Atlantic Richfield Company

Chuck Carmel Remediation Management Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Mobile: (510) 798-8314 E-Mail: Shannon.Couchl@bp.com

August 21, 2013

Re: Addendum to Work Plan for Groundwater Investigation Atlantic Richfield Company Station No. 2107 3310 Park Boulevard, Oakland, California ACEH Case #RO0002526

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by,

Chuck Carmel Remediation Management Project Manager

Attachment:

RECEIVED

By Alameda County Environmental Health at 2:49 pm, Aug 22, 2013

August 21, 2013

Project No. 06-88-614

Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: Addendum to Work Plan for Groundwater Investigation, Atlantic Richfield Company Station No. 2107, 3310 Park Boulevard, Oakland, California; ACEH Case No. RO0002526

Dear Ms. Couch:

Provided herein is Broadbent and Associates, Inc. (Broadbent) *Addendum to Work Plan for Groundwater Investigation* (Work Plan Addendum) for Atlantic Richfield Company Station No. 2107 located at 3310 Park Boulevard in Oakland, California (Site; Drawing 1). The *Work Plan for Groundwater Investigation* (Initial Work Plan) dated November 6, 2012 recommended that five proposed cone penetration test (CPT) soil borings be advanced offsite to define the downgradient extent of methyl tert-butyl ether (MTBE) in groundwater; and to close data gaps required to move the Site towards closure. In an email response from the Alameda County Environmental Health (ACEH) received on February 21, 2013, ACEH rejected the Initial Work Plan because it was not supported by a Conceptual Site Model (CSM) and potential vertical gradients were not evaluated. The ACEH email is included in Appendix A. This Work Plan Addendum has been prepared in response to the ACEH comments. A CSM has been prepared and is included as Table 1. A map showing all historic borings, monitoring wells, and soil vapor well is provided as Drawing 2. Additional data gaps were identified in the CSM; therefore, additional field activities are proposed herein in order to close these data gaps. The data gaps identified are as following:

- Lithology between the two distinct screen intervals of the existing nested wells is unclear
- A sensitive receptor survey has not been performed at this Site
- The Oil Changers 3000 may be a potential offsite source (located 200 feet upgradient of the Site; Drawing 3)
- The potential transmissive conduit study is incomplete

An additional potential data gap has been identified due to lack of downgradient soil vapor sampling. However, it is unclear as to how far the MTBE plume extends offsite. Therefore, the reality of a soil vapor data gap is dependent on proposed additional offsite investigation. If the results of the investigation proposed herein indicate soil vapor samples are necessary to close this data gap, they will be proposed at that time.

In order to address these data gaps, additional soil borings are proposed in conjunction with those proposed in the Initial Work Plan. The additional soil borings include one onsite and three offsite CPT borings. Proposed CPT borings from the Initial Work Plan and this Work Plan Addendum are included in Drawing 3. A sensitive receptor survey (SRS) is additionally proposed herein. Details of the CSM, additional scope of work, and schedule are presented below.

This Work Plan Addendum is intended to amend the scope of activities proposed in the Initial *Work Plan*. In addition, the CSM supports the scope of work proposed in the Initial Work Plan. The additional scope of work outlined herein is proposed in addition to all activities presented in the Initial Work Plan.

CSM AND REVIEW OF SITE HYDROGEOLOGY

In response to the ACEH request to evaluate Site conditions considering vertical gradients and vertical hydrogeologic connectivity, a CSM has been prepared and is provided as Table 1. Tables 2 and 3 provide historical groundwater elevations and hydrocarbon concentrations for each nested monitoring well. Table 4 represents the historical groundwater gradients. A summary of previous environmental activities performed at the Site are provided in Appendix B. Historical Site data and available soil boring logs are included in Appendix C. Appendix D includes trend graphs for concentrations of gasoline range organics (GRO), benzene, and MTBE for each active onsite and offsite well.

A detailed evaluation of potential vertical gradients at the Site is presented in the CSM. Further reviews of the nested monitoring wells associated with the Site suggest that a vertical gradient may exist between wells MW-11A and MW-11B. Soil boring log SB-10 (located approximately 3 feet (ft) southwest of well MW-11A) indicates that no lithologic recovery occurred from 16 to 20 ft below ground surface (bgs), which is similar to the screen interval in MW-11A. A silty sand layer was encountered in the soil boring at 21 to 22.5 ft bgs and gravelly silty sand was encountered at 30 to 32 ft bgs. For well MW-11B, varying sand layers were encountered from 16 to 30 ft bgs with the screen interval occurring at 26 to 30 ft bgs. The most recent groundwater monitoring event, which was conducted on March 26, 2013, yielded groundwater elevations in MW-11A and MW-11B to be 107.15 and 113.74 feet above site datum, respectively. The variance in groundwater elevations between the two wells may be an indication of two separate water bearing zones. However, it is unclear as to whether this difference represents an actual vertical gradient or a problem with the well construction and/or well screen.

Groundwater elevations from the most recent monitoring event for offsite monitoring wells MW-12A, MW-12B, MW-13A, and MW-13B were 111.96, 111.98, 111.81, and 111.83 ft above site datum respectively. There appears to be no indication of vertical gradients occurring in the offsite wells as evidenced by similar water elevations. As presented in the CSM (Table 1), lithology in these wells does not strongly indicate any separate water bearing zones are present to a depth of approximately 30 ft bgs. However, lithology in wells MW-12A and MW-12B indicates that some stratification in water-bearing zones may be present in the vicinity of this well, the observations are not consistent with wells MW-11A/B and MW-13A/B. Therefore, the presence and extent of any separate water-bearing zones to 30 ft bgs is unclear.

The CSM also notes that a data gap exists due to the lack of current SRS data. Therefore, the potential impacts to any potential offsite receptors are not known at this time. In support of the CSM (Table 1), supporting Drawings have been prepared and are included following this Work Plan Addendum. A map showing the most recent groundwater data (March 26, 2013) is provided as Drawing 4. GRO, benzene, and MTBE isoconcentration contour maps are provided in Drawings 5 through 7. Underground utilities located under Park Boulevard and 33rd Street are

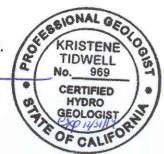
shown in Drawing 8. However, the exact depths of the utilities are not provided; therefore, a detailed preferential pathway study will be conducted. Geologic cross sections are provided as Drawing 9 through 11.

ADDITIONAL WORK PROPOSED

The proposed scope of work outlined in the Initial Work Plan included advancing six CPT borings in the Oakland High School athletic field, north (downgradient) of the Site. Details of the proposed investigation in the adjacent athletic field are presented in the Initial Work Plan. In addition to these borings, three additional borings are proposed in order to evaluate lithologic and hydrogeological conditions both onsite and near current offsite wells MW-12A/B and MW-13A/B. Furthermore, in order to evaluate the potential for an offsite source (Oil Changers 3000), one additional boring will be advanced downgradient of the Oil Changers 3000 station. These additional borings will be advanced to a minimum of 40 ft bgs, and will be advanced with the same procedures outlined in the Initial Work Plan. Prefield and reporting activities will also remain the same as described in this Work Plan. Contingent upon the results from the offsite borings from this CPT investigation, an offsite soil vapor investigation will be performed.

A SRS is additionally proposed. This survey will include obtaining well logs from the California Department of Water Resources (DWR) and the Alameda County Public works for a 2000 ft radius. Additional receptors within this radius including surface water, schools, and hospitals will be evaluated. Results of the SRS will be included in the forthcoming investigation report.

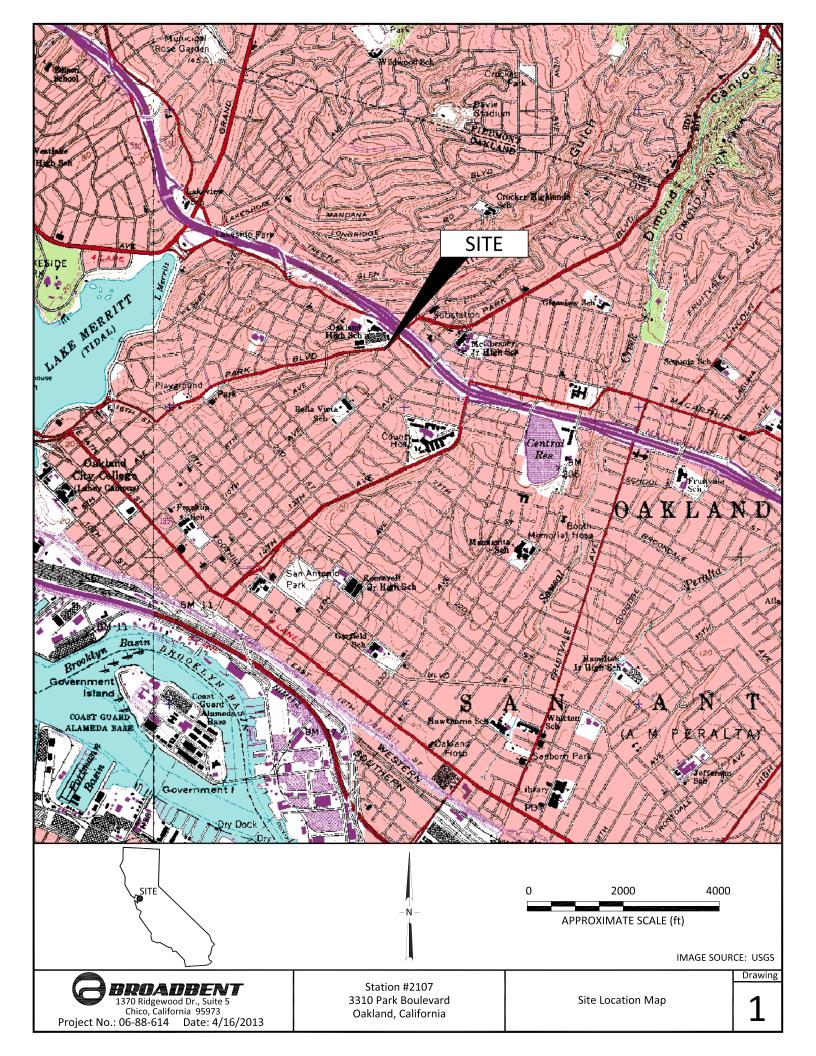
REPORTING AND SCHEDULE

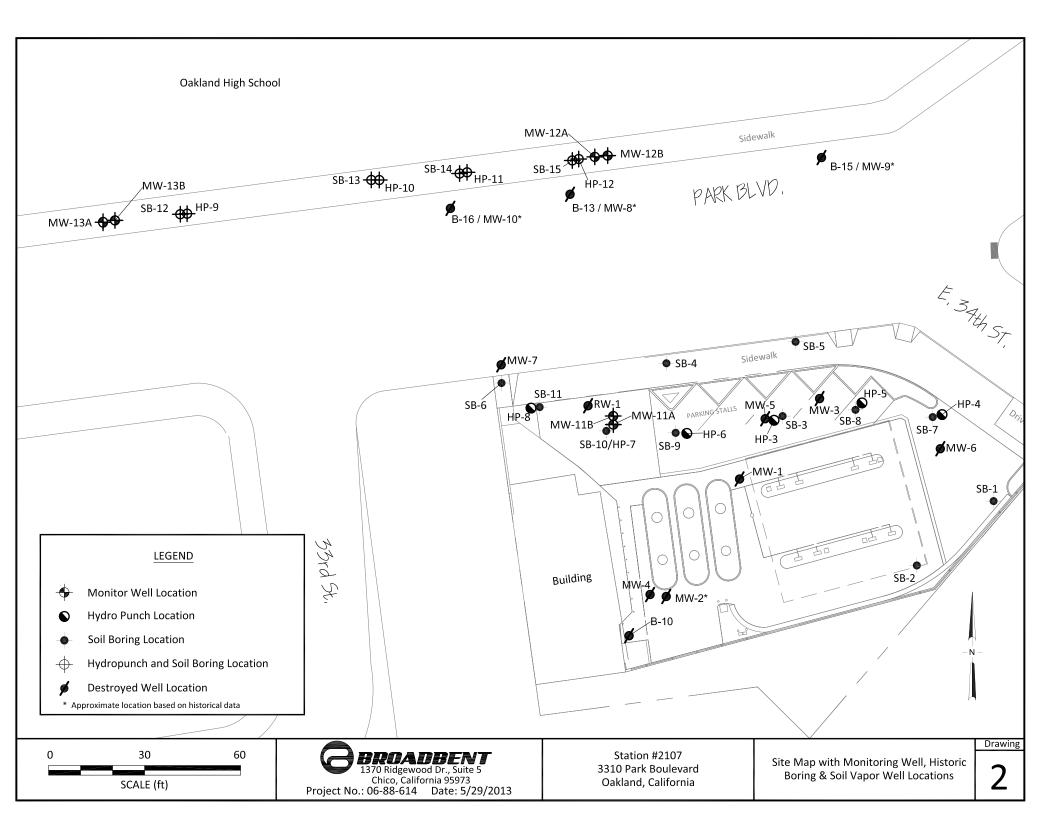

Access agreement negotiations with Oakland High School as well as the Oakland Unified School District are already underway. Upon approval of this Work Plan Addendum, the 10 total proposed soil CPT borings will be advanced (Drawing 3). Upon completion of the onsite and offsite field work, Broadbent will complete and submit a groundwater investigation report to the ACEH with all elements described in the Initial Work Plan. In addition, this report will include results from the SRS and an updated CSM.

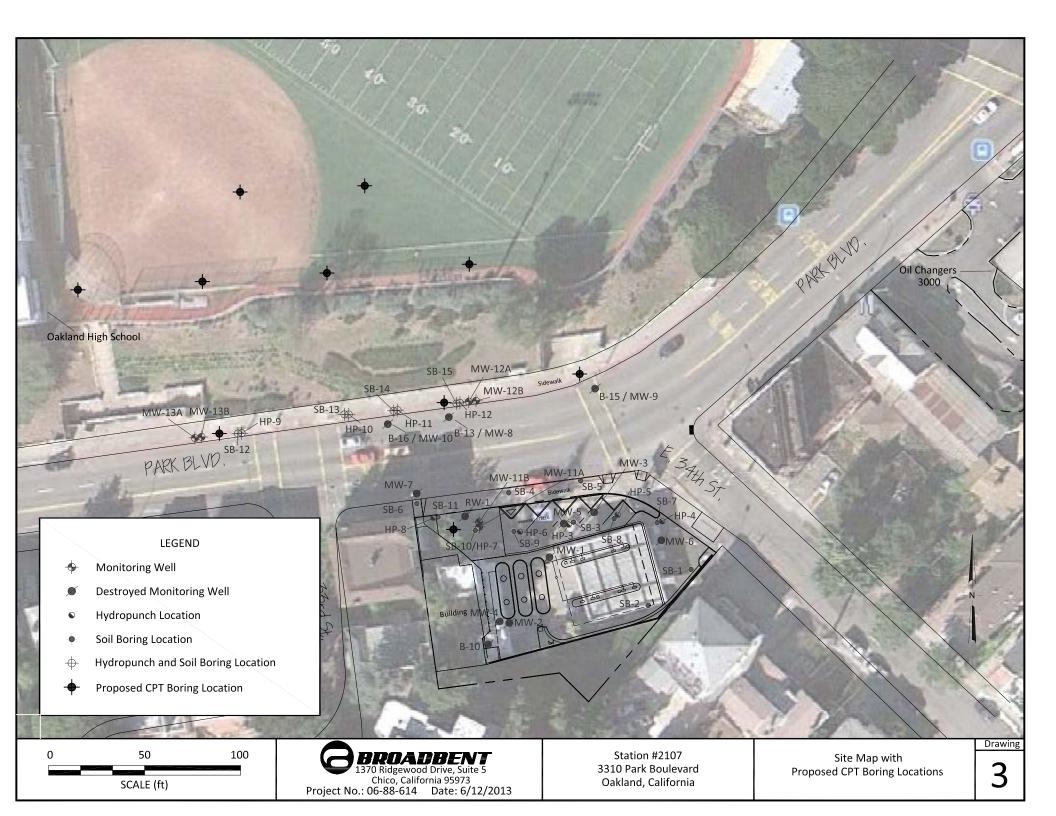
It is unclear how long negotiations with the Oakland Unified School District will take to obtain access. However, once access is secured and all planning activities are carried out, field activities will be performed. Results of the field investigation and analytical results will be summarized in a report with an updated CSM and will be submitted 60 days following the completion of field work.

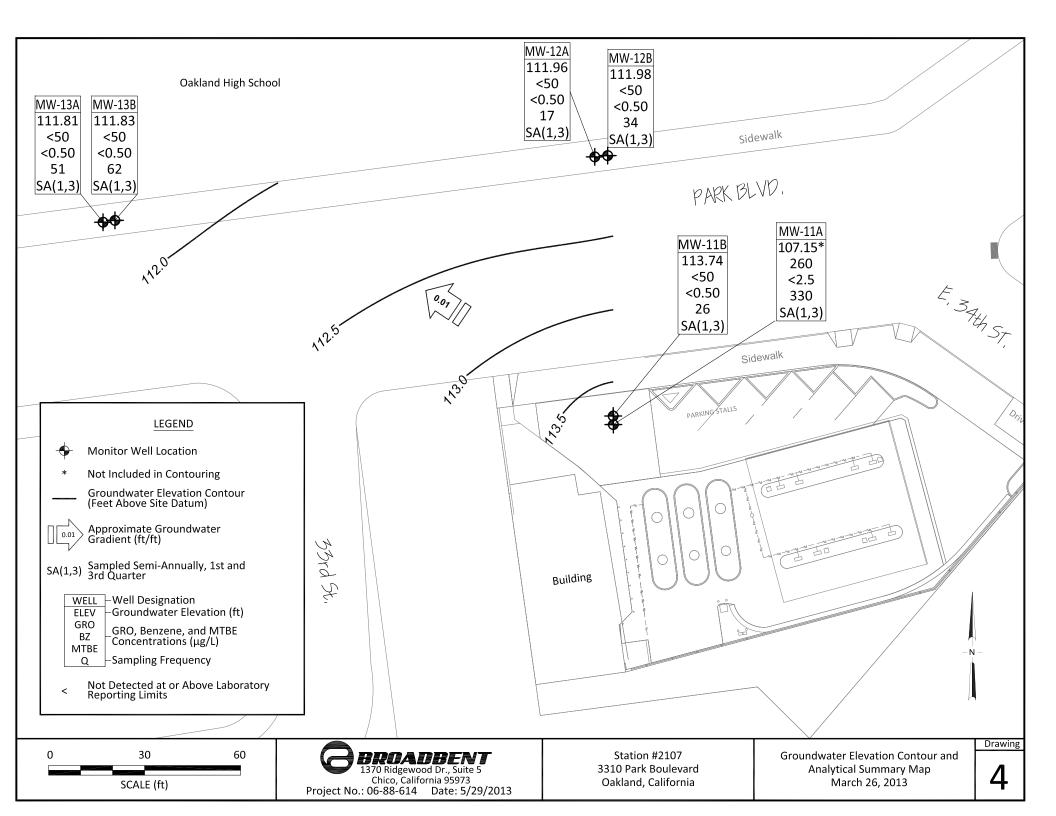
Should you have any questions or require additional information, please do not hesitate to contact us at (707) 455-7290.

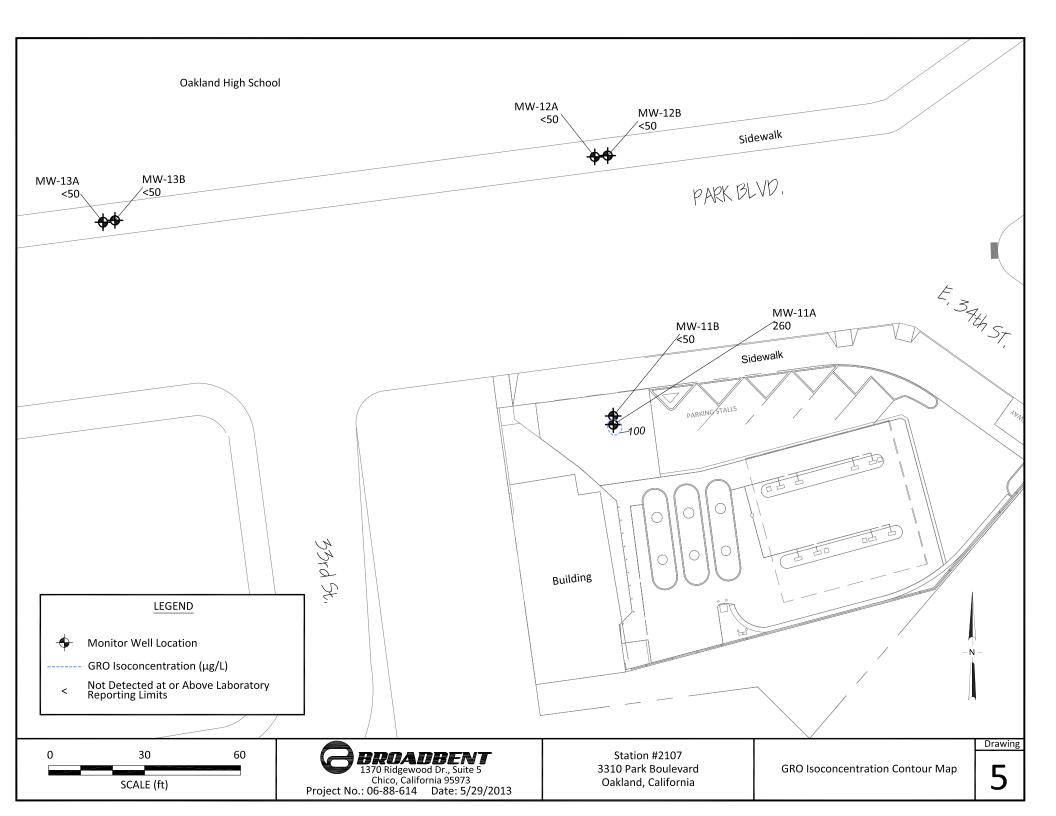
Sincerely, BROADBENT & ASSOCIATES, INC.

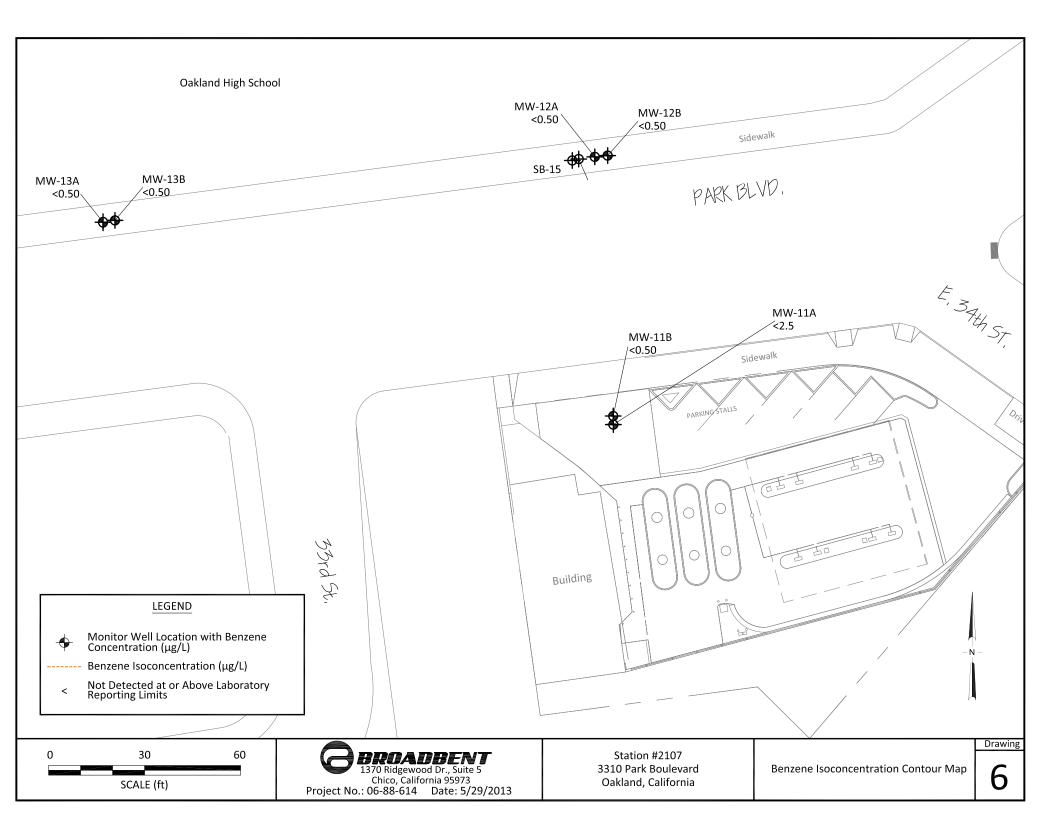

Kristene Tidwell, PG, CHG. Senior Geologist

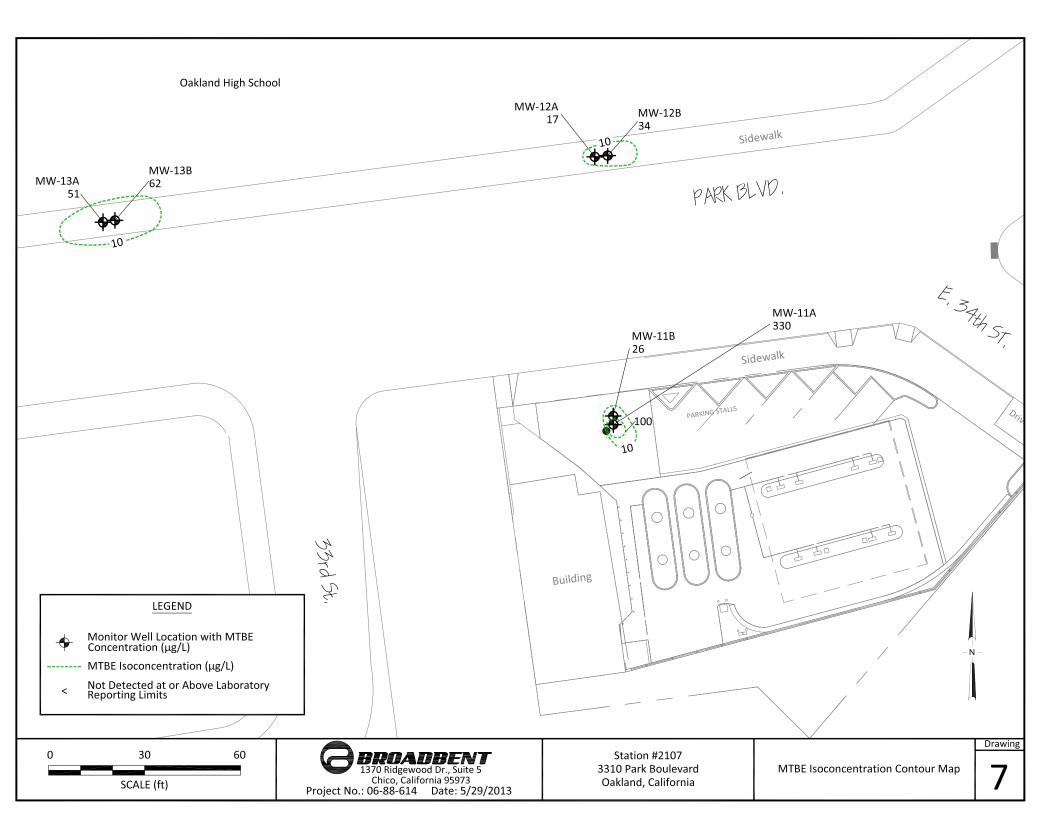


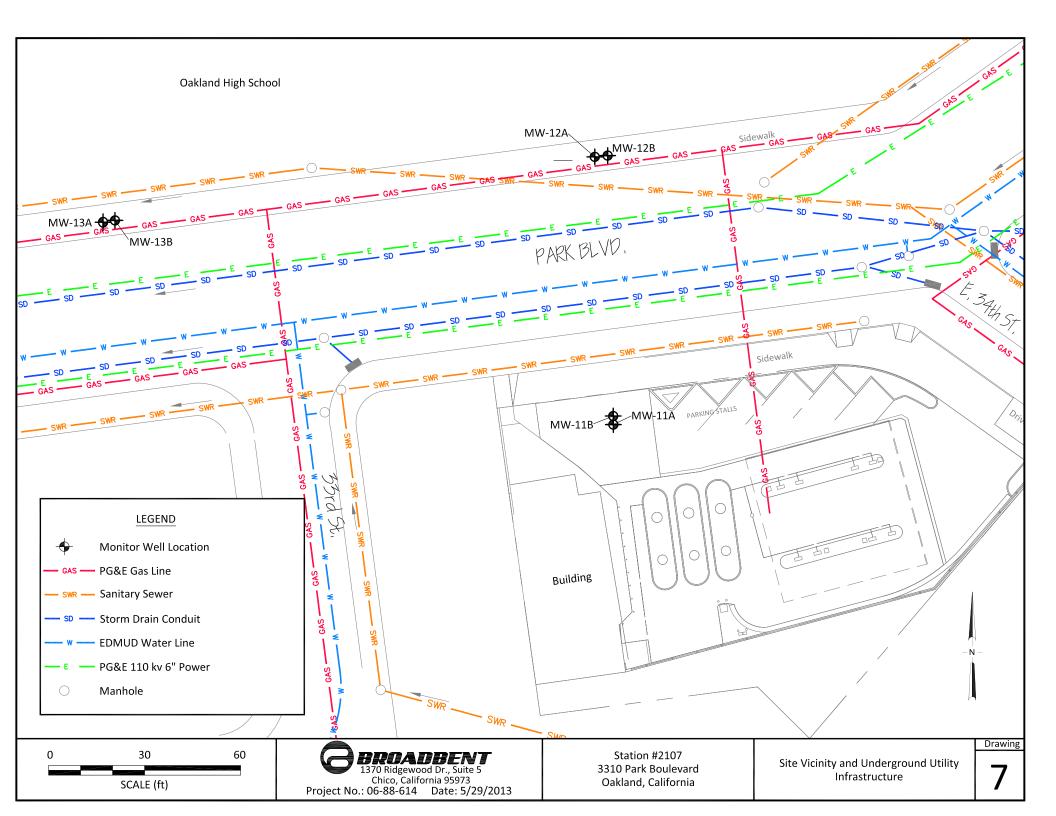

Attachment

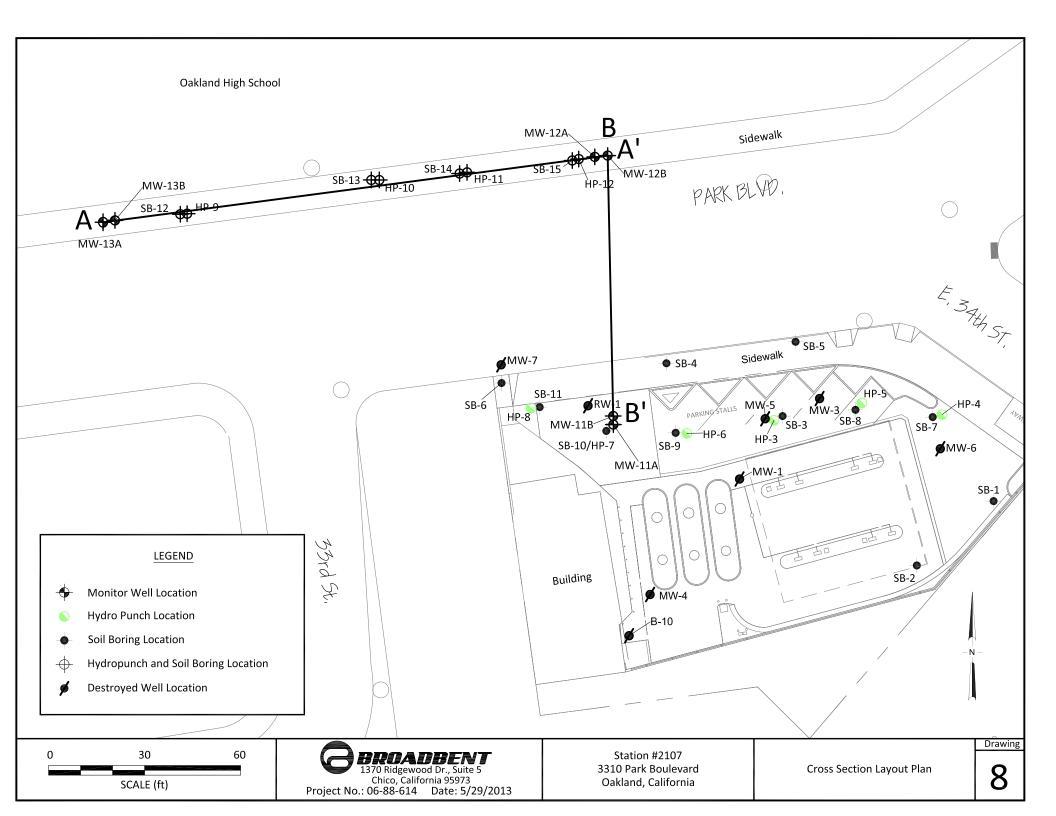

Drawing 1	Site Location Map
Drawing 2	Site Map with Monitoring Well, Historic Boring, & Soil Vapor Well Locations
Drawing 3	Site Map with Proposed CPT Boring Locations
Drawing 4	Groundwater Elevation Contour and Analytical Summary Map, March 26, 2013
Drawing 5	GRO Isoconcentration Contour Map
Drawing 6	Benzene Isoconcentration Contour Map
Drawing 7	Site Vicinity and Underground Utility Infrastructure
Drawing 8	Cross Section Layout Plan
Drawing 9	Geologic Cross Section A-A'
Drawing 10	Geologic Cross Section B-B'
Table 1	Concentual Site Medel
Table 1	Conceptual Site Model
Table 1 Table 2	Conceptual Site Model Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analysis
	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory
Table 2	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analysis
Table 2 Table 3	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analysis Summary of Fuel Additives Analytical Data
Table 2 Table 3 Table 4	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analysis Summary of Fuel Additives Analytical Data Historical Groundwater Gradient – Direction and Magnitude
Table 2 Table 3 Table 4 Appendix A	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analysis Summary of Fuel Additives Analytical Data Historical Groundwater Gradient – Direction and Magnitude Recent Regulatory Correspondence
Table 2 Table 3 Table 4 Appendix A Appendix B	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analysis Summary of Fuel Additives Analytical Data Historical Groundwater Gradient – Direction and Magnitude Recent Regulatory Correspondence Previous Environmental Activities at Site

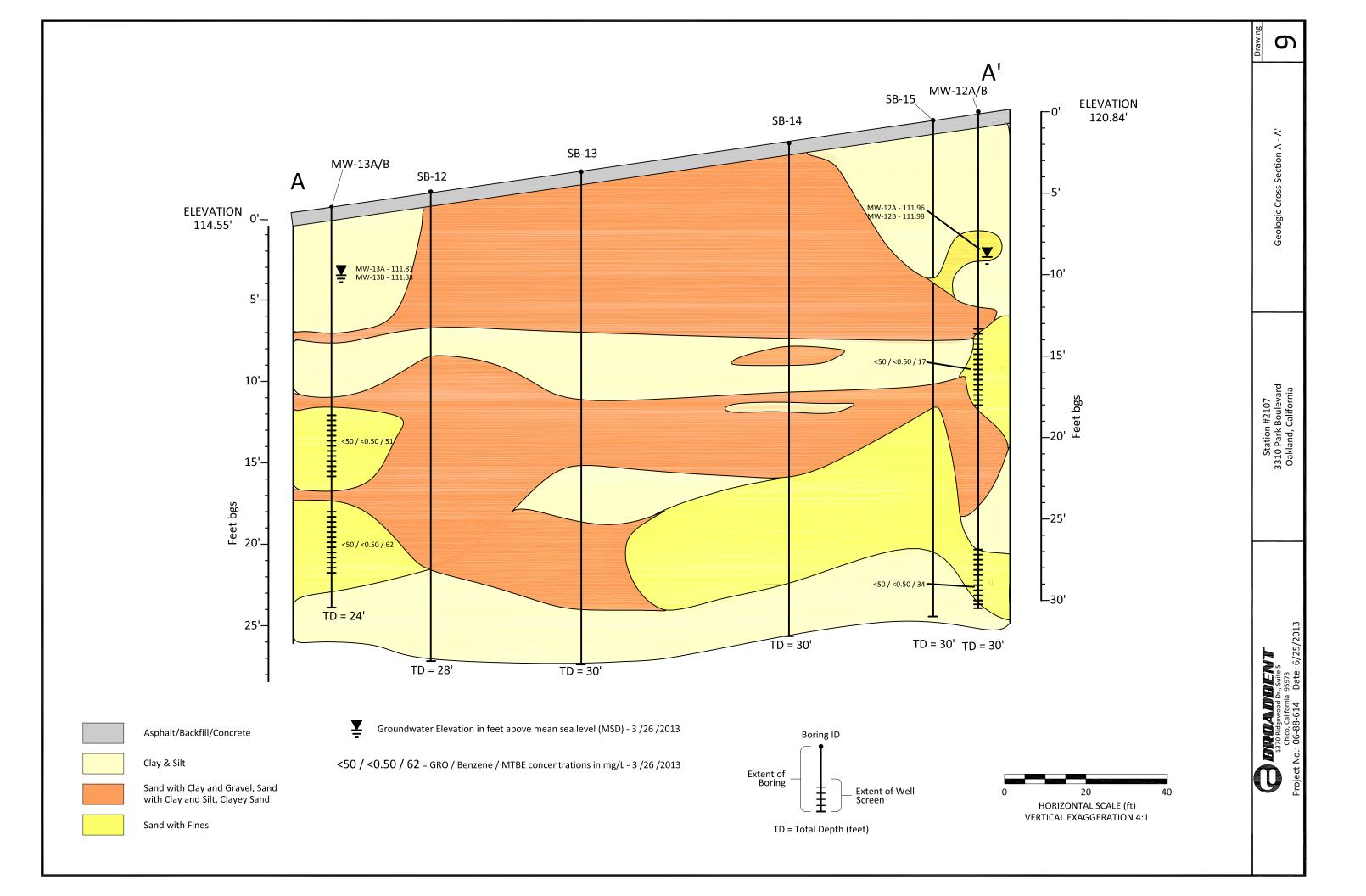

cc: Ms. Dilan Roe, Alameda County Environmental Health (submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

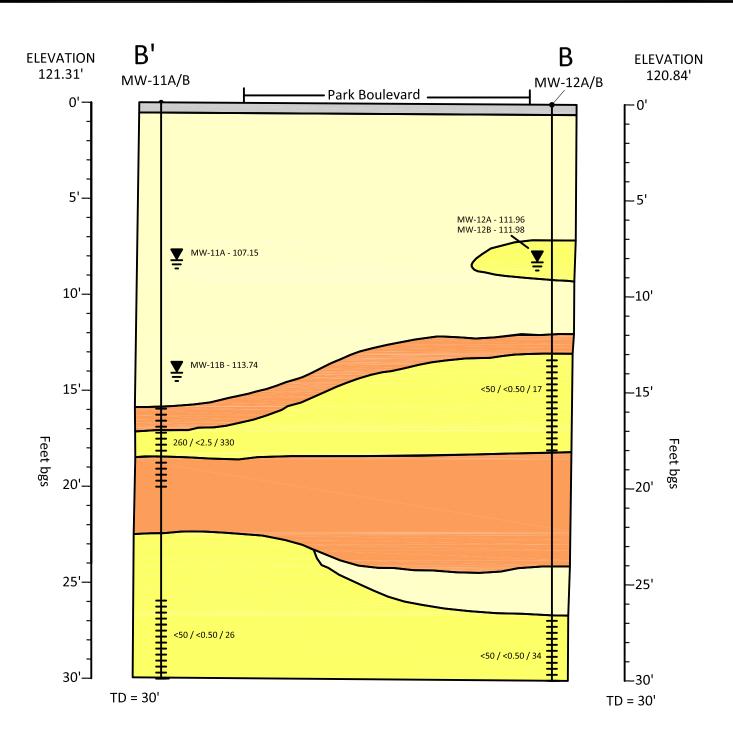












Asphalt/Backfill/Concrete

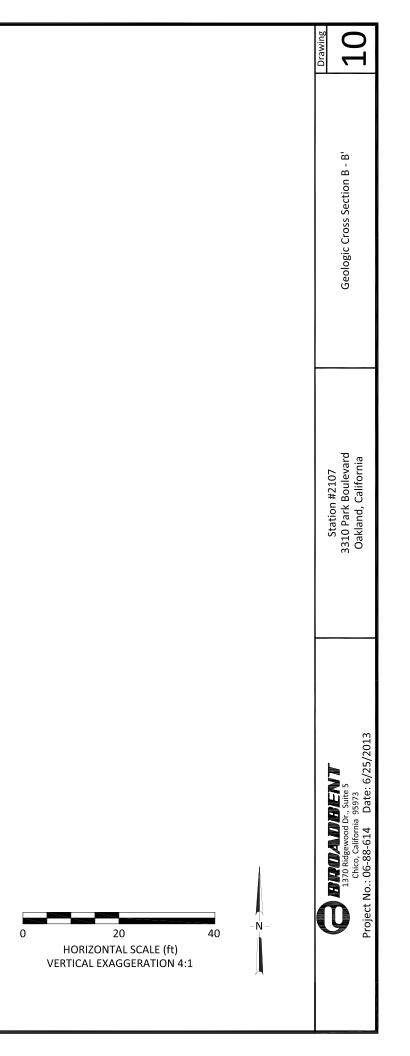
Groundwater Elevation in feet above mean sea level (MSD) - 3 /26 /2013

 $<\!50$ / $<\!0.50$ / 26 = GRO / Benzene / MTBE concentrations in mg/L - 3 /26 /2013

Sand with Clay and Gravel, Sand with Clay and Silt, Clayey Sand

Sand with Fines

TD = Total Depth (feet)


ŧ

Extent of Well

Screen

Boring ID

Extent of Boring

Tables

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology	Regional	The Site is located within the Oakland Sub-Area of the East Bay Plain of the San Francisco Basin. The Oakland Sub-Area contains a sequence of alluvial fans. The alluvial fill thickness ranges from 300 to 700 feet deep. There are no well-defined aquitards in the area. The largest and deepest wells in this sub-area historically pumped one to two million gallons per day at depths greater than 200 feet. Overall, sustainable yields are low due in part to low recharge potential. The Merritt sand in West Oakland was an important part of the early water supply for the City of Oakland. It is shallow (up to 60 feet), but before the turn of the last century, septic systems contaminated the water supply wells.	None	NA
		Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of groundwater flow is from east to west or from the Hayward Fault to the San Francisco Bay. Groundwater flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east to west direction. In the southern end of the study area however, near the San Lorenzo Sub-Area, the direction of flow may not be this simple. According to information presented in <i>East Bay Plain Groundwater Basin Beneficial Use Evaluation Report</i> , the small set of water level measurements available seemed to show that the groundwater in the upper aquifers may be flowing south, with the deeper aquifers, the Alameda Formation, moving north. The nearest natural drainage is Sausal Creek, located approximately 1.0 mile southeast of the Site. Sausal Creek flows generally northeast to southwest near the Site vicinity.		
	Site	The Site elevation is approximately 127 ft above mean sea level. However, in the immediate Site vicinity, the elevation varies by approximately +/- 6 ft. Onsite wells MW-12A/B and MW-13A/B are located lower in elevation than onsite well MW-11A/B. Additionally, Park Boulevard directly to the north of the Site slopes downward to the west, from MW-12A/B to MW-13A/B. Further north of Park Boulevard is the Oakland High School athletic field, which has been graded 15 to 20 ft above Park Boulevard. Sloped landscaping is present between Park Boulevard and the athletic field (Drawing 2).	Yes	Conduct CPT investigation onsite and near wells on Park Boulevard
		Sediments encountered during previous Site investigations consists of beds and lenses of		

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology (continued)	Site (continued)	varying thicknesses of sands and sands with fines, with some discontinuous layers of silts and clays. The groundwater was first encountered in soil at an approximate depth ranging from 1.3 to 20 ft bgs. According to the cross sections presented in Drawings 9 and 10 lithology is consistent with the geologic environment of alluvial deposits, and consistent with the regional geologic environment.		
		When the this case was reopen in 2009, wells were constructed in two intervals: One interval is screened in the three well locations from approximately 13 ft bgs to 18 ft bgs and the other generally 10 ft below the bottom of the upper interval. The screen intervals for these wells are depicted on the cross section drawings (Drawings 9 and 10). The purpose for the nested wells is not immediately apparent. According to the lithology presented in the cross sections, the subsurface consists primarily of sands and sands with fines, with some discontinuous layers of silts and clays. Site lithology as presented in the cross sections do not indicate that multiple water bearing zones are present at the Site. There is a 3 foot clay/silt layer in between the screen intervals at MW-12A/B, however it is likely that this layer does not indicate that two water bearing zones are present at the two screen intervals.		
		The water table fluctuates seasonally. Historical depth to groundwater in Site wells have ranged from 1.24 to 14.91 ft bgs. Historical groundwater gradient has generally been to the northwest with average hydraulic gradient ranging from 0.01 to 0.06 ft/ft (Table 4). Groundwater levels in well MW-11A have consistently been lower than other Site monitoring wells. It is unclear as to whether a localized vertical downward gradient is present in this location, or if the well construction and/or lithology is causing the lower groundwater levels in the upper screen interval.		
		Due to the uncertainty regarding the vertical connectivity of the screen intervals at wells MW-11A/B, MW-12A/B, and MW-13A/B, the geology and hydrogeology of the Site is not completely understood. Therefore, additional CPT borings will be advanced on- and offsite to further understand Site specific lithology.		

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2107 3310 Park Avenue Oakland, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Surface Water Bodies		The nearest surface water body is the Central Reservoir, located approximately 3,500 ft southeast of the Site. Lake Merritt is located approximately 4,500 ft west of the Site. The lake is in an urban area near downtown Oakland and drains into the Oakland Inner Harbor (an inlet to the San Francisco Bay) to the immediate southwest.	None	NA
Nearby Wells		A sensitive receptor survey has not been performed at the Site. Therefore, the presence of nearby municipal, irrigation, or domestic is not known at this time. A sensitive receptor survey is being proposed in the preceding Work Plan Addendum.	Yes	Perform Sensitive Receptor Survey
Constituents of Concern	Light-Non Aqueous Phase Liquid (LNAPL)	Measurable LNAPL has only been detected at the Site, in well MW-1, located in the northeast corner of the UST complex, on May 19, 1989 at a thickness of 0.125 ft. Sheen (less than 0.01 ft of LNAPL) was detected at the Site in wells MW-2 and MW-5, located near the UST complex, on May 19, 1989 and August 14, 1990, respectively. Since the environmental case was reopened in 2009 and since these few detections, measurable LNAPL or sheen have not been detected in any Site wells.	None	NA
	Gasoline Range Organics (GRO)	Historically, concentrations of GRO were detected near source area in former monitoring wells MW-3, MW-4, MW-5, and RW-1, located near the UST complex and dispenser island, with the exception of RW-1 which is located north of the station building. The former monitoring wells (MW-1 through MW-10 and RW-1) were destroyed during previous case closure in 1997. Since the environmental case was reopen in 2009, concentrations of GRO have been detected in monitoring well MW-11A, located next to former well RW-1 and north of the station building. GRO concentrations have not been detected in offsite wells MW-12A, MW-13A, and MW-13B, and very seldom in wells MW-11B and MW-12B. Historical maximum detected concentration of GRO was reported in former well MW-5 at 22,000 ppb on July 16, 1990. Maximum detected concentration within the last four monitoring events was reported in well MW-11A at 730 µg/L, indicating a strong decreasing GRO trend over time.	None	NA
		Based on recent and historical data, the GRO plume has been delineated. A GRO isoconcentration contour map for the most recent groundwater monitoring and sampling event (1Q13) is presented as Drawing 5. GRO concentration trend graphs for wells MW-11A through		

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern (continued)	GRO (continued)	MW-13A and MW-11B through MW-13B are included in Appendix D. These graphs and data presented in DD 2 show a strong decreasing trend for GRO in all Site wells, indicating a shrinking plume.		
	Benzene	Concentrations of benzene were historically detected near source area in former monitoring wells MW-3, MW-4, MW-5, and RW-1, located near the UST complex and dispenser island, with the exception of RW-1 which is located north of the station building. The former monitoring wells (MW-1 through MW-10 and RW-1) were destroyed during previous case closure in 1997. Since the environmental case was reopen in 2009, concentrations of benzene have been detected in monitoring well MW-11A, located next to former well RW-1 and north of the station building. Benzene concentrations have not been detected in offsite wells MW-12A, MW-12B, MW-13A, and MW-13B, and very seldom in onsite well MW-11B. Historical maximum concentration of benzene was reported in former well MW-5 at 1,500 ppb on July 24 and October 31, 1991. Maximum detected concentration within the last four monitoring events was reported in well MW-11A at 7.3 μ g/L, indicating a strong decreasing benzene trend over time. Based on recent and historical data, the benzene plume has been delineated. A benzene isoconcentration contour map for the most recent groundwater monitoring and sampling event (1Q13) is presented as Drawing 6. Benzene concentration trend graphs for wells MW-11A through MW-13A and MW-11B through MW-13B are included in Appendix D. These graphs and data presented in Table 2 show a strong decreasing trend for benzene in all Site wells, indicating a shrinking plume.	None	NA
	Methyl tert- butyl ether (MTBE)	Prior to the environmental case being reopened in 2009, MTBE was not part of the monitoring program and was only sampled in the 3 rd and 4 th quarter 1995 monitoring events. In addition, the former monitoring wells (MW-1 through MW-10 and RW-1) were destroyed during previous case closure in 1997. Since the environmental case was reopened in 2009, concentrations of MTBE have been detected in all monitoring wells (MW-11A through MW-13A and MW-11B through MW-13B). Historical maximum concentration of MTBE was reported in well MW-12B at 840 μ g/L on January 16, 2012 and has since decreased to 34 μ g/L on March 26, 2013. This	YES	Perform downgradient CPT investigation in adjacent high school athletic field

CSM Sub- Element	Description	Data Gap	How to Address
MTBE (continued)	concentration of MTBE is also representative of the maximum concentration within the last four monitoring events.		
	Based on recent and historical data, the MTBE plume has not been delineated in offsite wells MW-12A, MW-12B, MW-13A, and MW-13B. Offsite concentrations of MTBE are generally higher than onsite concentrations, and there is a possibility that the MTBE plume has migrated further offsite (downgradient). Recently (2012) the highest concentration of MTBE was reported in well MW-12B. A corresponding concentration TBA was also detected in this well in 2012, indicating biodegradation of the MTBE then present. Therefore, MTBE has potentially migrated further downgradient, but degradation is also occurring, which may limit the lateral extent of MTBE.		
	Additional CPT borings will be advanced to further delineate offsite MTBE concentrations. An MTBE isoconcentration contour map is not included in this report due to the lack of downgradient data. MTBE concentration trend graphs for wells MW-11A through MW-13A and MW-11B through MW-13B are included in Appendix D.		
Onsite	The exact release source and volume released at the Site is unknown; however, it is assumed that the source was the former UST and former waste oil tank complex located at the central and southern portion of the Site, respectively. These assumptions are supported by data collected since the environmental case was reopened in 2009 including proximity to historical free product and higher dissolved-phase petroleum hydrocarbon concentrations. Additional areas of documented soil contamination occurred beneath product pipelines and dispensers. It is also possible that that residual MTBE concentrations occurred near Site vent lines. An unknown amount of petroleum, mostly MTBE, remains dissolved in groundwater. A fluctuating groundwater table has likely caused a contaminant smear zone where the residual dissolved-phase hydrocarbons remain. However, the trends for the residual petroleum compounds in groundwater indicate that the remaining concentrations in this smear zone have degraded over time, and are impacting the groundwater beneath the Site to a far lesser degree than in the past, and will continue to degrade over time, with the exception of MTBE in offsite	None	NA
	Element MTBE (continued)	Element Description MTBE (continued) concentration of MTBE is also representative of the maximum concentration within the last four monitoring events. Based on recent and historical data, the MTBE plume has not been delineated in offsite wells MW-12A, MW-12B, MW-13A, and MW-13B. Offsite concentrations of MTBE are generally higher than onsite concentrations, and there is a possibility that the MTBE plume has migrated further offsite (downgradient). Recently (2012) the highest concentration of MTBE was reported in well MW-12B. A corresponding concentration TBA was also detected in this well in 2012, indicating biodegradation of the MTBE then present. Therefore, MTBE has potentially migrated further downgradient, but degradation is also occurring, which may limit the lateral extent of MTBE. Additional CPT borings will be advanced to further delineate offsite MTBE concentrations. An MTBE isoconcentration contour map is not included in this report due to the lack of downgradient data. MTBE concentration trend graphs for wells MW-11A through MW-13A and MW-11B through MW-13B are included in Appendix D. Onsite The exact release source and volume released at the Site is unknown; however, it is assumed that the source was the former UST and former waste oil tank complex located at the central and southern portion of the Site, respectively. These assumptions are supported by data collected since the environmental case was reopened in 2009 including proximity to historical free product and higher dissolved-phase petroleum hydrocarbon concentrations. Additional areas of documented soil contamination occurred beneath product pipelines and dispensers. It is also possible that that residual MTBE concentrations occurred near Site vent lines. An unknowa mount of petroleum, mostly MTBE, remains dissolved in groundwa	ElementDescriptionData GapMTBE (continued)concentration of MTBE is also representative of the maximum concentration within the last four monitoring events.Based on recent and historical data, the MTBE plume has not been delineated in offsite wells MW-12A, MW-12B, MW-13A, and MW-13B. Offsite concentrations of MTBE are generally higher than onsite concentrations, and there is a possibility that the MTBE plume has migrated further offsite (downgradient). Recently (2012) the highest concentration of MTBE was reported in well MW-12B. A corresponding concentration TBA was also detected in this well in 2012, indicating biodegradation of the MTBE then present. Therefore, MTBE has potentially migrated further downgradient, but degradation is also occurring, which may limit the lateral extent of MTBE.Additional CPT borings will be advanced to further delineate offsite MTBE concentrations. An MTBE isoconcentration contour map is not included in this report due to the lack of downgradient data. MTBE concentration trend graphs for wells MW-11A through MW-13A and MW-11B through MW-13B are included in Appendix D.NoneOnsiteThe exact release source and volume released at the Site is unknown; however, it is assumed that the source was the former UST and former waste oil tank complex located at the central and southern portion of the Site, respectively. These assumptions are supported by data collected since the environmental case was reopened in 2009 including proximity to historical free product and higher dissolved-phase petroleum hydrocarbon concentrations. An unknown amount of petroleum, mostly MTBE, remains dissolved in groundwater. A fluctuating groundwater table has likely caused a contaminant smear zone where the residual dissolved-phase hydrocarbons remain. However, the trends for the residual petroleum compounds in gro

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2107 3310 Park Avenue Oakland, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential Sources		been increasing over time (Appendix D).		
(continued)		The removal and replacement of the storage and dispensing system was conducted to stop the potential release. The initial UST removal and replacement activities are documented within the ACEH files. The product line removal and upgrade activities are documented in the <i>Product Line Removal and Upgrade Soil Sampling Report</i> (URS, 2003).		
	Offsite	An Oil Changers 3000 station is located about 200 ft northeast of the Site at 3418 Park Boulevard in Oakland, California. A cleanup case was open at this site on July 25, 2001. The site was assessed on August 17, 2001. However, documentation of activities could not be located; thus, the type of contaminant is unknown. Following the assessment activities, the case was closed on August 22, 2001. This site is located (northeast) crossgradient of the Site based on the historic and current groundwater gradient direction (to the northwest). It is possible that this site may be contributing to the offsite MTBE contamination through a preferential pathway. Therefore, an offsite boring will be advanced downgradient of the Oil Changers 3000 station to evaluate the potential contamination, if any, from this site.	Yes	Conduct CPT investigation offsite and downgradient of Oil Changers 3000
Nature and Extent of Environmental Impacts	Extent in Soil	Soil contamination appears defined at the Site. Downgradient and offsite investigation was completed by Broadbent in 2007 contained no concentrations of petroleum hydrocarbons (Broadbent, 2007). Based on historical data collected since the environmental case was reopened in 2009, the highest concentrations of GRO were detected at the northern portion of the Site, downgradient of the UST complex and the dispensers. The highest concentrations were consistently reported at approximately 6 to 21.5 ft bgs, which is consistent with the capillary fringe zone at the Site. One soil sample collected at 1 ft bgs had a GRO concentration of 350 mg/kg. This single shallow concentration may have been from a surface release, not related to the former USTs at the Site. Soil was defined laterally to non-detect for all petroleum compounds to the north (SB-6 and SB-12 through SB-15), and south (SB-2), and to 0.096 mg/kg toluene and 0.016 mg/kg xylenes to the east.	None	NA
		Since source areas have been removed and these concentrations were representative of overall		

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2107 3310 Park Avenue Oakland, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and Extent of Environmental Impacts		groundwater concentrations at the time of sampling, it is likely that these concentrations have further attenuated over the last four years. Based on data and observations from current groundwater conditions, soil at the Site appears to be adequately defined.		
(continued)	Extent in Shallow Groundwater	The current groundwater monitoring network at the Site includes a source area well (MW-11A); and downgradient wells (MW-12A and MW-13A). Isoconcentration maps for the most recent groundwater monitoring and sampling event (1Q13) for GRO and benzene are included as Drawings 5 and 6, respectively. Concentrations in these wells have decreased significantly since their installation, with the exception of MTBE in shallow well MW-13A (Table 2). Concentrations of MTBE in monitoring well MW-13A have been increasing over time. Based on the observed decreasing trends, with the exception of MTBE in well MW-13A, the extent of petroleum compounds is small and the plume appears to be shrinking (Appendix B). In addition, based on Drawings 5 and 6, the extent of petroleum compounds is well defined in all directions, and is predominately limited to onsite, with the exception of MTBE in the northwestern end of the Site and in offsite wells. Concentrations of MTBE in offsite monitoring well MW-13A has been increasing over time and has been decreasing in onsite monitoring well MW-11A; therefore, it is possible that the MTBE plume is detached. A CPT investigation will be performed downgradient and offsite to further delineate the MTBE plume. Additionally, free product has not been observed at the Site since the environmental case was reopened in 2009 and dissolved petroleum concentrations are decreasing, with the exception of MTBE in well MW-13A. Additional downgradient characterization of groundwater beneath the Site is necessary to close this data gap.	Yes	Perform downgradient CPT investigation offsite and in adjacent high school athletic field
	Extent in Deeper Groundwater	An environmental impact assessment in deeper groundwater was performed at the Site by Broadbent in 2007 (Broadbent, 2007). Deep zone depth discrete groundwater samples were collected at depths between 21 and 25 ft bgs. Concentrations of GRO, benzene, and MTBE were detected at maximum concentrations of 84 μ g/L, 0.80 μ g/L, and 110 μ g/L, respectively. In addition, the deep zone groundwater monitoring network at the Site include a source area well MW-11B and downgradient wells MW-12B and MW-13B. Deep zone isoconcentration maps for the most recent groundwater monitoring and sampling event (1Q13) for GRO and benzene are	Yes	Perform vertical CPT investigation on- and offsite

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and Extent of Environmental Impacts (continued)	Extent in Deeper Groundwater (continued)	 included as Drawings 5 and 6, respectively. Concentrations of these deep zone wells have decreased significantly since their installation, with the exception of MTBE in deep zone wells MW-12B and MW-13B (Table 2). Based on the observed decreasing trends, with the exception of MTBE in wells MW-12B and MW-13B, the extent of petroleum compounds is small and the plume appears to be shrinking (Appendix B). Concentrations of MTBE in offsite monitoring wells MW-12B and MW-13B has been increasing over time and has been decreasing in onsite monitoring well MW-13B the extent of petroleum compounds is small and the plume appears to be shrinking (Appendix B). Concentrations of MTBE in offsite monitoring wells MW-12B and MW-13B therefore, it is possible that the MTBE plume is detached. In addition, based on these drawings, the extent of petroleum compounds is well defined in all directions, and is predominately limited to onsite, with the exception of MTBE in the northwestern end of the Site and in offsite wells. Therefore, a CPT investigation will be performed downgradient and offsite to further delineate the MTBE plume and to close this data gap. Although groundwater has been monitored in deeper monitoring wells, previous evaluation of Site hydrogeology does not indicate that these well screens represent different water-bearing zones beneath the Site. According to the lithology presented above and in the cross sections, the subsurface consists primarily of sands and sands with fines, with some discontinuous layers of silts and clays. Site lithologies as presented in the cross sections do not indicate that multiple water bearing zones are present at the Site. There is a 3 foot clay/silt layer in between the screen intervals at MW-12A and MW-12B; however, it is likely that this layer does not indicate that two water bearing zones are present at the two screen intervals. Due to the uncertainty regarding the vertical connectivity of the screen intervals at wells MW-11A, MW-11B, MW-12A, MW-12B, MW-13		
	Extent in Soil Vapor	A soil vapor investigation has not been conducted at the Site. However, due to current concentrations of petroleum compounds and their location (at an active service station and under a street), soil vapor assessment is not warranted at this time. If migration of contaminants are documented at the proposed sampling locations, downgradient of the Site and in the high	Possible	Advance soil vapor borings downgradient of the Site

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
		school athletic field, then the necessity for an offsite (in the high school) soil vapor investigation will be evaluated.		
Migration Pathways	Potential Conduits	A potential transmissive conduit study was performed by Broadbent for the Site (Drawing 7). However, the exact or estimated depths of the conduits were not presented. A sanitary sewer, natural gas, storm drain, water, and power lines are located along Park Boulevard, and gas, water, and sanitary sewer lines are located on East 34 th Street. Utility lines generally tend to be shallow (above 10 ft bgs), and depth to groundwater at the Site is between 1.24 to 14.91 ft bgs. Thus, migration through the utility trenches is possible. Groundwater monitoring data from wells MW-13A and MW-13B, located downgradient of the Site and across Park Boulevard, have not contained any hydrocarbon concentrations since their installation, with the exception of MTBE concentrations, indicating migration through the utility trenches for GRO and benzene have not likely occurred. However, since concentrations of MTBE have been observed and are increasing in the offsite monitoring wells MW-13A and MW-13B, it is possible that migration of MTBE through the utility trenches may have occurred due to MTBE being lighter than most hydrocarbon petroleum compounds. In addition, concentrations of MTBE in offsite monitoring wells MW-12B, MW-13A, and MW-13B has been increasing over time and has been decreasing in onsite monitoring wells MW-11A is therefore, it is possible that the MTBE plume is detached. However, hydrocarbon concentrations in Site monitoring wells have decreased over time and will continue to decrease on Site, which may negate concerns regarding migration of MTBE through the utility trenches.	Yes	Perform a detailed preferential pathway study and perform a CPT investigation downgradient of the potential offsite source
Potential Receptors	Onsite	No onsite water supply wells or surface water bodies exists. The only potential onsite receptor would be onsite workers exposed to gasoline vapors. However, the exposure from current fueling operations represents a greater risk than any associated with potential groundwater or soil vapor exposure (CSWRCB, 2012).	None	NA

CONCEPTUAL SITE MODEL Atlantic Richfield Company Station No. 2107 3310 Park Avenue Oakland, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential	Offsite	As discussed above, the nearest surface water bodies are the Central Reservoir and Lake	Yes	Perform
Receptors (continued)		Merritt, located approximately 3,500 ft upgradient and 4,500 ft downgradient of the Site, respectively.		downgradient CPT investigation
		Since a sensitive receptor survey has not been performed at the Site, the presence of nearby water supply wells is not known. Therefore, a sensitive receptor survey is being proposed in the preceding Revised Work Plan.		in adjacent high school athletic field and perform
		In addition, the Oakland High School is located downgradient of the Site. Therefore, a groundwater investigation has been proposed to identify the potential extent of MTBE in downgradient groundwater near the Site. Pending results from groundwater investigation, Oakland High School is currently considered a potential offsite receptor.		a Sensitive Receptor Survey

Notes:

ACEH = Alameda County Environmental Health
ARC = Atlantic Richfield Company
bgs = below ground surface
CSM = Conceptual Site Model
CSWRCB = California State Water Resources Control Board
ft = foot
ft/ft = foot per foot
GRO = Gasoline Range Organics
LNAPL = Light-Non Aqueous Phase Liquid

mg/kg = milligrams per kilogram MTBE = Methyl tert-butyl Ether NA = Not Applicable No. = Number ppm = Parts per billion UST = Underground Storage Tank μg/L = micrograms per liter

References:

State Water Resources Control Board. 17 April 2012. *Low-Threat Underground Storage Tank Case Closure Policy*. URS, 31 January 2003. *Product Line Removal and Upgrade Soil Sampling Report*.

Table 2. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

			Top of	Bottom of		Water Level			Concentr	ations in µg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-11A															
3/9/2009	Р	120.85	16.00	20.00	12.41	108.44	1,000	1.5	<1.0	13	4.8	60	9.20	12.74	
6/18/2009	Р		16.00	20.00	14.58	106.27	260	11	<5.0	6.8	<5.0	280		9.83	а
9/1/2009	Р		16.00	20.00	8.75	112.10	1,400	28	20	61	6.7	340	1.40	7.84	
11/11/2009			16.00	20.00	10.40	110.45							1.55	12.5	
2/19/2010	Р		16.00	20.00	8.90	111.95	1,300	20	17	25	<5.0	340	2.01	12.13	
7/23/2010	Р		16.00	20.00	8.37	112.48	1,300	20	22	23	<5.0	350	1.11	12.0	
3/10/2011	Р		16.00	20.00			250	<5.0	5.4	<5.0	<5.0	76	4.17	12.3	b, c (GRO)
8/8/2011	NP		16.00	20.00	14.88	105.97	730	7.3	16	11	<5.0	310	1.47	12.1	
1/16/2012	Р		16.00	20.00	14.08	106.77							1.43	13.77	
9/11/2012	Р		16.00	20.00	14.91	105.94	220	4.4	11	6.4	<2.0	280	1.36	12.76	
3/26/2013	Р		16.00	20.00	13.70	107.15	260	<2.5	4.2	<2.5	<5.0	330	5.03	12.75	
MW-11B															
3/9/2009	Р	121.31	26.00	30.00	7.33	113.98	280	1.3	1.3	7.6	<0.50	240	9.56	7.14	
6/18/2009	Р		26.00	30.00	7.38	113.93	130	<5.0	<5.0	<5.0	<5.0	200		6.96	а
9/1/2009	Р		26.00	30.00	7.66	113.65	69	<5.0	<5.0	<5.0	<5.0	210	1.01	7.01	
11/11/2009	Р		26.00	30.00	7.70	113.61	55	<5.0	<5.0	<5.0	<5.0	200	0.38	6.7	
2/19/2010	Р		26.00	30.00	7.59	113.72	68	<2.5	<2.5	<2.5	<2.5	180	2.38	7.44	
7/23/2010	Р		26.00	30.00	7.42	113.89	<50	<2.5	<2.5	<2.5	<2.5	110	1.57	7.02	
3/10/2011	Р		26.00	30.00	7.25	114.06	<50	<1.0	<1.0	<1.0	<1.0	58	1.86	6.8	
8/8/2011	Р		26.00	30.00	7.24	114.07	<50	<1.0	<1.0	<1.0	<1.0	60	1.33	7.8	
1/16/2012	Р		26.00	30.00	7.96	113.35	<50	<1.0	<1.0	<1.0	<1.0	47	4.33	8.8	
9/11/2012	Р		26.00	30.00	7.61	113.70	<50	<0.50	<0.50	<0.50	<1.0	27	1.17	7.07	
3/26/2013	Р		26.00	30.00	7.57	113.74	<50	<0.50	<0.50	<0.50	<1.0	26	1.95	6.85	
MW-12A															
3/9/2009	Р	120.64	13.00	18.00	8.70	111.94	<50	<0.50	<0.50	<0.50	<0.50	41	4.62	6.76	
6/18/2009	Р		13.00	18.00	8.58	112.06	<50	<1.0	<1.0	<1.0	<1.0	40		7.92	а
9/1/2009	Р		13.00	18.00	9.21	111.43	<50	<0.50	<0.50	<0.50	<0.50	39	1.06	6.97	
11/11/2009	Р		13.00	18.00	9.15	111.49	<50	<1.0	<1.0	<1.0	<1.0	41	0.51	6.2	
2/19/2010	Р		13.00	18.00	9.13	111.51	<50	<0.50	<0.50	<0.50	<0.50	32	0.38	6.58	

Table 2. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

			Top of	Bottom of		Water Level			Concentr	ations in µg	j/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-12A Cont.															
7/23/2010	Р	120.64	13.00	18.00	9.18	111.46	<50	<0.50	<0.50	<0.50	<0.50	34	0.68	7.6	
3/10/2011	Р		13.00	18.00	8.43	112.21	<50	<0.50	<0.50	<0.50	<0.50	27	1.66	6.7	
8/8/2011	Р		13.00	18.00	8.33	112.31	<50	<0.50	<0.50	<0.50	<0.50	32	3.40	7.5	
1/16/2012	Р		13.00	18.00	9.12	111.52	<50	<0.50	<0.50	<0.50	<0.50	18	0.84	7.32	
9/11/2012	Р		13.00	18.00	8.95	111.69	<50	<0.50	<0.50	<0.50	<1.0	22	1.20	6.99	
3/26/2013	Р		13.00	18.00	8.68	111.96	<50	<0.50	<0.50	<0.50	<1.0	17	1.07	6.76	
MW-12B															
3/9/2009	Р	120.84	27.00	30.00	14.89	105.95	<50	<0.50	0.55	<0.50	<0.50	150	5.87	7.74	
6/18/2009	Р		27.00	30.00	13.51	107.33	140	<2.5	<2.5	<2.5	<2.5	380		8.60	а
9/1/2009	Р		27.00	30.00	9.54	111.30	89	<10	<10	<10	<10	460	0.99	6.88	
11/11/2009	Р		27.00	30.00	11.53	109.31	<50	<5.0	<5.0	<5.0	<5.0	600	1.00	6.46	
2/19/2010	Р		27.00	30.00	11.07	109.77	52	<5.0	<5.0	<5.0	<5.0	620	3.32	6.89	
7/23/2010	Р		27.00	30.00	10.75	110.09	<50	<10	<10	<10	<10	510	1.70	7.54	
3/10/2011	Р		27.00	30.00	10.05	110.79	<50	<10	<10	<10	<10	700	2.71	6.9	
8/8/2011	Р		27.00	30.00	9.35	111.49	<50	<10	<10	<10	<10	510	1.70	6.9	
1/16/2012	Р		27.00	30.00	9.45	111.39	<50	<12	<12	<12	<12	840	3.36	7.0	
9/11/2012	Р		27.00	30.00	9.31	111.53	<50	<5.0	<5.0	<5.0	<10	790	1.13	7.13	
3/26/2013	р		27.00	30.00	8.86	111.98	<50	<0.50	<0.50	<0.50	<1.0	34	4.93	7.03	
MW-13A															
3/9/2009	Р	114.55	11.50	16.50	9.53	105.02	<50	<0.50	<0.50	<0.50	<0.50	13	9.39	7.64	
6/18/2009	Р		11.50	16.50	2.88	111.67	<50	<0.50	<0.50	<0.50	<0.50	23		7.21	а
9/1/2009	Р		11.50	16.50	3.31	111.24	<50	<0.50	<0.50	<0.50	<0.50	34	0.96	6.90	
11/11/2009	Р		11.50	16.50	3.66	110.89	<50	<0.50	<0.50	<0.50	<0.50	21	1.79	6.5	
2/19/2010	Р		11.50	16.50	3.43	111.12	<50	<0.50	<0.50	<0.50	<0.50	15	0.92	6.69	
7/23/2010	Р		11.50	16.50	3.22	111.33	<50	<0.50	<0.50	<0.50	<0.50	24	1.4	7.0	
3/10/2011	Р		11.50	16.50	2.57	111.98	<50	<0.50	<0.50	<0.50	<0.50	12	0.76	6.7	
8/8/2011	Р		11.50	16.50	8.43	106.12	<50	<0.50	<0.50	<0.50	<0.50	29	3.59	7.2	
1/16/2012	Р		11.50	16.50	3.11	111.44	<50	<0.50	<0.50	<0.50	<0.50	37	1.25	7.08	
9/11/2012	Р		11.50	16.50	3.03	111.52	<50	<0.50	<0.50	<0.50	<1.0	64	1.50	6.98	

Well ID and		тос	Top of Screen	Bottom of Screen	DTW	Water Level Elevation	Concentrations in µg/L GRO/ Ethyl- Total						DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	МТВЕ	(mg/L)	рН	Footnote
MW-13A Cont.															
3/26/2013	р	114.55	11.50	16.50	2.74	111.81	<50	<0.50	<0.50	<0.50	<1.0	51	1.19	6.76	
MW-13B															
3/9/2009	Р	114.75	18.50	22.50	2.96	111.79	<50	<0.50	<0.50	<0.50	<0.50	13	8.44	6.99	
6/18/2009	Р		18.50	22.50	2.85	111.90	<50	<0.50	<0.50	<0.50	<0.50	12		6.92	а
9/1/2009	Р		18.50	22.50	3.36	111.39	<50	<0.50	<0.50	<0.50	<0.50	17	0.96	7.29	
11/11/2009	Р		18.50	22.50	3.49	111.26	<50	<0.50	<0.50	<0.50	<0.50	21	2.45	6.39	
2/19/2010	Р		18.50	22.50	3.10	111.65	<50	<0.50	<0.50	<0.50	<0.50	19	1.46	6.50	
7/23/2010	Р		18.50	22.50	2.74	112.01	<50	<0.50	<0.50	<0.50	<0.50	15	1.16	7.19	
3/10/2011	Р		18.50	22.50	3.72	111.03	<50	<0.50	<0.50	<0.50	<0.50	31	0.72	6.6	
8/8/2011	Р		18.50	22.50	2.48	112.27	<50	<0.50	<0.50	<0.50	<0.50	32	1.51	6.8	
1/16/2012	Р		18.50	22.50	3.47	111.28	<50	<0.50	<0.50	<0.50	<0.50	49	0.86	6.8	
9/11/2012	Р		18.50	22.50	3.15	111.60	<50	<0.50	<0.50	<0.50	<1.0	63	1.62	7.05	
3/26/2013	р		18.50	22.50	2.92	111.83	<50	<0.50	<0.50	<0.50	<1.0	62	1.37	6.86	

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Symbols & Abbreviations: -- = Not measured/applicable/analyzed/sampled µg/L = Micrograms per liter DO = Dissolved oxygen DTW = Depth to water in ft below TOC GRO = Gasoline range organics mg/L = Milligrams per liter MTBE = Methyl tert butyl ether < = Not detected at or above specified laboratory reporting limit NP = Well not purged prior to sampling P = Well purged prior to sampling TOC = Top of casing in ft above NAVD88 datum

Footnotes:

a = DO meter not working
b = Well full of water
c = Quantitation of unknown hydrocarbons(s) in sample based on gasoline

Notes:

Values for DO and pH were obtained through field measurements

Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Well ID and				Concentrat					
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-11A									
3/9/2009		<20	60	<1.0	<1.0	<1.0			
6/18/2009	<3,000	<100	280	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	340	<5.0	<5.0	5.3	<5.0	<5.0	
2/19/2010	<3,000	<100	340	<5.0	<5.0	6.1	<5.0	<5.0	
7/23/2010	<3,000	<100	350	<5.0	<5.0	6.5	<5.0	<5.0	
3/10/2011	<6,000	<100	76	<5.0	<5.0	<5.0	<5.0	<5.0	
8/8/2011	<3,000	<100	310	<5.0	<5.0	<5.0	<5.0	<5.0	
9/11/2012	<300	<20	280	<1.0	<1.0	4.1	<1.0	<1.0	
3/26/2013	<750	<50	330	<2.5	<2.5	3.9	<2.5	<2.5	
MW-11B									
3/9/2009		<10	240	<0.50	<0.50	3.1			
6/18/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	210	<5.0	<5.0	<5.0	<5.0	<5.0	
11/11/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<1,500	<50	180	<2.5	<2.5	<2.5	<2.5	<2.5	
7/23/2010	<1,500	<50	110	<2.5	<2.5	<2.5	<2.5	<2.5	
3/10/2011	<600	<20	58	<1.0	<1.0	<1.0	<1.0	<1.0	
8/8/2011	<600	<20	60	<1.0	<1.0	<1.0	<1.0	<1.0	
1/16/2012	<600	33	47	<1.0	<1.0	<1.0	<1.0	<1.0	
9/11/2012	<150	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	26	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12A									
3/9/2009		<10	41	<0.50	<0.50	<0.50			
6/18/2009	<600	<20	40	<1.0	<1.0	<1.0	<1.0	<1.0	
9/1/2009	<300	<10	39	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<600	<20	41	<1.0	<1.0	<1.0	<1.0	<1.0	
2/19/2010	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 3. Summary of Fuel Additives Analytical Data

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA
--

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-12A Cont.									
1/16/2012	<300	19	18	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	22	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12B									
3/9/2009		<10	150	<0.50	<0.50	<0.50			
6/18/2009	<1,500	<50	380	<2.5	<2.5	<2.5	<2.5	<2.5	
9/1/2009	<6,000	<200	460	<10	<10	<10	<10	<10	
11/11/2009	<3,000	<100	600	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<3,000	<100	620	<5.0	<5.0	5.1	<5.0	<5.0	
7/23/2010	<6,000	<200	510	<10	<10	<10	<10	<10	
3/10/2011	<6,000	<200	700	<10	<10	<10	<10	<10	
8/8/2011	<6,000	<200	510	<10	<10	<10	<10	<10	
1/16/2012	<7,500	320	840	<12	<12	<12	<12	<12	
9/11/2012	<1,500	<100	790	<5.0	<5.0	8.7	<5.0	<5.0	
3/26/2013	<150	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-13A									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	23	<0.50	<0.50	<0.50	<0.50	<0.50	
9/1/2009	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	24	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	29	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	26	37	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	64	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	51	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-13B									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 3. Summary of Fuel Additives Analytical Data

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-13B Cont.									
9/1/2009	<300	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	19	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	31	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	19	49	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	63	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	62	<0.50	<0.50	<0.50	<0.50	<0.50	

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Symbols & Abbreviations: -- = Not analyzed/applicable/measurable < = Not detected above reported detection limit 1,2-DCA = 1,2-Dichloroethane µg/L = Micrograms per Liter DIPE = Diisopropyl ether EDB = 1, 2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Butyl alcohol

Notes: All volatile organic compounds analyzed using EPA Method 8260B

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
3/9/2009	Northeast	0.06
6/18/2009	Northeast	0.06
9/1/2009	North-Northwest	0.03
11/11/2009	North	0.05
2/19/2010	North	0.03
7/23/2010	North	0.05
3/10/2011	North-Northwest	0.04
8/8/2011	North	0.03
1/16/2012	North-Northwest	0.02
9/11/2012	North-Northwest	0.03
3/26/2013	North-Northwest	0.01

Table 4. Historical Groundwater Gradient - Direction and Magnitude ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Appendix A Recent Regulatory Correspondence

Kristene Tidwell

From:	Roe, Dilan, Env. Health <dilan.roe@acgov.org></dilan.roe@acgov.org>
Sent:	Thursday, February 21, 2013 5:32 PM
To:	Couch, Shannon L. (URS) (Shannon.Couch@bp.com); Skance, John
Cc:	Kristene Tidwell; Tom Venus; Matt Herrick
Subject:	Fuel Leak Case No. RO0000307 (BP Station 402), Fuel Leak Case No. RO0002526 (BP
Subject:	Station 2107), Fuel Leak Case No. RO0000494 (BP Station 2111), Fuel Leak Case No. RO0000190 (BP Station 2162), Fuel Leak Case No. RO0000078 (BP Station 374)
Attachments:	BP Workplans.docx

Shannon and John:

Alameda County Environmental Health has reviewed the five work plans recently submitted by Broadbent & Associates, Inc. (BAI) for the subject sites (see attached file for details). ACEH has evaluated the data and recommendations presented in the work plans in conjunction with information contained in the case files and the State Water Resources Control Board's Low Threat Closure Policy (LTCP) criteria.

Due to the extensive nature of our comments on the work plans, I scheduled several lengthy teleconference calls with BAI staff last month on January 2, January 11, and January 28 to discuss the inadequacy of the proposed scopes of work. My concerns include but are not limited to the lack of site conceptual models for the site that justify the proposed scope of work, the failure to address data gaps that are critical to advancing your sites towards closure under the LTCP, a lack of understanding of the LTCP criteria, and the lack of inclusion of standard elements in the work plans that address goals and objectives, data quality objectives, and standard operating procedures/sampling and analysis plan.

Local Oversight Agencies are under mandate by the SWRCB to conduct evaluations of all sites using the LTCP, identify data gaps and impediments to closure, and work with responsible parties to develop a Path to Closure Plan by December 31, 2013. The Path to Closure must have milestone dates by calendar quarter which will achieve site cleanup and case closure in a timely and efficient manner that minimizes the cost of corrective action.

Therefore, I would like to schedule a meeting with you both as well as Matt Herrick, Kristine Tidwell, and Tom Venus to discuss our comments and a more efficient path forward. I would like to schedule a four hour meeting as my comments are extensive and the goal of this meeting is for everyone to come away with a thorough understanding of each of the sites and a plan to <u>efficiently</u> move them towards closure.

Please propose some times in the near future when your team could be available to meet, with the exception of next week.

Thank you,

Dilan Roe, P.E. Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 510.567.6767; Ext. 36767 QIC: 30440 dilan.roe@acgov.org

PDF copies of case files can be reviewed/downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

BP Station Number	Fuel Leak Case Number	Work Plan Title	Prepared By	Date Received	ACEH Response
Station 402	RO0000307	Revised Workplan for Monitoring Well Installation and Vapor Intrusion Assessment	Tom Venus, BAI	11/8/2012	Teleconference call and email correspondence with Tom Venus on 1/2/2013 to discuss ACEH comments on work plan including proposed locations of groundwater monitoring wells (plume delineation due to variable groundwater flow directions, proposed long screen intervals (purpose of monitoring – gravel aquifer, clay layers, water table fluctuations, etc.), collection of soil samples in the vadose zone only, and attempts to locate monitoring wells MW-1, MW-2, and MW-3.
Station 2107	RO0002526	Work Plan for Groundwater Investigation	Kristine Tidwell, BAI	11/08/2012	Teleconference call on 1/11/2013 to discuss ACEH's concerns with proposed off-site investigation without an updated SCM that discusses vertical gradients observed in nested monitoring wells.
Station 2111	RO0000494	Revised Soil & Groundwater Investigation Work Plan	Kristine Tidwell, BAI	11/08/2012	Teleconference call with Kristine Tidwell on 1/11/2013 and email correspondence on 1/14/2013 to discuss ACEH comments on work plan including soil boring locations, soil and groundwater sample collection and analysis methods, well survey evaluation, evaluation of monitoring well MW-8 and validation of data, confirmation sampling, and vapor intrusion to indoor air in adjacent off-site buildings.
Station 2162	RO0000190	Revised Work Plan for Off-Site Groundwater Investigation	Tom Venus, BAI	1/3/2013	ACEH review complete – work plan not supported by a SCM and data gaps not addressed.
Station 374	RO0000078	Soil Vapor Investigation WP	Kristine Tidwell, BAI	11/21/2012	Teleconference call on 1/28/2013 to discuss ACEH's comments on work plan including adequacy of proposed soil vapor investigation in light of shallow groundwater conditions, migration in utility corridors, and potential vapor intrusion in adjacent buildings.

Appendix B Previous Environmental Activities at Site

Previous Environmental Activities at Site

On January 12, 1987, contamination by petroleum hydrocarbons was discovered during excavation and removal of a waste-oil underground storage tank (UST) and three gasoline USTs from the Site. With this discovery, Alameda County Environmental Health (ACEH) opened the release/leak case number RO651. In a letter dated July 11, 1997, ACEH confirmed that no further action was required at the Site. However, methyl tert-butyl ether (MTBE) was not requested or required to be analyzed prior to the time of closure. Therefore, the remediation and monitoring infrastructure (nine monitoring wells and one remediation well) were removed from the Site, with the exception of remediation piping which was left under the main driveway. No additional environmental work was conducted at the Site until product line removal and upgrade construction activities in October and November of 2002. Historical data prior to closure of ACEH Case No.RO651, including geologic cross-sections, boring location maps, summarized soil and groundwater laboratory analytical results, and remediation system data, are mostly available within the ACEH files. However, due to the dates of completion and incomplete records, soil boring logs could not be located for the various subsurface investigations conducted prior to 1997.

In November 2002, URS oversaw a product line upgrade at the Site. Numerous soil samples were collected during the product line upgrading activities from depths ranging between 3.5 and 7.5 feet (ft) below ground surface (bgs). Gasoline Range Organics (GRO, C6-C12) was detected above laboratory reporting limits in six of the 20 collected soil samples, including over-excavation samples, at concentrations up to 4,000 milligrams per kilogram (mg/kg) in sample S-D7. Benzene was detected above laboratory reporting limits in one of the 20 soil samples collected at a concentration of 0.89 mg/kg in sample S-L2. Toluene, ethylbenzene, and total xylenes were detected above laboratory reporting limits in four of the 20 soil samples collected at maximum concentrations of 220 mg/kg, 150 mg/kg, and 1,100 mg/kg, respectively, in sample S-D7. MTBE was detected above laboratory reporting limits in 14 of the 20 collected soil samples at maximum concentrations of 83 mg/kg in sample S-L3.

Two groundwater samples (T-1 and BT-1) were collected during product line replacement activities. Sample T-1 was collected at eight ft bgs from the area underneath dispenser 8 (S-D8-5) and BT-1, collected from groundwater extracted during excavation activities. A water sample (Sump-1) was also collected from the sump for UST1, which appeared to contain light-non aqueous phase liquid (LNAPL). Laboratory analysis of sample Sump-1 indicated very high concentrations of GRO, benzene, toluene, ethylbenzene, and xylenes (BTEX), and MTBE, most likely due to the presence of LNAPL within the sump. GRO was detected above the laboratory reporting limit in sample T-1 at a concentration of 4,200 micrograms per liter (µg/L). BTEX was detected above the laboratory reporting limit in sample T-1 at concentrations of 300 µg/L, 3,200 µg/L, 1,300 µg/L, and 11,000 µg/L, respectively. MTBE was reported above the laboratory reporting limit in both samples T-1 and BT-1 at concentrations of 4,900 µg/L and 1,800 µg/L, respectively. Concentrations discovered during product line replacement activities indicated a potential release. Therefore, an Unauthorized Release Report was issued for the Site on January 21, 2003. Field activities are summarized in the URS *Product Line Removal and Upgrade Soil Sampling Report* dated January 31, 2003. A site map depicting sampling locations is provided as Drawing 2. A summary of laboratory analytical data are provided in Appendix C.

Additional groundwater investigation activities were carried out at the Site in March and May 2004. A total of 20 soil samples and four groundwater samples were collected during the additional investigation. GRO was detected above the laboratory reporting limits in one of the 20 soil samples at a

concentration of 350 mg/kg in sample SB-4-1.0. Toluene and total xylenes were detected above the laboratory reporting limits in soil samples collected from SB-1-5 at concentrations of 0.096 mg/kg and 0.016 mg/kg, respectively. MTBE was detected above laboratory reporting limits in three of the 20 soil samples at maximum concentrations of 0.027 mg/kg in samples SB-3-13 and SB-3-23.0. No additional analytes were detected above their respective reporting limits.

GRO was detected above laboratory reporting limits in one of the four groundwater samples collected at a concentration of 88 μ g/L in sample SB-3. Toluene was detected above the laboratory reporting limit in one of the four groundwater samples collected at a concentration of 1.4 μ g/L in sample SB-2. MTBE was detected above the laboratory reporting limit in two of the four samples at a concentration of 34 μ g/L in samples SB-3 and SB-5. No additional analytes were detected above their respective reporting limits.

On August 30, 2004, URS received a letter from ACEH requesting additional field work at the Site to complete the scope of work proposed in the original work plan and addendum. The ACEH also requested depth-discrete groundwater sampling.

URS addressed the ACEH requests by conducting a soil and groundwater investigation. URS collected twelve depth-discrete groundwater samples from six locations (HP-3 through HP-8). URS also collected 26 soil samples from six onsite borings (SB-7 through SB-8 and HP-3). Soil analytical results from this investigation are summarized as follows:

- GRO was detected above the laboratory reporting limit in five of the 26 samples at concentrations ranging from 0.31 mg/kg (SB-11-6.5) to 220 mg/kg (SB-11-11.5);
- Total Xylenes were detected above the laboratory reporting limit in two of the 26 samples at concentrations of 0.011 mg/kg (SB-8-29.5) and 0.012 mg/kg (SB-11-29.5); and
- MTBE was detected above the laboratory reporting limit in 10 of the 26 soil samples at concentrations ranging from 0.0069 mg/kg (SB-9-19.5) and 0.56 mg/kg (SB-9-13.5).

Groundwater analytical results from this investigation are summarized as follows:

- GRO was detected above the laboratory reporting limit in six of the 12 samples collected at concentrations ranging from 72 μg/L (HP-6-30) and 1,300 μg/L (HP-7-20);
- Benzene was detected above the laboratory reporting limit in three of the 12 samples at concentrations ranging from 0.64 μg/L (HP-3-35) to 1.6 μg/L (HP-4-18);
- Toluene was detected above the laboratory reporting limit in eight of the 12 samples collected at concentrations ranging from 7.0 μg/L (HP-5-18) to 38 μg/L (HP-4-18);
- Ethylbenzene was detected above the laboratory reporting limit in seven of the 12 samples at concentrations ranging from 0.94 μg/L (HP-5-18) to 5.4 μg/L (HP-4-18);
- Total Xylenes were detected above the laboratory reporting limit in eight of the 12 samples at concentrations ranging from 6.2 μ g/L (HP-5-18) to 27 μ g/L A(HP-4-18); and
- MTBE was detected above the laboratory reporting limit in seven of the 12 samples collected at concentrations ranging from 6.6 μg/L (HP-6-30) to 3,700 μg/L (HP-7-30).

Results of this subsurface investigation are provided in Appendix C.

On June 25 and 26, 2007, Stratus observed RSI Drilling (RSI) advance a total of eight soil borings in four distinct locations on the north side of Park Boulevard, north of the Site, to evaluate the off-site horizontal extent of petroleum hydrocarbon impacted soil and groundwater. Soil borings SB-12 through SB-15 and Hydropunch[®] borings HP-9 through HP-12 were installed along the north side of Park

Boulevard. Each soil boring was advanced to a maximum depth of 30 feet bgs, with each Hydropunch[®] boring advanced to a maximum depth of 25 ft bgs.

MTBE was detected above the laboratory reporting limit of 0.005 mg/kg in two of the 16 soil samples collected June 25 and 26, 2007 at concentrations of 0.0087 mg/kg in boring sample SB12-15 and 0.0065 mg/kg in boring sample SB15-23. The remaining analytes were not detected above their respective reporting limits. GRO was detected above the laboratory reporting of 50 µg/L in three of the seven groundwater samples collected at concentrations of 51 µg/L in sample HP9-13, 59 µg/L in sample HP11-24, and 84 µg/L in sample HP12-25. Benzene was detected above the laboratory reporting limit of 0.50 µg/L in two of the seven groundwater samples collected at concentrations of 0.63 µg/L in sample HP11-24 and 0.80 µg/L in sample HP10-24. MTBE was detected above the laboratory reporting limit of 0.50 µg/L in each of the seven groundwater samples collected at concentrations ranging from 0.78 µg/L in sample HP10-16 to 110 µg/L in sample HP12-25. The remaining analytes were not detected above their respective reporting limits in the collected Hydropunch[®] samples. Results were reported by Broadbent in the *Offsite Soil and Ground-Water Investigation Report* dated August 29, 2007.

Monitoring wells MW-11A, MW-11B, MW-12A, MW-12B, MW-13A and MW-13B were installed by Stratus downgradient of the Site in March 2009. These wells were constructed as shallow wells (MW-11A, MW-12A, and MW-13A) and deeper wells (MW-11B, MW-12B, and MW-13B). The shallow wells were completed to total depths around 18 ft bgs and the deeper wells were advanced to approximately 30 ft bgs. The highest concentrations of petroleum compounds were detected in well MW-12B, directly across the street from the Site in the downgradient direction (Drawing 2). Results of this investigation were presented in an investigation report by Broadbent (Broadbent, 2009).

Current hydrocarbon concentrations detected in Site monitoring wells are primarily MTBE, with the highest concentrations being detected in well MW-12B. Lower concentrations of MTBE are detected in wells MW-12A, MW-11B, MW-13A, and MW-13. This current data indicates that the extent of MTBE downgradient of the Site is not defined.

References

- ACEH, 15 April 2003. *Fuel Leak Case No.RO0002526, Arco #2107, 3310 Park Blvd., Oakland, CA 94610.* Letter to Atlantic Richfield Company.
- ACEH 30 August 2004. Fuel Leak Case No.RO0002526, Arco #2107, Active Automobile Service Station at 3310 Park Blvd., Oakland, California. Letter to Atlantic Richfield Company.
- ACEH, 10 January 2005. Fuel Leak Case No.RO0002526, ARCO #2107, Active Service Station at 3310 Park Blvd., Oakland, California – Response to Report and Workplan.
- ACEH, 16 October 2006. Fuel Leak Case No.RO0002526, ARCO #2107, Active Service Station at 3310 Park Blvd., Oakland, California – Work Plan Approval.
- Broadbent & Associates, Inc., 29 August 2007. Offsite Soil and Ground-Water Investigation Report, Atlantic Richfield Company Service Station #2107, 3310 Park Boulevard, Oakland, California; ACEH Case #R00002526.
- California Regional Water Quality Control Board, San Francisco Bay Region, June 1999. East Bay Plain Groundwater Basin, Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.
- Muir, Kenneth S., 1993. *Classification of Groundwater Recharge Potential in the East Bay Plain, Alameda County, California*. Alameda County Flood Control and Water Conservation District.
- State Water Resources Control Board. 17 April 2012. Low-Threat Underground Storage Tank Case Closure Policy.
- URS, 31 January 2003. Product Line Removal and Upgrade Soil Sampling Report.
- URS, 29 October 2003. Addendum to Work Plan for Additional Investigation.
- URS, 11 March 2004. Second Addendum to Work Plan for Additional Investigation.
- URS, 12 August 2004. Site Investigation Report and Well Installation Workplan, Atlantic Richfield Company Service Station #2107, 3310 Park Boulevard, Oakland, California, Fuel Leak Case No. RO0002526, URS Project No. 38486908.0013601.
- URS, 30 November 2004. Additional Site Investigation Report and Workplan for Offsite Investigation, Atlantic Richfield Company Service Station #2107, 3310 Park Boulevard, Oakland, California, Alameda County Case No. RO-0002526.
- URS, 5 April 2005. Conduit and Well Survey Report and Work Plan Addendum for Offsite Investigation, Atlantic Richfield Company Service Station #2107, 3310 Park Boulevard, Oakland, California, Alameda County Case No. RO-0002526.

Appendix C Historical Site Data and Soil Boring Logs

2

Quarterly Groundwater Monitoring ARCO Station 2107, 3310 Park Boulevard, Oakland, CA

March 9, 1993 69021.15

-

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 2107 Oakland, California (Page 1 of 7)						
<u>Well</u> Date	Well Elevation	Depth to Water	Water Elevation	Floating Product		
<u>MW-1</u>		2/2	116.22	0.125		
05/19/89		2.69	116.31	None		
07/19/90	118.91	2.60	116.30	None		
08/07/90		2.61	116.21	None		
08/14/90		2.70 NM	NM	NM		
08/23/90		NM	NM	NM		
08/28/90		2.69	116.22	None		
10/25/90		2.69	116.22	None		
01/23/91		2.68	116.23	None		
02/27/91		2.37	116.54	None		
03/19/91		2.40	116.51	None		
04/24/91 05/31/91		NM	NM	NM		
06/12/91		1.38	117.53	NM		
07/24/91		1.29	117.62	None		
08/08/91		NM	NM	NM		
09/13/91		NM	NM	NM		
10/31/91		NM	NM	NM		
11/20/91		NM	NM	NM		
12/24/91		2.78	116.13	None		
01/06/92		2.41	116.50	None		
04/16/92	118.15	2.71	115.44	None		
05/15/92		2.68	115.47	None		
06/30/92		2.45	115.70	None		
07/15/92		2.65	115.50	None		
08/25/92		2.67	115.48	None		
09/10/92		2.68	115.47	None		
10/31/92		4.10	114.05	None		
11/11/92		2.73	115.42	None		
12/16/92		2.56	115.59	None		
<u>MW-2</u>		4 67	116.22	Sheen		
05/19/89	447 70	1.57 1.49	116.30	None		
07/19/90	117.79	1.49	116.29	None		
08/07/90		1.57	116.22	None		
08/14/90		NM	NM	NM		
08/23/90		NM	NM	NM		
08/28/90		1.55	116.24	None		
10/25/90		1.56	116.23	None		
01/23/91		1.55	116.24	None		
02/27/91 03/19/91		1.25	116.54	None		

See notes on page 7 of 7.

March 9, 1993 69021.15

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 2107 Oakland, California (Page 2 of 7)							
Well Date	Well Elevation	Depth to Water	Water Elevation	Floating Product			
W-2 continued				North			
04/24/91		1.26	116.53	None			
05/31/91		NM	NM	NM			
06/12/91		1.31	116.48	None			
07/24/91		1.24	116.55	None			
08/08/91		NM	NM	NM NM			
09/13/91		NM	NM	NM			
10/31/91		NM	NM	NM			
11/20/91		NM	NM	None			
12/24/91		1.65	116.14 116.46	None			
01/19/92		1.33	115.40	None			
04/16/92	117.20	1.80	115.48	None			
05/15/92		1.72	115.68	None			
06/30/92		1.52 1.68	115.52	None			
07/15/92		1.08	115.48	None			
08/25/92		1.72	115.47	None			
09/10/92		6.52	110.68	None			
10/31/92		1.77	115.43	None			
11/11/92 12/16/92		1.59	115.61	None			
<u>MW-3</u>			114 60	None			
07/19/90	117.85	3.27	114.58 114.46	None			
08/07/90		3.39	114.46	None			
08/14/90		3.41 3.47	114.44	None			
08/23/90	117.85	3.47	114.36	None			
08/28/90		3.49	114.28	None			
10/25/90		3.74	114.11	None			
01/23/91		3.75	114.10	None			
02/27/91		3.33	114.52	None			
03/19/91		3.35	114.50	None			
04/24/91		3.52	114.33	None			
05/31/91		3.58	114.27	None			
06/12/91		3.66	114.19	None			
07/24/91 08/08/91		3.56	114.29	None			
09/13/91		3.68	114.17	None			

See notes on page 7 of 7.

March 9, 1993 69021.15

CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 2107 Oakland, California (Page 3 of 7)						
Well Date	Well Elevation	Depth to Water	Water Elevation	Floating Product		
W-3 (continued)						
10/31/91		3.30	114.55	None		
11/20/91		3.66	114.19	None		
12/24/91		3.66	114.19	None		
04/16/92		3.52	114.33	None		
05/15/92		3.65	114.20	None		
06/30/92		3.47	114.38	None		
07/15/92		4.06	113.79	None		
08/25/92		3.84	114.01	None		
09/10/92		3.86	113.99	None		
10/31/92		3.51	114.34	None		
11/11/92		3.83	114.02	None		
12/16/92		3.44	114.51	None		
MW-4			64 C 0.0	None		
07/19/90		1.69	116.05	None		
08/07/90	117.74	5.73	112.01 114.32	None		
08/14/90		3.42		None		
08/23/90		1.80	115.94	None		
08/28/90		1.83	115.91	None		
10/25/90		1.77	115.97	None		
01/23/91		2.08	115.66	None		
02/27/91		1.79	115.95	None		
03/19/91		1.37	116.37	방송 전화 전화		
04/24/91		1.40	116.34	None None		
05/31/91		1.44	116.30	None		
06/12/91		1.46	116.28	None		
07/24/91		1.52	116.22			
08/08/91		1.58	116.16 116.07	None		
09/13/91		1.67		None		
10/31/91		2.58	115.16	None		
11/20/91		3.79	113.95	None		
12/24/91		2.30	115.44	None		
04-16-92		2.45	115.29	None		
05/15/92		2.30	115.44	None		
06/30/92		2.26	115.48	None		
07/15/92 08/25/92		2.70 2.54	115.04 115.20	None		

See notes on page 7 of 7.

March 9, 1993 69021.15

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 2107 Oakland, California (Page 4 of 7)						
Well Date	Well Elevation	Depth to Water	Water Elevation	Floating Product		
AW-4 (continued)				All Colores		
09/10/92		2.47	115.27	None		
10/31/92		5.46	112.28	None		
11/11/92		2.34	115.40	None		
12/16/92		2.11	115.63	None		
<u>MW-5</u>			116.10	None		
07/19/90		1.90	116.10			
08/07/90	118.00	1.94	116.06	None		
08/14/90		1.96	116.04	Sheen		
08/28/90		1.90	116.10	None		
10/25/90		2.05	115.95	None		
08/23/90		1.99	116.01	None		
01/23/91		2.68	115.32	None		
02/27/91	118.00	2.56	115.44	None		
02/27/91		2.56	115.44	None		
03/19/91		2.44	115.56	None		
04/24/91		2.36	115.64	None		
05/31/91		2.08	115.92	None		
06/12/91		2.14	115.86	None		
07/24/91		2.20	115.80	None		
08/08/91		2.12	115.88	None		
09/13/91		2.23	115.77	None		
10/31/91		2.65	115.35	None		
11/20/91		2.54	115.46	None		
12/24/91		2.62	115.38	None		
04/16/92		3.26	114.74	None		
05/15/92		3.00	115.00	None		
06/30/92		2.79	115.21	None		
07/15/92		NM	NM	NM		
08/25/92		2.82	115.18	None		
09/10/92		2.81	115.19	None		
10/31/92		2.63	115.37	None		
11/11/92		2.81	115.19	None		
12/16/92		2.63	115.37	None		

See notes on page 7 of 7.

•

March 9, 1993 69021.15

TABLE 1 CUMULATIVE GROUNDWATER MONIFORING DATA. ARCO Station 2107 Oakland, California (Page 5 of 7)							
Well Date	Well Elevation	Depth to Water	Water Elevation	Floating Product			
<u>MW-6</u>	in an			N			
07/19/90		4.23	116.65	None			
08/07/90	120.88	4.67	112.01	None			
08/14/90		4.39	114.32	None			
08/23/90		4.35	115.94	None			
08/28/90		4.34 4.34	115.91 115.97	None			
10/25/90			115.66	None			
01/23/91		4.46 4.76	115.55	None			
02/27/91		4.14	116.74	None			
06/12/91		4.14	116.66	None			
07/24/91		4.60	116.28	None			
08/08/91		4.56	116.32	None			
03/19/91		4.28	116.60	None			
04/24/91		4.17	116.71	None			
05/03/91		4.27	116.61	None			
09/13/91 10/31/91		4.25	116.63	None			
11/20/91		4.30	116.58	None			
12/24/91		4.25	116.63	None			
04/16/92		4.58	116.30	None			
05/15/92		4.61	116.27	None			
06/30/92		4.52	116.36	None			
07/15/92		4.80	116.08	None			
08/25/92		4.73	116.15	None			
09/10/92		4.69	116.19	None			
10/31/92		4.60	116.28	None			
11/11/92		4.69	116.19	None			
12/16/92		4.33	116.55	None			
<u>MW-7</u>		600	108.12	None			
09/13/91	100.00	5.00	108.12	None			
10/31/91	113.12	5.00	105.12	None			
11/20/91		5.24 5.27	107.85	None			
12/24/91		3.47	108.24	None			
04/16/92		4.00	108.22	None			
07/15/92		NM	NM	NM			
08/25/92		4.71	108.41	None			
09/10/92		4.16	108.96	None			
10/31/92 11/11/92		4.70	108.42	None			
12/16/92		4.33	108.79	None			

See notes on page 7 of 7.

March 9, 1993 69021.15

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 2107 Oakland, California (Page 6 of 7)						
<u>Well</u> Date	Well Elevation	Depth to Water	Water Elevation	Floating Product		
<u>MW-8</u>				New		
05/15/92		4.89	108.23	None		
06/30/92		4.67	108.45	None		
07/15/92		4.90	108.22	NM		
08/25/92		NM	NM 109.41	None		
09/10/92		4.71	108.41 105.62	None		
09/13/91		9.12 9.42	105.32	None		
10/31/91	114.74	9.42	104.74	None		
11/20/91		10.02	104.72	None		
12/24/91		9.10	105.64	None		
04/16/92		8.92	105.82	None		
05/15/92		8.83	105.91	None		
06/30/92		9.15	105.59	None		
07/15/92		8.92	105.82	None		
08/25/92 09/10/92		8.87	105.87	None		
10/31/92		8.82	105.92	None		
11/11/92		8.97	105.77	None		
12/16/92		8.66	106.08	None		
<u>MW-9</u>		0.61	108.21	None		
06/30/92	117.72	9.51	108.21	None		
07/15/92		10.07 9.91	107.81	None		
08/25/92		9.85	107.87	None		
09/10/92		9.37	108.35	None		
10/31/92		9.39	108.33	None		
11/11/92 12/16/92		9.47	108.25	None		
<u>MW-10</u>			10000			
06/30/92	112.43	9.50	102.93	None		
07/15/92		6.75	105.68	None		
08/25/92		6.83	105.60	None		
09/10/92		6.81	105.62	None		
10/31/92		6.62	105.81	None		
11/11/92 12/16/92		6.90 6.45	105.53 105.98	None		

See notes on page 7 of 7.

......

March 9, 1993 69021.15

CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 2107 Oakland, California (Page 7 of 7)							
<u>Well</u> Date	Well Elevation	Depth to Water	Water Elevation	Floating Product			
<u>RW-1</u>	,, , , , , , , , , , , , , , , , , , ,			10.20			
11/11/92	not surveyed	3.33		None			
12/16/92		2.81		None			

Well elevation datum is mean sea level.

10 N

Table B-2 Historical Groundwater Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, TEPH as Diesel, and Oll and Grease)

ARCO Service Station 2107 3310 Park Boulevard at East 34th Street Oakland, California

Well	Date	TPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Vidence	TEPH as	Oil and
lumber	Sampled	(ppb)	(ppb)	(ppb)	(ppb)	Xylenes	Diesel	Grease
MW-1	08/10/94	250	21	3.7	(ppb) 0.8	(ppb)	(ppb)	(ppb)
	11/21/94	87	8.4	<0.5	<0.5	10	NA	N
	02/21/95	<50	<0.50	<0.50		<0.5	NA	N
	05/22/95	<50	3.2	5.1	<0.50 <0.50	<0.50	NA	N/
	08/23/95	<50	<0.50	<0.50		2.0	NA	N
	08/23/95	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
	11/20/95	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
		-00	-0.00	~0.00	<0.50	<0.50	NA	NA
MW-2	08/10/94	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	11/21/94	13	2.3	<0.5	<0.5	1.7	NA	NA
	02/21/95	<50	<0.50	<0.50	<0.50	< 0.50	NA	NA
	05/22/95	<50	<0.50	<0.50	<0.50	<0.50	NA	N/
	08/23/95	<50	<0.50	<0.50	<0,50	<0.50	NA	NA
	11/20/95	<50	1.5	<0.50	<0,50	<0.50	NA	NA
MW-3	07/16/90	4,000	430	8.7	27	05		
	10/25/90	5,400	800	6.6	25	85	NA	NA
	01/23/91	6,900	760	12		30	NA	NA
	04/24/91	4,300	800	<120	91	29	NA	NA
	07/24/91	3,400	620	<0.30	<120	<120	NA	NA
	10/31/91	4,100	690	<6.0	3.6	7.9	NA	NA
	03/12/92	4,100	090	<0.0	<6.0 Well inaccess	22	NA	NA
	04/16/92	2,800	790	<10.0	21		*****	
	06/30/92	1,100	170	<2.5	<2.5	<10.0	NA	NA
	09/10/92	790	44	<0.5		<2.5	880 *	N/
	09/25/92	NA	NA		1.1	1	NA	NA
	11/11/92	810	31	NA	NA	NA	3,300 •	NA
	02/08/93	390		<0.5	1.4	1.1	510 *	NA
	05/10/93	130	<0.5	5	1.3	0.9	290 *	NA
	08/27/93		<0.5	<0.5	<0.5	<0.5	110 *	NA
	11/12/93	52	<0.5	<0.5	<0.5	<0,5	<50	NA
		<50	<0.5	<0.5	· <0.5	<0.5	<50	NA
	02/08/94	<50	<0.5	<0.5	<0.5	<0.5	<50	NA
	05/04/94	<50	<0.5	<0.5	<0.5	<0.5	<50	NA
	08/10/94	<50	<0.5	<0.5	<0.5	<0.5	83 *	NA
	11/21/94	*********			- Well Inaccess	ible		
	02/21/95	310	<0.50	< 0.50	< 0.50	<0.50	360 *	NA
	05/22/95	100	<0.50	<0.50	<0.50	< 0.50	420 *	NA
	08/23/95			We	ell Sampled Sem	iannually		
	11/20/95	200	<0.50	<0.50	<0.50	<0.50	250 •	NA
MW-4	07/16/90	1,500	100	8.3	4.7	10	000	
		л т .	(200)	(15)	(16)	12 (25)	300	<5,000
	10/25/90	390	28	<0.5	1.6	1.4	- 100	
			(<4)	(<4)	(<4)		< 100	<5,000
	01/23/91	520	59	1.6	0.7	(<4)		
		1.00	(59)	(<2)		3.7	<100	<5,000
	04/24/91	260	87	<1.5	(<2)	(<2)		
	07/24/91	56	3.9		3.2	<1.5	NA	NA
	10/31/91	290		0.41	<0.30	0.3	NA	NA
	03/12/92	290	22	1.9	0.4	52	NA	NA
	04/16/92	260	 CO	<u> </u>	- Well Inaccessi			
	06/30/92	880	56	3.4	5.2	83	NA	NA
	09/10/92		270	18	22	23	160 *	NA
		270	80	0.6	3.6	<0.5	NA	NA
	09/25/92	NA	NA	NA	NA	NA	<50	NA
	11/11/92	<50	5.2	<0.5	<0.5	<0,5	<50	NA
	02/08/93	<50	<0.5	<0.5	<0.5	<0.5	<50	NA
	05/10/93	<50	<0.5	<0.5	<0.5	<0.5	<50	NA
	08/27/93	<50	<0.5	<0.5	<0.5	<0.5	<50	
	11/12/93	<50	<0.5	<0.5	<0,5	<0.5	<50	NA NA

×

Page 2 of 4

•

÷ .

Table B-2 (continued) Historical Groundwater Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, TEPH as Diesel, and Oll and Grease)

ARCO Service Station 2107 3310 Park Boulevard at East 34th Street Oakland, California

Well	Date	TPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Yulonee	TEPH as	Oil and
Number	Sampled	(ppb)	(ppb)	(ppb)	(ppb)	Xylenes	Diesel	Grease
MW-4	02/08/94	<50	<0.5	<0.5	<0.5	(ppb)	(ppb)	(ppb)
(cont.)	05/04/94	<50	1.4	2.1	<0.5	<0.5	<50	N
	08/10/94	<50	<0.5	<0.5	<0.5	5.9	<50	N
	11/21/94	<50	<0.5	<0.5	<0.5	<0.5	60 *	N
	02/21/95	<50	<0.50	<0.50	<0.50	<0.5	<50 *	N
	05/22/95	<50	0.73	1.3	<0.50	<0.50	<50	N
	08/23/95				Il Sampled Sen	<0.50	130 *	N
	11/20/95	<50	<0.50	<0 50	<0.50			
				-0.00	40.50	<0.50	NA	N
MW-5	07/16/90	22,000	500	97	100			
	10/25/90	21,000	750	30	120	1,300	NA	N
	01/23/91	15,000	510	22	190	1,800	NA	N
	04/24/91	15,000	580		130	710	NA	N
	07/24/91	16,000	1,500	260	160	1,100	NA	N
	10/31/91	21,000		820	190	750	NA	N
	03/12/92	21,000	1,500	84	310	1,000	NA	N
	04/16/92	9,600	630		Well Inaccess		· · · · · · · · · · · · · · · · · · ·	
	06/30/92	11,000		97	190	830	NA	N
	09/10/92	8,200	510	54	120	740	4,800 *	NA
	09/25/92		210	14	54	170	NA	NA
	11/11/92	NA 7 100	NA	NA	NA	NA	570 *	NA
	02/08/93	7,100	230	<10 **	62	87	3,700 *	N/
	05/10/93	3.5	98	<10 **	<10 **	18	1,800 *	NA
		350	13	<0.5	1.2	0.9	240 *	NA
1 0	08/27/93	180	11	5	0.8	1.1	140 .	
	11/12/93	<50	<0,5	<0.5	<0.5	<0.5	<50	NA
	02/08/94	300	13	57	5.7	38	70 *	NA
e	05/04/94	<50	<0.5	<0.5	<0.5	<0.5	<50	NA
	08/10/94	<50	1.8	<0.5	1.5	<0.5		NA
	11/21/94	<50	<0.5	<0.5	<0.5	<0.5	60 *	NA
	02/21/95	<50	1.2	2.0	0.52		59 *	NA
	05/22/95	<50	<0.50	<0.50	<0.50	1.1	150 *	NA
	08/23/95	t			Sampled Sem	<0.50	270 *	NA
	11/20/95	<50	<0.50	0.51	<0.50	<0.50	170 *	
MW-6	07/16/90		12772		0.000	-0.00	170	NA
14144-0	10/25/90	<20	<0.5	<0.5	<0.5	<0.5	NA	NA
		<50	<0.5	<0.5	<0.5	<0.5		INC
	01/23/91	<50	<0.5	<0,5	<0.5	<0.5	NA	MA
	04/24/91	<30	<0.30	<0.30	<0.30	<0.30	NA	NA NA
	07/24/91	<30	<0.30	<0.30	< 0.30	< 0.30	NA	
	10/31/91	<30	<0.30	<0.30	< 0.30	< 0.30	NA	NA
	03/12/92	***************************************	*****		Well Inaccessi	ble	NM	NA
	04/16/92	<50	<0.5	<0.5	<0.5	<0.5	NA	
	06/30/92	<50	<0.5	<0.5	<0.5	<0.5		NA
	09/10/92	<50	<0.5	<0.5	<0.5	<0.5	<50	NA
	11/11/92	<50	<0.5	<0.5	<0.5		NA	NA
	02/08/93	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	05/10/93	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	08/27/93	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	11/12/93	<50	<0.5	<0.5		<0.5	NA	NA
	02/08/94	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	05/04/94	<50	<0.5		<0.5	<0,5	NA	NA
	08/10/94	<50	<0.5	<0.5	<0.5	<0,5	NA	NA
	11/21/94	<50		<0.5	<0.5	<0.5	NA	NA
	02/21/95	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	05/22/95	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
	08/23/95	400	<0.50	<0.50	<0.50	<0.50	NA	NA
	11/20/95			We	I Sampled Ann	ually		AN)
				WA	I Sampled Ann	unflue		SECONDARY MANA

.

Page 3 of 4

•

Table B-2 (continued) Historical Groundwater Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, TEPH as Diesel, and Oil and Grease)

2

ARCO Service Station 2107 3310 Park Boulevard at East 34th Street Oakland, California

Well	Date	TPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Yulon	TEPH as	Oil and
Number MW-7		(ppb)	(ppb)	(ppb)	(ppb)	Xylenes (ppb)	Diesel (ppb)	Grease
11114-1	08/29/91	<30	0.73	1.1	<0.30	<0.30	(ppb) 130	(ppb)
	10/31/91 03/12/92	44	1.4	<0.30	0.63	13	NA	ł
	04/16/92	74	~~~		Well Inaccess	ible		۱
	06/30/92	<50	21	<0.5	0.7	1.3	<50	1
	09/10/92	<50	<0.5 <0.5	< 0.5	<0.5	<0.5	<50	N
	11/11/92	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	02/08/93	<50	<0.5	<0.5 <0.5	<0.5	<0.5	NA	N
	05/10/93	<50	<0.5		<0.5	<0.5	NA	N
	08/27/93	<50	<0.5	<0.5	<0.5	<0,5	NA	N
	11/12/93	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	02/08/94	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	05/04/94	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	08/10/94	<50	<0.5	< 0.5	<0.5	<0.5	NA	N
	11/21/94	<50	<0.5	< 0.5	<0.5	<0.5	NA	N
	02/21/95	<50	<0.50	< 0.5	<0.5	<0.5	NA	N
	05/22/95	<50	<0.50	<0.50	<0.50	<0.50	NA	N
	08/23/95	~00	-0.50	<0.50	<0.50	<0.50	NA	N
	11/20/95	<50	<0.50	We	II Sampled Sem	iannually		
		-00	~0.50	<0.50	<0.50	<0.50	NA	N
MW-8	08/29/91	<30	<0.30	<0.30	<0.30	<0.30	<50	
	10/31/91	<30	1.2	< 0.30	0.48	0.95	NA	N.
	03/12/92				Well Inaccessi	ble	NA	N.
	04/16/92	<50	<0.5	<0.5	<0.5	<0.5	NA	
	06/30/92	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	09/10/92	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	11/11/92	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	02/08/93	<50	<0.5	<0.5	<0.5	<0.5	NA	N/
	05/10/93	<50	<0.5	<0.5	<0.5	<0.5	NA	N
	08/27/93	<50	<0.5	<0.5	<0.5	<0.5	NA	_ N/
	11/12/93	<50	<0.5	<0.5	<0.5	<0.5	NA	N/
	02/08/94	50	<0.5	<0.5	<0.5	<0.5	NA	N/
	05/04/94	<50	<0.5	<0.5	<0.5	<0,5	NA	N/
	08/10/94	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	11/21/94	<50	<0.5	<0.5	<0.5	<0.5	NA	N/
	02/21/95	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
	05/22/95	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
	08/23/95			W	ell Sampled Ann	ually	INA	NA
	11/21/95	<50	<0.50	<0.50	<0,50	<0.50	NA	NA
4W-9	06/30/92	<50	<0.5	<0.5				110
	09/10/92	<50	<0.5	<0.5	<0.5	<0.5	<50	NA
	11/11/92	<50 .	<0.5	<0.5	<0.5	<0.5	NA	NA
	02/08/93	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	05/10/93	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	08/27/93	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	11/12/93	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	02/08/94	<50	<0.5	<0.5	<0.5 <0.5	<0.5	NA	NA
	05/04/94	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	08/10/94	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	11/21/94	<50	<0.5	<0.5		<0.5	NA	NA
	02/21/95	<50	<0.50	<0.50	<0.5	<0.5	NA	NA
	05/22/95	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
	08/23/95		-979 -979		<0.50 Il Sampled Annu	<0.50	NA	NA
	11/21/95	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
W-10	06/30/92	<50	<0,5	<0.5	<0.5	<0 F		
	09/10/92	<50	<0 5	<0.5	<0.5	<0.5	<50	NA
	11/11/92	<50	<0.5	<0.5	<0.5	<0.5 <0.5	NA	NA

3301056A/TBLS.XLSITBLB-2

4

June 26, 1996

Page 4 of 4

Table B-2 (continued) Historical Groundwater Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, TEPH as Diesel, and Oil and Grease)

ARCO Service Station 2107 3310 Park Boulevard at East 34th Street Oakland, California

Well Number	Date Sampled	TPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene	Xylenes	TEPH as Diesel	77	Oil and Grease
MW-10	02/08/93	<50	<0.5	<0.5	<u>(ppb)</u> <0.5	(ppb)	(ppb)		(ppb)
(cont.)	05/10/93	<50	<0.5	<0.5	<0.5	<0.5	NA		NA
	08/27/93	<50	<0.5	<0.5	<0.5	<0.5	NA		NA
	11/12/93	<50	<0.5	<0.5	<0.5	< 0.5	NA		NA
	02/08/94	<50	<0.5	<0.5	<0.5	<0.5	NA		NA
	05/04/94	<50	<0.5	<0.5	<0.5	<0.5	NA		NA
	08/10/94	<50	<0.5	<0.5	<0.5	<0.5	NA		NA
	11/21/94	<50	. <0.5	<0.5	<0.5	<0,5 <0,5	NA		NA
	02/21/95	<50	<0.50	<0.50	<0.50	<0.50	NA		NA
	05/22/95	<50	<0.50	<0.50	<0.50	<0.50	NA		NA
	08/23/95				Vell Sampled Ar		NA		NA
	11/21/95	<50	<0.50	<0.50	<0.50	<0.50	NA		NA
RW-1	11/11/92	7,600	99	30	440	1,300	3,100		NA
	02/08/93	430	70	1.9	6.4	9.2	130		
	05/10/93	280	13	<0.5	7.5	2	490		NA
	08/27/93	<50	<0.5	<0.5	<0.5	<0.5	170		NA
	11/12/93	350	13	<0.5	2.2	0.7	110		NA
	02/08/94	<50	· 4.2	1	<0.5	2.9	<50		NA
	05/04/94	110	3.3	<0.5	3.2	9.3	ND		NA
	08/10/94	<50	0.6	<0.5	<0.5	<0.5			NA
	11/21/94	<50	<0.5	<0.5	<0.5	1.8	<50		NA
	02/21/95	50	<0,50	<0.50	1.2	2.3	<50		NA
	05/22/95	<50	<0.50	<0.50	1.2	<0.50	220	32	NA
	08/23/95				I Sampled Sen		130	-18	NA
	11/20/95	<50	<0.50	· <0.50	<0.50	<0.50	97		NA

Page 1 of 1

.

. .

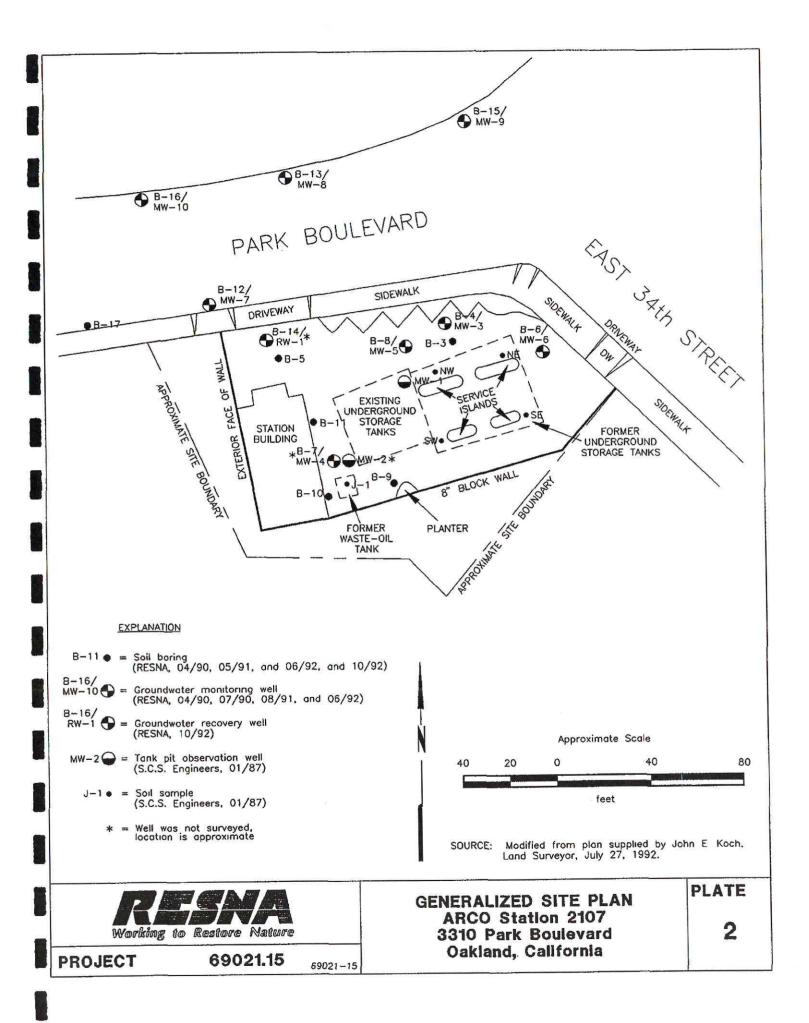
Table B-3 Historical Groundwater Analytical Data Total Methyl t-Butyl Ether

ARCO Service Station 2107 3310 Park Boulevard at East 34th Street Oakland, California

Well	Det	Methyl
Number	Date	t-Butyl Ether
MW-1	Sampled	(ppb)
1010.0-1	08/23/95	<2.5
	11/20/95	8.6
MW-2	08/23/95	<2.5
	11/20/95	18
MW-3	08/23/95	NS
	11/20/95	53
MW-4	08/23/95	NS
	11/20/95	99
MW-5	08/23/95	NS
	11/20/95	98
MW-6	08/23/95	NS
	11/20/95	NS
MW-7	08/23/95	NS
	11/20/95	160
MW-8	08/23/95	
11111-0	11/21/95	NS <2.5
LANALO	•	
MW-9	08/23/95	NS
	11/21/95	14
		27 *
MW-10	08/23/95	NS
	11/21/95	3.5
RW-1	08/23/95	NS
	11/20/95	170
		220 *
o = Paris per		
	ion for MTBE p	
according	to EPA Method	8240.

. 3301056A\TBLS.XLSITBLB-3

.


March 9, 1993 69021.15

-

CUMU	LATIVE RESUL	LTS OF GROU	UNDWATER L ARCO SI	BLE 3 ABORATORY A tation 2107 California	NALYSES-B	NAs, VOCs, and Metals
<u>Well</u> Date	BNAs	VOCs	Cedmium	Chromium	Lead	Zinc
<u>MW-4</u> 7/16/90	ND	ND	<0.02	< 0.01	<0.02	< 0.01

Results in parts per million (ppm). BNAs: Base neutral and acid extractables including polynuclear aromatics, concentrations are below the laboratory reporting limits (<10 ppb) for all compounds tested. Results below detection levels, which were analyte specific.

ND: Ξ

Subsurface Environmental Investigation ARCO Station 2107, Oakland, California

December 30, 1992 69021.10

		c	UMULA	TTVE RI	ESULTS	OF LAB ARC Oaki	TABLE ORATO O Statio and, Ca Page 1 o	ORY AN on 2107 lifornia	ALYSES	OF SOIL	SAMPI	ES	
Sample-D	at <u>a</u> PHg	TPHd	В	T	E	x	TOG	BNAs	VOCs	Cd	Cr	Ръ	Zn
Former W	aste-Oil	UST Pit	-January	<u>1987</u>									
•J-1	NA	140	0.79	5.8	2.5	14.0	NA	NA		NA	NA	NA	NA
Former G	asoline L	ST Pit-	anuary 1	987									
S.E.	<10	<10	NA	NA	NA	NA	<10	NA	NA				3.2.
•S.W.	<10	<10	NA	NA	NA	NA	<10	NA	NA	NA	NA	NA	NA
"N.E.	<10	<10	NA	NA	NA	NA	<10	NA	NA	NA NA	NA	NA	NA
•N.W.	<10	<10	NA	NA	NA	NA	<10	NA	NA	NA	NA NA	NA NA	NA NA
Borings-A	pril 1990			¥.				10.00 ⁰			143		NA.
S-5-B3	< 2.0	NA	< 0.050	< 0.050	< 0.050	< 0.050	NA	NTD	100				
S-10-B3	<2.0	NA	< 0.050	< 0.050	< 0.050		NA	ND ND	ND	ND	ND	ND	ND
S-20-B3	<2.0	NA	< 0.050	< 0.050	< 0.050	< 0.050		ND	ND	ND	ND	ND	ND
		- 75				-0.000	143	нD	ND	ND	ND	ND	ND
S-10-B4	<2.0	NA	<0.050	< 0.050	< 0.050	< 0.050	NA	ND	ND	ND	ND	ND	ND
S-S-B6	<2.0	NA	< 0.050	< 0.050	< 0.050	< 0.050	NA	ND	ND	ND	ND	ND	NIT
S-7-B6	<2.0	NA	< 0.050	< 0.050	< 0.050	< 0.050	NA	ND	ND	ND	ND	ND	ND ND
S-13-B6	<2.0	NA	< 0.050	< 0.050	<0.050	< 0.050	NA	ND	ND	ND	ND	ND	ND
S-20-B6	<2.0	NA	< 0.050	< 0.050	< 0.050	<0.050	NA	ND	ND	ND	ND	ND	ND
Borings-Jul	<u>y 1990</u>												·
S-8.5-B7	<2.0	110	< 0.050	< 0.050	< 0.050	< 0.050	~ 60	ATT:		4.1212			
S-14-B7	<2.0	110	< 0.050	< 0.050	< 0.050	< 0.050	< 30 90	ND	ND	0.507	18.3	9.48	41.8
						20.000	20	IND	ND	0.565	16.8	9.95	49.8
S-S-B8	<2.0	NA	< 0.050	0.10	0.064	0.29	NA	ND	ND	ND	ND	NT	
S-7.5-B8	<2.0	NA	< 0.050	< 0.050	< 0.050	< 0.050		NA	NA	NA	NA	ND <1.0°	ND
S-14_5-B8	<2.0	NA	< 0.050	< 0.050	< 0.050	< 0.050		ND	ND	ND	ND	ND	NA ND
Borings-Ma	<u>v 1991</u>									942			
5-15_5-B9	<1.0	<1.0	< 0.005	< 0.005	< 0.005	0.000	< 20				-		
-21-B9	<1.0	<1.0		< 0.005	< 0.005	0.028		NA	NA	NA	NA	NA	NA.
-25.S-B9	<1.0	<1.0	< 0.005		< 0.005	0.003		NA	NA	NA	NA	NA	NA
				10,000	- 0,000	0.007	~ 30	NA	NA	NA	NA	NA	NA
-S-B10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<30	NA	NA	NA	b1.	N14	
-10-B10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 30	NA	NA	NA	NA	NA	NA
-15.5-B10	<1.0	<1.0	< 0.005	< 0.005		< 0.005		NA	NA	NA	NA NA	NA	NA
-20_5-B10	<1.0	<1.0	< 0.005	< 0.005		< 0.005		NA	NA	NA	NA	NA NA	NA NA

de nom til som a

Subsurface Environmental Investigation ARCO Station 2107, Oakland, California

December 30, 1992 69021.10

	TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 2107 Oakland, California (Page 2 of 3)													
Sample	TPHg	TPHd	В	Т	E	x	TOG	BNAs	VOC	Cd	Cr	Ръ	Zn	
Borings (c	ontinue	1)			·····									······
S-8-B11	90	43	0.18	0.050	0.16	1.1	130	NA	NA					
S-12.5-B11	<1.0	3.1	< 0.005	< 0.005	< 0.005	< 0.005		NA		NA	NA	NA	NA	
S-20-B11	<1.0	<1.0	< 0.005	< 0.005	< 0.005			NA	NA	NA	NA	NA	NA	
					~ 0,000	< 0.000	< 30	IXA.	NA	NA	NA	NA	NA	
Borings-A	igust 19	91												
S-4_5-B12	<1.0	3.3	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	bla					
S-10-B12	<1.0	1.2	< 0.005		< 0.005	< 0.005			NA	NA	NA	NA	NA	
		100			-0.000	~0.005	ANT	NA	NA	NA	NA	NA	NA	
S-S-B13	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	
Borings-Oc	tober 1	792		83										
	1,700	2,500	< 0.0050	< 0.0050	25	130	NA	NA	NA	5 1 A	N1.	100	22.	
S-11-B14	2.5	<1.0	0.023	0.0050		0.31	NA	NA	NA	NA	NA	NA	NA	
S-15-B14	140	230	< 0.0050	< 0.0050		10	NA	NA	NA	NA	NA	NA	NA	
S-20-B14	3.6	2.4	0.043	< 0.0050	0.16	0.26	NA	NA	NA	NA	NA	NA	NA	
Borings-Ju	a 1002					0.20	.01		nva.	NA	NA	NA	NA	
00111123-011	1 1992													
S-S-B15	<1.0	<1.0	< 0.0050	< 0.0050	< 0.0050	<0.0050	NA	NA	ATA.			121210		
S-8-B15	<1.0	<1.0	< 0.0050	< 0.0050	<0.0050	<0.000	NA	NA	NA	NA	NA	NA	NA	
-9.5-B15	<1.0	<1.0	< 0.0050	< 0.0050	<0.0000	<0.0000	NA	NA	NA	NA	NA	NA	NA	
-31.5-B15	<1.0	<1.0	< 0.0050	< 0.0050	<0.0000	<0.0050	NIA	1000	NA	NA	NA	NA	NA	
	and the second	35. 776.7 5			-0.0000	~ 0.0000	NA	NA	NA	NA	NA	NA	NA	
-S-B16	<1.0	<1.0	<0.0050	<0.0050	<0.0050	~0.0000	MA	NT.4	N7 4		202			
-25-B16	<1.0	<1.0	< 0.0050	<0.0050	<0.0000	<0.0000	NA	NA	NA	NA	NA	NA	NA	
					-0.0000	~0.0000	TUA.	NA	NA	NA	NA	NA	NA	
Composite !	otockpil	2												
-0823-SP(a	-d)<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA	N 14	
-0615-SP A	-136	24	< 0.050	0.12	0.12		NA	NA	NA	NA	NA		NA	
P-1019-A-I	55	28	0.26	0.24	0.92		NA	NA	NA	NA	NA	NA NA	NA NA	
TLC				**************************************						100	2,500	1,000	5,000	<u> </u>

Subsurface Environmental Investigation ARCO Station 2107, Oakland, California

December 30, 1992 69021.10

TABLE 1
CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES
ARCO Station 2107
Oakland, California
(Page 3 of 3)

Results are in parts per million (ppm) TPHg =total petroleum hydrocarbons as gasoline B: benzene T: toluene E: ethylbenzene X: total xylenes base neutral and acid extractables including polynuclear aromatics BNAs = (* = naphthalene, * = 2-methylnaphthalene) VOCs = volatile organics except for BTEX < = Below indicated laboratory reporting limit Soil sampling performed by SCS during UST removal and replacement (SCS, January 22, 1987). • = ... Results of VOC analysis: 2,400 ppb Acetone 65 ppb 2-Butone 790 ppb Benzene 10 Tetrachloroethene 5,800 ppb Toluene 2,500 ppb ethylbenzene 14,000 ppb Total xylenes Nondetectable for 33 additional VOCs. Estimated Concentrations of Tentatively Identified Extra Compounds: 2200 ppb 2-methylbutane 790 ppb methylcyclopentane 770 ppb methylcyclohexanc 670 ppb 3-methylhexane 800 ppb 2,5,6-trimethyloctane NA = Not Analyzed " = Organic lead by DHS Method. TILC = Total threshold limit concentration values (Title 22 of the California Administrative Code, January 1988) Sample Number explanation: 7.5-B8 Boring number

Sample depth in feet below ground surface Soil sample

Later 1Soil Analytical DataARCO Service Station #21073310 Park Blvd, Oakland, CA

Soil Sample ID	Sample Depth (feet bgs)	Sample Elevation (feet msl)	Date Sampled	GRO/ TPH-g (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl-benzene (mg/kg)	Xylenes (mg/kg)	t-Butyl Alcohol (TBA) (mg/kg)	Methyl-tert butyl-ether (MTBE) (mg/kg)	Di-isopropal ether (DIPE) (mg/kg)	Ethyl-t-Butyl- Ether (ETBE) (mg/kg)	t-Amyl Methyl Ether (TAME) (mg/kg)	Ethanol (mg/kg)
SB-1-5	5	123.26	3/30/04	ND<1.2	ND<0.0061	0.096	ND<0.0061	0.016	ND<0.012	ND<0.0061	ND<0.012	ND<0.0061	ND<0.0061	ND<0.1
SB-1-10	10	118.26	3/30/04	ND<1.3	ND<0.0063	ND<0.0063	ND<0.0063	ND<0.0063	ND<0.013	ND<0.0063	ND<0.013	ND<0.0063	ND<0.0063	ND<0.1
SB-1-15	15	113.26	3/30/04	ND<1.2	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.012	ND<0.0059	ND<0.012	ND<0.0059	ND<0.0059	ND<0.1
SB-1-18	18	110.26	3/30/04	ND<1.2	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.012	ND<0.0059	ND<0.012	ND<0.0059	ND<0.0059	ND<0.1
SB-2-5	5	121.53	3/30/04	ND<1.3	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.013	ND<0.0067	ND<0.013	ND<0.0067	ND<0.0067	ND<0.1
SB-2-10	10	116.53	3/30/04	ND<1.2	ND<0.0061	ND<0.0061	ND<0.0061	ND<0.0061	ND<0.012	ND<0.0061	ND<0.012	ND<0.0061	ND<0.0061	ND<0.1
SB-2-15	15	111.53	3/30/04	ND<1.2	ND<0.0060	ND<0.0060	ND<0.0060	ND<0.0060	ND<0.012	ND<0.0060	ND<0.012	ND<0.0060	ND<0.0060	ND<0.1
SB-2-20	20	106.53	3/30/04	ND<1.2	ND<0.0062	ND<0.0062	ND<0.0062	ND<0.0062	ND<0.012	ND<0.0062	ND<0.012	ND<0.0062	ND<0.0062	ND<0.1
SB-2-23	23	103.53	3/30/04	ND<1.2	ND<0.0060	ND<0.0060	ND<0.0060	ND<0.0060	ND<0.012	ND<0.0060	ND<0.012	ND<0.0060	ND<0.0060	ND<0.1
SB-3-8.0	8	115.87	5/7/04	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.024	ND<0.01	ND<0.0050	ND<0.0050	ND<0.1
SB-3-13	13	110.87	5/7/04	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.027	ND<0.01	ND<0.0050	ND<0.0050	ND<0.1
SB-3-18	18	105.87	5/7/04	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.19	ND<0.0050	ND<0.01	ND<0.0050	ND<0.0050	ND<0.1
SB-3-23.0	23	100.87	5/7/04	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.29	0.027	ND<0.01	ND<0.0050	ND<0.0050	ND<0.1
SB-3-26.5	26.5	97.37	5/7/04	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.01	ND<0.0050	ND<0.0050	ND<0.1
SB-3-31.0	31	92.87	5/7/04	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.01	ND<0.0050	ND<0.0050	ND<0.1
HP-3-39.5	39.5	84.37	10/15/04	ND<0.1	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
HP-3-46	46	77.87	10/15/04	ND<0.1	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-4-1.0	1	NM	5/7/04	350	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25
SB-5-8	8	114.96	3/30/04	ND<1.1	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.011	ND<0.0056	ND<0.011	ND<0.0056	ND<0.0056	ND<0.1
SB-5-16	16	106.96	3/30/04	ND<1.3	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	0.016	ND<0.0065	ND<0.013	ND<0.0065	0.0066	ND<0.1
SB-5-19	19	103.96	3/30/04	ND<1.2	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.012	ND<0.0059	ND<0.012	ND<0.0059	ND<0.0059	ND<0.1
SB-6-1.0	1	NM	5/7/04	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.01	ND<0.0050	ND<0.0050	ND<0.1
SB-7-6.0	6	120.22	10/14/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-7-11.5	11.5	114.72	10/14/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-7-16.0	16	110.22	10/14/04	ND<0.10	ND<0.0050		ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	0.0056	ND<0.0050	ND<0.0050	NA
SB-7-19.5	19.5	106.72	10/14/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-8-6.0	6	118.82	10/15/04	ND<0.1	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.048	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-8-14.0	14	110.82	10/15/04	ND<0.10	ND<0.0050		ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-8-16.0	16	108.82	10/15/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-8-25.0	25	99.82	10/15/04	ND<0.10		ND<0.0050	ND<0.0050		ND<0.020		ND<0.0050	ND<0.0050	ND<0.0050	NA

Soil Analytical Data ARCO Service Station #2107 3310 Park Blvd, Oakland, CA

Soil Sample ID	Sample Depth (feet bgs)	Sample Elevation (feet msl)	Date Sampled	GRO/ TPH-g (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl-benzene (mg/kg)	Xylenes (mg/kg)	t-Butyl Alcohol (TBA) (mg/kg)	Methyl-tert butyl-ether (MTBE) (mg/kg)	Di-isopropal ether (DIPE) (mg/kg)	Ethyl-t-Butyl- Ether (ETBE) (mg/kg)		Ethanol (mg/kg)
SB-8-29.5	29.5	95.32	10/15/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	0.011	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-9-10.5	10.5	112.29	10/14/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-9-13.5	13.5	109.29	10/14/04	ND<2.5	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<5.0	0.56	ND<0.025	ND<0.025	ND<0.025	NA
SB-9-17.5	17.5	105.29	10/14/04	ND<0.50	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.10	0.22	ND<0.025	ND<0.025	ND<0.025	NA
SB-9-19.5	19.5	103.29	10/14/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.026	0.0069	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-10-6.5	6.5	115.29	10/20/04	0.51	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	0.025	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-10-14.0	14	107.79	10/20/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.048	0.034	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-10-20.5	20.5	101.29	10/20/04	ND<2.5	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<5.0	0.21	ND<0.025	ND<0.025	ND<0.025	NA
SB-10-22.5	22.5	99.29	10/20/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	0.059	ND<0.0050	ND<0.0050	ND<0.0050	NA
SB-10-31.5	31.5	90.29	10/20/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	0.011	ND<0.0050	ND<0.0050		NA
SB-11-6.5	6.5	113.73	10/14/04	0.31	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	and the second	ND<0.0050	ND<0.0050	NA
SB-11-11.5	11.5	108.73	10/14/04	220	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.12	ND<0.12	ND<0.12	ND<0.12	NA
SB-11-16.5	16.5	103.73	10/14/04	14	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<5.0	ND<0.025	ND<0.025	ND<0.025	ND<0.025	NA
SB-11-21.5	21.5	98.73	10/14/04	24	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<5.0	ND<0.025	ND<0.025	ND<0.025	ND<0.025	NA
SB-11-26.0	2 6	94.23	10/14/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	0.012	ND<0.0050			NA
SB-11-28.5	28.5	91.73	10/14/04	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	0.012	ND<0.020	0.022	ND<0.0050	ND<0.0050		NA

Notes:

1) Samples analyzed by EPA method 8260B.

2) Concentrations above laboratory reporting limits in bold.

bgs = below ground surface

GRO = Gasoline Range Organics

mg/kg = milligrams per kilogram

msl = mean sea level

NA = Not analyzed

ND< = Not detected below stated laboratory reporting limit

NM = Not measured

TPH-g = Total petroleum hydrocarbons as gasoline

.

Table 2 Groundwater Analytical Data ARCO Service Station #2107 3310 Park Blvd, Oakland, CA

Sample ID	Elevation (msl)	Sample Depth/ Interval (feet bgs)	Sample elevation (msl)	Date Sampled	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	t-Butyl Alcohol (TBA) (μg/L)	MTBE (µg/L)		Ethyl-t-Butyl- Ether (ETBE) (μg/L)	tert-Amyl Methyl Ether (TAME) (μg/L)	Ethanol (μg/L)
SB-1	128.26	18.5	109.8	03/30/04	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<50
SB-2	126.532	23	103.532	03/30/04	ND<50	ND<0.50	· 1.4	ND<0.50	ND<1.0	ND<5.0	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<50
SB-3	123.867	32	91.867	05/07/04	88	ND<0.50	ND<0.50	ND<0.50	ND<1.0	110	34	ND<1.0	ND<0.50	1.1	ND<50
SB-5	122.964	19.5	103.464	03/30/04	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	45	34	ND<1.0	ND<0.50	ND<0.50	ND<50
HP-3-35	123.867	31-35	88.9-92.9	10/15/04	ND<50	0.64	10	1.5	8,9	ND<5.0	. 3.8	ND<1.0	ND<0.50	ND<0.50	ND<50
HP-4-18	126.217	18-22	104.2-108.2	10/14/04	140	1.6	38	5.4	27	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
HP-4-30	126.217	26-30	96.2-100.2	10/14/04	96	0.91	23	3.5	17	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
HP-5-18	124.821	18-22	102.8-106.8	10/20/04	ND<50	ND<0.50	7	0.94	6.2	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
HP-5-29	124.821	25-29	95.8-99.8	10/20/04	ND<50	ND<0.50	9.2	1.2	7	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
HP-6-8	122.792	8-12	110.8-114.8	10/14/04	ND<250	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<100	92	ND<2.5	ND<2.5	ND<2.5	NA
HP-6-20	122.792	16-20	102.8-106.8	10/14/04	170	ND<1.0	15	2.9	16	76	82	ND<1.0	ND<1.0	ND<1.0	NA
HP-6-30	122.792	26-30	92.8-96.8	10/14/04	72	ND<0.50	13	2.2	13	ND<20	6.6	ND<0.50	ND<0.50	ND<0.50	NA
HP-7-20	121.791	16-20	101.8- 105.8	10/20/04	1300	ND<10	ND<10	ND<10	ND<10	ND<400	1200	ND<10	ND<10	ND<10	NA
HP-7-30	121.791	26-30	91.8-95.8	10/20/04	ND<5,000	ND<50	ND<50	ND<50	ND<50	ND<2,000	3700	ND<50	ND<50	ND<50	NA
HP-8-27	120.229	23-27	93.2-97.2	10/15/04	ND<2,500	ND<25	28	ND<25	28	ND<1,000	2100	ND<25	ND<25	ND<25	NA
HP-8-34	120.229	30-34	86.2-90.2	10/15/04	ND<2,500	ND<25	ND<25	ND<25	ND<25	ND<1,000	880	ND<25	ND<25	ND<25	NA

Notes:

1) Groundwater samples analyzed by EPA method 8260B.

2) Concentrations above laboratory reporting limits in bold.

3) SB- indicates groundwater grab sample from bottom of soil boring. HP- indicates depth distrete groundwater sample using a hydropunch.

bgs = below ground surface

ESL =Environmental Screening Level

GRO = Gasoline Range Organics

(mg/L) = micrograms per litre

msl =Mean sea level

MTBE = methyl tertiary butyl ether.

NA = Not Analyzed

ND< = Not detected below stated laboratory reporting limit

TPH-g = Total petroleum hydrocarbons as gasoline

Soil Water Analytical Data ARCO Service Station 2107 3310 Park Boulevard Oakland, Callfornia

3

ð

TABLE 1 Dispenser and Product Line Soil Sample Results

Soil Sample ID	Sample Deput (feet)	Date Sampled	TPHg as Gasoline (ppm)	Benzenc (ppm)	Toluene (ppm)	Ethyl-benzene (ppm)	Xylenes (ppm)	MTBE (ppm)	Pb (ppm)
S-D1	4	10/18/02	ND<0.5	ND<1.8	ND<1.8	ND<1.8	ND<1.8	0.061	6.7
S-D2	4	10/18/02	ND<0.5	ND<1.6	ND<1.6	ND<1.6	ND<1.6	ND<1.6	36
S-D3	3.5	10/18/02	ND<0.5	ND<0.78	ND<0.78	ND<0.78	ND<0.78	34	8.2
S-D4	3.5	10/18/02	ND<0.5	ND<1.1	ND<1.1	ND<1.1	ND<1.1	11	2.9
S-D5	5	10/18/02	ND<0.5	ND<0.98	ND<0.98	ND<0.98	ND<0.98	8.9	ND<5.0
S-D6	5	10/18/02	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	17	ND<5.0
S-D7	5	10/18/02	4,000	ND<10.0	220	150	1,100	19	7.6
S-D8	5	10/18/02	2,900	ND<10.0	52	46	400	6.7	8.9
S-LI	4.5	10/18/02	ND<0.5	ND<1.2	ND<1.2	ND<1.2	ND<1.2	19	ND<5.0
S-L2	4	10/18/02	ND<0.5	0.89	ND<0.62	ND<0.62	ND<0.62	19	ND<5.
S-L3	4.5	10/18/02	ND<0.5	ND<1.0	ND<1.0	ND<1.0	2.3	83	10
S-L4	5	10/18/02	ND<0.5	ND<0.84	ND<0.84	ND<0.84	ND<0.84	37	ND<5.
S-L5	. 5	10/18/02	450	ND<2.5	3.4	4.9	44	ND<1.2	ND<5.
S-L6	6.5	10/18/02	37	ND<0.79	ND<0.79	ND<0.79	ND<0.79	0.099	6.7
VP-I	4	10/21/02	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.025	-
VP-2	4	10/21/02	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.025	-

TABLE 2 Grounwater Sample Results

Valer Sample	Sample Depth (feet)	Date Sampled	TPHg as Gasoline (ppb)	Benzene i (ppb)	/Tolucne (ppb)	Ethyl-benzene (ppb)	Xylenes (ppb)	MTBE (ppb)
T-1	7.5	10/21/02	4,200	300	3,200	1,300	11,000	4,900
BT-1	N/A	10/18/02	ND<1000	ND<25	ND<25	ND<25	ND<25	1,800
Sump-1	N/A	10/18/02	640,000,000	4,000,000	70,000,000	170,000,000	990,000,000	53,000,000

TABLE 3 Over-excavation Sample Results

Soil Sample ID	Sample Depth	Date Sampled	TPHg as Gasoline				(ppm)	MTBE (ppm)	Pb (ppm)
S-OE1	7.5	10/18/02	2,200	ND<2.5	7.9	7.1	40	3.4	5.5
S-OE2	7.5	10/18/02	21	ND<0.5	ND<0.5	ND<0.5	ND<0.5	3.4	8.1
OE-3	7	10/21/02	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.025	
OE-4	7	10/21/02	ND<0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.025	-

ŝ

TPH	· Total purgeable petroleum hydrocarbons using EPA Method 8015, medified.
BTEX	- Benzene, toluene, ethylbenzene, total xylenes using EPA Method 8021B.
MTBE	- Methyl Tertiary Butyl Ether.
ppb	= Parts per billion.
ppm	= Parts per million.
ND<	- Less than stated laboratory detection limit.

	X				Summary of Do BP Service ard, Oakland, (e Station	No. 2107			526)				
			Laboratory Analytical Results (mg/kg)											
						Total								
Boring I.D.	Date	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TBA	TAME	Ethanol	EDB	1,2 DCA
SB12-9	6/26/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB12-15	6/26/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	0.0087	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB12-23	6/26/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB12-27	6/26/2007	<0.10	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB13-11	6/25/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB13-15	6/25/2007	<0.10	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB13-21	6/25/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB13-29	6/25/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB14-9	6/26/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB14-15	6/26/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB14-19	6/26/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB14-29	6/26/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB15-9	6/25/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB15-17	6/25/2007	<0,10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB15-23	6/25/2007	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	0.0065	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
SB15-29	6/25/2007	<0.10	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	<0.0050	<0.10	<0.0050	<0.0050
Soil Quality C	Dbjectives*	5.0	1.0	42	29	17	5.0	0.8	13	12	13		0.05	0.5

.....

-

EDB = 1,2-Dibromoethane

1,2 DCA = 1,2 Dichloroethane

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

GRO = Gasoline Range Organics, C4-C12

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

* = Water Quality Objectives compiled from the CRWQCB's A Compilation of Water Quality Goals - August 2003 and from other CRWQCB sources.

					ary of Depth-E BP Service rd, Oakland, (e Station I	No. 2107							
, <i>i</i> / ******	T					Labora	tory Anal	ytical Re	sults (µg/	I)				(
Boring I.D.	Date	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	DIPE	ETBE	TBA	TAME	Ethanol	EDB	1,2 DCA
HP9-13	6/26/2007	51 1	<0.50	<0.50	<0.50	<0.50	67	<0.50	<0.50	<20	<0.50	<300	<0.50	<0.50
HP9-21	6/26/2007	<50	<0.50	<0.50	<0,50	<0.50	7.4	<0.50	<0.50	<20	<0.50	<300	<0.50	<0.50
HP10-16	6/26/2007	<50	<0.50	<0.50	<0.50	<0.50	0.78	<0.50	<0.50	<20	<0.50	<300	<0.50	<0.50
HP10-24	6/26/2007	<50	0.80	<0.50	<0.50	<0.50	50	<0.50	<0.50	<20	<0.50	<300	<0.50	<0.50
HP11-24	6/26/2007	59	0.63	<0.50	<0.50	<0.50	66	<0.50	<0.50	<20	<0.50	<300	<0.50	<0.50
HP12-19	6/25/2007	<50	<0.50	<0.50	<0.50	<0.50	30	<0.50	<0.50	<20	<0.50	<300 ·	<0.50	<0.50
HP12-15 HP12-25	6/25/2007	84 ¹	<1.0	<1.0	<1.0	<1.0	110	<1.0	<1.0	<40	<1.0	<600	<1.0	<1.0
Water Quality	Objectives*	IIII 510H		42	1129 H 129		5.0	0.8						0.5

EDB = 1,2-Dibromoethane

1,2 DCA = 1,2 Dichloroethane

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

GRO = Gasoline Range Organics, C4-C12 DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

¹ = Hydrocarbon result partly due to individual peak(s) in quantitation range

* = Water Quality Objectives compiled from the CRWQCB's A Compilation of Water Quality Goals - August 2003 and from other CRWQCB sources.

Table C-1

Page 1 of 1

•

z e

Historical Groundwater Extraction System Performance Data

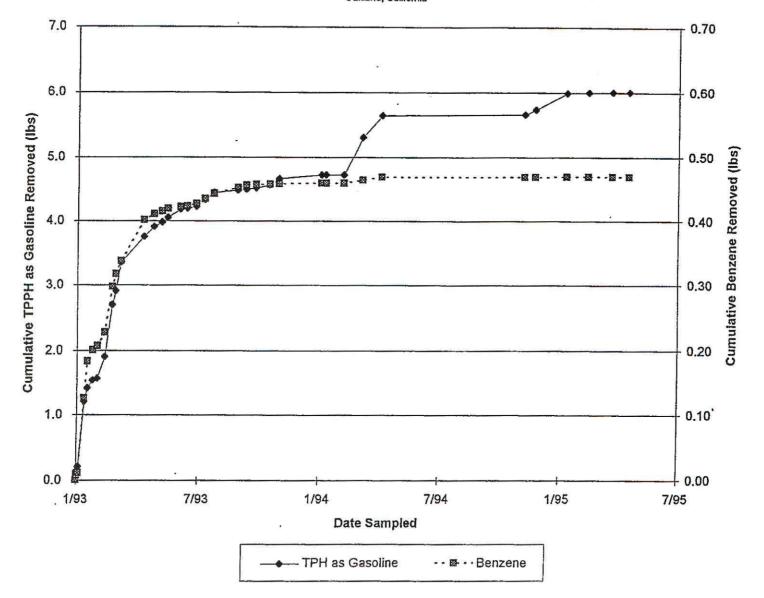
ARCO Service Station 2107 3310 Park Boulevard at East 34th Street Oakland, California

				1.5	TPP	H as Gasolin	e		Benzene		· · · · ·
				Average	Influent			Influent			Primary
	-	Totalizer	Net	Flow	Concen-	Net	Removed	Concen-	Net	Removed	Carbon
Sample	Date	Reading	Volume	Rate	tration	Removed	to Date	tration	Remove	to Date	Loading
I.D.	Sampled	(gallons)	(gallons)	(gpm)	(µg/L)	(lbs)	(lbs)	(µg/L)	(lbs)	(lbs)	(percen
INFL	01/25/93 a	2,095	2,095	3.2	2,400	0.04	0.04	52	0.001	0.00	0.1
INFL	01/26/93	7,135	5,040	3.5	NS	0.10	0.14	NS	0.007	0.01	0.2
INFL	01/28/93	8,799	1,664	3.6	4,800	0.07	0.21	270	0.004	0.01	0,3
INFL	02/05/93	36,879	28,080	3.6	4,300	1.00	1.21	710	0.115	0.13	1.5
INFL	02/10/93	52,388	15,509	2.2	1,600	0.21	1.42	180	0.058	0.18	1.8
INFL	02/18/93	68,516	16,128	1.4	890	0.12	1.54	76	0.017	0.20	1.9
INFL	02/25/93	86,660	18,144	1.8	220	0.03	1.57	7.1	0.006	0.21	2.0
INFL	03/08/93	94,670	8,010	1.5	5,100	0.34	1.91	610	0.021	0.23	2.4
INFL	03/19/93	113,162	18,492	2.3	5,100	0.79	2.70	300	0.070	0.30	
INFL	03/24/93	123,876	10,714	2.5	2,400	0.21	2.91	140	0.020	0.30	3.4
INFL	04/01/93	139,936	16,060	2.6	3,400	0.45	3,36	160	0.020		3.6
INFL	05/05/93	210,724	70,788	1.7	680	0.40	3.76	55	0.053	0.34	4.2
INFL	05/20/93	237,367	26,643	1.2	NS	0.15	3.91	NS		0.40	4.7
INFL	06/01/93	250,687	13,320	1.0	NS	0.07	3.98		0.009	0.41	4.9
INFL	06/09/93	262,835	12,148	1.0	660	0.07	4.05	NS	0.005	0.41	5.0
INFL	06/28/93	286,217	23,382	0.9	NS	0.13	7377782688C0770	28	0.004	0.42	5.1
INFL	07/08/93	292,667	6,450	0.5	260	0.13	4.18	NS	0.003	0.42	5.2
INFL	07/22/93	306,145	13,478	0.7	NS	0.01	4.19	1.4	0.001	0.42	5.2
INFL	08/04/93	333,223	27,078	1.4	480		4.22	NS	0.004	0.43	5.3
INFL	08/18/93	359,835			2.22.23	0.11	4.33	67	0.008	0.43	5.4
INFL	09/23/93	389,991	26,612 30,156	1.2	NS	0.11	4.44	NS	0.008	0.44	5.6
INFL	10/06/93	402,021		0.6	NS	0.04	4.48	NS	0.009	0.45	5.6
INFL	10/21/93	• • • • • • • • • • • • • • • • • • •	12,030	0.7	130	0.01	4.50	7.4	0.004	0.46	5.6
INFL	11/10/93	419,854	17,833	0.6	NS	0.02	4.52	NS	0.001	0.46	5.6
INFL		426,649	6,795	• 0,6	850	0.05	4.56	8.4	0.000	0.46	5.7
INFL	11/24/93	441,330	14,681	0.8	NS	0.10	4.66	NS	0.001	0.46	5.8
	01/26/94	454,825	13,495	1.2	NS	0.06	4.72	NS	0.001	0.46	5.9
INFL	02/02/94	455,192	367	0.03	140	0.00	4.72	8.1	0.000	0.46	5.9
INFL	03/01/94	455,604	412	0.01	87	0.00	4.72	2.8	0.000	0.46	5.9
INFL	03/29/94	502,785	47,181	1.2	1,500	0.59	5.31	21	0.005	0.46	6.6
INFL	04/27/94 b	529,277	26 <mark>,</mark> 492	0.63	NS	0.33	5.64	NS	0.005	0.47	7.1
INFL	11/30/94 c	531,268	1,991	N/A	830	0.01	5.66	0.93	0.000	0.47	7.1
INFL	12/16/94 d	542,699	11,431	0.50	NS	e 0.08	5.73	NS	e 0.000	0.47	7.2
INFL	02/02/95	576,998	34,299	0.37	64	0.26	5.99	1.4	0,000	0.47	7.5
INFL	03/07/95	595,175	18,177	0.38	NS	e 0.01	6.00	and the second se	e 0.000	0.47	7.5
INFL	04/13/95	602,583	7,408	0.14	ND	0.00	6.00	ND	0.000	0.47	7.5
INFL	05/09/95 f	612,957	10,374	0.28	NS		6.00		e 0.000	0.47	7.5
		With the second sector and the second second								0.47	1.
		12/31/96 - 03	/31/96 (f)	hi <u>ka</u> ili	C 1149-5.1.	Sigle O	W. m. l., -	i" . "ni- iail	<u>di y</u> iti	11. 1958	N) will a
	OUNDS REM		2867 Mai	ET. 35"	in a start and a start	11111111 1 14	6.00.	, ed 14 3.	l (i chi chi	0.47	W.Cooli
	ALLONS RE			ji dan			89.0		1, Selling	0,05	
	POUNDS REI		SQUE! THEC			0.00	214Se436	- S-92	0.00	1	~ (* va
	GALLONS RE		loc lubri	430.7.C	(Mar Kiner	0.00			0.00	72.378	
	ALLONS EX		QQQQQQ		612,957	ijet j					
	GALLONS E				N/A		'i wer'i	·			9£38*2
ERIOD	AVERAGE FL	OW RATE (g	pm)::::::		N/A	WY I I I I I I	Ф.Ч. н.		ويعر المحالة		
RIMAR	Y BED CAPA	CITY REMAIN	ING (%):		92,5%	Lingular 🗄	5-01/2-H	(2		ti a stala	
PPH :	= Total purgea	ble petroleum	hydrocarbon	S	a. All data p	rior to 9/1/94	provided by	prior cons	sultant	C. C MIN	
ipm =	= Gallons per	minute			b. RESNA	hut system de	wn 4/27/9	4.			
ig/L =	= Micrograms	per liter			c. Pacific Er	vironmental (Sroup, Inc.	became o	onsultant 6	or the eller	14 10 4
	= Pounds				d. System w	as shut down	12/16/94	0 12/31/0	1	or the site s	n 1194.
NS ÷	= Not sampled	U.			e. TPH/ben:	zene pounds r	emoved eq	stimated fr	n om previous	e data	
1/A :	= Not available	or not applica	ble		f. System le	ft shut down	5/9/95 due	to low con	centration	a udid.	lac
System of	peration begar	1/25/93 under	RESNA Ind	lustries, Inc	.; system shu	down 4/27/9	4 - 11/29/0	4	oena duons	aremoval fa	nes.
arbon lo	ading assume	s an 8% isothe	rm.		., .,			5 7 8 1			

.

•

.


Table C-2 Historical Groundwater Extraction System Analytical Data

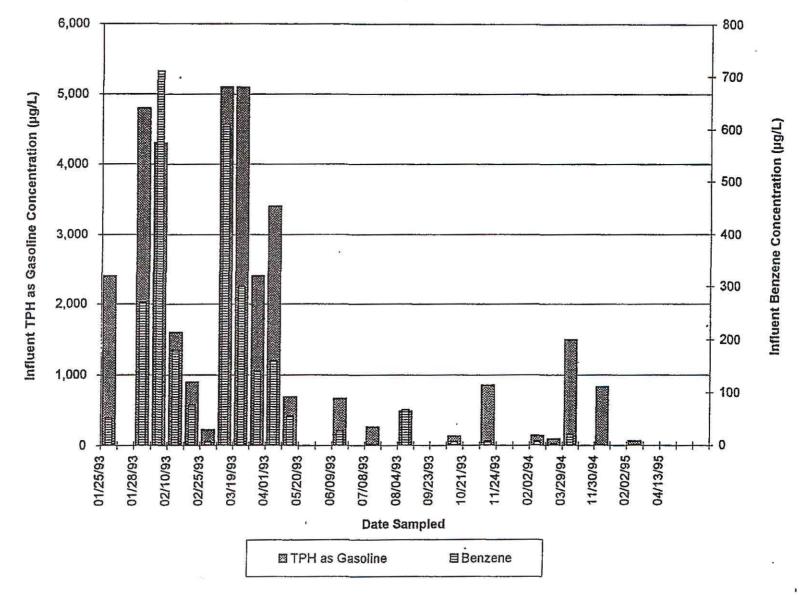
ARCO Service Station 2107 3310 Park Boulevard Oakland, California

		TPPH as			Ethyl-	
Sample	Date	Gasoline	Benzene	Toluene	benzene	Xylenes
I.D.	Sampled	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SP-1	11/02/94	59	<0.50	<0.50	2.7	7.0
	11/30/94	830	0.93	<0.50	4.8	59
	02/02/95	64	1.4	<0.50	0.54	1.8
	04/13/95	<50	×0.50	~ 0.50	0.66	3.4
SP-2	11/30/94	760	888 - 080	×0.50	522000449	(220%C/KG
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	02/02/95	<50	1.2	<0.50	<0.50	**************************************
	04/13/95	<ul> <li>50</li> </ul>	40.50	¥0 50	<0.50	×0.50
SP-3	11/30/94	SIC 1950	<0.50	60.50	Sec. 50	New Sen'ro
7	02/02/95	<50	<0.50	<0.50	< 0.50	<0.50
	04/13/95	S. 250	×0.50	<0.50	80.50	<0.50
SP.4	13702764	is ( ) ( ) ( )	80.5 20 BOS	MORNEN	and the second	
******	11/30/94	<50	<0.50	<0.50	<0.50	<0.50
08825833	02/02/95	170 Martin	20.50	Sch BO	<0.50	<0.50
*******	04/13/95	<50	< 0.50	<0.50	<0.50	<0.50
W. W. W.		www.cexw	Name and the second		Kanka de	50.50 19192/02/20
TPPH	= Total pure	eable petrol	eum hydroca	rbons	en an denier	<u></u>
	= Microgran		••••••			
		이야기가 가지님, 이야기가 있는 것이 있는 것이 없다.	etection limits	1		
			uent to aerat			
1 C	And the second sec		point betwe		second carb	nn vessele
			point betwe			
			uent of treat			011 1000015
	Contraction of the second s		SNA Industr	the second s	•	
			(PACIFIC)		sultant 9/01	QA.
		stem on 11/			Sultant 2/01/	<b>γ</b> η,
	ied analytica					

Figure C-1 Historical Groundwater Extraction System Mass Removal Trend

#### ARCO Service Station 2107 3310 Park Boulevard Oakland, California




3301056A/TBLS.XLS!FIGC-1

June 26, 1996

5

Figure C-2 Historical Groundwater Extraction System Hydrocarbon Concentrations

#### ARCO Service Station 2107 3310 Park Boulevard Oakland, California



1

Treatment and Disposal of Affected Material:

Material	<u>Amount</u> (include units)	<u>Action (Treatment</u> or Disposal w/destination)	<u>Date</u>
Tank Tank Piping	3-10000gal 1-550gal unknown	disposed/unknown disposed/unknown	1/12/87 1/12/87
Free Product Soil Groundwater Groundwater Barrels	unknown 70 cubic yards 85,000 gallons 19,450 gallons	disposed/Redwood Landfill disposed/H & H Environmental disposed/Gibson Oil	4/1992 2/1992 3-4/1992

Maximum Documented Cor Contaminant	Soil	ncentrations (ppm) <u>After</u> ²	Before an Water (ppb <u>Before³ A</u>	
TPH (Gas)	<10	1,700	22,000	200
TPH (Diesel)	140	2500	4800	250
Benzene	0.79	0.18	1500	1.5
Toluene	5.8	0.10	820	0.51
Ethyl benzene	2.5	25	310	<0.5
Xylenes	14	130	1800	<0.5
Oil & Grease	NA	130	<5000	NA
Heavy metals	NA	*	NA	NA
Other - organic lead	NA	NA	200	NA

* Laboratory analysis of soil samples collected from boring B7, detected the heavy metals cadmium, chromium, lead and zinc, at apparent geogenic concentrations of 0.565, 18.3, 9.95 and 49.8 mg/kg, respectively.

NA=Not analyzed

¹ "Before" concentrations were detected in sample J-1, collected from beneath the waste-oil UST, with the exception of TPHg. Also detected in sample J-1: acetone 2.4 mg/kg; 2-butanone 0.065 mg/kg; tetrachloroethene 0.010 mg/kg; and ethylbenzene 2.5 mg/kg. Non-detectable concentrations of TPHg were found in the four samples apparently collected from the sidewalls of the gasoline UST excavation.

²"After" concentrations were detected in sample S-9-B14, collected from boring B14 on 10/20/92 at a depth of 9' bgs, with the exception of benzene, O&G and toluene. Benzene and O&G concentrations were detected in sample S-8-B11, collected from boring B11, at a depth of 8 feet bgs. Toluene concentrations were detected in sample S-5-B8, collected from boring B-8, at a depth of 5 feet bgs.

³"Before" TPHg, TPHd and BTEX concentrations were detected in groundwater samples collected from MW-5 on 7/16/90, 6/30/92, 7/24/91, 7/24/91, 10/31/91 and 10/25/90, respectively.

⁴"After" TPHg, TPHd concentrations were detected from water sample collected from well MW-3 on 11/20/95. Benzene concentration was detected from water sample collected from MW-2 on 11/20/95. Toluene concentration was detected from water sample collected from MW-5 on 11/20/95.

URS	1333 Broadway, Suite 80 Oakland, California 9461		LOC Borehole ID Total Depth	: SB	-1	ORING	3	
· · · · · · · · · · · · · · · · · · ·	<b>INFORMATION</b>		DRILL	ING	INFO	RMATIO	N	
Project: Soil and Water	and the second se	Drillin	g Company: Gro	egg Dr	illing	and Testing	g, Inc.	
Site Location: 3310 Par	rk Blvd., Oakland, CA	Driller	Paul Rogers		01-11-324 Korpona			
Project Manager: Scot	t Robinson	Туре с	f Drilling Rig: G	leopro	be			
RG: James Durkin		Drillin	g Method: 2" Dir	rect Pu	ish			
Geologist: Chris Sherid	lan	Sampl	ing Method: Co	ntinuo	us Co	re		
Job Number: 38486908	8.0013601	Date(s	) Drilled: 3/30/0	4				
	BORING IN	FORMA	TION					
Groundwater Depth: 1	NA	Boring	Location: East c	orner	of pro	perty, near	entrar	nce on East 34th St.
Air Knife or Hand Aug	per Depth: 5.0 feet		Diameter: 2"					
Aux Laborer and Laborer	22.2344641 Y 37.8031429		Type: Explorato	rv				
			.,,			******		
Elevation (ft msl) Depth (ft bgs) Symbol	Lithologic Description	n _.		USCS	(mqq) QIA	Sample ID	Recovery	Comments
E128 C	ONCRETE							
128 0 C Si	ILTY GRAVELLY CLAY: dark brown (7.5 YR 3 ne to coarse gravel and sand; soft; no plasticit	3/3), clay v y, moist.	with silt and	CL				Boring grouted with neat Portland Cement, Top 3" finished to grade with cement.
	w plasticity.				0	SB-1-5		with coment.
122 6 XXX	3							·
	oderately stiff to stiff.		_		0	SB-1-10		
					6 0			•
			2			SB-1-15		
E110 18 s	ilLTY SANDY GRAVEL: brown (7.5 YR 5/3) : ravel, sand, silt, little clay; well graded, moist.	subangula . EOB; Re	ar to angular afusal @18.5'	GW	0	SB-1-18		
<u>(P</u>	gs.							

**BP/Atlantic Richfield Company** Page 1 of 1

ŧ

Borehole ID : SB-1

•

UR	<ul> <li>1333 Broadway, Suite</li> <li>Oakland, California 9</li> </ul>		Borehole II Total Depti				·····	
PROJE	CT INFORMATION	The second s	A CONTRACTOR OF THE OWNER			ORMATIC	11	
Project: Soil and Wa		Drillin	ig Company: Gr					
and the second	Park Blvd., Oakland, CA		r: Paul Rogers	egg D	ming	and Testin	g, inc.	•
Project Manager: S			of Drilling Rig: (	Teopro	he			PO DA IS (1. APP)
RG: James Durkin			ng Method: 2" Di					90 - N - I
Geologist: Chris She	eridan		ling Method: Co			ore		
Job Number: 38486	908.0013601		s) Drilled: 3/30/0					
	BORING	INFORM	ATION	<b>1</b>				
Groundwater Dept	h: 16'	Boring	Location: Unde	r east	corner	of canopy		
Air Knife or Hand A	Auger Depth: 5 feet	Boring	g Diameter: 2"					
Coordinates: X	-122.2345458 Y 37.8030865	Borin	g Type: Explorate	ory				
Elevation (ft msl) Depth (ft bgs) Symbol	Lithologic Descri	ption		nscs	(mqq) Olq	Sample ID	Recovery	Commer
	CONCRETE					1	Τ	- Address
126 126 124 124 122 4 122 6 120 6	Air knifed to 5' bgs SILTY CLAY: brown (7.5 YR 4/3) clay with soft, moist, low plasticity.	silt and fine t	o coarse sand;	CL	0	SB-2-5		Borehole grou with neat Por Cement. Top finished to gra with cement.
	CLAYEY SILT: brown (7.5 YR 4/3), silt with coarse gravel and sand; moist, slight plasti	clay and tra	ce fine to	ML	6	SB-2-10		
-114 -114 -14	SAND: brown, fine; moist. SILTY CLAY: brown (7.5 YR 3/4), clay with	n silt; moist, l	ow plasticity.	SP CL	0			
-112	Wet.					SB-2-15		z
1116 10 1116 12 1114 12 1114 12 1114 12 1114 1112 14 16 10 10 10 10 10 10 10 10 10 10	Some gravel.				0			
					0	SB-2-20		
E-104E	EOB: Refusal @23.0' bgs.					SB-2-23		Groundwate sample SB-2

TTRS	1333 Br
	Oakland

# LOG OF BORING

	333 Broadway, Suite 80	0	Borehole ID	: SB	-3			
Oa Oa	akland, California 9461	2	Total Depth			ogs		
PROJECT INFOR	MATION		DRILL	ING	NFO	RMATIO	N	
Project: Soil and Water Investigation	tion	Drilling	g Company: Gro					
Site Location: 3310 Park Blvd., C	Dakland, CA	Driller:	Paul Rogers					
Project Manager: Scott Robinson	n	Type o	f Drilling Rig: G	eopro	be			
RG: James Durkin		Drilling	g Method: 2" Di	ect Pu	ish			
Geologist: Kevin Uno			ing Method: Co		us Cor	'e		
Job Number: 38486908.0013601	neurona de la companya		) Drilled: 5/7/04		Ali		THIN CLASS	
	BORING INF							
Groundwater Depth: 5.5 ft. bgs	and the second		Location: Parkin	ng stal	acros	s from pun	np #6.	•]
Air Knife or Hand Auger Depth Coordinates: X -122.234700			Diameter: 2" Type: Explorato					
		Boring	Type: Explorate	iry T				
Elevation (ft msl) Depth (ft bgs) Symbol	Lithologic Description	1		uscs	(mqq) CIA	Sample ID	Recovery	Comments
E F O ASPHALT:	3 ⁴	ایران اور ایران ایران اور ایران ایران		FIL		en di di sedel Bi		
	/ERY: Alr knifed to 5'bgs.	•						Boring grouted with neat Portland Cement. Top 3" finished to grade with cement.
			м Тен	NR				<u>v</u>
	Y: Grey, mottled light brown clay wit e gravel, and trace sand; stiff, wet, i	h little silt, medlum p	, little lasticity.	CL	9.9	SB-3-8		
-110 - 14 Black, roun	d clasts (1.0-3.0 mm).				7.7	SB-3-13		
$ \begin{array}{c} 112 \\ -112 \\ -12 \\ -112 \\ -12 \\ -101 \\ -101 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102 \\ -102$	NDY CLAY: light brown clay, silt with ace organic material. Stiff, wet; med	fine to m lum plasti	edium sand; city.		no odor 12.2	SB-3-18 SB-3-23		Groundwater samples were collected from boring HP-3.
BP/Atlantic Richfie	eld Company Page	1 of 2			E	Borehole	ID :	SB-3

ÜR		LOG	OF BORING		Во	reho	ole li	D: SB-3
Depth (ft bgs)	Symbol	Lithologic D	Description		nscs	PID (ppm)	Recovery	Sample ID / Comments
96 28 94 30 92 32		SILTY SAND: light brown, fine to coat saturated. CLAYEY SANDY SILT: grey, motiled I little fine to coarse sand and trace gray medium plasticity. SAND: light brown, mostly coarse san Moderately dense, saturated. EOB: 32.0 ft. bgs.	light brown, silt, some clay and vel, moderately sliff, wet,	3 3	n		B-3-26 B-3-31	
2		· · · ·						
								,
	lanti	c Richfield Company	Page 2 of 2			R	Ireho	le ID : SB-3

TIRS	1333 Broadway, Suite 8	200	LO	GC	)F E	BORIN	G	
UINA	Oakland, California 946	24.2	Borehole I					
		512	Total Dept	h: 2.	0 ft. 1	bgs		
	CT INFORMATION		DRIL	LING	INFO	ORMATI	ON	
roject: Soil and Wat		Drillin	g Company: G					1.
	ark Blvd., Oakland, CA	Driller	Paul Rogers					
roject Manager: Sc	ott Robinson	Туре с	of Drilling Rig:	Hand A	Auger			
G: James Durkin			g Method: Hand			Second Second Second		
eologist: Kevin Uno		and the second s	Ing Method: H	-		orass tube.		(ata 4.)
ob Number: 384869	08.0013601	1 NY 1200	) Drilled: 5/7/04					
	BORING I	FORMA	TION					
roundwater Depth:	2.0 ft. bgs	Boring	Location: Sidev	valk al	ong P	ark Blvd.	ų.	and a second
ir Knife or Hand Au	ger Depth: NA		Diameter: 2 ind					
oordinates: X 1	NA Y NA	_	Type: Explorate			····		
Depth (ft bgs) Symbol	Lithologic Descriptio	on		USCS	(mqq) CIIA	Sample ID	Recovery	Comments
	AND: FILL, dark gray, sand with slit. Strong OB 2.0 ft' bgs. Boring abandoned when sloug r-knifing or hand augering to 5 ft. bgs.			SP	HC odor	SB-4-1.0		Boring grouted wi neat Porlland Cement. Top 3" finished to grade with cement.
а у	•			*				
	120							
	Richfield Company Page 1							



### LOG OF BORING LOG OF BOK Borehole ID: SB-5

	Oakland, California 9461	12	Total Depth		20. 2000	·····		
PROJEC	TINFORMATION				MILAMA OS	DHATIC		
Project: Soil and Wate		Drilling	I Company: Gr			ORMATIC		
Site Location: 3310 Pr			Paul Rogers	CRR D	ming	, and resun	g, Inc	•
Project Manager: Sco			f Drilling Rig: C	leonro	he			
RG: James Durkin			Method: 2" Di	-				
Geologist: Chris Sheri	idan		ng Method: Co			ore		-0.9961
Job Number: 3848690	08.0013601		Drilled: 3/30/0					
	BORING INF		the second se	0.20				
Groundwater Depth:	4.0'	Boring	Location: Sidew	/alk al	ong P	ark Blvd ne	ar int	ersection w/E 34th S
Air Knife or Hand Au	iger Depth: 5 feet		Diameter: 2"			- Water		
Coordinates: X -	122.2346814 Y 37.8032765	Boring	Type: Explorato	ory	1754			A CONTRACTOR OF
Elevation (ft msl) Depth (ft bgs) Symbol	Lithologic Description	1		nscs	PID (ppm)	Sample ID	Recovery	Comments
	ASPHALT: 3"		,			1	-	
2 120 4 118 6 116 8 5 116 8 5 5 116 10 12 12 12 12 12 12 12 12 12 12	Air knifed to 5'bgs. 0-8.0' bgs: No Recovery. SILTY CLAY: brown to dark brown (5Y 3/1) clay ine to medium sand, soft, wet, low to moderate p 2.0-16.0' bgs: No Recovery.	with some plasticity.	sllt and few	CL.	0 6	SB-5-8		Boring grouted with neat Portland Cement. Top 3" finished to grade with cement.
	irst two feet of sample were slough (16.0-18.0').			•	o	SB-5-16		
	GANDY GRAVEL: brown (5Y 3/3) angular to sub vith some sand, few clay and slit, stiff, wet. EOB: Refusal @ 19.5 ft. bgs	angular fir	ne gravel	GW	0	SB-5-19		Groundwater grab sample at 19.5' bgs.
BP/Atlantic	Richfield Company Page 1	of 1	NT - 1	-		Borehole		<b>SB</b> .5
	rayeri rayeri				E	ion entote	.0;	C-00

URS	Oakland, California 946	300 512	LO Borehole II Total Dept	D: S	B-6	BORIN	G	
Constraint and the second s	TINFORMATION					ORMATIC		
Project: Soil and Water		Drillin	g Company: G	regg D	rilling	and Testin	g, Ind	ò
Site Location: 3310 Par		Driller	: Paul Rogers					
Project Manager: Scot	tt Robinson	Туре с	of Drilling Rig: I	Hand A	Auger			
RG: James Durkin		Drilling	g Method: Hand	l Auge	r			
Geologist: Kevin Uno		Sampl	ing Method: Ha	and pa	cked t	orass tube.		,
Job Number: 3848690			) Drilled: 5/7/04	1				a di Kasari di Kasar
· • • • • • • • • • • • • • • • • • • •	BORING IN	FORMA	TION					
Groundwater Depth: 2		Boring	Location: Sidev	valk al	ong P	ark Blvd.		
Air Knife or Hand Aug			Diameter: 2 inc					
Coordinates: X N	Α ΥΝΑ		Type: Explorate					
Depth (ft bgs) Symbol	Lithologic Descriptio	on		USCS	PID (ppm)	Sample ID	Recovery	Comments
	AND: (FILL), dark gray sand with silt. Strong DB: 2.0 ft. bgs. Boring abandoned when slou -knifing or hand augering to 5 ft. bgs.			SP	HC odor	SB-6-1.0		Boring grouted with neat Portland Cement. Top 3" finished to grade with cement.
		·						
BP/Atlantic R	ichfield Company Page 1	l of 1			В	orehole	D:	SB-6

100	1. J. S	July -		1.5
			- Section 4	

RG: Bob Horwath

Coordinates:

(ft msl)

-126E

124

122

120

118

116 E

114

112

-110

108

106

104

E

Depth (ft bgs)

Π

2

6

8

10

12

14

16

18

20

22

24

Symbol

#### LOG OF BORING

Borehole ID: SB-7 Oakland, California 94612 Total Depth: 30 ft **PROJECT INFORMATION** DRILLING INFORMATION Project: Soil and Water Investigation Drilling Company: Vironex. Site Location: 3310 Park Blvd., Oakland, CA Driller: Paul White Project Manager: Scott Robinson Type of Drilling Rig: Geoprobe 6610DT Drilling Method: 2" Direct Push Geologist: Kevin Uno Sampling Method: Continuous Core Job Number: 38486908.0013601 Date(s) Drilled: 10/14/04 BORING INFORMATION Groundwater Depth: 16' Boring Location: Along curb at E 34th St. entrance to Site. Air Knife or Hand Auger Depth: Air knife to 5' bgs Boring Diameter: 2" X -122.2345316 Y 37.8032140 Boring Type: Exploratory PID (ppm) Sample ID Recovery **USCS** Lithologic Description Comments ASPHALT: 3" GP SANDY CLAYEY GRAVEL: (2.5Y 3/3) Dark olive brown. 60% gravel, 25% sand, 10 slit, 5% clay. Loose, moist, low plasticity. Boring grouted with neat Portland ML CLAYEY SILT: (2.5Y 2.5/1) Black. 75% silt, 25% clay. Moderately stiff, Cement. Top 3". moist, low to medium plasticity. finished to grade with cement. 60% silt, 40% clay. Medium plasticity. SILTY SAND: (2.5Y 3/2) Very dark greyish brown. 65% fine sand, 30% silt, 5% clay. Loose, moist to wet, low plasticity. SM ML. SANDY SILT: (2.5Y 4/2) Dark grayish brown. 65% silt, 20% sand, 15% clay, trace gravel. Stiff, molst, low plasticity. SB-7-6.0 0 NO RECOVERY CLAYEY SILT: (2.5Y 4/2) Dark grayish brown. 75% silt, 15% clay, 10% sand. Stiff, moist, medium plasticity. ML SB-7-11.5 Oxidation, mottling (Very dark gray and olive). NO RECOVERY SANDY CLAYEY SILT: (2.5Y 4/2) Dark grayish brown. 65% slit, 25% sand, 10% clay. Mottiling (Very dark gray and olive), sliff, moist to wet, medium plasticity.  $\nabla$ 0 SB-7-16.0 No Odor Groundwater samples were collected from No boring HP-4. Odor SB-7-19.5 NO RECOVERY

**BP/Atlantic Richfield Company** 

Page 1 of 2

Borehole ID: SB-7

URS	LOG OF BORING	Borehole ID: SB-7
Depth (ft bgs) Symbol	Lithologic Description	SUSUL (India) (India) Sample ID / Comments
-100 20 NO	AYEY SILT: Recovered cutting shoe: Olive. 85% silt, 15% clay, æ sand and clay. RECOVERY	
E 30 E GR	AVELLY SILTY SAND: Recovered cutting shoe: Olive brown. 65% to coarse sand, 25% gravel, 10% silt. Moist to wet, no plasticity. B: Refusal @30.0' bgs.	sw
	5.	κ.
	5	

1333 Broadway, Suite	800	and the second s	_		BORIN	G			
Oakland, California 94		Borehole I	and the second sec						
PROJECT INFORMATION Project: Soil and Water Investigation	·	DRILLING INFORMATION							
Site Location: 3310 Park Blvd., Oakland, CA	and the second second	g Company: Vi	ironex				1 Martine Martine States		
Project Manager: Scott Robinson		Paul White	-	1			*******		
RG: Bob Horwath		of Drilling Rig: ( g Method: 2" D			10 DT				
Geologist: Kevin Uno		ing Method: Co			129				
Job Number: 38486908.0013601		) Drilled: 10/15			<i><b>NC</b></i>				
BORING									
Groundwater Depth: 20'	and the second se		ted in p	oarkin	g stall close	est to	E 34th St. entrance		
Air Knife or Hand Auger Depth: Hand auger to 5' bgs		Diameter: 2"			-				
Coordinates: X -122.2346152 Y 37.8032190	Boring	Type: Explorate	огу						
Elevation (# msl) Capth (# bgs) Capth (# bgs) Capth (# bgs) Capth (# bgs)	ion		USCS	PID (ppm)	Sample ID	Recovery	Comments		
124       0       ASPHALT: 2"         SANDY CLAYEY GRAVEL: (2.5Y 3/3) Dark of 25% sand, 10 silt, 5% clay. Loose, moist, low         122			GM						
SANDY CLAYEY GRAVEL: (2.5Y 3/3) Dark of 25% sand, 10 silt, 5% clay. Loose, moist, low	plive brown.	60% gravel,					Boring grouted wil		
122 2 CLAYEY SILT: (2.5Y 2.5/1) Black. 88% slit, Moderately stiff, moist, low to medium plastic			ML		÷		neat Portland Cement. Top 3"		
F E S Moderately stiff, moist, low to medium plastic	ity.						finished to grade with cement.		
SANDY SILT: 70% silt, 20% fine sand, 10% c	clay. Stiff, mo	olst to wet,				and the second se			
CLAYEY SILT: (10Y 4/1) Dark greenish gray.	. 85% silt. 1	5% clay, Stiff.			1004 (42) - 1000 - 1000 - 1000				
moist, medium plasticity.					SB-8-6.0				
	÷								
12 2									
					B				
-110 CLAYEY SANDY SILT: (2.5Y 4/3) Olive brow	n. 70% silt.	15% clay			SB-8-14				
CLAYEY SANDY SILT: (2.5Y 4/3) Olive brown 15% sand. Stiff, moist to wet, medium plastic	city.	ie ni olay,					Groundwater samples were		
Motiling: Dark olive brown and olive brown.	*	2			SB-8-16.0		collected from boring HP-5.		
							Joing 11 '0.		
20 NO RECOVERY					SB-8-19.5		z		
E-104									
E E I			E.				-		
	0. or 59	an a			l	1			
BP/Atlantic Richfield Company Page	1 of 2			E	Borehole	ID:	SB-8		

URS	LOG OF BORING	Во	reho	ole I	D: SB-8
Depth (ft bgs) Symbol	Lithologic Description	USCS	PID (ppm)	Recovery	Sample ID / Comments
	CLAYEY SILT: 75% silt, 20% clay, 5% fine sand. Moderately stiff, moist, low to medium plasticity. SILTY SAND: 65% fine sand, 30% silt, 5% clay. Moist to wet, no to low plasticity. CLAYEY SILT: 70% silt, 30% clay. Very stiff, moist, medium plasticity.	ML		<u>I-8-29</u>	30 ft. bgs: End of Boring
BP/Atlantic	Richfield Company Page 2 of 2		Bjore	hole	ID: SB-8

URS	1333 Broadway, Suite 80 Oakland, California 9461		Borehole ID . Total Depth	: SB : 27.	-9 5 ft.	ORING				
	INFORMATION	Dutiti	DRILLING INFORMATION							
Site Location: 3310 Par	Soil and Water Investigation		g Company: Vir Paul White	onex		ALCONT OF THE OWNER				
Project Manager: Scott	A standard of the second standard second		of Drilling Rig: G	PONTA	he 661	0.DT		1.000 - 101 - 1		
RG: Bob Horwath			g Method: 2" Dir					11		
Geologist: Kevin Uno			ing Method: Con			re				
Job Number: 38486908	8.0013601	-	) Drilled: 10/14/	lies						
and the second	BORING IN	FORMA	TION							
Groundwater Depth: 2	2.5 ft. bgs	Boring	Location: Parkin	ig stal	close	st to Park I	Blvd	and the second of		
Air Knife or Hand Aug	er Depth: Airknife to 5' bgs	Boring	Diameter: 2"							
Coordinates: X -1	22.2348093 Y 37.8031964	Boring	Type: Explorato	гу						
Elevation (ft msl) Depth (ft bgs) Symbol	Lithologic Description	n		nscs	(mqq) OI9	Sample ID	Recovery	Comments		
122       2       3       3         120       2       3       3         120       4       9       9         112       4       9       9         118       6       116       8         114       10       3       3         112       12       12       10         111       10       11       12         110       14       10       10         110       14       16       9         106       18       9       9         104       20       9       9	SPHALT: 4" ANDY GRAVEL: (2.5Y 3/3) Dark olive brown. and, 10 silt, 5% clay. Loose, moist, low plastic RAVELLY CLAY: (10GY 4/1) Dark greenish gravel, 15% silt. Stiff, wet, high plasticity. IO RECOVERY ANDY GRAVEL: (2.5Y 3/1) Very dark gray. 4 ubangular gravel, 30% fine to coarse sand, 10 ret, low plasticity. LAYEY SILT: (2.5Y 5/3) Light olive brown. 8 Motiling, stiff, wet, medium plasticity. NO RECOVERY CLAYEY SILT: (2.5Y 5/3) Light olive brown. 8 Motiling, stiff, wet, medium plasticity. SANDY SILT: (2.5Y 5/3) Light olive brown. 8 Motiling, stiff, wet, medium plasticity. SANDY SILT: 90% silt, 10% silt, 30% grave Motiling, stiff, wet, no to low plasticity. SANDY SILT: 90% silt, 10% fine sand. Wet; i silty sand. SILTY SAND: 60% fine sand, 40% silt. Wet; I silty sand. SANDY GRAVELLY SILT: 50% silt, 25% sand Wet, no to low plasticity.	gray. 60% 55% fine to 2% silt, 5% 0% silt, 20 0% silt, 20 0% silt, 20 el, 25% sa ow plastic	o medium & clay, 25% & clay. Stiff, )% clay. )% clay. )% clay. )% clay. )% clay. )% clay.	GM CL ML ML SM		SB-9-10. SB-9-13. SB-9-17. SB-9-19.	5	Boring grouted with neat Portland Cement. Top 3" finished to grade with cement. Groundwater samples were collected from boring HP-6.		
	GRAVELLY SILT: 50% silt, 25% gravel, 10% i		15% clay.	ML	-					
BP/Atlantic	Richfield Company Page	1 of 2				Borehole	e ID :	: SB-9		

UR	R	LOG	OF BORING	Bo	reho	ole I	D: SB-9
Depth (ft bgs)	Symbol	Lithologie	c Description	USCS .	PID (ppm)	Recovery	Sample ID / Comments
E-98 E	50	Wet, no to low plasticity.					
98 26		SILTY SAND: 2.5Y 4/3 Olive brown plasticity.	n. 70% sand, 30% silt. Moist, no	SM			
			1				
					ŵ.		
			÷				
	÷						
			u.				
•	.•.						÷
			•				
*							
BP/At	anti	c Richfield Company	Page 2 of 2		Во	reho	le ID : SB-9

1	THE OWNER WATER	1	100	1
-				
	WA.	SY.	₽,	
		10		

### 1333 Broadway, Suite 800 Oakland, California 94612

# LOG OF BORING

Borehole ID: SB-10

			S	Oaklar	nd, Califo	ornia 946	12	Total Dep					
	P	ROJE	ECT IN	FORMAT	ION			and the second secon	HAVA BEAM		ORMATI	ON	
					Investigation		Drillin	Company: \	and a state of the				
				lvd., Oakland	d, CA		Driller	Paul White			· · · · ·		
Project			Scott Rol	binson			Туре с	f Drilling Rig:	Geopro	be 66	10 DT		andinia da Universidad de la como
RG: Bob Horwath Drilling Method: 2" Direct Push													
Geologist: Kevin Uno Sampling Method: Continuous Core													
Job Number: 38486908.0013601         Date(s) Drilled: 10/20/04           BORING INFORMATION													
Ground	wator	Denti	h• 13 A	hac		BORING IN	-						
			the second second second	and the second se	lauger to 5' h	100		Location: Mid	dle of d	rivew	ay on Park	Blvd	**
Air Knife or Hand Auger Depth: Hand auger to 5' bgs     Boring Diameter: 2"       Coordinates:     X -122.2348842     Y 37.8031970     Boring Type: Exploratory													
1							Doring	Type. Exploia	liory				
Lievation (ft msl) Depth (ft pgs) Lithologic Descriptio									NSCS	PID (ppm)	Sample ID	Recovery	Comments
	- 0	0.0	ASPH	ALT: 3"	4121 m g m g m g		Contraction of the			-			1
120	-	0	SAND'	(In 1.0 ft ho	(2.5Y 3/3) Da	rk olive brown. clay. Loose, m	Gravel an	d concrete	GM				V
-120 E	- 2	$\mathcal{Q}$	plastic	lty.	D/1 3810, 2110	Clay. 20056, 11		, 10W					
	-		CLAVE	V CII T. (10)	V 0 5/1) C			1					
E-118	- 4	22	ine to	coarse round	ded sand and	nish black. 70' gravel. Stiff, n	ML						
EE		1-1	plastic	ity.							2		
E-116E	- 6	1-1											Boring grouted wi
116	- 0	1-1											Cement. Top 3" finished to grade
EngE		1-1									SB-10- 6.5		with cement.
116 116 114 114	- 8	1-1	(2.5Y 4	/3) Olive bro	own.								
	-	1-1											
E-112E	- 10	7-7	Core sa	amnle sleeve	destroyed fr	om 10-13.5 ft. t	100						
-	-	1-1	0010 00	imple Sicere	, acailoyea in	Jiii 10-13.5 IC I	ນບູຣ.						
E-110E	- 12	1-1											
	144	12											
-108		7-7											
	- 14	22									SB-10-		
	•.	$\rightarrow$	Mottling NO RE	COVERY							14.0		Groundwater
106	- 16	$\rightarrow$			lydropunch: H	D 7 90	•		4				samples collected
	- 1	$\leq$		001611.11	iyutoputten. n	ir-/-20							labeled as HP-7.
-104 E	- 18												
-102		$\square$											
	- 20		CLAYE	Y SANDY S	ILT: (5Y 4/2)	Olive gray. 70	% silt, 20%	clay, 10%	ML				
E F	-	圖書	sand. N	Adderately sl	tiff to stiff, mol	ist, medium pla ve brown. 45%	sticity.		SM		SB-10- 20.5		
E-100 E	- 22		clay. M	oist, dense,	no to low plas	sticity.	sano, 40	% siit, 15%	Sivi				
1100 100 100 100 100 100 100 100	· 24		CLAYE sand. M	Y SANDY S Adderately st	ILT: (5Y 4/2) Iff to stiff, mol	Olive gray. 70 ⁴ ist, medium pla	% silt, 20% sticity.	clay, 10%	ML		SB-10- 22.5		
	-	1		0.110	a na sa			and the second secon	1 1	-	l	1	l
BP	TATI	antic	; KICh	nfield Co	ompany	Page 1	of 2			E	lorehole	ID:	SB-10

Image: Second
96       26       NO RECOVERY         94       28       NO RECOVERY: Hydropunch: HP-7-30         94       28       GRAVELLY SILTY SAND: (2.5Y 4/3) Olive brown, 45% sand, 30%, moist, no plasticity.         90       30       GRAVELLY SILTY SAND: (2.5Y 4/3) Olive brown, 45% sand, 30%, moist, no plasticity.         90       32

J	J	R	5 1333 Broadway, Suite 80 Oakland, California 946	LO Borehole IE Total Depth	): SB	-11	ORING	3					
			CT INFORMATION		DRILL	ING	NFC	RMATIO	N				
			107 Soil and Water Investigation	Drillin	g Company: Vi	/: Vironex							
1			Park Blvd., Oakland, CA	Driller	Paul White								
			cott Robinson		of Drilling Rig: C			10 DT					
	ob Horw		and all a standard and a standard a	Drillin	g Method: 2" Di	rect Pu	sh						
	gist: Ke			Sampl	ling Method: Co	ntinuo	us Co	re					
Job N	umber:	38486	908.0013601	ALC: A STORE WITH MARKED	) Drilled: 10/14/	04	- 85-1						
		-	BORING IN							978			
			1: 3.8 ft. bgs		Location: W sid	e of dr	ivewa	y on Park H	Blvd				
			Auger Depth: Airknife to 5' bgs		Diameter: 2"								
Coord	linates:	<u>х</u>	-122.2349568 Y 37.8032163	Boring	Type: Explorate	ory							
Elevation (ft msl)	c Depth (ft bgs)	Symbol	Lithologic Description	n		nscs	(mqq) Olq	Sample ID	Recovery	Comments			
E-120	E	<i>V</i>	ASPHALT: 6"			-				-			
1120 1118 1116 1114	and 2		SANDY GRAVEL: (2.5Y 3/3) Dark olive brown. sand, 10 silt, 5% clay. Loose, moist, low plastic CLAYEY SILT: (10Y 2.5/1) Greenish black. 70 fine to coarse rounded gravel. Moderately stiff, plasticity.			GM ML				$\nabla$			
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.5Y 2.5/1 Black							Boring grouted with neat Portland Cement, Top 3"			
1112			Increase to 10% fine to coarse sand; decrease	clay.	÷		e	SB-11-6.5		finished to grade with cement.			
			(5Y 4/2) Olive gray. 75% silt, 15% clay, 10% fir Moist; Low to medium plasticity.	ne to coars	se sand.								
108	12		(2.5Y 5/1) Gray. Wet, soft.					SB-11 -11.5					
	14 14	THE REAL	SANDY CLAYEY SILT: (5Y 4/2) Olive gray. 70	)% silt, 25	% sand, 5%		×						
104	16 1		(2.5Y 2.5/1) Black			ą	SB-11 -16.5		Groundwater samples were collected from boring HP-8.				
	2011 18		NO RECOVERY					- 10.0					
	20		SANDY CLAYEY SILT: (5Y 4/2) Olive gray. 65 coarse sand, 10% clay. Low plasticity.	5% silt, 20	% fine to	ML							
-98	1 22		(2.5Y 2.5/1) Black	-111				SB-11 -21.5					
	E 24		SILTY SAND: (5Y 5/3) Olive. 70% sand, 30% plasticity.	silt, trace	gravel. Low	SM		Borehole					

BP/Atlantic Richfield Company P

Page 1 of 2

# Bor

Borehole ID: SB-11

UR			LUG	OF BOI	ING		B	oren		D: SB-11	
Depth (ft bgs)	Symbol		Lithologic	Description			nscs	(mqq) Cild	Recovery	Sample ID / Co	omments
94 26	Tistist.	23.5.ft : Color change GRAVELLY SILTY S wet, no plasticity.	a to (5 <u>G 4/1) da</u> AND: 65% sano	rk:greenish gra 1, 20% gravel,	ıy. 15% silt. Der	/ 158,		s	B-11-2	6	
92 28 30		NO RECOVERY			•			S -2	B-11 8.5		
										,	
					£						
		ž	ī							u.	
8			5								
							620				
				,		•;					
DD/44	. 4! -	Richfield Cor		Page 2 of		ans to apply and		•		ə ID : SB-11	

SOIL BOR	ING LOG	Boring No. <u>SB-12</u>	Sheet <u>1</u> of <u>2</u>	
Client	ARCO Stallan No. 2107	Date 6/26/2007	······································	
Address	3310 Park Boulevard	Drilling Company RSI	rig type: Geoprobe 6600	
	Oakland, CA	Drilling Foreman Art		
Project No.	E-2107	Method Direct Push	hole dlam.: 2"	a and a state of the second
Logged By:	Scolt Bittinger			

#### grout: 0 ft. lo 28 ft.

	Sample	Blow		npie	Woll Constru	Depth	LITHO	Descriptions of Materials	PID
Туре	No.	Count	Tîmo	Recov.	ct.	Scale	COLUMN	and Conditions	(PPM)
						1			
_					1	- 2			
							•		
						— ³		air knife to 7.2' bgs. Not logged.	
						4 5 6			
						- s			
		*********							-
	~== = = = = = = = = = = = = = = = = = =	*******				7			
	a a b a d a l a a a a b b da					<u> </u>		CLAYEY SAND with SILT, 7.2'-8.5', light clive brown, 60% fine grained sand, 40% silly clay, moist	
	• <b>• • • • • • •</b> • • • • • • • • • • •					<u> </u>	SP-SC	SAND with CLAY 8.5'-9.2', light olive brown, 90% fine grained sand, 10%	
S	SB12-9		11:36			1 0	CL	silly clay, damp SILTY CLAY 9.2'-11.2', light olive brown, 0-10% fine grained sand, dry,	0
						. <u>न</u> ा		silff	
S	SB12-11		11:38		]	1 2	SP-SC	SAND with CLAY and SILT, 11.2'-14', dark yellowish brown, 85-90% fine	o
					1			grained sand, 10-15% silly clay, damp to wet	
						<u>1</u> 3			
						1 4			
	100400 P & B 4 & B + 4 B +	604 <del>60 64 64</del> 44	-Jandasses			1 5	SC	CLAYEY SAND 14'-15.8', grayish brown, 50-60% fine grained sand, 40-50% silly clay, molst	
S	SB12-15		11:42			1 6			0
						17			
5	SB12-17		11:45			1 8		SAND with CLAY and SILT 15.8'-22', fine to coarse grained, 5% fine gravel,	0
			111.0		1			10-15% silly day, damp to wel	
	******					1 9			
S	SB12-19		11:47			20			0
					e:			Comments: Soll continuously recovered in acrylic liners. Total depth of boring 28 feet bgs. Boring backfilled to surface grade with neat cement.	ls
								STRATUS ENVIRONMENTAL, INC.	

SOIL BOR	ING LOG	Boring No. <u>SB-12</u>	Sheet 2 of 2	
Client	ARCO Station No. 2107	Date 6/26/2007		
Address	3310 Park Boulevard	Drilling Company RSI	rig type: Geoproba 6600	
	Oakland, CA	Drilling Foreman Art		
^p roject No.	E-2107	Method Direct Push	hole diam.: 2"	1 104 104 1
.ogged By:	Scott Bittinger			

S	iampio	Blow	Sar	nplo	Well Construc	Depth	цтно	Descriptions of Materials	PID
Тура	No.	Count	Time	Recov.	L	Scale	COLUMN	and Conditions	(PPM)
						2 1	sw-sc	SAND with CLAY and SILT 15.8'-22', fine to coarse grained, 5% fine gravel, 10-15% slity clay, damp to wet	
S	SB12-21		11:55			2 2			0
						2 3	SP-SC	SAND with CLAY and SILT 22'-23', fine grained, 10-15% silty clay, damp to wet	
<u> </u>	<u>5912-23</u>		11:57			_2 4	12	SILTY CLAY 23'-24', light olive brown with Iron oxide staining, dry, stiff	0
						2 5			
<u> </u>	SB12-25	*********	11:59			2 6	CL	SILTY CLAY 24'-28', very dark gray, dry to moist, stiff	0
S	SB12-27		12:01			2 8			0
						=			
		*****							
*****						_		***************	
	*****					=			
				*****					
******						=			
	***				·			••••••••••••••••••••••••••••••••••••••	
				*					
				22					
				2					

SOIL BOR	ING LOG	Boring No. SB-13	Sheet <u>1</u> of <u>2</u>		
Client	ARCO Station No. 2107	Date 6/25/2007			
Address	3310 Park Boulevard	Drilling Company RSI	rig type: Geoprobe 6600		
	Oakland, CA	Drilling Foreman Art			
Project No.	E-2107	Method Direct Push	hole diam.: 2"		
Lagged By:	Scott Bittinger			MARANCE PRIMI PROVIDE AND A DURING A DU	
	arout 0 ft to 30 ft			halandalalan dalamat makana ang sa	

#### Well Sample Blow Sample Depth **Descriptions of Materials** PID Constru LITHO Count Туре No. Timo Scale COLUMN lecov. CL. and Conditions (PPM) Concrete 2 3 4 5 6 7 8 1 9 1 1 1 air knife to 7.2' bgs. Not logged. SC CLAYEY SAND 7.2'-10', very dark gray, 55% fine grained sand, 45% clayey fines, damp SB13-9 13:53 5 1 CL SILTY CLAY 10'-12', olive brown, moist, sliff SANDY CLAY with SILT 12'-12,8', olive gray, 65% silty clay, 35% fine 1 2 5 SB13-11 13:59 grained sand, moist, stiff 3.5 <u>1</u> 3 CL SILTY CLAY 12.8'-13.6', olive gray, moist, stiff SANDY CLAY with SILT 13.6'-14', dark yellowish brown, 70% silly clay, 1 4 S SB13-13 14:02 30% fine grained send, moist 1 5 SC CLAYEY SAND 14'-16.5', dark yellowish brown, 70-80% fine grained sand, 10-30% silly clay, damp 1 6 S SB13-15 14:07 0 17 SAND with CLAY and SILT, 16.5'-18', dark yellowish brown, fine to coarse SW-SC grained, 5% fine gravel, 10-15% silty clay, damp to wet 1 8 S SB13-17 14:09 0 1 9 CL SILTY CLAY 18'-20', light olive gray with Iron oxide staining, moist, sliff 2 0 S SB13-19 14:12 D Comments: Soil continuously recovered in acrylic liners. Total depth of boring is 30 feet bgs. Boring backfilled to surface grade with neat cement. STRATUS ENVIRONMENTAL, INC.

SOIL BORING LOG		Boring No. <u>SB-13</u>	Sheet <u>2</u> of <u>2</u>
Silent	ARCO Stallon No. 2107	Dale 6/25/2007	
Address	3310 Park Boulevard Oakland, CA	Drilling Company RSI	rig type: Geoprobe 6600
Project No. _ogged By:	E-2107 Scott Bittinger	Drilling Foreman Art Method Direct Push	hole diam.; 2"

ypa	ample	Blow	Sa	mplo	Woll	Depth			
261.0	No,	Count		Recov.	Construc	26372	LITHO COLUMN	Descriptions of Materials and Conditions	PID
						_2 1	SC	CLAYEY SAND with SILT 20'-22', light office gray, fine to medium grained, 25% silly clay, dame	(PPN
s	SB13-21		14:14			2 2		25% silly day, damp	
						10 10 10	014/ 00		0
s	SB13-23		4.1.1.0			2 3	SW-SC	SAND with CLAY and SILT 22'-26.3', fine to coarse grained, trace gravel, 10-12% silly clay, damp	
<u> </u>	0010-201	**********	14:16			2 4			0
						2 5		*****	
s	SB13-25		14:19			2 6			-
						2 7		***************************************	0
s	SB13-27		14:22			B	CL	SILTY CLAY 26.3'-30', very dark gray, dry to molst, stiff	_
									0
						2 9			
3	SB13-29		14:26			3 0			0
						_			
							ſ	***************************************	
						_	ľ		
						_	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
						-	-		
							_		
									-
						$\equiv$	-		-
						_	-		
						-	-		
_									

SOIL BORING LOG		Boring No. <u>SB-14</u>	Sheet 1 of 2
Client	ARCO Station No. 2107	Dale 6/26/2007	
Address	3310 Park Boulevard	Drilling Company RSI	rig lype: Geoprobe 6600
	Oakland, CA	Drilling Foreman Art	
Project No.	E-2107	Method Direct Push	hole diam.: 2"
Logged By:	Scott Bitlinger		
	grout: 0 ft. to 30 ft.		

.

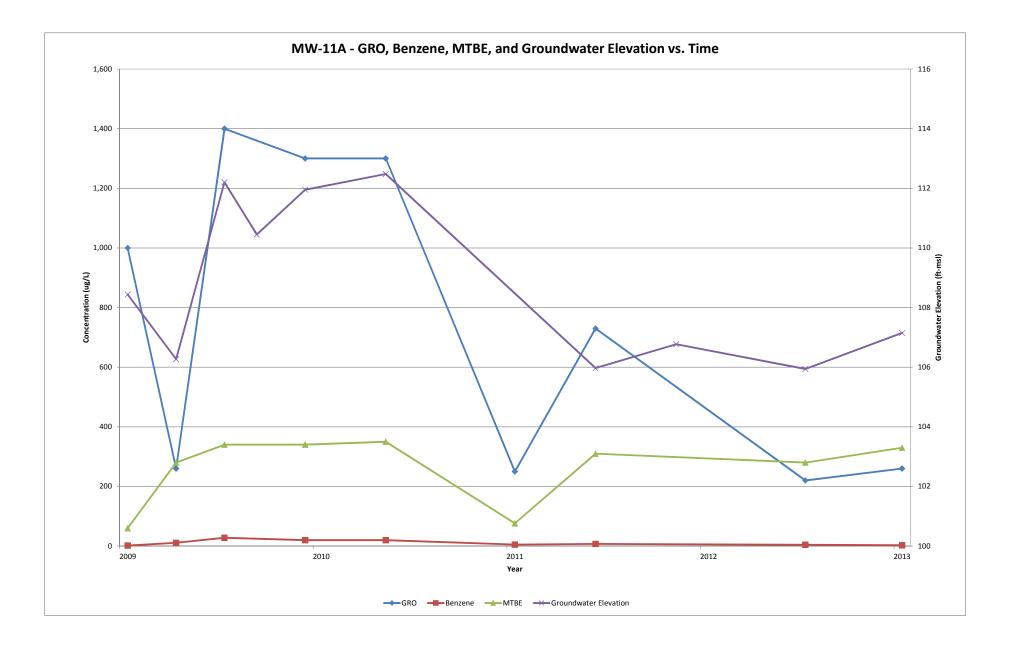
•

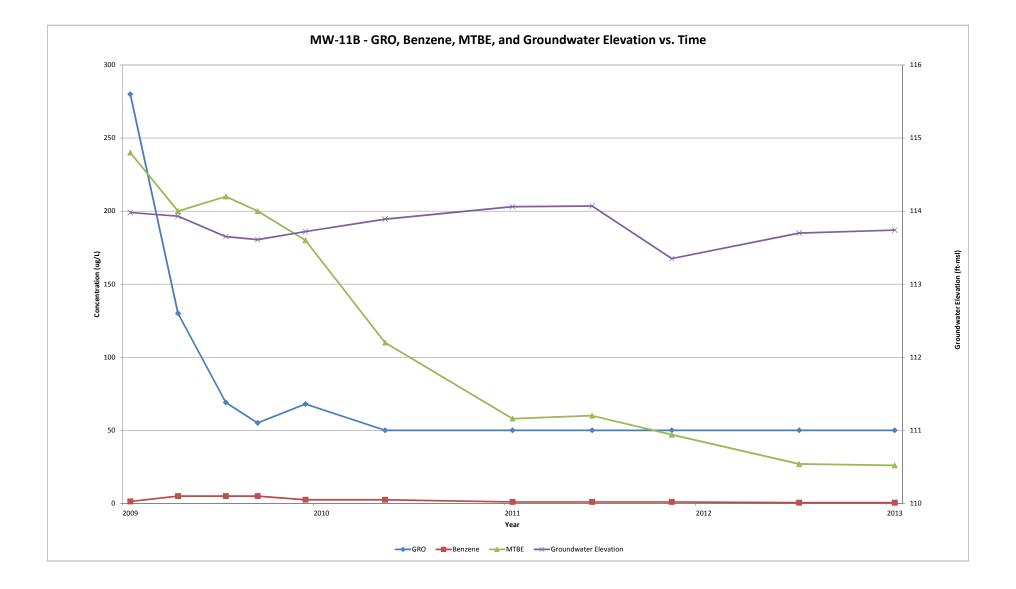
-	Sample	Blow	Sar	nple	Woll Constru	Depth	LITHO	Descriptions of Materials	PID
Туре	No.	Count	Timo	Recov,	cL	Scale	COLUMN	and Conditions	VEC ACIES
			Contractor (1995)			· <u> </u>		Concrete	(PPM)
					-	1			
			·		1				
						3		air knife to 5.5' bgs. Not logged,	
						—			
						4			
		1				2 3 4 5 6			
Contraction and the					1				
						6			
						<u> </u>			
	•	**************************************		-		-'		·	
		1					SC	CLAYEY SAND with SILT, 6.5'-11.5', light olive brown 6.5'-10', dark yellowish	
						1777527		brown 10'-11.5', 50-65% fine grained sand, 35-50% silly clay, moist	
						9			
S	SB14-9		8:44			<u>1</u> a			
				*******					
	-	4 <del>6 4 6 4 6 4 6</del> 6 6 6 6 6 6 6 6 6 6 6 6 6				11			
s	SB14-11		0.40					SILTY CLAY with SAND 11.5'-12', dark yellowish brown, 85% sility clay,	
<u> </u>			8:46	*******		<u>1</u> 2	CL SC	15% fine grained sand, moist	
			and the			<u>1</u> a	00	CLAYEY SAND with SILT, 12'-13.3', grayish brown, 60% fine grained sand, 40% silty clay, moist	
								SILTY CLAY 13.3'-15', grayish brown, 8% fine grained sand, dry to moist,	
S	SB14-13		8;48			1 4	CL	stiff	
						1 5		a a baad a u	******
******				and American			SP-SC	SAND with CLAY and SILT 15'-16', fine grained, 7-10% silly clay, damp	
S	SB14-15		8:50			1 6		or the war ous r and aren 15-16, line grained, 7-10% silly clay, damp	
					•		CL	SANDY CLAY with SILT 16'-17.2', grayish brown, 80% siliy clay, 20% fine	
						17	• • • • • • • • • • • • • • • • •	grained sand, moist	
S	SB14-17		8:52			18	SC		
							55	CLAYEY SAND with SILT, 17.2'-20', grayish brown to light allve brown, 55-65% fine grained sand, 35-45% silty clay, moist	
						1 9		see and granne during us have siny dray, morat	
S	SB14-19		8:54			2 0			
	0017-10	للبيو ومعروب	0,04 ]		L	2 01			0
								Comments: Soll continuously recovered in acrylic liners. Total depth of boring is	
								30 feet bgs. Boring backfilled to surface grade with neat cement.	
								GTDATUS	
								STRATUS	
								ENVIRONMENTAL, INC.	

SOIL BORING LOG		Boring No. <u>SB-14</u>	Sheet 2 of 2	
Client	ARCO Station No. 2107	Date 6/26/2007		
Address	3310 Park Boulevard	Drilling Company RSI		
	Oskland, CA	Drilling Foreman Art	rlg lype: Geoprobe 6600	
Project No.	E-2107	Method Direct Push		-
.ogged By:	Scott Blitinger	Mentod Direct Pusit	hole diam.: 2"	

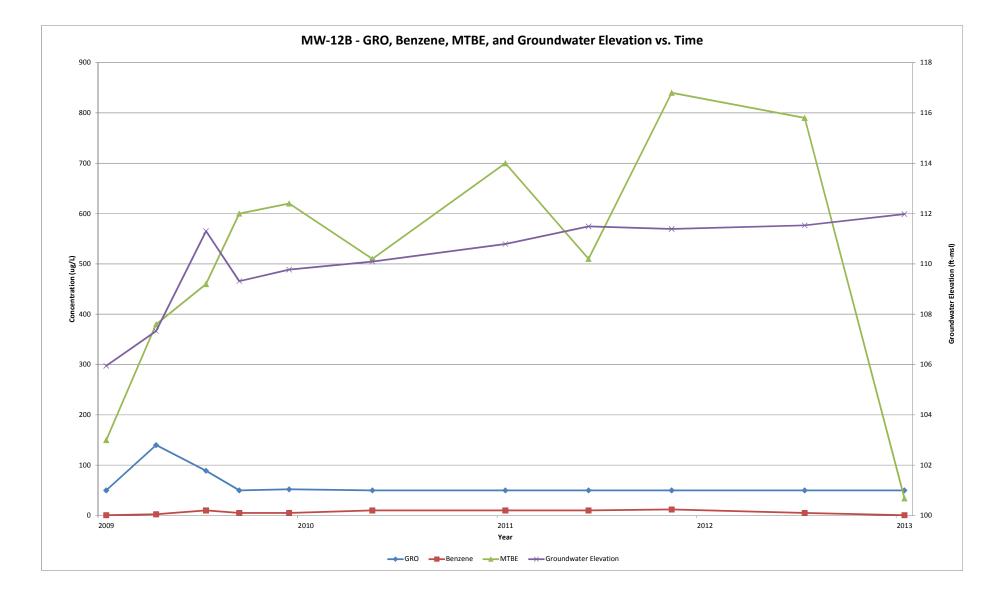
Т

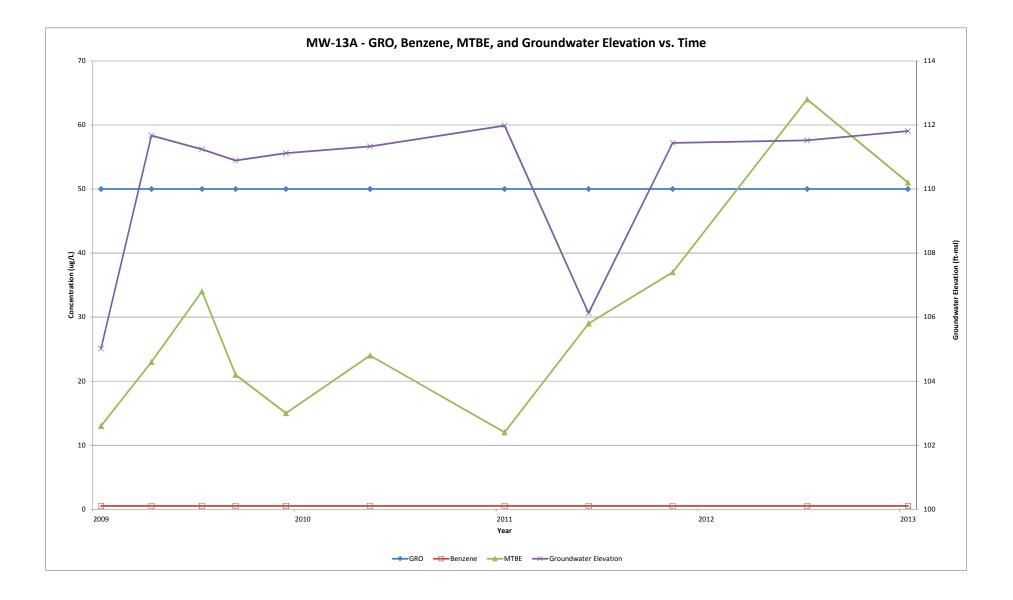
	Sample	Blow	Sa	mplo	Wall	Depth	1		
Туре	No.	Count	Timo	Recav.	Constante	Scale	LITHO	Descriptions of Materials	PID
						QUAID	COLUMN SP-SC	and Conditions	(PPM)
						2 1		SAND with CLAY and SILT 20'-21', fine grained, 5-10% silty clay, damp to wet	
S	SB14-21		8;58		1				
	001721		0,00			2 2	CIAL CO		o
-		1		1000		2 3	300-30	SAND with CLAY and SILT 21'-26.5', fine to coars grained, 10% fine gravel, 10-12% silly clay, damp to wat	1
-								10-12% silly clay, damp to wet	
	SB14-23		9:00			2 4			
0000000000						2 5	1		0
			*******						
S	SB14-25		9:02			2 6			
									0
	************					2 7			
S	SB14-27		9:05			2 B	CL	SILTY CLAY 26.5'-30', light olive brown/pale yellow with Iron oxide stains	
							~~	26.5'-28', very dark gray 28'-30', dry to molst, sliff	0
						2 9			
S	SB14-29		9:08	i - 1		3 0			
						<u> </u>			U
	·····					_			
				1		_	ľ	******	
	······								
						-			
				********	5	-	ŀ		
							1		
							-		
						-			*******
						$\equiv$	F		
						_			
						-	-		
						$\equiv$			
						_			
						1		A. WALPIN	
	Multimeter .		A						


SOIL BOR	ING LOG	Boring No. <u>SB-15</u>	Sheet <u>1</u> of <u>2</u>		
Client	ARCO Station No. 2107	Dale <u>6/25/2007</u>			
Address	3310 Park Boulevard	Drilling Company RSI	rig type: Geoprobe 6600		
	Oakland, CA	Drilling Foreman Art			
Project No.	E-2107	Method Direct Push	hale diam a sti		
Logged By:	Scott Bittinger	Situat Dan	hole diam.: 2"		
	grout: 0 ft. to 30 ft.				
Sample	Blow Samala Well				


	Sample	Blow	Sa	nple	Woll	Depth		Descriptions of Materials	T
Туре	No.	Count	Tima	Recov,	Constru ct.	Scale	LITHO	and Conditions	019
						<b>—</b> ]		Concrete	(PPM
		1			1	¹			ļ
<u> </u>						2			
						3		air knife to 6.5' bgs. Not logged.	
									•
		********				_ 4			
						_ 5			
						7			
S	SB15-7		11:28			8	CL	SILTY CLAY 6.5'-9.3', dark grayish brown, moist, stiff	0
		anteonnas or				9			
S	ODAC D								ļ
3	SB15-9		11:30			1 0	SC	CLAYEY SAND with SILT 9.3'-12', dark yellowish grown, 80% fine to coarse grained sand, 20% silly clay, damp	O
						<u>1</u> 1		granicu sano, 20% sitty cray, damp	
s	SB15-11		11:33			1 2			
		*******		*****		<u> </u>	SC	CLAYEY SAND 12'-13.5', grayish brown, 85% fine grained sand, 15% silty	0
						<u> </u>		clay, moist	
						14			
						1 5	CL	SILTY CLAY 13.5'-16.5', light olive brown, moist, stiff	
	••••••••••••••••••••••••••••••••••••••					_ <u> </u>			
						1 6			
						17			
s	SB15-17		12:20			18	SP-SC	SAND with CLAY and SILT 18.5'-18', dark yellowish brown, 85% fine grained	
			14.20			1		sand, 5% medium grained sand, 10% silly clay, wet	0
						1 9	SW	SAND with CLAY and SILT 18'-27', fine to coarse grained, 5% fine gravel,	
s	SB15-19		12:22			2 0		10% silly day, wet	· · · · · · · · · · · · · · · · · · ·
			0.0000000000000000000000000000000000000	17-19-15-50-5					0
								Comments: Soil continuously recovered in acrylic liners. Total depth of boring is 30 feet bgs, Boring backfilled to surface grade with neat cement.	5
								and an and a second to surface grade with heat cement.	
								STRATUS	
								ENVIRONMENTAL, INC.	
	The second second								

SOIL BOR	NG LOG	Boring No. <u>SB-15</u>	Sheet <u>2</u> of <u>2</u>		
Silent	ARCO Station No. 2107	Dale 6/25/2007			
\ddress	3310 Park Boulevard	Drilling Company RSI	rig type: Geoprobe 6600		
	Oakland, CA	Drilling Foreman Art			
Project No.	E-2107	Method Direct Push	hole diam.: 2"		
.ogged By:	Scott Bitlinger				


S       SB15-21       12:25       Image: Simple state st	Count	Time	Recov.	L	Scale	COLUMN	and Conditions	(PPM)
S       SB15-21       12:25       I       Image: Classical Stress in the second state state stress in the second state state stress in the second state stress in the second								
S       SB15-23       12:27 <ul> <li></li></ul>		12:25			2 2	sw	SAND with CLAY and SILT 18'-27', fine to coarse grained, 5% fine gravel, 10% silly clay, wet	0
S       SB15-25       12:35       2       8         S       SB15-27       12:38       2       8         S       SB15-27       12:38       2       8         S       SB15-29       12:45       2       9         S       SB15-29       12:45       3       0         S       SB15-29       12:45       10       10         S       SB15-29       12:45       10 <td></td> <td>12;27</td> <td></td> <td></td> <td>2 4</td> <td></td> <td></td> <td>0</td>		12;27			2 4			0
S         SB15-27         12:38         2         8           S         SB15-29         12:45         3         0         27-29', very dark gray 29'-30', light olive brown with black manganese oxide stains           S         SB15-29         12:45         3         0		12:35			0			0
S         SB15-29         12:45		12:38			8		SILTY CLAY 27'-30', light olive brown with black manganese oxide stains	0
		12:45						
		******			=			
,			12:35	12:35	12:35	12:27       2         12:35       2         12:35       2         12:38       2         12:38       2         12:45       3         12:45       3         12:45       3         12:45       3         12:45       3         12:45       3	12:27       2       4         12:35       2       5         12:35       2       8         12:38       2       8         12:38       2       9         12:45       3       0         12:45       3       0         12:45       3       0         12:45       3       0         12:45       10       10         12:45       10       10         12:45       10       10         12:45       10       10         12:45       10       10         12:45       10       10         12:45       10       10         12:45       10       10         12:45       10       10         12:45       10       10         11:10       10       10         12:11       10       10         12:12       10       10         12:12       10       10         12:12       10       10         12:12       10       10         12:12       10       10         12:12       10       10	12:27 <ul> <li></li></ul>


Appendix D GRO, Benzene, and MTBE Concentration Trend Graphs

