RECEIVED

2:01 pm, Mar 06, 2008

Alameda County Environmental Health

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

January 25, 2008 DELTA Project: SJ312351X

SAP: 135356

Mr. Tom Berkins Groundwater Resources Engineer Alameda County Water District 43885 South Grimmer Blvd. Fremont, California 94538

Re: FOURTH QUARTER 2007 GROUNDWATER MONITORING REPORT Shell-Branded Service Station 31235 Mission Blvd. Hayward, California

Dear Mr. Berkins:

On behalf of Shell Oil Products (SHELL), Delta Consultants (DELTA) has prepared this Fourth Quarter 2007 Groundwater Monitoring Report for the above referenced site. The sampling activities at the site were conducted by Blaine Tech Services, Inc. under contract to SHELL and included the collection of groundwater samples and static water level measurements. A DELTA staff member under the supervision of a California Registered Civil Engineer or a California Professional Geologist performed the data evaluation.

This quarterly report represents DELTA's professional opinions based upon the currently available information and is arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between DELTA and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of DELTA's Client and anyone else specifically listed on this report. DELTA will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, DELTA makes no express or implied warranty as to the contents of this report.

Mr. Tom Berkins Alameda County Water District January 25, 2008 Page 2

If you have any questions regarding this site, please contact Mr. Richard Garlow (DELTA) at (408) 826-1880 or Mr. Dave Kremer (SHELL) at (916) 853-8906.

Sincerely,

Delta Consultants

Richard A. Garlow, M.S., P.G.

Project Manager

RICHARD A GARLOW NO. 7472

Attachment: Fourth Quarter 2007 Groundwater Monitoring Report

cc: Dave Kremer, Shell Oil Products US, Carson
Chuck Headlee, RWQCB San Francisco Region
Danilo Galang, City of Hayward Fire Department, Hayward
Allen and Nelson Hutchison, Property Owner, Hayward
Patti Harrison, Fowler Property Acquisitions, San Francisco

SHELL QUARTERLY STATUS REPORT

Station Address:	31235 Mission Blvd., Hayward, California	
DELTA Project No.:	SJ312351X	
SHELL Project Manager/Phone No.:	David Kremer / (916) 853-8906	
DELTA Site Manager/Phone No.:	Richard Garlow / (408) 826-1880	
Primary Agency/Regulatory ID No.:	ACWD/ Tom Berkins	
Other Agencies to Receive Copies:	RWQCB San Francisco Region City of Hayward Fire Department	

WORK PERFORMED THIS QUARTER (FOURTH - 2007):

- 1. Quarterly groundwater monitoring and sampling. Submitted quarterly report.
- 2. Work Plan approved, site access approval from owner, work plan sent to site manager.

WORK PROPOSED FOR NEXT QUARTER (FIRST - 2008):

- 1. Quarterly groundwater monitoring and sampling. Submit quarterly report.
- 2. Install of onsite well MW-11 and offsite wells MW-9 and MW-10.

Current Phase of Project:	Groundwater monitoring and off-site investigation.
Frequency of Sampling:	Quarterly
Frequency of Monitoring:	Quarterly
Is Separate Phase Hydrocarbon Present	On-site Yes No
(Well #'s):	
Cumulative SPH Recovered to Date:	NA
SPH Recovered This Quarter:	None
Sensitive Receptor(s) and Respective Direction(s):	Public drinking water well (Whipple Well) is located approximately 4,650 ft southwest of the site.
Site Lithology:	The site was found to be underlain primarily by clay interspersed with thin layers of silt, silty sand, clayey sand, and clayey gravel. The maximum depth explored was 33 feet below grade (bg).
Current Remediation Techniques:	None
Permits for Discharge:	None
Approximate Depth to Groundwater:	19.47 feet to 22.13 feet below top of well casing.
Groundwater Gradient:	West at approximately 0.001 ft/ft.
Current Agency Correspondence:	Facsimile correspondence dated March 27, 2007 stating the ownership change confirmation to FPA Haward Associates LP

SHELL QUARTERLY STATUS REPORT (CONT.)

Site History:

Case Opening

11/13/02 (Leak Detected)

Onsite Assessment

October 2002 Installation of MW-1 through MW-4, December

2003 Soil Boring SB-1

Offsite Assessment

December 2003 Soil Boring SB-2 through 8, November 2004

Installation of MW-5 through MW-8

Passive Remediation

Natural Attenuation

Active Remediation

Temporary Groundwater Extraction March 30, 2004 to June 8,

2004 (61,285 gallons).

Closure

NA

Summary of Unusual Activity:

None

ATTACHED:

- Table 1 Well Concentrations
- Figure 1 Site Location and Well Survey Map
- Figure 2 Groundwater Elevation Contour Map
- Figure 3 Hydrocarbon Distribution in Groundwater Map
- Appendix A Field Data Sheets
- Appendix B Field Procedures
- Appendix C Laboratory Report and Chain-of-Custody Documentation

TABLE

Well ID	Date	TPPH (ug/L)	TEPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA	Ethanol	TOC	Depth to Water	GW Elevation
	<u> </u>	1 (5)		1 (9.3/2)	((g/ =)	(«ց/ ــ)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-1	12/02/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.82	NA
MW-1	12/23/2002	<2,000	<100	<20	<20	<20	<20	9,600	<20	<20	<20	1,200	NA	NA	18.77	NA
MW-1	03/20/2003	<13,000	<50	<130	<130	<130	<250	14,000	<250	<130	<130	1,400	NA	42.19	20.58	21.61
MW-1 .	06/16/2003	<10,000	75 a	<100	<100	<100	<200	14,000	<400	<400	<400	2,100	NA	42.19	19.99	22.20
MW-1	09/18/2003	<10,000	<50	<100	<100	<100	<200	19,000	<400	<400	<400	3,000	NA	42.19	21.66	20.53
MW-1	12/02/2003	<13,000	69 a	<130	<130	<130	<250	22,000	<500	<500	<500	1,500	NA	42.19	22.08	20.11
MW-1	03/01/2004	<10,000	90 a	<100	<100	<100	<200	13,000	<400	<400	<400	1,200	NA	42.19	18.76	23.43
MW-1	06/08/2004	<5,000	84 a	<50	<50	<50	<100	7,200	<200	<200	<200	3,500	NA	42.19	21.71	20.48
MW-1	09/24/2004	<1,000	<50	<10	<10	<10	<20	420	<40	<40	<40	8,200	NA	42.19	22.85	19.34
MW-1	12/23/2004	<1,000	79 b	<10	<10	<10	<20	130	<40	<40	<40	11,000	NA	42.19	21.89	20.30
MW-1	03/02/2005	<1,000	84 b	<10	<10	<10	<20	79	<40	<40	<40	6,600	NA	42.19	16.84	25.35
MW-1	06/17/2005	<1,000	67 b	<10	<10	<10	<20	110	<40	<40	<40	7,400	NA	42.19	17.75	24.44
MW-1	09/01/2005	<1,000	<50	<10	<10	<10	<20	120	<40	<40	<40	1,800	NA	42.19	19.68	22.51
MW-1	12/08/2005	<250	<47	<2.5	<2.5	<2.5	<2.5	170	NA	NA	NA	5,000	NA	42.19	20.95	21.24
MW-1	03/16/2006	<500	i	<0.500	<0.500	<0.500	<0.500	770	NA	NA	NA	2,550	NA	42.19	15.15	27.04
MW-1	06/01/2006	<50.0	86.8 h	<0.500	<0.500	<0.500	<0.500	99.6	NA	NA	NA	2,400	NA	42.19	15.91	26.28
MW-1	09/26/2006	290	80.1 h	<5.0	<5.0	<5.0	<10	490	<10	<10	<10	4,800	<1,500	42.19	19.40	22.79
MW-1	12/08/2006	470	55 h	<0.50	<0.50	<0.50	<1.0	230	NA	NA	NA	3,500	NA	42.19	20.13	22.06
MW-1	03/12/2007	170	<50 h	<1.0	<1.0	<1.0	<2.0	66	NA	NA	NA	3,000	NA	42.19	18.28	23.91
MW-1	06/07/2007	440 o,p	53 h	<0.50	<1.0	<1.0	<1.0	190	NA	NA	NA	3,600	NA	42.19	20.44	21.75
MW-1	09/10/2007	<50 o	51 h	<2.5	<5.0	<5.0	<5.0	840	<10	<10	<10	3,400	<500	42.19	21.94	20.25
MW-1	12/10/2007	<50 o	<50 h	<5.0	<10	<10	<10	260	NA	NA	NA	2,300	NA	42.19	22.13	20.06
MW-2	12/02/2002	NA	NA	NA	NA	NA	l NA I	NΙΔ	NA	NIA	NIA					
MW-2	12/23/2002	<1,000	<100	<10	<10	<10	NA <10	NA 4 200	NA .	NA 110	NA 110	NA 188	NA NA	NA	22.71	NA
MW-2	03/20/2003	<13,000	<60	<130	<130		<10	4,200	<10	<10	<10	130	NA	NA	18.51	NA
14144	00/20/2000	~10,000	\00	\130	~130	<130	<250	8,800	<250	<130	<130	<1300	NA	42.18	20.70	21.48

								MTBE	<u> </u>						Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	X.	8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
	1													(****	1 ()	(MOL)
MW-2	06/16/2003	· <10,000	70 a	<100	· <100	<100	<200	6,200	<400	<400	<400	<1000	NA	42.18	20.00	22.18
MW-2	09/18/2003	<2,500	630 a	<25	<25	<25	<50	8,700	<100	<100	<100	330	NA	42.18	21.68	20.50
MW-2	12/02/2003	<5,000	59 a	<50	<50	<50	<100	5,000	<200	<200	<200	940	NA	42.18	22.08	20.10
MW-2	03/01/2004	<2,000	67 a	<20	<20	<20	<40	1,900	<80	<80	<80	2,000	NA	42.18	18.65	23.53
MW-2	06/08/2004	<500	<50	<5.0	<5.0	<5.0	<10	79	<20	<20	<20	3,100	NA	42.18	21.63	20.55
MW-2	09/24/2004	<500	<50	<5.0	<5.0	<5.0	<10	10	<20	<20	<20	4,100	NA	42.18	22.84	19.34
MW-2	12/23/2004	<500	93 a	<5.0	<5.0	<5.0	<10	20	<20	<20	<20	2,300	NA	42.18	21.94	20.24
MW-2	03/02/2005	<100 d	50 a	<1.0	<1.0	<1.0	<2.0	3.8	<4.0	<4.0	<4.0	770	NA	42.18	16.54	25.64
MW-2	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	6.2	<2.0	<2.0	<2.0	540	NA	42.18	17.64	24.54
MW-2	09/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	10	<2.0	<2.0	<2.0	280	NA	42.18	19.63	22.55
MW-2	12/08/2005	<250	<48	<2.5	<2.5	<2.5	· <2.5	12	NA	NA	NA	200	NA	42.18	20.89	21.29
MW-2	03/16/2006	<50.0	159 h	<0.500	<0.500	<0.500	<0.500	1.97	NA	NA	NA	52.8	NA	42.18	14.80	27.38
MW-2	06/01/2006	<50.0	58.0 h	<0.500	<0.500	<0.500	<0.500	9.02	NA	NA	NA	432	NA	42.18	15.83	26.35
MW-2	09/26/2006	<50	<47.6 h	<0.50	<0.50	<0.50	<1.0	3.0	<1.0	<1.0	<1.0	28	<150 k,l,m	42.18	19.34	22.84
MW-2	12/08/2006	<50	<56 h,n	<0.50	<0.50	<0.50	<1.0	2.1	NA	NA	NA	16	NA NA	42.18	20.02	22.16
MW-2	03/12/2007	<50	<50 h	<0.50	<0.50	<0.50	<1.0	3.4	NA	NA	NA	80	NA	42.18	17.63	24.55
MW-2	06/07/2007	50 o,p	59 h	<0.50	<1.0	<1.0	<1.0	1.1	NA	NA	NA	49	NA	42.18	20.48	21.70
MW-2	09/10/2007	<50 o	51 h	<0.50	<1.0	<1.0	<1.0	1.1	<2.0	<2.0	<2.0	22	<100	42.18	21.76	20.42
MW-2	12/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	0.62 q	NA	NA	NA	28	NA	42.18	22.01	20.17
V-1									***************************************	**		- wath to a second			Marchine Land March Control of the C	
MW-3	12/02/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.40	NA
MW-3	12/23/2002	4,000	<1,600	5.2	<5.0	170	160	3,000	<5.0	<5.0	6.4	610	NA	NA	18.06	NA NA
MW-3	03/20/2003	<10,000	1,900	<100	<100	100	<200	4,300	<200	<100	<100	1,100	NA	42.24	20.03	22.21
MW-3	06/16/2003	2,900	1,400 a	<25	<25	69	50	4,800	<100	<100	<100	1,500	NA NA	42.24	20.23	22.01
MW-3	09/18/2003	3,700	820 a	<10	<10	40	29	3,700	<40	<40	<40	460	NA NA	42.24	20.85	21.39
MW-3	12/02/2003	2,900 a	690 a	<10	<10	40	<20	1,400	<40	<40	<40	280	NA NA	42.24	21.21	21.03
								***************************************							21,21	21.00

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	T	E	X	8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
														((((((((((((((((((((()	(INOL)
MW-3	03/01/2004	2,000	660 a	<10	<10	22	<20	1,400	<40	<40	<40	260	NA	42.24	19.00	23.24
MW-3	06/08/2004	2,200	650 a	<5.0	<5.0	26	24	1,400	<20	<20	<20	380	NA	42.24	21.63	20.61
MW-3	09/24/2004	3,300 a	1,100 b	<5.0	<5.0	52	13	1,500	<20	<20	<20	540	NA	42.24	22.57	19.67
MW-3	12/23/2004	3,300	810 a	15	<5.0	25	<10	700	<20	<20	<20	910	NA	42.24	22.03	20.21
MW-3	03/02/2005	3,600	670 b	56	16	33	21	550	<20	<20	<20	790	NA	42.24	16.48	25.76
MW-3	06/17/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	42.24	17.34	24.90
MW-3	06/29/2005	3,300	680 a	7.3	<5.0	26	11	290	<20	<20	<20	1,100	NA	42.24	17.89	24.35
MW-3	09/01/2005	1,900 e	470 b	<5.0	<5.0	10	<10	190	<20	<20	<20	1,300	NA	42.24	19.57	22.67
MW-3	12/08/2005	1,900	520 g	2.3	<0.50	17	3.5	84	NA	NA	NA	1,200	NA	42.24	20.67	21.57
MW-3	03/16/2006	4,490	1,530 h	0.910	<0.500	44.1	24.3	92.6	NA	NA	NA	484	NA NA	42.24	15.05	27.19
MW-3	06/01/2006	8,450	2,150 h	1.91	<0.500	178	116	53.9 j	NA	NA	NA	465 j	NA	42.24	15.36	26.88
MW-3	09/26/2006	2,600	593 h	<1.2	<1.2	43	10	26	<2.5	<2.5	<2.5	860	<380	42.24	18.43	23.81
MW-3	12/08/2006	2,800	720 h	0.86	<0.50	29	6.7	46	NA	NA	NA	1,200	NA	42.24	20.02	22.22
MW-3	03/12/2007	3,000	450 h	0.95	<0.50	28	3.7	44	NA	NA	NA	580	NA NA	42.24	18.55	23.69
MW-3	06/07/2007	2,600 o	1,400 h	0.44 q	<1.0	18	5.66 g	22	NA	NA	NA	750	NA NA	42.24	20.01	22.23
MW-3	09/10/2007	2,300 o	420 h,p	0.32 q	<1.0	12	1.4	13	<2.0	<2.0	<2.0	950	<100	42.24	21.82	20.42
MW-3	12/10/2007	2,200 o,p	610 h,p	0.62	<1.0	17	0.57 q	23	NA	NA	NA NA	840	NA	42.24	21.95	20.42
							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					distance of the second second second		Z1.00	LU.LJ
MW-4	12/02/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.00	NA
MW-4	12/23/2002	<1,000	300	<10	<10	<10	<10	3,200	<10	<10	<10	830	NA	NA	17.22	NA NA
MW-4	03/20/2003	<10,000	410	<100	<100	100	<200	9,700	<200	<100	<100	2300	NA NA	42.41	20.47	21.94
MW-4	06/16/2003	<5,000	370 a	<50	<50	<50	<100	7,300	<100	<100	<100	2100	NA NA	42.41	20.47	22.23
MW-4	09/18/2003	<2,500	250 a	<25	<25	<25	<50	3,700	<100	<100	<100	910	NA NA	42.41	21.13	21.28
MW-4	12/02/2003	<2,000	540 a	<20	<20	<20	<40	3,000	<80	<80	<80	420	NA NA	42.41	21.13	21.28
MW-4	03/01/2004	<2,500	320 a	<25	<25	<25	<50	3,700	<100	<100	<100	540	NA NA	42.41	18.35	
MW-4	06/08/2004	<1,000	250 a	<10	<10	<10	<20	2,700	<40	<40	<40	180	NA NA	42.41	21.34	24.06
								_,. 00		• 10	7-70	100	IVA	42.41	∠1.34	21.07

								MTBE								
Well ID	Date	ТРРН	TEPH	В	Т	E	x	8260	DIPE	ETBE	TAME	TDA	T4b 1	TOO	Depth to	GW
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	TBA (ug/L)	Ethanol	TOC	Water	Elevation
	· · · · · · · · · · · · · · · · · · ·		1 (1.5/	(-9/	(-9,-)	(ugi =)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-4	09/24/2004	<500	280 a	<5.0	<5.0	<5.0	<10	1,100	<20	<20	<20	020	NIA	40.44		
MW-4	12/23/2004	1,200	450 b	120	<5.0	<5.0	<10	710	<20	<20		930	NA NA	42.41	22.89	19.52
MW-4	03/02/2005	990	190 a	110	39	<5.0	29	1,000	<20	<20	<20 <20	1,800	NA NA	42.41	21.44	20.97
MW-4	06/17/2005	NA	NA	NA.	NA	NA	NA	NA	NA	NA		1,000	NA NA	42.41	16.08	26.33
MW-4	06/29/2005	670 e	390 a	<5.0	<5.0	<5.0	<10	290	<20	<20	NA <20	NA 2.400	NA NA	42.41	17.76	24.65
MW-4	09/01/2005	<500	170 a	<5.0	<5.0	<5.0	<10	17	<20	<20	<20	2,100	NA NA	42.41	17.80	24.61
MW-4	12/08/2005	<500	200 g	<5.0	<5.0	<5.0	<5.0	410	NA	NA	NA	1,900	NA NA	42.41	19.58	22.83
MW-4	03/16/2006	744	523 h	<0.500	<0.500	<0.500	<0.500	190	NA NA	NA NA	NA NA	1,200 635	NA NA	42.41	20.79	21.62
MW-4	06/01/2006	<50.0	652 h	<0.500	<0.500	<0.500	<0.500	50.8	NA NA	NA NA	NA NA	588	NA	42.41	15.85	26.56
MW-4	09/26/2006	160	532 h	<0.50	<0.50	<0.50	<1.0	1.5	<1.0	<1.0	<1.0	480	NA 4150 kd	42.41	15.63	26.78
MW-4	12/08/2006	250	170 h	<0.50	<0.50	<0.50	<1.0	50	NA	NA	NA	600	<150 k,l	42.41	19.42	22.99
MW-4	03/12/2007	170	99 h	<0.50	<0.50	<0.50	<1.0	45	NA NA	NA NA	NA NA		NA	42.41	20.14	22.27
MW-4	06/07/2007	160 o	290 h	<0.50	<1.0	<1.0	<1.0	2.1	NA NA	NA NA	NA NA	520	NA NA	42.41	18.44	23.97
MW-4	09/10/2007	85 o	180 h,p	<0.50	<1.0	<1.0	<1.0	3.0	<2.0	<2.0		370	NA 1100	42.41	20.81	21.60
MW-4	12/10/2007	150 o,p	64 h,p	<0.50	<1.0	<1.0	<1.0	11	NA	NA	<2.0 NA	270 540	<100 NA	42.41	21.38	21.03
					- 110	- 110	1.0	* 1	IVA	IVA	IVA	340	IVA	42.41	22.05	20.36
MW-5	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.00	04.05	40.04
MW-5	12/23/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	3.3	<2.0	<2.0	<2.0	<5.0		40.66	21.05	19.61
MW-5	03/02/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	1.3	<2.0	<2.0	<2.0	<5.0 <5.0	NA NA	40.66	20.65	20.01
MW-5	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	1.6	<2.0	<2.0	<2.0	<5.0 <5.0	NA NA	40.66	15.75	24.91
MW-5	09/01/2005	<50	140 a,f	<0.50	<0.50	<0.50	<1.0	1.4	<2.0	<2.0	<2.0	<5.0 <5.0		40.66	16.35	24.31
MW-5	12/08/2005	<50	110 g	<0.50	<0.50	<0.50	<0.50	1.3	NA	NA	NA	<5.0 <5.0	NA NA	40.66	18.41	22.25
MW-5	03/16/2006	<50.0	<100 h	<0.500	<0.500	<0.500	<0.500	1.37	NA NA	NA NA	NA NA		NA NA	40.66	19.66	21.00
MW-5	06/01/2006	<50.0	<49.5 h	<0.500	<0.500	<0.500	<0.500	1.42	NA NA			<10.0	NA NA	40.66	14.79	25.87
MW-5	09/26/2006	50	<47.6 h	<0.50	<0.50	<0.50	<1.0	<1.0	· ·	NA 11.0	NA 11.0	51.8	NA 1450 L L	40.66	14.39	26.27
MW-5	12/08/2006	<50	<56 h,n	<0.50	<0.50	<0.50	<1.0	0.88	<1.0 NA	<1.0	<1.0	<10	<150 k,l	40.66	18.12	22.54
		-00	100 11,11	70.00	\0.JU	~0.00	<u> </u>	0.00	NA	NA	NA	<5.0	NA	40.66	18.81	21.85

					ī							T			7	
Well ID	Date	ТРРН	TEPH	В	Т	E	v	MTBE	DIDE	FTDF					Depth to	GW
Well ib	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(ug/L)	8260	DIPE	ETBE	TAME	TBA	Ethanol	TOC	Water	Elevation
L.		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-5	03/12/2007	<50	<50 h	<0.F0	-0.50	10.50	.40	0.70		I	I				T	
MW-5	06/07/2007	<50 o	 	<0.50	<0.50	<0.50	<1.0	0.78	NA	NA	NA	5.3	NA	40.66	16.39	24.27
MW-5	09/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	0.86 q	NA	ŅA	NA	<10	NA	40.66	19.20	21.46
MW-5	12/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	0.91 q	<2.0	<2.0	<2.0	<10	<100	40.66	20.63	20.03
14144-2	12/10/2007	\30 0	\50 H	<0.50	<1.0	<1.0	<1.0	0.96 q	NA	NA	NA	<10	NA	40.66	20.71	19.95
MW-6	11/23/2004	NA	NA	NIA	NA	N.1.0				T		* · · · · · · · · · · · · · · · · · · ·				
MW-6	12/23/2004		 	NA 10.5	NA O 5	NA .	NA .	· NA	NA	NA	NA	NA	NA	39.43	20.15	19.28
MW-6	03/02/2005	<250 <250	110 a	<2.5	<2.5	<2.5	<5.0	390	<10	<10	<10	<25	NĄ	39.43	19.50	19.93
MW-6			<50	<2.5	<2.5	<2.5	<5.0	400	<10	<10	<10	<25	NA	39.23 c	14.72	24.51
MW-6	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	250	<2.0	<2.0	<2.0	28	NA	39.23	15.27	23.96
MW-6	09/01/2005 12/08/2005	<250	<50	<2.5	<2.5	<2.5	<5.0	500	<10	<10	<10	<25	NA	39.23	17.22	22.01
MW-6	03/16/2006	<500	<47	<5.0	<5.0	<5.0	<5.0	240	NA	- NA	NA.	<50	NA	39.23	18.43	20.80
MW-6		862	<100 h	<0.500	<0.500	<0.500	<0.500	221	ŅA	NA	: NA	<10.0	NA	39.23	12.66	26.57
MW-6	06/01/2006	<50.0	<49.5 h	<0.500	<0.500	<0.500	<0.500	102	· NA	NA	NA	<10.0	NA	39.23	13.58	25.65
	09/26/2006	170	<48.1 h	<1.0	<1.0	<1.0	<2.0	150	<2.0	<2.0	<2.0	<20	<300 k,l	39.23	16.96	22.27
MW-6	12/08/2006	260	<56 h,n	<0.50	<0.50	<0.50	<1.0	170	NA	NA	NA	<5.0	NA	39.23	17.78	21.45
MW-6	03/12/2007	150	<50 h	<0.50	<0.50	<0.50	<1.0	130	NA	NA	NA	16	NA	39.23	15.25	23.98
MW-6	06/07/2007	100 o,p	<50 h	<0.50	<1.0	<1.0	<1.0	130	NA	NA	NA	<10	NA	39.23	17.91	21.32
MW-6	09/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	160.0	<2.0	<2.0	<2.0	<10	<100	39.23	19.42	19.81
INIAA-O	12/10/2007	120 o,p	<50 h	<0.50	<1.0	<1.0	<1.0	170	NA	NA	NA	<10	NA	39.23	19.47	19.76
1414/7	44/00/0004	110		Γ							- C. C. Company					
MW-7	11/23/2004	NA 1850	NA .Es	NA 0.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	39.50	19.98	19.52
MW-7	12/23/2004	<250	<50	<2.5	<2.5	<2.5	<5.0	690	<10	<10	<10	<25	NA	39.50	19.55	19.95
MW-7	03/02/2005	<250	<50	<2.5	<2.5	<2.5	<5.0	590	<10	<10	<10	<25	NA	39.50	15.35	24.15
MW-7	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	330	<2.0	<2.0	<2.0	34	NA	39.50	15.16	24.34
MW-7	09/01/2005	<500	<50	<5.0	<5.0	<5.0	<10	430	<20	<20	<20	<50	NA	39.50	17.45	22.05
MW-7	12/08/2005	<500	<48	<5.0	<5.0	<5.0	<5.0	380	NA	NA	NA	<50	NA	39.50	18.66	20.84

								MTBE							D4l- 4-	014
Well ID	Date	TPPH	TEPH	В	т	E	х	8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Depth to Water	GW Elevation
. :		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
L-				(-3-7	(-3)	(=9, =)	(-9,)	(49,2)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(WOL)	(11.)	(IVISL)
MW-7	03/16/2006	881	<100 h	<0.500	<0.500	<0.500	<0.500	396	NA	NA	NA:	<10.0	NA	39.50	12.90	26.60
MW-7	06/01/2006	<50.0	<49.5 h	<0.500	<0.500	<0.500	<0.500	192	NA	NA NA	NA NA	<10.0	NA NA	39.50	13.91	25.59
MW-7	09/26/2006	270	<48.5 h	<1.0	<1.0	<1.0	<2.0	290	<2.0	<2.0	<2.0	35	<300 k.l	39.50	17.17	22.33
MW-7	12/08/2006	480	65 h	<0.50	<0.50	<0.50	<1.0	360	NA	NA	NA	<5.0	NA	39.50	17.17	21.62
MW-7	03/12/2007	<500	<50 h	<5.0	<5.0	<5.0	<10	370	NA	NA	NA	<50	NA	39.50	15.36	24.14
MW-7	06/07/2007	260 o,p	<50 h	<0.50	<1.0	<1.0	<1.0	370	NA	NA	NA	<10	NA	39.50	18.20	21.30
MW-7	09/10/2007	<50 o	<50 h	<2.5	<5.0	<5.0	<5.0	480	<10	<10	<10	<50	<500	39.50	19.65	19.85
MW-7	12/10/2007	320 o,p	<50 h	<2.5	<5.0	<5.0	<5.0	520	NA	NA.	NA	<50	NA	39.50	19.93	19.57
							4						Annual Color Section 1984		W	
MW-8	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39.92	20.42	19.50
MW-8	12/23/2004	<250	<50	<2.5	<2.5	<2.5	<5.0	530	<10	<10	<10₊	<25	NA	39.92	19.98	19.94
MW-8	03/02/2005	<50 d	<50	<0.50	<0.50	<0.50	<1.0	130	<2.0	<2.0	<2.0	<5.0	NA	39.92	14.43	25.49
MW-8	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	50	<2.0	<2.0	<2.0	6.5	NA	39.92	15.92	24.00
MW-8	09/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	34	<2.0	<2.0	<2.0	<5.0	NA	39.92	17.85	22.07
MW-8	12/08/2005	<50	97 g	<0.50	<0.50	<0.50	<0.50	63	ŅA	NA	NA	5.6	NA	39.92	19.08	20.84
MW-8	03/16/2006	<50.0	<100 h	<0.500	<0.500	<0.500	<0.500	15.0	NA	NA	NA	<10.0	NA	39.92	13.13	26.79
MW-8	06/01/2006	<50.0	<46.9 h	<0.500	<0.500	<0.500	<0.500	15.2	NA	NA	NA	<10.0	NA	39.92	14.20	25.72
MW-8	09/26/2006	<50	<48.5 h	<0.50	<0.50	<0.50	<1.0	20	<1.0	<1.0	<1.0	<10	<150 k,l	39.92	17.57	22.35
MW-8	12/08/2006	99	51 h	<0.50	<0.50	<0.50	<1.0	56	NA	NA	NA	<5.0	NA	39.92	18.31	21.61
MW-8	03/12/2007	<50	<50 h	<0.50	<0.50	<0.50	<1.0	40	NA	NA	NA	<5.0	NA	39.92	15.83	24.09
MW-8	06/07/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	34	NA	NA	NA	<10	NA	39.92	18.56	21.36
MW-8	09/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	77	<2.0	<2.0	<2.0	<10	<100	39.92	20.00	19.92
MW-8	12/10/2007	96 o,p	<50 h	<0.50	<1.0	<1.0	<1.0	140	NA	NA	NA	<10	NA	39.92	20.14	19.78

Well ID	Date	ТРРН	ТЕРН	В	Т	F	¥	MTBE 8260	DIPE	ETBE	TAME	ТВА	Ethanol	TOC	Depth to	GW
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	TOC (MSL)	Water (ft.)	Elevation (MSL)						

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary Butanol or Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

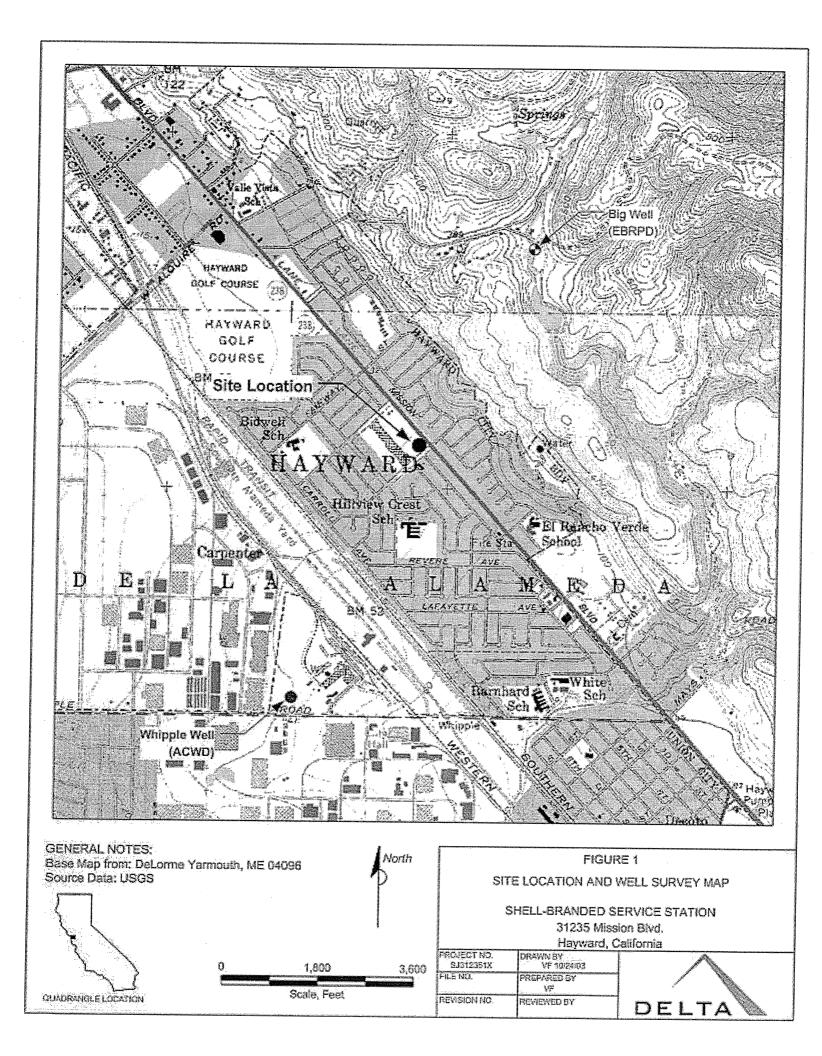
ft. = Feet

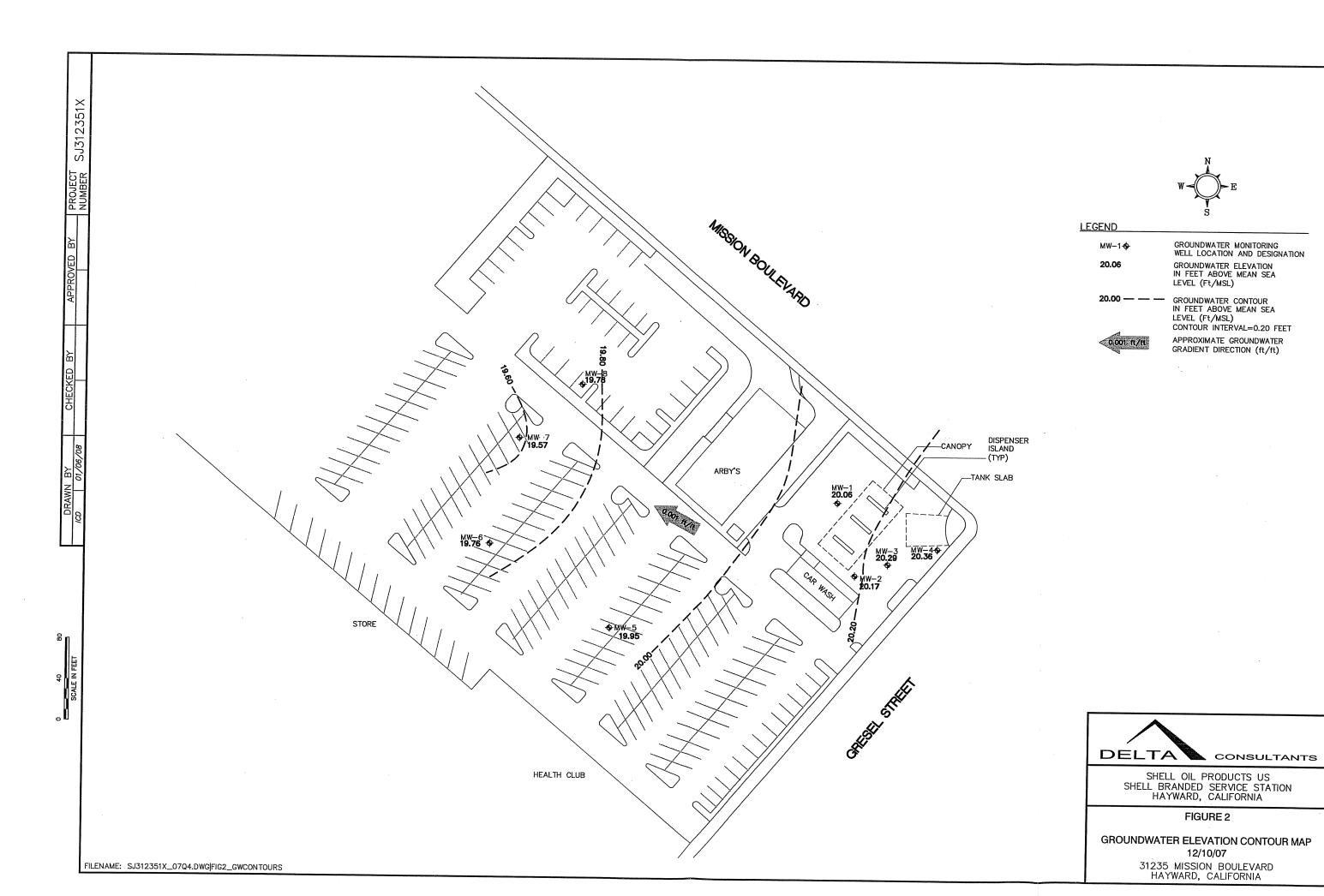
<n = Below detection limit

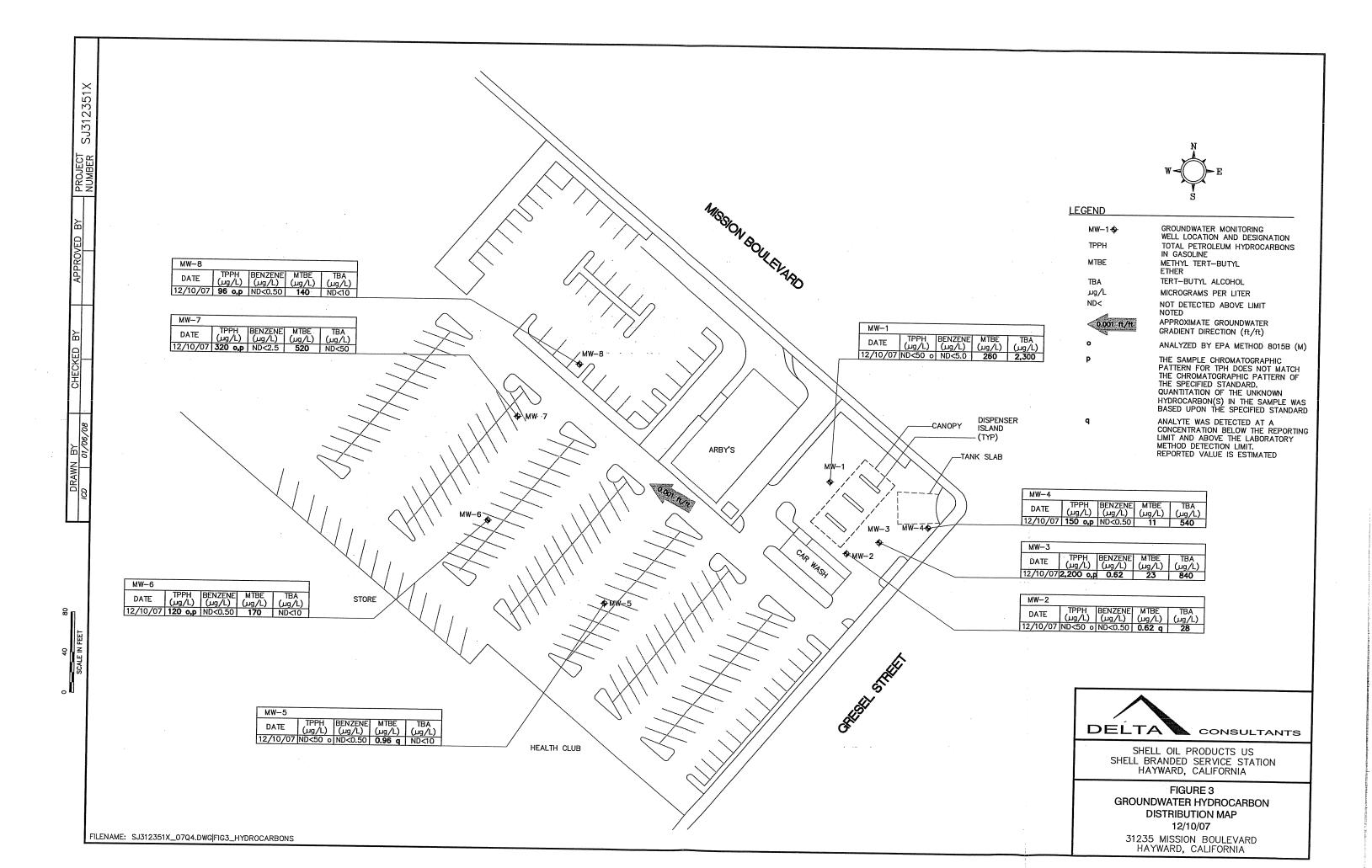
NA = Not applicable

Well ID	Date	ТРРН	TEPH	В	Т	E	Х	MTBE 8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Depth to Water	GW Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)						

Notes:


- a = Hydrocarbon reported does not match the laboratory standard.
- b = Hydrocarbon reported is in the early Diesel range and does not match the laboratory Diesel standard.
- c = TOC altered -0.20 ft. due to wellhead maintenace on February 16, 2005.
- d = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- f = Possible septum contamination in the sample. Sample was reanalyzed past hold time with surrogate recoveries within control limits and results of <50ppb.
- g = Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- h = Analyzed with silica gel clean-up.
- i = Ambers were lost in transit to lab no Diesel analysis was performed.
- j = Secondary ion abundances were outside method requirements. Identification based on analytical judgement.
- k = Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- I = Laboratory Control Sample recovery was above the method control limits. Analyte not detected, data not impacted.
- m = The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- n = Reporting limit raised due to insufficient sample volume.
- o = Analyzed by EPA Method 8015B (M).
- p = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- q = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.


Ethanol analyzed by EPA 8260B.


Site surveyed December 11, 2002 by Mid Coast Engineers.

Wells MW-5, MW-6, MW-7, and MW-8 surveyed on November 29, 2004. Survey data provided by Delta Environmental.

FIGURES

APPENDIX A

FIELD DATA SHEETS

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address	3/2	235	N	455	5/01	· KW	, Heyn	inly	Cæ	Date _	12/101	
Job Number	5712	10-1	mo	7		Ted	hnician	mi	PEKCE		(of_	
Well ID	Well Inspected - No Corrective Action Required	veil box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists		Notes		
Mv - 1	X										7.111.7	
MW-2	K						·					
MW-3	X											
mw-A	X										•	
MW-5	\times	·										
MW-6 MW-8	All		X									
MW-3TF	X											
MW-B	X									•		
						·						
W-10-00-00-00-00-00-00-00-00-00-00-00-00-												
·												
											-	
/ell box must mee IONITORING WEL	t all three d L" (12"or l	criteria to less) 3) \	be co	omplia TAG I	ant: 1) WELL IS RESENT, S	SECURAL ECURE, A	BLE BY DES	BIGN (12"or less) 2) W CT	VELL IS MARKED	WITH THE WO	RDS
otes:									<i>*</i>			

SHELL SITE INSPECTION CHECKLIST

Client	Shell		_ Date _ <i>9-/</i>	8 07	
Site Address	31235 M155 10	- Houward			
ob Number	010118-14-3	Technician	10		
iite Status		nded Station Vacant Lot	Other		185 Politika da kanana kanana kanana ka
nspected / La	beled / Cleaned - all we	ells on Scope Of Work			
nspected / Cl	eaned Components - al	ll other identifiable wells			N/A
rspected site	for site investigation 8	k site remediation related t	trip hazards		
ompleted all	outstanding <i>BLAINE</i> V	Vellhead Repair Order(s)		Į	N/A
ompleted Sh	ell Wellhead Repair Fo	rm(s)			N/A
	tment / remediation sys	stem compound for securi	ity,		N/A)
-	ant lot for signs of habi own vegetation and se	itation, hazardous materia curity	ls or		N/A
isually inspe	cted site drums for con	dition and proper labeling			N/A)
nresolved de orm(s) compl		Notice of Deficient Conditi	ion"		N/A
otes					
***************************************				Approximately to the second second	
	1 ~1 ~	PROJECT MANAGER ONLY	PERIOD - Income the control of the c		
hecklist Revi	ewed instal/Date	Notes .			

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

SEATTLE

www.blainetech.com

SHELL WELLHEAD REPAIR FORM

(FOR REPAIR TECHNICIAN)

Site Address			3	17	5 myssian, Hayward						_ Date	9-18-07								
								nnician <u>57</u>						1 of 2						
				i		Check Indicates deficiency														
	1	T	<u> </u>		-	r	<u> </u>	leck i	luica	les ui	T	T	1	<u> </u>			T T		7	<u> </u>
Inspection Point (Well ID or description of location)	Well Inspected, Cleaned, Labeled - No Further Corrective Action Required	Replaced Cap	Replaced Lock	Replaced Lid Seal	Casing	Annular Seal	Tabs / Bolts	Box Structure	Apron	Trip Hazard	Below Grade	Not Securable by Design (12" diameter or less)	Lid not marked with words "MONITORING WELL"	Other Deficiency	Not Securable by Design (<u>greater</u> than 12" diameter)	Well Not Inspected (explain in notes)	All Repairs Completed	Remaining Deficiencies Logged onto BLAINE Repair Order	Remaining Deficiencles	Logged onto Notice of Deficient Condition - BLAINE Unable to Repair
							у										1		<u> </u>	
in 1 () ()	Notes: Tappod 2 de Tab								-	······································										
MW-1	Well bo	x type	/ size	e:	. 1	2		10 201					Ma	terials	used:					
																	1			
mw-z	Notes: Tappedzofz tales																			
Mr.	Well bo	x type	/ size):	•			erri					Ма	iterials	used:					
							ý										天			
	Notes: Tapped 20f z Tabs Well box type / size: Materials used:																			
MW-3	Well box	k type	/ size	:			67,1	w.c.	. T	ا والم			Ma	terials	used:					
																	X		-	
mw-9	Notes:			-			Te.	T 377 63/		2. j -	 z.t	= 4 3								
Mr. M.	Well box	type	/ size	:			(_e ,,	We.	T 7 4 &	Photos .			Ma	terials	used:					
							V				. [V. J	_	al al	÷
	Notes:	<u>.</u>				7	ω_{γ}	٠ (ا کر	12		+ a	ا ا							
Mw-5	Well box	type	/ size	:				E						terials	used:		••			
							f										X S	I		
	Notes: Temped 7 ntz Taxa																			
W W-6	Well box	type	/ size	:			12		W (C					terials						
							X		X							·		γ		·
Mws	Notes:					Tai	ે	4	Zo	,fz		7	c, l	ڪٽ		Apro	N Crai	leed	Box	Ste
	Well box	type	/ size	:	& Zmee Materials used:															

SAN DIEGO

Job Number	0	10918	-11-	3_		-														
,					П		CI	neck l	ndica	tes de	eficie	ncv			П					
Inspection Point (Well ID or description of location)	Well Inspected, Cleaned, Labeled - No Further Corrective Action Required	Replaced Cap	Replaced Lock	Replaced Lid Seal	Casing	Annular Seal	Tabs / Bolts	Box Structure	Apron	Trip Hazard	Below Grade	Not Securable by Design (12" diameter or less)	Lid not marked with words	Other Deficiency	Not Securable by Design (<u>greater</u> than 12" diameter)	Well Not Inspected (explain in notes)	Deficiency Logged on Repair Order	Deficiency Remains Uncorrected/Logged on Site Inspection Checklist	Partial Repair Completed/Outstanding Deficiency Logged on Repair Order	All Repairs Completed
							X													4
MW-8	Notes:					<u>'1</u>	OPF	لمد	'کو	- 4ر	۷	+ -c	د, ،	5						
<i>po</i> - o							- 1	Z "	Em	e Qi										
																			·	
	Notes:														*******				<u> </u>	
						*************												,		
	Notes:																			

													-							
	Notes:										•		***************************************		···			······································		
											***************************************			******		*****				
						T				T										
	Notes:		L			L								بلك		!		······································		
·		~									·				to the Person than a second					
				П	T	T	I	T	T	T				- 1		I	T		T	
	Notes:		!_				<u>l</u>					1	1	1		JL				

			Т		T	\neg	Т		T	Т	\neg	$\overline{}$	Т	П			1	Т		
	Notes:				L															
		***************************************									*******						· · · · · · · · · · · · · · · · · · ·			

WELL GAUGING DATA

Project # <u>0712/0 - Mp7</u> Date	12/10/07	Client	Shell
------------------------------------	----------	--------	-------

Site 31235 Mission Blub, Hayword, Ca

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed	1	Depth to well bottom (ft.)	Survey Point: TOB or TOE	Notes
Mw-1		2					22.13		La management land	
MW-2	DUIS	2					22.01	37.68	A to see the see the see the	
MW-3	0024	Z					21.95	31.31	والمافعة والمحمولة والدا	
Mw-4	0018	2					22.05	32.79	d but a resident of the fire	
MW-5	06291	2					20:71	142021.02	Tell PT Decrement In	
MW-b	0838	Z			***************************************	44544444544544	19.47	29.57	Trenches and	
MW-7	0842	2					1993	29.93		
MW-B	0633	2					20.14	29.43	1	
г										
					•	·				
							·			
					-			·		

BTS#: O	71210-	MDI		Site: 31735 Mission Bludy Huyund Ca						
Sampler:	MD		i	Date: / 2/10	107	/ /				
Well I.D.:	MW-	I		Well Diameter	r: ② 3 4	6 8				
Total Well	Depth (TI)): Z	,2.59	Depth to Wate	er (DTW): Z	22.13				
Depth to Fr	ee Produc	t:		Thickness of F	Free Product (fee	et):				
Referenced	to:	(Pyc)	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]: (24.22				
Purge Method	Bailer Disposable B Positive Air I Electric Subm	Displaceme		Waterra Peristaltic etion Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing				
1 Case Volume		3 ified Volum		Gals. Well Diamete	ter Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius ² * 0.163				
Time	Temp (°F)	рН	Cond. (mS or (iS)	Turbidity (NTUs)	Gals. Removed	Observations				
0935	16.7	6.61	461	71030	1.6	Brong Cluly				
0137	16.2	6.49	Λ	7/000	3,2	11 11				
0140	16.1	6,56	59/	7/000	4.8	. [1]				
0943	18.7	6.47		7/000	6.0					
					·					
Did well dev	water?	(Yes)		Gallons actuall	y evacuated:	6.0				
Sampling Da	ate: /෭/6	0/07	Sampling Time	e: 0951	Depth to Water	r: 22-82				
Sample I.D.	: MW-	-		Laboratory:	STL Other (r: ZZ. EZ				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other: See	Coc					
EB I.D. (if a	- ιpplicable)	:	@ Time	Duplicate I.D. ((if applicable):					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req'o	d): Pr	e-purge:		mg/ _L Po	ost-purge:	mg/ _L				
O.R.P. (if re	q'd): Pr	e-purge:	i	mV Po	ost-purge:	mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

Site: 3/235 Misson Blue, Haywel Ca

Sampler: 1	MD			Date: 12/16/07						
Well I.D.:	MW	-2		Well I	Diameter	: ② 3 4	6 8			
Total Well	Depth (TI	D): 32	2.68	Depth	to Wate	r (DTW): 2	7.01			
Depth to Fr	ee Produc	t:	•	Thicks	ness of F	ree Product (fe	et):			
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20) + DTW]: 2	2-4.14			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltio tion Pump		Sampling Method: Other: Multiplier Well 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing			
1 Case Volume	Gals.) X	3 fied Volum	$= \frac{5.1}{\text{Calculated Vo}}$	_ Gals.	3"	0.04 4 0.16 6" 0.37 Other	1.47			
I Case volume	Speci	nea voium				T				
Time	Temp (°F)	pН	Cond. (mS or(µS)	ı	bidity TUs)	Gals. Removed	Observations			
0906	16.7	7.40	441.	7 600	0	1.7	Brown , Clarky			
0908	17.6	7.02	438	710	9D	3.4	i, '			
0910	16.3	664	452	710)3O	5.1	11 1			
0913	10.5	6,59	499	710	92	B.8	11 11			
						,				
Did well de	water?	Yes	Ño	Gallon	s actuall	y evacuated:	6.8			
Sampling D	ate: [2 (10	107	Sampling Time	e: 09	21	Depth to Water				
Sample I.D.	: MV	'-2		Labora	tory:	STL Other Ce	el Scomi			
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Other:	See	- Cec				
EB I.D. (if a	pplicable)	•	@ Time	Duplic	ate I.D. (if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req'	d): Pr	e-purge:		$^{ m mg}/_{ m L}$	Po	ost-purge:	mg/L			
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: 0	MOL		Site: 3/235 Mission Blud, Hayword, Ca								
Sampler: A	MD			Date:	12/10/	7					
Well I.D.:	mw	-3		Well I	Diameter	: 2 3 4	6 8				
Total Well	Depth (TI)): <u> </u>	32.51	Depth	to Wate	r (DTW): Z	1.95				
Depth to Fr	ee Produc	t:		Thick	Thickness of Free Product (feet):						
Referenced	to:	PVC	Grade	D.O. 1	Meter (if	req'd):	YSI HACH				
DTW with	80% Rech	arge [(F	leight of Water	Colum	n x 0.20) + DTW]:	24.06				
Purge Method: ()Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltion Pump	2	Sampling Method Othe	Disposable Bailer Extraction Port Dedicated Tubing				
1. 6 (0	Gals.) X Speci	S fied Volum	$=$ $\frac{A \cdot B}{\text{Calculated Vc}}$	Gals.	Well Diamete 1" 2" 3"	m Multiplier Wel 0.04 4" 0.16 6" 0.37 Oth	L Diameter Multiplier 0.65 1.47 er radius ² * 0.163				
Time	Temp (°F)	pН	Cond. (mS or µS)	I .	bidity TUs)	Gals. Removed	Observations				
1005	18.8	6.57	581	710	O C	106	gry, Cloney				
1007	19.7	6.46	539	7/0	000	3.2	111 11				
1010	19.9	(,SO	551	70	14	I.8	10 00				
(D) (4	20.0	6.47	524	9	99	6.4	ie Cr				
						•					
Did well dev	water?		Ño			y evacuated:	6.4				
Sampling Da	ate: 12/10/	107	Sampling Time	e: (C	27	Depth to Wate	r. ZZ.39				
Sample I.D.:	:MW-	3		Labora	tory:	STL Other	Colsain				
Analyzed for	r: TPH-G	BTEX:		Other:	See	Coc					
EB I.D. (if a	pplicable):	•	@ Time	Duplic	ate I.D. (if applicable):					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if req'o	d): Pre	e-purge:		mg/L	Po	ost-purge:	mg/ _L				
O.R.P. (if re	q'd): Pro	e-purge:		mV Post-purge: m							

BTS#: O	7/210	~ m[>/	Site: 31235 Mission Blue, Hagural, Ca							
Sampler: V	nD				12/10		_,,	7			
Well I.D.:	mn	-4		Well I	Diameter	: 2 3 4	6 8				
Total Well	Depth (TI)):	32.79	Depth	Depth to Water (DTW): 22.05						
Depth to Fr	ee Produc	t:		Thicks	ness of F	Free Product (fe	et):				
Referenced	to:	Pie	Grade	D.O. N	Meter (if	req'd):	YSI	НАСН			
DTW with	80% Rech	arge [(F	Height of Water	Colum	n x 0.20)+DTW]: Z	4.20)			
Purge Method: 7		Bailer Displaceme		Waterra Peristaltic ction Pump	a C	Sampling Method:	: & Disp Ex Ded	Bailer posable Bailer traction Port icated Tubing			
1.7 (0	Gals.) X	S ified Volum	$\frac{1}{\text{mes}} = \frac{5 \cdot \text{/}}{\text{Calculated Vo}}$	Gals.	Well Diamete 1" \(\frac{2^{11}}{3"}	0.04 4" 0.16 6" 0.37 Other	1	Aultiplier 0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or (LS))		bidity TUs)	Gals. Removed	Ob	servations			
1040	19.7	7.00	347	44	7	1.7	Bn-	-, Clarly			
1043	19.7	662	340	58	7	3,4	11	11			
1046	19.4	6.69	348	760	೦೦	5.1	11	Cf			
1049	19.7		350	7100	JC G	68	ιγ	11			
Did well dev	water?	Yes ((No)	Gallon	s actually	y evacuated:	God	8			
Sampling D	ate:12/10/	07.	Sampling Time	e: <i>[</i> (01	Depth to Water	r: 23	3.62			
Sample I.D.	: MW -	-4		Labora	itory:	STL Other C	Cols	Curi			
Analyzed fo	or: TPH-G	BTEX		Other:	See	Coc					
EB I.D. (if a	applicable)		@ Time	Duplic	ate I.D. ((if applicable):	• •				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if req'	d): Pr	e-purge:		$^{ m mg}/_{ m L}$	Po	ost-purge:		mg/L			
O.R.P. (if re	;q'd): Pr	e-purge:		mV	Pc	ost-purge:		mV			

,				I I I O I		ALTA DILLUIGI				
BTS#: o	71210-	MDI		Site: 3	1235	M15510~ Blu	of May wand, ca			
Sampler: 1	ND					0/07				
Well I.D.:	mu	<u>-5</u>		Well I	Well Diameter: (2) 3 4 6 8					
Total Well	Depth (TI)): Z	9.82	Depth	Depth to Water (DTW): 20.7/					
Depth to F1	ee Produc	t:		Thickr	ess of F	ree Product (fe	et):			
Referenced	to:	R.C	Grade	D.O. N	Aeter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(F	leight of Water	Colum	n x 0.20) + DTW]: 2	22.53			
Purge Method: 2	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic ction Pump		Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing			
Time	Temp (°F)	рН	Cond. (mS or µS)	i	oidity ΓUs)	Gals. Removed	Observations			
1140	68.4	7.01	828	7/0		1.5	Bron, Chaly			
1192	66/8	670	<i>US1</i>	7/0	(U) &	3.0	11 11			
1145		6.91	827	7/0	200	9.5	10 17			
48	66.2	6.43	822	7/0	00	600	11 11			
			÷	1						
Did well de	water?	Yes (No.	Gallons	actually	y evacuated:	6.0			
Sampling D	ate:/2/10/1		Sampling Time	31. // <u>S</u>	57	Depth to Water	r: 21,27			
Sample I.D.	: MW:	5		Laborat	tory:	STL Other_	el Som			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:	Se	2 (00				
EB I.D. (if a	pplicable)	•	@ Time	Duplica	ite I.D. (if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req'	d): Pr	e-purge:		^{mg} / _L Post-purge:			mg/ _L			
O.R.P. (if re	;q'd): Pr	e-purge:	:	mV Post-purge:						

B18#: D1/210-M0/	Site: 51235 MISSION Mul, Mymal Ca								
Sampler: MD	Date: [2/10/07								
Well I.D.: MW-6	Well Diameter: 2 3 4 6 8								
Total Well Depth (TD): 29.57	Depth to Water (DTW): 19.47								
Depth to Free Product:	Thickness of Free Product (feet):								
Referenced to: PAR Grade	D.O. Meter (if req'd): YSI HACH								
DTW with 80% Recharge [(Height of V	Water Column x 0.20) + DTW]: 21.49								
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Othe	Waterra Sampling Method: Disposable Bailer Extraction Pump Extraction Port er Other:								
Time Temp (°F) pH (mS or µ	- I morning								
1240 72.8 6.80 758	3 7/000 1.6 Brown, Cloudy								
1242 72.2 6.62 760	76000 3.2 10 11								
1244 71.8 6.75 756	7/00 4.8 (11)								
1296 72.0 6.61 76Z	2 7/000 6,4 11 (1								
Did well dewater? Yes No	Gallons actually evacuated: 6.4								
Sampling Date: 12/10/07 Sampling	Time: \259 Depth to Water: 20.82								
Sample I.D.: $MW-6$	Laboratory: STL Other Collycione								
Analyzed for: TPH-G BTEX MTBE TPH	H-D Other: See CoC								
EB I.D. (if applicable):	Duplicate I.D. (if applicable):								
Analyzed for: TPH-G BTEX MTBE TPH	H-D Other:								
O.O. (if req'd): Pre-purge:	mg/L Post-purge: mg/L								
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV								

BTS #: 07	1/2/0-	mpl		Site: 3/235 Mission Blul, Haywales							
Sampler: 🗸	MD		·	Date: [2/10/	107					
Well I.D.:	MU	<i>)</i> —	7	Well D	iameter	: ② 3 4	6 8				
Total Well	Depth (TI	D): 7	29.93	Depth t	Depth to Water (DTW): 19.93						
Depth to Fr	ee Produc	t:		Thickn	Thickness of Free Product (feet):						
Referenced	to:	PVE	Grade	D.O. M	leter (if	req'd):	YSI HACH				
DTW with	80% Rech	arge [(F	leight of Water	Column	x 0.20) + DTW]: 2	21.93				
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic etion Pump		Sampling Method Other:	Disposable Bailer Extraction Port Dedicated Tubing				
1.6 _(C)	Fals.) X	S fied Volum	$\frac{1}{1} = \frac{\int \mathcal{B}}{\text{Calculated Vo}}$	Gals.	Well Diamete 1" 2" 3"	r Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163				
Time	Temp (°F)	pН	Cond. (mS ox(µS))	Turb (NT	-	Gals. Removed	Observations				
1318	69.3	6.92	636	710	೨೦	1.6	Brown, Cloudy				
1321	69.9	6.75	633	7/00	O	3.2	(1 (1				
1325	69.5	6.73	629	7/10	O	4.8	(1)				
13628	70.0.	6.65	637	7/00	20	6.4	(, (,				
Did well dev	rvotor?	37	x7)	Callana			1 1				
Sampling Da			No) Samulina Tima		11	y evacuated:	1055				
Sample I.D.:	A .	7	Sampling Time	Laborate		Depth to Water	r: 20.56				
Analyzed for		DTEV		Other:	Ory.	STL Other C	- dine				
			<u> </u>		4- ID (:f1:1:1-)					
EB I.D. (if a Analyzed for				Other:	ις I.D. (if applicable):					
D.O. (if reg'o		e-purge:	1111-D 1111-D	mg/ ₁	Pc	ost-purge:	mg/L				
O.R.P. (if red	•	e-purge:		mV		ost-purge:	mV				
							I				

BIS#: 071210-MD/	Site: 3/235 MISSIO- Bul, May woul, Ca								
Sampler: MD	Date: /2/10/								
Well I.D.: MW - B	Well Diameter	·: 2 3 4	6 8						
Total Well Depth (TD): 29.43	Depth to Water (DTW): Zv. 14								
Depth to Free Product:	Thickness of F	Thickness of Free Product (feet):							
Referenced to: Fye Grade	D.O. Meter (if	req'd):	YSI HACH						
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 21.99									
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extra Electric Submersible Other	Waterra Peristaltic ction Pump	Peristaltic Disposable Bailer							
$\frac{1.5}{1 \text{ Case Volume}} \text{ (Gals.) X } \frac{3}{\text{Specified Volumes}} = \frac{4.5}{\text{Calculated Volumes}}$	Gals. Well Diamete	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius² * 0.163						
Time Temp (°F) pH Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations						
121265,77.01 681	7/000	1,5	Bom Cloudy						
1219 66.7 6.77 675.	7/000	3.0	ti ti						
1216 66.7 6.82 665	2/000	9.5	(1 6.7						
1219 67.16.69 669	7/000	6.0	ti ti						
Did well dewater? Yes (No)	Gallons actuall	y evacuated:	6.0						
Sampling Date: 12/00/07 Sampling Time	e: [Z3]	Depth to Wate	r: 20.94						
Sample I.D.: MW -B	Laboratory:	STL Other C	al Stace						
Analyzed for: TPH-G BTEX MTBE TPH-D	Other: Se	ee Coc							
B I.D. (if applicable): @ Duplicate I.D. (if applicable):									
Analyzed for: трн-д втех мтве трн-д	Other:								
O.O. (if req'd): Pre-purge:	mg/L Po	ost-purge:	$^{ m mg}/_{ m L}$						
O.R.P. (if req'd): Pre-purge:	mV Po	ost-purge:	mV						

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

APPENDIX B

FIELD PROCEDURES

GROUNDWATER SAMPLING SPECIALISTS

December 20, 2007

Carol Campagna HSE – Environmental Services Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Fourth Quarter 2007 Groundwater Monitoring at Shell-branded Service Station 31235 Mission Boulevard Hayward, CA

Monitoring performed on December 10, 2007

Groundwater Monitoring Report 071210-MD-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of WELL CONCENTRATIONS. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a fortyhour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/ks

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

cc: Rich Garlow

Delta Environmental 175 Bernal Road, Suite 200

San Jose, CA 95119

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT SHELL SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling —water — 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Shell comply with Shell's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IiPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Shell site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. MMC). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed a minimum of 2 hours to recharge prior to sampling. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT .

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Shell approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using a stainless steel, Teflon or disposable ballers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Field Technician uses their discretion in choosing the well at which the Duplicate is collected, typically one suspected of containing measurable contaminants. The Duplicate sample is labeled "DUP" and the time of collection is omitted from the COC, thus rendering the sample blind.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

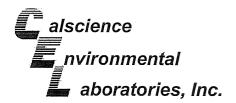
Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with delonized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 54, 58 or 95) or HACH field test kits.

The YSI meters are equipped with a stirring device that enables them to collect accurate in-situ readings. The probe/stirring devices are modified to allow downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe and stirrer is lowered into the water column. The reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS


All readings are obtained with either Coming or Myron-L meters (e.g. Coming ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

December 19, 2007

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject:

Calscience Work Order No.:

Client Reference:

07-12-0982

31235 Mission Blvd., Hayward, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 12/12/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the quidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

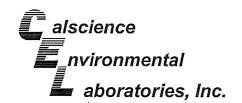
Sincerely,

Calscience Environmental

Darilleronce

Laboratories, Inc.

Danielle Gonsman **Project Manager**



Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 12/12/07 07-12-0982 EPA 3510C EPA 8015B

Project: 31235 Mission Blvd., Hayward, CA

Page 1 of 3

Project: 3123	5 Mission Biva., F	ayward,	CA					P	age 1 of 3
Client Sample Numb	oer		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
MW-1			07-12-0982-1-F	12/10/07	Aqueous	GC 23	12/13/07	12/14/07	071213B08
Comment(s): Parameter	-The sample extract wa	as subjected t <u>Result</u>	o Silica Gel treatment <u>RL</u>	prior to analys <u>DF</u>	is. <u>Qual</u>	<u>Units</u>			
Diesel Range Organ	ics	ND	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		86	68-140				**		
MW-2			07-12-0982-2-F	12/10/07	Aqueous	GC 23	12/13/07	12/14/07	071213B08
Comment(s):	-The sample extract wa	s subjected t	o Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organi	ics	ND .	50	1		ug/Ŀ			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
ecachlorobiphenyl		82	68-140						
MW-3			07-12-0982-3-F	12/10/07	Aqueous	GC 23	12/13/07	12/14/07	071213B08
Comment(s):	-The sample chromatog of the unknown hydroca -The sample extract wa	arbon(s) in the	e sample was based u	pon the specif	ied standard		specified sta	ındard. Qu	antitation
arameter	The cample charactina	Result	RL	DF	Qual	<u>Units</u>			•
iesel Range Organi	cs	610	50	1		ug/L			
urrogates:	·	REC (%)	Control Limits		Qual				
ecachlorobiphenyl		84	68-140						
WW-4			07-12-0982-4-F	12/10/07	Aqueous	GC 23	12/13/07	12/14/07	071213B08
Comment(s):	-The sample chromatog of the unknown hydroca -The sample extract was	rbon(s) in the	sample was based up	pon the specif	ied standard		specified sta	ndard. Qua	antitation
arameter		Result	<u>RL</u>	DF	Qual	<u>Units</u>			
liesel Range Organio	cs	64	50	1		ug/L			
urrogates:		REC (%)	Control Limits		Qual				
ecachlorobiphenyl		75	68-140						

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 12/12/07 07-12-0982 EPA 3510C EPA 8015B

Project: 31235 Mission Blvd., Hayward, CA

Page 2 of 3

1 Toject. 01200 Mission Biva., 1	iay waia,	O/1						age 2 01 0
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
MW-5		07-12-0982-5-F	12/10/07	Aqueous	GC 23	12/13/07	12/14/07	071213B08
Comment(s): -The sample extract wa	as subjected to	o Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	50	. 1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	84	68-140						
MW-6		07-12-0982-6-F	12/10/07	Aqueous	GC 23	12/13/07	12/14/07	071213B08
Comment(s): -The sample extract wa								
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	. ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual		·		
Decachlorobiphenyl	83	68-140				•		
MW-7		07-12-0982-7-F	12/10/07	Aqueous	GC 23	12/13/07	12/14/07	071213B08
Comment(s): -The sample extract wa	-							
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			•
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	80	68-140						
MW-8		07-12-0982-8-F	12/10/07	Aqueous	GC 23	12/13/07	12/15/07	071213B08
Comment(s): -The sample extract was	=							
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	84	68-140						

DF - Dilution Factor ,

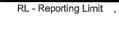
Qual - Qualifiers

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 12/12/07 07-12-0982 EPA 3510C EPA 8015B

Project: 31235 Mission Blvd., Hayward, CA

Page 3 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-211-142	N/A	Aqueous	GC 23	12/13/07	12/14/07	071213B08
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	100	68-140						


Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

12/12/07 07-12-0982 EPA 5030B EPA 8015B (M)

Project: 31235 Mission Blvd., Hayward, CA

Page 1 of 3

Project. 31233 Mission Biva., F	iaywaiu,							age 1 of 3
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
MW-1		07-12-0982-1-A	12/10/07	Aqueous	GC 25	12/12/07	12/12/07	071212B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	82	38-134						
MW-2		07-12-0982-2-A	12/10/07	Aqueous	GC 25	12/12/07	12/12/07	071212B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	82	38-134					*	
MW-3		07-12-0982-3-A	12/10/07	Aqueous	GC 25	12/12/07	12/13/07	071212B01
Comment(s): -The sample chromatog of the unknown hydroca	raphic patterr	n for TPH does not ma	tch the chron	natographic p	oattern of the	specified sta	ndard. Qu	antitation
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	2200	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	152	38-134		2				
MW-4		07-12-0982-4-A	12/10/07	Aqueous	GC 25	12/12/07	12/13/07	071212B01
Comment(s): -The sample chromatog						specified sta	ndard. Qua	antitation
of the unknown hydroca <u>Parameter</u>	Result	RL	DF	ed standard Qual	<u>Units</u>			
TPH as Gasoline	150	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	80	38-134						

DF - Dilution Factor ,

Qual - Qualifiers

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method:

12/12/07 07-12-0982 EPA 5030B EPA 8015B (M)

Project: 31235 Mission Rlvd Hayward CA

Project: 31235 M	iission Biva., H	ayward, t	JA					Р	age 2 of 3
Client Sample Number			Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
MW-5			07-12-0982-5-A	12/10/07	Aqueous	GC 25	12/12/07	12/13/07	071212B01
<u>Parameter</u>		Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline		ND	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>	-			
1,4-Bromofluorobenzene		84	38-134				. *		
MW-6			07-12-0982-6-B	12/10/07	Aqueous	GC1	12/13/07	12/14/07	071213B02
			for TPH does not ma sample was based u				specified st	andard. Qu	antitation
Parameter	ne untriown riyurocai	Result	RL	DF	Qual	<u>Units</u>			
ΓΡΗ as Gasoline		120	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
,4-Bromofluorobenzene		102	38-134						
MW-7			07-12-0982-7-B	12/10/07	Aqueous	GC 1	12/13/07	12/14/07	071213B02
			for TPH does not ma sample was based up				specified sta	andard. Qua	antitation
Parameter	io anna levin riyareed.	Result	RL	<u>DF</u>	Qual	<u>Units</u>		٠	
PH as Gasoline		320	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				1.
,4-Bromofluorobenzene		103	38-134				: •		•
MW-8			07-12-0982-8-B	12/10/07	Aqueous	GC1	12/13/07	12/14/07	071213B02
			for TPH does not ma sample was based up				specified sta	ndard. Qua	antitation
Parameter	io animown nydrocal	Result	RL	DF	Qual	<u>Units</u>		. •	
PH as Gasoline		96	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
,4-Bromofluorobenzene		102	38-134						

DF - Dilution Factor

Qual - Qualifiers

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 12/12/07 07-12-0982 EPA 5030B EPA 8015B (M)

Project: 31235 Mission Blvd., Hayward, CA

Page 3 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-436-1,252	N/A	Aqueous	GC 25	12/12/07	12/12/07	071212B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			·
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	66	38-134						
Method Blank		099-12-436-1,254	N/A	Aqueous	GC 1	12/13/07	12/13/07	071213B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	102	38-134						

Blaine Tech Services, Inc. Date Received: 12/12/07 1680 Rogers Avenue Work Order No: 07-12-0982 San Jose, CA 95112-1105 Preparation: **EPA 5030B** Method: **EPA 8260B** Units: ug/L Project: 31235 Mission Blvd., Hayward, CA Page 1 of 3

Client Sample Number			Lab Sa Numl		Date Collected	Matrix	Instrument	Date Prepare	-	ate yzed C	QC Batch ID
MW-1			07-12-	0982-1-C	12/10/07	Aqueous	GC/MS Q	12/15/0)7 12/1	6/07 0	71215L03
Comment(s): -Results were	evaluated to th	e MDL, ca	ncentratio	ons >= to the N	MDL but < RL	_, if found, ar	e qualified wi	th a "J" flag			
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF Qual	<u>Parameter</u>			Result	RL	MDL	DF Qual
Benzene	ND	5.0	1.4	10	o-Xylene			ND	10	1.7	10
Ethylbenzene	ND	10	2.3	10	Methyl-t-Bu	utyl Ether (M	TBE)	260	10	2.6	10
Toluene	ND	10	2.7	10	Tert-Butyl A	Alcohol (TBA	()	2300	100	54	10
p/m-Xylene	ND	10	5.4	10							
Surrogates:	REC (%)	Control	<u>_imits</u>	<u>Qual</u>	Surrogates:			REC (%)	Control	<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	123	74-140			1,2-Dichlor	oethane-d4		124	74-146		
Toluene-d8	94	88-112			1,4-Bromof	luorobenzen	e ·	82	74-110		
MW-2			07-12-	0982-2-C	12/10/07	Aqueous	GC/MS Q	12/15/0	7 12/16	3/07 0	71215L03
						1 7 7 7 7					

Comment(s): -R	Results were eva	aluated to the	e MDL, co	ncentratio	ns >= to the i	MDL but < RL, if found, are qualified	l with a "J" flag].			
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	DF Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF C	<u> Qual</u>
Benzene		ND	0.50	0.14	1	o-Xylene	ND	1.0	0.17	1	
Ethylbenzene		ND	1.0	0.23	1	Methyl-t-Butyl Ether (MTBE)	0.62	1.0	0.26	1	J
Toluene		ND	1.0	0.27	1	Tert-Butyl Alcohol (TBA)	28	10	5.4	1	
p/m-Xylene		ND	1.0	0.54	1						
Surrogates:		REC (%)	Control I	<u>_imits</u>	<u>Qual</u>	Surrogates:	REC (%)	Control	Limits	<u>C</u>	Qual
Dibromofluoromethar	ne .	116	74-140			1,2-Dichloroethane-d4	117	74-146			
Toluene-d8		95	88-112			1,4-Bromofluorobenzene	83	74-110			
M/M/_2				07 12 (1082 2 C	42/40/07 Agustus CC/ME	0 42/45/	17 4914	C/07 074	2451.02	


Comment(s): -Results were	evaluated to th	e MDL, cc	oncentratio	ons >= t	o the i	MDL but < RL, if found, are qualified	d with a "J" flag	J.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Result	RL	MDL	DF Qual
Benzene	0.62	0.50	0.14	1		o-Xylene	ND	1.0	0.17	1
Ethylbenzene	17	1.0	0.23	1		Methyl-t-Butyl Ether (MTBE)	23	1.0	0.26	1
Toluene	ND	1.0	0.27	1		Tert-Butyl Alcohol (TBA)	840	10	5.4	1
p/m-Xylene	0.57	1.0	0.54	1	J	•	•			
Surrogates:	REC (%)	Control I	<u>Limits</u>		Qual	Surrogates:	REC (%)	<u>Control</u>	Limits	<u>Qual</u>
Dibromofluoromethane	110	74-140				1,2-Dichloroethane-d4	110	74-146		
Toluene-d8	105	88-112				1,4-Bromofluorobenzene	94	74-110		
MW-4	Y		07-12-	0982-4-	c	12/10/07 Aqueous GC/MS	S Q 12/15/0)7 12/1	6/07 0712	215L03

Comment(s): -Results were ev	aluated to th	e MDL, co	ncentratio	ons >= to the I	MDL but < RL, if found, are qualified	d with a "J" flag	J.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual
Benzene	ND	0.50	0.14	1	o-Xylene	ND	1.0	0.17	1
Ethylbenzene	ND	1.0	0.23	1	Methyl-t-Butyl Ether (MTBE)	11	1.0	0.26	1
Toluene	ND	1.0	0.27	1	Tert-Butyl Alcohol (TBA)	540	10	5.4	1,
p/m-Xylene	ND	1.0	0.54	1					
Surrogates:	REC (%)	Control	<u>Limits</u>	<u>Qual</u>	Surrogates:	REC (%)	<u>Control</u>	Limits	<u>Qual</u>
Dibromofluoromethane	118	74-140			1,2-Dichloroethane-d4	121	74-146		
Toluene-d8	96	88-112			1,4-Bromofluorobenzene	82	74-110		

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

 Blaine Tech Services, Inc.
 Date Received:
 12/12/07

 1680 Rogers Avenue
 Work Order No:
 07-12-0982

 San Jose, CA 95112-1105
 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 ug/L

Project: 31235 Mission Blvd., Hayward, CA

Ρ	ag	е	2	of	3

0.26

5.4

Control Limits

1.0

74-146

74-110

10

140

ND

130

79

REC (%)

1

Qual

FTUJECL. 31233 MISSIC	טווע ווע., ווכ	ay waru,	, UA					Page	∠ OT 3
Client Sample Number				ample nber	Date Collected Matrix Instrui	Date ment Prepar	_	Date alyzed Q0	C Batch ID
MW-5			07-12	2-0982-5-C	12/10/07 Aqueous GC/M	IS Q 12/15/	07 12/	16/07 07	1215L03
Comment(s): -Results wer	e evaluated to th	ne MDL, co	oncentrat	tions >= to the	MDL but < RL, if found, are qualified	ed with a "J" flag	g.		
<u>Parameter</u>	Result	RL	MDL	<u>DF</u> Qual		Result	RL	MDL	DF Qual
Benzene	ND	0.50	0.14	1	o-Xvlene	ND	1.0	0.17	1
Ethylbenzene	ND	1.0	0.23	. 1	Methyl-t-Butyl Ether (MTBE)	0.96	1.0	0.26	1 ј
Toluene	ND	1.0	0.27	1	Tert-Butyl Alcohol (TBA)	ND	10	5.4	1
p/m-Xylene	ND	1.0	0.54	1	, ,				
Surrogates:	<u>REC (%)</u>	Control	<u>Limits</u>	<u>Qual</u>	Surrogates:	REC (%)	Contro	l Limits	Qual
Dibromofluoromethane	124	74-140			1,2-Dichloroethane-d4	124	74-146	3 .	
Toluene-d8	96	88-112			1,4-Bromofluorobenzene	81	74-110)	
MW-6			07-12	2-0982-6-C	12/10/07 Aqueous GC/M	S Q 12/15/	07 12/	16/07 071	1215L03
Comment(s): -Results were	e evaluated to th	e MDL co	ncentrat	ions >= to the	MDL but < RL, if found, are qualifie	ed with a " I" flac	7		
Parameter	Result	RL	MDL	DF Qual		Result	RL	MDL	DF Qual
Benzene	ND	0.50	0.14	1	o-Xvlene	ND	1.0	0.17	1
Ethylbenzene	ND	1.0	0.23	1	Methyl-t-Butyl Ether (MTBE)	170	1.0	0.17	1
Toluene	ND ·	1.0	0.27	1	Tert-Butyl Alcohol (TBA)	ND	1.0	5.4	1
p/m-Xvlene	ND	1.0	0.54	1	rare Butyr Alcohor (TBA)	ND	10	0.4	•
Surrogates:	REC (%)	Control	Limits	Qual	Surrogates:	REC (%)	Contro	l Limits	Qual
Dibromofluoromethane	124	74-140			1,2-Dichloroethane-d4	126	74-146		
Toluene-d8	96	88-112			1,4-Bromofluorobenzene	82	74-110		
MW-7			07-12	-0982-7-C	12/10/07 Aqueous GC/M			16/07 071	215L03
Comment(s): -Results were	a avaluated to the	o MDL oo			MDL but < RL, if found, are qualifie				
Parameter						_		MDI	DE 0 1
	Result	<u>RL</u>	MDL	DF Qual		Result	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>
Benzene	ND	2.5	0.70	5	o-Xylene	ND	5.0	0.84	5
Ethylbenzene Takana	ND	5.0	1.1	5	Methyl-t-Butyl Ether (MTBE)	520	5.0	1.3	5
Toluene	ND	5.0 5.0	1.4	5 5	Tert-Butyl Alcohol (TBA)	ND	50	.27	5
p/m-Xylene Surrogates:	ND <u>REC (%)</u>	Control	2.7	Qual	Surrogates:	DEC (9/)	Control	Limite	01
•	•	74-140	_1111112	Quai		REC (%)	Control	Limis	<u>Qual</u>
Dibromofluoromethane Toluene-d8	124 96	88-112			1,2-Dichloroethane-d4	128	74-146		
MW-8	90	00-112	07-12	-0982-8-C	1,4-Bromofluorobenzene 12/10/07 Aqueous GC/MS	82 S Q 12/15/0	74-110	6/07 071	2451.02
								0/07 0/1	Z I JLU3
					MDL but < RL, if found, are qualified	d with a "J" flag			
<u>Parameter</u>	Result	RL	MDL	DF Qual	<u>Parameter</u>	<u>Result</u>	RL	<u>MDL</u>	DF Qual
Benzene	ND	0.50	0.14	1	o-Xylene	ND	1.0	0.17	1
Title, die eine eine	NID	4.0	0.00	4					

RL - Reporting Limit ,

DF - Dilution Factor

1.0

1.0

1.0

74-140

88-112

Control Limits

0.23

0.27

0.54

ND

ND

ND

124

REC (%)

Qual - Qualifiers

1

1

Dibromofluoromethane

Ethylbenzene

Toluene

p/m-Xylene

Surrogates:

Toluene-d8

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

1,2-Dichloroethane-d4

1,4-Bromofluorobenzene

Qual Surrogates:

Blaine Tech Services, Inc.

1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received:

12/12/07

Work Order No:

07-12-0982 Preparation:

Method:

EPA 5030B EPA 8260B

Units:

ug/L

Р	age	∋ ડ	ΟŤ	3
			_	

Client Sample Number			Lab S Nun	ample nber		Date Collected	Matrix	Instrument	Date Prepared	Date d Analyze	ed Q	C Batch ID
Method Blank			099-1	10-006	-23,815	N/A	Aqueous	GC/MS Q	12/15/07	7 12/16/0	7 07	1215L03
Comment(s): -Results were e	valuated to th	e MDL, co	ncentrat	ions >	= to the	MDL but < RI	L, if found, ar	e qualified wi	th a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>D</u>	F Qual	<u>Parameter</u>		•	Result	<u>RL</u>	MDL	DF Qual
Benzene	ND	0.50	0.14		1	o-Xylene			ND	1.0).17	1
Ethylbenzene .	ND	1.0	0.23	٠.	1	Methyl-t-Bu	utyl Ether (M)	ΓBE)	ND	1.0	.26	. 1
Toluene	ND	1.0	0.27		1	Tert-Butyl	Alcohol (TBA)	ND	10 5	5.4	1
p/m-Xylene	ND	1.0	0.54		1							
Surrogates:	REC (%)	Control I	<u>Limits</u>		<u>Qual</u>	Surrogates:			REC (%)	Control Lin	<u>its</u> .	Qual
Dibromofluoromethane	119	74-140				1,2-Dichlor	oethane-d4		118	74-146		
Toluene-d8	95	88-112				1,4-Bromo	fluorobenzene	Э ;	83	74-110		

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method: 12/12/07 07-12-0982 EPA 5030B EPA 8015B (M)

Project 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-12-0845-6	Aqueous	GC 25	12/12/07	12/13/07	071212S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPI	OCL Qualifiers
TPH as Gasoline	111	111	68-122	0 0-	18

Muhha

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method: 12/12/07 07-12-0982 EPA 5030B EPA 8015B (M)

Project 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-12-1118-1	Aqueous	GC1	12/13/07		12/13/07	071213S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	80	79	68-122	2	0-18	

Muhhu_

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method: 12/12/07 07-12-0982 EPA 5030B EPA 8260B

Project 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	÷	Date Analyzed	MS/MSD Batch Number	
MW-2	Aqueous	GC/MS Q	12/15/07	The state of	12/16/07	071215S02	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	97	94	88-118	3	0-7		
Carbon Tetrachloride	88	85	67-145	3	0-11		
Chlorobenzene	99	98	88-118	. 1	0-7		
1,2-Dibromoethane	106	104	70-130	2.	0-30		
1,2-Dichlorobenzene	107	104	86-116	3	0-8		
1,1-Dichloroethene	83	80	70-130	3	0-25		
Ethylbenzene	107	106	70-130	2	0-30		
Toluene	99	96	87-123	2	0-8		
Trichloroethene	95	94	79-127	1	0-10		
Vinyl Chloride	74	72	69-129	2	0-13		
Methyl-t-Butyl Ether (MTBE)	101	99	71-131	2	0-13		
Tert-Butyl Alcohol (TBA)	89	92	36-168	3	0-45		
Diisopropyl Ether (DIPE)	102	98	81-123	. 3	0-9		
Ethyl-t-Butyl Ether (ETBE)	106	104	72-126	2 .	0-12		
Tert-Amyl-Methyl Ether (TAME)	108	107	72-126	. 1	0-12		

86

MANA_

Ethanol

53-149

0-31

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method:

N/A 07-12-0982 EPA 3510C EPA 8015B

Project: 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Bato Number	h
099-12-211-142	Aqueous	GC 23	12/13/07	12/14/0	7	071213B08	
<u>Parameter</u>	LCS %R	EC LCSD	<u>%REC</u>	EC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	92	99	7	5-117	7	0-13	

MMM______

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method:

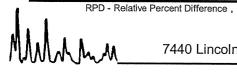
N/A 07-12-0982 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bato Number	h
099-12-436-1,252	Aqueous	GC 25	12/12/07	12/1:	2/07	071212B01	y
<u>Parameter</u>	LCS %R	EC LCSD	<u>%REC</u> <u>%</u>	REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	93	95		78-120	2	0-10	

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

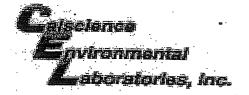
Date Received: Work Order No: Preparation: Method: N/A 07-12-0982 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepar		Date nalyzed	LCS/LCSD Batc Number	h
099-12-436-1,254	Aqueous	GC 1	12/13/0	07 12	2/13/07	071213B02	
<u>Parameter</u>	LCS %	REC LCS	D %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	81	;	31	78-120	0	0-10	



Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: N/A 07-12-0982 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Bate Number	ch
099-10-006-23,815	Aqueous	GC/MS Q	12/15/07	12/1	5/07	071215L03	Same a selectiva Selectiva
<u>Parameter</u>	LCS %RE	C LCSD %I	REC S	%REC CL	RPD	RPD CL	Qualifiers
Benzene	95	94		84-120	1	0-8	
Carbon Tetrachloride	85	86		63-147	1	0-10	
Chlorobenzene	96	96		89-119	0	0-7	
1,2-Dibromoethane	103	99		80-120	3	0-20	
1,2-Dichlorobenzene	105	104		89-119	1	0-9	
1,1-Dichloroethene	82	85		77-125	3	0-16	
Ethylbenzene	105	105		80-120	1	0-20	
Toluene	96	95		83-125	0	0-9	
Trichloroethene	95	94		89-119	1	0-8	
Vinyl Chloride	74	75		63-135	2	0-13	
Methyl-t-Butyl Ether (MTBE)	101	100		82-118	2	0-13	
Tert-Butyl Alcohol (TBA)	90	86		46-154	5	0-32	
Diisopropyl Ether (DIPE)	105	101		81-123	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	115	109		74-122	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	115	109		76-124	6	0-10	
Ethanol	84	79		60-138	7	0-32	


Glossary of Terms and Qualifiers

Work Order Number: 07-12-0982

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

TA - Morgan Hill, California	NAME OF PER	SON TO) DII I -	Correl	<u> </u>											let et et e			ana ara	# . Tripper		.,	
TA - Norgan Hill, California TA - Sacramento, California) BILL:	Carol	Camp												IN	IDENT	# (ES	ONLY)		
TA - Nashville, Tennessee	☑ ENVIRONMENTAL			(20,000		l pass	□ сн	ECK BC	X TO V	ERIFY IF	II ON	CIDENT	# APP	LIES		9	7	4	5 6	5	3 2	D	ATE: 12/10/07
Calscience	☐ NETWORK DEV / F			CONSULTA	ANT					P	0#							SAP	r CRN	T#			
Other	COMPLIANCE:		□ RM	/CRMT				Ī			T		1	T	T				1	1 I		≞ P/	AGE: of
SAMPLING COMPANY:		LOG CODE				SIT	E ADDR	ESS: S	reel an	i City			٠	<u> </u>		State	لــــــــــــــــــــــــــــــــــــــ	GL	OBAL ID	10.:		<u> </u>	
Blaine Tech Services ADDRESS:		BTSS				31	235	Mis	sior	Blv	d.,	layw	ard			CA		T	600	1700 [.]	16		
680 Rogers Avenue, San	Jose, CA 95112					EDF D	DELIVER	ABLE TO	(Name,	Company, C	ffice Loc	ation);		PHONE	NO.:	<u> </u>		E-M	AL;				CONSULTANT PROJECT N
PROJECT CONTACT (Hardcopy or PDF R Aichael Ninokata	eport to):			· · · · · · · · · · · · · · · · · · ·		Jon	Sulno	, Deli	ta, Mo	nrovia (Office			626.	256.6	662		jsı	ing@	deltaen	v.com		071210-MD
TELEPHONE:	FAX:	E-MAIL:																				IB USE	
08-573-0555	408-573-7771	mninol	kata@bla	inetech.	com.	IVV	18	IE	120	E													12- 0982
TAT (STD IS 10 BUSINESS DAY				RESULTS N				•		·				-	· pr						E		
		24 HOURS		ON WEEKE	:ND	1_									171	.QUE	:0 E	ANA C	LYSIS				
LA - RWQCB REPORT FORMA														-									
SPECIAL INSTRUCTIONS OR NO		EDD NOT	NEEDED	ATE ADDITE] _	15M		_										1				FIELD NOTES:
		STATE RI			:5	260E	(80		ЕТВЕ)														
RUN TPHd w/SILICA GE	1	☑ RECEIPT			STED	le (8;	table		3) √E, E														Container/Preservative or PID Readings
	•					yeab	ctrac		(8260B) PE, TAME,								9						or Laboratory Notes
CC Tom Hargett tharge	ett@deltaenv.com	nand Ri	ch Garl	wo		Purg	9, E	<u>6</u>	tes (82 DIPE,	<u>@</u>	a a	<u>a</u> <u>@</u>	B)	(E0B)	_	60B)	015N	1.			l		
garlow@deltaenv.com	with final report					Gas, Purgeable (8260B)	Jese	(8260B)	Jenai TBA,	(826)	Zour	8260	8260	4 (82	260B	1 (821	8) 10						
LAG એક⊭ Field Sample ઓપ્	Identification		PLING	MATRIX	NO. OF	1 =	TPH - Diesel, Extractable (8015M)	BTEX (5 Oxygenates ((MTBE, TBA, DIP	MTBE (8260B)	IBA (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)						TEMPERATURE ON RECEIPT C°
ikiii .		DATE		w	-7	15	5	<u></u>	ທ≳	2	<u> </u>	1/2	1	-	H	ш	ğ			$\vdash \vdash$	_		
1 mw - 1		12/10		V	1	K	10				4_												
2 mw-2			0921			4	\one	∞		\d	V												
3 MW-3			1007			1	8	$ \mathcal{A} $		S	7						\exists		1	.	_		
4 Mw-4	***************************************		1101			1						+	T			\vdash	+	- -	+-	-	-	+-	
mw-5	,	+	1		 	K	1^{\sim}	\times			-1-		-				-		-			1_1	
		+	1157		- -	X	120	4		XX									\perp				
6 Mm-6			1259			X	† ×	X		$A \triangleright$	1						T						
7 MW-7		T	1341			X	Q	V		小	1					\dashv	_	_				1-1	
& mw-q		11/	T	1	1	t				\mathcal{A}	1	-							 			+ -	
<i>D</i>		\ <u>\\</u>	1231	7	<u> </u>	14	72			XY.	4												
			ļ																			1 1	
								$ \top $												\top		† †	
Relinquished by: (Signature)				Received by	y: (Signature		_		1		<u></u>				\			Pate:	1	1.		Time:	# - # >
Relinquished by: (Signature)				Panel and L			_		(D	ango	ا سا	lest	oln.					12	110	107	,		1540
Relinguished by: (Signature) Shupped WIA (520				y; (Signature)											,	T	Pate:	uli	77		Time:	1500
Relinquished by: (Signature)				Received by	y: (Signature)) ; *							111	1/1	all	1	-	ate:	7.	7		Time:	2/10
			13.55	· · · · .	······································		<u> </u>			*			M	<i>[</i>	1/	<u>y</u>		12/	<u>/2/</u>	27	~.	1 10	05/02/06 Revision

WORK ORDER #: 0 7 - 1 2 - 0 9

Cooler ____ of ___

SAMPLE RECEIPT FORM

CLIENT: Daine Fech	DATE:	12/12/07
TEMPERATURE - SAMPLES RECEIVED BY:		
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other that 3.6 °C Temperature blate of the control of	ınk.
CUSTODY SEAL INTACT:		
Sample(s): Cooler: No (Not In	tact) : Not	Present:
SAMPLE CONDITION:		
Chain-Of-Custody document(s) received with samples Sampler's name indicated on COC Sample container label(s) consistent with custody papers Sample container(s) intact and good condition Correct containers and volume for analyses requested Proper preservation noted on sample label(s) VOA vial(s) free of headspace. Tedlar bag(s) free of condensation		
COMMENTS:		