WELL INSTALLATION AND QUARTERLY GROUNDWATER MONITORING REPORT **SECOND QUARTER 1997**

for

Chevron/RMC Lonestar Facility CPS #206142 333 23rd Avenue Oakland, California

Report No. 6338.01-1

Prepared for:

Mr. Bob Cochran Chevron Products Company P.O. Box 6004 San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

> Barbara Sieminski Project Geologist

R.G. 6676

Stephen J. Carter, RG Senior Geologist

September 10, 1997

No. 6676

97 SEP 16 PH 3: 16 TRANSMITTAL

TO: Mr. Barney Chan

Alameda County Health Care Serv. Agency PROJECT #: 6338.01

1131 Harbor Bay Parkway, #250

Alameda, CA 94502-6577

DATE: September 10, 1997

SUBJECT: Well Installation and Quarterly

Groundwater Monitoring Report Second Quarter 1997, Chevron/RMC Lonestar Facility CPS #206142, 333 23rd Avenue,

Oakland, California.

FROM:

Barbara Sieminski Project Geologist Gettler-Ryan, Inc. 7647 Sierra Court, Ste J Dublin, California 94568

WE ARE SENDING YOU:

[] For your files

COPIES DA	ATED	DESCRIPTION					
1 9	/10/97	Well Installation and Quarter Groundwater Monitoring Report, Secon Quarter 1997, Chevron/RMC Lonest Facility CPS #206142, 333 23rd Avenu Oakland, California.					
THESE ARE TRANSMITTED	as checked below:						
[] For review and comment	[] Approved as submit	tted [] Resubmit copies for approval					
[X] As requested	[] Approved as noted	[] Submit copies for distribution					
[] For approval	[] Return for correction	ons [] Return corrected prints					

cc: Mr. Bob Cochran, Chevron Products Company

Mr. Greg Gurss, Gettler-Ryan, Inc.

Mr. Kevin Graves, Regional Water Quality Control Board, San Francisco Bay Region (certified mail)

TABLE OF CONTENTS

EXECUTIVE	SUMMARY	
1.0 INTROE	OUCTION	
2.0 SITE DE	ESCRIPTION	
	eneral	
2.2 G	eology and Hydrogeology	· · · · · · · · · · · · · · · · · · ·
3.0 FIELD V	WORK	.
	rilling Activities	
3.2 V	Vell Development and Sampling	
3.3 V	Fellhead Survey	
	aboratory Analysis	
	· · · · · · · · · · · · · · · · · · ·	
	ubsurface Condition	
	nalytical Results	
	USIONS	
6.0 REFERE	ENCES	
	TABLES	
Table 1:		ilte
Table 1:	Water Level Data and Groundwater Analytical Resu	ılts
Table 2:	Water Level Data and Groundwater Analytical Resu Field Parameters/Analytical Results	ılts
	Water Level Data and Groundwater Analytical Resu	ılts
Table 2:	Water Level Data and Groundwater Analytical Resu Field Parameters/Analytical Results	ılts
Table 2: Table 3:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES	ılts
Table 2: Table 3: Figure 1:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map	ılts
Table 2: Table 3: Figure 1: Figure 2:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map Potentiometric Map	ılts
Table 2: Table 3: Figure 1:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map	ılts
Table 2: Table 3: Figure 1: Figure 2:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map Potentiometric Map	ılts
Table 2: Table 3: Figure 1: Figure 2: Figure 3:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map Potentiometric Map Underground Utility Location Map APPENDICES	ılts
Table 2: Table 3: Figure 1: Figure 2: Figure 3:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map Potentiometric Map Underground Utility Location Map APPENDICES GR Field Methods and Procedures	ılts
Table 2: Table 3: Figure 1: Figure 2: Figure 3: Appendix A: Appendix B:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map Potentiometric Map Underground Utility Location Map APPENDICES GR Field Methods and Procedures Well Installation Permit and Boring Log	ılts
Table 2: Table 3: Figure 1: Figure 2: Figure 3: Appendix A: Appendix B: Appendix C:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map Potentiometric Map Underground Utility Location Map APPENDICES GR Field Methods and Procedures Well Installation Permit and Boring Log Well Development and Sampling Field Data Sheets	ılts
Table 2: Table 3: Figure 1: Figure 2: Figure 3: Appendix A: Appendix B: Appendix C: Appendix D:	Water Level Data and Groundwater Analytical Results Field Parameters/Analytical Results Soil Analytical Results FIGURES Vicinity Map Potentiometric Map Underground Utility Location Map APPENDICES GR Field Methods and Procedures Well Installation Permit and Boring Log	

WELL INSTALLATION AND QUARTERLY GROUNDWATER MONITORING REPORT SECOND QUARTER 1997

for
Chevron/RMC Lonestar Facility CPS #206142
333 23rd Avenue
Oakland, California

Report No. 6338.01-1

1.0 INTRODUCTION

This report summarizes the results of a well installation and the second quarter 1997 groundwater monitoring and sampling performed at RMC/Lonestar Facility CPS #206142, located at 333 23rd Avenue in Oakland, California. The well installation was performed at the request of Chevron Products Company (Chevron) to replace well MW-4. The scope of work included: obtaining the required drilling permit; drilling one on-site soil boring and installing a groundwater monitoring well in this boring; collecting soil samples for chemical analysis; developing the newly installed well; sampling the newly installed well in conjunction with the quarterly groundwater monitoring and sampling of preexisting site wells; surveying wellhead elevations of all site wells; arranging for Chevron's contractor to dispose of the waste materials; and preparing a report documenting the work.

2.0 SITE DESCRIPTION

2.1 General

The subject site is an active cement mixing plant located on the western corner of the intersection of 23rd Avenue and Kennedy Street in Oakland, California (Figure 1). The site facilities include a fueling station which is situated in the central portion of the site. Thirteen groundwater monitoring wells (MW-1 through MW-13) and two recovery wells (R-1 and R-2) have been installed at the site to evaluate soil and groundwater conditions beneath the site and to facilitate groundwater remediation. Groundwater monitoring wells MW-2, MW-3 and MW-6 were abandoned prior to December 1992. Currently, the groundwater monitoring and sampling program includes wells MW-1, MW-8, and MW-11. The well locations and existing site features are shown on Figure 2.

EXECUTIVE SUMMARY

Gettler-Ryan Inc. (GR) presents this report for well installation and second quarter 1997 groundwater monitoring and sampling at RMC Lonestar Facility CPS #206142 located at 333 23rd Avenue in Oakland, California. One on-site soil boring was drilled and groundwater monitoring well MW-14 was installed in this borings during this investigation. Quarterly groundwater monitoring and sampling of site wells including newly installed well MW-14 was performed on June 30, 1997.

Soil encountered in boring MW-14 consisted of clayey gravel with sand to 3 feet feet below ground surface (bgs), underlain by clay to sandy clay to approximately 17 bgs. Fine to medium sand was encountered beneath the clay layer and extended to the total depth explored of 21.5 feet bgs. Groundwater was encountered in boring MW-14 at a depth of approximately 8 feet bgs. Based on the groundwater monitoring data collected on June 30, 1997, shallow groundwater beneath the site appears to flow to the southwest at an approximate gradient of 0.04.

Based on the analytical results from soil samples collected from well MW-14, it appears that soil in the nothwestern portion of the site have not been impacted by petroleum hydrocarbons. Groundwater in the vicinity of well MW-14 contains a low concentration (86 parts per billion [ppb]) of unidentified hydrocarbons in the C9-C24 range. However, based on the EPA Method 8015 with silica gel cleanup analyses result (<50 ppb), these hydrocarbons appear to be due to the presence of biogenic material.

Groundwater in the vicinity of wells MW-1 and MW-8 has been impacted by hydrocarbons at concentrations up to 1,700 ppb of Total Petroleum Hydrocarbons as gasoline (TPHg) and up to 5,300 ppb of weathered diesel (C9-C24). Groundwater in the vicinity of well MW-11 has not been impacted by TPHg, but has been slightly impacted by hydrocarbons in the C9-C24 range. Based on the EPA Method 8015 with silica gel cleanup analyses results, a portion of C9-C24 hydrocarbons in groundwater from wells MW-1 and MW-8 and all C9-C24 hydrocarbons in groundwater from well MW-11 are due to the presence of biogenic materials.

2.2 Geology and Hydrogeology

The subject site is situated at the western edge of the East Bay Plain, approximately 1¼ mile north of San Leandro Bay. The site is a relatively flat lot bordered to the west and southwest by Tidal Canal which separates Alameda Island from the East Bay Plain. The site elevation ranges from approximately 5 to 10 feet above mean sea level.

As mapped by Helley and others (1979), soil in the site vicinity consists of Holocene Bay Mud consisting of unconsolidated water-saturated dark plastic carbonaceous clay and silty clay overlying Pleistocene beach and dune sand deposits (Merrit Sand) consisting of loose, well sorted fine to medium sand. The nearest surface water is Tidal Canal. Based on the historical groundwater monitoring data the groundwater flow in the vicinity of the site is toward the southeast.

3.0 FIELD WORK

Field work was conducted in accordance with GR's Field Methods and Procedures (Appendix A) and the Site Safety Plan dated June 19, 1997. A drilling permit (#97373) was obtained from the Zone 7 Water Agency, and Underground Service Alert was notified prior to drilling at the site. A copy of the permit is included in Appendix B.

3.1 Drilling Activities

On June 20, 1997, a GR geologist observed Bay Area Exploration Services, Inc. (C57 #522125) drill one on-site soil boring and install groundwater monitoring well MW-14 in this boring at the location shown on Figure 2. The boring was drilled to a depth of 21.5 feet bgs using 8-inch hollow-stem augers driven by a truck-mounted CME-55 drill rig. Soil samples were collected every 5 feet. The GR geologist prepared a log of the boring and screened the soil samples in the field for the presence of volatile organic compounds. Field screening data are presented on the boring log (Appendix B).

Well MW-14 was constructed using 15 feet of 2-inch diameter, 0.010-inch machine-slotted Schedule 40 PVC screen. Lonestar #2/12 graded sand was placed in the well across the entire screen interval and extended approximately 1 foot above the top of the screen. The annular space in the well was then sealed with 1 foot of hydrated bentonite chips followed by neat cement. Well construction details are presented on the boring log in Appendix B.

6338,01-1

Drill cuttings were placed on and covered with plastic sheeting and stored on-site pending disposal. After completion of drilling, four samples for disposal characterization were collected from the drill cuttings and submitted to the laboratory for compositing and analysis as sample SP(A-D)COMP. On July 2, 1997, the drill cuttings were removed from the site and transported to the BFI Landfill in Livermore by Integrated Wastestream Management (IWM).

3.2 Well Development and Sampling

On June 30, 1997, groundwater monitoring well MW-14 was developed by GR personnel using a vented surge block and hand-bailing. Depth to water was measured in the well prior to well development. Upon completion of well development, groundwater samples were collected from this well. Preexisting site groundwater monitoring wells MW-1, MW-8, and MW-11 were also monitored and sampled on that date. Water purged during well development and sampling was transported to McKittrick Waste Management by IWM. Groundwater monitoring data are presented in Table 1, and copies of the GR Well Development and Sampling Field Data Sheets are included in Appendix C.

3.3 Wellhead Survey

On July 3, 1997, wells MW-1, MW-5, MW-7 through MW-12, MW-14, R-1 and R-2 were surveyed relative to mean sea level by Virgil Chavez, a California licensed land surveyor (#6323). Wells MW-4 and MW-13 were not surveyed because these wells could not be found. A copy of the survey report is included in Appendix D, and the survey data is summarized in Table 1.

3.4 Laboratory Analysis

Samples were analyzed by Sequoia Analytical in Redwood City, California (ELAP #1210). One soil sample from boring MW-14 and groundwater samples were analyzed for TPHg, benzene, toluene, ethylbenzene and xylenes (BTEX), and Methyl t-Butyl Ether (MTBE) by Environmental Protection Agency (EPA) Methods 8015Mod/8020 and for Total Petroleum Hydrocarbons as diesel (TPHd) by EPA Method 8015 Mod. In addition, groundwater samples were analyzed for TPHd by EPA Method 8015 Mod with silica gel cleanup, for ferrous iron by EPA Method 6010, and for nitrate and suffate by EPA Method 300.0. The composite sample from the drill cuttings was analyzed for TPHg, TPHd, and BTEX. Copies of the laboratory analytical reports and chain-of-custody records are included in Appendix E.

3.

4.0 RESULTS

4.1 Subsurface Conditions

Soil encountered in boring MW-14 consisted of clayey gravel with sand to 3 feet bgs, underlain by clay to silty clay to approximately 17 feet bgs. Fine to medium sand was encountered beneath the clay layer and extended to the total depth explored of 21.5 feet bgs. Groundwater was encountered in boring MW-14 at a depth of approximately 8 feet bgs. Detailed descriptions of the subsurface materials encountered during drilling are presented on the boring log in Appendix B. Based on the groundwater monitoring data collected on June 30, 1997, shallow groundwater beneath the site appears to flow to the southwest at an approximate gradient of 0.04 (Figure 2).

4.2 Analytical Results

The soil sample collected from boring MW-14 at 6 feet bgs did not contain TPHg, TPHd, BTEX or MTBE. Soil chemical analytical data are summarized in Table 3.

The groundwater samples collected from wells MW-1 and MW-8 contained unidentified hydrocarbons in the C10-C12 range (200 ppb and 1,700 ppb, respectively) reported by the laboratory as TPHg. Hydrocarbons in the C9-C24 range (weathered diesel) were detected in these samples at concentrations of 950 ppb (600 ppb with silica gel cleanup) and 5,300 ppb (3,000 ppb with silica gel cleanup), respectively.

The groundwater samples collected from wells MW-11 and MW-14 did not contain TPHg. Unidentified hydrocarbons in the C9-C24 range were detected in these samples using EPA Method 8015 Mod without silica gel cleanup at concentrations of 71 ppb and 86 ppb, respectively, but TPHd were not detected in these samples using EPA Method 8015 with silica gel cleanup.

Benzene or MTBE were not detected in the groundwater samples collected from wells MW-1, MW-8, MW-11 or MW-14. Ferrous iron was detected in these samples at concentrations ranging from 0.015 parts per million (ppm) to 5.6 ppm. Sulfate was detected in these samples at concentrations ranging from 10 ppm to 140 ppm. Nitrate was detected in the groundwater sample collected from well MW-11 at a concentration of 350 ppm, and was not detected in the samples collected from other wells. Groundwater analytical data are summarized in Tables 1 and 2.

6338.01-1

5.0 CONCLUSIONS

Based on the analytical results from soil samples collected from well MW-14, it appears that soil in the nothwestern portion of the site have not been impacted by petroleum hydrocarbons. Groundwater in the vicinity of well MW-14 contains a low concentration (86 parts per billion [ppb]) of unidentified hydrocarbons in the C9-C24 range. However, based on the EPA Method 8015 with silica gel cleanup analyses result (<50 ppb), these hydrocarbons appear to be due to the presence of biogenic material.

Groundwater in the vicinity of wells MW-1 and MW-8 has been impacted by hydrocarbons at concentrations up to 1,700 ppb of TPHg and up to 5,300 ppb of weathered diesel (C9-C24). Groundwater in the vicinity of well MW-11 has not been impacted by TPHg, but has been slightly impacted by hydrocarbons in the C9-C24 range. Based on the EPA Method 8015 with silica gel cleanup analyses results, a portion of C9-C24 hydrocarbons in groundwater from wells MW-1 and MW-8 and all C9-C24 hydrocarbons in groundwater from well MW-11 appear to be due to the presence of biogenic materials.

The letter work plan requested by the Alameda County Health Care Services Agency (ACHCSA) during the meeting of Mr. Greg Gurss (GR) and Mr. Bob Cochran (Chevron) with Mr. Barney Chan (ACHCSA) on May 13, 1997, will be submitted by September 30, 1997.

6.0 REFERENCES

E. J. Helley and others, 1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943.

Gettler-Ryan Inc., June 19, 1997, Site Safety Plan for Chevron/RMC Lonestar Facility CPS #206142, 333 23rd Avenue, Oakland, California, Job No. 6338.01.

5

6338.01-1

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS #206142, 333 - 23rd Avenue, Oakland, California

Well ID/ TOC*	Date	Depth to Water (ft)	GWE **	Product Thickness (ft)	TPH Gasoline <	Benzene	Toluene	Ethyl- benzene ppb	Xylenes	TPH- Diesel ♦	MTBE
MW-1									···		
4.70	12/21/90	9.77	-3.41	2.07						·	
	12/18/93	8.45	-3.73	0.03							
	03/29/94	9.00	-3.94	0.45							
	06/09/94			·				•••			
	10/04/94	8.71	-3.98	, 0 .04							
	12/20/94	8.38	-3.14	0.67			·				
	03/28/95	7.79	-2.69	0.50							
	06/30/95						:				
	09/24/95	7.79	-2.69	0.50							
	12/29/95	Well inac		75-				***			
	03/24/96	7.68	-2.97	0.01	1,400 ⁶	< 0.5	< 0.5	< 0.5	< 0.5	59,000	
	06/16/96	7.86	-3.16		< 500	< 5.0	< 5.0	< 5.0	< 5.0	99,000	
	12/08/96	8.38	-3.68	0.00^{11}	28010	< 0.5	< 0.5	< 0.5	< 0.5	6,700/5,100	< 5.0
10.16	06/30/97	8.65	1.51	0.00	20012	< 0.50	< 0.50	< 0.50	< 0.50	13950/ <i>600^{13,14}</i>	<2.5
MW-2	06/15/89				<200	<0.5	<0.5	<0.5	<0.5	~~~	
	12/92	Well aba	andoned	. 						 .	
							Ĺ				
MW-4											
	05/28/87					< 0.5	< 0.5	< 0.5	< 0.2	< 5.0	
	06/15/89				< 100	< 0.2	< 2.0	< 2.0	< 2.0	< 0.2	
	12/21/90	7.31			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/19/93	6.64			< 50	< 0.5	< 0.5	< 0.5	< 1.5	< 50	
	06/16/93	8.01			210	32	27	2.8	19	< 50	No Print
	12/18/93	7.35			79	0.5	1.2	0.5	1.1	100	
	03/29/94	8.05			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	06/09/94	8.14			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	10/04/94	7.31			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	12/20/94	7.03	***		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/28/95	6.83			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	06/30/95	7.84			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	00,001/0				< 50	< 0.5	< 0.5	< 0.5	< 0.5	110	

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS# 206142, 333 - 23rd Avenue, Oakland, California (continued)

06/15/89	Well ID/ TOC*	Date	Depth to Water (ft)	GWE **	Product Thickness (ft)	TPH Gasoline	Benzene	Toluene	Ethyl- benzene ppb	Xylenes	TPH- Diesel ♦	MTBE
(cont) 03/24/96	MW-4	12/29/95	Well no	t located								
MW-5			7.41			< 50	< 0.5	< 0.5	< 0.5	< 0.5	95	
MW-5 5.43	•	06/16/96	Well no	t located	`					->-		
5.43		12/08/96	Well no	t located	*				;'			
5.43					÷				1			
06/15/89	MW-5				ī							
12/21/90 9.11 -3.68 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5.43										< 5.0	
06/16/93 9.12 -3.69 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		06/15/89										
12/18/93 8.72 -3.29 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5						< 50			< 0.5		< 50	
03/29/94 9.00 -3.57											< 50	
06/09/94 9.36 -3.93 < 50						< 50	< 0.5	< 0.5	< 0.5	< 0.5	690	
10/04/94												
12/20/94 8.10 -2.67 < 50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5			9.36	-3.93		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
03/28/95 8.21 -2.78		10/04/94								-		
06/30/95 8.78 -3.35 < 50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		12/20/94	8.10	-2.67		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
MW-7 4.51		03/28/95	8.21	-2.78								
12/29/95 8.39 -2.96 < 50 <0.5 <0.5 <0.5 <0.5 <0.5 03/24/96		06/30/95	8.78	-3.35		< 50	< 0.5	< 0.5	< 0.5	< 0.5	900	
03/24/96		09/24/95			· ·				•			
06/16/96 8.58 -3.15 < 50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		12/29/95	8.39	-2.96		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
MW-7 4.51 06/15/89 < < < < < < < <		03/24/96							·			
MW-7 4.51 06/15/89 < <100 <0.2 <2.0 <2.0 <2.0 12/21/90 7.90 -3.38 0.01 06/16/93 8.45 -3.94 <50 <0.5 0.9 <0.5 <0.5 12/18/93 8.01 -3.50 <50 <0.5 <0.5 <0.5 03/29/94 8.60 -4.09 <50 <0.5 <0.5 <0.5 <0.5		06/16/96	8.58	-3.15		< 50	< 0.5	< 0.5	<0.5	< 50		
4.51 06/15/89 < 100	•	12/08/96	Discor	ntinued								
4.51 06/15/89 < 100												
12/21/90 7.90 -3.38 0.01		06/15/80				< 100	<0.2	<20	<20	<20		
06/16/93 8.45 -3.94 <50	, T											
12/18/93 8.01 -3.50 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5											< 5 0	
03/29/94 8.60 -4.09 <50 <0.5 <0.5 <0.5											240	
											< 5 0	
											130 ²	
											< 50	
											140	

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS# 206142, 333 - 23rd Avenue, Oakland, California (continued)

Well ID/ TOC*	Date	Depth to Water (ft)	GWE **	Product Thickness (ft)	TPH Gasoline <	Benzene	Toluene	Ethyl- benzene ppb	Xylenes	TPH- Diesel ♦	MTBF
MW-7	03/28/95	7.67	-3.16		<50	<0.5	< 0.5	< 0.5	< 0.5	< 50	
(cont)	06/30/95	8.33	-3.82		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	09/24/95	8.16	-3.65		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	12/29/95	7.51	-3.00		< 50	< 0.5	< 0.5	< 0.5	< 0.5	230⁴	
	03/24/96	7.69	-3.17	0.01	<50	< 0.5	< 0.5	< 0.5	< 0.5	81	
	06/16/96	10.37	-5.86		< 50	< 0.5	< 0.5	< 0.5	< 0.5	190	
	12/08/96	Discon	tinued		~			***			
MW-8											-
4.93	12/21/90	8.53	-3.59	0.02							
	12/18/93					-					
	03/29/94	8.38	-3.46								
	06/09/94										
	12/20/94	7.58	-2.66		<2,500	120	100	. < 25	100	50,000	
	03/28/95	7.08	-2.16								
	06/30/95	8.09	-3.17		< 50	< 0.5	< 0.5	< 0.5	< 0.5	14,000	
	09/24/95	8.45	-3.53		*- -						
	12/29/95	7.47	-2.55		520	< 2.0	< 2.0	< 2.0	< 2.0	25,000	
	03/24/96										
	06/16/96	7.99	-3.07		59°	< 0.5	< 0.5	< 0.5	< 0.5	9,400	
	12/08/96	7.67	-2.74	0.00^{11}	580 ¹⁰	< 0.5	< 0.5	< 0.5	< 0.5	16,000/9,300	< 5.0
10.09	06/30/97	11.65	-1.56	0.00	1,70012	< 5.0	< 5.0	< 5.0	< 5.0	135,300/3, <i>000</i> ^{13,15}	<25
MW-9						•					
4.42	05/28/87			` ;		< 0.5	< 0.5	< 0.5	< 2.0	< 50	
	06/15/89				< 100	< 0.2	< 2.0	< 2.0	< 2.0	. •••	
	12/21/90	7.86		Sheen	< 50	< 0.5	< 0.5	< 0.5	1.0	230	
	06/16/93	8.34	-3.92		< 50	< 0.5	< 0.5	< 0.5	<1.5	< 50	
	12/18/93	7.91	-3.49		<50	< 0.5	< 0.5	<0.5	< 0.5	< 50	
	03/29/94	7.85	-3.43		-3-					•••	
	06/09/94	8.69	-4.27		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	10/04/94										

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS# 206142, 333 - 23rd Avenue, Oakland, California (continued)

Well ID/ TOC*	Date	Depth to Water (ft)	GWE	Product Thickness (ft)	TPH Gasoline	Benzene	Toluene	Ethyl- benzene <i>ppb</i>	Xylenes	TPH- Diesel ♦	MTBI
MW-9	12/20/94	7.60	-3.18		< 50	<0.5	<0.5	<0.5	<0.5	< 50	
(cont)	03/28/95	7.58	-3.16								
(/	06/30/95	8.34	-3.92		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	09/24/95	8.21	-3.79								
	12/29/95	7.48	-3.06		< 50	< 0.5	< 0.5	< 0.5	< 0.5	600	
	03/24/96										
	06/16/96	8.25	-3.83		< 50	< 0.5	< 0.5	< 0.5	< 0.5	810	
	12/08/96	Discon	tinued								
N. 6537. + A			•				-				
MW-10 5.24	06/15/89				< 100	< 0.2	< 2.0	< 2.0	< 2.0		
J.2 4	12/21/90	8.92	-3.68		<50	< 0.5	<0.5	< 0.5	< 0.5	80	
	06/16/93	8.97	-3.73		<50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	12/18/93	7.87	-2.63	-	51 ¹	< 0.5	< 0.5	< 0.5	< 0.5	12,000	
	03/29/94	9.20	-3.96								
	05/29/94	9.20	-3.90 -4.07		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	10/04/94	3.31	-4.07		~50 				~~~		
	10/04/94	8.30	-3.06		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/28/95	8.26	-3.02								
	06/30/95	8.95	-3.71		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	09/24/95	8.87	-3.63								
	12/29/95	8.03	-3.03 -2.79		< 50	< 0.5	< 0.5	< 0.5	< 0.5	1,8005	
	03/24/96	6.03	-4,13	. 		~0.5 				7,000	
		8.77	-3.53		<50	< 0.5	< 0.5	< 0.5	< 0.5	300	
	06/16/96	Discon			~ 50 	~0.5				300	
	12/08/96	Discon	nmuea					222			
MW-11											
4.37	08/21/87					< 0.5	< 0.5	< 0.5	< 2.0	< 0.1	
	06/21/89		~==		< 100	< 0.2	< 2.0	< 2.0	< 2.0	*	
	12/21/90	8.59	~	Sheen	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/19/93	7.57	-3.20		< 50	< 0.5	< 0.5	< 0.5	< 1.5	< 50	
	06/16/93	8.84	-4.47	***	< 50	< 0.5	< 0.5	< 0.5	<1.5	< 50	

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS# 206142, 333 - 23rd Avenue, Oakland, California (continued)

Well ID/ TOC*	Date	Depth to Water (ft)	GWE **	Product Thickness (ft)	TPH Gasoline	Benzene	Toluene	Ethyl- benzene ppb	Xylenes	TPH- Diesel ♦	MTBI
MW-11	12/18/93	8,26	-3.89		<50	<0.5	<0.5	<0.5	<0.5	< 50	
(cont)	03/29/94	9.07	-4.70		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
(cone)	06/09/94	9.14	-4 .77		<50	< 0.5	< 0.5	< 0.5	< 0.5	150 ²	
	10/04/94	7.94	-3.57		< 50	< 0.5	1.0	< 0.5	< 0.5	< 50	
	12/20/94	7.68	-3.31		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/28/95	6.90	-2.53		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	06/30/95	8.81	-4.44		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	09/24/95	8.80	-4.43		< 50	< 0.5	< 0.5	< 0.5	< 0.5	110	
	12/29/95	8.22	-3.85		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/24/96	8.46	-4.09		< 50	< 0.5	< 0.5	< 0.5	< 0.5	80	
	06/16/96	8,74	-4.37		< 50	< 0.5	< 0.5	< 0.5	< 0.5	86 ⁸	
	12/08/96	7,75	-3.38	0.00^{11}	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	< 5.0
6.71	06/30/97	8.63	-1.92	0.00	< 50	< 0.50	< 0.50	< 0.50	< 0.50	$^{13}71/<50$	<2.5
MW-12											
	08/21/87					< 0.5	< 0.5	< 0.5	< 2.0	< 0.1	
	12/18/93										
	03/29/94										
	06/09/943	Well ina	ccessible	-							
MW-13											
4.73	08/21/87			,		< 0.5	< 0.5	< 0.5	< 2.0	< 0.1	
	06/15/89			-	< 100	< 0.2	< 2.0	<2.0	<2.0	·	
	03/19/93	7.62	-2.89		< 50	< 0.5	< 0.5	< 0.5	<1.5	< 50	
	06/16/93	8.56	-3.83		< 50	< 0.5	< 0.5	< 0.5	<1.5	< 50	
	12/18/93	8.11	-3.38	,	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/29/94	8.65	-3.92		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	06/09/94	8.60	-3.87		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	10/04/94	8.31	-3.58		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	12/20/94	7.92	-3.19		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	03/28/95	7.78	-3.05		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	06/30/95										

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS# 206142, 333 - 23rd Avenue, Oakland, California (continued)

Well ID/ TOC*	Date	Depth to Water (ft)	GWE	Product Thickness (ft)	TPH Gasoline <	Benzene	Toluene	Ethyl- benzene ppb	Xylenes	TPH- Diesel ♦	MTBE
		047		V-7				PPU			<u> </u>
MW-13	09/24/95	8.34	-3.61		< 50	< 0.5	< 0.5	< 0.5	< 0.5	180	
(cont)	12/29/95	Well not	located								
` ,	03/24/96 ⁷	7.74	-3.01		< 50.	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	06/16/96	8.07	-3.34		< 50	< 0.5	< 0.5	< 0.5	< 0.5	57	
	12/08/96	Discon		*				·			
			•					ł			
MW-14								•			
5.56	06/30/97	7.48	-1.92	0.00	< 50	< 0.50	< 0.50	< 0.50	< 0.50	¹³ 86/<50	< 2.5
ТВ	03/19/93				< 50	< 0.5	< 0.5	< 0.5	<1.5		
	06/16/93				< 50	< 0.5	< 0.5	< 0.5	< 1.5		
	12/18/93				< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	03/29/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5		
FB	06/09/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5		
TB	12/20/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	03/28/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	06/30/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	09/24/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	12/29/95			•	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	03/24/96			i,	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	06/16/96				< 50	< 0.5	< 0.5	< 0.5	< 0.5	let up ha	
TB-LB	12/08/96				< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 5.0
	06/30/97				< 50	< 0.50	< 0.50	< 0.50	< 0.50		< 2.5

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS# 206142, 333 - 23rd Avenue, Oakland, California (continued)

EXPLANATION:

TOC = Top of Casing

(ft) = Feet

GWE = Groundwater Elevation

TPH-Gasoline = Total Petroleum Hydrocarbons as Gasoline

TPH-Diesel = Total Extractable Petroleum Hydrocarbons as Diesel

MTBE = Methyl tertiary-butyl ether

ppb = Parts per billion

ND = Not detected at detection limit

--- = Not Analyzed/Not Applicable/or (Data) Not Available

ANALYTICAL METHODS:

TPH-Gasoline by EPA Method 8015 BTEX & MTBE by EPA Method 8020 TPH-Diesel - Extraction by EPA Method 3510 TPH-Diesel silica-gel clean up by EPA (Modified) 3630

NOTES:

Water level elevation data and laboratory analytical results prior to December 8, 1996, were complied from Quarterly Groundwater Monitoring Reports prepared for Chevron by Geraghty & Miller, Inc.

- * Elevations surveyed on 09/26/93 by Field Designs relative to City of Oakland Benchmark #3457 and corrected to Mean Sea Level (msl). (Benchmark datum is 2.998 feet off of msl.)
- ** Groundwater Elevation is corrected for the presence of separate-phase hydrocarbons and is calculated as follows: [(TOC-DTW) + (Product Thickness x 0.8)]. 0.8 is the assumed specific gravity of free-phase hydrocarbons.
- *** Site surveyed by Virgil Chavez Land Surveying on 07/03/1997. The benchmark for the survey was a cut square in the northerly curb of East 7th Street, at the east return at the northeast corner of East 7th Street and Peterson Street. Benchmark elevation: 17.91 feet, msl.
- Analytical results are reported as follows: TPH as Diesel\TPH as Diesel w/silicagel cleanup.

Table 1. Water Level Data & Groundwater Analytical Results - Chevron/RMC Lonestar Facility CPS# 206142, 333 - 23rd Avenue, Oakland, California (continued)

NOTES(continued):

- Laboratory reports that the chromatogram does not match typical gasoline pattern.
- Laboratory reports that the chromatogram does not match typical diesel pattern; lighter hydrocarbons present.
- MW-12 inaccessible due to the accumulation of silt, sand and gravel in the well casing.
- Laboratory report indicates the presence of unidentified hydrocarbons > C16.
- Laboratory report indicates the presence of diesel and unidentified hydrocarbons > C16.
- Laboratory report indicates the presence of unidentified hydrocarbons > C8.
- MW-13 also analyzed for Total Dissolved Solids (TDS) by USEPA Method 160.1. Laboratory reported a concentration of 1,600 mg/L.
- Laboratory report indicates the presence of unidentified hydrocarbons > C18.
- Laboratory report indicates the presence of unidentified hydrocarbons > C9.
- Laboratory report indicates the hydrocarbons in the gasoline range do not match the gasoline standard pattern.
- 11 Sheen previously reported in error.
- Laboratory report indicates unidentified hydrocarbons C10-C12.
- ¹³ Laboratory report indicates weathered diesel C9-C24.
- Additional silica gel cleanup performed on sample. First result was 600¹³ ppb; Second result reported in table.
- Additional silica gel cleanup performed on sample. First result was 3,100¹³ ppb; Second result reported in table.

6338.tqm

Table 2. Field Parameters/Analytical Results - Chevron\RMC Lonestar Facility CPS#206142, 333 - 23rd Avenue, Oakland, California

Well ID	Date	Oxidation Reduction Potential (mV)	Dissolved Oxygen	Nitrate	Sulfate mg/l	Ferrous Iron	Phosphate	Ammonia
MW-1	11/09/95		0.90					
141 44 -1	06/17/96		1.34	(>5.0)			2.0	>10
	12/08/96*	P**	1.39	13	14	2.6		
	06/30/97*1	-16.5	1.00	<1.0	10	5.6		
MW-4	11/09/95		0.37	0.2			0	0.01
	06/16/96	Well not located						
	12/08/96	Well not located						_11.00
MW-5	11/09/95		0.85	0.1			1.5	0.1
	06/16/96	-16	0.78					
MW-7	11/09/95		0.42					
	06/16/96 ^t	Lu=	OR	(>5.0)			4.0	(>10)
MW-8	11/09/95		0.95					
	06/16/96		0.29	0			0.6	0.6
	12/08/96*	-35	0.51	< 0.10	3.0	6.1		
	06/30/97*1	-50.2	9.50	<1.0	17	0.22		
MW-9	11/09/95		0.58					
	06/16/96 ¹		14.66	(>5.0')			> 10	1.0
MW-10	11/09/95		1.49					
	06/16/96		3.30	···· 1.0 ···			6.0	>10
MW-11	11/09/95	· 	0.52	0.2			5.0	0.1
	06/16/96		0.25					
	12/08/96*	165	0.31	340	99	< 0.010		
	06/30/97*1	-10	2.99	350	140	0.015		
MW-13	11/09/95	Well not located						
	06/16/96*		0.52	0.1	:		0.4	0.2
MW-14	06/30/97*	-31.2	4.56	<1.0	41	0.29	n==	

Table 2. Field Parameters/Analytical Results - Chevron\RMC Lonestar Facility CPS#206142, 333 - 23rd Avenue, Oakland, California (continued)

Well ID	Date	Oxidation Reduction Potential (mV)	Dissolved Oxygen	Nitrate	Sulfate mg/L	Ferrous Iron	Phosphate	Ammonia
R-2	11/09/95		0.44	0.6			0	0
Α	11/09/95		0.42	1			0.00	4

EXPLANATIONS:

mV = Millivolts

mg/L = Miligrams per liter

--- = Not Measured/Not Analyzed

OR = Over-range of instrument

NOTES:

Data prior to December 8, 1996, was provided by Geraghty & Miller, Inc.

- * Measurement after purging. See actual field sheets for complete readings/measurements.
- ORC removed before field measurement recorded.

6338.01-1

Table 3. Soil Analytical Results - Chevron/RMC Lonestar Facility CPS #206142, 333 23rd Avenue, Oakland, California.

Sample ID	Depth (feet)	Date	TPHg <	Benzene	Toluene	Ethylbenzeneppm	Xylenes	MTBE	TPHd >
MW14-6	6.0	06/20/97	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.025	<1.0
SP(A-D)COMP	_	06/20/97	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	3.5 ¹	

EXPLANATION:

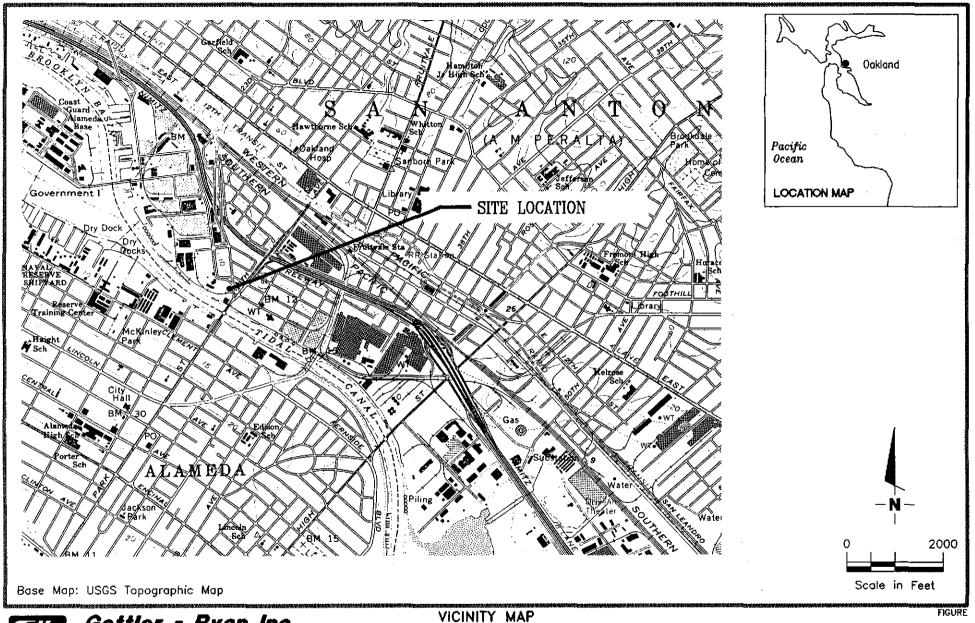
TPHg - Total Petroleum Hydrocarbons as gasoline

MTBE - Methyl t-Butyl Ether

TPHd - Total Petroleum Hydrocarbons as diesel

ppm - Parts per million

- - Not analyzed/not applicable

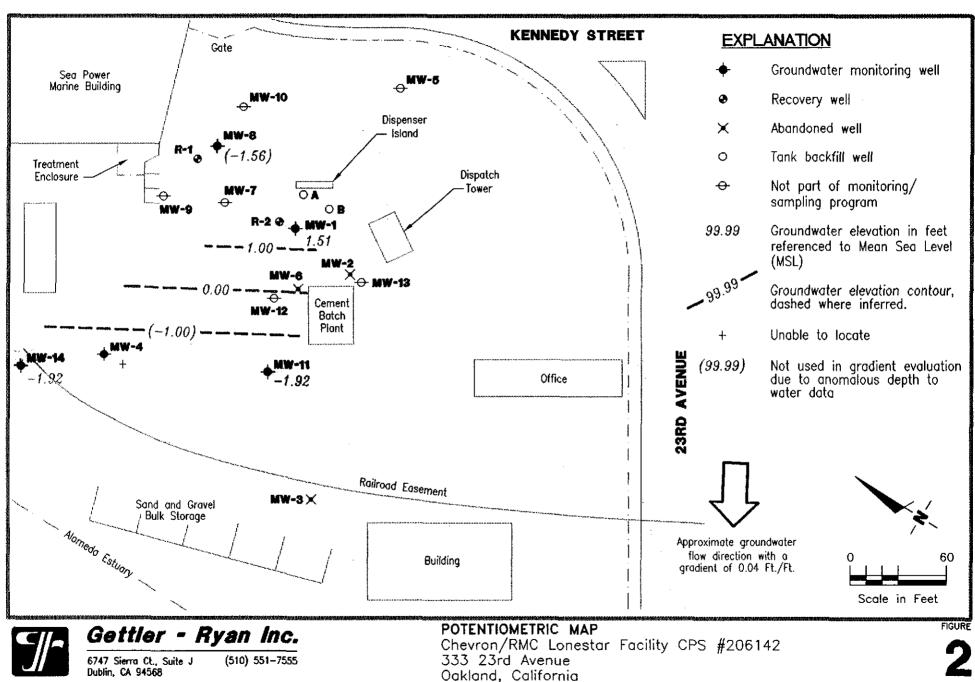

ANALYTICAL METHODS:

TPHg and TPHd - EPA Method 8015Mod Benzene, toluene, ethylbenzene, xylenes, and MTBE - EPA Method 8020

ANALYTICAL LABORATORY:

Sequoia Analytical (ELAP #1210)

6338.01-1



Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568 (510) 551-7555

Chevron/RCM Lonestar Facility CPS #206142 333 23rd Avenue Oakland, California

JOB NUMBER REVIEWED BY DATE REVISED DATE 6338 July, 1997

DATE

July, 1997

JOS NUMBER

6338.01

REVIEWED BY

REVISED DATE

APPENDIX A G-R FIELD METHODS AND PROCEDURES

GETTLER - RYAN FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan, Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the of these plans contents prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Exploratory soil borings are drilled by a California-licensed well driller. A GR geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples are collected from the exploratory soil boring with a split-barrel sampler or other appropriate sampling device fitted with clean brass or stainless steel liners. The sampling device is driven approximately 18 inches with a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler each successive 6 inches is recorded on the boring log. The encountered soil is described using the Unified Soil Classification System (ASTM 2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Samples are selected for chemical analysis based on:

- a. depth relative to underground storage tanks and existing ground surface
- b. depth relative to known or suspected groundwater
- c. presence or absence of contaminant migration pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- f. presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing some soil from one of the sample tubes not retained for chemical analysis and immediately covering the end of the tube with a plastic cap. The PID probe is inserted into the headspace inside the tube through a hole in the plastic cap. Head-space screening results are recorded on the boring log.

Head-space screening procedures are performed and results recorded as reconnaissance data. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Stockpile Sampling

Stockpile samples consist of four individual sample liners collected from each 100 cubic yards (yd³) of stockpiled soil material. Four arbitrary points on the stockpiled material are chosen, and discrete soil sample is collected at each of these points. Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless steel or brass tube into the stockpiled material with a wooden mallet or hand driven soil sampling device. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled, placed in the cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Construction of Monitoring Wells

Monitoring wells are constructed in the exploratory borings with Schedule 40 polyvinyl Chloride (PVC) casing. All joints are thread-joined; no glues, cements, or solvents are used in well construction. The screened interval is constructed of machine-slotted PVC well screen which generally extends from the total well depth to a point above the groundwater. An appropriately-sized sorted sand is placed in the annular space adjacent to the entire screened interval. A bentonite transition seal is placed in the annular space above the sand, and the remaining annular space is sealed with neat cement or cement grout.

Wellheads are protected with water-resistant traffic rated vault boxes placed flush with the ground surface. The top of the well casing is sealed with a locking cap. A lock is placed on the well cap to prevent vandalism and unintentional introduction of materials into the well.

Storing and Sampling of Drill Cuttings

Drill cuttings are stockpiled on plastic sheeting or stored in drums depending on site conditions and regulatory requirements. Stockpile samples are collected and analyzed on the basis of one composite sample per 50 cubic yards of soil. Stockpile samples are composed of four discrete soil samples, each collected from an arbitrary location on the stockpile. The four discrete samples are then composited in the laboratory prior to analysis.

Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless or brass sample tube into the stockpiled material with a hand, mallet, or drive sampler. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Wellhead Survey

The top of the newly-installed well casing is surveyed by a California-licensed Land Surveyor to mean sea level (MSL).

Well Development

The purpose of well development is to improve hydraulic communication between the well and surrounding aquifer. Prior to development, each well is monitored for the presence of separate-phase hydrocarbons and the depth-to-water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Groundwater Monitoring and Sampling

Decontamination Procedures

All physical parameter measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

Water-Level Measurements

Prior to sampling each well, the static water level is measured using an electric sounder and/or calibrated portable oil-water interface probe. Both static water-level and separate-phase product thickness are measured to the nearest ± 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest ± 0.01 foot with a decimal scale tape. The monofilament line used to lower the bailer is replaced between borings with new line to preclude the possibility of cross-contamination. Field observations (e.g. product color, turbidity, water color, odors, etc.) are noted. Water-levels are measured in wells with known or suspected lowest dissolved chemical concentrations to the highest dissolved concentrations.

Sample Collection and Labeling

A temporary PVC screen is installed in the boring to facilitate a grab groundwater sample collection. Samples of groundwater are collected from the surface of the water in each well or boring using the teflon bailer or a pump. The water samples are then gently poured into laboratory-cleaned containers and sealed with teflon-lined caps, and inspected for air bubbles to check for headspace. The samples are then labeled by an adhesive label, noted in permanent ink, and promptly placed in an ice storage. A Chain-of-Custody Record is initiated and updated throughout handling of the samples, and accompanies the samples to the laboratory certified by the State of California for analyses requested.

APPENDIX B

WELL INSTALLATION PERMIT AND BORING LOG

91992

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE

Stephy! Center, RG 0210 6/9/97

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 482-3914

DRILLING PERMIT APPLICATION

Address 3 16 Gold Caup Dr. #240 Voice 916-52/-320 City Rautho Crists CA Zp 95670 Type Ox PROJECT Well Construction Geotechnical investigation Cathodic Protection General Geotechnical investigation Marier Supply Gontamination Water Supply Gontamination PROPOSED WATER Supply Well, USE Domestio Includina Other Demistio Includina Other DRILLING METHOD: Mud Rotary Air Rotary Auger X Cable Other DRILLER'S LICENSE NO. 522/25 DMI Hole Diameter In. Number Casing Diameter Gin. Depth 4t. Number (Multimater) CEOTECHNICAL PROJECTS Number of Borings Maximum Depth In. ESTIMATED STARTING DATE Zone 7 citica five days prior to proceed dathing date. Submit to Zone 7 within 60 days after completion of permitt work the edignal Depth 10 work the edignal Depth 4t. Number In. Zone 7 citica five days prior to proceed dathing date (Submit to Zone 7 within 60 days after completion of Permits work the edignal Depth Work the edignal Depth 4t. Submit to Zone 7 within 60 days after completion of Permits work the edignal Depth In. Submit to Zone 7 within 60 days after completion of Water Resources Water Work the edignal Depth Work the edignal D	FOR APPLICANT TO COMPLETE	FOR OFFICE USE
Name Cheven Roducts Address Rolls 6004 Voice (\$16) 617-2655 City Sark Raman, A Zp 77733 Applicant Name Getter Ruen Trc. Address Sim Gold Camp Dr. 2200 Voice 916-637-1517 Address Sim Gold Camp Dr. 2200 Voice 916-637-1517 Address Sim Gold Camp Dr. 2200 Voice 916-637-1517 Address Sim Gold Camp Dr. 2200 Voice 916-637-1510 City Rank (the Continue) Cap 956-70 City Rank (the Continue) Cap 956-70 Well Construction Cathodic Protection General Manitoring Well Destruction Water Supply Mentioning Well Destruction PROPOSED WATER SUPPLY WELL USE Domestic Incutorial Notice Municipal Intigation ORILLING METHOD: Mud Rotary Air Rotary Cable Other DRILLING METHOD: Well PROJECTS Drill Hole Clameter Surface Seel Depth In. Destin Agents application should be submitted and at proposed data as a to arrive at 2 and recall fine days prior to proposed data as a translation of processed data in the cap and the water Well work to end of the well Projects, or dilling logs and location sketch for year decision sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year project, or dilling logs and location sketch for year Project, or dilling logs and location sketch for year Project, or dilling logs and location sketch for year Project, or dilling logs and location sketch for year Project, or dilling logs and location sketch for year Project, or dilling logs and location sketch for year Project, or dilling logs and location sketch for year Proj	353 23rd Avenue	Let first 1 Land to the control of t
Name Gettler-Rec Inc. Gree Gures Fax 9/6-53-15/7 Address 3kM Solic Cawp IV. 4740 Voice 9/6-63/-390 City Routho Cordwa, A Zp 95670 City Routho Cordwa, A Zp 95670 Cahadia Protection Geolechnical Investigation Cathodia Protection General Supply Well Construction Water Supply Well Destruction PROPOSED WATER SUPPLY WELL USE Dementio Inclustria Other DRILLING METHOD: Multipland I Rigation DRILLER'S LICENSE NO. 522/25 Well PROJECTS Drill Hole Diameter Casing Diameter Inc. Casing Diameter Inc. Number of Borings Hole Diameter Inc. Number of Borings Hole Diameter Inc. Depth Address Starting Date ESTIMATED STARTING DATE Apernit application should be submitted an as to entwe at 5 and east of arrive at 1. A permit application should be submitted an as to entwe at 1. A permit application should be submitted and set of projects, as to entwe at 1. A permit application should be submitted and set of entire in 2 and or office filted days after completion of permitted work the original perment of water Resources Water Water Water Resources Water Water Resources Water Water Water Resources Water Water Resources Water Water Resources Water Water Water Resources Water Water Water Resources Water Water Water Resources Water Water Resources Water Water Resources Water Resources Water Water Water Water Water Water Water Water Water Resources Water Water Water Water Water Water Water Water Water Resources Water Water Water Water Water Water Water Water Water Resources Water Water Water Water Water Water Water Water Water Resources Water Water Water Water Water Water Water Water Water Resources Water Water Water Water Water Water Water Water Wat	Name Chevron Products Company Address P.O. Box 6004 Voice (5/6) 842-9655	
Well Construction Cathodic Protection Cathodic Protection Cathodic Protection Cathodic Protection Water Supply Monitoring Well Cestruction PROPOSED WATER SUPPLY WELL USE Domestic Industrial Cathodic Protection Cathodic Protection Water Supply Monitoring Well Cestruction PROPOSED WATER SUPPLY WELL USE Domestic Industrial Other Cathodic Protection Cathodic Protection Cathodic Protection Well Cestruction Contect Cathodic Protection Cathodic Protection Cathodic Protection with compactate dutings or death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation wells unless a losser death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation wells unless a losser death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation wells unless a losser death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation wells unless a losser death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation wells unless a losser death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation wells unless a losser death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation wells unless a losser death is specially approved. Minimum seel depth for monitoring wells in the maximum depth protatolate or 20 feet for domestic and irrigation or 20 feet for domestic and	Name Gettler-Ryan Ivc. Gree Gures Fax 9/6-63/-15/7 Address 3/64 Gold Comp Dr. #240 Voice 9/6-63/-1300	A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitted.
PROPOSED WATER SUPPLY WELL USE Domestic Inclustrial Other Drilling Method: Municipal Irrigation DRILLING METHOD: Mud Rotary Air Rotary Auger X Cable Other DRILLER'S LICENSE NO. 52.2 (2.5) Drill Hole Diameter In. Number (Municipal Starting Depth 1.1) Depth Augur X Depth In. Number (Municipal Starting Depth 1.1) Depth Augur X DECOTECHNICAL PROJECTS Number of Borings Hole Diameter In. Depth In. Number (Municipal Starting Depth In.	Well Construction Geotechnical Investigation Cathodic Protection General Water Supply Contamination	Ortilers Report or equivalent for well Projects, or drilling legs and location sketch for geotechnical projects. 3. Permit is void it project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS
Mud Rotary Air Rotary Cable Other Other ORILLER'S LICENSE NO. 522125 DRILLER'S LICENSE NO.	Domestio Industrial Other Municipal Irrigation	placed by tramin. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for
WELL PROJECTS Drill Hole Diameter In. Meximum E. WELL DESTRUCTION. See attached. Casing Diameter in. Depth 20 ft. Surface Seat Depth # ft. Number (MW-V) GEOTECHNICAL PROJECTS Number of Borings Hole Diameter In. Depth ft. ESTIMATED STARTING DATE 6 18 97	Mud Rotary Air Rotary Auger X Cable Onter	O. GEOTECHNICAL. Backlill bare hole with compacted cuttings or theky bentonite and upper two feat with compacted material. In areas of known or suspected contamination, tremind coment grout shall be used in place of compacted cuttings.
OEOTECHNICAL PROJECTS Number of Borings Maximum Hole Clamater In. Depth tt. ESTIMATED STARTING DATE 6/18/97	Orbi Hote Diameter In. Maximum Casing Diameter in. Depth 20 ft.	tremie. E. WELL DESTRUCTION. See attached.
	GEOTECHNICAL PROJECTS Number of Borings Maximum	•
i hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	ESTIMATED COMPLETION DATE Thereby agree to comply with all requirements of this permit and Alameda	Approved Wynnen Hong Date 18 Jun 97

			-	·		
		MAJOR DIVI	SIONS			TYPICAL NAMES
	SVE .	GRAVELS MORE THAN HALF COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	CLEAN GRAVELS WITH LITTLE OR NO FINES	GW		WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
). 200 SIE			GP		POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
	D SOILS THAN NO		GRAVELS WITH OVER 15% FINES	GM		SILTY GRAVELS, SILTY GRAVELS WITH SAND
	GRAINE			GC		CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
	COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO. 200 SIEVE	SANDS MORE THAN HALF COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	CLEAN SANDS WITH LITTLE OR NO FINES SANDS WITH	sw		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
	C ETHAN F			SP		POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
	MOR			SM		SILTY SANDS WITH OR WITHOUT GRAVEL
			OVER 15% FINES	sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL
	SIEVE	SILTS AND CLAYS LIQUIO LIMIT 50% OR LESS		ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
	ILS NO. 200			CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
	NED SOILS ER THAN NO					ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
	FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO, 200 SIEVE			МН		INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
	FINAN HA	SILTS AND CLAYS ·				INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
	MORE					ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
		HIGHLY OR	GANIC SOILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS
					1	
			•			- No Soil Sample Recovered
						- "Undisturbed" Sample
	LL	- Liquid Limit (·			- Bulk or Classification Sample
PI - Plastic Index (%) PID - Volatile Vapors in ppm					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- First En∞untered Ground Water Level
					¥	- Piezometric Ground Water Level
MA - Particle Size Analysis 2.5 YR 6/2 - Soil Color according to Munsell Soil Color Charts (1975 Edition)						
						enetration - Sample drive hammer weight - 140 pounds falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs
	5 GY 5/2 - GSA Rock Color Chart					

Unified Soil Classification - ASTM D 2488-85 and Key to Test Data

Gettler-Ryan, Inc.					an,	Inc.		Log of Boring MW-14				
PRO.	JECT:	Che	vron/RMC	Lon	esta	r Facili	ity CPS #206142	LOCATION: 333 23rd Avenue, Oakland, CA				
G-R PROJECT NO.: 6338.01					'			SURFACE ELEVATION: 5.56 feet MSL				
DAT	E STA	RTED	: 06/20,	/97				WL (ft. bgs): 8.0 DATE: 06/20/97 TIME: 15:00				
DAT	E FIN	SHE	D: 06/20	/97				WL (ft. bgs); 8.0 DATE: 06/20/97	TIME: 16:20			
ORIL	LING	мЕТН	00: <i>8 in</i>	. Ho	llow S	Stem A	uger	TOTAL DEPTH: 21.5 Feet				
DRILLING COMPANY: Bay Area Exploration, Inc.						xplora	tion, Inc.	GEOLOGIST: Barbara Sieminski				
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		EOLOGIC DESCRIPTION	MELL DIAGRAM WESTER Coment			
_				_		GC	PAVEMENT - co	ncrete.	10000000000000000000000000000000000000			
	28		MW14-3			00	(5Y 3/1), moist,	. WITH SAND (GC) – very dark gray dense: 40% fine to coarse gravel, ne to coarse sand.	The state of the s			
5-	41	11	MW14-8	-		СН	CLAY (CH) - black (5Y 2.5/I), moist, stiff, high plasticity; 100% clay; Bay Mud. Color changes to gray (2.5Y 3/0), up to 5% fine to coarse sand at 8 feet. CL CLAY (CL) - pale brown (10YR 6/3), saturated, medium stiff, medium plasticity; 100% clay. CL SANDY CLAY (CL) - light yellowish brown (2.5Y 8/4), saturated, medium stiff, low plasticity; 60% clay, 40% fine to coarse sand.					
10-	43	8	MW14-11			CL						
15-	35	9	MW14-16	-		CL						
20-	57	32	MW14-21			SP	SAND (SP) – lig saturated, dens	SAND (SP) – light yellowish brown (2.5Y 6/4), saturated, dense; 100% fine to medium sand.				
-							(* = converted to equivalent standard penetration blows/ft.)					
25-								1				
30-				-] - -							
-					1							
35-]	1 -	1				1			

APPENDIX C

WELL DEVELOPMENT AND SAMPLING FIELD DATA SHEETS

MONITORING WELL OBSERVATION SUMMARY SHEET

CHEVRON #:	ENIC	Crestar	G-R J08 #:	G3381	85
LOCATION:	333 23	3rd Ave	DATE: _	6- 30	-97
CITY:	Oakland	CA	TIME:		· · · · · · · · · · · · · · · · · · ·
Well ID	Total Depth	Depth to -Water	Product Thickness	TOB or TOC	Comments
ANW-1	1810	8.65:	<u>.</u>	- 7cc	
NNW-8	1817	.11.65			
MW 11	2014	8,63			
MNW-14	20.0	7.48	<u> </u>	<u>_</u>	<u></u>
				· .	· · · · · · · · · · · · · · · · · · ·
	· · · · · ·			•	<u> </u>
			· ·		
•	•				•
	 .		<u> </u>	•	•
					
			· · · · · · · · · · · · · · · · · · ·		·
			 ,	·	
Comments:		·			
		• • •			
"Sampler:	10		Assistant:		
•					

Site:	Chevron # PM/C (austor	Job#	6338.81
	333 235 Ave	Date:	6-30-97
	& Cakland CH		

Well	Time	Volume	рН	Conduct -ivity	Temp.	D-Ox.	Redox	Total Alkalinity
MUTY	1650	2c	7					
		22	7.58	219	191/	7.36	-33.7	2.X
		24	7.55	204	14.2	7.06	-32.C	50C
		26	7,57	210	1911	4.83	-31.9	5.52
		28	7.56	204	19.4	4.54-	31.2	200
						je i i i i i i i i i i i i i i i i i i i		
MWTI	17:32	0						
	1734	2	7.36	286	19.8	2.27	-22.7	325
	1736	4	7.44	290	19.3	2.93	-25.0	30
	1738	6	7.45	293	20:0	3.00	-2511	<i>300</i>
-	1742	7	7.45	290	19.8	2.99	-25.0	35
NW-1	1800	0	08	c in	well			
	1806	6.2	7.89	211	17.8	61.1	-49,3	350
	1812	125	7.29	180	17.8	1:05	-16.5	300
	1818	18,75	7.29	187	17.7	067	76.5	325
	1824	19.0	7.29	188	17.7	1100	76.5	30c
MW 8	1837	0	869	080	(N) CU	eci		
	1840	4.8	7.85 8	69278	((OR	-103,3	1400
	1843	9.6		\$5 248		957	-49.8	1350
	1846	14,4	7.80	· · · · · · · · · · · · · · · · · · ·	20.4	9,48	-50.1	1400
	1846	15.0	7.82	253	20.3	9.50	- 562	1500
	10/3							

WELL SAMPLING FIELD DATA SHEET

SAMPLER	FICHIC		DATE	6-30-97
ADDRESS	_ 333 23 ^r	Hue	J08 #	6338.85
CITY	51 Oaklar	ed cut	SS# 	LIVIC (onestane
Well 1D	MW-1	Well Condition	Ok	ay
Well Location Descrip	ntion	** ****		·
Well Diameter	2"-(y")in	Hydrocarbon Thic	kness	
Total Depth	_ 181 ·ft	Volume	z* = 0.17	6° = 1.50 12° = 5.30
Depth to Liquid	8165 ft	Factor	3" = 0.38	
# of casing 3X Volume	9:35	0117 (0166)×	4° = 0.66 (VF) <u>6/17</u> #E	stimated /8/02 gal.
Purge Equipment	Stack	Sampling Equipme	// /	Volume .
Did well dewater	No -	If yes, Time	Volume	
Starting Time	:180	Purging Flow Rate		1.02 gpm.
Sampling Time	18 cm			•
Time 1806	7,8 8	Conductivity	Temperatu	re Volume
1812	7:79	180	17.8	12.5
1818	7,29		17.7	
- Igaey	1167			19,00
Weather Conditions	Clia	v & Bre	PZ / · · ·	
Water Color:	Cliav		Odor:	Mar
Sediment Description		Mone _		
			1	
<i>:</i>		BORATORY INFORM		
Samole 10	Container Re 3x40m1 VCA	Y Hu	Type Lab	Analysis 4 5 BY NITHE
	2x/iuv Ambu	1 Na	1	Duse
	LIX STUMI POH	Hic		Revers Ive
<u> </u>	1 x 100ml Pely	Mac	#	Marin Sy
Comments	····		·	·
	0.00		[Plan	ct
7	1KC 1:11	Well	2 1010	. /
	• • • • • • • • •	/ . · · · · · · · · · · · · · · · · · ·	1 - 1 - 1	ivi well
1 : 1	icozed of	When I'l	1.42/01/11	s in well

WELL SAMPLING FIELD DATA SHEET

SAMPLER	F16/1126	·	DATE	<u>(e-30-47</u>
ADDRESS	333 2354	Ave	J08 #	G338.85
CITY	& Oakland	d CH	SS#	LIVIC (cressane.
Well ID	MW-8	Well Condition	O/ra	·/
Well Location Descript	· / // —	*	· · · · · · · · · · · · · · · · · · ·	
Well Diameter	2" (4") in	Hydrocarbon Thick	kness .	
Total Depth	1817 te	Volume	2" = 0.17	5" = 1.50 12" = 5.80
Depth to Liquid	11:65 to	Factor -	3" = 0.38	
# of casing 3 X	7.05 ×	0.17 - (0.66)	•	timated 13.9 gal.
Purge Equipment	Stack.	Sampling Equipme	3) 1	Volume
Did well dewater	No -	If yes, Time	Volume	•
Starting Time Sampling Time	18:37	Purging Flow Rate	e/	116 gpm.
Time į S 4C)	8.69	Conductivity 278	Temperatur	e Volume G18
1843 1846.	7.85 7.80	<u> 248</u> <u> 250</u>	2014 2014	14,4
	7.52	253	<u>· 2013</u>	
Weather Conditions	Clia	v & Bre	ez /	
Water Color:	Cliar		Odor:	11/1/C:
Sediment Description	· · · · · · · · · · · · · · · · · · ·	More	· · · · · · · · · · · · · · · · · · ·	
	LAB	ORATORY INFORM	LATION	
Sample IO	Container Ref		Type Lab	Analysis · (COBI)3 NITBE
Mw-8	3x4cm1 VCA Y	I Ha	SRQ	Diese 1
	1 X SWMI POH	Hic		Mayon Synt
Comments	y x lawn for y	Alou		
. · —	701	11011-4	1 13/cak	() Blacks
	IRC. 10. U			

WELL SAMPLING FIELD DATA SHEET

SAMPLER	F.Clin	<u>C</u> .	DATE	6-30-47
ADORESS	333 <i>23</i> 4	- Ave		6338.85
CITY	SI Calcla	nd CV	\$\$#	EINC Constane.
Well ID	MW - 11	Well Condition	O.K	ay
Well Location Descr	iption	** ***		
Well Diameter	(21) - 4" in	Hydrocarbon T	nickness :	
Total Depth	20,4 to	Valuma	2" = 0.17	6° = 1.50 12° = 5.80
Depth to Liquid	863 to	Factor	· 3° = 0.38	
# of casing 3 K	1/179	× (2.17) -0.66	4" = 0.55 /_x(VF)	purge
Purge Equipment	Stack	Sampling Equi	pment Bail	Volume
Did well dewater	<u>No -</u>	If yes, Time	Volume	
Starting Time Sampling Time	1732	Purging Flow f	Rate	gpm.
Time 1734 1736 1738 1748	7,36 7,49 7,45 7,45	Conductivity 286 290 293 290	Temperation 1918 1918 2010 1918	Volume Volume G 7
Weather Conditions		av & B	reez/	
Water Color:	Cliar		/ Odor:	
Sediment Description	on	Mone		
	L	ABORATORY INFO	MATION	
Sample ID			tive Type Lab	zizylenA
N.w-11	3x40m1 VCA	y Hu	5,80	45B13 1/17150
	2x/inv And	Hic _		Revers Ive
#	1 x Stumi POH	1 Mar	#	Moren Sulla
Comments_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1000		
•	•			

SAMPLER	Fictine		DATE	6-30-97
ADDRESS	333 23 B	The	JOB #	6338,01
CITY	Octland	(H)	SS#	EMC Conestav
Well 10	MW-14	Well Condition	Ok.	a y
Well Location Descript	ion	· · · · · · · · · · · · · · · · · · ·		
Well Diameter	2" in	Hydrocarbon Thick	iness	
•	20' ft	Volume	2* = 0.17	6" = 1.50 12" = 5.80
Total Depth	- 11.5C			0 = 1.50 12 = 5.80
Depth to Liquid .	1,98 ft	Factor	3° = 0.38	· · · · · · · · · · · · · · · · · · ·
# of casing Volume	× 20.21	(VF) (O) 1 1 x(4" = 0.66 VF]	purge
Purge Equipment	STAUC /Baile	Sampling Equipme	nt <u>P. Ba.</u>	Volume V & ~
Did well dewater	No -	If yes, Time	Volume	·
Starting Time	16:20	Purging Flow Rate		lapa gpm
Sampling Time	16:58	Por 15 mian	* ; ;	
	Sarge well	FOV 13 MINAN	.دے. • Temperatu	re Volume
Time /6:32	7, 7/	Conductivity 2 <i>5</i> 9	19.0	S
14.34	7.76	200	[91]	4
16:36	7,73	286	18,7	- 6
16.38 .	7.82	292	1817	
16:40	7.GU	216-	18,5	
COUL	7.62	- <u>- 7/6</u>	18/3	
11,99	7.62	213	<u> 18,7</u>	
1646	7.65	216	186	
1048		217		
1450	7.65	216	1817	- 22 20 29 22
1454	7.58	214	19.7.	2G 24
Weather Conditions	_7,55 *	204	1917	
1,5 Water Color:	7.57	210	19,1,0dor:	
Sediment Description	7150	- 204	1917	
Jediment Description		ORATORY INFORM	ATION	
Sample 10	Container Rel		Type Lab	Analysis Analysis
MW-14	3140mluat	Hu Hu	SRY	GUSBINI MI
	2x/10- Amber	90-		Diesel
	LX SUGMI Pely	1 ita	_+-	Alivaces Sul
Comments <u>\</u>	lell develor	pront (n	onitor a Sa	/ ^
Wegiti	char		· - /, /	lo Ordon -

war color char

C1547 377

APPENDIX D WELLHEAD SURVEY REPORT

Virgil Chavez Land Surveying

312 Georgia Street, Suite 200 Vallejo, California 94590 (707) 553-2476

July 17, 1997 Project No. 1104-69

Barbara Sieminski Gettler-Ryan, Inc. 6747 Sierra Ct. Suite J Dublin, Ca. 94568

Subject: Monitoring Well Survey

Chevron/RMC Lonestar Facility

333 23rd Avenue Oakland, Ca.

Dear Barbara:

This is to confirm that we have proceeded at your request to survey the monitoring wells at the above referenced location. Our findings are shown in the tables below. The survey was performed on July 3, 1997. The benchmark for the survey was a cut square in the northerly curb of East 7th Street, at the east return at the northeast corner of East 7th Street and Peterson Street. Measurement locations were marked at the approximate north side of top of box. The second table is for top of casing locations, using the top of curb on the northerly side of 23rd Avenue, using the northeasterly top of rail (of the railroad tracks running through the site) as reference line.

Benchmark Elevation 17.91 feet, MSL.

Well No.	Rim Elevation	TOC Elevation
MW - 1 MW - 2	12.17' abandoned	10.16′
MW - 3	abandoned	•
MW - 4	not found	
MW - 5	11.28′	11.11'
MW - 6	abandoned	
MW - 7	10,38′	10.15'
MW - 8	10.85′	10.09'
MW - 9	10.30′	10.13'
MW - 10	11.08′	10.91'
MW - 11	6.99′	6.71′
MW - 12	6.21 (conc.)	
MW - 13	not found	
MW - 14	6.03′	5.56′
R - 1	10.58'(NW Cor)	_
R - 2	10.52'(NW Cor)	

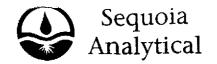
Virgil Chavez Land Surveying

312 Georgia Street, Suite 200 Vallejo, California 94590 (707) 553-2476

July 17, 1997 Project No. 1104-69 Page 2

Monitoring Well Survey Chevron/RMC Lonestar Facility 333 23rd Avenue Oakland, Ca.

Well	No.	<u>Station</u>	Offset
MW-	1	1+82.53	-216.44'(Lt.)
MW-	5	2+69.12	-151.92'(Lt.)
MW-	7	1+97.88	-260.29'(Lt.)
MW-	8	2+33.22	-265.47'(Lt.)
MW-	9	2+01.37	-298.40'(Lt.)
MW-	10	2÷58.60	-249.63'(Lt.)
_	11	0+91.72	-232.93'(Lt.)
MW-	12	1÷37.07	-227.7'+/-(Lt.)
NW-		0+96.57	-388.86'(Lt.)
R -	1	(NW Cor)2+25.47'	-276.56'(Lt.)
R -		(NW Cor)1+86.20'	-224.78'(Lt.)


Sincerely,

MO. 6323 END IX-31-38 TA

Virgil D. Chavez, P.L.S. 6323

APPENDIX E

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598 (415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention:

Client Proj. ID: Chev. Lonestar Fac.CPS#206142 Sampled: 06/30/97 Received: 07/01/97

Lab Proj. ID: 9707004

Deanna Harding

Analyzed: see below

Reported: 07/14/97

LABORATORY ANALYSIS

Analyte	Units	Date Analyzed	Detection Limit	Sample Results
Lab No: 9707004-02 Sample Desc : LIQUID,MW-11				
Ferrous Iron Nitrate as Nitrate Sulfate	mg/L mg/L mg/L	07/02/97 07/02/97 07/02/97	0.010 1.0 1.0	0.015 350 140
Lab No: 9707004-03 Sample Desc : LIQUID,MW-8				
Ferrous Iron Nitrate as Nitrate Sulfate	mg/L mg/L mg/L	07/02/97 07/02/97 07/02/97	0.010 1.0 1.0	0.22 N.D. 17
Lab No: 9707004-04 Sample Desc : LIQUID,MW-1		·		
Ferrous Iron Nitrate as Nitrate Sulfate	mg/L mg/L mg/L	07/02/97 07/02/97 07/02/97	0.010 1.0 1.0	5.6 N.D. 10
Lab No: 9707004-05 Sample Desc : LIQUID,MW-14				
Ferrous Iron Nitrate as Nitrate Sulfate	mg/L mg/L mg /L	07/02/97 07/02/97 07/02/97	0.010 1.0 1.0	0.29 N.D. 41

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Chev. Lonestar Fac.CPS#206142 Client Proj. ID: Sample Descript: TBLB

Sampled: 06/30/97 Received: 07/01/97

Attention: Deanna Harding

Matrix: LIQUID

Analysis Method: 8015Mod/8020 Lab Number: 9707004-01

Analyzed: 07/08/97 Reported: 07/14/97

QC Batch Number: GC070897BTEX17A

Instrument ID: GCHP17

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 2.5 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 130	% Recovery 108

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Miké Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Chev. Lonestar Fac.CPS#206142 Client Proj. ID:

Sampled: 06/30/97

Sample Descript: MW-1 Matrix: LIQUID

Received: 07/01/97

Attention: Deanna Harding

Analysis Method: 8015Mod/8020 Lab Number: 9707004-04

Analyzed: 07/10/97 Reported: 07/14/97

QC Batch Number: GC071097BTEX02A Instrument ID: GCHP02

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit ug/L	S	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total)			. 200 N.D. N.D. N.D. N.D. N.D.
Chromatogram Pattern: Unidentified HC	•		. C10-C12
Surrogates Trifluorotoluene	Control Limits % 70	130	Recovery 82

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Sample Descript: MW-1

Chev. Lonestar Fac. CPS#206142

Matrix: LIQUID

Analysis Method: EPA 8015 Mod Lab Number: 9707004-04

Sampled: 06/30/97 Received: 07/01/97 Extracted: 07/07/97 Analyzed: 07/08/97

Reported: 07/14/97

QC Batch Number: GC0707970HBPEXA

Instrument ID: GCHP4B

Total Extractable Petroleum Hydrocarbons (TEPH)

Detection Limit Sample Results Analyte ug/L ug/L TEPH as Diesel 950 Chromatogram Pattern: C9-C24 W-Diesel Surrogates Control Limits % % Recovery n-Pentacosane (C25) 50 150 86

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 (415) 364-9600 Walnut Creek, CA 94598 Sacramento, CA 95834

(510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chev. Lonestar Fac.CPS#206142 Sampled: 06/30/97

Attention: Deanna Harding

Sample Descript: MW-1 Matrix: LIQUID

Received: 07/01/97 Extracted: 07/07/97 Analyzed: 07/08/97

Analysis Method: EPA 8015 Mod

Lab Number: 9707004-04

Reported: 07/14/97

QC Batch Number: GC0707970HBPEXA Instrument ID: GCHP4B

Total Extractable Petroleum Hydrocarbons (TEPH) with Silica Gel Cleanup

Detection Limit Sample Results Analyte ug/L ug/L **TEPH** as Diesel 600 C9-C24 Chromatogram Pattern: W-Diesel Surrogates Control Limits % % Recovery n-Pentacosane (C25) 50 .. . 150 72

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento_CA_95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Sample Descript: MW-1 SG#2

Matrix: LIQUID

Analysis Method: EPA 8015 Mod

Attention: Deanna Harding Lab Number: 9707004-07

Sampled: 06/30/97 Received: 07/01/97

Extracted: 07/07/97 Analyzed: 07/11/97 Reported: 07/14/97

QC Batch Number: GC070797HBPEXSG

Instrument ID: GCHP4A

Total Extractable Petroleum Hydrocarbons (TEPH) with Silica Gel Cleanup

Detection Limit Analyte Sample Results ug/L ug/L **TEPH** as Diesel 50 600 Chromatogram Pattern: C9-C24 W-Diesel % Recovery Surrogates **Control Limits %** n-Pentacosane (C25) 150

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Page:

16

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834.

(415) 364-9600 (510) 988-9600 (916): 921-9600. FAX (415) 364-9233 FAX (510) 988-9673... FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chev. Lonestar Fac.CPS#206142 Sampled: 06/30/97

Sample Descript: MW-8 Matrix: LIQUID

Received: 07/01/97

Attention: Deanna Harding

Analysis Method: 8015Mod/8020 Lab Number: 9707004-03

Analyzed: 07/10/97 Reported: 07/14/97

QC Batch Number: GC071097BTEX02A

Instrument ID: GCHP02

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte		tion Limit g/L	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total)		500	
Chromatogram Pattern: Unidentified HC			C10-C12
Surrogates Trifluorotoluene	Contro 70	ol Limits % 130	% Recovery 95

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 __(415) 364-9600 Walnut Creek, CA 94598 (510) 988-9600 Sacramento, CA. 95834 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Sample Descript: MW-8 Matrix: LIQUID

Analysis Method: EPA 8015 Mod Lab Number: 9707004-03

Sampled: 06/30/97 Received: 07/01/97 Extracted: 07/07/97 Analyzed: 07/08/97

Reported: 07/14/97

QC Batch Number: GC0707970HBPEXA

Instrument ID: GCHP4A

Total Extractable Petroleum Hydrocarbons (TEPH)

Analyte **Detection Limit** Sample Results ug/L ug/L TEPH as Diesel 200 5300 C9-C24 W-Diesel Chromatogram Pattern: Control Limits % % Recovery Surrogates n-Pentacosane (C25) 150 129

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8. Sacramento, CA 95834 (916) 921-9600

Redwood City, CA 94063 Walnut Creek, CA 94598 (510) 988-9600

(415) 364-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921 0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Sample Descript: MW-8

Matrix: LIQUID

Analysis Method: EPA 8015 Mod

Extracted: 07/07/97 Analyzed: 07/08/97 Reported: 07/14/97

Sampled: 06/30/97

Received: 07/01/97

Attention: Deanna Harding

Lab Number: 9707004-03

QC Batch Number: GC0707970HBPEXA

Instrument ID: GCHP4B

Total Extractable Petroleum Hydrocarbons (TEPH) with Silica Gel Cleanup

Detection Limit Analyte Sample Results ug/L uq/L TEPH as Diesel 200 3100 C9-C24 W-Diesel Chromatogram Pattern: % Recovery Surrogates Control Limits % n-Pentacosane (C25) 150

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063, (415) 364-9600 Walnut Creek, CA 94598 (510) 988-9600 FAX (916) 92

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Sample Descript: MW-8 SG#2 Matrix: LIQUID

Analysis Method: EPA 8015 Mod

Lab Number: 9707004-06

Sampled: 06/30/97 Received: 07/01/97

Extracted: 07/07/97 Analyzed: 07/11/97 Reported: 07/14/97

QC Batch Number: GC070797HBPEXSG Instrument ID: GCHP4A

Total Extractable Petroleum Hydrocarbons (TEPH) with Silica Gel Cleanup

Analyte **Detection Limit** Sample Results ug/L ug/L **TEPH** as Diesel 100 3000 Chromatogram Pattern: C9-C24 W-Diesel Surrogates % Recovery **Control Limits %** n-Pentacosane (C25) 150 84

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive Redwood City CA 94063 Walnut Creek, CA 94598

Chev. Lonestar Fac.CPS#206142

(510), 988-9600 (916) -921-9600

Sacramento CA 95834 -

Client Proj. ID:

Sampled: 06/30/97 Received: 07/01/97

6747 Sierra Court Suite G Dublin, CA 94568 Attention: Deanna Harding

Gettler Ryan/Geostrategies

Sample Descript: MW-11 Matrix: LIQUID

Analyzed: 07/08/97

Analysis Method: 8015Mod/8020 Lab Number: 9707004-02

Reported: 07/14/97

QC Batch Number: GC070897BTEX17A

Instrument ID: GCHP17

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 2.5 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 98

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

. Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 - Sacramento, CA-95834

-(510) 988-9600 (916) 921,9600

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Sample Descript: MW-11

Matrix: LIQUID

Analysis Method: EPA 8015 Mod

Received: 07/01/97 Extracted: 07/07/97 Analyzed: 07/08/97

Sampled: 06/30/97

Lab Number: 9707004-02

Reported: 07/14/97

QC Batch Number: GC0707970HBPEXA

instrument ID: GCHP4B

Total Extractable Petroleum Hydrocarbons (TEPH)

Analyte **Detection Limit** Sample Results ug/L ug/L TEPH as Diesel 50 Chromatogram Pattern: C9-C24 Unid.-HC Surrogates Control Limits % % Recovery n-Pentacosane (C25) 150

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Grégory Project Manager

Redwood City, CA 94063 -Walnut Creek, CA 94598 (510) Sacramento, CA 95834

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Sample Descript: MW-11

Matrix: LIQUID Analysis Method: EPA 8015 Mod Lab Number: 9707004-02

Received: 07/01/97 Extracted: 07/07/97 Analyzed: 07/08/97 Reported: 07/14/97

Sampled: 06/30/97

QC Batch Number: GC0707970HBPEXA Instrument ID: GCHP4B

Analyte

Total Extractable Petroleum Hydrocarbons (TEPH) with Silica Gel Cleanup

Detection Limit ug/L

Sample Results ug/L

TEPH as Diesel

50

N.D.

Chromatogram Pattern:

Control Limits %

% Recovery

Surrogates n-Pentacosane (C25)

50 150

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8... Sacramento, CA 95834

(510) 988-9600 (916) 921-9600

FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chev. Lonestar Fac. CPS#206142

Sampled: 06/30/97

Sample Descript: MW-14 Matrix: LIQUID

Received: 07/01/97

Attention: Deanna Harding

Analysis Method: 8015Mod/8020 Lab Number: 9707004-05

Analyzed: 07/08/97 Reported: 07/14/97

QC Batch Number: GC070897BTEX17A Instrument ID: GCHP17


Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 2.5 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 130	% Recovery 99

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(510) 988-9600 (916) 921 9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

 ■ Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. 1D: Chev. Lonestar Fac.CP\$#206142 Sample Descript: MW-14

Sampled: 06/30/97 Received: 07/01/97

Matrix: LIQUID

Extracted: 07/07/97

Attention: Deanna Harding

Analysis Method: EPA 8015 Mod Lab Number: 9707004-05

Analyzed: 07/08/97 Reported: 07/14/97

QC Batch Number: GC0707970HBPEXA

Instrument ID: GCHP4B

Total Extractable Petroleum Hydrocarbons (TEPH)

Analyte	Det	ection Limit ug/L	Sa	ample Results ug/L
TEPH as Diesel Chromatogram Pattern:		50 C9-C24		86 UnidHC
Surrogates n-Pentacosane (C25)	C on 50	trol Limits %	% I 150	Recovery 91

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 404 N. Wiget Lane Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Sample Descript: MW-14

Matrix: LIQUID

Analysis Method: EPA 8015 Mod Lab Number: 9707004-05

Sampled: 06/30/97 Received: 07/01/97

Extracted: 07/07/97 Analyzed: 07/08/97 Reported: 07/14/97

QC Batch Number: GC0707970HBPEXA

Instrument ID: GCHP4B

Analyte

Total Extractable Petroleum Hydrocarbons (TEPH) with Silica Gel Cleanup

Detection Limit ug/L

Sample Results ug/L

TEPH as Diesel

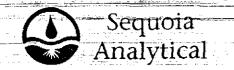
50

N.D.

Chromatogram Pattern:

% Recovery

Surrogates n-Pentacosane (C25)


Control Limits % 50 150

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory

Project Manager

Deanna Harding

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 (415) 364-9600 Walnut Creek, CA 94598 (510)-988-9600 Sacramento, CA 95834 (916) 921-9600 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568 Attention:

Client Proj. ID: Chev. Lonestar Fac.CPS#206142

Received: 07/01/97

Lab Proj. ID: 9707004

Reported: 07/14/97

LABORATORY NARRATIVE

In order to properly interpret this report, it must be reproduced in its entirety. This report contains a total of pages including the laboratory narrative, sample results, quality control, and related documents as required (cover page, COC, raw data, etc.).

TPGBMW:

Sample 9707004-03 was diluted 10-fold.

TPHD:

Sample 9707004-03 was diluted 4-fold.

SEQUOIA ANALYTICAL

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 (510) 988-9600 Sacramento, CA 95834

(415) 364-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Attention: Deanna Harding

Client Project ID:

Chev. Lonestar Fac. CPS#206142

Matrix: Liquid

Work Order #:

-01, 02, 05

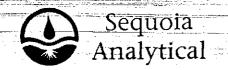
Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

9707004

Analyte:	Benzene	Toluene	Ethyl Benzene	Xylenes	Gas
QC Batch#:	GC070897BTEX17A	GC0708978TEX17A	GC070897BTEX17A	GC070897BTEX17A	GC070897BTEX17
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015M
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030
Analyst:	A. Miraftab	A. Miraftab	A. Miraftab	A. Miraftab	A. Miraftab
MS/MSD #:	9706G0101	9706G0101	9706G0101	9706G0101	9706G0101
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Prepared Date:	7/8/97	7/8/97	7/8/97	7/8/97	7/8/97
Analyzed Date:	7/8/97	7/8/97	7/8/97	7/8/97	7/8/97
Instrument I.D.#:	GCHP17	GCHP17	GCHP17	GCHP17	GCHP17
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L	30 μg/L	60 μg/L
Result:	9.3	9.3	9.4	27	45
MS % Recovery:	93	93	94	90	75
Dup. Result:	9.9	9.8	9.9	29	49
MSD % Recov.:	99	98	99	97	82
RPD:	6.2	5.2	5.2	7.1	8.5
RPD Limit:	0-25	0-25	0-25	0-25	0-25
LCS #:	BLK070897	BLK070897	BLK070897	BLK070897	· BLK070897
Prepared Date:	7/8/97	7/8/97	7/8/97	7/8/97	7/8/97
Analyzed Date:	7/8/97	7/8/97	7/8/97	7/8/97	7/8/97
Instrument I.D.#:	GCHP17	GCHP17	GCHP17	GCHP17	GCHP17
Conc. Spiked:	10 μg/L	10 µg/L	10 μg/L	30 μg/L	60 µg/∟
LCS Result:	9.0	9.1	9.1	27	44
LCS % Recov.:	90	91	91	90	73
MS/MSD	60-140	60-140	60-140	60-140	60-140
LCS Control Limits	70-130	70-130	70-130	70-130	70-130


SEQUOIA ANALYTICAL

Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9707004.GET <1>

Redwood City, CA 94063 Walnut Creek, CA 94598 – Sacramento, CA 95834

(415) 364-9600 - (510) 988-9600 - (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Attention: Deanna Harding

Client Project ID:

Chev. Lonestar Fac. CPS#206142 Liquid

Matrix:

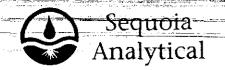
Work Order #:

9707004-03, 04

Reported: Jul 15, 1997

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	Gas
OC Batch#:	GC071097BTEX02A	GC071097BTEX02A	Benzene GC071097BTEX02A	GC071097BTEX02A	GC071097BTEX02
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015M
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030
riep. Wethou.	EFA 3030	EFA 3030	EPA 5030	EFA3030	EPA 3030
Analyst:	A. Miraftab	A. Miraftab	A. Miraftab	A. Miraftab	A. Miraftab
MS/MSD #:	9706G5502	9706G5502	9706G5502	9706G5502	9706G5502
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Prepared Date:	7/10/97	7/10/97	7/10/97	7/10/97	7/10/97
Analyzed Date:	7/10/97	7/10/97	7/10/97	7/10/97	7/10/97
nstrument I.D.#:	GCHP2	GCHP2	GCHP2	GCHP2	GCHP2
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L	30 μg/L	60 μg/L
Result:	9.9	9.5	9.7	29	60
MS % Recovery:	99	95	97	97	100
Dup. Result:	9.9	9.5	9.7	29	63
MSD % Recov.:	99	95	97	97	105
RPD:	0.0	0.0	0.0	0.0	4.9
RPD Limit:	0-25	0-25	0-25	0-25	0-25
LCS #:	BLK071097	BLK071097	BLK071097	BLK071097	BLK071097
Prepared Date:	7/10/97	7/10/97	7/10/97	7/10/97	7/10/97
Analyzed Date:	7/10/97	7/10/97	7/10/97	7/10/97	7/10/97
Instrument I.D.#:	GCHP2	GCHP2	GCHP2	GCHP2	GCHP2
Conc. Spiked:	10 μg/L	10 µg/L	10 μg/L	30 µg/L	60 μg/L
LCS Result:	8.1	7.6	7.8	23	49
LCS % Recov.:	81	76	78	77	82
MS/MSD	60-140	60-140	60-140	60-140	60-140
LCS Control Limits	70-130	70-130	70-130	70-130	70-130


SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9707004.GET <2>

819 Striker Avenue, Suite 8 Sacramento, CA 95834- -- (916)-921-9600

Redwood City, CA 94063 (415) 364-9600 404 N. Wiget Lane Walnut Creek, CA 94598 (510) 988-9600 FAX (510) 988-9673

FAX (916) 921-0100-

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J

Client Project ID:

Chev. Lonestar Fac. CPS#206142

Matrix:

Liquid

Dublin, CA 94568 Attention: Deanna Harding

Work Order #:

9707004-02-05

Reported: Jul 15, 1997

QUALITY CONTROL DATA REPORT

Analyte:

Diesel

QC Batch#: GC0707970HBPEXA Analy, Method: Prep. Method:

EPA 8015M EPA 3510

Analyst: MS/MSD #: Sample Conc.: Prepared Date:

B. Sullivan 970700905

700 7/7/97 Analyzed Date: 7/8/97 Instrument I.D.#: GCHP4

Conc. Spiked:

1000 µg/L

Result: MS % Recovery: 1700 100

Dup. Result:

1600

MSD % Recov.:

90

RPD:

6.1

RPD Limit:

0-50

LCS#:

BLK070797

Prepared Date: Analyzed Date: 7/7/97

Instrument I.D.#:

7/8/97

GCHP4

Conc. Spiked:

 $1000 \mu g/L$

LCS Result:

820

LCS % Recov.:

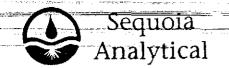
82

MS/MSD LCS

50-150 60-140

Control Limits

Please Note:


The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Wike Gregory **Project Manager**

SEQUOIA ANALYTICAL

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9707004.GET <3>

ood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (916) 921-9600

(510) 988-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Client Project ID:

Chev. Lonestar Fac. CPS#206142

Matrix:

Liquid

Attention: Deanna Harding

Work Order #:

9707004-02-05

Reported: Jul 15, 1997

QUALITY CONTROL DATA REPORT

Analyte:

Diesel

QC Batch#: GC0707970HBPEXA SG

Analy, Method: Prep. Method: **EPA 8015M** EPA 3510

Analyst:

G. Fish

MS/MSD #:

BLK070797 SG

Sample Conc.:

N.D.

Prepared Date:

7/7/97

Analyzed Date: Instrument I.D.#:

7/8/97 GCHP4A

Surr Result:

80

% Recovery:

80

LCS #: BLK070797B SG

Prepared Date:

7/7/97

Analyzed Date: Instrument I.D.#:

7/8/97 GCHP4A

Conc. Spiked:

1000 μg/L

LCS Result:

720

LCS % Recov.:

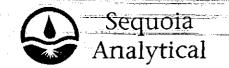
72

MS/MSD LCS

50-150

Control Limits

60-140


SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9707004.GET <4>

404 N. Wiget Lane 819 Striker Avenue, Suite 8- Sacramento, CA 95834 --- (916) 921-9600

Redwood City, CA 94063 Walnut Creek, CA 94598 (510) 988-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 971-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Client Project ID:

Chev. Lonestar Fac. CPS#206142

Matrix: Liquid

Attention: Deanna Harding

Work Order #: 9707004-02-05

Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

Analyte:	Nitrate	Sulfate	
OC Ratch#:	IN0701973000ACB	IN0701973000ACB	
Analy. Method:	EPA 300.0	EPA 300.0	
Prep. Method:	N.A	N.A.	
Analyst:	S. Fong	S. Fong	
MS/MSD #:	9706G3704	9706G37Q4	
Sample Conc.:	N.D.	50	
Prepared Date:	7/1/97	7/1/97	
Analyzed Date:	7/2/97	7/2/97	
Instrument I.D.#:	INIC2	INIC2	
Conc. Spiked:	10 mg/L	10 mg/L	
Result:	9.9	59	
MS % Recovery:	99	90	
wis A necovery.	. 39	90	
Dup. Result:	9.7	56	
MSD % Recov.:	97	60	
RPD:	2.0	5.2	
RPD Limit:	0-20	0-20	
LCS #:	LCS070197	LC\$070197	
Prepared Date:	7/1/97	7/1/97	
Analyzed Date:	7/2/97	7/2/97	
Instrument I.D.#:	INIC2	INIC2	
Conc. Spiked:		· · ·	
Conc. Spiked.	10 mg/L	10 mg/L	

MS/MSD 75-125 LCS 80-120 **Control Limits**

10

100

LCS Result:

LCS % Recov.:

Wike Gregory Project Manager Please Note:

9.5

95

75-125

80-120

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9707004.GET <5>

680 €hesapeake Drive

Redwood City, CA 94063 (415) 364-9600 FAX (415) 364-9233 404.N. Wiget Lane Walnut Creek, CA 94598 (510) 988-9600 FAX (510) 988-9673 819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100

Gettler Ryan/Geostrategies

6747 Sierra Court, Ste J Dublin, CA 94568

Client Project ID:

Chev. Lonestar Fac. CP\$#206142

Matrix:

Liquid

Attention: Deanna Harding

Work Order #:

9707004-02-05

Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

Analyte:	Beryllium	Cadmium	Chromium	Nickel
	,	Services Today	Om om om	110.00
	ME0708976010MDA	ME0708976010MDA	ME0708976010MDA	ME0708976010MDA
Analy, Method:		EPA 6010	EPA 6010	EPA 6010
Prep. Method:	EPA 3010	EPA 3010	EPA 3010	EPA 3010
Analyst:	R. Butler	R. Butler	R. Butler	R, Butler
MS/MSD #:		9706F6201	9706F6201	9706F6201
Sample Conc.:		N.D.	N.D.	0.37
Prepared Date:		7/8/97	7/8/97	7/8/97
Analyzed Date:		7/8/97	7/8/97	7/8/97
Instrument I.D.#:	MTJA2	MTJA2	MTJA2	MTJA2
Conc. Spiked:	1.0 mg/L	1.0 mg/L	1.0 mg/L	1.0 mg/L
Result:	1.0	1.0	1.0	1.4
MS % Recovery:	100	100	100	100
Dup. Result:	1.0	1.0	1.0	1.4
MSD % Recov.:		100	100	100
RPD:	0.0	0.0	0.0	0.0
RPD Limit:		0-20	0-20	0-20
LCS#:	BLK070897	BLK070897	BLK070897	BLK070897
Prepared Date:	7/8/97	7/8/97	7/8/97	7/8/97
Analyzed Date:		7/8/97	7/8/97	7/8/97
Instrument I.D.#:	MTJA2	MTJA2	MTJA2	MTJA2
Conc. Spiked:	1.0 mg/L	1.0 mg/L	1.0 mg/L	1.0 mg/L
LCS Result:	1.0	1.0	1.0	1.0
LCS % Recov.:		100	100	100
MS/MSD	80-120	80-120	80-120	80-120
LCS Control Limits	80-120	80-120	80-120	80-120

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents. preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

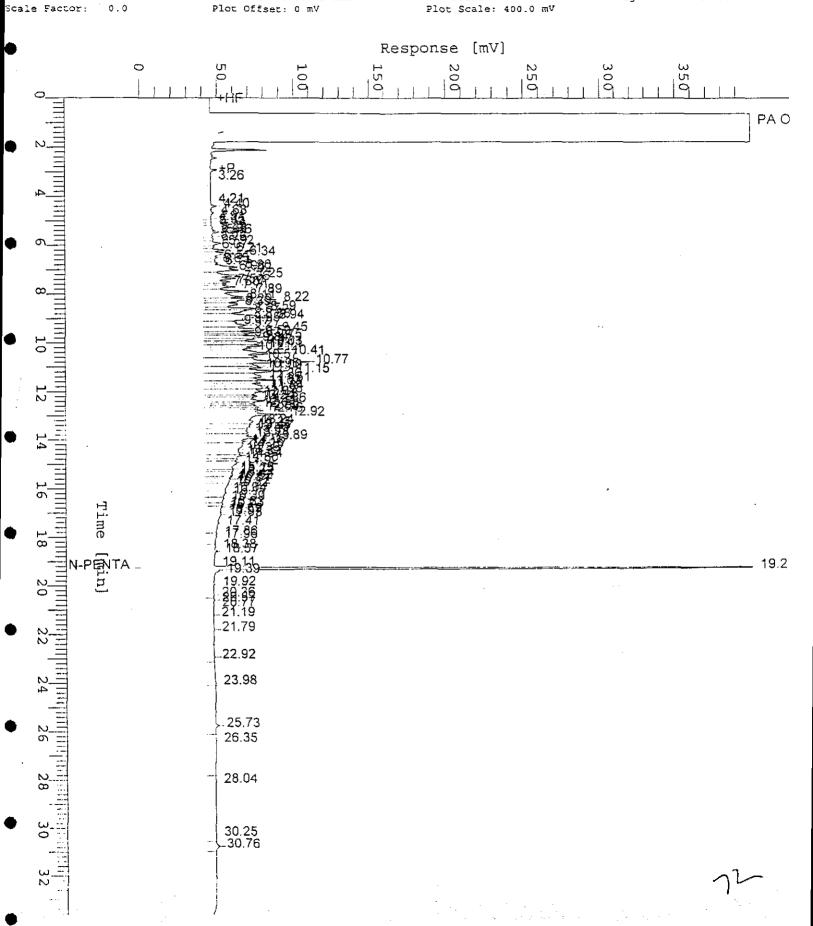
9707004.GET <6>

-Chromatogram Sample #: MW-1 Sample Name : DW9707004-4 (500:1) : S:\GHP_04\0713\7078027.raw Date: 7/8/97 03:03 FileName Time of Injection: 7/8/97 02:29 Method : TPH04A Low Point: 0.00 mV High Point: 400.00 mV End Time : 33.65 min Start Time : 0.00 min Plot Scale: 400.0 mV Scale Factor: 0.0 Plot Offset: 0 mV Response [mV] 0 PA O - ATÆG 23.98 25.08 26.34 28.04 30.24 30.75

sample Name : DW9707004-4 (500:1) SG FileName : S:\GHP_04\0713\707B046.raw

Kethod : TPH04A

Start Time : 0.00 min


End Time : 33.65 min

Plot Offset: 0 mV

Sample #: MW-1 Date : 7/8/97 17:49

Time of Injection: 7/8/97 17:15

Low Point : 0.00 mV High Point : 400.00 mV

Chromatogram

Sample Name : DW9707004-7 (500:1) SG2

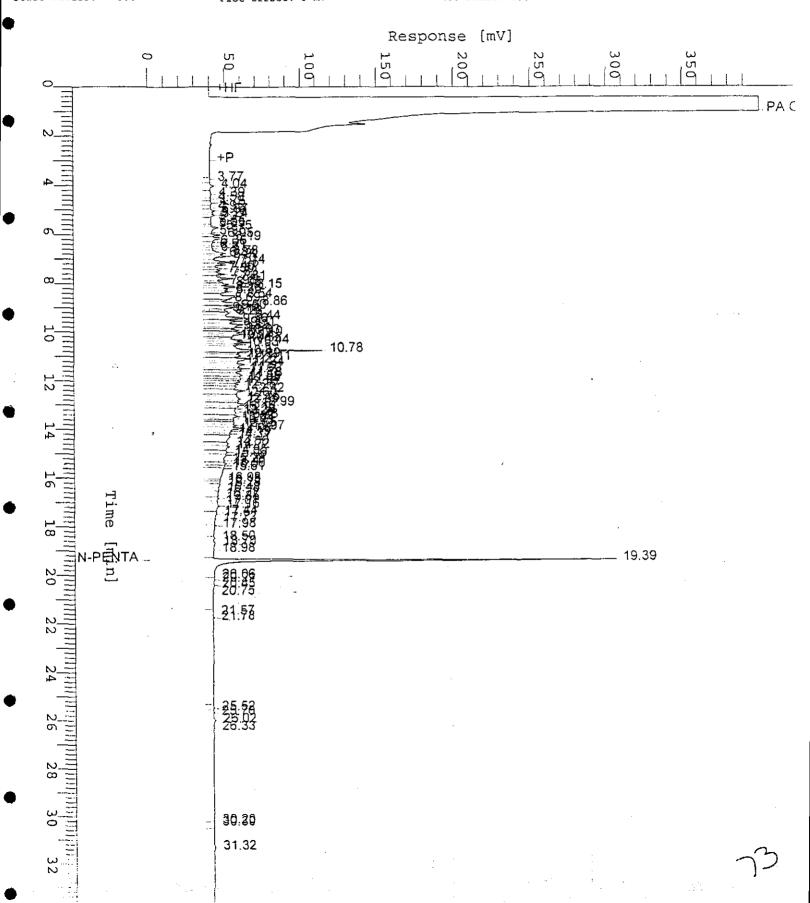
FileName : S:\GHP_04\0713\711A015.raw

Method : TPHO4A

Start Time : 0.00 min Scale Factor: 0.0

End Time : 33.65 min

Plot Offset: 0 mV


Sample #: MW-1

Page 1 of 1

Date: 7/11/97 17:39

Time of Injection: 7/11/97 17:06
Low Point: 0.00 mV High

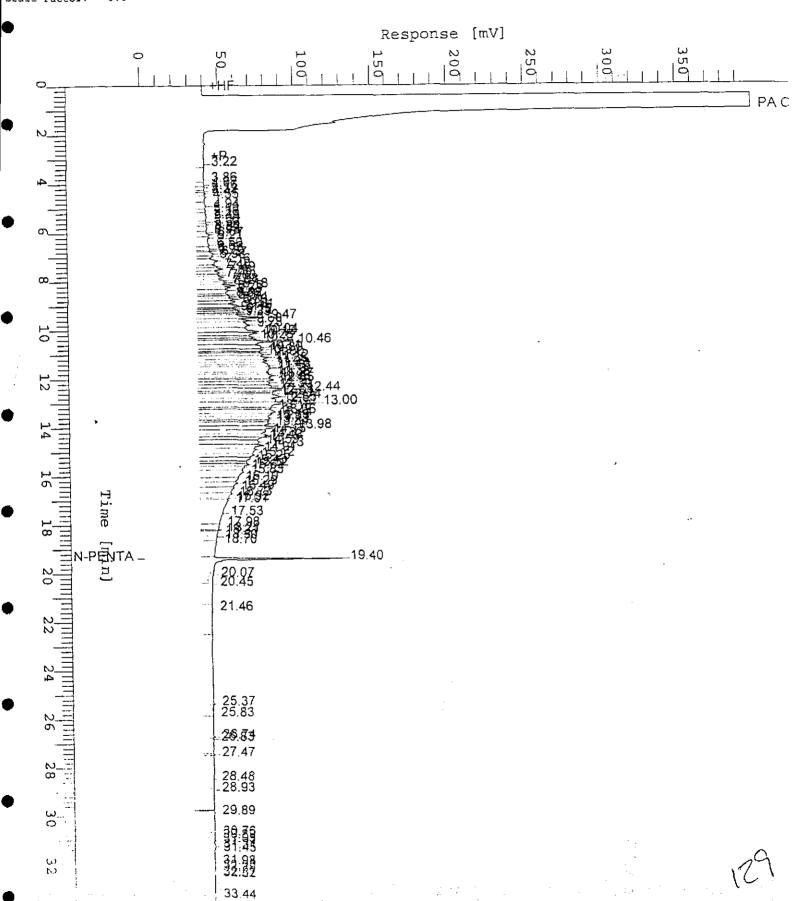
High Point : 400.00 mV

Sample Name : DW9707004-3 (500:1*4) RS1 : S:\GHP_04\0713\707A033.raw

FileName Method

Start Time : 0.00 min Scale Factor: 0.0

End Time : 33.65 min


Plot Offset: 0 mV

Sample #: MW-8 Date : 7/8/97 08:30

Time of Injection: 7/8/97 07:58

Low Point: 0.00 mV High Point: 400.00 mV

Page 1 of 1

ample Name : DW9707004-3 (500:1*4) SG

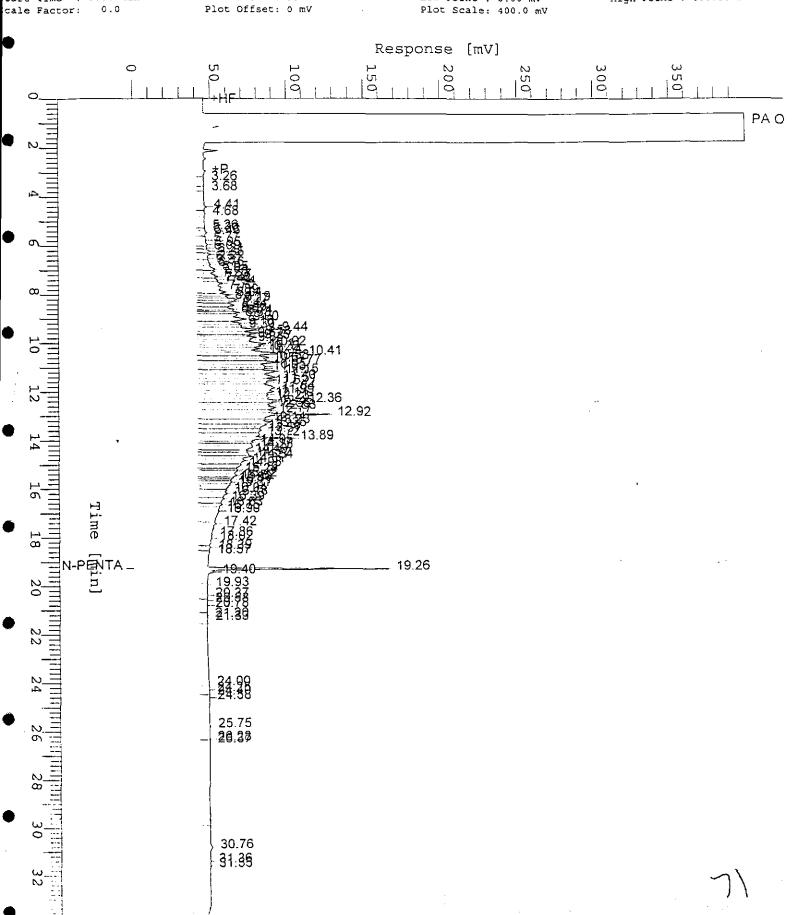
: S:\GHP_04\0713\707B045.raw ileName

: TPH04A ethod

tart Time : 0.00 min

End Time : 33.65 min

Plot Offset: 0 mV


Sample #: MW-8

Date : 7/8/97 17:07

Time of Injection: 7/8/97 16:34

Low Point : 0.00 mV High Point : 400.00 mV

Page 1 of 1

Chromatogram

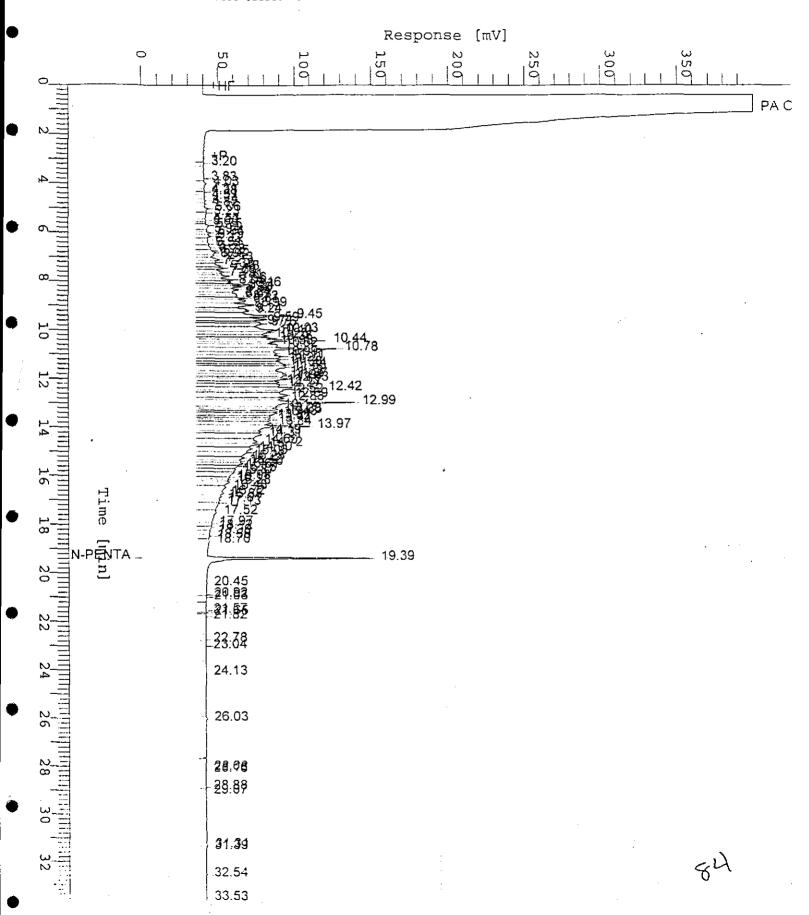
Sample Name : DW9707004-6 (500:1*2) SG2 : 5:\GHP_04\0713\711A014.raw FileName

: TPHO4A

Method Start Time : 0.00 min Scale Factor: 0.0

End Time : 33.65 min

Plot Offset: 0 mV


Sample #: MW-8

Page 1 of 1

Date: 7/11/97 16:58

Time of Injection: 7/11/97 16:24

Low Point: 0.00 mV High Point: 400.00 mV

Chromatogram

Sample Name : DW9707004-2 (500:1)

FileName : S:\GHP_04\0713\707B025.raw

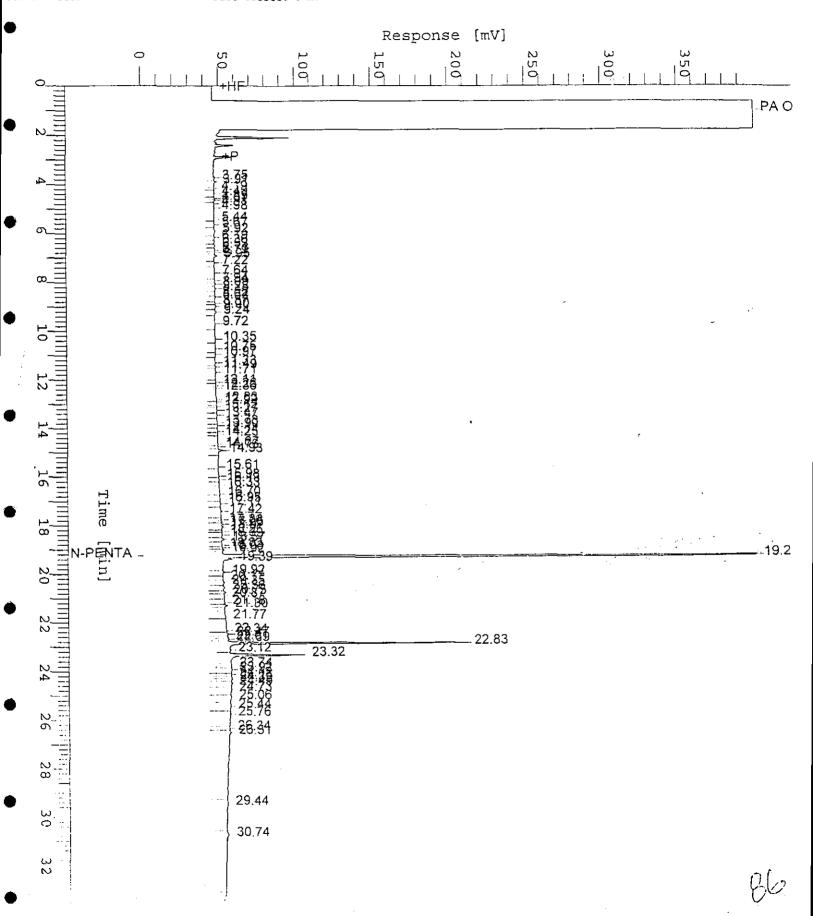
Method : TPH04A

Start Time : 0.00 min Scale Factor: 0.0

0 min End Time : 33.65 min

Plot Offset: 0 mV

Sample #: MW-11


Date: 7/8/97 01:40

Time of Injection: 7/8/97 01:06

Low Point : 0.00 mV

High Point : 400.00 mV

Page 1 of 1

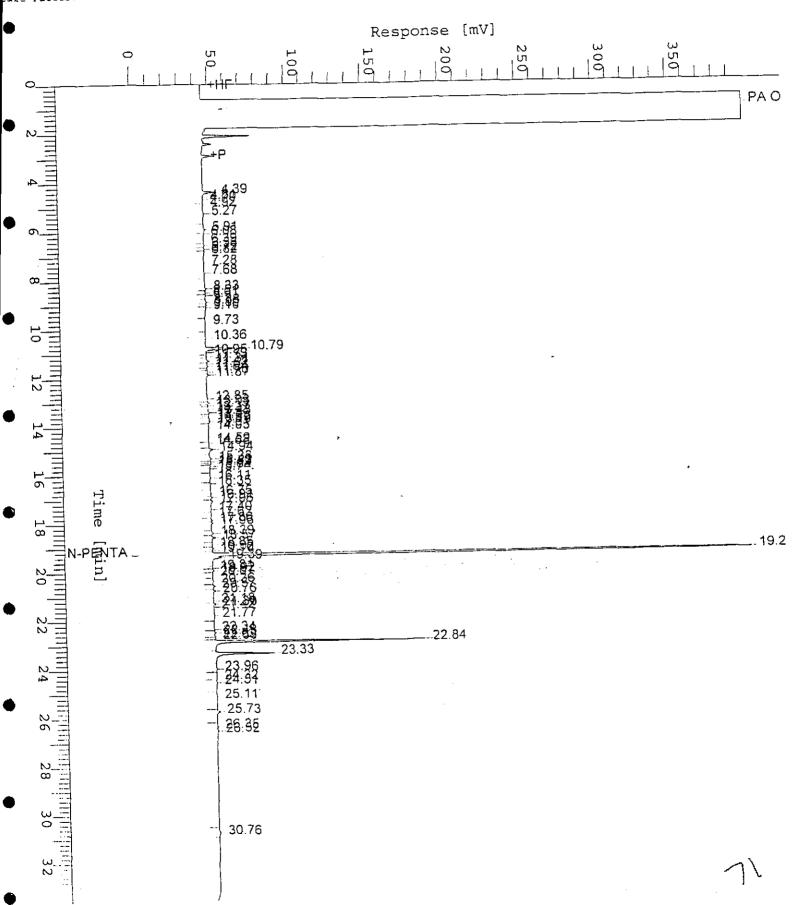
mple Name : DW9707004-2 (500:1) SG

leName : S:\GHP_04\0713\7078044.raw

thod : TPH04A tart Time : 0.00 min tale Factor: 0.0

End Time : 33.65 min

Plot Offset: 0 mV


Sample #: MW-11

Date : 7/8/97 16:26 Time of Injection: 7/8/97 15:52

Plot Scale: 400.0 mV

Page 1 of 1

Chromatogram

Sample Name : DW9707004-5 (500:1)

: S:\GHP_04\0713\707B028.raw

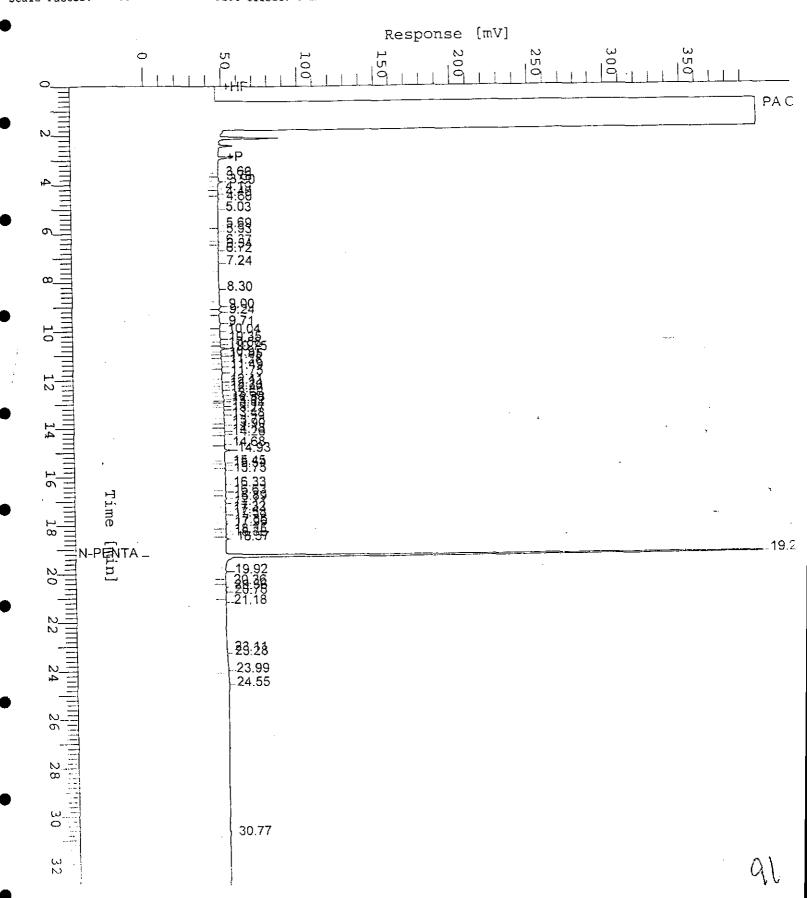
FileName : TPHO4A Method

Start Time : 0.00 min Scale Factor: 0.0

End Time : 33.65 min Plot Offset: 0 mV

Sample #: MW-14

Date: 7/8/97 03:44


Time of Injection: 7/8/97 03:10

Low Point : 0.00 mV

High Point : 400.00 mV

Page 1 of 1

Plot Scale: 400.0 mV

Chromatogram

Sample Name : DW9707004-5 (500:1) SG

FileName : S:\GRP_04\0713\707B047.raw

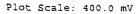
: TPHO4A

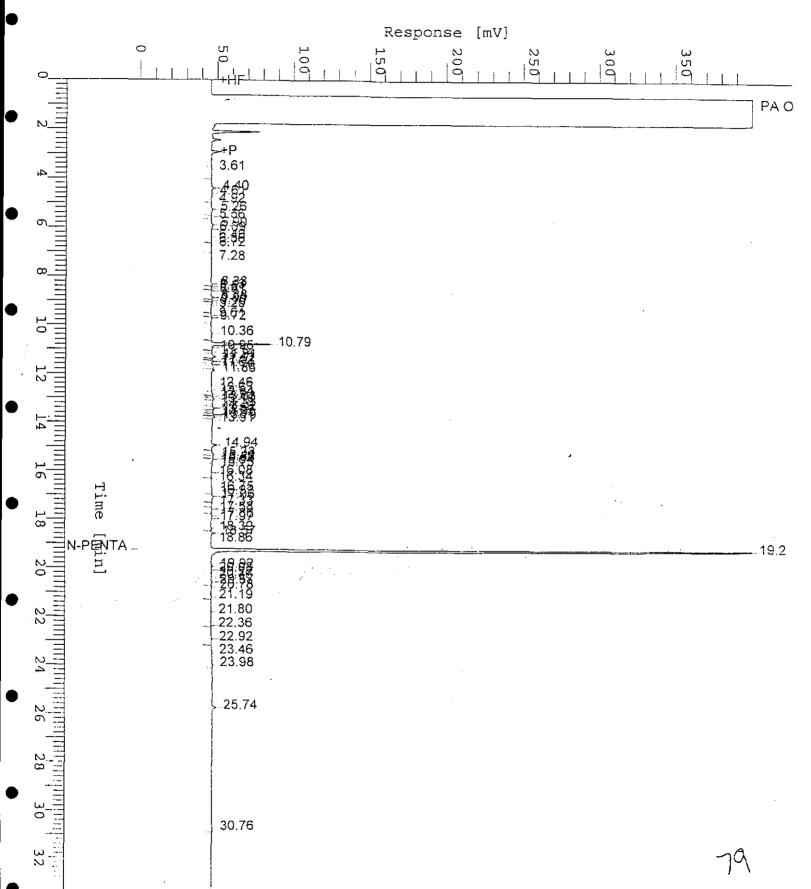
Start Time : 0.00 min Scale Factor: 0.0

End Time : 33.65 min

Plot Offset: 0 mV

Sample #: MW-14


Page 1 of 1


Date : 7/8/97 18:30

Time of Injection: 7/8/97 17:56

Low Point : 0.00 mV

High Point : 400.00 mV

Fax co	py of	Lab	Rep	ort	and (COC to	Cř	evro	n Co	on R ac	et: L				•	دان دهری را کستسر نبیو ب		USDIGA_KGCOL	
		Chov	ron Facil	CHEVRC Ily Humb	N Lon	estar Fac	<u>ili</u>	ty CP	s <u>#2</u> 0	6142		_ [Chevron	Contact			ert Cochra	n	
01	C.I. lan	1.	Faoili	ly Addres	<u>. 333</u>	<u>- 23rd Av</u>	zenu	e. Oa	kland	,_CA_			(Phone) (510) 842-9655 Laboratory Name SEC Service Code: 7202790						
Chevron U. P.O. BOX		Cons	ullant Pr	oject Nur	nbor	6338.85						_ '	Loboratory Namo Loboratory Service Order #9024597 17/24596						
Son Ramon, (Cons	ultant Ho	me	<u>Gettle</u>	er-Ryan a Ct, Ste	J.	Duhli	n 945	68		— L	_oberalor	y Det (/106 O	mo) Frank	Cline		
FAX (415)8	42-9591	٨	ddrees	0/4/	316116	Dograma Ha	rdf	na	<u></u>			_ `	ampies	Date I	2/8/9	(-	6-30-97		
, ·		Р	rojoct Co	ontact ()!	οριο) <u> </u>	Deanna Ha 51-7555	101		J 55	1-788	8		Signatur#				per		
		<u> </u>		(P.	hола) <u></u>	7777	()	ox Numb	or)										
•			j Dess						- 		1 0		 _	10 15	• Porform	neu		OO NOT BILL	
	l y	چ و	Air Charcoaí	xosite ete		u og	_	74 BE	1,		l &	atte	<u> 5</u>	Organica		ļ		TB-LB ANALYSI: Confirm highest	
ķ	Sampi• Numb≪	Contained	1.1 √.0	Greb Composite Discrete		Sample Proservation	ος δ	X w.MTBE	*	8	Purpeable Holocarbons (8010)	Purgeable Aramatics (8020)	Purgadbie Organica (8240)	ě	5 2		1 1	hit of (8020)-	
Sample Number	•iq	ς δ	Soll ¥eter C	ust		8. 8.	ð K	1 12	7	Oil and Groave (5520)	4. 4. Y	94	* C	Extroctoble (8270)	Metals Cd,Cr,Pb,Zn,Ni (ICAP or AA)			MTBE by 8260.	
<u> </u>	1	4υπbα.	₹.¥	000		다 호	Cod (Yes	1 1 1 1	7PH Diesel (8015)	5520 5520	1000 1000 1000	8020	8240	\$27C	इंद्र है			passinarko 12	
San	ŝ	En 2	× v ×	17.P	E E	Š	<u> </u>		F	8	20	40	4	n,	202		_		
TB-LB		2	iv	TB		IKL		1 X					<u> </u>				_ -	* Perform	
MW-II		3		G	1745	Her iller		<u> </u>	X				, ·	<u> </u>	<u> </u>			silica-gel	
MW-8		5			18:19		\Box	×	18	<u> </u>		ļ	<u> </u>		<u> </u>		_	Clan-up on	
		5			1829	4		Х	1									TPHAicsel	
MW-1		-	- -	- -	_			_ _						}				Samples.	
4111 1/1		5		9	11,33	HIL Alon	4	X	X	-							- Cul	Pts preside	
MW-14	<u> </u>		-		10-		-			- -							Ve it	Votat Silva	
	 	 		 	 					\ <u> </u>			- -				MILIA	1 ad President	
· 	<u> </u>		<u> </u>	ļ	 		_				<u> </u>		- 				1000	of to Detection	
		<u> </u>	<u> </u>	ļ	 								- 	\ 	 	 1	10 10	o. Additional	
			ļ	-	 						 		 	 	-		1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	" //	
			<u> </u>	<u> </u>	<u> </u>				_				 	<u> </u> -	-			silica-gels	
					<u> </u>	ļ	<u> </u>		_	_	-	<u> </u>	_	<u> </u>	- 		4000 P/ 1/	b may his	
					<u> </u>	<u> </u>			_	_	-	 	_ 		-		12 12	Pun. Thank	
					<u> </u>		1,		1	<u> </u>	1	<u> </u>	05-11-1	<u></u>	Date:	/Time/	Turn Area	and Time (Circle Choice)	
Relinquished By	(Slonolure)			janization		Dol+/Time 7	1197	Roodyav	1	rature) CU	- مدا		Organizal G-R I		-	7/	497	24 Hrs.	
	CS-			-R Inc		7/2	UXZ	Received	<u> </u>	<u>~</u>	wrv	\vdash	Organiza		Dole	/Tlm _g	-	48 Hm.	
Relinquished By	(Signature)	•	Org	onization O.].	Dote/Time 1/0	7%	Kecetyad	2	-			SEC		1/1/9	7 10930		5 Day∗ 10 Day∗	
MINI	WY (Y	m	16	panizalion		Dale/Jime		Realeved	For Lab	orolory	By (Sign	olur•)				/11mo		The Contracted	
Relinquished B)	/ (Signatur»)	, ,) or.	ចិត្តបាកតិសេស		777	1												

Eex co	py●of	Lab	. <u> </u>			€00 to	Cl♠	vror	ı Cc	r R ac	ct: [⊒ N	•		•	C	hai	n•	<u>) – 1</u>	Cus [•]	⊙ dy-Rec o rd
Channa II	S. I. Inc.		vron Faci Fadl	lity Addra	ber <u>LOT</u> 333	nestar Fac 3 - 23rd	<u>cilit</u> Avenu	у СРS е, Оа	#20 klan	6142 d, C/	<u> </u>		Chevron	Contact	(Namo) (Phono	Mr. (510	Robe 2) 84	rt C 2-96	ochra 55	n	
Chevron U. P.O. BOX		Con	∎ultant Pr	roject Nu	mbor_6	338.85						1	Laboralo	ry Nam	. Seq	uoia		•	· 		
San Ramon		Con	authort No	oma	Gettle	er~Rvan														ervi	ce Code: ZZO2790
AX (415)8			Address_	6747	Sierr	a Ct, Ste	J, D	ubili	1 945	68		#_	Somples	Collecte	d by (N	lome)	Fran	k_C1	ine	 	
	7	F	Project C	ontact (lame)	Deanna Ha	ırding	3				<u> </u>	Collection	n Date_	12/	8/46		(0-)	70-97		
• ;	<u>:</u>			. (F	² hoло)_5	51-7555	(Fox	Numbe	<u>r) 55</u>	1-788	38		Signoture	·							
			Q.			,							Analy•	es To E	a Partor	med					DO NOT DILL
. !	. 3	Ę	A Air	وولا		g		<u> </u>			물	3		B]				DO NOT BILL TB-LB ANALYSIS
	ab Sample Numbe	Containers	11	Grab Composite Discrete		Somple Preservation	Ŷ	TPH Ges + BTEX W/MTBE (8015) [8020]	'		Purpeable Halocarbons (8010)	urgeable Aramatica (8020)	Purgeable Organica (8240)	Extractable Organica (8270)			Iron		1		I 5
Sample Number	, ž	8	≺ن	ර්ථිරි		96	cod (Yos or No)	Š	_	Oil and Greams (5520)	 사이	Į¥	P	ō	Metais Cd,Cr,Pb,Zn,Ni (ICAP or AA)	123	•				page 2 o
Ž,	dea	Number of	Matrix S - Soll W - Water	111 000		مَ ا	, g	in +	TPH Diesel (8015)	\ \(\overline{O} \)	울승	§ 6	# # ?	926	2, 49, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Nitrate Sulfate	errous	1			,
dun	S d	4	ğıı	ê.	Ē	dmo) P	H G	# 8 E	[35g]	1 68	802	\$28 824	\$ E E	15 0 S	tr	ŢŢ				α
ν i] 3	2.	≭બ≭	F	<u> </u>	v)		F G	F	<u> </u>	۵.	Δ.	Δ.	w	300	N.	표				Remorks
B-LB									 	<u> </u>		 	-						 		
V-11		2	w	6	1792	IXL NICAL	ν						1			×	Х				3-1-11-1
	 		 	1	1849	· · · · · · · · · · · · · · · · · · ·	/ /	 		 		 	- -	 		×			 		
1 8-W	ļ	2	\vdash	 	+	 	Ä	 		-	 	 	-	·			×	<u> </u>	1		
W-1 :		2	\	<u> </u>	1824	#		.\ <u></u>	 	\ <u></u>				ļ	. ,	χ	7				· · · · · · · · · · · · · · · · · · ·
<u> </u>					<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>				<u>]</u>	<u> </u>	<u> </u>	
NW-14		2	⋠	6	1638	Her Neve	Y			,				ļ		Х	X				
		 -		-	-		 -	 					··	1							
<u>:</u>	 			<u> </u>				<u> </u>			 							 			
		 	<u> </u>	 	-					es Ti		B 1			 			,			
	ļ	ļ'		 		S	AM					M			 		ļ		ļ		<u> </u>
		ļ'				4	B EUB						-						ļ		
Ì											ļ	'									
<u> </u>						<u> </u>		 						 							
<u> </u>	 		 					\vdash			 	-	 								
·	<u> </u>	<u> </u>		<u> </u>	<u></u>				<u></u>	<u> </u>	<u></u> _	<u> </u>		<u> </u>		.	L	l	T		(ot local local
nquished 8	(Signature)		N .	onizotion D. T		97/1797 N	Reo	4	, (Signa	J.			Organizat G-R I		7	/ [™] 77	87	ッ	ium Aro		e (Circle Choloe)
111	w			R Inc			7	<u> </u>	$\mathcal{U}^{\mathcal{Q}}$	un		-					<u> </u>				Hrs. Hrs.
logulahed B	(Signature)			onizotion	-	7/1/97 9	30 \	nelved By	(Signa	turej		. 1	SEC		7/1/9	/IIme	:30				yaya Xaya
	mar	M	<u>_</u> @	<u> 1C </u>	- 	1 -1		100		>>		'	SH	<u> </u>		7 1				10 (
inquieted By	(Signolure) つ		- 1 1	onizotion مر		Date/Time H. Ja. / 11.4	j	\mathcal{C}	r Labor	atory By	y (Signa	itur•)				/Tlme	ا م			Accon	tracted)
Live			<u>جر</u>	=Q		1/90/169	<u>h</u>	<u>~}~</u>							1/113	7-1	7-7				

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies
6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID:

Chevron RMC Lonestar/Oakland

Sample Descript: SP (A-D) COMP

Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9706B57-01

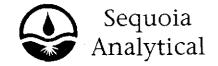
Sampled: 06/20/97 Received: 06/23/97 Extracted: 06/24/97 Analyzed: 06/24/97

Reported: 06/25/97

Attention: Barbara Sieminiski

QC Batch Number: GC062497BTEXEXA

Instrument ID: GCHP22


Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene 4-Bromofluorobenzene	Control Limits % 70 130 60 140	% Recovery 95 71

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G 6747 Sierra Court Dublin, CA 94568

Attention: Barbara Sieminiski

Chevron RMC Lonestar/Oakland Client Proj. ID:

Sample Descript: SP (A-D) COMP Matrix: SOLID

Analysis Method: EPA 8015 Mod

Lab Number: 9706B57-01

Sampled: 06/20/97

Received: 06/23/97 Extracted: 06/23/97 Analyzed: 06/24/97

Reported: 06/25/97

QC Batch Number: GC0623970HBPEXD

Instrument ID: GCHP4B

Total Extractable Petroleum Hydrocarbons (TEPH)

Analyte		Detection Limit mg/Kg		Sample Results mg/Kg
TEPH as Diesel Chromatogram Pattern:	 	Co Cos		W Discol
Surrogates n-Pentacosane (C25)	5	Control Limits %	150	% Recovery 90

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Grégory Project Manager

Chromatogram

Sample Name : DS9706B57-1 (20:1)

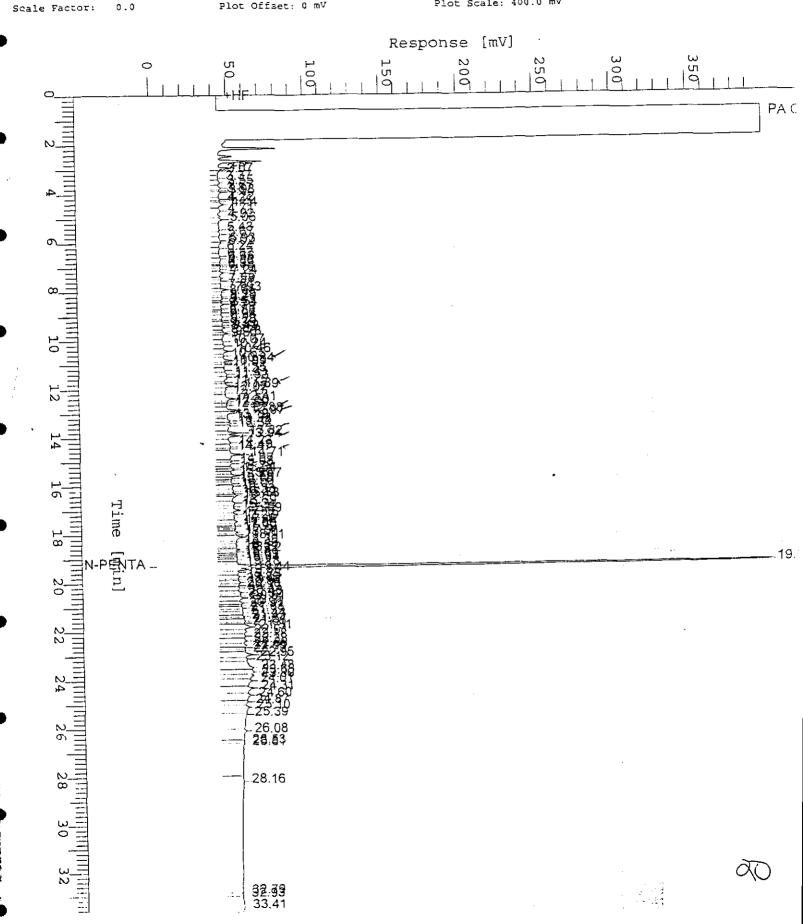
: S:\GHP_04\0629\623B029.raw FileName

Method : TPH04A

Start Time : 0.00 min

End Time : 33.65 min Plot Offset: 0 mV

Sample #: SP-D


Page 1 of 1

Date : 6/24/97 16:48

Time of Injection: 6/24/97 16:14

High Point : 400.00 mV Low Point : 0.00 mV

Plot Scale: 400.0 mV

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J

Attention: Barbara Sieminski

Dublin, CA 94568

Client Project ID:

Chevron RMC Lonestar / Oakland

Matrix:

SOLID

Work Order #:

9706B57 - (

-01

Reported:

Jun 26, 1997

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	Gas
			Benzene		
QC Batch#:	GC062497BTEXEXA	GC062497BTEXEXA	GC062497BTEXEXA	GC062497BTEXEXA	GC062497BTEXE
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015M
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030
Analyst:	A. Porter	A. Porter	A. Porter	A. Porter	A. Porter
MS/MSD #:	9706A4101	9706A4101	9706A4101	9706A4101	9706A4101
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Prepared Date:	6/24/97	6/24/97	6/24/97	6/24/97	6/24/97
Analyzed Date:	6/24/97	6/24/97	6/24/97	6/24/97	6/24/97
Instrument I.D.#:	GCHP7	GCHP7	GCHP7	GCHP7	GCHP7
Conc. Spiked:	0.20 mg/Kg	0.20 mg/Kg	0.20 mg/Kg	0.60 mg/Kg	1.2 mg/Kg
Result:	0.17	0.18	0.18	0.54	1.1
MS % Recovery:	85	90	90	87	78
Dup. Result:	0.17	0.17	0.17	0.52	1.1
MSD % Recov.:	85	85	85	83	78
RPD:	0.0	5.7	5.7	3.8	0.0
RPD Limit:	0-25	0-25	0-25	0-25	0-25
LCS #:	BLK062497	BLK062497	BLK062497	BLK062497	BLK062497
Prepared Date:	6/24/97	6/24/97	6/24/97	6/24/97	6/24/97
Analyzed Date:		6/24/97	6/24/97	6/24/97	6/24/97
Instrument I.D.#:	GCHP7	GCHP7	GCHP7	GCHP7	GCHP7
Conc. Spiked:	0.20 mg/Kg	0.20 mg/Kg	0.20 mg/Kg	0.60 mg/Kg	1,2 mg/Kg
LCS Result:	0.20	0.20	0.21	0.62	1.3
LCS % Recov.:	100	100	105	103	108
MS/MSD	60-140	60-140	60-140	60-140	60-140
LCS Control Limits	70-130	70-130	70-130	70-130	70 -130

SEQUOIA, ANALYTICAL

Me Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9706B57.GET <1>

680 Chesapeake Drive 404 N, Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Client Project ID:

Chevron RMC Lonestar / Oakland

Matrix:

Attention: Barbara Sieminski

Work Order #1

9706B57-01

Reported:

Jun 26, 1997

QUALITY CONTROL DATA REPORT

Analyte:

Diesel

QC Batch#: GC0623970HBPEXD Analy, Method:

EPA 8015M

Prep. Method:

EPA 3550

Analyst:

B. Sullivan

MS/MSD #:

9706B8403

Sample Conc.:

3.7

Prepared Date:

6/23/97

Analyzed Date:

6/24/97

Instrument I.D.#:

Conc. Spiked:

GCHP4 25 mg/Kg

Result:

26

MS % Recovery:

89

Dup. Result:

26

MSD % Recov.:

89

RPD:

0.0

RPD Limit:

0-50

LCS #:

BLK062397

Prepared Date: **Analyzed Date:** 6/23/97 6/24/97

Instrument I.D.#:

GCHP4

Conc. Spiked:

25 mg/Kg

21

LCS Result: LCS % Recov.:

84

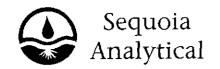
MS/MSD

LCS

50-150 60-140

Control Limits

Please Note:


The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Mike Gregory Project Manager

SEQUOIA_ANALYTICAL

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9706B57.GET <2>

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568 Attention: Barbara Sieminiski

Client Proj. ID: Chevron RMC Lonestar/Oakland

Received: 06/23/97

Lab Proj. ID: 9706B57

Reported: 06/25/97

LABORATORY NARRATIVE

In order to properly interpret this report, it must be reproduced in its entirety. report contains a total of _____ pages including the laboratory narrative, sample results, quality control, and related documents as required (cover page, COC, raw data,

SEQUOIA ANALYTICAL

Mike-Grégory Project Manager

		1	;hovn	on Focili Facili	Ity Numb	,or_R1 3°	MC LON	JÉSTA Avenu	<u>e</u>	Daki	and		_	Chevron Contact (Name) Bib Cochroy (Phone) (570) 842-9655								
	n U.S.A. I	ic	onet	utlant Pr	roloct Nu	imber 6	338.01						L	aborator	y Name.		Sequ	۱۵۰۵				
	30X 5004	† <u>,</u>	_			Cattl	Ar-Rusa							Laboratory Release Number Barbara Siem								
	пол, CA 94	1	٨	ddross	6747	Sierr	a Ct, Ste	. J, D	nildr	945	<u> </u>		s	amples	Collected	by (N	ama) 🚉	Jor-	bare	<u>s_S</u> i	<u>'emi'i</u>	15k
FAX (41	15)842-9	291	Ρr	rolect C	ontact (1	ا (معولا	Barbaro	<u>L Sig</u>	miu	ski			c	ollection	Da <u>te</u>	06/	/ <u>20/</u>	97_				
			• •	0,000)) (r	Phone) 5	Barbara 551-7555	(Fax	Number	55	1-788	8	s	Ignoture	ST.	Zieu	muy!	كـــــــ				
<u> </u>	- - - - - - - - - - 		\neg			T	T							Analyse	on To Be	Perfor	med			_		SO HOT BILL
ļ			2	Air Chanssal	يع ا			!	<u> </u>		<u> </u>	2	8	I								DO NOT BILL TB-LB ANALYS
	<u> </u>		Container	₹5 '	Grab Composite Discrete		otto	~ ,	102			arts	a det	Organics	park			/3				
<u> </u>	Sample Numbe		ž	1 I	200		,	ž '	X 86		2	<u>\$</u>	Ş	ည် ဝ	ę r	23		4	1+	00	1B	5+
ν Ε 2 Α	1 6	. '	5	ا ا خ	111 000		e d	8	E .	3	5	30	45 C	\$ C	Sable	7 2) 1	1		
Semple Number			Number	Matrix S - Soll W = Water	1	i	Somple Preservation	iced (Yes or No)	TPH Gas + BTEX - METER (8016) (8020)	TPH Diesel (8015)	Oil and Grease (5520)	Purpeable Halocarbons (8010)	Purgeable Aromatica (8020)	Purgeable (8240)	Extractable Organics (8270)	Metals C4,C*,Pb,Zn,Ni (ICAP or At)						
S TES	ĝ	;	ž	₹υ≯	12 P	Ë	Š	<u> </u>	HT.	声	ర్ధా	ج ا	4 C	40	3	\$3 ≅						Remarks
- A7.			7	5	G	16:10		Yes	X	۶												·
5P-A)			! 	- ()	15		-i	11-	1	1		 		ļ								
SP-B (5	5		, 		 - - - - - - - - - 	16:12	-	 	X	X		 		 								
SPC / S	<i>i</i>		1	<u>. </u>		16:14	<u> · </u>	<u> </u>		X		 !		<u> </u>	·[<u></u>			≥ 23 1 52
SP-D 3	\$					16:16	,	1	<	X					<u> </u>					<u> </u>		501136
	4	-			-									 	<u> </u>	I				_		
		-	-		 	1										<u>. </u>					!	
				i '		+		 	_	 	 	 	_	<u> </u>	1					1		
				 	 	 		 	 	 	 		 			 						
<u></u>			_	ļ	<u> </u>	 			 	 		 	 	 		<u> </u>	<u> </u>		 	 !	 -	
				l					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				ļ	 '	 	
 							T		1				 <u></u> -]					
<u> </u>					 -		.,	1													_ '	·
					+	-	 	-	1	1	 				-			-				
 	-						-	-	 	-	 		 	 	-			-		† ·	 	
<u> </u>						_		-	-	 	 	 	 			 			 		ļ	
ì						<u> </u>		1		<u></u>	<u></u>	Щ	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	لــــــــــــــــــــــــــــــــــــــ	1	A-9	10:20	<u> </u>	- Ar.	77.0	(CI-Is Chalas)
	ed By (Sland			- I '.	ganization		Date/Time 12 06/23/9	Rec	iohiod B	y (Slgn	ature)	, 	1	Organizal			o/11mo/			lum Mo		ne (Circle Cholce)
Barl	bore A	<u>Jeun</u>	sh	<u>~ [</u>	S-R			/-							UXH		73/9°	Z				Hrs.
Relinguish	ed By (State	gture)		Org	ganization	1	Date/Time	7 Red	/efved B	By (Slgn	ature)		0	Organizat	llon	ļ	•/Time				8	Doys Doys
Relinquish	ned By (Signa	ature)		Orç	ganization		Date/Time	Reo	oleved F	For Labo			ature)	d	:	Date	1152 1152	7				ntracted

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Barbara Sieminski

Client Proj. ID: Chevron RMC Lonestar, Oakland

Sample Descript: MW14-6

Matrix: SOLID Analysis Method: 8015Mod/8020

Lab Number: 9706C52-01

Sampled: 06/20/97 Received: 06/23/97

Extracted: 06/27/97 Analyzed: 06/28/97 Reported: 07/01/97

QC Batch Number: GC062797BTEXEXA Instrument ID: GCHP07

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
 TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern: 	1.0 0.025 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene 4-Bromofluorobenzene	Control Limits % 70 130 60 140	% Recovery 80 97

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron RMC Lonestar, Oakland Sample Descript: MW14-6

Sampled: 06/20/97

Matrix: SOLID

Received: 06/23/97 Extracted: 06/26/97 Analyzed: 06/27/97

Attention: Barbara Sieminski

Analysis Method: EPA 8015 Mod Lab Number: 9706C52-01

Reported: 07/01/97

QC Batch Number: GC0626970HBPEXA

Instrument ID: GCHP19A

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample Results Analyte **Detection Limit** mg/Kg mg/Kg **TEPH** as Diesel 1.0 N.D. Chromatogram Pattern: Control Limits % % Recovery Surrogates n-Pentacosane (C25) 50 150

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -

Mike Gregory Project Manager

Chromacogram

Sample Name : DS9706C52-1 (20:1)

: S:\GHP_19\0629\627A011.raw

: TPH19A

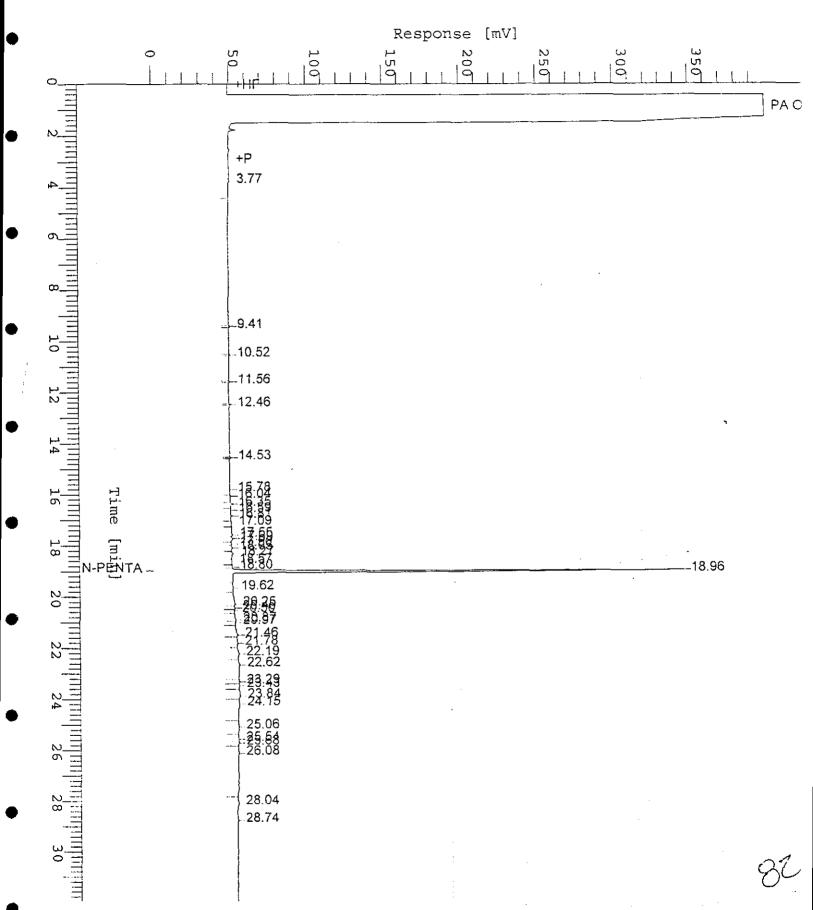
Start Time : 0.00 min

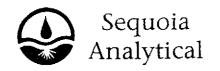
Scale Factor: 0.0

End Time : 31.99 min

Plot Offset: 0 mV

Sample #: MW14-6 Date : 6/27/97 19:07


Time of Injection: 6/27/97 13:35


Low Point : 0.00 mV

High Point : 400.00 mV

Page 1 of 1

Plot Scale: 400.0 mV

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Client Project ID:

Chevron RMC Lonestar, Oakland

Matrix:

Attention: Barbara Sieminski

Work Order #:

9706C52

Reported:

Jul 3, 1997

QUALITY CONTROL DATA REPORT

Analyte:

Diesel

QC Batch#: GC0626970HBPEXA Analy, Method: **EPA 8015M** Prep. Method: EPA 3550

Analyst:

B. Sullivan

MS/MSD #:

970691301

Sample Conc.: Prepared Date:

97 6/26/97

Analyzed Date:

6/27/97

Instrument I.D.#:

GCHP19

Conc. Spiked:

25 mg/Kg

Result:

120

MS % Recovery:

92

Dup. Result:

160

MSD % Recov.:

252

RPD: **RPD Limit:** 28

0-50

LCS #:

BLK062697

Prepared Date:

6/26/97

Analyzed Date: Instrument I.D.#:

6/27/97 GCHP19

Conc. Spiked:

25 mg/Kg

LCS Result: LCS % Recov.:

20 80

MS/MSD

50-150

LCS

60-140

Control Limits

Mike Gregory Project Manager

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9706C52.GET <1>

435

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Attention: Barbara Sieminski

Client Project ID:

Chevron RMC Lonestar, Oakland

Matrix: So

Solid

Work Order #:

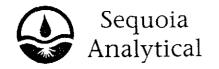
9706C52-01

Reported:

Jul 3, 1997

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	Gas
00 B-4-b //-			Benzene		
	GC062797BTEXEXA	GC062797BTEXEXA EPA 8020	GC062797BTEXEXA	GC0627978TEXEXA	GC062797BTEXEXA
	Analy. Method: EPA 8020		EPA 8020	EPA 8020	EPA 8015M
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030
Analyst:	A. Porter	A. Porter	A. Porter	A. Porter	A. Porter
MS/MSD #:	9706C5604	9706C5604	9706C5604	9706C5604	9706C5604
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Prepared Date:	6/27/97	6/27/97	6/27/97	6/27/97	6/27/97
Analyzed Date:	6/27/97	6/27/97	6/27/97	6/27/97	6/27/97
Instrument I.D.#:	GCHP7	GCHP7	GCHP7	GCHP7	GCHP7
Conc. Spiked:	0.20 mg/Kg	0.20 mg/Kg	0.20 mg/Kg	0.60 mg/Kg	1.2 mg/Kg
Result:	0.13	0.16	0.18	0.53	1.1
MS % Recovery:	65	80	85	75	92
Dup. Result:	0.14	0.16	0.18	0.54	1.1
MSD % Recov.:	70	80	85	77	92
RPD:	7.4	0.0	0.0	1.9	0.0
RPD Limit:	0-25	0-25	0-25	0-25	0-25
LCS #:	BLK062797	BLK062797	BLK062797	BLK062797	BLK062797
Prepared Date:	6/27/97	6/27/97	6/27/97	6/27/97	6/27/97
Analyzed Date:	6/27/97	- 6/27/97	6/27/97	6/27/97	6/27/97
Instrument I.D.#;	GCHP7	GCHP7	GCHP7	GCHP7	GCHP7
Conc. Spiked:	0.20 mg/Kg	0.20 mg/Kg	0.20 mg/Kg	0.60 mg/Kg	1.2 mg/Kg
LCS Result:	0.16	0.19	0.21	0.63	1.3
LCS % Recov.:	80	95	105	105	108
MS/MSD	60-140	60-140	60-140	60-140	60-140
LCS Control Limits	70-130	70-130	70-130	70-130	70-130


SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9706C52.GET <2>

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

6747 Sierra Court Suite G Dublin, CA 94568 Barbara Sieminski Attention:

Client Proj. ID: Chevron RMC Lonestar, Oakland

Received: 06/23/97

Lab Proj. ID: 9706C52

Reported: 07/01/97

LABORATORY NARRATIVE

In order to properly interpret this report, it must be reproduced in its entirety, report contains a total of $\underline{\mathcal{I}}$ pages including the laboratory narrative, sample results, quality control, and related documents as required (cover page, COC, raw data,

SEQUOIA ANALYTICAL

Mike Gregory Project Manager

Fax Copy of Lab Report and COC to Chevron Contact: MYNo Chain-of-Custody-Rec Chevron Facility Number 2 RMC LONESTAR
Facility Address 333 3rd Avenue Oakland Chevron Contact (Name) Bob Coulyvay (Phone) (510) 842-9655 Laboratory Name Sequoia Chevron U.S.A. Inc. Consultant Project Number 6338.01 P.O. BOX 5004 Consultant Name Gettler-Ryan Laboratory Release Number_ Samples Collected by (Name) Barbara Sieuwiusti San Ramon, CA 94583 Address 6747 Sierra Ct, Ste J, Dublin 94568 FAX (415)842-9591 Project Contact (Hoppo) Barbara Sigminski (Phone) 551-7555 (Fax Number) 551-7888 Collection Date 06/20/97 Signature Parlemine 们106CSZ Analyses To Be Performed Matrix S - Soil A - Air W = Water C - Charcool DO NOT BILL TB-LB ANAL Purgeable Aromatica (8020) Purgeable Organics (8240) Yurgeable Halocarbor (8010) Extractable Organica (8270) Oil and Grease (5520) # T # 000 Remerks nold Yes MW14-3 14:30 X MW14=61 14:50 15:00 11-HIGH 15:10 MW14-16 15,20 MW14-21 Reactived By (Signature) Dale/Time Dote/11me/0:30 Organization Relinquished By (Signature) Turn Around Time (Circle Choice) Organization Barbare Dilunish Segloiu 06/23/97 G-R 24 Hrs. Relinquished By (Signature) 48 Hrs. Dale/Time Organization Received By (Signature) 6 Days 6/23/97 Recleved For Laboratory By (Signature) Pate/Time Relinquished By (Signature) Organization As Contracted INC. Devas