RECEIVED

2:06 pm, Oct 31, 2007

Alameda County
Environmental Health

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

October 30, 2007

DELTA Project: SJ312351X

SAP: 135356

Mr. Tom Berkins Groundwater Resources Engineer Alameda County Water District 43885 South Grimmer Blvd. Fremont, California 94538

Re: THIRD QUARTER 2007 GROUNDWATER MONITORING REPORT Shell-Branded Service Station 31235 Mission Blvd. Hayward, California

Dear Mr. Berkins:

On behalf of Shell Oil Products (SHELL), Delta Consultants (DELTA) has prepared this *Third Quarter 2007 Groundwater Monitoring Report* for the above referenced site. The sampling activities at the site were conducted by Blaine Tech Services, Inc. under contract to SHELL and included the collection of groundwater samples and static water level measurements. A DELTA staff member under the supervision of a California Registered Civil Engineer or a California Professional Geologist performed the data evaluation.

This quarterly report represents DELTA's professional opinions based upon the currently available information and is arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between DELTA and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of DELTA's Client and anyone else specifically listed on this report. DELTA will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, DELTA makes no express or implied warranty as to the contents of this report.

Mr. Tom Berkins Alameda County Water District October 30, 2007 Page 2

If you have any questions regarding this site, please contact Mr. Tom Hargett (DELTA) at (408) 826-1868 or Ms. Carol Campagna (SHELL) at (707) 864-1617.

Sincerely,

Delta Consultants

Matt Lambert Staff Scientist Tom Hargett, PG 5510 Project Manager SSIONAL GE

TOM HARGET NO. 5510

Attachment: Third Quarter 2007 Groundwater Monitoring Report

ce: Carol Campagna, Shell Oil Products US, Carson

Chuck Headlee, RWQCB San Francisco Region Danilo Galang, City of Hayward Fire Department, Hayward

Patti Harrison, Fowler Property Acquisitions, San Francisco

ATTACHED:

- Table 1 Well Concentrations
- Figure 1 Site Location and Well Survey Map
- Figure 2 Groundwater Elevation Contour Map
- Figure 3 Hydrocarbon Distribution in Groundwater Map
- Appendix A Field Data Sheets
- Appendix B Field Procedures
- Appendix C Laboratory Report and Chain-of-Custody Documentation
- Appendix D Indemnification and Right of Entry Agreements between Shell Oil Products and US
 Toro Development Co.

SHELL QUARTERLY STATUS REPORT

Station Address:	31235 Mission Blvd., Hayward, California
DELTA Project No.:	SJ312351X
SHELL Project Manager/Phone No.:	Carol Campagna (707) 864-1617
DELTA Site Manager/Phone No.:	Tom Hargett (408) 826-1868
Primary Agency/Regulatory ID No.:	ACWD/ Tom Berkins
Other Agencies to Receive Copies:	RWQCB San Francisco Region City of Hayward Fire Department

WORK PERFORMED THIS QUARTER (THIRD - 2007):

- 1. Quarterly groundwater monitoring and sampling. Submitted quarterly report.
- 2. Submitted Work Plan Addendum for Additional Soil and Groundwater Investigation dated August 3, 2007.
- 3. Submitted Revised Work Plan Addendum for Additional Soil and Groundwater Investigation dated August 16, 2007.

WORK PROPOSED FOR NEXT QUARTER (FOURTH - 2007):

- 1. Quarterly groundwater monitoring and sampling. Submit quarterly report.
- 2. Install of onsite well MW-11 and offsite wells MW-9 and MW-10.

Current Phase of Project:	Groundwater monitoring and off-site investigation.
Frequency of Sampling:	Quarterly
Frequency of Monitoring:	Quarterly
Is Separate Phase Hydrocarbon Present C	On-site Tyes No
(Well #'s):	
Cumulative SPH Recovered to Date:	NA
SPH Recovered This Quarter:	None
Sensitive Receptor(s) and Respective Direction(s):	Public drinking water well (Whipple Well) is located approximately 4,650 ft southwest of the site.
Site Lithology:	The site was found to be underlain primarily by clay interspersed with thin layers of silt, silty sand, clayey sand, and clayey gravel. The maximum depth explored was 33 feet below grade (bg).
Current Remediation Techniques:	None
Permits for Discharge:	None
Approximate Depth to Groundwater:	19.42 feet (off-site) to 21.94 feet (on-site) below top of well casing.
Groundwater Gradient:	West at approximately 0.003 ft/ft.
Current Agency Correspondence:	Facsimile correspondence dated March 27, 2007 stating the ownership change confirmation to <i>FPA Hayward Associates</i> , <i>L.P.</i> , refer to Appendix B.

SHELL QUARTERLY STATUS REPORT (CONT.)

Site History:

Case Opening 11/13/02 (Leak Detected)

Onsite Assessment October 2002 Installation of MW-1 through MW-4, December

2003 Soil Boring SB-1

Offsite Assessment December 2003 Soil Boring SB-2 through 8, November 2004

Installation of MW-5 through MW-8

Passive Remediation Natural Attenuation

Active Remediation Temporary Groundwater Extraction March 30, 2004 to June 8,

2004 (61,285 gallons).

Closure NA

Summary of Unusual Activity: None

TABLE

Well ID	Date	ТРРН	TEPH	В	т	E	х	MTBE 8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Depth to Water	GW Elevation
	2 0.00	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
		, ,	, ,		, ,	, ,	,		, ,	, ,			<u>, , , , , , , , , , , , , , , , , , , </u>			,
MW-1	12/02/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.82	NA
MW-1	12/23/2002	<2,000	<100	<20	<20	<20	<20	9,600	<20	<20	<20	1,200	NA	NA	18.77	NA
MW-1	03/20/2003	<13,000	<50	<130	<130	<130	<250	14,000	<250	<130	<130	1,400	NA	42.19	20.58	21.61
MW-1	06/16/2003	<10,000	75 a	<100	<100	<100	<200	14,000	<400	<400	<400	2,100	NA	42.19	19.99	22.20
MW-1	09/18/2003	<10,000	<50	<100	<100	<100	<200	19,000	<400	<400	<400	3,000	NA	42.19	21.66	20.53
MW-1	12/02/2003	<13,000	69 a	<130	<130	<130	<250	22,000	<500	<500	<500	1,500	NA	42.19	22.08	20.11
MW-1	03/01/2004	<10,000	90 a	<100	<100	<100	<200	13,000	<400	<400	<400	1,200	NA	42.19	18.76	23.43
MW-1	06/08/2004	<5,000	84 a	<50	<50	<50	<100	7,200	<200	<200	<200	3,500	NA	42.19	21.71	20.48
MW-1	09/24/2004	<1,000	<50	<10	<10	<10	<20	420	<40	<40	<40	8,200	NA	42.19	22.85	19.34
MW-1	12/23/2004	<1,000	79 b	<10	<10	<10	<20	130	<40	<40	<40	11,000	NA	42.19	21.89	20.30
MW-1	03/02/2005	<1,000	84 b	<10	<10	<10	<20	79	<40	<40	<40	6,600	NA	42.19	16.84	25.35
MW-1	06/17/2005	<1,000	67 b	<10	<10	<10	<20	110	<40	<40	<40	7,400	NA	42.19	17.75	24.44
MW-1	09/01/2005	<1,000	<50	<10	<10	<10	<20	120	<40	<40	<40	1,800	NA	42.19	19.68	22.51
MW-1	12/08/2005	<250	<47	<2.5	<2.5	<2.5	<2.5	170	NA	NA	NA	5,000	NA	42.19	20.95	21.24
MW-1	03/16/2006	<500	i	<0.500	<0.500	<0.500	<0.500	770	NA	NA	NA	2,550	NA	42.19	15.15	27.04
MW-1	06/01/2006	<50.0	86.8 h	<0.500	<0.500	<0.500	<0.500	99.6	NA	NA	NA	2,400	NA	42.19	15.91	26.28
MW-1	09/26/2006	290	80.1 h	<5.0	<5.0	<5.0	<10	490	<10	<10	<10	4,800	<1,500	42.19	19.40	22.79
MW-1	12/08/2006	470	55 h	<0.50	<0.50	<0.50	<1.0	230	NA	NA	NA	3,500	NA	42.19	20.13	22.06
MW-1	03/12/2007	170	<50 h	<1.0	<1.0	<1.0	<2.0	66	NA	NA	NA	3,000	NA	42.19	18.28	23.91
MW-1	06/07/2007	440 o,p	53 h	<0.50	<1.0	<1.0	<1.0	190	NA	NA	NA	3,600	NA	42.19	20.44	21.75
MW-1	09/10/2007	<50 o	51 h	<2.5	<5.0	<5.0	<5.0	840	<10	<10	<10	3,400	<500	42.19	21.94	20.25
		1		1	T	1	1		1	1	T	1		T	ī	1
MW-2	12/02/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.71	NA
MW-2	12/23/2002	<1,000	<100	<10	<10	<10	<10	4,200	<10	<10	<10	130	NA	NA	18.51	NA
MW-2	03/20/2003	<13,000	<60	<130	<130	<130	<250	8,800	<250	<130	<130	<1300	NA	42.18	20.70	21.48
MW-2	06/16/2003	<10,000	70 a	<100	<100	<100	<200	6,200	<400	<400	<400	<1000	NA	42.18	20.00	22.18

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	Е	х	8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
<u> </u>		<u> </u>	, ,	<u> </u>	, ,	<u>, , , , , , , , , , , , , , , , , , , </u>	, ,	<u> </u>	, , ,	, ,	, , ,	<u>, , , , , , , , , , , , , , , , , , , </u>	, ,	, ,		, ,
MW-2	09/18/2003	<2,500	630 a	<25	<25	<25	<50	8,700	<100	<100	<100	330	NA	42.18	21.68	20.50
MW-2	12/02/2003	<5,000	59 a	<50	<50	<50	<100	5,000	<200	<200	<200	940	NA	42.18	22.08	20.10
MW-2	03/01/2004	<2,000	67 a	<20	<20	<20	<40	1,900	<80	<80	<80	2,000	NA	42.18	18.65	23.53
MW-2	06/08/2004	<500	<50	<5.0	<5.0	<5.0	<10	79	<20	<20	<20	3,100	NA	42.18	21.63	20.55
MW-2	09/24/2004	<500	<50	<5.0	<5.0	<5.0	<10	10	<20	<20	<20	4,100	NA	42.18	22.84	19.34
MW-2	12/23/2004	<500	93 a	<5.0	<5.0	<5.0	<10	20	<20	<20	<20	2,300	NA	42.18	21.94	20.24
MW-2	03/02/2005	<100 d	50 a	<1.0	<1.0	<1.0	<2.0	3.8	<4.0	<4.0	<4.0	770	NA	42.18	16.54	25.64
MW-2	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	6.2	<2.0	<2.0	<2.0	540	NA	42.18	17.64	24.54
MW-2	09/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	10	<2.0	<2.0	<2.0	280	NA	42.18	19.63	22.55
MW-2	12/08/2005	<250	<48	<2.5	<2.5	<2.5	<2.5	12	NA	NA	NA	200	NA	42.18	20.89	21.29
MW-2	03/16/2006	<50.0	159 h	<0.500	<0.500	<0.500	<0.500	1.97	NA	NA	NA	52.8	NA	42.18	14.80	27.38
MW-2	06/01/2006	<50.0	58.0 h	<0.500	<0.500	<0.500	<0.500	9.02	NA	NA	NA	432	NA	42.18	15.83	26.35
MW-2	09/26/2006	<50	<47.6 h	<0.50	<0.50	<0.50	<1.0	3.0	<1.0	<1.0	<1.0	28	<150 k,l,m	42.18	19.34	22.84
MW-2	12/08/2006	<50	<56 h,n	<0.50	<0.50	<0.50	<1.0	2.1	NA	NA	NA	16	NA	42.18	20.02	22.16
MW-2	03/12/2007	<50	<50 h	<0.50	<0.50	<0.50	<1.0	3.4	NA	NA	NA	80	NA	42.18	17.63	24.55
MW-2	06/07/2007	50 o,p	59 h	<0.50	<1.0	<1.0	<1.0	1.1	NA	NA	NA	49	NA	42.18	20.48	21.70
MW-2	09/10/2007	<50 o	51 h	<0.50	<1.0	<1.0	<1.0	1.1	<2.0	<2.0	<2.0	22	<100	42.18	21.76	20.42
MW-3	12/02/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.40	NA
MW-3	12/23/2002	4,000	<1,600	5.2	<5.0	170	160	3,000	<5.0	<5.0	6.4	610	NA	NA	18.06	NA
MW-3	03/20/2003	<10,000	1,900	<100	<100	100	<200	4,300	<200	<100	<100	1,100	NA	42.24	20.03	22.21
MW-3	06/16/2003	2,900	1,400 a	<25	<25	69	50	4,800	<100	<100	<100	1,500	NA	42.24	20.23	22.01
MW-3	09/18/2003	3,700	820 a	<10	<10	40	29	3,700	<40	<40	<40	460	NA	42.24	20.85	21.39
MW-3	12/02/2003	2,900 a	690 a	<10	<10	40	<20	1,400	<40	<40	<40	280	NA	42.24	21.21	21.03
MW-3	03/01/2004	2,000	660 a	<10	<10	22	<20	1,400	<40	<40	<40	260	NA	42.24	19.00	23.24
MW-3	06/08/2004	2,200	650 a	<5.0	<5.0	26	24	1,400	<20	<20	<20	380	NA	42.24	21.63	20.61

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	т	Е	X	8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
<u> </u>		, , ,	, ,	, ,	,	<u> </u>	, , ,	<u> </u>	, ,	<u>, , , , , , , , , , , , , , , , , , , </u>	, , ,	, ,	<u> </u>	, ,		, ,
MW-3	09/24/2004	3,300 a	1,100 b	<5.0	<5.0	52	13	1,500	<20	<20	<20	540	NA	42.24	22.57	19.67
MW-3	12/23/2004	3,300	810 a	15	<5.0	25	<10	700	<20	<20	<20	910	NA	42.24	22.03	20.21
MW-3	03/02/2005	3,600	670 b	56	16	33	21	550	<20	<20	<20	790	NA	42.24	16.48	25.76
MW-3	06/17/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	42.24	17.34	24.90
MW-3	06/29/2005	3,300	680 a	7.3	<5.0	26	11	290	<20	<20	<20	1,100	NA	42.24	17.89	24.35
MW-3	09/01/2005	1,900 e	470 b	<5.0	<5.0	10	<10	190	<20	<20	<20	1,300	NA	42.24	19.57	22.67
MW-3	12/08/2005	1,900	520 g	2.3	<0.50	17	3.5	84	NA	NA	NA	1,200	NA	42.24	20.67	21.57
MW-3	03/16/2006	4,490	1,530 h	0.910	<0.500	44.1	24.3	92.6	NA	NA	NA	484	NA	42.24	15.05	27.19
MW-3	06/01/2006	8,450	2,150 h	1.91	<0.500	178	116	53.9 j	NA	NA	NA	465 j	NA	42.24	15.36	26.88
MW-3	09/26/2006	2,600	593 h	<1.2	<1.2	43	10	26	<2.5	<2.5	<2.5	860	<380	42.24	18.43	23.81
MW-3	12/08/2006	2,800	720 h	0.86	<0.50	29	6.7	46	NA	NA	NA	1,200	NA	42.24	20.02	22.22
MW-3	03/12/2007	3,000	450 h	0.95	<0.50	28	3.7	44	NA	NA	NA	580	NA	42.24	18.55	23.69
MW-3	06/07/2007	2,600 o	1,400 h	0.44 q	<1.0	18	5.66 q	22	NA	NA	NA	750	NA	42.24	20.01	22.23
MW-3	09/10/2007	2,300 o	420 h,p	0.32 q	<1.0	12	1.4	13	<2.0	<2.0	<2.0	950	<100	42.24	21.82	20.42
MW-4	12/02/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.00	NA
MW-4	12/23/2002	<1,000	300	<10	<10	<10	<10	3,200	<10	<10	<10	830	NA	NA	17.22	NA
MW-4	03/20/2003	<10,000	410	<100	<100	100	<200	9,700	<200	<100	<100	2300	NA	42.41	20.47	21.94
MW-4	06/16/2003	<5,000	370 a	<50	<50	<50	<100	7,300	<100	<100	<100	2100	NA	42.41	20.18	22.23
MW-4	09/18/2003	<2,500	250 a	<25	<25	<25	<50	3,700	<100	<100	<100	910	NA	42.41	21.13	21.28
MW-4	12/02/2003	<2,000	540 a	<20	<20	<20	<40	3,000	<80	<80	<80	420	NA	42.41	21.22	21.19
MW-4	03/01/2004	<2,500	320 a	<25	<25	<25	<50	3,700	<100	<100	<100	540	NA	42.41	18.35	24.06
MW-4	06/08/2004	<1,000	250 a	<10	<10	<10	<20	2,700	<40	<40	<40	180	NA	42.41	21.34	21.07
MW-4	09/24/2004	<500	280 a	<5.0	<5.0	<5.0	<10	1,100	<20	<20	<20	930	NA	42.41	22.89	19.52
MW-4	12/23/2004	1,200	450 b	120	<5.0	<5.0	<10	710	<20	<20	<20	1,800	NA	42.41	21.44	20.97
MW-4	03/02/2005	990	190 a	110	39	<5.0	29	1,000	<20	<20	<20	1,000	NA	42.41	16.08	26.33

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	Е	Х	8260	DIPE	ETBE	TAME	TBA	Ethanol	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-4	06/17/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	42.41	17.76	24.65
MW-4	06/29/2005	670 e	390 a	<5.0	<5.0	<5.0	<10	290	<20	<20	<20	2,100	NA	42.41	17.80	24.61
MW-4	09/01/2005	<500	170 a	<5.0	<5.0	<5.0	<10	17	<20	<20	<20	1,900	NA	42.41	19.58	22.83
MW-4	12/08/2005	<500	200 g	<5.0	<5.0	<5.0	<5.0	410	NA	NA	NA	1,200	NA	42.41	20.79	21.62
MW-4	03/16/2006	744	523 h	<0.500	<0.500	<0.500	<0.500	190	NA	NA	NA	635	NA	42.41	15.85	26.56
MW-4	06/01/2006	<50.0	652 h	<0.500	<0.500	<0.500	<0.500	50.8	NA	NA	NA	588	NA	42.41	15.63	26.78
MW-4	09/26/2006	160	532 h	<0.50	<0.50	<0.50	<1.0	1.5	<1.0	<1.0	<1.0	480	<150 k,l	42.41	19.42	22.99
MW-4	12/08/2006	250	170 h	<0.50	<0.50	<0.50	<1.0	50	NA	NA	NA	600	NA	42.41	20.14	22.27
MW-4	03/12/2007	170	99 h	<0.50	<0.50	<0.50	<1.0	45	NA	NA	NA	520	NA	42.41	18.44	23.97
MW-4	06/07/2007	160 o	290 h	<0.50	<1.0	<1.0	<1.0	2.1	NA	NA	NA	370	NA	42.41	20.81	21.60
MW-4	09/10/2007	85 o	180 h,p	<0.50	<1.0	<1.0	<1.0	3.0	<2.0	<2.0	<2.0	270	<100	42.41	21.38	21.03
-																
MW-5	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.66	21.05	19.61
MW-5	12/23/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	3.3	<2.0	<2.0	<2.0	<5.0	NA	40.66	20.65	20.01
MW-5	03/02/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	1.3	<2.0	<2.0	<2.0	<5.0	NA	40.66	15.75	24.91
MW-5	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	1.6	<2.0	<2.0	<2.0	<5.0	NA	40.66	16.35	24.31
MW-5	09/01/2005	<50	140 a,f	<0.50	<0.50	<0.50	<1.0	1.4	<2.0	<2.0	<2.0	<5.0	NA	40.66	18.41	22.25
MW-5	12/08/2005	<50	110 g	<0.50	<0.50	<0.50	<0.50	1.3	NA	NA	NA	<5.0	NA	40.66	19.66	21.00
MW-5	03/16/2006	<50.0	<100 h	<0.500	<0.500	<0.500	<0.500	1.37	NA	NA	NA	<10.0	NA	40.66	14.79	25.87
MW-5	06/01/2006	<50.0	<49.5 h	<0.500	<0.500	<0.500	<0.500	1.42	NA	NA	NA	51.8	NA	40.66	14.39	26.27
MW-5	09/26/2006	50	<47.6 h	<0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<150 k,l	40.66	18.12	22.54
MW-5	12/08/2006	<50	<56 h,n	<0.50	<0.50	<0.50	<1.0	0.88	NA	NA	NA	<5.0	NA	40.66	18.81	21.85
MW-5	03/12/2007	<50	<50 h	<0.50	<0.50	<0.50	<1.0	0.78	NA	NA	NA	5.3	NA	40.66	16.39	24.27
MW-5	06/07/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	0.86 q	NA	NA	NA	<10	NA	40.66	19.20	21.46
MW-5	09/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	0.91 q	<2.0	<2.0	<2.0	<10	<100	40.66	20.63	20.03

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	Е	X	8260	DIPE	ETBE	TAME	TBA	Ethanol	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-6	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39.43	20.15	19.28
MW-6	12/23/2004	<250	110 a	<2.5	<2.5	<2.5	<5.0	390	<10	<10	<10	<25	NA	39.43	19.50	19.93
MW-6	03/02/2005	<250	<50	<2.5	<2.5	<2.5	<5.0	400	<10	<10	<10	<25	NA	39.23 c	14.72	24.51
MW-6	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	250	<2.0	<2.0	<2.0	28	NA	39.23	15.27	23.96
MW-6	09/01/2005	<250	<50	<2.5	<2.5	<2.5	<5.0	500	<10	<10	<10	<25	NA	39.23	17.22	22.01
MW-6	12/08/2005	<500	<47	<5.0	<5.0	<5.0	<5.0	240	NA	NA	NA	<50	NA	39.23	18.43	20.80
MW-6	03/16/2006	862	<100 h	<0.500	<0.500	<0.500	<0.500	221	NA	NA	NA	<10.0	NA	39.23	12.66	26.57
MW-6	06/01/2006	<50.0	<49.5 h	<0.500	<0.500	<0.500	<0.500	102	NA	NA	NA	<10.0	NA	39.23	13.58	25.65
MW-6	09/26/2006	170	<48.1 h	<1.0	<1.0	<1.0	<2.0	150	<2.0	<2.0	<2.0	<20	<300 k,l	39.23	16.96	22.27
MW-6	12/08/2006	260	<56 h,n	<0.50	<0.50	<0.50	<1.0	170	NA	NA	NA	<5.0	NA	39.23	17.78	21.45
MW-6	03/12/2007	150	<50 h	<0.50	<0.50	<0.50	<1.0	130	NA	NA	NA	16	NA	39.23	15.25	23.98
MW-6	06/07/2007	100 o,p	<50 h	<0.50	<1.0	<1.0	<1.0	130	NA	NA	NA	<10	NA	39.23	17.91	21.32
MW-6	09/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	160.0	<2.0	<2.0	<2.0	<10	<100	39.23	19.42	19.81
MW-7	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39.50	19.98	19.52
MW-7	12/23/2004	<250	<50	<2.5	<2.5	<2.5	<5.0	690	<10	<10	<10	<25	NA	39.50	19.55	19.95
MW-7	03/02/2005	<250	<50	<2.5	<2.5	<2.5	<5.0	590	<10	<10	<10	<25	NA	39.50	15.35	24.15
MW-7	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	330	<2.0	<2.0	<2.0	34	NA	39.50	15.16	24.34
MW-7	09/01/2005	<500	<50	<5.0	<5.0	<5.0	<10	430	<20	<20	<20	<50	NA	39.50	17.45	22.05
MW-7	12/08/2005	<500	<48	<5.0	<5.0	<5.0	<5.0	380	NA	NA	NA	<50	NA	39.50	18.66	20.84
MW-7	03/16/2006	881	<100 h	<0.500	<0.500	<0.500	<0.500	396	NA	NA	NA	<10.0	NA	39.50	12.90	26.60
MW-7	06/01/2006	<50.0	<49.5 h	<0.500	<0.500	<0.500	<0.500	192	NA	NA	NA	<10.0	NA	39.50	13.91	25.59
MW-7	09/26/2006	270	<48.5 h	<1.0	<1.0	<1.0	<2.0	290	<2.0	<2.0	<2.0	35	<300 k,l	39.50	17.17	22.33
MW-7	12/08/2006	480	65 h	<0.50	<0.50	<0.50	<1.0	360	NA	NA	NA	<5.0	NA	39.50	17.88	21.62
MW-7	03/12/2007	<500	<50 h	<5.0	<5.0	<5.0	<10	370	NA	NA	NA	<50	NA	39.50	15.36	24.14
MW-7	06/07/2007	260 o,p	<50 h	<0.50	<1.0	<1.0	<1.0	370	NA	NA	NA	<10	NA	39.50	18.20	21.30

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	T	E	X	8260	DIPE	ETBE	TAME	TBA	Ethanol	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-7	09/10/2007	<50 o	<50 h	<2.5	<5.0	<5.0	<5.0	480	<10	<10	<10	<50	<500	39.50	19.65	19.85
MW-8	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39.92	20.42	19.50
MW-8	12/23/2004	<250	<50	<2.5	<2.5	<2.5	<5.0	530	<10	<10	<10	<25	NA	39.92	19.98	19.94
MW-8	03/02/2005	<50 d	<50	<0.50	<0.50	<0.50	<1.0	130	<2.0	<2.0	<2.0	<5.0	NA	39.92	14.43	25.49
MW-8	06/17/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	50	<2.0	<2.0	<2.0	6.5	NA	39.92	15.92	24.00
MW-8	09/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	34	<2.0	<2.0	<2.0	<5.0	NA	39.92	17.85	22.07
MW-8	12/08/2005	<50	97 g	<0.50	<0.50	<0.50	<0.50	63	NA	NA	NA	5.6	NA	39.92	19.08	20.84
MW-8	03/16/2006	<50.0	<100 h	<0.500	<0.500	<0.500	<0.500	15.0	NA	NA	NA	<10.0	NA	39.92	13.13	26.79
MW-8	06/01/2006	<50.0	<46.9 h	<0.500	<0.500	<0.500	<0.500	15.2	NA	NA	NA	<10.0	NA	39.92	14.20	25.72
MW-8	09/26/2006	<50	<48.5 h	<0.50	<0.50	<0.50	<1.0	20	<1.0	<1.0	<1.0	<10	<150 k,l	39.92	17.57	22.35
MW-8	12/08/2006	99	51 h	<0.50	<0.50	<0.50	<1.0	56	NA	NA	NA	<5.0	NA	39.92	18.31	21.61
MW-8	03/12/2007	<50	<50 h	<0.50	<0.50	<0.50	<1.0	40	NA	NA	NA	<5.0	NA	39.92	15.83	24.09
MW-8	06/07/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	34	NA	NA	NA	<10	NA	39.92	18.56	21.36
MW-8	09/10/2007	<50 o	<50 h	<0.50	<1.0	<1.0	<1.0	77	<2.0	<2.0	<2.0	<10	<100	39.92	20.00	19.92

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	X	8260	DIPE	ETBE	TAME	TBA	Ethanol	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)								

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary Butanol or Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

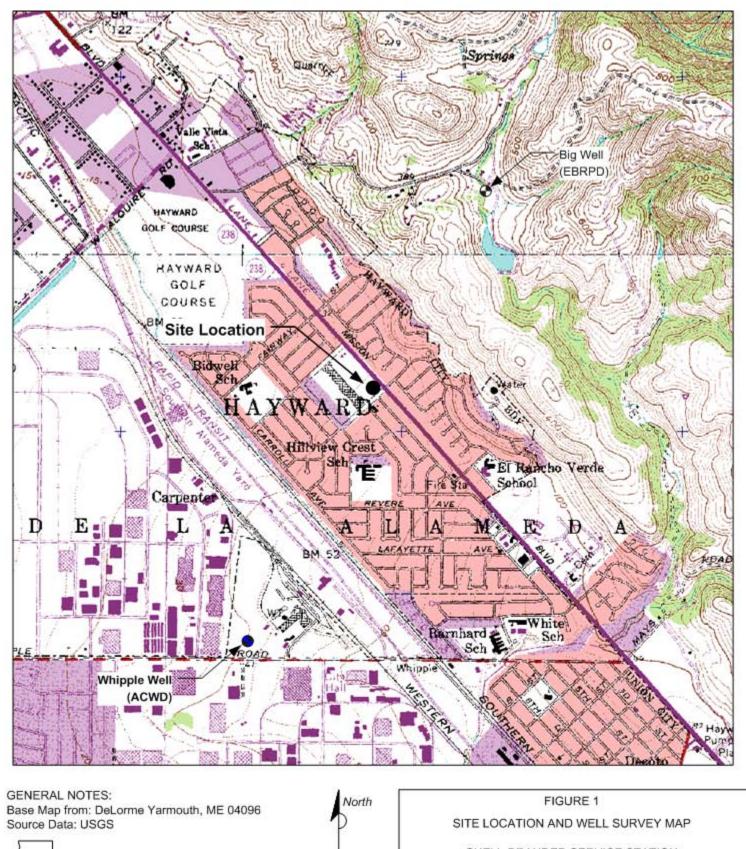
ft. = Feet

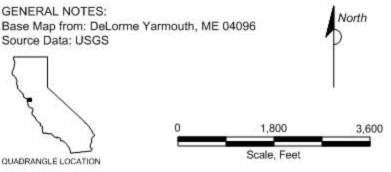
<n = Below detection limit

NA = Not applicable

								MTBE							Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	X	8260	DIPE	ETBE	TAME	TBA	Ethanol	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)											

Notes:

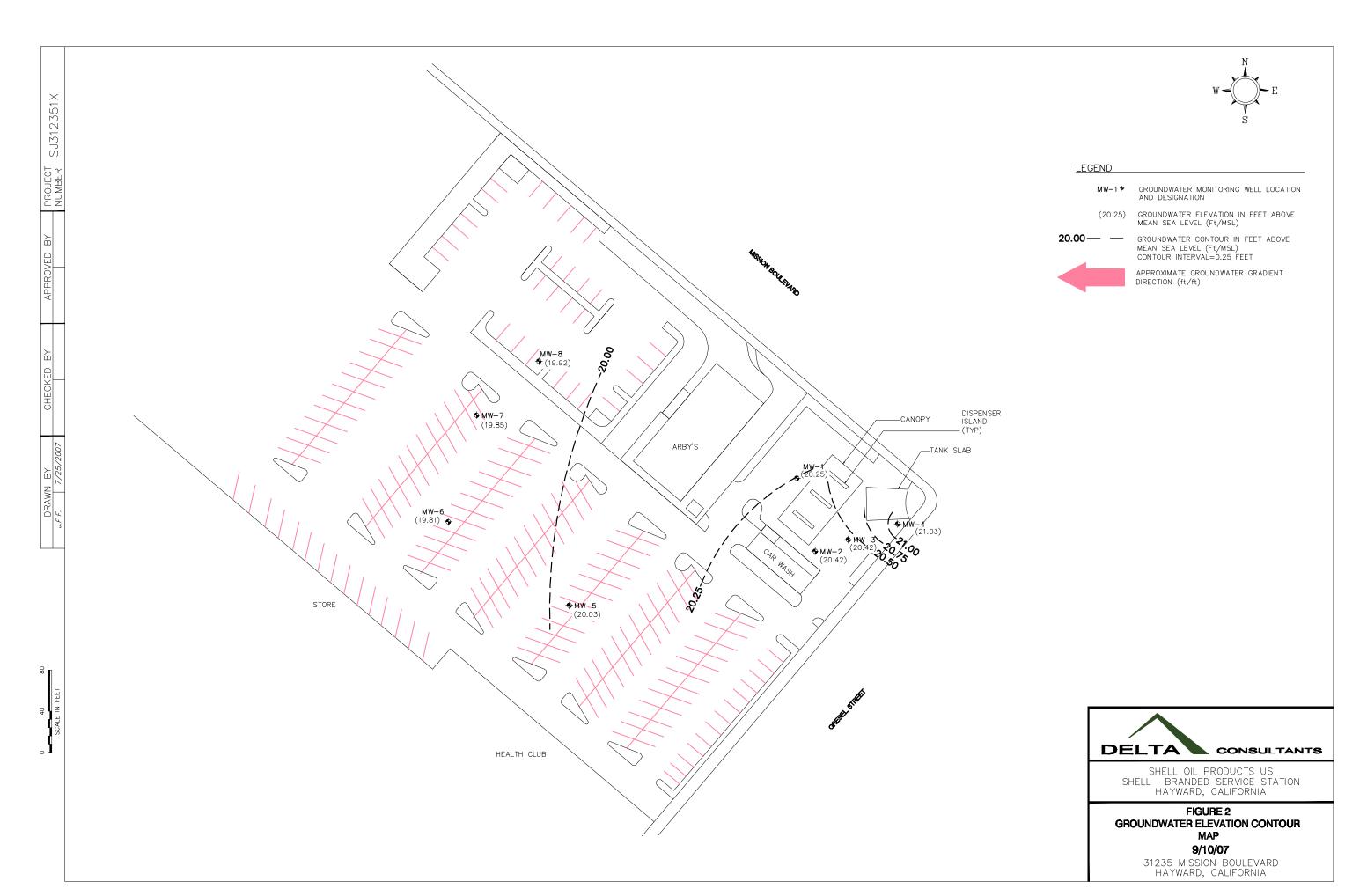

- a = Hydrocarbon reported does not match the laboratory standard.
- b = Hydrocarbon reported is in the early Diesel range and does not match the laboratory Diesel standard.
- c = TOC altered -0.20 ft. due to wellhead maintenace on February 16, 2005.
- d = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- f = Possible septum contamination in the sample. Sample was reanalyzed past hold time with surrogate recoveries within control limits and results of <50ppb.
- g = Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- h = Analyzed with silica gel clean-up.
- i = Ambers were lost in transit to lab no Diesel analysis was performed.
- j = Secondary ion abundances were outside method requirements. Identification based on analytical judgement.
- k = Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- I = Laboratory Control Sample recovery was above the method control limits. Analyte not detected, data not impacted.
- m = The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- n = Reporting limit raised due to insufficient sample volume.
- o = Analyzed by EPA Method 8015B (M).
- p = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- q = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

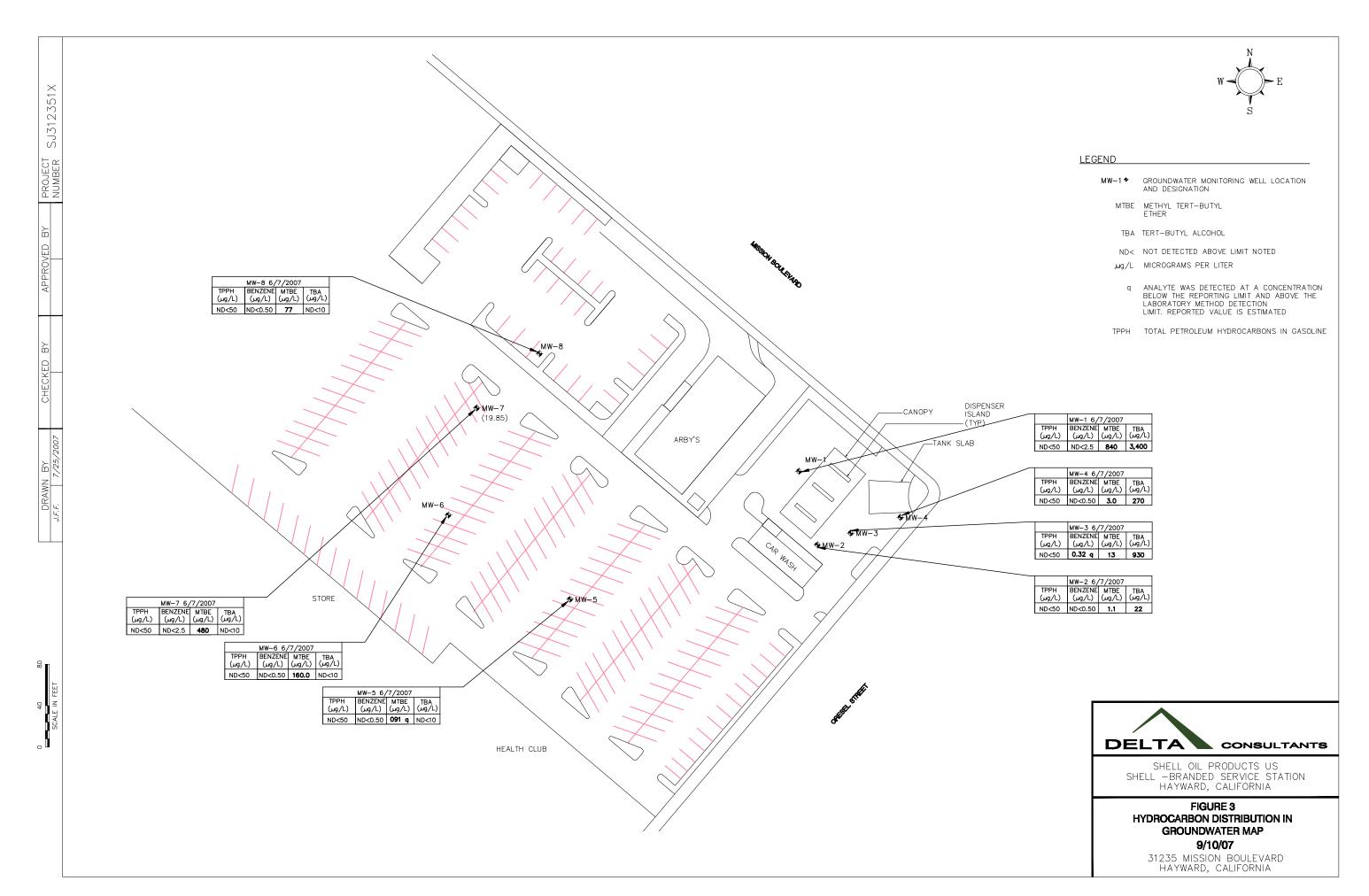

Ethanol analyzed by EPA 8260B.

Site surveyed December 11, 2002 by Mid Coast Engineers.

Wells MW-5, MW-6, MW-7, and MW-8 surveyed on November 29, 2004. Survey data provided by Delta Environmental.

FIGURES


SHELL-BRANDED SERVICE STATION 31235 Mission Blvd. Hayward, California


PROJECT NO. DRAWN BY VF 10/24/03

FILE NO. PREPARED BY VF

REVISION NO. REVIEWED BY

APPENDIX A

FIELD DATA SHEETS

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address	31	235	Ν	[155	510'7	Bi	vd. H	lauwar d	Date 9 10 0 7
Site Address Job Number	07	હુલા <u>છ</u> -(?c\			Tec	hnician	ρ, C	raish Page 1 of 1
p		T		Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists	Notes
MM-1	X	X							
MW-2	×	K						1:2	bolt hole slightly broken
mw - 3	X	X							, , , , , , , , , , , , , , , , , , ,
MW-4	K	K							
MW-S	X	Χ							
WW - 6	×	X	ļ 						
MW-7 MW-8	X	Χ							
MM-B	×	X						•	
da relativador en els relativador en el								,	
								i de la companya de l	
	<u></u>						10.055::=		
*Well box must mee "MONITORING WEL Notes:									ESIGN (12"or less) 2) WELL IS MARKED WITH THE WORDS
DI AINE TECH SE				CAN 16		CACCIAN		I OS ANCEL E	S SAN DIEGO SEATTLE www.blainetech.com

WELL GAUGING DATA

Project # <u>070910 - pc 1</u>	_ Date <u> </u>	Client Shell
Site 31 235 MISSION B	IVA. Magrand.	

					Thickness				Survey	
		Well Size	Sheen /	Depth to Immiscible	of Immiscible	Immiscibles Removed	Depth to water	Donth to wall	Point: TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)			(ft.)	bottom (ft.)	10B 01	Notes
INW-1	0754	2					21.94	32.71	TOC	
Mw-2	0750	2					21.76	32.44		نبو
MW-3	0759	2					21.82	32.51		
MW-4	7-45	2					21.38	32.67		
Mw-5	08/2	2					20.63	29.65		
MW-C	0816	2					19.42	29.25		·
Mw-7	0820	2					19.65	29.75		
mw-8	0824	2					20.00	29.50	V	

		r								

BTS#: o	70900	- pe	·/ .	Site: 6	77456	/53 2			
Sampler: PC, MP					9/M	1007			
Well I.D.: mw-1					Well Diameter: 2 3 4 6 8				
					o Water	(DTW): 2	1.94		
Depth to Fre			Thickne	ess of Fr	ree Product (fee	t):			
Referenced t	to:	PXICT	Grade	D.O. M	eter (if i	req'd):	YSI HACH		
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+DTW]: 2	4.09		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Other:									
1.7 1 Case Volume	dals.) XSpeci	4 fied Volum	$_{\text{les}} = \frac{6 \cdot 8}{\text{Calculated Vo}}$	_ Gals.	Vell Diamete 1" 2" 3"	r Multiplier Well C 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163		
Time	Temp (°F)	рН	Cond. (mS or (LS)	Turb (NT	-	Gals. Removed	Observations		
1247	70.5	6.25	497.1	87	(1.7			
1248	69.7	6.20	532.2	7/00	0	3.4	Brown charly		
1251	69.6	6.22	546.5	7100	0	5.1	Brown cloudy Brown cloudy		
1253	69.7	6.44	547.2	7/00	0	6.8	Brown cloudy		
						·			
Did well de	water?	Yes	No	Gallons	s actuall	y evacuated:	6.8		
Sampling D	ate: 9/10	107	Sampling Tim	e: 125	5	Depth to Wate	r: 24.08		
Sample I.D.	: MW-	l		Labora	tory:	STL Other C	r: 24.08 ulscience		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:	Ox. i. E	Hanol	¥ ,		
EB I.D. (if	applicable): ^{- 3,5} -5	@ Time		اور	(if applicable):	S		
Analyzed for	or: TPH-G	втех	MTBE TPH-D	Other:			3		
D.O. (if req	(d): P	re-purge:		mg/L	F	Post-purge:	mg/		
OPD (if r	eaid). D	re-murce		mV	Ţ	Post-nurge:	mV		

				, , , , , , , , , , , , , , , , , , , ,				
BTS #: 070	Site: 97456532							
Sampler: PC	Date: 9 / 4/10/07							
Well I.D.:	Well Diameter: 2 3 4 6 8							
Total Well I	Depth (TD		{	Depth to Water (DTW): 21-76				
Depth to Fre	ee Product			Thickness of Free Product (feet):				
Referenced		ŒŶD	Grade	D.O. Meter (if req'd): YSI HACH				
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]: 2	3.90	
Purge Method: •	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme	nt Extrac Other	Waterra Peristaltic stion Pump	Well Diamete		I	✓ Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier.
1 Case Volume		4 fied Volum	= 6.8 nes Calculated Vo	_ Gals.	1" 2" 3"	0.04 0.16	Well Diameter 4" 6" Other	0.65 1.47 radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or 🍇)	Turb (NT	-	Gals. Remov	ed ed	Observations
958	66-8	6.71	452.9	7100	DD	1-7	brec	on, silty,
1002	67.0	6.13	448.2	>(00	9 <u>0</u>	3.4		
0001	66.9	6.16	448.1	7(25	٥ <u>٥</u>	5.1		
1010	67.0	6.21	449.4	>(00	00	6-8	4	
Did well de	water?	Yes	W)	Gallons actually evacuated: 6.8				
Sampling D	ate: 9/10	107	Sampling Tim	ie: 1015	. 15	Depth to W	ater: 22	2.32
Sample I.D.	: MW.Z			Laboratory: STL Other Calcience				
Analyzed fo	or: TPH-G	BTEX	мтве 🙌	Other:	OKYS A	Ethanol		
EB I.D. (if	applicable):	@ Time			(if applicabl	.e):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:				
D.O. (if req	'd): P	re-purge:		mg/L	. F	Post-purge:		mg/
O.R.P. (if re	eq'd): P	re-purge:		mV	F	Post-purge:		mV

BTS #: 070	910-PC1		·	Site:	97456532
Sampler: PC				Date: 0	97456532
Well I.D.:	•				neter: ② 3 4 6 8
Total Well	Depth (TD): 32.51		Depth to V	Vater (DTW): 21.82
Depth to Fr	ee Product			Thickness	of Free Product (feet):
Referenced		Pyc	Grade	D.O. Mete	er (if req'd): YSI HACH
DTW with	80% Rech	arge [(H	eight of Water	Column x	0.20) + DTW]: 23.96
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Well	Sampling Method: Disposable Bailer Extraction Port Dedicated Tubing Other: Diameter Multiplier Well Diameter Multiplier 0.04 4" 0.65
1.7 1 Case Volume	Gais.) 21	H fied Volum	$= \frac{6.8}{\text{Calculated Vo}}$	_ Gals. 2	0.04 4 0.03 0.16 6" 1.47 0.37 Other radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or AS)	Turbidit (NTUs)	·
1306	70.8	6-25	534.4	71000	1-7 - 19 rey 15
1310	70-6	617	533.4	71000	1 1
1315	70.0	6-23	532.4	२(२०००	5.1
1319	69.9	6.31	544.7	71000	6.8
Did well de	ewater?	Yes	6	Gallons ac	ctually evacuated: 6.8
Sampling I	Date: 9/10/	07	Sampling Tim	e: 1325	Depth to Water 23.74
Sample I.D				Laborator	y: STL Other Calscience
Analyzed f	or: (TPH-G	BTBX	MTBE (TPH-D	Other: OK	s, Ethanol
EB I.D. (if	applicable):	@ Time	_	I.D. (if applicable):
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Other:	
D.O. (if red	q'd): P	re-purge:		mg/L	Post-purge:
O.R.P. (if t	ea'd). B	re-nurge:		mV	Post-purge:

BTS #: 070	10901			Site: 9	7456	572			
Sampler: 🔨				Date:	9	4100	7		
Well I.D.:	Mw - 4			Well Dia	meter:	(2) 3	3 4	6 8	
Total Well I	Depth to Water (DTW): 21.38								
Depth to Fre				Thickness of Free Product (feet):					
Referenced		(PVC)	Grade	D.O. Me	ter (if 1	req'd):		YSI	НАСН
DTW with 8	30% Recha	arge [(H	eight of Water	Column 2	x 0.20)	+ DTV	V]: 23	-64	
Purge Method: K	Bailer Disposable Ba Positive Air D Electric Subm	Displaceme		Waterra Peristaltic tion Pump	ell Diameter		Other:	Dispo Extra Dedic	Bailer sable Bailer action Port ated Tubing
1 Case Volume	Gals.) X Speci	4 fied Volum	= 7.4 nes Calculated Vo	Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.6 1.4	55
Time	Temp (°F)	pН	Cond. (mS or μ \$)	Turbio (NTU		Gals. R	emoved	Obs	ervations
1118	70.0	6.54	343.7	601		ا ا	4	cloud.	
1123	69.1	6.13	356.0	>1000	2	3.	6	brown	silta
1128	68.7	6-23	365.4	7100	0	5.	4		
1132	68.2	6-22	364-3	>1001	2	7.	2		
·				J: 27-3	v @	1140			
Did well de	water?	Yes	(No	Gallons		y evacu	ated:	7.2	
Sampling D	Date: 9/10/e	7	Sampling Tim	ie: 17 <i>30</i>		Depth	to Wate:	r: 2 Z. 3	٥
Sample I.D				Laborate	ory:	STL	Other Cal	science	>
Analyzed for	or: TRH-G	BTEX	мтве СРН-В	Other: 0	Xyš, E	Sthano			************
EB I.D. (if	applicable):	@ Time	Duplica					
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Other:					
D.O. (if red	ı'd): P	re-purge:		mg/L	P	ost-purg	e:		mg/
ORP (if r	ealy). D	re-nurge	·	mV	P	ost-nuro	۰.		mV

BTS #: 07	0910-	pcl		Site: 97456532					
Sampler: 🛭			l P	Date: 9/40/07					
	mw -			Well Diameter: ② 3 4 6 8					
Total Well I			5	Depth to Water	: (DTW): کی د	> }			
Depth to Fro				Thickness of F	ree Product (fee	et):			
Referenced		P	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with 8	80% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: 22	2,43			
Purge Method: A	Disposable Bar Positive Air I Electric Subm	Displaceme	Other	Well Diamete	Other: Other: Well I	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47			
			Cond.	Turbidity					
Time	Temp (°F)	pН	(mS or (DS)	(NTUs)	Gals. Removed	Observations			
0830	69.5	5.59	921.2	0001	1.4	Brown, Cloudy			
0836	69.2	5.81	821.2	71000	2.8	Brown Silty Cloudy			
08 39	69.2	5.90	806.8	71000	4.2	a a ci			
0841	69.3	6.00	819.9	71000	5.6	(c le el			
Did well de	water?	Yes (No No	Gallons actual	ly evacuated:	5.6			
Sampling D	Date: 9/10	0/07	Sampling Tim	e: 0845	Depth to Wate	r: 220.70			
Sample I.D	.: MW-5			Laboratory:	STL Other Can	locience			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other: Oxys E	thanol				
EB I.D. (if	applicable):	@ Time	•	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:					
D.O. (if rec	ı'd): P	re-purge:		mg/L	Post-purge:	mg/1			
O.R.P. (if r	eq'd): P	re-purge:		mV	Post-purge:	mV			

and the second s								
BTS #: 07		Site: 9	7455	(5) 2 (2) (3) (4)				
Sampler:		Date:	9/	40/07				
Well I.D.:		Well Diameter: 2 3 4 6 8						
Total Well I	29.25	Depth to	Water	(DTW): 19	.42			
Depth to Fre			Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. Me	eter (if	req'd):	YSI HACH	
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]: 7	21.38	
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Other Other: Waterra Peristaltic Positive Air Displacement Extraction Pump Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius² * 0.163								
			Cond.	Turbi	dity			
Time	Temp (°F)	pН	(mS or 🕼)	(NT		Gals. Removed	Observations	
6930	70.3	6.13	763.5	7/00	00	1.6	Sitty, Brown	
0932	70.9	6.15	762.9	7100	5	3.2	((16	
6933	70.7	6.20	756.6	7/00	<u>ن</u>	4.8	(((
0936	70.4	6.19	763.6	7100	0	6.4	(' (,	
							0	
Did well de	water?	Yes	®	Gallons	actuall	y evacuated:	19.47 6.4	
Sampling D	ate: 9/1	0/07	Sampling Tim	e: 094	7 D	Depth to Water	r: 19.41	
Sample I.D.	: Mw	-6		Laborat	ory:	STL Other C	alscience	
Analyzed fo	or: TPH-G	BTEX	мтве (ТРН-)	Other: C	1x4'5, E	thanol		
EB I.D. (if a	applicable):	@ Time		J	(if applicable):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:				
D.O. (if req	'd): P	re-purge:		mg/L	P	ost-purge:	^{mg} /L	
O.R.P. (if re	ea'd): P	re-purge:		mV	P	ost-purge:	mV	

BTS#: りつ	0910-1	159		Site: 97456572				
Sampler: §	PCIMP	***************************************		Date: 9 /4 0/07				
Well I.D.:	Mw-	7		Well Diameter: ② 3 4 6 8				
Total Well I			9.65					
Depth to Fre				Thickness of Free Product (feet):				
Referenced 1	to:	(PYC	Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with 8	30% Recha		eight of Water	Column x 0.20) + DTW]: 2	1.67		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Other Waterra Peristaltic Extraction Pump Other: Well Diameter Multiplier Well Diameter Multiplier. Well Diameter Multiplier Well Diameter Multiplier. 1" 0.04 4" 0.65								
1 Case Volume	Speci	fied Volum	es Calculated Vo		<u> </u>			
Time	Temp (°F)	pН	(mS or (IS)	Turbidity (NTUs)	Gals. Removed	Observations		
1642	70.8	6.44	604.5	7 (000	1.6	Silty Brown		
1044	70.7	6.39	616.2	7 1000	3.2	Silty, Brown Silty, Brown Silty, Brown		
1047	70.9	6.28	622.0	7/000	4.8	51/4, Brown		
1050	71.0	6.38	617.8	7 1000	6.4			
		-						
Did well de	water?	Yes	No	Gallons actual	ly evacuated:	6.4		
Sampling D	ate: 09 (10	107	Sampling Tim	e: 1100	Depth to Wate	r: 19.78		
Sample I.D.	: MW	7		Laboratory:	STL Other <u>C</u>	al science		
Analyzed fo	or: FRH-G	BLEX	мтве трн-D	Other: Oxy's, E	thanol			
EB I.D. (if a	applicable):	@ Time	,	(if applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:				
D.O. (if req	'd): P	re-purge:		mg/L	Post-purge:	mg/L		
O.R.P. (if re	eq'd): P	re-purge:		mV	Post-purge:	mV		

BTS#: oF	60910.PCL			Site: 97456532					
Sampler: Po				Date: 9/4/07					
Well I.D.:	-	3			: ② 3 4	6 8			
Total Well	Depth (TD	 1):29.5	€ S	Depth to Water (DTW): 20.00					
Depth to Fr	ee Product	:		Thickness of F	ree Product (fee	et):			
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 2\	.9 <i>ن</i>			
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Waterra Peristaltic Positive Air Displacement Electric Submersible Other Waterra Peristaltic Peristaltic Extraction Pump Extraction Pump Other: Well Diameter Multiplier Well Diameter Multiplier Waterra Sampling Method: Disposable Bailer Other: Well Diameter Multiplier Well Diameter Multiplier									
1 Case Volume	Gals.) X Speci	Ц fied Volum	= 6 nes Calculated Vo	1" 2"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations			
902	669	6-40	663.7	>1000	1.5	dondy, sity, brown			
9.06	66.9	6.05	662.5	7(000)	3				
910	66.8	6.09	663.4	7(000	4.5				
વાપ	606.8	6.10	662.2	71000	6	1 1 1			
Did well de	water?	Yes	Ø	Gallons actuall	y evacuated: 6				
Sampling D	ate: 9/10	07	Sampling Time	e: 920	Depth to Wate	r: 20.09			
Sample I.D.	: MU-8			Laboratory:	STL Othe Cal				
Analyzed fo	or: TPH-G	BTEX	мтве грн-Б	Other: Oxyi, E	than not				
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:					
D.O. (if req	d): Pr	e-purge:		mg/ _L P	ost-purge:	mg/L			
OPP (if re	a'd). p.			mV D	lost munos	ş mV			

APPENDIX B

FIELD PROCEDURES

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

September 21, 2007

Carol Campagna HSE – Environmental Services Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Third Quarter 2007 Groundwater Monitoring at Shell-branded Service Station 31235 Mission Boulevard Hayward, CA

Monitoring performed on September 10, 2007

Groundwater Monitoring Report **070910-PC-1**

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty-hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/ks

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

cc: Debbie Bryan
Delta Environmental
175 Bernal Road, Suite 200
San Jose, CA 95119

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT SHELL SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Shell comply with Shell's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Shell site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. MMC). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed a minimum of 2 hours to recharge prior to sampling. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Shell approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using a stainless steel. Teflon or disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container; material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Field Technician uses their discretion in choosing the well at which the Duplicate is collected, typically one suspected of containing measurable contaminants. The Duplicate sample is labeled "DUP" and the time of collection is omitted from the COC, thus rendering the sample blind.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 54, 58 or 95) or HACH field test kits.

The YSI meters are equipped with a stirring device that enables them to collect accurate in-situ readings. The probe/stirring devices are modified to allow downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe and stirrer is lowered into the water column. The reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Coming or Myron-L meters (e.g. Coming ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

September 21, 2007

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject: Calscience Work Order No.: 07-09-0795

Client Reference: 31235 Mission Blvd., Hayward, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/13/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories. Inc.

Danilletonic-

Danielle Gonsman

Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

09/13/07 07-09-0795 **EPA 3510C** EPA 8015B (M)

Project: 31235 Mission Blvd., Hayward, CA

Page 1 of 3

Comment(s): -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 51 50 1	Client Sample Numb	er		•		Matrix	Instrument			QC Batch ID
Result RL DE Qual Units	MW-1			07-09-0795-1	09/10/07	Aqueous	GC 23	09/17/07	09/19/07	070918B11
Surrogates: REC (%) Control Limits Qual	Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analy	sis.				
Number Surrogates: REC (%) Control Limits Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
MW-2	TPH as Diesel		51	50	1		ug/L			
MW-2 -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DE Qual Units Unit	Surrogates:		REC (%)	Control Limits		Qual				
Comment(s): -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 51 50 1 ug/L Surrogates: REC (%) Control Limits Qual Decachlorobiphenyl 71 68-140 MW-3 07-09-0795-3 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 420 50 1 ug/L Surrogates: REC (%) Control Limits Qual MW-4 07-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result DF Qual Units Parameter Result RL DF Qual Units TPH as Diesel 420 50 1 ug/L Surrogates: REC (%) Control Limits Qual MW-4 07-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: REC (%) Control Limits Qual	Decachlorobiphenyl		70	68-140						
Parameter Result RL DE Qual Units TPH as Diesel 51 50 1 0 ug/L Surrogates: REC (%) Control Limits Qual MW-3 07-09-0795-3 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DE Qual Units TPH as Diesel 420 50 1 ug/L Surrogates: REC (%) Control Limits Qual MW-4 07-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DE Qual Units TPH as Diesel 420 50 1 ug/L Surrogates: REC (%) Control Limits Qual MW-4 07-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standardThe sample extract was subjected to Sicilica Gel treatment prior to analysis. Parameter Result RL DE Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: REC (%) Control Limits Qual	MW-2			07-09-0795-2	09/10/07	Aqueous	GC 23	09/17/07	09/19/07	070918B11
TPH as Diesel 51 50 1 ug/L Surrogates: REC (%) Control Limits Qual MW-3		-The sample extract was	•							
Surrogates: REC (%) Control Limits Decachlorobiphenyl 71 68-140 MW-3 O7-09-0795-3 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DE Qual Units TPH as Diesel A20 50 1 Qual MW-4 07-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Qual WW-4 07-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter REC (%) Control Limits Qual O7-09-0795-4 O9/10/07 Aqueous GC 23 O9/17/07 O9/19/07 O9/19/07 O7/0918B11 DE Qual Units FREC (%) Control Limits Qual Online REC (%) Control Limits Qual Online REC (%) Control Limits Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
MW-3	TPH as Diesel		51	50	1		ug/L			
MW-3 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units Decachlorobiphenyl 74 68-140 MW-4 O7-09-0795-4 O9/10/07 Aqueous GC 23 O9/17/07 O9/19/07 O70918B11 Qual Units Qual MW-4 O7-09-0795-4 O9/10/07 Aqueous GC 23 O9/17/07 O9/19/07 O70918B11 Aqueous GC 23 O9/17/07 O9/19/07 O70918B11 O709-0795-4 O709	Surrogates:		REC (%)	Control Limits		Qual				
Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard. -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 420 50 1 ug/L Surrogates: REC (%) Control Limits Qual Decachlorobiphenyl 74 68-140 MW-4 07-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 07/0918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: REC (%) Control Limits Qual	Decachlorobiphenyl		71	68-140						
of the unknown hydrocarbon(s) in the sample was based upon the specified standard. -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 420 50 1 ug/L Surrogates: REC (%) Control Limits Qual Decachlorobiphenyl 74 68-140 MW-4 O7-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: Qual	MW-3			07.00.0705.2	00/40/07	A	CC 22	00/47/07	00/40/07	
Parameter Result RL DF Qual Units TPH as Diesel 420 50 1 ug/L Surrogates: REC (%) Control Limits Decachlorobiphenyl 74 68-140 MW-4 O7-09-0795-4 09/10/07 Aqueous GC 23 09/17/07 09/19/07 070918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DE Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: REC (%) Control Limits Qual				07-09-0793-3	09/10/07	Aqueous	GC 23	09/17/07	09/19/07	070918B11
Surrogates: REC (%) Control Limits Qual Pecachlorobiphenyl 74 68-140 MW-4		of the unknown hydrocal	rbon(s) in the	n for TPH does not m	atch the chro pon the spec	matographic ified standard	pattern of the			
Decachlorobiphenyl 74 68-140 MW-4	Comment(s):	of the unknown hydrocal	rbon(s) in the s subjected to	n for TPH does not me sample was based u o Silica Gel treatment	atch the chro pon the spec prior to analy	matographic ified standard sis.	pattern of the			
MW-4 O7-09-0795-4 O9/10/07 Aqueous GC 23 O9/17/07 O9/19/07 O70918B11 Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: Qual	Comment(s): Parameter	of the unknown hydrocal	rbon(s) in the s subjected to <u>Result</u>	n for TPH does not me sample was based up Silica Gel treatment RL	atch the chron pon the spec prior to analys <u>DF</u>	matographic ified standard sis.	pattern of the d. <u>Units</u>			
Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standardThe sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: Qual	Comment(s):	of the unknown hydrocal	rbon(s) in the s subjected to <u>Result</u> 420	n for TPH does not me sample was based up Silica Gel treatment RL 50	atch the chron pon the spec prior to analys <u>DF</u>	matographic ified standard sis. <u>Qual</u>	pattern of the d. <u>Units</u>			
of the unknown hydrocarbon(s) in the sample was based upon the specified standard. -The sample extract was subjected to Silica Gel treatment prior to analysis. Parameter Result RL DF Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: Qual	Comment(s): Parameter TPH as Diesel	of the unknown hydrocal	rbon(s) in the s subjected to Result 420 REC (%)	n for TPH does not me sample was based up Silica Gel treatment RL 50 Control Limits	atch the chron pon the spec prior to analys <u>DF</u>	matographic ified standard sis. <u>Qual</u>	pattern of the d. <u>Units</u>			
Parameter Result RL DF Qual Units TPH as Diesel 180 50 1 ug/L Surrogates: REC (%) Control Limits Qual	Comment(s): Parameter TPH as Diesel Surrogates: Decachlorobiphenyl	of the unknown hydrocal	rbon(s) in the s subjected to Result 420 REC (%)	n for TPH does not me sample was based up Silica Gel treatment RL 50 Control Limits 68-140	atch the chro pon the spec prior to analy: <u>DF</u> 1	matographic ified standard sis. Qual	pattern of the d. <u>Units</u> ug/L	specified st	andard. Qu	uantitation
Surrogates: REC (%) Control Limits Qual	Comment(s): Parameter TPH as Diesel Surrogates: Decachlorobiphenyl	-The sample chromatogo of the unknown hydrocal	rbon(s) in the subjected to Result 420 REC (%) 74 raphic pattern rbon(s) in the	n for TPH does not me sample was based up Silica Gel treatment RL 50 Control Limits 68-140 07-09-0795-4 In for TPH does not me sample was based up sample was based up sample was based up sample was based up to sample was based	op/10/07 atch the chropon the spector to analyst DF 1 09/10/07 atch the chropon the spector the spector the spector the spector pon the spec	matographic ified standard sis. Qual Qual Aqueous matographic	pattern of the d. <u>Units</u> ug/L GC 23 pattern of the	specified st	andard. Qu	o70918B11
	Comment(s): Parameter TPH as Diesel Surrogates: Decachlorobiphenyl MW-4 Comment(s):	-The sample chromatogo of the unknown hydrocal	rbon(s) in the subjected to Result 420 REC (%) 74 raphic pattern rbon(s) in the subjected to	n for TPH does not me sample was based up Silica Gel treatment RL 50 Control Limits 68-140 07-09-0795-4 In for TPH does not me sample was based up Silica Gel treatment	on the chronomer to analyst DF 1 09/10/07 atch the chronomer to analyst DF	Aqueous matographic ified standard sis. Qual Aqueous matographic ified standard sis.	pattern of the d. Units ug/L GC 23 pattern of the d.	specified st	andard. Qu	o70918B11
Decachlorobiphenyl 74 68-140	Comment(s): Parameter TPH as Diesel Surrogates: Decachlorobiphenyl MW-4 Comment(s): Parameter	-The sample chromatogo of the unknown hydrocal	rbon(s) in the subjected to Result 420 REC (%) 74 raphic pattern rbon(s) in the subjected to Result	n for TPH does not me sample was based up Silica Gel treatment RL 50 Control Limits 68-140 07-09-0795-4 In for TPH does not me sample was based up Silica Gel treatment RL	og/10/07 atch the chro pon the spec prior to analys DF 1 09/10/07 atch the chro pon the spec prior to analys	Aqueous matographic ified standard sis. Qual Aqueous matographic ified standard sis.	gc 23 pattern of the	specified st	andard. Qu	o70918B11
	Comment(s): Parameter TPH as Diesel Surrogates: Decachlorobiphenyl MW-4 Comment(s): Parameter TPH as Diesel	-The sample chromatogo of the unknown hydrocal	rbon(s) in the subjected to Result 420 REC (%) 74 raphic pattern rbon(s) in the subjected to Result	n for TPH does not me sample was based up Silica Gel treatment RL 50 Control Limits 68-140 07-09-0795-4 In for TPH does not me sample was based up Silica Gel treatment RL 50	og/10/07 atch the chro pon the spec prior to analys DF 1 09/10/07 atch the chro pon the spec prior to analys	matographic ified standard sis. Qual Qual Aqueous matographic ified standard sis. Qual	gc 23 pattern of the	specified st	andard. Qu	o70918B11

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

09/13/07 07-09-0795 **EPA 3510C** EPA 8015B (M)

Project: 31235 Mission Blvd Hayward CA

Page 2 of 3

Project: 3123	5 Mission Blvd., H	ayward,	CA					P	Page 2 of 3
Client Sample Numb	er		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
MW-5			07-09-0795-5	09/10/07	Aqueous	GC 23	09/17/07	09/19/07	070918B11
Comment(s):	-The sample extract was	s subjected to	o Silica Gel treatment	prior to analy	sis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		73	68-140						
MW-6			07-09-0795-6	09/10/07	Aqueous	GC 23	09/17/07	09/19/07	070918B11
Comment(s):	-The sample extract was								
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		74	68-140						
MW-7			07-09-0795-7	09/10/07	Aqueous	GC 23	09/17/07	09/19/07	070918B11
Comment(s):	-The sample extract was	s subjected to	o Silica Gel treatment	prior to analy	sis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		72	68-140						
MW-8			07-09-0795-8	09/10/07	Aqueous	GC 23	09/17/07	09/19/07	070918B11
Comment(s):	-The sample extract was	s subjected to		prior to analy	sis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		76	68-140						

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 3510C EPA 8015B (M)

Project: 31235 Mission Blvd., Hayward, CA

Page 3 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-330-362	N/A	Aqueous	GC 23	09/17/07	09/19/07	070918B11
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	88	68-140						

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 5030B EPA 8015B (M)

Project: 31235 Mission Blvd., Hayward, CA

Page 1 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
MW-1		07-09-0795-1	09/10/07	Aqueous	GC 29	09/13/07	09/13/07	070913B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	67	38-134						
MW-2		07-09-0795-2	09/10/07	Aqueous	GC 29	09/13/07	09/13/07	070913B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	72	38-134						
MW-3		07-09-0795-3	09/10/07	Aqueous	GC 30	09/14/07	09/14/07	070914B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	2300	1200	25		ug/L			
TPH as Gasoline <u>Surrogates:</u>	2300 REC (%)	1200 Control Limits	25	Qual				
			25					
Surrogates:	REC (%)	Control Limits	25 09/10/07			09/14/07	09/14/07	070914B02
Surrogates: 1,4-Bromofluorobenzene	REC (%)	Control Limits 38-134		<u>Qual</u>	ug/L	09/14/07	09/14/07	070914B02
Surrogates: 1,4-Bromofluorobenzene MW-4	REC (%) 93	Control Limits 38-134 07-09-0795-4	09/10/07	Qual Aqueous	ug/L	09/14/07	09/14/07	070914B02
Surrogates: 1,4-Bromofluorobenzene MW-4 Parameter	REC (%) 93 Result	Control Limits 38-134 07-09-0795-4 RL	09/10/07 DF	Qual Aqueous	GC 30	09/14/07	09/14/07	070914B02

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 5030B EPA 8015B (M)

Project: 31235 Mission Blvd., Hayward, CA

Page 2 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
MW-5		07-09-0795-5	09/10/07	Aqueous	GC 29	09/13/07	09/13/07	070913B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	49	38-134						
MW-6		07-09-0795-6	09/10/07	Aqueous	GC 29	09/13/07	09/13/07	070913B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	59	38-134						
MW-7		07-09-0795-7	09/10/07	Aqueous	GC 29	09/13/07	09/13/07	070913B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	71	38-134						
MW-8		07-09-0795-8	09/10/07	Aqueous	GC 29	09/13/07	09/13/07	070913B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	74	38-134						

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 5030B EPA 8015B (M)

Project: 31235 Mission Blvd., Hayward, CA

Page 3 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-436-903	N/A	Aqueous	GC 29	09/13/07	09/13/07	070913B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	71	38-134						
Method Blank		099-12-436-914	N/A	Aqueous	GC 30	09/14/07	09/14/07	070914B02
Parameter	Result	099-12-436-914 <u>RL</u>	N/A DF	Aqueous Qual	GC 30 Units	09/14/07	09/14/07	070914B02
	Result ND			•		09/14/07	09/14/07	070914B02
<u>Parameter</u>		<u>RL</u>	<u>DF</u>	•	<u>Units</u>	09/14/07	09/14/07	070914B02
Parameter TPH as Gasoline	ND	<u>RL</u> 50	<u>DF</u>	Qual	<u>Units</u>	09/14/07	09/14/07	070914B02

Blaine Tech Services, Inc. Date Received: 09/13/07 1680 Rogers Avenue Work Order No: 07-09-0795 San Jose, CA 95112-1105 Preparation: **EPA 5030B** Method: **EPA 8260B** Units: ug/L

Drainet: 21225 Mission	Dlvd Lla	word	$C\Lambda$			Offics.					D	ug/L
Project: 31235 Mission	і Біуц., па	ywaiu,									Ŭ	e 1 of 4
Client Sample Number			Lab Sa Num	•		Date Collected	Matrix	Instrument	Date Prepared	Da d Anal		QC Batch ID
MW-1				-0795-1		09/10/07	Aqueous	GC/MS BB	-		-	070918L01
						45						
` '	evaluated to th						L, if found, are	e qualified wi	•	DI	MD	DE Oud
<u>Parameter</u>	Result	<u>RL</u>	MDL		Qual	<u>Parameter</u>			Result	<u>RL</u>	MD	
Benzene	ND	2.5	0.70	5		•	Alcohol (TBA	,	3400	50	27	5
Ethylbenzene	ND	5.0	1.1	5			l Ether (DIPE		ND	10	1.7	5
Toluene	ND	5.0	1.4	5		•	yl Ether (ETB	,	ND	10	0.92	
p/m-Xylene	ND	5.0	2.7	5		•	Methyl Ether	(TAME)	ND	10	5.6	5
o-Xylene	ND	5.0	0.84	5		Ethanol			ND	500	430	5
Methyl-t-Butyl Ether (MTBE)	840	10	2.6	10								
Surrogates:	<u>REC (%)</u>	Control I	<u>Limits</u>		<u>Qual</u>	<u>Surrogates</u>	<u>.</u>		<u>REC (%)</u>	Control	<u>Limits</u>	<u>Qua</u>
Dibromofluoromethane	104	74-140				1,2-Dichlo	roethane-d4		105	74-146		
Toluene-d8	100	88-112				1,4-Bromo	fluorobenzen	е	98	74-110		
MW-2			07-09	-0795-2	!	09/10/07	Aqueous	GC/MS BB	09/18/0	7 09/1	8/07	070918L01
Comment(s): -Results were	evaluated to th	e MDL. co	ncentrati	ons >=	to the N	MDL but < R	L. if found. ar	e qualified wi	th a "J" flag.			
Parameter	Result	<u>RL</u>	MDL		Qual		,,		Result	RL	MD	L DF Qua
Benzene	ND	0.50	0.14	1			Alcohol (TBA)	22	10	5.4	1
Ethylbenzene	ND	1.0	0.23	1		,	l Ether (DIPE	,	ND	2.0	0.33	1
Toluene	ND	1.0	0.27	1			vl Ether (ETE	,	ND	2.0	0.18	
p/m-Xylene	ND	1.0	0.54	1		,	Methyl Ether	,	ND	2.0	1.1	1
o-Xylene	ND	1.0	0.17	1		Ethanol	Wicaryi Euroi	(17 tiviL)	ND	100	86	1
Methyl-t-Butyl Ether (MTBE)	1.1	1.0	0.17	1		Linario			ND	100	00	·
Surrogates:	REC (%)	Control I	-	•	Qual	Surrogates	:		REC (%)	Control	Limits	Qua
Dibromofluoromethane	102	74-140				•	roethane-d4		104	74-146		
Toluene-d8	98	88-112				,	fluorobenzen	e	98	74-110		
MW-3			07-09	-0795-3	,	09/10/07	Aqueous	GC/MS BB	09/18/0	7 09/1	8/07	070918L01
Commont(s). Desults		- MDI			4 - 4 N	ADI but D	. :6 6					
* *	evaluated to the						L, ii iound, an	e quaimed wi		<u>RL</u>	MD	I DE Ous
Parameter	Result	<u>RL</u>	MDL 0.44		<u>Qual</u>	<u>Parameter</u>		`	Result			
Benzene	0.32	0.50	0.14	1	J	•	Alcohol (TBA	•	950	10	5.4	1
Ethylbenzene	12	1.0	0.23	1			I Ether (DIPE	,	ND	2.0	0.33	
Toluene	ND	1.0	0.27	1		•	yl Ether (ETE	•	ND	2.0	0.18	
p/m-Xylene	1.4	1.0	0.54	1		•	Methyl Ether	(TAME)	ND	2.0	1.1	1
o-Xylene	ND	1.0	0.17	1		Ethanol			ND	100	86	1
Methyl-t-Butyl Ether (MTBE)	13	1.0	0.26	1								
Surrogates:	<u>REC (%)</u>	Control I	<u>Limits</u>		Qual	<u>Surrogates</u>	<u>.</u>		<u>REC (%)</u>	Control	<u>Limits</u>	<u>Qua</u>
Dibromofluoromethane	102	74-140				1,2-Dichlo	roethane-d4		105	74-146		
Toluene-d8	105	88-112				1,4-Bromo	fluorobenzen	е	100	74-110		

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers

09/13/07

07-09-0795

EPA 5030B

Analytical Report

Blaine Tech Services, Inc. Date Received: 1680 Rogers Avenue Work Order No: San Jose, CA 95112-1105 Preparation: Method:

EPA 8260B Units: ug/L

Project: 31235 Mission	Blvd., Ha	yward,	CA		00.				F	age	2 of 4
	•	- '	Lab S	•	Date	Matrix	Instrument	Date	Date	9 ^	C Batch ID
Client Sample Number			Nun		Collected			Перагец		Leu	
MW-4			07-09	-0795-4	09/10/07	Aqueous	GC/MS BB	09/18/07	09/18/	07 07	'0918L01
Comment(s): -Results were e	valuated to th	e MDL, co	ncentrat	ions >= to the l	MDL but < R	L, if found, are	e qualified wit	th a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qual	<u>Parameter</u>			Result	RL	<u>MDL</u>	DF Qual
Benzene	ND	0.50	0.14	1	Tert-Butyl	Alcohol (TBA	.)	270	10	5.4	1
Ethylbenzene	ND	1.0	0.23	1	Diisopropy	l Ether (DIPE	<u>(</u>	ND	2.0	0.33	1
Toluene	ND	1.0	0.27	1	Ethyl-t-But	tyl Ether (ETE	BE)	ND	2.0	0.18	1
p/m-Xylene	ND	1.0	0.54	1	Tert-Amyl-	Methyl Ether	(TAME)	ND	2.0	1.1	1
o-Xylene	ND	1.0	0.17	1	Ethanol	•		ND	100	86	1
Methyl-t-Butyl Ether (MTBE)	3.0	1.0	0.26	1							
Surrogates:	REC (%)	Control L	<u>imits</u>	<u>Qual</u>	Surrogates	<u>:</u>		REC (%)	Control L	<u>imits</u>	<u>Qual</u>
Dibromofluoromethane	102	74-140			1,2-Dichlo	roethane-d4		104	74-146		
Toluene-d8	100	88-112			1,4-Bromo	fluorobenzen	е	99	74-110		
MW-5			07-09	-0795-5	09/10/07	Aqueous	GC/MS BB	09/18/07	09/18/	07 07	'0918L01
Comment(s): -Results were e	valuated to th	o MDL oo	noontrot	iona > — to tha l	MDI but a Bi	l if found or	o gualifiad wi	th o " I" floo			
Parameter	Result	RL	MDL	DF Qual		L, ii iouriu, aii	e quaimeu wii	Result	<u>RL</u>	MDL	DF Qual
Benzene	ND	0.50	0.14	1		Alachal (TDA	`	ND	10	5.4	<u> </u>
Ethylbenzene	ND ND	1.0	0.14	1	•	Alcohol (TBA I Ether (DIPE	,	ND ND	2.0	0.33	1
Toluene	ND	1.0	0.23	1		•	,	ND ND	2.0	0.33	1
p/m-Xylene	ND ND	1.0	0.27	1	•	tyl Ether (ETE -Methyl Ether	,	ND ND	2.0	1.1	1
o-Xylene	ND ND	1.0	0.54	1	Ethanol	ivietriyi Etriei	(TAIVIE)	ND ND	100	86	1
,	0.91	1.0	0.17	1 1 J	Elilanoi			ND	100	00	'
Methyl-t-Butyl Ether (MTBE) Surrogates:	0.91 REC (%)	Control I	-	Qual	Surrogates			REC (%)	Control L	imite	Qual
		74-140		<u>Quai</u>	•				74-146	IIIIII	<u>Quai</u>
Dibromofluoromethane Toluene-d8	103 98	88-112			,	roethane-d4 fluorobenzen	•	105 98	74-146		
	90	00-112			<u> </u>						
MW-6			07-09	-0795-6	09/10/07	Aqueous	GC/MS BB	09/18/07	09/18/	07 07	'0918L01
Comment(s): -Results were e	valuated to th	e MDL, co	ncentrat	ions >= to the l	MDL but < R	L, if found, are	e qualified wit	th a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>MDL</u>	DF Qual
Benzene	ND	0.50	0.14	1	Tert-Butyl	Alcohol (TBA	.)	ND	10	5.4	1
Ethylbenzene	ND	1.0	0.23	1		l Ether (DIPE	•	ND	2.0	0.33	1
Toluene	ND	1.0	0.27	1	Ethyl-t-But	tyl Ether (ETE	BE)	ND	2.0	0.18	1
p/m-Xylene	ND	1.0	0.54	1	Tert-Amyl-	Methyl Ether	(TAME)	ND	2.0	1.1	1
o-Xylene	ND	1.0	0.17	1	Ethanol	-	. ,	ND	100	86	1
Methyl-t-Butyl Ether (MTBE)	160	1.0	0.26	1							
Surrogates:	REC (%)	Control I	<u>imits</u>	<u>Qual</u>	Surrogates	<u>:</u>		REC (%)	Control L	<u>imits</u>	<u>Qual</u>
Dibromofluoromethane	104	74-140			1,2-Dichlo	roethane-d4		105	74-146		
Toluene-d8	100	88-112			*	fluorobenzen	е	97	74-110		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Blaine Tech Services, Inc.

1680 Rogers Avenue

Work Order No:

O7-09-0795

San Jose, CA 95112-1105

Preparation:

Method:

Units:

U9/13/07

07-09-0795

EPA 5030B

EPA 8260B

Units:

ug/L

Project: 31235 Mission	n Blvd Ha	vward.	CA		Offics.				P:	age 3 of 4
Client Sample Number		,,	Lab Sa Num	•	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	00 Patricipi
MW-7				-0795-7	09/10/07	Aqueous	GC/MS BB	-		7 070918L01
Comment(a): Deculte were	avaluated to th	o MDL oo	tt	one to the l	MDI but a D	l if found on	a avalifical vii	h o " I" floo		
Comment(s): -Results were Parameter	evaluated to the Result	RL	MDL	DF Qual	Parameter	L, II IOUIIU, ait	e qualified wi	Result	RL I	MDL DF Qua
Benzene	ND	2.5	0.70	<u>51 </u>		Alcohol (TBA	١	ND		7 5
Ethylbenzene	ND	5.0	1.1	5		I Ether (DIPE		ND		.7 5
Toluene	ND ND	5.0	1.4	5		tyl Ether (ETB		ND	-	.92 5
p/m-Xylene	ND	5.0	2.7	5	•	Methyl Ether	,	ND	-	5.6 5
o-Xylene	ND ND	5.0	0.84	5	Ethanol	ivietriyi Etriei	(TAIVIE)	ND ND		30 5
•		5.0 5.0	1.3	5	Ellianoi			ND	300 4	.30 3
Methyl-t-Butyl Ether (MTBE) Surrogates:	480 REC (%)	Control I		Qual	Surrogates			REC (%)	Control Lim	nits Qua
				Quai		-				<u> </u>
Dibromofluoromethane	104	74-140			,	roethane-d4		106	74-146	
Toluene-d8	99	88-112			1,4-Bromo	fluorobenzene	<u> </u>	99	74-110	
MW-8			07-09	-0795-8	09/10/07	Aqueous	GC/MS BB	09/18/07	09/18/0	7 070918L01
Comment(s): -Results were	evaluated to th	e MDL. co	ncentrati	ons >= to the I	MDL but < R	L. if found, are	e qualified wi	th a "J" flag.		
Parameter	Result	<u>RL</u>	MDL	DF Qual		,,		Result	RL I	MDL DF Qua
Benzene	ND	0.50	0.14	1	Tert-Butvl	Alcohol (TBA)	ND	10 5	.4 1
Ethylbenzene	ND	1.0	0.23	1	,	l Ether (DIPE	,	ND		.33 1
Toluene	ND	1.0	0.27	1		vl Ether (ETB	,	ND		.18 1
p/m-Xylene	ND	1.0	0.54	1	,	Methyl Ether	,	ND		.1 1
o-Xylene	ND	1.0	0.17	1	Ethanol		()	ND	-	6 1
Methyl-t-Butyl Ether (MTBE)	77	1.0	0.26	1						
Surrogates:	REC (%)	Control I		<u>Qual</u>	Surrogates	:		REC (%)	Control Lim	nits Qua
Dibromofluoromethane	105	74-140			•	roethane-d4		104	74-146	<u> </u>
Toluene-d8	98	88-112			,	fluorobenzene	9	98	74-110	
Method Blank			099-1	0-006-22,837	N/A	Aqueous	GC/MS BB	09/18/07	09/18/0	7 070918L01
0 (() 0	1 . 1 . 1	1451			451.1.4.5		1161 1 1			
• •	evaluated to the					L, it tound, are	e qualified wi	-	DI I	ADI DE O
<u>Parameter</u>	Result	RL 0.50	MDL	DF Qual				Result		MDL DF Qua
Benzene	ND	0.50	0.14	1		Alcohol (TBA	•	ND		5.4 1
Ethylbenzene	ND	1.0	0.23	1		I Ether (DIPE	,	ND		.33 1
Toluene	ND	1.0	0.27	1	•	tyl Ether (ETB	,	ND		.18 1
p/m-Xylene	ND	1.0	0.54	1	•	Methyl Ether	(TAME)	ND	-	.1 1
o-Xylene	ND	1.0	0.17	1	Ethanol			ND	100 8	6 1
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.26	1						
Surrogates:	REC (%)	Control I	<u>_imits</u>	<u>Qual</u>	<u>Surrogates</u>	<u>-</u>		<u>REC (%)</u>	Control Lin	<u>its Qua</u>
Dibromofluoromethane	104	74-140			1,2-Dichlo	roethane-d4		102	74-146	
Toluene-d8	98	88-112			1,4-Bromo	fluorobenzene	Э	96	74-110	

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

Units:

07-09-0795 EPA 5030B EPA 8260B

09/13/07

ug/L

Project: 31235 Mission Blvd., Hayward, CA

Page 4 of 4

,		<i>,</i>									
Client Sample Number			Lab Sa Numl	•	Date Collected	Matrix	Instrument	Date Prepared		ate _{yzed} Q0	C Batch ID
Method Blank			099-10	0-006-22,845	N/A	Aqueous	GC/MS BE	09/18/07	7 09/1	9/07 07	0918L02
Comment(s): -Results were	evaluated to th	e MDL, co	ncentratio	ons >= to the I	MDL but < RI	L, if found, ar	e qualified wi	th a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>MDL</u>	DF Qual
Benzene	ND	0.50	0.14	1	Tert-Butyl	Alcohol (TBA	.)	ND	10	5.4	1
Ethylbenzene	ND	1.0	0.23	1	Diisopropy	l Ether (DIPE	·)	ND	2.0	0.33	1
Toluene	ND	1.0	0.27	1	Ethyl-t-But	yl Ether (ETE	BE)	ND	2.0	0.18	1
p/m-Xylene	ND	1.0	0.54	1	Tert-Amyl-	Methyl Ether	(TAME)	ND	2.0	1.1	1
o-Xylene	ND	1.0	0.17	1	Ethanol			ND	100	86	1
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.26	1							
Surrogates:	REC (%)	Control I	<u>Limits</u>	<u>Qual</u>	Surrogates:	L		REC (%)	Control	<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	105	74-140			1,2-Dichlor	roethane-d4		107	74-146		
Toluene-d8	99	88-112			1,4-Bromo	fluorobenzen	е	97	74-110		

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 5030B EPA 8015B (M)

Project 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-09-0742-1	Aqueous	GC 29	09/13/07		09/13/07	070913S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	100	99	68-122	1	0-18	

MANA_

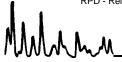
Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 5030B EPA 8015B (M)

Project 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-09-0789-1	Aqueous	GC 30	09/14/07		09/14/07	070914S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	87	96	68-122	10	0-18	

MM.

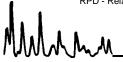
RPD - Relative Percent Difference , CL - Control Limit



Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 5030B EPA 8260B

Project 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
07-09-0792-2	Aqueous	GC/MS BB	09/18/07		09/18/07	070918S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	92	88	88-118	4	0-7	
Carbon Tetrachloride	97	95	67-145	2	0-11	
Chlorobenzene	90	88	88-118	3	0-7	
1,2-Dibromoethane	97	93	70-130	4	0-30	
1,2-Dichlorobenzene	96	91	86-116	5	0-8	
1,1-Dichloroethene	86	81	70-130	5	0-25	
Ethylbenzene	90	87	70-130	3	0-30	
Toluene	89	87	87-123	3	0-8	
Trichloroethene	87	82	79-127	5	0-10	
Vinyl Chloride	84	82	69-129	3	0-13	
Methyl-t-Butyl Ether (MTBE)	102	98	71-131	5	0-13	
Tert-Butyl Alcohol (TBA)	91	99	36-168	8	0-45	
Diisopropyl Ether (DIPE)	97	94	81-123	3	0-9	
Ethyl-t-Butyl Ether (ETBE)	100	97	72-126	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	100	97	72-126	3	0-12	
Ethanol	86	83	53-149	4	0-31	



Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0795 EPA 5030B EPA 8260B

Project 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
07-09-0903-1	Aqueous	GC/MS BB	09/18/07		09/19/07	070918S02	
						<u>'</u>	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	88	86	88-118	2	0-7	3	
Carbon Tetrachloride	89	93	67-145	5	0-11		
Chlorobenzene	87	85	88-118	1	0-7	3	
1,2-Dibromoethane	93	90	70-130	3	0-30		
1,2-Dichlorobenzene	89	86	86-116	4	0-8		
1,1-Dichloroethene	80	80	70-130	1	0-25		
Ethylbenzene	87	86	70-130	1	0-30		
Toluene	87	85	87-123	2	0-8	3	
Trichloroethene	81	81	79-127	0	0-10		
Vinyl Chloride	82	85	69-129	4	0-13		
Methyl-t-Butyl Ether (MTBE)	95	94	71-131	1	0-13		
Tert-Butyl Alcohol (TBA)	84	87	36-168	3	0-45		
Diisopropyl Ether (DIPE)	93	92	81-123	1	0-9		
Ethyl-t-Butyl Ether (ETBE)	95	95	72-126	0	0-12		
Tert-Amyl-Methyl Ether (TAME)	97	93	72-126	4	0-12		
Ethanol	83	81	53-149	3	0-31		

RPD - Relative Percent Difference , CL - Control Limit

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

07-09-0795 EPA 3510C EPA 8015B (M)

N/A

Project: 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analy:		LCS/LCSD Batch Number	n
099-12-330-362	Aqueous	GC 23	09/17/07	09/19/	07	070918B11	
<u>Parameter</u>	LCS %	REC LCSD	%REC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	84	83		75-117	1	0-13	

RPD - Rel

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

07-09-0795 EPA 5030B EPA 8015B (M)

N/A

Project: 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat Analy		LCS/LCSD Bato Number	h
099-12-436-903	Aqueous	GC 29	09/13/07	09/13	/07	070913B01	
<u>Parameter</u>	LCS %	6REC LCSD	%REC %	6REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	99	98		78-120	0	0-10	

MMM_

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

07-09-0795 EPA 5030B EPA 8015B (M)

N/A

Project: 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat Analy:		LCS/LCSD Batc Number	h
099-12-436-914	Aqueous	GC 30	09/14/07	09/14/	07	070914B02	
<u>Parameter</u>	LCS %	6REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	97	98		78-120	0	0-10	

MMM_

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: N/A 07-09-0795 EPA 5030B EPA 8260B

Project: 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-006-22,837	Aqueous	GC/MS BB	09/18/07	09/1	8/07	070918L01	
Parameter	LCS %	REC LCSD	%REC %	6REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	94	90)	84-120	4	0-8	
Carbon Tetrachloride	112	102	2	63-147	9	0-10	
Chlorobenzene	94	90	1	89-119	5	0-7	
1,2-Dibromoethane	99	95	;	80-120	4	0-20	
1,2-Dichlorobenzene	95	91		89-119	5	0-9	
1,1-Dichloroethene	93	87	•	77-125	6	0-16	
Ethylbenzene	95	89	1	80-120	6	0-20	
Toluene	92	89	1	83-125	4	0-9	
Trichloroethene	90	86	;	89-119	4	0-8	Χ
Vinyl Chloride	94	91		63-135	3	0-13	
Methyl-t-Butyl Ether (MTBE)	102	98	;	82-118	4	0-13	
Tert-Butyl Alcohol (TBA)	96	128	3	46-154	28	0-32	
Diisopropyl Ether (DIPE)	97	93	;	81-123	4	0-11	
Ethyl-t-Butyl Ether (ETBE)	100	96	;	74-122	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	95	;	76-124	3	0-10	
Ethanol	101	10	5	60-138	4	0-32	

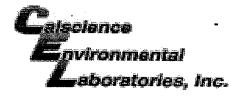
RPD - Relative Percent Difference , CL - Control Limit

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: N/A 07-09-0795 EPA 5030B EPA 8260B

Project: 31235 Mission Blvd., Hayward, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD Bate Number	ch
099-10-006-22,845	Aqueous	GC/MS BB	09/18/07	09/18	3/07	070918L02	
<u>Parameter</u>	LCS %F	REC LCSD	%REC %I	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	93	97	:	84-120	5	0-8	
Carbon Tetrachloride	101	109	(63-147	8	0-10	
Chlorobenzene	92	94	;	89-119	3	0-7	
1,2-Dibromoethane	96	95	;	80-120	1	0-20	
1,2-Dichlorobenzene	90	93	;	89-119	3	0-9	
1,1-Dichloroethene	88	95	•	77-125	8	0-16	
Ethylbenzene	94	96	;	80-120	3	0-20	
Toluene	92	97	;	83-125	6	0-9	
Trichloroethene	89	94	;	89-119	5	0-8	
Vinyl Chloride	91	97	(63-135	6	0-13	
Methyl-t-Butyl Ether (MTBE)	96	97	;	82-118	1	0-13	
Tert-Butyl Alcohol (TBA)	108	110		46-154	2	0-32	
Diisopropyl Ether (DIPE)	93	98	:	81-123	5	0-11	
Ethyl-t-Butyl Ether (ETBE)	94	98		74-122	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	95	96		76-124	1	0-10	
Ethanol	97	104		60-138	7	0-32	

Glossary of Terms and Qualifiers



Work Order Number: 07-09-0795

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB □ TA	- Irvine, California	東京 かけ かままか	nuit &	•		Res	H		. C	ha	ĺ'n	Ű	f	US	sto	ď	1	ેલ	cor			-							
	- Morgan Hill, California	NAME OF PER	SON TO	BILL:	Carol	Camp	agr	na												DENT	# (E:	ONL	Y)						***
	- Sacramento, California	☑ ENVIRONMENTAL S	ERVICES			-	☐ CHECK BOX TO VERIFY IF NO INCIDENT # APPLIES 9										7	7 4 5 6 5 3 2						DATE: 9/10/07					
	- Nashville, Tennessee science	☐ NETWORK DEV / FE		☐ BILL	CONSULTA	NT	PO#										SAP or CRMT #						DATE	. 44	<u> </u>				
Otl		☐ COMPLIANCE		☐ RMT	/CDMT				iddidd T			. Y			iliiliili I	iiiiiiiii T	iliiliilii I						T I		PAGE	£:	<u> </u>	_ of _	_1_
		ELECTRICIANCE.		popogosanana	/CRMI																1								
	IG COMPANY:		LOG CODE:	:						Street an	-	الدد	U.S.		- u al			State		- 1	OBAL ID		046						
ADDRE	ss:		BTSS		•		EDF D	ZJJ ELIVER	ABLE T	10i28 O (Name,	Company	VQ.,	Location	ywa }:	ara	PHONE	NO.:	CA		E-M4		170	010				CONSUL	TANT PRO	JECT NO.:
	Rogers Avenue, San	•																								1			_
	CT CONTACT (Hardcopy or PDF R	Report to):	rt to):					Suing PLER N	j, De	Ita, Mo (Print):	nrovi	a Offi	ce			626.	256.6	662		jsu	ing@	delta	env.co		USE ONL	В	3TS# C	<u>2077</u>	110 -P
TELEP	el Ninokata	FAX:	FAX: E-MAIL:																					LAD					
408-5	73-0555	408-573-7771	mninok	cata@bla	inetech.	com	<u> </u>	٠ (١٥٧	ms	<u>لم</u>	<u>/</u> Λ	1.1	Pier	re											09	-	07	95
	STD IS 10 BUSINESS DAY TD	RESULTS NI ON WEEKE												RE	QUE	STEE	ANA	LYSI	S										
L	A - RWQCB REPORT FORM	AT UST AGENCY:																										_	
RU CC T	N TPHd w/SILICA GE om Hargett tharge	EL CLEAN UP ett@deltaenv.com with final report		ONTRACT R EIMB RATE VERIFICAT	APPLIES ION REQUE		H - Gas, Purgeable (8260B)	TPH - Diesel, Extractable (8015M)	BTEX (8260B)	5 Oxygenates (8260B) (MTBE, TBA, DIPE, TAME, ETBE)		TBA (8260B)	1E (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	B (8260B)	Ethanol (8260B)	Nethanol (8015M)						TEA	Cont o or l	itainer/ or PID I Labora	NOTE /Preserv Reading atory N	vative gs otes
ONLY	MW- (dentification	DATE 9/10	TIME	MATRIX	cont.	Ŧ	1		, 5° E	Ψ	TB	DIPE	ΤĀ	Ш	1,2	EDB	五	₩ We		+	┼		\vdash					
1				 	W	7		X	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>								<u> </u>	. `	+	\dashv	╁	+			+	<u>.</u>			
2 3 4	MW-2		9110	1015					^									X		_	╁.	ļ			_		·		
3	MW-3		9/10	1325		7	X	X	X	×								X											
4	MW-4		9110	1230		7	X	X	X	×								X											
ς	MM-2		9/10	0 845		7	X	X	X	×								X											 -
5	WW-6		9/10	0940		7	X	×	X	2	-									+								.	
7	mw-7		9/10	†		1-	Ŕ	\	X	1	-									+	+				- -				
8				0920	V	+-	X	X	X	Z							-	X		+		-		-					
Ď	1-00-		1110	1000	•	 	1,	,	`سُّا						<u> </u>						+				+				
			-	ļ		-	1	 	<u> </u>	-								<u> </u>		\dashv	+-	+			-				
Relina	ished by: (Signature)			<u>l. </u>	Received b	y: (Signature	<u></u>	1]					ate:	Т,		1		Time:				
						With															7/1	10/	0-	7		540)		
Relinqu	ished by: (Signature)					y: (Signature)												1	ate:			/_		Time:				
Relinqu	ished by: (Signature)				Received b	y: (Signature)		 -											ate:	7/1	2/0	. 7		Time:	2. ك			
<u> ز</u>	supper.	UC4 53	ن.:		<u> </u>			3					1		Tier mile :					_ {	- 27	-10	//		•	· .>	ر بر مورون		

Afato 9/13/07 1020

WORK ORDER #: **07** - **0 9** - **0 7 9 5**

Cooler _____ of ____

SAMPLE RECEIPT FORM

CLIENT: Baine lech	DATE: 9/13/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank °C IR thermometer Ambient temperature.
°C Temperature blank.	Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not In	Not Present:
SAMPLE CONDITION:	7 0
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

APPENDIX D

INDEMNIFICATION AND RIGHT OF ENTRY AGREEMENTS BETWEEN SHELL OIL PRODUCTS AND US TORO DEVELOPMENT CO.

BARTKOZANKEL

Howard L. Pearlman hpearlman@bztm.com

RECEIVED - SOP US

MAR 2 9 2007

ENVIROMENTAL SERVICES WESTERN REGION

900 Front Street, Suite 300 San Francisco, CA 94111 p: 415.956.1900 f: 415.956.1152 www.bzlm.com

March 27, 2007

VIA FACSIMILE & U.S. MAIL

Shell Oil Products US
Environmental Services
20954 S. Wilmington Ave.
Carson, CA 90810
Attention: Ms. Carol Campagna

Re: Fairway Park Shopping Center

31005 through 31199 Mission Blvd., Hayward, California Indemnification and Right of Entry Agreements between Shell Oil

Products US and Toro Development Co.

Dear Ms. Campagna:

As you know, Shell Oil Products US ("Shell") and Toro Development Co. ("Toro") were parties to two written agreements pertaining to subsurface contamination at the above-referenced property (the "Property"). Those agreements are entitled "Indemnification and Right of Entry Agreement Between Shell Oil Products US and Toro Development Co. Related To A Former Shell Service Station Located at 31005 Mission Blvd., Hayward, CA" dated December 8, 1999 (the "1999 Contract"), and "Indemnification Agreement Between Shell Oil Products US and Toro Development Co. Related To A Shell Service Station Located at 31235 Mission Boulevard, Hayward, CA," dated as of January 25, 2006 (the "2006 Contract"). \35356

In November 2006, Toro transferred all of its right, title and interest in and to the Property to the following California limited liability companies: The Dennis P. Jordan Properties, LLC; Critzer Properties, LLC; Laurence Kay Properties, LLC; Laurence Kay Properties B, LLC; Olive Greeff, LLC; William Rousseau, LLC; Nicholas Raggio, LLC; Barbara Bleadon Properties, LLC; Ravennaproperties, LLC; Karen Bleadon, LLC; Lenore Bleadon, LLC; and Dorothy Kay, LLC (together, the "LLCs"). In connection therewith, Toro assigned all of its right, title and interest in and to the 1999 Contract and the 2006 Contract to the LLCs. Shell consented to the assignment on January 4, 2007.

Shell Oil Products US Attn: Ms. Carol Campagna March 27, 2007 Page 2

I am writing to inform you that on March 23, 2007, the LLCs sold the Property to FPA Hayward Associates, L.P. Contact information for the new owner is:

Ms. Patti Harrison Vice President, Dispositions Fowler Property Acquisitions 100 Bush Street, Suite 510 San Francisco, CA 94104 Phone: (415) 925-3100, ext 20

Direct: (415) 249-6182 Cell: (415) 828-0010 Fax: (415) 925-3440

The new owner will be preparing a formal assignment document for execution by the LLCs and will submit the same to Shell for consent as provided under the contracts. Please coordinate future work at the Property with Ms. Harrison or her designee.

Very truly yours,

Bartko · Zankel · Tarrant · Miller
A Professional Corporation

Howard L. Pearlman

cc: Mr. Michael McEntire (via e-mail)
Hon. Laurence D. Kay (via e-mail)
Ms. Yvonne Critzer (via facsimile)

Ms. Patti Harrison (via facsimile)

Nancy Mauriello, Esq. (via facsimile)

RTKOZANKEL al-Tarrant-Miller | Lovitt & Hannan, Inc. of Counsel

Howard L. Pearlman hpearlman@bztm.com

A Professional Corporation 900 Front Street, Suite 300 San Francisco, CA 94111 p; 415,956,1900 f: 415.956.1152 www.bztm.com

November 17, 2006

VIA FACSIMILE & U.S. MAIL

RECEIVED - SOP US

NOV **2 0** 2006

Shell Oil Products US Environmental Services 20954 S. Wilmington Ave. Carson, CA 90810

ENVIROMENTAL SERVICES WESTERN REGION

Attention: Ms. Carol Campagna

Re:

Fairway Park Shopping Center

31005 through 31199 Mission Blvd., Hayward, California

Indemnification and Right of Entry Agreements between Shell Oil

Products US and Toro Development Co.

Dear Ms. Campagna:

As you know, Shell Oil Products US ("Shell") and Toro Development Co. ("Toro") are parties to two written agreements pertaining to subsurface contamination at the above-referenced property. Those agreements are entitled "Indemnification and Right of Entry Agreement Between Shell Oil Products US and Toro Development Co. Related To A Former Shell Service Station Located at 31005 Mission Blvd., Hayward, CA" dated December 8, 1999 (the "1999 Contract"), and "Indemnification Agreement Between Shell Oil Products US and Toro Development Co. Related To A Shell Service Station Located at 31235 Mission Boulevard, Hayward, CA," dated as of January 25, 2006 (the "2006 Contract"). 135356

Paragraph 15 of the 1999 Contract and paragraph 14 of the 2006 Contract permit Toro to assign its right, title and interest in and to the 1999 Contract and the 2006 Contract to Toro's successor-in-interest in the above-referenced property (the "Property") and require Shell, within seven (7) days following receipt of written demand, to execute such documents as the assignor or assignee may reasonably request to evidence the fact that Shell's indemnities and obligations under each contract benefit the assignee.

On or around May 15, 2006, Toro transferred all of its right, title and interest in and to the Property to the following California limited liability companies: The Dennis P. Jordan Properties, LLC; Critzer Properties, LLC; Laurence Kay Properties, LLC; Laurence Kay Properties B, LLC; Olive Greeff, LLC; William Rousseau, LLC; Nicholas Raggio, LLC; Barbara Bleadon Properties, LLC; Ravennaproperties, LLC; Karen Bleadon, LLC; Lenore Bleadon, LLC; and Dorothy Kay, LLC (together, the "Assignees"). On or around October 6, 2006, Toro, as

Shell Oil Products US Attn: Ms. Carol Campagna November 17, 2006 Page 2

Assignor, formally assigned its right, title and interest in and to the 1999 Contract and the 2006 Contract to the Assignees pursuant to a document entitled "Assignment of Contracts." A true and correct copy of the Assignment of Contracts is enclosed.

Pursuant to paragraph 15 of the 1999 Contract and paragraph 14 of the 2006 Contract, Assignor and Assignee request that Shell execute the Consent To Assignment (the "Consent") on page 5 of the Assignment of Contracts. Please return the executed Consent to the undersigned on behalf of both the Assignor and Assignee. Please also note the revised notice information set forth in paragraph 3 of the Assignment of Contracts.

We look forward to timely receipt of the executed Consent.

Very truly yours,

Bartko · Zankel · Tarrant · Miller
A Professional Corporation

Howard L. Pearlman

Enclosure

cc:

Mr. Michael McEntire (via facsimile and e-mail w/encl.)

Hon. Laurence D. Kay (via e-mail w/encl.) Ms. Yvonne Critzer (via facsimile w/encl.)

ASSIGNMENT OF CONTRACTS

This Assignment of Contracts ("Assignment") is entered into as of the Ady of October 2006 by and between Toro Development Co. ("Assignor"), on the one hand, and The Dennis P. Jordan Properties, LLC; Critzer Properties, LLC; Laurence Kay Properties, LLC; Laurence Kay Properties B, LLC; Olive Greeff, LLC; William Rousseau, LLC; Nicholas Raggio, LLC; Barbara Bleadon Properties, LLC; Ravennaproperties, LLC; Karen Bleadon, LLC; Lenore Bleadon, LLC; and Dorothy Kay, LLC, all California limited liability companies (together, "Assignees"), on the other hand.

<u>RECITALS</u>

- A. Assignor, as "Owner," is a party to that certain written agreement entitled "Indemnification and Right of Entry Agreement Between Shell Oil Products US and Toro Development Co. Related To A Former Shell Service Station Located at 31005 Mission Blvd., Hayward, CA," dated December 8, 1999 (the "1999 Contract"), a true and correct copy of which is attached hereto as Exhibit A.
- B. Assignor, as "Owner," is a party to that certain written agreement entitled "Indemnification and Right of Entry Agreement Between Shell Oil Products US and Toro Development Co. Related To A Shell Service Station Located at 31235 Mission Boulevard, Hayward, CA," dated as of January 25, 2006 (the "2006 Contract"), a true and correct copy of which is attached hereto as **Exhibit B**.
- C. Paragraph 15 of the 1999 Contract permits Assignor to assign the benefit of any indemnity and other obligation of Shell Oil Products, US ("Shell") thereunder to Assignor's successor-in-interest in that certain improved real property located at 31005 through 31199 Mission Boulevard, Hayward, California, commonly referred to as the Fairway Park Shopping Center (the "Property"), and requires Shell, within seven (7) days following receipt of written demand, to execute such documents as Assignor or its successor-in-interest shall reasonably request to evidence the fact that Shell's indemnities and obligations under the 1999 Contract benefit such assignee.
- D. Paragraph 14 of the 2006 Contract permits Assignor to assign the benefit of any indemnity and other obligation of Shell thereunder to Assignor's successor-in-interest in the Property, and requires Shell, within seven (7) days following receipt of written demand, to execute such documents as Assignor or its successor-in-interest shall reasonably request to evidence the fact that Shell's indemnities and obligations under the 2006 Contract benefit such assignee.
- E. On or around May 15, 2006, Assignor transferred all of its right, title and interest in and to the Property to Assignee and now wishes to assign to Assignee all of its right, title and interest in and to the 1999 Contract and the 2006 Contract.

NOW, THEREFORE, the parties hereto agree as follows:

- 1. Assignor hereby assigns to Assignee all of the right, title and interest of Assignor in and to the 1999 Contract and the 2006 Contract.
- 2. Assignee hereby accepts the assignment and agrees to assume the obligations under the 1999 Contract and the 2006 Contract performable from and after the date hereof, and Assignee will perform as and when due all such obligations in accordance with the terms of the 1999 Contract and the 2006 Contract.
- 3. As of the date written above, any notice, tender, delivery or other communication from Shell to Owner pursuant to the 1999 Contract and the 2006 Contract shall be given in the manner prescribed therein to the following persons at the following addresses:

Fairwood Management, LLC 31123 Mission Blvd., Suite C Hayward, CA 94544-7697 Attn: Yvonne Critzer Facsimile: (510) 487-0404

AND

Bartko Zankel 900 Front Street, Suite 300 San Francisco, CA 94111 Attn: Howard L. Pearlman, Esq. Facsimile: (415) 956-1152

IN WITNESS WHEREOF, the parties hereto have executed this Assignment as of the date written above.

Dated: 0 t . 6 , 2006

ASSIGNOR:

TORO DEVELOPMENT CO.

Managing General Partner

Laurence D. Kay

Manadrid Generar La

ASSIGNEES:

A	
Dated: <u>Oct. 6</u> , 2006	The Dennis P. Jordan Properties, LLC, a California limited liability company
	By: The Dennis P. Jordan Revocable Trust Dated August 25, 1987 Its: Sole Member
	By: Jill Jordan, Co-Trustee
	By: <u>Yvonn B. Critzer</u> Yvonne B. Critzer Co-Toustee
Dated: <u>O.f.</u> , 2006	Critzer Properties, LLC, a California limited liability company
	By: Yvonne Barrymore Critzer Trust Its: Sole Member
	By: Dee Jardan Jill Jordan, Co-Trustee
	By: Yvonne B. Critzer Co-Trustee
Dated:, 2006	Laurence Kay Properties, LLC, a California limited liability company
	By: Laurence D. Kay Its: Sole Member
Dated:, 2006	Laurence Kay Properties, B, LLC, a California limited liability company
	By: Trust f/b/o Laurence D. Kay under Trust B U/A dtd 2/7/90
	By:

ASSIGNEES:

Dated:	_, 2006	The Dennis P. Jordan Properties, LLC, a California limited liability company
		By: The Dennis P. Jordan Revocable Trust Dated August 25, 1987 Its: Sole Member
		By:
. :		By: Yvonne B. Critzer Co-Trustee
Dated:	, 2006	Critzer Properties, LLC, a California limited liability company
		By: Yvonne Barrymore Critzer Trust Its: Sole Member
		By:
		By:Yvonne B. Critzer Co-Trustee
Dated: Oct.6	, 2006	Laurence Kay Properties, LLC, a California limited liability company By: Laurence D. Kay Its: Sole Member
Dated: Oct. 6	, 2006	Laurence Kay Properties, B, LLC, a California limited liability company
		By: Trust f/b/o Laurence D. Kay under Trust B U/A dtd 2/7/90 By: Laurence D. Kay, trustoe

Dated: <u>OPfder 6.</u> 2006	Olive Greeff, LLC, a California limited liability company By: Nicholas Raggio Its: Manager
Dated:, 2006	William Rousseau, LLC, a California limited liability company By: William H. Rousseau Its: Sole Member
Dated: Of Char 6 -, 2006	Nicholas Raggio, LLC, a California limited liability company By: Nicholas Raggio Its: Sole Member
Dated:, 2006	Barbara Bleadon Properties, LLC, a California limited liability company By: Barbara Bleadon Its: Sole Member
Dated:, 2006	Ravennaproperties, LLC, a California limited liability company By: Deborah Bleadon Fraschetti Its: Sole Member

Dated:	, 2006	Olive Greeff, LLC, a California limited liability company
		By: Nicholas Raggio Its: Manager
Dated: <u>10/1</u> z	, 2006	William Rousseau, LLC, a California limited liability company By: William H. Rousseau Its: Sole Member
Dated:	, 2006	Nicholas Raggio, LLC, a California limited liability company By: Nicholas Raggio Its: Sole Member
Dated:	, 2006	Barbara Bleadon Properties, LLC, a California limited liability company By: Barbara Bleadon Its: Sole Member
Dated:	, 2006	Ravennaproperties, LLC, a California limited liability company By: Deborah Bleadon Fraschetti Its: Sole Member

Dated:	2006	Olive Greeff, LLC, a California limited liability company
		By: Nicholas Raggio Its: Manager
Dated:, 2006	2006	William Rousseau, LLC, a California limited liability company
		By: William H. Rousseau Its: Sole Member
Dated:, 2006	2006	Nicholas Raggio, LLC, a California limited liability company
		By: Nicholas Raggio Its: Sole Member
Dated: Och 6,	2006	Barbara Bleadon Properties, LLC, a California limited liability company By: Mullum Barbara Bleadon Its: Sole Member
Dated:, 2	2006	Ravennaproperties, LLC, a California limited liability company
•		By:

Dated:	, 2006	Olive Greeff, LLC, a California limited liability company
		By: Nicholas Raggio Its: Manager
Dated:, 2006	, 2006	William Rousseau, LLC, a California limited liability company
	By: William H. Rousseau Its: Sole Member	
Dated:	, 2006	Nicholas Raggio, LLC, a California limited liability company
		By: Nicholas Raggio Its: Sole Member
Dated:, 2006	Barbara Bleadon Properties, LLC, a California limited liability company	
		By: Barbara Bleadon Its: Sole Member
Dated: <u>(O.A. 6</u> , 2006	<u>/e</u> , 2006	Ravennaproperties, LLC, a California limited liability company
		By: Deborah Bleadon Fraschetti Its: Sole Member

Dated: Of, 21, 2006	Karen Bleadon, LLC, a California limited liability company
	By: Karen Bleadon Fry Its: Sole Member
Dated:, 2006	Lenore Bleadon, LLC, a California limited liability company
	By: Trust f/b/o Lenore Bleadon under Trust A U/A dtd 2/7/90 Its: Sole Member
	Ву:
	Lenore Bleadon, Trustee
Dated:, 2006	Dorothy Kay, LLC, a California limited liability company
	By: Lenore D. Bleadon Its: Sole Member
CON	SENT TO ASSIGNMENT:
The foregoing Assignment	ment of Contract is consented to by the undersigned.
Dated:, 2006	
SHELL OIL PRODUCTS, US	
By:	·
A W/4	

		•
Dated:	, 2006	Karen Bleadon, LLC, a California limited liability company
		By: Karen Bleadon Fry Its: Sole Member
Dated:	/ , 2006	Lenore Bleadon, LLC, a California limited liability company
		By: Trust f/b/o Lenore Bleadon under Trust A U/A dtd 2/7/90 Its: Sole Member
		By: Lenore Bleadon, Trustee
Dated: 10/14	, 2006	Dorothy Kay, LLC, a California limited liability company
		By: Lenore D. Bleadon Its: Sole Member
	<u>CO</u>	NSENT TO ASSIGNMENT:
The	e foregoing Assig	mment of Contract is consented to by the undersigned.
Dated:	, 2006	
SHELL OIL PRO	DUCTS, US	
By:		·
A 600 1		