The Law Office of DAVID EARL JACOBS

David Earl Jacobs, Esq.

225 SOUTH CIVIC DRIVE, SUITE 1-3 PALM SPRINGS, CA 92262 760-327-4232 FAX 760-327-0161 Dee Dean, Paralegal (In Memoriam) Tara Anne Hazher, Paralegal

RECEIVED

December 15, 2011

3:39 pm, Dec 19, 2011

Alameda County Environmental Health

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: GROUNDWATER AND SOIL GAS SAMPLING REPORT CERTIFICATION County Case # RO 2500 Former El Monte RV Service Center 4341 Howard Street Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

1. Groundwater and Soil Gas Sampling Report dated November 29, 2011 (document 0547.R2).

I declare, under penalty of perjury, that the information and/or recommendations contained in the abovementioned document for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at 760-327-4232.

Sincerel David Barl Jacobs, Esq.

Enclosure

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

November 29, 2011 Report 0547.R2

Mr. David E. Jacobs The Law Offices of David Earl Jacobs 225 South Civic Drive, Suite 1-3 Palm Springs, CA 92262

SUBJECT: GROUNDWATER AND SOIL GAS SAMPLING REPORT (MW1/MW7, B4, B5, AND SG1 THROUGH SG5) County File # RO 2500 Former El Monte RV Service Center 4341 Howard Street Oakland, CA

Dear Mr. Jacobs:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting groundwater and soil gas sample collection at the subject site. Existing groundwater monitoring well MW1/MW7 was monitored and sampled on April 18, 2011; two boreholes designated as B4 and B5 were drilled for grab groundwater sample collection on June 30, 2011; and five soil gas samples designated as SG1 through SG5 and one duplicate soil gas sample designated as SG1 DUP were collected on September 7, 2011. The work was performed in accordance with P&D's Soil Gas and Groundwater Sampling and Well Survey Work Plan dated July 22, 2011 (document 0547.W1) and a letter dated August 15, 2011 from the Alameda County Department of Environmental Health (ACDEH) that approved the work plan. All work was performed under the direct supervision of a California professional geologist. A Site Location Map is attached as Figure 1, and a Site Plan showing the sample collection locations is attached as Figure 2.

BACKGROUND

The subject site is the former El Monte RV Service Center and is bordered by a railroad spur to the south. Historical information for the subject site was obtained from the Artesian Environmental Consultants (Artesian) Groundwater Sampling Report dated January 19, 1996. On November 15, 1991 a 1,000 gallon gasoline underground storage tank (UST) was removed from the site, and petroleum was detected in soil samples collected at the time of UST removal. On June 24, 1993 Artesian personnel over-excavated the gasoline-impacted soil, resulting in 110 cubic yards of impacted soil removed and a pit measuring approximately 15 feet by 20 feet by 10 feet deep. On August 19, 1993 the excavation was backfilled with clean imported backfill material, and on August 31, 1993 the stockpiled soil that had been excavated was removed from the site. The locations of the former UST pit and dispenser are shown in Figures 3, 4, 7, and 8.

On June 25, 1993 Artesian personnel supervised installation of groundwater monitoring well MW-1 using 2-inch diameter PVC pipe to a total depth of 20 feet below the ground surface (bgs). The screened interval of the well was from 5 to 20 feet bgs. The laboratory analytical results for soil samples collected at depths of 5 and 10 feet bgs from borehole MW-1 showed that TPH-G and BTEX were not detected. Well MW-1 was sampled a total of seven times between June 25, 1993 and October 16, 1995 and the samples were analyzed for TPH-G and BTEX. In March and October 1995 the groundwater samples collected from well MW-1 were also analyzed for halogenated volatile organic compounds (HVOCs) using EPA Method 8010 associated with investigation of the extent of HVOCs detected in groundwater at the adjacent 500 High Street property (also referred to as the Bank of America site and also referred to as the Cobbledick-Kibbe site). On October 13 and 16, 1995 Artesian drilled borings B-1 through B-3 at locations to the west of the subject site building for collection of groundwater grab samples to further investigate the extent of HVOCs detected in groundwater at and near the subject site. The locations of Artesian well MW-1 and borings B-1, B-2, and B-3 are shown in Figures 3, 4, 5, and 6. Well MW-1 is identified on the figures with the designation of MW-1/MW-7 based on sample reporting associated with the 500 High Street site. The groundwater sample collected from this well in 2011 was designated as MW1/MW7.

Historical information for the 500 High Street site in Oakland was obtained from the ACDEH Fuel Leak Site Case Closure letter dated February 4, 1998 for the 500 High Street site. On March 13, 1990 one 10,000 gallon UST which had contained diesel and gasoline at different times and one 2,000 gallon gasoline UST were removed from the 500 High Street site. On April 9, 1990 the UST pit was over-excavated. On February 26 and 27, 1991 wells MW-1 through MW-3 were installed in the vicinity of the former UST pit. On March 25, 1991 well MW-4 was installed near the site oilwater separator to further investigate the former UST pit. Based on the detected presence of oil in well MW-4, soil borings were drilled in the vicinity of the oil-water separator on May 23, 1991, well MW-5 was installed near the oil-water separator on November 21, 1991, and the 160 gallon oil-water separator was removed on November 26, 1991. Well MW-4 was subsequently destroyed and petroleum-impacted soil in the vicinity of the former oil-water separator was excavated. A total of seven soil samples were collected from the pit on November 27, 1991. The HVOCs cis-1,2-DCE, and trans-1,2-DCE were detected in the soil sample collected from directly beneath the oilwater separator, and the HVOC TCE was also detected in one of the pit soil samples. The excavation was described as appearing fairly complete in removing soil contamination. The locations of the 500 High Street UST pit, the oil-water separator pit, and the wells are shown in Figures 3 through 8.

To further evaluate the extent of HVOCs detected at the 500 High Street site, Blymyer Engineering, Inc. (Blymyer) drilled borings B-1 through B-4 in the vicinity of the 500 High Street site on April 27, 1994 for groundwater sample collection. Blymyer also collected a groundwater sample from the 4341 Howard Street site well MW-1 and identified the MW-1 well sample as MW-7. Additional subsequent sampling of well MW-7 was also performed. On September 12, 1995 well MW-8 was installed at a location identified as immediately downgradient of the former oil-water separator. The low concentrations of HVOCs in well MW-8 relative to well MW-7, and the elevated

concentrations of HVOCs in Artesian's boring B-3 groundwater grab sample were identified as suggesting that the detected elevated HVOC concentrations could be originating from the El Monte RV Service Center.

A summary table of historical groundwater quality data for well MW-1 and borings B-1 through B-3 at 4341 Howard Street that was obtained from the Artesian Groundwater Sampling Report dated January 19, 1996 is attached with P&D's work plan dated July 22, 2011 as Appendix A. Summary tables of historical groundwater quality data for the wells associated with the 500 High Street site and obtained from the ACDEH Fuel Leak Site Case Closure letter dated February 4, 1998 is attached with P&D's work plan dated July 22, 2011 as Appendix B. No historical groundwater level or groundwater flow direction information was available associated with the 500 High Street site.

The ACDEH Fuel Leak Site Case Closure letter dated February 4, 1998 states that the ACDEH concurred that the TPH releases from both the 500 High Street and the 4341 Howard Street sites had been adequately investigated, and that analysis for petroleum hydrocarbons was discontinued for all wells beginning in 1996. Additionally, sampling would continue on a semi-annual basis for HVOCs. Following completion of an April 8, 1997 human health risk assessment using ASTM RBCA for the 500 High Street property, the ACDEH concluded that no further action was recommended for both the petroleum and HVOC releases for the 500 High Street site.

The results of a 2,000-foot radius well survey performed by P&D under separate cover identified a domestic well at the adjacent property at 500 High Street and an industrial well across High Street from the subject site at 499 High Street. The location of the well at the 500 High Street property is unknown. The location of the well at 499 High Street is estimated to be at a location that is approximately 200 feet northwest of the northwestern corner of the property (as projected parallel to and along the western property boundary). The well location is estimated to be approximately 550 feet northwestern corner of the existing building at the subject site. A Well Completion Report for the 499 High Street site for destruction of a well with the same diameter as the industrial well suggests that the industrial well may have been destroyed by filling the well with pea gravel to a depth of 22 feet bgs.

GROUNDWATER SAMPLE COLLECTION

Groundwater samples were collected from existing onsite groundwater monitoring well MW1/MW7 on April 18, 2011, and from two boreholes designated as B4 and B5 that were drilled for grab groundwater sample collection on June 30, 2011. Field procedures associated with sample collection are provided below.

Groundwater Monitoring Well Sample Collection

On April 18, 2011 P&D personnel monitored on-site well MW1/MW7 for depth to water to the nearest 0.01 foot using an electric water level indicator. The measured depth to groundwater from

the top of the well casing prior to purging and sampling on April 18, 2011 in well MW1/MW7 was 6.13 feet.

On April 18, 2011 P&D personnel purged and sampled well MW1/MW7 using USEPA low flow purge methods. Prior to well sampling, the well was purged with a peristaltic pump for a minimum of 15 minutes. Purging was performed at low flow rates of approximately 350 mL/min to minimize turbulence and minimize the likelihood of sediments in the samples. During purging operations, the field parameters of electrical conductivity, temperature, pH, and turbidity were monitored and recorded on a groundwater monitoring/well purging data sheet. No petroleum hydrocarbon or solvent odor was detected on the purge water from the well. Once the field parameters were observed to stabilize, and the wells had been purged for a minimum of 15 minutes, water samples were collected from the discharge tubing to the pump. The sample was transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present. The VOA vials and bottles were then transferred to a cooler with ice, pending transport to the laboratory. Chain of custody documentation accompanied the samples to the laboratory. A record of the field parameters measured during well purging are attached with this report as Appendix A.

Borehole Grab Groundwater Sample Collection

On June 30, 2011 boreholes were drilled at locations B4 and B5 as shown on Figures 2 through 6 by Vironex, Inc. of Concord, California using a GeoProbe direct push drill rig equipped with a 2.5-inch outside diameter macrocore barrel sampler lined with transparent PVC liners. The soil from the borings was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. All soil from the boreholes was evaluated with a Photoionization Detector (PID) equipped with a 10.6 eV bulb and calibrated using a 100 ppm isobutylene standard. The soil was also evaluated for other evidence of petroleum hydrocarbon contamination such as odors, staining, and discoloration. No elevated PID values, odors, staining, or discoloration were detected in the boreholes. No soil samples were retained from the boreholes for laboratory analysis.

Boreholes B4 and B5 were each drilled to total depths of 10 feet bgs. Groundwater was initially encountered during drilling in borehole B4 at a depth of 5.5 feet bgs and was subsequently measured at a depth of 8.3 feet bgs. Groundwater was initially encountered during drilling in borehole B5 at a depth of 6.0 feet bgs and was subsequently measured at a depth of 8.6 feet bgs.

The groundwater grab samples were collected from the boreholes by placing temporary 1-inch diameter slotted PVC pipe into the boreholes and using disposable polyethylene tubing with a peristaltic pump to retrieve each sample from each borehole. Groundwater samples were transferred from the tubing to 40-millileter VOAs and 1-liter glass amber bottles, all of which were supplied by the laboratory and contained hydrochloric acid preservative. The sample bottles were

labeled and placed in a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

Following groundwater sample collection, the temporary PVC pipe was removed from each borehole, and the boreholes were then filled with neat cement grout. Mr. Steve Miller of the ACPWA was onsite to inspect all grouting. All drilling and continuous coring equipment was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Soil generated during subsurface investigation was stored in a labeled 5-gallon plastic bucket covered with a lid at the site pending characterization and disposal. Soil boring logs are attached with this report as Appendix B.

SOIL GAS SAMPLE COLLECTION

A total of 5 temporary soil gas wells designated as SG1 through SG5 were each installed to a total depth of 5 feet bgs with a 7-foot length of Teflon tubing and one soil gas sample was collected from each temporary soil gas well on September 7, 2011. In addition, one duplicate soil gas sample was collected from one of the temporary soil gas wells. The temporary soil gas wells were destroyed following sample collection.

Each of the temporary soil gas wells was constructed by Vironex, Inc. of Concord, California by driving a hollow 1.5-inch diameter Geoprobe drill rod with an expendable tip to a depth of 5 feet bgs, dislodging the expendable tip, and then inserting a 0.250-inch outside diameter (0.187-inch inside diameter) Teflon tube with a 2-inch long porous high-density polyethylene (HDPE) filter connected to the bottom of the tube to a depth of 4 inches above the bottom of the borehole. A #2/16 Lonestar sack sand was added to the annular space between the hollow rod and the Teflon tubing as the hollow rod was withdrawn from the ground until the lowermost 8 inches of the borehole was filled with sand. Granular bentonite (with grains measuring 1 to 2 millimeters in diameter) was placed in the annular space above the sand to a height of 12 inches above the sand, and the remaining annular space was filled with a bentonite slurry to the ground surface.

A soil gas sampling manifold was assembled at each sampling location using the configuration shown in Figure 9 with a 1-liter Summa canister as the sampling canister. Each manifold was assembled in a shroud consisting of a 35-gallon Rubbermaid bin that had been modified by cutting viewing ports into the sides of the bin and covering the viewing ports with transparent polycarbonate sheets. The Rubbermaid bin was also modified to include a hole measuring approximately two inches square in the bottom of the bin to allow the bin to cover the temporary soil gas well while still allowing access to the temporary well through the bottom of the bin. Immediately prior to assembling the manifold, the vacuum for the sample canister was checked with a vacuum gauge and recorded.

Following completion of the soil gas sampling manifold and prior to sampling the soil gas at each location, a 10 minute leak check of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording

the manifold system vacuum (see Figure 9). Following successful verification of the manifold leak check, a default of three purge volumes was purged from the temporary soil gas well prior to sample collection. A period of at least 30 minutes elapsed after construction of each temporary soil gas well prior to purging.

No purge testing for purge volume determination was performed because the samples were collected using Summa canisters. The purge volume was calculated based on the void space surrounding the HDPE filter and the volume of the tube. The purge time was calculated using a nominal flow rate provided by the flow controller of 200 milliliters per minute. A copy of the soil gas purge volume calculations is attached as Appendix C.

Following completion of the purging of three purge volumes, the valve to the purge canister was closed, a lid for the bin that had been modified to include two gauntlet nitrile gloves and a viewing port covered with a transparent polycarbonate sheet for adjustment of equipment inside the bin was placed over the top of the bin, enclosing the well and the sampling manifold in the sampling shroud. A tracer gas (1,1-Difluoroethane) was then sprayed into the shroud interior for one second through a tube connected to a hole in the side of the shroud.

Following placement of the tracer gas into the shroud, the gloves in the lid of the shroud were used to open the sample canister valve. After verifying that low flow conditions were not present associated with the soil gas sample, an air sample was collected from the shroud atmosphere to quantify the shroud tracer gas concentration while the soil gas sample was being collected at locations SG1 and SG5. The shroud atmosphere sample was collected into a Tedlar bag that had been placed into a vacuum chamber. The Tedlar bag inlet was connected to a new piece of Teflon tubing that was inserted into the shroud atmosphere through a hole in the side of the shroud at the time that the lid was placed onto the shroud.

Once the vacuum for the sample canister valve had decreased to 5 inches of mercury, the gloves in the lid of the shroud were used to close the sample canister valve. The pressure gage on the inlet side of the flow controller (see Figure 9) was monitored during sample collection to ensure that the vacuum applied to the soil gas well did not exceed 100 inches of water.

One duplicate soil gas sample designated as SG1-DUP was collected into a Summa canister from temporary soil gas well SG1 using a stainless steel sampling tee for the Summa canisters using methods described above. Following soil gas sample collection, a PID was connected to the temporary soil gas well Teflon tubing to obtain a preliminary field value for the sample collection location. The soil gas Summa canister samples were stored in a box and promptly shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on a Soil Gas Sampling Data Sheet that is provided in Appendix C of this report.

All drilling rods and associated drilling fittings were cleaned with an Alconox solution wash followed by a clean water rinse prior to use at each temporary soil gas well location. New Teflon

tubing and filters, and clean, unused vacuum gages and stainless steel sampling manifolds were used at each sample collection location. Following soil gas sample collection the Teflon tubing was pulled from each temporary soil gas sampling well and a 1-inch diameter solid steel rod was driven through the bentonite and sand to the total depth of the temporary soil gas sampling well. The solid steel rod was then removed, and the borehole was filled with neat cement.

No precipitation occurred during the five days preceding the soil gas sampling or on the day of soil gas sampling (September 7, 2010). Weather data, including precipitation and barometric pressure for the day of the sampling event and also for each of the two weeks preceding and following the sample collection date is provided as Appendix D. The weather station is located on the island of Alameda at an elevation of 15 feet, approximately 1.9 miles to the west of the subject site. The subject site is located at an elevation of approximately 12 feet above sea level. An internet link to the weather station information is provided in Appendix D.

HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Holocene Deposits, Bay mud (Qhbm), which is described as unconsolidated water-saturated dark plastic carbonaceous clay and silty clay. It may contain a few lenses of well-sorted fine sand and silt and a few shelly and peaty layers.

Review of the Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California: A Digital Database that was compiled by R.W. Graymer (U. S. Geological Survey Miscellaneous Field Studies, MF-2342, Version 1.0 in 2000), shows the subject site as being underlain by artificial fill (af) which is described as consisting of Man-made deposits of various materials and ages. The materials are further described as some being compacted and quite firm, but fills made before 1965 are nearly everywhere not compacted and consist simply of dumped materials.

Historical information for subsurface conditions at the subject site was obtained from a January 19, 1996 Groundwater Sampling Report prepared by Artesian Environmental Consultants (AEC) that included boring logs for boreholes B-1, B-2, and B-3 drilled by AEC on October 13, 1995. The boreholes were each continuously cored to a depth of 16 feet bgs. The subsurface materials encountered in the boreholes consisted of silty sand or clayey gravel fill to a depth of 4 or 5 feet bgs, which was underlain by clay and silt to the total depth explored of 12 feet bgs in borehole B-1 and to a depth of 14 feet bgs in borehole B-2. In borehole B-3 the fill was underlayin by silty sand to a depth of 7 feet bgs, which was in turn underlain by clay and silt to a depth of 14 feet bgs. In boreholes B-2 and B-3 coarse grained-materials consisting of silty sandy clay, sandy gravel, or silty clayey sand to the total depth explored of 16 feet bgs. There was no core recovery in borehole B-1 between the depths of 12 and 16 feet bgs, suggesting that coarse-grained materials were encountered in this interval. The report text states that groundwater was encountered at depths of approximately

Page 7 of 15

8.5 feet bgs in boreholes B-1 and B-2 and at a depth of approximately 12 feet bgs in borehole B-3. The depth to groundwater in well MW-1 was also reported to be approximately 7 feet bgs. Copies of the report cover, the portion of the report that describes subsurface conditions, the boring location map, and the boring logs are attached with this report as Appendix E.

Historical information for subsurface materials in the vicinity of the subject site was also obtained from the ACDEH Fuel Leak Site Case Closure letter dated February 4, 1998 for the 500 High Street site located at the adjacent property located to the northeast of the subject site. No boring logs were provided, however copies of a figure showing the location of cross section A-A' and a figure of cross section A-A' are attached with this report as Appendix F. The cross section shows a sandy clay zone between the depths of 10 and 15 feet bgs in the vicinity of wells MW-1 and MW-3 to the northeast of the subject site that grades and thickens into a silty sand zone between the depths of 10 feet and the total depth explored of approximately 25 to 27 feet bgs to the north and northwest of the subject site.

Based on the materials encountered to the total depth explored of 10.0 feet bgs during the current investigation in the borehole cores at drilling locations B4 and B5, the subsurface materials encountered at the site consisted predominantly of fill from 0 to 3.0 feet bgs, fine sand from 3.0 to 6.5 and 7.0 feet bgs, respectively, and clay to the total depth explored of 10.0 feet bgs at each location. Groundwater was encountered during drilling in boreholes B4 and B5 at 5.5 and 6.0 feet bgs, respectively, and was subsequently measured at depths of depth of 8.3 and 8.6 feet bgs, respectively.

The measured depth to groundwater from the top of the well casing prior to purging and sampling on April 18, 2011 in well MW1/MW7 was 6.13 feet. There is no historical information regarding water level measurements in groundwater monitoring well MW1/MW7 at the subject site, other than the depth to water from the top of the well casing on March 23, 1995 was 2.85 feet below the top of the well casing.

Historical information for depth to water and groundwater flow direction for groundwater monitoring wells located at the adjacent property located to the northeast of the subject site (500 High Street) was obtained from the ACDEH Fuel Leak Site Case Closure letter dated February 4, 1998 for the 500 High Street site. The historical groundwater flow direction at 500 High Street has ranged from west to southwest and the measured depth to water in the wells has historically ranged from 1.57 to 8.79 feet. The nearest surface water body to the subject site is a tidal canal located approximately 1,000 feet to the southwest of the site that is connected to the San Leandro Bay estuary.

LABORATORY RESULTS

The groundwater sample collected from groundwater monitoring well MW1/MW7 was analyzed at McCampbell Analytical, Inc. in Pittsburg, California (McCampbell) for TPH-G using EPA Methods 5030B/8015B modified; TPH-D and TPH-BO using EPA methods 3510C/8015B; and for VOCs and HVOCs using EPA Method 8260B. The groundwater samples collected from boreholes B4

and B5 were analyzed at McCampbell for TPH-G and for VOCs and HVOCs using methods described for the groundwater sample from well MW1/MW7.

All of the soil gas samples and the duplicate soil gas sample were analyzed at Air Toxics Limited in Folsom, California for TCE, cis-1,2-DCE, trans-1,2-DCE, vinyl chloride, TPH-G, MBTEX, and the tracer gas 1,1-Difluoroethane (1,1-DFA) using EPA Method TO-15; and for oxygen, methane and carbon dioxide using method ASTM D-1946.

The shroud atmosphere samples collected at locations SG1 and SG5 were analyzed at McCampbell using EPA Method 8260B.

The MW1/MW7 groundwater monitoring well sample results are summarized in Table 1 and the borehole B4 and B5 groundwater grab sample results are summarized in Table 2. The TO-15 soil gas sample results and the shroud atmosphere sample results are summarized in Table 3, and the ASTM D-1946 (oxygen, methane and carbon dioxide) results are summarized in Table 4. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix G.

The results in Table 1 for the groundwater sample collected from groundwater monitoring well MW1/MW7 show that TPH-G, TPH-D, and TPH-BO were not detected, and that the only EPA Method 8260 compounds detected were TCE, cis-1,2-DCE, trans-1,2-DCE, vinyl chloride, and MTBE at concentrations of 87, 51, 23, 1.8 and 5.7 ug/L, respectively. The results in Table 2 show that no analytes were detected above laboratory reporting limits in either of the grab groundwater samples.

The results in Table 3 for the soil gas sample TO-15 analysis results show that none of the HVOCs TCE, cis-1,2-DCE, trans-1,2-DCE, vinyl chloride were detected in any of the soil gas samples; TPH-G and MBTEX were all detected in sample SG5; and that TPH-G and BTX were detected in the remaining samples with MTBE also detected in sample SG3. The tracer gas 1,1-DFA was detected in samples SG1, SG1-DUP and SG2 at concentrations of 1,600 to 5,600 ug/m3, and was detected in the two shroud atmosphere samples at concentrations of 29,000,000 and 79,000,000 ug/m3.

The results in Table 4 for the soil gas sample ASTM-D 1946 analysis results show that oxygen was detected at concentrations of 18 or 19 percent in samples SG1, SG4 and SG5, and at concentrations of 2.2 and 2.8 percent in samples SG2 and SG3, respectively. Methane was not detected at 0.00026 percent in sample SG4, was detected at concentrations of 0.0016 and 0.0048 percent in samples SG1 and SG5, and was detected at concentrations of 0.15 and 1.7 percent in samples SG2 and SG3, respectively. Carbon dioxide concentrations were 1.2, 3.1 and 0.78 percent at locations SG1, SG4 and SG5, respectively, and were 6.9 and 2.5 percent at locations SG2 and SG3, respectively.

RISK AND HAZARD ANALYSIS

The only complete pathway for contaminant exposure at the subject site is considered to be potential vapor intrusion from soil gas to indoor air. The SFRWQCB May 2008 ESL guidance document "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" section 2.7 references the DTSC Vapor Intrusion guide (Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, revised 2/7/05) for interpretation of sample results exceeding ESLs. The ESL guidance document indicates that the recommended approach of DTSC for sensitive land use scenarios is appropriate. The DTSC guidance document ("Guidance For The Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" revised February 7, 2005) recommends that if look up table screening levels are exceeded, that a site-specific evaluation of the site be conducted using appropriate fate and transport modeling (Step 7 in the guidance document). DTSC recommends that the USEPA Johnson and Ettinger (JE) model be used (USEPA Vapor Intrusion Model, 2003). The model predicts risk and hazard from indoor vapor concentrations based on soil gas concentrations. The DTSC Human and Ecological Risk Division (HERD) has used the JE model to develop a California-specific screening-mode spreadsheet for calculation of the predicted risk and hazard resulting from exposure to chemicals from vapor intrusion which include the compounds encountered at the site. DTSC recommends that the California-specific HERD spreadsheet be used. The most recently updated version of the spreadsheet is dated February 2009.

The February 2009 HERD screening-mode JE model spreadsheet was used to calculate the predicted risk and hazard associated with the soil gas sample results. Evaluation of hazard associated with TPH-G using the HERD JE model spreadsheet is not possible because TPH is not one of the chemicals available in the chemical properties lookup table for use in the model. Additionally, TPH is not considered a carcinogen, and it is therefore not possible to calculate risk for TPH-G.

Based on the absence of detected HVOCs in the soil gas samples, the highest TPH-G and MBTEX sample results (all encountered at location SG5) were used to evaluate risk and hazard from soil gas vapor intrusion using the DTSC spreadsheet. All of the DTSC spreadsheet default values were used except for the following changes:

- Line 2-Vadose zone SCS soil type (used to estimate soil vapor permeability) was changed to S (sand); the default is blank.
- Line 2-User defined vadose zone soil vapor permeability was deleted; the default is 1.00E-8 (cm2).
- Line 4-Averaging time for non-carcinogens was changed to 25 years for a commercial/industrial scenario; the default is 30 years (residential scenario).
- Line 4-Exposure duration was changed to 25 years for a commercial/industrial scenario; the default is 30 years (residential scenario).

• Line 4-Exposure frequency was changed to 250 days/yr for a commercial/industrial scenario; the default is 350 days/yr (residential scenario).

The HERD vapor intrusion screening-mode spreadsheet output hazard and risk results for each chemical for sample SG5 (with the exception of TPH-G as described above) are summarized in Table 3, along with the calculated cumulative hazard and risk for each sample.

The spreadsheet model input, interim calculations (intercalcs) and output sheets for each calculation are attached with this report as Appendix H.

Sensitivity analysis of the soil gas model was performed using benzene for a total of eight scenarios of varying temperature, soil type, sample depth and contaminant concentration. For scenario 1, all of the DTSC spreadsheet default values were used except for the following changes:

- Line 2-Soil gas sampling depth was changed to 45.72 cm (1.5 ft); the default is 152.4 cm (5.0 ft).
- Line 2-Vadose zone SCS soil type (used to estimate soil vapor permeability) was changed to SI (silt); the default is blank.
- Line 2-User defined vadose zone soil vapor permeability was deleted; the default is 1.00E-8 (cm2).

The results of the sensitivity analysis are summarized in Table 6, and the model input, intercalcs and output sheets for each calculation are attached with this report as Appendix I.

DISCUSSION AND RECOMMENDATIONS

Review of the available boring logs and cross section shows that silty sand is present below a depth of 10 feet bgs to the north and northwest of the subject site to a depth of at least 25 to 27 feet bgs. The historical depth to groundwater associated with investigation at the 500 high Street property was reported to range from 1.57 to 8.79 feet. The measured depth to groundwater in onsite well MW1/MW7 was reported to be 2.85 feet on March 23, 1995, approximately 7 feet on October 13, 1995 and 6.13 feet on April 18, 2011. The depth to groundwater in borings B-1, B-2 and B-3 on October 13, 1995 was 8.5, 8.5 and 12 feet bgs, respectively. Groundwater was first encountered during drilling in boreholes B4 and B5 on June 30, 2011 at depths of 5.5 and 6.0 feet, respectively, and was subsequently measured in the boreholes at depths of 8.3 and 8.6 feet bgs, respectively. It appears that during wet weather months the groundwater level at and near the site may be within 2 feet of the ground surface, and that during dry weather months the groundwater level at and near the site may be within 2 feet of the ground surface, and that during dry weather months the groundwater flow direction at the 500 High Street site has ranged from west to southwest.

Review of historical water quality data for onsite well MW1/MW7 (see Appendix A of P&D's July 22, 2011 work plan) shows that TPH-G, benzene, and the HVOCs TCE, cis-1,2-DCE and trans-1,2-DCE have been detected in the well, but that sampling has not occurred since October 13, 1995. Review of Table 1 shows that analysis of a water sample collected from the well on April 18, 2011 using USEPA low flow purge methods for TPH using modified EPA Method 8015 and for VOCs using EPA Method 8260B did not show the presence of TPH-G or benzene, but that MTBE, TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride were detected.

The absence of TPH-G and benzene in the 2011 groundwater sample from well MW1/MW7 suggests that attenuation of the petroleum hydrocarbons may have occurred since 1995. The HVOC concentrations detected in 2011 are consistent with the concentrations detected in 1995, suggesting that HVOC groundwater conditions characterized in 1995 are relatively unchanged. Comparison of the detected concentrations in 2011 with their respective SFRWQCB May 2008 Table A ESL values shows that all of the detected concentrations exceeded their respective Table A ESL values. The detected TCE and cis-1,2-DCE concentrations exceeded their respective Table A ESL values by approximately one order of magnitude and the remaining compounds exceeded their respective Table A ESL values groundwater are TCE and cis-1,2-DCE.

Review of Table 2 shows that TPH-G, MBTEX, and HVOCs analyzed by EPA Method 8260B were not detected in either of the groundwater grab samples collected from boreholes B4 and B5. Based on these groundwater results, the extent of HVOCs has been defined to the south of the subject site (see TCE and cis-1,2-DCE groundwater isoconcentration contours in Figures 3 and 4, respectively). To evaluate the potential for preferential movement of TCE and cis-1,2-DCE in groundwater in filled sloughs or buried paleochannels to the southeast and northwest of the subject site building, P&D recommends collection of groundwater grab samples at proposed locations B6 and B7 as shown on Figures 3 and 4 using methods set forth in P&D's July 22, 2011 work plan.

Based on the reported westerly to southwesterly groundwater flow direction for the historical 500 High Street investigation and the northerly orientation of the TCE and cis-1,2-DCE groundwater concentrations in the vicinity of the subject site, it appears that the movement of TCE and cis-1,2-DCE in groundwater in the vicinity of the subject site may be controlled by naturally occurring preferential pathways (filled sloughs or buried paleochannels) or may have been impacted by the domestic and industrial wells identified at the 500 and 499 High Street properties (see well survey report discussion in the Background section above). P&D recommends that information regarding the location and use of the domestic well at 500 High Street and the destruction of the industrial well at 499 High Street be further investigated.

Review of Table 3 shows that no HVOCs were detected in any of the soil gas samples, and that the only detected soil gas concentrations that exceeded their respective SFRWQCB May 2008 Table E soil gas ESL values for vapor intrusion concerns were in soil gas sample SG5, where the 24,000 ug/m3 TPH-G concentration exceeded the residential (10,000 ug/m3) but not the commercial/industrial (29,000 ug/m3) land use Table E soil gas ESL, and where the 310 ug/m3

benzene concentration exceeded both the residential (84 ug/m3) and commercial/industrial (280 ug/m3) land use Table E soil gas ESL value. The TCE soil gas sample results and the associated TCE groundwater isoconcentration contours are shown in Figure 5, and the cis-1,2-DCE soil gas sample results and the associated cis-1,2-DCE groundwater isoconcentration contours are shown in Figure 6. The TPH-G and benzene soil gas sample results are shown in Figures 7 and 8, respectively.

Comparison of the Table 3 detected tracer gas concentrations in soil gas samples SG1 and SG2 with the shroud atmosphere concentrations shows that the detected tracer gas concentrations in the soil gas samples are substantially less than one percent of the shroud atmosphere concentrations, indicating that the soil gas samples were not invalidated by atmospheric leakage.

Review of the soil gas hazard and risk analysis results at location SG5 in Table 5 shows that the cumulative incremental risk is 2.01 per million and that the hazard is less than 1. Review of Table 5 shows that almost all of the risk is associated with benzene. The sensitivity analysis for the soil gas model in Table 6 shows that the model is insensitive to average soil temperature and soil type, but is sensitive to soil gas sampling depth and soil gas contaminant concentration.

The DTSC recommends that when the calculated cumulative incremental risk from vapor intrusion to indoor air exceeds one per million (1.0E-06), or when the calculated cumulative hazard quotient from vapor intrusion to indoor air exceeds one, that indoor air samples be collected on a semi-annual basis and that permanent sub-slab monitoring points and/or permanent vadose zone monitoring points be installed. The DTSC also recommends that when the calculated cumulative incremental risk from vapor intrusion to indoor air exceeds one hundred per million (1.0E-04), or when the calculated cumulative hazard quotient from vapor intrusion to indoor air exceeds three, that mitigation of indoor air concentrations be performed. Based on the cumulative incremental risk of 2.01 per million at SG5, P&D recommends that an additional soil gas sample be collected at a depth of 5 feet bgs at location SG5 six months after the initial sample collection date of June 22, 2011 in accordance with DTSC guidelines.

The Table 4 oxygen concentrations of 18 or 19 percent at locations SG1, SG4 and SG5 indicate that aerobic degradation of petroleum hydrocarbons is not occurring at these locations, and the corresponding low methane concentrations indicate that anaerobic degradation of HVOCs is not occurring at these locations. By contrast, the Table 4 oxygen concentrations of 2.2 and 2.8 percent at locations SG2 and SG3 and the elevated methane concentrations indicate aerobic degradation of petroleum hydrocarbons and the anaerobic degradation of HVOCs is occurring at these locations.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of The Law Offices of David Earl Jacobs. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities that is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 547-7771.

Sincerely,

P&D Environmental, Inc.

Paul H. King Professional Geologist # 5901 Expires: 12/31/11

Attachments:

- Table 1 Summary of Monitoring Well Groundwater Sample Analytical Results
- Table 2 Summary of Borehole Groundwater Grab Sample Analytical Results
- Table 3 Summary of Soil Gas Sample TO-15 and Shroud Atmosphere Analytical Results
- Table 4 Summary of Soil Gas Sample ASTM D-1946 Analytical Results
- Table 5 Summary of Soil Gas Risk and Hazard Analysis at Location SG5
- Table 6 Summary of Soil Gas Model Sensitivity Analysis
- Figure 1 Site Location Map
- Figure 2 Site Map Showing Sample Collection Locations
- Figure 3 Site Vicinity Map Showing TCE in Groundwater
- Figure 4 Site Vicinity Map Showing cis-1,2-DCE in Groundwater
- Figure 5 Site Vicinity Map Showing TCE in Soil Gas
- Figure 6 Site Vicinity Map Showing cis-1,2-DCE in Soil Gas
- Figure 7 Site Vicinity Map Showing TPH-G in Soil Gas
- Figure 8 Site Vicinity Map Showing Benzene in Soil Gas
- Figure 9 Typical Soil Gas Sampling Manifold
- Appendix A Groundwater Monitoring/Well Purging Data Sheets
- Appendix B Soil Boring Logs
- Appendix C Soil Gas Sampling Purge Calculations and Field Data Sheets
- Appendix D Weather Information
- Appendix E Historical Boring Logs for 4341 Howard Street Site
- Appendix F Historical Cross Section for 500 High Street Site
- Appendix G Laboratory Analytical Reports and Chain of Custody Documentation
- Appendix H HERD February 2009 Vapor Intrusion Risk and Hazard Spreadsheet Calculations
- Appendix I Soil Gas Model Sensitivity Analysis Risk and Hazard Calculation Work Sheets

PHK/mld/sjc 0547.R2

TABLES

 Table 1

 Summary of Monitoring Well Groundwater Sample Analytical Results

Sample ID	Sample Date	TPH-G	TPH-D	TPH-BO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Other VOCs by EPA Method 8260B
MW1/MW7	4/18/2011	ND<50	ND<50	ND<100	5.7	ND<1.7	ND<1.7	ND<1.7	ND<1.7	ND, except TCE = 87, cis-1,2-DCE = 51, trans-1,2-DCE = 23, Vinyl Chloride = 1.8
ESL		100			5.0	1.0	40	30	20	TCE = 5.0, cis-1,2-DCE = 6.0, trans-1,2-DCE = 10, Vinyl Chloride = 0.5

Abbreviations and Notes:

 $\overline{\text{TPH-G}}$ = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil

MTBE = Methyl tertiary-butyl ether

VOCs = Volatile Organic Compounds

ND = Not detected

ESL= Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB),

from Table A - Shallow Soils, groundwater is a current or potential source of drinking water, updated May 2008.

Values in bold exceed their respective ESL values.

Results and ESLs in micrograms per liter $(\mu g/L)$ unless otherwise specified.

Report 0547.R2

 Table 2

 Summary of Borehole Groundwater Grab Sample Analytical Results

Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Other VOCs by
								EPA Method 8260B
								02000
B4-W	6/30/2011	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	All ND
B5-W	6/30/2011	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	All ND
ESL		100	5.0	1.0	40	30	20	Various

Abbreviations and Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary-butyl ether

VOCs = Volatile Organic Compounds

ND = Not detected

ESL= Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB),

from Table A – Shallow Soils, groundwater is a current or potential source of drinking water, updated May 2008.

Values in bold exceed their respective ESL values.

Results and ESLs in micrograms per liter ($\mu g/L$) unless otherwise specified.

 Table 3

 Summary of Soil Gas Sample TO-15 and Shroud Atmosphere Analytical Results

Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylenes	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	1,1-Difluoroethane
	Dute												
SG1	9/7/2011	6,100	ND<4.8	12	22	ND<5.7	12	ND<5.7	ND<7.1	ND<5.2	ND<5.2	ND<3.4	4,400, a
SG1-DUP	9/7/2011	6,100	ND<4.7	13	21	ND<5.7	13	ND<5.7	ND<7.0	ND<5.2	ND<5.2	ND<3.3	5,600, a
SG2	9/7/2011	2,200	ND<4.3	10	7.2	ND<5.1	6.6	ND<5.1	ND<6.4	ND<4.7	ND<4.7	ND<3.0	1,600, a
SG3	9/7/2011	5,700	130	9.4	30	ND<5.5	12	ND<5.5	ND<6.8	ND<5.0	ND<5.0	ND<3.2	ND<14
SG4	9/7/2011	ND<260	ND<4.6	ND<4.1	ND<4.8	ND<5.5	ND<5.5	ND<5.5	ND<6.8	ND<5.0	ND<5.0	ND<3.2	ND<14
SG5	9/7/2011	24,000	73	<u>310</u>	27	6.6	28	5.8	ND<6.8	ND<5.0	ND<5.0	ND<3.2	ND<14
SG1 (shroud sample)	9/7/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	29,000,000
SG5 (shroud sample)	9/7/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79,000,000
ESL ¹		10,000	9,400	84	63,000	980	21,000 cc	ombined	1,200	7,300	15,000	31	None
ESL^2		29,000	31,000	280	180,000	3,300	58,000 ca	ombined	41,000	20,000	41,000	100	None

Abbreviations and Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary-butyl ether

TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

trans-1,2-DCE = trans-1,2-Dichloroethene

1,1-Difluoroethane = used as leak detector during sample collection.

a = Laboratory Note: Exceeds Instrument Calibration Range.

ND = Not Detected.

NA = Not Analyzed.

ESL¹= Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB), from Table E – Indoor Air and Soil Gas (Vapor Intrusion Concerns) Shallow Soil Gas Screening Levels for Residential Land Use.

ESL²= Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB), from Table E – Indoor Air and Soil Gas (Vapor Intrusion Concerns) Shallow Soil Gas Screening Levels for Commercial/Industrial Land Use.

Values in **bold** exceed their respective ESL¹ values.

<u>Underlined Values exceed their respective ESL² values.</u> Results and ESLs in micrograms per cubic meter (μ g/m³), unless otherwise indicated.

Table 4Summary of Soil Gas Sample ASTM D-1946 Analytical Results

Sample ID	Sample Date	Oxygen	Methane	Carbon Dioxide
SG1	9/7/2011	18	0.0016	1.2
SG1-DUP	9/7/2011	18	0.0016	1.2
SG2	9/7/2011	2.2	0.15	6.9
SG3	9/7/2011	2.8	1.7	2.5
SG4	9/7/2011	18	ND<0.00026	3.1
SG5	9/7/2011	19	0.0048	0.78

Abbreviations and Notes:

ND = Not Detected.

Results are given in percentage, unless otherwise indicated.

Table 5Summary of Soil Gas Risk and Hazard Analysis at Location SG5

Johnson and Ettinger model (DTSC 2009 spreadsheet) Former El Monte RV Service Center 4341 Howard Street Oakland, CA

			Incremental	Hazard	
			risk from	quotient	
			vapor	from vapor	
			intrusion to	intrusion to	
			indoor air,	indoor air,	
	Concentration	Sample Result	carcinogen	noncarcinogen	
Chemical	(ug/m3)	Location	(unitless)	(unitless)	CAS#
TPH-G	24,000	SG5	NA	NA	8006-61-9
MTBE	73	SG5	4.70E-09	1.70E-05	1634044
Benzene	310	SG5	2.00E-06	6.50E-03	71432
Toluene	27	SG5	NA	5.60E-05	108883
Ethylbenzene	6.6	SG5	3.40E-09	3.80E-06	100414
m,p-Xylene	28	SG5	NA	1.60E-04	106423 (p-xylene)
o-Xylene	5.8	SG5	NA	3.60E-05	95476
		TOTAL	2.01E-06	6.77E-03	

NOTES:

JE spreadsheet default values were used except soil type was sand (S), and averaging time was changed to 25 years, exposure duration was changed to 25 years, and exposure frequency was changed to 250 days per year for a commercial/industrial land use scenario.

Table 6Summary of Soil Gas Model Sensitivity Analysis

Johnson or	d Ettingen medel	DTC 2000 amag	dahaat)		
Johnson af	la Eulinger model	(DISC 2009 sprea	lusheet)	* 1	XX 1
				Incremental	Hazard
				risk from	quotient
				vapor	from vapor
				intrusion to	intrusion to
				indoor air,	indoor air,
		Concentration		carcinogen	noncarcinogen
Chemical		(ug/m^3)		(unitless)	(unitless)
Scenario 1	l = Benzene Conc	entration = 6.8 us	g/m3 with Model	Default Value	s Except for
	Soil = SI and Sa	mple Depth = 45	.72 cm (1.5 ft).		
Benzene		6.8		1.5E-07	3.9E-04
Scenario 2	2 = Scenario 1 val	ues except averag	ge soil temperatu	re is 15 degree	<u>s C.</u>
Benzene		6.8		1.5E-07	3.9E-04
Scenario 3	3 = Scenario 1 val	ues except soil ty	pe is CL.		
Benzene		6.8		1.5E-07	3.9E-04
Scenario 4	4 = Scenario 1 val	ues except soil ty	pe is S.		
Benzene		6.8		1.5E-07	3.9E-04
Scenario 5	5 = Scenario 1 val	ues except soil ga	s sampling depth	is 152.4 cm (5	<u>ft).</u>
Benzene		6.8		7.5E-08	2.0E-04
Scenario (6 = Scenario 1 val	ues except soil ga	s sampling depth	is 304.8 cm (1	<u>0 ft).</u>
Benzene		6.8		4.4E-08	1.2E-04
Scenario 7	7 = Scenario 1 val	<u>ues except benzei</u>	ne concentration	<u>= 100 ug/m3.</u>	
Benzene		100		2.1E-06	5.7E-03
Scenario 8	8 = Scenario 1 val	ues except benzei	ne concentration	= 1,000 ug/m3.	<u></u>
Benzene		1,000		2.1E-05	5.7E-02

FIGURES

1
1

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

APPENDIX A

Groundwater Monitoring/Well Purging Data Sheets

P&D Environmental Groundwater Monitoring/Well Purging Data Sheet

Site Name 4341 Howard St. Oakkad
Job Number 0547
TOC to Water (ft.) 6.13
Well Depth (ft.) 20.6
Well Diameter 2"
Flow Rate (mL/minute)
Start Purge Time ~ 340 ml/nute

	<u>Vol.</u>	Dissolved		Denth		Electrical	T di ta
Time	(mL)	(mg/L)	рH	Water (ft.)	Temperature (C°)	<u>(µS/cm)</u>	(NTU)
114	340	-	7.60	6.16	17.1	1,365	4.62
1145	1,700	\sim	7,33	6.16	16.6	91B	2.34
1149	3,060	~	7.06	6.16	16,6	897	0.48
1152	4.080		6.86	6.16	-16.5	918	0.67
1156	5,440		6.76	6.17	16.4	918	0.65
1158	6,120		6.77	617	16.4	920	0.06
1200	6,800	<u> </u>	6.68	617	16.3	902	0.00
1203	7,820		6.73	617	16.3	<u> </u>	0.00
				·			
					,*		
×==							
		- <u></u>					
<u></u>							
					- 1 X		
NOTES		No .	Sheent no	040- 9	Sample fine =]	1215hrs	

t /

<u>Stability Parameters</u> p.H. = +/- 0.1 Sp. Conductivity = +/-3% Turbidity = +/- 10% D.O. = +/- 10%

APPENDIX B

Soil Boring Logs
P&D ENVIRONMENTAL, INC.

PAGE	_1	OF	1
------	----	----	---

в	DRING	NO	B4 PROJECT NO.: 0547 PROJECT	'NA	ME: FO	rmer	El Monte F	RV S	ervice Center Oak	land CA		
	BORING LOCATION: Adjacent to property boundary approximately 70 ft. west of building ELEVATION AND DATUM: None											
		GAG	SENCY: Vironex		DRILLET	a. Io		DA	TE & TIME STARTED:	DATE & TIME FINISHED:		
D	RILLIN	G E	QUIPMENT: Geoprobe 6600						9/7/11 1030	9/7/11 1200		
с	OMPLE	тю	N DEPTH: 10.0 Feet BEDROCK DEPTH:]		LOGGED BY:	CHECKED BY:						
F	RST W	ATE	R DEPTH: 5.5 Feet NO. OF SAMPLES:	1 \	Water				MLD	PAK		
	DEPTH (FT.)		DESCRIPTION	WELL CONSTRUCTION LOG	DID	REM	ARKS					
			0.0 to 0.6 ft. Asphalt and base rock (FILL). 0.6 to 3.0 ft. Brown gravelly silty sand (FILL); medium dense, moist, with abundant coarse gravel to 1.0-inch diameter. No Petroleum Hydrocarbon (PHC) or solvent odor.		FILL		No Well Constructed	0	Borehole continuou 10.0 ft. using a 5.0- Geoprobe Macrocon sampler was lined w inch O.D. transparen	sly cored from 0.0 to foot long 2.0-inch O.D. e barrel sampler. The rith 4.8-foot long 1.5- nt PVC tubes.		
	5		3.0 to 6.5 ft. Brown fine sand (SP); medium dense, moist to saturated. No PHC or solvent odor. Wet at 5.0 ft.		SP			0	0-5 ft 5-10 ft Water encountered d	3.5 ft recovery 4.8 ft recovery uring drilling at 5.5 ft.		
			Saturated at 5.5 ft.		÷	30	Temporary 1.0-inch	diameter slotted PVC				
			6.5 to 10.0 ft. Dark gray clay (CL); soft to medium dense, saturated, with rootlets. Slight sulfur odor. No PHC or solvent odor.		CL		Ţ	0	measured at 9.1 ft. at at 1110. Sample B4-W collect solvent odor; no she	ted at 1120; slight en on sample.		
	10								Borehole grouted on pipe and neat cemen with Alameda Count on site to observe an the borehole.	9/7/11 using a tremie t grout. Mr. Steve Miller, y Public Works Agency, d document grouting of		
	20											
	25											
	30											

P&D ENVIRONMENTAL, INC.

PAGE	_1	OF	1
------	----	----	---

в	BORING NO.: B5 PROJECT NO.: 0547 PROJECT NAME: Former El Monte RV Service Center, Oakland, CA												
В	ORING	OCATION: Adjac	ent to property bounda	ry approximately 1	00	ft. wes	t of t	ouilding		ELEVATIO	NAND DATUM: None		
DI		agency: Vir	onex]	DRILLEF	a: Joe	el	DA	TE & TIME STARTED: 9/7/11 1000	DATE & TIME FINISHED: 9/7/11 1200		
		ION DEPTH. 101) Foot		LOGGED BY:	CHECKED BY:							
	DET W	TON DEPTH: 10.0	Feet	BEDROCK DEPTH: T	1 11	Encou	mere	<u>u</u>		MLD	TUS		
FI		EK DEPTH: 0.0	гееі	NO. OF SAMPLES:		valei		N			THE		
	DEPTH (FT		DESCRIPTION			GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTIC LOG	DID	REMA	ARKS		
		0.0 to 0.6 to 3.0 medium dense, 1 diameter. No Pe	0.6 ft. Asphalt and base rock 0 ft. Brown gravelly silty s noist, with abundant coars troleum Hydrocarbon (PF	s (FILL). and (FILL); se gravel to 2.0-inch IC) or solvent odor.		FILL		No Well Constructed	0	Borehole continuously cored from 0.0 to 10.0 ft. using a 5.0-foot long 2.0-inch O.D. Geoprobe Macrocore barrel sampler. The sampler was lined with 4.8-foot long 1.5- inch O.D. transparent PVC tubes.			
	5	3.0 to 7.0 ft. B	rown fine sand (SP); m No PHC or solvent od Wet at 5.5 ft. Saturated at 6.0 ft.	noist to saturated. or.		SP		Ā	0 30	0-5 ft 5-10 ft Water encountered d Borehole terminated Temporary 1.0-inch (4.0 ft recovery 4.8 ft recovery uring drilling at 6.0 ft. at 10.0 ft. on 9/7/11. diameter slotted PVC		
	10	7.0 to 10.0 ft	Dark gray clay (CL); s Slight sulfur odor. No PHC or solvent odo	soft, saturated.		CL		Ţ	0 0	casing placed in bore measured at 8.6 ft. at at 1017. Sample B5-W collec and no sheen on sam	hole. Water level 1007, and at 8.6 ft. ted at 1020; no odor ple.		
	10			-						Borehole grouted on pipe and neat cement with Alameda Count on site to observe and the borehole.	9/7/11 using a tremie t grout. Mr. Steve Miller, y Public Works Agency, d document grouting of		
	15												
	20			-									
	25												
	20												
	30												

APPENDIX C

Soil Gas Sampling Purge Calculations and Field Data Sheets

Soil Gas Purge Volume Calculations

One Purge Volume is calculated as the volume of the tubing interior plus the volume of the sand interval of the borehole.

The tubing interior volume is calculated as follows:											
V tubing = pi x (r x r) x h, where pi = 3.14 , r = 0.187 in./2, and h = 7 ft.											
V tubing = 3.14 x (0.0935 x 0.0935) x (7 ft. x 12 in./ft.) =	2.31	cubic inches.									
The sand interval volume is calculated as follows:											
V sand interval = $pi x (r x r) x h x$ porosity,											
where pi = 3.14 , r = 1.5 in./2, h = 8 in., and porosity = 0.35											
V sand interval = 3.14 x (0.75 x 0.75) x 8 x 0.35 =	4.95	cubic inches.									
The total volume for one purge volume is V tubing + V sand interval, where											
V total = 2.31 cubic inches + 4.95 cubic inches =	7.25	cubic inches.									
To convert to cubic centimeters:											
V total = 7.25 cubic inches x 16.39 cubic centimeters/cubic inches =	118.8	cubic centimeters.									
The total volume for <u>3</u> purge volumes is calculated as follows:											
V purge total = 118.8 cubic centimeters x 3 =	357	cubic centimeters.									
The flow controller has a nominal flow rate of 200 cubic centimeters per minute.											
The purge time is calculated as follows:											
T purge = 357 cubic centimeters/ 200 cubic centimeters per minute =	1.78	minutes.									
Converting the purge time to seconds, 1.78 minutes x 60seconds/ minute =	107	seconds.									
Notes: Yellow hi-lite indicates data entry required.											

Blue hi-lite indicates values are calculated.

SOIL GAS S	AMPLING D	ATA SHEET	-A-21 A. 13							···· ;				
Job #	291 Ho	WARD DI		Probe Method (c	heck one)									
Date 9	7971-			o PRT	10000									
P&D Sample	r ML	D		emp Well	1									
Drilling Com	pany UIK	UNEX .												
			++		++						-	-		
Soil Gas Location Designation	Probe Depth (Ft.)	Time Probe Installed	Canister #	Sample Canister Initial Vacuum Check (In. Hg) and time	Start leak check vacuum (In. Hg) and time	End leak check vacuum (In. Hg) and time	ADDITIONAL leak check vacuum (In. Hg) and time	Start PURGE	End PURGE time	Start of tracer gas equilibration time	Time and conc. (ppm) of tracer gas equilibration	Begin sample collection vacuum (In. Hg) and time	End sample collection vacuum (In. Hg) and time	NOTES
SG	3	1115	34564	vac 5-	vac - SK	vac 🗝 🎢	vac				conc.	vac ~ 3c	vac - 5	1155
			ι ι	time 1232.	time 300	time 1310	time	time 1315	11 time 3161	Bitime/ 326	time 1330	: Bime 1340	Dume 135400	0 PPN
						•				-	1	•		
SG 1			34169	vac	vac	vac	vac				conc.	vac	vac	
DUP				time	time	time	time	time	time	time	time	time	time	
0-1			······································					· †					+	
56 2	5	11921	1059	war 211		120 - 19	lvac				conc t . A	was - 20		ØPPLA
JU X		4120	251	Vac 50	14/35	time 14446	time	Vinc 1411	Chima 14 417	72 1147	20-11/50	the USU	N	- 664
		+		umerq jC	une / - Jo		ume	ume/7740		~? ""	2 2 2 4	Ome/ 7-14	Crume / > C-2 33	1207
00.0		1920	0071	4.30		~~~					C	20		0.70
56 3	2	0130	2011	vac 20	vac - 26	vac do	vac	1000	1000	0 100	conce - 8	vac 20		CPPM
			<u> </u>	time (500	time 1505	time 15/5	time	time 3.300	Otime15512	5 time 5 45	time/550	time > 5d	201me/100320	1605
						-		·						
SG 4	3	0900	24648	vac + 30	vac ~ plla	vac - 26) vac		11 11 0.1		conc./. C	vac 30	vac - C	DPPM
· · · · ·				time i id	time/64 D	time 620	time	time/643	CO time 1624	2 jime 1625	time/630	time / 63	00me/43825	1640
				-0								•		
SG 5	5	0830	34603	vac 3	vac - 28	vac ~ 28	vac				concer. 6	vac - 30	vac -5	1.3 PPM
				time 1515	time /5/6	time / 57/	, time	time 540	time/54/	2Bime/543	Dime/5492	20 time / 55/	mime 166212	16 23
			1		····									
SG				vac	vac	vac	vac				conc.	vac	vac	
F			;	time	time	time	time	time	time	time	time	time	time	
			1									unio		······································
80	<u></u>					vac	vac				conc			
30	: 			vac	Vau	Vac	Vac				conc.	vac	vac	
		+ +		time	ume	ume	ume	ume	ume	ume	ume	time	time	
	÷+												·	
SG	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	vac	vac	vac	vac				conc.	vac	vac	
				time	time	time	time	time	time	time	time	time	time	
	 										-		· · · · · · · · · · · · · · · · · · ·	
SG				vac	vac	vac	vac				conc.	vac	vac	
				time	time	time	time	time	time	time	time	time	time	
												5		
SG				vac	vac	vac	vac				conc.	vac	vac	
	1			time	time	time	time	time	time	time	time	time	time	· · · · · · · · · · · · · · · · · · ·
F														
SG		++		vac	vac	vac	vac				conc	var	vac	······
1 ×		֠		time	time	fime	time	time	time	time	time	time	time	•
 	<u></u>				, unio		++		1					
90	<u>↓</u>							· +						
PO	+	+		Valu	Vac					4	CUIL.	Vac		
1	1.1	1 1		time	time	ume	ume	ume	ume	ume	ume	time	ume	

APPENDIX D

Weather Information

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&month=9&day= 7&year=2011

History for KCAALAME1 Encinal & Lafayette, Alameda, CA

About This Station

Lat: N 37 ° 46 ' 3 " (37.768 °) Lon: W 122 ° 15 ' 18 " (-122.255 °) Elevation (ft): 15 Hardware: Davis Vantage Pro 2 Weather Station Software: WeatherDisplay:10.37

« Previous Day	Septembe	r 🔽 7 🔽 20	011 View	<u>Next Day »</u>
Daily Weekly Monthly Yearly	Custom			
	Current:	High:	Low:	Average:
Temperature:	83.4 °F	88.2 °F	54.6 °F	67.1 °F
Dew Point:	54.4 °F	60.3 °F	47.5 °F	54.3 °F
Humidity:	37%	95%	25%	70%
Wind Speed:	9.2 mph	6.0 mph	-	1.4mph
Wind Gust:	9.2 mph	9.0mph	-	-
Wind:	West		-	WNW
Pressure:	29.79in	29.96in	29.89in	-
Precipitation:	0.00 in			
Solar Radiation:	591.0 watts/m^2			
UV Index:	0.0			
Statistics for the rest of the mo	onth			
		High:	Low:	Average:
Temperature:		90.8 °F	53.4 °F	64.1 °F
Dew Point:		62.7 °F	47.5 °F	56.4 °F
Humidity:		96.0%	25.0%	78.4%
Wind Speed:		116.2mph from the WNW	-	3.3 mph
Wind Gust:		116.2mph from the West	-	-
Wind:		-	-	WNW
Pressure:		30.03in	20.30in	-
Precipitation:		0.01 in		

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&graphspan=cust om&month=8&day=24&year=2011&monthend=9&dayend=7&yearend=2011

August 🚽 24	▼ 2011 ▼ - TO - September ▼	7 🚽 2011	- Go
Daily Weekly Monthly Yearly Custom			
	High:	Low:	Average:
Temperature:	88.2 °F	53.4 °F	61.8 °F
Dew Point:	61.7 °F	47.5 °F	55.8 °F
Humidity:	97.0%	25.0%	82.2%
Wind Speed:	15.0mph from the West	-	4.1mph
Wind Gust:	15.0mph from the West	-	-
Wind:	-	-	WNW
Pressure:	29.96in	29.68in	-
Precipitation:	0.00 in		

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&graphspan=cust om&month=9&day=7&year=2011&monthend=9&dayend=21&yearend=2011

September 7	▼ 2011 ▼ - _{TO} - September	✓ 21✓ 2011	- Go
Daily Weekly Monthly Yearly Custom			
	High:	Low:	Average:
Temperature:	90.8 °F	53.8 °F	64.3 °F
Dew Point:	61.0 °F	47.5 °F	56.3 °F
Humidity:	95.0%	25.0%	77.7%
Wind Speed:	14.0mph from the North	-	2.8mph
Wind Gust:	20.0mph from the West	-	-
Wind:	-	-	West
Pressure:	30.03 in	29.64in	-
Precipitation:	0.00 in		

APPENDIX E

HISTORICAL BORING LOGS FOR 4341 HOWARD STREET

Selected Portions of Artesian Environmental Consultants January 19, 1996 Groundwater Sampling Report ARTESIAN ENVIRONMENTAL CONSCREANT:

GROUNDWATER SAMPLING REPORT

MINOR PROPERTY 4341 HOWARD STREET OAKLAND, CALIFORNIA

AEC Job No. 1668 AEC Library No. 100-001-08

Prepared For:

Mr. Jim Minor P. O. Box 726 Diablo, California 94528

January 19, 1996

Thomas Fortner Project Geologist

3100 Kerner Blvd., Suite C · San Rafael, CA · 94901 · (415) 257-4801 · FAX (415) 257-4805

6.0 SUBSURFACE CONDITIONS

Borings B-1 through B-3 were drilled into groundwater to a maximum depth of 16 feet. The borings were continuously cored and the soils encountered were visually logged in the field utilizing the Unified Soil Classification System (ASTM D2488-90) under the direction of a California Registered Geologist. Soil from 12 to 16 feet bgs were not recovered from boring B-1. Soil encountered in borings B-1 through B-3 consisted of fill material composed of clayey gravels and silty sands to a depth of 4 to 5 feet. Native soil consisting of silty clay were encountered in boring B-2 at a depth of 14 feet. Sandy gravel and silty clayey sand was encountered at 14 feet bgs and 15 feet bgs respectively in boring B-3. Groundwater was encountered at approximately 8.5 feet bgs in borings B-1 and B-2, and at approximately 12 feet bgs in boring B-3. Groundwater was measured to be approximately 7 feet bgs in groundwater monitoring well MW-1. Boring Logs are included as Appendix C.

7.0 LABORATORY ANALYSES

Soil and groundwater samples collected from Borings B-1, B-2, and B-3, and a groundwater sample collected from monitoring well MW-1 were analyzed for purgeable halocarbons using EPA Method 8010. The groundwater sample from MW-1 was also analyzed for TPH-g and BTEX by EPA Method 8015M and EPA Method 8020 respectively.

None of the soil samples collected from the vadose zone of each boring contained detectable concentrations of purgeable hydrocarbons. Groundwater samples collected from boring B-1 contained 2.2 ppb cis-1,2-DCE and 4.3 ppb TCE. Groundwater samples collected from boring B-2 contained 3.4 ppb trans-1,2 DCE, 22.0 ppb cis-1,2-DCE and 9.7 ppb TCE. Groundwater samples collected from boring B-3 contained 9.4 ppb trans-1,2 DCE, 120.0 ppb cis-1,2-DCE and 83.0 ppb TCE. Groundwater samples collected from monitoring well MW-1 contained 7.0 ppb trans-1,2 DCE, 91.0 ppb cis-1,2-DCE, 91.0 ppb cis-1,2-DCE

8.0 CONCLUSIONS AND RECOMMENDATIONS

Three temporary groundwater sampling points were installed at the request of Mr. Barney Chan of the ACDEH to delineate the downgradient extent of a chlorinated solvent (VOC) plume in shallow groundwater.

Artesian installed and sampled the three temporary groundwater sampling points and sampled existing monitoring well MW-1. Soil and groundwater samples from Borings B-1, B-2, and B-3, and a water sample from groundwater monitoring well MW-1 were analyzed for purgeable halocarbons. Groundwater sample from MW-1 was also analyzed for TPH-g and BTEX. Detectable concentrations of purgeable halocarbons were reported in groundwater samples collected from all three borings and monitoring well MW-1. Groundwater samples from monitoring well MW-1 also contained very low concentrations of benzene.

APPENDIX F

HISTORICAL CROSS SECTION A-A' FOR 500 HIGH STREET

Selected Portions of Alameda County Health Care Services February 4, 1998 Fuel Leak Case Closure Former Cobbledick-Kibbe Site

Blymyer Engineers, Inc.

APPENDIX G

Laboratory Analytical Results and Chain of Custody Documentation

- McCampbell W/O # 1104514 Monitoring Well MW1/MW7 Groundwater
- McCampbell W/O # 1109183 Boreholes B4 and B5 Groundwater
- Air Toxics W/O # 1109212A Soil Gas Samples SG1 through SG5, and SG1 Duplicate TPH-G, MBTEX, Chlorinated Solvents, and 1,1-Difluoroethane Analysis by Modified TO-15
- Air Toxics W/O # 1109212B Soil Gas Samples SG1 through SG5, and SG1 Duplicate Oxygen, Methane, and Carbon Dioxide Analysis by ASTM D 1946
- McCampbell W/O# 1109181 Soil Gas Shroud Tedlar Bag Analysis for 1,1-Difluoroethane

McCampbell An "When Ouality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0547; 43	341 Howard St., Oakland	Date Sampled:	04/18/11			
55 Santa Clara, Ste.240			Date Received:	04/18/11			
	Client Contact: Steve Carr	nack	Date Reported:	04/21/11			
Oakland, CA 94610	Client P.O.:	Date Completed:	04/21/11				

WorkOrder: 1104514

April 21, 2011

Dear Steve:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #0547; 4341 Howard St., Oakland,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

ENV 55 San	VIRONMENTAL, ta Clara Ave, Suite 240 bakland, CA 94610 (510) 658-6916	INC.			C	HAIN OF CUS	TOD	Y	REC	COF	RD		1104514 PAGE OF
	project number: 0547		5	ROJECT	NAME: 341 Og	Howard St., Kland		((Es);			1		5
	SAMPLED BY: (PRI Steve Carma	NTED AND	SIGNAT	ATURE						//	ESER	REMARKS	
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCATION	NNS N		E I	//	//	å	/
+	MWI/MW7	4/18/11	1215	Hao			7	Xb				ICE	Normal Turnaranal
ł													
F									11				
t											\square		·
ł						·····				-			
F	ICE / P JE	/-											
F	HEAD SPACE A	BSENT	CONT	NERS	V			$\left + \right $	++	+	+		
	PRESERVATION	VOAT 10 & C	PRES	ERVED I	N LAB				11				
ŀ		V						\vdash	++	+	\square		
	RELINQUISHED BY: (SICNATURE)	DATE	TIME 1455	RECEIVED BY: (SICNATURE)		TOTAL I	NO. OF SA	IT)	7	LAB	CLAMPBELL And the
	RELINQUISHED BY: (SIGNATURE	.)	DATE TIME		RECEIVED BY: (SIGNATURE)		LABO	RATOR	Y CON	dins	LABC	77) 252-9262
Γ	RELINQUISHED BY: (SIGNATURE) DATE			DATE	TIME	RECEIVED FOR LABORATORY (SIGNATURE)	Y BY: SAMPLE ANALYSI ATTACHED: (SIS RE	QUEST SHEET
	Results and billing to P&D Environmental, lab©pdenviro.com	o: Inc.				REMARKS:	All bi	ttle	pres	serv	cd wy	HC.	L.

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 110451	4 Clier	ntCode: PDEO		
	WaterTrax	WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	I to:		Rec	uested TAT:	5 days
Steve Carmack P & D Environmental 55 Santa Clara, Ste.240	Email: la cc: PO:	ab@pdenviro.cor	n		Accounts Pa P & D Enviro 55 Santa Cla	ayable onmental ara, Ste.240	Dat	te Received:	04/18/2011
Oakland, CA 94610 (510) 658-6916 FAX 510-834-0152	ProjectNo: #	#0547; 4341 How	ard St., Oakland		Oakland, CA	A 94610	Dai	te Printed:	04/18/2011
						Requested Tes	sts (See legend b	oelow)	

Lab ID	Client ID	Matrix	Collection Date Hold		1	2	3	4	5	6	7	8	9	10	11	12
			· · ·													
1104514-001	MW1/MW7	Water	4/18/2011 12:15		В	Α	Α									

Test Legend:

1	8260B_W	2
6		7
11		12

2	G-MBTEX_W	
7		
12		

3	TPH_W
8	

4	
	1
9	

5	
10	

The following SampID: 001A contains testgroup.

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal			Date a	Date and Time Received: 4/18/2011 5:37:38 PM						
Project Name:	#0547; 4341 How	ard St., Oakland			Check	list completed and r	eviewed by:	Melissa Valles				
WorkOrder N°:	1104514	Matrix <u>Water</u>			Carrier	r: <u>Client Drop-In</u>						
Chain of Custody (COC) Information												
Chain of custody	present?		Yes	✓	No 🗆							
Chain of custody	signed when relinquis	shed and received?	Yes	\checkmark	No 🗆							
Chain of custody	agrees with sample la	abels?	Yes	\checkmark	No 🗌							
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆							
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆							
Sampler's name noted on COC?				✓	No 🗆							
Sample Receipt Information												
Custody seals int	tact on shipping contai	iner/cooler?	Yes		No 🗆		NA 🔽					
Shipping containe	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆							
Samples in prope	er containers/bottles?		Yes	✓	No 🗆							
Sample containe	rs intact?		Yes	\checkmark	No 🗆							
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌							
		Sample Prese	vatior	n and Ho	ld Time (HT)	Information						
All samples recei	ved within holding time	e?	Yes	✓	No 🗌							
Container/Temp E	Blank temperature		Coole	er Temp:	2.4°C		NA 🗆					
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted 🗌					
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌							
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹					
Samples Receive	ed on Ice?		Yes	✓	No 🗆							
		(Ice Type	e: WE	TICE)							
* NOTE: If the "N	NOTE: If the "No" box is checked, see comments below.											
								=======				

Client contacted:

Date contacted:

Contacted by:

Comments:

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	McCampbell An "When Ouality"	nalytic v Counts"	cal, Ir	<u>ıc.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C bbell.com E-mail: ma 877-252-9262 Fax: 9	A 94565-1701 in@mccampbell.com 25-252-9269					
	P & D Environmental		Client F	Project ID	#054	47; 4341 Howard	Date Sampled:	04/18/11					
S5 Santa Clara, Sic.240 Client Contact: Steve Carmack Date Extracted: 04/20/11 Oakland, CA 94610 Client P.O.: Date Analyzed: 04/20/11 Volatile Organics by P&T and GC/MS (Basic Target List)* Analytical Method: SW3260B Wark Order: 1104514 Extraction Method: SW3260B Wark Order: 1104514 Client ID 1104514-001B Output Commondation DF Regressing Concentration * DF Regressing Connoound Concentration * DF Regressing Concentration * DF Regressing Berzene ND<17 3.3 0.5 Bromochloromethane ND<1.7 3.3 0.5 Bromochloromethane ND<1.7 3.3 0.5 Bromochloromethane ND<1.7 3.3 0.5 Bromotechloromethane ND<1.7 3.3 0.5 Chloroberzene ND<1.7 3.3 0.5 Bromotechloromethane ND<1.7 3.3 0.5 Chloroberzene ND<1.7 3.3 0.5 Bromotechloromethane ND<1.7 3.3 0.5	55.9 (01 9) 240		St., Oak	kland			Date Received:	04/18/11					
Date Analyzed: 04/20/11 Volatile Organics by P&T and GC/MS (Basic Target List)* Struction Method: SW300B Work Order: 1104514 Lab ID 1104514-001B Client ID Marking Method: SW3200B Work Order: 1104514 Compound Concentration * DF Reporting Concound Concentration * DF Reporting Concound Concentration * DF Reporting Concound Concentration * DF Reporting Concound Concentration * DF Reporting Concound Concound Concound Concound Concound Concound	55 Santa Clara, Ste.240		Client (Contact:	Steve (Carmack	Date Extracted:	04/20/11					
Volatile Organics by P&T and GC/MS (Basic Target List)* Estraction Method: SW03008 Analytical Method: SW2600R Work Order: 1104514 Lab ID 1104514-001B 1104514-001B 1104514-001B 1104514-001B Client ID MW1/MW7 Matrix Water 1004 Concentration * DF Reporting Compound Concentration * DF Reporting Compound Concentration * DF Reporting ND<1.7	Oakland, CA 94610	Γ	Client P	P.O.:			Date Analyzed	: 04/20/11					
Extraction Method: SW30308 Analytical Method: SW3208 Wark Order: 1104514 Lab ID III04514-001B Matrix Matrix Commound Concentration* DF Reporting Acetone ND ND ND Sign colspan="4">Concentration* DF Reporting Acetone ND Concentration* DF Reporting Acetone ND ND Sign colspan="4">Concentration * DF Reporting PIO Matrix Concentration * DF Reporting Acetone ND ND <td colspa<="" td=""><td></td><td>Volatil</td><td>e Orgar</td><td>nics by Pa</td><td>&T an</td><td>d GC/MS (Basic Ta</td><td>arget List)*</td><td></td><td></td><td></td></td>	<td></td> <td>Volatil</td> <td>e Orgar</td> <td>nics by Pa</td> <td>&T an</td> <td>d GC/MS (Basic Ta</td> <td>arget List)*</td> <td></td> <td></td> <td></td>		Volatil	e Orgar	nics by Pa	&T an	d GC/MS (Basic Ta	arget List)*					
Lab ID 1104514-001B Matrix MW1/MW7 Water Compound Concentration * DF Compound Concentration * DF Matrix Acetone ND-1.7 3.3 10.6 Commodichloromethane ND-1.7 3.3 0.5 Bromochoromethane ND-1.7 3.3 0.5 Bromochoromethane ND-1.7 3.3 0.5 Bromochoromethane ND-1.7 3.3 0.5 Bromochoromethane ND-1.7 3.3 0.5 Chloromethane ND-1.7 3.3 0.5 Chloromethane ND-1.7 3.3 0.5 Chloromethane ND-1.7 3.3 0.5 Chloromethane ND-1.7 3.3 0.5 Chloromethane	Extraction Method: SW5030B Analytical Met					tethod: SW8260B Work Order: 1104514							
Multik Water Water Comoound Concentration * DF Repense Repense Acetone ND<33 3.3 10 tert-Amvl methyl ether (TAME) ND<1.7 3.3 0.5 Bromochhormethane ND<1.7 3.3 0.5 Bromochhormethane ND<1.7 3.3 0.5 Bromochhormethane ND<1.7 3.3 0.5 Bromochhormethane ND<1.7 3.3 0.5 EBrutance ND<1.7 3.3 0.5 Carbon Disuffiel ND<1.7 3.3 0.5 Chloromethane ND<1.7 3.3 0.5 Chloromethane ND<1.7 3.3 0.5 Chloromethane ND<1.7 3.3 0.5 Chloromethane ND<1.7 <th col<="" td=""><td>Lab ID</td><td></td><td colspan="9">1104514-001B</td></th>	<td>Lab ID</td> <td></td> <td colspan="9">1104514-001B</td>	Lab ID		1104514-001B									
Matrix Water Combound Concentration * DF Reporting Limit Combound Concentration * DF Reporting Limit Acetone ND<43	Client ID		MW1/MW7										
Connound Concentration * DF Representation * DF Representation * DF Representation * Acctone ND<1.7	Matrix					Wat	er						
Acetone ND<33 3.3 10 tert-Amv1 methvl ether (TAME) ND<1.7 3.3 0.5 Benzene ND<1.7	Compound	Concent	ration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit			
Benzene ND<1.7 3.3 0.5 Bromochoromethane ND<1.7 3.3 0.5 Bromochoromethane ND<1.7	Acetone	ND<	<33	3.3	10	tert-Amyl methyl e	ther (TAME)	ND<1.7	3.3	0.5			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Benzene	ND<	:1.7	3.3	0.5	Bromobenzene		ND<1.7	3.3	0.5			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Bromochloromethane	ND<	(1.7	3.3	0.5	Bromodichlorometh	ane	ND<1.7	3.3	0.5			
	Bromoform	ND<	(1.7	3.3	0.5	Bromomethane		ND<1.7	3.3	0.5			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-Butanone (MEK)	ND<	(6.7	3.3	2.0	t-Butyl alcohol (TB	A)	ND<6.7	3.3	2.0			
	n-Butyl benzene		(1.7	3.3	0.5	sec-Butyl benzene		ND<1.7	3.3	0.5			
	tert-Butyl benzene		(1.7	3.3	0.5	Carbon Disulfide		ND<1.7	3.3	0.5			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Carbon Tetrachloride		(1.7	3.3	0.5	Chlorobenzene		ND<1.7	3.3	0.5			
Chloromethane ND<1.7 3.3 0.5 2-Chlorotoluene ND<1.7 3.3 0.5 4-Chlorotoluene ND<1.7	Chloroethane N		(1.7	3.3	0.5	Chloroform		ND<1.7	3.3	0.5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chloromethane NI		(1.7	3.3	0.5	2-Chlorotoluene		ND<1.7	3.3	0.5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4-Chlorotoluene	-Chlorotoluene ND<		3.3	0.5	Dibromochlorometh	nane	ND<1.7	3.3	0.5			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,2-Dibromo-3-chloropropane	ND<	0.67	3.3	0.2	1,2-Dibromoethane	(EDB)	ND<1.7	3.3	0.5			
1.3-Dichlorobenzene ND<1.7 3.3 0.3 0.3 0.3 0.5 Dichlorodifluoromethane ND<1.7	1 2 Dishlanshansana	ND<	(1.7	2.2	0.5	1,2-Dichlenshenzen	e	ND<1.7	<u> </u>	0.5			
Dichlorodinucinale ND<1.7 3.3 0.5 1.1-Dichloroethane ND<1.7 3.3 0.5 1.2-Dichloroethane S1 3.3 0.5 1.1-Dichloroethane ND<1.7	1,3-Dichlorobenzene	ND<	(1.7	3.3	0.5	1,4-Dichloroothana	ND<1.7	3.3	0.5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2 Dichloroothono (1.2 DCA)	ND<	(1.7	2.2	0.5	1,1-Dichloroothane	ND<1.7	2.2	0.5				
Clisht 2-Dicknowennen Sign (a) Gas (a)<	ris 1.2 Dichloroathana	ND<	51	3.3	0.5	trans 1.2 Dichloroe	thana	ND<1.7	3.3	0.5			
12 Dischloropropane ND<1.7 3.3 0.5 1,1-Dichloropropene ND<1.7 3.3 0.5 cis-1,3-Dichloropropene ND<1.7	1 2-Dichloropropage	ND<	17	3.3	0.5	1 3-Dichloropropan	e	ND<17	3.3	0.5			
212-Definitiopropane ND<1.7 3.3 0.5 ft, Profering proper ND<1.7 3.3 0.5 Disopropyl etter (DIPE) ND<1.7	2.2-Dichloropropane	ND	17	3.3	0.5	1.1-Dichloropropen	e	ND<1.7	3.3	0.5			
Internet of propriet Internet Internet<	cis-1.3-Dichloropropene	ND<	1.7	3.3	0.5	trans-1.3-Dichloron	ropene	ND<1.7	3.3	0.5			
Disproprior District Distris District District	Disopropyl ether (DIPE)	ND<	1.7	3.3	0.5	Ethylbenzene	ropene	ND<1.7	3.3	0.5			
HexachlorobutadieneND<1.73.30.5HexachloroethaneND<1.73.30.52-HexanoneND<1.7	Ethyl tert-butyl ether (ETBE)	ND<	(1.7	3.3	0.5	Freon 113		ND<33	3.3	10			
2-Hexanone ND<1.7 3.3 0.5 Isopropylbenzene ND<1.7 3.3 0.5 4-Isopropyl toluene ND<1.7	Hexachlorobutadiene	ND<	(1.7	3.3	0.5	Hexachloroethane		ND<1.7	3.3	0.5			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-Hexanone	ND<	(1.7	3.3	0.5	Isopropylbenzene		ND<1.7	3.3	0.5			
Methylene chloride ND<1.7 3.3 0.5 4-Methyl-2-pentanone (MIBK) ND<1.7 3.3 0.5 Naphthalene ND<1.7 3.3 0.5 n-Propyl benzene ND<1.7 3.3 0.5 Styrene ND<1.7 3.3 0.5 1,1,1,2-Tetrachloroethane ND<1.7 3.3 0.5 1,1,2,2-Tetrachloroethane ND<1.7 3.3 0.5 Tetrachloroethane ND<1.7 3.3 0.5 1,1,2,2-Tetrachloroethane ND<1.7 3.3 0.5 Tetrachloroethane ND<1.7 3.3 0.5 1,2,4-Trichlorobenzene ND<1.7 3.3 0.5 1,1,1-Trichloroethane ND<1.7 3.3 0.5 1,1,2-Trichlorobenzene ND<1.7 3.3 0.5 Trichloroethane ND<1.7 3.3 0.5 1,1,2-Trichloroethane ND<1.7 3.3 0.5 Trichloroethane ND<1.7 3.3 0.5 1,2,4-Trimethylbenzene ND<1.7 3.3 0.5 1,2,3-Trichloroopropane ND<1.7 3.3 0.5	4-Isopropyl toluene	ND<	(1.7	3.3	0.5	Methyl-t-butyl ethe	r (MTBE)	5.7	3.3	0.5			
Naphthalene ND<1.7 3.3 0.5 n-Propyl benzene ND<1.7 3.3 0.5 Styrene ND<1.7	Methylene chloride	ND<	(1.7	3.3	0.5	4-Methyl-2-pentance	one (MIBK)	ND<1.7	3.3	0.5			
Styrene ND<1.7 3.3 0.5 1,1,1,2-Tetrachloroethane ND<1.7 3.3 0.5 1,1,2,2-Tetrachloroethane ND<1.7	Naphthalene	ND<	(1.7	3.3	0.5	n-Propyl benzene		ND<1.7	3.3	0.5			
1,1,2,2-Tetrachloroethane ND<1.7 3.3 0.5 Tetrachloroethane ND<1.7 3.3 0.5 Toluene ND<1.7 3.3 0.5 1,2,3-Trichlorobenzene ND<1.7 3.3 0.5 1,2,4-Trichlorobenzene ND<1.7 3.3 0.5 1,1,1-Trichloroethane ND<1.7 3.3 0.5 1,1,2-Trichloroethane ND<1.7 3.3 0.5 Trichloroethane ND<1.7 3.3 0.5 Trichlorofluoromethane ND<1.7 3.3 0.5 1,2,3-Trichloropropane ND<1.7 3.3 0.5 1,2,4-Trimethylbenzene ND<1.7 3.3 0.5 1,2,3-Trichloropropane ND<1.7 3.3 0.5 1,2,4-Trimethylbenzene ND<1.7 3.3 0.5 1,3,5-Trimethylbenzene ND<1.7 3.3 0.5 Vinvl Chloride 1.8 3.3 0.5 Xvlenes. Total ND<1.7 3.3 0.5 Surrogate Recoveries (%) Surrogate	Styrene	ND<	(1.7	3.3	0.5	1,1,1,2-Tetrachloro	ethane	ND<1.7	3.3	0.5			
Toluene ND<1.7 3.3 0.5 1,2,3-Trichlorobenzene ND<1.7 3.3 0.5 1,2,4-Trichlorobenzene ND<1.7	1,1,2,2-Tetrachloroethane	ND<	:1.7	3.3	0.5	Tetrachloroethene		ND<1.7	3.3	0.5			
1,2,4-Trichlorobenzene ND<1.7 3.3 0.5 1,1,1-Trichloroethane ND<1.7 3.3 0.5 1,1,2-Trichloroethane ND<1.7	Toluene	ND<	(1.7	3.3	0.5	1,2,3-Trichlorobenz	ene	ND<1.7	3.3	0.5			
1,1,2-Trichloroethane ND<1.7 3.3 0.5 Trichloroethene 87 3.3 0.5 Trichlorofluoromethane ND<1.7	1,2,4-Trichlorobenzene	ND<	(1.7	3.3	0.5	1,1,1-Trichloroetha	1,1,1-Trichloroethane			0.5			
Trichlorofluoromethane ND<1.7 3.3 0.5 1,2,3-Trichloropropane ND<1.7 3.3 0.5 1,2,4-Trimethylbenzene ND<1.7	1,1,2-Trichloroethane	ND<	(1.7	3.3	0.5	Trichloroethene	87	3.3	0.5				
1,2,4-Trimethylbenzene ND<1.7 3.3 0.5 1,3,5-Trimethylbenzene ND<1.7 3.3 0.5 Vinvl Chloride 1.8 3.3 0.5 Xvlenes. Total ND<1.7	Trichlorofluoromethane	ND<	(1.7	3.3	0.5	1,2,3-Trichloroprop	ND<1.7	3.3	0.5				
Vinvl Chloride 1.8 3.3 0.5 Xvlenes. Total ND<1.7 3.3 0.5 Surrogate Recoveries (%)	1,2,4-Trimethylbenzene	ND<	(1.7	3.3	0.5	1,3,5-Trimethylben	ND<1.7	3.3	0.5				
Surrogate Recoveries (%)	Vinvl Chloride		1.8	3.3	0.5	Xvlenes. Total		ND<1.7	3.3	0.5			
				Surro	gate R	ecoveries (%)							
<u>%SS1:</u> 98 %SS2: 100	%SS1:		9	8		%SS2:		10	00				
%SS3: 99	%SS3:		9	9									

Comments:

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	IcCampbell Analyti	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Envir	ronmental	Client Project ID:	Date Sampled: 04/18/11						
55 Santa Cla	ura, Ste.240	St., Oakland		Date Receiv	ed: 04	/18/11			
			teve Carmack	Date Extract	ed: 04	/19/11			
Oakland, CA	x 94610	Client P.O.:		Date Analyz	xed 04	/19/11			
Frederic et an en esta a d	Gasoline Ra	nge (C6-C12) Volat	tile Hydrocarbons as Ga	asoline *	X 7 -	-t- O-t	1104514		
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments		
001A	MW1/MW7	w	ND		1	94			
R	eporting Limit for DF =1;	w	50			цø/L			
NI	D means not detected at or above the reporting limit	S	NA			NA			

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	CCampbell Analyt	tical, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environ	imental	Client Project	Client Project ID: #0547; 4341 Howard Date Sampled:				04/18/11				
55 Santa Clara	Sto 240	St., Oakland Date Received:						11			
55 Saina Ciara,	C			Client Contact: Steve Carmack Date Extracted:							
Oakland, CA 9	Oakland, CA 94610			Client P.O.: Date Analyzed:							
Extraction method:	Total Extractable Petroleum Hydrocarbons* Extraction method: SW3510C Analytical methods: SW8015B							ork Order:	1104514		
Lab ID	Matrix		TPH-Diesel (C10-C23)	7	(C10-C36)	DF	% SS	Comments			
1104514-001A	MW1/MW7	W		ND		ND	1	96			

Reporting Limit for $DF = 1$;	W	50	100	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix: Water							ID: 57730		WorkOrder 1104514			
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 1104492-006B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	89.5	92.7	3.42	74	73.5	0.659	70 - 130	30	70 - 130	30	
Benzene	ND	10	104	105	0.981	106	104	1.86	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	96.6	104	7.00	76.1	76.9	1.03	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	10	106	106	0	110	107	3.20	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	103	104	0.990	93.9	92.5	1.46	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	122	127	4.10	106	104	1.66	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	10	109	108	0.201	116	112	3.14	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	126	130	3.52	109	109	0	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	110	113	2.41	95.5	93.9	1.63	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	4.0	10	91.8	100	6.08	92	91	1.05	70 - 130	30	70 - 130	30	
Toluene	ND	10	98.3	97.4	1.00	111	107	3.96	70 - 130	30	70 - 130	30	
Trichloroethene	ND	10	97.7	99.3	1.60	99.8	97.4	2.42	70 - 130	30	70 - 130	30	
%SS1:	99	25	98	100	1.94	95	96	0.632	70 - 130	30	70 - 130	30	
%SS2:	97	25	97	96	0.594	107	107	0	70 - 130	30	70 - 130	30	
%SS3:	100	2.5	88	87	0.572	100	97	2.64	70 - 130	30	70 - 130	30	
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 57730 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1104514-001B	04/18/11 12:15 PM	I 04/20/11	04/20/11 2:23 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A ____ QA/QC Officer

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 57746		WorkOrder 1104514			
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					s	Spiked San	nple ID	: 1104511-0	05A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	ND	60	94.4	97	2.77	99.7	91.8	8.26	70 - 130	20	70 - 130	20	
MTBE	ND	10	105	106	0.400	110	110	0	70 - 130	20	70 - 130	20	
Benzene	ND	10	95.5	100	4.65	97.7	99.9	2.18	70 - 130	20	70 - 130	20	
Toluene	ND	10	86.1	89.4	3.72	87.7	89.2	1.73	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	89.2	92.4	3.55	90.2	91.4	1.33	70 - 130	20	70 - 130	20	
Xylenes	ND	30	104	107	3.43	104	107	2.89	70 - 130	20	70 - 130	20	
%SS:	100	10	92	94	2.89	94	97	3.73	70 - 130	20	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:				

			<u>BATCH 57746 SL</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1104514-001A	04/18/11 12:15 PM	I 04/19/11	04/19/11 9:52 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

Page 9 of 10

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 57747 WorkOrder 1104514 Extraction SW3510C EPA Method SW8015B Spiked Sample ID: N/A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. TPH-Diesel (C10-C23) N/A 1000 N/A N/A N/A 90.5 91.3 0.872 N/A 70 - 130 N/A 30 70 - 130 30 %SS: N/A 625 N/A N/A 88 88 0 N/A N/A N/A All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 57747 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1104514-001A	04/18/11 12:15 PM	I 04/18/11	04/20/11 2:19 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

P & D Environmental	Client Project ID: #0547; Former El Monte RV Service Center, 4341 How	Date Sampled: 09/07/11
55 Santa Clara, Ste 240	beivice center, 4541 How	Date Received: 09/08/11
	Client Contact: Michael Deschenes	Date Reported: 09/14/11
Oakland, CA 94610	Client P.O.:	Date Completed: 09/12/11

WorkOrder: 1109183

September 14, 2011

Dear Michael:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #0547; Former El Monte RV Service Center, 4341
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

		C	HA	IN C	F C	USTOD	YR	E	CO	R	D		110	29	18	33		PAGE	(OF
	P&D	ENVII 55 Santa Oa	RON Clara kland, (510) 65	MEN Ave., Su CA 946 58-6916	ITAI nite 240	., INC.					DIE	Tes	Eller							
PROJECT N	umber: 47		PFFOSL	ROJECT RMER ERUN 1341 DAKL	NAME: R ELI LE C HOI AND	MONTE RI ENTER NARD ST,		CONTAINERS	VALYSIC.	130 ····	TE WITH A	PAURIEX		/		//	HE I	/		
SAMPL Mich	ED BY: (PRIN AEL DE	NTED & SIC	GNATU	RE) U	lich SAN	alles LOCATIO	hen	UMBER OF	AL AN	Era	0			/		RFor	DERVAIT	REM	ARKS	
B4-1 B5-	W	9/7/11	1(20	Hacu	U.I.I.			x 66	XX		XXH	+				ICE ICE	NOR	UAL 7	ISRN H	ARAUN
													-							
												_								
													C C	>						
												ICE/(*)_ GOOD HEAD DECH	COND SPACE LORIN	ABSE	IN LAP	0&0	APPROPE CONTAIN PRESERV METALS	ERS ED IN LA	B	
DEI NIOLUSUEI	D. D.V. (SIGNAT	LIDE)		DATE	TIME	RECEIVED BY	· (SHON)	CTI II	PE)		To	PILES	ERVAT f Sample			LADO	PATOPA			
RELINQUISHEE	BY: (SIGNAT	URE)	- 5	9/8/11 DATE	IS 34 TIME	RECEIVED BY	C (SLON)	ATUI	RE)		LA	his Shipe tal No. o his Shipe BORA	TORY	CON	TACT:	LABO LABO	RATORY	PHONE	NUMBI	FICAL ER:
RELINQUISHEI	D BY: (SIGNAT	URĚ)	4	DATE	TIME	RECEIVED FO (SIGNATURE)	R LABO	RAT	ORY E	BY:	S/ A	AMPLI	A NA E ANA IED:	LYSIS (REQUE	UEST SI	HEET (\mathcal{Y}) NO	02-9	000	
Results and billin P&D Environme lab@pdenviro.co	ng to: ntal, Inc. om					REMARKS:	ALL	Bo	TTL	ES	PRE	ESER	UEF	w	ітн	HCL				

Page 2 of 9

.....

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd				UIIAIN			IILUUIID		
Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	order: 1109183	Clie	ntCode: PDEO		
	WaterTra	x UVriteOn	EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				В	ill to:		Req	uested TAT:	5 days
Michael Deschenes P & D Environmental 55 Santa Clara, Ste.240	Email: cc: PO:	lab@pdenviro.com			Accounts Pay P & D Environ 55 Santa Clara	able mental a, Ste.240	Dat	e Received:	09/08/2011
Oakland, CA 94610 (510) 658-6916 FAX: 510-834-0152	ProjectNo:	#0547; Former El N Center, 4341 Howa	/lonte RV Se ard St., Oakla	rvice and	Oakland, CA S	94610	Date	e Printed:	09/08/2011

								R	equested	d Tests	(See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			1	-	r		T	1			T	1	r	r	i -	
1109183-001	B4-W	Water	9/7/2011 11:20		В	Α										
1109183-002	B5-W	Water	9/7/2011 10:20		В	Α										

Test Legend:

1	8010BMS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	
•	
8	

4	
9	

5	
10	

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	P & D Environmenta	I			Date a	nd Time Received:	9/8/2011 5:	41:03 PM			
Project Name:	#0547; Former El Mo	onte RV Service Cente	er, 434	1 Howard S	Checkl	ist completed and r	eviewed by:	Zoraida Cortez			
WorkOrder N°:	1109183	Matrix: Water			Carrier	: <u>Rob Pringle (N</u>	/AI Courier)				
	Chain of Custody (COC) Information										
Chain of custody	present?		No 🗌								
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No						
Chain of custody	Chain of custody agrees with sample labels? Yes 🗹 No										
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌						
Date and Time of	f collection noted by C	lient on COC?	Yes		No 🗌						
Sampler's name	noted on COC?		Yes	✓	No						
		<u>s</u>	Sample	Receipt Info	ormation						
Custody seals int	act on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗹				
Shipping contain	er/cooler in good cond	ition?	Yes	✓	No 🗌						
Samples in prope	er containers/bottles?		Yes	✓	No 🗌						
Sample containe	rs intact?		Yes	✓	No 🗌						
Sufficient sample	volume for indicated t	test?	Yes		No 🗌						
		Sample Prese	ervatio	n and Hold 1	Time (HT) I	Information					
All samples recei	ved within holding time	e?	Yes	✓	No 🗌						
Container/Temp	Blank temperature		Coole	r Temp: 5°	С						
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	No 🗌	No VOA vials subm	nitted				
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No						
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No 🗌		NA 🗹				
Samples Receive	ed on Ice?		Yes	✓	No 🗌						
		(Ісе Туре	: WE	TICE)							
* NOTE: If the "N	lo" box is checked, see	e comments below.									
=====		=======									
Client contacted:		Date contacte	ed:			Contacted	by:				

Comments:

McCampbell Analytical, Inc. "When Quality Counts"			nc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
P & D Environmental		Clie	nt Proj	ect ID:	#0547; Former El	ampled: 09/07/11			
55 Sente Class Sta 240		Mor	te RV	Service	Center, 4341 How	Date Received: 09/08/11			
55 Santa Clara, Ste.240		Clie	nt Con	tact: M	ichael Deschenes	Date E	Extracted 09/12/1	1	
Oakland, CA 94610		Clie	nt P.O	:		Date A	Analyzed 09/12/1	1	
Halogena	Halogenated Volatile Organics by Pa					asic Tai	rget List)*		
Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1109183						9183			
Lab ID					1109183-001B				
Matrix					B4-W Water				
Compound	Concentrati	ion *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit
Benzene	ND		1.0	0.5	Bromodichloromethane		ND	1.0	0.5
Bromoform	ND		1.0	0.5	Bromomethane		ND	1.0	0.5
Carbon Tetrachloride	ND		1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND		1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND		1.0	0.5	Dibromochloromethane		ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	ND 1.0 0.5		0.5	1,2-Dichlorobenzene		ND	1.0	0.5
1,3-Dichlorobenzene	ND		1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND		1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND		1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND		1.0	0.5	trans-1,2-Dichloroethene		ND	1.0	0.5
1,2-Dichloropropane	ND		1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5
trans-1,3-Dichloropropene	ND		1.0	0.5	Freon 113		ND	1.0	10
Ethylbenzene	ND		1.0	0.5	Methyl-t-butyl ether (MTBI	E)	ND	1.0	0.5
Methylene chloride	ND		1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND		1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND		1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND		1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND		1.0	0.5	Vinyl Chloride		ND	1.0	0.5
Xylenes	ND		1.0	0.5					
			Sur	rogate Re	ecoveries (%)				
%SS1:		95			%SS2:		97		
%SS3:		93							
Comments: b1									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

	ell Anal Quality Cor	<u>McCampbell Analytical, Inc.</u> "When Quality Counts"			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com				
P & D Environmental		Clie	nt Proj	ect ID:	#0547; Former El	ampled: 09/07/1	ampled: 09/07/11		
55 Sourte Clause Sta 240		Mor	ite RV	Service	Center, 4341 How	Date Received: 09/08/11			
55 Santa Clara, Ste.240		Clie	nt Con	tact: M	ichael Deschenes	Extracted 09/10/1	11		
Oakland, CA 94610		Clie	nt P.O.	:		Date A	nalyzed 09/10/1	11	
Halogenated Volatile Organics by Po					and GC-MS (8010 B	asic Tai	rget List)*		
Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1109183						9183			
Lab ID					1109183-002B				
Matrix					Water				
Compound	Concentrat	ion *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit
Benzene	ND		1.0	0.5	Bromodichloromethane		ND	1.0	0.5
Bromoform	ND		1.0	0.5	Bromomethane		ND	1.0	0.5
Carbon Tetrachloride	ND		1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND		1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	ND 1.0 0.5 I		Dibromochloromethane		ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	ND 1.0 0.5		0.5	1,2-Dichlorobenzene		ND	1.0	0.5
1,3-Dichlorobenzene	ND		1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND		1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND		1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND		1.0	0.5	trans-1,2-Dichloroethene		ND	1.0	0.5
1,2-Dichloropropane	ND		1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5
trans-1,3-Dichloropropene	ND		1.0	0.5	Freon 113		ND	1.0	10
Ethylbenzene	ND		1.0	0.5	Methyl-t-butyl ether (MTBI	E)	ND	1.0	0.5
Methylene chloride	ND		1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND		1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND		1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND		1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND		1.0	0.5	Vinyl Chloride		ND	1.0	0.5
Xylenes	ND		1.0	0.5					
			Suri	rogate Re	ecoveries (%)				
%SS1: 96 %SS2: 97									
%SS3:		96							
Comments: b1									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

	CCampbell Anal "When Quality Cou	<u>ytical, Inc.</u> ^{unts''}	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
P & D Enviror	nmental	Client Project ID: Monte RV Service	#0547; Former El e Center, 4341 How	Date Sample	ed: 09	/07/11		
55 Santa Clara	a, Ste.240		,	Date Receiv	red: 09	/08/11		
	,	Client Contact: M	ient Contact: Michael Deschenes Date Extr					
Oakland, CA 9	94610	Client P.O.:		Date Analyz	zed 09	/09/11		
Extraction method: S	Gasoline Ra	nge (C6-C12) Vola Analytical m	tile Hydrocarbons as (hethods: SW8015Bm	Gasoline*	We	ork Order:	1109183	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments	
001A	B4-W	W	ND		1	97	b1	
002A	B5-W	W	ND		1	98	b1	
Rer	porting Limit for DF =1:	W	50			<u>на</u> /Т		
ND at	means not detected at or bove the reporting limit	S	NA			NA		
* water and vapor s and all TCLP & SP	samples are reported in ug/L, soil/s PLP extracts in mg/L.	sludge/solid samples in 1	mg/kg, wipe samples in µg/w	ipe, product/oil/r	ion-aque	ous liquid	samples	

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: b1) aqueous sample that contains greater than ~1 vol. % sediment

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	W.O. Sample Matrix: Water QC Matrix: Water						BatchID: 60933 WorkOrder: 11			Order: 11091	83	
EPA Method: SW8260B	Extrac	tion: SW	5030B				Spiked Sample ID: 1109184-008A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Chlorobenzene	ND	10	99.2	102	3.08	97	103	6.12	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	103	106	2.87	89.1	96.1	7.57	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	105	107	1.20	102	106	4.27	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	92.3	94.6	2.49	112	120	6.96	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	93.9	96.5	2.73	99.8	106	5.86	70 - 130	30	70 - 130	30
%SS1:	101	25	100	99	0.824	101	101	0	70 - 130	30	70 - 130	30
%SS2:	91	25	91	91	0	98	98	0	70 - 130	30	70 - 130	30
%SS3:	101	2.5	95	92	3.03	90	88	2.37	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 60933 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1109183-001B	09/07/11 11:20 AM	09/12/11	09/12/11 5:15 PM	1109183-002B	09/07/11 10:20 AM	09/10/11	09/10/11 3:18 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	ter QC Matrix: Water					BatchID: 60913			WorkOrder: 1109183			
EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1109189-0	03A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	93.1	95.3	2.27	93.6	95.7	2.27	70 - 130	20	70 - 130	20
MTBE	ND	10	107	109	2.16	103	106	2.97	70 - 130	20	70 - 130	20
Benzene	ND	10	102	107	5.16	102	105	2.85	70 - 130	20	70 - 130	20
Toluene	ND	10	90.7	95.8	5.41	92.7	94.7	2.21	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	93	96.8	3.99	94.2	97	3.00	70 - 130	20	70 - 130	20
Xylenes	ND	30	107	111	4.09	108	112	3.52	70 - 130	20	70 - 130	20
%SS:	106	10	99	103	3.86	98	101	3.60	70 - 130	20	70 - 130	20
All target compounds in the Method Blar NONE	ık of this extr	action bate	h were NE	D less than	the method	RL with	the follow	ing exception	s:			

BATCH 60913 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1109183-001A	09/07/11 11:20 AM	09/09/11	09/09/11 8:02 PM	1109183-002A	09/07/11 10:20 AM	09/09/11	09/09/11 8:32 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

9/23/2011 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Former El Monte RV Service Center Project #: 0547 Workorder #: 1109212A

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 9/12/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1109212A

Work Order Summary

CLIENT:	Mr. Paul King	BILL TO:	Mr. Paul King
	P & D Environmental		P & D Environmental
	55 Santa Clara		55 Santa Clara
	Suite 240		Suite 240
	Oakland, CA 94610		Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0547 Former El Monte RV Service
DATE RECEIVED:	09/12/2011	CONTACT	Center Kyle Vagadori
DATE COMPLETED:	09/23/2011	contact.	Kyle vagadoli

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SG 1	Modified TO-15	7.0 "Hg	15 psi
02A	SG 1 DUP	Modified TO-15	6.8 "Hg	15 psi
03A	SG 2	Modified TO-15	4.4 "Hg	15 psi
04A	SG 3	Modified TO-15	6.0 "Hg	15 psi
05A	SG 4	Modified TO-15	6.2 "Hg	15 psi
06A	SG 5	Modified TO-15	6.0 "Hg	15 psi
07A	Lab Blank	Modified TO-15	NA	NA
08A	CCV	Modified TO-15	NA	NA
09A	LCS	Modified TO-15	NA	NA
09AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>09/23/11</u>

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12. Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 P & D Environmental Workorder# 1109212A

Six 1 Liter Summa Canister samples were received on September 12, 2011. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG 1

Lab ID#: 1109212A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.3	3.7	4.2	12
Toluene	1.3	5.7	5.0	22
m,p-Xylene	1.3	2.8	5.7	12
TPH ref. to Gasoline (MW=100)	66	1500	270	6100
1,1-Difluoroethane	5.3	1600 E	14	4400 E

Client Sample ID: SG 1 DUP

Lab ID#: 1109212A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.3	4.1	4.2	13
Toluene	1.3	5.6	4.9	21
m,p-Xylene	1.3	2.9	5.7	13
TPH ref. to Gasoline (MW=100)	65	1500	270	6100
1,1-Difluoroethane	5.2	2000 E	14	5600 E

Client Sample ID: SG 2

Lab ID#: 1109212A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.2	3.1	3.8	10
Toluene	1.2	1.9	4.5	7.2
m,p-Xylene	1.2	1.5	5.1	6.6
TPH ref. to Gasoline (MW=100)	59	550	240	2200
1,1-Difluoroethane	4.7	580 E	13	1600 E

Client Sample ID: SG 3

Lab ID#: 1109212A-04A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Methyl tert-butyl ether	1.3	37	4.5	130

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG 3

Lab ID#: 1109212A-04A				
Benzene	1.3	2.9	4.0	9.4
Toluene	1.3	8.0	4.7	30
m,p-Xylene	1.3	2.9	5.5	12
TPH ref. to Gasoline (MW=100)	63	1400	260	5700

Client Sample ID: SG 4

Lab ID#: 1109212A-05A

No Detections Were Found.

Client Sample ID: SG 5

Lab ID#: 1109212A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methyl tert-butyl ether	1.3	20	4.5	73
Benzene	1.3	97	4.0	310
Toluene	1.3	7.2	4.7	27
Ethyl Benzene	1.3	1.5	5.5	6.6
m,p-Xylene	1.3	6.3	5.5	28
o-Xylene	1.3	1.3	5.5	5.8
TPH ref. to Gasoline (MW=100)	63	5800	260	24000

Client Sample ID: SG 1 Lab ID#: 1109212A-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091525 2.64	Date Date	of Collection: 9/7 of Analysis: 9/15	//11 1:54:00 PM /11 08:39 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.2	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.3	Not Detected
Benzene	1.3	3.7	4.2	12
Tetrachloroethene	1.3	Not Detected	9.0	Not Detected
Toluene	1.3	5.7	5.0	22
Trichloroethene	1.3	Not Detected	7.1	Not Detected
Ethyl Benzene	1.3	Not Detected	5.7	Not Detected
m,p-Xylene	1.3	2.8	5.7	12
o-Xylene	1.3	Not Detected	5.7	Not Detected
TPH ref. to Gasoline (MW=100)	66	1500	270	6100
1,1-Difluoroethane	5.3	1600 E	14	4400 E

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: SG 1 DUP Lab ID#: 1109212A-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091524 2.61	Date Date	of Collection: 9/7 of Analysis: 9/15	/11 1:54:00 PM /11 07:33 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.7	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.1	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.2	Not Detected
Benzene	1.3	4.1	4.2	13
Tetrachloroethene	1.3	Not Detected	8.8	Not Detected
Toluene	1.3	5.6	4.9	21
Trichloroethene	1.3	Not Detected	7.0	Not Detected
Ethyl Benzene	1.3	Not Detected	5.7	Not Detected
m,p-Xylene	1.3	2.9	5.7	13
o-Xylene	1.3	Not Detected	5.7	Not Detected
TPH ref. to Gasoline (MW=100)	65	1500	270	6100
1,1-Difluoroethane	5.2	2000 E	14	5600 E

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	109	70-130

Client Sample ID: SG 2 Lab ID#: 1109212A-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091528 2.37	Date Date	of Collection: 9/7 of Analysis: 9/15/	/11 3:02:00 PM /11 10:14 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.3	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.5	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.4	Not Detected
Benzene	1.2	3.1	3.8	10
Tetrachloroethene	1.2	Not Detected	8.0	Not Detected
Toluene	1.2	1.9	4.5	7.2
Trichloroethene	1.2	Not Detected	6.4	Not Detected
Ethyl Benzene	1.2	Not Detected	5.1	Not Detected
m,p-Xylene	1.2	1.5	5.1	6.6
o-Xylene	1.2	Not Detected	5.1	Not Detected
TPH ref. to Gasoline (MW=100)	59	550	240	2200
1,1-Difluoroethane	4.7	580 E	13	1600 E

E = Exceeds instrument calibration range.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	90	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: SG 3 Lab ID#: 1109212A-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091527 2.52	Date Date	of Collection: 9/7 of Analysis: 9/15/	/11 4:03:00 PM /11 09:48 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
Methyl tert-butyl ether	1.3	37	4.5	130
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Carbon Tetrachloride	1.3	Not Detected	7.9	Not Detected
Benzene	1.3	2.9	4.0	9.4
Tetrachloroethene	1.3	Not Detected	8.5	Not Detected
Toluene	1.3	8.0	4.7	30
Trichloroethene	1.3	Not Detected	6.8	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	2.9	5.5	12
o-Xylene	1.3	Not Detected	5.5	Not Detected
TPH ref. to Gasoline (MW=100)	63	1400	260	5700
1,1-Difluoroethane	5.0	Not Detected	14	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: SG 4 Lab ID#: 1109212A-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091529Date of Collection: 9/7/11 4:38:00 PM2.55Date of Analysis: 9/15/11 10:42 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
Benzene	1.3	Not Detected	4.1	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
Toluene	1.3	Not Detected	4.8	Not Detected
Trichloroethene	1.3	Not Detected	6.8	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	Not Detected	5.5	Not Detected
o-Xylene	1.3	Not Detected	5.5	Not Detected
TPH ref. to Gasoline (MW=100)	64	Not Detected	260	Not Detected
1,1-Difluoroethane	5.1	Not Detected	14	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	90	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: SG 5 Lab ID#: 1109212A-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091530 Date of Collection: 9/7/11 4:02:00 PM 2.52 Date of Analysis: 9/15/11 11:17 PM		/11 4:02:00 PM 11 11:17 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
Methyl tert-butyl ether	1.3	20	4.5	73
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Carbon Tetrachloride	1.3	Not Detected	7.9	Not Detected
Benzene	1.3	97	4.0	310
Tetrachloroethene	1.3	Not Detected	8.5	Not Detected
Toluene	1.3	7.2	4.7	27
Trichloroethene	1.3	Not Detected	6.8	Not Detected
Ethyl Benzene	1.3	1.5	5.5	6.6
m,p-Xylene	1.3	6.3	5.5	28
o-Xylene	1.3	1.3	5.5	5.8
TPH ref. to Gasoline (MW=100)	63	5800	260	24000
1,1-Difluoroethane	5.0	Not Detected	14	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: Lab Blank Lab ID#: 1109212A-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091508a 1.00	Date of Collection: NA Date of Analysis: 9/15/11 11:21 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected
1,1-Difluoroethane	2.0	Not Detected	5.4	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	111	70-130	

Client Sample ID: CCV Lab ID#: 1109212A-08A EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name: Dil. Factor:	p091502 1.00	Date of Collection: NA Date of Analysis: 9/15/11 09:00 AM
Compound		%Recovery
Vinyl Chloride		94
Methyl tert-butyl ether		98
trans-1,2-Dichloroethene		98
cis-1,2-Dichloroethene		103
1,1,1-Trichloroethane		97
Carbon Tetrachloride		98
Benzene		99
Tetrachloroethene		94
Toluene		99
Trichloroethene		96
Ethyl Benzene		95
m,p-Xylene		97
o-Xylene		96
TPH ref. to Gasoline (MW=100)		100
1,1-Difluoroethane		98

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	109	70-130	

Client Sample ID: LCS Lab ID#: 1109212A-09A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p091504 1.00	Date of Collection: NA Date of Analysis: 9/15/11 09:57 AM
Compound		%Recovery
Vinyl Chloride		95
Methyl tert-butyl ether		99
trans-1,2-Dichloroethene		109
cis-1,2-Dichloroethene		100
1,1,1-Trichloroethane		96
Carbon Tetrachloride		96
Benzene		97
Tetrachloroethene		93
Toluene		96
Trichloroethene		94
Ethyl Benzene		95
m,p-Xylene		100
o-Xylene		100
TPH ref. to Gasoline (MW=100)		Not Spiked
1,1-Difluoroethane		Not Spiked

<i></i>		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	111	70-130

Client Sample ID: LCSD Lab ID#: 1109212A-09AA EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name:	p091505	Date of Collection: NA
	1.00	Date of Analysis: 9/15/11 10:15 AM
Compound		%Recovery
Vinyl Chloride		94
Methyl tert-butyl ether		97
trans-1,2-Dichloroethene		109
cis-1,2-Dichloroethene		99
1,1,1-Trichloroethane		96
Carbon Tetrachloride		95
Benzene		95
Tetrachloroethene		94
Toluene		95
Trichloroethene		93
Ethyl Benzene		93
m,p-Xylene		97
o-Xylene		96
TPH ref. to Gasoline (MW=100)		Not Spiked
1,1-Difluoroethane		Not Spiked

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	112	70-130	

	Cł	HAIN (DFC	USTOD	Y RE	CO	RD		1	108	321	2 PAGE -	L OF L
P&D	ENVIR 55 Santa C Oakla (51	Clara Ave., S and, CA 946 (0) 658-6910	NTA uite 240	L, INC.			le .	SISTEM		[]			
PROJECT NUMBER: 0547		FORMER SERVICE H3H1 H OAKLO	NAME LE LE M LE CEA (GWAP AND	ONTE RV JTER P ST.	CONTAINERS	MLYSISCE	HES SAL					R	
SAMPLED BY: (PRI Michael Deschen	NTED & SIGN ES U	Victor	Nesc	chem_	IBER OF	A A			' /				
SAMPLE NUMBER	DATE 1	TIME TYPE	SAL	MPLE LOCATIC	N IN IN		37			/ /	PRE /		KS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9/7/11 13 12 15 16 16 16 16 16 16	5400 \$146A 35400 50235 0320 3825 12812 128	-30 3 -30 3 -30 3 -30 3 -30 3 -30 3	24584 - 5 24169 - 5 2059 - 5 2071 - 5 2071 - 5 26648 - 5 2603 - 5		× × × × × × ×						NBRAIAL TURN	A ROUSID
RELINQUISHED BY: (SIGNAT	URE) 1 <u>Phien</u> URE) URE)	DATE 9/8/14 DATE 9/2_(1 DATE	TIME (870 TIME (100) TIME	RECEIVED BY: FEP Ex RECEIVED BY: March A7 RECEIVED FOR (SIGNATURE)	(SIGNATU (SIGNATU LABORAT	RE)	Y: 2	This Shipme otal No. of This Shipme ABORAT ABORAT SAMPLE ATTACHI	Samples ent) Containers int) ORY C CADC ANALY ED:	ONTAC ORCOSIS REG	LABOI AiK LABOF (GI(QUEST SH ES	RATORY: TOXICS LTD. RATORY PHONE NUM 2)985-1000 HEET SNO	MBER:
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com			1	REMARKS: J	NFLUOR VIGHEST	6 ETH - COX	ANE JCEN	WAS TRATI	00 00;	R TI 1.4	PPM	2 GAS	

Former El Monte RV Service Center Job # 0547 Samples Collected 9/7/11

SAMPLE ANALYSIS REQUEST SHEET

• TO-15 for TPH-G, MTBE, Benzene, Toluene, Ethylbenzene, m,p-Xylenes, o-Xylenes, Tetrachloroethene, Trichloroethene, 1,1,1-Trichloroethane, cis-1,2-Dichloroethene, trans-1,2-Dichloroethene,Carbon Tetrachloride, Vinyl Chloride, and our tracer gas Difluoroethane.

1109212

• ASTM 1946 for Oxygen, Methane, and Carbon Dioxide.

9/23/2011 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Former El Monte RV Service Center Project #: 0547 Workorder #: 1109212B

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 9/12/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1109212B

Work Order Summary

CLIENT:	Mr. Paul King	BILL TO:	Mr. Paul King
	P & D Environmental		P & D Environmental
	55 Santa Clara		55 Santa Clara
	Suite 240		Suite 240
	Oakland, CA 94610		Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0547 Former El Monte RV Service
DATE RECEIVED:	09/12/2011	CONTACT	Center Kyle Vagadori
DATE COMPLETED:	09/23/2011	contact.	Kyle vagadoli

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SG 1	Modified ASTM D-1946	7.0 "Hg	15 psi
02A	SG 1 DUP	Modified ASTM D-1946	6.8 "Hg	15 psi
03A	SG 2	Modified ASTM D-1946	4.4 "Hg	15 psi
04A	SG 3	Modified ASTM D-1946	6.0 "Hg	15 psi
05A	SG 4	Modified ASTM D-1946	6.2 "Hg	15 psi
06A	SG 5	Modified ASTM D-1946	6.0 "Hg	15 psi
07A	Lab Blank	Modified ASTM D-1946	NA	NA
08A	LCS	Modified ASTM D-1946	NA	NA
08AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Sinda d. Fruman

09/23/11 DATE:

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12. Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1946 P & D Environmental Workorder# 1109212B

Six 1 Liter Summa Canister samples were received on September 12, 2011. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SG 1

Lab ID#: 1109212B-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.26	18
Methane	0.00026	0.0016
Carbon Dioxide	0.026	1.2

Client Sample ID: SG 1 DUP

Lab ID#: 1109212B-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.26	18
Methane	0.00026	0.0016
Carbon Dioxide	0.026	1.2

Client Sample ID: SG 2

Lab ID#: 1109212B-03A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.24	2.2
Methane	0.00024	0.15
Carbon Dioxide	0.024	6.9

Client Sample ID: SG 3

Lab ID#: 1109212B-04A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	2.8
Methane	0.00025	1.7
Carbon Dioxide	0.025	2.5

Client Sample ID: SG 4

Lab ID#: 1109212B-05A

Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SG 4

Lab ID#: 1109212B-05A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.26	18
Carbon Dioxide	0.026	3.1

Client Sample ID: SG 5

Lab ID#: 1109212B-06A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	19
Methane	0.00025	0.0048
Carbon Dioxide	0.025	0.78

Client Sample ID: SG 1 Lab ID#: 1109212B-01A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor:	9091515 2.64	Date of Collec Date of Analys	tion: 9/7/11 1:54:00 PM sis: 9/15/11 02:18 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.26	18
Methane		0.00026	0.0016
Carbon Dioxide		0.026	1.2

Г

Client Sample ID: SG 1 DUP Lab ID#: 1109212B-02A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor:	9091517 2.61	Date of Collection: 9/7/11 1:54:00 PM Date of Analysis: 9/15/11 03:08 PM	
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.26	18
Methane		0.00026	0.0016
Carbon Dioxide		0.026	1.2

Client Sample ID: SG 2 Lab ID#: 1109212B-03A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	9091516 2.37	Date of Collection: 9/7/11 3:02:00 PM Date of Analysis: 9/15/11 02:46 PM	
		Rpt. Limit (%)	Amount (%)
Oxygen		0.24	2.2
Methane		0.00024	0.15
Carbon Dioxide		0.024	6.9

Client Sample ID: SG 3 Lab ID#: 1109212B-04A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor:	9091519 2.52	Date of Collection: 9/7/11 4:03:00 PM Date of Analysis: 9/15/11 03:54 PM	
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.25	2.8
Methane		0.00025	1.7
Carbon Dioxide		0.025	2.5

Client Sample ID: SG 4 Lab ID#: 1109212B-05A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor:	9091520 2.55	Date of Collection: 9/7/11 4:38:00 PM Date of Analysis: 9/15/11 04:22 PM	
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.26	18
Methane		0.00026	Not Detected
Carbon Dioxide		0.026	3.1

Client Sample ID: SG 5 Lab ID#: 1109212B-06A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	9091521 2.52	Date of Collection: 9/7/11 4:02:00 PM Date of Analysis: 9/15/11 04:46 PM	
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.25	19
Methane		0.00025	0.0048
Carbon Dioxide		0.025	0.78

Г

Client Sample ID: Lab Blank Lab ID#: 1109212B-07A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor:	9091507 1.00	Date of Colle Date of Anal	ection: NA ysis: 9/15/11 10:15 AM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.10	Not Detected
Methane		0.00010	Not Detected
Carbon Dioxide		0.010	Not Detected

Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 1109212B-08A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	9091504 1.00	Date of Collection: NA Date of Analysis: 9/15/11 08:36 AM
Compound		%Recovery
Oxygen		101
Methane		99
Carbon Dioxide		99

Container Type: NA - Not Applicable

Client Sample ID: LCSD Lab ID#: 1109212B-08AA

MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

1

File Name: Dil. Factor:	9091529 1.00	Date of Collection: NA Date of Analysis: 9/15/11 08:25 PM
Compound		%Recovery
Oxygen Methone		100
Carbon Dioxide		99

Container Type: NA - Not Applicable

	Cł	HAIN (DFC	USTOD	Y RE	CO	RD		1	108	321	2 PAGE -	L OF L
P&D	ENVIR 55 Santa C Oakla (51	Clara Ave., S and, CA 946 (0) 658-6910	NTA uite 240	L, INC.			le .	SISTEM		[]			
PROJECT NUMBER: 0547		FORMER SERVICE H3H1 H OAKLO	NAME LE LE M LE CEA (GWAP AND	ONTE RV JTER P ST.	CONTAINERS	MLYSISCE	HES SALL					R	
SAMPLED BY: (PRI Michael Deschen	NTED & SIGN ES U	Victor	Nesc	chem_	IBER OF	A A			' /				
SAMPLE NUMBER	DATE 1	TIME TYPE	SAL	MPLE LOCATIC	N IN IN		\$\$/			/ /	PRE /		KS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9/7/11 13 12 15 16 16 16 16 16 16	5400 \$146A 35400 50235 0320 3825 12812 128	-30 3 -30 3 -30 3 -30 3 -30 3 -30 3	24584 - 5 24169 - 5 2059 - 5 2071 - 5 2071 - 5 26648 - 5 2603 - 5		× × × × × × ×						NBRAIAL TURN	A ROUSID
RELINQUISHED BY: (SIGNAT	URE) 1 <u>Phien</u> URE) URE)	DATE 9/8/14 DATE 9/2_(1 DATE	TIME (870 TIME (100) TIME	RECEIVED BY: FEP Ex RECEIVED BY: March A7 RECEIVED FOR (SIGNATURE)	(SIGNATU (SIGNATU LABORAT	RE)	Y: 2	This Shipme otal No. of This Shipme ABORAT ABORAT SAMPLE ATTACHI	Samples ent) Containers int) ORY C CADC ANALY ED:	ONTAC ORCOSIS REG	LABOI AiK LABOF (GI(QUEST SH ES	RATORY: TOXICS LTD. RATORY PHONE NUM 2)985-1000 HEET SNO	MBER:
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com			1	REMARKS: J	NFLUOR VIGHEST	6 ETH - COX	ANE JCEN	WAS TRATI	00 00;	R TI 1.4	PPM	2 GAS	

Former El Monte RV Service Center Job # 0547 Samples Collected 9/7/11

SAMPLE ANALYSIS REQUEST SHEET

• TO-15 for TPH-G, MTBE, Benzene, Toluene, Ethylbenzene, m,p-Xylenes, o-Xylenes, Tetrachloroethene, Trichloroethene, 1,1,1-Trichloroethane, cis-1,2-Dichloroethene, trans-1,2-Dichloroethene,Carbon Tetrachloride, Vinyl Chloride, and our tracer gas Difluoroethane.

1109212

• ASTM 1946 for Oxygen, Methane, and Carbon Dioxide.

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

P & D Environmental	Client Project ID: #0547; Former El Monte RV Service Center 4341 How	Date Sampled: 09/07/11
55 Santa Clara, Ste 240	Service Center, 4541 How	Date Received: 09/08/11
22 Sullin Clark, 2002	Client Contact: Michael Deschenes	Date Reported: 09/13/11
Oakland, CA 94610	Client P.O.:	Date Completed: 09/13/11

WorkOrder: 1109181

September 13, 2011

Dear Michael:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#0547; Former El Monte RV Service Center, 4341**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	C	HA	IN C	DF C	USTODY	RE	C	DR	D		11	00	118	31			PAG	e <u> </u>	of 1
P&D) ENVII 55 Santa Oa	RON Clara kland, (510) 65	MEN Ave., Si CA 946 58-6916	NTAI aite 240 10	L, INC.					de la compañía de la	/	/	/	/	//				
PROJECT NUMBER:		PR	RUE	NAME:	NONTERV	VERS		:3)	EV.S	1	//	//	/	/	/	/	/		
0547		NTO	ERVI 341 ALLA	HOWA	ENTER RD St.,	CONTAIL	MIN	Silon Comp		/						E			
SAMPLED BY: (PRI MICHAEL DESC	INTED & SIG	GNATU	RE),	n R	Jeschenes	BER OF	A	Bern	/	//	//					LEKVATT			
SAMPLE NUMBER	DATE	TIME	TYPE	SAN	MPLE LOCATION	NUM	D.C.		/	/	/		/	/	PRES		REM	ARKS	
5G1	9/7/11	1300	AIR	SHR	SUD	1	0								NONE	NORMA	LTUR	NAROU	ND
565	9/7/11	1555	AIR	11		-1			_				-		NONE	11	"		
						-									-				
						+													
						+		_	_			_		-	-				
											10		1						
									ICE GO	te M	DNDI	ION_	\checkmark		APPRO	PRIATR	1		
									HE.	AD SI	RINA	ABSEI	NLAP		PRESE	RVED IN	TAB		
							1		PR	ESER	VATI	ON_	UAS	U&G	MEIA	S OTH			
						X													
RELINQUISHED BY: (SIGNA	TURE)		DATE	TIME	RECEIVED BT. (SI	NATU	RE)	-	7-	Total N (This S Total N	lo. of S Shipmer lo. of C	amples nt) ontaine	IS 6	2	LABO	RATORY	1/ /.	Autric	
RELÍNQUISHED BY (SIGNA	FURE)	-	DATE	TIME	RECEIVED BY: (SI	GNATU	RE)		1	ABC)RAT	nt) ORY (CONT	ACT:	LABOR	ATORY	PHONE	NUMBER	FIC-
	T	19	Sul	645	Ind	M			A	NGE	LA	RYI	Eli	US	1925	-) 25	2-9	262	
RELINQUISHED BY: (SIGNA	TURE	/	DATE	TIME	RECHIVED FOR LA (SIGNATURE)	BORAT	ORY	BY:		SAM ATT/	ACHE	ANAL D:	YSIS () YE	UEST SI	(X) NO			
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARKS:	EDU	412	l	34	65	5								

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd				VIIMII			IILUUIID		
Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	Order: 1109181	Clie	ntCode: PDEO		
	WaterTrax	x UvriteOn	EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				В	Bill to:		Req	uested TAT:	5 days
Michael Deschenes P & D Environmental 55 Santa Clara, Ste.240	Email: cc: PO:	lab@pdenviro.com			Accounts Pay P & D Environ 55 Santa Clar	able mental a, Ste.240	Dat	e Received:	09/08/2011
Oakland, CA 94610 (510) 658-6916 FAX: 510-834-0152	ProjectNo:	#0547; Former El N Center, 4341 Howa	Monte RV Ser ard St., Oakla	rvice nd	Oakland, CA S	94610	Date	e Printed:	09/08/2011

								R	equested	d Tests	(See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			1				r	1	r	r		r	r	r	r	
1109181-001	SG1	Air	9/7/2011 13:00		Α											
1109181-002	SG5	Air	9/7/2011 15:55		А											

Test Legend:

1	8260VOC_A(UG/M3)
6	
11	

	ĺ

2 7 12

	P
3	
8	

4	
9	

5	
10	

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	P & D Environmenta	al				Date and Time Received: 9/8/2011 5:14:17 PM				
Project Name:	#0547; Former El M	onte RV S	ervice Center	, 434	1 Howard S	Check	klist completed and re	eviewed by:	Zoraida Cortez	
WorkOrder N°:	1109181	Matrix: A	<u>ir</u>			Carrie	er: <u>Rob Pringle (M</u>	AI Courier)		
			Chain	of Cι	ustody (COC)	Informa	tion			
Chain of custody	present?		•	Yes	✓	No 🗌				
Chain of custody	signed when relinquis	shed and re	ceived?	Yes	✓	No 🗌				
Chain of custody	agrees with sample la	abels?	•	Yes		No 🗌				
Sample IDs note	d by Client on COC?		•	Yes	✓	No 🗌				
Date and Time of	f collection noted by C	lient on CC)C?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		•	Yes		No 🗌				
			Sa	mple	Receipt Info	ormation				
Custody seals int	tact on shipping conta	iner/cooler	?	Yes		No 🗌		NA 🗹		
Shipping containe	er/cooler in good cond	lition?	•	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		•	Yes	✓	No 🗌				
Sample containe	rs intact?		•	Yes	✓	No 🗌				
Sufficient sample	volume for indicated	test?	•	Yes	✓	No 🗌				
		Sa	mple Preser	vatio	<u>n and Hold T</u>	<u>ime (HT)</u>	Information			
All samples recei	ived within holding tim	e?		Yes	✓	No 🗌				
Container/Temp	Blank temperature		(Coole	er Temp:			NA 🖌		
Water - VOA vial	s have zero headspac	e / no bubl	bles?	Yes		No 🗌	No VOA vials submi	itted 🖌		
Sample labels ch	necked for correct pres	servation?	•	Yes	✓	No 🗌				
Metal - pH accep	table upon receipt (pH	l<2)?	•	Yes		No 🗌		NA 🖌		
Samples Receive	ed on Ice?		•	Yes		No 🗹				
* NOTE: If the "N	lo" box is checked, se	e comment	's below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Anal ''When Quality Cou	ytical, Inc. unts''	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com				
P & D Env	ironmental	Client Project ID:	#0547; Former El	Date Sampled: 09/07/11			
55 Santa C	'lara Ste 240	Monte RV Servic	Date Received: 09/08/11				
oo buntu e	1414, 50012 10	Client Contact: N	Aichael Deschenes	Date Extracted 09/09/11			
Oakland, C	CA 94610	Client P.O.:	Date Analyz	ed 09	/09/11		
Extraction metho	Volat d: SW5030B	tile Organics by Po Analytical n	&T and GC/MS (µg/m ³ nethods: SW8260B)*	W	ork Order:	1109181
Lab ID	Client ID	Matrix 1	,1-Difluoroethane as Dichloro	difluoromethane	DF	% SS	Comments
001A	SG1	А	29,000,000		2000	95	
002A	SG5	А	79,000,000		5000	94	
						<u> </u>	
	Reporting Limit for $DE = 1$	A	250				
	ND means not detected at or	S	250 NA			µg/m ³ NA	·
* vapor sampl	es are reported in µg/m ³ . soil/sludge/so	lid samples in mg/kg. p	roduct/oil/non-aqueous liquid	samples and all T	CLP & S	PLP extra	icts are
reported in mg	/L, wipe samples in $\mu g/m$, som stadge/so		and a second s				
ND means not Surrogate Star	detected above the reporting limit/met dard; DF = Dilution Factor	hod detection limit; N/	A means analyte not applicable	e to this analysis;	%SS = 1	Percent R	ecovery of

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Air		QC Matrix: Water					BatchID: 60933			WorkOrder: 1109181		
EPA Method: SW8260B	Extrac	Extraction: SW5030B						Spiked Sample ID: 11091				08A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
/ maryto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	88.4	90.4	2.26	80.1	85.7	6.68	70 - 130	30	70 - 130	30
Benzene	ND	10	100	104	3.69	98.9	105	5.97	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	105	110	4.29	92.5	107	14.5	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	99.2	102	3.08	97	103	6.12	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	103	106	2.87	89.1	96.1	7.57	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	105	107	1.20	102	106	4.27	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	92.3	94.6	2.49	112	120	6.96	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	106	107	1.40	107	114	5.55	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	103	103	0	96.7	103	6.21	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	109	109	0	97.1	102	4.69	70 - 130	30	70 - 130	30
Toluene	ND	10	97.2	100	2.93	94.6	101	6.87	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	93.9	96.5	2.73	99.8	106	5.86	70 - 130	30	70 - 130	30
%SS1:	101	25	100	99	0.824	101	101	0	70 - 130	30	70 - 130	30
%SS2:	91	25	91	91	0	98	98	0	70 - 130	30	70 - 130	30
%SS3:	101	2.5	95	92	3.03	90	88	2.37	70 - 130	30	70 - 130	30
All target compounds in the Method Bla NONE	nk of this extr	action bate	h were NE	less than	the method	l RL with	the follow	ing exception	s:			

BATCH 60933 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1109181-001A	09/07/11 1:00 PM	09/09/11	09/09/11 4:23 PM	1109181-002A	09/07/11 3:55 PM	09/09/11	09/09/11 5:45 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

₩___QA/QC Officer

APPENDIX H

HERD February 2009 Vapor Intrusion Risk and Hazard Spreadsheet Calculations

SG-SCREEN A Version 2.0; 04/		Soil	Gas Concentration	n Data	DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _g	OR	ENTER Soil gas conc., C _g	(last modified 2/4/09)
	no dashes)	(µg/m ³)		(ppmv)	Chemical
	1634044	7.30E+01			MTBE
	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Depth	Soil gas	ENTER	Vadose zone	Liser defined
₩OKL Ψ	to bottom	sampling	Average	SCS	vadose zone
	of enclosed	depth	soil	soil type	soil vapor
	space floor,	below grade,	temperature, To	(used to estimate	OR permeability, k
	(15 or 200 cm)	_s (cm)	(°C)	permeability)	(cm ²)
	15	152.4	24	S	
MODE	ENTER	ENTER	ENTER	ENTER	ENTER
MORE V	SCS	soil dry	soil total	soil water-filled	flow rate into bldg
	soil type	bulk density,	porosity,	porosity,	(Leave blank to calculate)
	Lookup Soil	ρ _b ^A	n ^v	θw	Q _{soil}
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(L/m)
	-	· •••			
	S	1.5	0.43	0.15	5

DTSC / HERD

Last Update: 11/1/03

SG5 MTBE 73 ug/m³

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4.000	7.30E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1 00F+06	5.00E-03	15	7 113	5 99F-04	2 46F-02	1 80F-04	7 99F-03	137 4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
15	7.30E+01	1.25	8.33E+01	7.99E-03	5.00E+03	1.14E+09	1.01E-03	7.38E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³)⁻¹	(mg/m ³)
2.6E-07	3.0E+00
END]

Report 0547.R2 Appendix H DTSC / HERD Last Update: 11/1/03

SG5 MTBE 73 ug/m³

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.7E-09	1.7E-05

MESSAGE SUMMARY BELOW:

END

SG5 Benzene 310 ug/m³

	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE ↓	below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (^o C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
	15	152.4	24	S		

	ENTER	ENTER	ENTER	
-	Averaging	Averaging		
	time for	time for	Exposure	Exposure
	carcinogens,	noncarcinogens,	duration,	frequency,
	AT _c	AT _{NC}	ED	EF
-	(yrs)	(yrs)	(yrs)	(days/yr)
	70	25	25	250

END

Report 0547.R2 Appendix H

 $\mathsf{Q}_{\mathsf{soil}}$

5

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a [∨] (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	3.10E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	3.10E+02	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	2.86E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

Report 0547.R2 Appendix H DTSC / HERD Last Update: 11/1/03

SG5 Benzene 310 ug/m³

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.0E-06	6.5E-03

MESSAGE SUMMARY BELOW:

END

Γ

SG-SCREEN A Version 2.0; 04/ Reset to Defaults	ENTER Chemical CAS No. (numbers only, no dashes)	Soil ENTER Soil gas conc., C _g (µg/m ³)	Gas Concentration	n Data ENTER Soil gas conc., C _g (ppmv)	DTSC Vapor Intrusion Guidance Interim Final 12/04 (last modified 2/4/09) Chemical		
	108883	2.70E+01	ן			Toluene	
	ENTER	ENTER	ENTER	ENTER		ENTER	
MORE ↓	Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)	
	15	152.4	24	S			
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ _w ^V (cm ³ /cm ³)		ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)	
	S	1.5	0.43	0.15		5	

ENTER

Exposure

duration,

ED

(yrs)

25

ENTER

Exposure

frequency, EF

(days/yr)

250

SG5 Toluene 27 ug/m³

Report 0547.R2 Appendix H

MORE ↓

END

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

25

Page 1 of 3

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.70E+01	3.39E+04
Area of enclosed space below grade, A_B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	2.70E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	2.47E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
END]

Report 0547.R2 Appendix H DTSC / HERD Last Update: 11/1/03

Page 2 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NΔ	5.6E-05

MESSAGE SUMMARY BELOW:

END

Γ

	(µg/m ³)		conc., C _g (ppmv)	DTSC Vapor Intrusion Guidance Interim Final 12/04 (last modified 2/4/09) Chemical		
100414	6.60E+00				Ethylbenzene	
ENTER Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	ENTER Soil gas sampling depth below grade, L _s (cm)	ENTER Average soil temperature, T _s (°C)	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vadose zone soil vapor permeability, k _v (cm ²)	
15	152.4	24	S			
ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pb ^A (g/cm ³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm ³ /cm ³)		ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)	
	no dashes) 100414 ENTER Depth below grade to bottom of enclosed space floor, LF (15 or 200 cm) 15 ENTER Vandose zone SCS soil type Lookup Soil Parameters S	no dashes) (μg/m³) 100414 6.60E+00 ENTER ENTER Depth below grade to bottom sampling of enclosed depth below grade Soil gas to bottom sampling of enclosed depth below grade, Ls LF Ls (15 or 200 cm) (cm) 15 152.4 ENTER ENTER Vandose zone soil dry soil type bulk density, Lookup Soil pb ^A Parameters (g/cm³)	no dashes) $(\mu g/m^3)$ 1004146.60E+00ENTERENTERDepthSoil gas to bottombelow grade to bottomSoil gas depthof enclosed space floor, LFdepth below grade, temperature, LSLFLSTS(15 or 200 cm)15152.424ENTER Vandose zone SCS soil dry soil typeENTER bulk density, ρ_b^A (g/cm³)S1.50.43	no dashes) $(\mu g/m^3)$ $(ppmv)$ 1004146.60E+00ENTERDepthbelow gradeSoil gasto bottomsamplingAverageSoilspace floor,below grade,LFLsTsTs(15 or 200 cm)(cm)15152.424SENTERENTERVadose zoneSoil drysoil drysoil typeLookup SoilParameters(g/cm³)(unitless)S1516	no dashes) $(\mu g/m^3)$ $(ppmv)$ 1004146.60E+00(ppmv)1004146.60E+00ENTERENTERENTERDepthbelow gradeSoil gasto bottomsamplingAveragespace floor,below grade,temperature,L _F L _s T _s (15 or 200 cm)(cm)15152.424Soil typesoil otalsoil typesoil drysoil typesoil drysoil typevadose zoneSoil typesoil drysoil typebulk density, ρ_b^A n^V ρ_w^V Parameters(g/cm³)S15	no dashes) $(\mu g/m^3)$ $(ppmv)$ Chemical1004146.60E+00EthylbenzeneENTER Depth below grade to bottom space floor, L_F ENTER L_s ENTER temperature, temperature, L_F ENTER L_S ENTER $C(m^2)$ ENTER $C(m^2)$ ENTER vadose zone soli vapor 15ENTER $C(m^2)$ Chemical ENTER Vadose zone soli vapor permeability)User-defined vadose zone soli vapor permeability)ENTER Vadose zone SCS soli typeENTER Vadose zone soli vapor permeability)ChemicalENTER Vadose zone SCS soli type bulk density, ParametersENTER (g/cm ³)ENTER Vadose zone soli total porosity, η^V ENTER θ_q^V ENTER Qagoil θ_q^V S150.430.155

MORE ¥ ENTER ENTER ENTER ENTER Averaging Averaging time for time for Exposure Exposure carcinogens, noncarcinogens, duration, frequency, EF AT_c $\mathsf{AT}_{\mathsf{NC}}$ ED (days/yr) (yrs) (yrs) (yrs) 25 70 25 250 END

DTSC Indoor Air Guidance

Unclassified Soil Screening Model

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^{\vee} (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall perimeter, X _{crack} (cm)	Soil gas conc. (µg/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	6.60E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06 Convection path length, L _p (cm)	5.00E-03 Source vapor conc., C _{source} (μg/m ³)	15 Crack radius, r _{crack} (cm)	9,994 Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	7.43E-03 Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	3.05E-01 Area of crack, A _{crack} (cm ²)	1.80E-04 Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	5.85E-03 Infinite source indoor attenuation coefficient, α (unitless)	137.4 Infinite source bldg. conc., C _{building} (μg/m ³)
15	6 60E+00	1 25	8 33E+01	5.85E-03	5.00E+03	2 36E+12	8 32E-04	5/0E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	

Report 0547.R2 Appendix H DTSC / HERD Last Update: 11/1/03

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
3.4E-09	3.8E-06

MESSAGE SUMMARY BELOW:

END

Г

SG-SCREEN A Version 2.0; 04/ Reset to Defaults	ENTER Chemical CAS No. (numbers only, no dashes)	Soil ENTER Soil gas conc., C _g (µg/m ³)	Gas Concentration	n Data ENTER Soil gas conc., C _g (ppmv)	DTSC Vapor Intrusion Guidance Interim Final 12/04 (last modified 2/4/09) Chemical		ince
	106423	2.80E+01				p-Xylene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)	
	45	452.4	04	,			
MORE ↓	15 ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³)	24 ENTER Vadose zone soil total porosity, n ^V (unitless)	S ENTER Vadose zone soil water-filled porosity, θ _w ^V (cm ³ /cm ³)	(Lea	ENTER Average vapor flow rate into bldg. ave blank to calculate) Q _{soil} (L/m) 5	1

SG5 m,p-Xylene 28 ug/m³

Report 0547.R2

MORE ↓

END

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

25

ENTER

Exposure

duration,

ED

(yrs)

25

ENTER

Exposure

frequency, EF

(days/yr)

250

Appendix H

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	2.80E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{⊤S} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	2.80E+01	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	2.37E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
	_
END	1

Report 0547.R2 Appendix H DTSC / HERD Last Update: 11/1/03

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	1 6E-04

MESSAGE SUMMARY BELOW:

END

Г

SG-SCREEN PA Version 2.0; 04/		Soil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04	
Reset to Defaults	ENTER Chemical CAS No. (numbers only, no dashes)	ENTER Soil gas conc., C _g (µg/m ³)	OR	ENTER Soil gas conc., C _g (ppmv)		(last modified 2/4/09) Chemical	
	95476	5.80E+00]			o-Xylene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed space floor, L _F	Soil gas sampling depth below grade, L _s	Average soil temperature, T _S	Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v	
	(15 or 200 cm) 15	(cm) 152.4	(°C) 24	permeability) S		(cm²)	
More ↓	ENTER Vandose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled		ENTER Average vapor flow rate into bldg.	
	soil type Lookup Soil Parameters	bulk density, ρ _b ^A (g/cm ³)	porosity, n ^V (unitless)	porosity, θ_w^{\vee} (cm ³ /cm ³)		(Leave blank to calculate) Q _{soil} (L/m)	
	S	1.5	0.43	0.15		5	

ENTER

Exposure

duration,

ED

(yrs)

25

ENTER

Exposure

frequency, EF

(days/yr)

250

SG5 o-Xylene 5.8 ug/m³

Report 0547.R2 Appendix H

MORE ↓

END

ENTER

Averaging

time for

carcinogens,

AT_c

(yrs)

70

ENTER

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

25

Page 1 of 3

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^{\vee} (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	5.80E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	5.80E+00	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	5.31E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
NA	1.0E-01
	_
END]

Report 0547.R2 Appendix H DTSC / HERD Last Update: 11/1/03

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	3.6E-05

MESSAGE SUMMARY BELOW:

END

Г

APPENDIX I

Soil Gas Model Sensitivity Analysis Risk and Hazard Calculation Work Sheets

	<mark>E NT E R</mark> Depth	ENTER	ENTER	ENTER		ENTER
MORE	below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	S oil gas s ampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
	15	45.72	24	SI		

30

350

30

END

70

Report 0547.R2 Appendix I

 $\mathsf{Q}_{\mathsf{soil}}$

5

S ource- building separation, L _T	Vadose zone s oil air-filled porosity, θ_a^{V}	Vadose zone effective total fluid saturation, S _{te}	Vadose zone s oil intrinsic permeability, k _i	Vadose zone soil relative air permeab ility, k _{rg}	Vadose zone soil e ffective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm [°] /cm [°])	(cm ^{-/} cm ⁻)	(cm ⁻)	(cm ⁻)	(cm ⁻)	(cm)	(µg/m²)	(cm²/s)
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+00 3.	39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's la w constan t at ave. soil temperatu re, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{Ts} (g/cm-s)	Vadose zone effective d iffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7.977	5.29E-03	2.17E-01	1.80E-04	6.86 E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet nu mber, exp(Pe ^f) (unitless)	Infinite source indoor attenu ation coefficient, α (unitless)	Infinite s ource bldg. conc., C _{building} (μg/m ³)
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E -03	1.22E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

Report 0547.R2 Appendix I

DTSC / HERD Last Update: 11/1/03 Page 2 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model

Benzene 6.8 ug/m³ Scenario 1

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev

						DTSC
/ersion 2.0; 04/03		C _1		Data		Vapor Intrusion Guidance
Reset to Defaults	ENTER Chemical	ENTER S oil gas	OR	ENTER S oil gas		(last modified 2/4/09)
	CAS No. (numbers only,	conc., C _g		conc., C _g		
	no dashes)	(µg/m³)	_	(ppmv)		Chemical
	71432	6.80E+00]			Benzene
	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE	below grade to bottom	S oil gas s ampling	Average	Vados e zone S C S		User-defined vadose zone
	of anclos od	donth	6 011			COIL VAPOR
	of enclosed space floor, L _F	depth below grade, L _s	s oli temperature, T _s	soil type used to estimate soil vapor	OR	soil vapor permeability, k _v
	of enclos ed space floor, L _F (15 or 200 cm)	depth below grade, L _s (cm)	soli temperature, T _s (°C)	soil type used to estimate soil vapor permeability)	OR	soil vapor permeability, k _v (cm ²)

MORE					
	ENTER	ENTER	ENTER	ENTER	
	Averaging time for carcinogens, AT _c (yrs)	Averaging time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)	
	70	30	30	350	
END	ן				

DTSC Indoor Air Guidance

Unclassified Soil Screening Model

ENTER

 Q_{soil}

(L/m)

5

S ource- building separation, L _T (cm)	Vadose zone s oil air-filled porosity, θ_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone s oil intrinsic permeability, k _i (cm ²)	Vadose zone s oil relative air permeab ility, k _{rg} (cm ²)	Vadose zone s oil e ffective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	B ldg. ventilation rate, Q _{building} (cm ³ /s)
(c)	(4)	(/ /	(0)	(0)	(0)	(em)	(µ9,,	(0.0.70)
30.72	0.280	0.263	6.80E-09	0.833	5.67E-09	4,000	6.80E+00 3.	39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,Ts} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's la w constan t at ave. soil temperatu re, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{Ts} (g/cm-s)	Vadose zone effective d iffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	8.071	3.45E-03	1.46E-01	1.77E-04	6.86 E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet nu mber, exp(Pe ^f) (unitless)	Infinite source indoor attenu ation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E -03	1.22E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

Report 0547.R2 Appendix I

DTSC / HERD Last Update: 11/1/03 Page 2 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model
INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev

SG-SCREEN Version 2.0: 04/03						DTSC Vapor Intrusion Guidance
		Soil	Gas Concentration	Data		Interim Final 12/04
Reset to	ENTER	ENTER		ENTER		(last modified 2/4/09)
Dofaulto		S oil		S oil		
Delauits	Chemical	gas	OR	gas		
	CAS No.	conc.,		conc.,		
	(numbers only,	Cg		Cg		
	no dashes)	(µg/m ³)	-	(ppmv)		Chemical
	71432	6.80E+00	1	r – – – –		Renzene
MORE	ENTER Depth below grade to bottom of enclosed space floor,	ENTER S oil gas s a mpling depth below grade,	ENTER Average soil temperature,	ENTER Vadose zone SCS soil type used to estimate	OR	ENTER User-defined vadose zone soil vapor permeability,
	LF	Ls	I _S	soil vapor		κ _ν
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
	15	45.72	24	CL		
MORE	ENTER Vandose zone	ENTER Vadose zone	ENTER Vadose zone	<mark>ENTER</mark> Vadose zone		ENTER Average vapor
	SCS	soil dry	soil total	soil water-filled		flow rate into bldg.

	ENTER	ENTER	ENTER	ENTER	
	Averaging	Averaging			
	time for	time for	Exposure	Exposure	
	carcinogens,	noncarcinogens,	duration,	frequency,	
	AT _C	AT NC	ED	EF	
	(yrs)	(yrs)	(yrs)	(days/yr)	
	70	30	30	350	
END					

DTSC Indoor Air Guidance

Unclassified Soil Screening Model

 $\mathsf{Q}_{\mathsf{soil}}$

(L/m)

S ource- building separation, L _T	Vadose zone s oil air-filled porosity, θ_a^V	Vadose zone effective total fluid saturation, S _{te}	Vadose zone s oil intrinsic permeability, k _i	Vadose zone soil relative air permeab ility, k _{rg}	Vadose zone s oil e ffective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	B ldg. ventilation rate, Q _{building}
(cm)	(cm [°] /cm [°])	(cm /cm)	(cm)	(cm)	(cm)	(cm)	(µg/m²)	(cm /s)
30.72	0.280	0.202	1.29E-09	0.891	1.15E-09	4,000	6.80E+00 3.	39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v.Ts} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's la w constan t at ave. soil temperatu re, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{Ts} (g/cm-s)	Vadose zone effective d iffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7.977	5.29E-03	2.17E-01	1.80E-04	6.86 E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet nu mber, exp(Pe ^f) (unitless)	Infinite source indoor attenu ation coefficient, α (unitless)	Infinite s ource bldg. conc., C _{building} (μg/m ³)
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E -03	1.22E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)⁻¹	(mg/m ³)
2.9E-05	3.0E-02
	_
END]

Report 0547.R2 Appendix I

DTSC / HERD Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04

MESSAGE SUMMARY BELOW:

Benzene 6.8 ug/m ³
Scenario 4

SG-SCREEN A Version 2.0; 04/03		Soil	Gas Concentration	Data		DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER S oil gas conc., C _g	OR	ENTER Soil gas conc., Cg		(last modified 2/4/09)
	no dashes)	(µg/m³)	-	(ppmv)		Chemical
	71432	6.80E+00]			Benzene
MORE	ENTER Depth below grade to bottom of enclosed	ENTER Soil gas sampling depth	ENTER Average soil	ENTER Vadose zone SCS soil type		ENTER User-defined vadose zone soil vapor
	space floor, L _F (15 or 200 cm)	below grade, L _s (cm)	temperature, T _s (°C)	used to estimate soil vapor permeability)	OR	permeability, k_v (cm ²)
	15	45.72	24	S		
MORE	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vados e zone soil dry bulk density, p_ ^A (g/cm ³)	ENTER Vadose zone soil total porosity, n ^v (unitless)	ENTER Vadose zone soil water-filled porosity, θ _w ^V (cm ³ /cm ³)	(ENTER Average vapor flow rate into bldg. Leave blank to calculate) Q _{soll} (L/m)

Report 0547.R2 Appendix I

Page 1 of 3

S ource- building separation, L _T	Vadose zone s oil air-filled porosity, θ_a^V	Vadose zone effective total fluid saturation, S _{te}	Vadose zone s oil intrinsic permeability, k _i	Vadose zone soil relative air permeab ility, k _{rg}	Vadose zone soil e ffective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	B ldg. ventilation rate, Q _{building}
(cm)	(cm [°] /cm [°])	(cm /cm)	(cm)	(cm)	(cm)	(cm)	(µg/m²)	(cm /s)
30.72	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	6.80E+00 3.	39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v.Ts} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's la w constan t at ave. soil temperatu re, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{Ts} (g/cm-s)	Vadose zone effective d iffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7.977	5.29E-03	2.17E-01	1.80E-04	6.86 E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet nu mber, exp(Pe ^f) (unitless)	Infinite source indoor attenu ation coefficient, α (unitless)	Infinite s ource bldg. conc., C _{building} (μg/m ³)
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E -03	1.22E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)⁻¹	(mg/m ³)
2.9E-05	3.0E-02
	_
END]

Report 0547.R2 Appendix I

DTSC / HERD Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN Version 2.0; 04/03		Soi	l Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04
Reset to Defaults	ENTER Chemical CAS No.	ENTER S oil gas conc.,	OR	ENTER S oil gas conc.,		(last modified 2/4/09)
	(numbers only, no dashes)	C _g (μg/m ³)	_	(ppmv)		Chemical
	71432	6.80E+00]			Benzene
	ENTER Depth	ENTER	ENTER	ENTER		ENTER
MORE	below grade to bottom of enclos ed space floor,	S oil gas s a mpling depth below grade, L _s	Average soil temperature, T _s	Vadose zone SCS soil type lused to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v
	-r					
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)

INIONE					
	ENTER	ENTER	ENTER	ENTER	
	Averaging	Averaging			
	time for	time for	Exposure	Exposure	
	carcinogens,	noncarcinogens,	duration,	frequency,	
	AT _C	AT NC	ED	EF	
	(yrs)	(yrs)	(yrs)	(days/yr)	
	70	30	30	350	
	•				
END					

DTSC / HERD

Last Update: 11/1/03

А

DTSC Indoor Air Guidance

Unclassified Soil Screening Model

ENTER

Average vapor

 Q_{soil}

(L/m)

S ource- building separation, L _T	$\begin{array}{c} \text{Vadose zone} \\ \text{s oil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\ V} \end{array}$	Vadose zone effective total fluid saturation, S _{te}	Vadose zone s oil intrinsic permeability, k _i	Vadose zone s oil relative air permeab ility, k _{rg}	Vadose zone s oil e ffective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+00 3.	39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,Ts} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's la w constan t at ave. soil temperatu re, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{Ts} (g/cm-s)	Vadose zone effective d iffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86 E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet nu mber, exp(Pe ^f) (unitless)	Infinite source indoor attenu ation coefficient, α (unitless)	Infinite s ource bldg. conc., C _{building} (μg/m ³)
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E -04	6.27E-03

Unit		
risk	Reference	
factor,	conc.,	
URF	RfC	
(µg/m³) ⁻¹	(mg/m ³)	_
2.9E-05	3.0E-02	
		-
END		

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
7.5E-08	2.0E-04

MESSAGE SUMMARY BELOW:

SG-SCREEN A Version 2.0; 04/03		Soil	Gas Concontration	Data		DTSC Vapor Intrusion Guidance Intorim Final 12/04
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER S oil gas conc., C _g	OR	ENTER S oil gas conc., C _g		(last modified 2/4/09)
	no dashes)	(µg/m³)	-	(ppmv)		Chemical
	71432	6.80E+00]			Benzene
MORE	ENTER Depth below grade to bottom of enclosed space floor, Le	ENTER Soil gas sampling depth below grade, L,	ENTER Average soil temperature, Ts	ENTER Vadose zone SCS soil type used to estimate soil vapor	OR	ENTER User-defined vadose zone soil vapor permeability, k.
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
	15	304.8	24	SI		
MORE	ENTER Vandose zone SCS soil type Lookup Soil	ENTER Vados e zone soil dry bulk density, ρ _b ^Å	ENTER Vadose zone soil total porosity, n ^V	$\begin{array}{c} \textbf{ENTER}\\ Vados e \ zone\\ soil \ water-filled\\ porosity,\\ \theta_w^{\ V}\end{array}$	(I	ENTER Average vapor flow rate into bldg. Leave blank to calculate) Q _{soil}

ED

(days/yr)

350

(yrs)

30

AT NC

(yrs)

30

AT_c

(yrs)

70

Report 0547.R2 Appendix I

END

Page 1 of 3

(L/m)

S ource- building separation, L _T	Vadose zone s oil air-filled porosity, θ_a^V	Vadose zone effective total fluid saturation, S te	Vadose zone s oil intrinsic permeability, k _i	Vadose zone s oil relative air permeab ility, k _{rg}	Vadose zone soil e ffective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm³/s)
289.8	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+00 3.	39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,Ts} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's la w constan t at ave. soil temperatu re, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{Ts} (g/cm-s)	Vadose zone effective d iffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7.977	5.29E-03	2.17E-01	1.80E-04	6.86 E-03	289.8
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet nu mber, exp(Pe ^f) (unitless)	Infinite source indoor attenu ation coefficient, α (unitless)	Infinite s ource bldg. conc., C _{building} (μg/m ³)
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	5.44E -04	3.70E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.4E-08	1.2E-04

MESSAGE SUMMARY BELOW:

Benzene 100 ug/m ³	
Scenario 7	

Version 2.0: 04/03						DTSC Vapor Intrusion Guidance
		Soi	I Gas Concentratio	n Data		Interim Final 12/04
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER S oil gas conc., C _g	OR	ENTER S oil gas conc., C _g		(last modified 2/4/09)
	no dashes)	(µg/m³)	_	(ppmv)		Chemical
	71432	1.00E+02]			Benzene
	ENTER	ENTER	ENTER	ENTER		ENTER
MORE	below grade to bottom of enclos ed space floor,	S oil gas s ampling depth below grade,	Average s oil temperature,	Vadose zone SCS soil type used to estimate	OR	User-defined vadose zone soil vapor permeability,
	L _F (15 or 200 cm)	L _s (cm)	۱ _s (°C)	soil vapor permeability)		κ _v (cm ²)
		45.70	24			
				6.1		

MORE	ENTER Averaging	ENTER Averaging	ENTER	ENTER	
	time for carcinogens AT _C (yrs)	time for , noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)	
END	70	30	30	350	

DTSC Indoor Air Guidance

Unclassified Soil Screening Model

 $\mathsf{Q}_{\mathsf{soil}}$

(L/m)

	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Floor-		
Source-	s oil	effective	soil	soil	soil	wall		Bldg.
building	air-filled	total fluid	intrinsic	relative air	e ffective vapor	seam	Soil	ventilation
separation,	porosity,	saturation,	permeability,	permeab ility,	permeability,	perimeter,	gas	rate,
LT	θ_{a}^{v}	S _{te}	k _i	k _{rg}	k _v	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)
20.72	0.200	0.262	6.015.00	0.022	5 755 00	4.000	1 005 00 0	205 - 0.4
30.72	0.280	0.263	6.91E-09	0.833	5./5E-09	4,000	1.poe+02 3.	39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's la w	Vapor	zone	
space	to-total	depth	vaporization at	constant at	constan tat	viscosity at	effective	Diffusion
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	d iffusion	path
grade,	ratio,	grade,	temperature,	temperature,	temperatu re,	temperature,	coefficient,	length,
A _B	η	Z _{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	D ^{eff} _V	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86 E-03	30.72
						Exponent of	Infinite	
			Average	Crack		equivalent	source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenu ation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	nu mber,	coefficient,	conc.,
Lp	C source	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^f)	α	C building
(cm)	(µg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m³)
15	1.00E+02	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E -03	1.79E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
2.1E-06	5.7E-03			

MESSAGE SUMMARY BELOW:

Benzene 1,000 ug/m ³	
Scenario 8	

SG-SCREEN A Version 2.0; 04/03						DTSC Vapor Intrusion Guidance
		Soi	l Gas Concentratio	n Data		Interim Final 12/04
Reset to	ENTER	ENTER		ENTER		(last modified 2/4/09)
Defaults		S oil		S oil		
	Chemical	gas	OR	gas		
	CAS No.	conc.,		conc.,		
	(numbers only,	Cg		Cg		
	no dashes)	(µg/m³)	_	(ppmv)		Chemical
	71432	1.00E+03	٦			Benzene
	ENTER	ENTER	ENTER	ENTER		ENTER
	ENTER	ENTER	ENTER	ENTER		ENTER
	Depth					
MORE	Depth below grade	S oil gas		Vadose zone		User-defined
MORE	Depth below grade to bottom	S oil gas sampling	Average	Vados e zone S C S		User-defined vadose zone
MORE	Depth below grade to bottom of enclosed	S oil gas s ampling depth	Average soil	Vadose zone SCS soil type		User-defined vadose zone soil vapor
MORE	Depth below grade to bottom of enclos ed space floor.	S oil gas s ampling depth below grade.	Average s oil temperature.	Vadose zone SCS soil type used to estimate	OR	User-defined vadose zone soil vapor permeability.
MORE	Depth below grade to bottom of enclos ed space floor, L _F	S oil gas s ampling depth below grade, Ls	Average s oil temperature, Ts	Vadose zone SCS soil type used to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v
MORE	Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	S oil gas s ampling depth below grade, L _s (cm)	Average soil temperature, T _s (°C)	Vadose zone SCS soil type used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
MORE	Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	S oil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _s (°C)	Vados e zone SCS soil type used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)

	ENTER	ENTER	ENTER	ENTER	
	Averaging	Averaging			
	time for	time for	Exposure	Exposure	
	carcinogens,	noncarcinogens,	duration,	frequency,	
	AT _C	AT NC	ED	EF	
	(yrs)	(yrs)	(yrs)	(days/yr)	
	70	30	30	350	
END					

DTSC Indoor Air Guidance

Unclassified Soil Screening Model

ENTER

 $\mathsf{Q}_{\mathsf{soil}}$

(L/m)

	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Floor-		
Source-	s oil	effective	soil	s oil	soil	wall		Bldg.
building	air-filled	total fluid	intrinsic	relative air	e ffective vapor	seam	Soil	ventilation
separation,	porosity,	saturation,	permeability,	permeab ility,	permeability,	perimeter,	gas	rate,
LT	θ_{a}^{v}	S _{te}	k _i	k _{rg}	k _v	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)
20.72	0.200	0.262	C 015 00	0.022		4 000	1 005 0 2	205 - 04
30.72	0.280	0.263	6.91E-09	0.833	5./5E-09	4,000	1.poe+03 3.	39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's la w	Vapor	zone	
space	to-total	depth	vaporization at	constant at	constan t at	viscosity at	effective	Diffusion
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	d iffusion	path
grade,	ratio,	grade,	temperature,	temperature,	temperatu re,	temperature,	coefficient,	length,
A _B	η	Z _{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	D ^{eff} _V	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm)
4 995 94	5 005 00	1 45		5 005 00	0.475.04	1 005 04	<u>, , , , , , , , , , , , , , , , , , , </u>	20.70
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86 E-03	30.72
						Exponent of	Infinite	
			Average	Crack		equivalent	source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenu ation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	nu mber,	coefficient,	conc.,
Lp	C source	r _{crack}	Q _{soil}	D ^{crack}	A _{crack}	exp(Pe ^f)	α	C building
(cm)	(µg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m³)
15	1.005 - 02	1.25	0.225.01	C 0(F 0)	E 00E : 02	2 505 - 10	1 705 02	1 705 : 00
15	1.00E+03	1.25	8.33E+01	0.80E-03	5.00E+03	3.50E+10	1./9E -03	1./9E+00

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)⁻¹	(mg/m ³)
2.9E-05	3.0E-02
	_
END	1

Report 0547.R2 Appendix I

DTSC / HERD Last Update: 11/1/03

Benzene 1,000 ug/m³ Scenario 8

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
2.1E-05	5.7E-02			

MESSAGE SUMMARY BELOW: