RECEIVED

Dana Thurman

Project Manager

By lopprojectop at 9:02 am, Mar 27, 2006

Chevron Environmental Management Company 6001 Bollinger Canyon Rd, K2236 P.O. Box 6012 San Ramon, CA 94583-2324 Tel 925-842-9559 Fax 925-842-8370

March 23, 2006

(date)

ChevronTexaco

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station # 20-6265

Address: 1520 Powell Street, Emeryville, California

I have reviewed the attached report titled ______ SCM and Request for Closure ______ and dated __March 23, 2006 _____.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Cambria Environmental Technology, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

anna

Dana Thurman Project Manager

Enclosure: Report

SITE CONCEPTUAL MODEL AND REQUEST FOR SITE CLOSURE

Former Chevron Asphalt Plant and Terminal #20-6265 1520 Powell Street, Emeryville, California RO #2535

March 23, 2006

Prepared for:

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Prepared by: Cambria Environmental Technology, Inc.

David W. Herzog P.O. Senior Project Geologist

Cambria Environmental Technology, Inc.

2000 Opportunity Drive Suite 110 Roseville, CA 95678 Tel (916) 677-3407 Fax (916) 677-3687

SITE CONCEPTUAL MODEL AND REQUEST FOR SITE CLOSURE

Former Chevron Asphalt Plant and Terminal #20-6265 1520 Powell Street, Emeryville, California RO #2535

March 23, 2006

Prepared for:

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Prepared by: Cambria Environmental Technology, Inc.

Signature Page

David W. Herzog, P.G. Senior Project Geologist

Cambria Environmental Technology, Inc.

2000 Opportunity Drive Suite 110 Roseville, CA 95678 Tel (916) 677-3407 Fax (916) 677-3687

TABLE OF CONTENTS

INTRODUCTION	1
SITE HISTORY	1
SITE CONCEPTUAL MODEL	6
Geology/Stratigraphy	6
Hydrogeology	6
Groundwater Pumping	7
Preferential Pathways	7
Nearby Release Sites	7
Site Geology	8
Groundwater Conditions	9
Source Area	9
Dissolved plume	10
Remediation	11
Evaluation of potential impacts to water supply wells	12
FATE AND TRANSPORT MODELING	13
Introduction	13
Conceptual Model	14
Computer Code Description	15
Model Construction	17
Calibration	18
Predictive Simulations	19
Summary and Conclusions	20
Modeling References	20
REGULATORY STATUS REVIEW AND RECOMMENDATIONS	21
The Leak Has Stopped and Ongoing Sources, Including Free Product, Have Been Removed	21
The Site Has Been Adequately Characterized	21
The Dissolved Hydrocarbon Plume Is Not Migrating	22
No Water Wells, Deeper Drinking Water Aquifers, Surface Water, or Other Sensitive Receptors are Impacted	Likely to be
The Site Presents No Significant Risk to Human Health or the Environment	22 22
CONCLUSIONS AND RECOMMENDATIONS	23

FIGURES

VICINITY MAP	25
PLATE 4	26
GEOLOGIC MAP	27
EAST BAY PLAIN CROSS SECTION	
SAN FRANCISCO BAY AREA BASIN MAP	29
SITE PLAN	
VICINITY MAP LUFT & SLIC SITES	
CROSS SECTION A-A'	32

CROSS SECTION B-B'	
1989, 1990, AND 1992 EXCAVATION	
1999 EXCAVATION	35
AERIAL PHOTO	
SITE CONCEPTUAL MODEL	
TCE ISOCONCENTRATION MAP	
WELL MW-1 HVOC CONCENTRATIONS	
WELL MW-17 HVOC TRENDS	40
WELL MW-18 HVOC TRENDS	41
WELL MW-19 HVOC TRENDS	42
FLOW MODEL DOMAIN	43
FIGURE A	44
FIGURE B	45
FIGURE C	46
FIGURE D	47

TABLES

AREA WELL SURVEY	49
WELL MW-19A ENVIRONMENTAL SCREENING LEVEL COMPARISON	50

ATTACHMENTS

HISTORICAL SOIL DATA AND MAPS	
SECOND SEMI-ANNUAL 2005 GROUNDWATER REPORT	
GERAGHTY & MILLER EXECUTIVE SUMMARY	153
BULLETIN 118 – EAST BAY PLAIN SUBBASIN	157
BORING LOGS	
SIGNATURE PAGE	

INTRODUCTION

On behalf of Chevron Environmental Management Company (Chevron), Cambria Environmental Technology, Inc. (Cambria) is submitting this report requesting site closure for the former Chevron Asphalt Plant and Terminal located at 1520 Powell Street in Emeryville, California (Vicinity Map). This report contains hyperlinks to figures and attachments at the back of the report. Although this formatting is best viewed with a current version of Microsoft Word, the figures and attachments can be viewed separately without using the hyperlink function. This site is presented for closure as a low-risk fuel site based on the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) definition as described in their memorandum *"Interim Guidance on Required Cleanup at Low-Risk Fuel Sites,"* dated January 5, 1996. A summary of the site background, site conditions, and the applicability of low-risk fuel site criteria are presented below.

SITE HISTORY

The following site history information was obtained from Chevron, SFBRWQCB, and Alameda County Health Care Services Agency (ACHCSA) project files. <u>Attachment A</u> includes copies of available maps and analytical data for soil sampling events discussed below. <u>Second Semi-Annual</u> 2005 Groundwater Report includes current and historical groundwater data.

The site is a former Chevron bulk asphalt plant and terminal located at 1520 Powell Street, Emeryville, California. The facility was operated from the early 1950s until June 1987. The threeacre site is bordered to the east and south by Landregan and Powell Streets, respectively, and to the west by Southern Pacific Railroad and gas pipeline right-of-ways (Vicinity Map; Plate 4). The northwestern portion of the property was used as a storage and transfer facility for petroleum products. Along the eastern margin of the property were storage, garage, and office buildings. In the southwest corner of the property was an office/laboratory building, in which various pavement products were researched and marketed. A portion of the property was leased by Chevron to a solvent handler during this same period, but information regarding this tenant's use and storage of on-site chemicals is not available. The northern portion of the property has been redeveloped as an Amtrak passenger terminal, and the southern portion of the property has been redeveloped with a parking/residential structure.

In 1985, Chevron's Marketing Department conducted a field investigation to assess potential soil and groundwater contamination at the site. McKesson Environmental Services installed groundwater monitoring wells MW-1 through MW-9 (<u>Plate 4</u>). Several volatile organic compounds (VOCs), including benzene, chlorobenzene, trans-1,2-dichloroethene (t-1,2-DCE), trichloroethene (TCE), and vinyl chloride (VC) were detected in monitoring well MW-1, and polycyclic aromatic hydrocarbons

(PAHs) were detected in MW-5. No VOCs or petroleum hydrocarbons were detected in the other wells.

In October 1987, the above-ground fuel tanks and associated piping were removed to allow for subsurface analysis. Blaine Tech Services Inc. sampled wells MW-1 through MW-8. Well MW-9 could not be located and was determined detected to have been destroyed earlier during previous construction activities on-site. Chloroethane was reported in monitoring well MW-4, and benzene, t-1,2-DCE, and VC were detected in MW-1. No VOCs or petroleum hydrocarbons were detected in the other wells.

In August 1988, Harding Lawson Associates (HLA) installed on-site wells MW-10 through MW-12. TCE and hydrocarbons were detected in soil and groundwater. HLA also advanced 18 soil borings. No total petroleum hydrocarbons as gasoline, diesel, and kerosene (TPHg, TPHd, and TPHk) were detected in boring soil samples. Soil samples from two of the borings contained TCE at concentrations up to 1.5 ppm.

In August and September 1988, both the loading dock and barrel storage area were removed to allow for further subsurface analysis. Soil samples contained xylenes and TCE as well as petroleum hydrocarbons other than gasoline, diesel and kerosene within C6 to C15 boiling range. Groundwater from well MW-1 contained benzene, 1,2-dichloroethene (1,2-DCE), TCE, VC, barium, molybdenum, nickel and zinc. 1,2-DCE and TCE were detected in the sample from well MW-10. Tetrachloroethene (PCE) was detected in the samples from wells MW-11 and MW-12, and trace concentrations of TCE were detected in well MW-11. Petroleum hydrocarbons were detected in wells MW-1, MW-4, MW-5 and MW-6.

In September 1988, Western Geologic Resources, Inc. (WGR) advanced 42 soil borings on-site near the old barrel storage area, and off-site to evaluate vertical extent of hydrocarbon impact to shallow soil. Residual fuel hydrocarbons, mainly in the diesel range, were reported at concentrations up to 2,700 ppm in soil from most of the borings. Low concentrations of BTEX were also detected in the soil samples.

In December 1988, Groundwater Technology, Inc. (GTI) advanced 33 additional soil borings to further evaluate the vertical and horizontal extent of fuel hydrocarbons and halocarbons in the unsaturated zone. Halogenated hydrocarbons (halocarbons) were reported in most samples, and less than half of the samples contained fuel range hydrocarbon concentrations.

From April to September 1989, approximately 10,400 cubic yards of soil containing hydrocarbons were excavated to a depth of 6 fbg. Soil was removed until hydrocarbons were no longer detected using a photoionization detector (PID). The excavation was lined with 10-mil Visqueen and

Site Conceptual Model and Request for Site Closure Mr. Barney Chan March 23, 2006

backfilled with 1.5-inch diameter crushed rock and covered at the surface with graded subbase material. During excavation activities, wells MW-4 through MW-6 were removed. An additional 256 cubic yards of hydrocarbon-bearing soil were excavated and removed from four other locations. Three locations were within the southwest office/laboratory building, and the other one was just outside the building area. Soil was removed until halocarbons were no longer detected using a portable gas chromatograph. This excavated area was lined with visqueen sheeting, then backfilled with 1.5-inch diameter clean crushed rock. Excavated soil was transported to the American Rock and Asphalt Facility in Richmond, California.

CAMBRIA

In February 1990, WGR conducted a 24 hour pump test on well MW-12. A sustained yield of up to 0.26 gallons per minute was achieved during the test, resulting in a calculated transmissivity of 1.48 cubic feet per foot, or 11 gallons per day per foot of drawdown. These results give an estimated downgradient radius of influence of 358 feet with approximately 500 days of pumping required to remove one interstitial volume of groundwater in the downgradient direction. Because the principal compounds of concern downgradient of the site include PCE, TCE, and 1,2-DCE that do not readily desorb from soil, it was concluded that groundwater extraction is too inefficient and would probably not be effective to remediate the site.

In February and March 1990, on-site borings B-1 through B-3 were drilled beyond the perimeter of the excavation, and two of the borings (B-2 and B-3) were completed as monitoring wells MW-13 and MW-14. Additional wells MW-15 through MW-19 were installed off-site. Fuel hydrocarbons were detected in groundwater from the two new on-site wells, and TCE, PCE, and 1,2-DCE were detected in the five wells installed off-site. Four of the newly installed wells located off-site downgradient, across Powell Street had concentrations of dissolved metals in groundwater, but it was discovered that a former machine shop was located in this area across from the Chevron facility, and was the likely source of these metals.

In March and April 1990, 43 shallow soil borings were drilled around the northern edge of the excavated area, and along the western property boundary. Soil from only one boring contained TCE, while soil from a few borings contained low TPHg concentrations. Oil and grease (O&G) was reported in soil from nearly all soil borings, but only five borings had O&G concentrations exceeding 100 ppm. In October 1990, approximately 500 cubic yards of soil was excavated from two locations along the western edge of the property.

The former laboratory building was demolished in 1991. Soil samples were collected from 24 shallow borings beneath the building. Soil samples collected mainly beneath the eastern half of the building contained concentrations of TPH, TCE, benzene, and O&G.

Site Conceptual Model and Request for Site Closure Mr. Barney Chan March 23, 2006

An US Environmental Protection Agency Superfund site owned by Westinghouse is located directly north of the site at 6121 Hollis Street. The site contains soils contaminated with polychlorinated biphenyls (PCBs). The soil is covered with a clay and asphalt cap. A remedial action has been initiated that includes surrounding the contaminated soils with a continuous slurry cutoff wall tied into the underlying bay mud. Groundwater is monitored quarterly at the Westinghouse site and does not show any migration of PCBs into groundwater offsite. This has been verified by historical sampling results for the former Chevron asphalt plant indicating PCBs were not detected.

CAMBRIA

In 1992, Geraghty & Miller, Inc. prepared a detailed risk assessment report for the Chevron site. The report included a discussion of the extent of soil and groundwater impact, toxicity effects and profiles, exposure pathways, and health-based remediation goals. The executive summary for that report is included in <u>Attachment C</u>. Based on their risk assessment, the levels of constituents of concern in soil and groundwater were below health-based goals, and further remediation was not warranted. On October 16, 1992, the ACHCSA issued a letter concurring with this conclusion.

In April and May 1992, Geraghty & Miller, Inc. collected confirmation soil samples following the removal of a shed/storeroom and garage, including compliance sampling beneath the hydraulic lift and mechanic's pit in the former garage. Low concentrations of TPHd, O&G, VOCs, and metals were detected in the soil samples. Approximately 15 cubic yards of soil was overexcavated beneath the former mechanic's pit. Soil was excavated until PID readings approached zero.

On November 20, 1992, the SFBRWQCB issued a letter indicating that it is their opinion, as well as the opinion of the staff at the ACHCSA, that the soil and groundwater at this site do not pose an undue risk to human health or the environment, and further excavation of soil is not warranted. They allowed the redevelopment of the site.

During the April 1995 groundwater sampling event, a black oily substance was observed in monitoring well MW-2. In addition, this well was observed to be filled in with sandy gravel-type material. The sounded depth during this event was 2.87 feet bgs. It is assumed that the substance inadvertently entered the well during asphalt paving of the newly created parking lot.

On July 29, 1995, Gettler-Ryan, Inc. (GR) abandoned well MW-19. On October 30, 1995, GR installed monitoring well MW-19A, and abandoned well MW-2 by overdrilling to 18 fbg, then constructed well MW-2A in the overdrilled boring. PCE was detected in soil at a concentration of 0.017 ppm in well MW-19A. TPHg, cis-1,2-dichloroethene, TCE, and PCE were detected in groundwater from MW-19A.

On October 27, 1997, Cambria submitted a Site Information Summary for Case Closure report. The report summarized results from previous investigations, and because both the SFBRWQCB and

ACHCSA had indicated that additional soil remediation is not warranted and groundwater conditions continue to improve, this site should be considered for No Further Action status.

In November 1999, GR advanced 64 soil borings to 10 fbg and destroyed five monitoring wells (MW-2A, MW-8, MW-10, MW-11, and MW-13) in preparation for construction of a parking/residential structure at the site. Monitoring wells MW-1 and MW-12 were also scheduled to be destroyed, but could not be located. Two soil samples were collected from each boring, and soil samples collected from every two borings were composited before analysis. Soil boring data were used to pre-profile soil to be excavated and removed from the site during construction. In December 1999, approximately 32,000 cubic yards of soil was removed from the site. This volume of soil equals an excavation approximately 15 feet deep over the area of the proposed garage footprint. Monitoring wells MW-1 and MW-12 were located within the footprint of the new parking/residential structure, and were likely destroyed during excavation activities.

0

SITE CONCEPTUAL MODEL

	DESCRIPTION	Data Tables	Graphics	Reference	Data Gaps	Work Necessary to fill data gap	Comments
Regional	Geology/Stratigraphy						
Setting	Geologic units are generally divided into two groups: 1) consolidated Late Cretaceous to Late Jurassic bedrock and 2) unconsolidated Pleistocene and Holocene sediments. Bedrock includes lithologic facies of the Novato Quarry terrain, Franciscan Complex, and Great Valley Sequence. Unconsolidated younger sediments vary in thickness up to approximately 1,000 feet thick. The majority of the Emeryville area is underlain by alluvial fan, fluvial, and natural levee deposits, and artificial fill material.		(1) (2)	http://geopubs. wr.usgs.gov			
	Hydrogeology The site is located in the East Bay Plain Subbasin of the Santa Clara Valley Groundwater Basin. The basin is an elongated northwest trending flat alluvial plain occupying approximately 122 square miles. The basin extends to the west beneath the San Francisco Bay, is bounded to the north by San Pablo Bay and by the Hayward fault to the east, and to the south by the Niles Cone Groundwater Basin. The bottom of the basin is the contact between the consolidated and unconsolidated sediments which can occur at maximum depths of 1,000 feet. The East Bay Plain Subbasin consists of a series of alluvial fan and fluvial deposits.		(3)	DWR <u>Bulletin 118,</u> <u>East Bay Plain</u> <u>Subbasin</u> , Santa Clara Valley Groundwater Basin, East Bay Plain Subbasin			

 \odot

DESCRIPTION	Data Tables	Graphics	Reference	Data Gaps	Work Necessary to fill data gap	Comments
Groundwater Pumping According to SWRCB Geotracker database and a DWR well search, there are no water production wells in the vicinity of the site, and groundwater is not used for drinking water.						
Preferential Pathways Well Survey - A one-half mile DWR well survey identified four wells (4). The wells are located at the adjacent Emeryville Amtrak Station site. Although their use was not identified, their shallow construction suggests they are monitoring wells.Utility Survey – Gas, sanitary sewer, water, storm drain, communication, and electric lines have been identified in the immediate vicinity of the site (5). High-pressure gas lines have been identified within the adjacent Southern Pacific railroad right-of-way. Trenches for the sewer and storm drain can act as preferential pathways, and could possibly explain previously reported HVOC concentrations in cross-gradient well MW-16 at this site. Trenches for the other utilities identified are generally within 3 to 6 feet bgs and likely do not provide preferential pathways at this site.	(4)	(5)				
Nearby Release Sites LUFT Sites: Days Inn, 1603 Powell Street (Closed Case) Diesel Fuel Oil and Additives Hydraulic Electro Service Corp, 5812 Hollis Street		<u>(6)</u>	SWRCB Geotracker database			

 \odot

Site Conceptual Model and Request for Site Closure Mr. Barney Chan March 23, 2006

	DESCRIPTION	Data Tables	Graphics	Reference	Data Gaps	Work Necessary to fill data gap	Comments
	(Open Case) Diesel Fuel Oil and Additives AJ Trucking, 5600 Shellmound Street (Open Case) Gasoline						
	<u>SLIC Sites</u> : Westinghouse Electric Corp. , 4899 Peladeau Street (Open Case)						
Site Setting	Site Geology The site is located in Alameda County in the City of Emeryville. The topography in the site vicinity is relatively flat at the elevation of approximately 10 feet above mean sea level. Regionally, the Berkeley Hills lie to the east and grade westerly into flat lands ending at San Francisco Bay. The closest surface water is the San Francisco Bay located approximately one-half mile west of the site, toward which groundwater is migrating. The site is located within the California Coast Ranges. The Coast Ranges have a Franciscan basement composed of graywackes, limestone, shale, and radiolarian chert. The Hayward Fault Zone is located approximately one mile to the east and the San Andreas Fault Zone is approximately five miles to the west. Locally, the site is underlain mainly by silty to sandy clay with sand and gravel laminations. Historical groundwater monitoring data indicate that groundwater is encountered approximately 1 to 8 feet bgs, and groundwater flow is to the south.		<u>(E)</u>	Norris, R. M., and Webb, R. W., 1990, Geology of California: John Wiley and Sons, 537 p.			

 \odot

Site Conceptual Model and Request for Site Closure Mr. Barney Chan March 23, 2006

	DESCRIPTION	Data Tables	Graphics	Reference	Data Gaps	Work Necessary to fill data gap	Comments
Groo Gros shall cros three cons grav mate appr site boun mod inter gene Groo site hori: hori: clay repr mign	bundwater Conditions best sections A-A' (7) and B-B' (8) show correlation of llow subsurface soil across the site. As shown on the ss sections, the shallow subsurface can be divided into be general soil horizons. The upper soil horizon sists of low estimated permeability silt and clay with vel lying beneath a cap of concrete, asphalt, and fill terial. This upper horizon thickens southward, from roximately 3 feet thick at the northern boundary of the to approximately 7 feet thick near the southern andary of the site. The middle soil horizon consists of derate estimated permeability silty clay with thin, erbedded sand and gravels. This middle horizon is erally 5 to 10 feet thick, and dips slightly to the south. bundwater flow and contaminant migration beneath the is interpreted to be predominantly within the middle izon, with flow in a southerly direction. The lower izon consists of low estimated permeability silt and y, which becomes moist to damp with depth resenting a natural boundary to downward flow and gration.		(7) (8)				
Sou Imp hydr was 11,0 reme appr reme	arce Area bacted soil in the source areas for petroleum brocarbons that appear to have been the former ASTs is excavated in 1989, 1990, and 1992. Approximately 000 cubic yards of hydrocarbon-bearing soil were hoved from the site. In December 1999, roximately 32,000 cubic yards of additional soil was hoved from the site, including soil from the southwest		(<u>A</u>) (9) (10)				

 \odot

Site Conceptual Model and Request for Site Closure Mr. Barney Chan March 23, 2006

	DESCRIPTION	Data Tables	Graphics	Reference	Data Gaps	Work Necessary to fill data gap	Comments
corne	er of the site that contained residual HVOCs.						
DissThe a interinterdownTCEIsocodiscu are cconchydrESLcurreeMWdecliin MOnly120 gshowMWAs slan efcondindichistoMWstromaeria	olved plume aerial photo and site conceptual model present the preted extent of the current TCE plume ngradient. This interpretation is based on current extent in groundwater shown on the TCE oncentration Map and fate and transport modeling ussed below. Overall, the TPHg and HVOC plumes currently defined to relevant ESLs (11), and centrations are steadily declining. Total petroleum ocarbons as gasoline (TPHg) have declined below the of 500 μ g/L in all sampled wells (Table 5). The ent maximum TPHg concentration was reported in -19A at 180 μ g/L. HVOCs are also steadily ining. TCE and PCE concentrations recently reported W-19A are 77 μ g/L and 350 μ g/L, respectively. / PCE currently exceeds its drinking water ESL of μ g/L. Concentration trends continue to decline as wn in trend graphs for wells MW-17, MW-18, and -19A. hown in the graphs, natural attenuation appears to be effective remedial option to achieve background litions at this site. The presence of cis-1,2-DCE cate some reductive dehalogenation activity, but orical data from well MW-1 and current data for well -19A show the presence of vinyl chloride indicating ag reductive dehalogenation activity. As shown in the d photo, the interpreted TCE plume downgradient	(<u>11</u>) (<u>B</u>)	(12) (13) (14) (15) (16) (17) (18)	California Regional Water Quality Control Board San Francisco Bay Region, 2005, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater: ESL from Table B: Shallow Soil (≤3m bgs) – Water is not a current or potential source of drinking water Newell, C. J., and Conner, J. A., 1998, Characteristics of Dissolved Petroleum Hydrocarbon Plumes: American Petroleum Institute, Washington, D.C. McNab, W. W., Rice, D. W., and Tuckfield, C., 2000, Evaluating			

 \odot

DESCRIPTION	Data Tables	Graphics	Reference	Data Gaps	Work Necessary to fill data gap	Comments
extent is approximately one-half the average chlorinated ethene plume extent. Plume lengths for sites with strong reductive dehalogenation appear to be significantly smaller by roughly a factor of two, which correlates with the interpreted plume extent.			Chlorinated Hydrocarbon Plume Behavior Using Historical Case Population Analyses: Lawrence Livermore National Laboratory, Livermore, CA.			
 Remediation From April to September 1989, approximately 10,400 cubic yards of hydrocarbon-bearing soil were excavated to a depth of 6 fbg. Soil was removed until hydrocarbons were no longer detected using a photoionization detector (PID). An additional 256 cubic yards of contaminated soil were excavated and removed from four other locations. Three locations were within the southwest office/laboratory building, and the other one was just outside the building area. Soil was removed until halocarbons were no longer detected using a portable gas chromatograph. Excavated soil was transported to the American Rock and Asphalt Facility in Richmond, California. In October 1990, approximately 500 cubic yards of soil was excavated from two locations along the western edge of the property. In April and May 1992, the removal of a shed/storeroom and garage, approximately 15 cubic yards of soil was 		<u>(9)</u> (10)				

DESCRIPTION	Data Tables	Graphics	Reference	Data Gaps	Work Necessary to fill data gap	Comments
was excavated until PID readings approached zero. In December 1999, during construction of a residential/parking structure on the site, approximately 32,000 cubic yards of soil was removed from the site. This volume of soil equals an excavation approximately 15 feet deep over the area of the proposed garage footprint.						
Evaluation of potential impacts to water supply wells Groundwater in the vicinity of the site is not a source of drinking water. No potential impact.			SWRCB Geotracker database			

FATE AND TRANSPORT MODELING

The following covers the information required for documenting groundwater flow modeling as requested by the California Environmental Protection Agency (CalEPA) in Ground Water Modeling For Hydrogeologic Characterization, dated July 1995, and by the State Water Resources Control Board (SWRCB) in Evaluation of Ground Water Model *Applications* (http://www.waterboards.ca.gov/cwphome/land/gw modeling.html). This documentation follows the general outline of the American Society for Testing and Material's (ASTM) Standard D-5718, Standard Guide for Documenting a Ground-Water Flow Model Application, dated June 1995.

Introduction – Presents the modeling objectives, the function the model will serve, and a brief general setting of the model area. Identifies the individuals involved with the modeling effort and their roles.

<u>Modeling Objectives</u>: The objective of this model is to predict the fate of the remaining HVOC plume, which is necessary in order to evaluate future risk to human health and the environment in the vicinity of the site. The objective of this study is to evaluate migration of contaminants in groundwater following release, to evaluate changes in groundwater flow following construction of the on-site parking/residential structure, and to assess the possible fate of the remaining HVOC plume.

<u>Model Function</u>: The model was created from known historical and current hydrogeologic conditions, and was calibrated based on reasonable assumptions in order to obtain the resulting HVOC plume distribution currently observed. Once calibrated to match current conditions, the model was used to predict future fate of the HVOC plume.

<u>General Setting</u>: The site is located in Alameda County in the City of Emeryville. Surrounding land use consists mainly of commercial use with some light industrial and residential use. The topography in the site vicinity is relatively flat at an elevation of approximately 10 feet above mean sea level. Regionally, the Berkeley Hills lie to the east and grade westerly into flat lands ending at San Francisco Bay. The closest surface water is the San Francisco Bay located approximately 1/2 mile west of the site, toward which groundwater is migrating. The site is located within the California Coast Ranges. The Coast Ranges have a Franciscan basement composed of graywackes, limestone, shale, and radiolarian chert (Norris, R. M. and Webb, R. W., 1990, *Geology of California*: John Wiley and Sons, 537 p). The Hayward Fault Zone is located approximately one mile to the east and the San Andreas Fault Zone is approximately five miles to the west. Locally, the site is underlain mainly by silty to sandy clay with sand and gravel interbeds. Historical groundwater monitoring data indicate that groundwater is encountered approximately 1 to 8 feet bgs, and flow is to the south.

<u>Modeling Personnel</u>: David W. Herzog, P.G., Senior Project Geologist, Cambria Environmental Technology, Inc. – Preparation of site conceptual and groundwater flow and transport models.

Conceptual Model – Presents the conceptual model as a site-specific interpretation (based on collected data) of the characteristics and dynamics of the physical system being studied. Includes discussion of the aquifer system (both geologic and hydrologic aspects), hydrologic boundaries, hydraulic properties, sources and sinks, and a water budget. Presents and discusses data set origins, strengths, and deficiencies, and their effects on the conceptual model.

<u>Aquifer System</u>: Cross sections <u>A-A'</u> and <u>B-B'</u> show correlation of shallow subsurface soil across the site. As shown on the cross sections, the shallow subsurface can be divided into three general soil horizons. The upper soil horizon consists of low estimated permeability silt and clay with gravel lying beneath a cap of concrete, asphalt, and fill material. This upper horizon thickens southward, from approximately 3 feet thick at the northern boundary of the site to approximately 7 feet thick near the southern boundary of the site. The middle soil horizon consists of moderate estimated permeability silty clay with sand and gravel laminations. This middle horizon is generally 5 to 10 feet thick, and dips slightly to the south. Groundwater flow and contaminant migration beneath the site is interpreted to be predominantly within the middle horizon, with flow in a southerly direction. The lower horizon consists of low estimated permeability silt and clay, which becomes moist to damp with depth representing a natural boundary to downward flow and migration.

<u>Hydrologic Boundaries</u>: Within the limits of the study area as shown on the <u>Flow Model Domain</u>, no natural hydrologic boundaries appear to exist. For the model, groundwater enters the study area along the northern boundary and flows toward the southern boundary parallel to the east and west, no-flow boundaries.

<u>Hydraulic Properties</u>: From a pump test conducted by WGR in 1990, transmissivity was calculated at 1.48 cubic feet per foot of drawdown based on a sustained yield of up to 0.26 gallons per minute. Based on this transmissivity, conductivity is calculated at 241.14 feet per day (0.085 cm/sec), which according to Fetter (1994) is equivalent to well sorted gravel. Based on this elevated hydraulic conductivity, it appears that water produced during this test was from the excavation backfill and not native soil. This conclusion is based on the fact that no native well sorted gravel was identified during assessment work at this site, and the well used for the pump test was located immediately adjacent to the 1989 excavation that was backfilled with uniform 1.5-inch diameter crushed rock,.

Based on soil type observed during drilling, Cambria assumes a native conductivity of 8.5 feet per day (3.0x10-3 cm/sec). With this conductivity, the unconfined aquifer steady-state groundwater velocity is calculated at 0.097 feet per day. Across the limited extent of the study area, these parameters are assumed to be essentially uniform.

<u>Sources and Sinks</u>: No natural sources or sinks were identified within the limited study area,. It is assumed that the majority of surface area is paved and drained, and provides a significant barrier to infiltration, resulting in no effective recharge.

<u>Water Budget</u>: For the model, groundwater is assumed to enter the area along the northern boundary and flow parallel to the east and west lateral no-flow boundaries. Groundwater is assumed to leave the model area across the southern boundary with no change in the volume of water. In the initial model prior to remedial excavation activities, flow is assumed to be uniform, which is reasonable given the limited extent of the study area.

Computer Code Description – Presents a description of the code used and discusses the selection criteria for the code. If a custom or altered code is used, the vendor name, enhancements to the code, and how the code was tested are listed. Presents the simplifying assumptions inherent to the code, the limitations to the code, and the governing equations that the code solves.

The program used is Interactive Ground Water version 3.5.6 (IGW 3), which was released by Dr. Shuguang Li and Associates at Michigan State University on February 2, 2004. IGW 3 utilizes a finite difference solution similar to MODFLOW (equation 1) for solving groundwater flow, but has been modified (equation 2) to eliminate the problem caused when anisotropy is strong and its orientation differs significantly from the rectilinear coordinate system, which in MODFLOW can result in unphysical results (Afshari, S., Simard, A., Liao, H., Liu, Q., and Li, S., An Improved Method for Solving Groundwater Flow Problems in General Anisotropic Media: Poster H42C-05, Geophysical Union Meeting, Washington D.C., 2002 American Spring May [www.egr.msu.edu/igw]).

The governing partial differential equation describing groundwater flow used in MODFLOW is:

$$S(\partial \Phi / \partial t) = K(\partial^2 \Phi / \partial x^2) + r \quad (1)$$

Where:

In IGW 3, equation (1) is rewritten in a two-dimensional coordinate system aligned with major anisotropy as:

$$S(\partial \Phi/\partial t) = K_x(\partial^2 \Phi/\partial x^2) + K_v(\partial^2 \Phi/\partial y^2) + r \quad (2)$$

In the rotated coordinate system aligned with major anisotropy, IGW 3 expresses and interpolates non-nodal heads in the resulting numerical expression in term of global nodal heads, which results in a more accurate and physically meaningful solution than the traditional MODFLOW finite difference scheme. IGW 3 uses Successive Over Relaxation (SOR) as its flow solver. The SOR method introduces a relaxation factor to the Gauss-Seidel method, which solves the matrix in a systematic, ordered fashion by exaggerating the head value used in the solution of subsequent head cells within

the same iteration. This method is more efficient than the Gauss-Seidel method with a reasonable relaxation factor.

For solute transport, IGW 3 modifies the classical advection-dispersion equation (Fick's Law) that is used by MT3D (equation 3), which can result in significant unphysical oscillations and negative concentrations when dispersion is strongly anisotropic and deviates significantly from the rectilinear grid orientation. IGW 3 eliminates the numerical difficulty associated with traditional methods by approximating the tensorial dispersion terms in a rotated coordinate system aligned in the direction of flow (Simard, A., Afshari, S., Liao, H., Liu, Q., and Li, S., *An Improved Method for Solving General Anisotropic Dispersion Problems in Non-Uniform Flow*: Poster H42C-07, American Geophysical Union Spring Meeting, Washington D.C., May 2002 [www.egr.msu.edu/igw]).

The governing equation for one-dimensional hydrodynamic dispersion similar to that used in MT3D is:

$$\partial C/\partial t = D_L(\partial^2 C/\partial x^2) - v_x(\partial C/\partial x)$$
 (3)

Where:

v_x is seepage velocity in the x-direction	x is the rectilinear coordinate
<i>C</i> is the solute concentration	D_L is the longitudinal hydrodynamic dispersion coefficient

Which is the rate of solute accumulation is equal to the net rate of solute inflow due to dispersion minus the net rate of solute inflow due to advection. In IGW 3, the solute inflow term in equation (3) is rewritten in a coordinate system aligned with major anisotropy as:

$$\partial C/\partial t = D_L(\partial^2 C/\partial x^2) + D_T(\partial^2 C/\partial y^2) \quad (4)$$

Where:

 D_T is the transverse hydrodynamic dispersion coefficient

IGW 3 uses either the Modified Method of Characteristics (MMOC) or Random Walk methods for solving solute transport. Cambria used the MMOC function for this problem. With MMOC, a modeled plume tends to disperse faster than is observed in the real world, but the results using MMOC more closely match actual site data. Faster plume dispersion may be a function of the strong reductive dehalogenation observed at the site.

A more complete description of the IGW software environment is included in *A New Paradigm for Groundwater Modeling* (www.egr.msu.edu/igw/publications/igw-new-paradigm.pdf) by Shu-Guang Li and Qun Liu of the Department of Civil and Environmental Engineering at Michigan State University.

Model Construction – Defines the model domain. Defines initial conditions, boundary conditions, and hydraulic conditions, and the validity of their selection. Discusses any simplifying assumptions made to the conceptual model, and how the conceptual model is compatible with the modeling objectives and function.

Model Domain: The model area depicted in the Flow Model Domain is 2,775 feet by 2,220 feet. Grid size within the model area is approximately 28 feet by 28 feet. The parent zone of the model is shown within the red boundary, in which the direction of anisotropic flow is 78 degrees from horizontal. Because hydrologic and geologic conditions are assumed essentially uniform across the limited area of the parent zone, the uniform grid spacing and size are appropriate for this model. As previously described in the site conceptual model, the majority of flow and contaminant transport is interpreted to be within the middle soil horizon. For this model, in order to maintain uniform flow across the zone, the middle soil horizon is modeled as a single layer with a base that is dipping southward at a constant slope in order for saturated thickness to remain uniform. This representation is similar to actual site conditions showing a slightly southward dipping middle soil horizon. Although soil beneath the middle horizon goes from moist to damp with depth, indicating an aguitard restricting vertical flow, the base of the saturated middle zone is not distinct. For this model, the saturated thickness is assigned based on the thickness of water in well MW-3 on October 28, 1992, which was 8.43 feet, under the assumption that well MW-3 was set to the based of the saturated aquifer. Although this is a single-layer three-dimensional model, vertical dispersion and flow within the middle horizon is believed to be negligible, so the exact thickness of the saturated soil is not critical to the results.

<u>Hydraulic Parameters</u>: In the 1990 pump test conducted by WGR, the resulting conductivity of 241.14 feet per day indicates a well sorted gravel matrix. Since this interpretation of matrix type does not match native soil encounter beneath the site, the results are suspect. The pump test was conducted using well MW-12, which was located immediately adjacent to the area of remedial excavation in 1989. After removing the impacted soil from the excavation, the area was lined with 10-mil Visqueen and backfilled with 1.5-inch diameter crushed rock. The results obtained from the pump test suggest that groundwater was being produced preferentially from crushed rock in the backfilled excavation, and not from the surrounding native soil.

Soil identified at the site in the middle horizon is silty clay with thin sand and gravel interbeds. Assuming that the sand and gravel interbeds are in lateral communication across the site, which appears to be the method of significant contaminant migration downgradient of the site, the soil in this horizon is conservatively interpreted to be similar to well-sorted sands, with a hydraulic conductivity of 10^{-3} to 10^{-1} centimeters per second (Fetter 1994) and an effective porosity of approximately 20 percent. The average linear velocity is calculated at approximately 0.1 feet per day, which is significantly less than that derived from the 1990 WGR pump test results.

<u>Sources and Sinks</u>: No sources or sinks were interpreted within the limited extent of the model domain.

<u>Boundary Conditions</u>: The boundary conditions were set to approximate groundwater flow and gradient observed on October 28, 1992. The parent zone as shown in the <u>Flow Model Domain</u> was oriented in the average direction of historical groundwater flow monitored at this site. The northern and southern boundaries of the parent zone are assigned as constant head boundaries based on depth to groundwater and gradient observed between wells MW-3 and MW-10 on October 28, 1992. The east and west boundaries of the parent zone are assigned no-flow boundaries. The resulting flow model approximates conditions observed historically at this site.

<u>Selection of Calibration Targets and Goals</u>: The model was calibrated based on the current interpreted extent of the HVOC plume. Hydrologic and geologic parameters were adjusted so that the modeled historic migration of the plume from the source approximates its current extent. Given that the resulting hydraulic conductivity and flow rate produce a model approximating reality, a prediction of HVOC plume fate and transport has the possibility of being useful.

Calibration – Presents and discusses model calibration procedures. Presents the results of the calibration simulation in map form, and compared to hydraulic head and flow data. Discusses comparison of calibration simulations to site-specific information using qualitative and quantitative techniques. Discusses sensitivity analyses and the model verification. Discusses and presents the simulation's overall water budget and mass balance. Discusses additional insight gained from the calibration regarding the conceptual model. Justifies any changes made to the conceptual model.. Documents any pre-processing or post-processing algorithms, and any parameters these algorithms use for processing.

Qualitative/Quantitative Analysis:

The model was constructed to approximate site-specific data. The reliability of the model was determined based on a qualitative review of the results discussed below under Model Application Verification.

Cambria's modeling approach conforms to SWRCB staff guidelines for groundwater modeling presented in *Evaluation of Groundwater Modeling Applications*. Their approach to groundwater model evaluation is based on the application's ability to adequately represent the ground water system for the purpose of model application.

Sensitivity Analysis:

Because the model was constructed to approximate site-specific data, sensitivity analysis was not significant for model verification. Although not needed, Cambria did test the sensitivity of various parameters in the IGW 3 model. The most sensitive parameter is conductivity. But given the results

of model verification discussed below, Cambria believes that the conductivity value used in the model is appropriate.

Model Application Verification:

Cambria verified the model by approximating historical TCE plume migration downgradient to match current interpreted TCE plume extent. Cambria assumed that starting in 1970, a continuous HVOC source was present in the southern corner of the site, where residual HVOCs were identified in soil. Starting with a model in which the flow system is homogeneous and isotropic with uniform constant head inflow and outflow boundaries and using the calculated soil conductivity and porosity values, which is reasonable given the limited extent of the area modeled around the subject site, the model was run to simulate migration over a 20-year period through 1990. Figure A shows a TCE plume migration downgradient after 20 years that is similar in extent to the existing TCE plume.

In 1990, Chevron's asphalt and terminal operations had already ceased, and significant remedial excavation took place on-site. Because the extent of this excavation penetrates the modeled horizon and was lined with Visqueen prior to being backfilled, this area was added to the model as a no flow zone as shown on Figure B. Also, because Chevron ceased its operations on-site, the HVOC source is no longer considered continuous, and remaining residual impact is treated as an instantaneous source. Figure B shows migration of an instantaneous source on-site over the next ten years, representing the period from 1990 to 2000 prior to construction of the existing residential/parking structure. Based on the extent of TCE plume migration shown in Figures <u>A</u> and <u>B</u>, compared to current monitoring and sampling data, the flow model appears reasonable, verifying the models relevancy to approximating uncertainties in contaminant fate and transport.

The applicability of the IGW 3 model for predictive simulations is verified based on obtaining reasonable comparisons to current and historical data.

Predictive Simulations – Describes any predictive simulations and how they relate to the study objectives. Details and justifies the changes made to permit the calibrated model to simulate these predictions. Presents results of any predictive simulations in graphical form.

Figures <u>C</u> and <u>D</u> show predicted TCE and PCE plume migration, respectively. Both transport models start with interpreted dissolved plume extents based on current groundwater monitoring and sampling data as an instantaneous source. Because the existing residential/parking structure penetrates the modeled horizon, and all residual source material was removed from the site in 1999 prior to construction of the existing structure, the aerial extent of the existing structure was added to the model as a no-flow zone. At each step of the simulations shown in Figures <u>C</u> and <u>D</u>, the 5 ug/L contour of the plumes are shown. In IGW 3, the colors shown within the plume are for illustrative purposes and do not represent concentration intervals. Both figures show HVOC plumes migrating

slowly downgradient, but at declining concentrations that approach background conditions within a reasonable period of time. Also, both predictive simulations show that the HVOC plume does not appear to pose any additional threat to potential downgradient receptors.

In addition to historical verification of the predictive simulations discussed above, the decline in PCE and TCE concentrations shown in Figures <u>C</u> and <u>D</u> approximate declining concentration trends shown on trend graphs for wells <u>MW-17</u>, <u>MW-18</u>, and <u>MW-19A</u>.

Summary and Conclusions – Summarizes the modeling effort and draws conclusions related to the study objectives. Discusses uncertainties inherent to the model and their effects on conclusions derived from the model.

The results of the groundwater flow and fate and transport modeling suggest that the existing HVOC plume will continue to decline in mass and should not pose a threat to potential downgradient receptors. Because the majority of the current plume is below respective ESLs, no future threat is anticipated, and background conditions should be achieved within a reasonable period of time by natural attenuation processes.

Since the model was constructed to match calculated parameters, possible variations in these values could significantly affect predictive results; although, the results obtained through the verification phase reasonably approximate currently observed groundwater conditions. Cambria believes that the results of the predictive simulations are useful for evaluating risk at this site. In addition, because residual source material has been removed through remedial excavation, no source remains to reverse improving conditions downgradient of the site.

Modeling References – *Provides references for data, computer codes, and modeling procedures used as part of the modeling effort.*

Fetter, C. W., 1994, Applied hydrogeology: Macmillan College Publishing Company, New York.

Franke, O. L., Reilly, T. E., and Bennett, G. D., 1987, *Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—an introduction*: U. S. Geological Survey Techniques of Water-Resources Investigations, Chapter B5, 22 p.

Li, S., and Liu, Q., 2004, *Interactive Groundwater (IGS): An innovative digital laboratory for groundwater education and research*: Wiley Periodicals, Inc. Comput Appl Eng Educ 11: 179 – 202, 2003; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.10052.

McNab, W. W., Rice, D. W., and Tuckfield, C., 2000, *Evaluating chlorinated hydrocarbon plume behavior using historical case population analyses*: Lawrence Livermore National Laboratory, UCRL-JC-134501, 33 p.

Paulson, K., and Li, S., 2002, *IGW user's manual for version 3*: Michigan State University College of Engineering, 176 p.

Reilly, T. E., and Harbaugh, A. W., 2004, *Guidelines for evaluating ground-water flow models*: U.S. Geological Survey Scientific Investigations Report 2004-5038, 30 p.

Wiedemeier, T. H., et al., 1998, *Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater*: U. S. Environmental Protection Agency, EPA/600/R-98/128.

REGULATORY STATUS REVIEW AND RECOMMENDATIONS

 \odot

The site appears to meet the SFBRWQCB criteria for a low-risk groundwater site. As described by the January 5, 1995, SFBRWQCB memorandum *Regional Board Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low-Risk Fuel Sites*, a low-risk groundwater case has the following general characteristics:

- The leak has stopped and ongoing sources, including free product, have been removed or remediated,
- The site has been adequately characterized,
- The dissolved hydrocarbon plume is not migrating,
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted,
- The site presents no significant risk to human health or the environment.

Each of the low-risk groundwater case characteristics, as they relate to the site, is discussed below.

The Leak Has Stopped and Ongoing Sources, Including Free Product, Have Been Removed

Hydrocarbon and HVOC sources are no longer present at the site, and all Chevron facilities were removed by 1987. Approximately 43,000 cubic yards of soil have been removed to date from the site during various excavation activities effectively removing all residual source material from the site. Based on low and declining hydrocarbon and HVOC concentrations remaining in groundwater, excavation successfully remediated the site to the point that natural attenuation is sufficient to remediate residual aqueous-phase compounds.

The Site Has Been Adequately Characterized

Numerous soil borings have been advanced on-site to characterize soil, and excavation activities in 1989, 1990, 1992, and 1999 have effectively removed all residual source material from the site. Nineteen monitoring wells have been installed to monitor groundwater in the vicinity of the site, and although the downgradient extent of the existing HVOC plume has not been delineated due to restricted access under buildings and in the railroad right-of-way, remaining dissolved hydrocarbon

and HVOC concentrations in groundwater along the southern extent of the monitoring well network are near or below applicable ESL concentrations (<u>Table 5</u>) and do not appear to pose a threat to downgradient receptors.

The Dissolved Hydrocarbon Plume Is Not Migrating

Concentration trends for the remaining constituents of concern at this site are declining, indicating the mass of the hydrocarbon and HVOC plumes is likely declining due to natural attenuation processes. From the groundwater fate and transport modeling performed and discussed above, the remaining dissolved plume will continue to decline in mass and should not adversely impact potential downgradient receptors. The dissolved plumes are interpreted to continue to shrink and background conditions will be achieved within a reasonable period of time without posing any future threat.

No Water Wells, Deeper Drinking Water Aquifers, Surface Water, or Other Sensitive Receptors are Likely to be Impacted

Four monitoring wells were identified during the DWR well search at the Amtrak station located north of the site. These wells, if still present, are up-gradient of the site. The San Francisco Bay is approximately 2,000 feet to the west and is not at risk from site hydrocarbons and HVOCs because current concentrations are below their respective marine aquatic ESLs (Table 5), and groundwater fate and transport modeling indicates that the remaining dissolved plumes will not migrate to that extent. Also, groundwater in the vicinity of the site is not a current source of drinking water as identified in the SWRCB Geotracker database. Current dissolved HVOC concentrations downgradient of the site are below their respective indoor inhalation risk levels (Table 5), and to not appear to pose a threat to occupants of the buildings downgradient of the site.

The Site Presents No Significant Risk to Human Health or the Environment

The risk assessment completed by Geraghty and Miller, Inc., July 28, 1992, indicated based on the then current conditions, for all constituents of concern, soil and groundwater concentrations were all below health based target levels for commercial site use. Subsequently, ESLs (<u>Table 5</u>) have been met for all constituents of concern. As confirmed by the ACHCSA in a letter dated April 2, 2002, because of previous removal of impacted soil and the presence of the residential/parking structure on-site, compounds remaining in groundwater does not pose a risk to present and future on-site residents and site use. Therefore, it is Cambria's opinion that there is no risk to human health or the environment by conditions remaining at this site.

CONCLUSIONS AND RECOMMENDATIONS

Based on our review of site conditions and the findings presented above, this site satisfies the criteria for a low-risk fuel case for closure. On behalf of Chevron, Cambria requests case closure and no further action.

FIGURES

Vicinity Map

.

Geologic Map

Map Source: http://geopubs.wr.usgs.gov/map-mf/mf2342/mf2342f.pdf

Geologic Legend

af - Artificial fill (Historic)

- Qhaf Alluvial fan and fluvial deposits (Holocene)
- Qhb Basin Deposits (Holocene) Qhl Natural levee deposits (Holocene)
- Qms Merrit sand (Holocene and Pleistocene)
- Qpaf Alluvial fan and fluvial deposits (Pleistocene)

- Qmt Marine terrate deposits (Pleistocene) Tor Orinda Formation (Late Miocene) Kfn Sandstone of the Novato Quarry terrain (Late
- Cretaceous) Kfgm - Fine grained quartz diorite (Late Cretaceous (?))
- KJfs Franciscan Complex sandstone (Late Cretaceous to Late Jurassic) KJfm – Franciscan Complex mélange (Cretaceous to
- Late Jurassic)
- Ku Undivided Great Valley complex (Cretaceous) Jsv Keratophyre and quartz keratophyre (Late
 - Jurassic)

Geologic Map Emeryville, California Area

East Bay Plain Cross Section

San Francisco Bay Area Basin Map

Map Source: DWR Bulletin 118

San Francisco Bay Area Basin Map

Site Plan

CAMBRIA

Vicinity Map LUFT & SLIC Sites

Legend

LUFT Sites:

- Days Inn, 1603 Powell Street Diesel Fuel Oil and Additives
- 2) Hydraulic Electro Service Corp., 5812 Hollis Street
 - Diesel Fuel Oil and Additives
- AJ Trucking, 5600 Shellmound Street Gasoline

SLIC Site:

4) Westinghouse Electric Corp., 4899 Peladeau Street

Vicinity Map LUFT and SLIC Sites Emeryville, California

Map Source: www.mapquest.com
Cross Section A-A'

1999 Excavation

CAMBRIA

Aerial Photo, Former Chevron Asphalt Plant and Terminal #206265, 1520 Powell Street, Emeryville, California

(1) Average chlorinated ethene plume extent from: Newell, C. J., and Conner, J. A., 1998, Characteristics of dissolved petroleum hydrocarbon plumes: American Petroleum Institute, Washington, DC. 8 p. (2) Based on groundwater data reported 2nd quarter 2005.

Site Conceptual Model

CAMBRIA

TCE Isoconcentration Map

Well MW-1 HVOC Concentrations

Well MW-17 HVOC Trends

Well MW-17 CVOC Trends

Well MW-18 HVOC Trends

Well MW-18 CVOC Trends Former Chevron Asphalt Plant #206265

Date

Well MW-19 HVOC Trends

Flow Model Domain

CAMBRIA

Flow Model Domain

Figure A

CAMBRIA

Figure A – TCE Plume Migration from Continuous On-site Source, 1970 to 1990 Former Chevron Asphalt Plant and Terminal #206265 1520 Powell Street, Emeryville, California

Continuous source dissolved TCE concentration 280 µg/L, maximum reported on-site. Parent Zone: K = 0.01 cm/sec; n_e = 0.25; K_d = 0.00091 m³/kg; λ = 1/year; dispersivity 1.5L, 0.5T, 0.0V

Figure B

CAMBRIA

Figure B – TCE Plume Migration from Instantaneous On-site Source, 1990 to 2000 Former Chevron Asphalt Plant and Terminal #206265 1520 Powell Street, Emeryville, California

Starting dissolved TCE concentration 280 µg/L, maximum reported on-site. Parent Zone: K = 0.01 cm/sec; n_e = 0.25; K_d = 0.00091 m³/kg; λ = 1/year; dispersivity 1.5L, 0.5T, 0.0V Remedial Excavation Zone (cross-hatched): no-flow zone K = 0.0 cm/sec (based on remedial excavation lined with 10 mil plastic)

1 - Initial interpreted TCE plume extent

2 – TCE plume after 5 years

3 - TCE plume after 10 years

4 - TCE plume after 15 years

Figure C – Predicted TCE Plume Migration Former Chevron Asphalt Plant and Terminal #206265 1520 Powell Street, Emeryville, California

Initial interpreted TCE plume extent based on groundwater data reported 2nd quarter 2005. Predicted plume migration based on solute transport model calibrated to historical data. Parent Zone: K = 0.01 cm/sec; n_e = 0.25; K_d = 0.00091 m³/kg; λ = 1/year; dispersivity 1.5L, 0.5T, 0.0V Buildino Basement/Foundation Zones (cross-hatched): no-flow zones K = 0.0 cm/sec.

1 - Initial interpreted PCE plume extent

2 – PCE plume after 10 years

3 - PCE plume after 25 years

4 - PCE plume after 50 years

Figure D – Predicted PCE Plume Migration Former Chevron Asphalt Plant and Terminal #206265, 1520 Powell Street, Emeryville, California

Initial interpreted PCE plume extent based on groundwater data reported 2nd quarter 2005. Predicted plume migration based on solute transport model calibrated to historical data. Parent Zone: K = 0.01 cm/sec; n_a = 0.25; K_d = 0.00298 m³/kg; λ = 2/year; dispersivity 1.5L, 0.5T, 0.0V Building Basement/Foundation Zones (cross-hatched): no-flow zones K = 0.0 cm/sec.

TABLES

CAMBRIA

Table 4 Area Well Survey (2,000 Feet Radius) Former Chevron Asphalt Plant #206265, Powell and Landregan, Emeryville, California

Well ID	Owners Well ID	Owner	Useage	Address/Location	Total Well	Perforation Interval	Date
	P-1	Amtrak	Unknown	Emeryville Amtrak Station	20	5-19	10/7/1992
	P-2	Amtrak	Unknown	Emeryville Amtrak Station	20.5	5-19	10/7/1992
	P-3	Amtrak	Unknown	Emeryville Amtrak Station	20.5	6-19	10/9/1992
	P-4	Amtrak	Unknown	Emeryville Amtrak Station	20.5	6-19	10/12/1992

Well MW-19A Environmental Screening Level Comparison

CAMBRIA

				Ta	ble 5				
			Well MW-19A	Environmental	Screening Level	l* Comparison			
		Former	Chevron Asphalt	Plant #206265, F	owell and Landreg	an, Emeryville, Ca	lifornia		
Constituent	Concentration October 20, 2005	Maximum Concentration last	Drinking Water ³	Groundwate (low/moderate	er to Indoor Air permeability soil ¹)	Ceiling Level (taste & odor	Aquatic Bio	ota Impact	Direct Exposure Construction/
		4 sampling events		Residential	Comm./Industrial	threshold)	Fresh Water	Marine	Trench Worker
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/kg)
TPHg	180	260	500			5,000	500	3,700	23,000,000
PCE	350	660	120	520	1,700	3,000	120	230	37,000
TCE	77	95	360	2,100	6,900	50,000 ²	360	360	150,000
c-1,2-DCE	26	54	590	20,000	55,000	50,000 ²	590	590	350,000
t-1,2-DCE	5	8	590	25,000	69,000	2,600	590	590	570,000
VC	<1	1	3.8	17	57	34,000	780	780	2,400

TPHg = Total petroleum hydrocarbons as gasoline

PCE = Tetrachloroethylene

TCE = Trichloroethylene

c-1,2-DCE = cis-1,2-Dichloroethylene

t-1,2-DCE = trans-1,2-Dichloroethylene

VC = Vinyl chloride

ug/L = micrograms per liter

ug/kg = micrograms per kilogram

* Screening For Environmental Concerns At Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay Region.

¹ Soil beneath site predominantly fines, with 90-100% silt and clay.

² Ceiling level is based on upper limit, not taste & odor threshold.

³ From Table B, where groundwater IS NOT a current or potential source of drinking water

Bold indicates values exceeded by concentrations reported at the site on October 20, 2005.

Shading indicates not a current or likely future exposure pathway at this site.

ATTACHMENTS

and the transformed the set of the

		Table 3	 Selected 1520 Analytical Re 	Powell Street Soli sults		Hardin	g Lawson Associates
			and the second second	Sample Location	-		· · · ·
· · · ·		Composite	Composite 2	Composite 3			
Compound	Detection Limit (ppm)	S-1, S-2, S-3 S-4, S-5, S-6 (ppm)	S-7, S-8 S-9, S-10 (ppm)	S-11, S-12 ,S-13, S-14 (ppm)	S-15 (ppm)	8-17 (ppm)	S-18 (ppm)
Volatile Organics in Soil: - (EPA Method 8240)		1					
Trichloroethene Total Xylenes	0.5 0.5	ND ND	ND ND	ND 1.1	ND ND	1.5 ND	1.4 ND
Total Petroleum Hydrocarbons: (EPA Method 3550/8015)							
Other ²	10	70	100	840	7,5003	ND	ND

1 Analytes and sampling locations presented only where detectable levels were present.

,

Quantification based on largest peaks within C6 to C15 boiling range.
 Computer generated support of the T

Computer generated mass spectral data library search (match probability) identified this sample as: pentane; trans-1,3-dimethyl cyclopentane; methyl cyclohexane; 1,1-dimethyl cyclohexane; 1,4-dimethyl cyclohexane; 1,1-dimethyl cyclohexane; 1,1-dimethyl

ND Not detected above detection limit

ppm parts per million (g/l for water and g/kg for soil)

S-1 Surface Soll Sample #1 as shown on Plate 2.

C6447-R

.

Chevron/Powell December 1988

1

5

In general, previous soil sample analytical results indicate that the soils at the site have been impacted with gasoline and diesel hydrocarbons, TCE, and a variety of solvent and thinner constituents. The bulk of the significantly hydrocarbon-impacted soils are located in areas 2, 3 and 5. TCE contamination was primarily limited to area 4. Table 1 presents a brief summary of the previous soil sampling results.

Tλ	B	LE	1
_	_		_

SUMMARY OF SOIL SAMPLE RESULTS AS PREVIOUSLY INVESTIGATED*

	LOCATION	DATE	SAMPLE DEPTH (ft)	SAMPLE TYPE	RESULTS/ RANGE OF RESULTS
. •	Area 1	July '88	3.0	Composite	70 ppm TPH
	Area 2	July '88	3.0	Composite	100 ppm TPH
	Area 3	July '88	3.0	Composite	840 ppm TPH
d	Area 3- Center	July '88	3.0	Grab	7500 ppm TPH 9asoline
avate	Area 3	Sept '88	3.0	Composites	490 to 1700 ppm - TPH-Diesel
Ĕ	Area 3	Sept '88	5.0	Composites	640 to 2100 ppm - TPH-Diesel
	Area 4	Aug '88	3.0	Grab	1400 to 1500 ppb - TCE
	Area 5	Oct '88	3.0	Grab	160 to 2000 ppm - TPH-Diesel
	Area 5	Oct '88	5.0 - 6.0	Grab	310 to 2700 ppm - TPH-Diesel
	Area 5	Oct '88	5.0 - 6.0	Grab	160 ppm TPH

ppm = parts per million ppb = parts per billion TPH = Total Petroleum Hydrocarbons

TCE = Trichloroethene

* = Data taken from referenced reports.

Þ GROUNDWATER TECHNOLOGY, INC.

7

						-
Notes: Xylene E-Benz D = Di D = Di METHOD	B-16 t	B-11 t	B-6 to	B-1 to	Bore Holes	
s = Sum rotal 1 s = Sum s cha s cha s = I s = I	o B-20	о B-15	B-10	8-5		
n of xy luel hy iracter 227A 801	5.0	5.0	5.0	5.0	Depth (ft.)	TABLE
lene j drocar 1zatic 5/8020	07 Sei	07 Sej 07 Sej	07 Sej 07 Sej	07 Sej 07 Sej	Date	1. Ana 152 Eme
somers on on	88	888	888	888		lytic] 0 Powe ryvill
•••	1700 G	1 0001	490 640 1	1700 1700	TFH P	Result 11 Str e, Cal
	55	00	00 0ô	0 0 0 ô	C Benz	s For eet iforni
	44	σω	ΰů	ໍ່ຫໍ່ພ	ene To	Compos
	6.1 1.3	<0.3 1.3	~0.3	<0.3 0.5	luene ppm	ite So
	1.4	<0.3 <	<0.3	<0.3	Kylenes	il Sampl
		່ພີທ	• 6	• 6	E-Benz	les
	18	iu jās (- en e	

		Ë	
		N	
Emeruville California	1520 Powell Street	Analytic Results For Soil Samples	

.....

TAI

Bore Hole	Depti (ft.	05	Date		TFH	PC	Benzene	Toluene	Xylenes	E-Benzene	
B-21	3	Β	Sep	88	4	1	<0.3	<0.3	<0.3	<0.3	
B-21	თ	30	Sep	88	<10	ł	<0.3	<0.3	<0.3	<0.3	
B-22	ιω	30	Sep	88	93	۵	A	×0.3	<0.3	<0.3	
B-22	4.0	30	sep	88	<10	ł	<0.3	<0.3	<0.3	<0.3	
B-23	ω	30	Sep	88	~10	ł	<0.3	<0.3	<0.3	<0.3	
B-23	, CI	30	Sep	88	<10	ł	<0.3	<0.3	<0.3	<0.3	
B-24	ω	ü	Sep	88	^10	ľ	<0.3	<0.3	<0.3	<0.3	
B-24	G	30	Sep	88	310	۵	<0.3	<0.3	2	<0.3	
B-25	ω	ä	Sep	88	1800	۵	<0.3	<0.3	7	<0.3	
B-25	G	30	Sep	88	2700	۵	<0.3	<0.3	20	<0.3	
B-26	ω	30	Sep	88	210	٥	<0.3	<0.3	N	<0.3	
B-26	u	30	Sep	88	1000	Ð	<0.3	<0.3	4.2	<0.3	
B-27	лω	200	Sep	200	1900	90	Δ.0 	Å Å.	7.4	A 6.3	
1		5	500	0		ę					
B-28	01 U	30	Sep	88	270		<0.3	<0.3	1.3	<0.3	
B-30	ω 5	30	Sep	88	290	۵	<0.3	<0.3	1.4	<0.3	
B-30	5 5	30	Sep	88	1700	٥	<0.3	<0.3	6.2	<0.3	
B-31 B-31	5 G 5 5	300	Sep	88	460 1000	불불	<0.3	~0.3	<0.3 2.6	<0.3	
B-33	ω	30	Sep	88	2000	Ħ	0.7	<0.3	*	<0.3	
B-33	თ	30	Sep	88	830	D+G	<0.3	0.9	4.2	<0.3	
B-34	ųω	30	das	88	10		~0 . 3	60.3	<0.3	<0.3	
5-34	0	30	sep	88	2700	D+G	0.9	<0.3	12	<0.3	
B-37	ω	30	Sep	88	1100	Ð	<0.3	<0.3	5.4	<0.3	
B-38	ω	30	Sep	88	066	D+G	0.5	0.9	2.2	<0.3	
B-40	4.1	30	Sep	88	180	0	A	×0.3	·0-3	×0.3	
		č	dac	00	110		70.0	10.0			
B-41 B-41	ით	30	Sep	88 88	430	ନ ଜ	<0.3	<0.3	<0.3	^0.3	
			,								

BB-33 BB-33 BB-33 BB-34 BB-33 BB-33

飅

* REFERS	S33	S33	S32	523	201	530	S30	S29	S29	S28	S28	S27	S26	S26	S25	S25	S24	202	S22	S22	S21	S21	S20	S20	S19	S18	S17	S16	S16	S15	S15	S14	S13	S12	S11	210	000	00	000	000	о с 4	000	0.0	22	SAMPLE	
IO EPA ME	10.0	3.0	10.0	3.0	10.0	10.0		10.0	3.0	10.0	3.0	3.0	10.0	3.0	10.0	4.0	3.0	3.0	10.0	1.7	10.0	1.7	10.0	1.2	3.0	3.0	3.0	10.0	3.2	10.0	3.0	2.8	2.8		2.8	2	- N 7 0		л. Л		5 U 10 U			ο 	DEPTH (FT)	SOIL SAMI
THOD	*	*	*	* :	• •	• •		• *	*	*	*		*	*	*	*			*	*	*	*	*	*				*	*	*	*														*8010	PLE DEPTH
		*		*		•	8	•	*		*					*	*	*		*		*		*	*	*	*		*	*	*	*	*	*	*	* :	• •	• •	• •	• •	* :	* :	• •	• •	*8015 EXTEND	S AND REG
																																													*8240	QUESTED A
-									*														*										*		*					1	*				MOIST/ DRY WT.	INALYSES
								,	•	_			*		*	*	*														*	*				*			_						BIO- ORGANISMS	

GROUNDWATER TECHNOLOGY, INC.

TABLE

Chevron/Powell December 1988

content of the soils ranged from 32 to 53 percent. collected from within the same soil horizon. The moisture all samples analyzed are contained in Appendix I. Results for

SAMPLE	DRY WT. (%)	H20 WT. (%)	H ₂ O VOL. (%)	BULK DENSITY
S21	81.15	23.23	37.24	1.6
S29	78.56	27.29	43.86	1.6
85	82.91	20.61	32.15	1.6
S12	78.94	26.67	41.53	1.6
S14	73.40	36.24	52.59	1.5

RESULTS OF SOIL MOISTURE ANALYSES TABLE 5

WT. = Weight Vol. = Volume

ways to enable the growth of indigenous hydrocarbon-utilizing Samples submitted for bio-analyses were prepared three separate S25BUG10, were collected from the saturated zone (Figure 5). collected from the unsaturated zone and two samples S15BUG10 and TCE. Six samples, S15, S20, S25, S26, S27, and S30, were collected from six locations suspected of being contaminated with were prepared containing .01 and .1 percent yeast extract. were incubated on native mineral media. Additionally, cultures bacteria. Bio-analytical Results. Cultures for the plate counting of bacterial colonies Soil samples for bio-analyses were

GROUNDWATER TECHNOLOGY, INC.

Table 1.	Analytic R Former Che Emeryville WGR Projec	esults: 1 vron Asphi , Californ t #1-045.4	Soil alt Plant 11a 5								
Well/Sample ID#	Date	Depth	EPA	Benzene <	Toluene	E-Benzene Pf	Xylenes	TPH(G)	TPH(D)	080 <-ppn->	
8-1 8-1 8-1	2 Feb 90 2 Feb 90 2 Feb 90	18.0 23.0 29.0	8240/8015 8240/8015 8240/8015	<0.01 <0.01 <0.01	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<10 <10 <10	<10 <10 <10		
MW-13 MW-13 MW-13 MW-13	2 Feb 90 2 Feb 90 2 Feb 90 2 Feb 90	3.5 5.5 10.5 13.0	8240/8015 8240/8015 8240/8015 8240/8015	<0.01 <0.01 <0.01 <0.01	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	430 130 <10 <10	870 260 11 <10		
NW-14 NW-14 NW-14	2 Feb 90 2 Feb 90 2 Feb 90	5.5 8.5 11.0	8240/8015 8240/8015 8240/8015	<0.01 <0.01 <0.01	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02	10 17 <10	60 120 <10		
MW-15 MW-15	2 Feb 90 2 Feb 90	6.0 9.5	8240/8015 8240/8015	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<10 <10	<10 <10		
MW-16 MW-16	23 Mar 90 23 Mar 90	8.3 10.3	8020/8015 8020/8015	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.015	<10 <10	<10 <10	00	
MW-17 MW-17 MW-17	21 Mar 90 21 Mar 90 21 Mar 90 21 Mar 90	7.3 9.3 12.8	8020/8015 8020/8015 8020/8015 8020/8015	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.015 <0.015 <0.015 <0.015	<10 <10 <10 <10	<10 220 <10 <10	ও 640 ও ও ও	
MW-18 MW-18 MW-18 MW-18	22 Mar 90 22 Mar 90 22 Mar 90 22 Mar 90	4.8 7.3 9.3 11.3	8020/8015 8020/8015 8020/8015 8020/8015	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.015 <0.015 <0.015 <0.015	<10 <10 <10 <10	<10 <10 <10 <10	5 5 5 5 5 5	
NW-19 NW-19 NW-19	22 Mar 90 22 Mar 90 22 Mar 90	5.8 8.8 10.3	8020/8015 8020/8015 8020/8015	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.015 <0.015 <0.015	<10 <10 <10	<10 <10 <10	17 <5 <5	
TB	26 Mar 90										

045T4AP0.WP

TESTERN G BOLOGIC RESOURCES, INC.
Table 1.	Analytic Results: Soil (continued)
	Former Chevron Asphalt Plant Emeryville, California
	WGR Project #1-045.45

Well/Sample 1D#	Date	Depth	EPA Hethod	Acetone <	1,2-DCE	1,1-DCE	Chloroform 	1,2-DCA	1,1,1-TCA	TCE	PCE
8-1	2 Feb 90	18.0	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
B-1	2 Feb 90	23.0	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
B-1	2 Feb 90	29.0	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-13	2 Feb 90	3.5	8240	0.15	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-13	2 Feb 90	5.5	8240	0.10	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-13	2 Feb 90	10.5	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-13	2 Feb 90	13.0	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-14	2 Feb 90	5.5	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-14	2 Feb 90	8.5	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-14	2 Feb 90	11.0	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
HN-15	2 Feb 90	6.0	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MW-15	2 Feb 90	9.5	8240	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
#⊌-16	23 Mar 90	8.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
MW-16	23 Mar 90	10.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
HW-17	21 Mar 90	4.8	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
MM-17	21 Mar 90	7.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
MW-17	21 Mar 90	9.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
MW-17	21 Mar 90	12.8	8010		<0.5	<0.2	<0.5	-0.5	<0.5	40.5	<0.5
M⊌-18	21 Mar 90	4.8	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
M⊌-18	21 Mar 90	7.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
MW-18	21 Mar 90	9.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
M⊌-18	21 Mar 90	11.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
M⊌-19	22 Mar 90	5.8	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
MW-19	22 Mar 90	8.8	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
MW-19	22 Mar 90	10.3	8010		<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
TR	26 Mar 90										

.

04514AP0.WP

VESTERN G FOLOGIC RESOURCES, INC.

Table 1.	Analytic Former C Emeryvil	Results: Soil hevron Asphalt le, California	Plant							
Boring ID '	Date Sampled	TPH Gasoline	TPH Diesel	Total OSG	Petroleum OSG	Acetone	Hethylene Chloride	2-Butanone	1,2-DCE	TCE
EPA Hethod		8015	8015	413.2	418.1	8240	8240	8240	8240	8240
S8-1	26 Mar 90	<10	<10	17		<100	45	<100	4	
\$8-2	26 Mar 90	- <10	<10	27		<100	4	<100	4	
SB-3	26 Mar 90	<10	<10	5		<100	-5	<100	a	4
SB-4	26 Mar. 90	<10	<10	7		<100	<5	<100	6	-5
\$B-5	26 Mar 90	<10	<10	6		<100	<5	<100	4	4
SB-6	26 Mar 90	<10	<10	6		<100	45	<100	4	4
SB-7	26 Mar 90	<10	<10	15		<100	-5	<100	4	4
58-8	26 Mar 90	<10	<10	12		<100	4	<100		4
\$8-9	26 Mar 90	<10	<10	8		<100	<5	<100	å	4
58-10	26 Mar 90	<10	<10	-5		<100	<5	<100	4	0
SB-11	26 Mar 90	<10	<10	420		<100	5	<100	~	•
SB-12	26 Mar 90	<10	<10	72		<100	4	<100	4	•
\$8-13	26 Mar 90	<10	<10	-5		<100	45	<100	4	0
58-14	26 Hár 90	<10	<10	4		<100	4	<100		0
8-15	26 Mar 90	<10	×10	8		<100	đ	<100	0	<5
8-16	26 Har 90	<10	57	98		<100		<100	3	< 5
						4100		<100	<5	<5

04516AP0.WP

÷

WESTERN GEOLOGIC RESOURCES, INC.

		Emeryvil	lle, California	Plant							
	Boring ID '	Date Sampled	TPH Gasoline	ТРЖ Diesel	Total OEG	Petroleum OSG	Acetone	Methylene Chloride	2-Butanone	1,2-DCE	TCE
	EPA Hethod		8015	8015	413.2	418.1	8240	. 8240	8240	8240	8240
	SB-17	26 Mar 90	<10	<10	1300	530	<100	4	<100	4	đ
	SB-18	26 Mar 90	. 47	16	29	400	<100	. 4	<100	4	4
	SB-19	26 Mar 90	78	38	280	420	<100	-5	<100	6	
	\$8-20	26 Mar 90	<10	<10	450	32	<100	<5	<100	5	đ
	\$8-21	26 Mar 90	<10	<10	22	56	<100	<5	<100	-5	4
	\$8-22	26 Mar 90	<10	<10	93	57	<100	<5	<100		~
	\$8-23	26 Mar 90	78	<10	230	31	<100	<5	<100	<5	4
	\$8-24	26 Mar 90	<10	<10	.120	76	<100	4	<100	45	4
Excavated	\$8-25	26 Mar 90	1900	<10	3900	2300	<100	- 5	<100	6	-5
14-10	SB-26	26 Mar 90	660	<10	1100		170	4	<100	4	5
	SB-27	26 Mar 90	390	<10	110		<100	<5	<100	45	4
	SB-28	26 Mar 90	86	<10	150		<100	<5	<100	<5	5
	\$8-29	26 Mar 90	97	<10	570		<100	4	220	45	6
	\$8-30	26 Mar 90	59	<10	55		150	4	<100	4	6
	\$8-31	26 Mar 90	<10	<10	64		<100	-	<100	-5	6
	\$8-32	26 Mar 90	<10	<10	<5	•••	120	<5	<100	-5	6
						•				-	~

Table 1. Analytic Results: Soil (continued)

1.

04516AP0.WP

WESTERN GEOLOGIC RESOURCES. INC.

Boring ID	Date	TOW	TON	Tettel						
	Sampled	Gasoline	Diesel	080	OSG	Acetone	Hethylene Chloride	2-Butanone	1,2-DCE	TCE
				••pp=•••••	,	******				
EPA Method		8015	8015	413.2	418.1	8240	8240	8240	· 8240	8240
\$8-33	26 Mar 90	<10	<10	4	·	100	4	<100	<5	45
\$8-34	26 Mar 90	. <10	<10	-5		<100	25	<100	<5	<5
se-35	26 Mar 90	<10	720	6200		<100	<5	<100	4	6
\$8-36	26 Mar 90	<10	<10	-5		<100	<5	<100	4	4
\$8-37	26 Mar 90	<10	<10	-5		<100	<5	<100	6.6	đ
\$8-38	26 Mar 90	<10	<10	-5		<100	-5	<100	45	
sa-39	26 Mar 90	<10	<10	<5		200	4	<100		~
\$8-40	26 Mar 90	<10	<10	4		<100	4	<100	-5	a
SB-41	26 Mar 90	<10	<10	8	··· ·	<100	4	<100	4	
2 (58-42)	26 Mar 90	1200	<10	92000	1700	<100	4	<100	1200	15000
SB-43	26 Mar 90	<10	<10	•		<100		-100		12000

WESTERN GEOLOGIC RESOURCES, INC.

O45T6APO.MP

	Former Chevron Asphalt Plant Emeryville, Galifornia											
Boring ID ⁴	Date Sampled	Benzene <	Toluene	E-Benzene	Xylenes	Total Cednium	Total Chronium	Total Zinc	Total Lead	Soluble Lead		
EPA Method		8240	8240	8240	8240	3050/6010	3050/6010	3050/6010	3050/6010	1310/6010		
SB-1	26 Mar 90	4	4	<5	<5 ·	4	11	41	22			
\$8-2	26 Mar 90	· •	4	<5	<5	3	11	41	25			
\$8-3	26 Mar 90	-5	4	< 5	<5	<3	6	24	20			
\$8-4	26 Har 90	-5	-5	<5	<5	<3	5	20	18			
\$8-5	26 Mar 90	-5	<5	<5	<5	<3	14	27	22			
58-6	26 Mer 90	-5	<5	4	4	3	7	18	13			
SB-7	26 Mar 90	<5	<5	-5	4	43	(17	31	12			
SB-8	26 Mar 90	<5	-5	45	<5	3	6 ~	13	13			
SB-9	26 Her 90	<5	4	<5	<5	3	6 .	15	1.5			
sa-10	26 Mar 90	<5	45	<5	45	đ	12	23	10	•••		
58-11	26 Mar 90	4	<5	4	4	3			21	•••		
SB-12	26 Nar 90	45	<5	4	4	a	,	~~	23			
SB-13	26 Mar 90	<5	4	-5	-5	a	7	10	16			
SB-14	26 Mar 90	45	4	4			(12	14			
\$8-15	26 Mar 90	4	4	d			7	14	13	•••		
58-16	26 Mar 90			~	-	- 3	8	43	43	•••		
		~	•9	0	9	3	11	170	60			

Table 2.

Analytic Results: Soil

.

04515AP0.WP

sble 2.	Analytic Former Ch Emeryvili	Results: Soi hevron Asphalt le, California	l (continued Plant							
oring 1D '	Date Sampled	Bonzene <	Toluene	E-Benzene -ppb	Xylenes	Total Cadnium	Total Chromiun) Total) Zinc	Totel Lead	Soluble Lead
PA Hethod		8240	8240	8240	8240	3050/6010	3050/6010	3050/6010	3050/6010	1310/6010
8-17	26 Mar 90	~	4	45	· <5	3	18	90	120	<0.2
8-18	26 Mar 90	· <5	<5	<5	8.6	<3	14	120	190	<0.2
3-19	26 Mar 90	<5	-5	<5	4	<3	7	110	150	<0.2
8-20	26 Mar 90	<5	23	<5	26	4	11	400	880	10.2
8-21	26 Mar 90	<5	<5	<5	4	<3	9	130	150	10.2
8-22	26 Mar 90	-5	<5	<5	4	<3	9	84	130	3
8-23	26 Mar 90	<5	<5	<5	4	4	7	120	120	-0.2
0-24	26 Mar 90	4	<5	₫.	<5	4	9	200	180	1
8-25	26 Mar 90	-5	<5	-5	<5	3	8	22	17	,
8-26	26 Mar 90	<5	5	4	<5	4	37	21	13	
1-27	26 Mar 90	<5	<5	.<5	-5	<3	8	11	12	
3-28	26 Mar 90	<5	<5	<5	4	<3	5	13	15	
3-29	26 Mar 90	45	<5	<5	<5	4	11	120	110	
-30	26 Har 90	4	<5		⊀5	d	11	75	*/	
1-31	26 Mar 90	4	<5	4	<5	4		35	34	
3-32	26 Mar 90	-5	-5	-5	-5			00	50	
-33	26 Mar 90	<5	<5	45	6	-3	.,	18	18	
-34	26 Mar 90	-5	-5	-5	~	-3		26	17	
1-34	26 Mar 90	<5	-5	<5	4	<3	5	8	12	

045T5AP0.WP

Table 2.	Analytic Former C Emeryvil	Results: Soi hevron Asphalt le, California	l (continued Plant)	
Recipe 10	Date	Bantana	Toluono		

.

Boring 10	Sampled	Senzene	Toluene	E-Benzene	Xylenes	Total Cadmium	Total Chronium	Total Zinc	Total Lead	Soluble Lead	
EPA Method		8240	8240	8240	² 8240	3050/6010	3050/6010	3050/6010	3050/6010	1310/6010	-
sa-35	26 Mar 90	<5	4	4	4	<3	7	26	30		
\$8-36	26 Mar 90	· <5	4	-5	ব	-3	-5	25	41		
\$8-37	26 Mar 90	-5	-5	4	-5	4	6	14	16		
\$8-35	26. Mar 90	<5.	<5	<5	<5		4	5	5		
sa-39 a	26 Har 90	<5	45	<5	-5	3	4	6	4		
sa-40 2	26 Mar 90	4	<5	4	-5	4	4	11	10		
SB-41 2	26 Mar 90	-5	<5	-5	<5	4	45	6	×10		
\$8-42 2	26 Mar 90	<5	7.0	680	3100	4	49	190	120		
SB-43 2	6 Mar 90	<5	45	<5	45	4	5	25	17		

Notes:

All analyses by Groundwater Technology Environmental Laboratories (GTEL) ppm = parts-per-million

ppm = parts-per-million ppb = parts-per-billion OSG = Oil and Grease 1,2-DCE = 1,2=Dichloroethene TCE = Trichloroethene E-Benzene = Ethylbenzene < = Less than indicated detection [imit

--- = Not Analyzed

04515AP0, MP

-¤ G ≰

TABLE 1.	Analytic R Former Che Emeryville	esults: Soil Sampl wron Asphalt Plant , California	es									
Boring ID#	Date	Method	Lab	трн <ppn></ppn>	TCE	Benzéne	Toluene	E-Benzene	Xylenes	Chloroform	Acetone	0 <p< th=""></p<>
8-1	01 Feb 91	8015/8240/503E	SAL	<10	26	17	49	<15	78	<15	<50	1
8-2	01 Feb 91	8015/8240/503E	SAL	<10	120	<10	15	<15	<15	<15	<50	
8-3	01 Feb 91	8015/8240/503E	SAL	<10	1,800	26	<15	<15	<15	22	≪0	•
8-4	01 Feb 91	8015/8240/503E	SAL	70	30	<10	<15	<15	<15	<15	<0	6
8=5	01 Feb 91	8015/8240/503E	SAL	180	<15	<10	<15 ···	<15	<15	<15	<50	1
8-6	01 Feb 91	8015/8240/503E	SAL	250	330	17	-66	44	140	<15	120	
B-7	01 Feb 91	8015/8240/503E	SAL	98	2,300	<10	<15	<15	<15	<15	<50	1
B-8 .	01 Feb 91	8015/8240/503E	SAL	<10	<15	<10	<15	<15	<15	<15	<50	•
8-9	01 Feb 91	8015/8240/503E	SAL	<10	530	<10	<15	<15	<15	17	<50	<
B-10	01 Feb 91	8015/8240/503E	SAL	<1 0	210	<10	<15	<15	<15	<15	<50	
B∸11	01 Feb 91	8015/8240/503E	SAL	<10	350	<10	<15	<15	<15	<15	<50	<
8-12	01 Feb 91	8015/8240/503E	SAL	<10	<15	<10	<15	<15	<15	<15	<50	•
B-13	01 Feb 91	8015/8240/503E	SAL	<10	<15	<10	<15	<15	<15	<15	<0	<

1

-1-045.50/C1F81.WK1

.

RG

TABLE 1. Analytic Results: Soil Samples (continued) Former Chevron Asphalt Plant Emeryville, California

Boring ID#	Date	Method	Løb	три <ррп>	TCE	Benzene	Toluene	E-Benzene	Xylenes	Chloroform	Acetone	ota <pm></pm>	
8-14	01 Feb 91	8015/8240/5036	SAL	<10	<15	<10	×15	×15	<15	<15	<50	<50	
B-15	01 Feb 91	8015/8240/503E	SAL	<10	<15	<10	<15	×15	<15	<15	<50	<50	_
B-16	01 Feb 91	8015/8240/503E	SAL	<10	<15	<10	<15	<15	<15	<15	<50	<50	
B-17	01 Feb 91	8015/8240/503E	SAL	<10	<15	<10	<15	<15	<15	<15	<0	81	
8-18	01 Feb 91	8015/8240/503E	SAL	<10	21	<10	<15	<15	<15	<15	<50	<50	۰,
8-19	01 Feb 91	8015/8240/503E	SAL	<10	. 42	<10	<15	<15	<15	<15	<50	50	
8-20	01 Feb 91	8015/8240/503E	SAL	<10	46	<10	<15	<15	<15	<15	<50	<50	
B-21	01 Feb 91	8015/8240/503E	SAL	<10	1,400	<10	<15	<15	<15	<15	<50	<50	
8-22	01 Feb 91	8015/8240/503E	SAL	10	98	<10	<15	<15	<15	<15	<50	<50	ŀ
B-23	01 Feb 91	8015/8240/503E	SAL	<10	<15	<10	<15	<15	<15	<15	<50	<50	
B-24	01 Feb 91	8015/8240/503E	SAL	18	<15	<10	<15	<15	<15	<15	<50	<50	

.

4-045.50/C1/B1.WK1

5 e e

.

1	
AW	그는 그는 그는 것이 같은 것이 같은 것을 감독하는 것이 많이 있는 것을 사람이 많을 수많이 했다.
A G	그는 그는 그는 그는 것 같아요. 이는 것 같아요. 그는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 같아요. 나는 것 않 ? 나는 것 같아요. 나는 것 않 ? 나는 것 않 ? 나는 것 ? 나는 한 것 ? 나는 ? 나는
Real R	
21/20	
000	
1993 A. 1993	
· · · · ·	
· · ·	
	· 이 · 이 · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	[- 이 제 말 - 이 영화 - 이 방송 전기가 있는 것 같아. 이 나라지 않는 것 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sec. 1. Sec. March 1.	
	[2] 이 🖀 이번 이 가지 않는 것 같은 것 같은 것이 있는 것 같은 것 같은 것 같은 것 같이 있다.
3	N - Change
5	[1] 2 2 월 2 2 2 2 2 2 월 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8	[1] 가 () 眞子 () 가 () () 遺言하는 국왕에서 가지 않는 것이라. 이 () 전신이 가지(A) () 이 ()
	[1] 21 월 - 1일 - 10일 - 11일 -
	↓ · · · · · · · · · · · · · · · · · · ·
	같은 이야한 것 같아? 그는 것은 것 않는 것이 가장에서 가지 않는 것이 없다.
	[1] 이 문문을 방상물 물건물이 되었다. 이 방송 아이 나는 것이 가지 않는 것이 가지?
s is c	· · · · · · · · · · · · · · · · · · ·
	O D C S E D O O C
4 e 1	
	· · · · · · · · · · · · · · · · · · ·
583	
	[1] 그 바퀴바퀴바카바카카카 등 등 가지는 것이 가지는 것이 가지는 것이 없는 것이 물이 있다.
	[] 이 이 이 방법은 이 있는 것 같아요. 이 같아요. 이 아이는 것이 아이는 것이 아이는 것이 아이들을 것이 하는 것이 아이들을 것이 아이들 것이 아이들을 것이 아이들 것이 아이들에 아이들 것이 아이들 않는 것이 아이들 것이 아이들 것이 아이들 것이 아이들 것이 아이들
	# EB#3661 #
· · · · · · · · · · · · · · · · · · ·	S FFWOLL'S
	[1월 - 이상 성공 관계 관련 이 가격을 가지 않고 있는 것 못 했다.

GERAGHTY & MILLER, INC.

Table 1: Soil Analytical Results - Organics

Former Chevron Asphalt Plant - Facility #1001067

1520 Powell Street, Emeryville, California.

		Androwinste	TTOTT	011		
	D .	Approximate	TPH	Oil and	Volatile	Polychlorinated
	Date	Depth	Diesel (a)	Grease (b)	Organics (c)	Biphenyls (d)
Sample	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
					1 0 - 01	(ing ing)
SB-1-2	6-May-92	2	21 (e)	170	0.350 (f)	ND (0.050)
						. ,
SB-1-5	6-May-92	- 5	160 (g)	ND (50)	ND	ND (0.050)
						,
SB-2-2	6-May-92	2	85 (e)	290	0.420 (f)	ND (0.050)
SB-2-5	6-May-92	5	ND (10)	ND (50)	ND	ND (0.050)
						. ,
SB-3-2	6-May-92	2	84 (e)	430	0.100 (f)	ND (0.050)
000 4 0	<i></i>					
SB-4-2	6-May-92	2 -	17 (e)	250	0.170 (f)	ND (0.050)
111 4	8 Mar. 02	0		100 100		
HL-4	6-191ay-92	8	ND (10)	ND (50)	ND	NA
HI -5	8-May 02		ND (10)		100	
1113-5	0-141ay-92	9	ND (10)	ND (50)	ND	NA
S-1	11-May-92	9	ND (10)	ND (50)	ND	NT A
		2	(10)	ND (50)	ND	NA
S-2	11-May-92	12	180 (g)	87	ND	NA
					112	1111
S-3	11-May-92	9	21 (g)	ND (50)	ND	NA
	-		-			

1

(a) Analyzed by USEPA Method 8015, modified.

(b) Analyzed by USEPA Method 5520F.

(c) Analyzed by USEPA Method 8240.

(d) Analyzed by USEPA Method 8080.

(e) Superior reported the pattern of chromatogram shows heavy hydrocarbons.

(f) Only acetone was detected in Volatile Organic Analysis, acetone levels reported.

(g) Superior reported the pattern observed in the chromatogram was not typical of diesel.

mg/kg Milligrams per kilogram equivalent to parts per million (ppm)

ND (10) Not detected (Detection Limit)

NA Not analyzed

Analysis by Superior Precision Analytical, Inc., Martinez, California.

Project No. RC12003

GERAGHTY & MILLER, INC.

Table 2:

Soil Analytical Results - Metals Former Chevron Asphalt Plant - Facility #1001067 1520 Powell Street, Emeryville, California.

		Sample	Sample	Comola	C		
	TTLC (b)	SB-1-2 (c)	SB-1-5 (c)	SB-2-2 (c)	Sample SB 2.5 (a)	Sample	Sample
Metal (a)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/cg)	SB-3-2 (c)	SB-4-2 (c)
Antimony	500	6	ND (5)	ND (5)	ND (5)	(ilig/kg) ND (5)	(mg/kg) ND (5)
Arsenic	500	4	4	6	5	5	3
Barium	10,000	110	140	180	170	180	110
Beryllium	75	ND (0.5)	ND (0.5)	0.6	0.5	ND (0.5)	ND (0.5)
Cadmium	100	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
Chromium	2,500	12	23	19	19	21	16
Cobalt	. 8,000	ND (10)	ND (10)	ND (10)	10	10	ND (10)
Copper	2,500	20	20	20	20	40	40
Lead	1,000	44	7	8	13	380	230
Mercury	20	0.4	0.2	1.7	ND (0.1)	1.8	1.4
Molybdenum	3,500	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Nickel	2,000	20	20	50	50	30	20
Selenium	100	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
Silver	500	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Thallium	700	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vanadium	2,400	10	30	30	30	20	20
Zinc	5,000	100	30	20	30	310	110

ı

Analyzed by USEPA Method 6010, All results reported in milligrams per kilogram (mg/kg). Total threshold limit concentrations for toxicity. California Code of Regulations Title 22, Division 4.5, Chapter 11, Article 3, 66261.24 Characteristics of Toxicity. Collected on May 6, 1992. (a) (b)

(c)

Milligrams per kilogram (ppm) Not detected (Detection Limit) mg/kg ND (10)

- -Project No. RC12003

.....

Boring	TPPH (Gas)	8 <	Ţ	E PF	x	OLG	PCE
1	<1	<0.005	0.005	<0.005	0.011	<50	<0.005
z	<1	<0.005	0.006	<0.005	0.011	4 0	<0.005
3	<1	<0.005	0.005	<0.005	0.010	<50	<0.005
4	<1	<0.005	0.006	<0.005	0.011	<50	<0.005
5	4	<0.005	0.011	<0.005	0.012	<50	<0.005
6	Not Sampled						
7	<1	<0.005	0.006	<0.005	0.011	<50	<0.005
8	Not Sampled						
9	<1	<0.005	0.005	<0.005	0.022	<50	<0.007
10	<1	<0.005	0.006	<0.005	0.013	<50	<0.005
11	<1	<0.005	0.006	<0.005	0.012	<50	<0.005
12	<1	<0.005	<0.005	<0.005	0.010	<50	<0.005
13	<1	<0.005	0.005	<0.005	0.010	<50	<0.005
14	1	<0.005	<0.005	<0.005	0.016	<50	<0.005
15	<1	<0.005	<0.005	<0.005	0.010	51	<0.005
16	<1	<0.005	0.009	<0.005	0.017	<50	<0.005
17	Not Sampled						
18	Not Sampled						

TABLE 1. Analytical Results of Soil Samples taken from Underneath the Remaining Structures at Emeryville

Not Sampled

5211

es.,

1-045.51/T1MR1.wk1

19

TABLE 1. Analytical Results of Soil Samples taken from Underneath the Remaining Structures at Emeryville (continued)

Boring	TPPH (Gas)	B <	т	Ep	x pa	O&G	PCE
20	1	<0.005	0.006	<0.005	0.014	<50	<0.005
21	53	<0.005	<0.005	<0.005	0.16	<50	<0.005
22	4	<0.005	<0.005	<0.005	<0.005	260	<0.005

MOTES:

TPPH (Gas) = Total Purgeable Petroleum Hydrocarbons as Gasoline в

= Benzene т

= Toluene

E = Ethylbenzene х

= Total Xylenes 080

= Oil and Grease

PCE = Tetrachloroethene

ppm = parts-per-million

1-045.51/T1HR1.wk1

Sample ID	Depth (feet)	Date Method	Analytic	TPHg <	B	в т дот		x	MTBE	VOCs
MW19A-5.5	5.5	10/30/95	8015/8020/8240	<1	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0100	0.017*
SP-A,B,C,D		10/30/95	8015/8020	230	< 0.50	<1.0	<1.0	2.7	***	

Table 3. Soil Analytical Results - Former Chevron Bulk Asphalt Terminal at Powell Overpass at Landregan, Emeryville, California

EXPLANATION:

TPHg = Total Petroleum Hydrocarbons as gasoline
B = Benzene
T = Tohene
E = Ethylbenzene
X = Xylenes
MTBE = Methyl t-butyl ether
VOCs = Volatile Organic Compounds
ppm = Parts per million
* = VOCs were not detected except 0.017 ppm tetrachloroethene
= Not analyzed/not applicable

ANALYTICAL METHODS:

8015 = EPA Method 8015 for TPHG 8020 = EPA Method 8020 for BTEX and MTBE 8240 = EPA Method 8240 for VOCs

ANALYTICAL LABORATORY:

GTEL Environmental Laboratories, Inc. of Wichita, Kansas.

5133.01

	SOIL ANALYTICAL RESULTS (32 four point composites) Former Chevron Asphalt Plant & Terminal #206265											
	Emeryville, California											
Samples Collected on November 22 and 23, 1999												
ample Identification TDBs Renzane Toluane Febulhansene Volance TDBd TDDB Test 1 and Salah Lord VOC												
Sample Identification	(mg/kg)	(mo/ko)	(malka)	Ethylbenzene (ma/ka)	Xylenes (ma/ka)	(me/ke)	(malka)	Total Lead	Soluble Lead	VOC (malka)		
	(mg/ng/	((mB/wB)	(ing/kg)	(mg/kg)	(ing/kg)	(mg/ng)	(mg/xg)	(118/1)	(mg/kg)		
G1(5,9.5,A5,A9.5)	<1.0	< 0.0050	< 0.0050	<0.0050	<0.0050	2.110,12	82	12		ND		
G2(5,9.5,A5,A9.5)	<1.0	<0.0050	<0.0050	< 0.0050	< 0.0050	5.9 ^{10,12}	91	10		ND ¹⁴		
G3(5,9.5,A5,A9.5)	<1.0	<0.0050	<0.0050	< 0.0050	< 0.0050	1.612	<50	34		ND ¹⁵		
G4(5,9.5,A5,A9.5)	<1.0	<0.0050	<0.0050	< 0.0050	< 0.0050	6.710,12	100	19		ND ¹⁶		
G5(5,9.5,A5,A9.5)	7.3 ²	< 0.0050	0.0089	0.0073	0.049	3810,4	310	36				
G6(5,9.5,A5,A9.5)	46 ⁸	<0.10	<0.10	0.15	0.46	134,12	110	12				
G7(5,9.5,A5,A9.5)	561.9	<0.25	<0.25	<0.25	<0.25	894,10,12	330	34				
G8(5,9.5,A5,A9.5)	397	<0.025	<0.025	0.025	0.14	144,10,12	150	19				
G9(5,9.5,A5,A9.5)	107	< 0.050	0.052	<0.050	0.19	1010,12	240	14				
G10(5,9.5,A5,A9.5)	5.7 ¹	<0.0050	0.0084	0.0060	0.039	1610,4	340	13				
G11(5,9.5,A5,A9.5)	· 11 ²	<0.025	< 0.025	<0.025	< 0.025	1210	160	48				
G12(5,9.5,A5,A9.5)	130 ²	<0.10	<0.10	<0.10	0.48	39011,4	310	51	<0.020			
G13(5,9.5,A5,A9.5)	223.4	<0.10	<0.10	<0.10	0.45	1810,4	330	14		ND20		
G14(5,9.5,A5,A9.5)	5507	0.35	0.64	0.92	2.4	2013	130	6.5		ND ¹⁷		
G15(5,9.5,A5,A9.5)	<1.0	<0.0050	< 0.0050	<0.0050	< 0.0050	8.9 ^{10,12}	340	36		ND ¹⁸		
G16(5,9.5,A5,A9.5)	<1.0	<0.0050	< 0.0050	<0.0050	< 0.0050	3.112	<50	6.0		ND		
G17(5,9.5,A5,A9.5)	<1.0	< 0.0050	<0.0050	< 0.0050	<0.0050	2.910,12	120	8.5		ND		
G18(5,9.5,A5,A9.5)	<1.0	< 0.0050	< 0.0050	<0.0050	< 0.0050	1.512	140	9.0		ND		
G19(5,9.5,A5,A9.5)	7.17	< 0.0050	0.0058	0.016	0.075	6.310,12	200	9.0		ND		
G20(5,9.5,A5,A9.5)	<1.0	<0.0050	0.0061	<0.0050	<0.0050	1.510	57	11		ND ¹⁹		
G21(5,9.5,A5,A9.5)	<1.0	<0.0050	0.0059	<0.0050	0.0093	3.310	120	12				
G22(5,9.5,A5,A9.5)	<1.0	<0.0050	< 0.0050	<0.0050	< 0.0050	2410,4	750	17				

L.

CH 206265 Emeryville Table.xls

2/29/2000

.

	-	SOIL	ANALYTI	CAL RESULTS	32 four poi	nt composi	tes)				
		1	Former Chev	ron Asphalt Plant	& Terminal	₩206265					
				1520 Powell S	Street						
			Samples Co	Emeryville, Cal	itomia ber 22 and '	1000					
Sample Identification	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	TPHd	TRPH	Total Lead	Soluble Lead	VOC	
A MARKEN MICH.	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/l)	(mg/kg)	
G23(5,9.5,A5,A9.5)	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	2510,4	600	13			
G24(5,9.5,A5,A9.5)	<1.0	< 0.0050	0.022	0.0070	0.043	4.610	410	19			
G25(5,9.5,A5,A9.5)	15 ¹	<0.0050	0.0055	0.011	0.044	194,10	250	17			
G26(5,9.5,A5,A9.5)	14 ²	< 0.0050	<0.0050	<0.0050	0.029	6.311	180	29			
G27(5,9.5,A5,A9.5)	5.8 ⁵	<0.0050	<0.0050	<0.0050	0.013	2.510,12	110	65	<0.020		
G28(5,9.5,A5,A9.5)	3.35	<0.0050	<0.0050	<0.0050	< 0.0050	6.910	95	150	1.6		
G29(5,9.5,A5,A9.5)	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	2.210,12	89	10		ND	
G30(5,9.5,A5,A9.5)	<1.0	< 0.0050	< 0.0050	<0.0050	<0.0050	3.410,12	<50	10		ND	
G31(5,9.5,A5,A9.5)	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	234,10	230	600	19	ND	
A(1,2,3,4)	· 1.9 ⁷	<0.0050	<0.0050	<0.0050	0.016	2.221	160	60	14		
B(1,2,3,4)	<1.0	< 0.0050	<0.0050	<0.0050	< 0.0050	<1.0	120	50 ⁴	0.76		
C(1,2,3,4)	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0	150	60	1.1		
D(1,2,3,4)	<1.0	< 0.0050	< 0.0050	<0.0050	< 0.0050	4.522	190	49			
E(1,2,3,4)	<1.0	<0.0050	< 0.0050	<0.0050	<0.0050	2.821	<50	44			
F(1,2,3,4)	7.75	< 0.0050	< 0.0050	<0.0050	0.018	16022,23	600	60	0.89		
G(1,2,3,4)	6.95	< 0.0050	<0.0050	<0.0050	< 0.0050	540 ²³	1800	90	1.4		
Notes/Explanation:											
1 Chromatogram pattern: Ga	soline C6-C12	Unidentified	hydrocarbon	C6-C12							
² Chromatogram pattern: Ga	asoline C6-C12 -	+ Unidentified	hydrocarbon	s>C8							
³ Chromatogram pattern: Ge	asoline C6-C12										
The surrogate recovery for	this sample is o	utside the esta	blished control	ol limits due to sam	ple matrix ef	fect.					

2

CH 206265 Emeryville Table.xls

2/29/2000

	SOIL ANALYTICAL RESULTS (32 four point composites) Former Chevron Asphalt Plant & Terminal #206265												
	1520 Powell Street												
	Emeryville, California Samalar California (22, 1000)												
Samples Collected on November 22 and 23, 1999													
ample Identification TPHg Benzene Toluene Ethylbenzene Xylenes TPHd TRPH Total Lead Soluble Lead VOC													
	(mg/kg)												
iotes/Explanation cont.													
Chromstogram pattern: Unidentified Hydrocarbon >C8													
⁶ Unidentified hydrocarbon >C10													
⁷ Chromatogram pattern: Unid	² Chromatogram pattern: Unidentified Hydrocarbons C6-C12												
Unidentified Hydrocarbon >C	27												
* The surrogate recovery for th	is sample is n	x available du	e to sample o	dilution required fro	om high analy	te concentra	tion and/or r	natrix interfere	nce.				
10 Chromatogram pattern: Uni	dentified hydr	ocarbons >C1	6										
¹¹ Chromatogram pattern: Diesel C9-C24 + Unidentified hydrocarbons >C16													
12 Discrete peaks													
¹⁰ Chromatogram pattern: Unidentified hydrocarbons <c16< p=""></c16<>													
¹⁴ All compounds non-detectable except vinyi acetate (0.10 mg/kg) and trichloroethene (0.41mg/kg)													
15 All compounds non-detectab	ole except trick	iloroethene (0	.12 mg/kg)										
16 All compounds non-detectab	ole except trick	loroethene (0	.28 mg/kg)										
17 All compounds non-detectab	ole except ethy	ibenzene (0.3	4 mg/kg)										
18 All compounds non-detectab	de except ben	zene (0.37 mg	/kg), toluene	(0.42 mg/kg), chlo	robenzene (0	.40 mg/kg), e	thylbenzene	(0.39 mg/kg),					
and xylenes (1.2 m	g/kg)												
All compounds non-detectab	ole except tolu	ene (0.11 mg/	kg)										
Reporting limit(s) for this sa	mple have bee	n raised due t	o high levels	of non-target comp	pounds								
Chromatogram pattern: Unic	lentified hydro	carbons >C1	5 -										
Chromatogram pattern: Unic 23	lentified hydro	carbons C9-0	.24										
Surrogate out of control limit	its because of	peak coelution	i with the san	npte									
mg/kg = milligram/kilogram													
TPHe = total netroleum hydroca	ng/l = milligram/liter TPUs z tetal astroleum hydrosybans es secolise												
Trig - usin periorem nyuroemoes so geome													
RPH = total recovable netroleum hydrocarbons (5520E&F)													
VOC = volatile organic compour	nds	(Franke)	r										

3

-

CH 206265 Emeryville Table.xls

2/29/2000

Second Semi-Annual 2005 Groundwater Report

TRANSMITTAL

November 23, 2005 G-R #385161

TO: Mr. Bruce H. Eppler Cambria Environmental Technology, Inc. 4111 Citrus Avenue, Suite 12 Rocklin, California 95677

FROM:	Deanna L. Harding	RE:	Former Chevron Asphalt Plant
	Project Coordinator		Terminal #206265 (100-1067)
	Gettler-Ryan Inc.		Powell @ Landregan
	6747 Sierra Court, Suite J		Emeryville, California
	Dublin, California 94568		MTI: 61H-1953

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	November 23, 2005	Groundwater Monitoring and Sampling Report Second Semi-Annual - Event of October 20, 2005

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your use</u> and distribution to the following:

Mr. Dana Thurman, ChevronTexaco Company, P.O. Box 6012, Room K2236, San Ramon, CA 94583

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *December 9, 2005*, at which time the final report will be distributed to the following:

cc: Mr. Barney Chan, Alameda County Health Care Services, Dept. of Environmental Health, 1153 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

Mr. Geoffrey B. Sears, Wareham Development Group, 1120 Nye Street, Suite 400, San Rafael, CA 94901

Enclosures

trans/206265(100-1067)-DT

6747 Sierra Court, Suite J • Dublin, CA 94568 • (925) 551-7555 • Fax (925) 551-7868 3140 Gold Camp Drive, Suite 170 • Rancho Cordova, CA 95670 • (916) 631-1300 • Fax (916) 631-1317 1364 N. McDowell Blvd., Suite B2 • Petaluma, CA 94964 • (707) 789-3255 • Fax (707) 789-3218

November 23, 2005 G-R Job #385161

Mr. Dana Thurman ChevronTexaco Company P.O. Box 6012, Room 2236 San Ramon, CA 94583

RE: Second Semi-Annual Event of October 20, 2005 Groundwater Monitoring & Sampling Report Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

Dear Mr. Thurman:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Groundwater Elevation Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Mircau Inamaria ONAL GA - FOR -Deanna L. Harding Project Coordinator No. 7504 ЫUЛ u Robert A. Lauritzen OFCALIE Senior Geologist, P.G. No. 7504

Figure 1: Groundwater Elevation Map Table 1: Groundwater Monitoring Data and Analytical Results Table 2: Groundwater Analytical Results Attachments: Standard Operating Procedure - Groundwater Sampling Field Data Sheets Chain of Custody Document and Laboratory Analytical Reports

6747 Sierra Court, Suite J • Dublin, CA 94568 • (925) 551-7555 • Fax (925) 551-7888 3140 Gold Camp Drive, Suite 170 • Rancho Cordova, CA 95670 • (916) 631-1300 • Fax (916) 631-1317 1364 N. McDowell Blvd., Suite B2 • Petaluma, CA 94954 • (707) 789-3255 • Fax (707) 789-3218

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

					SPH							
WELL ID/	TOC	GWE	DTW	SPHT (n)	REMOVED	TPH-G (pph)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)	TOG (ppb)
DATE	(H)	Parist.	914	442								
MW-7												
04/06/85	10.47					700	ND					
04/20/83	10.47						<10					**
02/07/88	10.47					17,000	<5.0				***	
07/07/88	10.47	8.57	1.90									
04/15/89	10.47	0.27	1.50			<50	< 0.5	<1.0	<1.0	<1.0		<3,000,000
04/14/89	10.47	6.22	4.24			1601	<0.1	<0.5	<0.1	<0.2		
07/31/89	10.47	0.25	4.24			1001	<0.1	-0.5	<0.1	<0.2		
07/31/89	10.47	7.82	2.65				< 0.3	<0.3	<0.3	<0.6	**	
12/08/89	10.47	7.66	2.05			<50	<0.3	< 0.3	< 0.3	0.6		
03/21/90	10.47	7.71	2.70			<50	<0.3	< 0.3	< 0.3	0.6		
06/19/90	10.47	7.23	3.24			-						
(19/20/90	10,47	5.90	4.33			< 50	15	<0.3	<0.3	<0.6		
09/21/90	10.47				-	<50	0.7	<0.5	<0.5	0.7		
12/28/90	30.47	7.35	3.12		-	<50	<0.5	<0.5	-0.5	<0.5		
05/10/91	10.47	6.94	3.55			< 50	~0.5	<0.5	<0.5	<0.5		
08/08/91	10.47	5.83	4.64			< 30	<0.5	<0.5	~0.5	<0.5		
11/27/91	10.47	6.81	3.66			< 50	<0.5	<0.5	~0.5	0.0		
01/29/92	10.47	7.23	3.24			<50	-0.5	<0.5	<0.5	0.9		_
03/26/92	10.47	7.86	2.61		**	<50	<0.5	<0.5	<0.5	0.9		
07/23/92	10.47	6.28	4.19			<50	<0.5	<0.5	<0.5	-0.5		14
10/28/92	10.47	6.08	4.39			<50	<0.5	<0.5	<0.5	<0.5		
05/04/93	10.47	INACCESSIBLE			**				**			
01/05/94	10.47	INACCESSIBLE										
05/13/94	10.47	6.06	4.41			<50	<0.5	<0.5	<0.5	<0.5		
10/24/94	10.47	5.44	5.03			<50	<0.5	<0.5	<0.5	<0.5		
04/19/95	10.47	5.94	4.53			<50	<0.5	<0.5	<0.5	<0.5		
11/06/95	10.47	5.36	5.11			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
04/26/96	10.47	6.07	4.40			<50	<0.5	<0.5	<0.5	<0.5	<5.0	**
10/10/96	10.47	5.45	5.02			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
04/22/97	10.47	5.93	4.54		**	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/16/97	10.47	6.05	4.42			<50	< 0.5	<0.5	<0.5	<0.5	<5.0	
05/04/98	10.47	6.05	4.42			<50	<10.5	<0.5	<0.5	<0.5	<2.5	
10/27/98	10.47	5.66	4.81			<50	<0.5	<0.5	< 0.5	<0.5	<2.5	-

206265 (100-1067).xls/#385161

1

As of 10/20/05

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

SPH												
WELL ID/	TOC	GWE	DTW	SPHT	REMOVED (vallows)	TPH-G (opb)	B (opb)	T (ppb)	E (ppb)	X (ppb)	(ppb)	(ppb)
DATE:::::::::::	0.7	Incity	U*7	04	1.00000		41.2		and the second			
MW-7 (cont)												
04/15/99	10.47	6.07	4.40			<50	< 0.5	<0.5	<0.5	<0.5	<5.0	**
11/04/99	10.47	5.50	4.97			<50	<0.5	< 0.5	< 0.5	<0.5	<2.5	
04/13/00	10.47	INACCESSIBL	Е					-				
10/05/00	10.47	UNABLE TO L	OCATE - WE	LL BURIED	DURING CONS	TRUCTION						**
04/23/01	10.47	UNABLE TO L	OCATE - WE	LL BURIEU	DURING CONS	TRUCTION						
10/04/01	10.47	UNABLE TO L	OCATE - WE	LL BURIED	DURING CONS	TRUCTION					-	**
04/01/02	10.47	UNABLE TO L	OCATE - WE	LL BURIED	DURING CONS	STRUCTION						
10/19/02	10.47	UNABLE TO L	OCATE - WE	AL BURIEL	DURING CONS	STRUCTION						
04/16/03	10.47	UNABLE TO L	OCATE - WE	LL BURIEL	DURING CONS	STRUCTION						**
10/29/03	10.47	UNABLE TO L	OCATE - WE	ELL BURIER	DURING CONS	STRUCTION				**		41
UNABLE TO	LOCATE	WELL BURIED	DURING CO	ONSTRUCT	ION							
MW-15												
03/21/90	11.01	6.29	4.72			<50	< 0.3	< 0.3	<0.3	<0.6		
06/19/90	11.01	6.23	4.78			<50	<0.3	< 0.3	<0.3	<0.6		
09/20/90	11.01	6.03	4.98			<50	<0.3	< 0.3	< 0.3	<0.6		
12/28/90	11.01	6.17	4.84			<50	<0.5	<0.5	<0.5	< 0.5		
05/10/91	11.01	6.43	4.58			<50	<0.5	<0.5	<0.5	<0.5		
08/08/91	11.01	5,98	5.03			<50	<0.5	<0.5	<0.5	<0.5		**
11/27/91	11.01	5.13	5.88			<50	<0.5	<0.5	<0.5	<0.5		
01/29/92	11.01	6.19	4.82			<50	1.9	2.6	0.8	2.6		
03/26/92	11.01	6.66	4.35			<50	< 0.5	<0.5	<0.5	<0.5		
07/23/92	11.01	5.97	5.04			<50	< 0.5	<0.5	<0.5	0.5		
10/28/92	11.01	5.84	5.17			<50	<0.5	<0.5	< 0.5	<0.5		
05/04/93	11.01	INACCESSIBU	Æ								-	
01/05/94	11.01	INACCESSIBL	E.									***
05/13/94	11.01	6.51	4.50			110	-0.5	0.7	<0.5	2.0		
10/24/94	11.01	5.84	5.17	-		<50	2.3	1.1	<0.5	<0.5		
04/19/95	11.01	6.24	4.77			<50	<0.5	< 0.5	<0.5	<0.5		
11/06/95	11.01	5.73	5.28			<50	<0.5	<0.5	<0.5	~0.5	<5.0	
04/26/96	11.01	6.41	4.60			<50	<0.5	<0.5	< 0.5	< 0.5	<5.0	
- 11 Mart 1 / 12												

206265 (100-1067).xls/#385161

2

As of 10/20/05

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

SPH												
WELL ID/ DATE	TOC (ft.)	GWE (msl)	DTW (fL)	SPHT (ft.)	REMOVED (gallons)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	МТВЕ (ррв)	TOG (ppb)
MW-15 (cont))	6.70	\$ 22			<50	<0.5	<0.5	<0.5	<0.5	< 5.0	
10/10/96	11.01	5.79	3.22	-		<50	<0.5	<0.5	<0.5	<0.5	< 5.0	
04/22/97	11.03	0.10	4.62		_	<50	<0.5	-0.5	<0.5	~0.5	<5.0	
10/16/97	11.01	0.19	4.62		-	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
05/04/98	11.01	7.02	3.99			<50	~0.5					
10/27/98	11.01	INACCESSIBLE										
04/15/99	11.01	5.26	5.75				-0.5	-0.5	<0.5	<0.5	<2.5	
11/04/99	11.01	4.83	6.18			< 50	<0.5	-0.50	<0.50	<0.50	<2.5	
04/13/00	11.01	4.09	6.92	0.00	0.00	0¢>	<0.50	<0.50	<0.50	~0.50	~2.0	
10/06/00	11.01	UNABLE TO LO	CATE - CE	MENTED O	VER DURING C							
04/23/01	11.01	UNABLE TO LO	CATE - CE	MENTED O	VER DURING C	ONSTRUCTI	ON					**
10/04/01	11.01	UNABLE TO LO	CATE - CE	MENTED O	VER DURING C	ONSTRUCTI	ON					
04/01/02	11.01	UNABLE TO LO	CATE - CE	MENTED O	VER DURING C	ONSTRUCTI	ON				**	
10/19/02	11.01	UNABLE TO LO	CATE - CE	MENTED O	VER DURING C	ONSTRUCTI	ON		41			
04/16/03	11.01	UNABLE TO LO	CATE - CE	EMENTED O	VER DURING C	ONSTRUCTI	ON					
10/29/03	11.01	UNABLE TO LO	CATE - CE	MENTED O	VER DURING C	ONSTRUCT	0N	**				
UNABLE TO	LOCATE	CEMENTED OVI	ER DURIN	G CONSTR	UCTION							
MW-17												
03/21/90	10.41	4.80	5.61			<50	<0.3	-0.3	<0.3	<0.6		
06/19/90	10.41					<50	<0.3	<0.3	~0.3	<0.6		
09/20/90	10.41	4.39	6.02			<50	<0.3	<0.3	<0.3	<0.6		
12/28/90	10.41	4.68	5.73			<50	<0.5	<0.5	<0.5	<0.5		
05/10/91	10.41	4.76	5.65			<50	<0.5	< 0.5	<0.5	0.8		
09/09/01	10.41	4.47	5.04		17	82	1.9	2.5	0.9	5.4		
1.027/01	10.41	4.41	6.00		_	<50	<0.5	<0.5	<0.5	<0.5		
0.1122/091	10.41	4.90	5.61		_	<50	-01.5	0.9	<0.5	0.5		
01/29/94	10.41	1.00	5.01			<50	<0.5	-00.5	<0.5	<0.5		
03/26/92	10.41	5.10	5.51			<50	<0.5	<0.5	<0.5	<0.5		
07/23/92	10.41	4.44	5.97		**	-30	1.8	71	1.4	6.5		
10/28/92	10.41	4,43	5.90			10	1.0	3.7	1.1	3.0		
05/04/93	10.41	2.88	7.53			60	0.8	L.C	1.1	2.0		

206265 (100-1067).xk/#385161

10.41

01/05/94

5.50

4.91

<50 3

< 0.5

0.7

As of 10/20/05

--

<0.5

< 0.5
Powell @ Landregan Emeryville, California

					SPH							3-10100000000
WELL ID/ DATE	тос (ft.)	GWE (nust)	DTW (%.)	SPHT (JL)	REMOVED (gallons)	TPH-G (ppb)	B (ppb)	T (pph)	Е (ppb)	Х (ррb)	MTBE (ppb)	TOG (ppb)
MW-17 (cont)												
05/13/94	10.41	5.24	5.17		-	<50	<0.5	<0.5	<0.5	<0.5		
10/24/94	10.41	4.33	6.08			<50	<0.5	<0.5	<0.5	<0.5		**
04/19/95	10.41	4.93	5.48			<50	<0.5	-0.5	<0.5	-0.5		
11/06/95	10.41	4.41	6.00			<50	<0.5	-0.5	<0.5	<5.0		
04/26/96	10.41	4.96	5.45			<50	<0.5	<0.5	<0.5	<5.0		
10/10/96	10.41	4.69	5.72			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
04/22/97	10.41	5.03	5.38			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/16/97	10.41	5.05	5.36			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
05/04/98	10.41	5.13	5.28			<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/27/98	10.41	INACCESSIBL	E			**						
04/15/99	10.41	INACCESSIBL	E		-	**			**			
11/04/99	10.41	4.69	5.72			<\$0	<0.5	-0.5	<0.5	<0.5	<2.5	
04/13/00	10.41	5.33	5.08	0.00	0.00	<50	<0.50	<0.50	<0.50	<0.50	<2.5	
10/05/00	10.41	4.80	5.61	0.00	0.00	< 50	<0.50	<0.50	<0.50	<0.50	<2.5	
04/23/01	10.41	5.13	5.28	0.00	0.00	<50	< 0.50	<0.50	<0.50	<0.50	<2.5	**
10/04/01	10.41	4.53	5.88	0.00	0.00	<50	< 0.50	<0.50	<0.50	<1.5	<2.5	
04/01/02	10.41	5.15	5.26	0.00	0.00	<50	< 0.50	<0.50	<0.50	<1.5	<2.5	
10/19/02	10.41	4.62	5.79	0.00	0.00	<50	<0.50	<0.50	< 0.50	<1.5	<2.5	
04/16/03	10.41	5.33	5.08	0.00	0.00	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
10/29/0312	10.41	4.62	5.79	0.00	0.00	<50	~0.5	<0.5	<0.5	<]	<0.5	
04/01/0412	10.41	5.16	5.25	0.00	0.00	<50	<0.5	<0.5	<0.5	<1	< 0.5	
10/01/0412	10.41	5.02	5.39	0.00	0.00	<50	<0.5	<0.7	<0.8	<1.6	<0.5	
04/08/0512	10.41	5.70	4.71	0.00	0.00	<50	<0.5	<0.5	-0.5	<1.0	<0.5	
10/20/0512	10.41	5.03	5.38	0.00	0.00	<50	<0.5	<0.5	<0.5	<1.0	<0.5	
MW-18												
03/21/90	9.80	4.65	5.15			<50	-0.3	<0.3	<0.3	<0.6		
06/19/90	9.80	4.61	5.19			<50	<0.3	-:0.3	<0.3	<0.6		
09/20/90	9.80	4.26	5.54			<50	<0.3	<0.3	-0.3	<0.6	**	
12/28/90	9.80	4.54	5.26			<50	<0.5	<0.5	<0.5	<0.5		
05/10/91	9.80	4.62	5.18			<50	<0.5	<0.5	<0.5	<0.5		

4

206265 (100-1067).xls/#385161

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

	meryv	une,	C-an	110011	1044		
SPH	2.24	200	1853				

WELL ID/ DATE	тос (fi.)	GWE (msl)	DTW (fl.)	SPHT (fi.)	SPH REMOVED (gallons)	TPH-G (pph)	8 (ppb)	Т (ррб)	E (ppb)	X (ppb)	MTBE (ppb)	TOG (ppb)
MW-18 (cont)												
08/08/91	9.80	4.15	5.45			52	<0.5	<0.5	<0.5	<0.5		
11/27/91	9.80	4.56	5.24			<50	0.6	1.5	0.6	2.1		
01/20/92	9.80	4.68	5.12			67	3.7	5.2	1.5	5.0		
03/26/92	9.80	4.96	4.84			80	<0.5	<0.5	<0.5	0.8		
07/23/92	9.80	4.31	5.49			50	1.3	2.1	0.5	3.0		~
10/28/92	9.80	4.33	5.47			54	< 0.5	1.3	<0.5	1.1		
05/04/93	9.80	4.73	5.07			<50	<0.5	< 0.5	< 0.5	<1.5		**
01/05/94	9.80	4.75	5.05			<50	< 0.5	0.5	< 0.5	0.6		**
05/13/94	9.80	5.04	4.76			<\$0	<0.5	<0.5	<0.5	< 0.5	**	
10/24/94	9.80	4.15	5.65			<50	<0.5	<0.5	< 0.5	<0.5		
04/19/95	9 80	4.70	5.10			<50	<0.5	<0.5	<0.5	<0.5		
11/06/95	9.80	4.23	5.57		-	<50	<0.5	<0.5	<0.5	< 0.5	<5.0	
04/26/96	9.80	4.73	5.07		-	<50	~0.5	<0.5	<0.5	< 0.5	<5.0	
10/10/96	9.80	INACCESSIBL	E		-							
04/22/97	9.80	4.77	5.03	**		<50	<0.5	<0.5	<0.5	-0.5	<5.0	
10/16/97	9.80	3.82	5.98			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
05/04/98	9.80	4.89	4.91			<50	<0.5	<0.5	<0.5	<0.5	<0.5	4
10/27/98	9.80	4.70	5.10			<50	< 0.5	<0.5	<0.5	<0.5	<2.5	
04/15/99	9.80	5.05	4.75			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
11/04/99	9.80	4.43	5.37			<50	< 0.5	<0.5	<0.5	<0.5	<2.5	
04/13/00	9.80	5.16	4.64	0.00	0.00	INACCESSIE	LE ⁴					
10/05/00	9.80	4.55	5.25	0.00	0.00	<50	<0.50	<0.50	<0.50	< 0.50	<2.5	
04/23/01	9.80	4.89	4.91	0.00	0.00	<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5	
10/04/03	9.80	4.33	5.47	0.00	0.00	<50	<0.50	<0.50	<0.50	<1.5	<2.5	
04/01/02	9.80	4.89	4.91	0.00	0.00	<50	<0.50	< 0.50	<0.50	<1.5	<2.5	
10/19/02	9.80	4.42	5.38	0.00	0.00	<50	<0.50	<0.50	<0.50	1.6	<2.5	
04/16/03	9,80	5.12	4.68	0.00	0.00	<50	< 0.5	<0.5	< 0.5	<1.5	<2.5	
10/29/0312	9,80	4.42	5.38	0.00	0.00	<50	<0.5	1	<0.5	0.7	1	
04/01/04	9.80	INACCESSIBL	E - VEHICLI	PARKED (OVER WELL			-	-			
10/01/04	9.80	INACCESSIBL	E - VEHICLI	E PARKED (OVER WELL							
04/08/0512	9.80	5.47	4.33	0.00	0.00	<50	<0.5	<0.5	< 0.5	<1.0	< 0.5	
10/20/05	9.80	INACCESSIBI	E - VEHIC	LE PARKEI	OVER WELL							-

206265 (100-1067);xls/9385161

5

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

					SPH							
WELL ID/	TOC	GWE	DTW	SPHT	REMOVED	TPH-G	В	т	E	X	MTBE	TOG
DATE	(ft.)	(msl)	(fi.)	(fi.)	(gallons)	(ppb)	(ppb)	(ppb)	(ppb)	(ррь)	(ppb)	(ppa)
MW-19A								-0.4	-0.5	-0.5	<5.0	
11/06/95	9.96	5.11	4.85			420	<0.5	<0.5	<0.5	<0.5	<5.0	
04/26/96	9.96	5.78	4.18			<50	<0.5	<0.5	<0.5	<0.5	< 3.0	
10/10/96	9.96	5.40	4.56			610	<0.5	<0.5	<0.5	<0.5	21	
04/22/97	9.96	5.79	4.17			432	<0.5	<0.5	-0.5	<0.5	<5.0	
10/16/97	9.96	5.83	4.13			380	<0.5	<0.5	<0.5	<0.5	22	
05/04/98	9.96	5.93	4.03			2002	<0.5	<0.5	<0.5	<0.5		4.9
05/04/98	9.96	5.93	4.03			**					<2.0	
10/27/98	9.96	5.75	4.21			170 ²	<0.5	<0.5	<0.5	<0.5	12/<2.0	
04/15/99	9.96	INACCESSIBLE								**		
11/04/99	9,96	5.45	4.51			290	<0.5	<0.5	<0.5	<0.5	26.8/<0.5	
04/13/00	9.96	6.81	3.15	0.00	0.00	<50	< 0.50	<0.50	<0.50	<0.50	<2.5	
10/05/00	9.96	5.51	4.45	0.00	0.00	13010	-0.50	< 0.50	<0.50	<0.50	26/<2.0°	
04/23/01	9.96	5.89	4.07	0.00	0.00	10010	<0.50	<0.50	<0.50	~0.50	3.4/<2.0"	**
10/04/01	9.96	5.28	4.68	0.00	0.00	380	<0.50	<0.50	<0.50	<1.5	<2.5	
04/01/02	9.96	5.82	4.14	0.00	0.00	310	<0.50	<0.50	~0.50	<1.5	<2.5	
10/19/02	9.96	5.36	4.60	0.00	0.00	300	<0.50	<0.50	<0.50	<1.5	<2.5	
04/16/03	9.96	6.25	3.71	0.00	0.00	280	<0.5	< 0.5	< 0.5	<1.5	<2.5	
10/29/0312	9.96	5.36	4.60	0.00	0.00	330	<0.5	< 0.5	<0.5	<	<0.5	**
04/01/0412	9.96	5.91	4.05	0.00	0.00	260	<0.5	<0.5	<0.5	<1	<0.5	
10/01/0412	9.96	5.66	4.30	0.00	0.00	260	<0.5	<0.7	<0.8	<1.6	<0.5	
04/08/0512	9.96	6.88	3.08	0.00	0.00	190	<0.5	<0.5	<0.5	<1.0	< 0.5	
10/20/0512	9,96	5.58	4.38	0.00	0.00	180	<0.5	<0.5	<0.5	<1.0	<0.5	
10.20100	2120											
MW-I												
04/26/85	10.67						99			6.0	-	-
09/11/87	10.67						63				**	
07/07/88	10.67			-		<100	55					**
04/13/89	10.67	6.95	3.72	-	-							
04/14/89	10.67	**		-	-	<5,000	34	<5.0	<5.0	<10		
07/31/89	10,67	4.95	5.72			7,000	57	1.2	< 0.2	1.6		
12/08/89	10.67	5.87	4.80	**			26	0.4	0.9	2.0		
	10003	8- 175- T										

6

206265 (100-1067).xls/#385161

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

200000000000000000000000000000000000000		8-3-22000200052			SPH							
WELL ID/	TOC	GWE	DTW	SPHT	REMOVED	TPH-G	B (onb)	T (nph)	E (ppb)	Х (прб)	MTBE (pph)	TOG (ppb)
DATE	()1.)	(8651)		U-7	Records	11-9	44.5	<i>u</i> /	Contraction of the second			
MW-1 (cont)												
03/21/90	10.67	5.93	4.74			3,500	120	9.0	3.0	3.0		
06/19/90	10.67	5.92	4.75	***		2,700	100	< 0.3	<0.3	7.0		**
09/20/90	10.67	5.60	5.07	-				-		-		
09/21/90	10.67					2,200	120	2.0	2.0	0.79		
12/28/90	10.67	5.76	4.91			720	44	2.0	<0.5	9.0		
05/10/91	10.67	5.37	5.30			530	47	2.0	0.5	8.0	-	-
08/08/91	10.67	4.82	5.85			1,400	37	8.3	3.7	12		-
11/27/94	10.67	5.54	5.13			840	16	7.1	4.5	11		
01/29/92	10.67	5.85	4.82			350	18	9.3	3.7	7.7		
03/26/92	10.67	6.35	4.32			420 ²	19	2.2	1.2	4.0		44
07/23/92	10.67	5.25	5.42			$4,000^{2}$	50	82	40	160		
10/28/92	10.67	5.11	5.56			980	36	6.7	3.0	10		
05/04/93	10.67	4.37	6.30			650	9.4	2.4	1.2	4.5		
01/05/94	10.67	INACCESSIBL	Æ								**	
NOT MONITO	DRED/SAM	PLED										
,												
MW-2							-10					
04/26/85	13.78					-	<10					
09/11/87	13.78		**				-					
07/07/88	13.78	-				<100	<5.0	-				
04/13/89	13.78	11.16	2.62									
04/14/89	13.78				**	<100	<0.2	<0.2	<0.2	<0.4		
07/31/89	13.78	9.15	4.63			<100	<0.2	<1.0	<0.2	<0.4		
12/08/89	13.78	7.80	5.98				<0.3	<0.3	<0.3	<0.6		**
03/21/90	13.78	7.93	5.85			<50	<0.3	<0.3	<0.3	<0.6		
06/19/90	13.78	7.83	5.95	**		<50	<0.3	<0.3	<0.3	<0.6		
09/20/90	13.78	6.92	6.86									
09/21/90	13,78				-	<50	<1.5	<1.5	<1.5	<4.5		**
12/28/90	13.78	7.44	6.34			<50	<0.5	<0.5	<0.5	<0.5		
05/10/91	13.78	7.82	5.96			<50	<0.5	<0.5	<0.5	<0.5		
08/08/91	13.78	6.12	7.66			<50	<0.5	<0.5	<0.5	<0_5		**
11/27/91	13.78	5.74	8.04			<50	< 0.5	<0.5	<0.5	<0.5		

206265 (100-1067):x3s/#385161

 $\overline{\tau}$

Powell @ Landregan Emeryville, California

0.01061616161616					SPH COL							
WELL ID/	TOC	GWE	DTW	SPHT	REMOVED	TPH-G	₿	ः ग ः	E	× • •	MTBE	TOG
DATE	(ft.)	(msl)	(11.)	(ft.)	(gallons)	(ppb)	(ррв)	(ppb)	(ppb)	(ppb)	(pph)	(pp8)
MW-2 (cont)												
01/29/92	13.78	7.77	6.01			<50	<0.5	<0.5	<0.5	<0.5		**
03/26/92	13.78	7.68	6.10	-		<50	<0.5	<0.5	<0.5	<0.5		
07/23/92	13.78	6.39	7.39			<50	<0.5	< 0.5	<0.5	0.8		
10/28/92	13.78	6.27	7.51	**		55	1.3	6.9	1.1	5.1		
05/04/93	13.78	INACCESSIBLE										
01/05/94	13.78	INACCESSIBLE									**	
10/24/94	13.78	DRY										
04/19/95	13.78	11.28	2.51	0.01								**
ABANDONED	•											
MW-2A												
11/06/95	12.45	7.94	4.51			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
04/26/96	12.45	8.35	4.10			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/10/96	12.45	7.13	5.32			60 ²	<0.5	<0.5	<0.5	<0.5	<5.0	
04/22/97	12.45	8.50	3.95	-		<50	0.8	<0.5	<0.5	<0.5	<5.0	
10/16/97	12.45	7.77	4.68			80	<0.5	<0.5	<0.5	<0.5	<5.0	
05/04/98	12.45	8.91	3.54			96 ²	<0.5	<0.5	<0.5	<0.5	<2.5	**
10/27/98	12.45	7.31	5.14			170 ²	<0.5	<0.5	<0.5	9.6	44/<2.07	
04/15/99	12.45	9.83	2.62			116	0.609	< 0.5	<0.5	<0.5	<5.0	
11/04/99	12.45	7.38	5.07	** .		<50	<0.5	<0.5	< 0.5	<0.5	<2.5	
NOT MONITO	RED/SAM	PLED										
MW-3												
04/26/85	11.73						<10			**	**	
09/11/87	11.73			**		**	<0.5					**
07/07/88	11.73					<100	<5.0					
04/13/89	11.73	9.39	2.34							**		
04/14/89	11.73		**			<100	<0.2	<0.2	<0.2	<0.4		<3,000,000
07/31/89	11.73	6.94	4.79			<100	<0.2	<1.0	<0.2	<0.4		
12/08/89	11.73	8.70	3.03				< 0.3	< 0.3	<0.3	<0.6		
03/21/90	11.73	9.18	2.55			<50	<0.3	< 0.3	< 0.3	<0.6	**	**
06/19/90	11.73	8.97	2.76			<50	<0.3	<0.3	< 0.3	<0.6		
09/20/90	11.73	7.30	4.43	-				**				

206265 (100-1067).xls/#385161

8

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

WELL ID/	TOC (ff)	GWE (msl)	DTW (ft.)	SPHT (fl.)	SPH REMOVED (gallons)	TPH-G (ppb)	B (ppb)	T (pph)	E (pph)	X (pph)	MTBE (ppb)	TOG (ppb)
DATE												
MW-3 (cont)								-0.1	-0.1	-0.6		
09/21/90	11.73					<50	<0_3	<0.3	-0.5	<0.0		
12/28/90	11.73	8.06	3.67	**		<50	<0.5	<0.5	-0.5	<0.5		
05/10/91	11.73	8.90	2.83	-	-	<50	<0.5	<0.5	<0.5	<0.5		
08/08/91	11.73	6.64	5.09			<50	<0.5	<0.5	<0.5	<0.5		
11/27/91	11.73	6.36	5.37			<50	<0.5	<0.5	<0.5	<0.5	12	
01/29/92	11.73	8.27	3.46			<50	<0.5	<0.5	<0.5	<0.5		
03/26/92	11.73	9.63	2.10			<50	<0.5	<0.5	<0.5	<0.5	-	
07/23/92	11.73	7.13	4.60			<50	~0.5	<0.5	<0.5	<0.5		
10/28/92	11.73	6.66	5.07			92	1.8	12	2.0	10		
05/04/93	11.73	INACCESSIBL	Б							**		
01/05/94	11.73	[NACCESSIBL]	E							**		
NOT MONITO	DRED/SAM	PLED										
MW-4												
04/26/85			**		-	3,100	<10					
09/11/87			**				<0.5					
07/07/88		**				<100	<5.0			**		
04/13/89			2.12	**								-1 000 000
04/14/89	**					380'	<0.5	<1.0	<1.0	<1.0		<3,000,000
NOT MONIT	ORED/SAM	IPLED										
MW-5												
04/26/85		-	**			1,600	<100					
09/11/87							<10					
07/07/88		**				<100	<5.0					_
04/13/89			2.79			**				<1.0		<3.000.000
04/14/89		**	-			4,300'	<0.5	<1.0	<1.0	<1.0		~3,000,000
NOT MONIF	ORED/SAM	IPLED										
MW-6												
04/26/85				**		580	<100					
09/11/87			**		**		<10					
07/07/88						8,000	<5.0		**			-
04/13/89			1.90		-	-						
206265 (100	-1067).xis#3	85161				9						As of 10/20/05

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

6.0.0.0.0.0			200.0		SPH	THUC			P	x	MTBF	TOG
WELL ID/ DATE	тос (Л.)	GWE (msl)	(R.)	(ft.)	(gallons)	(ppb)	в (ppb)	(ppb)	(ррб)	(ppb)	(ppb)	(ppb)
MW-6 (cont)												
04/14/89						3,300	<0.5	<1.0	<1.0	<1.0		<3,000,000
NOT MONITO	DRED/SAMP	LED										
MW-8												
04/26/85	10.46						ND					
09/11/87	10.46						<10					**
07/07/88	10.46		**			20,000	<5.0	44				
04/13/89	10.46	7.66	2.80	**	-						**	
04/14/89	10.46				**	<50	<0.5	<1.0	<1.0	<1.0	<3,000	<3,000,000
07/31/89	10.46	4.76	5.70			<50	<0.1	<0.5	<0.1	<0.2		
12/08/89	10.46	6.33	4.13				<0.3	<0.3	<0.3	<0.6		
03/21/90	10.46	6.39	4.07			<50	< 0.3	<0.3	<0.3	<0.6		
06/19/90	10.46	6.21	4.25			<50	<10.3	<0.3	<0.3	<0.6		
09/20/90	10.46	5.47	4.99									
09/21/90	10.46					<50	6.0	<0.3	<0.3	<0.6		
12/28/90	10.46	6.07	4.39			<50	-0.5	<0.5	<0.5	<0.5		
05/10/91	10.46	6.33	4.13		-	<50	~0.5	<0.5	<0.5	-:0.5		
08/08/91	10.46	4.93	5.53			<50	<0.5	<0.5	<0.5	<0.5		
11/27/91	10.46	5.87	4.59		**	<50	<0.5	~0.5	<0.5	<0.5		
01/29/92	10.46	5.16	5.30			<50	<0.5	<0.5	-0.5	<0.5	8.0	
03/26/92	10.46	6.87	3.59			<50	< 0.5	<0.5	<0.5	0.7		
07/23/92	10.46	5,40	5.06			<50	<0.5	<0.5	<0.5	<0.5		
10/28/92	10.46	INACCESSIBLE					**					
05/04/93	10.46	INACCESSIBLE										-
01/05/94	10.46	INACCESSIBLE			-							
05/13/94	10.46	4.87	5.59			<50	<0.5	-0.5	<0.5	<0.5		
10/24/94	10.46	INACCESSIBLE										
04/19/953	10.46											
11/06/95	10.46	INACCESSIBLE								**		
04/26/96	10.46	INACCESSIBLE										
10/10/96	10.46	INACCESSIBLE										**
04/22/97	10.46	4.67	5.79			<50	<0.5	<1).5	< 0.5	< 0.5	<5.0	

206265 (100-1067).xls/#385161

10

Powell @ Landregan Emeryville, California

toroscentilitette		0.0000000000000000000000000000000000000	C		SPH							
WELL ID/	TOC	GWE	DTW	SPHT	REMOVED	TPH-G	B		E	X	MTBE	TOG
DATE	(fL)	(msi)	(ft.)	(fl.)	(gallons)	(ppb)	(pph)	(ppb)	(pph)	(ppb)	(ppo)	(ppa)
MW-8 (cont)												
10/16/97	10.46	5.14	5.32			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
05/04/08	10.46	4.01	5.55			<50	<0.5	<0.5	< 0.5	<0.5	<2.5	
10/27/08	10.46	4.49	5.97			<50	< 0.5	<0.5	<0.5	<0.5	<2.5	
04/15/99	10.46	5.21	5.25			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
11/04/00	10.46	4.04	6.42		-	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
NOT MONITO	10740 AMDI	1.04	0.78									
NOTMONIN	JKED/SAME	000										
MW-9												
04/26/85												
09/11/8/						400						
0707788	UNIADI E TO	LOCATE										
NOT MONITY	ONABLE TO OBEDIC AMB	LED										
NOTMONIN	DRED/SAME	LED										
MW-10												
07/07/88	10.82				**		<5.0		-			
04/14/89	10.82					<50	<0.5	<1.0	<1.0	<1.0	**	<3,000,000
07/31/89	10.82			**		<50	<0.1	<0.5	<0.1	<0.2		**
12/08/89	10.82						<0.3	<0.3	<0.3	<0.6		
03/21/90	10.82	6.22	4.60			<50	< 0.3	<0.3	<0.3	<0.6		**
06/19/90	10.82	5.93	4.89			<50	<0.3	< 0.3	<0.3	<0.6		-
09/20/90	10.82	5.05	5.77									**
09/21/90	10.82					<50	<0.3	<0.3	<0.3	<0.6		
12/28/90	10.82	5.83	4.99		-	<50	<0.5	-0.5	<0.5	<0,5		
05/10/91	10.82	5.02	5.80		-	<50	<0.5	<0.5	<0.5	<0.5		
08/08/91	10.82	4.96	5.86		-	~50	<0.5	<0.5	<0.5	<0.5		
11/27/91	10.82	5.43	5.39			<50	<0.5	<0.5	<0.5	<0.5		
01/29/92	10.82	5.38	5.44			<50	<0.5	<0.5	<0.5	<0.5		
03/26/92	10.82	5.86	4.96			<50	<0.5	<0.5	<0.5	<0.5		
07/23/92	10.82	5.02	5.80			<50	<0.5	1.8	0.5	1.9		
10/28/92	10.82	4.76	6.06		-	<50	0.6	0.7	<0.5	1.2		**
05/04/93	10.82	INACCESSIB	LE					**				
01/05/94	10.82	4.90	5.92			<50	<0.5	<0.5	<0.5	0.6		

206265 (100-1067).xls/#385161

11

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

					SPH		.0.0					
WELL ID/ DATE	TOC (fL)	GWE (msl)	DTW (fi.)	SPHT (fl.)	REMOVED (gallons)	TPH-G (pph)	B (pph)	T (pph)	E (pph)	X (ppb)	MTBE (ppb)	TOG (ppb)
010100-000												
MW-10 (cont))									1.7		
05/13/94	10.82	5.73	5.09		**	140	-:0_5	<0.5	<0.5	1.3		
10/24/94	10.82	4.58	6.24			<50	<0.5	<0.5	<0.5	<0.5	-	
04/19/95	10.82	5.56	5.26			<50	<0.5	-0.5	<0.5	<0.5		
11/06/95	10.82	4.57	6.25			<50	<0.5	<0.5	<0.5	<0.5	< 3.0	
04/26/96	10.82	INACCESSIBLE									a constal	
10/10/96	10.82	4,72	6.10			<50	<1).5	<0.5	<0.5	0.6	34/<5.0*	
04/22/97	10.82	5.32	5.50			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/16/97	10.82	5.74	5.08			<50	<0.5	<0.5	<0.5	<:0.5	34	
05/04/98	10.82	5.81	5.01		-	<50	<0.5	<0.5	<0.5	<0.5	*	**
10/27/98	10.82	5.30	5.52			<50	<0.5	<0.5	<0.5	<0.5	<2.5	
04/15/99	10.82	6.27	4.55			<50	<0.5	<0.5	<0.5	<0.5	9.45	
11/04/99	10.82	4.61	6.21			<50	<0.5	<0.5	<0.5	<0.5	21	
NOT MONITO	ORED/SAM	PLED										
MW-11	11.28						<5.0					
07/07/88	11.38				_	<50	<0.5	<1.0	<1.0	<1.0	<3,000	
04/14/89	11.20		-			<100	<0.2	<0.2	<0.2	<0.2		
07/31/89	11.38						<0.3	<0.3	<0.3	<0.6		
12/08/89	11.38		4.92			<50	<0.3	<0.3	<0.3	<0.6		
03/21/90	11.38	6.56	4.04			<50	<0.3	<0.3	<0.3	<0.6		
06/19/90	11.38	6.24	5.14			-0-0						
09/20/90	11.38	5.27	0.11			< 50	<0.3	<0.3	<0.3	<0.6		
09/21/90	11.38	-		-		~50	<0.5	-0.5	<0.5	-0.5		
12/28/90	11.38	6.22	5.10			~20	<0.5	<0.5	<0.5	<0.5		
05/10/91	11.38	3.55	7.83			< 30	~0.5	<0.5	<0.5	<0.5		
08/08/91	11.38	5.06	6.32			< 50	<0.5	<0.5	<0.5	<0.5		
11/27/91	11.38	5.71	5.67			<50	<0.5	<0.5	<0.5	<0.5	_	
01/29/92	11.38	5.55	5.83			<50	<0.5	<0.5	<0.5	<0.5	_	
03/26/92	11.38	7.29	4.09			<\$0	<0.5	<0.5	-0.5	<0.5		
07/23/92	11.38	5.19	6.19		-	<50	~0.5	<0.5	-0.5	-0.5		
10/28/92	11.38	4.87	6.51			<50	<0.5	<0.5	<0.5	<0.5		
05/04/93	11.38	INACCESSIBLE	2									

206265 (100-1067).xls/#385161

12

Powell @ Landregan Emeryville, California

WELL ID/	тос	GWE	DTW	SPHT	SPH REMOVED	TPH-G	8	т	E	x	MTBE	TOG
DATE	(fi.)	(msl)	(fi.)	(fi.)	(gallons)	(pp&)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)	(ppv)
MW-11 (cont))	March Concernant P										
01/05/94	11.38	INACCESSIBLE				<50	<0.5	<0.5	<0.5	<0.5		
05/13/94	11.38	5.71	5.67			<50	<0.5	<0.5	<0.5	<0.5		
10/24/94	11.38	4.59	6.79			<00 e02	0.6	<0.5	<0.5	0.5		
04/19/95	11.38	5.69	5.69			36	0.6					
11/06/95	11.38	INACCESSIBLE			-	-						
04/26/96	11.38	INACCESSIBLE							-			
10/10/96	11.38	INACCESSIBLE			**		-0.5	<0.4	-0.5	<0.5	<5.0	
04/22/97	11.38	5.44	5.94			<50	<0.5	<0.5	~0.5	-0.5	18	
10/16/97	11.38	5.90	5.48			<50	<0.5	<0.5	<0.5	<0.5	4	_
05/04/98	11.38	5.86	5.52			<50	<0.5	<0.5	<0.5	<0.5	12/22 07	_
10/27/98	11.38	5.23	6.15		-	<50	<0.5		<0.5	<0.3	12/52.0	
04/15/99	11.38	6.38	5.00		-	<50	-0.5	<0.5	<0.5	<0.5	< 3.0	
11/04/99	11.38	4.69	6.69		-	<50	<0.5	<0.5	<0.5	<0.5	9.88	
NOT MONIT	ORED/SAM	PLED										
MW-12												
07/07/88	13.03					<100	<5.0					-2 000 000
04/14/89	13.03					<50	<0.5	<1.0	<1.0	<1.0		<3,000,000
07/31/89	13.03	**				<100	<0.1	<0.5	-0.1	<0.2		
12/08/89	13.03	-					<0.3	<0.3	<0.3	<0.6	**	
03/21/90	13.03	6.27	6.76			<50	<0.3	<0.3	<0.3	<0.3		
06/19/90	13.03	6.41	6.62			<50	<0.3	<0.3	<0.3	<0.3		
09/20/90	13.03	8.03	5.00									
09/21/90	13.03					<50	< 0.3	<0.3	<0.3	<0.3		
12/28/90	13.03	6.41	6.62			<50	<0.5	< 0.5	<0.5	<0.5		**
05/10/91	13.03	6.55	6.48			~50	<0.5	< 0.5	<0.5	< 0.5		
08/08/91	13.03	5.02	8.01	-		<50	<0.5	<0.5	<0.5	<0.5		
11/27/91	13.03	5.08	7.95			<50	~0.5	<0.5	<0.5	<0.5		
01/29/92	13.03	5.35	7.68			<50	<0.5	<0.5	<0.5	1.0		
03/26/92	13.03	6.43	6.60			<50	< 0.5	-0.5	<0.5	<0.5		
07/23/02	13.03	UNABLE TO L	OCATE									
NOT MONT	LI JU MARKELI GOV	ADLED	0.01110									
NOT MORE	ORCOLARNA	ALL LILLY										

206263 (100-1067).xls/#385161

13

Powell @ Landregan Emeryville, California

					SPH	animent en		00000	T C C C C C C C C C C C C C C C C C C C	0	MTRE	TOG
WELL ID/	TOC	GWE	DTW	SPH1 (B)	(pallons)	(oob)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)
DATE	(JL)	(0040)	04	. U + J	(Kanada)	44-3	44.					
MW-13												
03/21/90	11.15	7.07	4.08			480	<0.3	< 0.3	1.0	5.0		
06/19/90	11.15	6.81	4.34			180	<0.3	<0.3	0.8	3.0		
09/20/90	11.15	5.84	5.31			150	<0.3	<0.3	~0.3	0.54		
12/28/90	11.15	6.36	4.79			160	<0.5	~0.5	<0.5	1.0		
05/10/91	11.15	6.95	4.20			110	<0.5	<0.5	<0,5	2.0		
08/08/912	11.15	6.02	5.13			220	<0.5	<0.5	<0.5	1.8		**
11/27/91	11.15	6.43	4.72			70	< 0.5	<0.5	<0.5	1.2		
01/20/97	11.15	6.46	4.69			150	<0.5	< 0.5	3.1	7.1		
83/26/92	11.15	7.11	4.04		**	<50	~0.5	<0.5	< 0.5	<0.5		
07/23/92	11.15	6.03	5.12			190	<0.5	<0.5	<0.5	2.1		
10/28/92	11.15	5.85	5.30			190	<0.5	<0.5	< 0.5	2.0		
05/04/03	11.15	INACCESSIBLE	E									
01/05/04	11.15	DIACCESSIBLI	E								-	**
05/13/04	11.15	5.87	5.28			220	<0.5	1.2	<0.5	1.7		-
10/34/04	11.15	5.11	6.04			<50	<0.5	<0.5	< 0.5	<0.5		
04/10/05	11.15	5.78	5.37			140^{2}	<0.5	<0.5	< 0.5	1.2		
11/06/05	11.15	5.02	6.13			<50	<0.5	-:0.5	<0.5	<0.5	<5.0	
01/26/96	11.15	5.02	5.22			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
04/20/90	11.12	IN ACCESSIB)	12 June							-		
10/10/96	11.12	5.60	5.46			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
04/22/97	10.15	5.09	5.17			<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/16/97	11.15	5.98	5.17			<50	<0.5	<0.5	<0.5	<0.5	<2.5	
05/04/98	11.12	5.94	5.21	-		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/2//98	11.12	Diff.	0.01	-		-24						
04/15/99	11.15	INACCESSIBL	45. 			50	<0.5	<0.5	<0.5	<0.5	<2.5	
11/04/99	11.15	5.09	0.00			~.50		-0.2	-0.0	.015		
NOT MONT	ORED/SAM	FLED										
MW-14												
03/21/90	9.78	8.87	0.91			170	<0.3	<0.3	<0.4	2.0		
06/19/90	9.78	8.75	1.03			77	<0.3	<0.3	< 0.3	<0.6		
09/20/90	9.78	7.25	2.53			<50	<0.3	<0.3	<0.3	<0.6		
12/28/90	9.78	8.17	1.61			<50	<0.5	-0.5	<0.5	<0.5		

206265 (100-1067).xls/#385161

14

Powell @ Landregan Emeryville, California

					SPH			:::::S::0::C*:S:??				
WELL ID/	TOC	GWE	DTW	SPHT	REMOVED	TPH-G	B	Т	E	x	MTBE	TOG
DATE	(R.)	(msl)	(fi.)	(ft.)	(gallons)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(ppn)
MW-14 (cont)	0.70	0.64	1.22			<50	-0.5	<0.5	<0.5	<0.5		
05/10/91	9.78	8.30	7.45			<50	-0.5	<0.5	<0.5	<0.5		
38/08/91	9.78	7.33	2.43			~50	<0.5	<0.5	<0.5	<0.5		
11/27/91	9.78	0.19	2.39			<50	<0.5	<0.5	<0.5	<0.5		
11/29/92	9.78	8.68	0.24			<50	<0.0 c0.5	<0.5	<0.5	<0.5		
03/26/92	9.78	9.04	0.74	-		<50	~0.5	-0.5	<0.5	0.8		
07/23/92	9.78	7.48	2.30			<50	0.0		0.8	3.8		
10/28/92	9.78	7.02	2.76			20	9.7	4.0	0.0	3.0		
ABANDONED)											
MW-16									-0.1	-01		
03/21/90	11.11	5.27	5.84			<50	< 0.3	<0.3	<0.3	<0.6		
06/19/90	11.11	5.21	5.90			<50	<0.3	<0.3	<0.3	-0.6		
09/20/90	11.11	4.75	6.36			<50	<0.3	<0.3	<0.3	<0.6		
12/28/90	11.11	5.13	5.98		-	<50	<0.5	-:0.5	<0.5	<0.5		
05/10/91	11.11	5.22	5.89			<50	<0.5	<0.5	<0.5	<0.5		
08/08/91	11.11	4.83	6.28		-	<50	<0.5	<0.5	<0.5	~0.5		
11/27/91	11.11	5.49	5.62			<50	<0.5	<0.5	<0.5	~0.5		
01/29/92	11.11	5.23	5.88			65	3.6	6.2	1.9	6.6		
03/26/92	11.11	5.55	5.56			270	21	27	9.5	41		
07/23/92	11.11	4.82	6.29	**		<50	<0.5	<0.5	<0.5	0.7		
10/28/92	11.11	4.82	6.29			<50	0.9	1.4	<0.5	1.1		
05/04/93	11.11	5.36	5.75			51	< 0.5	1.0	0.6	1.7		**
01/05/94	11.11	INACCESSIBI	LE									
NOT MONITO	DRED/SAMPI	.ED										
MW-19												
03/21/90	8.45	3.45	5.00			<50	<0.3	<0.3	<0.3	<0.6		
06/19/90	8.45	3.39	5.06	-		<50	< 0.3	<0.3	<0.3	~0.6		
09/20/90	8.45	3.20	5.25		-	<50	< 0.3	<0.3	<0.3	<0.6		
12/28/90	8.45	3.38	5.07			66	<0.5	<0.5	<0.5	< 0.5		
05/10/913	8.45	3.43	5.02			68	< 0.5	<0.5	<0.5	<0.5		
08/08/91	8.45	3.28	5.17			58	< 0.5	<0.5	< 0.5	<0.5		
11/27/91	8.45	3.39	5.06			<50	< 0.5	<0.5	<0.5	< 0.5		
1.104000.21	1. T. L.	0.00	2700			2.0	10.00	-012	-010			

206265 (100-1067).xbs/#385161

15

Powell @ Landregan Emeryville, California

					SPH							
WELL ID/ DATE	TOC (fl.)	GWE (msl)	DTW (%)	SPHT (fl.)	REMOVED (gallons)	TPH-G (ppb)	B (pph)	Т (ppb)	E (ppb)	Х (ррб)	MTBE (ppb)	ТОС (рув)
MW-19 (cont))									2.1		
01/29/92	8.45	3.52	4.93			<50	1.7	2.6	0.7	2.1		-
03/26/92	8.45	3.66	4.79			80	<0.5	<0.5	<0.5	<0.5		
07/23/92	8.45	3.23	5.22			70	0.6	0.5	<0.5	1.5		
10/28/92	8.45	3.29	5.16			170	4.3	28	5.1	24		
05/04/93	8.45	3.52	4.93			120	2.0	4.7	2.8	8.1		
01/05/94	8.45	3.54	4.91			<50	2.0	1.4	1.7	2.5		
05/13/94	8.45	4.27	4.18	**		<50	<0.5	0.9	<0.5	<0.5		
10/24/94	8.45	3.60	4.85			<50	<0.5	<0.5	<0.5	<0.5		
04/19/95	8.45	4.25	4.20			270^{2}	<0.5	< 0.5	<0.5	<0.5		
ABANDONEI	D											
BAILER BLA	ANK											
05/10/91						<50	<0.5	<0.5	<0.5	<0.5		
08/08/91						<50	<0.5	<0.5	-0.5	<0.5		
11/27/91						<50	<0.5	<0.5	<0.5	<0.5		**
01/29/92						<50	<0.5	<0.5	<0.5	<0.5		
03/26/92					**	<50	<0.5	<0.5	<0.5	<0.5		
07/23/92						<50	<0.5	<0.5	<0.5	< 0.5		
10/28/92						<50	<0.5	<0.5	<0.5	<0.5		
05/04/93	~~					<50	<0.5	<0.5	<0.5	<1.5		
01/05/94			-			<50	< 0.5	< 0.5	<0.5	<0.5		**
05/13/94		**				<50	<0.5	<0.5	<0.5	<0.5	**	
TRIP BLAN	к											
04/14/89						<50	<0.5	<1.0	<1.0	<1.0		
07/31/89						<50	<0.1	<0.5	<0.5	<0.2		**
12/08/89							<0.3	< 0.3	< 0.3	<0.6		**
03/21/90						<50	< 0.3	< 0.3	<0.3	<0.6		
03/26/90					-	<50	<0.3	< 0.3	<0.3	<0.6		
06/19/90					-	<50	<0.3	<0.3	<0.3	<0.6		**
09/21/90						<50	<0.3	-0.3	<0.3	<0.6		
12/28/90						<50	<0.5	< 0.5	<0.5	<0.6		
05/10/91						~50	<0.5	<0.5	<0.5	<0.5		
0.00100.01												

206265 (100-1067),xls/#385161

jt.

16

Powell @ Landregan Emeryville, California

				100001019999	SPH	5.0000000000000000000000000000000000000		0.001012292333			1010212112121	
WELL ID/ DATE	TOC (fk)	GWE (msl)	DTW (ft.)	SPHT (ft.)	REMOVED (gallons)	ТРН-G <i>(ppb)</i>	B (ppb)	T (pph)	E (ppb)	X (pph)	МТВЕ (ppb)	TOG (ppb)
TRIP BLANK	(cont)											
08/08/91						<50	<0.5	<0.5	<0.5	< 0.5		
1/27/91						<50	<0.5	<0.5	<0.5	<0.5		
01/29/92						<50	<0.5	<0.5	<0.5	<0.5		
03/26/92					**	<50	<0.5	<0.5	<0.5	<0.5		
07/23/92					**	<50	<0.5	<0.5	<0.5	<0.5		**
0/28/92						<50	<0.5	<0.5	<0.5	<0.5		
05/04/93						<\$0	<0.5	<0.5	<0.5	<1.5		
01/05/94						<50	<0.5	<0.5	<0.5	~0.5		
05/13/94						<50	< 0.5	<0.5	<0.5	<0.5		
10/24/94						<50	< 0.5	<0.5	<0.5	<0.5		
04/19/95						<\$0	< 0.5	<0.5	< 0.5	< 0.5		
11/06/95	-					<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	**
04/26/96						<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/10/96						<50	<0.5	<0.5	<0.5	<0.5	<5.0	
04/22/97					-	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	
10/16/97						<50	<0.5	<0.5	<0.5	<0.5	<5.0	
05/04/98				**		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/27/98						<50	<0.5	< 0.5	<0.5	<0.5	<2.5	
04/15/99						<50	< 0.5	<0.5	<0.5	<0.5	<5.0	
04/13/00						<50	<0.50	<0.50	< 0.50	<0.50	<2.5	
10/05/00						<50	< 0.50	<0.50	<0.50	<0.50	<2.5	
04/23/01						<50	<0.50	<0.50	<0.50	<0.50	<2.5	**
10/04/01						<50	<0.50	<0.50	<0.50	<1.5	<2.5	
04/01/02						<50	<0.50	<0.50	< 0.50	<1.5	<2.5	
OA .												
10/19/02						<50	<0.50	<0.50	< 0.50	<1.5	<2.5	
04/16/03						<50	<0.5	<0.5	<0.5	<1.5	<2.5	
10/29/0312						<50	<0.5	-0.5	< 0.5	<0.5	< 0.5	
04/01/0412						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
10/01/0412						<50	<0.5	<0.5	<0.5	<0.5	< 0.5	
04.08.05 ¹²						<50	<0.5	<0.5	<0.5	<0.5	< 0.5	
04/08/02							-0.5	-015	-010	-0.5	-0.5	
10/20/0512		**				<50	<0.5	<0.5	<0.5	<0.5	<0.5	

206265 (100-1067).xb/#385161

17

 Table 1

 Groundwater Monitoring Data and Analytical Results

 Former Chevron Asphalt Plant Terminal #206265 (100-1067)

 Powell @ Landregan

 Emeryville, California

EXPLANATIONS:

Groundwater monitoring data and laboratory results prior to April 13, 2000, were compiled from reports prepared by Blaine Tech. Services, Inc.

TOC = Top of Casing	TPH-G = Total Pe
(fL) = Feet	B = Benzene
GWE - Groundwater Elevation	T ~ Toluene
(msl) = Mean sea level	E = Ethylbenzene
DTW = Depth to Water	$\mathbf{X} = \mathbf{X}\mathbf{y}$ lenes
SPHT - Separate Phase Hydrocarbon Thickness	MTBE = Methyl t
SPH = Separate Phase Hydrocarbons	TOG = Total Oil a

PH-G = Total Petroleum Hydrocarbons as Gasoline 8 = Benzene 1 = Toluene 2 = Ethylbenzene 3 = Xylenes 4 TBE = Methyl tertiary butyl ether 10G = Total Oil and Grease

18

(ppb) = Parts per billion -- = Not Measured/Not Analyzed ND = Not Detected QA -- Quality Assurance/Trip Blank

TPH was reported as Diesel #2.

² Chromatogram pattern indicates an unidentified hydrocarbon.

³ Monitoring well was destroyed during soil excavation in 1989.

Sample has chlorinated hydrocarbon pattern, needs GCMS confirmation of MTBE.

Sample was analyzed outside the EPA recommended holding time.

6 Unable to sample due to car parked over the well.

⁷ Confirmation run.

8 MTBE by EPA Method 8240.

9 MTBE by EPA Method 8260.

10 Laboratory report indicates discrete peaks.

MTBE by EPA Method 8260 was analyzed outside the EPA recommended holding time.

12 BTEX and MTBE by EPA Method 8260.

206265 (100-1067).xls/#385161

Table 2
Groundwater Analytical Results
Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	1.1-DCE	1.2-DCE	t-1,2-DCE	c-1.2-DCE	1,1-DCA	1,1,1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(ppb)	(pph)	(ppb)	(pp6)	(ppb)	(ppb)	(ppb)	(ppb)	(ррв)	(ppb)	(ppb)
MW-7		.4.0			1.0	1.0	<1.0	<1.0	<2.0	<1.0	
04/14/89	<1.0	<1.0			0.7	4.5	<0.1	<0.1	<0.5	<0.1	ND ⁷
07/31/89	<0.1	0.3			0.3	3.6	<0.1	<0.1	<0.5	<0.1	ND ⁷
07/31/89	<0.1	0.4			0.2	2.6	<0.1	<0.5	<0.5	<1.0	
12/08/89	<0.2	<0.5			<0.5	0.67	<0.5	<0.5	<0.5	<1.0	
03/21/90	<0.2	<1),5			<0.5	1.4	<0.5	<0.5	<0.5	<1.0	
06/19/90	<0.2	<0.5	**		<0.5	0.67	<0.5	<0.5	<0.5	<1.0	
09/21/90	<0.2	<0.5			<0.5	<0.5	<0.5	-0.5	<0.5	<1.0	
12/28/90	<0.5	**	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	<1.0	ND
05/10/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	-0.5	<1.0	ND
08/08/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1.0	ND
11/27/91	<0.5		<0.5	<0.5	<0.5	~0.5	<0.5	<0.5	<0.5	<1.0	ND
01/29/92	~0.5		<0.5	<0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<1.0	ND
03/26/92	<0.5		< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	10.5
07/23/92	<0.5		<0.5	~0.5	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5	<0.5 ND
10/28/92	<0.5	**	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
05/04/93	INACCESSIBLE	5						**		-	
01/05/94	INACCESSIBLE	5									
05/13/94	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5-<1.0
10/24/94	~0.5	-	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5=<1.0
04/19/95	<0.5		~0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5
11/06/95	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
04/26/96	<0.5	**	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	~0.5	<0.8	<0.5-<5.0
10/10/96	<0.5		<0.5	< 0.5	<0.5	<0.5	<0.5	~0.5	<0.5	<0.5	ND
04/22/97	<0.5		< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	ND
10/16/97	<1.0		<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<0.5	NÐ
05/04/98	~0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
10/27/98	<0.5		<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<1.0	ND
04/15/99	<0.5		<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0	ND
11/04/99	<0.5		<0.5	< 0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
04/13/00	INACCESSIBL	E									
10/05/00	UNABLE TO 1	OCATE - WE	LL BURIED DI	IRING CONSTR	UCTION						
04(22)01	UNABLE TO D	OCATE - WE	LE BURIED DI	IRING CONSTR	OCTION				-		
10/04/04	UNABLE TO D	OCATE - WE	LE BURIED DI	IRING CONSTR	UCTION						
10/04/04	OWNER TO D	ocare - we	CO DOMIND DA								

206265 (100-1067).xls/¥385161

19

Table 2 Groundwater Analytical Results

Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	1,1-DCE	1,2-DCE	1-1,2-DCE	e-1,2-DCE	I,1-DCA	1,1,1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(ppb)	(pph)	(pph)	(ppb)	(ppb)	(ppb)	(pph)	(ррв)	(pph)	(ppn)	(рро)
MW-7 (cont)											
04/01/02	UNABLE TO L	OCATE - WEL	L BURIED DUI	RING CONSTRU	UCTION		-				
10/19/02	UNABLE TO L	OCATE - WEL	L BURIED DUI	RING CONSTRU	UCTION						
04/16/03	UNABLE TO L	OCATE - WEL	L BURIED DU	RING CONSTRU	UCTION						
10/29/03	UNABLE TO I	OCATE - WEL	L BURIED DU	RING CONSTRU	UCTION						
UNABLE TO	LOCATE - WE	LL BURIED D	URING CONS	TRUCTION							
MW-15									-0.4	<1.0	
03/21/90	<0.2	<0.5			<0.5	<0.5	-0.5	<1).5	<0.5	<1.0	
06/19/90	<0.2	<0.5		~	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
09/20/90	<0.2	<0.5	-		<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
12/28/90	<0.5		-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
05/10/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
08/08/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
11/27/91	<0.5		<0.5	<0.5	< 0.5	<0.5	<0.5	-0.5	<0.5	<1.0	ND
01/29/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0,1>	ND
03/26/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
07/23/92	< 0.5	**	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<0.5
10/28/92	~0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
05/04/93	INACCESSIBI	LE	**								
01/05/94	INACCESSIBI	L'E									
05/13/94	<0.5		<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5-<1.0
10/24/94	<0.5		<0.5	<0.5	<0.5	<0.5	3.1	<0.5	3.8	<0.5	<0.5-<1.0
04/19/95	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
11/06/95	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
04/26/96	<0.5		<0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<0.8	<0.5-<5.0
10/10/96	<0.5		< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	ND
04/22/97	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.8	ND
10/16/97	<1.0		<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<0.5	ND
05/04/98	<0.5		<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<1.0	ND
11/04/99	< 0.5		<0.5	<0.5	< 0.5	<0.5	< 0.5	~0.5	<0.5	<0.5	ND
04/13/00	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	21
18/06/00	UNABLE TO	LOCATE - CEN	MENTED OVER	DURING CON	STRUCTION						

206265 (100-1067).xls/#385161

20

Table 2

Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	1.1-DCE	1.2-DCE	t-1,2-DCE	e-1.2-DCE	1,1-DCA	1.J.J-TCA	TCE	PCE	CF	vc	HVOCs
DATE	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)
MW-15 (com	t)										
04/23/01	UNABLE TO I	OCATE - CEM	ENTED OVER	DURING CONS	TRUCTION						
10/04/01	UNABLE TO I	OCATE - CEM	ENTED OVER	DURING CONS	TRUCTION						
04/01/02	UNABLE TO L	OCATE - CEM	ENTED OVER	DURING CONS	TRUCTION						
10/19/02	UNABLE TO L	OCATE - CEM	ENTED OVER	DURING CONS	TRUCTION						
04/16/03	UNABLE TO 1	OCATE - CEM	ENTED OVER	DURING CONS	TRUCTION						
10/29/03	UNABLE TO I	OCATE - CEM	ENTED OVER	DURING CONS	TRUCTION						
UNABLE TO	0 LOCATE - CE	MENTED OVE	R DURING CO	ONSTRUCTION	í.						
MW 17											
01/21/00	< 0.2	5.2			0.7	1.3	32	11	L1	<1.0	
06/19/80	<0.2	3.1	-		<0.5	1.0	38	13	1.2	<1.0	
09/20/90	<0.2	2.4			<0.5	1.4	44	16	2.8	<1.0	
12/28/90	<0.5	2.14	<0.5	2.0	<0.5	0.6	34	15	2.0	<1.0	
05/10/91	<0.5		-0.5	3.0	<0.5	0.6	37	14	1.0	<1.0	ND
08/08/91	<0.5		<0.5	2.5	<0.5	-0.5	69	15	0.9	<1.0	ND
11/27/91	<0.5		<0.5	13	<0.5	<0.5	59	14	2.4	<1.0	ND
01/29/92	<0.5		<0.5	2.9	<0.5	0.8	35	15	1.1	<1.0	ND
03/26/92	<0.5		<0.5	1.5	<0.5	0.7	41	12	0.6	<1.0	ND
07/23/92	<0.5		<0.5	1.1	<0.5	<0.5	31	14	0.8	<0.5	<0.5
10/28/92	<0.5		<0.5	1.6	<0.5	<0.5	42	11	0.8	<1.0	ND
05/04/93	-0.5		<0.5	1.1	< 0.5	<0.5	26	12	0.6	<1.0	<0.5
01/05/94	<0.5		~0.5	1.1	<0.5	< 0.5	25	13	0.8	<1.0	<0.5
05/13/94	<0.5		<0.5	1.0	<0.5	0.6	23	13	<0.5	<0.5	<0.5-<1.0
10/24/94	<0.5		<0.5	1.4	<0.5	<0.5	26	13	<0.5	<0.5	<0.5-<1.0
04/19/95	<0.5		<0.5	0.9	<0.5	1.1	21	12	1.2	<0.5	<0.5
11/06/95	0.3>		<1.0	1.1	<1.0	<1.0	29	13	<1.0	<1.0	ND
04/26/96	<0.5		<0.5	0.8	<0.5	1.2	24	11	0.6	<0.8	<0.5-<5.0
10/10/96	<0.5		<0.5	1.5	<0.5	0.9	31	15	0.6	<0.8	ND
04/22/97	< 0.5		< 0.5	1.2	<0.5	1.7	21	11	<0.5	<0.8	ND
10/16/97	<1.0		<1.0	L1	<1.0	1.2	21	7.9	<1.0	<0.5	ND
05/04/98	<0.5		<0.5	1.4	<0.5	2.1	20	11	0.58	<1.0	ND
11/04/99	< 0.5		<0.5	< 0.5	<0.5	<0.5	15.4	7.75	<0.5	<0.5	ND

206265 (100-1067).xls#385161

21

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	L1-DCE	1.2-DCE	1-1.2-DCE	c-1,2-DCE	1,1-DCA	1,1,1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)
MW-17 (cont)									-1.0	-1.0	23
04/13/00	<1.0		<1.0	<1.0	<1.0	<1.0	14	8.7	<1.0	<1.0	
10/05/00	<1.0		<1.0	<1.0	<1.0	<1.0	18	11	<1.0	<1.0	24
04/23/01	<1.0		<1.0	<1.0	<1.0	<1.0	10	5.7	<1.0	<1.0	21
10/04/01	<		<	<1	<1	<1	14	8	<1	<	21
04/01/02	<1		<	<1	<1	<1	10	6	<	<1	
10/19/02	<1		<1	<1	<	<1	15	8	<1	<1	<1-<2.0
04/16/03	<0.8	**	<0.8	<0.8	<1	<0.8	11	7	<0.8	<1	<0.8-<2
10/29/03	<0.8	**	<0.8	<0.8	<1	<0.8	15	9	<0.8	<1	<0.5-<2
04/01/04	<0.8		<0.8	<0.8	<	<0.8	12	8	<0.8	<1	<0.5-<2
10/01/04	<0.8		<0.8	1	<1	<0.8	13	7	0.9	<1	<0.5-<2
04/08/05	<0.8		<0.8	2	<1	< 0.8	10	7	<0.8	<1	<0.5-<2
10/20/05	< 0.8		<0.8	3	<0.5	<0.8	12	6	0.9	<	<0.5-<2
MW-18								20	0.0	<1.0	
03/21/90	<0.2	1.7			<0.5	2.4	33	20	0.73	<1.0	
06/19/90	<0.2	2.7			<0.5	0.9	6.5	20	0.73	<1.0	
09/20/90	<0.2	3.3	-	-	<0.5	1.6	76	25	1.7	<1.0	
12/28/90	<0.5		~0.5	2.0	< 0.5	0.8	44	21	1.0	<1.0	ND
05/10/91	<0.5		<0.5	2.0	<0.5	0.7	47	20	2.0	<1.0	ND
08/08/91	<0.5		<0.5	2.0	<0.5	0.7	32	25	1.0	<1.0	ND
11/27/91	<0.5		<0.5	3.6	<0.5	0.5	60	18	1.5	0.1>	ND
01/29/92	<5.0		<5.0	<5.0	<5.0	<5.0	67	17	<5.0	<10	ND
03/26/92	<1.2		<1.2	6.4	<1.2	<1.2	130	19	1.7	<2.5	ND
07/23/92	<0.5		<0.5	3.0	<0.5	0.5	67	19	0.8	<0.5	<0.5
10/28/92	<0.5		<0.5	1.1	<0.5	<0.5	52	14	0.8	<1.0	ND
05/04/93	<0.5	-	<0.5	1.9	<0.5	0.7	48	18	2.5	<1.0	ND.
01/05/94	<0.5		< 0.5	4.0	<0.5	0.8	94	17	1.0	<1.0	<0.5
05/13/94	<0.5		<0.5	0.8	<0.5	0.8	16	15	0.8	<8.5	<0.5-<1.0
10/27/94	<1),5	-	<0.5	<0.5	<0.5	<0.5	22	15	1.2	<0.5	<0.5-<1.0
04/19/95	< 0.5		<0.5	2.2	<0.5	1.3	46	14	1.1	<0.5	ND'5
11/06/95	<1.0		<1.0	1.8	<1.0	1.2	45	18	<1.0	$0.1^{>}$	ND
04/26/96	<0.5		0.9	2.8	<0.5	3.0	31	17	0.6	<0.8	<0.5-<5.0

206265 (100-1067),xls/#385161

22

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

WELL ID	1.L.DCE	1.2-DCE	1-1.2-DCE	c-1.2-DCE	1.1-DCA	1,1,1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(pp&)	(ppb)	(pph)
MW-18 (con	(I)										
10/10/96	PAVED OVER								-0.5	-0.8	ND
04/22/97	<0.5		<0.5	1.7	<0.5	3.2	26	15	<0.5	<0.8	ND
10/16/97	<1.0		<1.0	1.0	<1.0	2.2	25	11	<1.0	<0.5	ND
05/04/98	1.1		1.7	4.5	2.5	3.1	40	<1.0	<1.0	<2.0	ND
10/27/98	<0.5		<0.5	0.77	<0.5	1.7	19	14	<0.5	<1.0	ND
04/15/99	< 0.625		1.78	3.45	<0.625	2.29	27.4	14.5	0.908	<1.25	ND
11/04/99	<0.5		<0.5	<0.5	<0.5	1.51	18.5	10.2	<0.5	<0.5	ND
10/05/00	<1.0		<1.0	<1.0	<1.0	<1.0	13	11	<1.0	<1.0	
04/23/01	<1.0	**	<1.0	<1.0	<1.0	<1.0	10	9.3	<1.0	<1.0	-"
10/04/01	< }		<1	<1	<1	<1	13	11	<1	<1	
04/01/02	<		<1	<t< td=""><td><1</td><td><1</td><td>10</td><td>9</td><td><1</td><td><1</td><td>**</td></t<>	<1	<1	10	9	<1	<1	**
10/19/02	<		<1	<1	<1	<1	15	10	<1	<	<1-<2.0
04/16/03	<0.8		<0.8	<0.8	<1	<0.8	9	9	<0.8	<1	<0.8-<2
10/29/03	<0.8		<0.8	1	<]	<0.8	20	9	<0.8	<1	<0.5-<2
04/01/04	INACCESSIBLE	- VEHICLE P.	ARKED OVER	WELL							
10/01/04	INACCESSIBLE	- VEHICLE P.	ARKED OVER	WELL							
04/08/05	<0.8		<0.8	2	<1	<0.8	13	8	3	<1	<0.5-<2
10/20/05	INACCESSIBLE	- VEHICLE	PARKED OV	ER WELL							
MW-19A											
11/06/95	1.0		<1.0	110	<1.0	<1.0	160	1,500	<1.0	<1.0	ND
04/26/96	<5.0		<5.0	140	<5.0	<5.0	200	990	<5.0	<8.0	<5.0~<50
10/10/96	<10		<10	110	<10	<10	150	1,500	<10	<16	ND
04/22/97	<5.0		7.1	85	9.1	<5.0	150	830	<5.0	<8.0	ND
10/16/97	1.6		6.9	100	5.5	<1.0	130	660	<1.0	4.2	NDIT
05/04/98	<10		13	80	<10	<10	230	500	<10	<20	ND
10/27/98	<25		<25	70	<25	<25	80	910	<25	<50	ND
11/04/99	<50		<50	<50	<50	<50	<50	209	<50	<50	ND
04/13/00	<25		<25	68	<25	-25	140	1,100	<25	<25	
10/05/00	2.5		9.5	50	5.5	1.0	82	940	<1.0	5.0	
04/23/01	1.6		9.9	100	5.2	<1.0	180	690	<1.0	1.6	21
10/04/01	2		11	61	4	<1	130	720	<1	3	
1010-001	-				+	-	a 2010			~	

206265 (100-1067).xls/#385161

23

Table 2 Groundwater Analytical Results

Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	1,1-DCE	1,2-DCE	4-1,2-DCE	e-1,2-DCE	1,1-DCA	1,1,1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ррв)	(100)	(ppa)	(190)	spp-0
MW-19A (cont)								630	-1	,	
04/01/02	<1		7	71	2	<1	100	530	<1	2	<1<3.023
10/19/02	<1		8	44	1	<1	130	600	<1	2	c0.8-2 ¹⁰
04/16/03	-0.8		6	69	<1	~0.8	82	570	-0.8		<0.5 < 225
10/29/03	<0.8		8	47	1	<0.8	98	630	<0.8	-1	0.5-2
04/01/04	<0.8		5	54	<	<0.8	78	660	<0.8		<0.8 < 227
10/01/04	<0.8		8	46	<1	<0.8	95	540	<0.8		~0.5~~2
04/08/05	<0.8		4	48	<1	-0.8	51	370	<0.8	<	<0.5-<2
10/20/05	<0.8		5	26	<1	<0.8	77	350	2	<1	<0.5-52
MW-1											
04/14/89	<5.0		19	720	<5.0	<5.0	11	<5.0	<20	340	ND
07/31/89	6.8	-	54	2,600	2.7	7.2	57	<0.2	<1.0	760	ND ²
12/08/89	4.3	2,700			1.7	1.4	59	<0.5	<0.5	520	**
03/21/90	7.1	7,000			2.1	1.1	130	~0.5	<0.5	1,108	
06/19/90	12	6,100			3.1	< 0.5	81	<0.5	<0.5	1,200	
09/21/90	1.8	2.400			2.2	1.7	60	<0.5	<0.5	1,100	ND'
12/28/90	2.0		28	1,500	1.0	0.6	15	<0.5	<0.5	510	ND*
05/10/91	10		69	5,500	2.0	<0.5	280	<0.5	<0.5	1,800	ND ⁵
08/08/91	2.9		45	2,340	1.5	<0.5	110	<0.5	<0.5	<1.0	ND ^o
11/27/91	<25		<25	5,900	<25	<25	<2.5	<25	<25	540	<25
01/29/92	<25		26	1,900	<25	<25	<25	<25	<25	320	<25
03/26/92	<50		<50	1,500	<50	<50	<50	~50	<50	260	<50
07/23/92	<50		<50	2,300	<50	<50	<50	<50	<50	170	<50
10/28/92	4.2		30	1,600	3.6	<0.5	16	<0.5	<0.5	810	ND
05/04/93	1.0		16	670	0.5	<0.5	9.2	<0.5	<1)5	110	<0.5
01/05/94	INACCESSIBL	Æ									
05/13/94	PAVED OVER	1									
NOT MONITOP	RED/SAMPLEI	D									
MW-2										-0.5	
04/14/89	<0.2	<0.2			<0.2	<0.2	<0.2	<0.2	<1.0	<0.2	
07/31/89	<0.2	<0.2			<0.4	0.5	<0.2	<0.2	<1.0	<0.2	

206265 (100-1067).xls/#3#5161

24

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	LI-DCE	1,2-DCE	t-1,2-DCE	¢-1,2-DCE	1,1-DCA	1,1,1-TCA	TCE.	PCE	CF	vc	HVOCs
DATE	(ррб)	(ppb)	(ppb)	(ppb)	(jyt)	(ррв)	(pph)	(ppb)	(pph)	(ppb)	(ppb)
a since a state of the											
MW-2 (cont)	-0.7	118			<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	**
12/08/89	-0.2	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
03/21/90	~0.Z	<0.5	-		<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
06/19/90	<0.2	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
09/21/90	<0.2	<0.5	-0.4	-1.4	-0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
12/28/90	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
05/10/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
08/08/91	<0.5		<0.5	<0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<1.0	ND
11/27/91	<0.5	**	<0.5	<0.3	<0.3	~0.5	<0.5	:0.5	<0.5	<1.0	ND
01/29/92	<0.5		<0.5	< 0.5	-0.5	~0.5	<0.5	<0.5	-0.5	<1.0	ND
03/26/92	<0.5		<0.5	<0.5	<0.5	-0.5	~0.5 <0.5	<0.5	<0.5	<0.5	-0.5
07/23/92	<0,5		<0.5	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5	<1.0	ND
10/28/92	<0.5		<0.5	<0.5	<0.5	-0.5	<0.5	0.5		-110	
05/04/93	INACCESSIBLE										
01/05/94	INACCESSIBLE										
05/13/94	INACCESSIBLE										
10/24/94	DRY	**									
ABANDONE	D										
MW-2A										-1.0	200
11/06/95	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
04/26/96	<0.5	**	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	<0.5+<5.0
10/10/96	< 0.5	**	<0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<0.8	ND
04/22/97	<2.5		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<4.0	ND
10/16/97	<1.0		<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<0.5	ND
05/04/98		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
10/27/98	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
04/15/99	<1.25	-	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<2.50	ND
11/04/99	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
NOT MONIT	ORED/SAMPLED										
MW-3											
04/14/89	<0.2	<0.2	-		<0.2	<0.2	<0.2	< 0.2	<1.0	<0.2	
07/31/89	<0.2	< 0.2			<0.4	0.5	<0.2	<0.2	<1.0	<0.2	
12/08/89	<0.2	<0.5	**		<0.5	< 0.5	<0.5	<0.5	<0.5	<1.0	-
206265 (1)	00-1067).xls/#385163					25					As of 10/20/05

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

ALCO DOLL	LIDCE	12.005	612.DCF	c-1.2-DCE	L1-DCA	1.1.1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(nob)	(oph)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Local and the second second											
MW-3 (cont)							-0.5	-0.6	-:0.5	<1.0	
03/21/90	<0.2	<0.5		-	<0.5	<0.5	<0.5	<0.5	~0.5	<1.0	
06/19/90	<0.2	< 0.5			<0.5	<0.5	<0.5	-0.5	<0.5	<1.0	
09/21/90	<0.2	~0.5			<0.5	<0.5	<0.5	<0.5	0.5	<1.0	_
12/28/90	<0.5		< 0.5	<0.5	<0.5	<0.5	-0.5	<0.5	<0.5	<1.0	ND
05/10/91	< 0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	~1.0	ND
08/08/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
11/27/91	<0.5		-0.5	<0.5	<0.5	<0.5	<0.5	<1)_5	<0.5	<1.0	ND
01/29/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
03/26/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.5	<1.0	ND
07/23/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.5
10/28/92	<0.5		< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
05/04/93	INACCESSIBI	LIE									
01/05/94	INACCESSIBI	LE									
05/13/94	INACCESSIBI	Æ	-						**		
NOT MONET	ORED/SAMPLE	D									
MW-4					10	<1.0	<1.0	<1.0	<2.0	<1.0	
04/14/89	<1.0	<1.0			2.0	~1.0	~1.0	-1.0	-210		
NOT MONIT	ORED/SAMPLE	D									
MW-5											
04/14/89	<1.0	<1.0			2.0	<1.0	<1.0	<1.0	<2.0	<1.0	
NOT MONIT	FORED/SAMPLE	D									
M11 6											
04/14/80	<1.0	<1.0			2.0	<1.0	<1.0	<1.0	<2.0	<1.0	
NOT MONT	TODEDISAMDLE	-09 D									
NULMOND	LONDO/SAMPLE	0									
MW-8							-1.6	-1.0	-2.0	<1.0	
04/14/89	<1.0	<1.0			<1.0	<1'0	<1.0	<1.0	~2.0	1.0	ND
07/31/89	<0.1		0.6	1.9	1.7	1.7	0.4	-0.1	0.5</td <td>-1.0</td> <td>150</td>	-1.0	150
12/08/89	< 0.2	0.53		**	<0.5	0.84	<0.5	~0.5	<0.5	5.1.2 - 1.0	
03/21/90	< 0.2	0.96			<0.5	0.72	<0.5	<0.5	<0.5	<1.0	
06/19/90	<0.2	0.59			<0.5	0.67	<0.5	<0.5	<0.5	<1.0	
09/21/90	<0.2	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	

206265 (100-1067).xls/9385161

26

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

Emer	yvu	ie, c.	amon	194

SAULT I. ID.	LIDEE	LIDCE	612-DCF	e-12-DCE	L1-DCA	LI.I-TCA	TCE	PCE	CF	VC	HVOCs
WELL ID	1,1-1/C.E. (nob)	(anki	(mb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
DATE	(ppa)	12-12	un/22								
MW-8 (cont)										-1.0	
12/28/90	<0.5		<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<1.0	210
05/10/91	<0.5	**	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
08/08/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
11/27/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
01/29/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
03/26/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
07/23/92	<0.5		< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	~0.5
10/28/92	INACCESSIBLE							**			**
05/04/93	INACCESSIBLE									**	
01/05/94	INACCESSIBLE										
05/13/04	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5-<1.0
10/24/94	INACCESSIBLE								-	**	
04/19/95	INACCESSIBLE								-		
11/06/05	INACCESSIBLE										-
04/26/96	INACCESSIBLE							-			
10/10/06	INACCESSIBLE					-					
10/10/90	INACCESSIBLE	-0.5	<0.5	-00.5	<0.5	-0.5	<0.5	< 0.5	< 0.5	<0.8	ND
04/22/97	-10	-0.5	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<0.5	ND
10/16/97	1.0	-	~0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
05/04/98	×0.5		~0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
10/27/98	<0.5		~0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
04/15/99	<0.5		<0.5	<0.5	-0.5	-0.5	<0.5	<0.5	<0.5	<0.5	ND
11/04/99	<0.5	**	<0.5	<0.5	50.5	-0.0	-0.0	-010	-67127		
NOT MONE	FORED/SAMPLED										
MW-9											
05/10/91	UNABLE TO LC	CATE				**					
NOT MONE	FORED/SAMPLED										
MW-10											
04/14/89	<1.0	15			2.0	<1.0	5.0	<1.0	<2.0	<1.0	
07/31/89	0.7		6.3	27	2.9	< 0.1	5.3	<0.1	<0.5	<0.1	ND
12/08/89	< 0.2	24			3.1	<0.5	4.9	<0.5	0.6	<1.0	
03/21/90	0.7	30			2.5	~0.5	3.5	< 0.5	<0.5	<1.0	
06/19/90	0.3	33			2.6	<0.5	6.3	<0.5	<0.5	<1.0	**

206265 (100-1067) xls/#385161

27

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan

Emeryville, California

DATE (ppb) (ppb) <th< th=""><th>IVOCs</th></th<>	IVOCs
MW-10 (cont) 09/21/90 <0.2 32 - 5.0 <0.5 5.9 <0.5 <0.5 <1.0 12/28/90 <0.5 6.0 19 2.0 <0.5 5.0 <0.5 <0.5 <1.0 05/10/91 0.6 7.0 24 2.0 <0.5 6.0 <0.5 <0.5 <1.0 08/08/91 <0.5 7.0 33 3.1 <0.5 <6.2 <0.5 <0.5 <1.0 11/27/91 <0.5 6.8 100 <0.5 <0.5 <0.5 <1.0 01/29/92 <0.5 9.1 30 2.8 <0.5 7.4 <0.5 <0.5 <1.0 03/26/92 0.7 9.2 2.9 2.5 <0.5 <6.8 <0.5 <0.5 <1.0	(ppe)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**
08/08/91 <0.5 7.0 33 3.1 <0.5 6.2 <0.5 <0.5 <1.0 11/27/91 <0.5	ND
11/27/91 <0.5 6.8 100 <0.5 <0.5 8.5 <0.5 <1.0 01/29/92 <0.5	ND
01/29/92 <0.5 9.1 30 2.8 <0.5 7.4 <0.5 <0.5 <1.0 03/26/92 0.7 9.2 29 2.5 <0.5 6.8 <0.5 <0.5 <1.0	ND
03/26/02 0.7 9.2 29 2.5 <0.5 6.8 <0.5 <0.5 <1.0	NÐ
UNTAGE 74	ND
07/23/92 <0.5 6.1 21 1.5 <0.5 4.7 <0.5 <0.5 <0.5	<0.5
10/28/92 <0.5 4.3 16 2.1 <0.5 4.1 <0.5 <0.5 <1.0	ND
05/04/93 INACCESSIBLE	
01/05/94 <0.5 1.3 5.2 0.5 1.0 0.8 <0.5 <0.5 <1.0	<0.5
05/13/94 <0.5 12 31 2.7 <0.5 4.8 <0.5 <0.5 <0.5 <	0.5 - < 1.0
10/24/94 <10 13 44 <10 <10 <10 <10 <10 <10 <	:10-<20
04/19/95 0.7 14 36 <0.5 <0.5 9.2 <0.5 <0.5 <0.5 <0.5	<0.5
11/06/95 1.0 19 41 1.4 <1.0 14 <1.0 <1.0 <1.0 <1.0	NÐ
04/26/96 INACCESSIBLE	
10/10/96 0.7 17 38 0.8 <0.5 14 <0.5 <0.5 <0.8	ND
04/22/97 <0.5 12 27 0.5 <0.5 13 <0.5 <0.5 <0.8	ND
10/16/97 <1.0 11 23 <1.0 <1.0 <1.0 <1.0 <1.0 0.7	ND
05/04/98 <0.5 6.5 16 <0.5 <0.5 7.6 <0.5 <0.5 <1.0	ND
10/27/98 <0.5 - 7.7 18 0.54 <0.5 9.6 <0.5 <0.5 <1.0	ND
04/15/99 <0.5 8.32 19.1 0.603 <0.5 11.3 <0.5 <0.5 <1.0	ND
11/04/99 <0.5 5.17 13.8 <0.5 <0.5 8.23 <0.5 <0.5 <0.5	ND
NOT MONITORED/SAMPLED	
MW-11	
04/14/89 <1.0 120 <1.0 <1.0 4.0 <1.0 <2.0 10	
07/31/89 0.9 40 110 2.2 1.4 2.9 <0.2 <0.2 <0.2 <0.2	ND
12/08/89 0.5 120 2.1 1.2 4.1 <0.5 <0.5 2.4	
03/21/90 1.3 150 1.2 1.7 3.5 <0.5 <0.5 4.3	ND*
06/19/90 0.068 140 1.3 <0.5 5.0 <0.5 <0.5 1.0	
09/21/90 <0.2 100 1.1 <0.5 3.8 <0.5 <0.5 <1.0	
12/28/90 <0.5 23 43 0.9 0.7 3.0 <0.5 <0.5 <1.0	

206265 (100-1067).xls/¥385161

28

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	1,1-DCE	1,2-DCE	t-1,2-DCE	e-1,2-DCE	1,1-DCA	1,1,1+TCA	TCE	PCE	CF	VC (nmh)	HVOCs (nnh)
DATE	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(рра)	(pp#)	тррал	(JPV)	
MW-11 (cont)									<1.0	ND
05/10/91	0.9		44	110	0.5	~0.5	5.0	<0.5	<0.5	<1.0	ND
08/08/91	<0.5		29	77	0.9	-0.5	2.4	<0.5	<0.5	<1.0	ND
11/27/91	<0.5		34	240	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
01/29/92	<5.0		33	91	<5.0	<5.0	<5.0	<5.0	<5.0	<10	ND
03/26/92	<2.5		21	51	<2.5	<2.5	<2.5	-2.5	<2.5	< 5.0	NU -0.5
07/23/92	<0.5		18	46	0.6	<0.5	1.4	<0.5	<0.5	<0.5	S0.3
10/28/92	0.5	**	36	80	~0.5	<0.5	4.6	<0.5	<0.5	<1.0	ND
05/04/93	INACCESSEBLE										
01/05/94	INACCESSIBLE					**					
05/13/94	<0.5		62	82	<0.5	<0.5	7.9	<0.5	<0.5	1.7	<0.5<1.0
10/24/94	<10		28	75	<10	<10	<10	<10	<10	<10	<10=<20
04/19/95	<0.5		18	39	<0.5	<0.5	6.5	<0.5	1.0	<0.5	ND.
11/06/95	INACCESSIBLE					-					**
04/26/96	INACCESSIBLE				-						
10/10/96	INACCESSIBLE										
64/22/97	<0.5		4.7	12	<0.5	<0.5	3.0	<0.5	<0.5	<0.8	ND
10/16/97	<1.0		5.1	24	<1.0	<1.0	<10	<1.0	<1.0	3.7	ND
05/04/98	<0.5		4.2	12	<0.5	<0.5	2.8	<0.5	<0.5	<1.0	ND
10/27/98	<0.5		2.7	8.3	<0.5	<0.5	1.8	~0.5	<0.5	<1.0	ND
04/15/99	<0.5		3.29	10.1	<0.5	<0.5	2.87	<0.5	<1)5	<1.0	ND
11204299	<0.5		2.29	7.36	<0.5	<0.5	2.19	<0.5	<0.5	<0.5	ND
NOT MONT	FORED/SAMPLED										
MW-12											
04/14/89	<1.0	1.0			<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	-
07/31/89	<0.1	1.7			<0.1	<0.1	0.8	<0.1	-0.5	<0.1	ND
12/08/89	< 0.2	<0.5			<0.5	-0.5	<0.5	<0.5	<0.5	<1.0	
03/21/90	<0.2	<0.5	<0.5		< 0.5	~0.5	<0.5	< 0.5	<0.5	<1.0	
06/19/90	<0.2	< 0.5	< 0.5		< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
09/21/90	<0.2	<0.5	<0.5		< 0.5	<0.5	<0.5	<0.5	~0.5	<1.0	
12/28/90	<0.5		<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<1.0	
05/10/91	<0.5		< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<1.0	ND
08/08/91	<0.5		<0.5	-0.5	<0.5	<0.5	< 0.5	<0.5	0.9	<1.0	ND
10.00.21	-010										

206265 (100-1067).xls/#385161

29

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL ID/	LI-DCE	1.2-DCE	6-1.2-DCE	c-1.2-DCE	I,I-DCA	1,1,1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(pph)	(ppb)	(ppb)	(pp8)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(gg/b)	(прб)
MW 12 (cont											
11/27/01	-0.5		<0.5	-0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<1.0	ND
01/20/01	<0.5		<0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
01/29/92	-0.5		<0.5	<0.5	c0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
03/26/92	<0.5	00475	~0.5	~0.5	-0.5	-015	- 41-2-				
07/23/92	UNABLE TO L	OCATE	**								
NOT MONIT	ORED/SAMPLEI)									
MW-13											
03/21/90	<0.2	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	0.1>	
06/19/90	<0.2	<0.5			< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
09/20/90	<0.2	< 0.5			<0.5	< 0.5	< 0.5	<0.5	<0.5	<1.0	
12/28/90	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<1.0	
05/10/91	<0.5		<0.5	<0.5	<0.5	~0.5	<0.5	<0.5	<0.5	<1.0	ND ²⁹
08/08/91	~0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
11/27/91	<0.5		<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
01/29/92	<0.5		<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
03/26/92	<0.5		<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<1.0	ND
07/23/92	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
10/28/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<1.0	ND
05/04/93	INACCESSIBI	E									
01/05/94	INACCESSIBL	E				-					
05/13/94	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5<1.0
10/24/94	-0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5-<1.0
04/10/05	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
11/06/05	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
04/26/95	~1.0		<0.5	<0.5	<0.5	=0.5	<0.5	<0.5	<0.5	<0.8	<0.5-<5.0
10/10/06	NACCERSIDI	r	-10.5	-43.5	-0.2						
04/22/07	INACCESSIBI	æ	-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8	ND
04/22/97	<0.5	-	<0.5	<0.5	<0.5	<0.3	<10	<1.0	<1.0	<0.5	ND
10/16/97	<1.0		~1.0	~1.0	<1.0	<1.0	<0.5	<0.6	<0.6	<1.0	ND
05/04/98	<0.5	-	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5	~10.5	<1.0	ND
10/27/98	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	-90.5	50.5	<1.0	50
11/04/99	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.5	<0.5	ND
NOT MONIJ	FORED/SAMPLE	D									

206265 (100-1067).xls/#385161

30

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan Emeryville, California

WELL 1D/	1.1-DCE	1,2-DCE	1-1,2-DCE	c-1,2-DCE	1,1-DCA	1,1,1-TCA	TCE	PCE (mpb)	CF (opti)	VC (nnh)	HVOCs (ppb)
DATE	(ppa)	(ppn)	(1999)		(199-0)	App of	110	4F-7			
MW-14											
03/21/90	<2.0	< 0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
06/19/90	<2.0	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
09/20/90	<2.0	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
12/28/90	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
05/10/91	<0.5		~0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
08/08/91	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<1.0	ND
11/27/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
01/29/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	$0.1^{>}$	ND
03/26/92	<0.5		<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
07/23/92	<0.5		< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
10/28/92	<0.5		<0.5	<0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<1.0	ND
ABANDONE	3D										
MW-16											
03/21/90	<0.2	0.8		**	<0.5	<0.5	27	8.0	2.0	<1.0	
06/19/90	<0.2	<0.5	-		<0.5	<0.5	35	7.0	2.0	<1.0	**
09/20/90	<0.2	0.9			< 0.5	<0.5	49	15	4.1	<1.0	
12/28/90	<0.5		<0.5	<0.5	<0.5	<0.5	29	18	4.0	<1.0	ND ¹²
05/10/91	<0.5		<0.5	0.5	<0.5	<0.5	32	10	4.0	<1.0	ND
08/08/91	<0.5		<0.5	<0.5	<0.5	<0.5	35	13	1.9	<1.0	ND
11/27/91	<0.5		<0.5	1.3	<0.5	<0.5	47	12	1.8	<1.0	ND ¹³
01/29/92	<0.5		<0.5	0.9	< 0.5	< 0.5	31	11	1.8	<1.0	ND
03/26/92	<0.8		< 0.8	<0.8	<0.8	<0.8	24	8.5	1.7	<1.7	~0.8-<1.7
07/23/92	<0.5		<0.5	0.9	<0.5	<0.5	37	12	1.0	< 0.5	<0.5
10/28/92	<0.5		<0.5	1.7	<0.5	<0.5	39	14	1.1	<1.0	ND
05/04/93	<0.5		< 0.5	<0.5	<0.5	<0.5	32	10	1.1	<1.0	<0.5
01/05/94	INACCESSIBI	LE									
05/13/94	PAVED OVER	٤									
NOT MONE	FORED/SAMPLE	D									
MW-19											
03/21/90	<0.2	10			< 0.5	2.5	41	53	3.2	<1.0	
06/19/90	<0.2	13			<0.5	1.5	46	47	2.8	<1.0	**
09/20/90	<0.2	5.8			<0.5	2.5	39	32	3.1	<1.0	
206265 (1	100-1067).xls/#38514	61				31				,	s of 10/20/05

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067)

Powell @ Landregan

Emeryville, California

WELL ID/	1,1-DCE	1,2-DCE	t-1,2-DCE	e-1,2-DCE	1,1-DCA	1,1,1-TCA	TCE	PCE	CF	VC	HVOCs
DATE	(ppb)	(ppb)	(pph)	(pph)	(ppo)	(ррь)	(ppn)	(ppo)	(ppm)	(ppo)	(ppn)
MW-19 (cont)											
12/28/90	<0.5		0.8	22	<0.5	1.0	40	44	3.0	<1.0	
05/10/91	<0.5		2.0	12	<0.5	1.0	47	47	3.0	0.1>	ND
08/08/91	< 0.5		1.1	4.8	<0.5	1.1	41	35	2.8	<1.0	ND
11/27/91	<0.5		1.9	29	<0.5	0.9	59	31	2.7	<1.0	ND
01/29/92	<5.0		<5.0	8.9	<5.0	<5.0	51	44	3	<10	ND
03/26/92	<1.2		1.7	23	<1.2	1.5	68	130	1.4	<2.5	ND ¹⁰
07/23/92	1.1		1.4	5.6	<0.5	1.0	6-1	38	3.3	<0.5	~0.5
10/28/92	<0.5		0.9	5.3	~0.5	1.1	46	24	2.2	<1.0	ND
05/04/93	- <0.5		2.5	8.7	0.5	1.1	69	32	3.9	<1.0	<0.5
01/05/94	<0.5		1.7	1.7	<0.5	16	49	46	<0.5	<1.0	<0.5
05/13/94	<0.5		1.8	22	<0.5	0.7	40	58	<0.5	<0.5	<0.5=<1.0
0/24/94	<50		110	54	<50	<50	98	300	<50	<\$0	<50-<100
04/19/95	<0.5		<0.5	65	<0.5	<0.5	130	670	<0.5	<0.5	<0.5
ABANDONED											
BAILER BLAN	к										
05/10/91	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<1.0	ND
08/08/91	<0.5		<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
11/27/91	<0.5		<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<1.0	ND ¹⁸
01/29/92	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<1.0	ND
03/26/92	<0.5		<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<1.0	ND
07/23/92	<0.5		<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
10/28/92	<0.5		<0.5	<05	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
05/04/93	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<1.0	<0.5
TRIP BLANK											
04/14/89	<1.0	<0.5			<1.0	<1.0	<1.0	<1.0	<2.0	0.1>	
07/31/89	<0.1	<0.5			<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	**
12/08/89	<0.2	<0.5			-0.5	<0.5	<0.5	<0.5	< 0.5	<1.0	
03/21/90	< 0.2	<0.5		-	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
03/26/90	< 0.2	<05			<0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0	
06/19/90	<0.2	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
09/21/90	<0.2	<0.5			<0.5	-0.5	<0.5	<0.5	<0.5	<1.0	

206265 (100-1067).xls/#385161

32

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan

Emeryville, California

WELL ID/	1,1-DCE	1,2-DCE	t-1,2-DCE	c-1,2-DCE	1.1-DCA	1,1,1-TCA	TCE	PCE	CF (pph)	VC (nab)	HVOCs (ppb)
DATE	(ppb)	(pph)	(590)	(рря)	(414)	(pps)	(Alla)	(April)			
TRIP BLANK	(cont)										
12/28/90	<0.5		<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	
05/10/01	<0.5		<0.5	-0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<1.0	ND
02/10/21	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<1.0	ND ¹⁹
08/08/91	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND ²⁰
11/27/91	<0.5		-0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<1.0	ND
01/29/92	<0.5	-	-0.5	<0.5	-0.5	-0,5	<0.5	<0.5	<0.5	<1.0	ND
03/26/92	<0.5	**	<0.5	<0.5	<0.5	<.0.5	~0.3	<0.5	-0.2	-0.6	-0.5
07/23/92	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-01.3
10/28/92	<0.5		<0.5	<0.5	<0.5	-0.5	<0.5	<0.5	<0.5	<1.0	ND
05/04/93	<0.5		<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<1.0	<0.5
11/06/95	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND

33

205265 (100-1067).xls/#385161

Table 2

Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

EXPLANATIONS:

Groundwater laboratory analytical results prior to April 13, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

1,1-DCE = 1,1-Dichloroethene 1,2-DCE = 1,2-Dichloroethene t-1,2-DCE = trans-1,2-Dichloroethene c-1,2-DCE = cis-1,2-Dichloroethene 1,1-DCA = 1,1-Dichloroethane 1,1,1-TCA = I,1,1-Trichloroethane TCE = Trichloroethene PCE = Tetrachloroethene CF = Chloroform VC = Vinyl Chloride HVOCs = Halogenated Volatile Organic Compounds ND = Not Detected -- Not Measured/Not Analyzed

- 6 ppb 1.2-dichloropropane detected; other HVOCs not detected.
- 0.6 ppb 1,2-dichloroethane detected; other HVOCs not detected.
- 63 ppb chloromethane and 0.6 ppb methylene chloride detected; other HVOCs not detected; sample contained 1,250 ppb total dissolved solids.
- 0.9 ppb trans-1,3-dichloropropane detected; other HVOCs not detected; sample contained 810 ppb total dissolved solids.
- 0.9 ppb trichlorofluoromethane and 1 ppb trans-1,3-dichloropropane detected; other HVOCs not detected.
- 11 ppb trans-1,3-dichloropropane detected; other HVOCs not detected.
- 0.1 ppb 1.2-dichlorobenzene detected; other HVOCs not detected.
- 1.8 ppb 1,2-dichloroethane detected; other HVOCs not detected
- Chloromethane was detected at 2.4 ppb. Other HVOCs not detected at detection limits of 0.5 ppb.
- ⁶ 3 pph 1,1,2,2-tetrachloroethane detected; other HVOCs not detected.
- 10 0.9 ppb 1,2-dichlorobenzene detected; other HVOCs not detected.
- 12 0.5 ppb 1,2-dichloroethane detected; other HVOCs not detected.
- 13 0.9 ppb 1,2-dichloroethane detected; other HVOCs not detected.
- ¹⁴ Dichloromethane detected at 6.2 ppb. Other HVOCs not detected at detection limits of 0.5 ppb.
- ¹⁵ Chloromethane was detected at 0.6 ppb. Other HVOCs not detected at detection limits of 0.5 ppb.
- ¹⁶ 1,1,2,2-Tetrachloroethane detected at 1.8 ppb; other HVOCs not detected at detection limits of 1.2 to 2.5 ppb.
- ¹² Laboratory report indicates 1,1,2,2-Tetrachloroethane was detected at 3.8 ppb. Reported values for cis-1,2-dichloroethene; trichloroethene and tetrachloroethene are from 50X dilution sample re-analysis.
- ¹⁸ Trace concentrations of trihalomethane compounds detected in bailer blank.
- ¹⁹ 3.1 ppb 1,2-dichlorobenzene detected; other HVOCs not detected.
- ²⁰ Trace concentrations of trihalomethane compounds detected in bailer blank.
- ²¹ Laboratory report indicates all other HVOCs were ND; See specific laboratory analytical report.
- ²² Laboratory report indicates all other HVOCs were ND, except for Freon 113 was detected at 2.3 ppb and 1,1,2,2-Tetrachloroethane was 3.9 ppb.
- ²⁵ Laboratory report indicates all other HVOCs were ND, except for Freon 113 detected at 5 ppb and 1,1,2,2,-Tetrachloroethane at 3 ppb; See specific laboratory analytical report.
- ²⁴ Laboratory report indicates all other HVOCs were ND, except for 1,1,2,2,-Tetrachloroethane detected at 4 ppb; See specific laboratory analytical report.
- ²⁵ Laboratory report indicates all other HVOCs were less than the reporting limit, except for 1,1,2,2-Tetrachloroethane was detected at 2 ppb, and Freon 113 was detected at 4 ppb.

206265 (100-1067).xls/#385161

34

Table 2 Groundwater Analytical Results Former Chevron Asphalt Plant Terminal #206265 (100-1067) Powell @ Landregan Emeryville, California

35

EXPLANATIONS:

- 26 Laboratory report indicates all other HVOCs were ND, except for Freon 113 was detected at 3 ppb and 1,1,2,2-Tetrachloroethane was 3 ppb.
- 27 Laboratory report indicates all other HVOCs were ND, except for Freon 113 was detected at 5 pph and 1,1,2,2-Tetrachloroethane was 2 ppb.
- ²⁸ Laboratory report indicates all other HVOCs were ND, except 1,1,2,2-Tetrachloroethane was 2 ppb.
- ²⁰ Laboratory report indicates all other HVOCs were ND, except 1,1,2,2-Tetrachloroethane was 1 ppb.

206265 (100-1067):xls/9385161

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by ChevronTexaco Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick, California.

N3California/forms/altevron-SOP.03-15-04

GET	TLE	R -	RYAN	INC.

, ÷

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility #:	ChevronTexaco	#206265	Job Number:	385161		-		
Site Address: City:	Powell @ Landre Emeryville, CA	egan	Event Date: Sampler:	10.20.05 FT	10.20.01 10.20.01 FT 10.20.01 Well Condition: 01.21 12.00.01 12.20.01 12.01 37=0.38 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 67=1.50 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02 12.02			
Vell ID Well Diameter Total Depth Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Other.	MW-17 2 in 11.85 ft 5.38 ft 6.47 xvF.	Date Monitored: Volume Factor (V .17 = 1.01 Sampling Equipmer Disposable Bailer Pressure Bailer Discrete Bailer Other:	10-20-05 344=0.02 47=0.66 _x3 case volument:	Well Condition: 1 ¹⁺ = 0.04 2 ⁺⁺ 0.17 5 ⁺⁺ = 1.02 6 ⁺⁺ = 1.50 Estimated Purge Volume Time Started: Depth to Product: Depth to Product: Depth to Voluct: Depth to Voluct: Hydrocarbon Thickne Visual Confirmation/U Skimmer / Absorban Am Removed from 1	3*= 0.38 12*= 5.80 3.0 Sesciption: Sock (direte o klimmer;	gal. (2400 tris) _(2400 tris) ft ft ft ft gal		
Other Start Time (pur Sample Time/D Purging Flow F Did well de-wa Time (2400 hr.) 16 36 16 36	ge): <u>1630</u> Date: <u>1647 / 10-2</u> Rate: <u>gpm.</u> ter? <u>yb</u> If Volume (gel.) <u>1.0</u> <u>7.</u> <u>2.0</u> 7.	Weather Condition 20-05 Water Colo Sediment Description yes, Time: pH Conductivity (umhos/cm) 12 159	s: 	Am Removed from 1 Am Removed to 10 Water Removed: Product Transferred Sup JY S. Sict Y gal. D.O. (mg/l.)	Vell: to: ORP (mV)	gal		

And and a second se	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
Mar 1-	La vuen visi	VES	HCL	LANCASTER	TPH-G(8015)/8TEX+MTBE(8260)						
MVV-	5 x yoa yiel	YES	HCL	LANCASTER	HVOC'S(8260)						
COMMENTS:											

Add/Replaced Lock: _____

Add/Replaced Plug: _____ Size: ____

ŀ	, 1	WELL M Fil	ONITORING	/SAMPLING HEET		
Client/Facility #: Site Address:	ChevronTexad Powell @ Land	o #2062 dregan	65	lob Number: [385161 10·20·05	(inclusive)
Dity:	Emeryville, CA	(Sampler:	FT	
Well ID	MW- 18	Date	Monitored:	Ач	Well Condition:	WH246531 045"
Total Depth Depth to Water	10.80 tt		Volume Factor (VF)	3/4*= 0.02 4*= 0.66	1°=0.04 2°=0.17 5°=1.02 6°= 1.50	12"= 5.80
		*17_		x3 case volume= E	stimated Purge Volume:	gal. (2400 hrs)
Purge Equipment:		San	npling Equipment:		Time Completed:	(2400 hrs) ft
Disposable Bailer Stainless Steel Baile		Pre	ssure Bailer		Depth to Water:	ft.
Stack Pump	- /	Dise	crete Bailer		Hydrocarbon Thickness: Visual Confirmation/Desc	ription:
Suction Pump		Oth	er:		Rimmor / Absorbant Sol	ek (circle ope)
Grundlos Other					Amt Removed from Skim	mer:gal
Oner.					Ant Removed from Well	gal
					Product Transferred to:	
Sample Time/D Purging Flow R Did well de-wat	ge): Date: / / Late:gpm. Her?	Sedime If yes, Tin	Water Color: ent Description: he:	Volume:	Odor: gal.	
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (umhos/cm)	Temperature {C/F}	D.O. (mg/L)	ORP (mV)
			_/			
0.000	AN CONTAINED	LA	BORATORY INF	LABORATORY	ANALYS	ES
SAMPLEID	(F) CONTAINER	YES	HCL	LANCASTER	TPH-G(8015)/BTEX+MT	BE(8260)
PATRA-	x voa vial	YES	HCL	LANCASTER	HVOC*S(8260)	
			/			

well arom paine to acciving it site.

	10	VELL M	ONITORING	/SAMPLING HEET				
Client Coolity #	ChevronTexac	o #2062	65	Job Number: 3	385161			
Client/Facility #.	Powell @ Lan	iregan		Event Date:	10.2	10.05		(inclusive)
City:	Emeryville, CA	l'		Sampler:	F	-		. 1
Well ID	MW- 19.0	Date	Monitored:	0.20.05	Well Co	ndition:	ok	
Well Diameter	2 in.		Volume	3/4*= 0.02	1*= 0.04	2"= 0.17	3*= 0.38	
Total Depth	14.95 1		Factor (VF)	4** 0.66	5*= 1.02	6"= 1.50	12*= 5.80	
Depth to Water	<u>4.38 t</u>	- 12	. 1.74	v2.come volumes F	stimated Put	ne Volume:	5.0	gál.
	_10.57×	·		x3 case voidine - c.	Time Star	wet i		(2400 firs)
Purge Equipment:		Sar	npling Equipment:	/	Time Com	pieted	12	_(2400 hrs)
Disposable Bailer		Dis	posable Bailer		Depth to F	Product: Nater:		
Stainless Steel Baile	f	Pre	esure Bailer		Hydrocart	on Thickne	55:	
Stack Pump		Dis	crete Baller		Visual Co	nfirmation/D	Description	
Suction Pump		0.	Hell				Figure Lairely	ma)
					Skimmer	I ADSOCDADE	SOCK ICHORE	Dire /
Other					Amt Rem	oved from S	Sock (circle)	gal
Other		1			Amt Rem Amt Rem	oved from S oved from V oved from V	Sock (circle skimmer: Vell:	gal gal
Other:		. 1			Amt Rem Amt Rem Water Re Product T	oved from S oved from S oved from V moved: ransferred f	Sock (circle Skimmer: Skimmer: Vell:	gal gal
Other		. 1		1	Amt Rem Amt Rem Water Re Product T	oved from S oved from V moved: ransferred (Veli:	gal gal
Cither:	e): 1700	Weat	her Conditions:		Amt Rem Amt Rem Water Re Product T	ransferred f	Sock (circle - Skimmer: Well:	gal gal
Start Time (purg	e): <u>1700</u> ate: 1730 / (0	Weat	her Conditions: Water Color:	CLE	Amt Rem Amt Rem Water Re Product T	Oved from S oved from V moved: ransferred (Vell:	gal gal
Start Time (purg Sample Time/D	e): <u>1100</u> ate: <u>1120 / (o</u> ate:	Weat	her Conditions: Water Color: ent Description:	CLE	Amt Rem Amt Rem Water Re Product T	Oved from S oved from V moved: ransferred f	Nel:	gal gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat	e): <u>1700</u> ate: <u>1707 (o</u> ate: <u>7 gpm.</u> er? No	Weat 20.05 Sedim If yes, Tir	her Conditions: Water Color: ent Description: ne:	Volume:	Summer Amt Rem Water Re Product T	Odor:	Sock (choice) Skimmer: Velt الا	gal gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat	ie): <u>1700</u> ate: <u>1700/lo</u> ate: <u>/ gpm.</u> er? No	Weat 20.05 Sedimo If yes, Tir	her Conditions: Water Color: ent Description: ne:	Volume:	Amt Rem Amt Rem Water Re Product T	Odor:	Velt	gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat	ve): 1700 ate: 1700/lo ate: 1700/lo gpm. velume Volume	Weat 20.05 Sedimu If yes, Tir	her Conditions: Water Color: ent Description: ne: Conductivity	Volume: Temperature	Amt Rem Amt Rem Water Re Product T	Odor: Odor: Odor: Odor: 1.	یندر (دانده د kimmer: velt to: occ ORP (mV)	gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat	e): 1700 ate: 1700/00 ate: 1700/00 er? No Volume (gal.)	Weat Sedimu If yes, Tir pH	her Conditions: Water Color: ent Description: ne: Conductivity (umhosicm)	Volume: Temperature Ø/ F)	Amt Rem Amt Rem Water Re Product T	I Adsorbant oved from S oved from S moved : moved: ransferred I Odor: 1.	Sock (choice) Sock	gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat	e): 1700 ate: 1700/lo ate: 1700/lo ate: 1700/lo gat.) 3.0	Weat 20.05 Sedim If yes, Tir pH 6.81 6.78	her Conditions: Water Color: ent Description: ne: Conductivity (wmhos/cm) 132 130	Volume: Temperature Ø/ F) 18.0 18.2	Stemmer Amt Rem Water Re Product T	Odor: Odor: Odor: Odor: I. Odor: I.	المالي (داري المالي) Velt المالي المالي (داري المالي) ORP (mV)	gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat (2400 hr.)	ve): 1700 ate: 1700/lo ate: 1700/lo ate: 1700/lo er? No Volume (gal.) 1.5 3.0	Weat Sedim/ If yes, Tir pH 6.81 6.78	her Conditions: Water Color: ent Description: ne: Conductivity (wmhos/cm) 132 130 130	Volume: Temperature Ø/ F) 18.0 18.2 18.4	Stemmer Amt Rem Amt Rem Water Re Product T	Odor: Odor: Odor: Odor: I. Odor: I.	الماد (دار الماد) Velt الماد الماد الم ماد الماد الم	gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat (2400 hr.)	e): 1700 ate: 1700 / Lo ate: 1700 / Lo ate: 1700 / Lo ate: 1700 (gat.) 1.5 3.0 5.0	Weat Sedimu If yes, Tir pH 6.81 6.78 6.75	her Conditions: Water Color: ent Description: ne: Conductivity (umhos/cm) 132 130 130	Volume: Temperature Ø/ F) 18.0 18.2 19.4	Stemmer Amt Rem Amt Rem Water Re Product T ک ی ی ی	Odor: Odor: Odor: II. Odor: II.	Sock (choice	gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat	e): 1700 ate: 1720 / Lo ate: gpm. er? No Volume (gal.) 3.0 5.0	Weat Sedim If yes, Tir pH 6.81 6.78 6.75	her Conditions: Water Color: ent Description: ne: Conductivity (umhos/cm) 132 130 132 130 132	Volume: Temperature Ø/F) 18.0 18.2 19.4 ORMATION	Stemmer Amt Rem Water Re Product T	Overaf from V overaf from V moved overaf from V moved Odor: II	ORP (mV)	Gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat	e): 1700 ate: 1700 / Lo ate: gpm. er? No Volume (gal.) 1.5 3.0 5.0 (#) CONTAINER	Weat 20.05 Sedim If yes, Tir pH 6.73 6.75 6.75 6.75	her Conditions: Water Color: ent Description: ne: Conductivity (umhos/cm) 132 130 132 130 132 130 132 130 132	Volume: Temperature Ø/F) 18.0 8.2 9.4 9.4 0RMATION LABORATORY	Stemmer Amt Rem Amt Rem Water Re Product T	Odor: Odor: Odor: Odor: ANA	ORP (mV)	Gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat (2400 hr.)	e): 1700 ate: 1700/0 ate: 0 gpm. er? No Volume (gal.) 1.5 3.0 5.0 (#) CONTAINER (#) CONTAINER	Weat Sedimu If yes, Tir pH 	her Conditions: Water Color: ent Description: ne: Conductivity (umhos/cm) 132 130 132 132 132 132 132 132 132 132 132 132	Volume: Temperature Ø/F) 18.0 8.2 9.4 0RMATION LABORATORY LANCASTER	Stemmer Amt Rem Amt Rem Water Re Product T Starby Y S D.C (mg	Odor: Odor: Odor: Odor: ANA Odor: ANA Odor: ANA Odor: ANA	ORP (mV)) (114)
Start Time (purg Sample Time/D Purging Flow R Did well de-wat (2400 hr.)	e): 1700 ate: 1700/0 te: 0 gpm. er? No Volume (gal.) 1.5 3.0 5.0 (#) CONTAINER (#) CONTAINER	Weat Sedimu If yes, Tir pH 	her Conditions: Water Color: ent Description: ne: Conductivity (umhos/cm) 132 130 132 130 132 130 132 130 129 HCL HCL	Volume: Temperature Ø/F) 18.0 18.0 18.4 0 RMATION LABORATORY LANCASTER LANCASTER	Stemmer Amt Rem Amt Rem Water Re Product T Supply ga D.0. (mg D.0. (mg	Odor: Odor: Odor: II. Odor: II. ANA ANA O15/BTEX- (8250)	ORP (mV)) Gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat (2400 hr.)	e): 1700 ate: 1700 / L0 ate: / gpm. er? No Volume (gal.) 1.5 3.0 5.0 (#) CONTAINER 4 x vos vial	Weat Sedimu If yes, Tir pH 	her Conditions: Water Color: ent Description: ne: Conductivity (uninos/cm) 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132	Volume: Temperature Ø'F) ISO ISO ISO ORMATION LABORATORY LANCASTER LANCASTER	Stemmer Amt Rem Amt Rem Water Re Product T Style ga D.0. (mg D.0. (mg	Odor: Odor: Odor: II. Odor: II. ANA ANA ANA (8250)	ORP (mV)) Gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat (2400 hr.)	e):0 ate:gpm. er?v (gal.) _	Weat Sedimu If yes, Tir pH 	her Conditions: Water Color: ent Description: ne: Conductivity (orininas/cm) 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132 130 132	Volume: Temperature Ø/ F) 18.0 (8.) (8.) (8.) (8.) (8.) (8.) (8.) (8.)	Stemmer Amt Rem Amt Rem Water Re Product T Supply ga D.0. (mg	Odor: Odor: Odor: II. Odor: II. ANAI ANAI (8260)	ORP (mV)	Gal
Start Time (purg Sample Time/D Purging Flow R Did well de-wat (2400 hr.)	e):0 ate:gpm. er?v (gal.) 	Weat Sedimu If yes, Tir pH 6.81 6.75 10 REFRIG YES	her Conditions: Water Color: ent Description: ne: Conductivity (orininas/cm) 132 130 132 130 132 130 132 BORATORY INF PRESERV. TYPE HCL HCL	Volume: Temperature Ø/ F) 18.0 (8.) (8.) (8.) (8.) (8.) (8.) (8.) (8.)	Stemmer Amt Rem Amt Rem Water Re Product T Supply ga D.((mg	Odor: Odor: Odor: II. Odor: II. ANAI ANAI (8260)	ORP (mV)	Gal

Add/Replaced Lock: _____

Add/Replaced Plug: _____ Size: ____

.....
Active contractor Laboratories Active Laborat	
Reference Container Matrix Matrix Matrix endrese: POWELL @ LANDREGAN: EMERYVILE CA Matrix Matrix Matrix endrese: POWELL @ LANDREGAN: EMERYVILE CA Matrix Matrix Matrix endrese: POWELL @ LANDREGAN: EMERYVILE CA Matrix Matrix Matrix endrese: POWELL @ LANDREGAN: EMERYVILE CA Matrix Matrix Matrix endrese: POWELL @ LANDREGAN: EMERAVILE CA Matrix Matrix Matrix endremail Matrix Land Consultant: CAMBRABE Matrix Matrix endremail Powensith Mill Land Consultant: CAMBRABE Matrix mutuating phone M: Defente Mill Matrix Matrix Matrix mutuating phone M: Mill Mill Arr Matrix Matrix mutuating phone M: Mill Mill Arr Matrix Matrix Miller Mill Mill Mill Arr Matrix Matrix Miller Miller Miller Miller Miller Miller Miller Miller Miller Miller Miller Miller Miller Miller Miller Miller	Hinderic Legan and Sche Sche glad Sal
erron P.N. MIT autianti Office: G-R, Inc., G-X17 Sterra Count. Suite J. Dublin, Ga. 995681 autianti Phone K. 925-551-7565 read and anti Phone K. 925-551-7869 read anti Phone K. 925-551-7869 read anti Phone K. 925-551-7869 read anti Phone K. 925-551 read anti Phone K. 925-551 read anti Phone K. 925-555 read anti Phone K. 925-555	Preservative Codes H H HCI T = Thiosultsle H H HCI T = Thiosultsle K H = HCI 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
паціані Phone #. 225.551-7555 Паціані Phone #. 225.551-7555 Паціані Phone #. 225.551-7555 Паціані Phone #. 225.551-7699 Прият. П	a = reports a = reports Must reporting meeded Must revol kewsist denaction times possible for 6260 compounds
Ther	8021 MTBE Confirmation
Dele Time Date Time Role Time Role Time Role	Continue at hits by \$260
CAB [D.20:05] W Z-X/X Y Y HUU-RIA 1120 X 9 X X X MULTIA 1120 X 9 X X X X MULTIA 1120 X 1 120:05 X X X X MULTIA X 1 1120 X	Then at his
MUMA I ILVI X I I Q X X X X X X X X X X X X X X X	Commonts / Remarks
MU-MAR + 1120 X + 9 X X X X X X X X X X X X X X X X X	X
margund Time Requested (TAT) (please circle) Tato 120 T2 hour 48 hour 18 hour 12 hour 18 hour	×
Platogund Time Requested (TAT) (please circle) Platogund Time Requested (TAT) (please circle) Refrantined by TAT) 72 hour 48 hour Refrantined by Refrantined by Refranti	
Date Time Respondence of TAT) (please circle)	
matcund Time Requested (TAT) (please circle) Reinduished by 1.0.2.0.0 Time Receipting to 1.0.2.0.0 Time Receipting to 1.1.0.1.2.0.0 Time Receipting to 1.1.0.0.0.0 Time Receipting to 1.1.0.0.0.0.0 Time Receipting to 1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
1. TAT) 72 hour 48 hour Reaching wet by: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Time Received by: Done Done Time
X I CCCININGAL SOUTH AND	The Republic Der Articles Church Right 33
Tar Package Options (please dride if required) Received Received	1530 Reporting to the providence and
Reinforder Man Date - Full Reinforder A Commercial Carrier: Reveal Revea	Ruceward by: Child Date Time
Temperature Upon Receipt L & Color 1, 4, - 4, Or Custo	Custory addentiants (free) No 09.55

ANALYTICAL RESULTS

w, FA 17805-2425 * 717-656-2300 Fex (*)

Pre	D21	red	for:	
	_		1000	

ChevronTexaco c/o Cambria Suite 12 4111 Citrus Avenue Rocklin CA 95677 916-630-1855

Prepared by: Contraction of the contraction of the

Lancaster Laboratories 2425 New Holland[Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 964521. Samples arrived at the laboratory on Tuesday, October 25, 2005. The PO# for this group is 99011184 and the release number is MTI.

 Client Description

 QA-T-051020
 NA
 Water

 MW-17-W-051020
 Grab
 Water

 MW-19A-W-051020
 Grab
 Water

Lancaster Laboratories

> Lancaster Labs Number 4631694 4631695 4631696

1 COPY TO ELECTRONIC COPY TO Cambria C/O Gettler- Ryan Gettler-Ryan Attn: Deanna L. Harding Attn: Cheryl Hansen

Questions? Contact your Client Services Representative Lynn M Frederiksen at (717) 656-2300

005-2425 • T\T-8

Respectfully Submitted,

6/2300 Fas:717-656-2681

midele M. Turner

Michele M. Turner Director

2425 New Holland Pike, PO Box 12425. Lancester, PA 17605-2425 -717-656-2300 Fax. 217-656-2681- www.lancesterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4631694

QA-T-051020 NA Water Facility# 206265 Job# 385161 MTI# 61H-1953 GRD Powell@Landregan-Emeryv SLT2007076 QA Collected:10/20/2005

Submitted: 10/25/2005 09:20 Reported: 11/04/2005 at 16:39 Discard: 12/05/2005

PONQA

Account Number: 10904

ChevronTexaco c/o Cambria Suite 12 4111 Citrus Avenue Rocklin CA 95677

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit SO.	Units ug/l	Dilution Factor
01720	TPH-GRO - Waters The reported concentration of gasoline constituents eluting start time.	TPH-GRD does not prior to the C6	(n-bexane) TPH-G	other RO range		
06054	BTEX+MTRE by 82608					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.)	0.5	ug/1 ug/1	1
05401	Benzene	71-43-2	N.D.	0.5	ug/1	1
05407	Toluene	100-41-4	N.D.	0.5	ug/l	1
05415 06310	Xylene (Total)	1330-20-7	м.□.	0.5	ug/1	1

State of California Lab Certification No. 2116

		Laboratory	Chro	nicle		Dilution
CAT No.	Analysis Name TPH-GRD - Waters	Method N. CA LUFT Gasoline	Trial#	Date and Time 10/26/2005 19:30	Analyst Kathie J Bowman	Factor
06054 01146 01363	BTEX+MTBE by 8260B GC VOA Water Prep GC/MS VOA Water Prep	Method SM-846 0260B SM-846 5030B SW-846 5030B	1 1 1	10/27/2005 14:51 10/26/2005 19:30 10/27/2005 14:51	Ginelle L Feister Kathie J Bowman Ginelle L Feister	1 3 1.4.

Page 1 of 2

2425 New Hollend Pike, PO Box 12425, Lancester, PA 17605-2425 +717-056-2300 Fax: 717-656-2651 - www.lancesterlabs.com

Lancaster Laboratories Sample No. WW 4631695

MW-17-W-051020 Grab Water Facility# 206265 Job# 385161 MTI# 61H-1953 GRD Powell@Landregan-Emeryv SLT2007076 MW-17 Collected:10/20/2005 16:47 by FT Account Number

Submitted: 10/25/2005 09:20 Reported: 11/04/2005 at 16:39 Discard: 12/05/2005

POW17

Account Number: 10904 ChevronTexaco c/o Cambria

Suite 12 4111 Citrus Avenue Rocklin CA 95677

				As Received		
(1) T			As Received	Nethod		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	7PH-GRO - Waters	n.a.	N.D.	50.	ug/1	1
	The reported concentration of gasoline constituents eluting start time.	TPH-GRO does no prior to the C6	t include MTBE ((n-bexane) TPH-	of other -GRD range		
05382	EFA SW846/8260 (water)					
05385	Chlorensthans	74-87-3	N.D.	1.	ug/l	1
05365	Winyl Chlowide	75=01-4	N.D.	1.	ug/1	1
05200	transmithane	74-83-9	N.D.	3.	ug/l	1
05387	Thi most have	75-00-3	N.D.	1.	ug/l	1
05300	The local second second have	75-62-4	N.D.	2.	ug/1	1
05362	1 1-ticklowethere	75-35-4	N.D.	0.8	ug/1	1
053370	Mathalana Chlorida	75-09-2	N.D.	2.	ug/l	1
05391	trans.l 2.Dichlorosthene	156-60-5	N.D.	0.8	ug/1	1
05392	1 1 Dichloroothane	75-34-3	N.D.	1 .	ug/1	1
05393	I, I-Dichioroschane	156-59-2	3.	0.8	ug/1	3
05395	C15-1, 2-D1CD404CHCHEFE	67-66-3	0.9	0.8	ug/1	1
0539%	1 1 1 Trichlorosthans	71-55-6	N.D.	0.8	ug/1	1
05356	Carbon Tabrachloride	56-23-5	N.D.	1.	ug/1	1
05399	Carbon recrusterate	71-43-2	N.D.	0.5	ug/1	1
05401	1 0 Dight smethods	107-06-2	N.D.	0.5	ug/l	1
05402	Ty 2-Dichiosowichame	79-01=6	12.	1.	ug/1	1
05403	1 2 Dickloropropaga	78-87-5	N.D.	1.	ug/l	1
05404	Exceeding 1 commethems	75-27-4	N.D.	1.	ug/1	1
05400	Tel sens	108-88-3	N.D.	0.5	ug/l	1
05407	1 2 2 Trichlemeshane	29-00-5	N.D.	0.B	ug/l	1
05408	1,1,2-Trichtordernam	127-18-4	6.	0.8	ug/l	1
05409	Twittman and a monorthana	124-48-1	N.D.	1.	ug/1	. 1
05411	Dibionobergere	108-90-7	N.D.	0.8	ug/l	1
05613	Chiprobenzene Richard hannene	100-41-4	N.D.	0.5	ug/1	1
05415	Bury Lottisans	1110-20-7	n.b.	0.5	ug/1	1
05416	step. Ayrene	95-47-6	N.D.	0.5	ug/1	1
05417	0-Aylene	75-25-2	N.D.	1.	og/1	1
05419	Brosciers	79-34-5	N.D.	1.	ug/1	1
05421	1,1,2,2-Tecracitordecosto	541-73-1	N.D.	1.	ug/1	1
05432	1,3-Dichicrobenzens	106-46-7	N.D.	1.	ug/l	1
05433	3,4-Dichiorobeniene	200-40-7	M.D.	1.	ug/1	1
05435	1,2-Dichlorobenzene	39-90-1	201201			
08202	EPA SW 846/8360 - Mater					
02010	Methyl Tertiary Butyl Ether	1634-04-6	N.D.	0.5	ug/l	1

2425 New Holland Pike, PD Box 12425, Lancaster, PA 17605-2425 • 717-666-2300 Fax: 717-656-2661 • www.Jancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4631695

 NW-17-W-051020
 Grab
 Water

 Facility#
 206265
 Job# 385161
 MTI# 61H-1953
 GRD

 Powell@Landregan-Emeryv
 SLT2007076
 NW-17

 Collected:10/20/2005
 16:47
 by FT

Submitted: 10/25/2005 09:20 Reported: 11/04/2005 at 16:39 Discard: 12/05/2005

POW17

ChevronTexaco c/o Cambria Suite 12 4111 Citrus Avenue Rocklin CA 95677

Account Number: 10904

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Limit	UNICS	Pactor
06306	trans-1.3-Dichloropropene	10061-02-6	N.D.	1.	ug/1	1
06307	cis-1.3-Dichloropropene	10061-01-5	ж.р.	1.	ug/1	1
08203	Freon 113	76-13-1	18.D.	2.	ug/1	1

State of California Lab Certification No. 2116

Laboratory Chronicle

		Laboratory	Chro	Analysis		Dilution
CAT No. 01728	Analysis Hame 7PS-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 10/27/2005 03:41	Analyst Kathie J Bownan	Factor
05382 08202 01146 01163	EPA SW846/8260 (water) EPA SW 846/8260 - Water OC VOA Water Prep CC/MS VOA Water Prep	Method SW-846 8260B SW-846 8260B SW-846 5030B SW-846 5030B	1 1 1	10/26/2005 14:55 10/26/2005 14:55 10/27/2005 03:41 10/26/2005 14:55	Nicholas R Rossi Nicholas R Rossi Kathie J Bowman Nicholas R Rossi	1 1 1 n8.

2425 New Holland Pile, PO Box 12425, Lanciaster, PA 17605-2425 • 717-856-2300 Fix: 717-856-2881• Www.lanciasterlabs.com

Lancaster Laboratories Sample No. WW 4631696

MW-19A-W-051020 Grab Water Facility# 206265 Job# 385161 MTI# 61H-1953 GRD Powell@Landregan-Emeryv SLT2007076 MW-19A Collected:10/20/2005 17:20 by FT

Submitted: 10/25/2005 09:20 Reported: 11/04/2005 at 16:39 Discard: 12/05/2005

POW19						
				As Received		
030			As Received	Hethod		Dilution
No.	Analysis Name	CAS Number	Result	Detection	Units	Factor
01778	TPH-GRO - Waters	n.a.	180.	50.	ug/1	1
64.740	The reported concentration of 5 gasoline constituents eluting p start time.	rpH-GRO does no prior to the CG	include MTBE ((n-bexane) TPE	GRO range		
05382	EPA SW846/8260 (water)					
05385	Chloromethane	74-87-3	N,D.	1.	ug/1	1
0.5386	Vinvl Chloride	75-01-4	N.D.	1.	ug/1	1
05387	Bronomethane	74-83-9	N.D.	1.	ug/1	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/1	1
05389	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/1	1
05300	1.1-Dichlorcethede	75-35-4	N.D.	0.8	ug/l	1
05393	Markwlene Chloride	75-09-2	N.D.	2.	ug/l	7
05394	trang.1 3.Dichlonoethens	156-60-5	5.	0.8	ug/l	1
05352	 i - Tri oblognati bana 	75-34-3	N.D.	1.	ug/1	1
05394	nia 2 2 Dicklongsthams	156-59-2	26.	0.8	ug/l	1
05395	Chloneform	67=66-3	2.	0.8	ug/1	1
05396	()) . Trichlemethand	71-55-6	N.D.	0.8	ug/1	1
05398	1,1,1-Trichtoreetname	56-22-5	N.D.	1.	ug/1	1
05399	Carbon Tetrachioride	30-23-3	8.0	0.5	ug/1	1
05401	Benzene	107 05 3	N D	0.5	ug/1	1
05402	1,2-Dichloroethane	107-06-2	27	1.	ug/l	1
05403	Trichloroethene	75-01-6	N D	1.	ug/1	1
05404	1,2-Dichloropropane	78-07/5	N.D.	1.	$u \alpha / 1$	1
05406	Bromodichlorowethane	75-27-4	N.D.	A 6	ug/1	1
05407	Toluene	108-88-3	N.D.	0.5	ug/1	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.0	ug/1	5
05409	Tetrachloroethens	127-18-6	350.	•.	ug/1	1
05411	Dibromochloromethane	124-48-1	BLD.	1,	ug/1	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	0971	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	08/1	1
05416	m+p-Xylene	1330-20-7	N.D.	0.5	199/1	1
05417	o-Xylene	95-47-6	N.D.	0.5	19/1	1
05419	Bronoform	75-25-2	N.D.	1.	ug/1	1
05421	1.1.2.2-Tetrachloroethane	79-34-5	1.	1.	ug/1	1
05432	1.3-Dichlorobenzene	541-73-1	B.D.	1.	ug/1	1
05433	1.4-Dichlorobenzane	106-46-7	N.D.	1.	ug/1	1
05435	1,2-Dichlorohenzene	95-50-1	N.D.	1.	ug/1	1
08202	EPA SW 846/8260 - Water					
02010	Methyl Tertiary Butyl Sther	1634-04-4	N.D.	Q - 5	ug/1	1

Page 1 of 2

Account Number: 10904

ChevronTexaco c/o Cambria Suite 12 4111 Citrus Avenue Rocklin CA 95677

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2000 Fax: 717-656-2001 • Wew.lancasteriabs.com

Page 2 of 2

Dilution

Lancaster Laboratories Sample No. WW 4631696

NW-19A-W-051020 Grab Water Facility# 206265 Job# 365161 MTI# 61H-1953 GRD Powell@Landregan-Emeryv SLT2007076 MW-19A Collected:10/20/2005 17:20 by FT

Submitted: 10/25/2005 09:20 Reported: 11/04/2005 at 16:39 Discard: 12/05/2005

ChevronTexaco c/o Cambria Suite 12 4111 Citrus Avenue Rocklin CA 95677

Account Number: 10904

POW19				As Received		
CAT No.	Analysis Name	CAS Number	As Received Result	Method Detection Limit	Units	Dilution Factor
06306 06307 08203	trans-1,3-Dichloropropene cis-1,3-Dichloropropene Preon 113	10061-02-6 10061-01-5 76-13-1	N.D. N.D. 5.	1. 1. 2.	ug/l ug/l ug/l	1 1

State of California Lab Certification No. 2116

Laboratory Chronicle Analysis

12.2 12						
No	Amalysis Name	Method	Trial#	Date and Time	Analyst	Pactor
01728	TFH-GRO - Waters	N. CA LUFT Gasoline	1	10/20/2005 02:32	Kathle J Bownan	×.
	and output (1987 S. Luchard	Method SW-BAG 8260B	1	10/26/2005 15:19	Nicholas R Rossi	1
05382	EPA SM646/8260 (Water)	SM-846 8260B	1	10/26/2005 21:00	Nicholas R Rossi	5
09302	TER SWARDARD (MALEI)	SW-846 8260B	1	10/26/2005 15:19	Nicholas R Rossi	1
01146	GC VOA Mater Prep	SW-846 503DB	1	10/28/2005 02:32	Kathie J Bowman	1
01163	GC/MS VOA Water Frep	\$N-846 5030B	1	10/26/2005 15:19	Nicholas R Bossi	p.s.
01163	GC/NS VOA Water Prep	SM-846 5030B	2	10/26/2005 21:00	Richdias R 80864	

Page 2 of 4

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria Reported: 11/04/05 at 04:39 PM Group Number: 964521 Laboratory Compliance Quality Control Report Onita Og/1 Og/1 Og/1 Og/1 Og/1 Og/1 LCS <u>SREC</u> 113 100 102 104 102 LCSD NREC LCS/LCSD Blank Blank LCS/LCS Limits 77-127 85-117 85-115 82-119 83-113 RPD RPD Max Analysis Name Nethyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total) Reault N.D. N.D. N.D. N.D. N.D. N.D. MDL 0.5 0.5 0.5 0.5 0.5 Sample Matrix Quality Control 107 122 Dup RPD Nax____ DUP Conc MSD MS/MSD NREC Limits RPD BKG Conc MS BEEC RPD Analysis Name Sample number(s): 4631694-4631695 125 63-154 Batch number: 05299A00A TPH-080 - Waters Sample number(s): 4631696 107 63-154 Batch number: 05300A08A TPH-GRD - Maters

Batch number: W052972AB	Sample	number	<pre>(a): 463169</pre>	95-4631	696
Methyl Tertiary Butyl Ether	107	105	69-134	1	30
Chloromethane	105	104	69-155	1	3.0
Vinyl Chloride	110	109	81-150	1	3.0
Bromomethans	113	109	59-143	- 4	3.0
Chloroethane	111	108	63-142	3	30
Trichlorofluoromethane	139	131	77-177	6	3.0
1.1-Dichloroethene	117	118	87-145	1	30
Mathylene Chloride	105	100	79-133	5	30
trans-1,2-Dichloroethene	107	108	82-133	1	30
1,1-Dichloroethane	112	114	85-135	1	30
cis-1,2-Dichloroethene	110	106	83-126		30
Chloroform	120	118	82-131		30
1.1.1-Trichlorcethane	126	122	81-142	4	30
Carbon Tetrachloride	130	123	79-155	5	30
Benzene	33	112	63-128	- 4	30
1.2-Dichloroethane	128	120	70-143	6	30
Trichloroethene	120	119	83-136	1	30
1.2-Dichloropropane	109	108	83-129	1	30
Bronodichloromethane	123	117	80-129	6	30
Toluene	102	105	83-127	2	3.0
1.1.2-Trichloroethane	129×	128*	77-325	1	30
Tetrachlorosthene	109	106	78-133	3	3.0
Dibromochloromethane	104	98	82-119	6	3.0
Chlorobenzene	104	103	83-120	1	30
Ethylbenzene	9.9	108	82-129	5	30
mam-Xvlene	99	106	82-130	5	30
o-Xvlene	103	103	82-130	0	30
Bronoform	81	ケ市	64-119	-4	30
1.1.2.2-Tetrachlorcethane	93	91	69-128	2	30
3.3-Dichlorobenzene	102	101	79-123	1	30
7 4-Dichlorohenzene	100	101	81-122	3	30
1.7-Dichlerobenzene	101	100	82-117	1	30
trans-1.3-Dichloropropene	100	28	77-123	2	30
cis-1.3-Dichloropropeps	105	102	80-126	3	30
Execu 113	126	119	73-166	5	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

Group Number: 964521

Lancester, FA 17605-2425 +717-656-2000 Fax: 717-656-2681+ www.lancesterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria Reported: 11/04/05 at 04:39 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL	Report Units	LCS AREC	AREC N	LCS/LCSD Limits	RPD	RPD Max
Batch number: 052998088	Sample	number(s):	4631694-46	31695		PA 122		2.0
TPH-GRO - Maters	N.D.	50.	0g/1	103	106	70-130	6	20
Batch number: 05300A08A	Sample	number(s):	4631696			70.130		3.0
TPH-GRO - Waters	N.D.	50.	ug/1	108	112	70-130	•	30
Batch number: W052972AB	Sample	number (s):	4631695-46	31696		99-133		
Methyl Tertiary Butyl Ether	N.D.	0.5	UG/1	104		44-130		
Chloromethane	N.D.	1.	ug/1	94		00-139		
Vinvl Chloride	N.D.	1,	ug/1	94		71-126		
Bronomethane	N.D.	1.	ug/1	105		62-331		
Chloroethape	N.D.	1.	ug/1	102		67-327		
Trichlorofluoromsthape	N.D.	2.	ug/1	122		70-340		
1 1-Dichloroethene	N.D.	0.8	ug/1	104		79-130		
Mathulana Chloride	N.D.	2.	'. / go	98		85-120		
trang_1_2_Dichloroethete	N.D.	0.8	9g/1	102		03-117		
1 1-Dichlercethane	N.D.	1.	ug/1	107		83 - 127		
at s-5 2-DichlorosEbene	N.D.	0.8	ug/1	103		84-117		
CLEF1, 2 DIGING CHAINE	N.D.	0.8	ug/1	112		86-124		
1 1 3 Trichlorenthetic	N.D.	0.8	uq/1	118		83-127		
realized Weitrachlarida	N.D.	1.	uq/1	118		77-130		
Carbon recructive ade	ND	0.5	ug/1	101		85-117		
5 D-Tright stocthand	10 TI	0.5	ug/1	319		77-132		
1,2-Dichick Contractor	N.D.	1.	ug/1	108		87-117		
1 D. Di shi ammakana	N. D.	ĩ.	ug/1	99		80-117		
1,2-DICHLOTOPEOPHIC	N.D.	1.	49/1	114		83-121		
HIGHOGICELOFOGUCHHIM	N.D.	0.5	vars/1	102		85-115		
Toluene	N D	0.8	ua/1	96		86-113		
1,1,2-TFichloroechane	N D	0.8	um/1	102		74-125		
Tetrachidroschens	M . D .	1.	00/1	107		78-119		
DIDLOBOCUTOLOBSCURIN	N D	0.8	100/1	101		85-115		
Chioropenzene	M	0.5	ug/1	101		82-119		
stnyipenzene	M D	0.5	um/1	100		83-113		
u+b-xArene	DI.D.	0.5	100/1	9.9		83-113		
o-Xylene	DI	1	100/1	91		69-118		
Bronotorn	51.47.	1	130/1	85		72-119		
1, 1, 2, 2-Tetrachioroechane	N. D.	÷.	ug/1	96		81-114		
1,3-Dichlorobenzene	N. D.	÷.	ur/1	96		84-116		
1,4-Dichiorobensene	N.D.	÷.	San Al	96		81-112		
1,2-Dichlorobenzene	M.D.	4.	100 C	100		79-114		
trans-1,3-Dichleropropene	N.D.	4.	1497.2	101		78-114		
cis-1,3-Dichloropropens	B.D.	1.	1197.1	109		73-140		
Freon 113	R.D.	2.	6437 I	1.12				
Batch number: 2053002AA	Sample	e number(a):	4631694					

*- Outside of specification

The result for one or both determinations was less than five times the LOQ.
 The background result was more than four times the spike added.

2425 New Holland

Analysis Report

Page 3 of 4

Quality Control Summary

Client Name: ChevronTexaco Reported: 11/04/05 at 04:3	c/o (Cambris	t .			Grou	p Number:	964521	
Reporced: 11/04/05 dc 04/5		Samp	le Matri	x Qu	ality	7 Cont	rol		
Analysis Name	NS SREC	MSD MREC	NS/MSD Limits	RPD	RPD	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 2053002AA Nethyl Tertiary Butyl Ether Benzebe Toluene Ethylbenzene Xylene (Total)	Sample 116 107 107 110 104	number 113 108 109 111 106	(c): 4631654 69-134 83-128 83-127 82-129 82-129 82-130	2 1 2 1 2	30 30 30 30 30				

Surrogate Quality Control

Analysis N	ame: TPH-GRO - Waters			
satch home	Trifluorotoluene-F			
4631694	97			
4631695	96			
Blank	88			
LCS	94			
LCSD	91			
MS	100			
Limits:	63-135			
Analysis N	ane: TPH-GRO - Waters			
Batch numb	er: 05300A08A			
	Trifluorotoluene-P			
4631696	98			
Blank	83			
LCS	98			
LCSD	98			
MS	96			
Limits:	63-135			
Analysis }	Name: EPA SW846/8260 (water	1		
Batch num	per: W052972AB			a-Bronefluovobenzene
	Dibronofluoromethane	1,2-Dichlorowthane-de	TO THREE OF	4 - 52 00000 - 50 00000
7233205	8.0	50	98	96
4631695	6P	41	96	95
4031070	88	00	98	94
Blank	00	90	93	97
TC8	92	91	92	97
MS	97	21	93	86
MBD	20	0.5		
Limits:	80-116	77-113	80-113	78-113
Analysis	Name: NTEX+NTRE by \$260B			
Batch num	Der: 2053002AA			 Record Turnebergen
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	# - HECHOT LUGE CONTINUES

•- Outside of specification
 (1) The result for one or both determinations was less than five times the LOQ.
 (2) The background result was more than four times the spike added.

Page 4 of 4

Quality Control Summary

Client Nar	ne: ChevronTexaco c/o	Cambria		Group	Number: 964521
Reported:	11/04/05 at 04:39 PM	Surroga	te Quality	Control	
4631694 Blank LCS MS NSD	108 109 108 107	106 109 108 109 109	106 105 105 104 105		103 105 103 103
Limits:	80-116	77-113	90-113		78-113

- •- Outside of specification
 (1) The result for one or both determinations was less than five times the LOQ.
 (2) The background result was more than four times the spike added.

Lancaster Laboratories

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C meq 9 ug ug mi m3	none detected BM Too Numerous To Count M International Units CP Ur micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	QL PN ITU F Ib. kg mg I ul	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s)							
<	less than - The number following the sign is the <u>limit</u> reliably determined using this specific test.	of gua	intitation, the smallest amount of analyte which can be							
>	greater than	greater than								
J	estimated value - The result is ≥ the Method Detect	ted value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).								
ppm	parts per million - One ppm is equivalent to one milli aqueous liquids, ppm is usually taken to be equivale weight very close to a kilogram. For gases or vapor	gram ¢ ant to n s, one	ber kilogram (mg/kg), or one gram per million grams. For nilligrams per liter (mg/l), because one liter of water has a ppm is equivalent to one microliter of gas per liter of gas.							
ppb	parts per billion									
Dry weight basis	Results printed under this heading have been adjus concentration to approximate the value present in a on an as-received basis.	ted for simila	moisture content. This increases the analyte weight r sample without moisture. All other results are reported							
U.S. EPA CLP	Data Qualifiers:									
	Organic Qualifiers		Inorganic Qualifiers							
A B C D E N P	TIC is a possible aldoi-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument Presumptive evidence of a compound (TICs only) Concentration difference between primary and confirmation columns >25% Compound use reliable	BEMNS UW *	Value is <crdl, but="" ≥idl<br="">Estimated due to interference Duplicate injection precision not met Spike sample not within control limits Method of standard additions (MSA) used for calculation Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995</crdl,>							

- Compound was not detected U.
- X,Y,Z Defined in case narrative

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTY OF FITNESS FOR IMPLIED. WE DISCLAIM ANY OTHER WARRANTY SEXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTY OF FITNESS FOR IMPLIED. WE DISCLAIM ANY OTHER WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client. Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

3768.02

Geraghty & Miller Executive Summary

RISK ASSESSMENT FOR THE FORMER CHEVRON ASPHALT PLANT EMERYVILLE, CALIFORNIA

July 28, 1992

Prepared for:

CHEVRON U.S.A. PRODUCTS COMPANY West Central Marketing 2410 Camino Ramon San Ramon, California 94583

Prepared by:

GERAGHTY & MILLER, INC. Risk Evaluation Group 2840 Plaza Place - Suite 350 Raleigh, North Carolina 27612 (919) 571-1662

DOC.1041 July 28, 1992

EXECUTIVE SUMMARY

This risk assessment, prepared by Geraghty & Miller, Inc., for Chevron U.S.A. Products Company, evaluated the potential threat to human health and the environment for constituents detected in soils and ground water at the former Chevron asphalt plant in Emeryville, California, in the event that the site is redeveloped for commercial or retail uses. From the early 1950s until June 1987, the Chevron asphalt plant operated as a laboratory and test facility. The laboratory tested asphalt composition and experimented with asphalt-based surface coats. A portion of the site was used as a storage and transfer facility for petroleum products. Another area of the site was leased to a solvent handler. Information regarding Chevron's tenants' use of chemicals on site was not available. The buildings at the former Chevron asphalt plant were demolished and the site is now a vacant lot.

Various site investigations at the property have indicated the presence of chlorinated solvents and petroleum hydrocarbons in soil and ground water. Remedial activities have occurred at the site involving the removal of contaminated soil. The calculated health-based cleanup goals were compared to currently measured concentrations of constituents in soil and ground water to aid in the development of any additional remedial strategies.

The constituents of concern identified in soil and/or ground water were benzene, chloroform, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2dichloroethene, ethylbenzene, tetrachloroethene, toluene, total petroleum hydrocarbons (TPH) as diesel, TPH as gasoline, 1,1,1-trichloroethane, trichloroethene, vinyl chloride, and xylenes.

The purpose of this report was to develop health-based cleanup goals based on the most probable future land-use at the site. The former Chevron asphalt plant may be developed for commercial purposes. The original site development drawings showed three buildings on the site with the remainder of the site paved over as parking lot. Assuming future development of the site, health-based cleanup goals were calculated evaluating exposure of future users of the property inhaling volatile organic constituents (VOCs) migrating from soil and ground water into

DOC.1041\July 28, 1992

ii

buildings at the site. Ground water in the vicinity of the site is not used as a water supply source. Ground water discharges into San Francisco Bay downgradient of the site. Therefore, the nearest downgradient beneficial use of ground water would be the bay. The most recent ground-water data (collected in April) were compared to water quality criteria for the protection of aquatic life to evaluate whether discharging current concentrations of the constituents of concern would degrade San Francisco Bay or pose a threat to aquatic life in the bay.

The methodologies used in this risk assessment were designed to be constituent with guidelines established by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region (RWQCB, 1990) and the U.S. Environmental Protection Agency (USEPA; 1989a, 1991a,b) for risk assessments in general and the development of remedial goals specifically.

The risk assessment process included derivation of numerical estimates of the healthbased remediation goals designed to be protective of human health and the environment for human and environmental receptors from potential exposure to constituents detected in environmental media (e.g., soils) at or adjacent to the former Chevron asphalt plant. Exposure to detected constituents was evaluated by considering hypothetical future conditions. Healthbased remediation goals were derived based on protection of an on-site worker assuming direct contact exposure to soils during construction activities. In addition, health-based remediation goals were derived based on protection of an on-site worker assuming inhalation exposure to constituents originating in soils or ground water beneath the building and migrating into the building. An evaluation of exposures to environmental receptors also was conducted using the ground-water data and assuming these concentrations discharged into San Francisco Bay, the nearest downgradient ground-water discharge point.

Standard numerical parameters for quantifying human intakes were used to derive the health-based remediation goals for potentially exposed populations. Constituent- and route-specific intakes were estimated, and toxicity criteria (established by the USEPA) were used in the derivation to account for potential non-carcinogenic health effects and potential cancer risk

DOC.1041/July 28, 1992

iii

from the hypothetical exposure scenarios. USEPA-established reference doses (RfDs) were used to derive health-based remediation goals for constituents classified as non-carcinogens. An RfD represents the constituent- and route-specific dose to which a human receptor may be exposed over a lifetime without experiencing adverse health effects. USEPA-established cancer slope factors (CSFs) were used to derive health-based remediation goals for constituents classified as potential carcinogens. A CSF represents an upperbound estimate of the probability of developing cancer from constituent exposure over a lifetime and is derived from a mathematical model that extrapolates from the high doses in animal studies to the low doses characterizing human exposure,

An environmental assessment was conducted as part of this risk assessment to evaluate the potential impacts to environmental receptors potentially exposed to site-related constituents. The approach used in the environmental assessment approximately parallel those used to conduct human health assessments. Following identification of all potentially exposed populations, the nearest downgradient receptor location was assumed to be San Francisco Bay, ambient water quality criteria derived by USEPA and based on information on exposure and toxicity were used to derive qualitative estimates of potential ecological impacts.

Comparisons were made between the health-based remediation goals and the detected levels of constituents at the former Chevron asphalt plant. To evaluate exposure of aquatic life, currently detected ground-water concentrations were compared with ambient water quality criteria. The currently measured levels of the constituents of concern in soil and ground water were all below the health-based remediation goals or ambient water quality criteria. As a result, further remediation at the site does not appear to be warranted.

DOC.1041/July 28, 1992

iv

Bulletin 118 – East Bay Plain Subbasin

San Francisco Bay Hydrologic Region Santa Clara Valley Groundwater Basin

Santa Clara Valley Groundwater Basin, East Bay Plain Subbasin

- Groundwater Basin Number: 2-9.04
- County: Alameda, Contra Costa
- Surface Area: 77,800 acres (122 square miles)

Basin Boundaries & Hydrology

The East Bay Plain Subbasin is a northwest trending alluvial plain bounded on the north by San Pablo Bay, on the east by the contact with Franciscan Basement rock, on the south by the Niles Cone Groundwater Basin. The East Bay Plain Basin extends beneath San Francisco Bay to the west.

Numerous creeks including San Pablo Creek, Wildcat Creek, San Leandro Creek, and San Lorenzo Creek flow from the western slope of the Coast Ranges westward across the plain and into the San Francisco and San Pablo bays (CRWQCB 1999). Average precipitation in the subbasin ranges from about 17 inches in the southeast to greater than 25 inches along the eastern boundary, most of which occurs between the months of November and March.

Hydrogeologic Information

Water Bearing Formations

The East Bay Plain subbasin aquifer system consists of unconsolidated sediments of Quaternary age. Deposits include the early Pleistocene Santa Clara Formation, the late Pleistocene Alameda Formation, the early Holocene Temescal Formation, and Artificial Fill. The cumulative thickness of the unconsolidated sediments is about 1,000 feet (CRWQCB 1999). The average specific yield of the basin was calculated to be about 6% (DWR 1994).

Early Pleistocene Santa Clara Formation. The Santa Clara Formation consists of alluvial fan deposits inter-fingered with lake, swamp, river channel, and flood plain deposits. The formation ranges from 300 to 600 feet thick (CRWQCB 1999).

Late Pleistocene Alameda Formation. The Alameda Formation includes a sequence of alluvial fan deposits bounded by mud deposits on top and bottom of the formation. The formation was deposited primarily in an estuarine environment and ranges from 26 to 245 feet thick (CRWQCB 1999).

Early Holocene Temescal Formation. The Temescal Formation is an alluvial deposit consisting primarily of silts and clays with some gravel layers. The formation ranges from 1 to 50 feet thick (CRWQCB 1999).

Artificial Fill is found mostly along the bay front and wetlands areas and is derived primarily from dredging as well as quarrying, construction, demolition debris, and municipal waste. The fill ranges from 1 to 50 feet with the thickest deposits found nearer the Bay (CRWQCB 1999).

Last update 2/27/04

California's Groundwater Bulletin 118

California's Groundwater Bulletin 118

Groundwater Level Trends

Historic water levels in the deep (more than 500 feet) aquifer in the basin have varied between -10 to -140 feet mean sea level since the early 1950's. The low water level was reached in about 1962. Shallower aquifers have a much less pronounced water level decline. The historical low water level for aquifers at a depth of about 250 feet bgs since 1950 has been about -30 feet msl. Water levels rose about 5 feet per year between 1965 and 1980. Water levels have been rising continuously since then, but at a less rapid rate. As of 2000 water levels are very near surface in all aquifers.

Groundwater Storage

Groundwater Storage Capacity. Based on an analysis of 357 well logs, DWR (1994) calculated a total storage capacity in the subbasin of 2,670,000 acre feet. The analysis made calculation of storage for successive slices of the subbasin starting at a surface elevation of 350 above MSL and extending to a depth of 1,000 feet below MSL. The calculated average specific yield was 6%.

Groundwater in Storage. Based on 1993 groundwater elevations, DWR (1994) calculated to available storage to a depth of 1,000 below MSL at about 2,500,000 acre feet. However, due to concern over potential adverse impacts such as sea water intrusion, another calculation for the volume of water stored in sediments above MSL was determined at about 80,000 acre feet for 1993 (DWR 1994).

Groundwater Budget (Type A)

Groundwater extraction in the basin remained fairly constant over the last several years. The following budget is based on two studies by Muir (1993 and 1996). It is representative of current conditions in the subbasin. Annual basin inflows include natural recharge of 9,900 af, artificial/incidental recharge of 9,900 af, applied water recharge of 200 af, and subsurface of 200 af. Annual basin outflows include urban extraction of 2,440 af, agricultural extraction of 910 af, and subsurface outflow of 13,500 af.

Groundwater Quality

Characterization. Calcium bicarbonate type groundwater occurs mostly in the upper 200 feet of the subsurface, while sodium bicarbonate waters are common from about 200 to 1,000 foot depths (Ken Muir personal communication 2001). Data from 29 wells in the subbasin indicates that TDS in the shallow zone ranges from about 360 to 1,020 mg/l, while TDS from 200 to 1000 feet below ground surface ranges from 310 to 1,420 mg/l from 13 wells (Muir 1997). TDS exceeded 500 mg/l in 15 of the 29 sampled wells.

Impairments. The San Francisco Regional Water Quality Control Board (1999) identified 13 distinct locations with as areas of major groundwater pollution. These were identified as having plumes of contamination greater than 1,000 feet in length. Most contamination is due to release of fuels and solvents. Most contamination appears to be restricted to the upper 50 feet of the subsurface (RWQCB 1999).

California's Groundwater Bulletin 118

Water Quality in Public Supply Wells

Constituent Group ¹	Number of wells sampled ²	Number of wells with a concentration above an MCL ³
Inorganics – Primary	5	0
Radiological	4	0
Nitrates	5	0
Pesticides	3	0
VOCs and SVOCs	3	0
inorganics – Secondary	5	2

¹ A description of each member in the constituent groups and a generalized discussion of the relevance of these groups are included in California's Groundwater

discussion of the relevance of these groups are included in *California's Groundwater* – *Builetin 118* by DWR (2003). ³ Represents distinct number of wells sampled as required under DHS Title 22 program from 1994 through 2000. ³ Each well reported with a concentration above an MCL was confirmed with a second detection above an MCL. This information is intended as an indicator of the types of activities that cause contamination in a given basin. It represents the water quality at the sample location. It does not indicate the water quality delivered to the consumer. More detailed drinking water quality information can be obtained from the local water purevever and its annual Consumer Conditiones Report local water purveyor and its annual Consumer Confidence Report.

Well Production characteristics

Municipal/irrigation	Average: unknown (Mult pers comm 2001)		
	(Mail pero commi 2001)		
Domestic	Range:	32-525	Average: 206 (20 Well Completion Reports)
Municipal/irrigation	Range:	29-630	Average: 191 (62 Well Completion Reports)

Active Monitoring Data

Agency	Parameter	Number of wells /measurement frequency
EBMUD	Groundwater levels	29 wells semi-annually
Alameda County FC & WCD	Major Ion	16 wells (9 in odd numbered years, 7 in even years)
Department of Health Services	Coliform, nitrates, mineral, organic chemicals, and radiological.	7 wells as required in Title 22, Calif. Code of Regulations

California's Groundwater Bulletin 118

Basin Management

Groundwater management:	Entities in the basin have had preliminary discussions on groundwater management, but there is currently no compelling need and no groundwater management plans or ordinances are currently underway.
Water agencies	
Public	East Bay MUD, Alameda County FC & WCD.
Private	

References Cited

California Department of Water Resources. 1994. Ground Water Storage Capacity of a Portion of the East Bay Plain, Alameda County, California. 35 p.

California Regional Water Quality Control Board. 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report - Alameda and Contra Costa Counties, CA. 100 p.

Muir, K.S. 1993a. Geologic Framework of the East Bay Plain Groundwater Basin - Alameda County, California. 37 p.

- ______, 1993b. Groundwater Recharge in the East Bay Plain Area, Alameda County, California.
- ______, 1996a. Groundwater Discharge in the East Bay Plain Area, Alameda County, California.
- ______. 1996b. Groundwater Yield of the East Bay Plain Area, Alameda County, California.

Errata

Changes made to the basin description will be noted here.

California's Groundwater Bulletin 118

Additional References

California Department of Water Resources. 1960. Intrusion of Salt Water into Ground Water Basins of Southern Alameda County. Bulletin No. 81. 44p.

__. 1963. Alameda County Investigation. Bulletin No. 13. 196 p.

CH2M Hill. 2000. Regional Hydrogeologic Investigation South East Bay Plain.

Figuers, S. 1998. Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, CA. 90 p.

Hickenbottom, K. and K.S. Muir. 1988. Geohydrology and Groundwater-Quality Overview, of the East Bay Plain Area, Alameda County, California - 205 (J) Report. 83 p. and Appendix.

Todd Engineers. 1986. Recommissance of Groundwater Resources for the EBMUD Service Area. 62 p.

Boring Logs

273.27

ų,

- 2010 Com Will Store British To 200 Kings To 11

.

·...: Project EMERYVILLE TERMINAL 2 Observation Well No. Type of Rig HOLLOW ALLE TERMINAL LOCATION ANDRESAN + POWELLST. Type of Rig HOLLOW ALLEANING BY GETTLER-RYAN INC. Date 3/11/85 Time Method of Installation BRILLED WITH HOLLOW SITH AULER TO 12 TAKING EPLIT Method of Installation PRILLED WITH HOLLOW SITH AULER TO D. TAKING EPLIT SPOON SAMPLES AT REPROPERATE INTERVALS. INITALLED & SCREAN WITH IVILIE' A REAL ON TOP (AUE PIECE, NO JONE), INITALLED CREAT PACK, CROWN ON TOP INSTALLED PROTHETIVE BOX FLUIN WITH CROWND, INITALLED PROTHETIVE LOG OF BORING AND OBSERVATION WELL OBSERVATION WELL BORING Type of Observation Well _ Depth In ft. Cored Top of Riser Elev. 99.20 Description Ground Elev. 12 R o Venied-Cop 0-0.5' BASE No. Coltra 117 1 - 4' DARK GREY -LD. of Riser Pipe_3" 2 Type of Pipe SCHED 40 SILTY CLAY PANA-WET NO ODOR 4'-5.5' GREY BROWN Type of Dackfill Around--Rippe-SILTY CLAY WITH THIN LAMIDATIONS 4.<u>0</u> Top of Seal Eley_SURF. 5.5'-12' BROWN SILTY 111111111 1711111111 Type of Seal Material_ GROUT TO SURFACE ۱. LAN WITH THIN Lр. Le: 11 * 4-21 FINE SAND WET L- 10' NO ODOR -Top of Filter Elev ENCOUNTERED WATER -Elex of Perforations ____ @ ~3! Size of Openings -Diameter of Casing ENCOUNTERED NO HYDROCARBON DOOR . Type of Filter Material_ Howrepsy #Y SD Bottom of Csg. Elex. 58 Bottom of Boring Elev. Diameter of Boring 7/4" REMORES ELEVATIONS ARE SURVEYED TO ARGAMELY DATUM OF JOD SET DRILLING ; WELL WAT DEVELOPED BY FUMMING N 50 GAL NS WEEKS AFTER DRILLING . Inspected By ULEIMOR

۰.

_

PRO	JECT:	For	mer chev	ron .	Aspha	sit Plan	t No. 1001067	LOCATION: Powell Street Ownrow	and I and some Pro-
G-F	PROJ	ECT I	NO.: 516	1.01				SUBFACE FLEVATION: 12 45 (apt	s at Lanureyan, Eme
DAT	E STA	RTE	1: 10/30	/95				WL (ft bosk DATE:	TINE
DAT	EFIN	ISHE	D: 10/30	/95				WL (ft. bos): 13.5 DATE: 90/30/95	TINE: M-00
DRI	LLING	METH	100: <i>8 ii</i>	n. Ho	NOW S	Stem A	uger	TOTAL DEPTH: 15.0 Feet	100
DRI	LLING	COMP	ANY: Ba	ay A	rea E	xplora	tion	GEOLOGIST: B. Sieminski	
			5	Τ					0
DEPTH feet	PID (ppn)	BLOWS/FT, *	SAMPLE NUM	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM
-							Existing well MW- casing was remo the same hole.	2 was overdrilled to 15 feet and well red. Well MN-2A was constructed in	
5-				-			- *		01 incel
									ted pro 10 (11111111
10- • -				-					achine alot 21-21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-21-21-21 21-
-							I		
15-				1		-			1 🗐]
					•				
									· · · ·
20-				1-					
				1					
				1					1. A.
25-								-	
 - · ·			1.1						
-									
							1. Sec. 1. Sec		
30-									
								- · · · · ·	
-									

·...

AT SW CORNER OF TTLR. AUGERS WERE STEAM CLEANED AFTERS DRULING, WELL WAS DETROPED BY PRIMING NSD (AL N 2 WEEKS AFTER Druling

Inspected By WEINUTE

.....

A DATE OF A DESCRIPTION OF

REMORTES ELEVATIONS ARE SURVEYED TO ARDAMRY DATHM OF 100' SET. AT SHU CORNER OF TTLR. AULERS WERE STEAM CLEANED BEFORE DRILLING. WELL WA: DEVELOAD BY ALMANCE ASD GAL ~2 WERES AFTER DRULING.

Inspected By ULELMUER

...

٠..

. .

REMORES ELEVATIONS ARE SURVEYED TO ARGITARY DATHE OF 100 SET AT SHI CORNER OF TTLR; AUGRES WARE STEAM CLEANED BEFORE PRILLING : WELL WAS DEVELOPED BY PUMPING NED GAL W2 WEEKS AFTER DRILLING;

Inspected By ULEINUER

٠..

. •

Inspected By WEINJER

-

٠..

.....

Take and average by the state of the

.

-

10 m c

-

.

·. · · ·

	Project <u>EMERY VILLE TORMINAL</u> Type of Rig <u>HOLLOW AMOE</u> AInstalled By <u>GETTM</u> Method of Installation <u>RELEEP WITH HOLLOW</u> <u>SPOORD</u> IAMER ES AT APPROPRIAT ISUSS IAMER ES AT APPROPRIAT TOP TRETELES FROTESTIES LOG OF BORING	Observation Well No. 7 Location (ANDASSAN + POWELL ST. LOCATION (ANDASSAN) + POWELL ST. D. SITCH AULER TO 12 TAKING SPLIT E INTERVALS. INITALLED ST SCREEN WITH CE, NO JOHT, INITALLED CENT, ERCH, EROUTH LOC FOUTH WITH EROUTH INTAL SCREW ON CAP PITTING.
	BORING	OBSERVATION WELL Type of Observation Well
	The Description	Ground Elev Top, of Riser Elev. 98.40
14		Le 2 Le 2

Con. 18 Alter 11

.

• •

、 ^{._}

.

١,

•	Project Type of Rig Method of the 	HERYVILLE TERMINAL HOLLOW AUGEAINSTOLLED BYGETT Installation BRILLED WITH HOLLOW MANNESS AT BEROMINET A BLANK ON TOP (AND FIRE	Observation Well No. B Location <u>ANDERSAN</u> + POWELL E LOCATION <u>INC</u> Date <u>3/13/85</u> Time DISTEM ANGER TO 12 TAKING SPLIT F INTERIALS MUTALLED STORE AN IN SE, NO JOHN, INSTALLED CORRER AND	<u>r</u> .
			AND OBSERVATION WELL	
	Depth In ft. Cored	Description	Type of Observation Well Ground Elev Top, of Riser Elev. 99.3	2
-		O-1' BROWN SILTY CLAY WET 1-7' GREY SILTY CUY W/ LAMINAF OF CAND + FN GRAVEL NO O DOR 2-12' BROWN CLAY SUTY W/ LAMINAF OF SAND + FN GRAVEL NO ODOR ENCOUSTBEED WATER MT SURFACE EN COUSTBEETD NO HYDROCHEBON ODOR	Le 3' Le 3' Le 3' Le 10' Le 10' L	
	AT SW	CORNER OF TTLR.	D ARGINALLY DATUM OF 100'SET ANGERS WERE CUMMED AND WELLS	-

.

-

Inspected By WEINJER

.

 \sim

•-

	Gettler-Ryan, Inc.								Log of Boring MW-19A		
	PRO	ECT:	For	mer Chevr	on .	Aspha	Nt Plan	at No. 1001067	LOCATION: Powell Street Overo	ass at Landregan Emerge	
	G-R PROJECT NO.: 5/6/.0/ DATE STARTED: 10/30/95								SURFACE ELEVATION: 2.96 feet MSL NL (ft. bgs): 6.0 DATE: 10/30/95 TIME: 12:05		
	DATE FINISHED: 10/30/95								ML (ft. bgs): 6.0 DATE: 10/30/95	TIME: 13:40	
	ORIL	ORILLING METHOD: 8 in. Hollow Stem Auger							TOTAL DEPTH: 18.5 Feet		
	DRIL	LING	COMP	ANY: Ba	y A	rea E	xplora	tion, Inc.	GEOLOGIST: B. Sieminski		
	0EPTH feet	(mqq) OI4	BLOWS/FT. +	SAMPLE NUMBE	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	우 WELL DIAGRAM	
· [PAVEMENT - as	bhait over baserock.	8 TAN - N - 82	
	-	0 NA MHIBA-3					CL	GRAVELLY CLAY NITH SAND (GC) - dark brown (I0YR 3/3), moist, low plasticity; 80% clay, 30% fine gravel, 10% fine to coarse sand; pieces of brick; fill			
	5-	0	18	MW19A-5.5	19A-5.5				WITH SAND (GC) - dark yellowish I), saturated, medium dense; 55% (ay, 30% fine to coarse sand; (a)	(0.01 Inch)	
	- - 10-	٥	5		Ø-		CL	SANDY CLAY (CL) - yellowish brown (10YR 5/4), saturated, medium stiff, low plasticity; 70% clay, 30%			
	- - 15-	0	14	MW19A-18				Becomes stiff, c (2.5Y 5/6); root:	olor change to light olive brown	1000 200 200 200 200 200 200 200 200 200	
	-				F٠			Sand decreases	to 15%; becomes moist at 16 feet.	- manager -	
								Bottom of boring	at 18.5 feet, 10/30/95.		
	20-				-			(* = converted blows/ft.)	to equivalent standard penetration		
<u>.</u>	-							1 - A			
]	· ·									
	25-				-						
	-				.						
· · ·					.			· · · ·			
	+				.						
	30-										
1	-				·			·			
1.1	1										
	-			•	1.						

