAT:	5	days
Joel Greger Piers Environme 1330 S. Bascom San Jose, CA 99	ntal Avenue, Ste. F 5128	Email: TEL: ProjectNo PO:	(408) 559-12 :: 2942 San Pa	48 FAX: (408) ablo	559-12	224	Ace Pie 133 Sai	counts ers Envi 30 S. Ba n Jose,	Payable ronmer ascum CA 95	e ital Avenue 128	, Ste. F	-	Date Date	e Recei e Print	ived: ed:	09/20 09/28	/2006 /2006
									Re	quested	d Tests	(See leg	jend bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0609403-001	SS4A-4D		Soil	9/20/06 8:37:00 AN	/	Α		Α	Α		Α						
0609403-002	SS3A		Soil	9/20/06 8:01:00 AN	Λ	Α	Α			Α		Α					

Test Legend:

1	218_6m_S	2	8260B_S	3	CAM17MS_S	CN_S		5 METALSMS_S
6	PREDF REPORT	7	TPH(DMO)_S	8] 1	0
11		12						

The following SampIDs: 0609403-001A, 0609403-002A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Nickole White

Comments: as cd cr cu ni zn & ttlc cr6 added 9/27/06 per email

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	CCampbell Analyti "When Ouality Counts"	ical, Inc	2.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccan 377-252-9262 Fax: 925-252-92	1701 npbell.com 69	
Piers Environ	mental	Client Pro	ject ID:	2942 S	San Pablo	Date Sampled: 09/20	/06	
1330 S. Basco	om Avenue, Ste. F					Date Received: 09/20	/06	
San Jose, CA	95128	Client Co	ntact: Jo	el Gre	eger	Date Extracted: 09/20	/06	
		Client P.C).:			Date Analyzed 09/21	/06	
	TTLC Hexa	chrome by	Alkaline	Diges	stion and IC-UV A	Analysis*		
Extraction method	SW3060A		Analytical m	ethods	E218.6m	Work C	rder: 060	09403
Lab ID	Client ID	Matrix	Extract	ion	Не	exachrome	DF	% SS
0609403-001A	SS4A-4D	S	TTL	С		ND	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	µg/L
above the reporting limit	S	TTLC	0.8	mg/Kg

Angela Rydelius, Lab Manager

* All samples are reported in mg/kg unless otherwise requested. All samples and QC were cleaned up prior to analysis.

j) reporting limit raised due to matrix interference.

	CCampbell Analyti "When Ouality Counts"	ical, Inc	150	,	1534 Willow P Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 177-252-9262 Fax: 925-252-92	1701 pbell.com 69	
Piers Environ	mental	Client Pro	ject ID: 2	2942 San I	Pablo	Date Sampled: 09/20	/06	
1330 S. Basco	om Avenue, Ste. F					Date Received: 09/20	/06	
San Jose, CA	95128	Client Co	ontact: Joo	el Greger		Date Extracted: 09/28	/06	
		Client P.C).:			Date Analyzed 09/28	/06	
	TTLC Hexa	achrome by	Alkaline	Digestion	and IC-UV A	Analysis*		
Extraction method	SW3060A		Analytical m	ethods E218	3.6m	Work O	rder: 060	09403
Lab ID	Client ID	Matrix	Extracti	on	Не	xachrome	DF	% SS
0609403-002A	SS3A	S	TTLC	C		ND	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	µg/L
above the reporting limit	S	TTLC	0.8	mg/Kg

Angela Rydelius, Lab Manager

* All samples are reported in mg/kg unless otherwise requested. All samples and QC were cleaned up prior to analysis.

j) reporting limit raised due to matrix interference.

McCampbell	Analytic	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environmental		Client Pro	ject ID:	2942 San Pablo	Date S	ampled: 09/20/0)6		
			5	Date Perceived: 00/20/06					
1330 S. Bascom Avenue, Ste. I	-								
		Client Co	ntact: Jo	el Greger	Date E	xtracted: 09/20/0)6		
San Jose, CA 95128		Client P.C).:		Date A	analyzed 09/26/0)6		
	Volatile Or	ganics by	P&T and	d CC/MS (Basic Target	I ist)*				
Francisco Mada de CW5020D	Volatile Of	games by		u OCAND (Dasie Target	List	Weste	1	0.402	
Extraction Method: Sw5030B		An	alytical Metr	10d: SW8260B		work Or	der: 060	19403	
Lab ID				0609403-002A					
Client ID				SS3A					
Matrix			Reporting	Soil				Reporting	
Compound	Concentratio	n * DF	Limit	Compound		Concentration *	DF	Limit	
Acetone	ND<0.50	10	0.05	Acrolein (Propenal)		ND<0.50	10	0.05	
Acrylonitrile	ND<0.20	10	0.02	tert-Amyl methyl ether (T	TAME)	ND<0.050	10	0.005	
Benzene	ND<0.050	$\frac{10}{10}$	0.005	Bromobenzene		ND<0.050	10	0.005	
Bromochloromethane	ND<0.050	$\frac{10}{10}$	0.005	Bromodichloromethane		ND<0.050	10	0.005	
2-Butanone (MEK)	ND<0.030	10	0.003	t-Butyl alcohol (TBA)		ND<0.050	10	0.005	
n-Butyl benzene	ND<0.050) 10	0.005	sec-Butyl benzene		ND<0.050	10	0.005	
tert-Butyl benzene	ND<0.050) 10	0.005	Carbon Disulfide		ND<0.050	10	0.005	
Carbon Tetrachloride	ND<0.050) 10	0.005	Chlorobenzene		ND<0.050	10	0.005	
Chloroethane	ND<0.050) 10	0.005	2-Chloroethyl Vinyl Ether		ND<0.10	10	0.01	
Chloroform	ND<0.050) 10	0.005	Chloromethane		ND<0.050	10	0.005	
2-Chlorotoluene	ND<0.050	$\frac{10}{10}$	0.005	4-Chlorotoluene		ND<0.050	10	0.005	
1 2 Dibromoethane (EDB)	ND<0.050	$\frac{10}{10}$	0.005	1,2-Dibromo-3-chioroproj	pane	ND<0.050	10	0.005	
1.2-Dichlorobenzene	ND<0.050	$\frac{10}{10}$	0.005	1.3-Dichlorobenzene		ND<0.050	10	0.005	
1,4-Dichlorobenzene	ND<0.050) 10	0.005	Dichlorodifluoromethane		ND<0.050	10	0.005	
1,1-Dichloroethane	ND<0.050) 10	0.005	1,2-Dichloroethane (1,2-D	ND<0.050	10	0.005		
1,1-Dichloroethene	ND<0.050) 10	0.005	cis-1,2-Dichloroethene		0.97	10	0.005	
trans-1,2-Dichloroethene	ND<0.050) 10	0.005	1,2-Dichloropropane		ND<0.050	10	0.005	
1,3-Dichloropropane	ND<0.050	$\frac{10}{10}$	0.005	2,2-Dichloropropane		ND<0.050	10	0.005	
1,1-Dichloropropene	ND<0.050	$\frac{10}{10}$	0.005	Dijsopropyl ether (DIPE)		ND<0.050	10	0.005	
Ethylbenzene	0.06	$\frac{10}{50}$	0.005	Ethyl tert-butyl ether (ET	BE)	ND<0.050	10	0.005	
Freon 113	ND<1.0	10	0.1	Hexachlorobutadiene	ND<0.050	10	0.005		
Hexachloroethane	ND<0.050) 10	0.005	2-Hexanone	ND<0.050	10	0.005		
Isopropylbenzene	ND<0.050) 10	0.005	4-Isopropyl toluene		ND<0.050	10	0.005	
Methyl-t-butyl ether (MTBE)	0.05	58 10	0.005	Methylene chloride		ND<0.050	10	0.005	
4-Methyl-2-pentanone (MIBK)	ND<0.050) 10	0.005	Naphthalene		0.079	10	0.005	
Nitrobenzene Styrene	ND<0.050	10	0.0	<u>n-Propyl benzene</u>		ND<0.050	10	0.005	
1.1.2.2-Tetrachloroethane	ND<0.050	$\frac{10}{10}$	0.005	Tetrachloroethene	/	ND<0.050	10	0.005	
Toluene	ND<0.050) 10	0.005	1.2.3-Trichlorobenzene		ND<0.050	10	0.005	
1,2,4-Trichlorobenzene	ND<0.050) 10	0.005	1,1,1-Trichloroethane		ND<0.050	10	0.005	
1,1,2-Trichloroethane	ND<0.050) 10	0.005	Trichloroethene	Trichloroethene			0.005	
Trichlorofluoromethane	ND<0.050	0 10	0.005	1,2,3-Trichloropropane		ND<0.050	10	0.005	
1,2,4-Trimethylbenzene Vinyl Chloride	0.3	$\frac{3}{10}$	0.005	1,3,5-Trimethylbenzene		ND<0.050	10	0.005	
	1020.050	<u>, 110</u> Sur	rogate Re	coveries (%)		0.12	10	0.003	
%SS1:		94	i ogait M	%\$\$?·		01			
%SS1:		109		/0002.					
Comments:	•			1					

* water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An "When Ouality	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers Environmental		Client Pr	oject ID:	: 2942 San Pablo Date Sampled: 09/20/06				
					Date Received: 09/20/06			
1330 S. Bascom Avenue, Ste. F		Client C	ontact: Io	el Greg	er	Date Extracted:	09/20/06	
G L GL 05100				ci oleg		Date Extracted.	0)/20/00	
San Jose, CA 95128		Client P.0	0.:			Date Analyzed	09/22/06	
		С	AM / CCR	R 17 Me	tals*			
Lab ID	06094	03-001A					Reporting Lin	nit for DF =1;
Client ID	SS4	IA-4D					ND means r above the re	not detected porting limit
Matrix		S					S	W
Extraction Type	T	TLC					mg/Kg	mg/L
		ICP-N	IS Metals,	Conce	ntration*			
Analytical Method: 6020A		Extra	action Method	1: SW305	50B	•	Work Order:	0609403
Dilution Factor		1					1	1
Antimony		ND					0.5	NA
Arsenic		4.2					0.5	NA
Barium	1	150					5.0	NA
Beryllium	1	ND					0.5	NA
Cadmium	0.44						0.25	NA
Chromium	47						0.5	NA
Cobalt		8.0					0.5	NA
Copper		22					0.5	NA
Lead		56					0.5	NA
Mercury	0	.060					0.05	NA
Molybdenum	(0.80					0.5	NA
Nickel		35					0.5	NA
Selenium		ND					0.5	NA
Silver		ND					0.5	NA
Thallium		ND					0.5	NA
Vanadium		38					0.5	NA
Zinc		60					5.0	NA
%SS:		106					<u> </u>	
Comments								
 *water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument. 	uct/oil/n wipe sam D means	on-aqueous aples in µg/v s not detecte	liquid samp vipe, filter s ed above the	ples and amples i e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mean	DISTLC / SPLP extr	acts are repo	rted in

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

$\begin{array}{c c c c c c } \line Project ID: 2942 San Pablo & Date Sampled: 09/20/6 & Date Received: 09/20/6 & Date Received: 10/02/06 & Date Received: 10/02/06 & Client Contact: Joel Feyer & Date Analyzed 10/02/06 & Client Contact: Joel Feyer & Date Analyzed 10/02/06 & Client Contact: Joel Feyer & Date Analyzed 10/02/06 & Client Contact: Joel Feyer & Date Analyzed 10/02/06 & Client Contact: Joel Feyer & Date Analyzed 10/02/06 & Client Contact: Joel Feyer & Date Analyzed 10/02/06 & Client Contact: Joel Feyer & Date Analyzed 10/02/06 & Client Contact: Joel Feyer & Ostal Contact: Joel Feyer & J$	<u> </u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	:	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com 742 San Pablo Date Sampled: 09/20/06 Date Received: 09/20/06 Date Received: 09/20/06 I Greger Date Extracted: 10/02/06 I Greger Date Analyzed 10/02/06 Fotal*^ Work Order: 06 I I I I I I I I I I I I I I I I I I I I I I						
$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Piers Environme	ental	Client Proje	ect ID: 294	2942 San Pablo Date Sampled: 09/20/06						
$ \begin{array}{c c c c c c } San Jose, CA 95128 & \hline \ \ Client Contact: locl Greger \\ \hline \ \ Client P.O: & \hline \ \ Date Analyzed 10/02/06 \\ \hline \ \ \ Client P.O: & \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	1330 S. Bascom				Date Received: 09/	/20/06					
Date Analyzed 10/02/06 Client P.O:: Date Analyzed 10/02/06 Analytical Method: SM4500-CN: E Work Order: 0609403 Lab ID Client ID Matrix Total Cyanide DF 0609403-001A S\$4A-4D S 1.1 1 0609403-001A S\$4A-4D S 1.1 1 0 Image: Colspan="2">Image: Colspan="2">Client ID Matrix Total Cyanide DF 0609403-001A S\$4A-4D S 1.1 1 <td>Son Jose CA 05</td> <td>129</td> <td>Client Con</td> <td>tact: Joel C</td> <td>Greger</td> <td>Date Extracted: 10/</td> <td>/02/06</td> <td></td>	Son Jose CA 05	129	Client Con	tact: Joel C	Greger	Date Extracted: 10/	/02/06				
Cyanide, Total®^ Analytical Method: SM4500-CN: E Work Offer: 0609403 Lab ID Client ID Matrix Total Cyanide DF 0609403-001A SS4A-4D S 1.1 1 0 Image: Client ID S 1.1 1 Image: Client ID <	San Jose, CA 95	120	Client P.O.	:		Date Analyzed 10/	/02/06				
Analytical Method: SM450-CN: E Work Order: 0609403 Lab ID Client ID Matrix Total Cyanide DF 0609403-001A SS4A-4D S 1.1 1 0 0 1.1 1 1 1 0 0 1.1 1 1 1 1 1 0 0 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Cyanide, Total*^									
Lab ID Matrix Total Cyande DF 0609403-001A SS4A-4D S 1.1 1 Image: Im	Analytical Method: S	M4500-CN ⁻ E		Moteria		Wor Total Cuanida	k Order: 0609	0403			
0009403-001ASS4A-4DS1.11Image: Constraint of the second se	Lab ID			Matrix		Total Cyanide		DF			
Image: section of the section of th	0609403-001A	SS4A-4D		S		1.1		1			
Image: section of the section of th											
Image: section of the section of th											
Image: series of the series											
Image: second											
Image: second											
Image: Second											
Image: Section of the section of th											
Image: state stat											
Image: state											

Reporting Limit for DF = 1; ND means not detected at	W	NA	
or above the reporting limit	S	0.1 mg/Kg	1

* water samples are reported in µg/L; soil/sludge/solid samples in mg/kg; wipe samples in µg/wipe.

^All soil samples are treated to remove sulfide, nitrate and nitrite interference prior to analysis.

i) liquid sample contains greater than ~ 1 vol. % sediment; j) reporting limit raised due to high sediment content/matrix interference; k) sample pretreatment was done to remove interfering sulfide per E335.4; m) sample pretreatment was done to remove interfering nitrate and nitrite per E335.4; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 "When Ouality Counts" E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
Piers Environmental	Client Project ID:	2942 San Pablo Date Sampled: 09/20/06							
1330 S. Bascom Avenue, Ste. F			Date Received: 09/20/06						
G I GA 05100	Client Contact: Jo	el Greger	Date Extracted: 09/21/06						
San Jose, CA 95128	Client P.O.:	t P.O.: Date Analyzed 09/21							
Chemical Oxygen Demand (COD)*									
Lab ID Client ID	Matrix	<u> </u>	COD	DF					
0609403-001A SS4A-4D	S		27,000	1					

Reporting Limit for DF = 1; ND means not detected at	W	NA	
or above the reporting limit	S	250 mg/Kg	

*water/product/oil/non-aqueous liquid samples and all TCLP/STLC/DISTLC/SPLP extracts are reported in mg/L; soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

<u> </u>	IcCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 "When Ouality Counts" E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Piers Environme	ntal	Client Project ID:	2942 San Pablo Date Sampled: 09/20/06						
1330 S. Bascom	Avenue, Ste. F			Date Received: 09/20/06					
	, ,	Client Contact: J	oel Greger	Date Extracted: 09/29/06					
San Jose, CA 95.	128	Client P.O.:	Date Analyzed 09/29/06						
Chemical Oxygen Demand (COD)*									
Lab ID	Client ID	Matri	ix	COD	DF				
0609403-002A	SS3A	S		12,000	1				
					_				
					-				
					+				
					+				

Reporting Limit for DF = 1; ND means not detected at	W	NA			
or above the reporting limit	S	250 mg/Kg			

*water/product/oil/non-aqueous liquid samples and all TCLP/STLC/DISTLC/SPLP extracts are reported in mg/L; soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

	McCampb	ell An	alytic Counts"	cal,	Inc.		1534 W Web: www.n Telep	illow F nccamp hone: 8	Pass Ro bell.com 377-252	ad, Pittsburg, CA n E-mail: main 2-9262 Fax: 92	94565-1701 @mccampbell. 5-252-9269	com	
Piers E	nvironmental			Clie	nt Project II	D: 2942 S	an Pablo		Dat	e Sampled:	09/20/06		
1330 S	. Bascom Avenue, S	te. F							Date	e Received:	09/20/06		
San Ios	е СА 05128		_	Clie	nt Contact:	Joel Greg	ger		Dat	e Extracted:	09/28/06		
Sali JOS	e, CA 95128		_	Clie	nt P.O.:				Dat	e Analyzed	09/29/06		
	Metals*												
Extraction	Client ID	Matrix	Extract	tion	Analyti	Cadmium	5020A	Cor	nar	Nickel	Work Order:	0609	9403 % \$\$
Lau ID	Chent ID	Mauix	Extract		Aiseine	Caulifium	Chronnum	Cop	per	INICKEI	Zilic	DF	70 55
002A	SS3A	S	TTL	С	2.8	ND	30	1	2	22	22	1	102
Report	ing Limit for DF =1;	W	TTL	C	NA	NA	NA	N	A	NA	NA	1	NA
ND mea above	ans not detected at or the reporting limit	S	TTL	С	0.5	0.25	0.5	0.	.5	0.5	5.0	m	g/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

<u> </u>	Campbell Analyti	cal, Inc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: maii 377-252-9262 Fax: 92	A 94565-1701 n@mccampbell. 5-252-9269	com
Piers Environm	nental	Client Project ID: 2	2942 San	Pablo	Date Sampled:	09/20/06	
1330 S. Bascor	m Avenue, Ste. F				Date Received:	09/20/06	
San Jose CA 9	5128	Client Contact: Jo	el Greger		Date Extracted:	09/20/06	
	5120	Client P.O.:			Date Analyzed	09/21/06	
		pł	I *				
Analytical Method:	SW9045C		Matrix		ъН	Work Order:	0609403
			Matrix				
0609403-001A	SS4A-4D		S		7.37 @ 23.9	°C	
Method Ac	curacy and Reporting Units		W		NA	രംഗ	
			5		± 0.1 , pH units (<u>س</u> -ر	

DHS ELAP Certification N° 1644

Angela Rydelius, Lab Manager

	Campbell Analyti	ical, Inc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: maii 377-252-9262 Fax: 92	A 94565-1701 n@mccampbell. 5-252-9269	com
Piers Environn	nental	Client Project ID: 2	2942 San	Pablo	Date Sampled:	09/20/06	
1330 S. Bascor	m Avenue, Ste. F				Date Received:	09/20/06	
San Jose CA 9	05128	Client Contact: Jo	el Greger		Date Extracted:	09/28/06	
	5120	Client P.O.:			Date Analyzed	09/28/06	
		pł] *				
Analytical Method:	SW9045C		Matrix		nH	Work Order:	0609403
			G		7.70 @ 02.2	°C	
0609403-002A	553A		5		7.78 @ 23.3	°C	
			337				
Method Ac	curacy and Reporting Units		w S		NA ±0.1, pH units (@ °C	

DHS ELAP Certification N° 1644

Angela Rydelius, Lab Manager

	Campbell Analyti	cal, Inc.	1534 Willow Web: www.mccan Telephone	Pass Road, Pittsburg, CA 945 npbell.com E-mail: main@mc : 877-252-9262 Fax: 925-252	65-1701 campbell.con -9269	1	
Piers Environn	nental	Client Project ID:	2942 San Pablo	Date Sampled: 09/	20/06		
1330 S. Bascor	m Avenue, Ste. F			Date Received: 09/	Date Received: 09/20/06		
San Jose, CA 9	05128	Client Contact: Jo	oel Greger	Date Extracted: 09/	20/06		
buil 3050, Crry	5120	Client P.O.:		Date Analyzed 09/	26/06		
Extraction method:	Diesel (C10-23) and Oil (C18+) Range Extrac	Diesel and Motor Oil*	k Order: 0	609403		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0609403-002A	SS3A	s	120,g,d,b	1000	10	100	
Rep	porting Limit for DF =1;	W	NA	NA	ug	z/L	
ab	ove the reporting limit	S	1.0	5.0	mg	/Kg	

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SM4500-CN⁻ E

WorkOrder 0609403 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SM4500-CN⁻ E Extraction SM4500-CN⁻ E BatchID: 23949 Spiked Sample ID: 0609530-002A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD Total Cyanide 0.12 0.80 96.4 97.4 0.896 97.3 95.9 1.53 80 - 120 20 90 - 110 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23949 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-001	9/20/06 8:37 AM	10/02/06	10/02/06 1:20 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR E218.6m

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0609403

EPA Method E218.6m	BatchID: 24002 Spiked Sample ID: 0609				: 0609403-0	02a						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Hexachrome	ND	40	87.8	96.9	9.85	92.9	96	3.28	80 - 120	20	90 - 110	10
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 24002 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-002	9/20/06 8:01 AM	9/28/06	9/28/06 10:14 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR E218.6m

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0609403

EPA Method: E218.6m	BatchID: 23797 Spiked Sample ID: 06093				: 0609365-0	01a						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria			%)
, maryto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Hexachrome	ND	40	102	104	2.53	93.1	96.5	3.59	80 - 120	20	90 - 110	10
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 23797 SUMMARY												
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed					
0609403-001	9/20/06 8:37 AM	9/20/06	9/21/06 6:19 PM									

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0609403

EPA Method SW8260B	E	Extraction	SW503	0B		Batchll	D: 23787	ę	Spiked Sar	nple ID	: 0609343-0)01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
, and you	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	101	103	2.46	105	109	3.56	70 - 130	30	70 - 130	30
Benzene	ND	0.050	96.9	98.8	1.80	98.7	107	7.87	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	91.3	86.1	5.89	98.5	124	22.5	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	101	101	0	93.7	99.7	6.20	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	95.1	95.1	0	93.1	93.4	0.306	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	115	121	4.94	119	124	4.27	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	116	117	0.517	108	111	3.45	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	117	121	2.99	116	120	3.84	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	111	114	3.28	111	116	3.63	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	0.011	0.050	90.2	93	2.50	115	120	3.87	70 - 130	30	70 - 130	30
Toluene	ND	0.050	88.6	88.4	0.227	90.4	87.9	2.84	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	97.2	98.7	1.59	91.3	97	6.02	70 - 130	30	70 - 130	30
%SS1:	112	0.050	105	106	0.689	105	103	1.47	70 - 130	30	70 - 130	30
%SS2:	98	0.050	106	105	0.639	106	96	9.90	70 - 130	30	70 - 130	30
%SS3:	92	0.050	106	107	0.800	109	106	2.59	70 - 130	30	70 - 130	30
All target compounds in the Met	hod Blank o	f this extra	ection bat	ch were N	ID less tha	n the met	hod RL w	vith the follo	wing excen	tions		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exception NONE

BATCH 23787 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-002	9/20/06 8:01 AM	9/20/06	9/26/06 7:11 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Quality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil		QC Matrix: Soil							WorkOrder 0609403				
EPA Method 6020A			Extract	tion SW3	050B		Bato	:hID: 23846	5	Spiked Sample ID 0609397-052A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)	
, analyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS / LCSD	RPD
Antimony	ND	50	100	99.4	0.736	10	99.2	101	1.51	75 - 125	20	80 - 120	20
Arsenic	5	50	92.7	93	0.331	10	94.2	94.9	0.761	75 - 125	20	80 - 120	20
Barium	290	500	95.7	96	0.207	100	96.4	97.8	1.48	75 - 125	20	80 - 120	20
Beryllium	0.72	50	89.5	89.6	0.110	10	98.7	102	3.36	75 - 125	20	80 - 120	20
Cadmium	ND	50	95	94.6	0.464	10	95.5	95.8	0.303	75 - 125	20	80 - 120	20
Chromium	41	50	82.5	86.6	2.47	10	90.9	92.6	1.86	75 - 125	20	80 - 120	20
Cobalt	13	50	84.5	84.1	0.328	10	95.4	99.3	3.95	75 - 125	20	80 - 120	20
Copper	24	50	89.1	91.3	1.59	10	95.2	95.3	0.105	75 - 125	20	80 - 120	20
Lead	10	50	94	93.7	0.193	10	96.4	98	1.74	75 - 125	20	80 - 120	20
Mercury	ND	2.5	102	100	1.14	0.50	103	104	1.33	75 - 125	20	80 - 120	20
Molybdenum	0.50	50	93.3	92.6	0.766	10	95	95.6	0.608	75 - 125	20	80 - 120	20
Nickel	42	50	90.7	94.3	2.01	10	93.8	94.8	1.10	75 - 125	20	80 - 120	20
Selenium	ND	50	95.6	94.3	1.28	10	93	94.4	1.49	75 - 125	20	80 - 120	20
Silver	ND	50	91.3	90.7	0.636	10	94.5	95.2	0.791	75 - 125	20	80 - 120	20
Thallium	ND	50	92.4	93.4	1.08	10	89.4	92.1	2.98	75 - 125	20	80 - 120	20
Vanadium	72	50	81.1	88.1	3.05	10	91.2	92.6	1.51	75 - 125	20	80 - 120	20
Zinc	56	500	94.3	94	0.304	100	97.7	98.6	0.917	75 - 125	20	80 - 120	20
%SS:	108	250	105	107	2.41	250	101	102	1.58	70 - 130	20	70 - 130	20

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification Nº 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6020A

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23846 SUMMARY												
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed					
0609403-001A	9/20/06 8:37 AM	9/20/06	9/22/06 2:29 AM									

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification Nº 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SM5220D

WorkOrder 0609403 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SM5220D Extraction SM5220D BatchID: 23796 Spiked Sample ID: 0609365-001A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD COD 3200 10000 109 104 3.45 106 99.6 6.41 90 - 110 20 90 - 110 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23796 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-001	9/20/06 8:37 AM	9/21/06	9/21/06 4:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SM5220D

WorkOrder 0609403 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SM5220D Extraction SM5220D BatchID: 24001 Spiked Sample ID: 0609403-002A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD COD 12000 10000 105 108 1.37 109 106 2.87 90 - 110 20 90 - 110 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24001 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-002	9/20/06 8:01 AM	9/29/06	9/29/06 3:01 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Quality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil						QC Matrix:	Soil				Wor	kOrder: 06094	103
EPA Method: 6020A			Extract	ion: SW3	050B		Bato	:hID: 23981		Spiked S	ample	D: 0609551-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	А	cceptan	ce Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS / LCSD	RPD
Arsenic	5.5	50	102	101	0.855	10	94.8	96.7	2.01	75 - 125	20	80 - 120	20
Cadmium	0.5	50	97.4	97.4	0	10	94.9	94.3	0.550	75 - 125	20	80 - 120	20
Chromium	33	50	95	94.7	0.236	10	90.4	91.6	1.33	75 - 125	20	80 - 120	20
Copper	34	50	102	103	0.292	10	95.2	95.4	0.189	75 - 125	20	80 - 120	20
Nickel	38	50	103	104	0.101	10	95.1	96.2	1.17	75 - 125	20	80 - 120	20
Zinc	210	500	106	106	0	100	91	91.9	0.951	75 - 125	20	80 - 120	20
%SS:	104	250	111	112	0.935	250	98	103	4.42	70 - 130	20	70 - 130	20
All target compounds in the Meth NONE	hod Blank of	this extraction	on batch we	ere ND less	than the metho	od RL with th	ne following	exceptions:					

BATCH 23981 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-002A	9/20/06 8:01 AM	9/28/06	9/29/06 9:01 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification Nº 1644

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: pH			Matrix: S			WorkOrder: 0609403
Method Name: S	V9045C		Units: ±, pH u	nits @ °C		BatchID: 23847
SampleID	Sample	DF	Dup / Ser. Dil.	DF	RD	Acceptance Criteria
0609403-001A	7.37 @ 23.9 °C	1	7.38 @ 24.0 °C	1	0.01	±0.05
Sample ID D	ate Sampled Date Ext	<u>BAT</u> racted Date Ar	CH 23847 SUMMARY	Date	Sampled Date E	Extracted Date Analyzed
0609403-001A 9	/20/06 8:37 AM 9/2	0/06 9/21/06	8:30 PM 0609403-00	IA 9/20/	06 8:37 AM	9/20/06 9/21/06 8:30 PM
Test Method: pH			Matrix: S			WorkOrder: 0609403
Test Method: pH Method Name: SV	V9045C		Matrix: S Units: ±, pH u	nits @ °C		WorkOrder: 0609403 BatchID: 23990
Test Method: pH Method Name: SN SampleID	V9045C Sample	DF	Matrix: S Units: ±, pH u Dup / Ser. Dil.	nits @ °C DF	RD	WorkOrder: 0609403 BatchID: 23990 Acceptance Criteria
Test Method: pH Method Name: SN SampleID 0609403-002A	V9045C Sample 7.78 @ 23.3°C	DF 1	Matrix: S Units: ±, pH u Dup / Ser. Dil. 7.77 @ 23.3°C	nits @ °C DF 1	RD 0.01	WorkOrder: 0609403 BatchID: 23990 Acceptance Criteria ±0.05
Test Method: pH Method Name: SV SampleID 0609403-002A Sample ID D	V9045C Sample 7.78 @ 23.3°C ate Sampled Date Extr	DF 1 BAT racted Date Ar	Matrix: S Units: ±, pH u Dup / Ser. Dil. 7.77 @ 23.3°C CH 23990 SUMMARY nalyzed Sample ID	nits @ °C DF 1 2 Date	RD 0.01 Sampled Date E	WorkOrder: 0609403 BatchID: 23990 Acceptance Criteria ±0.05 Extracted Date Analyzed

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

RD = Absolute Value {Sample - Duplicate}; RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2].

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

WorkOrder 0609403 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SW8015C Extraction SW3550C BatchID: 23830 Spiked Sample ID: 0609374-005A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD TPH(d) ND 20 102 105 2.65 97.9 101 3.00 70 - 130 30 70 - 130 %SS: 92 50 102 105 2.22 103 106 2.12 70 - 130 30 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23830 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609403-002	9/20/06 8:01 AM	9/20/06	9/26/06 3:15 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

RPD

30

30

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: 2942	Date Sampled:	09/19/06
1330 S. Bascom Avenue, Ste. F		Date Received:	09/20/06
San Jose, CA 95128	Client Contact: Joel Greger	Date Reported:	09/27/06
	Client P.O.:	Date Completed:	09/27/06

WorkOrder: 0609404

September 27, 2006

Dear Joel:

Enclosed are:

- 1). the results of **6** analyzed samples from your **2942 project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	(CVV)									-		/	10	250	ac j	re K	2-6							L	M	D))	1	1	U	1				
		McCAM	PBELI	L ANAI	LYT	ICA	LI	N	2.							-			(CH	AI	IN	OF	C C	US	T(DD	Y]	RF	ECO	OR	D			
		1	PACHEO	CO, CA 94	553-55	60									Т	UR	N	AR	01	JNI) T	'IM	E				[J			X	
	Telephor	ne: (925) 798	-1620			ł	ax:	(92	25) 79	8-1	622			1999	EI	OF I	Reg	ι uire	DF d?	= Coel	t (1	Nor	mal	\sum	RU: No	5Н V	24 Vrit	HR e Oi	n (Г	48 J OW)	HR N	0	72 HR	5 D.	λY
Ē	Report To: Joe	1 Grege	V	В	Bill To	o: /	P]-	ETE	25											Anal	ysi	s R	eque	st					Ì	Ot	ther		Com	ments	
	Company: PIER	SENVIR	men	hal													(F)								CW2										
	1330 5.1.	Sascom	Ave Su	Ite F			Air	8 4	NA	154	25-	Pa	m		ш		7/B&								0 0								5	5	
-	Jan Jo Talas OFID EG	SE CA 4	1512	0	E-Ma	$\frac{11:}{9}$		75-	710	100	7				MTB		E&I	[]							2 0	Ø							may '	6	
	Project #:	22000		<u>л</u> Р	rojec	t Na	ne.	74	407	51					(015)		5520	418.							Em 1	an							101	0	
	Project Location:	1942 Se	anPal	ble A	e C	akt	and	al al	,10						+ 0		1se (;	ons (020	-	Γζ			8	N.	(01	2					5	5	
	Sampler Signatur	e: god	10												/802		Orea	carb		2 / 8		S.					(19/0						à	AL	
			SAMI	PLING		LS.	Ì	MA	ATRI	x		MET	HOI	D	s (60	15)	il &	lydrc		A 60		CB	8260	t	A No		239.						ma	0	
					ers	aine						LSI	CRY	CD	as Ga	el (8(m	um F	010	(EF	080	80 F	140	0/1	C S D	ciais alc	421/	i i					Y.	3	
	SAMPLE ID	LOCATION			ain	ont									TPH	Diese	trole	trole	/ 80	NL	8 / 80	3 / 80	1 / 82	18/	ANA	Mets	40/7						ieta.	110	
	(Field Folint Ivalle)	8	Date	Time	ont	De C	iter	_	d do	ner			õ	ler	X&	I as I	al Pe	al Pe	109 \	O XE	V 608	V 608	V 624	20	1's/	N-1-1	4 (72	5					4	5	
					#	Tyl	M	Soi	Air	0f)	Ice	HC	H	Otl	BTE	TPF	Tota	Tota	EPA	BTI	EPA	EPA	EPA	EPA	PAH		Lea	RCI				(0	5	
	nw4	05/3.5	9-19.06	8: 2TAm	1	Ina		Y			X												4												
	MUY	d M.5	4	8:40 Am	1	1		50			X											1	X											т.,	
	may	122.5		8:51 Am	d	V		V	>		V					-							×						-						
	SSIA .	20.5		1237PM	1	1		X			X																						D		
	SSB	d 1		12:4 3pm	1			X			X													44	- 5	1							7 Cer	npos	ite
	SSIC	01		12:51pm				X			Y							4															4	as	/
	SSID a	10.5		12 57 PM				X			2	7																					K		
	55 2 A	00.5		1:08pm	. 3			X	-		$\left \right\rangle$	5											T)									2		1
	552B d	0.5		15 Mpm				X			X	-												4	3	8							5C	mpos	ite
	S2C 0	0.5		1-22 PM				Å			X	4																					2	Fas	1
	552B d	0.5	V	1:31 Am	1	V.		X			1	1											X)		
	55 3 A	20.5	9-20-06	8:01 An	1			Y			X	5											4	7					T						,
	SS3B	10.5	1	8:11 Am	V	V		X			V	0												5		1				•			900	mpusi	to
	5536	0.015		941 AN 9-77 Ar		1.1		X			X			_	_									1					1				14	si	
	Relinquished By:	10.0.2	Date:	Time:	Rec	eived I	3		U L	5	1-1	-										1									<u> </u>		<u> </u>	I	
	bern-		9/20/06	"m	- 1	F	F	-	1	$\langle \rangle$	1				т	CE	40		and the second se					DI	DES	DV	ATI	ON	VO.	AS	0&G	1	METALS	OTH	ER
	Relaquished By:		Date:	Time:	Rece	eived I	sy:	J	4	R			لمنتغث	,	(GOC)D (CON		ION		/		A	PPR	OPF	AII NAI	E E		/	-			I	
	FOR		110406	12	5	-	1-	2	1/	H		5	1	->	ł	HEA	DS	PAC	E A	BSE	NT	1 4 7		C	ONT	AIN	ER!	<u>5</u>	<u></u>	A D					
	Kennquished By:	7 a	Date:	2 2 1 C	Rece	erved E	y	/			X					JEC.	nL	OKI	٩A	ED	ET N	LAI	·		rĽÞ	SEF	(VE	D IN	(LA	ΛB					
		\mathcal{O}	ZOL	1013	1		\swarrow				_																		-						

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9	9262			Wo	rkOrd	ler: 06	509404		Clie	ntID: I	PESJ		EDH	: YES	5		
Report to:							Bill to:						Req	uested	TAT:	5	days
Joel Greger Piers Environm 1330 S. Basco San Jose, CA	nental om Avenue, Ste. F 95128	Email: TEL: ProjectNo: PO:	(408) 559-1248 2942	8 FAX: (408)	559-12	224	,						Dat Dat	e Rece e Print	ived: ed:	09/20 09/20	/2006 /2006
									Re	equested	l Tests	(See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0609404-001	MW4		Soil	09/19/2006			A		A								
0609404-002	MW4		Soil	09/19/2006			А										
0609404-003	MW4		Soil	09/19/2006			А										
0609404-004	SS1A-1D		Soil	09/19/2006		А		Α									
0609404-005	SS2A-2D		Soil	09/19/2006		А		Α									
0609404-006	SS3A-3D		Soil	09/20/2006		А		Α									

Test Legend:

1	218_6m_S	2	8260B_S	3	CAM17MS_S	4	PREDF REPORT	5	
6		7		8		9		10	
11		12]					

The following SampIDs: 0609404-004A, 0609404-005A, 0609404-006A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	CCampbell Analyt	ical, Inc	<u> </u>	1534 Willow I Web: www.mccamp Telephone: 3	Pass Road, Pittsburg, CA 94565 obell.com E-mail: main@mccar 877-252-9262 Fax: 925-252-92	-1701 npbell.com 269	
Piers Environ	mental	Client Pro	ject ID: 294	12	Date Sampled: 09/19	0/06-09/2	.0/06
1330 S. Basco	om Avenue, Ste. F				Date Received: 09/20)/06	
San Jose CA	95128	Client Co	ntact: Joel (Greger	Date Extracted: 09/20)/06	
bui Jobe, err	,5120	Client P.C).:		Date Analyzed 09/21	/06	
	TTLC Hex	achrome by	Alkaline Di	gestion and IC-UV	Analysis*		
Extraction method	SW3060A	1	Analytical metho	ods E218.6m	Work 0	Order: 06	09404
Lab ID	Client ID	Matrix	Extraction	He	exachrome	DF	% SS
0609404-004A	SS1A-1D	S	TTLC		ND	1	N/A
0609404-005A	SS2A-2D	s	TTLC		1.9	1	N/A
0609404-006A	SS3A-3D	s	TTLC		2.2	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	µg/L
above the reporting limit	S	TTLC	0.8	mg/Kg

Angela Rydelius, Lab Manager

* All samples are reported in mg/kg unless otherwise requested. All samples and QC were cleaned up prior to analysis.

j) reporting limit raised due to matrix interference.

McCampbell	Analyti Duality Counts"	cal,	Inc.		1534 Willow Pa Web: www.mccampb Telephone: 87	ass Road, l pell.com 77-252-92	Pittsburg, CA 94565-17 E-mail: main@mccampl 62 Fax: 925-252-9269	01 bell.com					
Piers Environmental		Clie	nt Proje	ect ID:	2942	Date S	ampled: 09/19/0	6					
						Date R	Received: 09/20/06						
1330 S. Bascom Avenue, Ste. I		Clie	nt Con	taat: Io	al Gragor	Data E							
San Jose CA 05128	·	Cile		lact: Jo	el Gleger	Date E	xtracted: 09/20/0	0					
Sali Jose, CA 95128	Client P.O.:						Date Analyzed 09/26/06						
	Volatile O	rgani	cs by P	&T and	l GC/MS (Basic Target	List)*							
Extraction Method: SW5030B			Analy	tical Meth	od: SW8260B		Work Or	der: 060	9404				
Lab ID					0609404-001A								
Client ID MW4													
Matrix					Soil								
Compound	Concentrati	on *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit				
Acetone	ND<0.5	0	10	0.05	Acrolein (Propenal)		ND<0.50	10	0.05				
Acrylonitrile	ND<0.2	0	10	0.02	tert-Amyl methyl ether (7	FAME)	ND<0.050	10	0.005				
Benzene	ND<0.05	0	10	0.005	Bromobenzene		ND<0.050	10	0.005				
Bromochloromethane	ND<0.05	0	10	0.005	Bromodichloromethane		ND<0.050	10	0.005				
2-Butanone (MEK)	ND<0.03	n	10	0.003	t-Butyl alcohol (TBA)		ND<0.030	10	0.005				
n-Butyl benzene	ND<0.05	0	10	0.005	sec-Butyl benzene		ND<0.050	10	0.005				
tert-Butyl benzene	ND<0.05	0	10	0.005	Carbon Disulfide		ND<0.050	10	0.005				
Carbon Tetrachloride	ND<0.05	0	10	0.005	Chlorobenzene		ND<0.050	10	0.005				
Chloroethane	ND<0.050		10	0.005	2-Chloroethyl Vinyl Ether	r	ND<0.10	10	0.01				
Chloroform	ND<0.050		10	0.005	Chloromethane	Chloromethane			0.005				
2-Chlorotoluene	ND<0.050		10	0.005	4-Chlorotoluene	-Chlorotoluene			0.005				
Dibromochloromethane	ND<0.05	0	10	0.005	1,2-Dibromo-3-chloropro	ND<0.050	10	0.005					
1,2-Dibromoethane (EDB)	ND<0.05	0	10	0.005	Dibromomethane		ND<0.050	10	0.005				
1,2-Dichlorobenzene	ND<0.05	0	10	0.005	1,3-Dichlorobenzene		ND<0.050	10	0.005				
1,4-Dichlorobenzene	ND<0.05	0	10	0.005	Dichlorodifluoromethane		ND<0.050	10	0.005				
1,1-Dichloroethane	ND<0.05	0	10	0.005	1,2-Dichloroethane (1,2-L	JCA)	ND<0.050	10	0.005				
trans_1_2-Dichloroethene	ND<0.05	0	10	0.005	1.2-Dichloropropage		ND<0.050	10	0.005				
1.3-Dichloropropane	ND<0.05	0	10	0.005	2.2-Dichloropropane		ND<0.050	10	0.005				
1.1-Dichloropropene	ND<0.05	0	10	0.005	cis-1.3-Dichloropropene		ND<0.050	10	0.005				
trans-1,3-Dichloropropene	ND<0.05	0	10	0.005	Diisopropyl ether (DIPE)		ND<0.050	10	0.005				
Ethylbenzene	ND<0.05	0	10	0.005	Ethyl tert-butyl ether (ET	BE)	ND<0.050	10	0.005				
Freon 113	ND<1.0)	10	0.1	Hexachlorobutadiene		ND<0.050	10	0.005				
Hexachloroethane	ND<0.05	0	10	0.005	2-Hexanone		ND<0.050	10	0.005				
Isopropylbenzene	ND<0.05	0	10	0.005	4-Isopropyl toluene		ND<0.050	10	0.005				
Methyl-t-butyl ether (MTBE)	ND<0.05	0	10	0.005	Methylene chloride		ND<0.050	10	0.005				
4-Methyl-2-pentanone (MIBK)	ND<0.05	0	10	0.005	Naphthalene		ND<0.050	10	0.005				
Nitrobenzene	ND<1.0		10	0.1	n-Propyl benzene		ND<0.050	10	0.005				
1 1 2 2 Tetrachloroothana	ND<0.05	0	10	0.005	T,T,T,Z-Tetracinoroethane	2	ND<0.050	10	0.005				
Toluene	ND<0.05	0	10	0.005	1 2 3-Trichlorobenzene		ND<0.050	10	0.005				
1.2.4-Trichlorobenzene	ND<0.05	0	10	0.005	1.1.1-Trichloroethane		ND<0.050	10	0.005				
1,1,2-Trichloroethane	ND<0.05	10	0.005	Trichloroethene	2.3	10	0.005						
Trichlorofluoromethane	ND<0.05	0	10	0.005	1,2,3-Trichloropropane	10	0.005						
1,2,4-Trimethylbenzene	ND<0.05	10	0.005 1,3,5-Trimethylbenzene ND<0.050 10										
Vinvl Chloride	ND<0.05	0	10	0.005	Xvlenes		ND<0.050	10	0.005				
	1		Surro	ogate Re	coveries (%)		1						
%SS1:		93			%SS2:		95						
%SS3:		11()										
Comments:													

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell	Analyti	cal,	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environmental		Clie	nt Proje	ect ID:	2942	Date S	ampled: 09/19/0	6				
					-	Date R	Received: 09/20/06					
1330 S. Bascom Avenue, Ste. I		Clie	nt Con	taat: Io	al Gragor	Data E	Intracted: 00/20/06					
San Jose CA 05128	·	Cile		lact: Jo	ei Gieger	Date E	xtracted: 09/20/0	0				
Sall Jose, CA 93128		Che	nt P.O.:			Date A	nalyzed 09/26/0	6				
	Volatile O	rgani	cs by P	&T and	l GC/MS (Basic Target	List)*						
Extraction Method: SW5030B			Analy	tical Meth	od: SW8260B		Work Or	der: 060	9404			
Lab ID					0609404-002A							
Client ID MW4												
Matrix					Soil							
Compound	Concentrati	on *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit			
Acetone	ND<0.5	0	10	0.05	Acrolein (Propenal)		ND<0.50	10	0.05			
Acrylonitrile	ND<0.2	0	10	0.02	tert-Amyl methyl ether (7	ГАМЕ)	ND<0.050	10	0.005			
Benzene	ND<0.05	0	10	0.005	Bromobenzene		ND<0.050	10	0.005			
Bromochloromethane	ND<0.05	0	10	0.005	Bromodichloromethane		ND<0.050	10	0.005			
2-Butanone (MEK)	ND<0.03	n	10	0.003	t-Butyl alcohol (TBA)		ND<0.030	10	0.005			
n-Butyl benzene	ND<0.05	0	10	0.005	sec-Butyl benzene		ND<0.050	10	0.005			
tert-Butyl benzene	ND<0.05	0	10	0.005	Carbon Disulfide		ND<0.050	10	0.005			
Carbon Tetrachloride	ND<0.05	0	10	0.005	Chlorobenzene		ND<0.050	10	0.005			
Chloroethane	ND<0.050		10	0.005	2-Chloroethyl Vinyl Ether	r	ND<0.10	10	0.01			
Chloroform	ND<0.050		10	0.005	Chloromethane	ND<0.050	10	0.005				
2-Chlorotoluene	ND<0.050		10	0.005	4-Chlorotoluene	Chlorotoluene			0.005			
Dibromochloromethane	ND<0.05	0	10	0.005	1,2-Dibromo-3-chloropro	2-Dibromo-3-chloropropane			0.005			
1,2-Dibromoethane (EDB)	ND<0.05	0	10	0.005	Dibromomethane		ND<0.050	10	0.005			
1,2-Dichlorobenzene	ND<0.05	0	10	0.005	1,3-Dichlorobenzene		ND<0.050	10	0.005			
1,4-Dichlorobenzene	ND<0.05	0	10	0.005	Dichlorodifluoromethane		ND<0.050	10	0.005			
1,1-Dichloroethane	ND<0.05	0	10	0.005	1,2-Dichloroethane (1,2-L	JCA)	ND<0.050	10	0.005			
trans_1_2-Dichloroethene	ND<0.05	0	10	0.005	1.2-Dichloropropage		ND<0.050	10	0.005			
1.3-Dichloropropane	ND<0.05	0	10	0.005	2.2-Dichloropropane		ND<0.050	10	0.005			
1.1-Dichloropropene	ND<0.05	0	10	0.005	cis-1.3-Dichloropropene		ND<0.050	10	0.005			
trans-1,3-Dichloropropene	ND<0.05	0	10	0.005	Diisopropyl ether (DIPE)		ND<0.050	10	0.005			
Ethylbenzene	ND<0.05	0	10	0.005	Ethyl tert-butyl ether (ET	'BE)	ND<0.050	10	0.005			
Freon 113	ND<1.0)	10	0.1	Hexachlorobutadiene		ND<0.050	10	0.005			
Hexachloroethane	ND<0.05	0	10	0.005	2-Hexanone		ND<0.050	10	0.005			
Isopropylbenzene	ND<0.05	0	10	0.005	4-Isopropyl toluene		ND<0.050	10	0.005			
Methyl-t-butyl ether (MTBE)	ND<0.05	0	10	0.005	Methylene chloride		ND<0.050	10	0.005			
4-Methyl-2-pentanone (MIBK)	ND<0.05	0	10	0.005	Naphthalene		ND<0.050	10	0.005			
Nitrobenzene	ND<1.0		10	0.1	n-Propyl benzene		ND<0.050	10	0.005			
Styrene	ND<0.05	0	10	0.005	T, 1, 1, 2- Tetrachloroethane	3	ND<0.050	10	0.005			
Toluene	ND<0.05	0	10	0.005	1 2 3-Trichlorobenzene		ND<0.050	10	0.005			
1.2.4-Trichlorobenzene	ND<0.05	0	10	0.005	1.1.1-Trichloroethane		ND<0.050	10	0.005			
1,1,2-Trichloroethane	ND < 0.050 10 0.00 protection ND < 0.050 10 0.00						1.9	10	0.005			
Trichlorofluoromethane	ND<0.05	0	10	0.005	1,2,3-Trichloropropane	10	0.005					
1,2,4-Trimethylbenzene	ND<0.05	10	0.005 1,3,5-Trimethylbenzene ND<0.050 10									
Vinvl Chloride	ND<0.05	0	10	0.005	Xvlenes		ND<0.050	10	0.005			
L	•		Surro	ogate Re	coveries (%)		1					
%SS1:		94			%SS2:		95					
%SS3:		109)									
Comments:												

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell	Analytic Duality Counts"	cal,	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environmental		Clier	nt Proje	ect ID: 2	2942	Date S	ampled: 09/19/0)6				
						Date R	Received: 09/20/06					
1330 S. Bascom Avenue, Ste. I	-	CI.		.	10							
	-	Clie	nt Cont	tact: Jo	el Greger	Date E	xtracted: 09/20/06					
San Jose, CA 95128		Clier	nt P.O.:)6						
	Volatile Or	oani	rs hv P	&T and	GC/MS (Basic Target)	List)*						
Extraction Method: SW5030B	volume of	Sam	Analy	vtical Math	ad SW8260B		Work Or	der 060	9404			
Extraction Method. Sw5050B			Allaly	lical Meth	0.600.40.4.002.4		WOIK OI	uer. 000	9404			
Lab ID	Lab ID 0609404-003A											
Client ID					Mw4							
Matrix		.		Reporting	5011				Reporting			
Compound	Concentratio	on *	DF	Limit	Compound		Concentration *	DF	Limit			
Acetone	ND<0.20)	4.0	0.05	Acrolein (Propenal)		ND<0.20	4.0	0.05			
Acrylonitrile	ND<0.08	0	4.0	0.02	tert-Amyl methyl ether (T	'AME)	ND<0.020	4.0	0.005			
Bromochloromothene	ND<0.02	0	4.0	0.005	Bromobenzene		ND<0.020	4.0	0.005			
Bromoform	ND<0.02	0	4.0	0.005	Bromomethane		ND<0.020	4.0	0.005			
2-Butanone (MEK)	ND<0.08	0	4.0	0.02	t-Butyl alcohol (TBA)		ND<0.20	4.0	0.05			
n-Butyl benzene	ND<0.02	0	4.0	0.005	sec-Butyl benzene		ND<0.020	4.0	0.005			
tert-Butyl benzene	ND<0.02	0	4.0	0.005	Carbon Disulfide		ND<0.020	4.0	0.005			
Carbon Tetrachloride	ND<0.02	0	4.0	0.005	Chlorobenzene	ND<0.020	4.0	0.005				
Chloroethane	ND<0.02	0	4.0	0.005	2-Chloroethyl Vinyl Ether	ND<0.040	4.0	0.01				
Chloroform	ND<0.020		4.0	0.005	Chloromethane	ND<0.020	4.0	0.005				
2-Chlorotoluene Dibromochloromethane	ND<0.02	0	4.0	0.005	4-Chlorotoluene	ND<0.020	4.0	0.005				
1.2-Dibromoethane (EDB)	ND<0.02	0	4.0	0.005	Dibromomethane	Jane	ND<0.020	4.0	0.005			
1,2-Dichlorobenzene	ND<0.02	0	4.0	0.005	1,3-Dichlorobenzene		ND<0.020	4.0	0.005			
1,4-Dichlorobenzene	ND<0.02	0	4.0	0.005	Dichlorodifluoromethane		ND<0.020	4.0	0.005			
1,1-Dichloroethane	ND<0.02	0	4.0	0.005	1,2-Dichloroethane (1,2-D	CA)	ND<0.020	4.0	0.005			
1,1-Dichloroethene	ND<0.02	0	4.0	0.005	cis-1,2-Dichloroethene		0.11	4.0	0.005			
trans-1,2-Dichloroethene	ND<0.02	0	4.0	0.005	1,2-Dichloropropane		ND<0.020	4.0	0.005			
1,3-Dichloropropane	ND<0.02	0	4.0	0.005	2,2-Dichloropropane		ND<0.020	4.0	0.005			
trans-1 3-Dichloropropene	ND<0.02	0	4.0	0.003	Diisopropyl ether (DIPE)		ND<0.020	4.0	0.003			
Ethylbenzene	ND<0.02	0	4.0	0.005	Ethyl tert-butyl ether (ET)	BE)	ND<0.020	4.0	0.005			
Freon 113	ND<0.40)	4.0	0.1	Hexachlorobutadiene		ND<0.020	4.0	0.005			
Hexachloroethane	ND<0.02	0	4.0	0.005	2-Hexanone		ND<0.020	4.0	0.005			
Isopropylbenzene	ND<0.02	0	4.0	0.005	4-Isopropyl toluene		ND<0.020	4.0	0.005			
Methyl-t-butyl ether (MTBE)	ND<0.02	0	4.0	0.005	Methylene chloride		ND<0.020	4.0	0.005			
4-Methyl-2-pentanone (MIBK)	ND<0.02	0	4.0	0.005	n Bronyl honzono		ND<0.020	4.0	0.005			
Styrene	ND<0.40	, 0	4.0	0.005	1 1 1 2-Tetrachloroethane		ND<0.020	4.0	0.003			
1.1.2.2-Tetrachloroethane	ND<0.02	0	4.0	0.005	Tetrachloroethene	,	ND<0.020	4.0	0.005			
Toluene	ND<0.02	0	4.0	0.005	1,2,3-Trichlorobenzene		ND<0.020	4.0	0.005			
1,2,4-Trichlorobenzene	ND<0.02	0	4.0	0.005	1,1,1-Trichloroethane		ND<0.020	4.0	0.005			
1,1,2-Trichloroethane	ND<0.02	0	4.0	0.005	Trichloroethene		0.53	4.0	0.005			
Trichlorofluoromethane	ND<0.02	0	4.0	0.005	1,2,3-Trichloropropane	ND<0.020	4.0	0.005				
Vinyl Chloride	1,3,3-1rimethylbenzene Xylenes		ND<0.020	4.0	0.005							
	nD<0.02	U		ogate Re	coveries (%)		110<0.020	+.0	0.005			
%SS1:		92	Juiit	ante Rt	%SS2:		02					
%SS3: 92					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 72	•				
Comments:	•											

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Piers Environmental	counts	Client Pr	oject ID:	2942	Telephone. 0	Date Sampled:	09/19/06-0	9/20/06				
						Date Received:	09/20/06					
1330 S. Bascom Avenue, Ste. F		Client C	ontact: Jo	el Greg	er	Date Extracted: 09/20/06						
San Jose, CA 95128	Client P.	0.:			Date Analyzed	09/22/06-0	9/25/06					
		C	AM / CCR	17 Me	tals*							
L-LID	0004	04.004.4	000404	005 1	0000404 0000		<u> </u>					
Client ID	06094 SS1	A-1D	SS2A-	2D	SS3A-3D		Reporting Lin ND means above the re	nit for DF =1; not detected porting limit				
Matrix		S	S		S			w				
Extraction Type	T	ГLC	TTL	С	TTLC		mg/Kg	mg/L				
_		ICP-N	IS Metals.	Conce	ntration*	1	.1					
Analytical Method: 6020A		Extr	action Method	: SW305	50B		Work Order:	0609404				
Dilution Factor		1	1		1		1	1				
Antimony		3.4	3.4		2.7		0.5	NA				
Arsenic		17	6.0		5.8		0.5	NA				
Barium	1	170	260		190		5.0	NA				
Beryllium	0).51	ND		0.59		0.5	NA				
Cadmium		1.3	8.9		26		0.25	NA				
Chromium		84	100		910		0.5	NA				
Cobalt		18	10		20		0.5	NA				
Copper	2	210	160		430		0.5	NA				
Lead	2	210	360		84		0.5	NA				
Mercury	C).54	0.80)	0.23		0.05	NA				
Molybdenum		1.9	1.1		1.7		0.5	NA				
Nickel	1	100	150		5400		0.5	NA				
Selenium]	ND	ND		0.71		0.5	NA				
Silver]	ND	2.0		2.9		0.5	NA				
Thallium]	ND	ND		ND		0.5	NA				
Vanadium	1	100	44		39		0.5	NA				
Zinc	2	210	430		750		5.0	NA				
%SS:	1	104	102		105							
Comments												
<pre>*water samples are reported in µg/L, produ mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument.</pre>	uct/oil/n vipe sam D means	on-aqueous aples in µg/v s not detect	liquid samp wipe, filter s ed above the	oles and amples i e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mear	DISTLC / SPLP extr	acts are repo	rted in				

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti "When Quality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environme	ntal	Client Project ID:	2942	Date Sampled: 09/19/06-09	/20/06					
1330 S. Bascom	Avenue, Ste. F			Date Received: 09/20/06						
San Jaco CA 051	129	Client Contact: Jo	bel Greger	Date Extracted: 09/21/06						
San Jose, CA 951	128	Client P.O.:		Date Analyzed 09/21/06						
	M/2000	Chemical Oxygen	n Demand (COD)*							
Lab ID	Client ID	Matri	x	COD	D609404					
0609404-004A	SS1A-1D	S		6900	1					
0609404-005A	SS2A-2D	S		18,000	1					
0609404-006A	SS3A-3D	S		14,000	1					

Reporting Limit for DF = 1; ND means not detected at	W	NA	
or above the reporting limit	S	250 mg/Kg	

*water/product/oil/non-aqueous liquid samples and all TCLP/STLC/DISTLC/SPLP extracts are reported in mg/L; soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

	Campbell Analyti	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environn	nental	Client Project ID: 2	2942		Date Sampled: 09/19/06-09/20/06					
1330 S. Bascon	m Avenue, Ste. F				Date Received: 09/20/06					
San Jose CA 9	5128	Client Contact: Jo	el Greger		Date Extracted: 09/20/06					
	5120	Client P.O.:			Date Analyzed 09/21/06					
		pł	ł *							
Analytical Method:	SW9045C		Matrix		Work Order: 0609404					
			Matrix							
0609404-004A	SSIA-ID		S		7.58 @ 24.5 °C					
0609404-005A	\$\$3A 3D		S		10.88 @ 24.5 °C					
5007404-000A					10.00 @ 27.3 C					
Method Ac	curacy and Reporting Units		W S		NA ±0.1, pH units @ °C					
					· •					

DHS ELAP Certification N° 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR E218.6m

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0609404

EPA Method E218.6m	218.6m Extraction SW3060A						BatchID: 23797 S				Spiked Sample ID: 0609365-001a			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	Acceptance Criteria (%				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Hexachrome	ND	40	102	104	2.53	93.1	96.5	3.59	80 - 120	20	90 - 110	10		
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

BATCH 23797 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-004	9/19/06 12:37 PM	9/20/06	9/21/06 6:40 PM	0609404-005	9/19/06 1:08 PM	9/20/06	9/21/06 7:02 PM
0609404-006	9/20/06 8:01 AM	9/20/06	9/21/06 7:23 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0609404

EPA Method SW8260B	E	Extraction	SW503	0B		Batchll	D: 23787	5	Spiked Sample ID: 0609343-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	101	103	2.46	105	109	3.56	70 - 130	30	70 - 130	30
Benzene	ND	0.050	96.9	98.8	1.80	98.7	107	7.87	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	91.3	86.1	5.89	98.5	124	22.5	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	101	101	0	93.7	99.7	6.20	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	95.1	95.1	0	93.1	93.4	0.306	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	115	121	4.94	119	124	4.27	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	116	117	0.517	108	111	3.45	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	117	121	2.99	116	120	3.84	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	111	114	3.28	111	116	3.63	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	0.011	0.050	90.2	93	2.50	115	120	3.87	70 - 130	30	70 - 130	30
Toluene	ND	0.050	88.6	88.4	0.227	90.4	87.9	2.84	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	97.2	98.7	1.59	91.3	97	6.02	70 - 130	30	70 - 130	30
%SS1:	112	0.050	105	106	0.689	105	103	1.47	70 - 130	30	70 - 130	30
%SS2:	98	0.050	106	105	0.639	106	96	9.90	70 - 130	30	70 - 130	30
%SS3:	92	0.050	106	107	0.800	109	106	2.59	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

BATCH 23787 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-001	9/19/06 8:27 AM	9/20/06	9/26/06 7:56 AM	0609404-002	9/19/06 8:40 AM	9/20/06	9/26/06 8:41 AM
0609404-003	9/19/06 8:51 AM	9/20/06	9/26/06 9:26 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Quality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil		QC Matrix: Soil										WorkOrder 0609404		
EPA Method 6020A		Extraction SW3050B BatchID: 23846									Sample	ID 0609397-0)52A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
, maryte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS / LCSD	RPD	
Antimony	ND	50	100	99.4	0.736	10	99.2	101	1.51	75 - 125	20	80 - 120	20	
Arsenic	5	50	92.7	93	0.331	10	94.2	94.9	0.761	75 - 125	20	80 - 120	20	
Barium	290	500	95.7	96	0.207	100	96.4	97.8	1.48	75 - 125	20	80 - 120	20	
Beryllium	0.72	50	89.5	89.6	0.110	10	98.7	102	3.36	75 - 125	20	80 - 120	20	
Cadmium	ND	50	95	94.6	0.464	10	95.5	95.8	0.303	75 - 125	20	80 - 120	20	
Chromium	41	50	82.5	86.6	2.47	10	90.9	92.6	1.86	75 - 125	20	80 - 120	20	
Cobalt	13	50	84.5	84.1	0.328	10	95.4	99.3	3.95	75 - 125	20	80 - 120	20	
Copper	24	50	89.1	91.3	1.59	10	95.2	95.3	0.105	75 - 125	20	80 - 120	20	
Lead	10	50	94	93.7	0.193	10	96.4	98	1.74	75 - 125	20	80 - 120	20	
Mercury	ND	2.5	102	100	1.14	0.50	103	104	1.33	75 - 125	20	80 - 120	20	
Molybdenum	0.50	50	93.3	92.6	0.766	10	95	95.6	0.608	75 - 125	20	80 - 120	20	
Nickel	42	50	90.7	94.3	2.01	10	93.8	94.8	1.10	75 - 125	20	80 - 120	20	
Selenium	ND	50	95.6	94.3	1.28	10	93	94.4	1.49	75 - 125	20	80 - 120	20	
Silver	ND	50	91.3	90.7	0.636	10	94.5	95.2	0.791	75 - 125	20	80 - 120	20	
Thallium	ND	50	92.4	93.4	1.08	10	89.4	92.1	2.98	75 - 125	20	80 - 120	20	
Vanadium	72	50	81.1	88.1	3.05	10	91.2	92.6	1.51	75 - 125	20	80 - 120	20	
Zinc	56	500	94.3	94	0.304	100	97.7	98.6	0.917	75 - 125	20	80 - 120	20	
%SS:	108	250	105	107	2.41	250	101	102	1.58	70 - 130	20	70 - 130	20	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification Nº 1644

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6020A

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

			BATCH	23846 SUMMARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-004A	9/19/06 12:37 PM	9/20/06	9/22/06 3:02 AM	0609404-004A	9/19/06 12:37 PM	9/20/06	9/22/06 10:04 PM
0609404-005A	9/19/06 1:08 PM	9/20/06	9/22/06 3:09 AM	0609404-005A	9/19/06 1:08 PM	9/20/06	9/25/06 8:14 PM
0609404-006A	9/20/06 8:01 AM	9/20/06	9/22/06 3:16 AM	0609404-006A	9/20/06 8:01 AM	9/20/06	9/25/06 8:21 PM
0609404-006A	9/20/06 8:01 AM	9/20/06	9/25/06 8:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

"When Ouality Counts"

QC SUMMARY REPORT FOR SM5220D

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0609404

EPA Method SM5220D	E	Extraction	SM522	0D		Batchl	D: 23796	Ş	Spiked Sar	nple ID	: 0609365-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
, and you	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
COD	3200	10000	109	104	3.45	106	99.6	6.41	90 - 110	20	90 - 110	20
All target compounds in the Met	hod Blank o	f this extra	iction bate	ch were N	D less tha	n the met	hod RL w	ith the follo	wing except	tions:		

BATCH 23796 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-004	9/19/06 12:37 PM	9/21/06	9/21/06 5:01 PM	0609404-005	9/19/06 1:08 PM	9/21/06	9/21/06 5:07 PM
0609404-006	9/20/06 8:01 AM	9/21/06	9/21/06 5:13 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method:	рН					Mat	trix: S			WorkOrder: 060940			
Method Name	e: SW90 [,]	45C				U	nits ±, pH ur	nits @ °C			BatchID): 23847	
SampleID		Sam	ple	1	DF	Dup /	/ Ser. Dil.	DF	R	(D	Acce	ptance Criteria	
0609404-004A		7.98 @ 1	24.5 °C		1	7.99	@ 24.5 °C	1	0.	.01		±0.05	
0609404-005A		7.58 @	24.5 °C		1	7.57	@ 24.6 °C	1	0.	.01		±0.05	
0609404-006A		10.88 @	24.5 °C		1	10.89	@ 24.5 °C	1	0.	.01		±0.05	
					BAT	CH 23847	7 SUMMARY						
Sample ID	Date	Sampled	Date Extra	acted	Date An	alyzed	Sample ID	I	Date Sampled	Date E	Extracted	Date Analyzed	
0609404-004A	9/19/06	5 12:37 PM	9/20	/06	9/21/06 8	3:40 PM	0609404-00)4A)/	19/06 12:37 F	M 9	9/20/06	9/21/06 8:40 PM	
0609404-005A	9/19/0)6 1:08 PM	9/20	/06	9/21/06 8	3:50 PM	0609404-00)5A 9	/19/06 1:08 P	M g	9/20/06	9/21/06 8:50 PM	
0609404-006A	9/20/0	6 8:01 AM	9/20	/06	9/21/06 9):00 PM	0609404-00)6A 9	/20/06 8:01 A	M 9	9/20/06	9/21/06 9:00 PM	

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

RD = Absolute Value {Sample - Duplicate}; RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2].

A QA/QC Officer

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: 2942	Date Sampled:	09/19/06
1330 S. Bascom Avenue, Ste. F		Date Received:	09/20/06
San Jose, CA 95128	Client Contact: Joel Greger	Date Reported:	09/27/06
	Client P.O.:	Date Completed:	10/05/06

WorkOrder: 0609404

October 05, 2006

Dear Joel:

Enclosed are:

- 1). the results of **6** analyzed samples from your **2942 project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

(X/V, Z)											- per		and i	~ <u>X</u> =		r					L	Λ	PC			1	17.			
Telepho	McCAM 1 ne: (925) 798	PBEL] 10 2 nd A PACHE -1620	L ANAI VENUE SC CO, CA 94	LYT DUTH 553-55	FICA 1, #D7 560	L II Fax:	NC. (925)	798-	-1622	2			TU	UR	N A ≁	RC PD		HA D 7			FC	CUS E RU No	ST ⊐ sh	OD [24		RE		RD	1 72 HR	D 5 E
Report To: 100	21 Grenz	V	F	Sill T	0:	PT4	725					-	LD	1 10	cqu	neu	Ar	alvs	is R	eau	est	110	2	1 A	3	14	Othe	r	Com	ment
Company: PIER	25 EnVIR	m men	tal			/	103		in the second	·												3	3	Ŝ.	2 2		15		0.0111	
1330 5.1	Basem	Ave So	UNEF												3&F							MIL	X	0 8	100	- 0	E			5
Sien Jo	se CA	9512	8	E-M	ail: Ps	ers	ap	len	525.	, Co	m		TBE	No. of Concession, Name	&F/I	2						310		ATC	300	13	3		E.	S
Tele: ()5/0 59	35382		F	fax:	0.57	072	871	45	7	. 1			S)/M		E E	(1.2						8/0	202	SI.		- 1	12		2 and	2
Project #:			F	roje	ct Na	me: a	294	12					801		(552	(41	6					3270		39	12	-N	2		26	Ň
Project Location:	2942 50	anPak	ble Au	re C	20KI	an	e						+ 02		ase	suoc	802(ΛLY			5/2	JUL 1	2 à	4/		- IVA		2	N.
Sampler Signatur	e: god	1-											2/80		Gre	cart)2 /	- l	NO S	A		A 62	s o	2 IEC		1 >	Pr-		N	are.
		SAM	PLING		iers	I	MAT	RIX	Р	MET RESI	THOI ERVI	D ED	Gas (60)	8015)	0iP&	hyard	EPA 6(PCB'	8260		by EP.	2 1 .C.			20			ona	600
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Container	Type Contair	Water	Soil Air	Sludge	Other	HCI	HNO ₃	Other	BTEX & TPH as (TPH as Diesel (Total Petroleum	FPA 601 / 8010	BTEX ONLY (I	EPA 608 / 8080	EPA 608 / 8080	EPA 624 / 8240	EPA 625 / 8270	PAH's / PNA's	CAM-17 Metal	Lead 1 Page 142	HOLAC PA	A. C. O.	Hexavalon	1	on metals	cling w
Mar 4	513.5	9-19.1	8: Then	1	Ina		Y		X											V					-	-				
MUL	1 115	1	1:40km	1	1		50		X										-	$\frac{1}{\sqrt{2}}$						+				
nonw q	122.5		2-51 Am		1				1	0.										X			-			-				
SC 10	105		09 7040			1	N -		- 6					-						×	γ			C	×				5	
)>/H	00-0		121100			1	2		-6	,											1		K	R	8				61	
55 P	a		D. 5 (A	1				_	X	-							_				7		XU	XX	X-					M'
551C	01		42:37 pm				×		y	·		•					*							X	2				4	as
5510 a	0.5		1257Pm				X			X										,				TH	1	4	-	-	K	
55 2 A	00.5		1:08pm				X	-		X										T	\leq			Y	X	2	X)	
552B 1	05		1: Mpm				x		1	r											4	4	K	1	X	2	A		SCA	MA
820	0.5		1-27 Pm				X			x											-			/	Ø	2	Ø		12	1
5523	15		1-210		1		-			1											$ \uparrow$				R		A		$\parallel - \prime$	600
25 Z N	10.0	azon	and at	N.	17														-		$\langle \cdot \rangle$				V	1	6		5	
SCZA	0.0.5	raile	8-01 1400	1.1-	1.1		Y			X													H	-		N	100		6	1 A.1
~> 7B	00.5		B:II AM	1V	14		X			×											X		X	7		X	PO		Ten	700
553D	20.5	V	9:22 Ar	1	1					È											f					No.	0	2	140	2
Relinquished By:		Date: 9/20/06	Time:	Rec	eived I	12		\checkmark	1							and the second second										YOA	s 0&	G I	TALS	01
Relaguished By:		Date:	Time:	Rec	eived E	iy.		Ì			_		IC Ge	CE/t [®]		OND	ITIO	N	_		P A	RES PPR	ERV	'ATI RIAT	ON_ TE					
1000		Der	1 G		F.	1-20	2,		F	>	1	\rightarrow	HI	EAD) SP.	ACE	ABS	ENT	[0	С	ON	FAI	VERS	S		D			
L'alin auri a la l		Date:	A lime:	I Kec	eived E	SYX.	-	and the second se		/	1		- 01	LUH	LU I	KIN	A FE) UN	LAI	0		rEF	(SE)	KVE	D IN	LA	R			
Relinquished By:	72	201	6358		All states and the second st	X	and the second se		X	and the second s	Comments of the local division of the local																			

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9	9262			Wo	rkOrd	ler: 06	509404		Clie	ntID: I	PESJ		EDH	: YES	5		
Report to:							Bill to:						Req	uested	TAT:	5	days
Joel Greger Piers Environm 1330 S. Basco San Jose, CA	nental om Avenue, Ste. F 95128	Email: TEL: ProjectNo: PO:	(408) 559-1248 2942	8 FAX: (408)	559-12	224	,						Dat Dat	e Rece e Print	ived: ed:	09/20 09/20	/2006 /2006
									Re	equested	l Tests	(See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0609404-001	MW4		Soil	09/19/2006			A		A								
0609404-002	MW4		Soil	09/19/2006			А										
0609404-003	MW4		Soil	09/19/2006			А										
0609404-004	SS1A-1D		Soil	09/19/2006		А		Α									
0609404-005	SS2A-2D		Soil	09/19/2006		А		Α									
0609404-006	SS3A-3D		Soil	09/20/2006		А		Α									

Test Legend:

1	218_6m_S	2	8260B_S	3	CAM17MS_S	4	PREDF REPORT	5	
6		7		8		9		10	
11		12]					

The following SampIDs: 0609404-004A, 0609404-005A, 0609404-006A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	CCampbell Analyt	ical, Inc	<u> </u>	1534 Willow I Web: www.mccamp Telephone: 3	Pass Road, Pittsburg, CA 94565 obell.com E-mail: main@mccar 877-252-9262 Fax: 925-252-92	-1701 npbell.com 269	
Piers Environ	mental	Client Pro	ject ID: 294	12	Date Sampled: 09/19	0/06-09/2	.0/06
1330 S. Basco	om Avenue, Ste. F				Date Received: 09/20)/06	
San Jose CA	95128	Client Co	ntact: Joel (Greger	Date Extracted: 09/20)/06	
bui Jose, err	,5120	Client P.C).:		Date Analyzed 09/21	/06	
	TTLC Hex	achrome by	Alkaline Di	gestion and IC-UV	Analysis*		
Extraction method	SW3060A	1	Analytical metho	ods E218.6m	Work 0	Order: 06	09404
Lab ID	Client ID	Matrix	Extraction	He	exachrome	DF	% SS
0609404-004A	SS1A-1D	S	TTLC		ND	1	N/A
0609404-005A	SS2A-2D	s	TTLC		1.9	1	N/A
0609404-006A	SS3A-3D	s	TTLC		2.2	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	µg/L
above the reporting limit	S	TTLC	0.8	mg/Kg

Angela Rydelius, Lab Manager

* All samples are reported in mg/kg unless otherwise requested. All samples and QC were cleaned up prior to analysis.

j) reporting limit raised due to matrix interference.

	cCampbell Analyti "When Ouality Counts"	cal, Inc	2.	1534 Willow Web: www.mccan Telephone:	Pass Road, Pittsburg, CA 94565- pbell.com E-mail: main@mccarr 877-252-9262 Fax: 925-252-92	1701 npbell.com 69	
Piers Environ	mental	Client Pro	ject ID: 29	942	Date Sampled: 09/19	/06-09/2	0/06
1330 S. Basco	om Avenue, Ste. F				Date Received: 09/20	/06	
San Jose, CA	95128	Client Co	ntact: Joel	l Greger	Date Extracted: 09/28	/06	
builbose, err		Client P.C).:		Date Analyzed 09/28	/06	
	TTLC Hexa	chrome by	Alkaline E	Digestion and IC-UV	Analysis*		
Extraction method	SW3060A	1	Analytical met	hods E218.6m	Work O	rder: 060	09404
Lab ID	Client ID	Matrix	Extractio	on H	exachrome	DF	% SS
0609404-005B	SS2A	S	TTLC		1.2	1	N/A
0609404-005C	SS2B	S	TTLC		ND	1	N/A
0609404-005D	SS2C	S	TTLC		ND	1	N/A
0609404-005E	SS2D	S	TTLC		9.4	1	N/A
0609404-006B	SS3A	S	TTLC		ND	1	N/A
0609404-006C	SS3B	S	TTLC		8.6	1	N/A
0609404-006D	SS3C	S	TTLC		1.0	1	N/A
0609404-006E	SS3D	S	TTLC		6.5	1	N/A
						ļ	
						<u> </u>	

Reporting Limit for $DF = 1$;	W	TTLC	NA	μg/L
above the reporting limit	S	TTLC	0.8	mg/Kg

Angela Rydelius, Lab Manager

* All samples are reported in mg/kg unless otherwise requested. All samples and QC were cleaned up prior to analysis.

j) reporting limit raised due to matrix interference.

When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Piers Environmental		Client Project ID: 2			2942 Date Sa		ampled: 09/19/06			
						Date Received: 09/20/06				
1330 S. Bascom Avenue, Ste. F		Client Contest: Joel Gregor				Data Extracted: 00/20/06				
Son Jose CA 05128			Chefit Contact: Joer Greger				Date Extracted: 09/20/08			
Sali Jose, CA 95128			Client P.O.:				Date Analyzed 09/26/06			
Volatile Organics by P&T and GC/MS (Basic Target List)*										
Extraction Method: SW5030B Analytical Method: SW8260B Work Ord									9404	
Lab ID					0609404-001A					
Client ID		MW4								
Matrix		Soil								
Compound	Concentration *		DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit	
Acetone	ND<0.50		10	0.05	Acrolein (Propenal)		ND<0.50	10	0.05	
Acrylonitrile	ND<0.20		10	0.02	tert-Amyl methyl ether (TAME)		ND<0.050	10	0.005	
Benzene	ND<0.050		10	0.005	romobenzene		ND<0.050	10	0.005	
Bromochloromethane	ND<0.050		10	0.005	Bromodichloromethane	thane		10	0.005	
2-Butanone (MEK)	ND<0.000		10	0.003	t-Butyl alcohol (TBA)		ND<0.030	10	0.005	
n-Butyl benzene	ND<0.050		10	0.002	sec-Butyl benzene	Butyl benzene		10	0.005	
tert-Butyl benzene	ND<0.05	0	10	0.005	Carbon Disulfide		ND<0.050	10	0.005	
Carbon Tetrachloride	ND<0.050		10	0.005	Chlorobenzene		ND<0.050	10	0.005	
Chloroethane	ND<0.050		10	0.005	2-Chloroethyl Vinyl Ether		ND<0.10	10	0.01	
Chloroform	ND<0.050		10	0.005	Chloromethane		ND<0.050	10	0.005	
2-Chlorotoluene	ND<0.050		10	0.005	4-Chlorotoluene		ND<0.050	10	0.005	
Dibromochloromethane	ND<0.050		10	0.005	1,2-Dibromo-3-chloropropane		ND<0.050	10	0.005	
1,2-Dibromoethane (EDB)	ND<0.050		10	0.005	Dibromomethane		ND<0.050	10	0.005	
1,2-Dichlorobenzene	ND<0.050		10	0.005	1,3-Dichlorobenzene		ND<0.050	10	0.005	
1,4-Dichlorobenzene	ND<0.050		10	0.005	Dichlorodifluoromethane		ND<0.050	10	0.005	
1,1-Dichloroethane	ND<0.050		10	0.005	<u>1,2-Dichloroethane (1,2-DCA)</u>		ND<0.050	10	0.005	
trans_1_2-Dichloroethene	ND<0.050		10	0.005	1.2-Dichloropropage		ND<0.050	10	0.005	
1.3-Dichloropropane	ND<0.05	0	10	0.005	2,2-Dichloropropane		ND<0.050	10	0.005	
1.1-Dichloropropene	ND<0.050		10	0.005	cis-1.3-Dichloropropene		ND<0.050	10	0.005	
trans-1,3-Dichloropropene	ND<0.050		10	0.005	Diisopropyl ether (DIPE)		ND<0.050	10	0.005	
Ethylbenzene	ND<0.050		10	0.005	Ethyl tert-butyl ether (ETBE)		ND<0.050	10	0.005	
Freon 113	ND<1.0		10	0.1	Hexachlorobutadiene		ND<0.050	10	0.005	
Hexachloroethane	ND<0.050		10	0.005	2-Hexanone		ND<0.050	10	0.005	
Isopropylbenzene	ND<0.05	0	10	0.005	4-Isopropyl toluene		ND<0.050	10	0.005	
Methyl-t-butyl ether (MTBE)	ND<0.050		10	0.005	Methylene chloride		ND<0.050	10	0.005	
4-Methyl-2-pentanone (MIBK)	ND<0.05	0	10	0.005	Naphthalene		ND<0.050	10	0.005	
Nitrobenzene	ND < 1.0		10	0.1	n-Propyl benzene		ND<0.050	10	0.005	
1 1 2 2 Tetrachloroothana	ND<0.050		10	0.005	<u>1,1,1,2-1etraciiioroetnane</u>		ND<0.050	10	0.005	
Toluene	ND<0.050		10	0.005	1.2.3-Trichlorobenzene		ND<0.050	10	0.005	
1,2,4-Trichlorobenzene	ND<0.050		10	0.005	1,1,1-Trichloroethane		ND<0.050	10	0.005	
1,1,2-Trichloroethane	ND<0.050		10	0.005	Trichloroethene		2.3	10	0.005	
Trichlorofluoromethane	ND<0.050		10	0.005	1,2,3-Trichloropropane		ND<0.050	10	0.005	
1,2,4-Trimethylbenzene	ND<0.050		10	0.005	1,3,5-Trimethylbenzene		ND<0.050	10	0.005	
Vinvl Chloride	ND<0.05	10	10 0.005 Xvlenes			ND<0.050	10	0.005		
Surrogate Recoveries (%)										
%SS1:	SS1: 93						95			
%SS3: 110										
Comments:										

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.
McCampbell	Analyti	cal,	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environmental		Clie	nt Proje	ect ID:	2942	Date S	ampled: 09/19/0	6				
					-	Date R	Received: 09/20/06					
1330 S. Bascom Avenue, Ste. I		Clie	nt Con	taat: Io	al Gragor	Data E	vtracted: 00/20/0	6				
San Jose CA 05128	·	Cile		lact: Jo	ei Gieger	Date E	xtracted: 09/20/0	0				
Sall Jose, CA 93128		Che	nt P.O.:			Date A	nalyzed 09/26/0	6				
	Volatile O	rgani	cs by P	&T and	l GC/MS (Basic Target	List)*						
Extraction Method: SW5030B			Analy	tical Meth	aod: SW8260B Work Order: 0609							
Lab ID					0609404-002A							
Client ID					MW4							
Matrix					Soil							
Compound	Concentrati	on *	DF	Reporting Limit	Compound	Compound			Reporting Limit			
Acetone	ND<0.5	0	10	0.05	Acrolein (Propenal)		ND<0.50	10	0.05			
Acrylonitrile	ND<0.2	0	10	0.02	tert-Amyl methyl ether (7	ГАМЕ)	ND<0.050	10	0.005			
Benzene	ND<0.05	0	10	0.005	Bromobenzene		ND<0.050	10	0.005			
Bromochloromethane	ND<0.05	0	10	0.005	Bromodichloromethane		ND<0.050	10	0.005			
2-Butanone (MEK)	ND<0.03	n	10	0.003	t-Butyl alcohol (TBA)		ND<0.030	10	0.005			
n-Butyl benzene	ND<0.05	0	10	0.005	sec-Butyl benzene		ND<0.050	10	0.005			
tert-Butyl benzene	ND<0.05	0	10	0.005	Carbon Disulfide		ND<0.050	10	0.005			
Carbon Tetrachloride	ND<0.05	0	10	0.005	Chlorobenzene		ND<0.050	10	0.005			
Chloroethane	ND<0.05	0	10	0.005	2-Chloroethyl Vinyl Ether	r	ND<0.10	10	0.01			
Chloroform	ND<0.05	0	10	0.005	Chloromethane		ND<0.050	10	0.005			
2-Chlorotoluene	ND<0.05	0	10	0.005	4-Chlorotoluene		ND<0.050	10	0.005			
Dibromochloromethane	ND<0.05	0	10	0.005	1,2-Dibromo-3-chloropro	pane	ND<0.050	10	0.005			
1,2-Dibromoethane (EDB)	ND<0.05	0	10	0.005	Dibromomethane		ND<0.050	10	0.005			
1,2-Dichlorobenzene	ND<0.05	0	10	0.005	1,3-Dichlorobenzene		ND<0.050	10	0.005			
1,4-Dichlorobenzene	ND<0.05	0	10	0.005	Dichlorodifluoromethane		ND<0.050	10	0.005			
1,1-Dichloroethane	ND<0.05	0	10	0.005	1,2-Dichloroethane (1,2-L	JCA)	ND<0.050	10	0.005			
trans_1_2-Dichloroethene	ND<0.05	0	10	0.005	1.2-Dichloropropage		ND<0.050	10	0.005			
1.3-Dichloropropane	ND<0.05	0	10	0.005	2.2-Dichloropropane		ND<0.050	10	0.005			
1.1-Dichloropropene	ND<0.05	0	10	0.005	cis-1.3-Dichloropropene		ND<0.050	10	0.005			
trans-1,3-Dichloropropene	ND<0.05	0	10	0.005	Diisopropyl ether (DIPE)		ND<0.050	10	0.005			
Ethylbenzene	ND<0.05	0	10	0.005	Ethyl tert-butyl ether (ET	'BE)	ND<0.050	10	0.005			
Freon 113	ND<1.0)	10	0.1	Hexachlorobutadiene		ND<0.050	10	0.005			
Hexachloroethane	ND<0.05	0	10	0.005	2-Hexanone		ND<0.050	10	0.005			
Isopropylbenzene	ND<0.05	0	10	0.005	4-Isopropyl toluene		ND<0.050	10	0.005			
Methyl-t-butyl ether (MTBE)	ND<0.05	0	10	0.005	Methylene chloride		ND<0.050	10	0.005			
4-Methyl-2-pentanone (MIBK)	ND<0.05	0	10	0.005	Naphthalene		ND<0.050	10	0.005			
Nitrobenzene	ND<1.0		10	0.1	n-Propyl benzene		ND<0.050	10	0.005			
Styrene	ND<0.05	0	10	0.005	T, 1, 1, 2- Tetrachloroethane	3	ND<0.050	10	0.005			
Toluene	ND<0.05	0	10	0.005	1 2 3-Trichlorobenzene		ND<0.050	10	0.005			
1.2.4-Trichlorobenzene	ND<0.05	0	10	0.005	1.1.1-Trichloroethane		ND<0.050	10	0.005			
1,1,2-Trichloroethane	ND<0.05	0	10	0.005	Trichloroethene		1.9	10	0.005			
Trichlorofluoromethane	ND<0.05	0	10	0.005	1,2,3-Trichloropropane	ND<0.050	10	0.005				
1,2,4-Trimethylbenzene	ND<0.05	0	10	0.005	1,3,5-Trimethylbenzene		ND<0.050	10	0.005			
Vinvl Chloride	ND<0.05	0	10	0.005	Xvlenes		ND<0.050 10 0.					
L	•		Surro	ogate Re	coveries (%)		1					
%SS1:		94			%SS2:		95					
%SS3:		109)									
Comments:												

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg /wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell	Analytic Duality Counts"	cal,	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers Environmental		Clier	nt Proje	ect ID: 2	2942	Date S	ampled: 09/19/0)6			
						Date R	$\frac{1}{2}$				
1330 S. Bascom Avenue, Ste. I	-	CI.		.	10						
	-	Clie	nt Cont	tact: Jo	el Greger	Date E	xtracted: 09/20/0)6			
San Jose, CA 95128		Clier	nt P.O.:			Date A	Analyzed 09/26/06				
	Volatile Or	oani	rs hv P	&T and	GC/MS (Basic Target)	List)*					
Extraction Method: SW5030B	volume of	Sam	Analy	vtical Math	ad SW8260B		Work Or	der 060	9404		
Extraction Method. Sw5050B			Allaly	lical Meth	0000 404 000 Work Order: 0609404						
Lab ID					0609404-003A						
Client ID					Mw4						
Matrix		.		Reporting	5011				Reporting		
Compound	Concentratio	on *	DF	Limit	Compound		Concentration *	DF	Limit		
Acetone	ND<0.20)	4.0	0.05	Acrolein (Propenal)		ND<0.20	4.0	0.05		
Acrylonitrile	ND<0.08	0	4.0	0.02	tert-Amyl methyl ether (T	'AME)	ND<0.020	4.0	0.005		
Bromochloromothene	ND<0.02	0	4.0	0.005	Bromobenzene		ND<0.020	4.0	0.005		
Bromoform	ND<0.02	0	4.0	0.005	Bromomethane	ND<0.020	4.0	0.005			
2-Butanone (MEK)	ND<0.08	0	4.0	0.02	t-Butyl alcohol (TBA)		ND<0.20	4.0	0.05		
n-Butyl benzene	ND<0.02	0	4.0	0.005	sec-Butyl benzene		ND<0.020	4.0	0.005		
tert-Butyl benzene	ND<0.02	0	4.0	0.005	Carbon Disulfide		ND<0.020	4.0	0.005		
Carbon Tetrachloride	ND<0.02	0	4.0	0.005	Chlorobenzene		ND<0.020	4.0	0.005		
Chloroethane	ND<0.02	0	4.0	0.005	2-Chloroethyl Vinyl Ether	2-Chloroethyl Vinyl Ether			0.01		
Chloroform	ND<0.02	0	4.0	0.005	Chloromethane		ND<0.020	4.0	0.005		
2-Chlorotoluene Dibromochloromethane	ND<0.02	0	4.0	0.005	4-Chlorotoluene	2020	ND<0.020	4.0	0.005		
1.2-Dibromoethane (EDB)	ND<0.02	0	4.0	0.005	Dibromomethane	Dibromomethane		4.0	0.005		
1,2-Dichlorobenzene	ND<0.02	0	4.0	0.005	1,3-Dichlorobenzene		ND<0.020	4.0	0.005		
1,4-Dichlorobenzene	ND<0.02	0	4.0	0.005	Dichlorodifluoromethane		ND<0.020	4.0	0.005		
1,1-Dichloroethane	ND<0.02	0	4.0	0.005	1,2-Dichloroethane (1,2-D	CA)	ND<0.020	4.0	0.005		
1,1-Dichloroethene	ND<0.02	0	4.0	0.005	cis-1,2-Dichloroethene		0.11	4.0	0.005		
trans-1,2-Dichloroethene	ND<0.02	0	4.0	0.005	1,2-Dichloropropane		ND<0.020	4.0	0.005		
1,3-Dichloropropane	ND<0.02	0	4.0	0.005	2,2-Dichloropropane		ND<0.020	4.0	0.005		
trans-1 3-Dichloropropene	ND<0.02	0	4.0	0.003	Diisopropyl ether (DIPE)		ND<0.020	4.0	0.003		
Ethylbenzene	ND<0.02	0	4.0	0.005	Ethyl tert-butyl ether (ET)	BE)	ND<0.020	4.0	0.005		
Freon 113	ND<0.40)	4.0	0.1	Hexachlorobutadiene		ND<0.020	4.0	0.005		
Hexachloroethane	ND<0.02	0	4.0	0.005	2-Hexanone		ND<0.020	4.0	0.005		
Isopropylbenzene	ND<0.02	0	4.0	0.005	4-Isopropyl toluene		ND<0.020	4.0	0.005		
Methyl-t-butyl ether (MTBE)	ND<0.02	0	4.0	0.005	Methylene chloride		ND<0.020	4.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND<0.02	0	4.0	0.005	n Bronyl honzono		ND<0.020	4.0	0.005		
Styrene	ND<0.40	, 0	4.0	0.005	1 1 1 2-Tetrachloroethane		ND<0.020	4.0	0.003		
1.1.2.2-Tetrachloroethane	ND<0.02	0	4.0	0.005	Tetrachloroethene	,	ND<0.020	4.0	0.005		
Toluene	ND<0.02	0	4.0	0.005	1,2,3-Trichlorobenzene		ND<0.020	4.0	0.005		
1,2,4-Trichlorobenzene	ND<0.02	0	4.0	0.005	1,1,1-Trichloroethane		ND<0.020	4.0	0.005		
1,1,2-Trichloroethane	ND<0.02	0	4.0	0.005	Trichloroethene		0.53	4.0	0.005		
Trichlorofluoromethane	ND<0.02	0	4.0	0.005	1,2,3-Trichloropropane	ND<0.020	4.0	0.005			
Vinyl Chloride	ND<0.02	0	4.0	0.005	1,3,3-1rimethylbenzene Xylenes		ND<0.020	4.0	0.005		
	nD<0.02	U		ogate Re	coveries (%)		110<0.020	+.0	0.005		
%SS1:		92	Juiit	ante Rt	%SS2:		02				
%SS3:		107	7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 72	•			
Comments:	•										

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg /wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environmental	counts	Client Pr	oject ID:	2942	Telephone. 0	Date Sampled:	09/19/06-0	9/20/06			
						Date Received: 09/20/06					
1330 S. Bascom Avenue, Ste. F		Client C	ontact: Jo	el Greg	er	Date Extracted: 09/20/06					
San Jose, CA 95128		Client P.	0.:			Date Analyzed 09/22/06-09/25/06					
		C	AM / CCR	17 Me	tals*						
L-LID				005 1	0000404 0000		<u> </u>				
Client ID SS		A-1D	SS2A-	2D	SS3A-3D		Reporting Limit for DF =1 ND means not detected above the reporting limit				
Matrix		S	S		S		s w				
Extraction Type	T	ГLC	TTLC TTLC				mg/Kg	mg/L			
_		ICP-N	IS Metals.	Conce	ntration*	1					
Analytical Method: 6020A		Extr	action Method	: SW305	50B		Work Order:	0609404			
Dilution Factor		1	1		1		1	1			
Antimony		3.4	3.4		2.7		0.5	NA			
Arsenic		17	6.0		5.8		0.5	NA			
Barium	1	170	260		190		5.0	NA			
Beryllium	0).51	ND		0.59		0.5	NA			
Cadmium		1.3	8.9		26		0.25	NA			
Chromium	84		100		910		0.5	NA			
Cobalt		18	10		20	20		NA			
Copper	2	210	160		430		0.5	NA			
Lead	2	210	360		84		0.5	NA			
Mercury	C).54	0.80)	0.23		0.05	NA			
Molybdenum		1.9	1.1		1.7		0.5	NA			
Nickel	1	100	150		5400		0.5	NA			
Selenium]	ND	ND		0.71		0.5	NA			
Silver]	ND	2.0		2.9		0.5	NA			
Thallium]	ND	ND		ND		0.5	NA			
Vanadium	1	100	44		39		0.5	NA			
Zinc	2	210	430		750		5.0	NA			
%SS:	1	104	102		105						
Comments											
<pre>*water samples are reported in µg/L, produ mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument.</pre>	uct/oil/n vipe sam D means	on-aqueous aples in µg/v s not detect	liquid samp wipe, filter s ed above the	oles and amples i e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mear	DISTLC / SPLP extr	acts are repo	rted in			

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

<u> McCampbell Analyti</u>	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com						
"When Ouality Counts"	Client Project ID:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
riers Environmental	Chent Project ID.	2742	Date Sampled. 09/19/00-09/	Date Sampled: 09/19/06-09/20/06				
1330 S. Bascom Avenue, Ste. F			Date Received: 09/20/06					
San Jose, CA 95128	Client Contact: J	loel Greger	Date Extracted: 10/05/06					
	Client P.O.:		Date Analyzed 10/05/06					
Analytical Method: SM4500-CN ⁻ E	Cyanid	e, Total*^	Work Order: 0	609404				
Lab ID Client ID	Matr	ix	Total Cyanide	DF				
0609404-004A SS1A-1D	S		1.5	1				
0609404-005A SS2A-2D	S		1.3	1				
0609404-006A SS3A-3D	S		6.1	10				

Reporting Limit for DF = 1; ND means not detected at	W	NA	
or above the reporting limit	S	0.1 mg/Kg	

* water samples are reported in µg/L; soil/sludge/solid samples in mg/kg; wipe samples in µg/wipe.

^All soil samples are treated to remove sulfide, nitrate and nitrite interference prior to analysis.

i) liquid sample contains greater than ~ 1 vol. % sediment; j) reporting limit raised due to high sediment content/matrix interference; k) sample pretreatment was done to remove interfering sulfide per E335.4; m) sample pretreatment was done to remove interfering nitrate and nitrite per E335.4; n) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti "When Quality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Piers Environme	ntal	Client Project ID:	2942	Date Sampled: 09/19/06-09	/20/06			
1330 S. Bascom	Avenue, Ste. F			Date Received: 09/20/06				
San Jaco CA 051	129	Client Contact: Jo	bel Greger	Date Extracted: 09/21/06				
San Jose, CA 951	128	Client P.O.:		Date Analyzed 09/21/06				
	M/2000	Chemical Oxygen	n Demand (COD)*					
Lab ID	Client ID	Matri	x	COD	D609404			
0609404-004A	SS1A-1D	S		6900	1			
0609404-005A	SS2A-2D	S		18,000	1			
0609404-006A	SS3A-3D	S		14,000	1			

Reporting Limit for DF = 1; ND means not detected at	W	NA	
or above the reporting limit	S	250 mg/Kg	

	Campbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers Environmer	ntal	Client Project ID:	2942	Date Sampled: 09/19/06-0	9/20/06				
1330 S. Bascom A	Avenue, Ste. F			Date Received: 09/20/06	Date Received: 09/20/06				
G., I., GA 051	28	Client Contact: Jo	el Greger	Date Extracted: 09/29/06					
San Jose, CA 951	28	Client P.O.:		Date Analyzed 09/29/06					
Analytical Method: SN	M5220D	Chemical Oxygen	Demand (COD)*	Work Order	0609404				
Lab ID	Client ID	Matrix	x	COD	DF				
0609404-005B	SS2A	S		22,000	1				
0609404-005C	SS2B	S		23,000	1				
0609404-005D	SS2C	S		18,000					
0609404-005E	SS2D	S		12,000	1				
0609404-006B	SS3A	S		32,000	1				
0609404-006C	SS3B	S		11,000	1				
0609404-006D	SS3C	S		26,000					
0609404-006E	SS3D	S		7500					
					_				
					_				

Reporting Limit for DF = 1; ND means not detected at	W	NA	
or above the reporting limit	S	250 mg/Kg	

*water/product/oil/non-aqueous liquid samples and all TCLP/STLC/DISTLC/SPLP extracts are reported in mg/L; soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

	McCampbo	ell An	alyti ^{Counts"}	cal	<u>, Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers E	nvironmental			Clie	ent Project II	D: 2942			Dat	e Sampled:	09/20/06		
1330 S	. Bascom Avenue, S	te. F							Date	e Received:	09/20/06		
San Ios	ар. С. А. 95128			Clie	ent Contact:	Joel Greg	ger		Dat	e Extracted:	09/28/06		
5411 508	SC, CA 95120			Clie	ent P.O.:				Dat	e Analyzed	09/29/06-	10/02	/06
					Ν	Metals*							
Extraction	method SW3050B		_	.	Analytic	cal methods	5020A	~			Work Order:	0609	9404
Lab ID	Client ID	Matrix	Extrac	tion	Arsenic	Cadmium	Chromium	Cop	per	Nickel	Zinc	DF	% SS
006B	SS3A	S	TTL	.C	7.2	4.1	86	10	00	97	500	1	103
006C	SS3B	S	TTL	.C	8.1	26	2400	85	50	18,000	370	1	106
006D	SS3C	S	TTL	.C	5.2	45	200	36	50	400	1800	1	106
006E	SS3D	S	TTL	.C	5.2	48	150	860		700	420	1	102
		1											
Report	ing Limit for DF =1;	W	TTL	.C	NA	NA	NA	N	A	NA	NA	1	NA
ND mea	ans not detected at or e the reporting limit	S	TTL	.C	0.5	0.25	0.5	0.	5	0.5	5.0	m	g/Kg

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

	McCampbo	ell An	alyti _{Counts"}	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers E	nvironmental			Client Project ID: 2	2942		Da	te Sampled: 09/19/0	6		
1330 S	. Bascom Avenue, St	e. F					Da	te Received: 09/20/0	6		
San Jos	se. CA 95128			Client Contact: Jo	el Greg	ger	Da	te Extracted: 09/28/0	6		
5411000				Client P.O.:			Da	te Analyzed 09/29/0	6-10/02	/06	
Extraction	method SW3050B			Met Analytical m	als*	6020.4		Work Ord	er: 0609	9404	
Lab ID	Client ID	Matrix	Extract	tion Arsenic	letilous	Cadmium		Chromium	DF	% SS	
005B	SS2A	S	TTL	C 7.5		5.7		71	1	108	
005C	SS2B	S	TTL	C 6.4		2.7		55	1	104	
005E	SS2D	S	TTL	C 4.2		6.5		250	1	105	
		<u> </u>	<u> </u>						<u> </u>		
Report ND me	ing Limit for DF =1; ans not detected at or	W	TTL	C NA		NA		NA	N	A	
abov	e the reporting limit	S	TTL	0.5		0.25		0.5	mg	/Kg	

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

	McCampbell Au "When Ouality	nalyti v Counts"	cal, Inc	<u>-</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Piers E	nvironmental		Client Proj	ect ID: 2	2942		Date Sampled: 09/19/06			
1330 S.	Bascom Avenue, Ste. F					Date Received: 09/20/06				
San Ios	e CA 95128		Client Cor	ntact: Jo	el Greger	Date Extracted: 09/2	28/06			
Ball 903	c, cm 95126		Client P.O	.:			Date Analyzed: 09/2	29/06		
Extraction	nothed SW2050D			Met	als*		Wood	- Ondonu 04	00404	
Lab ID	Client ID	Matrix	Extraction		Arsenic		Chromium	DF	% SS	
004B	SS1A	s	TTLC		5.8		69	1	105	
004C	SS1B	s	TTLC		4.1		53	1	105	
004D	SS1C	s	TTLC		4.6		52	1	105	
004E	SS1D	s	TTLC		5.3		56	1	105	
005D	SS2C	S	TTLC		4.8		56	1	108	
Re	porting Limit for DF =1;	W	TTLC		NA		NA	NA		
ND al	bove the reporting limit	S	TTLC		0.5		0.5	mg	/Kg	

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

	McCampbell An "When Ouality	nalyti v Counts"	cal, Inc	<u>-</u>	1534 Wi Web: www.m Teleph	illow F iccamp ione: 8	Pass Road, Pittsburg, CA 9456 bell.com E-mail: main@mcc 577-252-9262 Fax: 925-252	55-1701 campbell.com -9269	l		
Piers Er	nvironmental		Client Proj	ect ID: 2	2942		Date Sampled: 09/	19/06			
1330 S.	Bascom Avenue, Ste. F						Date Received: 09/2	20/06			
San Ios	» СА 95128		Client Cor	ntact: Jo	el Greger		Date Extracted: 09/28/06				
Dun 903	c, cm 95126		Client P.O	.:			Date Analyzed: 09/2	29/06			
Extraction	nethod SW3050B			Met Analytical m	als* ethods 6020A	Wor	k Order: 06	509404			
Lab ID	Client ID	Matrix	Extraction		Arsenic	Chromium	DF	% SS			
004B	SS1A	S	TTLC		5.8		69	1	105		
004C	SS1B	S	TTLC		4.1		53	1	105		
004D	SS1C	S	TTLC		4.6		52	1	105		
004E	SS1D	S	TTLC		5.3		56	1	105		
Rej	porting Limit for DF =1;	W	TTLC NA				NA	N	A		
ND al	means not detected at or pove the reporting limit	S	TTLC		0.5		0.5	mg/Kg			

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

	McCampbe	ell An	alyti	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers E	nvironmental			Client Project ID:	2942	•	Da	te Sampled: 09/19/0)6			
1330 S	. Bascom Avenue, St	e. F					Date Received: 09/20/06					
San Ios	e CA 95128			Client Contact: Jo	el Gre	ger	Date Extracted: 09/28/06					
5411 508	N, NA 15120			Client P.O.:	6-10/02	2/06						
				Met	tals*							
Lab ID	Client ID	Matrix	Extract	tion Arsenic	nethods	6020A Cadmium		Work Ord Chromium	DF	9404 % SS		
005B	SS2A	s	TTL	.C 7.5		5.7		71	1	108		
005C	SS2B	S	TTL	.C 6.4		2.7		55	1	104		
005D	SS2C	S	TTL	.C 4.8		2.8		56	1	108		
005E	SS2D	S	TTL	.C 4.2		6.5		250	1	105		
									<u> </u>			
Report ND mea	ing Limit for DF =1; ans not detected at or	W	TTL	C NA		NA		NA	N	A		
above	e the reporting limit	S	TTL	0.5		0.25		0.5	mg	уKg		

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

	Campbell Analyti	cal, Inc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565-1701 bell.com E-mail: main@mccampbell.com 877-252-9262 Fax: 925-252-9269					
Piers Environn	nental	Client Project ID: 2	2942		Date Sampled: 09/19/06-09/20/06					
1330 S. Bascon	m Avenue, Ste. F				Date Received: 09/20/06					
San Jose CA 9	5128	Client Contact: Jo	el Greger		Date Extracted: 09/20/06					
	5120	Client P.O.:			Date Analyzed 09/21/06					
		pł	ł *							
Analytical Method:	SW9045C		Matrix		Work Order: 0609404					
			Matrix	7 08 @ 24 5 °C						
0609404-004A	SSIA-ID		S		7.58 @ 24.5 °C					
0609404-005A	\$\$3A 3D		S		10.88 @ 24.5 °C					
5007404-000A					10.00 @ 27.3 C					
		Date R Date R Client Contact: Joel Greger Date A pH* Date A SS1A-1D S 7.9 SS2A-2D S 7.5 SS3A-3D S 10.8 Image: Signal strain stra								
Method Ac	curacy and Reporting Units		W S		NA ±0.1, pH units @ °C					
		$\begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								

DHS ELAP Certification N° 1644

McCampbell Analyt "When Ouality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers Environmental	Client Project ID: 2	2942		Date Sampled: 09/19/06-09/20/06				
1330 S. Bascom Avenue, Ste. F				Date Received: 09/20/06				
San Jose CA 95128	Client Contact: Jo	el Greger		Date Extracted: 09/28/06				
541 5050, 011 55120	Client P.O.:			Date Analyzed 09/28/06				
	pł	I *						
Analytical Method: SW9045C		Motein		work Order: 0609404				
)	Matrix		рн				
0609404-005B SS2A		S		9.30 @ 23.3°C				
0609404-005C SS2B		S		9.45 @ 23.3°C				
0609404-005D SS2C		S		8.12 @ 23.1°C				
0609404-005E SS2D		S		6.51 @ 23.3°C				
0609404-006B SS3A		S		7.70 @ 23.1°C				
0609404-006C SS3B		S		9.18 @ 23.1°C				
0609404-006D SS3C		S		9.76 @ 23.2°C				
0609404-006E SS3D		S		11.34 @ 23.1°C				
		W		NA				
Method Accuracy and Reporting Units		S		±0.1, pH units @ °C				

DHS ELAP Certification N° 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR E218.6m

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0609404

EPA Method E218.6m Extraction SW3060A						BatchID: 23797				Spiked Sample ID: 0609365-001a			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	Acceptance Criteria (%			
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Hexachrome	ND	40	102	104	2.53	93.1	96.5	3.59	80 - 120	20	90 - 110	10	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 23797 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-004	9/19/06 12:37 PM	9/20/06	9/21/06 6:40 PM	0609404-005	9/19/06 1:08 PM	9/20/06	9/21/06 7:02 PM
0609404-006	9/20/06 8:01 AM	9/20/06	9/21/06 7:23 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0609404

EPA Method SW8260B	EPA Method SW8260B Extraction SW5030B							BatchID: 23787 Spiked Sample ID: 0609343-001A				001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	101	103	2.46	105	109	3.56	70 - 130	30	70 - 130	30
Benzene	ND	0.050	96.9	98.8	1.80	98.7	107	7.87	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	91.3	86.1	5.89	98.5	124	22.5	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	101	101	0	93.7	99.7	6.20	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	95.1	95.1	0	93.1	93.4	0.306	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	115	121	4.94	119	124	4.27	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	116	117	0.517	108	111	3.45	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	117	121	2.99	116	120	3.84	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	111	114	3.28	111	116	3.63	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	0.011	0.050	90.2	93	2.50	115	120	3.87	70 - 130	30	70 - 130	30
Toluene	ND	0.050	88.6	88.4	0.227	90.4	87.9	2.84	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	97.2	98.7	1.59	91.3	97	6.02	70 - 130	30	70 - 130	30
%SS1:	112	0.050	105	106	0.689	105	103	1.47	70 - 130	30	70 - 130	30
%SS2:	98	0.050	106	105	0.639	106	96	9.90	70 - 130	30	70 - 130	30
%SS3:	92	0.050	106	107	0.800	109	106	2.59	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this systemation betch ware ND loss than the method DL with the following expections:												

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

BATCH 23787 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-001	9/19/06 8:27 AM	9/20/06	9/26/06 7:56 AM	0609404-002	9/19/06 8:40 AM	9/20/06	9/26/06 8:41 AM
0609404-003	9/19/06 8:51 AM	9/20/06	9/26/06 9:26 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Quality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil	Soil QC Matrix: Soil									WorkOrder 0609404					
EPA Method 6020A			Extract	tion SW3	050B		Bato	:hID: 23846	5	Spiked \$	Spiked Sample ID 0609397-052A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance Criteri			1		
, that yes	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS / LCSD	RPD		
Antimony	ND	50	100	99.4	0.736	10	99.2	101	1.51	75 - 125	20	80 - 120	20		
Arsenic	5	50	92.7	93	0.331	10	94.2	94.9	0.761	75 - 125	20	80 - 120	20		
Barium	290	500	95.7	96	0.207	100	96.4	97.8	1.48	75 - 125	20	80 - 120	20		
Beryllium	0.72	50	89.5	89.6	0.110	10	98.7	102	3.36	75 - 125	20	80 - 120	20		
Cadmium	ND	50	95	94.6	0.464	10	95.5	95.8	0.303	75 - 125	20	80 - 120	20		
Chromium	41	50	82.5	86.6	2.47	10	90.9	92.6	1.86	75 - 125	20	80 - 120	20		
Cobalt	13	50	84.5	84.1	0.328	10	95.4	99.3	3.95	75 - 125	20	80 - 120	20		
Copper	24	50	89.1	91.3	1.59	10	95.2	95.3	0.105	75 - 125	20	80 - 120	20		
Lead	10	50	94	93.7	0.193	10	96.4	98	1.74	75 - 125	20	80 - 120	20		
Mercury	ND	2.5	102	100	1.14	0.50	103	104	1.33	75 - 125	20	80 - 120	20		
Molybdenum	0.50	50	93.3	92.6	0.766	10	95	95.6	0.608	75 - 125	20	80 - 120	20		
Nickel	42	50	90.7	94.3	2.01	10	93.8	94.8	1.10	75 - 125	20	80 - 120	20		
Selenium	ND	50	95.6	94.3	1.28	10	93	94.4	1.49	75 - 125	20	80 - 120	20		
Silver	ND	50	91.3	90.7	0.636	10	94.5	95.2	0.791	75 - 125	20	80 - 120	20		
Thallium	ND	50	92.4	93.4	1.08	10	89.4	92.1	2.98	75 - 125	20	80 - 120	20		
Vanadium	72	50	81.1	88.1	3.05	10	91.2	92.6	1.51	75 - 125	20	80 - 120	20		
Zinc	56	500	94.3	94	0.304	100	97.7	98.6	0.917	75 - 125	20	80 - 120	20		
%SS:	108	250	105	107	2.41	250	101	102	1.58	70 - 130	20	70 - 130	20		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification Nº 1644

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6020A

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

	BATCH 23846 SUMMARY													
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed							
0609404-004A	9/19/06 12:37 PM	9/20/06	9/22/06 3:02 AM	0609404-004A	9/19/06 12:37 PM	9/20/06	9/22/06 10:04 PM							
0609404-005A	9/19/06 1:08 PM	9/20/06	9/22/06 3:09 AM	0609404-005A	9/19/06 1:08 PM	9/20/06	9/25/06 8:14 PM							
0609404-006A	9/20/06 8:01 AM	9/20/06	9/22/06 3:16 AM	0609404-006A	9/20/06 8:01 AM	9/20/06	9/25/06 8:21 PM							
0609404-006A	9/20/06 8:01 AM	9/20/06	9/25/06 8:28 PM											

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

"When Ouality Counts"

QC SUMMARY REPORT FOR SM4500-CN⁻ E

WorkOrder 0609404 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SM4500-CN⁻ E Extraction SM4500-CN⁻ E BatchID: 23949 Spiked Sample ID: 0609530-002A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD Total Cyanide 0.12 0.80 96.4 97.4 0.896 97.3 95.9 1.53 80 - 120 20 90 - 110 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23949 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-004	9/19/06 12:37 PM	10/05/06	10/05/06 1:24 PM	0609404-005	9/19/06 1:08 PM	10/05/06	10/05/06 1:25 PM
0609404-006	9/20/06 8:01 AM	10/05/06	10/05/06 1:23 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SM5220D

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0609404

EPA Method SM5220D Extraction SM5220D						BatchID: 23796				Spiked Sample ID: 0609365-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)	
, and you	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
COD	3200	10000	109	104	3.45	106	99.6	6.41	90 - 110	20	90 - 110	20	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 23796 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-004	9/19/06 12:37 PM	9/21/06	9/21/06 5:01 PM	0609404-005	9/19/06 1:08 PM	9/21/06	9/21/06 5:07 PM
0609404-006	9/20/06 8:01 AM	9/21/06	9/21/06 5:13 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Quality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil						QC Matrix:	Soil				Wor	kOrder 06094	404
EPA Method 6020A			Extract	tion SW3	050B		Bato	:hID: 2398 [,]	I	Spiked \$	Sample	ID 0609551-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%))
, that yes	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS / LCSD	RPD
Arsenic	5.5	50	102	101	0.855	10	94.8	96.7	2.01	75 - 125	20	80 - 120	20
Cadmium	0.5	50	97.4	97.4	0	10	94.9	94.3	0.550	75 - 125	20	80 - 120	20
Chromium	33	50	95	94.7	0.236	10	90.4	91.6	1.33	75 - 125	20	80 - 120	20
Copper	34	50	102	103	0.292	10	95.2	95.4	0.189	75 - 125	20	80 - 120	20
Nickel	38	50	103	104	0.101	10	95.1	96.2	1.17	75 - 125	20	80 - 120	20
Zinc	210	500	106	106	0	100	91	91.9	0.951	75 - 125	20	80 - 120	20
%SS:	104	250	111	112	0.935	250	98	103	4.42	70 - 130	20	70 - 130	20
All target compounds in the M NONE	ethod Blank	of this ext	raction bate	ch were NI	D less than the	e method R	L with the f	ollowing ex	ceptions:				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

"When Quality Counts"

QC SUMMARY REPORT FOR 6020A

	BATCH 23	981 SUMMARY
--	----------	-------------

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609404-004B	9/19/06 12:37 PM	9/28/06	9/29/06 9:09 PM	0609404-004C	9/19/06 12:37 PM	9/28/06	9/29/06 10:40 PM
0609404-004D	9/19/06 12:37 PM	9/28/06	9/29/06 11:25 PM	0609404-004E	9/19/06 12:37 PM	9/28/06	9/29/06 11:46 PM
0609404-005B	9/19/06 1:08 PM	9/28/06	9/29/06 9:14 PM	0609404-005C	9/19/06 1:08 PM	9/28/06	9/29/06 10:46 PM
0609404-005D	9/19/06 1:08 PM	9/28/06	9/29/06 11:31 PM	0609404-005E	9/19/06 1:08 PM	9/28/06	9/29/06 11:51 PM
0609404-005E	9/19/06 1:08 PM	9/28/06	10/02/06 4:32 PM	0609404-006B	9/20/06 8:01 AM	9/28/06	9/29/06 9:46 PM
0609404-006C	9/20/06 8:01 AM	9/28/06	9/29/06 11:18 PM	0609404-006C	9/20/06 8:01 AM	9/28/06	10/02/06 4:07 PM
0609404-006C	9/20/06 8:01 AM	9/28/06	10/02/06 4:14 PM	0609404-006C	9/20/06 8:01 AM	9/28/06	10/02/06 4:20 PM
0609404-006D	9/20/06 8:01 AM	9/28/06	9/29/06 11:38 PM	0609404-006D	9/20/06 8:01 AM	9/28/06	10/02/06 4:25 PM
0609404-006E	9/20/06 8:01 AM	9/28/06	9/29/06 11:58 PM	0609404-006E	9/20/06 8:01 AM	9/28/06	10/02/06 4:38 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = apalyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification Nº 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method:	рН					Mat	trix: S				WorkOrd	ler: 0609404
Method Name	e: SW90 [,]	45C				U	nits ±, pH ur	nits @ °C			BatchID): 23847
SampleID		Sam	ple	1	DF	Dup /	/ Ser. Dil.	DF	R	(D	Acce	ptance Criteria
0609404-004A		7.98 @	24.5 °C		1	7.99	@ 24.5 °C	1	0.	.01		±0.05
0609404-005A		7.58 @ 1	24.5 °C		1	7.57	@ 24.6 °C	1	0.	.01		±0.05
0609404-006A		10.88 @	24.5 °C		1	10.89	@ 24.5 °C	1	0.	.01		±0.05
					BAT	CH 23847	7 SUMMARY					
Sample ID	Date	Sampled	Date Extra	acted	Date An	alyzed	Sample ID	I	Date Sampled	Date E	Extracted	Date Analyzed
0609404-004A	9/19/06	5 12:37 PM	9/20	/06	9/21/06 8	3:40 PM	0609404-00)4A)/	19/06 12:37 F	M 9	9/20/06	9/21/06 8:40 PM
0609404-005A	9/19/0)6 1:08 PM	9/20	/06	9/21/06 8	3:50 PM	0609404-00)5A 9	/19/06 1:08 P	M g	9/20/06	9/21/06 8:50 PM
0609404-006A	9/20/0	6 8:01 AM	9/20	/06	9/21/06 9):00 PM	0609404-00)6A 9	/20/06 8:01 A	M 9	9/20/06	9/21/06 9:00 PM

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

RD = Absolute Value {Sample - Duplicate}; RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2].

A QA/QC Officer

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Piers Environmental	Client Project ID: 2942 San Pablo	Date Sampled:	10/09/06
1330 S. Bascom Avenue, Ste. F		Date Received:	10/10/06
San Jose, CA 95128	Client Contact: Joel Greger	Date Reported:	10/17/06
	Client P.O.:	Date Completed:	10/17/06

WorkOrder: 0610200

October 17, 2006

Dear Joel:

Enclosed are:

- 1). the results of **5** analyzed samples from your **2942 San Pablo project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

0610200

610bal 10 # SL 06001 38148

	MCCAMPBELL ANALYTICAL, INC.													Т					-	6 6	ر 	. •						-						
			110 2º	AVENU	E SOU	TH, #1	07	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- 0									(CH	IA	IN	0]	F C	CUS	STO	OD	YI	RE	C)RI	0		٦
	We	ebsite: www.	mccampl	beli.com	Email:	-5560 Main	(Amc	C8 (710)	hell c							U	RN	AI	30	UN	DI	ΓIM	E						1	õ		'n	X	
	Report To: 7	one: (925) 7	98-1620)			Fa	x: (92	5) 7	98-)	1622			5	LE	DF	Re	PD	P d2	Q.	14 /	NI			RUS	8	24 E	R	48	HR	7	2 HI	≤ 5 DAV	
	Company: Pla	DS OFR	ger		Bill	To:	PIC	ER	5						$ \vdash$				eu:	LUI	ar (INOR	mal,		No	W	rite) n (DW/)	No		- JUNI	
	133/	2 5 Any	ionm	ental		-									-	1	T		1	T .	Ana	lysis	Re	ques	1						Othe	r	Comments	+
	Sun	Jose CA	40m/	ne su	life!		t to	ca	ye2	USO	a ada	201	Ca	m	54			6												Γ			The state of the s	1
	Tele: (5/0) 5	Tele: (5/0) 5935382 E-Mail: piers 2 pierses. com												Ē			(EP/									2			1			Filter		
	Project #: Fax: (570) 7271457												15,0			201						Ê			83						for Metale	Ĺ		
	Project Location: 2942 Son Cable Are an LI												+ 30			201	418.1	bons			n	ictd			270						analysis;			
	Sampler Signature: Scot Custady Id Maland - SCASSADU											50	20		5 (X	Ĭ	Car	Ide	ILY		let	N		8/0	ไล					Yes No	ľ			
	SAMPLING											20	280		reat	-Que	Balo	stic	õ	Pest	Ne. H	Š	2	20	602	ŝ		1el	1	Hered				
	SAME DE CAMPLEING E MATRIX METHOD													8	6	4	viro	21 ()	AL.	Ň	R	Acle	3260		010	10 10	8		N	1	" field)			
	SAMPLE ID LOCATION														8	Ö	HW	08/0	27 ((N N	Ŧ	51	3	8		9	5	ne	n		4			
	(Field Point Name) Date Time H S H												Ē	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	- Se III Se III	đ	202	/ 80	80		/ 81	201		Icts	otel	2	8	3					
	THE CLEARE CON AMERICA												₩ X	×	1	Fa.	ž	109	809	ene	14	3150	2		11	SM	200	5	2 I					
+													E		H	Teta	5	Z	PA	X	Z	Z	Z Z		Å	E	Ĭ	X	4					
1	MWI 2942 Som Pablo 19/9/26 1525 6 20 Y X X X X X X X														-	-+-	-	_						A A	Ŭ	3	3	2	V					
+	mw 2		i	1420	16	36	X		+-		×	#	÷1;	Я.	<u>.</u> +		\rightarrow	-+	-+	$ \rightarrow $				1	X		X		T	V	X	+		
+	mw 3		T	1355	6	Bal			+		V	\mathcal{H}	51.		×	_	-+							5	1		5		-	$\hat{\mathbf{x}}$	17	+		
+	MW 4			1500	6	33			+		4	4	~!?	(1)	KL_	-								X	[1	1			5	χŀ	+		
+	MUS	J	1 J	11140	+7	3-1	14				4	<u>~</u> [2	12	(1)	1					T	T	T	1	15	(+	5	-+	-ł:	÷	-			
				1990	10	73	121	_	\vdash	_	K/	$\langle \rangle$	(1)	Ŀ	1	. i					-	1	+	1,7	+-	+	5	-+-		쉬	41	+		
		V					\downarrow						1					1		+	+	+	+-	1	+		X		$-\mu$	2	X			
ſ													Γ	Γ	T		1	+	+-	+	+			+	+									
ŀ									IT	~		T		1-	+	+	+-	+	+-	+-	+	+-	+-	·	+									
										T		+	1-	+	+	+-	+	+-					-	-										
							\square			+		+	+	╂	+-	+	+-	+-	+		+					,								
┝									+	+		+	+	-	+		+												T		+	1-		
			-1-					+			+	1	+														1		+	+				
								+		+	+-	÷		-										!			-+	-	+-		+			
L	0						-	+														1	1				+		+	+-	+			
	Relinquished By;	1	Date:	Time	Paret	\geq			X	1	D						6			1	+	1-	+	-		-		+-	-	+-				
4	200th Cassad	ty.	10/10/06	Bake -	ALCONO DE	an By	<u>ر</u>	\times		J	/ _	1		IC	E/r	8.1	2		1	>		F						CORAC	ADD					
E	Relingatished By: Date Time: Received By											HE	AD	SPA	NDI7 CE /	TION ABSI	ENT	- ,	-							OWN		15:	•					
K	906 100 Man 11											DE	CHI	OR	INA'	TED	INI	BA																
1	conquisted By:	1	Date:	Time:	Receiv	ed By:		a	C	_	2	7		PRI	ESE	RVE	DIN	ILA	B	INE	RS													
L																		31-	340	K	1			1		-					${\bf v}_{i} \in {\bf v}_{i}$			
						Contraction of the								PRE	SE	RVA'	τιο	N)	JAS	10	&G	ME nH<		s	OTH	ER	-	Jal	04	+-+	20	(N	ſ
															44	-				State of Lot		Page .	-					Jul	V !!	1		C	. ~	

PAGE 02/02

JOEL GRÉGER

5107871457 10/06/2006 09:27

	ampbell Analyti	cal, Inc.		1534 Willow F Web: www.mccamp	Pass Road, Pittsburg, CA 94565-1701 bell.com E-mail: main@mccampbell.com	n				
Piers Environment	al	Client Project ID:	2942 San	Pablo	Date Sampled: 10/09/06					
			_>		Date Received: 10/10/06					
1330 S. Bascom A	venue, Ste. F	Client Contraction I	a al Casa a		Date Fester etc. 10/10/06					
San Jose, CA 9512	8	Chent Contact: J	oel Grege	r	Date Extracted: 10/10/06					
		Client P.O.:			Date Analyzed: 10/10/06					
Analytical Method: E21	8.6	Hexachro	ome by IC	*	Work Order: 0	610200				
Lab ID	Client ID	Matr	ix		Hexachrome					
0610200-001E	MW1	W			ND	1				
0610200-002E	MW2	W			ND	1				
0610200-003E	MW3	W			0.48	1				
0610200-004E	MW4	W			0.34	1				
0610200-005E	MW5	W			0.26	1				

Reporting Limit for DF = 1; ND means not detected at	W	0.2 µg/L	
or above the reporting limit	S	NA	

* water samples are reported in µg/L.

N/A means surrogate not applicable to this analysis; # surrogate diluted out of range or surrogate coelutes with another peak.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to matrix interference; p) see attached narrative.

McCampbell	Analyti	cal,	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Piers Environmental		Clie	nt Proie	ect ID:	2942 San Pablo	Date S	ampled: 10/09/0)6				
			j-			Doto D	aggived: 10/10/0)6				
1330 S. Bascom Avenue, Ste. I	Ę					Date R						
		Clie	nt Con	tact: Jo	el Greger	Date E	xtracted: 10/16/0)6				
San Jose, CA 95128		Clie	nt P.O.:			Date A	nalyzed 10/16/0)6				
	Valatila O	mani	og hy D	8-T on	CC/MS (Desia Target	Lict)*						
	volatile O	gam	CS DY I	œ i an	GC/IVIS (Dasic Target.	List)		1 0.51				
Extraction Method: SW5030B			Analy	tical Meth	iod: SW8260B		Work Or	der: 061	0200			
Lab ID					0610200-001B							
Client ID					MW1							
Matrix				Domontino	Water			1	Depenting			
Compound	Concentrati	on *	DF	Limit	Compound		Concentration *	DF	Limit			
Acetone	ND<500	0	500	10	Acrolein (Propenal)		ND<2500	500	5.0			
Acrylonitrile	ND<100	0	500	2.0	tert-Amyl methyl ether (T	CAME)	ND<250	500	0.5			
Benzene	ND<250)	500	0.5	Bromobenzene		ND<250	500	0.5			
Bromochloromethane	ND<250)	500	0.5	Bromodichloromethane		ND<250	500	0.5			
2-Butanone (MEK)	ND<230	, 0	500	2.0	t-Butyl alcohol (TBA)		ND<2500	500	5.0			
n-Butyl benzene	ND<250)	500	0.5	sec-Butyl benzene		ND<250	500	0.5			
tert-Butyl benzene	ND<250)	500	0.5	Carbon Disulfide		ND<250	500	0.5			
Carbon Tetrachloride	ND<250	500	0.5	Chlorobenzene		ND<250	500	0.5				
Chloroethane	ND<250	ND<250			2-Chloroethyl Vinyl Ether		ND<500	500	1.0			
Chloroform	ND<250)	500	0.5	Chloromethane		ND<250	500	0.5			
2-Chlorotoluene	ND<250)	500	0.5	4-Chlorotoluene		ND<250	500	0.5			
1 2-Dibromoethane (EDB)	ND<250))	500	0.5	Dibromomethane	Jane	ND<250	500	0.5			
1,2-Dichlorobenzene	ND<250	,)	500	0.5	1,3-Dichlorobenzene		ND<250	500	0.5			
1,4-Dichlorobenzene	ND<250)	500	0.5	Dichlorodifluoromethane		ND<250	500	0.5			
1,1-Dichloroethane	ND<250)	500	0.5	1,2-Dichloroethane (1,2-D	DCA)	ND<250	500	0.5			
1,1-Dichloroethene	ND<250)	500	0.5	cis-1,2-Dichloroethene		ND<250	500	0.5			
trans-1,2-Dichloroethene	ND<250)	500	0.5	1,2-Dichloropropane		ND<250	500	0.5			
1,3-Dichloropropane	ND<250)	500	0.5	2,2-Dichloropropane		ND<250	500	0.5			
trans-1.3-Dichloropropene	ND<250)	500	0.5	Dijsopropyl ether (DIPE)		ND<250	500	0.5			
Ethylbenzene	ND<250)	500	0.5	Ethyl tert-butyl ether (ET	BE)	ND<250	500	0.5			
Freon 113	ND<500	0	500	10	Hexachlorobutadiene		ND<250	500	0.5			
Hexachloroethane	ND<250)	500	0.5	2-Hexanone		ND<250	500	0.5			
Isopropylbenzene	ND<250)	500	0.5	4-Isopropyl toluene		ND<250	500	0.5			
Methyl-t-butyl ether (MTBE)	ND<250)	500	0.5	Methylene chloride		ND<250	500	0.5			
4-Methyl-2-pentanone (MIDK)	ND<230	, 0	500	10	n-Propyl benzene		ND<230	500	0.5			
Styrene	ND<250)	500	0.5	1.1.1.2-Tetrachloroethane		ND<250	500	0.5			
1,1,2,2-Tetrachloroethane	ND<250)	500	0.5	Tetrachloroethene		ND<250	500	0.5			
Toluene	ND<250)	500	0.5	1,2,3-Trichlorobenzene		ND<250	500	0.5			
1,2,4-Trichlorobenzene	ND<250)	500	0.5	1,1,1-Trichloroethane		ND<250	500	0.5			
1,1,2-Trichloroethane	ND<250)	500	0.5	Trichloroethene		9100	500	0.5			
1 2 4 Trimethylbongono	ND<250	<u>)</u>	500	0.5	1,2,3-1ricnioropropane		ND<250	500	0.5			
Vinyl Chloride	ND<250	,)	500	0.5	Xylenes		ND<250	500	0.5			
			Surro	ogate Re	coveries (%)							
%SS1:		98			%SS2:		96	5				
%SS3:		<u>9</u> 5										
Comments:												

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg /wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell	Analyti	cal,	Inc.		1534 Willow Pa Web: www.mccampbo Telephone: 87	ss Road, l ell.com 7-252-92	d, Pittsburg, CA 94565-1701 E-mail: main@mccampbell.com 9262 Fax: 925-252-9269					
Piers Environmental		Clier	nt Proje	ect ID:	2942 San Pablo	Date S	ampled: 10/09/0)6				
			· ·		F	Date R	eceived: 10/10/0)6				
1330 S. Bascom Avenue, Ste. I	F	CI.			10		ata Extracted: 10/12/06					
		Clie	nt Con	tact: Jo	el Greger	Date E	xtracted: 10/12/0)6				
San Jose, CA 95128		Clie	nt P.O.:			Date A	nalyzed 10/12/0					
	Volatile O	rgani	cs by P	&T and	l GC/MS (Basic Target)	List)*						
Extraction Method: SW5030B	(onume of	8	Δnals	tical Meth	od: SW8260B	21 50)	Work Or	der: 061	0200			
			Anary	tical Meth	0610200 0020		WOIK ON	uci. 001	0200			
Lab ID					0610200-002B							
Client ID					Water							
Matrix				Reporting	water				Reporting			
Compound	Concentration	on *	DF	Limit	Compound		Concentration *	DF	Limit			
Acetone	ND<33		3.3	10	Acrolein (Propenal)		ND<17	3.3	5.0			
Acrylonitrile	ND<6.7		3.3	2.0	tert-Amyl methyl ether (T	AME)	ND<1.7	3.3	0.5			
Benzene	ND<1.7	,	3.3	0.5	Bromobenzene		ND<1.7	3.3	0.5			
Bromoform	ND<1.7	,	3.3	0.5	Bromomethane		ND<1.7	3.3	0.5			
2-Butanone (MEK)	ND<6.7		3.3	2.0	t-Butyl alcohol (TBA)		ND<17	3.3	5.0			
n-Butyl benzene	ND<1.7		3.3	0.5	sec-Butyl benzene		ND<1.7	3.3	0.5			
tert-Butyl benzene	ND<1.7		3.3	0.5	Carbon Disulfide		57	3.3	0.5			
Carbon Tetrachloride	ND<1.7	'	3.3	0.5	Chlorobenzene		ND<1.7	3.3	0.5			
Chloroethane	ND<1.7		3.3	0.5	2-Chloroethyl Vinyl Ether		ND<3.3	3.3	1.0			
Chloroform	ND<1.7		3.3	0.5	Chloromethane		ND<1.7	3.3	0.5			
2-Chlorotoluene Dibromochloromethane	ND<1.7	,	3.3	0.5	4-Chlorotoluene	2220	ND<1.7	3.3	0.5			
1 2-Dibromoethane (EDB)	ND<1.7	,	3.3	0.5	Dibromomethane	Jane	ND<1.7	3.3	0.5			
1,2-Dichlorobenzene	ND<1.7		3.3	0.5	1,3-Dichlorobenzene		ND<1.7	3.3	0.5			
1,4-Dichlorobenzene	ND<1.7		3.3	0.5	Dichlorodifluoromethane		ND<1.7	3.3	0.5			
1,1-Dichloroethane	ND<1.7	,	3.3	0.5	1,2-Dichloroethane (1,2-D	CA)	ND<1.7	3.3	0.5			
1,1-Dichloroethene	ND<1.7		3.3	0.5	cis-1,2-Dichloroethene		ND<1.7	3.3	0.5			
trans-1,2-Dichloroethene	ND<1.7		3.3	0.5	1,2-Dichloropropane		ND<1.7	3.3	0.5			
1,3-Dichloropropane	ND<1.7	,	3.3	0.5	cis 1.3 Dichloropropane		ND<1.7	3.3	0.5			
trans-1.3-Dichloropropene	ND<1.7		3.3	0.5	Diisopropyl ether (DIPE)		ND<1.7	3.3	0.5			
Ethylbenzene	ND<1.7		3.3	0.5	Ethyl tert-butyl ether (ETH	BE)	ND<1.7	3.3	0.5			
Freon 113	ND<33		3.3	10	Hexachlorobutadiene		ND<1.7	3.3	0.5			
Hexachloroethane	ND<1.7	,	3.3	0.5	2-Hexanone		ND<1.7	3.3	0.5			
Isopropylbenzene	ND<1.7		3.3	0.5	4-Isopropyl toluene		ND<1.7	3.3	0.5			
Methyl-t-butyl ether (MTBE)	ND<1.7		3.3	0.5	Methylene chloride		ND<1.7	3.3	0.5			
Nitrobenzene	ND<1./		3.3 3.3	10	n-Propyl henzene		ND<1.7	3.3	0.5			
Styrene	ND<33		3.3	0.5	1.1.1.2-Tetrachloroethane		ND<1.7	3.3	0.5			
1,1,2,2-Tetrachloroethane	ND<1.7		3.3	0.5	Tetrachloroethene		ND<1.7	3.3	0.5			
Toluene	ND<1.7		3.3	0.5	1,2,3-Trichlorobenzene		ND<1.7	3.3	0.5			
1,2,4-Trichlorobenzene	ND<1.7		3.3	0.5	1,1,1-Trichloroethane		ND<1.7	3.3	0.5			
1,1,2-Trichloroethane	ND<1.7		3.3	0.5	Trichloroethene		50	3.3	0.5			
1 2 4 Trimothylhongong	ND<1.7	,	3.3	0.5	1,2,3-Trichloropropane		ND<1.7	3.3	0.5			
Vinyl Chloride	ND<1./	,	33	0.5	Xylenes		ND<1.7	33	0.5			
			Surro	ogate Re	coveries (%)				. 0.0			
%SS1:		104	1	3	%SS2:		98					
%SS3:		95										
Comments:												

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell	Analytical	<u>, Inc.</u>		1534 Willow Pa Web: www.mccampbo Telephone: 87	ss Road, I ell.com 7-252-920	d, Pittsburg, CA 94565-1701 n E-mail: main@mccampbell.com 9262 Fax: 925-252-9269				
Piers Environmental	Cli	ent Proje	ect ID:	2942 San Pablo	Date S	ampled: 10/09/0)6			
		5		F	Date R	eceived: 10/10/0)6			
1330 S. Bascom Avenue, Ste. I	F		T	10						
	Cli	ent Con	tact: Jo	el Greger	Date E	xtracted: 10/11/0)6			
San Jose, CA 95128	Cli	ent P.O.:			Date A	nalyzed 10/11/0)6			
	Volatile Organ	nics by P	&T and	d GC/MS (Basic Target)	List)*					
Extraction Method: SW5030B	, onume organ	Analy	tical Meth	and SW8260B	L 100)	Work Or	der: 061	0200		
		Anary	fical Meti	0610200 0020		WOIK OI	uci. 001	0200		
Lab ID				0610200-003B						
Client ID				Weter						
Matrix			Reporting	water				Reporting		
Compound	Concentration *	DF	Limit	Compound		Concentration *	DF	Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (T	AME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		7.0	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
1.2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	Jane	ND	1.0	0.5		
1.2-Dichlorobenzene	ND	1.0	0.5	1.3-Dichlorobenzene		ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-D	CA)	ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		1.5	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5		
1,1-Dichloropropene	ND ND	1.0	0.5	Cis-1,3-Dichloropropene		ND ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETH	BE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene	<u>5</u> <u></u> ,	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene Sturrene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
1 1 2 2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1.2.3-Trichlorobenzene		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		6.5	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND	1.0	0.5		
vinvl Chloride	ND	<u> </u>	U.5	Avienes (%)		ND	1.0	0.5		
04 881.	1/	Surf(igate Ke	04 822.		07	:			
70551: 06 \$\$3	10)))		70 332:		96)			
Comments:				1						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell	Analytic	cal,	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Piers Environmental		Clier	nt Proje	ect ID:	2942 San Pablo	Date S	ampled: 10/09/0)6	
			J			eceived: 10/10/06			
1330 S. Bascom Avenue, Ste. I	F	CI.		T	10				
	-	Clie	nt Con	tact: Jo	el Greger	Date E	xtracted: 10/12/0)6	
San Jose, CA 95128		Clier	nt P.O.:			Date A	nalyzed 10/12/0)6	
	Volatile Or	·gani	es by P	&T and	l GC/MS (Basic Target I	(_ist)*			
Extraction Method: SW5030B	, onune of	8	Analy	vtical Meth	od: SW8260B	L 150)	Work Or	der: 061	0200
			Anary	lical Meth	0610200 004D		WOIK OI	uci. 001	0200
Lab ID 0610200-004B									
Client ID MW4									
Maurix				Reporting	water				Reporting
Compound	Concentratio	on *	DF	Limit	Compound		Concentration *	DF	Limit
Acetone	ND<33		3.3	10	Acrolein (Propenal)		ND<17	3.3	5.0
Acrylonitrile	ND<6.7		3.3	2.0	tert-Amyl methyl ether (T.	AME)	ND<1.7	3.3	0.5
Benzene	ND<1.7		3.3	0.5	Bromobenzene		ND<1.7	3.3	0.5
BromochloromethaneND<1.73.30.5BromodichloromethaneND<1.7BromoformND<1.7							ND<1.7	33	0.5
2-Butanone (MEK) ND<6.7 3.3 2.0 t-Butyl alcohol (TBA) ND<17							3.3	5.0	
n-Butyl benzene ND<1.7 3.3 0.5 sec-Butyl benzene ND<1.7							3.3	0.5	
tert-Butyl benzene	utyl benzene ND<1.7 3.3 0.5 Carbon Disulfide							3.3	0.5
Carbon Tetrachloride	ND<1.7		3.3	0.5	Chlorobenzene		ND<1.7	3.3	0.5
Chloroethane	ND<1.7		3.3	0.5	2-Chloroethyl Vinyl Ether		ND<3.3	3.3	1.0
Chloroform	ND<1.7 3.3 0.5 Chloromethane						ND<1.7	3.3	0.5
2-Chlorotoluene Dibromochloromothano	ND<1.7	$\frac{\text{ND}<1.7}{\text{ND}<1.7} \qquad 3.3 \qquad 0.5 \qquad 4-\text{Chlorotoluene}$					ND<1.7	3.3	0.5
1 2-Dibromoethane (EDB)	ND<1.7		33	0.5	Dibromomethane	ane	ND<1.7	3.3	0.5
1.2-Dichlorobenzene	ND<1.7		3.3	0.5	1,3-Dichlorobenzene		ND<1.7	3.3	0.5
1,4-Dichlorobenzene	ND<1.7		3.3	0.5	Dichlorodifluoromethane		ND<1.7	3.3	0.5
1,1-Dichloroethane	ND<1.7		3.3	0.5	1,2-Dichloroethane (1,2-D	CA)	ND<1.7	3.3	0.5
1,1-Dichloroethene	ND<1.7		3.3	0.5	cis-1,2-Dichloroethene		4.4	3.3	0.5
trans-1,2-Dichloroethene	ND<1.7		3.3	0.5	1,2-Dichloropropane		ND<1.7	3.3	0.5
1,3-Dichloropropane	ND<1.7		3.3	0.5	2,2-Dichloropropane		ND<1.7	3.3	0.5
trans-1 3-Dichloropropene	ND<1.7		33	0.5	Diisopropyl ether (DIPE)		ND<1.7	3.3	0.3
Ethylbenzene	ND<1.7		3.3	0.5	Ethyl tert-butyl ether (ETF	BE)	ND<1.7	3.3	0.5
Freon 113	ND<33		3.3	10	Hexachlorobutadiene	/	ND<1.7	3.3	0.5
Hexachloroethane	ND<1.7		3.3	0.5	2-Hexanone		ND<1.7	3.3	0.5
Isopropylbenzene	ND<1.7		3.3	0.5	4-Isopropyl toluene		ND<1.7	3.3	0.5
Methyl-t-butyl ether (MTBE)	ND<1.7		3.3	0.5	Methylene chloride		ND<1.7	3.3	0.5
4-Methyl-2-pentanone (MIBK)	ND<1./		3.3	0.5	n Bronyl honzono		ND<1.7	3.3	0.5
Styrene	ND<33		3.3	0.5	1 1 1 2-Tetrachloroethane		ND<1.7	3.3	0.5
1.1.2.2-Tetrachloroethane	ND<1.7		3.3	0.5	Tetrachloroethene		ND<1.7	3.3	0.5
Toluene	ND<1.7		3.3	0.5	1,2,3-Trichlorobenzene		ND<1.7	3.3	0.5
1,2,4-Trichlorobenzene	ND<1.7		3.3	0.5	1,1,1-Trichloroethane		ND<1.7	3.3	0.5
1,1,2-Trichloroethane	ND<1.7		3.3	0.5	Trichloroethene		8.7	3.3	0.5
Trichlorofluoromethane $ND < 1.7$ 3.3 0.5 $1.2.3$ -Trichlorof1.2.4 T i d ll $ND < 1.7$ 2.2 0.5 $1.2.5$ T i d ll							ND<1.7	3.3	0.5
1,2,4-Trimethylbenzene	ND<1.7		3.3	0.5	1,3,5-Trimethylbenzene		ND<1.7	3.3	0.5
	ND<1./		Surr	ngate Re	coveries (%)		11U\1./	J.J	0.5
%SS1:		103	Sarre	Sare He	%SS2:		90	}	
%SS3:		95	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	
Comments:	-	,,,							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell	Analytical	<u>, Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Piers Environmental	Clie	ent Proje	ect ID:	2942 San Pablo	Date Sa	ampled: 10/09/0)6		
				1	eceived: 10/10/06				
1330 S. Bascom Avenue, Ste. I	F	ant Car	4	al Creaser	Data E	10/10/00			
See Less CA 05129	Ch	Cheni Contact: Joel Greger Date Extracted: 10/12/06							
San Jose, CA 95128	Clie	ent P.O.:			Date A	analyzed 10/12/0)6		
	Volatile Organ	ics by P	&T and	d GC/MS (Basic Target I	List)*				
Extraction Method: SW5030B	-	Analy	tical Meth	nod: SW8260B		Work Or	der: 061	0200	
Lah ID		-		0610200-005B					
Client ID MW5									
Matrix Water									
Compound Concentration * DE Reporting Compound Concentration * DE Rep									
Combound		DI	Limit	Combound		Concentration	Dr	Limit	
Acetone	ND ND	1.0	10	Acrolein (Propenal)	AME)	ND ND	1.0	5.0	
Benzene	ND	1.0	0.5	Bromobenzene	AME)	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0	
n-Butyl benzene ND 1.0 0.5 sec-Butyl benzene ND							1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		3.3	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroform	ND ND	ND 1.0 0.5 2-Chloroethyl Vinyl Ether ND 1.0 0.5 Chloromethane				ND ND	1.0	1.0	
2-Chlorotoluene	ND 1.0 0.5 4-Chlorotoluene					ND	1.0	0.5	
Dibromochloromethane	ND 1.0 0.5 1,2-Dibromo-3-chloropropane					ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-D	CA)	ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	1.2 Dichloropropaga		4.5 ND	1.0	0.5	
1 3-Dichloropropane	ND	1.0	0.5	2 2-Dichloropropane		ND	1.0	0.5	
1.1-Dichloropropene	ND	1.0	0.5	cis-1.3-Dichloropropene		ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETB	BE)	ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5	
1,1,2-1richloroethane	ND ND	1.0	0.5	1 2 3-Trichloropropage		39 ND	1.0	0.5	
1.2.4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylbenzene		ND	1.0	0.5	
Vinvl Chloride	3.4	1.0	0.5	Xvlenes		ND	1.0	0.5	
		Surro	ogate Re	ecoveries (%)					
%SS1:	10)4		%SS2:		97	1		
%SS3:	10	00							
Comments:									

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell An	alytic	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers Environmental		Client Pr	oject ID:	2942 Sa	an Pablo	Date Sampled:	10/09/06			
						Date Received:	10/10/06			
1330 S. Bascom Avenue, Ste. F	-	Client Co	ontact: Jo	Del Greger Date Extracted: 10/10/06						
San Jose, CA 95128	-	Client P.0	D.:			Date Analyzed:	10/12/06			
		С	AM / CCR	17 Me	tals*					
Lab ID	061020	00-001C	0610200-	002C	0610200-003C	0610200-004C	Reporting Lin	nit for DF =1;		
Client ID	M	W1	MW	2	MW3	MW4	ND means r above the re	not detected porting limit		
Matrix	I	W	W		W	W	S	W		
Extraction Type	DI	SS.	DISS		DISS.	DISS.	mg/kg	μg/L		
Analytical Mathod: E200.8		ICP-N	IS Metals,	Conce	ntration*		Work Order:	0610200		
Dilution Factor		1	1	. 1200.8	1	1	1	1		
Antimony	ID	ND		ND	ND	NA	0.5			
Arsenic	0	65	ND		0.57	3.7	NA	0.5		
Barium	3	60	230		230	420	NA	5.0		
Bervllium	ND		ND		ND	ND	NA	0.5		
Cadmium	0.79		0.40		0.46	ND	NA	0.25		
Chromium	1	.3	3.0		1.3	0.80	NA	0.5		
Cobalt	1	.5	1.8		1.4	ND	NA	0.5		
Copper	1	.6	2.0		4.6	1.0	NA	0.5		
Lead	1	.9	6.4		2.0	1.0	NA	0.5		
Mercury	N	ND.	ND		ND	ND	NA	0.012		
Molybdenum	1	.2	0.91		1.0	2.2	NA	0.5		
Nickel	3	.8	12		3.9	1.7	NA	0.5		
Selenium	N	ND.	0.59		ND	ND	NA	0.5		
Silver	N	ND	ND		ND	ND	NA	0.19		
Thallium	N	ND	ND		ND	ND	NA	0.5		
Vanadium	3	.9	3.5		2.4	0.91	NA	0.5		
Zinc	54	130		78	36	NA	5.0			
%SS:	N	[/A	N/A		N/A	N/A				
[
Comments							<u> </u>			
*water samples are reported in us/I mode	uot/oil/no	n aguaciia	liquid come	lacand			Leats are rene	rtad in		
mg/L, soil/sludge/solid samples in mg/kg, v	vipe sam	ples in µg/v	vipe, filter s	amples i	n µg/filter.	DISTLC / SPLP ext	acts are repor			

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An "When Ouality	alyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Piers Environmental		Client Pro	oject ID:	2942 Sa	an Pablo	Date Sampled:	10/09/06			
						Date Received:	10/10/06			
1330 S. Bascom Avenue, Ste. F	-	Client Co	ontact: Io	foel Greger Date Extracted: 10/10/06						
San Jaco, CA 05128	-	Client D().	01 0108	••	Date Analyzadı	10/12/06			
San Jose, CA 95128		Chent P.C	J.:			Date Analyzed:	10/12/06			
		C	AM / CCF	R 17 Me	tals*					
Lab ID	06102	00-005C					Reporting Lir	nit for DF =1;		
Client ID	М	W5					ND means n above the re	not detected porting limit		
Matrix	1	W					S	W		
Extraction Type	D	ISS.					mg/kg	μg/L		
Analytical Mathedu E200.9	ICP-M	IS Metals,	Conce	ntration*		Work Ordon	0610200			
Dilution Eactor		1 Extra	action Method	1: E200.8			1	1		
Antimony		I JD					NA	0.5		
Arsenic 3.1							NA	0.5		
Barium	320						NA	5.0		
Beryllium	٧D					NA	0.5			
Cadmium	1	٧D					NA	0.25		
Chromium	1	1.1					NA	0.5		
Cobalt		7.1					NA	0.5		
Copper		7.1					NA	0.5		
Lead	1	1.1					NA	0.5		
Mercury	١	ND					NA	0.012		
Molybdenum		26					NA	0.5		
Nickel	3	3.5					NA	0.5		
Selenium	1	1.3					NA	0.5		
Silver	1	ND					NA	0.19		
Thallium	1	ND					NA	0.5		
Vanadium		3.1					NA	0.5		
Zinc	,	72				-	NA	5.0		
%SS:	Ν	J/A								
Commont.							1			
			11	1 1			<u> </u>	. 11		
*water samples are reported in μg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N	wipe sam	on-aqueous ples in μg/v not detecte	vipe, filter s ed above th	amples in amples in e reporti	all TCLP/STLC/ n μg/filter. ng limit; N/A mean	ns not applicable to t	this sample of	rted in		
instrument.										

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti	cal, Inc.	1534 Willow Web: www.mccar	v Pass Road, Pittsburg, CA 94565-1701 npbell.com E-mail: main@mccampbell.com	n		
	"When Ouality Counts"		Telephone	: 877-252-9262 Fax: 925-252-9269			
Piers Environmen	ntal	Client Project ID:	2942 San Pablo	Date Sampled: 10/09/06			
1330 S. Bascom	Avenue, Ste. F		Date Received: 10/10/06				
San Jose CA 951	28	Client Contact: J	Del Greger Date Extracted: 10/11/06				
San Jose, CA JJ1	.20	Client P.O.:		Date Analyzed: 10/11/06			
		Cyanic	le, Total*	·			
Analytical Method: E3	335.3 / Kelada-01			Work Order: 0	610200		
Lab ID	Client ID	Matri	ix	Total Cyanide	DF		
0610200-001D	MW1	W		ND	1		
0610200-002D	MW2	W		ND	1		
0610200-003D	MW3	W	W ND				
0610200-004D	MW4	W		ND	1		
0610200-005D	MW5	W		22	1		

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

* water samples are reported in ug/L; soil/sludge/solid samples in mg/kg; wipe samples in µg/wipe.

^ All water samples are screened for sulfide interference prior to analysis and treated to remove sulfide if it is present. All soil samples are treated to remove sulfide, nitrate and nitrite interference prior to analysis.

i) liquid sample contains greater than ~1 vol. % sediment; j) reporting limit raised due to high sediment content/matrix interference; m) sample treated to remove interfering nitrate and nitrite per E335.4; p) see attached narrative.

	McCampbell	Analyt alitv Counts"	ical, Inc	<u>.</u>		1534 Wi Web: www.m Telepl	illow Pass Road, F accampbell.com hone: 877-252-926	rittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	5-1701 mpbell.com 9269		
Piers E	nvironmental		Client Proj	ect ID: 2	.942 S	San Pablo		Date Sample	:d: 10/09/06		
1330 S.	Bascom Avenue, Ste. F							Date Receive	ed: 10/10/06		
San Jos	e. CA 95128		Client Cor	ntact: Joe	el Gre	eger		Date Extract	ed: 10/12/06		
buil bos			Client P.O.: Date Analyze								
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Cm								* Work Order	r: 061	0200	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	3	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW1	w	6800,f	ND		ND	ND	ND	ND	1	97
002A	MW2	w	ND	ND		ND	ND	ND	ND	1	88
003A	MW3	w	ND	ND		ND	ND	ND	ND	1	93
004A	MW4	w	ND	ND		ND	ND	ND	ND	1	111
005A	MW5	w	ND	ND		ND	ND	ND	ND	1	110
										<u> </u>	
										<u> </u>	
										 	
				<u> </u>						<u> </u>	<u> </u>
										<u> </u>	
	<u> </u>			<u> </u>						_	<u> </u>
Rep	porting Limit for DF =1;	W	50	5.0		0.5	0.5	0.5	0.5	1	µg/L
ND	means not detected at or	S	NA	NA		NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR Kelada-01

W.O. Sample Matrix: Water	QC Matrix: Water									Work	Order: 06102	200
EPA Method E335.3 / Kelada	n E335.3 / Kelada-01 BatchID: 24201					Spiked Sample ID: 0610200-004D						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria ('	%)
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Total Cyanide	ND	40	101	103	2.08	98.8	101	2.29	80 - 120	20	90 - 110	20
All target compounds in the Met NONE	hod Blank o	f this extra	ction bate	ch were N	D less that	n the metl	hod RL w	ith the follow	wing except	ions:		

BATCH 24201 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610200-001	10/09/06 3:25 PM	10/11/06	10/11/06 1:37 PM	0610200-002	10/09/06 2:20 PM	10/11/06	10/11/06 1:38 PM
0610200-003	10/09/06 1:55 PM	10/11/06	10/11/06 1:39 PM	0610200-004	10/09/06 3:00 PM	10/11/06	10/11/06 1:40 PM
0610200-005	10/09/06 2:40 PM	10/11/06	10/11/06 1:41 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR E218.6

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0610200

EPA Method E218.6 Extraction E218.6						BatchID: 24202				Spiked Sample ID: 0610200-001e			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	SD Acceptance Crit			%)	
, unary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Hexachrome	ND	25	105	103	1.88	101	104	2.27	90 - 110	10	90 - 110	10	
All target compounds in the Met	hod Blank of	f this extra	action bate	ch were N	D less that	n the met	hod RL w	ith the follo	wing except	ions:			

BATCH 24202 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610200-001	10/09/06 3:25 PM	10/10/06	10/10/06 3:36 PM	0610200-002	10/09/06 2:20 PM	10/10/06	10/10/06 3:58 PM
0610200-003	10/09/06 1:55 PM	10/10/06	10/10/06 4:19 PM	0610200-004	10/09/06 3:00 PM	10/10/06	10/10/06 4:40 PM
0610200-005	10/09/06 2:40 PM	10/10/06	10/10/06 5:01 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0610200

EPA Method SW8260B	E	Extraction	SW503	0B	BatchID: 24183 Spiked Sample ID: 0610178-00)03C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND<500	10	NR	NR	NR	89.9	89.7	0.193	70 - 130	30	70 - 130	30
Benzene	ND<500	10	NR	NR	NR	113	111	1.39	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	51000	50	NR	NR	NR	106	105	0.806	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	NR	NR	NR	95	95.6	0.676	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND<500	10	NR	NR	NR	110	111	0.926	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND<500	10	NR	NR	NR	95.5	95.6	0.0300	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND<500	10	NR	NR	NR	99.8	95.7	4.26	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND<500	10	NR	NR	NR	103	102	0.909	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND<500	10	NR	NR	NR	94.1	92.7	1.52	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND<500	10	NR	NR	NR	95.7	94.8	0.932	70 - 130	30	70 - 130	30
Toluene	ND<500	10	NR	NR	NR	105	105	0	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	NR	NR	NR	83.2	83.2	0	70 - 130	30	70 - 130	30
%SS1:	107	10	110	112	1.70	105	103	2.16	70 - 130	30	70 - 130	30
%SS2:	96	10	101	105	3.22	97	97	0	70 - 130	30	70 - 130	30
%SS3:	97	10	103	103	0	102	100	1.56	70 - 130	30	70 - 130	30
All target compounds in the Met	hod Blank o	f this extra	action bat	ch were N	ID less that	n the met	hod RL w	ith the follo	wing except	tions:		

NONE

BATCH 24183 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610200-001	10/09/06 3:25 PM	10/16/06	10/16/06 3:49 PM	0610200-002	10/09/06 2:20 PM	10/12/06	10/12/06 6:21 PM
0610200-003	10/09/06 1:55 PM	10/11/06	10/11/06 9:32 PM	0610200-004	10/09/06 3:00 PM	10/12/06	10/12/06 7:06 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0610200

EPA Method SW8260B	E	xtraction	SW503	0B		Batchl	D: 24200	5	Spiked Sample ID: 0610206-003B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	10	91.5	77.7	16.3	91.7	88	4.03	70 - 130	30	70 - 130	30
Benzene	ND	10	119	106	11.7	116	116	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	115	94.1	19.6	88	90.9	3.25	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	103	88.5	15.0	100	101	1.40	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	107	91.9	15.4	108	108	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	99.2	84.3	16.3	97.1	95.5	1.66	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	82.7	74.4	10.5	99.4	83.7	17.1	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	99.7	86.5	14.1	98.7	97.4	1.31	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	94.3	80.9	15.3	94.4	93.2	1.30	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	95.2	81.3	15.8	95.8	92.9	3.02	70 - 130	30	70 - 130	30
Toluene	ND	10	104	92.5	11.9	113	112	0.884	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	80	72.6	9.67	79	79.1	0.0871	70 - 130	30	70 - 130	30
%SS1:	104	10	106	106	0	106	104	1.56	70 - 130	30	70 - 130	30
%SS2:	96	10	95	98	2.97	106	104	1.34	70 - 130	30	70 - 130	30
%SS3:	100	10	102	101	1.00	100	100	0	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

NONE

BATCH 24200 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610200-005	10/09/06 2:40 PM	10/12/06)/12/06 12:40 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0610200

EPA Method SW8021B/8015	EPA Method SW8021B/8015Cm Extraction SV					Batchl	D: 24181	Spiked Sample ID: 0610177-010A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	101	101	0	96.6	98.8	2.18	70 - 130	30	70 - 130	30
MTBE	ND	10	95.4	94.1	1.38	96	105	8.61	70 - 130	30	70 - 130	30
Benzene	ND	10	96.5	94.5	2.09	93.5	104	10.9	70 - 130	30	70 - 130	30
Toluene	ND	10	89.1	88.6	0.591	88	98.8	11.6	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	92.2	93.8	1.74	93.1	99.8	6.93	70 - 130	30	70 - 130	30
Xylenes	ND	30	86	85.7	0.388	85.3	90.3	5.69	70 - 130	30	70 - 130	30
%SS:	106	10	99	99	0	101	109	7.51	70 - 130	30	70 - 130	30
All target compounds in the Met NONE	hod Blank o	of this extra	action bat	ch were N	D less tha	n the met	hod RL w	ith the follo	wing except	ions:		

BATCH 24181 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610200-001	10/09/06 3:25 PM	10/12/06	10/12/06 4:50 AM	0610200-002	10/09/06 2:20 PM	10/12/06	10/12/06 6:25 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0610200

EPA Method E200.8	E	xtraction	E200.8			Batchl	D: 24194	ş	Spiked Sar	nple ID	: 0610212-0)01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	10	96.9	96.1	0.821	92.2	92.5	0.368	75 - 125	20	85 - 115	20
Arsenic	6.6	10	100	102	1.20	94.6	94.4	0.201	75 - 125	20	85 - 115	20
Barium	330	100	115	113	0.296	94.7	94.8	0.0739	75 - 125	20	85 - 115	20
Beryllium	ND	10	87.2	87.3	0.166	97.2	96.4	0.878	75 - 125	20	85 - 115	20
Cadmium	ND	10	94	94.2	0.221	95.3	95.4	0.105	75 - 125	20	85 - 115	20
Chromium	23	10	94.8	97.3	0.770	93.7	92.8	0.986	75 - 125	20	85 - 115	20
Cobalt	11	10	83.2	81.8	0.745	93.6	94.5	0.893	75 - 125	20	85 - 115	20
Copper	18	10	94	98.1	1.46	94.9	94.3	0.624	75 - 125	20	85 - 115	20
Lead	4.2	10	97	96.6	0.287	93	93	0	75 - 125	20	85 - 115	20
Mercury	0.25	0.50	124	121	1.87	105	105	0	75 - 125	20	85 - 115	20
Molybdenum	30	10	103	101	0.428	94.9	93.4	1.56	75 - 125	20	85 - 115	20
Nickel	53	10	88.3	96.6	1.33	95.3	95.4	0.126	75 - 125	20	85 - 115	20
Selenium	27	10	96.7	97.9	0.328	93.1	91.6	1.61	75 - 125	20	85 - 115	20
Silver	ND	10	83.7	83.1	0.719	87.8	87.6	0.308	75 - 125	20	85 - 115	20
Thallium	ND	10	90.1	90.7	0.615	94.8	94.3	0.497	75 - 125	20	85 - 115	20
Vanadium	43	10	104	105	0.150	93.2	93	0.258	75 - 125	20	85 - 115	20
Zinc	28	100	92.3	92.4	0.0831	92.7	93.3	0.624	75 - 125	20	85 - 115	20
%SS:	103	750	106	106	0	97	97	0	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24194 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610200-001	10/09/06 3:25 PM	10/10/06	10/12/06 1:47 AM	0610200-002	10/09/06 2:20 PM	10/10/06	10/12/06 1:54 AM
0610200-003	10/09/06 1:55 PM	10/10/06	10/12/06 2:02 AM	0610200-004	10/09/06 3:00 PM	10/10/06	10/12/06 2:09 AM
0610200-005	10/09/06 2:40 PM	10/10/06	10/12/06 2:16 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0610200

EPA Method SW8021B/8015	Cm I	Extraction	SW503	0B	BatchID: 24199				Spiked Sample ID: 0610217-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ice Criteria (%)	
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	ND	60	102	102	0	103	102	0.970	70 - 130	30	70 - 130	30	
MTBE	ND	10	99.8	101	0.738	111	105	5.74	70 - 130	30	70 - 130	30	
Benzene	ND	10	93.7	92.3	1.52	102	95.1	7.05	70 - 130	30	70 - 130	30	
Toluene	ND	10	88.5	86.1	2.73	93.1	87.7	5.95	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	10	92.6	92.3	0.255	98.7	93.5	5.46	70 - 130	30	70 - 130	30	
Xylenes	ND	30	86.3	85.7	0.775	90.3	86	4.91	70 - 130	30	70 - 130	30	
%SS:	95	10	98	99	1.12	105	98	6.87	70 - 130	30	70 - 130	30	
All target compounds in the Met NONE	hod Blank o	of this extra	action bat	ch were N	ID less tha	n the met	hod RL w	ith the follo	wing except	ions:			

BATCH 24199 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610200-003	10/09/06 1:55 PM	10/12/06	10/12/06 9:24 PM	0610200-004	10/09/06 3:00 PM	10/12/06	10/12/06 9:56 PM
0610200-005	10/09/06 2:40 PM	10/12/06	10/12/06 8:00 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

McCampbell	Analytical	<u>, Inc.</u>		1534 Willow Pas Web: www.mccampbe Telephone: 87	ss Road, l ell.com 7-252-92	Pittsburg, CA 94565-17 E-mail: main@mccamp 62 Fax: 925-252-9269	701 bell.com		
Piers Environmental	Cli	ent Proje	ect ID:	2942 San Pablo	Date S	ampled: 10/09/0)6		
		5			Date R	eceived: 10/10/0)6		
1330 S. Bascom Avenue, Ste. I			T	10		10/10/0	x 10/1	C/DC	
	Cli	ent Con	tact: Jo	el Greger	Date E	te Extracted: 10/12/06-10/16/06			
San Jose, CA 95128	Cli	ent P.O.:		Date A	ate Analyzed 10/12/06-10/16/06				
	Volatile Organ	ics by P	&T and	d GC/MS (Basic Target I	List)*				
Extraction Method: SW5030B		Analy	tical Meth	nod: SW8260B		Work Or	der: 061	0200	
Lab D		7 11101 9	, tieur metr	0610200 001D		Work Of	uer. 001	0200	
Lab ID				0010200-001B MW1					
Matrix				Water					
		DE	Reporting	Water 1			DE	Reporting	
Compound	Concentration *	DF	Ĺimit	Compound		Concentration *	DF	Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (T	AME)	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		2.1	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0	
Chloroform	2.3	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene Dibromochloromethane	ND ND	1.0	0.5	4-Chlorotoluene	2220	ND ND	1.0	0.5	
1 2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	Jane	ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-D	CA)	ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		3.9	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5	
trans-1 3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETH	BE)	ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	n Dropul hongono		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1 1 1 2-Tetrachloroethane		ND	1.0	0.5	
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5	
1,1,2-Trichloroethane	0.65	1.0	0.5	Trichloroethene		9100	500	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND ND	1.0	0.5	
	ND	I I.U Surr	U.J Daate Re	coveries (%)			1.0	0.5	
%\$\$1.	1/)2	gait M	%\$\$2.		02			
%\$\$3·	2	8		/0002.		92	,		
Comments:		~							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

AN ENVIRONMENTAL ANALYTICAL LABORATORY

AIR TOXICS LTD.

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0609467

Work Order Summary

CLIENT:	Ms. Katie Piers	BILL TO:	Ms. Katie Piers
	PIERS Environmental Services, Inc.		PIERS Environmental Services, Inc.
	1330 S. Bascom Avenue, Suite F		1330 S. Bascom Avenue, Suite F
	San Jose, CA 95128		San Jose, CA 95128
PHONE:	408-559-1248	P.O. #	
FAX:	408-536-0294	PROJECT #	2942 San Pablo
DATE RECEIVED:	09/21/2006	CONTACT	Kyle Vagadori
DATE COMPLETED:	10/04/2006	contact.	Kyle vagadoli

			RECEIPT
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.
01A	SV1 d5	Modified TO-15	2.0 psi
02A	SV2 d5	Modified TO-15	3.0 "Hg
02AA	SV2 d5 Duplicate	Modified TO-15	3.0 "Hg
03A	SV3 d5	Modified TO-15	0.0 "Hg
04A	SV4 d5	Modified TO-15	5.0 "Hg
05A	SV5 d5	Modified TO-15	3.5 "Hg
06A	SV6 d5	Modified TO-15	8.0 "Hg
07A	Lab Blank	Modified TO-15	NA
08A	CCV	Modified TO-15	NA
09A	LCS	Modified TO-15	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>10/04/06</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 1 of 27

 $\bigcirc \underbrace{\text{AIR TOXICS LTD.}}_{\text{AN ENVIRONMENTAL ANALYTICAL LABORATORY}}$

LABORATORY NARRATIVE Modified TO-15 PIERS Environmental Services, Inc. Workorder# 0609467

Six 1 Liter Summa Canister samples were received on September 21, 2006. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for samples SV5 d5 and SV6 d5 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the samples.

Analytical Notes

All Quality Control Limit failures and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

The reported LCS for each daily batch has been derived from more than one analytical file.

The reported result for 4-Ethyltoluene in samples SV1 d5 and SV6 d5 may be biased high due to co-elution with a non target compound with similar characteristic ions. Both the primary and secondary ion for 4-Ethyltoluene exhibited potential interference.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

J - Estimated value.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV1 d5

Lab ID#: 0609467-01A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.89	8.4	2.3	21
Ethanol	3.6	32	6.7	60
Acetone	3.6	67	8.4	160
2-Propanol	3.6	6.0	8.7	15
Carbon Disulfide	0.89	2.8	2.8	8.8
Methylene Chloride	0.89	2.4	3.1	8.4
trans-1,2-Dichloroethene	0.89	22	3.5	89
Hexane	0.89	6.8	3.1	24
2-Butanone (Methyl Ethyl Ketone)	0.89	7.4	2.6	22
cis-1,2-Dichloroethene	0.89	65	3.5	260
Tetrahydrofuran	0.89	2.0	2.6	5.8
Cyclohexane	0.89	6.4	3.1	22
2,2,4-Trimethylpentane	0.89	11	4.2	51
Benzene	0.89	3.0	2.8	9.5
Heptane	0.89	5.2 J	3.6	22 J
Trichloroethene	0.89	140	4.8	760
Toluene	0.89	18	3.4	70
Ethyl Benzene	0.89	2.1	3.9	9.2
m,p-Xylene	0.89	8.8	3.9	38
o-Xylene	0.89	3.0	3.9	13
4-Ethyltoluene	0.89	1.8	4.4	9.0
1,2,4-Trimethylbenzene	0.89	2.7	4.4	13

Client Sample ID: SV2 d5

Lab ID#: 0609467-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	11	560	29	1400
1,3-Butadiene	11	19	25	42
Ethanol	45	54	84	100
Acetone	45	180	110	440
trans-1,2-Dichloroethene	11	1900	44	7500
Hexane	11	14	39	48
cis-1,2-Dichloroethene	11	2700	44	11000
2,2,4-Trimethylpentane	11	12	52	59
Heptane	11	13 J	46	55 J
Trichloroethene	11	1200	60	6200

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV2 d5

Lab ID#: 0609467-02A				
Toluene	11	35	42	130
m,p-Xylene	11	16	49	68

Client Sample ID: SV2 d5 Duplicate

Lab ID#: 0609467-02AA

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	11	560	29	1400
1,3-Butadiene	11	15	25	34
Ethanol	45	61	84	120
Acetone	45	180	110	420
trans-1,2-Dichloroethene	11	1900	44	7400
Hexane	11	12	39	44
cis-1,2-Dichloroethene	11	2700	44	11000
2,2,4-Trimethylpentane	11	12	52	57
Heptane	11	12 J	46	49 J
Trichloroethene	11	1200	60	6200
Toluene	11	32	42	120
m,p-Xylene	11	13	49	58

Client Sample ID: SV3 d5

Lab ID#: 0609467-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	50	3000	130	7700
1,1-Dichloroethene	50	68	200	270
trans-1,2-Dichloroethene	50	1100	200	4300
cis-1,2-Dichloroethene	50	11000	200	44000
Trichloroethene	50	2100	270	11000

Client Sample ID: SV4 d5

Lab ID#: 0609467-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	16	1300	41	3300
1,1-Dichloroethene	16	28	64	110
Acetone	65	92	150	220

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV4 d5

trans 1.2 Disblorosthans 16 1200 64	1000
	1600
cis-1,2-Dichloroethene 16 5000 64 2	0000
Trichloroethene 16 3000 87 1	6000
Toluene 16 21 61	80

Client Sample ID: SV5 d5

Lab ID#: 0609467-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	46	730	120	1900
trans-1,2-Dichloroethene	46	1800	180	7400
cis-1,2-Dichloroethene	46	200	180	800
Trichloroethene	46	200	250	1100

Client Sample ID: SV6 d5

Lab ID#: 0609467-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.4	78	3.5	200
Ethanol	5.5	21	10	40
Acetone	5.5	110	13	260
Carbon Disulfide	1.4	2.0	4.3	6.1
Methylene Chloride	1.4	1.8	4.8	6.4
trans-1,2-Dichloroethene	1.4	310	5.5	1200
Hexane	1.4	4.6	4.9	16
cis-1,2-Dichloroethene	1.4	440	5.5	1800
Tetrahydrofuran	1.4	3.6	4.1	10
Cyclohexane	1.4	5.7	4.8	19
2,2,4-Trimethylpentane	1.4	9.5	6.4	44
Benzene	1.4	2.2	4.4	7.0
Heptane	1.4	4.6 J	5.6	19 J
Trichloroethene	1.4	250	7.4	1400
4-Methyl-2-pentanone	1.4	2.2	5.6	8.9
Toluene	1.4	16	5.2	61
Ethyl Benzene	1.4	3.7	6.0	16
m,p-Xylene	1.4	14	6.0	63
o-Xylene	1.4	5.7	6.0	25
Propylbenzene	1.4	2.5	6.8	12

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV6 d5

Lab ID#: 0609467-06A				
4-Ethyltoluene	1.4	8.9	6.8	44
1,3,5-Trimethylbenzene	1.4	6.0	6.8	29
1,2,4-Trimethylbenzene	1.4	18	6.8	86

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV1 d5

Lab ID#: 0609467-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092720 1.78		Date of Collection: Date of Analysis: 9/	9/20/06 /28/06 03:19 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.89	Not Detected	4.4	Not Detected
Freon 114	0.89	Not Detected	6.2	Not Detected
Chloromethane	3.6	Not Detected	7.4	Not Detected
Vinyl Chloride	0.89	8.4	2.3	21
1,3-Butadiene	0.89	Not Detected	2.0	Not Detected
Bromomethane	0.89	Not Detected	3.4	Not Detected
Chloroethane	0.89	Not Detected	2.3	Not Detected
Freon 11	0.89	Not Detected	5.0	Not Detected
Ethanol	3.6	32	6.7	60
Freon 113	0.89	Not Detected	6.8	Not Detected
1,1-Dichloroethene	0.89	Not Detected	3.5	Not Detected
Acetone	3.6	67	8.4	160
2-Propanol	3.6	6.0	8.7	15
Carbon Disulfide	0.89	2.8	2.8	8.8
3-Chloropropene	3.6	Not Detected	11	Not Detected
Methylene Chloride	0.89	2.4	3.1	8.4
Methyl tert-butyl ether	0.89	Not Detected	3.2	Not Detected
trans-1,2-Dichloroethene	0.89	22	3.5	89
Hexane	0.89	6.8	3.1	24
1,1-Dichloroethane	0.89	Not Detected	3.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.89	7.4	2.6	22
cis-1,2-Dichloroethene	0.89	65	3.5	260
Tetrahydrofuran	0.89	2.0	2.6	5.8
Chloroform	0.89	Not Detected	4.3	Not Detected
1,1,1-Trichloroethane	0.89	Not Detected	4.8	Not Detected
Cyclohexane	0.89	6.4	3.1	22
Carbon Tetrachloride	0.89	Not Detected	5.6	Not Detected
2,2,4-Trimethylpentane	0.89	11	4.2	51
Benzene	0.89	3.0	2.8	9.5
1,2-Dichloroethane	0.89	Not Detected	3.6	Not Detected
Heptane	0.89	5.2 J	3.6	22 J
Trichloroethene	0.89	140	4.8	760
1,2-Dichloropropane	0.89	Not Detected	4.1	Not Detected
1,4-Dioxane	3.6	Not Detected	13	Not Detected
Bromodichloromethane	0.89	Not Detected	6.0	Not Detected
cis-1,3-Dichloropropene	0.89	Not Detected	4.0	Not Detected
4-Methyl-2-pentanone	0.89	Not Detected	3.6	Not Detected
Toluene	0.89	18	3.4	70
trans-1,3-Dichloropropene	0.89	Not Detected	4.0	Not Detected
1,1,2-Trichloroethane	0.89	Not Detected	4.8	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV1 d5

Lab ID#: 0609467-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092720		Date of Collection:	9/20/06
Dil. Factor:	1.78		Date of Analysis:	9/28/06 03:19 AM
Compound	Rot. Limit	Amount	Rpt. Limit	Amount
compound	(hhna)	(hhna)	(uo/iiis)	(uu/iiis)
Tetrachloroethene	0.89	Not Detected	6.0	Not Detected
2-Hexanone	3.6	Not Detected	14	Not Detected
Dibromochloromethane	0.89	Not Detected	7.6	Not Detected
1,2-Dibromoethane (EDB)	0.89	Not Detected	6.8	Not Detected
Chlorobenzene	0.89	Not Detected	4.1	Not Detected
Ethyl Benzene	0.89	2.1	3.9	9.2
m,p-Xylene	0.89	8.8	3.9	38
o-Xylene	0.89	3.0	3.9	13
Styrene	0.89	Not Detected	3.8	Not Detected
Bromoform	0.89	Not Detected	9.2	Not Detected
Cumene	0.89	Not Detected	4.4	Not Detected
1,1,2,2-Tetrachloroethane	0.89	Not Detected	6.1	Not Detected
Propylbenzene	0.89	Not Detected	4.4	Not Detected
4-Ethyltoluene	0.89	1.8	4.4	9.0
1,3,5-Trimethylbenzene	0.89	Not Detected	4.4	Not Detected
1,2,4-Trimethylbenzene	0.89	2.7	4.4	13
1,3-Dichlorobenzene	0.89	Not Detected	5.4	Not Detected
1,4-Dichlorobenzene	0.89	Not Detected	5.4	Not Detected
alpha-Chlorotoluene	0.89	Not Detected	4.6	Not Detected
1,2-Dichlorobenzene	0.89	Not Detected	5.4	Not Detected
1,2,4-Trichlorobenzene	3.6	Not Detected	26	Not Detected
Hexachlorobutadiene	3.6	Not Detected U J	38	Not Detected U J

J = Estimated value due to bias in the CCV.

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	114	70-130	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV2 d5

Lab ID#: 0609467-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092721 22.4		Date of Collection: 9	9/20/06 28/06 03:54 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	11	Not Detected	55	Not Detected
Freon 114	11	Not Detected	78	Not Detected
Chloromethane	45	Not Detected	92	Not Detected
Vinyl Chloride	11	560	29	1400
1,3-Butadiene	11	19	25	42
Bromomethane	11	Not Detected	43	Not Detected
Chloroethane	11	Not Detected	30	Not Detected
Freon 11	11	Not Detected	63	Not Detected
Ethanol	45	54	84	100
Freon 113	11	Not Detected	86	Not Detected
1,1-Dichloroethene	11	Not Detected	44	Not Detected
Acetone	45	180	110	440
2-Propanol	45	Not Detected	110	Not Detected
Carbon Disulfide	11	Not Detected	35	Not Detected
3-Chloropropene	45	Not Detected	140	Not Detected
Methylene Chloride	11	Not Detected	39	Not Detected
Methyl tert-butyl ether	11	Not Detected	40	Not Detected
trans-1,2-Dichloroethene	11	1900	44	7500
Hexane	11	14	39	48
1,1-Dichloroethane	11	Not Detected	45	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	33	Not Detected
cis-1,2-Dichloroethene	11	2700	44	11000
Tetrahydrofuran	11	Not Detected	33	Not Detected
Chloroform	11	Not Detected	55	Not Detected
1,1,1-Trichloroethane	11	Not Detected	61	Not Detected
Cyclohexane	11	Not Detected	38	Not Detected
Carbon Tetrachloride	11	Not Detected	70	Not Detected
2,2,4-Trimethylpentane	11	12	52	59
Benzene	11	Not Detected	36	Not Detected
1,2-Dichloroethane	11	Not Detected	45	Not Detected
Heptane	11	13 J	46	55 J
Trichloroethene	11	1200	60	6200
1,2-Dichloropropane	11	Not Detected	52	Not Detected
1,4-Dioxane	45	Not Detected	160	Not Detected
Bromodichloromethane	11	Not Detected	75	Not Detected
cis-1,3-Dichloropropene	11	Not Detected	51	Not Detected
4-Methyl-2-pentanone	11	Not Detected	46	Not Detected
Toluene	11	35	42	130
trans-1,3-Dichloropropene	11	Not Detected	51	Not Detected
1.1.2-Trichloroethane	11	Not Detected	61	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV2 d5

Lab ID#: 0609467-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092721		Date of Collection:	9/20/06
Dil. Factor:	22.4		Date of Analysis:	9/28/06 03:54 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Tetrachloroethene	11	Not Detected	76	Not Detected
2-Hexanone	45	Not Detected	180	Not Detected
Dibromochloromethane	11	Not Detected	95	Not Detected
1,2-Dibromoethane (EDB)	11	Not Detected	86	Not Detected
Chlorobenzene	11	Not Detected	52	Not Detected
Ethyl Benzene	11	Not Detected	49	Not Detected
m,p-Xylene	11	16	49	68
o-Xylene	11	Not Detected	49	Not Detected
Styrene	11	Not Detected	48	Not Detected
Bromoform	11	Not Detected	120	Not Detected
Cumene	11	Not Detected	55	Not Detected
1,1,2,2-Tetrachloroethane	11	Not Detected	77	Not Detected
Propylbenzene	11	Not Detected	55	Not Detected
4-Ethyltoluene	11	Not Detected	55	Not Detected
1,3,5-Trimethylbenzene	11	Not Detected	55	Not Detected
1,2,4-Trimethylbenzene	11	Not Detected	55	Not Detected
1,3-Dichlorobenzene	11	Not Detected	67	Not Detected
1,4-Dichlorobenzene	11	Not Detected	67	Not Detected
alpha-Chlorotoluene	11	Not Detected	58	Not Detected
1,2-Dichlorobenzene	11	Not Detected	67	Not Detected
1,2,4-Trichlorobenzene	45	Not Detected	330	Not Detected
Hexachlorobutadiene	45	Not Detected U J	480	Not Detected U J

J = Estimated value due to bias in the CCV.

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	99	70-130	
4-Bromofluorobenzene	114	70-130	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV2 d5 Duplicate

Lab ID#: 0609467-02AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092722 22.4		Date of Collection: Date of Analysis: 9/	9/20/06 /28/06 04:29 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	11	Not Detected	55	Not Detected
Freon 114	11	Not Detected	78	Not Detected
Chloromethane	45	Not Detected	92	Not Detected
Vinyl Chloride	11	560	29	1400
1,3-Butadiene	11	15	25	34
Bromomethane	11	Not Detected	43	Not Detected
Chloroethane	11	Not Detected	30	Not Detected
Freon 11	11	Not Detected	63	Not Detected
Ethanol	45	61	84	120
Freon 113	11	Not Detected	86	Not Detected
1,1-Dichloroethene	11	Not Detected	44	Not Detected
Acetone	45	180	110	420
2-Propanol	45	Not Detected	110	Not Detected
Carbon Disulfide	11	Not Detected	35	Not Detected
3-Chloropropene	45	Not Detected	140	Not Detected
Methylene Chloride	11	Not Detected	39	Not Detected
Methyl tert-butyl ether	11	Not Detected	40	Not Detected
trans-1,2-Dichloroethene	11	1900	44	7400
Hexane	11	12	39	44
1,1-Dichloroethane	11	Not Detected	45	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	33	Not Detected
cis-1,2-Dichloroethene	11	2700	44	11000
Tetrahydrofuran	11	Not Detected	33	Not Detected
Chloroform	11	Not Detected	55	Not Detected
1,1,1-Trichloroethane	11	Not Detected	61	Not Detected
Cyclohexane	11	Not Detected	38	Not Detected
Carbon Tetrachloride	11	Not Detected	70	Not Detected
2,2,4-Trimethylpentane	11	12	52	57
Benzene	11	Not Detected	36	Not Detected
1,2-Dichloroethane	11	Not Detected	45	Not Detected
Heptane	11	12 J	46	49 J
Trichloroethene	11	1200	60	6200
1,2-Dichloropropane	11	Not Detected	52	Not Detected
1,4-Dioxane	45	Not Detected	160	Not Detected
Bromodichloromethane	11	Not Detected	75	Not Detected
cis-1,3-Dichloropropene	11	Not Detected	51	Not Detected
4-Methyl-2-pentanone	11	Not Detected	46	Not Detected
Toluene	11	32	42	120
trans-1,3-Dichloropropene	11	Not Detected	51	Not Detected
1,1,2-Trichloroethane	11	Not Detected	61	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV2 d5 Duplicate

Lab ID#: 0609467-02AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092722	Date of Collection: 9/20/06		
Dil. Factor:	22.4		Date of Analysis:	9/28/06 04:29 AM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)		(00/110)	
Tetrachloroethene	11	Not Detected	76	Not Detected
2-Hexanone	45	Not Detected	180	Not Detected
Dibromochloromethane	11	Not Detected	95	Not Detected
1,2-Dibromoethane (EDB)	11	Not Detected	86	Not Detected
Chlorobenzene	11	Not Detected	52	Not Detected
Ethyl Benzene	11	Not Detected	49	Not Detected
m,p-Xylene	11	13	49	58
o-Xylene	11	Not Detected	49	Not Detected
Styrene	11	Not Detected	48	Not Detected
Bromoform	11	Not Detected	120	Not Detected
Cumene	11	Not Detected	55	Not Detected
1,1,2,2-Tetrachloroethane	11	Not Detected	77	Not Detected
Propylbenzene	11	Not Detected	55	Not Detected
4-Ethyltoluene	11	Not Detected	55	Not Detected
1,3,5-Trimethylbenzene	11	Not Detected	55	Not Detected
1,2,4-Trimethylbenzene	11	Not Detected	55	Not Detected
1,3-Dichlorobenzene	11	Not Detected	67	Not Detected
1,4-Dichlorobenzene	11	Not Detected	67	Not Detected
alpha-Chlorotoluene	11	Not Detected	58	Not Detected
1,2-Dichlorobenzene	11	Not Detected	67	Not Detected
1,2,4-Trichlorobenzene	45	Not Detected	330	Not Detected
Hexachlorobutadiene	45	Not Detected U J	480	Not Detected U J

J = Estimated value due to bias in the CCV.

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	112	70-130	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV3 d5

Lab ID#: 0609467-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092723 101		Date of Collection: Date of Analysis: 9	9/20/06 /28/06 05:05 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	50	Not Detected	250	Not Detected
Freon 114	50	Not Detected	350	Not Detected
Chloromethane	200	Not Detected	420	Not Detected
Vinyl Chloride	50	3000	130	7700
1,3-Butadiene	50	Not Detected	110	Not Detected
Bromomethane	50	Not Detected	200	Not Detected
Chloroethane	50	Not Detected	130	Not Detected
Freon 11	50	Not Detected	280	Not Detected
Ethanol	200	Not Detected	380	Not Detected
Freon 113	50	Not Detected	390	Not Detected
1,1-Dichloroethene	50	68	200	270
Acetone	200	Not Detected	480	Not Detected
2-Propanol	200	Not Detected	500	Not Detected
Carbon Disulfide	50	Not Detected	160	Not Detected
3-Chloropropene	200	Not Detected	630	Not Detected
Methylene Chloride	50	Not Detected	180	Not Detected
Methyl tert-butyl ether	50	Not Detected	180	Not Detected
trans-1,2-Dichloroethene	50	1100	200	4300
Hexane	50	Not Detected	180	Not Detected
1,1-Dichloroethane	50	Not Detected	200	Not Detected
2-Butanone (Methyl Ethyl Ketone)	50	Not Detected	150	Not Detected
cis-1,2-Dichloroethene	50	11000	200	44000
Tetrahydrofuran	50	Not Detected	150	Not Detected
Chloroform	50	Not Detected	250	Not Detected
1,1,1-Trichloroethane	50	Not Detected	280	Not Detected
Cyclohexane	50	Not Detected	170	Not Detected
Carbon Tetrachloride	50	Not Detected	320	Not Detected
2,2,4-Trimethylpentane	50	Not Detected	240	Not Detected
Benzene	50	Not Detected	160	Not Detected
1,2-Dichloroethane	50	Not Detected	200	Not Detected
Heptane	50	Not Detected U J	210	Not Detected U J
Trichloroethene	50	2100	270	11000
1,2-Dichloropropane	50	Not Detected	230	Not Detected
1,4-Dioxane	200	Not Detected	730	Not Detected
Bromodichloromethane	50	Not Detected	340	Not Detected
cis-1,3-Dichloropropene	50	Not Detected	230	Not Detected
4-Methyl-2-pentanone	50	Not Detected	210	Not Detected
Toluene	50	Not Detected	190	Not Detected
trans-1,3-Dichloropropene	50	Not Detected	230	Not Detected
1.1.2-Trichloroethane	50	Not Detected	280	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV3 d5

Lab ID#: 0609467-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092723		Date of Collection:	9/20/06
Dil. Factor:	101		Date of Analysis:	9/28/06 05:05 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Tetrachloroethene	50	Not Detected	340	Not Detected
2-Hexanone	200	Not Detected	830	Not Detected
Dibromochloromethane	50	Not Detected	430	Not Detected
1,2-Dibromoethane (EDB)	50	Not Detected	390	Not Detected
Chlorobenzene	50	Not Detected	230	Not Detected
Ethyl Benzene	50	Not Detected	220	Not Detected
m,p-Xylene	50	Not Detected	220	Not Detected
o-Xylene	50	Not Detected	220	Not Detected
Styrene	50	Not Detected	220	Not Detected
Bromoform	50	Not Detected	520	Not Detected
Cumene	50	Not Detected	250	Not Detected
1,1,2,2-Tetrachloroethane	50	Not Detected	350	Not Detected
Propylbenzene	50	Not Detected	250	Not Detected
4-Ethyltoluene	50	Not Detected	250	Not Detected
1,3,5-Trimethylbenzene	50	Not Detected	250	Not Detected
1,2,4-Trimethylbenzene	50	Not Detected	250	Not Detected
1,3-Dichlorobenzene	50	Not Detected	300	Not Detected
1,4-Dichlorobenzene	50	Not Detected	300	Not Detected
alpha-Chlorotoluene	50	Not Detected	260	Not Detected
1,2-Dichlorobenzene	50	Not Detected	300	Not Detected
1,2,4-Trichlorobenzene	200	Not Detected	1500	Not Detected
Hexachlorobutadiene	200	Not Detected U J	2200	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	116	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV4 d5

Lab ID#: 0609467-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092729 32.3		Date of Collection: Date of Analysis: 9	9/20/06 /28/06 09:03 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	16	Not Detected	80	Not Detected
Freon 114	16	Not Detected	110	Not Detected
Chloromethane	65	Not Detected	130	Not Detected
Vinyl Chloride	16	1300	41	3300
1,3-Butadiene	16	Not Detected	36	Not Detected
Bromomethane	16	Not Detected	63	Not Detected
Chloroethane	16	Not Detected	43	Not Detected
Freon 11	16	Not Detected	91	Not Detected
Ethanol	65	Not Detected	120	Not Detected
Freon 113	16	Not Detected	120	Not Detected
1,1-Dichloroethene	16	28	64	110
Acetone	65	92	150	220
2-Propanol	65	Not Detected	160	Not Detected
Carbon Disulfide	16	Not Detected	50	Not Detected
3-Chloropropene	65	Not Detected	200	Not Detected
Methylene Chloride	16	Not Detected	56	Not Detected
Methyl tert-butyl ether	16	Not Detected	58	Not Detected
trans-1,2-Dichloroethene	16	1200	64	4600
Hexane	16	Not Detected	57	Not Detected
1,1-Dichloroethane	16	Not Detected	65	Not Detected
2-Butanone (Methyl Ethyl Ketone)	16	Not Detected	48	Not Detected
cis-1,2-Dichloroethene	16	5000	64	20000
Tetrahydrofuran	16	Not Detected	48	Not Detected
Chloroform	16	Not Detected	79	Not Detected
1,1,1-Trichloroethane	16	Not Detected	88	Not Detected
Cyclohexane	16	Not Detected	56	Not Detected
Carbon Tetrachloride	16	Not Detected	100	Not Detected
2,2,4-Trimethylpentane	16	Not Detected	75	Not Detected
Benzene	16	Not Detected	52	Not Detected
1,2-Dichloroethane	16	Not Detected	65	Not Detected
Heptane	16	Not Detected U J	66	Not Detected U J
Trichloroethene	16	3000	87	16000
1,2-Dichloropropane	16	Not Detected	75	Not Detected
1,4-Dioxane	65	Not Detected	230	Not Detected
Bromodichloromethane	16	Not Detected	110	Not Detected
cis-1,3-Dichloropropene	16	Not Detected	73	Not Detected
4-Methyl-2-pentanone	16	Not Detected	66	Not Detected
Toluene	16	21	61	80
trans-1,3-Dichloropropene	16	Not Detected	73	Not Detected
1.1.2-Trichloroethane	16	Not Detected	88	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV4 d5

Lab ID#: 0609467-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092729		Date of Collection:	9/20/06
Dil. Factor:	32.3		Date of Analysis:	9/28/06 09:03 AM
0	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(pppv)	(vaqq)	(uG/m3)	(uG/m3)
Tetrachloroethene	16	Not Detected	110	Not Detected
2-Hexanone	65	Not Detected	260	Not Detected
Dibromochloromethane	16	Not Detected	140	Not Detected
1,2-Dibromoethane (EDB)	16	Not Detected	120	Not Detected
Chlorobenzene	16	Not Detected	74	Not Detected
Ethyl Benzene	16	Not Detected	70	Not Detected
m,p-Xylene	16	Not Detected	70	Not Detected
o-Xylene	16	Not Detected	70	Not Detected
Styrene	16	Not Detected	69	Not Detected
Bromoform	16	Not Detected	170	Not Detected
Cumene	16	Not Detected	79	Not Detected
1,1,2,2-Tetrachloroethane	16	Not Detected	110	Not Detected
Propylbenzene	16	Not Detected	79	Not Detected
4-Ethyltoluene	16	Not Detected	79	Not Detected
1,3,5-Trimethylbenzene	16	Not Detected	79	Not Detected
1,2,4-Trimethylbenzene	16	Not Detected	79	Not Detected
1,3-Dichlorobenzene	16	Not Detected	97	Not Detected
1,4-Dichlorobenzene	16	Not Detected	97	Not Detected
alpha-Chlorotoluene	16	Not Detected	84	Not Detected
1,2-Dichlorobenzene	16	Not Detected	97	Not Detected
1,2,4-Trichlorobenzene	65	Not Detected	480	Not Detected
Hexachlorobutadiene	65	Not Detected U J	690	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	117	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV5 d5

Lab ID#: 0609467-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092730 91.6		Date of Collection: Date of Analysis: 9	9/20/06 /28/06 09:42 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	46	Not Detected	230	Not Detected
Freon 114	46	Not Detected	320	Not Detected
Chloromethane	180	Not Detected	380	Not Detected
Vinyl Chloride	46	730	120	1900
1,3-Butadiene	46	Not Detected	100	Not Detected
Bromomethane	46	Not Detected	180	Not Detected
Chloroethane	46	Not Detected	120	Not Detected
Freon 11	46	Not Detected	260	Not Detected
Ethanol	180	Not Detected	340	Not Detected
Freon 113	46	Not Detected	350	Not Detected
1,1-Dichloroethene	46	Not Detected	180	Not Detected
Acetone	180	Not Detected	440	Not Detected
2-Propanol	180	Not Detected	450	Not Detected
Carbon Disulfide	46	Not Detected	140	Not Detected
3-Chloropropene	180	Not Detected	570	Not Detected
Methylene Chloride	46	Not Detected	160	Not Detected
Methyl tert-butyl ether	46	Not Detected	160	Not Detected
trans-1,2-Dichloroethene	46	1800	180	7400
Hexane	46	Not Detected	160	Not Detected
1,1-Dichloroethane	46	Not Detected	180	Not Detected
2-Butanone (Methyl Ethyl Ketone)	46	Not Detected	140	Not Detected
cis-1,2-Dichloroethene	46	200	180	800
Tetrahydrofuran	46	Not Detected	140	Not Detected
Chloroform	46	Not Detected	220	Not Detected
1,1,1-Trichloroethane	46	Not Detected	250	Not Detected
Cyclohexane	46	Not Detected	160	Not Detected
Carbon Tetrachloride	46	Not Detected	290	Not Detected
2,2,4-Trimethylpentane	46	Not Detected	210	Not Detected
Benzene	46	Not Detected	150	Not Detected
1,2-Dichloroethane	46	Not Detected	180	Not Detected
Heptane	46	Not Detected U J	190	Not Detected U J
Trichloroethene	46	200	250	1100
1,2-Dichloropropane	46	Not Detected	210	Not Detected
1,4-Dioxane	180	Not Detected	660	Not Detected
Bromodichloromethane	46	Not Detected	310	Not Detected
cis-1,3-Dichloropropene	46	Not Detected	210	Not Detected
4-Methyl-2-pentanone	46	Not Detected	190	Not Detected
Toluene	46	Not Detected	170	Not Detected
trans-1,3-Dichloropropene	46	Not Detected	210	Not Detected
1.1.2-Trichloroethane	46	Not Detected	250	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV5 d5

Lab ID#: 0609467-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092730		Date of Collection:	9/20/06
Dil. Factor:	91.6		Date of Analysis:	9/28/06 09:42 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Tetrachloroethene	46	Not Detected	310	Not Detected
2-Hexanone	180	Not Detected	750	Not Detected
Dibromochloromethane	46	Not Detected	390	Not Detected
1,2-Dibromoethane (EDB)	46	Not Detected	350	Not Detected
Chlorobenzene	46	Not Detected	210	Not Detected
Ethyl Benzene	46	Not Detected	200	Not Detected
m,p-Xylene	46	Not Detected	200	Not Detected
o-Xylene	46	Not Detected	200	Not Detected
Styrene	46	Not Detected	200	Not Detected
Bromoform	46	Not Detected	470	Not Detected
Cumene	46	Not Detected	220	Not Detected
1,1,2,2-Tetrachloroethane	46	Not Detected	310	Not Detected
Propylbenzene	46	Not Detected	220	Not Detected
4-Ethyltoluene	46	Not Detected	220	Not Detected
1,3,5-Trimethylbenzene	46	Not Detected	220	Not Detected
1,2,4-Trimethylbenzene	46	Not Detected	220	Not Detected
1,3-Dichlorobenzene	46	Not Detected	280	Not Detected
1,4-Dichlorobenzene	46	Not Detected	280	Not Detected
alpha-Chlorotoluene	46	Not Detected	240	Not Detected
1,2-Dichlorobenzene	46	Not Detected	280	Not Detected
1,2,4-Trichlorobenzene	180	Not Detected	1400	Not Detected
Hexachlorobutadiene	180	Not Detected U J	2000	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	116	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV6 d5

Lab ID#: 0609467-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092726 2.76		Date of Collection: 9	9/20/06 28/06 06:34 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.4	Not Detected	6.8	Not Detected
Freon 114	1.4	Not Detected	9.6	Not Detected
Chloromethane	5.5	Not Detected	11	Not Detected
Vinyl Chloride	1.4	78	3.5	200
1,3-Butadiene	1.4	Not Detected	3.0	Not Detected
Bromomethane	1.4	Not Detected	5.4	Not Detected
Chloroethane	1.4	Not Detected	3.6	Not Detected
Freon 11	1.4	Not Detected	7.8	Not Detected
Ethanol	5.5	21	10	40
Freon 113	1.4	Not Detected	10	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.5	Not Detected
Acetone	5.5	110	13	260
2-Propanol	5.5	Not Detected	14	Not Detected
Carbon Disulfide	1.4	2.0	4.3	6.1
3-Chloropropene	5.5	Not Detected	17	Not Detected
Methylene Chloride	1.4	1.8	4.8	6.4
Methyl tert-butyl ether	1.4	Not Detected	5.0	Not Detected
trans-1,2-Dichloroethene	1.4	310	5.5	1200
Hexane	1.4	4.6	4.9	16
1,1-Dichloroethane	1.4	Not Detected	5.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.4	Not Detected	4.1	Not Detected
cis-1,2-Dichloroethene	1.4	440	5.5	1800
Tetrahydrofuran	1.4	3.6	4.1	10
Chloroform	1.4	Not Detected	6.7	Not Detected
1,1,1-Trichloroethane	1.4	Not Detected	7.5	Not Detected
Cyclohexane	1.4	5.7	4.8	19
Carbon Tetrachloride	1.4	Not Detected	8.7	Not Detected
2,2,4-Trimethylpentane	1.4	9.5	6.4	44
Benzene	1.4	2.2	4.4	7.0
1,2-Dichloroethane	1.4	Not Detected	5.6	Not Detected
Heptane	1.4	4.6 J	5.6	19 J
Trichloroethene	1.4	250	7.4	1400
1,2-Dichloropropane	1.4	Not Detected	6.4	Not Detected
1,4-Dioxane	5.5	Not Detected	20	Not Detected
Bromodichloromethane	1.4	Not Detected	9.2	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Detected
4-Methyl-2-pentanone	1.4	2.2	5.6	8.9
Toluene	1.4	16	5.2	61
trans-1,3-Dichloropropene	1.4	Not Detected	6.3	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.5	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: SV6 d5

Lab ID#: 0609467-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092726		Date of Collection:	9/20/06
Dil. Factor:	2.76		Date of Analysis:	9/28/06 06:34 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Tetrachloroethene	1.4	Not Detected	9.4	Not Detected
2-Hexanone	5.5	Not Detected	23	Not Detected
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.4	Not Detected
Ethyl Benzene	1.4	3.7	6.0	16
m,p-Xylene	1.4	14	6.0	63
o-Xylene	1.4	5.7	6.0	25
Styrene	1.4	Not Detected	5.9	Not Detected
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	Not Detected	6.8	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.5	Not Detected
Propylbenzene	1.4	2.5	6.8	12
4-Ethyltoluene	1.4	8.9	6.8	44
1,3,5-Trimethylbenzene	1.4	6.0	6.8	29
1,2,4-Trimethylbenzene	1.4	18	6.8	86
1,3-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
1,4-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.1	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.3	Not Detected
1,2,4-Trichlorobenzene	5.5	Not Detected	41	Not Detected
Hexachlorobutadiene	5.5	Not Detected U J	59	Not Detected U J

J = Estimated value due to bias in the CCV.

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	118	70-130	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: Lab Blank

Lab ID#: 0609467-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092709 1.00		Date of Collection: I Date of Analysis: 9	NA 0/27/06 06:06 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	0.50	Not Detected	1.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected U J	2.0	Not Detected U J
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: Lab Blank

Lab ID#: 0609467-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092709		Date of Collection:	NA 9/27/06.06:06.PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected U J	21	Not Detected U J

UJ = Non-detected compound associated with low bias in the CCV

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	113	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: CCV

Lab ID#: 0609467-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092707	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/27/06 04:12 PM
Compound		%Recovery
Freon 12		79
Freon 114		80
Chloromethane		109
Vinyl Chloride		85
1,3-Butadiene		91
Bromomethane		77
Chloroethane		90
Freon 11		85
Ethanol		104
Freon 113		86
1,1-Dichloroethene		87
Acetone		91
2-Propanol		102
Carbon Disulfide		79
3-Chloropropene		85
Methylene Chloride		104
Methyl tert-butyl ether		87
trans-1,2-Dichloroethene		76
Hexane		90
1,1-Dichloroethane		83
2-Butanone (Methyl Ethyl Ketone)		76
cis-1,2-Dichloroethene		84
Tetrahydrofuran		91
Chloroform		74
1,1,1-Trichloroethane		85
Cyclohexane		74
Carbon Tetrachloride		90
2,2,4-Trimethylpentane		87
Benzene		74
1,2-Dichloroethane		96
Heptane		68 Q
Trichloroethene		81
1,2-Dichloropropane		82
1,4-Dioxane		75
Bromodichloromethane		84
cis-1,3-Dichloropropene		80
4-Methyl-2-pentanone		83
Toluene		81
trans-1,3-Dichloropropene		79
1,1,2-Trichloroethane		77

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: CCV

Lab ID#: 0609467-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092707 1.00	Date of Collection: NA Date of Analysis: 9/27/06 04:12 PM
Compound		%Recovery
Tetrachloroethene		91
2-Hexanone		80
Dibromochloromethane		84
1,2-Dibromoethane (EDB)		80
Chlorobenzene		74
Ethyl Benzene		79
m,p-Xylene		73
o-Xylene		77
Styrene		73
Bromoform		95
Cumene		76
1,1,2,2-Tetrachloroethane		81
Propylbenzene		84
4-Ethyltoluene		80
1,3,5-Trimethylbenzene		72
1,2,4-Trimethylbenzene		82
1,3-Dichlorobenzene		75
1,4-Dichlorobenzene		91
alpha-Chlorotoluene		83
1,2-Dichlorobenzene		71
1,2,4-Trichlorobenzene		82
Hexachlorobutadiene		69 Q

Q = Exceeds Quality Control limits. Container Type: NA - Not Applicable

		Method Limits		
Surrogates	%Recovery			
Toluene-d8	100	70-130		
1,2-Dichloroethane-d4	110	70-130		
4-Bromofluorobenzene	118	70-130		

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: LCS

Lab ID#: 0609467-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	8092703	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/27/06 12:25 PM
Compound		%Recovery
Freon 12		96
Freon 114		98
Chloromethane		134 Q
Vinyl Chloride		104
1,3-Butadiene		125
Bromomethane		98
Chloroethane		108
Freon 11		103
Ethanol		122
Freon 113		105
1,1-Dichloroethene		102
Acetone		108
2-Propanol		111
Carbon Disulfide		99
3-Chloropropene		94
Methylene Chloride		122
Methyl tert-butyl ether		98
trans-1,2-Dichloroethene		91
Hexane		103
1,1-Dichloroethane		98
2-Butanone (Methyl Ethyl Ketone)		87
cis-1,2-Dichloroethene		99
Tetrahydrofuran		98
Chloroform		84
1,1,1-Trichloroethane		99
Cyclohexane		80
Carbon Tetrachloride		105
2,2,4-Trimethylpentane		92
Benzene		90
1,2-Dichloroethane		110
Heptane		74
Trichloroethene		94
1,2-Dichloropropane		93
1,4-Dioxane		84
Bromodichloromethane		85
cis-1,3-Dichloropropene		65 Q
4-Methyl-2-pentanone		86
Toluene		94
trans-1,3-Dichloropropene		94
1,1,2-Trichloroethane		96

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: LCS

Lab ID#: 0609467-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8092703 1.00	Date of Collection: NA Date of Analysis: 9/27/06 12:25 PM
Compound		%Recovery
Tetrachloroethene		114
2-Hexanone		87
Dibromochloromethane		83
1,2-Dibromoethane (EDB)		97
Chlorobenzene		93
Ethyl Benzene		101
m,p-Xylene		88
o-Xylene		81
Styrene		85
Bromoform		71
Cumene		76
1,1,2,2-Tetrachloroethane		100
Propylbenzene		85
4-Ethyltoluene		83
1,3,5-Trimethylbenzene		73
1,2,4-Trimethylbenzene		69 Q
1,3-Dichlorobenzene		95
1,4-Dichlorobenzene		112
alpha-Chlorotoluene		84
1,2-Dichlorobenzene		88
1,2,4-Trichlorobenzene		103
Hexachlorobutadiene		86

Q = Exceeds Quality Control limits. Container Type: NA - Not Applicable

		Method Limits		
Surrogates	%Recovery			
Toluene-d8	96	70-130		
1,2-Dichloroethane-d4	105	70-130		
4-Bromofluorobenzene	119	70-130		

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance 180 BLUE RAVINE ROAD, SUITE B with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the octlection, handling or (916) 985-1000 FAX (916) 985-1020

FOLSOM, CA 95630-4719

Page ____ of ____

· · - · - · .

defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, hand ing, or shipping of samples, D.O.T. Hotline (800) 467-4829,

Contact Person Joel Greger				Project info:	Turn Around Time; Norma:		Pressurized by: VFR			ŀ		
Company <u>prezes en internetinal</u> pro supresession Address <u>1330 S. Bascon fille</u> City Son Jase State <u>CA</u> 710 <u>95728</u> Phone <u>570 593 5382</u> Fax 570 <u>7871457</u> <u>Collected by: (Signature)</u> <u>Occl 1</u>			P.O. fr				Date					
							Pressurization Gas					
			Project Name 2.99	specily	—	6						
		D-l-			c	anist	er Pressure/Vacuum					
LAD I.D.	Field Sample I.D. (Location)	Can#	Date	. Ilme	Anary	ses Requested	ini i	lial	Final	Receipt	Fina.	
01A	<u>SVI d5</u>	83A12	9-20-06	9104 Am	Tri chloro etty	lene - TC-15				2.005	15.0	ØS į
02A	SV2 05	317 <u>72</u>	<u>Ĺ</u>	9:50 Am	<u> </u>	11				3. 544	- H	
03A	SV3 15	39633		11:59 Am	<u>``</u>	5				0.044		
O4A	<u>SV4</u> 05	12801		12:22 pm	~~	1 11				044		
05A	SV5 ds	3710		LOIPM	N				;	S.Sunt		
00A	SV6 15 3	111	· ·	1.2200	· N	11			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	T. Out		
		1 1		•								
						·						
								- 1				
							_				n de Altre de la ca	
Relinquishe	sd by: (signature) Date/Time	-	Received o	y <u>: (</u> signature)	Date/Time	Notes:						
Relinquishe	ad by: (signature) Date/Time	·	Received 5	y: Asignature)	7/21/06555 Dat6/Time			-				
		-										
Relinquishe	ed by: (signature) Date/Time		Received b	iy: (signature)	Date/Time							
Lab.	Shipper Name	∖ir Bi∥	#:::::::::::::::::::::::::::::::::::::	Temp (°	C) Condition	on Customer S	eals Intact?		Worl	COrder #		ĺ
Use Only	Fd. 857359	66 1	BD	NA	Good	Yes No	None	>	06	<u> </u>	7	
							-					

APPENDIX C BORING LOGS AND WELL CONSTRUCTION DIAGRAM
		·					
		1	B	ORING LOG			
Project No.	·		Boring d	ing diameter: 2" Logged By: Joel Gre			
Project:2942 S	an Pablo		Elevatio	evation: Date drilled: 9/19/06			
Boring No. MW	/4	·	Drilling	g Method: GeoProbe Drilling Company: Vironex			
Sample intervals	G.W. Samp level Dept (ft)	h Stra	itigraphy JSCS)	Description -			
				@ 0' - 2' - 6" of	concrete over sa	nd and gravel base.	
	- 5			 2' - Dark olive 3.5-4' - Olive of Weathered gravels 4' - Orangish-t 5.7' - Olive clamoist to v. moist, Gravels are subro 5 - 10' Poor reduring removal from 	green to dark b clayey silt with gr s also in part for prown clayey silt yey silt with grav localley wet arou unded, generally ecovery due to sa m core barrel.	rown clayey silt (ML), saturated, stif ravel, gravels highly weathered (ML) m clayey silt matrix. (ML), few gravels, moist, stiff. vel (ML), gravels highly weathered, und gravels @ 9', stiff to hard. 1/4" or less in diameter. ample splitting open under pressure	
MW4 d 13.5'	- - - 15 -	- ML 		 ⁽¹⁾ 10 - 12.5' - CI ⁽²⁾ 12.5' - Olive cl ⁽²⁾ increasing gravels ⁽²⁾ 14' - Olive clay ⁽²⁾ weathered, predon Fewer gravels 16- ⁽²⁾ 	ayey silt, as abov ayey silt (ML), fe @ 13.2', estimat /ey silt with grave ninantly <1/4" dia 18'.	ve (ML). w gravels, v. moist to wet, hard, ed at up to 15%. el (ML), as above, gravels highly meter, very moist to wet, hard.	
MW4 d 17.5'	- - - 20			@ 18-23' - Olive (brown iron oxide s	clayey silt (ML), f itaining, wet to sa	ew gravels, mottled with orangish aturated, stiff.	
MW4 d 22.5'	- - 25 - -	×		@ 23 - 28' - As a subangular gravels	bove except loca to 3/4" diamter,	Ily up to 15-20% subrounded to saturated, stiff.	
	- 30 -	- - - ML -		@ 28 - 33' - Olive clayey silt (ML), no gravel, very homogenous, saturated, hard, mottled with orangish brown Fe-oxide staining. Near refusal,			
	-	_		@ 33 - 38' - Olive	clayey silt, as al	bove, water showing.	
2942 San Pablo Avenue Oakland, CA			•	Figure No:	Date:10/24/06		
				MW4 pg. 1/2	Drawn By:	JG - PIERS	
	N	loni	torin	g Well	MW4		

				R				
Project No.		В	pring d	iameter:	2"	Logged By: Joel Greger		
Project:2942	Project:2942 San Pablo				n:	PIERS		
Boring No. M				rilling	Mathadi OroD	- h .		
			Drilling Method: GeoProbe			Drilling Company: Vironex		
Sample intervals	G.W. level	Depth (ft)	Stratig (US	raphy CS)		Description		
			-		@ 36.7' - Unoxid grained sand 36.	ized zone, color 5 - 37.5'.	change to dark green, trace very fin-	
		- - 40 -	ML		@ 38 - 41' - Dar hard.	k green clayey :	silt (ML), very homogenous, saturated	
		-				TOTAL D	EPTH - 41'	
		- 45 - -						
		-	-					
		- - 50						
	F	-						
	- -	- 55 -	4					
,	F	· .	-					
	E	- -						
	F	- 00						
	F	-	4					
	F	65 —						
	F							
2942 San	venue			Figure No:	Date:10/24	/06		
Oaklar	nd, CA				MW4 pg. 2/2	Drawn By:	JG - PIERS	
*		Mo	onito	ring	g Well	MW4		

roject:2942 San Pablo		-	Logged By: Joel Greger	
	Elev	vation:	Date drilled: 9/19/06	
ing No. MW5	Drill	ng Method: GeoProbe	Drilling Company: Vironex	
Sample G.W. Sar intervals level (f	nple oth) (USCS	phy)	Description	
W4 d 22.5'		 @ 0' - 0.5' - topsoil and bas @ 1' - Brown clayey silt (ML @ 3' - Color change to dark @ 4' - mottled with orangish staining. @ 5 - 6.5' - Occasional s diameter. @ 7.5' - Orangish brown clay @ 10' - gravelly clayey silt highly weathered. @ 11.3 - 12' - gravelly clay portion of clay/silt matrix, wet @ 12-14' - Olive clayey si gravels to 3/4" diameter, mott @ 16.5' - 19' - Olive cla homogenous, mottled with Fe- @ 19-24' - Olive clayey silt hard, only partial recovery. @ 24-29' - As above exc weathered and in part forming @ 29 - 25 - Only partial recovers 	e rock.), moist, stiff, appears undisturbed @ 2', green, otherwise as above. brown Fe-oxide staining and dark organic ubangular to subrounded gravels to 3/4" yey silt (ML), slightly moist, stiff. (ML), subrounded gravels to 1" diameter, ey silt (ML), weathered gravels also form around some indurated gravels, stiff-hard. ilt, occasional subrounded to subangular led with Fe-Oxide and organic staining. nple liner, poor recovery. yey silt (ML), very mosit, few gravels, -oxide staining. as above, few gravels, saturated?, stiff - xept gravelly clayey silt, gravels highly matrix, saturated. wery. Clayey silt, few or no gravels (ML),	
2942 San Pablo Aven Oakland, CA	ue	Figure No: Date:1	0/24/06	
		pg. 1/2 Drawn	By: JG - PIERS	

Project No. Bo					ameter: 2'	Logged By: Joel Greger PIERS		
Project:2942 San Pablo El					n:	Date drilled: 9/19/06		
Boring No. M	W5		D	rilling N	Method: GeoProb	e Drilling Company: Vironex		
Sample G.W. Sample Depth intervals level (USC				raphy CS)		Description		
•		35			@ 36 - 38' free wa	ter, softer, slightly sandier, few gravels.		
		 40	- ML 		@ 39' - start of un	oxidized zone (dark green), hard.		
		- - - 45 -				TOTAL DEPTH - 40'		
		- - 50 -						
		- 55 -						
		- 60 -						
		- 65 						
2942 San Pablo Avenue					Figure No:	Date:10/24/06		
Oakland, CA					MW5 pg. 2/2	Drawn By: JG - PIERS		
		Ν	Лопit	orir	ng Well	MW5		

APPENDIX D SURVEY DATA

CSS ENVIRONMENTAL SERVICES, INC. Managing Cost, Scope and Schedule 100 Galli Drive, Suite 1 Novato, CA 94949 Telephone: (415) 883-6203 Facsimile: (415) 883-6204

Site Positions

CSS Project 6420 - Piers Environmental Services, Inc. 2942 San Pablo Ave., Oakland

Horizontal Coordinate System:	North American 1983-CONUS Survey Date: 9/26/06
Height System:	North American Vertical Datum 1988-Ortho. Ht. (GEOID03)
Project file:	6420 Piers Oakland.spr
Desired Horizontal Accuracy:	0.100Ft + 1ppm
Desired Vertical Accuracy:	0.100Ft + 2ppm
Confidence Level:	95% Err.
Linear Units of Measure:	Int. Feet

	Site ID	Site Descriptor		Position	95% Error	Fix <u>Status</u>	Position Status
1	3814	MONUMENT AA3814	Lat. 37° Lon. 122° Elv.	44' 59.75783" N 12' 18.11826" W 11.581	0.000 0.000 0.000	Fixed Fixed Fixed	Adjusted
2	MW-4	NR WELL LOC N RIM WELL LOCATION N TOC	Lat. 37° Lon. 122° Elv. Elv.	49' 11.87809" N 16' 33.12212" W 32.30 31.97	0.045 0.048		Adjusted
3	MW-3	NR WELL LOC N RIM WELL LOCATION N TOC	Lat. 37° Lon. 122° Elv. Elv.	49' 13.29978" N 16' 33.82983" W 31.37 31.00	0.040 0.046		Adjusted
4	MW-1	TBM-A ON N RIM N RIM WELL LOCATION N TOC	Lat. 37° Lon. 122° Elv. Elv.	49' 12.72308" N 16' 33.29079" W 31.91 31.65	0.039 0.045 0.042		Adjusted
5	0882	MONUMENT HT0882	Lat. 37° Lon. 122° Elv.	46' 48.04137" N 17' 53.51060" W 9.131	0.000 0.000 0.000	Fixed Fixed Fixed	Adjusted
6	MW-5	NR WELL LOC N RIM WELL LOCATION N TOC	Lat. 37° Lon. 122° Elv. Elv.	49' 12.63059" N 16' 32.63195" W 32.27 32.11	0.041 0.047		Adjusted
7	M₩-2	TEM-B ON N RIM N RIM WELL LOCATION N TOC	Lat. 37° Lon. 122° Elv. Elv.	49' 12.90376" N 16' 34.35602" W 30.21 29.92	0.040 0.046	ALO PROFES	SIDAL Sted

Exp. 12/31/0

CIVIL OF CALIFOR

APPENDIX E GEOTRACKER UPLOADS