Atlantic Richfield Company

Shannon Couch Operations Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: shannon.couch@bp.com

April 29, 2013

RECEIVED

By Alameda County Environmental Health at 10:39 am, May 01, 2013

Re: First Quarter 2013 Monitoring Report

Atlantic Richfield Company Station #2107 3310 Park Boulevard, Oakland, California

ACEH Case #RO0002526

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Shannon Couch

Operations Project Manager

Attachment:

April 29, 2013

Project No. 06-88-614

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Ms. Shannon Couch

Re:

First Quarter 2013 Monitoring Report, Atlantic Richfield Company Station #2107,

3310 Park Boulevard, Oakland, California; ACEH Case #RO0002526

Dear Ms. Couch:

Attached is the *First Quarter 2013 Monitoring Report* for Atlantic Richfield Company (a BP affiliated company) Station #2107 located at, 3310 Park Boulevard, Oakland, Alameda County, California. This report presents results of groundwater monitoring conducted at the Site during the Third Quarter of 2012.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (707) 455-7290.

Sincerely,

BROADBENT & ASSOCIATES

Alexander J. Martinez Senior Staff Geologist

Kristene Tidwell, P.G., C.H.G.

Senior Geologist

Enclosures

cc: Ms. Dilan Roe, Alameda County Environmental Health (Submitted via ACEH ftp site)

Electronic copy uploaded to GeoTracker

FIRST QUARTER 2013 MONITORING REPORT ATLANTIC RICHFIELD COMPANY STATION #2107 OAKLAND, CALIFORNIA

Broadbent and Associates, Inc. (Broadbent) is pleased to present this *First Quarter 2013 Monitoring Report* on behalf of Atlantic Richfield Company (ARC, a BP affiliated company) for Station #2107 located at 3310 Park Boulevard in Oakland, Alameda County, California (the Site). Monitoring activities at the Site were performed in accordance with an agency directive issued by the Alameda County Environmental Health (ACEH). Details of work performed, discussion of results, and recommendations are provided below.

Facility Name / Address:	Station #2107 / 3310 Park Blvd., Oakland, California; Drawing 1
Client Project Manager / Title:	Ms. Shannon Couch / Operations Project Manager
Broadbent Contact:	Ms. Kristene Tidwell, (707) 455-7290
Broadbent Project No.:	06-88-614
Primary Regulatory Agency / ID No.:	ACEH / Case # RO0002526
Current phase of project:	Monitoring
List of Acronyms / Abbreviations:	See end of report text for list of acronyms/abbreviations used in
	report.

WORK PERFORMED THIS QUARTER (First Quarter 2013):

- 1. Submitted Fourth Quarter 2012 Status Report on January 21, 2013.
- 2. Conducted groundwater monitoring/sampling for First Quarter 2013 on March 26, 2013.

WORK SCHEDULED FOR NEXT QUARTER (Second Quarter 2013):

- 1. Submit First Quarter 2013 Monitoring Report (contained herein).
- 2. No other environmental work is scheduled for the Second Quarter 2013.
- 3. Submit Addendum to the November 6, 2012 Work Plan for Groundwater Investigation.

QUARTERLY MONITORING PLAN SUMMARY:

Groundwater level gauging:

Groundwater level gauging.	IVIVV-IIA, IVIVV-IID, IVIVV-IZA, IVIVV-	(Sellil-Allilually, 1Q &SQ)
	12B, MW-13A, MW-13B	_
Groundwater sample collection:	MW-11A, MW-11B, MW-12A, MW-	(Semi-Annually, 1Q & 3Q)
	12B, MW-13A, MW-13B	
Biodegradation indicator parameter		_
monitoring:	None	_ (Quarterly)
QUARTERLY RESULTS SUMMARY:		
LNAPL		
LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter:	None	(gal)
Cumulative LNAPL recovered:	None	(gal)
Groundwater Elevation and Gradier	nt:	
Depth to groundwater:	2.74 ft (MW-13A)	(ft below TOC)
	to 13.70 ft (MW-11A)	
Gradient direction:	North-Northwest	(compass direction)
Gradient magnitude:	0.01	(ft/ft)
Average change in elevation:	0.72	(ft since last measurement)

MW-11A. MW-11B. MW-12A. MW-

(Semi-Annually, 10 &30)

Laboratory Analytical Data

Summary:

Analytical Results are as follows:

- GRO was detected in one well with a concentration 260 μg/L in well MW-11A
- TAME was detected in one well with a concentration of $3.9 \mu g/L$ in well MW-11A
- Toluene was detected in one well with a concentration of 4.2 μg/L in well MW-11A
- MTBE was detected in all six wells with a maximum concentration of 330 µg/L in well MW-11A

ACTIVITIES CONDUCTED & RESULTS:

First Quarter 2013 groundwater monitoring and sampling activities were conducted on March 26, 2013 by Broadbent personnel in accordance with the First Quarter monitoring plan. No irregularities were noted during gauging. Light Non-Aqueous Phase Liquid (LNAPL) was not present in the wells monitored during this event. Depth to groundwater ranged from 2.74 ft in MW-13A to 13.70 ft in MW-11A. As shown on Drawing 2, groundwater gradient on March 26, 2013 was 0.01 ft/ft in a north-northwest direction. The elevation from well MW-11A was not used for contouring because the data appears anomalous. Current and historic groundwater elevations and groundwater sample analytical data are provided in Tables 1 and 2. Historical groundwater gradient information is provided in Table 3. Drawing 2 is presents a groundwater elevation contours and analytical summary map for September 11, 2012. Field procedures used during groundwater monitoring are provided in Appendix A. Field data sheets and the Non-Hazardous Waste Disposal Form are included in Appendix B.

Groundwater samples were collected on March 26, 2013. No irregularities were reported during sampling. Samples were submitted to Test America Laboratories, Inc. (Test America) of Irvine, California for analyses of GRO, by EPA Method 8015B; for BTEX, MTBE, ETBE, TAME, DIPE, TBA, EDB, 1,2-DCA and Ethanol by EPA Method 8260B. No irregularities were encountered during analysis of the samples. Laboratory analytical report and chain of custody record are provided in Appendix C. Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix D.

Results of the sampling event are included in the laboratory analytical data summary above. These results indicate that the highest concentrations of petroleum hydrocarbons are present in well MW-11A. The remaining analytes detected this quarter appear to be generally consistent with previous data. Further discussion of these results is presented below.

DISCUSSION:

Review of historical groundwater gradient data indicates that levels were between historic minimum and maximum elevations for all wells while groundwater elevations yielded a potentiometric groundwater gradient to the north-northwest at 0.01 ft/ft, consistent with the historic gradient data presented in Table 3.

Review of historical groundwater results indicate that well MW-11A contains the highest residual petroleum compounds at the Site. Well MW-11A however, has indicated a slight increase in concentration of GRO and MTBE, and a decrease in benzene, toluene and ethylbenzene relative to the Third Quarter 2012. The remaining monitoring wells onsite are downgradient of well MW-11A and continue to indicate no detections of GRO and

benzene. However, each well had detections of MTBE, which decreased slightly in wells ME-11B, MW-12A, MW-12B, MW-13A and MW-13B relative to the Third Quarter 2012.

RECOMMENDATIONS:

No environmental work activities are scheduled to be conducted at the Site during the Second Quarter 2012. The next quarterly monitoring event is scheduled for the Third Quarter 2013. Due to the concentrations of MTBE in offsite wells, and the fact that the extent of MTBE offsite is not defined, a work plan for additional downgradient groundwater assessment was submitted November 6, 2012. An addendum to this Work Plan is currently being prepared. This addendum will discuss vertical groundwater gradients in offsite wells, and recommend any necessary changes to the previously-proposed scope of work based on the vertical gradient evaluation.

LIMITATIONS:

The findings presented in this report are based upon observations of field personnel, points investigated, results of laboratory tests performed by Calscience, and our understanding of ACEH guidelines. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of ARC. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

Drawing 1: Site Location Map

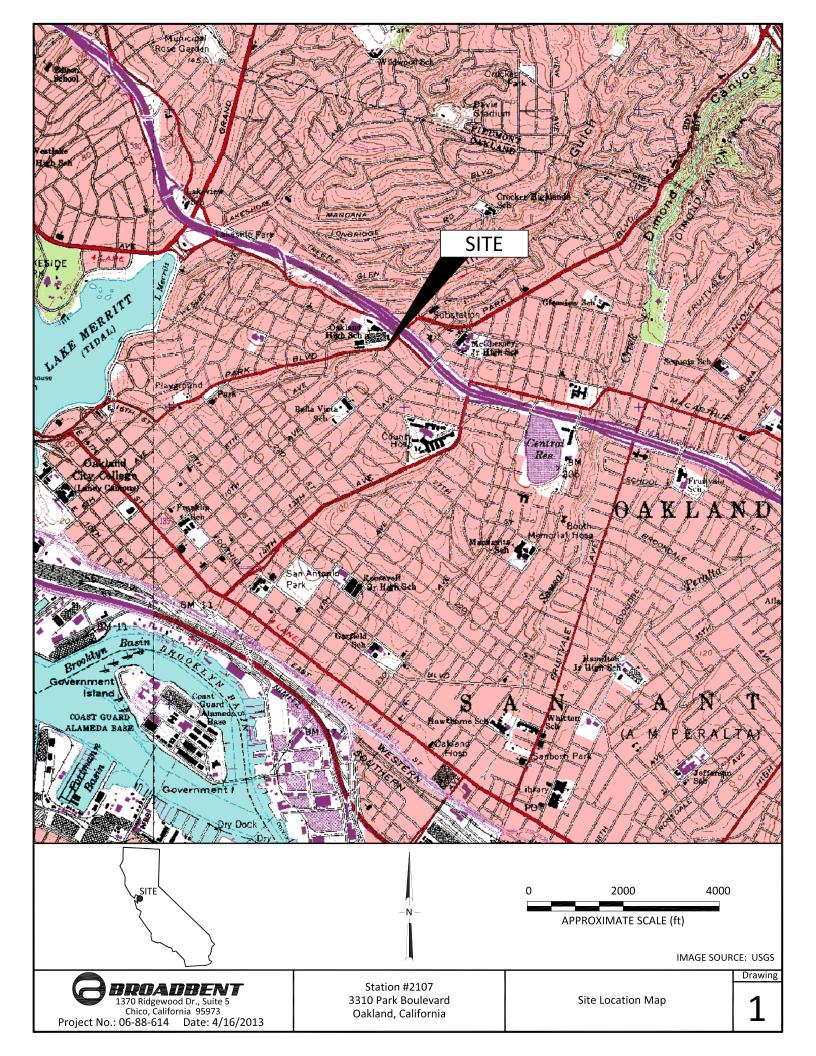
Drawing 2: Groundwater Elevation Contour and Analytical Summary Map, March 26, 2013

Table 1: Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory

Analyses

Table 2: Summary of Fuel Additive Analytical Data

Table 3: Historical Groundwater Gradient - Direction and Magnitude


Appendix A: Field Methods

Appendix B: Field Data Sheets and Non-Hazardous Waste Data Form Appendix C: Laboratory Report and Chain-of-Custody Documentation

Appendix D: GeoTracker Upload Confirmation Receipts

LIST OF COMMONLY USED ACCRONYMS/ABBREVIATIONS:

ACEH	Alameda County Environmental Health	gal:	gallons
ARC:	Atlantic Richfield Company	GRO:	Gasoline Range Organics (C6-12)
Broadbent	Broadbent & Associates	LNAPL:	Light Non-Aqueous Phase Liquid
BTEX:	Benzene, Toluene, Ethylbenzene, Total Xylenes	MTBE:	Methyl Tertiary Butyl Ether
	1,2-Dichloroethane	TAME:	Tert-Amyl Methyl Ether
1,2-DCA:	Di-Isopropyl Ether	TBA:	Tert-Butyl Alcohol
DIPE:	1,2-Dibromomethane	TOC:	Top of Casing
EDB:	feet per foot	μg/L:	Micrograms Per Liter
ft/ft:			

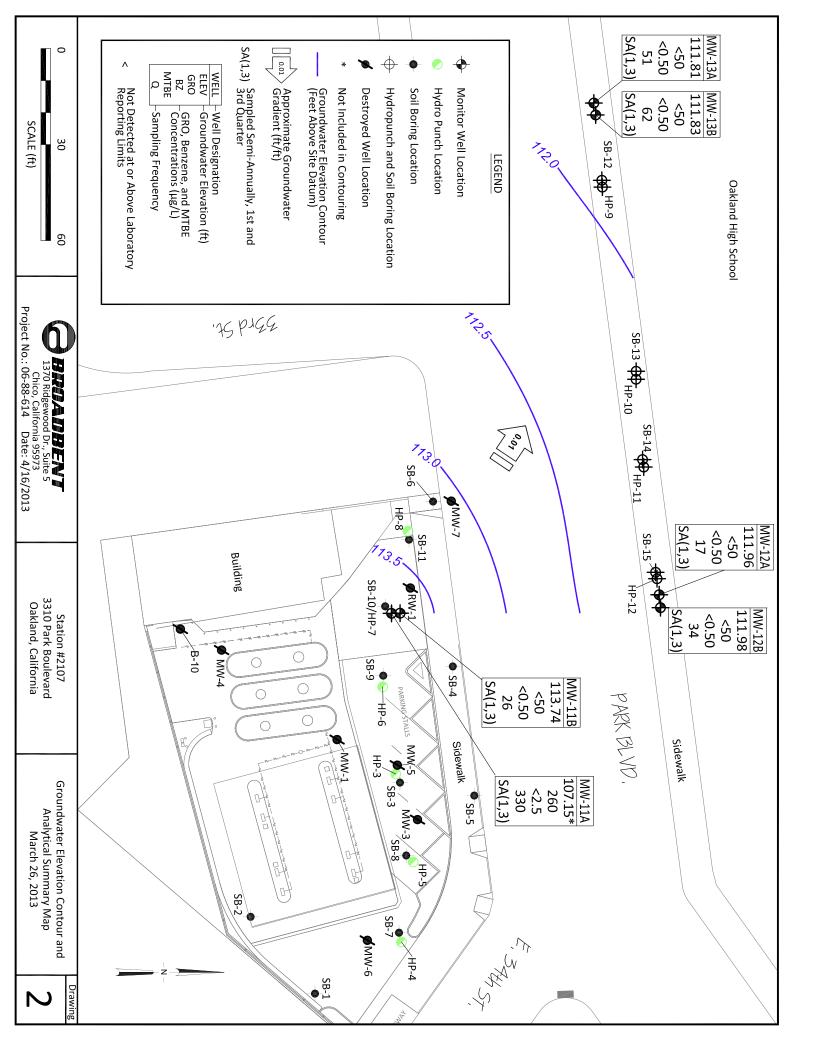


Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

			Top of	Bottom of		Water Level			Concentr	ations in μg	/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-11A															
3/9/2009	Р	120.85	16.00	20.00	12.41	108.44	1,000	1.5	<1.0	13	4.8	60	9.20	12.74	
6/18/2009	Р		16.00	20.00	14.58	106.27	260	11	<5.0	6.8	<5.0	280		9.83	a
9/1/2009	Р		16.00	20.00	8.75	112.10	1,400	28	20	61	6.7	340	1.40	7.84	
11/11/2009			16.00	20.00	10.40	110.45							1.55	12.5	
2/19/2010	Р		16.00	20.00	8.90	111.95	1,300	20	17	25	<5.0	340	2.01	12.13	
7/23/2010	Р		16.00	20.00	8.37	112.48	1,300	20	22	23	<5.0	350	1.11	12.0	
3/10/2011	Р		16.00	20.00			250	<5.0	5.4	<5.0	<5.0	76	4.17	12.3	b, c (GRO)
8/8/2011	NP		16.00	20.00	14.88	105.97	730	7.3	16	11	<5.0	310	1.47	12.1	
1/16/2012	Р		16.00	20.00	14.08	106.77							1.43	13.77	
9/11/2012	Р		16.00	20.00	14.91	105.94	220	4.4	11	6.4	<2.0	280	1.36	12.76	
3/26/2013	P		16.00	20.00	13.70	107.15	260	<2.5	4.2	<2.5	<5.0	330	5.03	12.75	
MW-11B															
3/9/2009	Р	121.31	26.00	30.00	7.33	113.98	280	1.3	1.3	7.6	<0.50	240	9.56	7.14	
6/18/2009	Р		26.00	30.00	7.38	113.93	130	<5.0	<5.0	<5.0	<5.0	200		6.96	a
9/1/2009	Р		26.00	30.00	7.66	113.65	69	<5.0	<5.0	<5.0	<5.0	210	1.01	7.01	
11/11/2009	Р		26.00	30.00	7.70	113.61	55	<5.0	<5.0	<5.0	<5.0	200	0.38	6.7	
2/19/2010	Р		26.00	30.00	7.59	113.72	68	<2.5	<2.5	<2.5	<2.5	180	2.38	7.44	
7/23/2010	Р		26.00	30.00	7.42	113.89	<50	<2.5	<2.5	<2.5	<2.5	110	1.57	7.02	
3/10/2011	Р		26.00	30.00	7.25	114.06	<50	<1.0	<1.0	<1.0	<1.0	58	1.86	6.8	
8/8/2011	Р		26.00	30.00	7.24	114.07	<50	<1.0	<1.0	<1.0	<1.0	60	1.33	7.8	
1/16/2012	Р		26.00	30.00	7.96	113.35	<50	<1.0	<1.0	<1.0	<1.0	47	4.33	8.8	
9/11/2012	Р		26.00	30.00	7.61	113.70	<50	<0.50	<0.50	<0.50	<1.0	27	1.17	7.07	
3/26/2013	P		26.00	30.00	7.57	113.74	<50	<0.50	<0.50	<0.50	<1.0	26	1.95	6.85	
MW-12A	_						_					_		_	
3/9/2009	P	120.64	13.00	18.00	8.70	111.94	<50	<0.50	<0.50	<0.50	<0.50	41	4.62	6.76	
6/18/2009	Р		13.00	18.00	8.58	112.06	<50	<1.0	<1.0	<1.0	<1.0	40		7.92	a
9/1/2009	Р		13.00	18.00	9.21	111.43	<50	<0.50	<0.50	<0.50	<0.50	39	1.06	6.97	
11/11/2009	Р		13.00	18.00	9.15	111.49	<50	<1.0	<1.0	<1.0	<1.0	41	0.51	6.2	
2/19/2010	Р		13.00	18.00	9.13	111.51	<50	<0.50	<0.50	<0.50	<0.50	32	0.38	6.58	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

			Top of	Bottom of		Water Level			Concentr	ations in μg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-12A Cont.															
7/23/2010	Р	120.64	13.00	18.00	9.18	111.46	<50	<0.50	<0.50	<0.50	<0.50	34	0.68	7.6	
3/10/2011	Р		13.00	18.00	8.43	112.21	<50	<0.50	<0.50	<0.50	<0.50	27	1.66	6.7	
8/8/2011	Р		13.00	18.00	8.33	112.31	<50	<0.50	<0.50	<0.50	<0.50	32	3.40	7.5	
1/16/2012	Р		13.00	18.00	9.12	111.52	<50	<0.50	<0.50	<0.50	<0.50	18	0.84	7.32	
9/11/2012	Р		13.00	18.00	8.95	111.69	<50	<0.50	<0.50	<0.50	<1.0	22	1.20	6.99	
3/26/2013	P		13.00	18.00	8.68	111.96	<50	<0.50	<0.50	<0.50	<1.0	17	1.07	6.76	
MW-12B															
3/9/2009	Р	120.84	27.00	30.00	14.89	105.95	<50	<0.50	0.55	<0.50	<0.50	150	5.87	7.74	
6/18/2009	Р		27.00	30.00	13.51	107.33	140	<2.5	<2.5	<2.5	<2.5	380		8.60	a
9/1/2009	Р		27.00	30.00	9.54	111.30	89	<10	<10	<10	<10	460	0.99	6.88	
11/11/2009	Р		27.00	30.00	11.53	109.31	<50	<5.0	<5.0	<5.0	<5.0	600	1.00	6.46	
2/19/2010	Р		27.00	30.00	11.07	109.77	52	<5.0	<5.0	<5.0	<5.0	620	3.32	6.89	
7/23/2010	Р		27.00	30.00	10.75	110.09	<50	<10	<10	<10	<10	510	1.70	7.54	
3/10/2011	Р		27.00	30.00	10.05	110.79	<50	<10	<10	<10	<10	700	2.71	6.9	
8/8/2011	Р		27.00	30.00	9.35	111.49	<50	<10	<10	<10	<10	510	1.70	6.9	
1/16/2012	Р		27.00	30.00	9.45	111.39	<50	<12	<12	<12	<12	840	3.36	7.0	
9/11/2012	Р		27.00	30.00	9.31	111.53	<50	<5.0	<5.0	<5.0	<10	790	1.13	7.13	
3/26/2013	р		27.00	30.00	8.86	111.98	<50	<0.50	<0.50	<0.50	<1.0	34	4.93	7.03	
MW-13A															
3/9/2009	Р	114.55	11.50	16.50	9.53	105.02	<50	<0.50	<0.50	<0.50	<0.50	13	9.39	7.64	
6/18/2009	Р		11.50	16.50	2.88	111.67	<50	<0.50	<0.50	<0.50	<0.50	23		7.21	а
9/1/2009	Р		11.50	16.50	3.31	111.24	<50	<0.50	<0.50	<0.50	<0.50	34	0.96	6.90	
11/11/2009	Р		11.50	16.50	3.66	110.89	<50	<0.50	<0.50	<0.50	<0.50	21	1.79	6.5	
2/19/2010	Р		11.50	16.50	3.43	111.12	<50	<0.50	<0.50	<0.50	<0.50	15	0.92	6.69	
7/23/2010	Р		11.50	16.50	3.22	111.33	<50	<0.50	<0.50	<0.50	<0.50	24	1.4	7.0	
3/10/2011	Р		11.50	16.50	2.57	111.98	<50	<0.50	<0.50	<0.50	<0.50	12	0.76	6.7	
8/8/2011	Р		11.50	16.50	8.43	106.12	<50	<0.50	<0.50	<0.50	<0.50	29	3.59	7.2	
1/16/2012	Р		11.50	16.50	3.11	111.44	<50	<0.50	<0.50	<0.50	<0.50	37	1.25	7.08	
9/11/2012	Р		11.50	16.50	3.03	111.52	<50	<0.50	<0.50	<0.50	<1.0	64	1.50	6.98	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

			Top of	Bottom of		Water Level		I	Concentr	ations in μg	•		_		
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-13A Cont.															
3/26/2013	р	114.55	11.50	16.50	2.74	111.81	<50	<0.50	<0.50	<0.50	<1.0	51	1.19	6.76	
MW-13B															
3/9/2009	Р	114.75	18.50	22.50	2.96	111.79	<50	<0.50	<0.50	<0.50	<0.50	13	8.44	6.99	
6/18/2009	Р		18.50	22.50	2.85	111.90	<50	<0.50	<0.50	<0.50	<0.50	12		6.92	а
9/1/2009	Р		18.50	22.50	3.36	111.39	<50	<0.50	<0.50	<0.50	<0.50	17	0.96	7.29	
11/11/2009	Р		18.50	22.50	3.49	111.26	<50	<0.50	<0.50	<0.50	<0.50	21	2.45	6.39	
2/19/2010	Р		18.50	22.50	3.10	111.65	<50	<0.50	<0.50	<0.50	<0.50	19	1.46	6.50	
7/23/2010	Р		18.50	22.50	2.74	112.01	<50	<0.50	<0.50	<0.50	<0.50	15	1.16	7.19	
3/10/2011	Р		18.50	22.50	3.72	111.03	<50	<0.50	<0.50	<0.50	<0.50	31	0.72	6.6	
8/8/2011	Р		18.50	22.50	2.48	112.27	<50	<0.50	<0.50	<0.50	<0.50	32	1.51	6.8	
1/16/2012	Р		18.50	22.50	3.47	111.28	<50	<0.50	<0.50	<0.50	<0.50	49	0.86	6.8	
9/11/2012	Р		18.50	22.50	3.15	111.60	<50	<0.50	<0.50	<0.50	<1.0	63	1.62	7.05	
3/26/2013	р		18.50	22.50	2.92	111.83	<50	<0.50	<0.50	<0.50	<1.0	62	1.37	6.86	

Symbols & Abbreviations:

-- = Not measured/applicable/analyzed/sampled

μg/L = Micrograms per liter

DO = Dissolved oxygen

DTW = Depth to water in ft below TOC

GRO = Gasoline range organics

mg/L = Milligrams per liter

MTBE = Methyl tert butyl ether

< = Not detected at or above specified laboratory reporting limit

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing in ft above NAVD88 datum

Footnotes:

a = DO meter not working

b = Well full of water

c = Quantitation of unknown hydrocarbons(s) in sample based on gasoline

Notes:

Values for DO and pH were obtained through field measurements

Table 2. Summary of Fuel Additives Analytical Data
ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-11A									
2/0/2000		420	60	-1.0	-1.0	-11.0			
3/9/2009		<20	60	<1.0	<1.0	<1.0			
6/18/2009	<3,000	<100	280	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	340	<5.0	<5.0	5.3	<5.0	<5.0	
2/19/2010	<3,000	<100	340	<5.0	<5.0	6.1	<5.0	<5.0	
7/23/2010	<3,000	<100	350	<5.0	<5.0	6.5	<5.0	<5.0	
3/10/2011	<6,000	<100	76	<5.0	<5.0	<5.0	<5.0	<5.0	
8/8/2011	<3,000	<100	310	<5.0	<5.0	<5.0	<5.0	<5.0	
9/11/2012	<300	<20	280	<1.0	<1.0	4.1	<1.0	<1.0	
3/26/2013	<750	<50	330	<2.5	<2.5	3.9	<2.5	<2.5	
MW-11B									
3/9/2009		<10	240	<0.50	<0.50	3.1			
6/18/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	210	<5.0	<5.0	<5.0	<5.0	<5.0	
11/11/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<1,500	<50	180	<2.5	<2.5	<2.5	<2.5	<2.5	
7/23/2010	<1,500	<50	110	<2.5	<2.5	<2.5	<2.5	<2.5	
3/10/2011	<600	<20	58	<1.0	<1.0	<1.0	<1.0	<1.0	
8/8/2011	<600	<20	60	<1.0	<1.0	<1.0	<1.0	<1.0	
1/16/2012	<600	33	47	<1.0	<1.0	<1.0	<1.0	<1.0	
9/11/2012	<150	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	26	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12A									
3/9/2009		<10	41	<0.50	<0.50	<0.50			
6/18/2009	<600	<20	40	<1.0	<1.0	<1.0	<1.0	<1.0	
9/1/2009	<300	<10	39	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<600	<20	41	<1.0	<1.0	<1.0	<1.0	<1.0	
2/19/2010	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2. Summary of Fuel Additives Analytical Data ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Well ID and									
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-12A Cont.									
1/16/2012	<300	19	18	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	22	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12B									
3/9/2009		<10	150	<0.50	<0.50	<0.50			
6/18/2009	<1,500	<50	380	<2.5	<2.5	<2.5	<2.5	<2.5	
9/1/2009	<6,000	<200	460	<10	<10	<10	<10	<10	
11/11/2009	<3,000	<100	600	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<3,000	<100	620	<5.0	<5.0	5.1	<5.0	<5.0	
7/23/2010	<6,000	<200	510	<10	<10	<10	<10	<10	
3/10/2011	<6,000	<200	700	<10	<10	<10	<10	<10	
8/8/2011	<6,000	<200	510	<10	<10	<10	<10	<10	
1/16/2012	<7,500	320	840	<12	<12	<12	<12	<12	
9/11/2012	<1,500	<100	790	<5.0	<5.0	8.7	<5.0	<5.0	
3/26/2013	<150	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-13A									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	23	<0.50	<0.50	<0.50	<0.50	<0.50	
9/1/2009	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	24	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	29	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	26	37	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	64	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	51	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-13B									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2. Summary of Fuel Additives Analytical Data ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Well ID and				Concentrat					
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-13B Cont.									
9/1/2009	<300	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	19	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	31	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	19	49	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	63	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	62	<0.50	<0.50	<0.50	<0.50	<0.50	

Symbols & Abbreviations:

-- = Not analyzed/applicable/measurable

< = Not detected above reported detection limit

1,2-DCA = 1,2-Dichloroethane

μg/L = Micrograms per Liter

DIPE = Diisopropyl ether

EDB = 1, 2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

Notes:

All volatile organic compounds analyzed using EPA Method 8260B

Table 3. Historical Groundwater Gradient - Direction and Magnitude ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
3/9/2009	Northeast	0.06
6/18/2009	Northeast	0.06
9/1/2009	North-Northwest	0.03
11/11/2009	North	0.05
2/19/2010	North	0.03
7/23/2010	North	0.05
3/10/2011	North-Northwest	0.04
8/8/2011	North	0.03
1/16/2012	North-Northwest	0.02
9/11/2012	North-Northwest	0.03
3/26/2013	North-Northwest	0.01

APPENDIX A

FIELD METHODS

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 Equipment Calibration

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 Depth to Groundwater and Light Non-Aqueous Phase Liquid Measurement

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurements were recorded as "apparent." If a bailer was used for LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 Well Purging and Groundwater Sample Collection

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

Parameter	Stabilization Criterion
Temperature	± 0.2°C (± 0.36°F)
рН	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	± 10 mV
Turbidity ¹	± 10% or 1.0 NTU (whichever is greater)

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

Per ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

² According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

4.0 Decontamination

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 Sample Containers, Labeling, and Storage

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were properly labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 Chain of Custody Record and Procedure

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 Field Records

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX B

FIELD DATA SHEETS AND NON-HAZARDOUS WASTE DATA FORM

DAILY REPORT

Page ____ of _____

Project: 6P 2107 Project No.: 06-88-614	
Field Representative(s): A. Martinez / J. Ramos Day: Tvesday Date: 3/26/13	
Time Onsite: From: <u>0830</u> To: <u>1200</u> ; From: To:; From: To:	
★ Signed HASP ★ Safety Glasses ★ Hard Hat ★ Steel Toe Boots ★ Safety	y Vest
✓ UST Emergency System Shut-off Switches Located ✓ Proper Gloves	
X Proper Level of Barricading Other PPE (describe)	
Weather: Sunny; = 65° F	
Equipment In Use: LEL Meter, peristaltic pomp, thoing () silicone), water	
level meter	
Visitors:	
TIME: WORK DESCRIPTION:	
0830 Arrived onsite; proceeded w/ safety meeting & documents	
0910 Finished safety meeting; sltup on MW-13A & MW-13B	
1005 Setup on MW-12 A # MW-123	
1085 Sety on MW-11A & MW-11B	
Kristene arrives on site; induct her w/safety meeting	
192500 timeshesh sam	
1140 Kristene leaves site	
1230 Finished sampling packed up / left site	
Signature:	Revision: 1/24/2012

GROUNDWATER MONITORING SITE SHEET Page _ | of _ 7

Project:		BP 21	07									3-26-13
Field Represent			-				Ele	vation:				
Formation rech					High	Low	(circle o	ne)				
W. L. Indicator	ID#:			0	il/Water	Interfa	ce ID #:		2	List #s of a	ıll equip u	sed.)
V	VELL ID	RECOR			W		AUGING	RECOR	D		NOTE	S
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)			
MW-11A	6			14.91	1125			13.70	18.80			
MW- 11 B	5				1100			7.57	30.00			
MW-12A	3			8.95	Will C		8.	187	18.00		-	
MW-128	4			9.31	1027			8.86	30,00			
MW-13A	2				0942			2.74	16,53			
MW-13 B	l l			3,15	0924			2.92	22.60			
					54							
×												
											Ta .	
				_				+				
						-						
			_								1/40-11	
* Device used If bailer use					Baile	r Diame		ater Inte		er amber Dian	(circle on	e)

Signature:

Revision: 8/19/11

Page _ 2 of _ 7

roject:	BP "	2107			Project No).:	06-88	-614	Date:	3/26/13
ield Repres			2			-				
					End Time	۵.		Total Time	(minutes):	
Vell ID:	Ww-	II A	Start Time: _		Enu Tim	·		Total Time	(
PURGE EQU	IPMENT	1	Disp. Bailer	أست	120V Pump		<u></u>	Flow Cell		
_ <u>*</u> _ I	Disp. Tubing		12V Pump		Peristaltic Pump)	Other/ID#:			
WELL HEAI										
Good	Improvement	Needed	(circle one)							
PURGING/S	AMPLING N	METHOD	Predetermined V	Vell Volume	Low-Flow C	Other	r:		1000000	cle one)
			LL VOLUME		1.01			75-07	/-FLOW	(law)
Casing D	iameter Unit V	olume (gal/ft)	(circle one)			-	Previous Low-Fl	+11H*		(lpm)
1" (0.04)	1.25" (0.08)		- 1 ()	Other:	b	- 1	Total Well Dept			13.70 (ft)
4" (0.66)		8" (2.60)	12" (5.81)	WEST	a		Initial Depth to	water (b): epth = b + (a-b)/2		16.25 (ft)
Total Well Dept			((ft)				wable Drawdown		0.64 (ft)
Initial Depth to		6. 65.		(ft)	F =	8 1	Low-Flow Purge			0.17 (Lpm)*
Water Column I			Volume:	375 390			Comments:			
	Volume (WCV) Volumes = WC		Volume.	(gal)						
1/1757	olumes = WCV		\ <u>-</u>	(gal)	↓	ı			range of instruments	
Pump Depth (if		A D.		(ft)			exceed 0.25 gpm. D	Drawdown should no	t exceed Maximum Al	lowable Drawdown.
rump Dept. (ii	pump securi		GROUNDWA	TER STABI	LIZATION F	PAR	AMETER R	ECORD		
Time	Cumulative	Temperature	рН	Conductivity	DO		ORP	Turbidity		OTES
(24:00)	Volume (L)	°C		μS or ms	mg/L		mV	NTU	Odor, color	r, sheen or other
1136	0	21.98	4.98	7.66	5.71		-3	84.7		
1139	0.5	21.98	17.50	8.09	5.32	-	-119	_		
1142	1.0	2(.18	12.69	8-11	5.18		-175	96.G	THE TA	wa water
1145	1,7	21.87	16.43	0 - (-	3					talk semple
HOLO										
						-				
			1			-				
					*					
			li							
				-						
	ized Parameters		~	0 D	table 2.0	Cooli	ng Volumes & P	arameters Stable	5 Casing V	olumes
PURGE CO	MPLETION	RECORD		& Parameters S	table 3 C	Casii	ng volumes & 1	arameters Studie		ATTENDED CONTROL
			Other:			-		CEOCHEMI	CAL PARAM	FTFRS
	S.	AMPLE CO	LLECTION R	ECORD						
Depth to Water	er at Sampling:	16.15	(ft)					rameter	Time	Measurement
Sample Collec	cted Via:	Disp. Bailer	Dedicated F	Pump Tubing			DO (mg/L)		-	
Disp. Pu	mp Tubing	Other:					Ferrous Iron ((mg/L)		
Sample ID:	Mw-1	1 A	Sample Collec	tion Time:	(24:00))	Redox Potent	ial (mV)		
			d or unprese				Alkalinity (m	g/L)		
John Lines (ii)				Other:			Other:			
	Other:_			Other:			Other:	15		
-			1 0							Revision: 7/3/12

					2 3 84		1948	Dotas	2/21/17
roject:	BP	2107			Project No.: _	06-89	8-614	Date: _	3/26/13
		AM /					nacria asi Shaw	W NEW PO BOOK	
			Start Time: _		End Time: _		Total Time	(minutes): _	
		E			120V Pump	_ <u>*</u> F	low Cell		
			2V Pump	-	Peristaltic Pump	Other/ID#:			
				Name (8 - 190) S. O.	and the second s				
	Improvement	ΓΥ (cap, lock, value)	(circle one)	Commontin					
Good			Predetermined V	Vall Valuma	Low-Flow Other			(c	ircle one)
PURGING/S				ven volume	LOW-1 IOW OTHER		LOW	-FLOW	
			L VOLUME		וחו ל	Previous Low-Flo			(lpm)
		/olume (gal/ft)	3" (0.38)	Other:		Total Well Depth			30.00 (ft)
	1.25" (0.08) 6" (1.50)		\$500 C	" ()	l l b l	Initial Depth to V			7.57 (ft)
4" (0.66) Total Well Dept		0 (2.00)	12 (3.01)	(ft)	a H	P P P P P P P P P P P P P P P P P P P	pth = b + (a-b)/2	:	18,79 (ft)
Total Well Dept Initial Depth to				(ft)		Maximum Allow	able Drawdown	= (a-b)/8:	2.80 (ft)
Water Column I		= (a - b):		(ft)		Low-Flow Purge	Rate:		0.25 (Lpm)*
			Volume:	(gal)	■	Comments:			
	Volumes = WC		-	(gal)					
	olumes = WCV		-	(gal)	₩				s used but should not
Pump Depth (if				(ft)				exceed Maximum	Allowable Drawdown.
			GROUNDWA	TER STABI	LIZATION PAR	AMETER RE	ECORD		NOTES
Time	Cumulative	Temperature	pН	Conductivity	DO	ORP	Turbidity		NOTES or, sheen or other
(24:00)	Volume (L)	°C		μS or mS	mg/L 2.60	mV	NTU	Odor, co	or, sheen or other
1109	O	21.20	7.09	0.697		161	4 86.8		
1111	6.5	21.60	6.90	0.701		167	_		
1113	1.0	26.89	6-87	0.705		175	_		
1115	1.5	20.63	6.85	0.705		179	77.4		
111+	2.0	20.63	0.03	0.403					
				1					
						1			
		1							
		-							
Previous Stabil	lized Parameter	s							
	OMPLETION		Low Flow	& Parameters S	table 3 Casii	ng Volumes & Pa	arameters Stable	5 Casing	Volumes
I OKOL CC) 1 1 LUI 1 LUI	, 1100110	Other:						
		AMDI E COI		FCORD			GEOCHEMIC	CAL PARAM	METERS
Depth to Water at Sampling:						- Total		Time	Measurement
Depth to Water	er at Sampling:	0.0	(ft)		8	t dramoto.			
Sample Collec	cted Via:	_ Disp. Bailer	Dedicated F	ump Tubing		DO (mg/L)			
Disp. Pu	ımp Tubing	Other:			120	Ferrous Iron (Control of the Control		
Sample ID: _	MW-11	B	_ Sample Collec	tion Time:	120 (24:00)	Redox Potenti	ial (mV)		
Containers (#): 6 VOA	(X preserved	or unprese	rved)L	Liter Amber	Alkalinity (mg	g/L)		
						Other:			
						Other:			
	Other:								

Signature:

Revision: 7/3/12

Signature:

GROUNDWATER SAMPLING DATA SHEET

Revision: 7/3/12

Project:	BP	7.107			Project No.:	06-89	8-614	Date:	3/26/13
Field Represe									
					End Time		Total Time (minutes):	
Well ID:	Mw-	164	Start Time: _		End Time:				
PURGE EQU	IPMENT	I	Disp. Bailer		120V Pump	×	Flow Cell		
		1			Peristaltic Pump	Other/ID#:			
WELL HEAI		Y (cap, lock, v	ault, etc.)	Comments:					
Good	Improvement		(circle one)						
PURGING/S	AMPLING I	METHOD	Predetermined \	Well Volume	Low-Flow Othe	r:			ircle one)
			L VOLUME		101		11)	-FLOW	(1)
		olume (gal/ft)	(circle one)				Flow Purge Rate:		(lpm)
	1.25" (0.08)		3" (0.38)		ь	Total Well Dep			7.68 (ft)
		8" (2.60)	12" (5.81)		a 📙	Initial Depth to			13, 34 (ft)
Total Well Dept			2===	(ft)			Depth = b + (a-b)/2: bwable Drawdown =		1. 17 (ft)
Initial Depth to			S	(ft)		Low-Flow Purg		a cyror	6.75 (Lpm)*
Water Column I			Volume:			Comments:	• Tan (1.777.77.27)		
			Volume:	(gal)			:		
The second second second second	Volumes = WC olumes = WCV			(gal		*Low-flow purge	ate should be within ro	inge of instrumen	ts used but should not
Pump Depth (if		A J.	· · · · · · · · · · · · · · · · · · ·	(ft		exceed 0.25 gpm.	Drawdown should not	exceed Maximum	Allowable Drawdown.
Fullip Deptil (II	pump useu).		GROUNDWA	TER STAB	ILIZATION PAI	RAMETER F	RECORD		
Time	Cumulative	Temperature	рН	Conductivity		ORP	Turbidity		NOTES
(24:00)	Volume (L)	°C		μS or mS	mg/L	mV	NTU	Odor, co	or, sheen or other
1014	0	20.27	7.00	0.735		125	70.7		
1016	0.5	20.40	6.79	0.732	1.37	116			
1018	1.0	20.41	6.76	0.732	1.10	106			
1020	1.5	20.44	6.76	0.732		104	69.1		
1022	2.0	20.75	6.70	0.132	1.01				
				-					
	ized Parameters			1		Malu 0 1	Poramaters Stable	5 Casina	Volumes
PURGE CO	MPLETION	RECORD		& Parameters S	Stable 3 Casi	ng volumes &	arameters Stable	J Cushig	
		The second of the second	Other:			1	GEOCHEMIC	TAI DARAN	AFTERS
			LECTION R	ECORD					Measurement
Depth to Wate	r at Sampling:	8.85	(ft)				arameter	Time	Measurement
			Dedicated I	Pump Tubing		DO (mg/L)			
<u>≯</u> Disp. Pu	mp Tubing	Other:				Ferrous Iron	(mg/L)		
Sample ID:	MW-1	ZA	_ Sample Collec	tion Time:]	(24:00)	Redox Poter	tial (mV)		
			l or unprese			Alkalinity (r	ng/L)		
Committee (#)					5 50 50 50 50 50 50	Other:			
				Other:		Other:	THE TO SERVICE THE PARTY OF THE		
	Other:_								

roject:	BP	2107			Project No.:	06-88	-614	Date: _	3/26/13
ATA		AM	1312						
lell ID:	AA >A/ =	17 B	Start Time:		End Time:		Total Time ((minutes):_	
					-101 11 11-		No. 2 Page 1		
URGE EQU	JIPMENT	I	Disp. Bailer		120V Pump		Flow Cell		
	Disp. Tubing	1	2V Pump		Peristaltic Pump	Otner/1D#:			
			ault, etc.)	Comments:					
Good	Improvement		(circle one)					(c	ircle one)
				Well Volume (Low-Flow Other	T	LOW	-FLOW	ircle one)
			L VOLUME		In I	Donatana Lam E	low Purge Rate:	-FLOW	(lpm)
O'Colombination for his		olume (gal/ft)		Ouls		Total Well Dept			30.00 (ft
	1.25" (0.08)		3" (0.38)		l l b	Initial Depth to			8.86 (ft
No. Con.	6" (1.50)	8" (2.60)	12 [(3.81)	" ()	a H		epth = b + (a-b)/2	:	19.43 (ft
otal Well Dept			-	(ft)	1 H +	RT 880011 AK	wable Drawdown :		_ 2.64_(ft
nitial Depth to	Water (0). Height (WCH) :	= (a - b):		(ft)		Low-Flow Purg	e Rate:		(Lpm)
Vater Column	Volume (WCV)	= WCH x Unit	Volume:	(gal)		Comments:			
	Volumes = WC		- 100 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	(gal)					
	olumes = WCV		-	(gal)	→ 目				ts used but should not
Pump Depth (if	pump used):			(ft				exceed Maximum	Allowable Drawdown.
		3	GROUNDWA	TER STAB	ILIZATION PAR		ECORD		NOTES
Time	Cumulative	Temperature	pН	Conductivity	DO	ORP mV	Turbidity NTU		or, sheen or other
(24:00)	Volume (L)	°C	- 11	μS or mS	mg/L 5.83	133	69.9	Outr, co.	
1031	0	20.26	7.04	1.06	5.10	139	-		
1053	0.5	20.7077	47.01	1.06	5.05	139			
1035	1.5	70.89	7.02	1.06	4.95	140	_		
1634	2.0	20.98	7.03	1.06	4.23	143	72.5		
wor.									
									100
			 						
Dravious Stahi	lized Parameters								
	OMPLETION		➤ Low Flow	& Parameters S	Stable 3 Casi	ng Volumes & I	Parameters Stable	5 Casing	Volumes
FUNGE CO	JIVII LLITTOI	TECOTE	Other:						
	c	AMDI E COI	LECTION R	FCORD			GEOCHEMIC	CAL PARAM	METERS
		0	No. II Bridge	LCORD		Pa	rameter	Time	Measurement
	er at Sampling:			n Tubina		DO (mg/L)			
			Dedicated I	rump rubing		Ferrous Iron	(mg/L)		
Disp. Pu	ımp Tubing	Other:	Section 10 reservoires	1	040 (0100)		WILLIAM III BADO		
Sample ID: _	Mw-	1713	_ Sample Collec	tion Time:	040 (24:00)	Redox Poten			
Containers (#): <u>6</u> VOA (preserved	l or unprese			Alkalinity (n	ng/L)		
	Other:			Other:		Other:			
1						Other:		1	t e

Page _ 6 _ of _ 7

	P 2 3	1107			Project No.:	06-88-	614	Date:	3/26/13
Project: _	BP Z				_				
Field Represe	entative: _	AM	1215				Total Time	(minutes)	
Well ID:	MW-1	3 A	Start Time: _		End Time:		Total Time	(Illiliacs)	
PURGE EQU	IPMENT	D	risp. Bailer		120V Pump	÷	Flow Cell		
		1		<u> </u>	Peristaltic Pump	Other/ID#:			
WELL HEAD				Comments:					
Good	Improvement		(circle one)						
			Predetermined V	Vell Volume	Low-Flow Othe	г:		(ci	rcle one)
			L VOLUME				LOW	-FLOW	Valv C
		olume (gal/ft)				Previous Low-Fl	ow Purge Rate:		(lpm)
	1.25" (0.08)		3" (0.38)	Other:		Total Well Dept	h (a):		16.53 (ft) 2.79 (ft)
4" (0.66)	6" (1.50)		12" (5.81)	" ()	$\begin{bmatrix} a & b \end{bmatrix}$	Initial Depth to			7.64 (ft)
Total Well Deptl				(ft)			epth = b + (a-b)/2		1,72 (ft)
Initial Depth to				(ft)	 ▼ 		wable Drawdown	= (a-b)/8:	(Lpm)*
Water Column I	Height (WCH) =	= (a - b):	6	(ft		Low-Flow Purge	e Rate:		(2511)
Water Column V	Volume (WCV)	= WCH x Unit	Volume:	(gal	1 1 1	Comments:			
Three Casing	Volumes = WC	V x 3:	((gal	2	*! B	uta chould be within r	ange of instrument	s used but should not
Five Casing V	olumes = WCV	x 5:	\	(gal (ft		*Low-flow purge its	rowlown should not	exceed Maximum	Allowable Drawdown.
Pump Depth (if	pump used):				,				
				Conductivity	ILIZATION PAI	ORP	Turbidity		NOTES
Time	Cumulative	Temperature	pН	μS or mS	mg/L	mV	NTU	Odor, col	or, sheen or other
(24:00)	Volume (L)	9.50	7.07			109	115		
0948	0.5	19.89	6.85	0.959	1.54	105	-		
0952	(.0	19.98	6.78	0.957	1.34	99	_		
0954	1.5	20.04	6.77	6.957	1.23	96	700		
0956	2.0	20.06	6.76	OASE	1.19	94	78.7		
						-			
	: 1D								
Previous Stabil			* Low Flow	& Darameters	Stable 3 Cas	ing Volumes & P	arameters Stable	5 Casing	Volumes
PURGE CC)MPLE HOP	N RECORD		oc i arameters	1				
			Other:	ECORD			GEOCHEMI	CAL PARAN	METERS
			LECTION R	ECOKD	-	Do	rameter	Time	Measurement
Depth to Water	er at Sampling:	2.96	(ft)				Tanneter	111110	The same of the sa
Sample Collec	cted Via:	_ Disp. Bailer	Dedicated I	Pump Tubing		DO (mg/L)			
Disp. Pu	ımp Tubing	Other:				Ferrous Iron	NY MARKET TAKEN	-	
Sample ID:	MW-	13 A	_ Sample Collec	ction Time: 👤	(24:00)	Redox Poten	tial (mV)		
Containers (#): 6 VOA	(_ * preserved	l or unprese	erved)	Liter Amber	Alkalinity (m	ng/L)	-	
Containers (#		\P				Other:			
1	Other:			Other:		Other:			
		1	^	_					Revision: 7/3/12

roject:	BP 7	107			Project No.:	06-88-	614	Date:	3/26/13
		AM/	TR						
ieia Represe	manve	AIVI	tort Time:		End Time:		Total Time (r	ninutes):	
Vell ID:	MW-	1345	Start Time: _						
URGE EQU	IPMENT	D	isp. Bailer		120V Pump	_ <u>×</u> F	low Cell		
		12	2V Pump	X	Peristaltic Pump	Other/ID#:			
		Y (cap, lock, va		Comments:					#
Good	Improvement		(circle one)						Anno Monosta Mi
PURGING/S.	AMPLING N	METHOD	Predetermined W	/ell Volume	Low-Flow Other	;			ircle one)
		MINED WEL	L VOLUME		101		LOW-	FLOW	(lpm)
		olume (gal/ft) (Previous Low-Fl			22.60 (ft)
1" (0.04)	1.25" (0.08)		2 (1) 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Other:	1 1 1 1 1 1 1 1	Total Well Depth Initial Depth to V			2.92 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)		1 a -		epth = b + (a-b)/2:		12.76 (ft)
otal Well Dept				(ft) (ft)			vable Drawdown =	(a-b)/8:	2-46 (ft)
nitial Depth to		/- L .).	-	(ft)	I I H = I	Low-Flow Purge		((Lpm)*
	Height (WCH) =	= (a - b): = WCH x Unit \	/olume:	(gal)		Comments:			
	Volumes = WC			(gal)					
	olumes = WCV			(gal)	\	*Low-flow purge ra	te should be within ra	nge of instrument	s used but should not
Pump Depth (if				(ft)	6			xceed Maximum .	Allowable Drawdown.
	•	(GROUNDWA	TER STAB	ILIZATION PAR	AMETER RI	ECORD		NOTES
Time	Cumulative	Temperature	pН	Conductivity	90gs	ORP mV	Turbidity NTU		or, sheen or other
(24:00)	Volume (L)	°€	S- 21	μS or mS	mg/L え・6公	439	251		
0930	0	16.18	8.31	1.04	1.85	769	-		
0932	0.5	17.73	7.10	1.02	1.61	75	-		
0934	1.5	18.69	6.96	1.02	1.45	76	-		
0938	2.0	18.90	6.86	1.01	7.37	77	223		
0.20									
					A				
				l.					
			- 10-						-
							1		- The control of the
								- 4	
							-		
						-			
								_	
Previous Stabi	ized Parameter	S				L			W.L.
		N RECORD	Low Flow	& Parameters S	Stable 3 Casi	ng Volumes & P	arameters Stable	5 Casing	volumes
	nav verske renner i Signi i Harifold		Other:					<u> </u>	
	S	AMPLE COI	LECTION R	ECORD			GEOCHEMIC	AL PARAI	The second secon
Donath to West	er at Sampling:		(ft)			Pa	rameter	Time	Measurement
Depin to wat	at Jamping.	Disp Railer	Dedicated I	Pump Tubing		DO (mg/L)			
			Deuteurod I			Ferrous Iron	(mg/L)		
Disp. P	ımp Tubing	Other:	Comple Collec	tion Time:	940 (24:00)	Redox Potent	ial (mV)		
Sample ID: _	14/14-	Y	_ Sample Conec	amod)	Liter Amber	Alkalinity (m			
Containers (#): VOA	(preserved	or unprese	Other	Little Amber	Other:	Vagit 1		
	Other:		-	Other:		Other:			
	Other:			Otner:		Tomor.		de la companya de la	

Revision: 7/3/12

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Tel: (949)261-1022

TestAmerica Job ID: 440-41942-1

Client Project/Site: ARCO 2107, Oakland

For:

Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

Authorized for release by: 4/9/2013 4:30:13 PM

Kathleen Robb

Project Manager II
kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	11
Chronicle	12
QC Sample Results	14
QC Association	18
Definitions	19
Certification Summary	20
Chain of Custody	21
Receipt Checklists	

10

12

Sample Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

ĸ
u

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-41942-1	MW-11A	Water	03/26/13 11:50	03/27/13 09:35
440-41942-2	MW-11B	Water	03/26/13 11:20	03/27/13 09:35
440-41942-3	MW-12A	Water	03/26/13 10:25	03/27/13 09:35
440-41942-4	MW-12B	Water	03/26/13 10:40	03/27/13 09:35
440-41942-5	MW-13A	Water	03/26/13 10:00	03/27/13 09:35
440-41942-6	MW-13B	Water	03/26/13 09:40	03/27/13 09:35

4

5

8

9

10

Case Narrative

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Job ID: 440-41942-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-41942-1

Comments

No additional comments.

Receipt

The samples were received on 3/27/2013 9:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.3° C.

Except:

For sample 440-41942-7 (TB-2107-03262013):

- 1) No date or time on the COC or sample label. The sample was logged in using the same sampling date as the other samples submitted and a sampling time of 12:01am.
- 2) 1 of 2 vials submitted was received broken.

GC/MS VOA

No analytical or quality issues were noted.

GC VOA

Method(s) 8015B: Surrogate recovery for the following sample(s) was outside control limits: MW-11A (440-41942-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

-6

4

5

6

8

9

4 4

12

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Lab Sample ID: 440-41942-1

Matrix: Water

Client Sample ID: MW-11A Date Collected: 03/26/13 11:50 Date Received: 03/27/13 09:35

Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
ND		2.5	ug/L			04/02/13 03:37	5
ND		2.5	ug/L			04/02/13 03:37	5
ND		2.5	ug/L			04/02/13 03:37	5
ND		750	ug/L			04/02/13 03:37	5
ND		2.5	ug/L			04/02/13 03:37	5
ND		2.5	ug/L			04/02/13 03:37	5
ND		2.5	ug/L			04/02/13 03:37	5
ND		5.0	ug/L			04/02/13 03:37	5
330		2.5	ug/L			04/02/13 03:37	5
ND		2.5	ug/L			04/02/13 03:37	5
3.9		2.5	ug/L			04/02/13 03:37	5
ND		50	ug/L			04/02/13 03:37	5
4.2		2.5	ug/L			04/02/13 03:37	5
ND		5.0	ug/L			04/02/13 03:37	5
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
106		80 - 120		-		04/02/13 03:37	5
101		80 - 120				04/02/13 03:37	5
105		80 - 120				04/02/13 03:37	5
	ND 330 ND 3.9 ND 4.2 ND %Recovery 106 101	ND 330 ND 3.9 ND 4.2 ND 4.2 ND %Recovery Qualifier 106 101	ND 2.5 ND 2.5 ND 750 ND 2.5 ND 2.5 ND 2.5 ND 5.0 330 2.5 ND 2.5 ND 2.5 ND 50 4.2 2.5 ND 5.0 *Recovery Qualifier Limits 106 80 - 120 101 80 - 120	ND 2.5 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 750 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 2.5 ug/L ND 50 ug/L ND 50 ug/L 4.2 2.5 ug/L ND 5.0 ug/L WRecovery Qualifier Limits 106 80 - 120	ND 2.5 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 750 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 5.0 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 50 ug/L ND 50 ug/L ND 5.0 ug/L ND 80 - 120 101 80 - 120	ND 2.5 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 750 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 5.0 ug/L ND 2.5 ug/L ND 2.5 ug/L ND 50 ug/L ND 50 ug/L ND 5.0 ug/L ND 80 - 120 Prepared	ND 2.5 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 750 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 5.0 ug/L 04/02/13 03:37 ND 5.0 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 2.5 ug/L 04/02/13 03:37 ND 5.0 ug/L 04/02/13 03:37

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Lab Sample ID: 440-41942-2

Matrix: Water

Prepared

Analyzed

04/03/13 18:52

Date Collected: 03/26/13 11:20 Date Received: 03/27/13 09:35

Surrogate

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-11B

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			04/02/13 02:05	1
1,2-Dichloroethane	ND		0.50	ug/L			04/02/13 02:05	1
Benzene	ND		0.50	ug/L			04/02/13 02:05	1
Ethanol	ND		150	ug/L			04/02/13 02:05	1
Ethylbenzene	ND		0.50	ug/L			04/02/13 02:05	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			04/02/13 02:05	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			04/02/13 02:05	1
m,p-Xylene	ND		1.0	ug/L			04/02/13 02:05	1
Methyl-t-Butyl Ether (MTBE)	26		0.50	ug/L			04/02/13 02:05	1
o-Xylene	ND		0.50	ug/L			04/02/13 02:05	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			04/02/13 02:05	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			04/02/13 02:05	1
Toluene	ND		0.50	ug/L			04/02/13 02:05	1
Xylenes, Total	ND		1.0	ug/L			04/02/13 02:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		80 - 120		-		04/02/13 02:05	1
Dibromofluoromethane (Surr)	92		80 - 120				04/02/13 02:05	1
Toluene-d8 (Surr)	102		80 - 120				04/02/13 02:05	1
Method: 8015B/5030B - Gasol	ine Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			04/03/13 18:52	1

Limits

65 - 140

%Recovery Qualifier

113

Dil Fac

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Lab Sample ID: 440-41942-3

Matrix: Water

Client Sample ID: MW-12A Date Collected: 03/26/13 10:25 Date Received: 03/27/13 09:35

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			04/02/13 02:35	1
1,2-Dichloroethane	ND		0.50	ug/L			04/02/13 02:35	1
Benzene	ND		0.50	ug/L			04/02/13 02:35	1
Ethanol	ND		150	ug/L			04/02/13 02:35	1
Ethylbenzene	ND		0.50	ug/L			04/02/13 02:35	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			04/02/13 02:35	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			04/02/13 02:35	1
m,p-Xylene	ND		1.0	ug/L			04/02/13 02:35	1
Methyl-t-Butyl Ether (MTBE)	17		0.50	ug/L			04/02/13 02:35	1
o-Xylene	ND		0.50	ug/L			04/02/13 02:35	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			04/02/13 02:35	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			04/02/13 02:35	1
Toluene	ND		0.50	ug/L			04/02/13 02:35	1
Xylenes, Total	ND		1.0	ug/L			04/02/13 02:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		80 - 120		-		04/02/13 02:35	1
Dibromofluoromethane (Surr)	95		80 - 120				04/02/13 02:35	1
Toluene-d8 (Surr)	105		80 - 120				04/02/13 02:35	1

	Method: 8015B/5030B - Gasoline F	Range Organi	ics (GC)						
ĺ	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	GRO (C6-C12)	ND		50	ug/L			04/02/13 23:10	1
	Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	111		65 - 140				04/02/13 23:10	1

TestAmerica Irvine

2

5

7

8

9

10

12

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Lab Sample ID: 440-41942-4

Prepared

Analyzed

04/02/13 23:38

Matrix: Water

Client Sample ID: MW-12B Date Collected: 03/26/13 10:40 Date Received: 03/27/13 09:35

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			04/02/13 03:06	1
1,2-Dichloroethane	ND		0.50	ug/L			04/02/13 03:06	1
Benzene	ND		0.50	ug/L			04/02/13 03:06	1
Ethanol	ND		150	ug/L			04/02/13 03:06	1
Ethylbenzene	ND		0.50	ug/L			04/02/13 03:06	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			04/02/13 03:06	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			04/02/13 03:06	1
m,p-Xylene	ND		1.0	ug/L			04/02/13 03:06	1
Methyl-t-Butyl Ether (MTBE)	34		0.50	ug/L			04/02/13 03:06	1
o-Xylene	ND		0.50	ug/L			04/02/13 03:06	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			04/02/13 03:06	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			04/02/13 03:06	1
Toluene	ND		0.50	ug/L			04/02/13 03:06	1
Xylenes, Total	ND		1.0	ug/L			04/02/13 03:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		80 - 120		-		04/02/13 03:06	1
Dibromofluoromethane (Surr)	96		80 - 120				04/02/13 03:06	1
Toluene-d8 (Surr)	107		80 - 120				04/02/13 03:06	1
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			04/02/13 23:38	- 1

Limits

65 - 140

%Recovery Qualifier

112

4/9/2013

3

5

9

10

12

1

Dil Fac

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Lab Sample ID: 440-41942-5

Prepared

Analyzed

04/03/13 00:06

Matrix: Water

Client Sample ID: MW-13A Date Collected: 03/26/13 10:00 Date Received: 03/27/13 09:35

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			04/01/13 22:16	1
1,2-Dichloroethane	ND		0.50	ug/L			04/01/13 22:16	1
Benzene	ND		0.50	ug/L			04/01/13 22:16	1
Ethanol	ND		150	ug/L			04/01/13 22:16	1
Ethylbenzene	ND		0.50	ug/L			04/01/13 22:16	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			04/01/13 22:16	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			04/01/13 22:16	1
m,p-Xylene	ND		1.0	ug/L			04/01/13 22:16	1
Methyl-t-Butyl Ether (MTBE)	51		0.50	ug/L			04/01/13 22:16	1
o-Xylene	ND		0.50	ug/L			04/01/13 22:16	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			04/01/13 22:16	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			04/01/13 22:16	1
Toluene	ND		0.50	ug/L			04/01/13 22:16	1
Xylenes, Total	ND		1.0	ug/L			04/01/13 22:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		80 - 120		-		04/01/13 22:16	1
Dibromofluoromethane (Surr)	87		80 - 120				04/01/13 22:16	1
Toluene-d8 (Surr)	104		80 - 120				04/01/13 22:16	1
Method: 8015B/5030B - Gasolir	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			04/03/13 00:06	1

Limits

65 - 140

%Recovery Qualifier

115

TestAmerica Irvine

4

6

0

9

10

12

13

Dil Fac

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Lab Sample ID: 440-41942-6

Matrix: Water

Client Sample ID: MW-13B
Date Collected: 03/26/13 09:40
Date Received: 03/27/13 09:35

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			04/02/13 04:07	1
1,2-Dichloroethane	ND		0.50	ug/L			04/02/13 04:07	1
Benzene	ND		0.50	ug/L			04/02/13 04:07	1
Ethanol	ND		150	ug/L			04/02/13 04:07	1
Ethylbenzene	ND		0.50	ug/L			04/02/13 04:07	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			04/02/13 04:07	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			04/02/13 04:07	1
m,p-Xylene	ND		1.0	ug/L			04/02/13 04:07	1
Methyl-t-Butyl Ether (MTBE)	62		0.50	ug/L			04/02/13 04:07	1
o-Xylene	ND		0.50	ug/L			04/02/13 04:07	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			04/02/13 04:07	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			04/02/13 04:07	1
Toluene	ND		0.50	ug/L			04/02/13 04:07	1
Xylenes, Total	ND		1.0	ug/L			04/02/13 04:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		80 - 120		-		04/02/13 04:07	1
Dibromofluoromethane (Surr)	100		80 - 120				04/02/13 04:07	1
Toluene-d8 (Surr)	104		80 - 120				04/02/13 04:07	1

Method: 8015B/5030B - Gasoline i	kange Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			04/03/13 00:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		65 - 140				04/03/13 00:34	1
4-Bromofluorobenzene (Surr)	111		65 - 140				04/03/13 00:34	

TestAmerica Irvine

2

4

6

R

9

11

12

Method Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Method	Method Description	Protocol	Laboratory
8260B/5030B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8015B/5030B	Gasoline Range Organics (GC)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

6

3

4

10

11

12

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

Client Sample ID: MW-11A
Date Collected: 03/26/13 11:50

Lab Sample ID: 440-41942-1

Matrix: Water

Date Received: 03/27/13 09:35

İ		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B/5030B		5	10 mL	10 mL	95484	04/02/13 03:37	LB	TAL IRV
	Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	95730	04/03/13 18:23	IM	TAL IRV

Client Sample ID: MW-11B Lab Sample ID: 440-41942-2

Date Collected: 03/26/13 11:20 Matrix: Water

Date Received: 03/27/13 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	95484	04/02/13 02:05	LB	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	95730	04/03/13 18:52	IM	TAL IRV

Client Sample ID: MW-12A Lab Sample ID: 440-41942-3

Date Collected: 03/26/13 10:25 Matrix: Water

Date Received: 03/27/13 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	95484	04/02/13 02:35	LB	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	95662	04/02/13 23:10	TL	TAL IRV

Client Sample ID: MW-12B

Date Collected: 03/26/13 10:40

Lab Sample ID: 440-41942-4

Matrix: Water

Date Collected: 03/26/13 10:40 Date Received: 03/27/13 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	95484	04/02/13 03:06	LB	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	95662	04/02/13 23:38	TL	TAL IRV

Client Sample ID: MW-13A Lab Sample ID: 440-41942-5

Date Collected: 03/26/13 10:00
Date Received: 03/27/13 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	95484	04/01/13 22:16	LB	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	95662	04/03/13 00:06	TL	TAL IRV

Client Sample ID: MW-13B Lab Sample ID: 440-41942-6

Date Collected: 03/26/13 09:40
Date Received: 03/27/13 09:35
Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B/5030B 10 mL 10 mL 95484 04/02/13 04:07 LB TAL IRV

TestAmerica Irvine

Matrix: Water

Lab Chronicle

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Lab Sample ID: 440-41942-6

Matrix: Water

Date Collected: 03/26/13 09:40 Date Received: 03/27/13 09:35

Client Sample ID: MW-13B

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8015B/5030B 10 mL 10 mL 95662 04/03/13 00:34 TL TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

А

5

9

11

12

TestAmerica Job ID: 440-41942-1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-95484/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 95484

	MB	мв						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			04/01/13 20:45	1
1,2-Dichloroethane	ND		0.50	ug/L			04/01/13 20:45	1
Benzene	ND		0.50	ug/L			04/01/13 20:45	1
Ethanol	ND		150	ug/L			04/01/13 20:45	1
Ethylbenzene	ND		0.50	ug/L			04/01/13 20:45	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			04/01/13 20:45	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			04/01/13 20:45	1
m,p-Xylene	ND		1.0	ug/L			04/01/13 20:45	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			04/01/13 20:45	1
o-Xylene	ND		0.50	ug/L			04/01/13 20:45	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			04/01/13 20:45	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			04/01/13 20:45	1
Toluene	ND		0.50	ug/L			04/01/13 20:45	1
Xylenes, Total	ND		1.0	ug/L			04/01/13 20:45	1

MB MB Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 80 - 120 04/01/13 20:45 105 04/01/13 20:45 Dibromofluoromethane (Surr) 90 80 - 120 80 - 120 04/01/13 20:45 Toluene-d8 (Surr) 105

Lab Sample ID: LCS 440-95484/5 Client Sample ID: Lab Control Sample Matrix: Water

Analysis Batch: 95484

Allalysis Datcil. 33404								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	25.0	24.6		ug/L		98	75 - 125	
1,2-Dichloroethane	25.0	23.4		ug/L		94	60 - 140	
Benzene	25.0	22.2		ug/L		89	70 _ 120	
Ethanol	250	254		ug/L		102	40 - 155	
Ethylbenzene	25.0	23.4		ug/L		94	75 ₋ 125	
Ethyl-t-butyl ether (ETBE)	25.0	23.0		ug/L		92	65 _ 135	
Isopropyl Ether (DIPE)	25.0	23.2		ug/L		93	60 _ 135	
m,p-Xylene	50.0	47.7		ug/L		95	75 ₋ 125	
Methyl-t-Butyl Ether (MTBE)	25.0	23.0		ug/L		92	60 _ 135	
o-Xylene	25.0	24.2		ug/L		97	75 ₋ 125	
Tert-amyl-methyl ether (TAME)	25.0	23.8		ug/L		95	60 _ 135	
tert-Butyl alcohol (TBA)	125	119		ug/L		96	70 - 135	
Toluene	25.0	24.0		ug/L		96	70 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	93		80 - 120
Toluene-d8 (Surr)	105		80 - 120

TestAmerica Irvine

Prep Type: Total/NA

TestAmerica Job ID: 440-41942-1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-41942-5 MS

Matrix: Water

Client Sample ID: MW-13A

Prep Type: Total/NA

Analysis Batch: 95484

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		25.0	24.7		ug/L		99	70 - 130	
1,2-Dichloroethane	ND		25.0	22.6		ug/L		90	60 - 140	
Benzene	ND		25.0	21.4		ug/L		86	65 - 125	
Ethanol	ND		250	245		ug/L		98	40 - 155	
Ethylbenzene	ND		25.0	23.2		ug/L		93	65 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	22.6		ug/L		91	60 - 135	
Isopropyl Ether (DIPE)	ND		25.0	22.2		ug/L		89	60 - 140	
m,p-Xylene	ND		50.0	47.4		ug/L		95	65 _ 130	
Methyl-t-Butyl Ether (MTBE)	51		25.0	73.2		ug/L		89	55 ₋ 145	
o-Xylene	ND		25.0	24.1		ug/L		96	65 - 125	
Tert-amyl-methyl ether (TAME)	ND		25.0	23.4		ug/L		94	60 - 140	
tert-Butyl alcohol (TBA)	ND		125	118		ug/L		95	65 - 140	
Toluene	ND		25.0	23.4		ug/L		93	70 _ 125	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	90		80 - 120
Toluene-d8 (Surr)	105		80 - 120

Lab Sample ID: 440-41942-5 MSD

Matrix: Water

Client Sample ID: MW-13A

Prep Type: Total/NA

Analysis Batch: 95484

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	24.0		ug/L		96	70 - 130	3	25
1,2-Dichloroethane	ND		25.0	22.6		ug/L		90	60 - 140	0	20
Benzene	ND		25.0	21.6		ug/L		86	65 - 125	1	20
Ethanol	ND		250	251		ug/L		100	40 - 155	3	30
Ethylbenzene	ND		25.0	22.9		ug/L		92	65 - 130	1	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	21.9		ug/L		88	60 - 135	3	25
Isopropyl Ether (DIPE)	ND		25.0	21.8		ug/L		87	60 - 140	2	25
m,p-Xylene	ND		50.0	47.2		ug/L		94	65 - 130	1	25
Methyl-t-Butyl Ether (MTBE)	51		25.0	70.6		ug/L		79	55 - 145	4	25
o-Xylene	ND		25.0	23.6		ug/L		95	65 - 125	2	20
Tert-amyl-methyl ether (TAME)	ND		25.0	22.7		ug/L		91	60 - 140	3	30
tert-Butyl alcohol (TBA)	ND		125	120		ug/L		96	65 - 140	2	25
Toluene	ND		25.0	23.3		ug/L		93	70 - 125	0	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	89		80 - 120
Toluene-d8 (Surr)	107		80 - 120

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Method: 8015B/5030B - Gasoline Range Organics (GC)

Lab Sample ID: MB 440-95662/3 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 95662

Result Qualifier RLUnit D Analyzed Dil Fac Analyte Prepared 50 GRO (C6-C12) ND ug/L 04/02/13 16:52

MB MB

мв мв

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 65 - 140 04/02/13 16:52 4-Bromofluorobenzene (Surr) 123

Lab Sample ID: LCS 440-95662/2 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 95662 Spike LCS LCS %Rec.

Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 800 109 80 - 120 869 ug/L

LCS LCS

Surrogate %Recovery Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 102

Lab Sample ID: 440-41873-A-2 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 95662

MS MS %Rec. Sample Sample Spike Qualifier Added Analyte Result Result Qualifier Unit %Rec Limits GRO (C4-C12) ND 800 818 65 - 140 ug/L

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 86 65 - 140

Lab Sample ID: 440-41873-A-2 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 95662

MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit GRO (C4-C12) ND 800 801 ug/L 95 65 - 140

MSD MSD

%Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 98 65 - 140

Lab Sample ID: MB 440-95730/32 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 95730

мв мв

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac GRO (C6-C12) ND 50 ug/L 04/03/13 06:40

MB MB

Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 4-Bromofluorobenzene (Surr) 105 04/03/13 06:40 65 - 140

TestAmerica Job ID: 440-41942-1

80 - 120

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

Surrogate

4-Bromofluorobenzene (Surr)

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: LCS 440-95730/31					Client	Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 95730							
_	Spike	LCS	LCS				%Rec.
Analyte	λddad	Posult	Qualifier	Unit	n	%Poc	Limite

GRO (C4-C12)			800	792	 ug/L	
	LCS	LCS				
Surrogate	%Recovery	Qualifier	Limits			
4-Bromofluorobenzene (Surr)	95		65 _ 140	_		

%Recovery Qualifier

107

Lab Sample ID: 440-41885-C-1 MS	Client Sample ID: Matrix Spike
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 95730	

Alialysis Dalcil. 33730										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)	ND		800	748		ug/L		94	65 - 140	
	MS	MS								

4-Bromofluorobenzene (Surr)	100	65 - 140	
Lab Sample ID: 440-41885-C-1	MSD		Client Sample ID: Matrix Spike Duplicate

Matrix: Water									Prep	Type: To	tal/NA
Analysis Batch: 95730											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	ND		800	760		ug/L		95	65 _ 140	2	20

GRO (C4-C12)	ND		800	760	ug/L	 95	65 - 140
	MSD	MSD					
Surrogate	%Recovery	Qualifier	Limits				

65 - 140

Limits

QC Association Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

GC/MS VOA

Analysis Batch: 95484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-41942-1	MW-11A	Total/NA	Water	8260B/5030B	
440-41942-2	MW-11B	Total/NA	Water	8260B/5030B	
440-41942-3	MW-12A	Total/NA	Water	8260B/5030B	
440-41942-4	MW-12B	Total/NA	Water	8260B/5030B	
440-41942-5	MW-13A	Total/NA	Water	8260B/5030B	
440-41942-5 MS	MW-13A	Total/NA	Water	8260B/5030B	
440-41942-5 MSD	MW-13A	Total/NA	Water	8260B/5030B	
440-41942-6	MW-13B	Total/NA	Water	8260B/5030B	
LCS 440-95484/5	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-95484/4	Method Blank	Total/NA	Water	8260B/5030B	

GC VOA

Analysis Batch: 95662

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-41873-A-2 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-41873-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-41942-3	MW-12A	Total/NA	Water	8015B/5030B	
440-41942-4	MW-12B	Total/NA	Water	8015B/5030B	
440-41942-5	MW-13A	Total/NA	Water	8015B/5030B	
440-41942-6	MW-13B	Total/NA	Water	8015B/5030B	
LCS 440-95662/2	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-95662/3	Method Blank	Total/NA	Water	8015B/5030B	
IVIB 440-95002/5	Method Blank	TOTAL/NA	vvalei	00 13B/3030B	

Analysis Batch: 95730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-41885-C-1 MS	Matrix Spike	Total/NA	Water	8015B/5030B	- riep batcii
440-41885-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-41942-1	MW-11A	Total/NA	Water	8015B/5030B	
440-41942-2	MW-11B	Total/NA	Water	8015B/5030B	
LCS 440-95730/31	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-95730/32	Method Blank	Total/NA	Water	8015B/5030B	

TestAmerica Irvine

2

- (

5

_

_

9

10

11

12

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Qualifiers

GC VOA

ualifier Descriptior

LH Surrogate Recoveries were higher than QC limits

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Glossary

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Certification Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

TestAmerica Job ID: 440-41942-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	03-28-13 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-13
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

^{*} Expired certification is currently pending renewal and is considered valid.

Laboratory Management Program LaMP Chain of Custody Record

BP Site Node Path: 06-88-614

Page!_	_ 01
Rush TAT: Yes	No <u>*</u>

-		В	Facility No:	·				2	107						La	ab W	ork C	Order	Num	ber:) =	71714	٠,		
ab Nam	Faci	Facility Address: 3310 Park Blvd.											Const	Consultant/Contractor: Broadbent and Associates, Inc.														
ab Address: 17461 Derlan Suite #100, Irvine, CA 92641						City, State, ZIP Code: Oakland, CA											Consultant/Contractor Project No: 06-88-614											
ab PM: Kathleen Robb					Lead Regulatory Agency: ACEH											Address: 875 Cotting Lane, Ste. G, Vacaville, CA 95688												
ab Phone: 949-261-1022						California Global ID No.: T06019734306											Consu	Consultant/Contractor PM: Kristene Tidwell										
_ab Shipping Accnt: 1103-6633-7						Enfos Proposal No: 005WT-0001										Pł	one:	707-4	55-72	90		Fax: 7	707-455-7295	5				
ab Bottl	Accounting Mode: Provision X OOC-BU OOC-RM										Email EDD To: kbdwell@broadbentinc.com and to lab.en(osdoc@bp.com																	
Other Inf	Stage: Execute (40) Activity: Project Spen								nd (80)				Invoice To: BP x Contractor														
BP Project Manager (PM): Shannon Couch						trix		No. Containers / Preservative					Requ				uested Analyses						Report Type & QC Level					
BP PM P	hone: 925-275-3804					\Box	T	\Box																	Standardx_			
BP PM Email: shannon.couch@bp.com							_	taine						İ		8260									Full Data Package			
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Container	Unpreserved	H2SO4	HNO3	HCI	Methanol		GRO by 8015M	BTEX/S FO + EDB by	1,2-DCA by 8260	Ethanol by 8260							Noto: If sample not Sample* in commor and initial any propr	nts and single-	cate "No strike out	i.
M	W-11A	3/26/2013	1150	L	×			6				6			×	×	×	×						-3				
N	W-118	3/26/2013	(17.0	1_	×			6				6			×	×	×	x	Ш									
N	W-12A	3/26/2013	(CZS		×			6				6			×	×	х	х										
M	W-12B	3/26/2013	OFOI		×			6				6			x	×	х	x							<u> </u>			
Ν	W-13A	3/26/2013	1000		×			6				6			×	×	×	×										
Ν	W-13B	3/26/2013	ひらん		×			6				6			x	х	x	×							<u> </u>			
Τ	3-2107-03262013				×			2				×													<u> </u>	On Hold		
																		ļ										
		.,				\Box	_			_																	····	
			,	<u> </u>			_																<u> </u>	<u> </u>		<u></u>		
			<u> </u>															ļ					ļ		<u> </u>			
																	<u> </u>							ļ				
				_		\sqcup	4					_					<u> </u>	_					ļ <u> </u>					
	s Name: Alex Martinez & Ja			<u> </u>			_									-							<u> </u>				D-4-	T
Sampler	\bot	Relinquished By / Affiliation Date Time											Accepted By / Affiliation Date Time															
Sampler	1_	3/26/3 1700 3/26/3 1700 3-26-9 1700											<u> </u>															
Shipment Method: Feex EX Ship Date: 3/26/13 Shipment Tracking No:						5-06-9 (100)										/27/	0 13											
	Instructions:				!.																	,	<i>T</i>			A	1 1	
	THIS LINE - LAB USE ONLY: C	ustody Seals In	Place: Yes / N	io l	Т	emp i	Slank	c: Yes	/ No	T	Coo	ier Ter	mp on	Rece	ipt: _:	2,6,	2.3	F/C	1	Trip E	Blank:	Yes/	No	ī	MS/MSD Sample	Submitted: Y	es / No	
	"" COC Fforther						/														_			•		BP LaMP COC		

13 12 N

Req Due Date (mm/dd/yy): _

(

ത

٦ I .

Login Sample Receipt Checklist

Client: Broadbent & Associates, Inc.

Job Number: 440-41942-1

Login Number: 41942 List Source: TestAmerica Irvine

List Number: 1

Creator: Freitag, Kevin R

ordator. Frontag, Noviii N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	Alex M/James R
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	Refer to Job Narrative for details.
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

7

9

10

12

APPENDIX D

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: 1Q13 GW Monitoring

Report Type: Monitoring Report - Semi-Annually

Facility Global ID: T06019734306

Facility Name: ARCO #2107

File Name: 440-41942-1_09 Apr 13 1730_EDF.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 4/22/2013 1:21:38 PM

Confirmation Number: 2593667209

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Report Title: 1Q13 GEO_WELL 2107

Facility Global ID: T06019734306
Facility Name: ARCO #2107
File Name: GEO WELL.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 4/22/2013 1:24:27 PM

Confirmation Number: 7514820158

Copyright © 2013 State of California