Atlantic Richfield Company

Chuck Carmel Remediation Management Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: chuck.carmel@bp.com

October 29, 2013

Re: Third Quarter 2013 Monitoring Report Atlantic Richfield Company Station #2107 3310 Park Boulevard, Oakland, California ACEH Case #RO0002526

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Chuck Carmel Remediation Management Project Manager

Attachment:

RECEIVED By Alameda County Environmental Health at 3:10 pm, Oct 29, 2013

October 29, 2013

Project No. 06-88-614

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: Third Quarter 2013 Monitoring Report, Atlantic Richfield Company Station No. 2107, 3310 Park Boulevard, Oakland, California; ACEH Case #R00002526

Dear Mr. Carmel:

Attached is the *Third Quarter 2013 Monitoring Report* for Atlantic Richfield Company (a BP affiliated company) Station No. 2107 located at 3310 Park Boulevard in Oakland, Alameda County, California (the Site). This report presents results of groundwater monitoring conducted at the Site during the Third Quarter 2013.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (707) 455-7290.

Sincerely, BROADBENT & ASSOCIATES

alex mo

Alejandra Hernandez For Project Geologist

Kristene Tidwell, P.G., C.HG. Senior Geologist

Enclosures

- KRISTENE OC TIDWELL No.______ GEOLOGIST HYDRO FOF CALIFOR HYDRO
- cc: Ms. Dilan Roe, Alameda County Environmental Health (Submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

THIRD QUARTER 2013 MONITORING REPORT ATLANTIC RICHFIELD COMPANY STATION No. 2107 OAKLAND, CALIFORNIA

Broadbent and Associates, Inc. (Broadbent) is pleased to present this *Third Quarter 2013 Monitoring Report* on behalf of Atlantic Richfield Company (ARC, a BP affiliated company) for Station No. 2107 located at 3310 Park Boulevard in Oakland, Alameda County, California (the Site). Monitoring activities at the Site were performed in accordance with an agency directive issued by the Alameda County Environmental Health (ACEH). Details of work performed, discussion of results, and recommendations are provided below.

Facility Name / Address:	Station No. 2107 / 3310 Park Blvd., Oakland, California; Drawing 1
Client Project Manager / Title:	Mr. Chuck Carmel / Remediation Management Project Manager
Broadbent Contact:	Ms. Kristene Tidwell, (707) 455-7290
Broadbent Project No.:	06-88-614
Primary Regulatory Agency / ID No.:	ACEH / Case # RO0002526
Current phase of project:	Monitoring
List of Acronyms / Abbreviations:	See end of report text for list of acronyms/abbreviations used in
	report.

WORK PERFORMED THIS QUARTER (Third Quarter 2013):

- 1. Submitted Second Quarter 2013 Status Report on July 9, 2013.
- 2. Conducted groundwater monitoring/sampling for Third Quarter 2013 on September 4, 2013.
- 3. Submitted Addendum to Work Plan for Groundwater Investigation on August 21, 2013.

WORK SCHEDULED FOR NEXT QUARTER (Fourth Quarter 2013):

- 1. Submit Third Quarter 2013 Monitoring Report (contained herein).
- 2. Carry out the work described in the Addendum to Work Plan for Groundwater Investigation.

QUARTERLY MONITORING PLAN SUMMARY:

Groundwater level gauging:	MW-11A, MW-11B, MW-12A,	(Semi-Annually, 1Q & 3Q)
	MW-12B, MW-13A, MW-13B	
Groundwater sample collection:	MW-11A, MW-11B, MW-12A,	(Semi-Annually, 1Q & 3Q)
	MW-12B, MW-13A, MW-13B	
Biodegradation indicator paramete	r	
monitoring:	None	(Quarterly)
QUARTERLY RESULTS SUMMARY:		
LNAPL		
LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter:	None	(gal)
Cumulative LNAPL recovered:	None	(gal)
Groundwater Elevation and Gradie	ent:	
Depth to groundwater:	3.28 ft (MW-13A)	(ft below TOC)
	to 13.85 ft (MW-11A)	
Gradient direction:	North-Northwest	(compass direction)
Gradient magnitude:	0.02	(ft/ft)
Average change in elevation:	- 0.42	(ft since last measurement)

Laboratory Analytical Data

Summary:

Analytical Results are as follows:

- GRO was detected in one well with a concentration of 220 $\mu g/L$ in well MW-11A.
- Benzene was detected in one well with a concentration of 3.3 μg/L in well MW-11A.
- Toluene was detected in one well with a concentration of 8.8 μg/L in well MW-11A.
- Ethylbenzene was detected in one well with a concentration of 5.5 μg/L in well MW-11A.
- Total Xylenes were detected in one well with a concentration of 1.0 μ g/L in well MW-11A.
- MTBE was detected in all six wells with a maximum concentration of 200 μg/L in well MW-11A.
- TBA was detected in one well with a concentration of 22 $\mu g/L$ in well MW-11A.
- TAME was detected in one well with a concentration of 3.5 μg/L in well MW-11A.

ACTIVITIES CONDUCTED & RESULTS:

Third Quarter 2013 groundwater monitoring and sampling activities were conducted on September 4, 2013 by Broadbent personnel in accordance with the Third Quarter monitoring plan. No irregularities were noted during gauging. Light Non-Aqueous Phase Liquid (LNAPL) was not present in the wells monitored during this event. Depth to groundwater ranged from 3.28 ft in MW-13A to 13.85 ft in MW-11A. As shown on Drawing 2, groundwater gradient on September 4, 2013 was 0.02 ft/ft in a north-northwest direction. The elevation from well MW-11A was not used for contouring because the data appears anomalous. Current and historic groundwater elevations and groundwater sample analytical data are provided in Tables 1 and 2. Historical groundwater gradient information is provided in Table 3. Drawing 2 presents a groundwater elevation contours and analytical summary map for September 4, 2013. Field procedures used during groundwater monitoring are provided in Appendix A. Field data sheets are included in Appendix B.

Groundwater samples were collected on September 4, 2013. No irregularities were reported during sampling. Samples were submitted to Test America Laboratories, Inc. (Test America) of Irvine, California for analyses of GRO, by EPA Method 8015B; for BTEX, MTBE, ETBE, TAME, DIPE, TBA, EDB, 1,2-DCA and Ethanol by EPA Method 8260B. No irregularities were encountered during analysis of the samples. Laboratory analytical report and chain of custody record are provided in Appendix C. Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix D.

Results of the sampling event are included in the laboratory analytical data summary above. These results indicate that the highest concentrations of petroleum hydrocarbons are present in well MW-11A. The remaining analytes detected this quarter appear to be generally consistent with previous data. Further discussion of these results is presented below.

DISCUSSION:

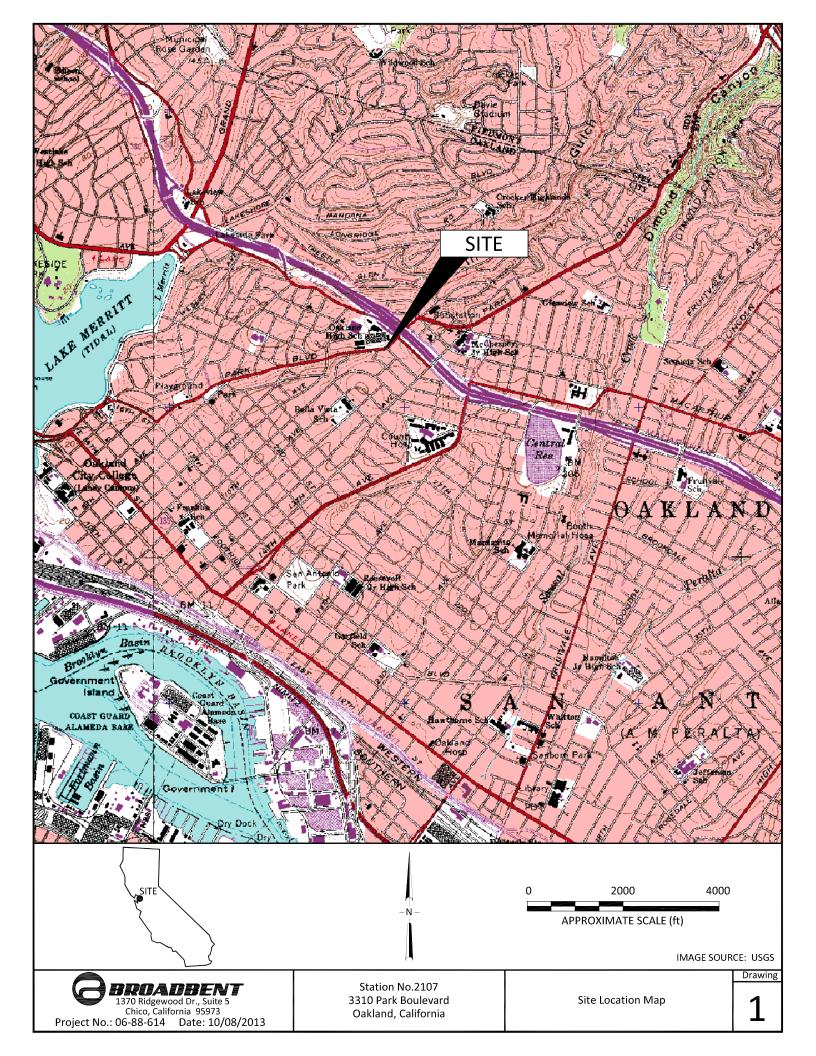
Review of historical groundwater gradient data indicates that levels were within historical limits for all wells. Groundwater elevations yielded a potentiometric groundwater gradient to the north-northwest at 0.02 ft/ft, consistent with the historic gradient data presented in Table 3.

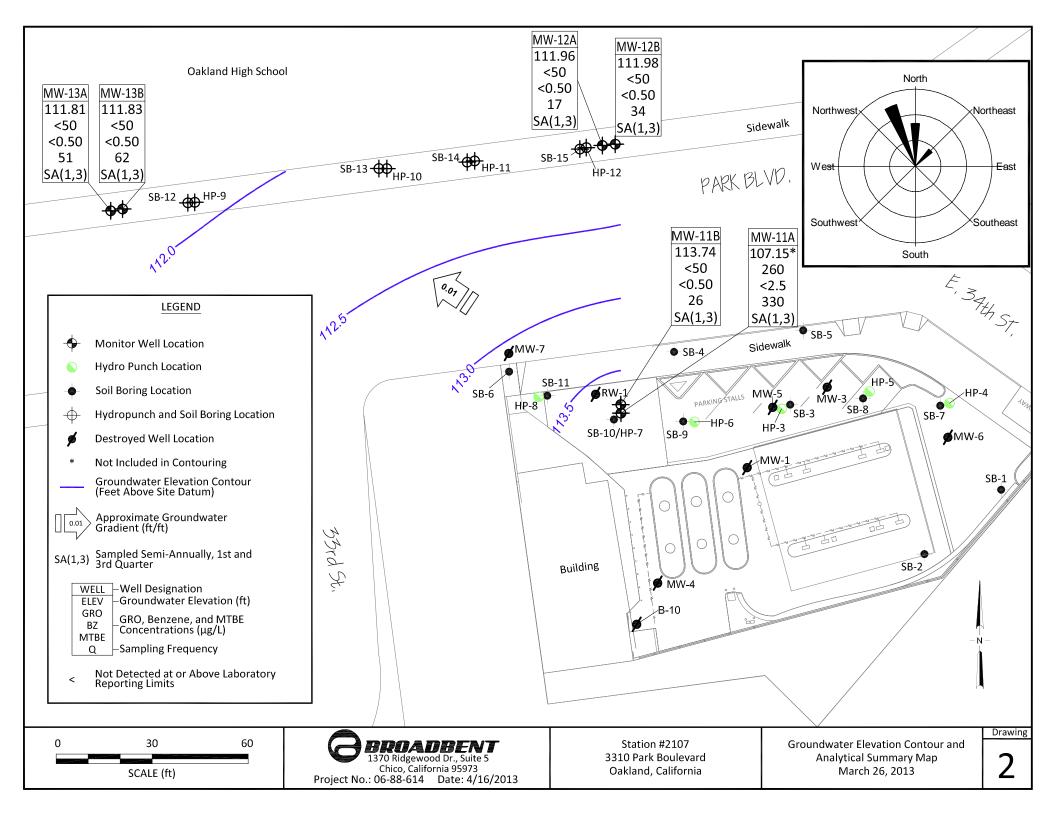
Review of historical groundwater results indicate that well MW-11A contains the highest residual petroleum compounds at the Site. The remaining monitoring wells onsite are located downgradient of well MW-11A and continue to indicate no detections of petroleum hydrocarbons, with the exception of MTBE. Petroleum hydrocarbon concentrations from the Third Quarter 2013 monitoring event were within historical ranges.

RECOMMENDATIONS:

The next quarterly monitoring event is scheduled for the First Quarter 2013. Due to the concentrations of MTBE in offsite wells, and the fact that the extent of MTBE offsite is not defined, the *Work Plan for Groundwater Investigation* (Work Plan) was submitted. This Work Plan was rejected by the ACEH. An *Addendum to Work Plan for Groundwater Investigation* was submitted on August 21, 2013. The ACEH recently approved this scope of work and it will be carried out during the Fourth Quarter 2013.

LIMITATIONS:


The findings presented in this report are based upon observations of field personnel, points investigated, results of laboratory tests performed by Test America, and our understanding of ACEH guidelines. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of ARC. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in Site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.


ATTACHMENTS:

Drawing 1:	Site Location Map
Drawing 2:	Groundwater Elevation Contour and Analytical Summary Map, September 4, 2013
Table 1:	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
Table 2:	Summary of Fuel Additives Analytical Data
Table 3:	Historical Groundwater Gradient - Direction and Magnitude
Appendix A:	Field Methods
Appendix B:	Field Data Sheets
Appendix C:	Laboratory Report and Chain-of-Custody Documentation
Appendix D:	GeoTracker Upload Confirmation Receipts

LIST OF COMMONLY USED ACCRONYMS/ABBREVIATIONS:

ACEH	Alameda County Environmental Health	gal:	gallons
ARC:	Atlantic Richfield Company	GRO:	Gasoline Range Organics (C6-12)
Broadbent	Broadbent & Associates	LNAPL:	Light Non-Aqueous Phase Liquid
BTEX:	Benzene, Toluene, Ethylbenzene, Total Xylenes	MTBE:	Methyl Tertiary Butyl Ether
1,2-DCA:	1,2-Dichloroethane	TAME:	Tert-Amyl Methyl Ether
DIPE:	Di-Isopropyl Ether	TBA:	Tert-Butyl Alcohol
EDB:	1,2-Dibromomethane	TOC:	Top of Casing
EPA:	Environmental Protection Agency	μg/L:	Micrograms Per Liter
ETBE:	Ethyl Tert-Butyl Ether	1Q:	First Quarter
ft:	feet	3Q:	Third Quarter
ft/ft:	foot per foot		

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

			Top of	Bottom of		Water Level			Concentr	ations in µa	g/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-11A															
3/9/2009	Р	120.85	16.00	20.00	12.41	108.44	1,000	1.5	<1.0	13	4.8	60	9.20	12.74	
6/18/2009	Р		16.00	20.00	14.58	106.27	260	11	<5.0	6.8	<5.0	280		9.83	а
9/1/2009	Р		16.00	20.00	8.75	112.10	1,400	28	20	61	6.7	340	1.40	7.84	
11/11/2009			16.00	20.00	10.40	110.45							1.55	12.5	
2/19/2010	Р		16.00	20.00	8.90	111.95	1,300	20	17	25	<5.0	340	2.01	12.13	
7/23/2010	Р		16.00	20.00	8.37	112.48	1,300	20	22	23	<5.0	350	1.11	12.0	
3/10/2011	Р		16.00	20.00			250	<5.0	5.4	<5.0	<5.0	76	4.17	12.3	b, c (GRO)
8/8/2011	NP		16.00	20.00	14.88	105.97	730	7.3	16	11	<5.0	310	1.47	12.1	
1/16/2012	Р		16.00	20.00	14.08	106.77							1.43	13.77	
9/11/2012	Р		16.00	20.00	14.91	105.94	220	4.4	11	6.4	<2.0	280	1.36	12.76	
3/26/2013	Р		16.00	20.00	13.70	107.15	260	<2.5	4.2	<2.5	<5.0	330	5.03	12.75	
9/4/2013	Р		16.00	20.00	13.85	107.00	220	3.3	8.8	5.5	1.0	200	1.21	12.35	
MW-11B															
3/9/2009	Р	121.31	26.00	30.00	7.33	113.98	280	1.3	1.3	7.6	<0.50	240	9.56	7.14	
6/18/2009	Р		26.00	30.00	7.38	113.93	130	<5.0	<5.0	<5.0	<5.0	200		6.96	а
9/1/2009	Р		26.00	30.00	7.66	113.65	69	<5.0	<5.0	<5.0	<5.0	210	1.01	7.01	
11/11/2009	Р		26.00	30.00	7.70	113.61	55	<5.0	<5.0	<5.0	<5.0	200	0.38	6.7	
2/19/2010	Р		26.00	30.00	7.59	113.72	68	<2.5	<2.5	<2.5	<2.5	180	2.38	7.44	
7/23/2010	Р		26.00	30.00	7.42	113.89	<50	<2.5	<2.5	<2.5	<2.5	110	1.57	7.02	
3/10/2011	Р		26.00	30.00	7.25	114.06	<50	<1.0	<1.0	<1.0	<1.0	58	1.86	6.8	
8/8/2011	Р		26.00	30.00	7.24	114.07	<50	<1.0	<1.0	<1.0	<1.0	60	1.33	7.8	
1/16/2012	Р		26.00	30.00	7.96	113.35	<50	<1.0	<1.0	<1.0	<1.0	47	4.33	8.8	
9/11/2012	Р		26.00	30.00	7.61	113.70	<50	<0.50	<0.50	<0.50	<1.0	27	1.17	7.07	
3/26/2013	Р		26.00	30.00	7.57	113.74	<50	<0.50	<0.50	<0.50	<1.0	26	1.95	6.85	
9/4/2013	Р		26.00	30.00	7.78	113.53	<50	<0.50	<0.50	<0.50	<1.0	19	1.62	6.92	
MW-12A															
3/9/2009	Р	120.64	13.00	18.00	8.70	111.94	<50	<0.50	<0.50	<0.50	<0.50	41	4.62	6.76	
6/18/2009	Р		13.00	18.00	8.58	112.06	<50	<1.0	<1.0	<1.0	<1.0	40		7.92	а
9/1/2009	Р		13.00	18.00	9.21	111.43	<50	<0.50	<0.50	<0.50	<0.50	39	1.06	6.97	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in µg	g/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-12A Cont.															
11/11/2009	Р	120.64	13.00	18.00	9.15	111.49	<50	<1.0	<1.0	<1.0	<1.0	41	0.51	6.2	
2/19/2010	Р		13.00	18.00	9.13	111.51	<50	<0.50	<0.50	<0.50	<0.50	32	0.38	6.58	
7/23/2010	Р		13.00	18.00	9.18	111.46	<50	<0.50	<0.50	<0.50	<0.50	34	0.68	7.6	
3/10/2011	Р		13.00	18.00	8.43	112.21	<50	<0.50	<0.50	<0.50	<0.50	27	1.66	6.7	
8/8/2011	Р		13.00	18.00	8.33	112.31	<50	<0.50	<0.50	<0.50	<0.50	32	3.40	7.5	
1/16/2012	Р		13.00	18.00	9.12	111.52	<50	<0.50	<0.50	<0.50	<0.50	18	0.84	7.32	
9/11/2012	Р		13.00	18.00	8.95	111.69	<50	<0.50	<0.50	<0.50	<1.0	22	1.20	6.99	
3/26/2013	Р		13.00	18.00	8.68	111.96	<50	<0.50	<0.50	<0.50	<1.0	17	1.07	6.76	
9/4/2013	Р		13.00	18.00	9.14	111.50	<50	<0.50	<0.50	<0.50	<1.0	11	2.91	6.85	
MW-12B															
3/9/2009	Р	120.84	27.00	30.00	14.89	105.95	<50	<0.50	0.55	<0.50	<0.50	150	5.87	7.74	
6/18/2009	Р		27.00	30.00	13.51	107.33	140	<2.5	<2.5	<2.5	<2.5	380		8.60	а
9/1/2009	Р		27.00	30.00	9.54	111.30	89	<10	<10	<10	<10	460	0.99	6.88	
11/11/2009	Р		27.00	30.00	11.53	109.31	<50	<5.0	<5.0	<5.0	<5.0	600	1.00	6.46	
2/19/2010	Р		27.00	30.00	11.07	109.77	52	<5.0	<5.0	<5.0	<5.0	620	3.32	6.89	
7/23/2010	Р		27.00	30.00	10.75	110.09	<50	<10	<10	<10	<10	510	1.70	7.54	
3/10/2011	Р		27.00	30.00	10.05	110.79	<50	<10	<10	<10	<10	700	2.71	6.9	
8/8/2011	Р		27.00	30.00	9.35	111.49	<50	<10	<10	<10	<10	510	1.70	6.9	
1/16/2012	Р		27.00	30.00	9.45	111.39	<50	<12	<12	<12	<12	840	3.36	7.0	
9/11/2012	Р		27.00	30.00	9.31	111.53	<50	<5.0	<5.0	<5.0	<10	790	1.13	7.13	
3/26/2013	р		27.00	30.00	8.86	111.98	<50	<0.50	<0.50	<0.50	<1.0	34	4.93	7.03	
9/4/2013	Р		27.00	30.00	9.52	111.32	<50	<0.50	<0.50	<0.50	<1.0	2.9	2.96	6.97	
MW-13A															
3/9/2009	Р	114.55	11.50	16.50	9.53	105.02	<50	<0.50	<0.50	<0.50	<0.50	13	9.39	7.64	
6/18/2009	Р		11.50	16.50	2.88	111.67	<50	<0.50	<0.50	<0.50	<0.50	23		7.21	а
9/1/2009	Р		11.50	16.50	3.31	111.24	<50	<0.50	<0.50	<0.50	<0.50	34	0.96	6.90	
11/11/2009	Р		11.50	16.50	3.66	110.89	<50	<0.50	<0.50	<0.50	<0.50	21	1.79	6.5	
2/19/2010	Р		11.50	16.50	3.43	111.12	<50	<0.50	<0.50	<0.50	<0.50	15	0.92	6.69	
7/23/2010	Р		11.50	16.50	3.22	111.33	<50	< 0.50	<0.50	<0.50	<0.50	24	1.4	7.0	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

			Top of	Bottom of		Water Level			Concentra	ations in µg	;/L				
Well ID and	- •	тос	Screen	Screen	DTW	Elevation	GRO/	_		Ethyl-	Total		DO		_
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-13A Cont.															
3/10/2011	Р	114.55	11.50	16.50	2.57	111.98	<50	<0.50	<0.50	<0.50	<0.50	12	0.76	6.7	
8/8/2011	Р		11.50	16.50	8.43	106.12	<50	<0.50	<0.50	<0.50	<0.50	29	3.59	7.2	
1/16/2012	Р		11.50	16.50	3.11	111.44	<50	<0.50	<0.50	<0.50	<0.50	37	1.25	7.08	
9/11/2012	Р		11.50	16.50	3.03	111.52	<50	<0.50	<0.50	<0.50	<1.0	64	1.50	6.98	
3/26/2013	р		11.50	16.50	2.74	111.81	<50	<0.50	<0.50	<0.50	<1.0	51	1.19	6.76	
9/4/2013	Р		11.50	16.50	3.28	111.27	<50	<0.50	<0.50	<0.50	<1.0	76	3.18	6.81	
MW-13B															
3/9/2009	Р	114.75	18.50	22.50	2.96	111.79	<50	<0.50	<0.50	<0.50	<0.50	13	8.44	6.99	
6/18/2009	Р		18.50	22.50	2.85	111.90	<50	<0.50	<0.50	<0.50	<0.50	12		6.92	а
9/1/2009	Р		18.50	22.50	3.36	111.39	<50	<0.50	<0.50	<0.50	<0.50	17	0.96	7.29	
11/11/2009	Р		18.50	22.50	3.49	111.26	<50	<0.50	<0.50	<0.50	<0.50	21	2.45	6.39	
2/19/2010	Р		18.50	22.50	3.10	111.65	<50	<0.50	<0.50	<0.50	<0.50	19	1.46	6.50	
7/23/2010	Р		18.50	22.50	2.74	112.01	<50	<0.50	<0.50	<0.50	<0.50	15	1.16	7.19	
3/10/2011	Р		18.50	22.50	3.72	111.03	<50	<0.50	<0.50	<0.50	<0.50	31	0.72	6.6	
8/8/2011	Р		18.50	22.50	2.48	112.27	<50	<0.50	<0.50	<0.50	<0.50	32	1.51	6.8	
1/16/2012	Р		18.50	22.50	3.47	111.28	<50	<0.50	<0.50	<0.50	<0.50	49	0.86	6.8	
9/11/2012	Р		18.50	22.50	3.15	111.60	<50	<0.50	<0.50	<0.50	<1.0	63	1.62	7.05	
3/26/2013	р		18.50	22.50	2.92	111.83	<50	<0.50	<0.50	<0.50	<1.0	62	1.37	6.86	
9/4/2013	Р		18.50	22.50	3.42	111.33	<50	<0.50	<0.50	<0.50	<1.0	45	3.41	7.07	

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Symbols & Abbreviations: -- = Not measured/applicable/analyzed/sampled µg/L = Micrograms per liter DO = Dissolved oxygen DTW = Depth to water in ft below TOC GRO = Gasoline range organics mg/L = Milligrams per liter MTBE = Methyl tert butyl ether < = Not detected at or above specified laboratory reporting limit NP = Well not purged prior to sampling P = Well purged prior to sampling TOC = Top of casing in ft above NAVD88 datum

Footnotes:

a = DO meter not working
b = Well full of water
c = Quantitation of unknown hydrocarbons(s) in sample based on gasoline

Notes:

Values for DO and pH were obtained through field measurements

Table 2. Summary of Fuel Additives Analytical Data

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-11A									
3/9/2009		<20	60	<1.0	<1.0	<1.0			
6/18/2009	<3,000	<100	280	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	340	<5.0	<5.0	5.3	<5.0	<5.0	
2/19/2010	<3,000	<100	340	<5.0	<5.0	6.1	<5.0	<5.0	
7/23/2010	<3,000	<100	350	<5.0	<5.0	6.5	<5.0	<5.0	
3/10/2011	<6,000	<100	76	<5.0	<5.0	<5.0	<5.0	<5.0	
8/8/2011	<3,000	<100	310	<5.0	<5.0	<5.0	<5.0	<5.0	
9/11/2012	<300	<20	280	<1.0	<1.0	4.1	<1.0	<1.0	
3/26/2013	<750	<50	330	<2.5	<2.5	3.9	<2.5	<2.5	
9/4/2013	<150	22	200	<0.50	<0.50	3.5	<0.50	<0.50	
MW-11B									
3/9/2009		<10	240	<0.50	<0.50	3.1			
6/18/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	210	<5.0	<5.0	<5.0	<5.0	<5.0	
11/11/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<1,500	<50	180	<2.5	<2.5	<2.5	<2.5	<2.5	
7/23/2010	<1,500	<50	110	<2.5	<2.5	<2.5	<2.5	<2.5	
3/10/2011	<600	<20	58	<1.0	<1.0	<1.0	<1.0	<1.0	
8/8/2011	<600	<20	60	<1.0	<1.0	<1.0	<1.0	<1.0	
1/16/2012	<600	33	47	<1.0	<1.0	<1.0	<1.0	<1.0	
9/11/2012	<150	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	26	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	19	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12A									
3/9/2009		<10	41	<0.50	<0.50	<0.50			
6/18/2009	<600	<20	40	<1.0	<1.0	<1.0	<1.0	<1.0	
9/1/2009	<300	<10	39	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<600	<20	41	<1.0	<1.0	<1.0	<1.0	<1.0	
2/19/2010	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2. Summary of Fuel Additives Analytical Data

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA
--

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-12A Cont.									
3/10/2011	<300	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	19	18	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	22	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	11	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12B									
3/9/2009		<10	150	<0.50	<0.50	<0.50			
6/18/2009	<1,500	<50	380	<2.5	<2.5	<2.5	<2.5	<2.5	
9/1/2009	<6,000	<200	460	<10	<10	<10	<10	<10	
11/11/2009	<3,000	<100	600	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<3,000	<100	620	<5.0	<5.0	5.1	<5.0	<5.0	
7/23/2010	<6,000	<200	510	<10	<10	<10	<10	<10	
3/10/2011	<6,000	<200	700	<10	<10	<10	<10	<10	
8/8/2011	<6,000	<200	510	<10	<10	<10	<10	<10	
1/16/2012	<7,500	320	840	<12	<12	<12	<12	<12	
9/11/2012	<1,500	<100	790	<5.0	<5.0	8.7	<5.0	<5.0	
3/26/2013	<150	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	2.9	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-13A									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	23	<0.50	<0.50	<0.50	<0.50	<0.50	
9/1/2009	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	24	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	29	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	26	37	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	64	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2. Summary of Fuel Additives Analytical Data

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-13A Cont.									
3/26/2013	<150	<10	51	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	76	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-13B									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	
9/1/2009	<300	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	19	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	31	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	19	49	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	63	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	62	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	45	<0.50	<0.50	<0.50	<0.50	<0.50	

Symbols & Abbreviations: -- = Not analyzed/applicable/measurable < = Not detected above reported detection limit 1,2-DCA = 1,2-Dichloroethane µg/L = Micrograms per Liter DIPE = Diisopropyl ether EDB = 1, 2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Butyl alcohol

Notes: All volatile organic compounds analyzed using EPA Method 8260B

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
3/9/2009	Northeast	0.06
6/18/2009	Northeast	0.06
9/1/2009	North-Northwest	0.03
11/11/2009	North	0.05
2/19/2010	North	0.03
7/23/2010	North	0.05
3/10/2011	North-Northwest	0.04
8/8/2011	North	0.03
1/16/2012	North-Northwest	0.02
9/11/2012	North-Northwest	0.03
3/26/2013	North-Northwest	0.01
9/4/2013	North-Northwest	0.02

Table 3. Historical Groundwater Gradient - Direction and Magnitude ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

APPENDIX A

FIELD METHODS

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 Equipment Calibration

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 Depth to Groundwater and Light Non-Aqueous Phase Liquid Measurement

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 Well Purging and Groundwater Sample Collection

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Tuble 1. Chitchia for Bernning Stabilizatio	and water Quality indicator rurameters
Parameter	Stabilization Criterion
Temperature	± 0.2ºC (± 0.36ºF)
рН	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	± 10 mV
Turbidity ¹	± 10% or 1.0 NTU (whichever is greater)

 Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

Per ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

 $^{^{2}}$ According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

4.0 Decontamination

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 Sample Containers, Labeling, and Storage

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were properly labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 Chain of Custody Record and Procedure

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 Field Records

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX B

FIELD DATA SHEETS

DAILY REPORT

	Page of
Project: BP 2107	Project No.: 06-88-614
	s Day: Wednesday Date: 9/4/13
Time Onsite: From: <u>0745</u> To: <u>1115</u> ; From	n: To:; From: To:
 <u>×</u> Signed HASP <u><</u> Safety Glasses <u>×</u> <u>×</u> UST Emergency System Shut-off Switches L <u>×</u> Proper Level of Barricading Other PPL 	
Weather:	
Equipment In Use: <u>H20 meter</u> , US2 me	ter, peristallic pump
Visitors:	
TIME: WORK	CDESCRIPTION:
0745 Arrived angite, conduct	ed toilgate
0825 Set up @ MW-13A/B	
0915 Set up @ MW-12 A/B	
1005 Jet up & MW-IIA/B	
1115 Signed at /packed / 1et	a site
Signature:	Revision: 1/24/2012

GROUNDWATER MONITORING SITE SHEET

Project:	BI	> 210	Г				Proje	ect No.:	06-8	8-614	Date: _9/	4/13
Field Represent							Ele	evation:			_	
Formation recha	arge rate	is histo	rically:		High	Low	(circle o	ne)				
W. L. Indicator	ID #:			0	il/Water	Interfa	ce ID #:		(List #s of a	ll equip used.)	
W	VELL ID	RECOR	D		W	ELL G	AUGING	RECOR	D		NOTES	
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)			
MW-11A					1012	ana.	-	13.85	18.80			
MW-11.B					1013		~	7.78	30.00			
MW-12A					0929		~	9.14	18.00			
MW-12 B					0923	~	-	9.52	30,00			
MW-13A					0835	-	-		16,53			
MW-13B					0836	J	-	3.42	22.60			
							5					
		-										
×			1 									
						-						
							_	-		1		
* Device used If bailer used					Bailer Entry		Oil/W		face Mete Char	r (nber Diam	(circle one) eter	
Signature:	H		-/		_						R	evision: 8/19/

		and shares where the							
Project:	BP 21				Project No .:	06-88-1	614	Date:	9/4/13
Field Repre	sentative:	AMI	JR						
Well ID:	MW-II	A	Start Time:		End Time:		Total Tim	e (minutes):	
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	<u>×</u>	Flow Cell		
*	Disp. Tubing	·	12V Pump	×	Peristaltic Pump	Other/ID#:			
	D INTEGRITY	(cap, lock, vaul	t, etc.)	Comments:					
Good	Improvement Nee	ded (c	ircle one)						
PURGING/	SAMPLING MI	ETHOD P	redetermined Wel	II Volume Lo	w-Flow Other:			(circle d	one)
	PREDETERM						LO	W-FLOW	
Casing D	Diameter Unit Volu	me (gal/ft) <i>(cir</i>	cle one)			Previous Low-Fl	ow Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept	h (a):		18.80 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)		a	Initial Depth to	Water (b):		13.85 (ft)
Total Well Dep	th (a):			(ft)	1 1	Pump In-take De	epth = b + (a-b)/	2:	16.33 (ft)
Initial Depth to	Water (b):			(ft)		Maximum Allow	vable Drawdowi	n = (a-b)/8:	<u>6.62</u> (ft)
0101568/08/000000000000000000000000000000000	Height (WCH) = (a			(ft)		Low-Flow Purge	Rate:		<u>0.25</u> (Lpm)*
Water Column	Volume (WCV) = V	CH x Unit Vol	.me:	(gal)		Comments:			
Three Casing	Volumes = WCV x	3:		(gal)	E				
	olumes = WCV x 5			(gal)	★ 🗄			range of instruments	
Pump Depth (if	pump used):			(ft)				ot exceed Maximum A	Illowable Drawdown.
			ROUNDWA	Y	IZATION PARA		CORD		
Time	Cumulative Vol.	Temperature	pH	Conductivity	DO	ORP	Turbidity	54454 AV. 10	NOTES
(24:00)	gal or(L)	°C	61 - 2 - 2	µS or mS	mg/L	mV	NTU	The second	or, sheen or other
1036	0.0	22.53	11.37	5.29	1.01	-145 -188	137		m/particles
1038	0.5	22.25	12.23	5.43	1.12	-202	137	in water	
1040	1.5	22.20	12.31	5.43	1.15	-212	137	11044	dewaters
1044	2.0	22.25	12.35	5.43	1.21	-217	138	Artour	
		1							
	zed Parameters			L					
PURGE CO	MPLETION RI	ECORD <u>y</u>	Low Flow & Pa	arameters Stable	3 Casing Vo	olumes & Parame	ers Stable	_ 5 Casing Volum	ies
			Other:						
	SAN	APLE COLL	ECTION REC	CORD		(GEOCHEMI	CAL PARAM	ETERS
Depth to Water	at Sampling:	7.08 (1	t)			Para	meter	Time	Measurement
	ed Via: Disp		Dedicated Pump	Tubing		DO (mg/L)			
	np Tubing Othe		r	8		Ferrous Iron (m	<u>о/</u> Г.)		
	Mm-11A		Sample Collecti	ion Time: 10	45 (24.00)	Redox Potentia			
						100 M 100 W 10 W			
Containers (#):	<u>6</u> VOA (_ preserved or	unpreserved)			Alkalinity (mg/	L)	-	
	Other:			Other:		Other:			
TT COLUMN	Other:		-	_ Other:		Other:			
Clauster	//	1~							D
Signature:	an	1/				-			Revision: 3/15/2013
	1/	1							
	V	8							

								Page	of
Project:	BP	2107			Project No.:	06-88-6	14	Date:	9/4/13
Field Repres	sentative:								
-	MW-11	6	Start Time:	long0	End Time:	en mais	Total Time	(minutes):	-
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	×	Flow Cell		
×	Disp. Tubing		12V Pump	~	Peristaltic Pump	Other/ID#:			
WELL HEA	D INTEGRITY	(cap, lock, vaul	t, etc.)	Comments:					
Good	Improvement Nee	eded (ci	rcle one)						
PURGING/S	SAMPLING MI	ETHOD PI	edetermined Wel	I Volume Lov	w-Flow Other:			(circle o	ne)
	PREDETERM	INED WEL	L VOLUME				LOV	V-FLOW	
Casing D	iameter Unit Volu	the second second second				Previous Low-F	low Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dep	th (a):		<u> </u>
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	a	Initial Depth to	Water (b):		7.78 (ft)
Total Well Dept	h (a):			(ft)		Pump In-take D	epth = b + (a-b)/2	:	18.61 (ft)
Initial Depth to	Water (b):		-	(ft)			wable Drawdown	= (a-b)/8:	2.76 (ft)
Water Column	Height (WCH) = (a	- b):		(ft)		Low-Flow Purg	e Rate:		(Lpm)*
Construction of the second	Volume (WCV) = V		ıme:	(gal)	Ë	Comments:		(110) (Ú	
	Volumes = WCV x		·	(gal)					
	olumes = WCV x 5			(gal)	★ 日		ate should be within r	1000 C 000 C 000 C 000	
Pump Depth (if	pump used):			(ft)			Drawdown should not	exceed Maximum A	lliowable Drawaown.
	C LC VI			1	IZATION PARA DO	ORP	Turbidity		NOTES
Time (24:00)	Cumulative Vol.	Temperature ℃	pH	Conductivity µS or mS	mg/L	mV	NTU		or, sheen or other
1019	J.O	22.68	7.18	0.469	2.56	6	173	outil to	
1021	0.5	22.42	7.04	0.469	1.88	-13	164		
1023	1-0	22.26	76.97	0.469	1.62	-23	153		
1025	1-5	12.15	6.94	0.469	1-63	- 28	154		
1027	2.0	22.07	6.92	0.469	1.62	-31	1. 60 69		
							0		
							-		
Previous Stabili	zed Parameters								
PURGE CO	MPLETION R	ECORD X	Low Flow & P Other:	arameters Stable	3 Casing V	olumes & Param	eters Stable	5 Casing Volun	nes
	SAI	MPLE COLL	ECTION REC	TORD			GEOCHEMIC	CAL PARAM	ETERS
Darth to Water	at Sampling:	The second se	ît)				ameter	Time	Measurement
			Contraction and Contraction	m 1.'		DO (mg/L)	ameter	Time	Moustrement
and the second s	ed Via: Dis		Dedicated Pump	Tubing			<i>/// \</i>		
	np Tubing Oth	502229		2.0	20	Ferrous Iron (r			
COURT OF COURT OF THE DATE OF THE OWNER OF	MW-11 \$		Sample Collect			Redox Potenti	al (mV)		
Containers (#):	<u>6</u> VOA (<u>×</u>	_ preserved or _	8			Alkalinity (mg	/L)		
	Other:			Other:		Other:			
	Other:			Other:	-	Other:			
Signature:	aly	· m	ti			_			Revision: 3/15/2013

Project:	BP 2	107			Project No.	06-88	- 614	Date	9/4/13
Field Repr	esentative:		JR		-		017		
Well ID:	Mw-12	А	Start Time		End Time	:	_ Total Tin	ne (minutes)	:
PURGE EQ	QUIPMENT		Disp. Bailer		120V Pump	X	Flow Cell		
×	Disp. Tubing		12V Pump	×	Peristaltic Pump	Other/ID#:			
WELL HE	AD INTEGRITY	(cap, lock, vau	ilt, etc.)	Comments:					
Good	Improvement Ne		circle one)						
PURGING	SAMPLING M	ETHOD F	redetermined W	ell Volume 👍	w-Flow Other:			(circle	e one)
	PREDETERN						LO	W-FLOW	, une)
	Diameter Unit Volu		rcle one)			Previous Low-I	Flow Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dep			18.00 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)		a b	Initial Depth to	Water (b):		9.14 (ft)
Total Well Dep Initial Depth to	CHARLE SHOW AND A			(ft)			epth = b + (a-b)/		13.57 (ft)
	Height (WCH) = (a	ь).	<u>N. 13</u>	(ft)			wable Drawdow	n = (a-b)/8:	(ft)
COMPANY AND CONTRACTOR STREET, CARDON CONTRACTOR	Volume (WCV) = $\sqrt{2}$	20.00		(ft) (gal)	Ë	Low-Flow Purg	e Rate:		<u> </u>
	Volumes = WCV x		ume	(gal)		Comments:	-		
	Volumes = WCV x 5			(gal)		*Low flow pures	ma abarda bardat in		ts used but should not
Pump Depth (i				(ft)	▼ B				tts used but should not Allowable Drawdown.
		G	ROUNDWA	TER STABIL	IZATION PAR	AMETER RE	CORD	n exceed maximum	Anowable Drawabwn.
Time	Cumulative Vol.	Temperature	pH	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or L	°C		µS or mS	mg/L	mV	NTU	Odor, co	olor, sheen or other
0929	0.0	24.58	7.14	0.469	3.48	120	123		
0933	1-0	24.55	6.92	0.467	3.15	132	119		
0935	1.5	24.53	6.85	0.466	3.00	13.3	117		
						1 22			
· · · · · · · · · · · · · · · · · · ·									
Previous Stabili									
PURGE CO	MPLETION RE	CORD 🗡	Low Flow & Pa	arameters Stable	3 Casing Ve	olumes & Parame	ers Stable	5 Casing Volur	nes
			Other:						
			ECTION REC	CORD		(GEOCHEMIC	CAL PARAM	IETERS
Depth to Water	at Sampling:	<u>.32 (ft</u>)				neter	Time	Measurement
Sample Collecte	ed Via: Disp	Bailer I	Dedicated Pump	Tubing		DO (mg/L)			
<u> </u>	p Tubing Other					Ferrous Iron (m	p/L)		
Sample ID:	MW-12 A		Sample Collecti	on Time: 094	(24:00)	Redox Potential			
Containers (#):	6 VOA (X					Alkalinity (mg/l			
	Other:			Other:		Other:	-)		
	Pther:		_	Other:		Other:			
Signature:	An	\bigwedge							Revision: 3/15/2013
l	/	V							

Project:	BP	2107			Project No	:_05-53	. 114	Data	alula
Field Repr	resentative:		170		-	06-08	-617	_ Date	9/4/13
Well ID:	Mw-17	2 B	Start Time	:	- End Time	:	Total Tim	e (minutes)	
	QUIPMENT							e (minutes)	•
			Disp. Bailer		120V Pump		Flow Cell		
12	_ Disp. Tubing	7	12V Pump		Peristaltic Pump	Other/ID#:			
Good Good	AD INTEGRITY Improvement Net			Comments:					
			circle one)						
FUNDING	SAMPLING M				w-Flow Other:			(circle	e one)
Casing	PREDETERM Diameter Unit Volu							W-FLOW	
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	0.1			Flow Purge Rate:		(lpm)
4" (0.66)	6" (1.50)		3 (0.38) 12" (5.81)		b	Total Well Dep			30.00 (ft 9.52 (ft
Total Well De	The set of	0 (2.00)	12 ((5.81)	(ft)	a	Initial Depth to			(n
Initial Depth t				(ft)			Depth = b + (a-b)/2		20.48 (ft)
Water Column	h Height (WCH) = (a	- b):		(ft)		Low-Flow Purg	wable Drawdown	i = (a-b)/8:	2.56 (ft) 0.25 (Lpm)*
	Nolume (WCV) = V		ume:	(gal)		Comments:	ge Rale:		(Lpm)*
	g Volumes = WCV x			(gal)		Comments.			
	Volumes = WCV x	5:		(gal)		* ow-flow purge r	ate should be within		ts used but should not
Pump Depth (if pump used):			(ft)	VD	1 C C C C C C C C C C C C C C C C C C C			Allowable Drawdown.
	-	G	ROUNDWA	TER STABIL	IZATION PAR	AMETER RE	CORD	exceed maximum	Anowable Drawaown.
Time	Cumulative Vol.	Temperature	pН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or 🗓	°C		µS or mS	mg/L	mV	NTU	Odor, co	olor, sheen or other
0946	0.0	23.48	7.02	0.671	3.34	136	129		
0950	1.0	23.21	6.97	0.672	3.07	149	126		
0952	1.5	23.14	6.97	0.672	3.01	157	127		
			0.11	0.074	2.96	165	122		
Previous Stabili	zed Parameters								
	MPLETION RE	CODD							
IUNOLUU	MITLETION KE	$CORD \ge$	Low Flow & Pa	rameters Stable	3 Casing Vo	olumes & Paramet	ters Stable	5 Casing Volun	nes
	~		Other:	and do not see the					
			ECTION REC	CORD			GEOCHEMIC	AL PARAM	ETERS
	at Sampling:					Parai	neter	Time	Measurement
Sample Collect	ed Via: Disp.	. Bailer E	Dedicated Pump	Fubing		DO (mg/L)			
<u> </u>	np Tubing Other	•				Ferrous Iron (m	g/L)		
Sample ID:	MW-12B		Sample Collection	on Time: _095	5 (24:00)	Redox Potential			
Containers (#):	<u>6</u> VOA (<u>×</u>		87 I		(=	Alkalinity (mg/I			
		•		Other:			-)		
	Other:			Other:		Other:			
						Other:			
Signature:	aly	m	ante			-:			Revision: 3/15/2013

	BP 21				Project No.	: 06-88	-614	Date	9/4/13
	esentative:								
Well ID:	MW-	13 A	Start Time:		End Time		_ Total Tir	ne (minutes):	
PURGE EQ	QUIPMENT		Disp. Bailer		120V Pump	×	_ Flow Cell		
			12V Pump	7	Peristaltic Pump	Other/ID#:			
WELL HE	AD INTEGRITY	(cap, lock, vau	lt, etc.)	Comments:					
Good	Improvement Ne	eded (a	ircle one)						
PURGING	SAMPLING M	ETHOD P	redetermined We	ll Volume 🚺	w-Flow Other:			(circle	one)
	PREDETERM				No		LC	W-FLOW	0.107
Casing	Diameter Unit Volu	me (gal/ft) (cir	cle one)			Previous Low-	Flow Purge Rate	and the second se	
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well De			16.53
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)		a b	Initial Depth to			3.28
Total Well De				(ft)	" E	and the second s	Depth = b + (a-b)	/2:	9.91
Initial Depth to				(ft)		1.00	owable Drawdow		1.65
	Height (WCH) = (a			(ft)	-	Low-Flow Pur			0.25 (1
Water Column	Volume (WCV) = V	VCH x Unit Vol	ume:	(gal)	E	Comments:	-		
The second	g Volumes = WCV x		-	(gal)	Ē	_	7		
	Volumes = WCV x 5	5:		(gal)		*Low-flow purge	rate should be within	range of instrumen	ts used but should not
Pump Depth (i	f pump used):			(ft)		exceed 0.25 gpm.	Drawdown should n	ot exceed Maximum	Allowable Drawdown.
			ROUNDWAT	FER STABILI	ZATION PAR	AMETER RI	ECORD		
Time	Cumulative Vol.		pH	Conductivity	DO	ORP	Turbidity		NOTES
(24:00) 0859		°C		µS or mS	mg/L	mV	NTU	Odor, co	olor, sheen or other
0901	0.5	23.23	7.09 6.92	0.626	3.49	120	133		
0903	1.0	23.37	6.87	0.622	3.39	126	123		
0905	1.5	23.29	6.83	0.619	3.22	128	122		
0907	2.0	23.27	6.81	0.616	3.18	130	128		
					- 540 Mb-		-		
revious Stabili	zed Parameters								
	MPLETION RE		Low Flow & P	romoto Or 11	10				
	LIN DUTION RE			rameters Stable	3 Casing Vo	olumes & Parame	eters Stable	5 Casing Volur	nes
	CAN		Other:				0000		
Donth to W.			ECTION REC	UKD				CAL PARAM	IETERS
	at Sampling: <u>4</u>					Para	ameter	Time	Measuremen
100 CT 100 CT	ed Via: Disp	. Bailer I	Dedicated Pump 7	Tubing		DO (mg/L)			
K Disp. Pun						Ferrous Iron (n	ng/L)		
Sample ID:	Mw-13A		Sample Collection	on Time:	<u>(24:00)</u>	Redox Potentia	ul (mV)		
	6_ VOA (<u>×</u>					Alkalinity (mg			
				Other:		Other:			
	Oner:								

Dusiant					Destant	transfer interest		D	a 14/1=
	BP 2	en de san e de la deserve s			Project No.:	06-88	-614	Date:	9/4/13
Field Repre	sentative:	AM	JJR						
Well ID:	Mw-1	3 B	Start Time:		End Time:		Total Tim	e (minutes):	
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	<u>×</u>	Flow Cell		
L	Disp. Tubing		12V Pump	L	Peristaltic Pump	Other/ID#:			
	D INTEGRITY	(cap, lock, vaul	t, etc.)	Comments:					
Good	Improvement Nee	eded (ci	ircle one)						
PURGING/	SAMPLING MI	ETHOD PI	redetermined We	Il Volume 🕡	w-Flow Other:			(circle d	one)
	PREDETERM	INED WEL	L VOLUME				LO	W-FLOW	
Casing D	Diameter Unit Volu	me (gal/ft) (cir	cle one)			Previous Low-F	low Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept	h (a):		<u> </u>
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	a b	Initial Depth to	Water (b):		<u>3.42</u> (ft)
Total Well Dep				(ft)		Pump In-take D	epth = b + (a-b)/2	2:	13.01 (ft)
Initial Depth to			3	(ft)			wable Drawdowr	n = (a-b)/8:	2.40 (ft)
	Height (WCH) = $(a$		1.	(ft)		Low-Flow Purge	e Rate:		(Lpm)*
The second se	Volume (WCV) = V		ime:	(gal)		Comments:			
	Volumes = WCV x			(gal)					
	olumes = WCV x 5	1		(gal)	★目				s used but should not
Pump Depth (if	f pump used):			(ft)				ot exceed Maximum A	Allowable Drawdown.
			78.5	T and the second	IZATION PAR	1	Contraction of the second second		
Time	Cumulative Vol. gal or	Temperature °C	pH	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	0.0	21.04	9.11	μS or mS 0.654	mg/L 2.26	mV 63	NTU 247	Odor, col	lor, sheen or other
0844	0.5	22.06	8.19	0.635	3.38	81	270		
0846	1.0	22.39	7.72	0.632	3.63	94	259		
0540	1-5	22.56	7.41	0.629	3.62	103	235		
0350	2.0	22.64	7.21	0.628	3.52	111	202		
0852	2.5	12.68	7.07	0.626	3.41	115	167		
				· · · · · · · · · · · · · · · · · · ·					
								1	
	· · · · · · · · · · · · · · · · · · ·								
Previous Stabili	1.0								
The superior of the superior				L					
PURGECO	MPLETION RE	ECORD <u>×</u>	Low Flow & Pa Other:	arameters Stable	3 Casing Vo	olumes & Parame	ters Stable	_5 Casing Volun	nes
	SAN	APLE COLL	ECTION REC	CORD		(GEOCHEMIC	CAL PARAM	ETERS
Depth to Water	at Sampling:	<u>3,45 (f</u>	t)			Para	meter	Time	Measurement
Sample Collect	ed Via: Disp	Bailer l	Dedicated Pump	Tubing		DO (mg/L)			
🗡 Disp. Pur	np Tubing Othe	r:				Ferrous Iron (m	g/L)		
	MW-13B		Sample Collecti	on Time: 09	(24:00)	Redox Potentia			
	6 VOA (X				Alkalinity (mg/		1		
containers (#).		1. Call 1. Call 1. Call	1999 - 1992 - 11 - 11 - 1993					Concernation of the second	
	Other:		_	_ Other:		Other:			
Comparison of the local division of the loca	Other:			_ Other:		Other:			
Signature:	alix	man	tions			_			Revision: 3/15/2013

bp				
ANA CAL	r	r	Y	
1. 3	No.		1400	and the second se
A CONT			100	

Laboratory Management Program LaMP Chain of Custody Record

Page	of	-
	Nia	

BP Site Node Path: 06-88-614

Req Due Date (mm/dd/yy):

Rush TAT: Yes ____ No ____

		BI	P Facility No:					2	107						La	ab W	ork O	rder	Number:								
Lab N	ame: Test America			Facil	ity Ad	dress	: ;	3310	Park	3lvd.									Consultant	/Contra	actor:	B	Broad	lbent and Asso	ciates, Inc.	ñ	
Lab A	Idress: 17461 Derian Avenue Suite #1	00, Irvine, CA 9	2641	City,	State	ə, ZIP	Cod	e:	-11	Oakla	nd, C	A							Consultant	l/Contra	actor F	Project	No:	06-88-614	-		
Lab Pl	M: Kathleen Robb			Lead	Reg	ulator	y Ag	ency:		ACEH	ł								Address:	875 C	Cotting	Lane,	Suite	G, Vcaville, C	A 95688		
Lab Pl	ione: 949-261-1022			Calif	ornia	Globa	il ID	No.:		T0601	19734	306							Consultant	t/Contra	actor F	PM: K	Kriste	ne Tidwell			
Lab S	hipping Accnt: 1103-6633-7			Enfo	s Pro	posal	No:		0051/	/T-000	1								Phone	: 707-4	55-72	90		Fa	k: 707-455-	7295	
Lab B	ottle Order No:			Acco	ountin	g Moo	le:		Pro	vision .	x	00	C-BU		000	-RM			Email EDD) To:	<u>kti</u>	dwell@	broa	dbentinc.com	and to <u>k</u>	ab.enfosdoc@	bp.com
Other	Info:			Stag	e:	Exect	ute (4	40)		Activit	ty:	Proje	ct Spe	end (80))				Invoice To	:		BP_	x		Contracto	л	
BP Pr	oject Manager (PM): Chuck Carmel				Ma	trix		No	. Co	ntaine	ers /	Prese	ervati	ve			F	lequ	ested An	alyses	3			Re	oort Type	& QC Leve	1
BP PN	Phone: 925-275-3804															_									St	andard <u>x</u>	2
BP PM	fEmail: <u>chuck.carmel@bp.com</u>						ċ	Container								8260	y 8260								Full Data Pr	ackage	
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Con	Unpreserved	H2SO4	HN03	HCI	Methanol		GRO by 8015M	BTEX/5 FO & EDB by	1,2-DCA & Ethanol by							Note: If sample Sample" in con and initial any p	ments and s	l, indicate "No ingle-strike out	n.
	MW-11A	9/4/2013	1045		x		у	6				x			x	x	x										
	MW-11B	9/4/2013	1030		x		у	6				x			x	x	x										
	MW-12A	9/4/2013	0940		х		у	6				x			x	x	x										
	MW-12B	9/4/2013	0955		x		у	6				x			×	x	x							-	2		
	MW-13A	9/4/2013	09110		x		у	6				x			×	x	x										
	MW-13B	9/4/2013	0855		x		у	6				x			x	x	x										
	TB-2107-09042013				x		n	2				x													On	Hold	
															- 19					-							
																	_			-			_				
1.12 10																_		-									
					ib i contra													-					-			Data	Time
Samp	ler's Name: Alex Martinez & J	ames Ramos				R	elin	quis	hed I	3y / A	Affiliation Date Time						Accepted By / Affiliation						Date	Time			
Samp	ler's Company: Broadbent and As	sociates			_	H	i-	-1	1		LĖ	3AI	+		7/4	-	170	-						-			
Shipm	ent Method: Fed Ex	Ship Date:	9/4/2013		\mathbb{Z}	Â	¥	ų'	M	re	A	No.	TE	,AT	714	113	170	0									
-	ent Tracking No:				-	_	_									-						-		and the state			
Spec	ial Instructions:			1	_		21		/ 61-	1	Car	oler Te	mper	Door	aint:		0	=/C	Trip	Blank:	Yes /	No	1	MS/MSD Sam	ole Submitt	ed: Yes / No	
	THIS LINE - LAB USE ONLY: C	justody Seals In	Place: Yes / N	0	1	empl	Siani	c: Yes	1 100		000	19119	mp of	nece				10	I mp	- near me.			L.				

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-56330-1 Client Project/Site: ARCO 2107, Oakland

For: Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

tæthlein.

Authorized for release by: 9/17/2013 1:22:34 PM

Kathleen Robb, Project Manager II kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	11
Chronicle	12
QC Sample Results	14
QC Association	18
Definitions	19
Certification Summary	20
Chain of Custody	21
Receipt Checklists	22

Sample Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland TestAmerica Job ID: 440-56330-1

_ab Sample ID	Client Sample ID	Matrix	Collected	Received
140-56330-1	MW-11A	Water	09/04/13 10:45	09/05/13 10:05
140-56330-2	MW-11B	Water	09/04/13 10:30	09/05/13 10:05
140-56330-3	MW-12A	Water	09/04/13 09:40	09/05/13 10:05
40-56330-4	MW-12B	Water	09/04/13 09:55	09/05/13 10:05
140-56330-5	MW-13A	Water	09/04/13 09:10	09/05/13 10:05
40-56330-6	MW-13B	Water	09/04/13 08:55	09/05/13 10:05

TestAmerica Irvine

Job ID: 440-56330-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-56330-1

Comments

No additional comments.

Receipt

The samples were received on 9/5/2013 10:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.2° C.

GC/MS VOA

Method(s) 8260B: CCV recovery for Ethanol is outside of limits as stated in BP-LAMP however it meets the requirements as stated in the analytical method.MW-11A (440-56330-1), MW-11B (440-56330-2), MW-12A (440-56330-3), MW-12B (440-56330-4), MW-13A (440-56330-5), MW-13B (440-56330-6)

No other analytical or quality issues were noted.

GC VOA

Method(s) 8015B: Surrogate recovery was outside control limits for the following sample: (440-56164-2 MS), (440-56164-2 MSD), (CCV 440-129968/35), (CCV 440-129968/51), (CCV 440-129968/63), (CCVRT 440-129968/1), (LCS 440-129968/39). The GRO standard coeluted with the 4-bromofluorobenzene surrogate. Data not impacted.

Method(s) 8015B: Surrogate recovery for the following sample(s) was outside control limits: MW-11A (440-56330-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Client Sample ID: MW-11A

Date Collected: 09/04/13 10:45

Date Received: 09/05/13 10:05

2 3 4 5 6 7 8 9

Lab Sample ID: 440-56330-1 Matrix: Water

Method: 8260B/5030B - Volatile Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			09/12/13 21:20	1
1,2-Dichloroethane	ND		0.50	ug/L			09/12/13 21:20	1
Benzene	3.3		0.50	ug/L			09/12/13 21:20	1
Ethanol	ND		150	ug/L			09/12/13 21:20	1
Ethylbenzene	5.5		0.50	ug/L			09/12/13 21:20	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			09/12/13 21:20	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			09/12/13 21:20	1
m,p-Xylene	1.0		1.0	ug/L			09/12/13 21:20	1
Methyl-t-Butyl Ether (MTBE)	200		0.50	ug/L			09/12/13 21:20	1
o-Xylene	ND		0.50	ug/L			09/12/13 21:20	1
Tert-amyl-methyl ether (TAME)	3.5		0.50	ug/L			09/12/13 21:20	1
tert-Butyl alcohol (TBA)	22		10	ug/L			09/12/13 21:20	1
Toluene	8.8		0.50	ug/L			09/12/13 21:20	1
Xylenes, Total	1.0		1.0	ug/L			09/12/13 21:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120		-		09/12/13 21:20	1
Dibromofluoromethane (Surr)	93		80 - 120				09/12/13 21:20	1
Toluene-d8 (Surr)	99		80 - 120				09/12/13 21:20	1
- Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	220		50	ug/L			09/10/13 09:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	210	LH	65 - 140		-		09/10/13 09:19	1

Lab Sample ID: 440-56330-2 Matrix: Water

Client Sample ID: MW-11B
Date Collected: 09/04/13 10:30
Date Received: 09/05/13 10:05

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			09/12/13 22:50	1
1,2-Dichloroethane	ND		0.50	ug/L			09/12/13 22:50	1
Benzene	ND		0.50	ug/L			09/12/13 22:50	1
Ethanol	ND		150	ug/L			09/12/13 22:50	1
Ethylbenzene	ND		0.50	ug/L			09/12/13 22:50	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			09/12/13 22:50	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			09/12/13 22:50	1
n,p-Xylene NI			1.0	ug/L			09/12/13 22:50	1
Methyl-t-Butyl Ether (MTBE)	19		0.50	ug/L			09/12/13 22:50	1
o-Xylene	ND		0.50	ug/L			09/12/13 22:50	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			09/12/13 22:50	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			09/12/13 22:50	1
Toluene	ND		0.50	ug/L			09/12/13 22:50	1
Xylenes, Total	ND		1.0	ug/L			09/12/13 22:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120		-		09/12/13 22:50	1
Dibromofluoromethane (Surr)	95		80 - 120				09/12/13 22:50	1
Toluene-d8 (Surr)	98		80 - 120				09/12/13 22:50	1
Method: 8015B/5030B - Gasoliı	ne Range Organi	ics (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			09/10/13 09:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			65 - 140		-		09/10/13 09:44	1

Lab Sample ID: 440-56330-3 Matrix: Water

Client Sample ID: MW-12A Date Collected: 09/04/13 09:40

Date Received: 09/05/13 10:05

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			09/12/13 23:20	1
1,2-Dichloroethane	ND		0.50	ug/L			09/12/13 23:20	1
Benzene	ND		0.50	ug/L			09/12/13 23:20	1
Ethanol	ND		150	ug/L			09/12/13 23:20	1
Ethylbenzene	ND		0.50	ug/L			09/12/13 23:20	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			09/12/13 23:20	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			09/12/13 23:20	1
m,p-Xylene	ND		1.0	ug/L			09/12/13 23:20	1
Methyl-t-Butyl Ether (MTBE)	11		0.50	ug/L			09/12/13 23:20	1
o-Xylene	ND		0.50	ug/L			09/12/13 23:20	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			09/12/13 23:20	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			09/12/13 23:20	1
Toluene	ND		0.50	ug/L			09/12/13 23:20	1
Xylenes, Total	ND		1.0	ug/L			09/12/13 23:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120		-		09/12/13 23:20	1
Dibromofluoromethane (Surr)	96		80 - 120				09/12/13 23:20	1
Toluene-d8 (Surr)	98		80 - 120				09/12/13 23:20	1
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			09/10/13 10:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		65 - 140		-		09/10/13 10:09	1

Dil Fac

Dil Fac

09/10/13 10:34

1

1

Lab	Sample	ID:	440-56330-4

Client Sample ID: MW-12B Date Date

Date Collected: 09/04/13 09:55 Date Received: 09/05/13 10:05			Matrix	x: Wate				
	e Organic Comp	ounds (GC/	MS)					
Analyte	• ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			09/12/13 23:50	
1,2-Dichloroethane	ND		0.50	ug/L			09/12/13 23:50	
Benzene	ND		0.50	ug/L			09/12/13 23:50	
Ethanol	ND		150	ug/L			09/12/13 23:50	,
Ethylbenzene	ND		0.50	ug/L			09/12/13 23:50	
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			09/12/13 23:50	
Isopropyl Ether (DIPE)	ND		0.50	ug/L			09/12/13 23:50	
m,p-Xylene	ND		1.0	ug/L			09/12/13 23:50	
Methyl-t-Butyl Ether (MTBE)	2.9		0.50	ug/L			09/12/13 23:50	
o-Xylene	ND		0.50	ug/L			09/12/13 23:50	
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			09/12/13 23:50	
tert-Butyl alcohol (TBA)	ND		10	ug/L			09/12/13 23:50	
Toluene	ND		0.50	ug/L			09/12/13 23:50	
Xylenes, Total	ND		1.0	ug/L			09/12/13 23:50	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		80 - 120		-		09/12/13 23:50	
Dibromofluoromethane (Surr)	97		80 - 120				09/12/13 23:50	
Toluene-d8 (Surr)	98		80 - 120				09/12/13 23:50	

Method: 8015B/5030B - Gasoline Range Organics (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed GRO (C6-C12) 09/10/13 10:34 ND 50 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed

65 - 140

109

4-Bromofluorobenzene (Surr)

TestAmerica Irvine

Lab Sample ID: 440-56330-5 Matrix: Water

Client Sample ID: MW-13A Date Collected: 09/04/13 09:10 Date Received: 09/05/13 10:05

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			09/13/13 00:20	1
1,2-Dichloroethane	ND		0.50	ug/L			09/13/13 00:20	1
Benzene	ND		0.50	ug/L			09/13/13 00:20	1
Ethanol	ND		150	ug/L			09/13/13 00:20	1
Ethylbenzene	ND		0.50	ug/L			09/13/13 00:20	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			09/13/13 00:20	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			09/13/13 00:20	1
m,p-Xylene	ND		1.0	ug/L			09/13/13 00:20	1
Methyl-t-Butyl Ether (MTBE)	76		0.50	ug/L			09/13/13 00:20	1
o-Xylene	ND		0.50	ug/L			09/13/13 00:20	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			09/13/13 00:20	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			09/13/13 00:20	1
Toluene	ND		0.50	ug/L			09/13/13 00:20	1
Xylenes, Total	ND		1.0	ug/L			09/13/13 00:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		80 - 120		-		09/13/13 00:20	1
Dibromofluoromethane (Surr)	96		80 - 120				09/13/13 00:20	1
Toluene-d8 (Surr)	98		80 - 120				09/13/13 00:20	1
Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			09/10/13 10:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		65 - 140		-		09/10/13 10:59	1

Lab Sample ID: 440-56330-6

Client Sample ID: MW-13B Date Collected: 09/04/13 08:55

Date Collected: 09/04/13 08:55 Date Received: 09/05/13 10:05							Matrix	k: Water				
_ Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)												
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac				
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			09/13/13 00:50	1				
1,2-Dichloroethane	ND		0.50	ug/L			09/13/13 00:50	1				
Benzene	ND		0.50	ug/L			09/13/13 00:50	1				
Ethanol	ND		150	ug/L			09/13/13 00:50	1				
Ethylbenzene	ND		0.50	ug/L			09/13/13 00:50	1				
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			09/13/13 00:50	1				
Isopropyl Ether (DIPE)	ND		0.50	ug/L			09/13/13 00:50	1				
m,p-Xylene	ND		1.0	ug/L			09/13/13 00:50	1				
Methyl-t-Butyl Ether (MTBE)	45		0.50	ug/L			09/13/13 00:50	1				
o-Xylene	ND		0.50	ug/L			09/13/13 00:50	1				
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			09/13/13 00:50	1				
tert-Butyl alcohol (TBA)	ND		10	ug/L			09/13/13 00:50	1				
Toluene	ND		0.50	ug/L			09/13/13 00:50	1				
Xylenes, Total	ND		1.0	ug/L			09/13/13 00:50	1				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac				
4-Bromofluorobenzene (Surr)	98		80 - 120		-		09/13/13 00:50	1				
Dibromofluoromethane (Surr)	98		80 - 120				09/13/13 00:50	1				
Toluene-d8 (Surr)	98		80 - 120				09/13/13 00:50	1				
_ Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)										
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac				
GRO (C6-C12)	ND		50	ug/L			09/10/13 17:37	1				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac				
4-Bromofluorobenzene (Surr)			65 - 140		-		09/10/13 17:37	1				

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2107, Oakland

Method Description

Volatile Organic Compounds (GC/MS)

Gasoline Range Organics (GC)

Method

8260B/5030B

8015B/5030B

Protocol References:

Laboratory References:

Laboratory

TAL IRV

TAL IRV

Protocol

SW846

SW846

5
6
8
9

TestAmerica Irvine

Client Sample ID: MW-11A

Analyst

Lab Sample ID: 440-56330-3

Lab Sample ID: 440-56330-4

Lab Sample ID: 440-56330-5

Lab Sample ID: 440-56330-6

WK

PH

Prepared

or Analyzed

09/12/13 21:20

09/10/13 09:19

Lab Sample ID: 440-56330-1	
Matrix: Water	

Lab

TAL IRV

TAL IRV

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 09/04/13 10:45 Date Received: 09/05/13 10:05 Batch Dil Initial Final Batch Batch Method Prep Type Туре Run Factor Amount Amount Number Total/NA Analysis 8260B/5030B 10 mL 130765 1 10 mL Total/NA Analysis 8015B/5030B 1 10 mL 10 mL 129968

Client Sample ID: MW-11B Date Collected: 09/04/13 10:30

Date Received: 09/05/13 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	130765	09/12/13 22:50	WK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	129968	09/10/13 09:44	PH	TAL IRV

Client Sample ID: MW-12A

Date Collected: 09/04/13 09:40 Date Received: 09/05/13 10:05

ſ	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	130765	09/12/13 23:20	WK	TAL IRV
	Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	129968	09/10/13 10:09	PH	TAL IRV

Client Sample ID: MW-12B

Date Collected: 09/04/13 09:55 Date Received: 09/05/13 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	130765	09/12/13 23:50	WK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	129968	09/10/13 10:34	PH	TAL IRV

Client Sample ID: MW-13A

Date Collected: 09/04/13 09:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	130765	09/13/13 00:20	WK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	129968	09/10/13 10:59	PH	TAL IRV

Client Sample ID: MW-13B Date Collected: 09/04/13 08:55

Date Received: 09/05/13 10:05

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	130765	09/13/13 00:50	WK	TAL IRV

Analysis

IM

Client Sample ID: MW-13B Lab Sample ID: 440-56330-6 Date Collected: 09/04/13 08:55 Matrix: Water Date Received: 09/05/13 10:05 Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab

10 mL

10 mL

130059

09/10/13 17:37

1

Laboratory References:

Total/NA

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

8015B/5030B

TAL IRV

TestAmerica Irvine

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-130765/3 Matrix: Water						Chefit Se	ample ID: Metho Prep Type: T	
Analysis Batch: 130765							тер туре. Г	
Analysis Baten. 100100	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			09/12/13 20:20	1
1,2-Dichloroethane	ND		0.50	ug/L			09/12/13 20:20	1
Benzene	ND		0.50	ug/L			09/12/13 20:20	1
Ethanol	ND		150	ug/L			09/12/13 20:20	1
Ethylbenzene	ND		0.50	ug/L			09/12/13 20:20	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			09/12/13 20:20	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			09/12/13 20:20	1
m,p-Xylene	ND		1.0	ug/L			09/12/13 20:20	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			09/12/13 20:20	1
o-Xylene	ND		0.50	ug/L			09/12/13 20:20	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			09/12/13 20:20	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			09/12/13 20:20	1
Toluene	ND		0.50	ug/L			09/12/13 20:20	1
Xylenes, Total	ND		1.0	ug/L			09/12/13 20:20	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120		-		09/12/13 20:20	1
Dibromofluoromethane (Surr)	100		80 - 120				09/12/13 20:20	1
Toluene-d8 (Surr)	99		80 - 120				09/12/13 20:20	1

Analysis Batch: 130765

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromoethane (EDB)	25.0	24.7		ug/L		99	70 - 130
1,2-Dichloroethane	25.0	25.2		ug/L		101	57 - 138
Benzene	25.0	23.5		ug/L		94	68 ₋ 130
Ethanol	250	256		ug/L		103	50 - 149
Ethylbenzene	25.0	24.4		ug/L		98	70 - 130
Ethyl-t-butyl ether (ETBE)	25.0	21.2		ug/L		85	60 - 136
Isopropyl Ether (DIPE)	25.0	22.6		ug/L		90	58 - 139
m,p-Xylene	50.0	46.6		ug/L		93	70 - 130
Methyl-t-Butyl Ether (MTBE)	25.0	21.9		ug/L		87	63 - 131
o-Xylene	25.0	23.3		ug/L		93	70 _ 130
Tert-amyl-methyl ether (TAME)	25.0	21.6		ug/L		86	57 _ 139
tert-Butyl alcohol (TBA)	125	110		ug/L		88	70 - 130
Toluene	25.0	23.5		ug/L		94	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	100		80 - 120

Prep Type: Total/NA

3 4 5

8

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-56330-1 M Matrix: Water	IS							Client Sample ID: MW- Prep Type: Tota		
Analysis Batch: 130765	. .	<u>.</u>	0.11						2/ P	
A	•	Sample	Spike		MS	11 14		0/ D	%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		25.0	24.5		ug/L		98	70 - 131	
1,2-Dichloroethane	ND		25.0	24.5		ug/L		98	56 ₋ 146	
Benzene	3.3		25.0	26.5		ug/L		93	66 - 130	
Ethanol	ND		250	295		ug/L		118	54 - 150	
Ethylbenzene	5.5		25.0	29.2		ug/L		95	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	21.1		ug/L		84	70 - 130	
Isopropyl Ether (DIPE)	ND		25.0	21.8		ug/L		87	64 - 138	
m,p-Xylene	1.0		50.0	47.5		ug/L		93	70 - 133	
Methyl-t-Butyl Ether (MTBE)	200		25.0	225	BB	ug/L		85	70 - 130	
o-Xylene	ND		25.0	23.6		ug/L		93	70 - 133	
Tert-amyl-methyl ether (TAME)	3.5		25.0	25.3		ug/L		87	68 - 133	
tert-Butyl alcohol (TBA)	22		125	122		ug/L		80	70 - 130	
Toluene	8.8		25.0	31.1		ug/L		89	70 - 130	
	MS	MS								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	94		80 - 120
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: 440-56330-1 MSD Matrix: Water

Analysis Batch: 130765

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	25.0		ug/L		100	70 - 131	2	25
1,2-Dichloroethane	ND		25.0	24.4		ug/L		97	56 ₋ 146	1	20
Benzene	3.3		25.0	26.6		ug/L		93	66 - 130	0	20
Ethanol	ND		250	273		ug/L		109	54 _ 150	8	30
Ethylbenzene	5.5		25.0	29.2		ug/L		95	70 - 130	0	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	21.2		ug/L		85	70 - 130	1	25
Isopropyl Ether (DIPE)	ND		25.0	21.8		ug/L		87	64 - 138	0	25
m,p-Xylene	1.0		50.0	47.5		ug/L		93	70 - 133	0	25
Methyl-t-Butyl Ether (MTBE)	200		25.0	225	BB	ug/L		85	70 - 130	0	25
o-Xylene	ND		25.0	23.6		ug/L		93	70 - 133	0	20
Tert-amyl-methyl ether (TAME)	3.5		25.0	25.5		ug/L		88	68 - 133	1	30
tert-Butyl alcohol (TBA)	22		125	122		ug/L		80	70 - 130	0	25
Toluene	8.8		25.0	31.4		ug/L		90	70 - 130	1	20
	MSD	MSD									

	MSD	MSD			
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	93		80 - 120		
Dibromofluoromethane (Surr)	92		80 - 120		
Toluene-d8 (Surr)	100		80 - 120		

liont	Sampl	M\\/	11	^

Client Sample ID: MW-11A Prep Type: Total/NA

Method: 8015B/5030B - Gasoline Range Organics (GC)

Lab Sample ID: MB 440-1299	968/40								Client S	ample ID: Meth	nod Blanl
Matrix: Water										Prep Type:	Total/N/
Analysis Batch: 129968											
	N	IB MB									
Analyte	Res	ult Qualifier	RL		Unit		D	Ρ	repared	Analyzed	Dil Fa
GRO (C6-C12)	N	ID	50		ug/L					09/10/13 01:48	
		1B MB									
Surrogata	%Recove		Limits						Proparad	Analyzod	Dil Fa
Surrogate 4-Bromofluorobenzene (Surr)		18 Quanner							Prepared	Analyzed 	
	1	10	05 - 140							09/10/13 01.40	
Lab Sample ID: LCS 440-129	968/39						CI	lient	t Sample	ID: Lab Contro	ol Sample
Matrix: Water									Campie	Prep Type:	-
Analysis Batch: 129968											
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
GRO (C4-C12)			800	798		ug/L		-	100	80 - 120	
						-					
	LCS L										
Surrogate	%Recovery Q		Limits								
4-Bromofluorobenzene (Surr)	224 L	Н	65 - 140								
- Lab Sample ID: 440 EC4C4 A	2 MC								Client	Comple ID: Mo	taise Casiles
Lab Sample ID: 440-56164-A	-2 1015								Client	Sample ID: Ma	-
Matrix: Water										Prep Type:	i otal/NA
Analysis Batch: 129968	Sample S	omnio	Spike	ме	MS					%Rec.	
Analyte	Result Q	-	Added		Qualifier	Unit		D	%Rec	Limits	
GRO (C4-C12)	- <u>64</u>		800	738	Quanner	ug/L		_		65 _ 140	
	04		000	750		ug/L			04	00 - 140	
	MS M	IS									
Surrogate		ualifier	Limits								
4-Bromofluorobenzene (Surr)	208 L	Н	65 - 140								
Lak Cample ID: 440 F0404 A	0 MOD						011-0-1			Matrix On its	Duullast
Lab Sample ID: 440-56164-A Matrix: Water	-2 10150						Clier	11 3	ample IL): Matrix Spike Prep Type:	-
										гтер туре	
Analysis Batch: 129968	Sample S	amnlo	Spike	MSD	MSD					%Rec.	RPI
Analyte	Result Q	-	Added		Qualifier	Unit		D	%Rec		PD Limi
GR0 (C4-C12)	- <u>- 64</u>		800	742		ug/L		_	85	65 - 140	1 20
0.10 (0.1012)	0.					ug, 2				00-110	
	MSD M	ISD									
Surrogate	%Recovery Q		Limits								
4-Bromofluorobenzene (Surr)	211 L	Н	65 - 140								
	50/0										
Lab Sample ID: MB 440-1300	159/3								Client S	ample ID: Meth	
Matrix: Water										Prep Type:	
Analysis Batch: 130059	R.	ІВ МВ									
Analyte		ult Qualifier	RL		Unit		D	P	repared	Analyzed	Dil Fa
GRO (C6-C12)									repareu	Analyzed 09/10/13 09:50	
	ľ		50		uyrL					00,10,10,00.00	
	Λ	IB MB									
Surrogate	%Recove	ry Qualifier	Limits						Prepared		

4-Bromofluorobenzene (Surr)

TestAmerica Irvine

1

09/10/13 09:50

65 - 140

107

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: LCS 440-13	0059/2						Client	Sample	e ID: Lab Co	ontrol Sa	ample
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 130059											
			Spike		LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
GRO (C4-C12)			800	786		ug/L		98	80 - 120		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	111		65 - 140								
Lab Sample ID: 440-56424-	A-2 MS							Client	Sample ID:	: Matrix	Spike
Matrix: Water									Prep T	ype: Tot	tal/NA
Analysis Batch: 130059											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
GRO (C4-C12)	170		800	862		ug/L		86	65 - 140		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	114		65 - 140								
Lab Sample ID: 440-56424-	A-2 MSD						Client Sa	ample IC): Matrix Sp	oike Dup	licate
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 130059											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	170		800	826		ug/L		82	65 - 140	4	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	103		65 - 140								

GC/MS VOA

Analysis Batch: 130765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-56330-1	MW-11A	Total/NA	Water	8260B/5030B	
440-56330-1 MS	MW-11A	Total/NA	Water	8260B/5030B	
440-56330-1 MSD	MW-11A	Total/NA	Water	8260B/5030B	
440-56330-2	MW-11B	Total/NA	Water	8260B/5030B	
440-56330-3	MW-12A	Total/NA	Water	8260B/5030B	
440-56330-4	MW-12B	Total/NA	Water	8260B/5030B	
440-56330-5	MW-13A	Total/NA	Water	8260B/5030B	
440-56330-6	MW-13B	Total/NA	Water	8260B/5030B	
LCS 440-130765/4	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-130765/3	Method Blank	Total/NA	Water	8260B/5030B	

GC VOA

Analysis Batch: 129968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-56164-A-2 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-56164-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-56330-1	MW-11A	Total/NA	Water	8015B/5030B	
440-56330-2	MW-11B	Total/NA	Water	8015B/5030B	
440-56330-3	MW-12A	Total/NA	Water	8015B/5030B	
440-56330-4	MW-12B	Total/NA	Water	8015B/5030B	
440-56330-5	MW-13A	Total/NA	Water	8015B/5030B	
LCS 440-129968/39	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-129968/40	Method Blank	Total/NA	Water	8015B/5030B	

Analysis Batch: 130059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-56330-6	MW-13B	Total/NA	Water	8015B/5030B	
440-56424-A-2 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-56424-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
LCS 440-130059/2	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-130059/3	Method Blank	Total/NA	Water	8015B/5030B	

Qualifiers

GC/MS VOA		
Qualifier	Qualifier Description	
BB	Sample > 4X spike concentration	5
GC VOA		
Qualifier	Qualifier Description	
LH	Surrogate Recoveries were higher than QC limits	

Glossary

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	0
%R	Percent Recovery	3
CNF	Contains no Free Liquid	10
DER	Duplicate error ratio (normalized absolute difference)	10
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	111
DLC	Decision level concentration	
MDA	Minimum detectable activity	12
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	13
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-28-14 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14
Northern Mariana Islands	State Program	9	MP0002	01-31-14
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

J.	^{bp} rm		tory Mari te Node Path:	-				-	1 120 88-61								-			d _{yy):}					Bush	Page TAT: Yes _		
1			P Facility No											-	L	ab W	ork (Order	Num	ber: _	4	Đ	- {	56	<u> </u>		_	
Lab Nar	ne: Test America	· · ·		Facility Address: 3310 Park Blvd.							Consultant/Contractor: Broa							Broad	bent and Associates	, inc.								
Lab Address: 17461 Derian Avenue Suite #100, Irvine, CA 92641					City, State, ZIP Code: Oakland, CA							Consultant/Contractor Project No:								06-88-614			_					
Lab PM: Kathleen Robb				Lea	d Reg	ulato	ry Ag	ency:		ACEH	1				Address: 875 Cotting Lane, Suite G								G, Vcaville, CA 956	88				
ab Pho	ne: 949-261-1022			Cali	iomia	Glob	al ID	No.:		T060'	19734	306							Consu	ltant/C	ontra	ctor P	м:	Kriste	ene Tidwell			<u> </u>
.ab Ship	ping Accnt: 1103-6633-7			Enfo	s Pro	posa	l No:		0051	r-000	1								Ph	one: 7	07-4	55-72	ю		Fax: 70	455-7295		
ab Boti	de Order No:			Acc	ountir	g Mo	de:		Prov	/ision	x	00	с-ви	·	. 00	C-RM			Email	EDD T	0:	<u>ktic</u>	twell€	»b <u>roa</u>	dbentinc.com an	to lab.enfosc	oc@l	bp com
ther in	fo:			Stag	Stage: Execute (40) Activity: Project Spend (80) Invoice To: BP x							Con	tractor															
P Proj	ect Manager (PM): Chuck Carmel				Ма	trix		No	o. Co	ntain	ers / I	Pres	ervat	tive				Requ	ested	Analy	yses				Report Type & QC Level			
3P PM I	Phone: 925-275-3804			Γ																						Standard _	x_	
3P PM	Email: chuck.carmel@bp.com			1			~	Container								8260	8260								Full D	ata Package _		
	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Cont		H2SO4	HN03	HCI	Methanol		GRO by 8015M	BTEX/5 FO & EDB by 8260	1,2-DCA & Ethanol by			440-56330					Note: If sample not co Sample' in comments and initial any preprint	and single-strike	out	
	/W-11A	9/4/2013	1045		×		у	6				×			x	×	×		_	-56								
5	/W-11B	9/4/2013	1030		x		у	6				x			x	x	×			330								
, v	/W-12A	9/4/2013	0940		x		у	6				x			x	x	x			Chain					<u>_</u>			
Μ	/W-12B	9/4/2013	0955		×		у	6				×			x	x	x		i	in of								
N	/W-13A	9/4/2013	0910		x		у	6				×			x	×	×											
N	/W-13B	9/4/2013	0855		x		у	6				x			×	×	×			Cusion					<u>_</u>			
!	B-2107-09042013				×		n	2				x							_	- 3				nun		On Hold		
							_										\square	Q	김	_				-				
																	\leq	\geq	<u>۲:</u>									
	<u>_</u>		<u> </u>				_						<u> </u>		P			3	9		- T	T	7					
													L		-	5	_	2										
		L														~		2										
Sample	's Name: Alex Martinez & Ja	mes Ramos				F ح	Relin	quis	hed E	By / A	ffiliat	ion				ate	Tìr				A	ccep	ted E	3y / /	Affiliation	Dat	≗	Time
Samplei	's Company: Broadbent and As:	sociates				Ł	i-	_/	1		<u> ë</u>	3 <u>M</u>	<u>/</u>		માંપ				<u>~~</u>			_					\square	
	nt Method: Fed Ex	Ship Date:	9/4/2013	┢	<u>/</u>		Q	<u>p</u> '	11	la	18AT 714/13 1700			60 0	filing							9-5-1	3	1995				
specia	I Instructions:							-	_		-																	
5	THIS LINE - LAB USE ONLY: C	ustody Seals In		•	Т	emp	Blank)/ No		Coo	ler Te	emp o	n Rec	elpt 2	-4/2	22.	=/C	-	np Bla	anich	<u>)</u>	10		MS/MSD Sample Su	mitted: Yes /	9	
P Ren	ediation Management COC - Effective	Dates: August	23, 2011 - June	30, 2	012												_			_					BP	LaMP COC Rev	. 7, A	ug 23, 20

Client: Broadbent & Associates, Inc.

Login Number: 56330 List Number: 1

Creator: Escalante, Maria

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	ALEX MARTINEZ & JAMES RAMOS
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

Job Number: 440-56330-1

List Source: TestAmerica Irvine

APPENDIX D

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

GEOTRACKER ESI

UPLOADING A EDF FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	EDF
Report Title:	3Q13 GW Monitoring
Report Type:	Monitoring Report - Semi-Annually
Facility Global ID:	T06019734306
Facility Name:	ARCO #2107
File Name:	440-56330-1_17 Sep 13 1027_EDF.zip
Organization Name:	Broadbent & Associates, Inc.
Username:	BROADBENT-C
IP Address:	216.241.56.58
Submittal Date/Time:	10/11/2013 10:41:02 AM
Confirmation Number:	5401779115

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	GEO_WELL
Report Title:	3Q13 GEO_WELL 2107
Facility Global ID:	T06019734306
Facility Name:	ARCO #2107
File Name:	GEO_WELL.zip
Organization Name:	Broadbent & Associates, Inc.
Username:	BROADBENT-C
IP Address:	216.241.56.58
<u>Submittal Date/Time:</u>	10/11/2013 10:43:22 AM
Confirmation Number:	9697333633

Copyright © 2013 State of California