Environmental Consultants

6601 Koll Center Parkway Suite 140 Pleasanton, California 94566

RECEIVED

Phone (925) 426-0080 FAX (925) 426-0707 www.scsengineers.com

By dehloptoxic at 8:49 am, Oct 20, 2006

SCS ENGINEERS

October 19, 2006 Project Number: 01203087.01

Mr. Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502 Phone (510) 567-6791 Fax (510) 337-9335

Subject: Revised Response to Comments/Workplan Friesman Ranch Property 1600 Friesman Road Livermore, California

Dear Mr. Wickham:

On behalf of our client, Children's Hospital Medical Foundation (Children's Hospital), this letter provides the *Revised Response to Comments/Workplan* requested in your January 31, 2006 and August 23, 2006 letters for the Friesman Ranch Property located at 1660 Friesman Road, Livermore, California (the "Property"). A Site Location Map and Site Plan are provided as Figures 1 and 2, respectively. In our effort to prepare this *Revised Response to Comments/Workplan* SCS Engineers (SCS) performed the following tasks: 1) File Review, including both SCS internal project files and additional information provided by Children's Hospital, 2) Site Reconnaissance and Interview, and 3) Well Survey. These tasks are described in greater detail below:

File Review - SCS reviewed the following documents related to the project:

Kleinfelder, Inc., July 8, 1997. *Phase I Environmental Site Assessment and Limited Soil and Groundwater Sampling Report, Friesman Road Property, Livermore, California.*

Kleinfelder, Inc., October 17, 1997. Remedial Investigation, RBCA Tier 2 Evaluation and Remedial Action Plan, Friesman Road Property, Livermore, California.

SCS Engineers, November 21, 2003. Groundwater Monitoring, Soil Vapor Survey, and Source Removal Report, Friesman Ranch Property, 1660 Friesman Road, Livermore, California.

SCS Engineers, December 17, 2003. Quarterly Groundwater Monitoring Report, Fourth Quarter 2003, Friesman Ranch Property, Livermore, California.

SCS Engineers, May 14, 2004. General Site Cleanup and Above-Ground Storage Tank Removal, Friesman Ranch Property, Livermore, California (Copy provided as Attachment B).

Consolidated Engineering Laboratories (Consolidated), March 2, 2006. Sampling Results for Limited Sampling Assessment, 1660 Friesman Road, Livermore (Copy provided as Attachment C).

Site Reconnaissance and Interview - On May 10, 2006 SCS personnel visited the Property to view areas of past investigation/remediation and to view unrecorded/unknown wells on the Property and nearby area (if any). In addition, SCS interviewed the caretaker of the Property, Mr. Mike Schofield. Mr. Schofield is a member of the extended Friesman family and has first hand knowledge of the Property's History.

Well Survey – SCS conducted a Sanborn Map search, contacted the Zone 7 Water Agency, reviewed historical aerial photographs, interviewed Mr. Schofield, and conducted a site reconnaissance in an attempt to locate any unrecorded/unknown wells within $\frac{1}{2}$ mile of the Property.

Based on the results of the tasks listed above, our response to your concerns are addressed below in numerical order as presented in your January 31, 2006 letter:

1. **Gasoline in Soil and Groundwater.** The source of gasoline range hydrocarbons detected in soil and groundwater in the vicinity of the former above-ground heating oil tank and associated product lines and boilers is unknown to SCS. However, during the May 10, 2006 site reconnaissance and interview, Mr. Schofield indicated that a small (approximately 300 gallon) underground gasoline storage tank (UST) was previously located in the vicinity of the former heating oil above-ground storage tank. Mr. Schofield indicated that, to the best of his knowledge, the gasoline UST was removed sometime in the 1970's. This suspected former UST may be the source of gasoline range hydrocarbons detected in groundwater north of the dairy building.

Previous investigation and sampling at the Property has not specifically targeted the suspected former UST. However, several investigations conducted in the area of the suspected UST have included analysis for gasoline-related constituents. For example, during the July 2003 soil vapor survey total petroleum hydrocarbons as gasoline (TPH-g), benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE) were not detected at depths of approximately 3 feet below ground surface (bgs) in the vicinity of the suspected former 300 gallon UST. In addition, between August and September 2003, soil beneath and in the vicinity of the former above-ground heating oil tank and associated product lines was excavated and transported off-site (SCS, November 21, 2003). TPH-g, BTEX, and MTBE were not detected in final confirmation soil samples collected at depths ranging from 1 to 3 feet bgs in the vicinity of former above-ground heating oil tank.

Existing monitoring wells at the Property are adequately located to monitoring for impacts to groundwater associated with the suspected historic gasoline UST. SCS recommends completion of a round of monitoring for all site wells (including the on-site water supply well) with analysis for TPH-g, TPH as diesel fuel (TPH-d), and TPH as stoddard solvent (TPHss) using EPA Method 8015C, for VOCs (including BTEX, MTBE, 1,2-dichloroethane, ethylene dibromide, and chlorinated hydrocarbons) using EPA Method 8260B, and for dissolved total lead. A Workplan for the proposed additional work is provided in Attachment D.

In addition, in accordance with your August 23, 2006 request, one direct-push soil boring will be drilled upgradient of previous boring KB-18 on the eastern side of Arroyo De Las Positas. The proposed boring location is shown on Figure 3. Soil and groundwater samples will be collected/analyzed from the boring as described in the Workplan provided in Attachment D.

2. Soil Vapor Survey Results. Review of analytical data from soil vapor probes SV-1 through SV-12 (located in the vicinity and west to northwest of the of the former above-ground heating oil tank) indicates that TPH-g, BTEX, and MTBE, were not detected. Laboratory reporting limits (RLs) for each of these compounds, except benzene, were below residential Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, February 2005). The 125 μ g/m³ RL for benzene exceeds the 85 μ g/m³ residential ESL established by the SFBRWQCB for shallow (<5 feet) soil gas. However, the 125 μ g/m³ RL for benzene is below the 290 μ g/m³ commercial ESL established by the SFBRWQCB for shallow soil gas. Discussions with Children's Hospital and a potential developer, The Terrill Company, indicate that future use of the Property will likely be commercial.

Other areas of the Property identified by Kleinfelder (July 8, 1997) with potential VOC sources include paint and thinner storage in and around Barn No. 1 located south and east of the dairy building and two above-ground fuel storage tanks adjacent to Barn No. 4 located south of Arroyo De Las Positas. Barn locations are shown on Figure 2. Kleinfelder reported that VOCs were not detected in a four point composite shallow soil sample collected from the vicinity of Barn No. 1 (Kleinfelder, July 8, 1997).

In an effort to address these issues SCS recommends collection and analysis of 22 additional soil vapor samples from the Property in the following four areas: 1) former above-ground heating oil tank and vicinity including areas above the known plume of impacted groundwater, 2) former paint and thinner storage areas in and around Barn No. 1, 3) in the vicinity of the former above-ground fuel storage tanks near Barn No. 4, and 4) within Barn No. 2. Proposed soil vapor sampling locations are shown on Figure 3. Further detail on these areas is provided in the Workplan included Attachment D. Soil vapor samples should be analyzed for VOCs using EPA Method 8260 (or equivalent) including analysis for benzene using an RL that is less than 85 μ g/m³.

Analytical data from the proposed soil vapor sampling locations shown on Figure 3 will be reviewed in the field and additional, "step-out", locations will sampled and analyzed if significant VOCs (e.g., concentrations exceeding residential ESLs) are detected at the initial locations. "Step-out" sampling locations will generally be located 10 to 20 feet from initial locations and will be chosen the field based on accessibility, safety, and professional judgement. A maximum of 8 step out soil vapor sampling locations are envisioned as part of the proposed investigation. As such, a maximum of 30 soil vapor samples are proposed to be collected and analyzed as part this investigation.

- 3. Groundwater Analyses for Volatile Organic Compounds. Review of the documents listed above indicates that groundwater samples collected from site wells have been variously analyzed for TPH-g, TPH-d, BTEX, MTBE, poly aromatic hydrocarbons (PAHs), and lead. As previously discussed, SCS recommends completion of another round of groundwater monitoring at the Property with analysis for TPH-g, TPH-d, and TPHss using EPA Method 8015C, for VOCs (including BTEX, MTBE, 1,2-dichloroethane, ethylene dibromide, and chlorinated hydrocarbons) using EPA Method 8260B, and for dissolved total lead. All site monitoring wells (KMW-1 through KMW-8) and the on-site water supply (3S/1E 2P3) should be included in the monitoring.
- 4. Vertical Extent of Contamination. As indicated in your letter, the highest concentration of TPH-g (4,000 mg/kg) detected in soil samples from the Property was from boring KB-18 at a depth of 20 bgs. According to Kleinfielder (October 17, 1997) this sample is from the saturated zone (TPH-d and TPH-g were detected in the groundwater sample from this boring at concentrations of 490 and 320 μ g/L, respectively). In addition, review of the boring log for KB-18 indicates that no odors were noted and that VOCs were not detected using a photoionization detector (PID) in soil samples collected at depths of 5 and 10 feet bgs from boring KB-18. This information suggests that TPH-g detected in the soil sample from boring KB-18 at a depth of 20 feet bgs is likely the result of interaction with impacted groundwater. Groundwater beneath the Property is monitored via a network of 8 monitoring wells and, as indicated above, SCS recommends completion of a round of monitoring for all site wells with analysis for TPH-g, TPH-d, and VOCs including BTEX and MTBE.

In accordance with our recent discussions, the drilling and sampling of three borings along a transect perpendicular to the TPH plume requested in your August 23, 2006 letter will be conducted following completion of the tasks outlined in this *Revised Response to Comments/Workplan*. Results of the investigation proposed herein will assist with selection of the transect location. A separate Workplan for the transect will be prepared and submitted to your office for approval.

Mr. Jerry Wickham October 19, 2006 Page 5 of 9

5. Volume of Soil Excavated from Fuel System Excavation. Review of our files and discussions with SCS personnel indicate that soil removed from the fuel system excavation was transported off-site and disposed of at the Vasco Road Landfill in Livermore, California. The text of SCS's November 21, 2003 report incorrectly states that 24 cubic yards of soil were generated during excavation of the fuel system area and an additional 24 cubic yards of soil were generated during excavation of the incinerator. In actuality, 24 cubic yards of soil was generated from both areas combined. As shown on the landfill load tickets provided in Appendix E of SCS's November 21, 2003 report a total of 33.97 tons of soil was disposed of at the Vasco Road Landfill on October 29, 2003. Using a standard ratio of 1.3 to 1.5 tons per cubic yard 33.97 tons equates to approximately 24 cubic yards.

The approximate limits of excavation shown on Figure 6 of SCS's November 21, 2003 report were not surveyed and are presented for general excavation location purposes. In addition, the scale shown on Figure 6 of SCS's November 21, 2003 report was not accurate - a revised figure showing a more accurate scale, based in-part on field measurements taken during the May 10, 2006 site reconnaissance, is provided in Attachment E.

To the best of our knowledge, no excavated soil was reused onsite (all exported soil was disposed of at the Vasco Road Landfill).

6. Stoddard Solvents in KW-7. In an effort to further evaluate the reported presence of stoddard solvent in the groundwater sample collected from well KW-7 in July 2003 SCS reviewed the documents listed above and contacted the laboratory that analyzed the sample. McCampbell Analytical reviewed the chromatograms for sample KW-7 from July 2003 and confirmed that stoddard solvent/mineral spirits were present. A possible source of stoddard solvent/mineral spirits at the Property are the paints and thinners formerly stored in Barn No. 1 located south and east of the former dairy building. However, this area is approximately 80 feet south (crossgradient) of well KMW-7 and stoddard solvent was not reported by the laboratory in groundwater samples collected from well KMW-7 in September 1997, December 1998, April 2003, or October 2003. As previously discussed, SCS recommends completion of another round of groundwater monitoring at the Property. In an effort to more fully evaluate the potential for stoddard solvent, groundwater samples from all site wells should be analyzed for TPH as stoddard solvent (TPH-ss) using EPA Method 8015C.

In addition, in accordance with your August 23, 2006 request, one direct-push soil boring will be drilled immediately west of Barn No. 1. The proposed boring location is shown on Figure 3. Soil and groundwater samples will be collected/analyzed from the boring as described in the Workplan provided in Attachment D.

7. Source of Lead in Groundwater. Historical data provided to SCS indicates that lead was detected in the groundwater sample collected from well KMW-7 at a concentration of 38 µg/L in December 1998. Review of the field well sampling log for this monitoring event indicates that the well was purged and sampled using a disposable bailer (Kleinfelder, February 17, 1999. This method of purging and sampling may disturb the water column causing sediment to become entrained in the water sample, which may result in anomalously

high metals concentrations. More recent analysis of groundwater samples from well KMW-7 in June 1999, September 1999, and January 2006 detected lead at concentrations ranging from $<5 \mu g/L$ to 2.9 $\mu g/L$ (SCS, December 17, 2003 and Consolidated, March 2, 2006).

In an effort to more fully evaluate the potential for lead-impacted groundwater beneath the Property, SCS recommends that groundwater samples collected during the proposed additional monitoring should also be analyzed for total lead using appropriate EPA Methods. To reduce the potential for false positives SCS recommends the use of low-flow purging and sampling methods. Low flow purging methods have previously been used at the Property and generally provide sediment-free samples.

8. Volume of Soil Excavated from Incinerator Area. Review of our files and discussions with SCS personnel indicate that soil removed from the incinerator excavation was transported off-site and disposed of at the Vasco Road Landfill in Livermore, California. The text of SCS's November 21, 2003 report incorrectly states that 24 cubic yards of soil were generated during excavation of the incinerator and an additional 24 cubic yards of soil were generated during excavation of the fuel system area. In actuality, 24 cubic yards of soil was generated from both areas combined. As shown on the landfill load tickets provided in Appendix E of SCS's November 21, 2003 report a total of 33.97 tons of soil was disposed of at the Vasco Road Landfill on October 29, 2003. Using a standard ratio of 1.3 to 1.5 tons per cubic yard 33.97 tons equates to approximately 24 cubic yards.

The approximate limits of excavation shown on Figure 6 of SCS's November 21, 2003 report were not surveyed and are presented for general excavation location purposes. In addition, the scale shown on Figure 6 of SCS's November 21, 2003 report was not accurate - a revised figure showing a more accurate scale, based in-part on field measurements taken during the May 10, 2006 site reconnaissance, is provided in Attachment E.

9. Well Survey. In accordance with your request for a survey of all wells within ½ mile of the Property SCS performed the following tasks:

Sanborn Maps: SCS contacted Environmental Data Resources (EDR) of Southport Connecticut for Sanborn Fire Insurance Maps (Sanborn Maps) for the Property. According to EDR, Sanborn Map coverage is not available for the Property and nearby area. A Sanborn Map Report stating that "No Coverage" was available for the Property is included as Attachment F.

Zone 7 Water Agency Records: SCS contacted the Zone 7 Water Agency (Zone 7) for information on the location of known wells within ½ mile of the Property. Zone 7 provided a map showing the locations of water supply wells, abandoned supply wells, monitoring, wells, destroyed wells, and cathodic or unknown wells within ½ mile radius of the Property.

A copy of this map is provided as Attachment G. Review of the map indicates that numerous wells are located within ¹/₂ mile of the Property. Based on a northwesterly to westerly groundwater flow direction (SCS, November 21, 2003, SCS, December 17, 2003, Consolidated, March 2, 2006), 6 water supply wells, 3 abandoned water supply wells, and 2 monitoring wells are located within ¹/₂ mile downgradient of the Property. However, on-site monitoring wells KMW-4, KMW-5, and KMW-8 are located between these wells and the on-site source area in the vicinity of wells KMW-6 and KMW-7. Petroleum hydrocarbons have not been detected in wells KMW-4, KMW-5, and KMW-8.

In accordance with state confidentiality regulations for well data, construction details for the on-site water supply well (3S/1E 2P3), downgradient wells within 2,000 feet of the site, and upgradient/cross gradient wells within 1,000 feet of the site (e.g., 3S/1E 2P7, 3S/1E 2N3, 3S/1E 2N2, and 3S/1E 2P1) are provided under separate cover.

Aerial Photographs: On June 7, 2006 SCS reviewed aerial photographs provided by Pacific Aerial Surveys of Oakland, California (photographs dating from 1954, 1963, 1974, 1979, 1984, 1988, 1992, 1996, and 2002) in an attempt to identify to unrecorded/unknown wells within $\frac{1}{2}$ mile of the Property. SCS was unable to identify any unrecorded/unknown wells within $\frac{1}{2}$ mile of the Property during the aerial photograph review. A list of aerial photographs available for the Property and nearby area from Pacific Aerial Surveys is provided in Attachment H.

Interview: On May 10, 2006 SCS personnel interviewed the caretaker of the Property, Mr. Mike Schofield. Mr. Schofield is a member of the extended Friesman family and has first hand knowledge of the Property's history. Mr. Schofield did not have knowledge of any unrecorded/unknown wells on or in the vicinity of the Property. Mr. Schofield indicated that the on-site water supply well (3S/1E 2P3) supplies potable water to on-site residences and livestock. The future of the well is presently undermined. However, future property use will likely be commercial. If the well is not compatible with future site development or if it is no longer needed, SCS recommends that it be property destroyed in accordance with California and local well regulations.

Area Reconnaissance: On May 10, 2006 SCS personnel visited the Property and nearby area in an attempt to identify any unrecorded/unknown wells with ½ mile of the Property. SCS viewed nearby areas from the Property and from readily accessible public areas (e.g., streets and roads), however, no unrecorded/unknown wells were observed.

10. Characterization of Incinerator Area. According to Mr. Schofield, the incinerator formerly located on the Property was used only to burn trash. Other details regarding past incinerator operations including how bottom ash was disposed of are not known to SCS. As shown in the Photo provided in Attachment I, the incinerator was relatively small and constructed of brick.

Metals are the primary chemicals of concern for burn ash (CIWMB, November 4, 1998). Burn ash may also contain relatively low concentrations of other chemicals (e.g., TPH, semivolatile organic compounds, polychlorinated biphenyls, etc.). However, analysis of soil samples for metals generally provides the best method to evaluate the potential for impacts associated with burn ash fallout or disposal.

In an effort to more fully evaluate the potential impacts from the incinerator SCS recommends collection of up to 15 additional soil samples in the vicinity and downwind (easterly) of the former incinerator with analysis for metals including lead, cadmium, chromium, nickel, zinc, arsenic, and mercury. Proposed incinerator area soil sampling locations are shown on Figure 4. A Workplan for the proposed additional work is provided in Attachment D.

Summary of SCS' May 14, 2004 Report

Based on our previous phone conversations it appears that a copy of SCS's May 14, 2004 Report entitled *General Site Cleanup and Above-Ground Storage Tank Removal, Friesman Ranch Property, Livermore, California* was not forwarded to your office. As we have discussed, a copy of this report in provided herein as Attachment B.

The report describes and documents the off-site transportation and disposal of miscellaneous wastes (e.g., empty drums, oil cans, diesel fuel, hydraulic oil, etc.) and the off-site transportation and disposal of the diesel fuel AST formerly located near the southeast corner of Barn 3.

The report also describes soil sampling/analysis conducted in Shed D where oil-stained concrete had been observed and soil sampling/analysis and remedial excavation in Barn No. 3 near the former diesel fuel AST (See Figure 2 for Shed and Barn locations). Analytical results of the soil sample collected from Shed D were either non-detect or below residential ESLs for TPH-d, TPH-g, BTEX, and MTBE. Approximately 12 cubic yards of soil was excavated from the vicinity of the former diesel fuel AST in Barn No. 3 between February and March 2004. This soil was transported off-site for disposal at the Vasco Road Landfill. TPH-d was detected at a concentration of 560 mg/kg in a confirmation soil sample collected at the base of the excavation at a depth of approximately 5 feet bgs. Based on these results, in May 2004 SCS recommended additional characterization of the former diesel fuel AST area in Barn No. 3.

In January 2006 Consolidated collected soil samples from vicinity of the former diesel fuel AST in Barn No. 3 at depths of 5 and 10 feet bgs (Consolidated, March 2, 2006). According to the Consolidated report TPH-d was detected in soil samples collected at depth of 5 and 10 feet bgs at concentrations 10 mg/kg and 1.2 mg/kg, respectively. These concentrations are well below ESLs. In addition, TPH-g, BTEX, MTBE, VOCs, and PNAs were not detected in the soil samples collected by Consolidated in Barn No. 3.

Mr. Jerry Wickham October 19, 2006 Page 9 of 9

Closing

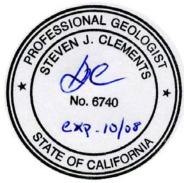
Please refer to the Workplan included at Attachment D for the details of the proposed additional site investigation and monitoring.

The conclusions and recommendations contained herein are based, in part, on analytical data, points of exploration, and investigation activities conducted by others. The nature and extent of subsurface variations between borings, wells, and/or excavations may not become evident until construction activities for site redevelopment begin. No other warranty, either expressed or implied, is made as to the professional conclusions presented herein.

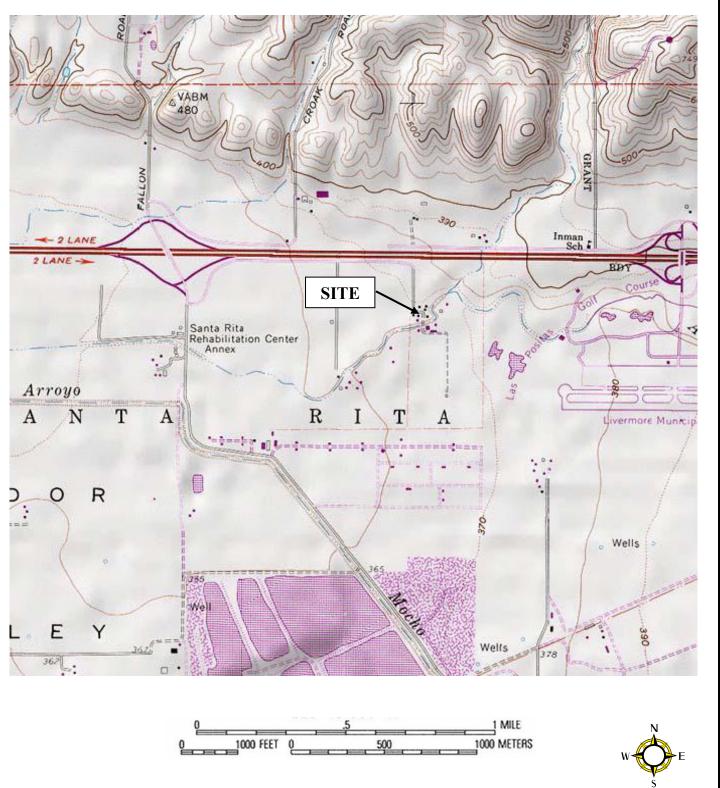
Please contact Steve Clements at (925) 240-5152 if you have any questions or comments regarding this submittal.

Sincerely,

me


Steve Clements, PG, REA Project Manager SCS Engineers

Lenard Long, PE Vice President SCS Engineers


Attachments: Figure 1 - Site Location Map Figure 2 - Site Plan Figure 3 - Proposed Sample Locations Figure 4 - Proposed Incinerator Area Soil Sample Locations

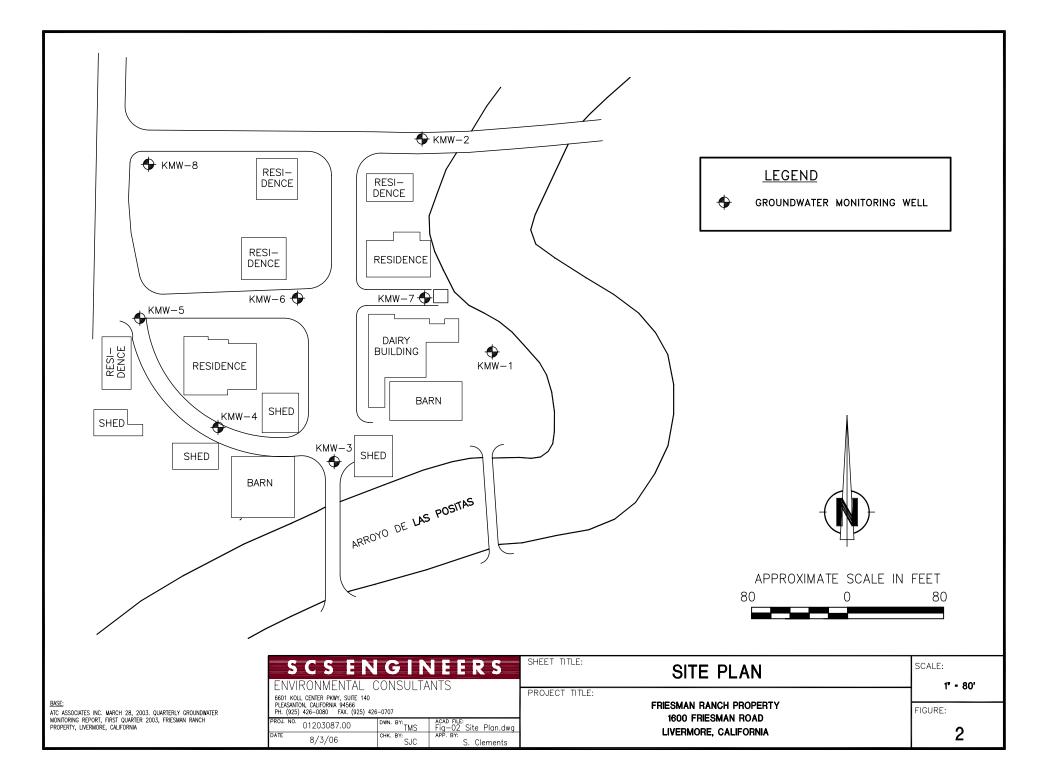
> Attachment A - References Attachment B - SCS Engineers' May 14, 2004 Report Attachment C - Consolidated Engineering Laboratories' March 2, 2006 Report Attachment D - Workplan Attachment E - Revised Figure 6 From SCS's November 21, 2003 Report Attachment F - Sanborn Map Report Attachment G - Zone 7 Water Agency Well Location Map Attachment H - List of Aerial Photographs Attachment I - Incinerator Photo

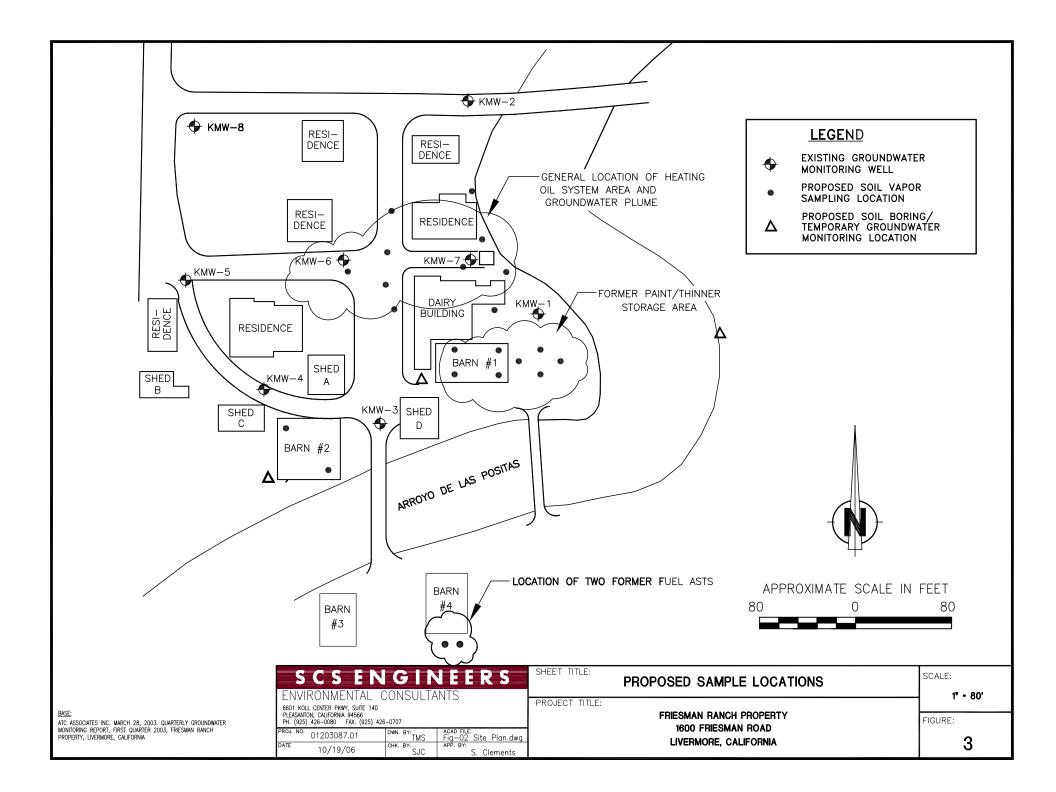
cc: Emily De Falla – Children's Hospital Tom Terrill – The Terrill Company

FIGURES

SOURCE: UNITED STATES GEOLOGICAL SURVEY *LIVERMORE QUADRANGLE, CALIFORNIA 7.5 MINUTE SERIES* (*TOPOGRAPHIC*) MAP. OBTAINED FROM THE 2000 NATIONAL GEOGRAPHIC TOPO SOFTWARE..

SCS ENGINEERS


6601 Koll Center Parkway, Suite 140 Pleasanton, CA 94566 (925) 426-0080


PROJECT NO: 01203187.01

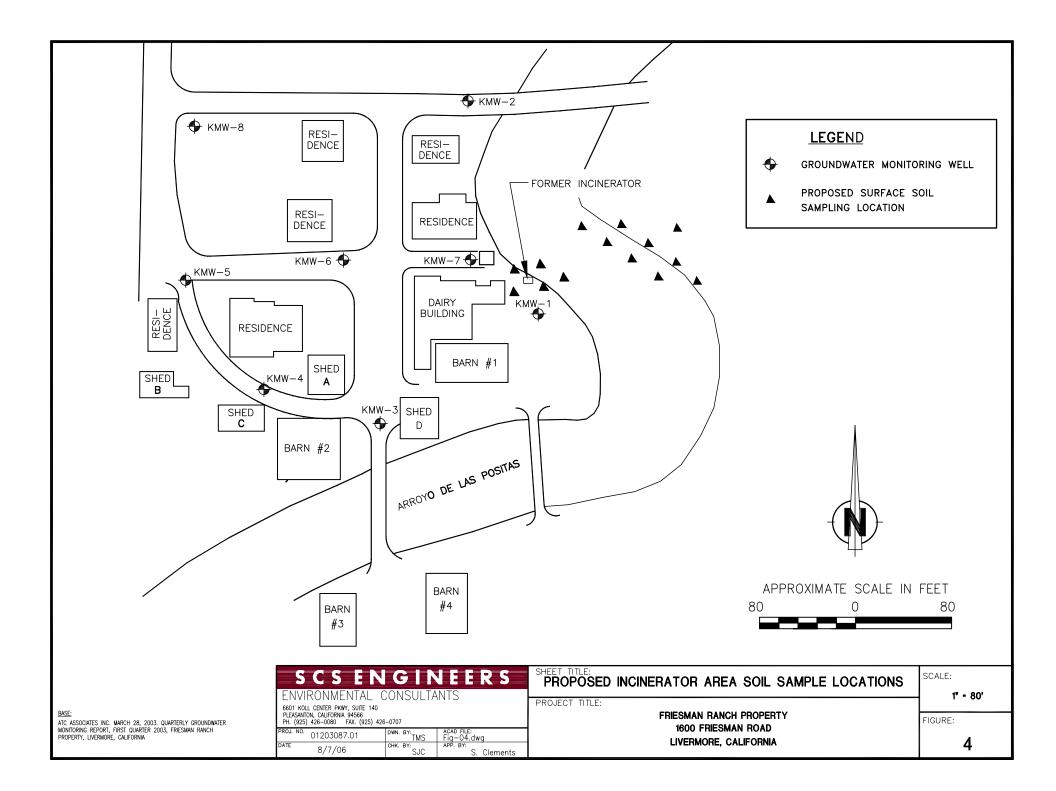

DESIGNED BY: TMS	SCALE: SHOWN	REVIEWED BY: SJC

FIGURE 1 SITE LOCATION MAP

FRIESMAN RANCH PROPERTY 1600 FRIESMAN ROAD LIVERMORE, CALIFORNIA

ATTACHMENT A

REFERENCES

REFERENCES

- California Integrated Waste Management Board (CIWMB), November 4, 1998. LEA Advisory #56, Characterization of Burn Dumps in California.
- Consolidated Engineering Laboratories, March 2, 2006. Sampling Results for Limited Sampling Assessment, 1660 Friesman Road, Livermore.
- Kleinfelder, Inc., July 8, 1997. Phase I Environmental Site Assessment and Limited Soil and Groundwater Sampling Report, Friesman Road Property, Livermore, California.
- Kleinfelder, Inc., October 17, 1997. Remedial Investigation, RBCA Tier 2 Evaluation and Remedial Action Plan, Friesman Road Property, Livermore, California.
- San Francisco Bay Regional Water Quality Control Board, February 2005. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater.
- SCS Engineers, November 21, 2003. Groundwater Monitoring, Soil Vapor Survey, and Source Removal Report, Friesman Ranch Property, 1660 Friesman Road, Livermore, California.
- SCS Engineers, December 17, 2003. Quarterly Groundwater Monitoring Report, Fourth Quarter 2003, Friesman Ranch Property, Livermore, California.
- SCS Engineers, May 14, 2004. General Site Cleanup and Above-Ground Storage Tank Removal, Friesman Ranch Property, Livermore, California.
- SCS Engineers, August 7, 2006. Response to Comments/Workplan, Friesman Ranch Property, 1600 Friesman Road, Livermore, California.

ATTACHMENT B

SCS Engineers', May 14, 2004. General Site Cleanup and Above-Ground Storage Tank Removal, Friesman Ranch Property, Livermore, California 6601 Koll Center Parkway Suite 140 Pleasanton, CA 94566 925 426-0080 FAX 925 426-0707 www.scsengineers.com

SCS ENGINEERS

May 14, 2004 Job No. 01203087.00

Ms. Emily M. De Falla Vice President Children's Hospital Foundation 5225 Dover Street Oakland, California 94609-1809

Subject: General Site Cleanup and Above-Ground Storage Tank Removal Friesman Ranch Property Livermore, California

Dear Ms. DeFalla:

This letter serves to summarize the general site cleanup work, aboveground storage tank (AST) removal, limited soil excavation and confirmation sampling work performed by SCS Engineers (SCS) at the Friesman Ranch property in Livermore, California (Site) in February and March 2004. SCS gathered, transported and disposed of drums, oil cans, and other containers of potentially hazardous waste from accessible portions of the property in February 2004. Also in February, SCS transported and disposed of an AST containing diesel fuel located inside of a barn near the southwest corner of the property. Stained soil was excavated from beneath the AST location in February 2004, and confirmation samples were collected. In March 2004, based on the results of the initial confirmation samples, additional soil was excavated from beneath the former AST location, and an additional confirmation sample was collected. A Site Vicinity Map is provided as Figure 1, and a Sample Location Map is provided as Figure 2.

BACKGROUND

The subject AST was located inside of a barn located in the southwestern corner of the Site. The barn also contained miscellaneous items including two boats, farming equipment, drums, and other debris. The AST was located in the southeast corner of the barn, and was supported by wooden beams. Stained soil and petroleum-like odor was observed near the AST, although it could not initially be determined whether the odor was attributable to the AST or to the other materials in the barn. According to heirs of Mr. Friesman, the AST had been used to store diesel for fueling farm equipment for 40 or more years, but had not been used for approximately the last 30 years.

On September 18, 2003, one soil sample (AST-1-1') was collected from beneath the AST, at an approximate depth of 1-foot below ground surface (bgs), approximately 1-foot west of the

analyzed for Total Petroleum Hydrocarbons (TPH) as gasoline (TPH-g), and TPH as diesel (TPH-d) by EPA Method 8015; and for methyl-tert-butyl-ether (MTBE), benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8021B. TPH-g, MTBE and BTEX were not detected above their respective reporting limits. TPH-d was detected at a concentration of 47 mg/kg.

SCS recommended the removal of the AST, the underlying stained soil, and the drums and other debris in the barn. The activities were documented in a letter report dated December 5, 2003 to Ms. Lorraine del Prado of Children's Hospital Foundation, entitled *Above-Ground Storage Tank Soil Sample Results and Recommendations*.

FEBRUARY 2004 ACTIVITIES

Debris and AST Disposal

On February 18 and 20, 2004, SCS field personnel gathered drums, oil cans, and other containers of potentially hazardous waste from accessible portions of the property. These materials were staged in a central portion of the site, just to the southwest of the dairy barn. The AST located in the barn in the southwest corner of the property was drained of its remaining diesel fuel and removed from its stand for disposal.

Liquid waste at he site, including diesel, used motor oil and hydraulic fluid, was picked up on February 20, 2004 by American Valley Waste Oil, Inc. of Delhi, CA, a licensed hazardous waste hauler, for disposal or recycling at Riverbank Oil Transfer in Riverbank, CA. Empty drums, cans and miscellaneous metal debris were crushed and hauled off-site for disposal or metal recycling. The AST was transported and disposed of by Ecological Control Industries (ECI) of Richmond, California on February 18, 2004. Waste disposal manifests are attached.

Vehicle Shed Soil Sampling

Many of the petroleum product containers described above had been stored inside of a shed housing a tractor and other vehicles, located south of the dairy barn. Staining from petroleum products was observed on the floor of the shed. In order to investigate the vertical extent of the staining, soil samples were colleted from beneath the concrete floor of the shed in the stained areas. A backhoe was used to break out the stained concrete floor of the shed at two locations, and to dig to approximately 1-foot bgs. Soil samples were collected at each location by using a clean shovel to scoop soil into pre-cleaned brass tubes. Sample locations SHED-1 and SHED-2 are shown on Figure 2.

Following sample collection, each brass tube was capped with Teflon liners and plastic caps. A label noting the date of collection, sample number, and project number was affixed to each sample. The soil samples were then placed in an ice chest maintained at approximately 4 degrees Celsius prior to being picked up for transport to McCampbell Analytical, Inc. laboratory (McCampbell) in Pacheco, California. McCampbell is certified by the California

Department of Health to perform laboratory analysis. The samples were transported using chain-of-custody protocol.

Samples SHED-1 and SHED-2 were analyzed for TPH-g and TPH-d by EPA Method 8015, and MTBE, and BTEX by EPA Method 8021B. TPH-g, MTBE and BTEX were not detected above their respective reporting limits. TPH-d was detected in samples SHED-1 and SHED-2 at concentrations of 1.4 mg/kg and 1.7 mg/kg, respectively, with oil range compounds observed in the chromatograms. These detected concentrations are well below the Environmental Screening Level (ESL) for TPH-d of 100 mg/kg. Soil samples results are shown on Table 1.

AST Area Soil Excavation

Approximately 6.7 tons of stained soil was excavated on February 18, 2004 from beneath the AST location to a depth of approximately 1-foot bgs. Two confirmation soil samples were collected from beneath the AST location in pre-cleaned brass tubes, using the sampling procedure outlined above. Sample locations BARN-1 and BARN-2 are shown on Figure 2, and samples collected at the 1-foot depth at these locations are identified in Table 1 as BARN-1-1' and BARN-2-1'.

Samples BARN-1-1' and BARN-2-1' were analyzed for TPH-g and TPH-d by EPA Method 8015, and MTBE, and BTEX by EPA Method 8021B. TPH-g, MTBE and BTEX were not detected above their respective reporting limits. TPH-d was detected in sample BARN-1 at a concentration of 1.8 mg/kg and in BARN-2 at a concentration of 280 mg/kg. According to the analytical laboratory, the diesel detected at both locations appeared to be aged or degraded.

The TPH-g concentration found in sample BARN-2-1' exceeded the ESL of 100mg/kg for diesel in soil. Based on the analytical results from confirmation soil sample BARN-2-1', SCS recommended additional excavation.

MARCH 2004 ACTIVITIES

AST Area Soil Excavation

On March 25, 2004, SCS field personnel returned to the site to excavate additional contaminated soil from beneath the former AST. Approximately 10.5 cubic yards of stained soil were excavated from beneath the AST location to a depth of approximately five feet bgs. A photo-ionization detector (PID) was used to screen the soil during excavation for the presence of volatile organic compounds; there were no PID readings above zero. One confirmation soil sample was collected at the BARN-2 location (see Figure 2) at an approximate depth of 5-feet bgs, using the same sampling procedure described above. The sample was identified as BARN-2-5'. Photographs of the excavation are attached.

Sample BARN-2-5' was analyzed using the same EPA methods which were used for samples BARN-1-1' and BARN-2-1'. TPH-g, MTBE and BTEX were not detected above their

respective reporting limits. TPH-d was detected in sample BARN-2-5' at a concentration of 560 mg/kg. According to the analytical laboratory, the diesel detected appeared to be aged or degraded. Soil sample analytical results are summarized in Table 1.

Following the completion of the March 2004 soil excavation and sampling activities, clean soil was backfilled into the hole, and the sides of the excavation were sloped back for safety reasons.

Removal of Paint Containers

According to Mr. Mike Schofield, a nephew of the late Mr. Friesman, the few remaining containers of solidified paint observed at the site by SCS in March 2004 have been removed from the site by the people responsible (per a telephone conversation with Mr. Jim Lehrman of SCS Engineers on April 30, 2004).

CONCLUSIONS

Although no BTEX compounds were detected in the confirmation soil samples collected from beneath the AST, the TPH-d concentrations in samples BARN-2-1' and BARN-2-5' both exceeded the ESL of 100 mg/kg for TPH-d in soil. Furthermore, TPH-d concentrations in the soil samples increased with depth. This indicates that the extent of soil contamination beneath the former AST on the south side of the arroyo may be greater than was anticipated at the start of the investigation. Because the concentrations of TPH-d detected beneath the former AST are in excess of the ESL, additional work will likely be required by the responsible regulatory agencies. The required work is expected to include defining the extent of the contamination.

RECOMMENDATIONS

In order to define the extent of the contamination associated with the former AST, SCS recommends additional investigation. SCS recommends that soil borings be advanced at locations surrounding the former AST as the next phase of investigation to assess the vertical and lateral extent of the soil contamination. The borings should extend to groundwater in order to assess possible impacts to water quality beneath the former AST.

The depth to groundwater on-site north of Arroyo de Las Positas is known to range from approximately 12 to 16 feet bgs. We therefore recommend that continuously cored soil borings be advanced to approximately 20 feet bgs, and that soil samples and one groundwater grab sample be collected from each boring. The samples should be analyzed for TPH-d, TPH-g, BTEX and MTBE.

After the completion of the recommended investigation, it is possible that additional work may be required. Such work might be needed for further investigation if concentrations

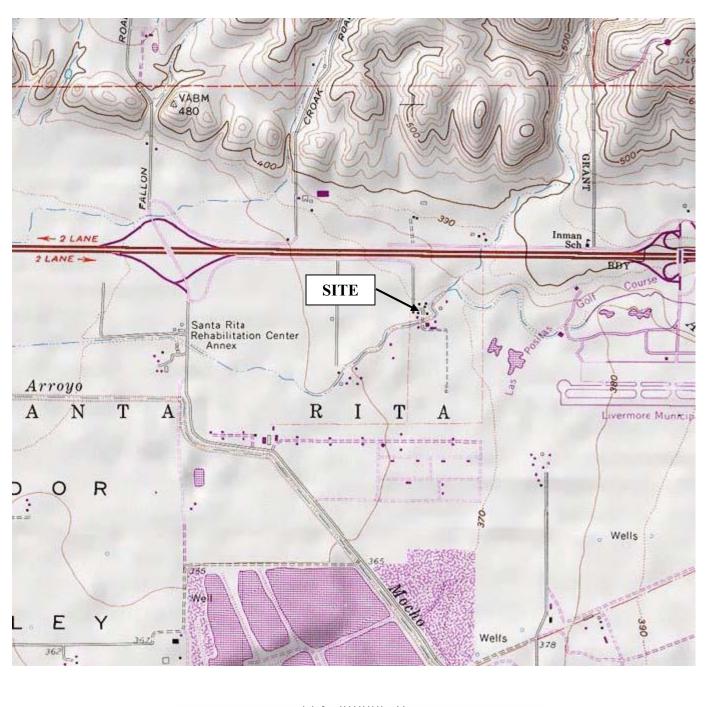
Based on the potential for the detected diesel contamination to extend to groundwater, and based on the potential for the detected diesel contamination in soil to come into contact with and adversely impact human health and the environment, SCS also recommends that copies of this report be provided to the appropriate regulatory agencies, including the Alameda County Department of Environmental Health, the San Francisco Bay Regional Water Quality Control Board, and Zone 7 Water Agency.

CLOSING

SCS appreciates the opportunity to be of service to Children's Hospital Foundation. If you have any questions or comments concerning this investigation and/or our recommendations, please contact Jim Lehrman at (925) 426-0080.

Very truly yours,

Emily Harris Staff Geologist

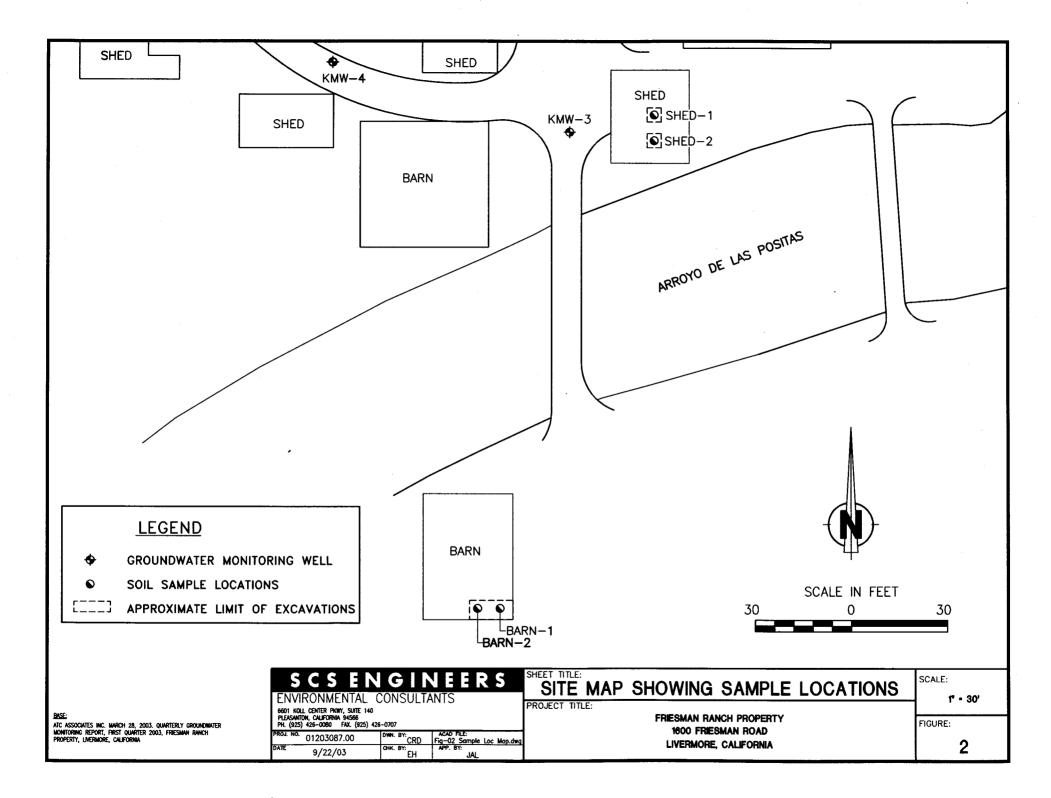

JAL/jal

James A. Léhrman, RG, CHG Senior Technical Manager

Attachments: Figure 1 - Site Vicinity Map Figure 2 - Sample Location Map Table 1 - Soil Sample Analytical Results Photos Laboratory Analytical Reports Waste Manifests

cc: Ms. Leah Goldberg, Hansen, Bridgett, Marcus, Vlahos and Rudy, LLP

FIGURES


SOURCE: UNITED STATES GEOLOGICAL SURVEY *LIVERMORE QUADRANGLE, CALIFORNIA 7.5 MINUTE SERIES* (*TOPOGRAPHIC*) MAP. OBTAINED FROM THE 2000 NATIONAL GEOGRAPHIC TOPO SOFTWARE..

6601 Koll Center Pkwy, Ste. 140 Pleasanton, CA 94566 (925) 426-0080

PROJECT NO: 0120308	7.00	
DESIGNED BY: ATC	SCALE: SHOWN	REVIEWED BY: JAL
DRAWN BY: EC	DATE: 10/03	

FIGURE 1 SITE LOCATION MAP

FRIESMAN RANCH PROPERTY 1600 FRIESMAN ROAD LIVERMORE, CALIFORNIA

TABLE

TABLE 1. SOIL SAMPLE ANALYTICAL RESULTS ABOVE-GROUND STORAGE TANK FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

SAMPLE	SAMPLE	SAMPLE DEPTH	TPH(g)	TPH(d)	MTBE	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
LOCATION	DATE	(feet bgs)				mg/kg	5		
ESLs			100	100	0.023	0.044	2.9	3.3	1.5
AST-1-1'	9/18/2003	1	<1.0	47, c	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
BARN-1-1'	2/18/2004	1	<1.0	1.8, c	>0.05	< 0.005	< 0.005	< 0.005	< 0.005
BARN-2-1'	2/18/2004	1	<1.0	280, c	>0.05	< 0.005	< 0.005	< 0.005	< 0.005
BARN-2-5'	3/25/2004	5	<1.0	560, c	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
SHED-1-1'	2/18/2004	1	<1.0	1.4, g	>0.05	< 0.005	< 0.005	< 0.005	< 0.005
SHED-2-1'	2/18/2004	1	<1.0	1.7, g	>0.05	< 0.005	< 0.005	< 0.005	< 0.005

Notes:

Sample location AST-1 is located approximately one foot west of sample location BARN-2

ESLs = Environmental Screening Levels for shallow soil, where groundwater is a current or potential drinking water resource

c = possible aged-diesel is significant

g = oil range compounds are significant

Bold values are concentrations greater than ESLs.

PHOTOS

Photo 1. Close-up photo showing area beneath the former AST during excavation on March 25, 2004

Photo 2. Photo showing the southeast corner of the barn and the area excavated on March 25, 2004

LABORATORY ANALYTICAL REPORTS

SCS Engineers	Client Project ID: #01203087.00; Friesman	Date Sampled: 02/18/04
6601 Koll Center Pkwy, Ste 140		Date Received: 02/19/04
	Client Contact: Jim Lehrman	Date Reported: 02/24/04
Pleasanton, CA 94566	Client P.O.:	Date Completed: 02/24/04

WorkOrder: 0402269

February 24, 2004

Dear Jim:

Enclosed are:

1). the results of 4 analyzed samples from your #01203087.00; Friesman project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

allic for

Angela Rydelius, Lab Manager

	McCamp	obell A	nalytica	l, Inc.	v	Telepho	enue South, #D7, Pache ne : 925-798-1620 Fax nccampbell.com E-mail	: 925-798-1622				
SCS Eng	gineers			roject ID: #0		Date Sampled: 02/18/04						
6601 Ko	oll Center Pkwy	v, Ste 140	Friesman	n			Date Received:	02/19/04				
		-		ontact: Jim L	ehrman		Date Extracted:	02/19/04				
Pleasant	on, CA 94566		Client P	.0.:			Date Analyzed:	02/21/04				
Extraction	Gasoli method: SW5030B	ine Range	e (C6-C12)		rocarbons as nethods: SW80211		with BTEX and		Order: 04	402269		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	SHED-1	S	ND	ND	ND	ND	ND	ND	1	92.7		
002A	SHED-2	S	ND	ND	ND	ND	ND	ND	1	98.2		
003A	BARN-1	S	ND	ND	ND	ND	ND	ND	1	89.7		
004A	BARN-2	S	ND	ND	ND	ND	ND	ND	1	93.0		
ND mean	g Limit for DF =1; is not detected at or	W	NA	NA	NA	NA	NA	NA	1	ug/L		
above	the reporting limit	S	1.0	0.05	0.005	0.005		0.005	1	mg/K		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

Mc	Campbell An	alytical,	Telepho	venue South, #D7, Pacheonne : 925-798-1620 Fax mccampbell.com E-mail	c: 925-798-1622	2		
SCS Engineers			ect ID: #0120	3087.00;	Date Sampled:	02/18/04		
6601 Koll Cen	ter Pkwy, Ste 140	Friesman			Date Received:	02/19/04		
Pleasanton, CA	04566	Client Con	tact: Jim Lehr	man	Date Extracted:	02/19/04		
Pleasanton, CA	\$ 94500	Client P.O	.:		Date Analyzed:	02/19/04-	02/20/0)4
Extraction method: S		l Range (C		ctable Hydrocarbo ethods: SW8015C	ns as Diesel*	Wo	rk Order:	0402269
Lab ID	Client ID	Matrix		TPH(d)			DF	% SS
0402269-001A	SHED-1	S		1.4,g			1	92.5
0402269-002A	SHED-2	S		1.7,g			1	92.6
0402269-003A	BARN-1	S		1.8,c			1	90.2
0402269-004A	BARN-2	S			1	94.9		

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than \sim 2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Cm

				Matrix:	s		WorkOrder: 0402269				
EPA Method:	SW8021B/8015Cm	Extraction:	SW5030B		BatchID:	10431	s	piked Samp	e ID: 0402	261-007A	
	Sampl	e Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%	
	mg/Kg	g mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(btex) [£]	ND	0.60	107	102	4.70	104	104	0	70	130	
MTBE	ND	0.10	96.4	98.3	1.97	96.4	97	0.555	70	130	
Benzene	ND	0.10	101	112	10.1	104	103	1.36	70	130	
Toluene	ND	0.10	98.6	108	8.72	101	100	1.21	70	130	
Ethylbenzene	ND	0.10	103	109	5.83	103	101	1.60	70	130	
Xylenes	ND	0.30	103	110	6.25	100	99.7	0.334	70	130	
%SS:	111	0.10	97.3	107	9.50	100	97.9	2.12	70	130	

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015C

			Matrix:		WorkOrder: 0402269					
E	Extraction:	SW35500	>	BatchID:	10425	Spiked Sample ID: 0402256-003A				
Sample	Spiked	MS*	MSD*	MS-MSD* % RPD	LCS % Rec.	LCSD % Rec.	LCS-LCSD	Acceptance Criteria (
mg/Kg	mg/Kg	% Rec.	% Rec.				% RPD	Low	High	
ND	150	105	105	0	105	107	1.86	70	130	
90.9	50	110	110	0	108	110	2.01	70	130	
			1						130	
	Sample mg/Kg ND 90.9	SampleSpikedmg/Kgmg/KgND15090.950	Sample Spiked MS* mg/Kg mg/Kg % Rec. ND 150 105 90.9 50 110	Extraction: SW3550C Sample Spiked MS* MSD* mg/Kg mg/Kg % Rec. % Rec. ND 150 105 105 90.9 50 110 110	Sample Spiked MS* MSD* MS-MSD* mg/Kg mg/Kg % Rec. % Rec. % RPD ND 150 105 105 0 90.9 50 110 110 0	Extraction: SW3550C BatchID: 10425 Sample Spiked MS* MSD* MS-MSD* LCS mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. ND 150 105 105 0 105 90.9 50 110 110 0 108	Extraction: SW3550C BatchID: 10425 S Sample Spiked MS* MSD* MS-MSD* LCS LCSD mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. ND 150 105 105 0 105 107 90.9 50 110 110 0 108 110	Invalue: S Extraction: SW3550C BatchID: 10425 Spiked Sample Sample Spiked MS* MSD* MS-MSD* LCS LCSD LCS-LCSD mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD ND 150 105 105 0 105 107 1.86 90.9 50 110 110 0 108 110 2.01	Extraction: SW3550C BatchID: 10425 Spiked Sample ID: 04022 Sample Spiked MS* MSD* MS-MSD* LCS LCSD LCS-LCSD Acceptance mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % RPD LOW ND 150 105 105 0 105 107 1.86 70	


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

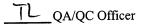
* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8015C

				Matrix:		WorkOrder: 0402269					
EPA Method: SW8015C	E	Extraction:	SW35500)	BatchID:	10425	S	piked Samp	e ID: 04022	256-003A	
	Sample	Spiked	MS*	MS* MSD* N		LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	ND	150	105	105	0	105	107	1.86	70	130	
%SS:	90.9	50	110	110	0	108	110	2.01	70	130	
All target compounds in the Me NONE	thod Blank c	of this extra	ction batch v	were ND le	ess than the n	nethod RL	with the fo	llowing excep	otions:		


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0402269

Report to: Jim Lehrman SCS Engine 6601 Koll Ce Pleasanton,	ers enter Pkwy, Ste 140	TEL: FAX: Project PO:	(925) 426-008 (925) 426-07(No: #01203087.00	07	sman				o: Accour SCS E 6601 k Pleasa	nginee (oll Cei	rs nter Pk		140		Date	Receive Printea	ed:	5 da 2/19/ 2/19/	04
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	Reques 6	ted Tes 7	ts (See 8	legend 9	below) 10	11	12	13	14	15
0402269-001	SHED-1	Soil	2/18/04		A	A													
0402269-001	SHED-2	Soil	2/18/04		А	Α													
0402269-003	BARN-1	Soil	2/18/04		Α	A													
0402269-004	BARN-2	Soil	2/18/04		A	A													

Test Legend:

1	G-MBTEX_S
6	
11	

TPH(D)_S

2 7

12

3	
8	
13	

4	
9	
14	

5	
10	
15	

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

$\tilde{0}$ – G	AD269			CHAIN	OF CUSTOD	(RECORD								
SCS E	AD269 Ingineers ei	nvironm	ental <u>Cons</u>	ultants	TOTAL NUMBER	OF SAMPLES: 4			ANAL	YSES	REQUE	STED		LAB USE ONLY
6601 K Suite 14	oll Center Parkway	92 FA	5 426-0080 X 925 426-070 vw.scsengineers	7	1	OF 1 ME REQUIRED: Strunda DayImmediate0		TPH-d			•			
	UMBER: 012030					GER: J. Lewman								
PROJECT N					W.O. / S.O. #:			Ύ́						
	DCATION: LIVEN		`A					1						
SAMPLER N	AME AND SIGNATURE	Emil	Harris	Empl	lin		HA	12						
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCTIONS/COMMI		MTBF	5			\downarrow		
	SHED-1	Soil	2-18-2004	brass	none		V	1^{\checkmark}	1					
	SHED-2						1	v	1					
	BARN-1						\checkmark	V	1					
	BARN-2							1	1					
<u></u>														
						-								
					GOOD CONDITION	APPROPRIATE								
NOTES:					DECHLORINATED	CONTAINERS IN LAB PRESERVED IN LA COAS ONG METALS OTHER	ř			S	AMPLE			N RECEIPT:
RELINQUISHED	Un 2	TE: 2-19-04	RECEIVED BY:	t -	DATE: 2/15/11:50			,5?.0	2) vt	t		ligsp
COMPANY:	SCA TIM	11.50am	OOMPANY:	1	TIME	COMPANY:	TIMÉ:		CON	PANY:			TIM	E)

McCampbell Analytical, Inc.

SCS Engineers	Client Project ID: #01203087.00;	Date Sampled: 03/25/04
6601 Koll Center Pkwy, Ste 140	Friesman Dairy	Date Received: 03/25/04
	Client Contact: Jim Lehrman	Date Reported: 03/31/04
Pleasanton, CA 94566	Client P.O.:	Date Completed: 03/31/04

WorkOrder: 0403416

March 31, 2004

Dear Jim:

Enclosed are:

- 1). the results of 1 analyzed sample from your #01203087.00; Friesman Dairy project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Youra tru

Angela Rydelius, Lab Manager

APR 0 7 2004

	McCamp	obell A	nalytica	l, Inc.	v	Telepho	venue South, #D7, Pacheo one : 925-798-1620 Fax mccampbell.com E-mail	: 925-798-1622		
SCS En	gineers			roject ID: #0	1203087.00;		Date Sampled:	03/25/04		
6601 K	oll Center Pkw	y, Ste 140	Friesma	n Dairy			Date Received:	03/25/04		
		-		Contact: Jim Le	ehrman		Date Extracted:	03/25/04		
Pleasan	ton, CA 94566		Client P	2.0.:			Date Analyzed:	03/26/04		
Extraction	Gasol	ine Range	e (C6-C12)		ocarbons as ethods: SW80211		with BTEX and		Order: 04	403416
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene Toluene Ethylbenzene Xylenes DF					
001A	Barn-2-5'	S	ND	ND	ND	ND	ND	ND	1	94.2
Reportin	ng Limit for DF =1; ns not detected at or	W	NA	NA	NA	NA	NA	NA	1	ug/L

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

0.05

cluttered chromatogram; sample peak coelutes with surrogate peak.

S

1.0

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

0.005

0.005

DHS Certification No. 1644

above the reporting limit

Angela Rydelius, Lab Manager

0.005

0.005

mg/Kg

1

M	cCampbell An	alytical	, Inc.	Telepho	venue South, #D7, Pacheo one : 925-798-1620 Fax mccampbell.com E-mail	: : 925-798-1622	2	
SCS Enginee	rs		ject ID: #0120	3087.00;	Date Sampled:	03/25/04		
6601 Koll Ce	enter Pkwy, Ste 140	Friesman	Dairy		Date Received:	03/25/04		
Pleasanton, C	N 04566	Client Co	ntact: Jim Lehrr	nan	Date Extracted:	03/25/04		
Pleasanton, C	A 94500	Client P.C	D.:		Date Analyzed:	03/29/04		
Extraction method:		l Range (C		ctable Hydrocarbo ethods: SW8015C	ns as Diesel*	Wo	rk Order:	
Lab ID	Client ID	Matrix		TPH(d)			DF	% SS
0403416-001A	Barn-2-5'	S		560,c			20	92.3
1								
		<u> </u>	<u> </u>					L

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

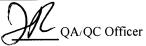
DHS Certification No. 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Cm

EPA Method: SW80	21B/8015Cm E	Extraction:	SW5030E	3	BatchID:	10900	Spiked Sample ID: 0403409-002A					
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(btex) [£]	ND	0.60	102	98	4.23	104	104	0	70	130		
MTBE	ND	0.10	106	99.8	5.59	98.4	96.8	1.65	70	130		
Benzene	ND	0.10	110	108	2.05	108	108	0	70	130		
Toluene	ND	0.10	91.5	90.1	1.46	89.9	90.5	0.647	70	130		
Ethylbenzene	ND	0.10	110	91.8	18.4	107	107	0	70	130		
Xylenes	ND	0.30	99.7	95.7	4.10	95.7	95.7	0	70	130		
%SS:	112	0.10	104	104	0	97	97.9	0.924	70	130		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

f TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8015C

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS Certification No. 1644

McCampbell Analytical, Inc.

Ê

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

WorkOrder: 0403416

Page 1 of 1

Report to: Jim Lehrman SCS Engineers 6601 Koll Center Pkwy, Ste 140 Pleasanton, CA 94566		TEL: FAX: Project PO:	FAX: (925) 426-0707 ProjectNo: #01203087.00; Friesman Dairy					Bill to: Accounts Payable SCS Engineers 6601 Koll Center Pkwy, Ste 140 Pleasanton, CA 94566								Requested TAT: Date Received: Date Printed:			3/25	5 days 3/25/04 3/25/04				
		Matrix	Collection Date	Hold	1	2	3	4		R	eque 6	sted	Test 7	s (S	ee le 8	egen g	d be	low) 10	11	12	13	14	t .	15
Sample ID	ClientSampID	Matrix	Conection Date	TION	•																			
0403416-001	Barn-2-5'	Soil	3/25/04		А	Α																		

Test Legend:

1	G-MBTEX_S
6	
11	

2	TPH(D)_S
7	
12	

2 7

3	
8	
13	

4	
~	
9	
14	
•••	1

5	
10	
15	_

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

y				CHAIN	OF CUSTOD	RECORD 040	3410						
SCS E	NGINEERS E	nvironm	ental Cons	ultants	TOTAL NUMBER	OF SAMPLES:			ANALYS	SES REC	UESTED) 	LAB US ONLY
6601 K Suite 14	oll Center Parkway	92 FA	25 426-0080 X 925 426-070 ww.scsengineers)7		OF I IME REQUIRED: NOTWO DayImmediateO	1	P-HAT					
	UMBER: 01203					GER: J. LENVMAN		2 \ <u>``</u> U					
PROJECT N			DALVU		W.O. / S.O. #:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RTEX					
PROJECT LO		renni	re cat		<u> </u>								
	AME AND SIGNATURE	Emi	14 Harriz	En	Mun			ΞĀ					
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCTIONS/COMM	ENTS	LTT-U					
	Barn-2-5'	Soil	3-25-04	brass				1/					
	2000 2 9	2011		71420									
									+-+	-			
									┼╌┼			+ + -	+
- <u> </u>									┨╌┠			+-+-	
									╀┈╄				<u> </u>
				-									1
									┼╌┼			+	+
									╉╌╌╊		┠──┼──	+-+-	
									╂──╄		┠──┠──	<u> </u>	-
					GOOD CONDITION HEAD SPACE ABSEN	APPROPRIATE CONTAINERS						T	
					HEAD SPACE ABSEN DECHLORDIATED D	LAR PRESERVED DE LAN						+	1
					PRESERVATION				╉┯╋		┼	+-+	
										SAME		ITION UPO	N BECE
NOTES:										0, 111			
DELINIOUISHED		TE:	RECEIVED BY:	7	DATE:	RELINQUISHED BY://	DATE:		RECE	ED BY:	/	DAT	
		3-15 U	Mimile	Jegart	3-25-04		3 TIME:	25-04	1 ALIMA	An	13	25 TIM	12:,4
	565 1	NE: 200	COMPANY:	, <i>u</i>	тіме: 12:00р.	SCS	12	:44	Ŵ	Can	obel		
Tuton	An - 3	125 5:10				. IAGO VIEDOS MAI	3/2:	5 5	:10				

WASTE MANIFESTS

	n er type. Form designed for use on elite (12-p	1. Generator's US EPA	A ID No.	Manifes	t Doci	umen	No,		2.	Page 1			the shaded a			
	UNIFORM HAZARDOUS WASTE MANIFEST			ลแจะ	27	`\	S	\cap		of 1	is not	required	by Federal k			
╞	3. Generator's Name and Mailing Address	CIAICIONZ					A. 5t	ote M	Inifest	Document	Number	00	-			
		rnirsi Valoo	non Ran Friesn							<u>.</u>		<u> </u>	<u>392(</u>			
	4. Generator's Phone 9 25 1426-64	NOW INCO	10000 P	2 Q450	~^		B. Store Generator's ID									
ŀ	5. Transporter 1 Company Name 6. US EPA ID Number C. Store I ransporter a ID U															
	AMERICAN VALLEY WAST	AMERICAN VALLEY WASTE OIL CALOOO82787									300-7	32-40	40			
┢	7. Transporter 2 Company Noma									E. State Transporter & ID [Reserved.]						
							1.1.1		ter's P	<u></u>		.				
	States and the ansate and the ansate of the	R 10.	UŞ EPA ID Numb	er.			G, 31	្រុ	- 	₽0 0 	13 7	90	818			
	5300 CLAUS ROAD RIVERBANK, CA 95367	C.	A, L, 0, 0,	0,1,9,0,	8, 1	i, 6	H. Fa	icility	o Boo	63-81	84					
┝			└──└──└──└		12	. Cor	lainer			. Total	14,		APPLIAS NUM			
	11. US DOT Description (including Proper Ship				Ne	<u>,</u>	Тур	19 	- Gi	uantity	Wi/		Wäste N/m ofs			
		ILY WATER)	• <u> </u>		Q (71	Ţ	T				G EF	A/Other			
	b.						l			55		5)	cie			
						,						E	A/Othar			
													CIE			
	¢.											E	A/Officer			
		-					<u> </u>					51	çia			
	d.												2A/Other			
		- Andrew State - Andrew State - Andrew State			1_		K H			in för Wa	l Wes-Listed	Above	<u>4 8 8 8</u> 			
	Additional Descriptions for Materials Listed a	9 0 049					α.			01	6.		같은 가슴 Sections			
							<u>-</u>	<u></u>	<u>. 80 - 1</u>	r(x)	d.,		an a			
													Б. Г.			
	15. Special Handling Instructions and Additional Information GLOVES															
	EMERGENCY PHONE 209-667-8857															
	14. GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and occurately described above by proper shipping name and are classified, packed, marked, and labaled, and are in all respects in proper condition for transport by highway according to applicable international and national government regulations.															
	If 1 am a large quantity generator, I cartify that I have a program in place to reduce the volume and taxicity of waste generated to the degree I have determined to be acconomical practicable and that I have salected the practicable method of treatment, storage, or disposal currently available to me which minimizes the present and butter threat to human here and the onvironment; OR, if I am a small quantity generator, I have made a good failh effort to minimize my waste generation and select the best waste management method that															
	and the onvironment; QR, if I am a small available to me and that I can afford.	quantity generator, I hava	mada a good fait	h effort to minimi	ze my	wa:	ha Bourd	ration	and s	eleci îne 1	SHAT WOUT	e managi				
	Printed/Typed Nama	11 1	Signatura					2		1		Monih ف ((ج	Doy 1			
4	17. Transporter 1 Acknowledgement of Racoip	t of Materials				. •				******	T		Doy			
	Printod/Typed Name		\$ignature	Purt 1	1.	Ċ.					7	Manth) <u>(</u>	<u>i jî</u> c			
	18, Transpartar 2 Acknowledgement of Receip	t of Materials	Signature		\ \$		der -					Monih	Day			
	Printed/Typed Noma	_	a Sucrord													
	19. Discrepancy Indication Space												2			

DO NOT WRITE BELOW THIS LINE.

,

.

9252405629 05/13/2004 08:56

.

.

SCS ENGINEERS

.

n)	antzeniaEntricommental Valuation of States 7-30-99) rovad GMB No. 2030-0039 (Expires 7-30-99) ni or type. Form designed for ure on oilte (12-pitch) typewriter. 1. Generator's US EP,	A ID MA	Manifest Document	No.	2. Page I	Intermetten ih the Side	Zul
Ī			1000	01	of 1	is not required by Feel	
	3. Generator's Name and Mailing Address . Child Ching Horse Part 5225 Deseren ST. Oracland C		U				
	4. Generator's Phone (57.9.1) 42.858.62 6. 5. Transporter 1 Compony Name 6.	US EPA ID Number					
	Ecology Control Industries C	AD 9821	0,3 ₁ 0,1 ₁ 7,3				
ľ	7, Transporter 2'Company Name 8.	US EPA ID Number	, , , , , , , , , , , , , , , , , , , ,				
-	9. Designand Facility Norms and Site Address 10. ECCIOCY Control Industries	US EPA IQ Number	1	14 V			
		(A) (D) (B) (G) (9) (466392				
-	11, US DOT Description (including Proper Shipping Name, Hozard Close,		12, Cer No.	tainers Type	13. Total Quantity	1d, Unit Wi/Yel	م مسلود تارانه
	NON RORA HAZARDOUS WASTE SO (EMPTY STORAGE TANK)	LID 	001	TP	12 P	P	<u>.</u>
	b.	•9	} }				
	९,			، ا	1.1.1.1		
	d.		· .				المساعد والمند معالم المساعد والمسا
A STATISTICS	NERTEXALL ISLEEDEN CERTINGER DOCEAL						
	Is spraid Handling Instructions and Additional Information Wear proper protective equipment while han	dling, Weight SITE A) or volumes a DDRESS:	re appi	roximate		•
	24 hour emergancy number: 24 hour emergency comact:	ECI .	ⁱⁱⁿ 52	71	021		
	15. GENERATOR'S CERTIFICATION: I hereby declars that the contempts of marked, and labeled, and are in all respects in proper condition for	this consignment are fur transport by highway.a	ly and accurately dependence of the second sec	niomationa	by proper shipping r I and rational gave	rame and are classified, mment regulations.	poskad,
	If I am a large quantity generator, I certify that Unave a pragram in practicable and that I have relacted the practicable method of treatm and the environment; OR, If pan a small quantity generator, I have	a place to roduce the vi made a good faith off	olume and toxicity of w	Ne Severa	tad to lite degree I	have determined to be at each future threat to b	economici wman hw
	Printed/Typed Name Printed/Typed Name Plano G=715 SIGHS IM Bahal Fall		in the	A		- 21	8
	Transporter Ackitowind Smant of Receipt of Materials	Signalare	a Juicos	ſ			180
	19. Tenzoerter 2 Aeknewledgement of Receipt of Maturbia Printed/Typed Name	Signature	1-1			Month P	ery-
	19. Discrepancy Indication Space		, , , , , , , , , , , , , , , , , , ,		. –		
	20. Facility Owner or Operator Certification of receipt of hazardous makes Printed/Typed Name : Trames Willoy	sigla servered by this m Signature	mitest except as noted	n Hern 1.9:		Month E	×× 8 C
-	1 00	OF WRITE BEL	OW THIS LINE.	•			

.

4001 N. Vasco Road, Livermore, California	CO ROAD a 94551 • (925)	, LLC 447-0491				1417	- ,
TICKET: 497575 CUSTOMER: 5CS / SCS ENGINEERS			DATE	<u>=</u> : 02/20	72004		effiain in vehicles aging allowed.
TRUCK: 49 ACCT#: 5000012 PROFILE #: 1002463			TIME	<u>-</u> : 09:23) - 09: 38		All children must r Absolutely no salv
GENERATOR: 1002463 / FREISMAN PLEASA ORIGIN: 0 / DAKLAND LICENSE: COMMENT:	NTON PROPE		ROSS: TARE: NET:	33020 19680 13340	LBS	м.	
WASTE:	QUANTITY	UNIT	RATE		AMOUNT	с. _	rized posal is nis prohibition cution.
SOIL / SOIL - ADC		New State	20.00	, Ş	133.40	-	authorized for disposal tring this pro prosecution
							orting any un o this facility i Persons viola and criminal
Тах	0.00	1-5-5- 10 10	\$ Ø.Ø	Q i	Ø. Ø	}	G: Transpo us waste tr ed by law. I ect to civil
I certify that I have not disposed of any liquid or hazardous waste.		ی ۱ ۱	Tota		133.40	-	WARNING: hazardous v prohibited k are subject
Andall	Weigh	nmaster:	RAYMO	ND Y.			
DRIVER	CUSTON	IER			· · · · · · · · · · · · · · · · · · ·		

5 ^{6*170}	coz2W11000106 VASCO RO)301060 L 4001 N. VASCO RC	502 DAD LIVERMOR	E, CA 94551	
DICE DATE	INVOICE NO.	ACCOUNT NO.	FOR BILLING INQUIRIES, C		SERVICE ADDRESS	
04/01/2004	0008895	50 00012 5	(925) 447-0491	SCS El 6601	NGINEERS KOLL CENTER PARKWAY	
PAGE NO:	1		FOR PERIOD:	PLEAS	ANTON CA 94566	
D	ATE		DESCRIPTION	QTY.	RATE TOT	AL
3/25	5/04 SOILS 5/04 SOILS 1/04 FINANC	CE CHARGE	TKT# - 508719 TKT# - 508787	5.90 4.65	118.00 93.00 2.01)
		PROJECT	TNO 02030	87.00	н с. х.	
		G/L NO Approv		******** ******** 4/13/04		
Please do no	t use engine (J Iandfill. Thank	ake) brakes			RECEIVED	
vinne at trie i		100			APR 0 9 2004	
					ST FNGINEE	
	TATUS				TOTAL THIS INVOICE	213.01

ACCOUNT OTATE				INVOICE
CURRENT	31 - 60 DAYS	61 - 90 DAYS	OVER 90 DAYS	PLEASE PAY
213.01	134.37	-	.28-	THIS AMOUNT

PLEASE RETURN THIS PORTION WITH YOUR PAYMENT. DO NOT ATTACH CHECK TO STUB.

SCS_ENGINEERS

VASCO ROAD LANDFILL 4001 N. VASCO ROAD LIVERMORE, CA 94551

ACCOUNT NO. 50 00012 5	INVOICE DATE	INVOICE NO. 0008895	CURRENT CHARGES	TOTAL DUE 347.10
		SHOW AMOUNT		

Please check box if address has changed, and indicate change(s) on reverse side.

Մոկակակակոսկոսկոսկոներիներին

LLOI KOLL CENTER STE 140 PLEASANTON, CA 94566-3126 Please write your account number on your check and make payable to:

347.10

150193

385050000125000008895000021301000000000

ATTACHMENT C

Consolidated Engineering Laboratories', March 2, 2006. Sampling Results for Limited Sampling Assessment, 1660 Friesman Road, Livermore

March 2, 2006

The Terrill Company 1111 Civic Drive, Suite 395 Walnut Creek, California 94596

Attention: Mr. Tom Terrill

Subject: Sampling Results for Limited Sampling Assessment, 1660 Friesman Road, Livermore

Dear Mr. Terrill:

Consolidated Engineering Laboratories, Inc. (CEL) has completed the Limited Site Sampling Assessment you requested for soil, surface water and groundwater sampling on January 21st and February 1, 2006 at the above referenced site. Selected soil and groundwater samples were collected from the Shed and Barn locations, two stream locations in Arroyo de las Positas and existing monitoring wells KMW-1, 2, 6, 7, and 8. The attached figures show the sampling locations with groundwater contour flow (see Table1) data and summarized groundwater chemical data. The chemical analytical data is summarized in Tables A-E.

We hope this provides the necessary information. If you have any questions, please call David Boyd at (925) 314-7100. It is a pleasure providing professional services to you on this project.

Sincerely,

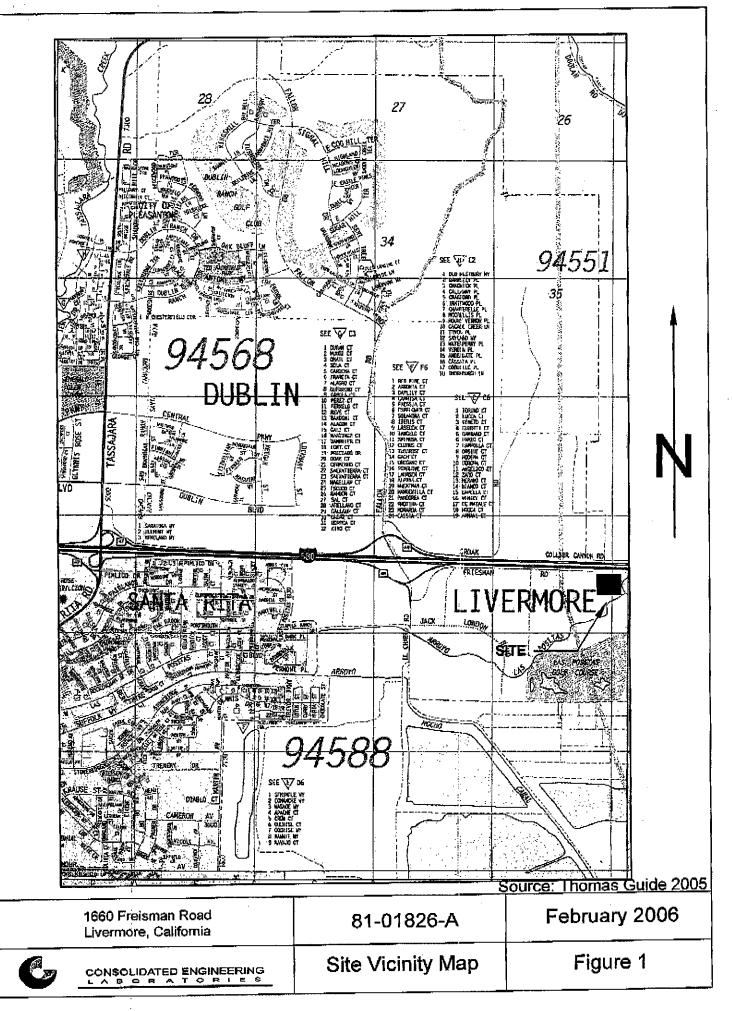
Consolidated Engineering Laboratories, Inc.

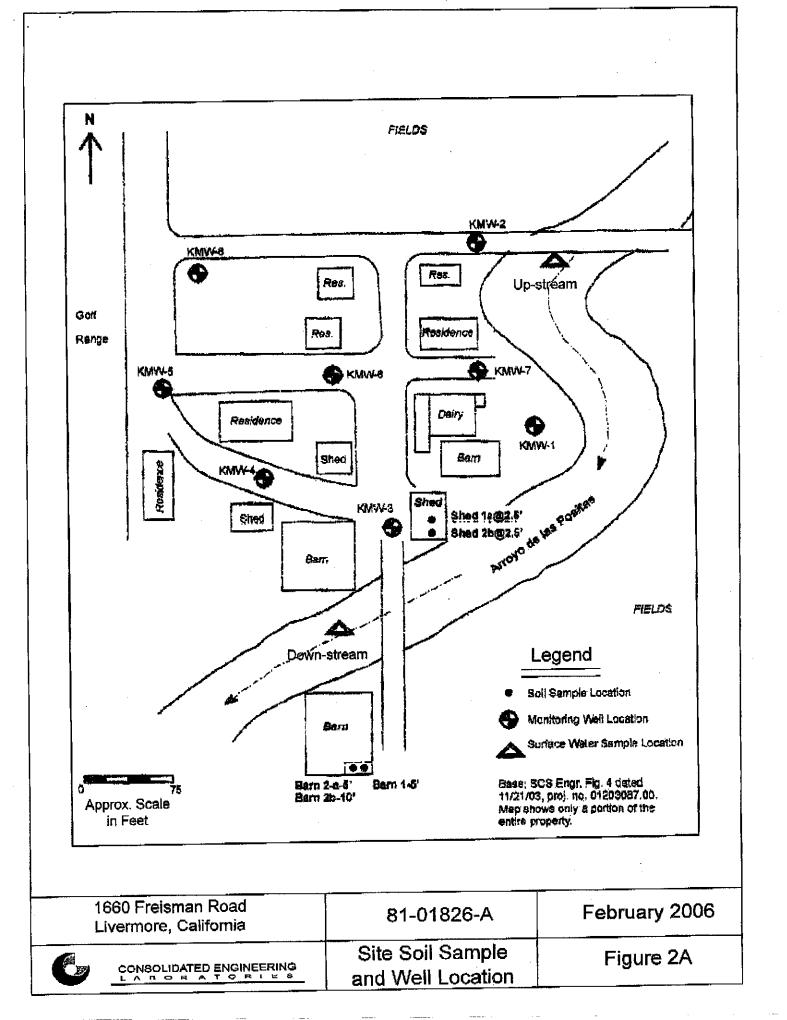
Samid Bayd Juny

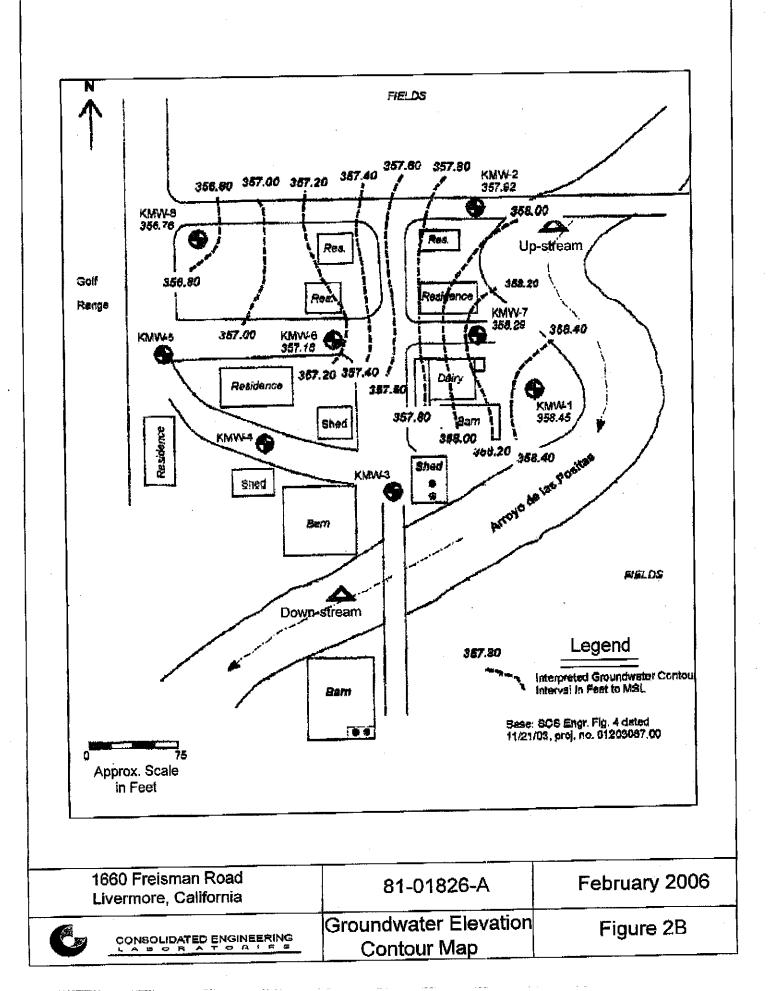
David Boyd Staff Engineer

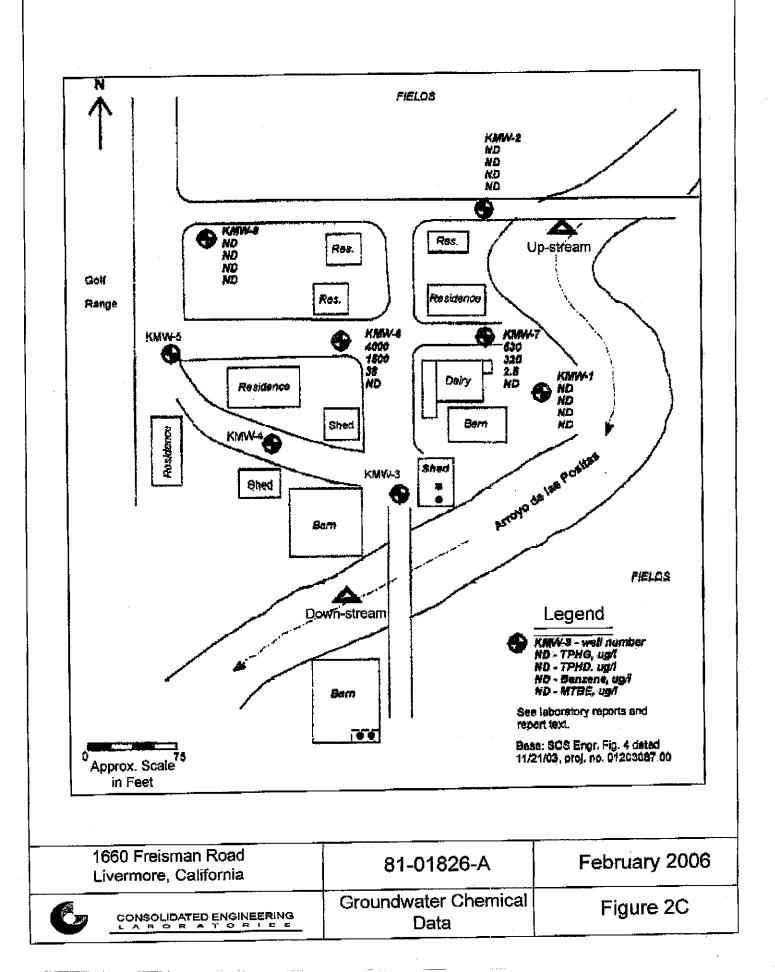

Cluistope M Dalue

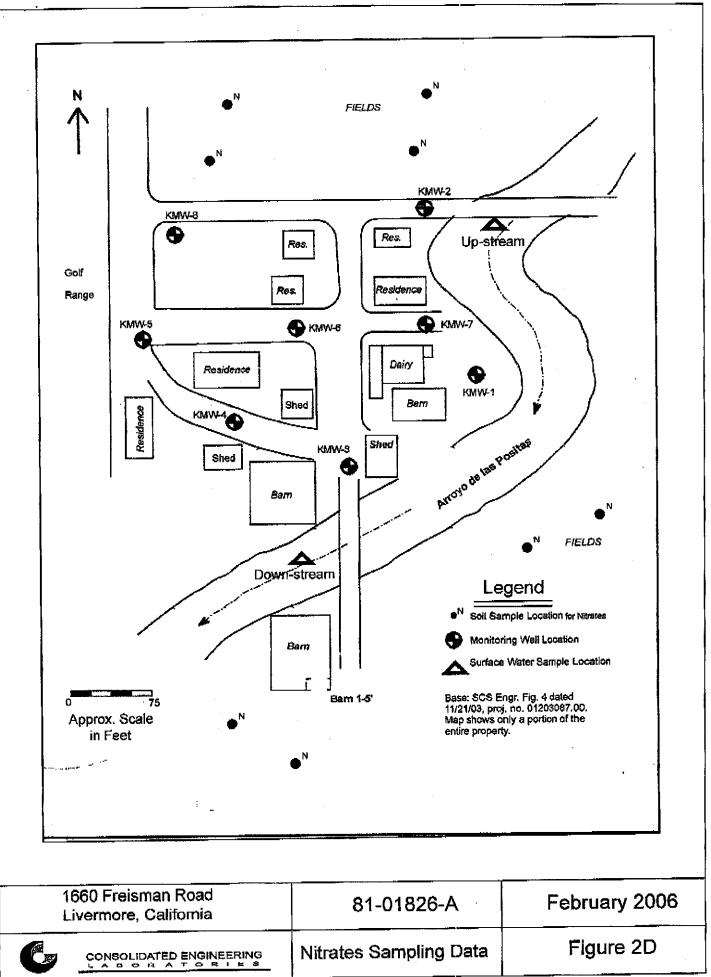
Christopher M. Palmer Engineering Geology Associate, CEG 126


Distribution:


5 plus PDF to Addressee (760) 804-5325


Attachments: Figure 1 - Site Vicinity Map Figure 2A – Site Soil Sample & Well Location Map Figure 2B – Groundwater Elevation Contour Map Figure 2C – Groundwater Chemical Data Figure 2D – Nitrate Sampling Site Plan Tables A – C Soil Chemical Data Tables D - E, Groundwater Chemical Data




L:\Users\Geotech\RCA-Calif-81\RCO-Alameda\RCI-Livermore\81-01826-Freisman\Transmittal Letter Freisman Site Assement Data.doc

Well Number*	Well Depth (ft)	Depth to Water (ft,)	Casing Elevation (ft, MSL)	Groun dwate r Elevation (ft)	Comments
M W-1	23.4	11.67	370.12	358.45	None
MW-2	22.4	12.80	370.72	357.92	None
MVV-6	23.6	12.90	370.08	357.18	None
MW- 7	23.4	11.7 5	370.04	358.29	None
MW-8	24.0	11.85	368.61	356.76	None

Table 1. Groundwater Monitoring Well Information, January 21, 2006

* Wells installed by Kleinfelder; casing elevation data from SCS Engineers.

Weil	TPHG	TPHD	Benzene	Toluene	Ethyl benzene	Xylenes	MTBE	Nitrate	Lead
	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg
Field 1	ND	ND	ND	ND	ND	ND	ND	ND	12
Field 2	ND	ND	ND	ND	ND	ND	ND	ND	12
Field 3	ND	ND	ND	ND	ND	ND	ND	ND'	11
Field 4	ND	ND	ND	ND	ND	ND	ND	ND	11
Shed 1a 2.5	ND	ND	ND	ND	ND	ND	NÐ	ND	17
Shed 1b 2.5'	ND	350+	ND	ND	ND	ND	ND	ND	18
Bam 1@5'	ND	2.9^	ND	ND	ND	ND	ND	ND	7.5
Barn 2 @5'	ND	10^	ND	ND	ND	ND	ND	ND	13
Barn 2@10'	ND	1.2	ND	ND	ND	ND	ND	ND	8.7
ESL	No Value	No Value	1	150	300	1750	13@	No Value	15

Table A. Petroleum Compounds, Nitrate and Lead in Soil

Ug/l – Micrograms per titer. ND – None detected. * – Gasoline range compounds are significant. # – Kerosene and jet fuel range compounds. + - Diesel range compounds are significant, no recognizable hydrocarbon pattern. * - Oil range compounds are significant. MCL – Maximum Contaminant Level. @ - 13 is the Primary MCL. ESL – RWQCB Tier 1 Environmental Screening Levels, Interim Draft July 2003; updated February 2005.

Table B	Polyaromatic Hydrocarbon Col	mpounds in Soil
lapie o.	Polyatomatic myerocarbon vo	mboenes in aon-

Compound	Field 1	Field 2	Field 3	Field 4	Shed 1a 2.5'	Shed 1b 2.5'	Barn 1@ 5'	Barn 2 @ 5'	Barn 2 @10'	ESL Mg/kg
Mg/kg						ļ				
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	NĎ	
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzo(k)fluoranhene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzo(g,h,i)perviene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ЯN	No Value
Chrysene	ND	ND	ND	NÐ	0.0059	ND	ND	ND	ND	No Value
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Fluoranthene	ND	ND	ND	ND	0.0051	ND	ND	ND	ND	40
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	No Value
2-Methyinaphthalene	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	No Value
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	No Value
Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ī
Pyrene	ND	ND	ND	ND	0.0062	0.023	ND	ND	ND	1

Ug/I - Micrograms per liter. ND - None detected. MCL - Maximum Contaminant Level.

Table C. Volatile Organic Soil Chemical Data (8260B)

COMPOUND	Field	Field	Field	Field	Shed	Shed	Barn	Barn	Barn	Stream	Stream
	1	2	3	4	1a	1b	1	2	2	1	2
					2.5'	2.5'	@5'	@5'	@10'		
	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg	Mg/kg
2-Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorethylvinyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND
Benzene	NÖ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butlybenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butlybenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert-Butylbenzene	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND ·	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chiorform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chioromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(EDB)	<u> </u>							<u> </u>			
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloropropane											
1,2-Dichlerobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND	ND
1,4-Dicholorbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,1-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichloroethane			<u> </u>	<u> </u>			+		h.	L NITS	
1,2-Dichloropropane	ND	ND	ND	DND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyibenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-propylbenzene	ND	NĎ	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachioroethane					<u> </u>				<u> </u>		<u> </u>
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

•											
•											
·											
Toluene	ND	ND	ND								
1,2,3-Trichlorobenzene	ND	NÐ	ND	ND	ND						
1,2,4Trichlorobenzene	ND	ND	ND								
1,1,1-Trichlorethane	ND	ND	ND								
1,1,2-Trichlorethane	ND	ND	ND								
Trichloroethene	ND	ND									
Trichlorofluormethane	ND	ND	ND								
1,2,3-Trichloropropane	ND	ND_	ND	ND ND							
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND								
Vinyl chloride	ND	ND	ND								
Xylenes (total)	ND	ND	ND								

• • •

Wefi	TPHG	TPHD	Benzene	Toluene	Ethyl benzene	Xylenes	мтве	Lead	Nitrate
	Ug/I	Ug/I	Ug/l	Ug/I	Ug/l	Ug/l	Ug/l	Ug/l	Mg/I
MW-1	ND	ND	ND	ND	ND	ND	ND	0.99	NR
MW-2	ND	ND	ND	ND	ND	ND	ND	5.0	NR
MW-6	4.000	1,500*	38	ND	77	43	ND_	2.0	NR
MW-7	530	320#	2.5	ND	8.1	26	ND	2.9	NR
MW-8	ND	ND	ND	ND	ND	ND	ND	6.1	NR
Stream	ND	ND	ND	ND	ND	ND	ND	1.6	3.2
Stream	ND	ND	ND	ND	ND	ND	ND	1.4	3.2
MCL	No Value	No Value	1	150	300	1750	13@	15	45

Table D. Petroleum Compounds,	Lead and Nitrate in Groundwater
-------------------------------	---------------------------------

Ug/l -- Micrograms per liter. ND -- None detected, * - Gasoline range compounds are significant. # -Kerosene and jet fuel range compounds. MCL -- Maximum Contaminant Level. @ - 13 is the Primary MCL.

Table E.	Pot	varomatic H	ydrocarbon	Compounds	in (Groundw	ater
----------	-----	-------------	------------	-----------	------	---------	------

Compound	MW-1	MW-2	MW-6	MW-7	MW-8	Stream 1	Stream 2	MCL
Ug/l								
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	
Anthracene	ND	ND	ND	ND	ND	ND	ND	
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND	
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	
Benzo(k)fluoranhene	ND	ND	ND	ND	ND	ND	ND	
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	
Benzo(a)pyrene	ND	ND	ND	ND	0.68	ND	ND	No Valu o
Chrysene	ND	ND	ND	ND	1.1	ND	ND	No Value
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	
Fluoranthene	ND	ND	ND	ND	ND	ND	ND	
Fluorene	ND	ND	ND	ND	ND	ND	ND	
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND	
1-Methylnaphthalene	ND	ND	28	1.4	ND	ND	ND	No Value
2-Methylnaphthalene	ND	ND	35	1.3	ND	ND	ND	No Value
Naphthalene	ND	ND	77	6.1	ND	ND	ND	No Value
Phenanthrene	ND	ND	ND	ND	ND	ND	ND	
Pyrene	ND	ND	ND	ND	ND	ND	ND	

Ug/I - Micrograms per liter.

McCampbell An	alytical, Inc	2.	Telephone : 9	South, #D7, Pacheco, CA 925-798-1620 Fax: 925 npbell.com E-mail: main	-798-1622	om	
Consolidated Engineering Labs.	Client P	roject ID: #81-0)1826-A;	Date Sampled:	01/21/06	<u></u>	
2001 Crow Canyon Rd, Suite 100	Freisma	n		Date Received:	01/23/06	••••••	
	Client C	ontact: Marc A.	Hachey	Date Extracted:	01/23/06		
San Ramon, CA 94583	Client P			Date Analyzed:	01/24/06-0)1/25/0	
Polynuclear Ar Extraction Method: SW3510C	•	arbons (PAHs /] alytical Method: SW827		1 Mode by GC/M		ler: 060131	
Lab ID	0601317-001C	0601317-002C	0601317-003C	0601317-004C			
Client ID	MW-8	MW-2	MW-7	MW-6	Reporting DF	Limit for =1	
Matrix	W	w	W	W			
DF	1	1	1	1	S	W	
Compound	ж	Conc		ug/kg	µg/I		
Acenaphthene	ND	ND	ND	ND	NA	0.5	
Acenaphthylene	ND	ND	ND	ND	NA	0.5	
Anthracene	ND	ND	ND	ND	NA	0.5	
Benzo(a)anthracene	ND	ND	ND	ND	NA	0.5	
Benzo(b)fluoranthene	ND	ND	ND	ND	NA	0.5	
Benzo(k)fluoranthene	ND	ND	ND	ND	NA	0.5	
Benzo(g,h,i)perylene	ND	ND	ND	ND	NA	0.5	
Benzo(a)pyrene	0.68	ND	ND	ND	NA	0.5	
Chrysene	1.1	ND	ND	ND	NA	0.5	
Dibenzo(a,h)anthracene	ND	ND	ND	ND	NA	0.5	
Fluoranthene	ND	ND	ND	ND	NA	0.5	
Fluorene	ND	ND	ND	ND	NA	0.5	
Indeno (1,2,3-cd) pyrene	ND	ND	ND	ND	NA	0.5	
1-Methylnaphthalene	ND	ND	1.4	28	NA	0.5	
2-Methylnaphthalene	ND	ND	1.3	35	NA	0.5	
Naphthaiene	ND	ND	6.1	77	NA	0.5	
Phenanthrene	ND	ND	ND	ND	NA	0.5	
Pyrene	ND	ND	ND	ND	NA	0.5	
	Surr	ogate Recoverie	s (%)				
%SS1	110	109	109	100			
%SS2	91	90	90	89			
Comments			1		1		

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference.

DHS Certification No. 1644

_Angela Rydelius, Lab Manager

McCampbell An	alytical,	Inc.		Telephone :	e South, #D7, Pacheco, Ca 925-798-1620 Fax : 925 mpbell.com E-mail: main	5-798-1622	хот	
Consolidated Engineering Labs.		nt Project ID:	#81-0	1826-A;	Date Sampled:	01/21/06		
2001 Crow Canyon Rd, Suite 100		, ,	Date Received: 01/23/06					
San Ramon, CA 94583	Clier	nt Contact: M	arc A. I	Hachey	Date Extracted:	01/23/06		
San Ramon, CA 74365	Clier	nt P.O.:			Date Analyzed:	01/24/06-0	01/25/06	
Polynuclear Ar Extraction Method: SW3510C		Analytical Metho			M Mode by GC/M		ler: 0601317	
Lab ID	0601317-00	5C						
Client ID	MW-1					Reporting DF	Limit for =1	
Matrix	W					s	. w	
DF	1							
Compound			Conce	ntration		ug/kg	μg/L	
Acenaphthene	ND	ND				NA	0.5	
Acenaphthylene	ND					NA	0.5	
Anthracene	ND					NA	0.5	
Benzo(a)anthracene	ND					NA	0.5	
Benzo(b)fluoranthene	ND					NA	0.5	
Benzo(k)fluoranthene	ND					NA	0.5	
Benzo(g,h,i)perylene	ND					NA	0.5	
Benzo(a)pyrene	ND	,				NA	0.5	
Chrysene	ND					NA	0.5	
Dibenzo(a,h)anthracene	ND					NA	0.5	
Fluoranthene	ND					NA	0.5	
Fluorene	ND					NA	0.5	
Indeno (1,2,3-cd) pyrene	ND					NA	0.5	
1-Methylnaphthalene	ND					NA	0.5	
2-Methylnaphthalene	ND					NA	0.5	
Naphthalene	ND					NA	0.5	
Phenanthrene	ND					NA	0.5	
Pyrene	ND	· ·				NA	0.5	
	S	urrogate Rec	overies	(%)				
%SS1	109							
%SS2	88							
Comments								

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference.

DHS Certification No. 1644

___Angela Rydelius, Lab Manager

	McCampbell A	Analyti	cal, Inc.		Telep	hone : 925-798-16	, Pacheco, CA 94553-5560 20 Fax : 925-798-1622 E-mail: main@mccampbell.com				
Consolida	ted Engineering Labs		Client Proj	ect ID: #	81-01826-A; Fre	eisman	Date Sample	ed: 01/21/0	6		
2001 Crov	w Canyon Rd, Suite 1	00					Date Receive	ed: 01/23/0	6		
Son Dama	on, CA 94583		Client Con	tact: Marc	A. Hachey		Date Extract	ed: 01/24/0	6-01/2	:5/06	
Sall Kaillo	ш, СА 94363		Client P.O	.:			Date Analyz	ed: 01/24/0	6-01/2	:5/06	
Extraction me	Gasoline I thod: SW5030B	Range (Co	-	-	carbons as Gas SW8021B/8015Cm	oline with B	TEX and MT		rder: 06	01317	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	MW-8	w	ND	ND	ND	ND	ND	ND	1	101	
002A	MW-2	w	ND	ND	ND	ND	ND	ND	1	99	
003A	MW-7	w	530,a	ND	2.5	ND	8.1	26	1	113	
004A	MW-6	w	4000,a	ND<50	38	ND<5.0	77	43	10	98	
005A	MW-1	w	ND	ND	ND	ND	ND	ND	1	104	
	· .					-					
									<u> </u>	<u> </u>	
		<u> </u>							_	<u> </u>	
		+							_		
						[
	ting Limit for DF =1; eans not detected at or	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/L	
	e the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/K	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

McCa	mpbell Analy	tical, Inc.		Telepho	venue South, #D7, Pacho one : 925-798-1620 Fa mccampbell.com E-mai	x : 925-798-1622	901				
Consolidated Engi	neering Labs.		ject ID: #81	-01826-A;	Date Sampl	ed: 01/21/06					
2001 Crow Canyo	n Rd, Suite 100	Freisman			Date Receiv	red: 01/23/06					
-		Client Cor	ntact: Marc A	. Hachey	Date Extrac	ted: 01/23/06					
San Ramon, CA 9	4383	Client P.C).:	<u>.</u>	Date Analyz	zed: 01/23/06-0	1/24/06				
Extraction method: E200.8	3		Lead by ICP- Analytical methods:		Work Order:						
Lab ID	Client ID	Matrix	Extraction		Lead	DF	% SS				
0601317-001D	MW-8	w	TTLC		6.1	1	112				
0601317-002D	MW-2	w	TTLC		5.0	1	105				
0601317-003D	MW-7	w	TTLC		2.9	1	118				
0601317-004D	MW-6	w	TTLC		2.0	1	111				
0601317-005D	MW-1	w	TTLC		0.99	1	108				
	-										
							_				

Reporting Limit for DF =1;	W	TTLC	0.5	μg/L
ND means not detected at or above the reporting limit	S	TTLC	NA	mg/kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

DHS Certification No. 1644

___Angela Rydelius, Lab Manager

McCa	mpbell Analy	tical, Inc.	Telephon	nue South, #D7, Pacheco, CA 9455 ne : 925-798-1620 Fax : 925-798-1 ccampbell.com E-mail: main@ncc:	622	ı
Consolidated Engi	neering Labs.	Client Project ID:	#81-01826-A;	Date Sampled: 01/2	1/06	
2001 Crow Canyos	n Rd, Suite 100	Freisman		Date Received: 01/2	3/06	
·		Client Contact: M	arc A. Hachey	Date Extracted: 01/2	3/06	
San Ramon, CA 94	4583	Client P.O.:		Date Analyzed: 01/2	3/06-01/	24/06
Extraction method: SW351		ange (C10-C23) Extrac Analytical me	ctable Hydrocarbon ethods: SW8015C		Vork Order:	0601317
Lab ID	Client ID	Matrix	ТРН	(d)	DF	% SS
0601317-001B	MW-8	w	NI)	1	87
0601317-002B	MW-2	w	ND			84
0601317-003B	MW-7	w	320,k			86
0601317-004B	MW-6	w	1500,d		1	86
0601317-005B	MW-1	w	NI)	1	86
				-		
	- WY 44.8					
			-			ļ
						<u> </u>
					-	<u> </u>
					<u> </u>	

Reporting Limit for DF =1;	w	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / STLC / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

DHS Certification No. 1644

____Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8270D

W.O. Sample Matrix: Water		QC Matrix: Water							WorkOrder: 0601317			
EPA Method SW8270D	E	Extraction SW3510C				hID: 19981		Spiked Sample ID N/A				
Anolito	Sample	Spiked	MS	MS MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
Benzo(a)pyrene	N/A	10	N/A	N/A	N/A	88.7	93.9	5.76	N/A	30 - 130		
Chrysene	N/A	10	N/A	N/A	N/A	118	114	3.28	N/A	30 - 130		
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	85.8	86.1	0.320	N/A	30 - 130		
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	82.1	82.1	0	N/A	30 - 130		
Phenanthrene	N/A	10	N/A	N/A	N/A	85.8	86.6	0.938	N/A	30 - 130		
Pyrene	N/A	10	N/A	N/A	N/A	118	120	1.65	N/A	30 - 130		
%\$\$1:	N/A	5	N/A	N/A	N/A	115	116	1.06	N/A	30 - 130		
%SS2:	N/A	5	N/A	N/A	N/A	96	96	0	N/A	30 - 130		

BATCH 19981 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0601317-001C	1/21/06 7:55 AM	1/23/06	1/24/06 9:28 PM	0601317-002C	1/21/06 9:05 AM	1/23/06	1/24/06 10:45 PM
0601317-003C	1/21/06 10:00 AM	1/23/06	1/25/06 12:01 AM	0601317-004C	1/21/06 10:30 AM	1/23/06	1/25/06 1:18 AM
0601317-005C	1/21/06 11:00 AM	1/23/06	1/25/06 2:37 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

QA/QC Officer

... . . .

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water				QC Mat	rix: Water			WorkOrder: 0601317			
EPA Method: SW8021B/8015	Cm í	Extraction	SW5030	8	Batc	hID: 19979	I	Spiked Sample ID: 0601325-002A			
Analyte	Sample	Spiked	MS	MS MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
7 8 12 9 10	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	60	102	103	0.876	104	104	0	70 - 130	70 - 130	
MTBE	ND	10	90.5	77.1	15.9	89.1	80.3	10.3	70 - 130	70 - 130	
Benzene	ND	10	100	91.9	8.52	97.8	93.4	4.60	70 - 130	70 - 130	
Toluene	ND	10	99.4	92.2	7.54	99.5	95.2	4.36	70 - 130	70 - 130	
Ethylbenzene	ND	10	101	96.5	4.18	98.6	96	2.71	70 - 130	70 - 130	
Xylenes	ND	30	100	99	1.01	99	99	0	70 - 130	70 - 130	
%SS:	103	10	103	103	0	107	101	5.58	70 - 130	70 - 130	

BATCH 19979 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0601317-001A	1/21/06 7:55 AM	1/24/06	1/24/06 11:28 AM	0601317-002A	1/21/06 9:05 AM	1/24/06	1/24/06 8:14 PM
0601317-003A	1/21/06 10:00 AM	1/25/06	1/25/06 12:09 AM	0601317-004A	1/21/06 10:30 AM	1/24/06	1/24/06 3:34 AM
0601317-005A	1/21/06 11:00 AM	1/25/06	1/25/06 12:39 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

____QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.nccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E200.8

EPA Method: E200.8	E	xtraction	E200.8		BatchID: 19944			Spiked Sample ID: 0601317-003D		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance) Criteria (%)
	µg/L µg/L % Rec. % Rec.			% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD
Lead	2.9	10	98.6	102	2.78	95	94.4	0.539	75 - 125	85 - 115
%SS:	118	750	114	118	3.16	96	95	0.712	70 - 130	70 - 130

BATCH 19944 SUMMARY										
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0601317-001D	1/21/06 7:55 AM	1/23/06	1/23/06 11:42 PM	0601317-002D	1/21/06 9:05 AM	1/23/06	1/23/06 11:48 PM			
0601317-003D	1/21/06 10:00 AM	1/23/06	1/23/06 10:32 PM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS Certification No. 1644

_____QA/QC Officer

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water			QC Matrix: Water					WorkOrder: 0601317			
EPA Method: E200.8	Extraction: E200.8				BatchID: 19982			Spiked Sample ID: 0601317-005D			
Analyte	Sample	Spiked µg/L	MS % Rec.	MSD % Rec.	MS-MSD % RPD	LCS % Rec.	LCSD % Rec.	LCS-LCSD % RPD	Acceptance Criteria (%)		
- Analyte	µg/L								MS / MSD	LCS/LCSD	
Lead	0.99	10	100	97.8	2.39	93.6	94.6	1.07	75 - 125	85 - 115	
%SS:	108	750	104	104	0	97	96	0.705	70 - 130	70 - 130	

BATCH 19982 SUMMARY Date Extracted Date Analyzed Date Analyzed Sample ID **Date Sampled** Sample ID **Date Sampled** Date Extracted 1/23/06 11:07 PM 1/23/06 1/24/06 12:21 AM 0601317-005D 1/21/06 11:00 AM 1/23/06 0601317-004D 1/21/06 10:30 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

____QA/QC Officer

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water			QC Matrix: Water					WorkOrder: 0601317			
EPA Method: SW8015C	E	Extraction: SW3510C				BatchID: 19939			Spiked Sample ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	101	105	4.18	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	101	113	11.8	N/A	70 - 130	

NONE

BATCH 19939 SUMMARY										
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0601317-001B	1/21/06 7:55 AM	1/23/06	1/23/06 8:28 PM	0601317-002B	1/21/06 9:05 AM	1/23/06	1/23/06 9:36 PM			
0601317-003B	1/21/06 10:00 AM	1/23/06	1/23/06 10:44 PM	0601317-004B	1/21/06 10:30 AM	1/23/06	1/23/06 11:53 PM			
0601317-005B	1/21/06 11:00 AM	1/23/06	1/24/06 1:01 AM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fail outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS Certification No. 1644

QA/QC Officer

		(Cela			0	6	01	3	17	I																							
, I	Webs	ite: <u>NWW.MCC</u>	IO 2 AV PACHECO Manhella	ENUE SO D. CA 945	UTH, # 53-556	:D7) 10.@07	KCL	upbe	il.co	न्द्रा									DU	HA ND	TĽ	ME		R			۲ 24 ا) HR		ل ۱۱ ۴۹	IR IR	72		21 5 DAY
ļ		e: (925) 798-								8-16	22			╉			~ 4 ~					-	Requ								-	Wher		Comments
*	Report To: Ma Company: CE	L Haches	f		III To: ₩ ¥		<u>kr(</u> . R		<u>مہ</u> 23	K		<u> </u>		╈	<u>.</u>		Τ	æ		Î				leat	T	1							-	Filter
				E	Mail	: hr	юh	© /		14	<u>bs</u>			1	- 801	.		0 E / 8 %				Conge				H		ē	â					Samples for Metals
	Tele: ()			F	8x: ()								203	ŝ		5	Ę	3		ĩ		÷		5	*	. 683	105					analysis:
	Project #: 81-	01826 .			roject	Nad	nie :	Fr	<u>is</u> ,	nc	<u></u>				as Curs (602 / 802	2/80	÷	3	(418	0.4	ŝ	Arec		P KE		_	ž	9109	6016	ŝ			ļ	Yes (Atre)
	Project Location:		an Ro	od,										_	j	3	He	THE REAL	Pone.	÷	esuch	ΪX	Į.	È	8	§	Ē	90.87	18.0	1603				
	Sampler Signature		n	17	-		-					17131	OD	-	ž	<u>e</u>	ŧ	်ဳ	10CBI	0.180	5	š	ž.	3	S	5	i,	1.12	NA .	6109				
			SAMP	LING		S	ľ	441	RU	K			RVÐ	D				ē	μýά	108	<u>s</u>		ž	ž	2		13	(200	(390,	18.0				
	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Contain	Water	Sell	Sludec	Other	ICE	HCL	HNO,	Other	MTBU/BTUX & TPH	MTBE / BTEX ONLY (EPA 642 / 8011)	TPH as Biesel / Movar Cilite 615)	Total Petroleum Oli & Greate (1664) 5520 E/B&F)	Total Petroleum Nydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (H VOUs)	EPA 505/ 608 / 8091 (CI Pesticider)	era 6047 8082 PCB's UNLY; Arochark/Congeners	RPA 507 / BI41 (NP Penicides)	EPA \$15/ \$151 (Acidic Cl Herbicides)	EPA 524.2 / 924 / 5269 (VOCs)	8PA 515.2 / 625 / 8274 (SVOC)	EPA 8270 SIM / 8348 (FAH) / FNAS)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6030)	LUFT S Metals (200.7 / 200.8 / 6016 / 6020)	Lend (200.1 / 200.8 / 6019 / 6020)				
· ተ	MW-8	freisum	1/21/06	0755	9		\mathbf{T}				-			ゴ	オ		7						T			Ζ				\square				
4	MW-2	110-34444	1	905	9		7		1			6	12		71		\mathcal{T}									7				\mathbf{N}				
	MW-7			Olou:	9		17		1	+	1	T	1	Ţ	7		Ζ									Δ								
1	Aw-6			10:30	9		17		\top	1	17	Ħ	\mathbf{T}	T	7		7				T					Δ				Ζ				
+	mw-l			11:00	9		1	T				Y.	Π	Π	/		Л									Δ				1				
	W1W7-1			17.00							Π	T	T	Т	T										ľ	/								
							11							T																Į.				
											Π		Т	Т																				
											П	T	Т																					
														Τ	Τ																			
									T	Τ	Π	Τ	Τ	Т																				
							Π	Т	Τ	Τ			Τ	Τ					•															
							Π		Т		Π		Τ																					
	DAVEB.	1						Τ	Τ		\square		T	Ţ				1									L							
	Retin quished By:		Data: 13 0 (Date:	Time: 12:51 Time:	m	ived B	/		Ċ	$\langle \gamma \rangle$	e (Ľ)		HE	OD AD 9 CHI	SPA OR	NDIT CEA	JBS I IED	INT.	√ лв_	_	-,						co	MM	ENTS):	-	
	and the second s														API PRI	PRÓ ES E	PRI RVE	ATE D IN	CO LA	NTA B	NER	S	¥	-										
	Pletin quishe & By :		Date:	Time:	Rece	i ve d B	ly:											TIO	v	DAS V	04	iC	ME _oH<	TAL	Ş [.] (D TBH	IER						_	

.

į

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560

(925) 798-1620

CHAIN-OF-CUSTODY RECORD

ClientID: CELR

EDF: NO

	ngineering Labs. nyon Rd, Suite 100	TEL: FAX: ProjectNo: PO:	(925) 314-71 925-855-714 #81-01826-A	0		Bill to: Accounts Payable Consolidated Engineering Labs. 2001 Crow Canyon Rd, Suite 100 San Ramon, CA 94583								Requested TAT: Date Received: Date Printed:			days /2006 /2006
	· · · · · · · · · · · · · · · · · · ·				.				Re	questec	f Tests	(See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0601317-001	MW-8		Water	1/21/06 7:55:00 AM	5	С	A	D	В					T		1	
0601317-002	MW-2		Water	1/21/06 9:05:00 AM		С	A	D	В]						1	
0601317-003	MW-7		Water	1/21/06 10:00:00		C	A	D	В				1			İ	
0601317-004	MW-6		Water	1/21/06 10:30:00		С	A	D.	B			1					
0601317-005	MW-1		Water	1/21/06 11:00:00		С	A	D	В							1	1

WorkOrder: 0601317

Test Legend:

1	8270D-PNA_W
6	
11	

G-MBTEX_W	

2 7 12

A 1	
8	8

4	TPH(D)_W
9	

5	
10	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Page 1 of 1

McCa	ampbell Analytic	cal, Inc.	Telephone :	a South, #D7, Pacheco, CA 94553 925-798-1620 Fax : 925-798-162 mpbeil.com E-mail: main@mccam	22	
Consolidated Engi	ineering Labs.		#81-01826-A; 6660	Date Sampled: 02/01	/06	
2001 Crow Canyo	n Rd, Suite 100	Friesman Rd.		Date Received: 02/01	/06	
San Ramon, CA 9	4592	Client Contact: M	larc A. Hachey	Date Extracted: 02/01	/06	
San Ramon, CA 9		Client P.O.:		Date Analyzed: 02/01	/06-02/	07/06
Analytical methods: E30	0.0/E300.1	Inorganic A	nions by IC*	We	ork Order:	0602013
Lab ID	Client ID	Matrix	Nitrate as	N	DF	% SS
0602013-001A	Field 1 4 Parts	S	ND		1	99
0602013-002A	Field 2 4 Parts	S	ND		1	100
0602013-003A	Field 3 4 Parts	S	ND		1	101
0602013-004A	Field 4 4 Parts	S	· ND		1	103
0602013-005A	Shed 1a 2.5'	S	ND		1	104
0602013-006A	Shed 1b 2.5'	S	ND		1	105
0602013-007A	Barn 2 @ 5'	S	ND		1	102
0602013-008A	Barn 1 @ 5'	S	ND		1	100
0602013-009A	Barn 2 @ 10'	S	ND		1	101
0602013-010E	Stream 1	w	3.2		1	94
0602013-011E	Stream 2	w	3.2		1	95
				······································		
	g Limit for DF =1;	w	0.1		n	ıg/L
above tl	s not detected at or he reporting limit	S	10	ct/oil/non-aqueous liquid sam		g/Kg

surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted/raised due to high inorganic content/matrix interference; k) sample arrived with head space.

DHS Certification No. 1644

____Angela Rydelius, Lab Manager

McCampbell	Analytic	al,	Inc.		Telephone :	925-798-16	7, Pacheco, CA 94553-55 20 Fax : 925-798-1622 E-mail: main@mccampl		
Consolidated Engineering Lab	s.		~		#81-01826-A; 6660	Date S	ampled: 02/01/0)6	
2001 Crow Conver Bd Suite	100	Frie	sman F	kd.		Date R	eceived: 02/01/0	6	
2001 Crow Canyon Rd, Suite	100	Clie	nt Con	tact: M	arc A. Hachey	Date E	xtracted: 02/01/0)6	
San Ramon, CA 94583		Clie	nt P.O	:		Date A	nalyzed: 02/02/0)6	
	Volatile Or	ganie	s by P	&T an	d GC/MS (Basic Targe	et List)*	•		
Extraction Method: SW5030B			Ana	lytical Met	hod: SW8260B		Work	Order: 06	502013
Lab ID		·			0602013-001A				
Client ID					Field 1 4 Parts				
Matrix					Soil				
Compound	Concentrati	ion *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit
Acetone	ND		1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND		1.0	0.02	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.005
Benzene	ND		1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND		1.0	0.005	Bromodichloromethane		ND	1.0	0.005
Bromoform	ND		1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND		1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05
n-Butyl benzene	ND		1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND		1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND		1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND		1.0	0.005	2-Chloroethyl Vinyl Ether		ND	1.0	0.01
Chioroform	ND		1.0	0.005	Chloromethane		ND	1.0	0.005
2-Chlorotoluene	ND		1.0	0.005	4-Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND		1.0	0.005	1,2-Dibromo-3-chloropropa	ne	ND	<u>1.0</u> 1.0	0.005
1,2-Dibromoethane (EDB)	ND		1.0	0.005	Dibromomethane		ND ND	1.0	0.005
1,2-Dichlorobenzene	ND		1.0	0.005	1,3-Dichlorobenzene		ND ND	1.0	0.005
1,4-Dichlorobenzene	ND		1.0	0.005	Dichlorodifluoromethane 1,2-Dichloroethane (1,2-DC	141	ND	1.0	0.005
1,1-Dichloroethane	ND ND		1.0	0.005	cis-1,2-Dichloroethene		ND	1.0	0.005
1,1-Dichloroethene	ND_		1.0	0.005	1,2-Dichloropropane		ND	1.0	0.005
trans-1,2-Dichloroethene	ND ND		<u>1.0</u> 1,0	0.005	2,2-Dichloropropane		ND	1.0	0.005
1,3-Dichloropropane	ND ND		1.0	0.005	cis-1,3-Dichloropropene		ND	1.0	0.005
1,1-Dichloropropene trans-1,3-Dichloropropene	ND		1.0	0.005	Diisopropyl ether (DIPE)		ND	1.0	0.005
Ethylbenzene	ND		1.0	0.005	Ethyl tert-butyl ether (ETB)	E)	ND	1.0	0.005
Freon 113	ND		1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005
Hexachloroethane	ND		1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND		1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND		1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND		1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND		1.0	0.1	n-Propyl benzene		ND	1.0	0.005
Styrene	ND		1.0	0.005	1,1,1,2-Tetrachloroethane		ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND		1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND		1.0	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.005
1,2,4-Trichlorobenzene	ND		1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005
1,1,2-Trichloroethane	NÐ		1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND		1.0	0.005	1,2,3-Trichloropropane		ND	1.0	0.005
1,2,4-Trimethylbenzene	ND		1.0	0.005			ND	1.0	0.005
Vinyl Chloride	ND		1.0	0.005	Xylenes	_	ND	1.0	0.005
			Su	rogate R	ecoveries (%)				
%SS1:		9	5		%SS2:		11	1	
%SS3:		11	4						
Comments:									
	A 1	/aludoa	/aolid ag	moles in	malka product/oil/non-actues	ne limid	samples and all TCLP	& SPL	P

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

McCampbell	Analytic	al,	Inc.		Telephone :	925-798-16	7, Pacheco, CA 94553-5 20 Fax: 925-798-1622 E-mail: main@mccamp				
Consolidated Engineering Lab	s.		_		#81-01826-A; 6660	Date S	ampled: 02/01/	06			
	100	Frie	sman P	ld.		Date R	eceived: 02/01/	06			
2001 Crow Canyon Rd, Suite	100	Clie	nt Con	tact: M	arc A. Hachey	Date E	xtracted: 02/01/	06			
San Ramon, CA 94583			nt P.O.				nalyzed: 02/02/				
	Valatile Or			е т	A COME Desis Tang	at Tiat)\$					
Extraction Method: SW 5030B	volatile Or	ganio	-		d GC/MS (Basic Targe hod: SW8260B	et List)"		Order: 0	602013		
Lab ID		-			0602013-002A						
Client ID					Field 2 4 Parts						
Matrix					Soil						
Compound	Concentrati	on *:	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit		
Acetone	ND		1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND		1.0	0.02	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.005		
Benzene	ND		1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND		1.0	0.005	Bromodichloromethane		ND	1.0	0.005		
Bromoform	ND		1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND		1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05		
n-Butyl benzene	ND		1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND		1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND		1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND ND					0.005	2-Chloroethyl Vinyl Ether		ND ND	1.0 1.0	0.01
Chloroform	ND ND		1.0	0.005	Chloromethane		ND	1.0	0.005		
2-Chlorotoluene			1.0	0.005	4-Chlorotoluene 1,2-Dibromo-3-chloropropa		ND	1.0	0.005		
Dibromochloromethane	ND ND		1.0 1.0	0.005	Dibromomethane	<u></u>	ND	1.0	0.005		
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND		1.0	0.005	1,3-Dichlorobenzene		ND	1.0	0.005		
1,4-Dichlorobenzene	ND		1.0	0.005	Dichlorodifluoromethane		ND	1.0	0.005		
1.1-Dichloroethane	ND		1.0	0.005	1,2-Dichloroethane (1,2-DC	CA)	ND	1.0	0.005		
1,1-Dichloroethene	ND		1.0	0.005	cis-1,2-Dichloroethene		ND	1.0	0.005		
trans-1,2-Dichloroethene	ND		1.0	0.005	1,2-Dichloropropane		ND	1.0	0.005		
1,3-Dichloropropane	ND		1.0	0.005	2,2-Dichloropropane		ND	1.0	0.005		
1,1-Dichloropropene	ND		1.0	0.005	cis-1,3-Dichloropropene		ND	1.0	0.005		
trans-1,3-Dichloropropene	ND		1.0	0.005	Diisopropyl ether (DIPE)		ND	1.0	0.005		
Ethylbenzene	ND		1.0	0.005	Ethyl tert-butyl ether (ETBI	E)	ND	1.0	0.005		
Freon 113	ND		1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005		
Hexachloroethane	ND		1.0	0.005	2-Hexanone		ND	1.0	0.005		
Isopropylbenzene	ND		1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND		1.0	0.005			ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND		1.0		Naphthalene		ND	1.0	0.005		
Nitrobenzene .	ND		1.0	0.1	n-Propyl benzene		ND ND	1.0	0.005		
Styrene	ND		1.0	0.005	1,1,1,2-Tetrachioroethane		ND ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND ND		1.0		Tetrachloroethene 1,2,3-Trichlorobenzene		ND ND	1.0 1.0	0.005		
Toluene	ND ND		1.0		1,2,3-Trichlorobenzene		ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND ND		<u>1.0</u> 1.0	0.005	Trichloroethene		ND	1.0	0.005		
1,1,2-Trichloroethane Trichlorofluoromethane	ND ND	-	1.0		1,2,3-Trichloropropane		ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND ND		1.0		1,3,5-Trimethylbenzene		ND	1.0	0.005		
Vinyl Chloride	ND		1.0		Xylenes		ND	1.0	0.005		
					ecoveries (%)						
0/851	1	10		- vgate A	%SS2:		10	9			
%SS1:		11		· · · · · · · ·	/0002.		10				
%SS3:	L	11	•		I						
Comments:											

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

_ Angela Rydelius, Lab Manager

McCampbell	Analytica	l, Inc	•		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com								
Consolidated Engineering Lab		lient P riesma		D:	#81-01826-A; 6660		ampled: 02/01/0 teceived: 02/01/0						
2001 Crow Canyon Rd, Suite	100	lient C	ontact	M	arc A. Hachey	Date Extracted: 02/01/06							
San Ramon, CA 94583	-	lient P		1.12			analyzed: 02/02/0						
				a n.	d GC/MS (Basic Targe	at Tiet)*	·						
Extraction Method: SW5030B	volatile Orga				thod: SW8260B			Order: 06	602013				
Lab ID					0602013-003A			-					
Client ID					Field 3 4 Parts								
Matrix					Soil								
Compound	Concentration	* D	7 Repo		Compound		Concentration *	DF	Réporti Limit				
Acetone	ND	1.9) 0.	05	Acrolein (Propenal)		ND	1.0	0.0				
Acrylonitrile	ND	1.) 0.	02	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.00				
Benzene	ND	1.) 0.	05	Bromobenzene		ND	1.0	0.00				
Bromochloromethane	ND	1.		05	Bromodichloromethane		ND	1.0	0.00				
Bromoform	ND	1.		05	Bromomethane		ND	1.0	0.0				
2-Butanone (MEK)	ND	1.4) 0.	02	t-Butyl alcohol (TBA)		ND	1.0	0.0				
n-Butyl benzene	ND	1.) 0.0)05	sec-Butyl benzene		ND	1.0	0.0				
ert-Butyl benzene	ND	1.) 0.1)05	Carbon Disulfide		ND	1.0	0.0				
Carbon Tetrachloride	ND	1.) 0.0	05	Chlorobenzene		ND	1.0	0.0				
Chloroethane	ND	1.) 0.)05	2-Chloroethyl Vinyl Ether		ND	1.0	0.0				
Chloroform	ND	1.) 0.0)05	Chloromethane		ND	1.0	0.0				
2-Chlorotoluene	ND	1.) 0.0	05	4-Chlorotoluene		ND	1.0	0.0				
Dibromochloromethane	ND	1.		05	1,2-Dibromo-3-chloropropa	ne	ND	1.0	0.0				
1,2-Dibromoethane (EDB)	ND	1.	_)05	Dibromomethane		ND	1.0	0.0				
1,2-Dichlorobenzene	ND	1.		005	1,3-Dichlorobenzene		ND	1.0	0.0				
1,4-Dichlorobenzene	ND	1.	_	005	Dichlorodifluoromethane		ND	1.0	0.0				
1,1-Dichloroethane	ND	1.		05	1,2-Dichloroethane (1,2-DC	CA)	ND	1.0	0.0				
1,1-Dichloroethene	ND	1.)05	cis-1,2-Dichloroethene		ND	1.0	0.0				
trans-1,2-Dichloroethene	ND	1.)05	1,2-Dichloropropane		ND	1.0	0.0				
1,3-Dichloropropane	ND	1.)05	2,2-Dichloropropane		ND	1.0	0.0				
1,1-Dichloropropene	ND	1.)05	cis-1,3-Dichloropropene		ND	1.0	0.0				
trans-1,3-Dichloropropene	ND	1.	_)05_	Diisopropyl ether (DIPE)		ND	1.0	0.0				
Ethylbenzene	ND	1.)05	Ethyl tert-butyl ether (ETBI	E)	ND	1.0	0.0				
Freon 113	ND	1.		.1	Hexachlorobutadiene		ND ND	1.0	0.0				
Hexachioroethane	ND	1.		005	2-Hexanone		ND ND	<u>1.0</u> 1.0	0.0				
Isopropylbenzene	ND	1.		005	4-Isopropyl toluene		ND ND	1.0	0.0				
Methyl-t-butyl ether (MTBE)	ND	1.		205	Methylene chloride		ND	1.0	0.0				
4-Methyl-2-pentanone (MIBK)	ND	<u> </u>			Naphthalene		ND ND	1.0	0.0				
Nitrobenzene	ND	1.		.1)05	n-Propyl benzene 1,1,1,2-Tetrachloroethane		ND ND	1.0	0.0				
Styrene	ND ND	<u> </u>			Tetrachloroethene		ND	1.0	0.0				
1,1,2,2-Tetrachloroethane	ND ND	1.			1,2,3-Trichlorobenzene		ND	1.0	0.0				
Toluene 1,2,4-Trichlorobenzene	ND ND	1.		005 005	1,1,1-Trichloroethane		ND	1.0	0.0				
1,2,4-1 richloroethane	ND ND	1.		005 005	Trichloroethene		ND	1.0	0.0				
Trichlorofluoromethane	ND	1.		005	1,2,3-Trichloropropane		ND	1.0	0.0				
1,2,4-Trimethylbenzene	ND	1.			1,3,5-Trimethylbenzene		ND	1.0	0.0				
Vinyi Chloride	ND	1.			Xylenes		ND	1.0	0.0				
					ecoveries (%)								
4/001-	1	97	arroga		%SS2:		10	9					
%SS1:	·}				/4002.		10.	-					
%S\$3:		109											

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

McCampbell	Analytical,	Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com									
Consolidated Engineering Lab	os. Clie	nt Proj	ect ID:	#81-01826-A; 6660	Date S	ampled: 02/01/	06						
		sman F	٤d.		Date Received: 02/01/06								
2001 Crow Canyon Rd, Suite	100	int Con	tact: M	arc A. Hachey	Date Extracted: 02/01/06								
San Daman CA 04592				arc A. fracticy									
San Ramon, CA 94583	Che	ent P.O.	.:		Date A	nalyzed: 02/02/	96						
Extraction Method: SW5030B	Volatile Organi	•		d GC/MS (Basic Targe hod: SW8260B	et List)'		Order: 06	602013					
Lab ID			-	0602013-004A									
Client ID				Field 4 4 Parts									
Matrix				Soil									
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit					
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05					
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.00					
Benzene	ND	1.0	0.005	Bromobenzene	<u> </u>	ND	1.0	0.00					
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane		ND	1.0	0.00					
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00					
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.0					
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00					
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00					
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00					
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether		ND	1.0	0.0					
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.00					
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.00					
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropa	ne	ND	1.0	0.00					
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.00					
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene		ND	1.0	0.00					
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane		ND	1.0	0.00					
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DC	:A)	ND	1.0	0.00					
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	-	ND	1.0	0.00					
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane		ND	1.0	0.00					
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.00					
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene		ND	1.0	0.00					
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)		ND	1.0	0.00					
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBl	3)	ND	1.0	0.00					
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.00					
Hexachioroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00					
Isopropylbenzene	ND	1.0	0.005			ND	1.0	0.00					
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005			ND	1.0	0.00					
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005			ND	1.0	0.00					
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.00					
Styrene	ND	1.0	0.005			ND	1.0	0.00					
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.00					
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.00					
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.00					
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.00					
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane		ND	1.0	0.00					
1,2,4-Trimethylbenzene	ND	1.0	0.005			ND	1.0	0.00					
Vinyl Chloride	ND	1.0	0.005	Xylenes		ND	1.0	0.00					
		Sur	rogate R	ecoveries (%)									
%SS1:	10	4		%SS2:		10	8						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

McCampbell	Analytic	al,	Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Consolidated Engineering Lab	s.		•		#81-01826-A; 6660	Date S	ampled: 02/01/()6			
2001 Crow Canyon Rd, Suite	100	Frie	sman F	(d.		Date R	eceived: 02/01/0)6			
2001 Crow Callyon Rd, Suite	100	Clie	nt Con	tact: Ma	arc A. Hachey	Date E	xtracted: 02/01/0)6			
San Ramon, CA 94583		Clie	nt P.O	.:		Date A	nalyzed: 02/02/0	06			
	Volatile Or	ganic	es by F	&T and	d GC/MS (Basic Targ	et List)*					
Extraction Method: SW5030B		Analytical Method: SW8260B Work Ord									
Lab ID					0602013-005A						
Client ID					Shed 1a 2.5'						
Matrix					Soil						
Compound	Concentrati	on *	DF	Reporting Limit		Concentration *	DF	Reporting Limit			
Acetone	ND		1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND		1.0	0.02	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.005		
Benzene	ND		1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND		· 1.0	0.005	Bromodichloromethane		ND	1.0	0.005		
Bromoform	ND	-	1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND		1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05		
n-Butyl benzene	ND		1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND		1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND		1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND		1.0	0.005	2-Chloroethyl Vinyl Ether		ND	1.0	0.01		
Chloroform	ND		1.0	0.005			ND	1.0	0.005		
2-Chlorotoluene	ND_		1.0	0.005	4-Chlorotoluene	ND	1.0	0.005			
Dibromochloromethane	ND		1.0	0.005	1,2-Dibromo-3-chloropropane		ND	1.0	0.005		
1,2-Dibromoethane (EDB)	ND		1.0	0.005	Dibromomethane		ND	1.0	0.005		
1,2-Dichlorobenzene	ND		1.0		1,3-Dichlorobenzene		ND	1.0	0.005		
1,4-Dichlorobenzene	ND		1.0	0.005	Dichlorodifluoromethane		ND	1.0	0.005		
1,1-Dichloroethane	ND		1.0	0.005		CA)	ND	1.0	0.005		
1,1-Dichloroethene	ND		1.0	0.005	cis-1,2-Dichloroethene		ND	1.0	0.005		
trans-1,2-Dichloroethene	ND		1.0	0.005	1,2-Dichloropropane		ND	1.0	0.005		
1,3-Dichloropropane	ND		1.0	0.005	2,2-Dichloropropane		ND	1.0	0.005		
1,1-Dichloropropene	ND		1.0	0.005	cis-1,3-Dichloropropene		ND ND	1.0	0.005		
trans-1,3-Dichloropropene	ND		1.0	0.005	Diisopropyl ether (DIPE)		ND ND	1.0 1.0	0.005		
Ethylbenzene	ND		1.0	0.005	Ethyl tert-butyl ether (ETB	E)	ND ND	1.0	0.005		
Freon 113	ND		1.0	0.1	Hexachlorobutadiene		ND ND	1.0	0.005		
Hexachloroethane	ND_		1.0	0.005			ND	1.0	0.005		
Isopropylbenzene	ND		1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND ND		1.0		Methylene chloride		ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND		1.0		n-Propyl benzene		ND ND	1.0	0.005		
Nitrobenzene	ND ND		1.0	0.1	1,1,1,2-Tetrachloroethane		ND	1.0	0.005		
Styrene	ND ND		1.0 1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND ND		1.0	0.005			ND ND	1.0	0.005		
Toluene	ND ND		1.0	0.005	1,2,3-Trichloroethane		ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND ND		1.0	0.005	Trichloroethene		ND	1.0	0.005		
1,1,2-Trichloroethane Trichlorofluoromethane	ND ND		1.0	0.005			ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND ND		1.0	0.005			ND	1.0	0.005		
1,2,4-1rimethylbenzene Vinyl Chloride	ND ND		1.0		Xylenes		ND	1.0	0.005		
	<u></u>				ecoveries (%)						
				Togate K			10	7			
%SS1:	<u> </u>	<u> </u>			%SS2:			·			
%SS3:	<u> </u>	10	0								
Comments:					malka product/oil/non-squer			8 ODT	D		

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

_ Angela Rydelius, Lab Manager

McCampbell	Analytic	al,	Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com							
Consolidated Engineering Lab	s.		•		#81-01826-A; 6660	Date S	ampled: 02/01/	06			
2001 Crow Canyon Rd, Suite	100	Frie	sman I	Rd.		Date R	eceived: 02/01/	06			
2001 Crow Carlyon Rd, Sand	100	Clie	nt Con	tact: M	arc A. Hachey	Date E	xtracted: 02/01/	06			
San Ramon, CA 94583		Clie	nt P.O	.:		Date A	nalyzed: 02/03/	06			
	Volatile Or	gani	es by F	°&T an	d GC/MS (Basic Targe	et List)*	r				
Extraction Method: SW 5030B			Analytical Method: SW8260B Work Order: 0								
Lab ID					0602013-006A						
Client ID					Shed 1b 2.5'						
Matrix					Soil						
Compound	Concentrati	on *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit		
Acetone	ND		1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND		1.0	0.02	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.005		
Benzene	ND		1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND		1.0	0.005	Bromodichloromethane		ND	1.0	0.005		
Bromoform	ND		1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND		1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05		
n-Butyl benzene	ND		1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND		1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND		1.0	0.005	Chlorobenzene		ND ND	1.0	0.005		
Chloroethane	ND		1.0	0.005	2-Chloroethyl Vinyl Ether		ND ND	1.0 1.0	0.01		
Chieroform	ND ND		<u>1.0</u> 1.0	0.005	Chloromethane	• • • •	ND ND	1.0	0.005		
2-Chlorotoluene Dibromochloromethane	ND		1.0	0.005			ND	1.0	0.005		
1,2-Dibromoethane (EDB)	ND ND		1.0	0.005	1,2-Dibromo-3-chloropropane Dibromomethane		ND	1.0	0.005		
1,2-Dichlorobenzene	ND		1.0	0.005	1,3-Dichlorobenzene		ND	1.0	0.005		
1,4-Dichlorobenzene	ND		1.0	0.005	Dichlorodifluoromethane		ND	1.0	0.005		
1,1-Dichloroethane	ND		1.0	0.005	1,2-Dichloroethane (1,2-DC	(A)	ND	1.0	0.005		
1,1-Dichloroethene	ND		1.0	0.005	cis-1,2-Dichloroethene		ND	1.0	0.005		
trans-1,2-Dichloroethene	ND		1.0	0.005	1,2-Dichloropropane		ND	1,0	0.005		
1,3-Dichloropropane	ND		1.0	0.005	2,2-Dichloropropane		ND	1.0	0.005		
1,1-Dichloropropene	ND		1.0	0.005	cis-1,3-Dichloropropene		ND	1.0	0.005		
trans-1,3-Dichloropropene	ND		1.0	0.005	Diisopropyl ether (DIPE)		ND	1.0	0.005		
Ethylbenzene	ND		1.0	0.005	Ethyl tert-butyl ether (ETBI	3)	ND	1.0	0.005		
Freon 113	ND		1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005		
Hexachioroethane	ND		1.0	0.005	2-Hexanone		ND	1.0	0.005		
Isopropylbenzene	ND		1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND		1.0	0.005	Methylene chloride		ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND		1.0	0.005	Naphthalene		ND	1.0	0.005		
Nitrobenzene	ND		1.0	0.1	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND		1.0	0.005	1,1,1,2-Tetrachloroethane		ND	1.0 1.0	0.005		
1,1,2,2-Tetrachloroethane Toluene	ND ND		1.0 1.0	0.005	Tetrachioroethene 1,2,3-Trichlorobenzene		ND ND	1.0	0.005		
1.2,4-Trichlorobenzene	ND		1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005		
1,2,4-Trichloroethane	ND ND		1.0	0.005			ND	1.0	0.005		
Trichlorofluoromethane	ND		1.0		1,2,3-Trichloropropane		ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND		1.0		1,3,5-Trimethylbenzene		ND	1.0	0.005		
Vinyl Chloride	ND		1.0		Xylenes		ND	1.0	0.005		
					ecoveries (%)						
%SS1:	l	10			%SS2:		10	8			
%SS3:		10									
Comments:	1		•		I						
CONTRACTAS.											

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

_ Angela Rydelius, Lab Manager

McCampbell	Analytica	l, Inc.	Telephone :	925-798-16	7, Pacheco, CA 94553-5 20 Fax : 925-798-1622 E-mail: main@mccamp			
Consolidated Engineering Lab		lient Pro	-	#81-01826-A; 6660	ampled: 02/01/06 Received: 02/01/06			
2001 Crow Canyon Rd, Suite	100 C	lient Co	ntact: M	arc A. Hachey	xtracted: 02/01/0			
San Ramon, CA 94583		lient P.(Date A	analyzed: 02/03/0	06	
	Volatile Orga	nics by	P&T an	d GC/MS (Basic Targ	et List)'	r		
Extraction Method: SW5030B		A	nalytical Me	thod: SW8260B		Work	Order: 04	602013
Lab ID				0602013-007A				
Client ID				Barn 2 @ 5'				
Matrix				Soil				
Compound	Concentration	* DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.0
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.00
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane		ND	1.0	0.00
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.0
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.0
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether		ND	1.0	0.0
Chloroform	ND				ND	1.0	0.00	
2-Chlorotoluene	ND				ND	1.0	0.00	
Dibromochloromethane	ND	1.0	0.005			ND	1.0	0.00
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.00
1,2-Dichlorobenzene	ND	1.0				ND	1.0	0.00
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane		ND	1.0	0.0
1,1-Dichioroethane	ND	1.0	0.005		CA)	ND	1.0	0.0
1,1-Dichloroethene	ND	1.0		cis-1,2-Dichloroethene		ND ND	1.0	0.0
trans-1,2-Dichloroethene	ND	1.0				ND ND	1.0	0.0
1,3-Dichloropropane	ND	1.0				ND	1.0	0.0
1,1-Dichloropropene	ND	1.0		cis-1,3-Dichloropropene		ND ND	1.0	0.0
trans-1,3-Dichloropropene	ND	1.0		Diisopropyl ether (DIPE)	(F)	ND ND	1.0	0.0
Ethylbenzene	ND	1.0		Ethyl tert-butyl ether (ETB	E)	ND	1.0	0.0
Freen 113	ND	1.0		Hexachlorobutadiene		ND	1.0	0.0
Hexachloroethane		1.0		2-Hexanone 4-Isopropyl toluene		ND	1.0	0.0
Isopropylbenzene	ND ND	1.0				ND	1.0	0.0
Methyl-t-butyl ether (MTBE)	ND ND	1.0		Naphthalene		ND	1.0	0.0
4-Methyl-2-pentanone (MIBK)	ND ND	1.0		n-Propyl benzene		ND	1.0	0.0
Nitrobenzene	ND ND	1.0				ND	1.0	0.0
Styrene 1,1,2,2-Tetrachloroethane	ND ND	1.0		Tetrachloroethene		ND	1.0	0.0
T,1,2,2-Tetrachioroeunane	ND	1.0				ND	1.0	0.0
1,2,4-Trichlorobenzene	ND ND	1.0		1,1,1-Trichloroethane		ND	1.0	0.0
1,2,4-Trichloroethane	ND	1.0				ND	1.0	0.0
Trichlorofluoromethane	ND	1.0				ND	1.0	0.0
1,2,4-Trimethylbenzene	ND ND	1.0				ND	1.0	0.0
Vinyl Chloride	ND	1.0				ND	1.0	0.0
·				lecoveries (%)				
%SS1:		96		%SS2:		10	7	
		106						
%SS3:		100						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

Lab ID 0602013-008A Client ID Barn 1 @ 5' Soil Compound Concentration * DF Imm Compound Concentration * C Acetone ND 1.0 0.05 Reporting Compound Concentration * E Acetone ND 1.0 0.05 Bernodichloromethane ND 1 Acrylenitrike ND 1.0 0.05 Bromodichloromethane ND 1 Acrylenitrike ND 1.0 0.005 Bromodichloromethane ND 1 Benzene ND 1.0 0.005 Bromodichloromethane ND 1 DBT <th c<="" th=""><th>ar: 0602013</th></th>	<th>ar: 0602013</th>	ar: 0602013
2001 Crow Canyon Rd, Suite 100 Date Received: 02/01/06 San Ramon, CA 94583 Client Contact: Marc A. Hachey Date Extracted: 02/01/06 Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Mater Xet Colspan="2">Mater Xet Colspan="2">Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Mater Xet Colspan="2">Mater Xet Colspan="2">Volatile Organics by P&T and GC/MS (Basic Target List)* Lab ID Of Compound Concentration * DF Barenia Compound Concentration * DE Compound Concentration * DF Repering Compound Concentration * DE Compound Concentration * DF Repering Compound Concentration * DE Acctone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acctone ND 1.0 0.005 Sector Mater Xet	ar: 0602013	
Client Contact: Marc A. Hachey Date Extracted: 02/01/06 San Ramon, CA 94583 Client P.O.: Date Analyzed: 02/03/06 Volatile Organics by P&T and GC/MS (Basic Target List)* Date Analyzed: 02/03/06 Extraction Method: SW 500B Analytical Method: SW 8260B Work Ord Lab ID 0602013-008A Work Ord Client ID Barn 1 @ 5' Soil Compound Concentration * DF Reparing Lima Compound Concentration * D Acetone ND 1.0 0.02 tert-Anyl methyl ether (TAME) ND 1 Accylonitrile ND 1.0 0.02 tert-Anyl methyl ether (TAME) ND 1 Berzene ND 1.0 0.02 tert-Anyl methyl ether (TAME) ND 1 Bromochloromethane ND 1.0 0.005 Bromodichloromethane ND 1 Bromoform ND 1.0 0.005 Bromodichloromethane ND 1 Bromochloromethane ND 1.0 0.005 Bromodichloromethane ND	ar: 0602013	
San Ramon, CA 94583 Client P.O.: Date Analyzed: 02/03/06 Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Ord Lab ID 0602013-008A Work Ord Client ID Barn 1 @ 5' Matrix Soil Compound Concentration * DF Reporting ND 1 Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Benzene ND 1.0 0.05 Bromodichloromethane ND 1 Bromochoromethane ND 1.0 0.005 Bromodichloromethane ND 1 Bromochoromethane ND 1.0 0.005 Bromodichloromethane ND 1 Pattanone (MEK) ND 1.0 0.005 Carbon Disulfide ND 1 Pattanone (MEK) ND 1.0 0.005 Carbon Disulfide ND 1	ar: 0602013	
Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Ord Lab ID Occupation of the system Work Ord Client ID Barn 1 @ 5' Matrix Soil Compound DF Repering Formation Compound Concentration * E Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acrylonitrile ND 1.0 0.005 Bromodichloromethane ND 1 Bromochloromethane ND 1.0 0.005 Bromodichloromethane ND 1 Bromochlorom ND 1.0 0.005 Bromodichloromethane ND 1 Bromochorom ND 1.0 0.005 Bromodichloromethane ND 1 Bromochorom ND 1.0 0.005 Scenburyl methyl ether (TAME) ND 1 2-Butanone (MEK) ND	ar: 0602013	
Extraction Method: SW5030B Analytical Method: SW8260B Work Ord Lab ID 0602013-008A Barn 1 @ 5' Matrix Barn 1 @ 5' Compound Concentration * DF Reporting Image Soil Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acetone ND 1.0 0.02 tert-Amy methyl ether (TAME) ND 1 Benzene ND 1.0 0.005 Bromochargene ND 1 Bromochloromethane ND 1.0 0.005 Bromochloromethane ND 1 Bromochloromethane ND 1.0 0.005 Bromochloromethane ND 1 Pattanone (MEK) ND 1.0 0.005 Bromochloromethane ND 1 Pattanone (MEK) ND 1.0 0.005 sec-Butyl benzene ND 1 Carbon Tetrachloride ND 1.0 0.005 Carbon Disulfide ND 1 Chioroethane ND <	ar: 0602013	
Lab ID 0602013-008A Client ID Barn I @ 5' Matrix Soil Compound Concentration * DF Image Compound Concentration * D Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acetone ND 1.0 0.05 Bromocharmethy (Propenal) ND 1 Benzene ND 1.0 0.05 Bromocharmethy (Propenal) ND 1 Bromochloromethane ND 1.0 0.02 tert-Amyl methyl ether (TAME) ND 1 Bromochloromethane ND 1.0 0.005 Bromomethane ND 1 Bromochloromethane ND 1.0 0.005 Bromomethane ND 1 2-Butanone (MEK) ND 1.0 0.005 Sec-Butyl benzene ND 1 2-Butyl benzene ND 1.0 0.005		
Barn 1 @ 5' Matrix Soil Compound Concentration * DF Repring Limit Compound Concentration * D Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Actylonitrile ND 1.0 0.05 Acrolein (Propenal) ND 1 Actylonitrile ND 1.0 0.005 Bromobenzene ND 1 Benzene ND 1.0 0.005 Bromodichloromethane ND 1 Bromochkoromethane ND 1.0 0.005 Bromodichloromethane ND 1 Bromoform ND 1.0 0.005 Bromomethane ND 1 -Butyl benzene ND 1.0 0.005 sec-Butyl benzene ND 1 -Butyl benzene ND 1.0 0.005 carbon Disulfide ND 1 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1 Chlorobenzene </td <td></td>		
Matrix Soil Compound Concentration * DF Reporting Linal Compound Concentration * D Acctone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acrylonitrile ND 1.0 0.05 Acrolein (Propenal) ND 1 Berzene ND 1.0 0.002 tert-Amyl methyl ether (TAME) ND 1 Bromochloromethane ND 1.0 0.005 Bromonethane ND 1 Bromochloromethane ND 1.0 0.005 Bromomethane ND 1 Bromochloromethane ND 1.0 0.005 Bromomethane ND 1 Bromoform ND 1.0 0.005 Bromomethane ND 1 Pattanone (MEK) ND 1.0 0.005 Sec-Butyl alcohol (TBA) ND 1 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1 Chloroform ND 1.0 </td <td></td>		
CompoundConcentration *DFRepering LinuxCompoundConcentration *EAcetoneND1.00.05Acrolein (Propenal)ND1AcrylonitrileND1.00.02tert-Amyl methyl ether (TAME)ND1BerzeneND1.00.005BromobenzeneND1BromochloromethaneND1.00.005BromodichloromethaneND1BromoformND1.00.005BromomethaneND12-Butanone (MEK)ND1.00.005BromomethaneND1n-Butyl benzeneND1.00.005Sec-Butyl benzeneND1carbon TetrachlorideND1.00.005Carbon DisulfideND1ChloroformND1.00.005ChloromethaneND1ChloroformND1.00.005ChloromethaneND1ChloroformND1.00.005ChloromethaneND11.00.005ChloromethaneND111.2-DibronoethaneND1.00.005ChloromethaneND11.2-DichlorobenzeneND1.00.005LoromoethaneND11.2-DichlorobenzeneND1.00.005LoromoethaneND11.2-DichlorobenzeneND1.00.005J.2-DichlorobenzeneND11.2-DichlorobenzeneND1.00.005J.2-Dichlorobenzene		
Acetone ND 1.0 0.05 Acrolein (Propenal) ND 1 Acrylonitrile ND 1.0 0.02 tert-Amyl methyl ether (TAME) ND 1 Benzene ND 1.0 0.005 Bromobenzene ND 1 Bromochloromethane ND 1.0 0.005 Bromodenzene ND 1 Bromochloromethane ND 1.0 0.005 Bromodenzene ND 1 Bromoform ND 1.0 0.005 Bromomethane ND 1 2-Butanone (MEK) ND 1.0 0.005 scc-Butyl lenzene ND 1 1 n-Butyl benzene ND 1.0 0.005 cchoo Disulfide ND 1 Carbon Tetrachloride ND 1.0 0.005 Carbon Disulfide ND 1 Chloroethane ND 1.0 0.005 Chloromethane ND 1 Chlorootoluene ND 1.0 0.005 t-Chlorotoluene ND <td>Reporting</td>	Reporting	
AcrylonitrileND1.00.02tert-Amyl methyl ether (TAME)ND1BerzeneND1.00.005BromobenzeneND1BromochloromethaneND1.00.005BromodichloromethaneND1BromoformND1.00.005BromomethaneND12-Butanone (MEK)ND1.00.005BromomethaneND11n-Butyl benzeneND1.00.005sec-Butyl benzeneND11n-Butyl benzeneND1.00.005sec-Butyl benzeneND11carbon TetrachlorideND1.00.005Carbon DisulfideND1Carbon TetrachlorideND1.00.005ChlorobenzeneND1ChloroformND1.00.005ChloromethaneND12-ChlorotolueneND1.00.005ChloromethaneND11.00.005ChloromethaneND112-ChlorotolueneND1.00.005ChloromethaneND11.2-DibromochlaromethaneND1.00.0051,2-Dibromo-3-chloropropaneND11.2-DichlorobenzeneND1.00.005DibromomethaneND11.2-DichlorobenzeneND1.00.0051,2-DichlorobenzeneND11.4-DichlorobenzeneND1.00.0051,2-DichloromethaneND11,1-DichlorobenzeneND <td>Lanut</td>	Lanut	
InstructND1.00.005BromobenzeneND1BerzeneND1.00.005BromodichloromethaneND1BromochloromethaneND1.00.005BromodichloromethaneND1BromoformND1.00.005BromomethaneND12-Butanone (MEK)ND1.00.002t-Butyl alcohol (TBA)ND1n-Butyl benzeneND1.00.005sec-Butyl benzeneND1tert-Butyl benzeneND1.00.005Carbon DisulfideND1Carbon TetrachlorideND1.00.005ChlorobenzeneND1ChlorothaneND1.00.005ChlorobenzeneND1ChlorotolueneND1.00.005ChloromethaneND11.2-DibromoethaneND1.00.0054-ChlorotolueneND11.2-Dibromoethane (EDB)ND1.00.0051,2-DibromoethaneND11.4-DichlorobenzeneND1.00.0051,2-DichlorobenzeneND11,1-DichlorobenzeneND1.00.005DibromomethaneND11,1-DichlorobenzeneND1.00.0051,2-DichlorobenzeneND11,1-DichlorobenzeneND1.00.0051,2-DichloroethaneND11,1-DichloroethaneND1.00.0052,2-DichloroethaneND11,1-DichloroetheneND1	.0 0.05	
DescriptionND1.00.005BromodichloromethaneND1BromochloromethaneND1.00.005BromodichloromethaneND12-Butanone (MEK)ND1.00.005BromodichloromethaneND1111.00.005sec-Butyl alcohol (TBA)ND11n-Butyl benzeneND1.00.005sec-Butyl benzeneND11tert-Butyl benzeneND1.00.005Carbon DisulfideND11Carbon TetrachlorideND1.00.005ChlorobenzeneND1ChloroethaneND1.00.005ChloromethaneND1ChloroformND1.00.005ChloromethaneND12-ChlorotolueneND1.00.005ChloromethaneND11,2-DibromochloromethaneND1.00.0051,2-Dibromo-3-chloropropaneND11,2-DichlorobenzeneND1.00.0051,3-DichlorobenzeneND11,1-DichlorobenzeneND1.00.0051,2-DichlorobethaneND11,1-DichlorobenzeneND1.00.0051,2-DichlorobethaneND11,1-DichlorobenzeneND1.00.0051,2-DichlorobethaneND11,1-DichlorobethaneND1.00.0051,2-DichlorobethaneND11,1-DichlorobethaneND1.00.0051,2-DichlorobethaneND<		
DefinitionND1.01.00.005BromomethaneND12-Butanone (MEK)ND1.00.0021-Butyl alcohol (TBA)ND1n-Butyl benzeneND1.00.005sec-Butyl benzeneND11ert-Butyl benzeneND1.00.005Carbon DisulfideND11ert-Butyl benzeneND1.00.005Carbon DisulfideND11ert-Butyl benzeneND1.00.005ChlorobenzeneND11ert-Butyl benzeneND1.00.005ChlorobenzeneND11chlorothaneND1.00.005ChlorobenzeneND11.00.005ChloromethaneND112-ChlorotolueneND1.00.005ChloromethaneND11.2-DibromochloromethaneND1.00.0051,2-Dibromo-3-chloropropaneND11.2-DichlorobenzeneND1.00.005DibromomethaneND11.2-DichlorobenzeneND1.00.005DichlorobenzeneND11.4-DichlorobenzeneND1.00.005DichlorodifluoromethaneND11.1-DichloroethaneND1.00.005cis-1,2-DichloroethaneND11.1-DichloroetheneND1.00.005cis-1,2-DichloroethaneND11.1-DichloroetheneND1.00.005cis-1,2-DichloroethaneND11.1-Dichloroprop		
2-Butanone (MEK)ND1.00.02I-Butyl alcohol (TBA)ND1n-Butyl benzeneND1.00.005sec-Butyl benzeneND1tert-Butyl benzeneND1.00.005Carbon DisulfideND1(Carbon TetrachlorideND1.00.005ChlorobenzeneND1ChloroethaneND1.00.0052-Chloroethyl Vinyl EtherND1ChloroformND1.00.005ChlorobenzeneND12-ChlorotolueneND1.00.005ChlorototueneND12-ChlorotolueneND1.00.0054-ChlorototueneND11/2-DibromoethaneND1.00.005JibromoethaneND11/2-DibromethaneND1.00.005DibromomethaneND11/2-DichlorobenzeneND1.00.005JibromoethaneND11/4-DichlorobenzeneND1.00.005JichlorobenzeneND11/1-DichloroethaneND1.00.005JichloroethaneND11/1-DichloroethaneND1.00.005JichloroethaneND11/1-DichloroetheneND1.00.005JichloroethaneND11/1-DichloroetheneND1.00.005JichloropropaneND11/1-DichloroetheneND1.00.005JichloropropaneND11/1-DichloropropaneND1.0<		
n-Butyl benzeneND1.00.005sec-Butyl benzeneND1tert-Butyl benzeneND1.00.005Carbon DisulfideND1Carbon TetrachlorideND1.00.005ChlorobenzeneND1ChloroethaneND1.00.0052-Chloroethyl Vinyl EtherND1ChloroformND1.00.005ChloromethaneND12-ChlorotolueneND1.00.0054-ChlorotolueneND1DibromochloromethaneND1.00.0051,2-Dibromo-3-chloropropaneND11,2-Dibromoethane (EDB)ND1.00.0051,3-DichlorobenzeneND11,4-DichlorobenzeneND1.00.0051,3-DichlorobenzeneND11,1-DichloroethaneND1.00.0051,2-DichloroethaneND11,1-DichloroetheneND1.00.0051,2-DichloroethaneND11,1-DichloroetheneND1.00.0051,2-DichloroethaneND11,1-DichloroetheneND1.00.0051,2-DichloroethaneND11,3-DichloroetheneND1.00.0051,2-DichloroetheneND11,3-DichloropropaneND1.00.0051,2-DichloropropaneND11,1-DichloroetheneND1.00.0051,2-DichloroetheneND11,1-DichloropropaneND1.00.0051,2-DichloropropaneND	.0 0.005	
Intert-Butyl benzeneND1.00.005Carbon DisulfideND1Carbon TetrachlorideND1.00.005ChlorobenzeneND1ChloroethaneND1.00.0052-Chloroethyl Vinyl EtherND1ChloroformND1.00.005ChloromethaneND12-ChlorotolueneND1.00.0054-ChlorotolueneND1DibromochloromethaneND1.00.0051,2-Dibromo-3-chloropropaneND11,2-DibromochloromethaneND1.00.005DibromomethaneND11,2-DichlorobenzeneND1.00.005DibromomethaneND11,4-DichlorobenzeneND1.00.005DichlorobenzeneND11,1-DichloroethaneND1.00.0051,2-DichloroethaneND11,1-DichloroetheneND1.00.0051,2-DichloroethaneND11,1-DichloroetheneND1.00.0051,2-DichloroethaneND11,1-DichloroetheneND1.00.0051,2-DichloroetheneND11,3-DichloropropaneND1.00.0052,2-DichloropropaneND11,1-DichloropropaneND1.00.0052,2-DichloropropaneND11,1-DichloropropaneND1.00.0052,2-DichloropropaneND11,1-DichloropropaneND1.00.0052,2-DichloropropaneND<	.0 0.005	
InstructionInstructin	.0 0.005	
Chloroethane ND 1.0 0.005 2-Chloroethyl Vinyl Ether ND 1 Chloroform ND 1.0 0.005 Chloromethane ND 1 2-Chlorotoluene ND 1.0 0.005 Chloromethane ND 1 2-Chlorotoluene ND 1.0 0.005 4-Chlorotoluene ND 1 12-Dibromochloromethane ND 1.0 0.005 1,2-Dibromo-3-chloropropane ND 1 12-Dibromocthane (EDB) ND 1.0 0.005 Dibromomethane ND 1 12-Dichlorobenzene ND 1.0 0.005 Dibromomethane ND 1 14-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,1-Dichloroethane ND 1.0 0.005 L2-Dichloroethane ND 1 1,1-Dichloroethene ND 1.0 0.005 iz2-Dichloroethane ND 1 1,1-Dichloroethene ND 1.0 0.005	.0 0.005	
Chloroform ND 1.0 0.005 Chloromethane ND 1 2-Chlorotoluene ND 1.0 0.005 4-Chlorotoluene ND 1 2-Chlorotoluene ND 1.0 0.005 4-Chlorotoluene ND 1 12-Chlorotoluene ND 1.0 0.005 1,2-Dibromo-3-chloropropane ND 1 12-Dibromoethane (EDB) ND 1.0 0.005 Dibromomethane ND 1 12-Dichlorobenzene ND 1.0 0.005 Dibromomethane ND 1 14-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,1-Dichlorobenzene ND 1.0 0.005 I;2-Dichloroethane ND 1 1,1-Dichloroethane ND 1.0 0.005 i;2-Dichloroethane ND 1 1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1 1,3-Dichloropropane ND 1.0 0.005	.0 0.01	
2-Chlorotoluene ND 1.0 0.005 4-Chlorotoluene ND 1 Dibromochloromethane ND 1.0 0.005 1,2-Dibromo-3-chloropropane ND 1 1,2-Dibromocthane (EDB) ND 1.0 0.005 Dibromomethane ND 1 1,2-Dichlorobenzene ND 1.0 0.005 Dibromomethane ND 1 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,1-Dichloroethane ND 1.0 0.005 i,2-Dichloroethane (1,2-DCA) ND 1 1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1 1,3-Dichloropethene ND 1.0 0.005 z/2-Dichloropropane ND 1 1,3-Dichloropethene ND 1.0 0.005 z/2-Dichloropropane ND 1 1,1-Dichloropropane ND	.0 0.005	
Dibromochloromethane ND 1.0 0.005 1,2-Dibromo-3-chloropropane ND 1 1,2-Dibromoethane (EDB) ND 1.0 0.005 Dibromomethane ND 1 1,2-Dichlorobenzene ND 1.0 0.005 Dibromomethane ND 1 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,1-Dichloroethane ND 1.0 0.005 i,2-Dichloroethane (1,2-DCA) ND 1 1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1 1,3-Dichloroethene ND 1.0 0.005 z,2-Dichloropropane ND 1 1,3-Dichloropropane ND 1.0 0.005 z,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 z,2-Dichloropropane ND 1 1,1-Dichloropropane ND <td>.0 0.005</td>	.0 0.005	
1.2-Dibromoethane (EDB) ND 1.0 0.005 Dibromomethane ND 1 1.2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,1-Dichloroethane ND 1.0 0.005 i,2-Dichloroethane (1,2-DCA) ND 1 1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1 1,3-Dichloroethene ND 1.0 0.005 j,2-Dichloropropane ND 1 1,3-Dichloropropane ND 1.0 0.005 j,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 z,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1	.0 0.005	
1.2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,1-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1 1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1 1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1 trans-1,2-Dichloroethene ND 1.0 0.005 z,2-Dichloropropane ND 1 1,3-Dichloropropane ND 1.0 0.005 z,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 z,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1	.0 0.005	
1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1 1,1-Dichloroethane ND 1.0 0.005 cis-1,2-Dichloroethane (1,2-DCA) ND 1 1,1-Dichloroethane ND 1.0 0.005 cis-1,2-Dichloroethane (1,2-DCA) ND 1 trans-1,2-Dichloroethane ND 1.0 0.005 cis-1,2-Dichloroethane ND 1 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1	.0 0.005	
1,1 Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1 1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1 trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1	.0 0.005	
Image: ND ND 1.0 0.005 1,2-Dichloropropane ND 1 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1	.0 0.005	
Index 12 Dichloropropane ND 10 0.005 2,2-Dichloropropane ND 1 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1	.0 0.005	
1,5-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1	.0 0.005	
	.0 0.005	
trans_1_3_Dichloronropene ND 1.0 0.005 Diisonropyi ether (DIPE) ND 1	.0 0.005	
	.0 0.005	
	.0 0.005	
	.0 0.005	
	.0 0.005	
LODIOD IN THE PROPERTY OF THE	.0 0.005	
Modifier Outri Culci (MTDB)	.0 0.005	
	.0 0.005	
	.0 0.005	
	.0 0.005	
	.0 0.005	
	.0 0.005	
1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1	0.005	
	.0 0.005	
	.0 0.005	
	0.005	
Surrogate Recoveries (%)		
%SS1: 101 %SS2: 109		
%SS3: 106		
Comments:		

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

_ Angela Rydelius, Lab Manager

McCampbell	Analytical	, Inc.	Telephone :	925-798-16	7, Pacheco, CA 94553-5 20 Fax: 925-798-1622 E-mail: main@mccamp				
Consolidated Engineering Lal		ient Proj iesman I		· · · · · · · · · · · · · · · · · · ·		ampled: 02/01/06 Received: 02/01/06			
2001 Crow Canyon Rd, Suite	100 CI	ient Cor	tact: M	arc A. Hachey	xtracted: 02/01/				
San Ramon, CA 94583		ient P.O				nalyzed: 02/03/			
	Volatile Organ	ice by I	&T an	d GC/MS (Basic Targ					
Extraction Method: SW5030B	volatile Organ	•		hod: SW8260B			Order: 0	602013	
Lab ID				0602013-009A					
Client ID				Barn 2 @ 10'					
Matrix				Soil					
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TA	ME)	NÐ	1.0	0.00	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane		ND	1.0	0.00	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0,0	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	<u>1.0</u> 1.0	0.00	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND		0.00	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND		0.00	
Chloroethane	ND	1.0	0.005			ND	1.0	0.0	
Chloroform	ND	1.0	0.005			ND	1.0	0.00	
2-Chlorotoluene	ND	1.0	0.005			ND	1.0	0.00	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane		ND	1.0	0.00	
1,2-Dibromoethane (EDB)	ND	1.0	0.005			ND	1.0	0.00	
1,2-Dichlorobenzene	ND	1.0	0.005			ND	1.0	0.00	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane		ND	1.0	0.00	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DO	CA)	ND	1.0	0.00	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene		ND	1.0	0.00	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane		ND	1.0	0.00	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.00	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene		ND	1.0	0.00	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)		ND	1.0	0.00	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETB	B)	ND	1.0	0.00	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	•	ND ND	1.0 1.0	0.00	
Hexachloroethane	ND ND	1.0	0.005	2-Hexanone 4-Isopropyi toluene		ND ND	1.0	0.00	
Isopropyibenzene	ND ND	1.0	0.005			ND	1.0	0.00	
Methyl-t-butyl ether (MTBE)	ND		0.005			ND ND	1.0	0.00	
4-Methyl-2-pentanone (MIBK)	ND ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.00	
Nitrobenzene	ND ND	1.0	0.005	1,1,1,2-Tetrachloroethane		ND	1.0	0.00	
Styrene 1,1,2,2-Tetrachloroethane	ND ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.00	
Toluene	ND ND	1.0	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.00	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.00	
1,2,4-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.00	
Trichlorofluoromethane	ND	1.0	0.005			ND	1.0	0.00	
1,2,4-Trimethylbenzene	ND	1.0	0.005		·	ND	1.0	0.00	
Vinyl Chloride	ND	1.0	0.005			ND	1.0	0.00	
		Sui	rogate R	ecoverles (%)					
%SS1:	1	101		%SS2:		10	8		
				F					

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

_ Angela Rydelius, Lab Manager

McCampbell	Analytic	al,	Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com								
Consolidated Engineering Lat)S.				#81-01826-A; 6660	Date S	Sampled: 02/01/0)6				
2001 Crow Canyon Rd, Suite	100	Frie	sman I	Rd.		Date R	Date Received: 02/01/06					
2001 Crow Canyon Rd, Sale	100	Clie	nt Con	itact: M	arc A. Hachey	Date E						
San Ramon, CA 94583			nt P.O		•	Date A	Analyzed: 02/01/0	06				
	Volatile Or	ganie	es by F	°&T an	d GC/MS (Basic Targ	et List)*	k.					
Extraction Method: SW5030B		0	-		thod: SW8260B	,		Order: 06	602013			
Lab ID					0602013-010C							
Client ID					Stream 1							
Matrix					Water							
Compound	Concentrati	on *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit			
Acetone	2		1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0				
Acrylonitrile	ND	ž	1.0	2.0	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.5			
Benzene	ND		1.0	0.5	Bromobenzene		ND	1.0	0,5			
Bromochioromethane	ND		1.0	0.5	Bromodichloromethane		ND	1.0	0.5			
Bromoform	ND		1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND		1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0			
n-Butyl benzene	ND		1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND		1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND		1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND		1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0			
Chloroform	ND		1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND		1.0	0.5	4-Chlorotoluene	ND	1.0	0.5				
Dibromochloromethane	<u>ND</u>		1.0	0.5	1,2-Dibromo-3-chloropropa	ND	1.0	0.5				
1,2-Dibromoethane (EDB)	ND		1.0	0.5	Dibromomethane	ND	1.0	0.5				
1,2-Dichlorobenzene	ND		1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5			
1,4-Dichlorobenzene	ND		1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5			
1,1-Dichloroethane	ND		1.0	0.5	1,2-Dichloroethane (1,2-DC	;A)	ND ND	1.0	0.5			
1,1-Dichloroethene	ND		1.0	0.5	cis-1,2-Dichloroethene		ND ND	1.0 1.0	0.5			
trans-1,2-Dichloroethene	ND		1.0	0.5	1,2-Dichloropropane		ND ND	1.0	0.5			
1,3-Dichloropropane	ND ND		<u>1.0</u> 1.0	0.5	2,2-Dichloropropane cis-1,3-Dichloropropene		ND	1.0	0.5			
1,1-Dichloropropene trans-1,3-Dichloropropene	ND ND		1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.5			
Ethylbenzene	ND		1.0	0.5	Ethyl tert-butyl ether (ETB)	E)	ND	1.0	0.5			
Freon 113	ND		1.0	10	Hexachlorobutadiene	<u></u>	ND	1.0	0.5			
Hexachloroethane	ND		1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropylbenzene	ND		1.0	0.5	4-Isopropyl toluene		ND	1.0	0,5			
Methyl-t-butyl ether (MTBE)	ND		1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND		1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND		1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND		1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	NÐ		1.0	0.5	Tetrachioroethene		ND	1.0	0.5			
Toluene	ND		1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0,5			
1,2,4-Trichlorobenzene	ND		1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5			
1,1,2-Trichloroethane	ND		1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND		1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND		1.0	0.5	1,3,5-Trimethylbenzene		ND ND	1.0	0.5			
Vinyl Chloride	ND		1.0	0.5	Xylenes		ND	1.0	0.5			
				rogate R	ecoveries (%)				<u> </u>			
%SS1:		98			%SS2:		99		••			
%\$\$\$3:		94	ļ									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

McCampbell	Analytical	, Inc.		Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Consolidated Engineering Lab				#81-01826-A; 6660	Date S	ampled: 02/01/0)6			
	F	iesman l	Rd.		Received: 02/01/0)6				
2001 Crow Canyon Rd, Suite	100			A TT1						
		ient Con	itact: M	arc A. Hachey	1	xtracted: 02/02/0				
San Ramon, CA 94583	C	ient P.O	.:		Date A	nalyzed: 02/02/0)6			
	Volatile Orga	-		d GC/MS (Basic Targ	et List)*		Order: 06	(02012		
Extraction Method: SW 5030B		An	alytical Me	thod: SW8260B				02013		
Lab ID				0602013-011C						
Client ID				Stream 2						
Matrix				Water				Reporti		
Compound	Concentration	* DF	Reporting Limit	Compound		Concentration *	DF	Limi		
Acetone	18	1.0	5.0	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TA	ME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.:		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.:		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND ND	1.0	0.		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.:		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0 0.5		
Chloroform	ND	1.0	0.5	Chloromethane		ND ND	1.0	0.		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	<u>1.0</u> 1.0	0.		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloroprop	ane	ND ND	1.0	0.		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene Dichlorodifluoromethane		ND ND	1.0	0.		
1,4-Dichlorobenzene	ND ND	1.0	0.5	1,2-Dichloroethane (1,2-D	(A)	ND ND	1.0	0.		
1,1-Dichloroethane	ND ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.		
1,1-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.:		
	ND ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.		
1,3-Dichloropropane 1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.		
trans-1,3-Dichloropropene		1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.:		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETB	E)	ND	1.0	0.		
Freen 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND ND	1.0	0. 0.		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND ND	1.0 1.0	0.		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND ND	1.0	0.		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND ND	1.0	0.		
Vinyl Chloride	ND	1.0	0.5	Xylenes						
A / 994			rrogate R	ecoverles (%) %SS2:		99)			
%SS1:		100	· · · ·	703.32.						
%S\$3:	1	93								
Comments:										

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

_ Angela Rydelius, Lab Manager

McCampbell An	alytical, Inc	•	Telephone : 9	South, #D7, Pacheco, CA 25-798-1620 Fax : 925 1pbell.com E-mail: main	-798-1622	om		
Consolidated Engineering Labs.	Client Pr	oject ID: #81-0	#81-01826-A; 6660 Date Sampled: 02/01/06					
2001 Crow Canyon Rd, Suite 100	Friesman	n Rd.	Date Received: 02/01/06					
2001 Crow Cally on Ray Salle 100	Client C	ontact: Marc A. l	Jachev	Date Extracted:	02/01/06			
San Ramon, CA 94583	·							
	Client P.	02/02/06-0	2/06/0					
Polynuclear Arc Extraction Method: SW3550C		rbons (PAHs / P alytical Method: SW827(Mode by GC/M	S* Work Ord	er: 060201		
Lab ID	0602013-001A	0602013-002A	0602013-003A	0602013-004A				
Client ID	Field 1 4 Parts	Field 2 4 Parts	Field 3 4 Parts	Field 4 4 Parts	Reporting DF			
Matrix	S	S	S	8				
DF	. 1	1	1	1	S	w		
Compound		Conc	entration		mg/kg	ug/I		
Acenaphthene	ND	ND	ND	ND	0.005	NA		
Acenaphthylene	ND	ND	ND	ND	0.005	NA		
Anthracene	ND	NÐ	ND	ND	0.005	NA		
Benzo(a)anthracene	ND	ND	ND	ND	0.005	NA		
Benzo(a)pyrene	ND	ND	ND	ND	0.005	NA		
Benzo(b)fluoranthene	ND	ND	ND	ND	0.005	NA		
Benzo(g,h,i)perylene	ND	ND	ND	ND	0.005	NA		
Benzo(k)fluoranthene	ND	ND	ND	ND	0.005	NA		
Chrysene	ND	ND	ND	ND	0.005	NA		
Dibenzo(a,h)anthracene	ND	ND	ND	ND	0.005	NA		
Fluoranthene	ND	ND	ND	ND	0.005	NA		
Fluorene	ND	ND	ND	ND	0.005	NA		
Indeno (1,2,3-cd) pyrene	ND	ND	ND	ND	0.005	NA		
1-Methylnaphthalene	ND	ND	ND	ND	0.005	NA		
2-Methylnaphthalene	ND	ND	ND	ND	0.005	NA		
Naphthalene	ND	ND	ND	ND	0.005	NA		
Phenanthrene	ND	ND	ND	ND	0.005	NA		
Pyrene	ND	ND	ND	ND	0.005	NA		
- <u></u>	Surr	ogate Recoverie	s (%)					
%8S1	115	118	105	111				
%SS2	120	109	119	110				
Comments			1					

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) estimated to be below this level based on our MDL study; r) results are reported on a dry weight basis.

___Angela Rydelius, Lab Manager

McCampbell An	alytical, Inc	2.	Telephone : 9	South, #D7, Pacheco, C/ 925-798-1620 Fax : 925 npbell.com E-mail: main	-798-1622	com		
Consolidated Engineering Labs.		•	#81-01826-A; 6660 Date Sampled: 02/01/					
2001 Crow Canyon Rd, Suite 100	Friesma	n Ka.	Date Received: 02/01/06					
Son Domon CA 04593	Client C	ontact: Marc A.	Hachey	02/01/06				
San Ramon, CA 94583	Client P.O.: Date Analyzed: 02/02/06-02							
Polynuclear Arc Extraction Method: SW3550C		rbons (PAHs / P alytical Method: SW827		Mode by GC/M		ler: 060201		
Lab ID	0602013-005A	0602013-006A	0602013-007A	0602013-008A				
Client ID	Shed 1a 2.5'	Shed 1b 2.5'	Barn 2 @ 5'	Barn 1 @ 5'				
Matrix	S	S	S	S				
DF	_ 1	2	1	1	S	w		
Compound		Conce	entration		mg/kg	ug/I		
Acenaphthene	ND	ND<0.010	ND	ND	0.005	NA		
Acenaphthylene	ND	ND<0.010	ND	ND	0.005	NA		
Anthracene	ND	ND<0.010	ND	ND	0.005	NA		
Benzo(a)anthracene	ND	ND<0.010	ND	ND	0.005	NA		
Benzo(a)pyrene	ND	ND<0.010	ND	ND	0.005	NA		
Benzo(b)fluoranthene	ND	ND<0.010	ND	ND	0.005	NA		
Benzo(g,h,i)perylene	ND	ND<0.010	ND	ND	0.005	NA		
Benzo(k)fluoranthene	ND	ND<0.010	ND	ND	0.005	NA		
Chrysene	0.0059	ND<0.010	ND	ND	0.005	NA		
Dibenzo(a,h)anthracene	ND	ND<0.010	ND	ND	0.005	NA		
Fluoranthene	0.0051	ND<0.010	ND	ND	0.005	NA		
Fluorene	ND	ND<0.010	ND	ND	0.005	NA		
Indeno (1,2,3-cd) pyrene	ND	ND<0.010	ND	ND	0.005	NA		
1-Methylnaphthalene	ND	ND<0.010	ND	ND	0.005	NA		
2-Methylnaphthalene	ND	ND<0.010	ND	ND	0.005	NA		
Naphthalene	ND	ND<0.010	ND	ND	0.005	NA		
Phenanthrene	ND	ND<0.010	ND	ND	0.005	NA		
Pyrene	0.0062	0.023	ND	ND	0.005	NA		
	Surr	ogate Recoveries	i (%)					
%SS1	112	100	104	103				
%SS2	116	118	86	85				
Comments								

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) estimated to be below this level based on our MDL study; r) results are reported on a dry weight basis.

___Angela Rydelius, Lab Manager

McCampbell An	alytical, In		e : 925-798-1620 Fax : 92: ccampbell.com E-mail: mair		юп	
Consolidated Engineering Labs.	Client l Friesma		#81-01826-A; 6660	02/01/06		
2001 Crow Canyon Rd, Suite 100	THESH	ui Ru.		Date Received:	02/01/06	
San Daman CA 04692	Client (Contact: M	arc A. Hachey	Date Extracted:	02/01/06	
San Ramon, CA 94583	Client I	2.0.:		Date Analyzed:	02/02/06-0	02/06/0
Polynuclear Are Extraction Method: SW3550C	-	arbons (PA nalytical Metho	Hs / PNAs) using SI & SW8270D	M Mode by GC/M	[S* Work Ord	er: 060201
Lab ID	0602013-009A					
Client ID	Barn 2 @ 10'				Reporting DF	
Matrix	S					
DF	1				S	W
Compound		· .	Concentration		mg/kg	ug/I
Acenaphthene	ND				0.005	NA
Acenaphthylene	ND				0.005	NA
Anthracene	ND				0.005	NA
Benzo(a)anthracene	ND				0.005	NA
Benzo(a)pyrene	ND				0.005	NA
Benzo(b)fluoranthene	ND				0.005	NA
Benzo(g,h,i)perylene	ND				0.005	NA
Benzo(k)fluoranthene	ND				0.005	NA
Chrysene	ND				0.005	NA
Dibenzo(a,h)anthracene	ND				0.005	NA
Fluoranthene	ND				0.005	NA
Fluorene	ND				0.005	NA
indeno (1,2,3-cd) pyrene	ND				0.005	NA
1-Methylnaphthalene	ND				0.005	NA
2-Methylnaphthalene	ND				0.005	NA
Naphthalene	ND				0.005	NA
Phenanthrene	ND				0.005	NA
Pyrene	ND				0.005	NA
· · · · · · · · · · · · · · · · · · ·	Sur	rogate Rec	overies (%)		_	
%SS1	114					
%SS2	118					
Comments						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) estimated to be below this level based on our MDL study; r) results are reported on a dry weight basis.

_Angela Rydelius, Lab Manager

McCampbell Ana			Website: www.mcc.	: 925-798-1620 Fax : 92: ampbell.com E-mail: mair	@mccampbell.co	m
Consolidated Engineering Labs.		roject ID: #81-0)1826-A; 6660	02/01/06		
2001 Crow Canyon Rd, Suite 100	Friesman	n Rd.		02/01/06		
······································	Client C	ontact: Marc A.	Hachey	Date Extracted:	02/01/06	
San Ramon, CA 94583	Client P	.0.:		Date Analyzed:	02/02/06	
Polynuclear Ar			PNAs) using ST	M Mode by GC/M	/IS	
Extraction Method: SW3510C		alytical Method: SW827			Work Orde	ar: 060201:
Lab ID	0602013-010D	0602013-011D				
Client ID	Stream 1	Stream 2			Reporting DF	
Matrix	w	w		_		
DF	1	1			s	W
Compound		Conc	entration		ug/kg	μg/L
Acenaphthene	ND	ND		· [NA	0.5
Acenaphthylene	ND	ND			NA	0.5
Anthracene	ND	ND	<u> </u>		NA	0.5
Benzo(a)anthracene	ND	ND			NA	0.5
Benzo(b)fluoranthene	ND	ND			NA	0.5
Benzo(k)fluoranthene	ND	ND			NA	0.5
Benzo(g,h,i)perylene	ND	ND			NA	0.5
Benzo(a)pyrene	ND	ND			NA	0.5
Chrysene	ND	ND		·····	NA	0.5
Dibenzo(a,h)anthracene	ND	ND			NA	0.5
Fluoranthene	ND	ND			NA	0.5
Fluorene	ND	ND			NA	0.5
Indeno (1,2,3-cd) pyrene	ND	ND			NA	0.5
1-Methylnaphthalene	ND	ND			NA	0.5
2-Methylnaphthalene	ND	ND			NA	0.5
Naphthalene	ND	ND			NA	0.5
Phenanthrene	ND	ND			NA	0.5
Pyrene	ND	ND			NA	0.5
· · · · · · · · · · · · · · · · · · ·	Surr	ogate Recoverie	es (%)			
%\$\$\$1	113	113				
%SS2	106	109				
Comments						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference.

___Angela Rydelius, Lab Manager

	McCampbell A	Analyti	cal, Inc.		Telep	hone : 925-798-162	, Pacheco, CA 9455 0 Fax : 925-798-1 E-mail: main@mcca	622		
Consolid	ated Engineering Labs	1.		ject ID: #	/81-01826-A; 66	60 Friesman	Date Sample	d: 02/01/0	6	
2001 Cro	w Canyon Rd, Suite 1	00	Rd.				Date Receive	ed: 02/01/0	6	
San Dam	on, CA 94583		Client Con	itact: Mar	c A. Hachey		Date Extract	ed: 02/01/0	6-02/0)2/06
Sali Raili	OII, CA 94383		Client P.O	.:			Date Analyz	ed: 02/01/0	6-02/()2/06
Extraction m	Gasoline I nethod: SW5030B	Range (C	,	•	sw8021B/8015Cm	oline with B I	FEX and MT	BE* Work O	rder: 06	502013
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	Field 1 4 Parts	s	ND	ND	ND	ND	ND	ND	1	96
002A	Field 2 4 Parts	S	ND	ND	ND	ND	ND	ND	1	85
003A	Field 3 4 Parts	s	ND	ND	ND	ND	ND	ND	1	90
004A	Field 4 4 Parts	s	ND	ND	ND	ND	ND	ND	1	94
005A	Shed 1a 2.5'	S	ND	ND	ND	ND	ND	ND	1	97
006A	Shed 1b 2.5'	s	ND	ND	ND	ND	ND	ND	1	91
007A	Barn 2 @ 5'	S ·	ND	ND	ND	ND	ND	ND	1	88
008A	Barn 1 @ 5'	s	ND	ND	ND	ND	ND	ND	1	80
009A	Barn 2 @ 10'	s	ND	ND	ND	ND	ND	ND	1	80
010A	Stream 1	w	ND	ND	ND	ND	ND	ND	1	95
011A	Stream 2	w	ND	ND	ND	ND	ND	ND	1	96
-	rting Limit for DF =1; means not detected at or	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/K

• water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

McC	ampbell Analy	tical, Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com Е-mail: main@mccampbell.com						
Consolidated Eng	gineering Labs.			#81-01826-A; 6660	Date Sampled	1: 02/01/06				
2001 Crow Canyo	on Rd, Suite 100	Friesman	Rd.		Date Receive	d: 02/01/06				
		Client Cor	ntact: Ma	rc A. Hachey	Date Extracte	ed: 02/01/06				
San Ramon, CA S	94583	Client P.C	D.:		Date Analyze	d: 02/02/06	/02/06			
Extraction method: SW3	050B		Lead by	y ICP* thods: 6010C	•	Work Or	der: 0602013			
Lab ID	Client ID	Matrix	Extracti	on	Lead	D	F % SS			
0602013-001A	Field 1 4 Parts	s	TŢĻĊ		12	1	102			
0602013-002A	Field 2 4 Parts	S	TTLC	!	12	1	95			
0602013-003A	Field 3 4 Parts	S	TTLC		11		99			
0602013-004A	Field 4 4 Parts	S	TTLC		11		97			
0602013-005A	Shed 1a 2.5'	S	TTLC		17		99			
0602013-006A	Shed 1b 2.5'	S	TTLC		18	1	1 89			
0602013-007A	Barn 2 @ 5'	S	TTLC		13	1	l 90			
0602013-008A	Barn 1 @ 5'	S	TTLC	:	7.5		93			
0602013-009A	Barn 2 @ 10'	s	TTLC		8.7		1 102			
							1			

Reporting Limit for DF =1;	W	TTLC	NA	mg/L
ND means not detected at or above the reporting limit	S	TTLC	5.0	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

DHS Certification No. 1644

__Angela Rydelius, Lab Manager

M	cCampbell Analytic	cal, Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Consolidated	Engineering Labs.	Client Pro Friesman		I-01826-A; 6660	Date Sampled: 02	./01/06				
2001 Crow C	anyon Rd, Suite 100	THOMAN			Date Received: 02/01/06					
San Ramon, (CA 94583	Client Co:	ntact: Marc.	A. Hachey	Date Extracted: 02	:/01/06				
		Client P.C).:		Date Analyzed: 02	./02/06				
Extraction method:	E200.8		Lead by ICF			Work Order:	0602013			
Lab ID	Client ID	Matrix	Extraction		DF	% SS				
0602013-010E	Stream 1	w	DISS.		1.6	1	N/A			
0602013-011E	Stream 2	w	DISS.		1.4	1	N/A			
			•							
				·						
					-					

Reporting Limit for DF =1; ND means not detected at or	w	DISS.	0.5	μg/L
above the reporting limit	S	TTLC	NA	mg/kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

DHS Certification No. 1644

__Angela Rydelius, Lab Manager

McC	ampbell Analy	tical, Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Consolidated Eng	gineering Labs.		D: #81-01826-A; 6660	Date Sampled: 02/01	/06				
2001 Crow Canyon Rd, Suite 100 San Ramon, CA 94583		Friesman Rd.		Date Received: 02/01/06 Date Extracted: 02/01/06					
		Client Contact:	Marc A. Hachey						
San Kamon, CA	94383	Client P.O.:		Date Analyzed: 02/01	/06-02/	07/06			
extraction method: SW3		+- · ·	ractable Hydrocarbons 1 methods: SW8015C		ork Order:	060201			
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS			
0602013-001A	Field 1 4 Parts	S	ND		1	98			
0602013-002A	Field 2 4 Parts	S	ND		1	99			
0602013-003A Field 3 4 Parts		s	ND		1	84			
					1				

S

S

s

ND

ND

350,m

Reportin	g Limit for DF =1;	w	50	μ	g∕L
0602013-011B	Stream 2	w	ND	1	100
0602013-010B	Stream 1	w	ND	1	110
0602013-009A	Barn 2 @ 10'	S	1.2,b	1	87
0602013-008A	Barn 1 @ 5'	S	10,g	1	84
0602013-007A	Barn 2 @ 5'	S	2.9 ,g	1	85

NTD means not detected at an		50	P8
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

DHS Certification No. 1644

0602013-004A

0602013-005A

0602013-006A

Field 4 4 Parts

Shed 1a 2.5'

Shed 1b 2.5

____Angela Rydelius, Lab Manager

1

1

10

85

85

111

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E300.0

W.O. Sample Matrix: Soil		QC Matrix: Soil							WorkOrder: 0602013			
EPA Method: E300.0 Analyte	E	xtraction	: CA Title	22	BatchID: 20133			Spiked Sample ID N/A				
	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%			
	mg/Kg mg/Kg		% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS/MSD	LCS/LCSD		
Nitrate as N	N/A	100	N/A	N/A	N/A	106	107	0.706	N/A	90 - 110		
%SS;	N/A	10	N/A	N/A	N/A	98	98	0	N/A	90 - 115		

BATCH 20133 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-001A	2/01/06	2/01/06	2/03/06 9:34 PM	0602013-002A	2/01/06	2/01/06	2/03/06 10:05 PM
0602013-003A	2/01/06	2/01/06	2/03/06 10:36 AM	0602013-004A	2/01/06	2/01/06	2/03/06 11:06 PM
0602013-005A	2/01/06	2/01/06	2/03/06 11:37 PM	0602013-006A	2/01/06	2/01/06	2/07/06 1:45 PM
0602013-007A	2/01/06	2/01/06	2/04/06 12:39 PM	0602013-008A	2/01/06	2/01/06	2/04/06 1:09 AM
06020 <u>13-009</u> A	2/01/06	2/01/06	2/04/06 1:40 AM				

MS = Matrix Splke; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method, or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QC SUMMARY REPORT FOR E300.1

W.O. Sample Matrix: Water		QC Mat	rix: Water	WorkOrder: 0602013						
EPA Method: E300.1	Ε	Extraction	: E300.1		BatchID: 20103			Spiked Sample ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Analyte	mg/L mg/L 9		% Rec.	% Rec. % Rec.		% RPD % Rec.		% RPD	MS / MSD	LCS / LCSD
Nitrate as N	N/A	1	N/A	N/A	N/A	101	101	0	N/A	85 - 115
%SS:	N/A	0.10	N/A	N/A	N/A	93	93	0	N/A	90 - 115

BATCH 20103 SUMMARY Date Extracted Date Analyzed Sample ID Date Sampled Date Analyzed Sample ID Date Sampled Date Extracted 2/01/06 11:52 AM 2/01/06 11:21 PM 0602013-011E 2/01/06 2/01/06 0602013-010E 2/01/06 2/01/06

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or % RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0602013

EPA Method: SW8260B	Ė	xtraction	SW5030	в	BatchID: 20077			Spiked Sample ID: 0601417-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
tert-Amyl methyl ether (TAME)	ND	0.050	110	106	4.30	118	114	3.14	70 - 130	70 - 130	
Benzene	ND	0.050	113	108	4.67	115	119	3.70	70 - 130	70 - 130	
t-Butyl alcohol (TBA)	ND	0.25	89.8	84.2	6.45	83.3	81	2.75	70 - 130	70 - 130	
Chlorobenzene	ND	0.050	114	112	1.97	119	118	0.718	70 - 130	70 - 130	
1,2-Dibromoethane (EDB)	ND	0.050	102	99.8	2.54	111	105	5.54	70 - 130	70 - 130	
1,2-Dichloroethane (1,2-DCA)	ND	0.050	112	108	4.28	120	116	3.52	70 - 130	70 - 130	
1,1-Dichloroethene	ND	0.050	116	117	0.393	119	120	0.894	70 - 130	70 - 130	
Diisopropyl ether (DIPE)	ND	0.050	118	113	3.66	116	120	3.05	70 - 130	70 - 130	
Ethyl tert-butyl ether (ETBE)	ND	0.050	109	106	2.52	116	112	3.92	70 - 130	70 - 130	
Methyl-t-butyl ether (MTBE)	ND	0.050	108	105	2.51	115	111	3.51	70 - 130	70 - 130	
Toluene	ND	0.050	110	106	3.35	118	111	5.59	70 - 130	70 - 130	
Trichloroethene	ND	0.050	91.1	87.2	4.46	103	99.1	3.53	70 - 130	70 - 130	
%SS1:	100	0.050	101	100	0.112	103	104	0.470	70 - 130	70 - 130	
%SS2:	107	0.050	102	104	1.20	100	98	1.85	70 - 130	70 - 130	
%SS3:	111	0.050	107	108	1.30	104	106	1.35	70 - 130	70 - 130	

BATCH 20077 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-001A	2/01/06	2/01/06	2/02/06 4:54 PM	0602013-002A	2/01/06	2/01/06	2/02/06 5:37 PM
0602013-003A	2/01/06	2/01/06	2/02/06 6:20 PM	0602013-004A	2/01/06	2/01/06	2/02/06 7:03 PM
0602013-005A	2/01/06	2/01/06	2/02/06 7:46 PM	0602013-006A	2/01/06	2/01/06	2/03/06 12:03 AM
0602013-007A	2/01/06	2/01/06	2/03/06 12:46 AM	0602013-008A	2/01/06	2/01/06	2/03/06 1:28 AM
0602013-009A	2/01/06	2/01/06	2/03/06 2:11 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8021B/8015Cm

EPA Method: SW8021B/	8015Cm E	xtraction	SW5030	B	BatchID: 20124			Spiked Sample ID: 0601473-007A			
	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
Analyte	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD	
TPH(btex) [£]	ND	60	102	105	2.63	92.1	93.4	1.34	70 - 130	70 - 130	
мтве	ND	10	108	106	1.79	93.9	93.1	0.850	70 - 130	70 - 130	
Benzene	ND	10	98.3	94.4	4.07	88.4	94.1	6.21	70 - 130	70 - 130	
Toluene	ND	10	96.3	94	2.40	86.6	92.8	6.99	70 - 130	70 - 130	
Ethylbenzene	ND	10	98.7	96.8	1.91	93.7	98.3	4.85	70 - 130	70 - 130	
Xylenes	ND	30	. 100	99.7	0.334	90.3	91	0.735	70 - 130	70 - 130	
%SS:	98	10	99	96	2.69	89	96	8.49	70 - 130	70 - 130	

BATCH 20124 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-010A	2/01/06	5 2/02/06	2/02/06 12:07 AM	0602013-011A	2/01/06	2/02/06	2/02/06 12:37 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fail outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil				QC Mat	rix: Soil	WorkOrder: 0602013					
EPA Method: SW8021B/8	015Cm I	Extraction: SW5030B			Batc	hID: 20125	}	Spiked Sample ID: 0601475-004A			
Analyte		Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
/ maryto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	0.60	106	105	0.591	103	104	1.42	70 - 130	70 - 130	
MTBE	ND	0.10	103	103	0	102	101	1.21	70 - 130	70 - 130	
Benzene	ND	0.10	94.3	93.2	1.25	91.9	90.4	1.64	70 - 130	70 - 130	
Toluene	ND	0.10	93.3	91.9	1.51	90.2	89.2	1.10	70 - 130	70 - 130	
Ethylbenzene	ND	0.10	96.3	95.5	0.773	92.8	92.2	0.614	70 - 130	70 - 130	
Xylenes	ND	0.30	99	95.3	3.77	94.7	94.3	0.353	70 - 130	70 - 130	
%SS:	86	0.10	100	103	2.96	100	99	1.01	70 - 130	70 - 130	

BATCH 20125 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-001A	2/01/06	2/01/06	2/01/06 6:58 PM	0602013-002A	2/01/06	2/01/06	2/01/06 7:32 PM
0602013-003A	2/01/06	2/01/06	2/01/06 8:05 PM	0602013-004A	2/01/06	2/01/06	2/01/06 8:39 PM
0602013-005A	2/01/06	2/01/06	2/01/06 9:13 PM	0602013-006A	2/01/06	2/01/06	2/01/06 9:47 PM
0602013-007A	2/01/06	2/01/06	2/01/06 10:20 PM	0602013-008A	2/01/06	2/01/06	2/01/06 10:54 PM
0602013-009A	2/01/06	2/01/06	2/01/06 11:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS Certification No. 1644

McCampbell Analytical, Inc.

110 2nd Avenne South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0602013

EPA Method: SW8260B	E	xtraction:	SW5030	в	BatchID: 20129			Spiked Sample ID: 0602043-002B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
tert-Amyl methyl ether (TAME)	ND	10	104	97.7	6.49	102	99.4	2.30	70 - 130	70 - 130	
Benzene	ND	10	109	105	3.92	107	107	0	70 - 130	70 - 130	
t-Butyl alcohol (TBA)	ND	50	91.4	93.4	2.10	95	89.1	6.41	70 - 130	70 - 130	
Chlorobenzene	ND	10	112	107	4.25	110	109	1.00	70 - 130	70 - 130	
1,2-Dibromoethane (EDB)	ND	10	97.6	92.4	5.53	98.2	96.4	1.79	70 - 130	70 - 130	
1,2-Dichloroethane (1,2-DCA)	ND	10	106	102	3.57	105	103	1.48	70 - 130	70 - 130	
1,1-Dichloroethene	ND	10	115	115	0	116	118	1.60	70 - 130	70 - 130	
Diisopropyl ether (DIPE)	ND	10	112	107	4.03	109	108	0.941	70 - 130	70 - 130	
Ethyl tert-butyl ether (ETBE)	ND	10	103	98.1	5.08	101	99.4	1.37	70 - 130	70 - 130	
Methyl-t-butyl ether (MTBE)	ND	10	107	103	4.19	101	98.8	2.11	70 - 130	70 - 130	
Toluene	ND	10	104	100	3.58	104	104	0	70 - 130	70 - 130	
Trichloroethene	ND	10	91	88.3	2.96	87.9	86.2	1.92	70 - 130	70 - 130	
%SS1:	103	10	101	101	0	100	99	0.840	70 - 130	70 - 130	
%SS2:	0	10	100	101	0.958	102	103	0.964	70 - 130	70 - 130	
%SS3:	0	10	104	103	0.888	104	103	0.909	70 - 130	70 - 130	

NONE

BATCH 20129 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-010C	2/01/06	2/01/06	2/01/06 11:37 PM	0602013-011C	2/01/06	2/02/06	2/02/06 12:22 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8270D

WorkOrder: 0602013 QC Matrix: Soil W.O. Sample Matrix: Soil Extraction: SW3550C BatchiD: 20132 Spiked Sample ID: 0602013-007A EPA Method: SW8270D MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) MS Sample Spiked Analyte % Rec. MS / MSD LCS/LCSD % RPD % Rec. % RPD % Rec. % Rec. mg/kg mg/kg 30 - 130 30 - 130 80.7 81.6 1.19 87 81.7 6.20 Benzo(a)pyrene ND 0.10 0 30 - 130 30 - 130 2.71 113 113 Chrysene ND 0.10 113 116 30 - 130ND 0.10 94.5 98.7 4.36 94.6 88.7 6.37 30 - 130 1-Methylnaphthalene 71.6 1.83 30 - 130 30 - 130 2-Methylnaphthalene ND 0.10 72.2 73.7 2.08 72.9 0.190 30 - 13030 - 130 0.10 89 99.8 11.5 66.8 66.9 Phenanthrene ND 0.299 30 - 130 30 - 130 0.10 106 101 5.46 96.1 96.3 Ругепе ND 30 - 130 %SS1: 104 0.050 110 110 0 106 106 0 30 - 130 30 - 130 %SS2: 86 0.050 92 91 1.47 88 89 1.93 30 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 20132 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-001A	2/01/06	2/01/06	2/02/06 6:28 PM	0602013-002A	2/01/06	2/01/06	2/03/06 1:01 AM
0602013-003A	2/01/06	2/01/06	2/02/06 7:19 AM	0602013-004A	2/01/06	2/01/06	2/02/06 8:41 AM
0602013-005A	2/01/06	2/01/06	2/02/06 10:02 AM	0602013-006A	2/01/06	2/01/06	2/06/06 5:14 PM
0602013-007A	2/01/06	2/01/06	2/02/06 8:40 AM	0602013-008A	2/01/06	2/01/06	2/02/06 10:00 AM
0602013-009A	2/01/06	2/01/06	2/02/06 7:49 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water				WorkOrder: 0602013							
EPA Method: SW8015C	E	xtraction	SW3510	c	BatchID: 20096			Spiked Sample ID: N/A			
Analyte	Sample	Spiked µg/L	MS % Rec.	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
Analyte	µg/L_			% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	104	103	0.930	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	98	98	0	N/A	70 - 130	

			BATCH 2009	<u>6 SUMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-010B	2/01/06	2/01/06	2/02/06 11:31 PM	0602013-011B	2/01/06	2/01/06	2/07/06 11:39 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8270D

W.O. Sample Matrix: Water				QC Mat		WorkOrder: 0602013					
EPA Method: SW8270D	E	xtraction	: SW3510	С	BatchID: 20134			Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
Analyte	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
Benzo(a)pyrene	N/A	10	N/A	N/A	N/A	85.4	85.7	0.281	N/A	30 - 130	
Chrysene	N/A	10	N/A	N/A	N/A	84.8	84.9	0.193	N/A	30 - 130	
1-Methyinaphthalene	N/A	10	N/A	N/A	N/A	91.8	89.3	2.75	N/A	30 - 130	
2-Methyinaphthaiene	N/A	10	N/A	N/A	N/A	67.2	66.4	1.19	N/A	30 - 130	
Phenanthrene	N/A	10	N/A	N/A	N/A	82.4	80.6	2.21	N/A	30 - 130	
Pyrene	N/A	10	N/A	N/A	N/A	96.6	102	5.16	N/A	30 - 130	
%SS1:	N/A	5	N/A	N/A	N/A	122	117	4.23	N/A	30 - 130	
%SS2:	N/A	5	N/A	N/A	N/A	125	117	6.21	N/A	30 - 130	

BATCH 20134 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-010D	2/01/06	5 2/01/06	2/02/06 1:58 AM	0602013-011D	2/01/06	2/01/06	2/02/06 3:17 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fail outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

NONE

QC SUMMARY REPORT FOR 6010C

EPA Method: 6010C		Extract	ion: SW	3050B		Batch	D: 20074		Spiked Sample ID: 0601413-008A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	. % RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSI	
Lead	33	50	94.6	87	4.79	10	93.4	92.3	1.10	75 - 125	80 - 120	
%SS:	99	250	103	104	0.772	250	94	96	2.52	70 - 130	70 - 130	

BATCH 20074 SUMMARY

Sample ID	Date Sampled	Date	Extracted	Date Analyzed	Sample ID	Date Sampled	Date	Extracted	Date Analyzed
0602013-001A	2/0	1/06	2/01/06	2/02/06 9:18 AM	0602013-002A	2/0	1/06	2/01/06	2/02/06 9:21 AM
0602013-003A	2/0	1/06	2/01/06	2/02/06 9:23 AM	0602013-004A	2/0	1/06	2/01/06	2/02/06 9:25 AM
0602013-005A	2/0	1/06	2/01/06	2/02/06 9:27 AM	0602013-006A	2/0	1/06	2/01/06	2/02/06 9:29 AM
0602013-007A	2/0	1/06	2/01/06	2/02/06 9:31 AM	0602013-008A	2/0	1/06	2/01/06	2/02/06 9:34 AM
0602013-009A	2/0	1/06	2/01/06	2/02/06 9:36 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water				QC Mat	WorkOrder: 0602013										
EPA Method: E200.8	E	Extraction	: E200.8		Batc	hID: 20123	Spiked Sample ID: 0602007-001A								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD) Acceptance Criteria (%)						
/ and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD					
Lead	ND	10	95.3	98.6	3.38	94.5	92.6	2.00	75 - 125	85 - 115					
%SS:	106	750	107	107	0	97.6	95.3	2.38	70 - 130	70 - 130					

BATCH 20123 SUMMARY

Sample iD	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-010E	2/01/06	5 2/01/06	2/02/06 9:53 AM	0602013-011E	2/01/06	2/01/06	2/02/06 10:25 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil				QC Mat	rix: Soil	WorkOrder: 0602013								
EPA Method: SW8015C	E	Extraction:	: SW3550	с	Batc	hID: 20051		Spiked Sample ID: 0601389-002B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	SD Acceptance Criteria (%)					
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSE				
TPH(d)	ND	20	113	112	0.937	109	109	0	70 - 130	70 - 130				
%SS:	104	50	101	101	0	101	102	0.590	70 - 130	70 - 130				

BATCH 20051 SUMMARY Date Extracted Date Analyzed Date Extracted Date Sampled Sample ID Date Sampled Date Analyzed Sample ID 2/01/06 9:02 PM 0602013-002A 2/01/06 2/01/06 2/01/06 2/01/06 7:54 PM 2/01/06 0602013-001A 2/01/06 2/01/06 2/02/06 11:31 PM 0602013-004A 2/03/06 7:14 PM 0602013-003A 2/01/06 2/01/06 2/06/06 9:03 PM 2/01/06 2/01/06 0602013-006A 2/01/06 2/01/06 2/03/06 12:40 AM 0602013-005A

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QC SUMMARY REPORT FOR SW8015C

mple ID: 060 Acceptance	2013-005A e Criteria (%)
Acceptance	3 Criteria (%)
MS / MSD	LCS / LCSD
70 - 130	0 - 0
N/A	70 - 130
70 - 130	0 - 0
N/A	70 - 130
	N/A 70 - 130 N/A

			DATCH 2013				
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602013-007A	2/01/06	2/01/06	2/03/06 1:48 AM	0602013-008A	2/01/06	2/01/06	2/02/06 10:23 PM
0602013-009A	2/01/06	2/01/06	2/07/06 1:37 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

McCAMPBELL ANALYTICAL, INC. 110 2" AVENUE SOUTH, #07							CHAIN OF CUSTODY RECORD																										
	· 1	10 2 rd AV PACHEC	VENUE SO	DUTH, 553.55	#D7 60	•								T	UR	N /	AR	OU	INE) T	M	E		Ç		- 1			Ģ)			
	aite : <u>WWW.m.C</u>	an shell.												en	E D		. t	2 0 2	~ 1					RUS		24			48 5			72 H	R S DAY
	<u>e: (925) 798</u>	-1620				ax: (225)	798	-16	22			╋	EU	FR	equ		17 (_			No		v m		n (D	·w)		Vo		
Report To: MM. Company: C.E.	<u>s h.</u>			NH Ta		WY Y	E	~~~	<u>م او</u>	<u> </u>			+		T	Ť		_	-1			Re	que	pt T	1	1	—		.			er	Comments
Company: CC	1 ,												-	<u>8</u> 20			E/BAF)				l Se			-	[Filter
	E-Mail :											8			5				3		i	08		1	2				i i		Samples		
Tele: (915)31				Fax: ()								ŝ	â		8	÷	3		Ĩ	[Ŷ	13			3	662		ł			for Metals analysis:
Project #: 91 -0				Projec	t Nai	iae :	10	Fe	CS.	<u>^</u>	12	<u>, 6 -</u>		ŝ	2.18		3	(11)	Ň	Î	2	Į	11	8		NA	1 E	010					(Yes) No
Project Lacation:	Lumine	L SAL	V and	ia										ЗI	3	Ë	ĭ	tone.	et (H		۲, ۲,	Ĵ	I	ŝ	8	Ā		Ĩ.	1	ŧ	1		\sim
Sampler Signatur	i C			T		T				Ň	8°78	ĪOD	H)	친	- Ofi & Greek (1664 / 5520	m Hydrocarboas (418.1)		2	ŏ	١¥	0	Š	S.	١Ę,	12	100	ÌÈ				ľ
	SAM	LING				TAN	RIX				RVE	D		DNF	B	ð	Hyé	÷.	Ĩ	ŝ	Ē	1	Į.	5	Į.	١Ś.			Ι,				
SAMPLE ID (Floid Point Name)	LOCATION	Date	Time	# Combiners	Type Const	Water		Stadge	Other	lct.	BC	ENO,		XINE/INIX	MTBE/BTEX ONLY (EFA 462/5921)	TPH m Direct Mouve OH (B015)	Total Principum	Total Petrologu	EPA 502.2 / 601 / 8010 / 8021 (RVOCs)	EPA 565/ 608 / 0001 (CI Pestis	EPA 608 / 3062 PCB's ONLY; Araclars / Congressers	EPA 507 / 8141 (NP Penticidae)	EPA 515 / 8151 (Acidic Ci Herbicides)	EPA 534.2 / 634 / 8366 (VOCI)	EPA 525.2 / 625 / 8279 (SVOC)	EPA 8270 SIM (SILA (PAN) PNAS)	CAME 17 Marcals (200.7 / 200.8 / 5019 / 6020)	LUPT 5 Metale (200.7/200.3/5010/6020)	Level (200.) 200.5 / 4010 / 6020)	Vitrate			
Freis 1 Aprilis	Freed	2/1/100		4		Π	Z			Ζ			Ţ	/		7								17		T			Ē	Π	\Box		
Acres 1. Advers	Fierd	Vila		٩									ľ			Ш								\mathbf{N}						Π			
FICH & Grats	Freid	Vila		4			Λ			Ζ																				Π	Ι	Ι	
Exer 1 4 40005	Freeze	1/1/as		K			1			[/]														II		Π				Π			
cher la 2.5'	Shed			<u>\</u>			Δ			\square																[]							
She 21 + 25'	she d						Δ			\square			2																\prod	Π	Γ	Ι	
Rock ZALS'	BALLS	1		<u>l</u>		Ц	4			\square				Π												IL			1	\Box			
BATLE I PL S	BARN	$\boldsymbol{\boldsymbol{\backslash}}$		$ \rangle$			Λ			\square				\square																\square			
Both 2 Auro'	Ball			I I			/								ŀ									Π		\prod			\prod	Π	Γ		
Steems	UPCHOWS			9		Ζ				\square		Δ	Δ											Ш		Π			\prod	Π	Γ	Γ	
Stron 2	Deve Street	. /		<u>k</u>		Δ				VI	\mathbb{Z}		$\langle $	\prod		IJ								Π					$\prod $	Π			
				[ľ																								Γ	Γ	Γ	
				1				Τ																					\Box		Γ	T	
													Δ																				
Relin guisher By:	71	Data:	Time: 0 /. 4	Re of	ilved I)	،	In	l	\	10	J	仄	\Box	GO	DOD (CON				Ζ,	/							COI	мм 7/3	ents C	:: او ط	820	60
Jein quishe d'By:		Date:	lime:	Rea	i ve d i	By:	1							dei Api	CHL	ori PRL	INA1 ATE	niii) Coi	IN È NTA		RS_	$\overline{\mathbf{v}}$	[+	40	۴۷	,		
Pella quishe d By:		Date:	Time:	Rea	i ve di l	by:												VC	B	0	4 G		ETAI S	Ý	01	IR							

McCampbell Analytical, Inc.

110 Second Avenue South, #D7

CHAIN-OF-CUSTODY RECORD

1 of 2 Page

Ć.

Pacheco, CA 94553-5560

(925) 798-1620

WorkOrder: 0602013

ClientID: CELR EDF: NO

Report to:						Bill to:					Requested TAT:			5 days			
Marc A. Hachey TEL: (925) 314-7100				Accounts Payable									•				
Consolidated Engineering Labs.FAX:2001 Crow Canyon Rd, Suite 100ProjectSan Ramon, CA 94583PO:			925-855-7140 ctNo: #81-01826-A; 6660 Friesman Rd.			Consolidated Engineering Labs. 2001 Crow Canyon Rd, Suite 100 San Ramon, CA 94583					Date Received: Date Printed:			02/01/2006 02/01/2006			
						Requested Tests (See leg					(See leg	gend below)					
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0602013-001	Field 1 4 Parts		Soil	2/1/06		Α		A		A		A		A		<u> </u>	A
0602013-002	Field 2 4 Parts		Soil	2/1/06		Α		Α		A		A		A		1	Α
0602013-003	Field 3 4 Parts		Soil	2/1/06		Α		A		A		A		A	-	<u> </u>	A
0602013-004	Field 4 4 Parts		Soil	2/1/06		Α		A		A		A		A		<u>† </u>	A
0602013-005	Shed 1a 2.5'		Soil	2/1/06		A		A		A		A		A			A
0602013-006	Shed 1b 2.5'		Soil	2/1/06		Α		A	•	A		A		A			A
0602013-007	Barn 2 @ 5'		Soil	2/1/06		Α		A		A		A		A		t	A
0602013-008	Barn 1 @ 5'		Soil	2/1/06		A		A	1	A		A	1	A			A
0602013-009	Barn 2 @ 10'		Soil	2/1/06		Α		A		A	1	A	1	A	1	1	A
0602013-010	Stream 1		Water	2/1/06			E		c	1	D		A		E	E	
0602013-011	Stream 2		Water	2/1/06			E		С		D	1	A	1	E	E	

Test Legend:

1 300_1_S	2 300_1_W	3 8260B_S	4 8260B_W	5 8270D-PNA_S
6 8270D-PNA_W	7 G-MBTEX_S	8 G-MBTEX_W	9 PB_S	10 PBMS_DISS
11 PRDISSOLVED	12 TPH(D)_S			

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

ATTACHMENT D

Workplan

REVISED WORKPLAN FOR ADDITIONAL SITE INVESTIGATION ACTIVITIES

Friesman Ranch Property 1600 Friesman Road Livermore, California

PURPOSE

This Revised Workplan outlines activities and procedures necessary to complete the additional site investigation recommended by SCS Engineers (SCS) for the Friesman Ranch Property located at 1600 Friesman Road, Livermore, California (the "Property") A Site Location Map is provided as Figure 1 and a Site Plan is Provided as Figure 2. A description of the proposed work is provided below:

Task 1 - Groundwater Monitoring: SCS recommends completion of a round of monitoring for all 8 site groundwater monitoring wells (KMW-1 through KMW-8) and for the on-site groundwater supply well (3S/1E 2P3) with analysis for Total Petroleum Hydrocarbons as gasoline (TPH-g), TPH as diesel (TPH-d), TPH as stoddard solvent (TPH-ss) using EPA Method 8015C, for volatile organic compounds (VOCs) [including benzene, toluene, ethylbenzene, xylenes (BTEX), methyl tertiary butyl ether (MTBE), 1,2-dichloroethane, ethylene dibromide, and chlorinated solvents] using EPA Method 8260B, and for total dissolved lead.

Task 2 – Soil Vapor Survey: SCS recommends collection and analysis of up to 30 additional soil vapor samples from the Property in the following four areas: 1) former above-ground heating oil tank and vicinity including areas above the known plume of impacted groundwater, 2) former paint and thinner storage areas in and around Barn No. 1, 3) in the vicinity of the former above-ground fuel storage tanks near Barn No. 4, and 4) within Barn No. 2. The proposed additional soil vapor sample locations are shown on Figure 3. Twenty-two initial soil vapor locations are proposed. Up to 8 additional "stop-out" soil vapor locations may be sampled based on the initial results. Soil vapor samples should be analyzed for VOCs using EPA Method 8260 or equivalent including analysis for benzene using an RL that is less than 85 $\mu g/m^3$.

Task 3 – Soil Borings/Temporary Groundwater Monitoring Wells: In accordance with your August 23, 2006 request, three direct-push soil borings/temporary groundwater monitoring wells will be drilled and sampled from the following areas: 1) on the eastern side of Arroyo De Las Positas to evaluate the potential for a gasoline source upgradient of previous boring KB-18, 2) immediately west of Barn No. 1 to evaluate the potential for stoddard solvent in groundwater, and 3) immediately west of Barn No. 2 to evaluate soil and groundwater conditions at this location. The proposed boring locations are shown on Figure 3.

Task 4 – Additional Surface Soil Sample Downwind of the Former Incinerator In an effort to more fully evaluate the potential impacts from the incinerator SCS recommends collection of up to 15 additional soil samples in the vicinity and downwind (easterly) of the former incinerator with analysis for metals including lead, cadmium, chromium, nickel, zinc, arsenic, and mercury. The proposed surface soil sampling locations for the incinerator are shown on Figure 4.

SCS Engineers – October 19, 2006 Page 1 of 5

TASK 1 - GROUNDWATER MONITORING

SCS recommends that the existing on-site groundwater monitoring wells be purged and sampled using low-flow sampling protocols, which have previously been used at the site. A description of the proposed procedures is provided below:

Monitoring Wells - Water Levels Measurements, Purging, and Sampling

Prior to purging, the monitoring wells will be opened and ventilated for a minimum of 0.5-hour, and the depth to water will be measured in the wells to the nearest 0.01-foot using a clean, calibrated electronic water-level indicator. Water-level data will be used to calculate the required purge volumes for sampling. Dissolved oxygen (DO) will be measured in each of the wells using a down-hole probe after measuring the depth to groundwater.

All site monitoring wells will be purged and sampled using a peristaltic pump and low-flow methodology. Dedicated 21-foot long sections of 0.25-inch inner diameter polyethylene tubing have previously been installed in site wells. Each well will be initially purged until one System Volume (SV) is removed from each well. Purging will then continue at an approximate rate of 200 milliliters per minute. The depth to water will be measured during purging to ensure that well drawdown is less than four inches. Aquifer parameters (pH, temperature, and electrical conductivity) will be measured to evaluate whether the water from each well has stabilized prior to sampling. Notations will also be made as to odor and color of the water being purged.

After each well is purged, groundwater samples will be collected using the peristaltic pump. Groundwater samples will be placed into appropriate pre-cleaned containers provided by the laboratory. The samples will be stored in an ice chest packed with loose water-based ice maintained at 4 +/- 2 degrees Celsius (°C) for delivery to the laboratory. Samples will be handled in accordance with standard chain-of-custody procedures.

Purge and decontamination water will be placed in sealed and labeled 55-gallon drums and stored on-site pending analytical results. Based on analytical results, purge water will be appropriately handled at a later date.

Water Supply Well - Water Levels Measurements and Sampling

The on-site water supply well currently supplies potable water for the on-site houses and livestock. As such, the well will be sampled using the existing pump without purging. Samples will be collected from the closest spigot to the well. Prior to sampling, the depth to water will be measured in the water supply well via the existing access port on the top of the well using a clean, calibrated electronic water-level indicator. Aquifer parameters (pH, temperature, and electrical conductivity) will be measured prior to sample collection. Notations will also be made as to odor and color of the water. Groundwater samples will be handled as described above for monitoring wells.

Non-dedicated groundwater monitoring equipment, (i.e., water level meters, measuring cup, etc.) will be decontaminated prior to measuring and sampling and between wells using a biodegradable detergent (Liquinox) and three stage distilled water wash and rinse.

Groundwater Sample Analysis

Groundwater samples will be analyzed for TPH-g, TPH-d, and TPH-ss using EPA Method 8015C, for VOCs (including BTEX, MTBE, 1,2-dichloroethane, ethylene dibromide, and chlorinated solvents) using EPA Method 8260B, and for total dissolved lead using an appropriate EPA Method. Samples for lead analysis will be filtered as necessary to obtain dissolved metals results. All analyses will be conducted at state-certified laboratories.

In addition, a trip blank will accompany the sample shipment(s) as a check for contamination due to handling, transport, contact with other samples during storage, or lab error. A VOC set filled with organic-free water is obtained from a lab. This set is taken to the field, labeled with company name, date, and cooler ID, and stored with the other samples until they are delivered for analysis to the laboratory. Trip blanks are not opened in the field.

TASK 2 – SOIL VAPOR SURVEY

Soil vapor sample equipment will consist of hollow steel probes, which will either be "pushed" into subsurface soil using a hand-held roto-hammer or a truck-mounted hydraulic sampling rig (e.g., Geoprobe rig). The vapor sampling probes will consist of hollow steel rods fitted with ported drive points and chemical resistant tubing (e.g., Nylaflow) that are driven to the sampling depth (approximately 5 feet below ground surface). Soil vapor samples will then be recovered by slightly retracting the probe and exposing sampling ports at the drive point. Vapor samples will be extracted with a syringe via Nylaflow tubing attached to the drive tip. Prior to sampling, the tubing will be purged to remove ambient air from the sampling system and to ensure that the collected soil vapor sample. In addition, leak testing will be performed in accordance with Regional Water Quality Control Board guidance. Following completion of vapor sampling, the probes will be removed and the holes will be sealed with grout and patched at the surface with concrete or asphalt as appropriate. Prior to subsurface sampling appropriate permits will be obtained from the Zone 7 Water Agency (as necessary).

Soil vapor samples will be analyzed in the field for VOCs using EPA Method 8260B by a statecertified, on-site mobile laboratory. Duplicate samples, calibration standards, and sample blanks will be collected to provide Quality Assurance/Quality Control (QA/QC).

Analytical data from the proposed soil vapor sampling locations shown on Figure 3 will be reviewed in the field and additional, "step-out", locations will sampled and analyzed if significant VOCs (e.g., concentrations exceeding residential ESLs) are detected at the initial locations. "Step-out" sampling locations will generally be located 10 to 20 feet from initial locations and will be chosen the field based on accessibility, safety, and professional judgement. A maximum of 8 step out soil vapor sampling locations are envisioned as part of the proposed investigation. As such, a maximum of 30 soil vapor samples are proposed to be collected and analyzed as part this investigation.

TASK 3 – SOIL BORINGS/TEMPORARY GROUNDWATER MONITORING WELLS

The three proposed soil borings/temporary groundwater monitoring wells will be drilled and sampled using a direct push sampling rig. At each location continuous soil cores will be obtained by hydraulically hammering 2.25-inch diameter, four-foot long hollow steel drive rods containing acetate sample sleeves to at least 5 feet into first groundwater (anticipated total depth of 20 to 25 feet bgs). Upon retrieval, the acetate sleeve containing the soil core will be removed from the hollow drive rod and an approximately one foot long portion of the sleeve will be cut from the desired sample depth. Soil samples will be collected for selective analysis at depths of 2 feet bgs and at approximately 5 foot intervals thereafter to the total depth of the boring. Prior to subsurface sampling appropriate permits will be obtained from the Zone 7 Water Agency (as necessary).

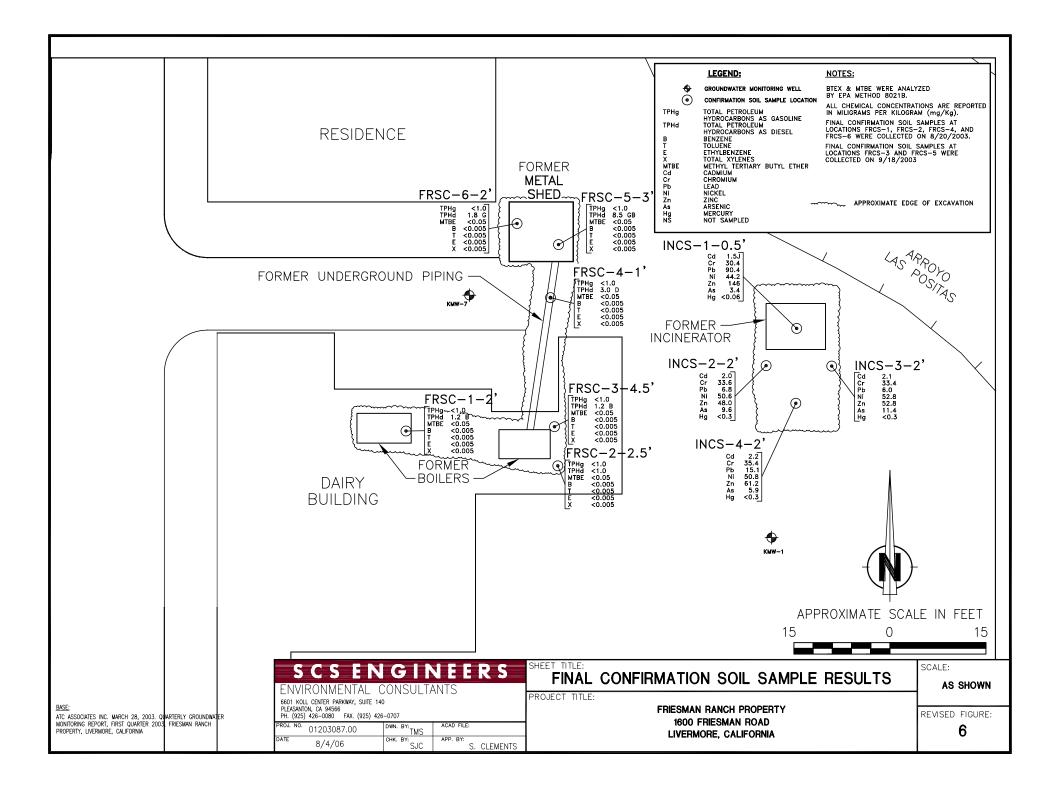
The remainder of the acetate sleeves will be used for soil logging purposes using the Unified Soil Classification System and for VOC head space analysis. For the head space analysis, Ziploc plastic bags will be partially filled with soil from each sample location. The sealed plastic bags will be allowed to sit approximately 30 minutes to allow for volatilization before field measurements will be collected using a MiniRAE 2000 Photo-Ionization Detector (PID) calibrated to 100 parts per million Isobutylene. Field measurements will be recorded on the boring logs.

Immediately following soil sample collection, both ends of the cut acetate sleeve will be covered with Teflon sheets, capped with plastic end caps, and taped with polyethylene tape. A label noting the date of collection, sample number, depth, and project number will be affixed to each collected sample. Soil samples will be placed in a chilled cooler for later transport to a state certified analytical laboratory. Soil samples will be selectively analyzed for TPH-g, TPH-d, and TPH-ss using EPA Method 8015C, for VOCs (including BTEX, MTBE, 1,2-dichloroethane, ethylene dibromide, and chlorinated solvents) using EPA Method 8260B. At this time analysis of up to three soil samples per boring is anticipated. However, this may be modified based on field observations. Soil samples will be tracked from the point of collection through the laboratory using proper chain-of-custody protocol.

After soil borings have reached their desired depth as described above a temporary well screen and casing will be installed within each boring. Well casings will consist of 0.5 inch diameter by four foot long sections of Schedule 40 PVC screen with 0.010 inch factory cut slots attached to blank PVC casing extending to ground surface. A threaded end cap will be attached to the bottom of each screen. Following casing installation each well will be given approximately a half hour (or possibly longer depending on site conditions) for water level stabilization. Prior to groundwater sample collection a water level measurement will be recorded using an electric water level meter. Groundwater samples will be collected in pre-cleaned containers supplied by the laboratory using a stainless steel (or equivalent) bailer or peristaltic pump. Groundwater samples will be analyzed for TPH-g, TPH-d, and TPH-ss using EPA Method 8015C, for VOCs (including BTEX, MTBE, 1,2-dichloroethane, ethylene dibromide, and chlorinated solvents) using EPA Method 8260B, and for total dissolved lead. All non-dedicated sampling equipment, (i.e., drive rods, water level meter, bailer, etc.) will be decontaminated initially and between each sample using a biodegradable detergent (Liquinox) and standard three stage distilled water wash and rinse. New Nitrile gloves were worn for each boring/sample.

TASK 4 – INCINERATOR AREA SOIL SAMPLING AND ANALYSIS

Incinerator area soil samples will be collected from unpaved areas as shown on Figure 4. The samples will be collected from surface soils (0 to 6-inches deep) using a hand trowel and placed into pre-cleaned, laboratory supplied glass jars. The hand trowel will be decontaminated prior to use and between locations using biodegradable detergent (Liquinox), brush, and three stage distilled water wash and rinse.


Following collection each sample will be immediately logged and labeled and placed in a chilled cooler for later transport to a state-certified analytical laboratory. The samples will be tracked from the point of collection through the laboratory using standard chain-of-custody procedures. Incinerator area soil samples will be analyzed for total lead, cadmium, chromium, nickel, zinc, arsenic, and mercury using appropriate EPA Methods.

REPORTING

Following receipt of analytical results a summary report will be prepared that details results of the additional site investigation activities. The report will included a summary of field activities, figures showing sampling locations, tabulated data summary, analytical reports, and conclusions and recommendations.

ATTACHMENT E

Revised Figure 6 From SCS's November 21, 2003 Report

ATTACHMENT F

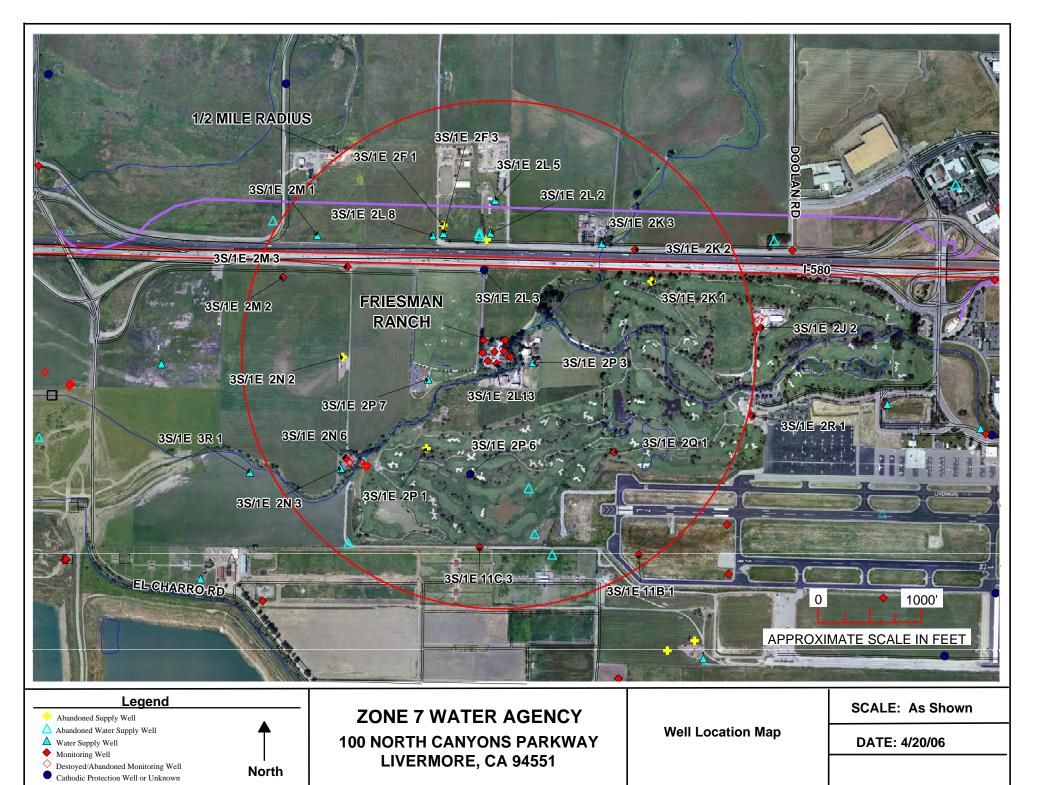
Sanborn Map Report

"Linking Technology with Tradition"®

Sanborn® Map Report

Ship To:	Loran Bure	S	Order D	Date:	4/14/20	06	Completion Date:	4/14/2006
	SCS Engine	eers	Inquiry	#:	165499	6.1		
	3900 Kilroy	Airport Way	P.O. #:		01-171	17		
	Long Beach	n, CA 90806	Site Na	me:	1600 Fi	eisn	nan Rd	
				Addr	ess:	160	0 Freisman Rd	
Customer	Project:	01203087.01	(City/	State:	Liv	ermore, CA 94551	
1051389PE	P	562-426-9544	(Cros	s Stree	ts:		

This document reports that the largest and most complete collection of Sanborn fire insurance maps has been reviewed based on client supplied information, and fire insurance maps depicting the target property at the specified address were not identified.


NO COVERAGE

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Ste Assessment performed by an environmental professional can provide information provided in this Report is not to be construed as legal advice.

Copyright 2006 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

ATTACHMENT G

Zone 7 Water Agency Well Location Map

ATTACHMENT H

List of Aerial Photographs

Phone: (510) 6 FAX: (510) 6		1		Phone: (925) 426-0 FAX: (925) 426-0	
	32-2020 38-5628		1	From: MARY X110 Search Charged:	
				Run Date: 01 Jun D	6
PASFIND v. 051498		Aerial Pho	Stography Li	brary Search	,
Client Name: S Site Name: I		RS `			
x 🗢 602321.0	¥ 🖘 4	172747.3	•	stere	a
PAIRS? Film ID	Line	Frame	Scale	Date () ND
KAVS015	25	4	1:7200	05-02-05	,
xave494 Kave494	2	2	1;7200 1:24000	05-22-03 05-22-09	
AV 8202	2 อั	41	1:12000	11-01-02	
AV 8202	29	39	1:12000	11-01-02	
KAV6977	10	3	1:7200	D5-07-01	
av06597 Av06597	66 68	. 12 11	1:24000 1:24000	05-18-00 05-19-00	
AV 6100	129	29	1:12000	06-29-99	
AV 6100	30	37	1:12000	00-20-99	
KAV 6077	11	11	1:36000	12-15-98	
KAV 5212	14	19	1:24000	08-28-96	
KAV 5212 AV 5200	15 129	19 37	1:24000 1:12000	08-28-96 07-31-96	•
AV 5200	30	41	1:12000	07-03-96	
KAV 5146	Ū 1	6	1:40000	04-29-86	
KAV 4936	14	17	1:24000	09-30-95	
XAV 4936 Xav 4664	215 12	7 20	1:24000 1:36000	09-29-95 06-02-94	
KAV 4623	1	20 6	1:40000	04-20-94	
KAV 4632	1	7	1:40000	04-20-94	
XAV 4632	S	6	1:40000	04-20-94 /	
av 4625 Av 4291	30	40 10	1:12000	06-02-94	
AV 4230	1 130	38	1:40000 1:12000	07-02-92 07-22-92	
AV 4130	13	40	1:63360	10-17-91	
AV 3845	28	41	1:12000	07-23-90 /	
AV 3845	27	42	1:12000	07-23-80 ¥	
KAV 3817 Kav 3817	11 10	3 5	1:36000	05-02-90	
AV 3882	12	19	1:36000 1:36000	05-02-90 06-08-89	
AV 3368	27	41	1:12000	08-18-99	
2025 VA	13	4	1;35000	05-23-80	
AV 3292	12	.5	1:36000	05-23-88	
AV 3117 AV 2929	12	17	1:36000	07 -14-87 09-09-86	
	T	9	1:12000	다 말 ~ 다 날 ㅡ 당 수장	
AV 2862	ą	16	1:12000	04-20-96 -	

AV	2655	12	19	1:36000	05-11-85
AV	2630	- 7		1:48000	04-30-85
AV	2600	13	9 18	1:63360	04-25-85
AV	2460	4	15	1:12000	05-07-84
AV	2131	4	16	1:12000	04-27-82 🗸
ÄV	2050	4	23	1:54000	02-D6-82
AV	2050	13	24	1;54000	02-06-82
ÄV	1860	4	16	1:12000	04-30-00 1
AV.	1700	13	29	1:54000	05-29-79
AV	1499		17	1:12000	05-05-78
AV	1250	4 4	15 15	1:12000	05-26-76 1
AV	1215	· 12	24	1;54000	11-12-75
ĀV	1215	13	26	1;54000	12-17-75
AV	1101		15	1:12000	QB-24-73
AV	994	4 3 12	14	1:12000	04-12-71
ÂV	963	10	25		
AV	965	13	27	1:48000 1:48000	08-31-70
AV	903	4 ·			08-31-70
			15	1:12000	05-15-69 -
AV	844	21	45	1:30000	05-03-68
AV	710	17	30	1:36000	04-25-66
AV	710	16	31	1:36000	04-25-66
AV	550	16	26	1:36000	07-23-63
AV	550	15	24	1:36000	07-23-63
AV	329	3	20	1:9600	04-16-59 🗸
	AREA	3 5 3	178	1:36000	05-07-98
	AREA		142	1:36000	05-07-56
AV	253	28	39	1:12000	05-04-67 🖍

INSTRUCTIONS

Flease place a check mark next to the dates that you wigh to review and FAX them back to us at (510) 638-5628. The dates that have a scale of 1:12,000

or lower have the best resolution and detail.

SCALE: The scales listed in the "Scale" column are the scales at which the

negatives were flown. The numbers represent a ratio of similar units.

The proper usage requires a conversion of the second number to a measurement unit. For example, to arrive at an approximate scale

of

l'' = xxxx', divide the second number by 12, so that 1,12,000 will convert to l'' = 1,000'.

NOTE: To better serve you, please allow 2-3 working days after you have faxed back your selections before visiting so we may have time to pull them from files or, if necessary, print them from the negatives. The frame numbers listed above are approximate in their

locations. In the cases where two lines are listed, the photo that

best centers your site will be chosen. All photos are available in stereoscopic pairs.

COST: The cost to conduct a photo review is \$90.00 PLUS \$2.00 more for each year viewed. In cases where the area of study is vast (greater

than 9,000 by 9,000 feet) and requires more than 1 or 2 photos, each photo required to cover the entire site will sount as one.

ATTACHMENT I

Incinerator Photo

Former Incinerator – Friesman Ranch Property, Livermore, CA