6601 Koll Center Parkway Suite 140 Pleasanton, California 94566 Phone (925) 426-0080 FAX (925) 426-0707 www.scsengineers.com

SCS ENGINEERS

October 12, 2007 Project Number: 01203087.04

RECEIVED

2:51 pm, Oct 12, 2007

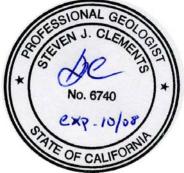
Alameda County Environmental Health

Mr. Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502 Phone (510) 567-6791 Fax (510) 337-9335

Subject: Additional Groundwater Investigation Report Freisman Ranch Property 1600 Freisman Road Livermore, California

Dear Mr. Wickham:

On behalf of our client, Children's Hospital and Research Center Foundation (Children's Hospital), attached is the *Additional Groundwater Investigation Report* prepared by SCS Engineers (SCS) for the Freisman Ranch Property located at 1600 Freisman Road, Livermore, California..


"We declare, under penalty of perjury, that the information and recommendations contained in the attached report are true and correct to the best of our knowledge."

Please contact Steve Clements at (925) 240-5152 if you have any questions or comments regarding this submittal.

Sincerely, Ted Sison, R.E.A

Ted Sison, R.E.A. Project Scientist SCS Engineers

Steve Clements, PG, REA Project Manager SCS Engineers

cc: Lynn Sagramoso – Children's Hospital Tom Terrill – The Terrill Company

SCS ENGINEERS

Additional Groundwater Investigation Report

Freisman Ranch Property

1600 Freisman Road

Livermore, California

Prepared for:

Children's Hospital and Research Center Foundation 2201 Broadway Avenue, Suite 600 Oakland, California 94612 (510) 428-3119

Prepared by:

SCS ENGINEERS 6601 Koll Center Parkway, Suite 140 Pleasanton, California 94566 (925) 126-0080

> October 12, 2007 File No. 01203087.04

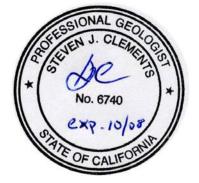
Offices Nationwide www.scsengineers.com Additional Groundwater Investigation Report Freisman Ranch Property 1600 Freisman Road Livermore, California

Prepared for:

Children's Hospital and Research Center Foundation 2201 Broadway Avenue, Suite 600 Oakland, California 94612

Prepared by:

SCS ENGINEERS


6601 Koll Center Parkway, Suite 140 Pleasanton, California 94566 (925) 426-0080

> October 12, 2007 File No. 01203087.04

This Additional Groundwater Investigation Report for the Freisman Ranch Property located at 1600 Freisman Road, Livermore, California, dated October 12, 2007 has been prepared and reviewed by the following:

Ted Sison R.E.A. Project Scientist

Steve Clements P.G., R.E.A. Project Manager SCS Engineers

Table of Contents

Sectio	on Page
Limito	itions/disclaimeri
1	Introduction1
	Objectives and Scope of Work1
	Background And Site History1
	Previous Groundwater Investigations2
2	Regulatory Thresholds
3	Groundwater monitoring – April 2007
	Well ReSurveying
	Water Level Measurements
	Dissolved Oxygen Measurements
	Groundwater Purging4
	Low Flow Methodology4
	Three Casing Volume Purging4
	Laboratory Analysis and Analytical Results
	TPHg5 TPHss
	TPHd
	VOCs
	Lead7
4	Deeper groundwater investigation
	Pre-Investigation Activities
	CPT Borings7
	Groundwater Samples
	Analytical Results and Interpretation8
	Soil Samples
	Analytical Results and Interpretation
	-
	Summary, Conclusions, and Recommendations
	Deeper Groundwater Investigation Summary
	Recommendations
5	References13

Figures & Tables

Figure No.

- 1 Site Location Map
- 2 Site Plan
- 3 Groundwater Elevation Contours (April 18, 2007)
- 4 Site Map Showing Sample Locations

Table No.

- 1 Summary of Groundwater Elevation Data
- 2 Summary of Groundwater Field Parameters
- 3 Summary of Groundwater Analytical Results Groundwater Monitoring Wells
- 4 Summary of Soil Sample Analytical Results CPT Investigation
- 5 Summary of Groundwater Analytical Results CPT Investigation

Appendices

- Appendix A Laboratory Analytical Report and Chain-of-Custody Documentation (4/18/2007)
- Appendix B Laboratory Analytical Report and Chain-of-Custody Documentation (4/19/2007)
- Appendix C Deep Groundwater Investigation Drilling Permit
- Appendix D Deep Groundwater Investigation CPT Report and Logs
- Appendix E Laboratory Analytical Reports and Chain-of-Custody Documentation 8/21, 22, 23/2007)

LIMITATIONS/DISCLAIMER

This Additional Groundwater Investigation Report has been prepared on the behalf of the Children's Hospital and Research Center Foundation (Children's Hospital) with specific application to the Freisman Ranch Property located at 1600 Freisman Road, Livermore, California. This report has been prepared in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, expressed or implied, is made as to the professional opinions presented herein. Third parties use this report at their own risk.

Changes in site use and conditions may occur due to manmade changes or variations in rainfall, temperature, water usage, or other factors. Additional information which was not available to the consultant at the time this report was prepared or changes which may occur on the site or in the surrounding area may result in modification to the site that would impact the this report. This report is not a legal opinion.

1 INTRODUCTION

This Report has been prepared by SCS Engineers (SCS) on behalf of Children's Hospital to summarize the additional groundwater investigation at the Freisman Ranch Property located at 1600 Freisman Road, Livermore, California (the "Property"). Figure 1 is the Site Location Map and Figure 2 is the Site Plan.

OBJECTIVES AND SCOPE OF WORK

The additional groundwater investigation described in this report consisted of the following tasks:

- 1. Monitoring of all existing onsite groundwater monitoring wells using low flow sampling protocols.
- 2. Re-sampling wells *KMW-2*, *KMW-5*, *KMW-6*, *KMW-7*, and *KMW-8* using three purge volume sampling protocols.
- 3. Deeper groundwater investigation using CPT and Hydropunch methods to evaluate the vertical extent of petroleum hydrocarbon-impacted groundwater beneath the Property.

This additional investigation was conducted at the request of Alameda County Environmental Health (ACEH) in accordance the recommendations provided in the Additional Site Investigation Report prepared by SCS (March 7, 2007) and in accordance with the approved Workplan (SCS, June 6, 2007).

A geophysical survey to locate buried objects potentially in the vicinity of the former heating oil AST (if any) was originally included as part of the approved Workplan. However, following further site reconnaissance the geophysical survey was canceled due to the presence of numerous surface features (e.g., buildings, foundations, fences, miscellaneous metallic debris, etc.) that would disrupt the geophysical survey.

BACKGROUND AND SITE HISTORY

The Property was first developed in the 1910's with houses, barns and outbuildings associated with the former onsite dairy. Dairy operations ceased in 1971, and since that time the Property has been used for residential housing, miscellaneous storage, and animal boarding/grazing (horses, cattle, etc.).

Extensive environmental assessment/investigation has occurred at the Property since 1997. These assessments/investigations have included a Phase I Environmental Assessment (Kleinfelder, July 8, 1997), soil and groundwater investigation including the installation and monitoring of eight groundwater monitoring wells (Kleinfelder, October 17, 1997 and February 17, 1999 and SCS, March 7, 2007), investigation/removal of a small incinerator and associated soil (SCS, November 21, 2003, October 19, 2006, March 7, 2007, and October 5, 2007), additional soil and groundwater investigation including installation and sampling of three temporary wells (SCS, March 7, 2007), and two soil vapor surveys (SCS, November 21, 2003 and March 7, 2007).

Based on these assessments and investigations, petroleum hydrocarbon-impacted groundwater and soil was identified in the central developed portion of the Property. The apparent source of petroleum hydrocarbon contamination was the former heating oil AST used to fuel two boilers that were located in the northern portion of the main dairy building. Heating oil is typically composed of diesel range and gasoline range hydrocarbons (Bruya, 1993).

In addition, during a May 10, 2006 site reconnaissance SCS interviewed the caretaker of the Property, Mr. Mike Schofield. Mr. Schofield is a member of the extended Freisman family and has firsthand knowledge of the Property's history. Mr. Schofield indicated that a small (approximately 300 gallon) underground gasoline storage tank (UST) was previously located in the vicinity of the former heating oil AST. Mr. Schofield indicated that, to the best of his knowledge, the gasoline UST was removed sometime in the 1970's. This suspected former UST may be a source of gasoline range hydrocarbons detected in groundwater beneath the Property.

In an effort to remove remaining sources of petroleum hydrocarbon contamination at the Property SCS removed the two boilers, the metal shed that historically housed the former heating oil AST, associated underground fuel piping, and impacted soil in August and September 2003 (SCS, November 21, 2003 and October 19, 2006). The soil and debris were properly disposed of off-site and the excavations were subsequently backfilled.

PREVIOUS GROUNDWATER INVESTIGATIONS

Six groundwater monitoring wells (*KMW-1* through *KMW-6*) were installed at the Property in 1997, and a quarterly groundwater sampling program was initiated. Two additional wells (*KMW-7* and *KMW-8*) were installed at the Property in 1999. Regular groundwater monitoring was conducted at the Property until the end of 2003. Results of this monitoring suggest that a plume of petroleum hydrocarbon-impacted groundwater is present in the vicinity and downgradient of the former boilers and heating oil system (i.e., near wells *KMW-6* and *KMW-7*). Historic groundwater concentration data is presented in Table 3.

In January 2006, the wells were sampled by H₂OGEOL of Livermore, California and in January/February 2006 by Consolidated Engineering of San Ramon, California. Groundwater samples collected by H₂OGEOL detected chemicals of concern (COCs) in three previously "clean" wells (*KMW-2*, *KMW-5*, and *KMW-8*). SCS sampled all the wells again in January 2007 and no COCs were detected in wells *KMW-2*, *KMW-5*, and *KMW-5*, and *KMW-8* (SCS, March 7, 2007). Due to the apparent anomalous nature of the samples collected by H₂OGEOL SCS recommended conducting another round of groundwater monitoring using low flow purging methods for all wells followed by re-sampling of wells *KMW-2*, *KMW-5*, *KMW-6*, *KMW-7*, and *KMW-8* using the three well volume purge protocol in an attempt to more fully recreate sampling procedures used by H₂OGEOL.

In January 2007 SCS conducted a soil vapor survey that consisted of the collection of 22 soil vapor samples (*SV-1* through *SV-22*) from depths of approximately 5 feet below ground surface (bgs) at various locations across the Property including the area of known impacted groundwater. Volatile Organic Compounds (VOCs) were not detected in soil vapor samples at concentrations of concern. Based on this data, the potential for volatilization of VOCs from impacted groundwater to indoor air at the Property at concentrations of concern appears unlikely.

2 REGULATORY THRESHOLDS

In an effort to evaluate the relative significance of chemical concentrations detected during this investigation SCS Engineers has compared analytical data to the residential Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). ESLs were developed to address the environmental protection goals established by the San Francisco Bay Basin Water Quality Control Plan and are protective of human health, drinking water resources, and aquatic and terrestrial ecosystems. Future Property use is currently undetermined; as such residential ESLs are appropriate for the site. Chemicals detected at concentrations below ESLs are generally assumed to not pose a significant threat to human health or the environment.

3 GROUNDWATER MONITORING – APRIL 2007

Site groundwater monitoring wells were resurveyed on March 26, 2007 and groundwater monitoring was performed by SCS on April 18 and 19, 2007. The locations of onsite groundwater monitoring wells (*KMW-1* through *KMW-8*) are shown on Figure 2. A description of the resurveying, sampling procedures, and summary of analytical results are provided below:

WELL RESURVEYING & GEOTRACKER UPLOAD

On March 26, 2007 Morrow Surveying of West Sacramento, California conducted surveying activities on the Property. All site groundwater monitoring wells were surveyed. This was done so groundwater gradients could continue to be calculated as accurately as possible and so the data would be compatible with Geotracker requirements. The new survey data was incorporated into the site maps and the groundwater gradient calculations included in this report. SCS is currently setting up the upload link to Geotracker after which all required information and documents will be uploaded.

WATER LEVEL MEASUREMENTS

Prior to purging and sampling, static water level measurements were taken in all the wells using an electric water level meter. Readings were taken to the nearest 0.01-foot from a known reference point on the well casing. Groundwater was measured in the wells at depths ranging from 12.50 and 14.60 feet bgs.

Groundwater elevation data from April 18, 2007, is summarized on Table 1. The table also includes historical elevation data. Figure 3 shows the potentiometric surface contours for shallow groundwater beneath the site. As shown in Figure 3, the approximate groundwater flow direction beneath the site on April 18, 2007 was northwesterly with a gradient of approximately 0.007 feet/foot. This is generally consistent with past monitoring events.

DISSOLVED OXYGEN MEASUREMENTS

Prior to collection of water level measurements, SCS used a YSI Model 55 down-hole dissolved oxygen (DO) meter to obtain DO readings for each well. DO readings ranged from 0.70 mg/L in well *KMW-7* to 1.98 mg/L in *KMW-4*. DO readings are summarized in Table 2. The lowest DO readings were obtained from wells *KMW-6* (0.82 mg/L) and *KMW-7* (0.70 mg/L), which are located

within the known plume of impacted groundwater. DO readings in the remaining site wells were higher (1.14 mg/L to 1.98 mg/L). The relatively lower DO readings observed in wells *KMW-6* and *KMW-7* suggest that biodegradation is occurring within the known plume of impacted groundwater.

GROUNDWATER PURGING

Low Flow Methodology

All site monitoring wells were purged and sampled on April 18, 2007 using a peristaltic pump and low flow methodology. Dedicated 21-foot long sections of 0.25-inch inner diameter polyethylene tubing previously installed in each well were used for purging and sampling, and then left in each well as dedicated tubes for future sampling. Each well was initially purged until one system volume was removed from each well. Purging then continued at an approximate rate of 200 milliliters per minute (ml/min) while field parameters were continuously measured and allowed to stabilize.

The depth to water was also monitored using a water level meter with a draw-down sensor to ensure that well water draw-down within each well was less than four inches during purging. If well water ever fell more than 4 inches during purging then purging was stopped until the water level returned. Field parameter measurements including pH, temperature, and electrical conductivity (EC), readings were measured using a Horiba U-22 water quality meter. Samples were collected upon stabilization of field parameters. Notations were also made as to the odor and color of the water being purged. Field parameters are summarized in Table 2. Samples were collected from each well immediately following purging using the peristaltic pump. Groundwater samples were placed in appropriate pre-cleaned laboratory supplied sample containers. Samples were labeled, logged, and placed into a chilled cooler for later transport to the McCampbell Analytical laboratory (McCampbell) located in Pittsburg, California for analysis. McCampbell is certified by the California Department of Public Health (DPH) Environmental Laboratory Accreditation Program (ELAP) for the specific analyses performed.

Three Casing Volume Purging

On April 19, 2007 SCS returned and re-purged and re-sampled wells *KMW-2*, *KMW-5*, *KMW-6*, *KMW-7*, and *KMW-8* using a submersible pump and three casing volume purging methodology. A 12-volt submersible "purger" pump fitted with 0.5-inch ID plastic tubing was used to purge and sample the wells. Dedicated tubing was used for each well. Well *KMW-6* was the final well to be purged and sampled, however during purging the pump failed and could not be re-started, therefore, purging of the final 5 gallons of groundwater and sampling was conducted using a new disposable polyethylene bailer. During purging field parameters were measured with the Horiba. When the required purge volumes from each well had been reached and when field parameters had stabilized groundwater samples were collected. Samples were collected from either the pump or the bailer and were handled as described above for the low flow samples.

All non-dedicated groundwater monitoring equipment, (i.e., water level meters, measuring cup, purging pump, etc.) was decontaminated prior to measuring, purging, and sampling and between wells using a biodegradable detergent (Liquinox) and three stage distilled water wash and rinse. Also, between each well the internal silicon tubing used by the peristaltic pump was changed out to reduce the chance of cross contamination. All purge water and decontamination water was contained in two labeled 55 gallon drums which were left on-site.

LABORATORY ANALYSIS AND ANALYTICAL RESULTS

All samples were delivered to McCampbell the day they were collected using standard chain-ofcustody procedures.

Quality control trip blanks (QCTBs) were stored with, shipped to the laboratory, and analyzed along with the other samples as a check for cross contamination. Trace concentrations of toluene were detected in the QCTB that accompanied the samples collected on April 18, 2007. Toluene was not detected in any of the samples collected on April 18, 2007; therefore it is assumed the toluene impacted the QCTB before it was stored with the samples. Toluene and carbon disulfide were detected at low concentrations in the QCTB that accompanied the samples collected on April 19, 2007. Neither toluene nor carbon disulfide were detected in any of the samples collected on April 19, 2007, therefore it is assumed the QCTB was impacted before in was stored with the samples.

Both sets of groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg), TPH as diesel fuel (TPHd), and TPH as stoddard solvent (TPHss) using EPA Method 8015C. Samples were also analyzed for VOCs including benzene, ethylbenzene, toluene, and xylenes (BTEX), methyl tert butyl ether (MTBE), 1,2-dichloroethane, and ethylene dibromide (EDB) using EPA Method 8260B, and for dissolved lead using Method E200.8. Analytical results are summarized below and in Table 3. The analytical report and chain-of-custody documentation for the samples collected using low flow methodology are provided in Appendix A. The analytical report and chain-of-custody documentation for the samples collected using three casing volume purging are provided in Appendix B.

TPHg

TPHg was detected in (low flow) groundwater samples *KMW-6* and *KMW-7* at concentrations of 86 micrograms per liter (ug/L) and 170 ug/L respectively. TPHg was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 2,700 and 720 ug/L, respectively. Three of the four TPHg detections in the groundwater samples exceed the 100 ug/L ESL established for TPHg in groundwater that is a current or potential source of drinking water. However, these concentrations are within the range historically detected in these wells. TPHg was not detected in groundwater samples collected from the remaining site wells.

T P H s s

TPHss was only detected in (low flow) groundwater sample *KMW-7* at a concentration of 96 ug/L. TPHss was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 890 and 490 ug/L, respectively. The TPHss detections in the "3 purge volume" groundwater samples exceed the 100 ug/L ESL established for TPHss range hydrocarbons in groundwater that is a current or potential source of drinking water. TPHss was not detected in groundwater samples collected from the remaining site wells.

TPHd

TPHd was not detected in any of groundwater samples using low flow methodology. TPHd was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 1,100 and 290 ug/L, respectively. The TPHd detections in the "3 purge volume" groundwater samples

exceed the 100 ug/L ESL established for TPHd in groundwater that is a current or potential source of drinking water. However, these concentrations are within the range historically detected in these wells. TPHd was not detected in groundwater samples collected from the remaining site wells.

VOCs

Benzene was only detected in (low flow) groundwater sample *KMW-7* at a concentration of 0.6 ug/L. Benzene was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 35 and 3.3 ug/L, respectively. The benzene detections in the "3 purge volume" groundwater samples exceed the 1.0 ug/L ESL established for benzene in groundwater that is a current or potential source of drinking water. However, these concentrations are within the range historically detected in these wells. Benzene was not detected in groundwater samples collected from the remaining site wells.

Toluene was not detected in groundwater samples collected during this monitoring event.

Ethylbenzene was not detected in any (low flow) groundwater samples. Ethylbenzene was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 52 and 12 ug/L, respectively. The ethylbenzene detection in well *KMW-7* exceeds the 30 ug/L ESL established for ethylbenzene in groundwater that is a current or potential source of drinking water. However, this concentration is within the range historically detected in well *KMW-7*. Ethylbenzene was not detected in groundwater samples collected from the remaining site wells.

Xylenes were detected in (low flow) groundwater sample *KMW-7* at a concentration of 1.2 ug/L. Xylenes were detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 23 and 33 ug/L, respectively. The xylenes detections in the "3 purge volume" groundwater samples exceed the 20 ug/L ESL established for xylenes in groundwater that is a current or potential source of drinking water. However, these concentrations are within the range historically detected in these wells. Xylenes were not detected in groundwater samples collected from the remaining site wells.

Naphthalene was detected in (low flow) groundwater sample *KMW-6* at a concentration of 0.59 ug/L. Naphthalene was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 110 and 11 ug/L, respectively. The naphthalene detection in well *KMW-6* exceeds the 17 ug/L ESL established for naphthalene in groundwater that is a current or potential source of drinking water. However, this concentration is within the range historically detected in well *KMW-6*. Naphthalene was not detected in groundwater samples collected from the remaining site wells.

1,2,4-Trimethylbenzene was detected in (low flow) groundwater sample *KMW-7* at a concentration of 1.1 ug/L. 1,2,4-Trimethylbenzene was detected in (3 purge volume) groundwater sample *KMW-7* at a concentration of 32 ug/L. ESLs have not been established for 1,2,4-Trimethylbenzene. 1,2,4-Trimethylbenzene was not detected in groundwater samples collected from the remaining site wells.

n-butyl benzene was not detected in any (low flow) groundwater samples. n-butyl benzene was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 21 and 1.8 ug/L, respectively. ESLs have not been established for n-butyl benzene. n-butyl benzene was not detected in groundwater samples collected from the remaining site wells.

Isopropyl benzene was not detected in any (low flow) groundwater samples. Isopropyl benzene was detected in (3 purge volume) groundwater samples *KMW-6* and *KMW-7* at concentrations of 25 and 3.6 ug/L, respectively. ESLs have not been established for isopropyl benzene. Isopropyl benzene was not detected in groundwater samples collected from the remaining site wells.

MTBE and remaining EPA Method 8260B compounds were not detected in any of the groundwater samples collected during this monitoring event.

Lead

Dissolved lead was not detected in groundwater samples collected during this monitoring event.

4 DEEPER GROUNDWATER INVESTIGATION

To date, groundwater investigation activities at the Property have focused on the first (shallow) groundwater encountered at the Property (site groundwater monitoring wells are screened from approximately 9 to 24 feet bgs). On August 23, 2006 and March 28, 2007, ACEH issued letters formally requesting that the vertical extent of petroleum hydrocarbon-impacted groundwater be assessed prior to evaluation of site closure.

PRE-INVESTIGATION ACTIVITIES

SCS obtained a drilling permit from the Alameda County Zone 7 Water Agency Zone 7 prior to beginning drilling activities. A copy of the drilling permit (Permit Number 27113) is included as Attachment A.

Underground Service Alert was notified at least 48 hours prior to the subsurface investigation as required by law. In addition, SCS contracted Cruz Brothers Locators of Scotts Valley, California to conduct utility survey of the investigation area on July 18, 2007 as an additional check for underground utilities.

Based on the presence of overhead power lines, the northernmost deeper sampling location (*PH-2*) was moved approximately 35 feet north of its originally proposed location (SCS, June 6, 2007).

CPT BORINGS

Precision Sampling, Inc. of Richmond, California (Precision) conducted Cone Penetrometer Test (CPT) activities on August 21 through 23, 2007. All work was done under the direction of SCS. Precision used their 25-30 Ton CP-2 rig to conduct the CPTs at three locations (*PH-1*, *PH-2*, and *PH-3*) as shown in Figure 4.

The sampling locations were chosen to provide a transect perpendicular to the known plume of petroleum hydrocarbon-impacted groundwater beneath the Property in accordance with ACEH requests. The goal of the CPTs was to identify/classify soil types, water bearing zones, and potential confining layers prior to groundwater sampling. The three CPTs were each pushed to depths of approximately 85 feet bgs. Appendix B includes a detailed description of the CPT process, background CPT information, and the three CPT logs. Upon completion, each CPT borehole was tremie grouted to the surface with Portland cement grout.

GROUNDWATER SAMPLES

CPT data was reviewed and interpreted to locate potential water bearing zones to target for the collection of soil and groundwater samples. One distinct additional water bearing zone was identified at each CPT location below the known shallow water zone. The depth of the deeper water bearing zone varied in each boring, but were generally between 50 and 85 feet bgs. Following identification of our target sampling zones Precision used the CPT rig to advance a Hydropunch-type sampler to each desired sampling depth.

Groundwater samples were collected via a Hydropunch-type sampler. This consisted of a 5 foot long section of 0.5" diameter, 0.010" factory slotted PVC well pipe attached to a dedicated steel drive point. The screen was covered with a metal sleeve, attached to the drive rod, and driven into the ground. Upon reaching the desired sample depth the drive rod and metal sleeve were retracted up to four feet exposing the well screen. A dedicated disposable PVC bailer was then lowered to groundwater through the drive casing to collect the groundwater sample. After sample collection was complete the drive rods were removed from the borehole and decontaminated using a steam pressure washer. If a deeper groundwater sample was desired then the process was repeated. At boring *PH-3* what appeared to be a water bearing zone at 63 feet was identified. This depth was also consistent with the depth of already sampled water bearing zones in *PH-1* and *PH-2*. Sample collection was attempted, but water was not encountered. Therefore it was necessary to continue pushing to 85 feet where a more distinct water bearing zone was located and sampled.

Upon collection, groundwater samples were placed in appropriate pre-cleaned laboratory supplied sample containers. Samples were labeled, logged, and placed into a chilled cooler for later transport to McCampbell for analysis. Groundwater samples were tracked from the point of collection through the laboratory using proper chain-of-custody protocol. A QCTB accompanied the groundwater samples in the cooler and was analyzed for VOCs along with the samples as a check for cross contamination from any outside sources between the field and the lab. During this investigation no contaminants were detected in any of QCTBs.

Analytical Results and Interpretation

Groundwater samples were analyzed for TPHg, TPHd (with silica gel cleanup), and TPHss using EPA Method 8015C. Groundwater samples were also analyzed for VOCs including BTEX, MTBE, 1,2-dichloroethane, and EDB using EPA Method 8260B, and for dissolved lead using EPA Method 6010C. Analytical results are summarized below and in Table 4. The analytical report and chain-of-custody documentation are provided in Appendix E.

• **TPHg**, **TPHd**, **and TPHss** were detected in groundwater sample *PH-1*, *24*' at concentrations of 2,200 ug/L, 1,500 ug/L, and 1,000 ug/L, respectively. These concentrations exceed ESLs established for groundwater that is a current or potential source of drinking water, but were collected from within the known plume of impacted groundwater and are within the range of concentrations historically detected at the Property. TPHg, TPHd, and TPHss were not detected in groundwater samples collected from other locations (*PH-2 & PH-3*) or greater depths (51 to 85 feet bgs).

VOC's including benzene, ethylbenzene, xylenes, and naphthalene were detected in • groundwater sample PH-1, 24' at concentrations of 5.1 ug/L, 36 ug/L, 23 ug/L, and 38 ug/L, respectively. These concentrations exceed ESLs established for groundwater that is a current or potential source of drinking water, but were collected from within the known plume of impacted groundwater and are within the range of concentrations historically detected at the Property. Other VOCs detected in PH-1, 24' included: nbutyl benzene (13 ug/L), sec-butyl benzene (6.1 ug/L), isopropyl benzene (24 ug/L), nug/L). 1,2,4-trimethylbenzene propylbenzene (63 (110 ug/L), and 1.3.5trimethylbenzene (30 ug/L). ESLs have not been established for these compounds.

The only VOCs detected in the remaining groundwater samples were 0.5 ug/L of 1,2-DCA in *PH-3*, 23', and 0.61 ug/L of ethylbenzene and 0.57 ug/L of 1,2,4-trimethylbenzene in sample *PH-3*, 85'. These concentrations do not exceed ESLs established for groundwater that is a current or potential source of drinking water. The detection of ethylbenzene (0.61 ug/L) and 1,2,4-trimethylbenzene (0.57 μ g/L) in the deeper groundwater sample collected at location *PH-3* appears to be anomalous and may be due cross contamination associated with sampling through impacted soil at shallower depths. Both ethylbenzene and 1,2,4-trimethylbenzene were detected in the shallower soil sample (17 feet bgs) collected at location *PH-3*, but were not detected in the deeper soil sample (78 feet bgs) collected at location *PH-3*.

• **Dissolved lead** was detected in groundwater sample *PH-1*, 24 at a concentration of 1.5 ug/L and in groundwater sample *PH-2*, 29' at a concentration of 2.2 ug/L. These concentrations are below the 2.5 μ g/L ESL established for lead in groundwater that is a current or potential source of drinking water. Dissolved lead was not detected in groundwater samples collected from location *PH-3* or from groundwater samples collected at greater depths (51 to 85 feet bgs).

SOIL SAMPLES

Precision used the CPT rig to advance a soil sampler to each desired sampling depth. Targeted soil sampling depths were just above the depth where groundwater samples were collected (capillary fringe). The soil sampler consisted of a 2-inch by 24-inch core barrel sampler with an acetate sampling sleeve placed inside. Soil samples were collected by driving a blank rod to the desired sampling depth. The blank rod was then pulled out of the borehole and the sampler was attached to the end of the rod. The soil sampler was then re-driven to the desired sampling depth. At depth, the sampler was then pushed an additional 24 inches to collect the soil core. The sample was brought to the surface and the acetate sleeve containing the sample was removed from the core barrel. The soil was then packed into a laboratory supplied glass sample jar and sealed with a tight fitting lid. After sample collection the blank rod was reinstalled in the borehole and pushed to the next target depth for the second soil sample. At this depth the sampling procedure was repeated. All drill tooling was decontaminated before use and between sampling using a steam pressure washer.

Following collection soil samples were labeled, logged, and placed into a chilled cooler for later transport to McCampbell for analysis. All samples were handled using standard chain-of-custody procedures.

Analytical Results and Interpretation

Soil samples were analyzed for TPHg, TPHd, and TPHss using EPA Method 8015C, VOCs using EPA Method 8260B, and total lead using EPA Method 6010C. Analytical results are summarized below and in Table 5. The analytical report and chain-of-custody documentation are provided in Appendix E.

- **TPHg, TPHd, and TPHss** were detected in shallow zone soil sample *PH-1, 19*' at concentrations of 990, 420, and 360 milligrams per kilogram (mg/kg), respectively and in shallow zone soil sample *PH-3, 17*' at concentrations of 120, 44, and 20 mg/kg, respectively. The TPHg concentrations detected at both locations and the TPHd and TPHss concentrations detected at location *PH-1* exceed residential ESLs established for sites located above groundwater that is a current or potential source of drinking water. However, these samples were collected from within the known plume of impacted groundwater. TPHg, TPHd, and TPHss were not detected in shallow zone soil samples collected from location *PH-2* or from deeper zone soil samples.
- VOC's were only detected in shallow zone soil samples *PH-1*, *19*' and *PH-3*, *17*'. VOCs detected in soil sample *PH-1*, *19*' included: n-butyl benzene (8 mg/kg), sec-butyl benzene (1.4 mg/kg), ethylbenzene (4.9 mg/kg), isopropyl benzene (1.8 mg/kg), naphthalene (3.5 mg/kg), n-propylbenzene (7.2 mg/kg), 1,2,4-trimethylbenzene (12 mg/kg), and 1,3,5-trimethylbenzene (30 mg/kg). The ethylbenzene and naphthalene concentrations detected in soil sample *PH-1,19*' exceed their respective residential ESLs established for sites located above groundwater that is a current or potential source of drinking water. However, this sample was collected from within the known plume of impacted groundwater. ESLs have not been established for n-Butyl benzene, sec-Butyl benzene, isopropyl benzene, n-propylbenzene, 1,2,4-trimethylbenzene, or 1,3,5-trimethylbenzene.

VOCs detected in soil sample *PH-3*, *17*' included MEK (0.67 mg/kg), n-Butyl benzene (0.65 mg/kg), sec-Butyl benzene (0.12 mg/kg), ethylbenzene (0.75 mg/kg), isopropyl benzene (0.16 mg/kg), naphthalene (0.30 mg/kg), n-propylbenzene (0.66 mg/kg), 1,2,4-trimethylbenzene (2.3 mg/kg), 1,3,5-trimethylbenzene (0.87 mg/kg), and xylenes (0.88 mg/kg). These MEK, ethylbenzene, and naphthalene concentrations do not exceed residential ESLs. VOCs were not detected in deeper zone soil samples.

• **Total lead** was detected in all soil samples at concentrations ranging from 5.5 mg/kg to 8.1 mg/kg. These concentrations are well below the 750 mg/kg residential ESL established for lead in soil below 3 meters (approximately 10 feet).

INVESTIGATION DERIVED WASTES

Two 55-gallon drums of decontamination water were produced during this investigation and were sealed, labeled, and left on site.

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Groundwater Monitoring Summary

Based on groundwater monitoring activities conducted in April 2007, SCS provides the following summary and conclusions:

- Constituents of concern (COCs) were only detected in groundwater samples collected from monitoring wells *KMW-6* and *KMW-7*. This is consistent with historic groundwater monitoring data from the Property. Based on this information, H₂OGEOL's January 2006 detections of COCs in groundwater samples collected from wells *KMW-2*, *KMW-5*, and *KMW-8* (including 1.6 µg/L MTBE in well *KMW-2*) appear to be anomalous.
- Higher concentrations of COCs were detected in the groundwater samples collected using the 3 casing volume purge method (compared to low flow purging methods). For example, TPHg was detected in well *KMW-6* at a concentration of 86 μ g/L using low flow purging methods and 2,700 μ g/L using 3 casing volume purge methods. However, the concentrations detected using 3 casing volume purge methods are within the range historically detected at the Property and, in general, concentrations of COCs appear to have decreased since monitoring began in 1997.
- TPHg (86 to 2,700 μ g/L), TPHss (96 to 890 μ g/L), TPHd (290 to 1,100 μ g/L) benzene (0.6 to 35 μ g/L), ethylbenzene (12 to 52 μ g/L), xylenes (1.2 to 23 μ g/L), and naphthalene (0.59 to 110 μ g/L) were the only COCs detected in the groundwater samples at concentrations exceeding ESLs. Other COCs detected include: n-butylbenzene (1.8 to 21 μ g/L), isopropylbenzene (3.6 to 25 μ g/L), n-propylbenzene (7.7 to 86 μ g/L), and 1,2,4-trimethylbenzene (1.1 to 32 μ g/L), however, ESLs have not been established for these compounds.
- DO readings obtained during this monitoring event suggest that biodegradation is occurring within the known plume of impacted groundwater (wells *KMW-6 and KMW-7*).
- The approximate groundwater flow direction beneath the Property on April 18, 2007 was northwesterly with a gradient of approximately 0.007 feet/foot. This is generally consistent with past monitoring events.

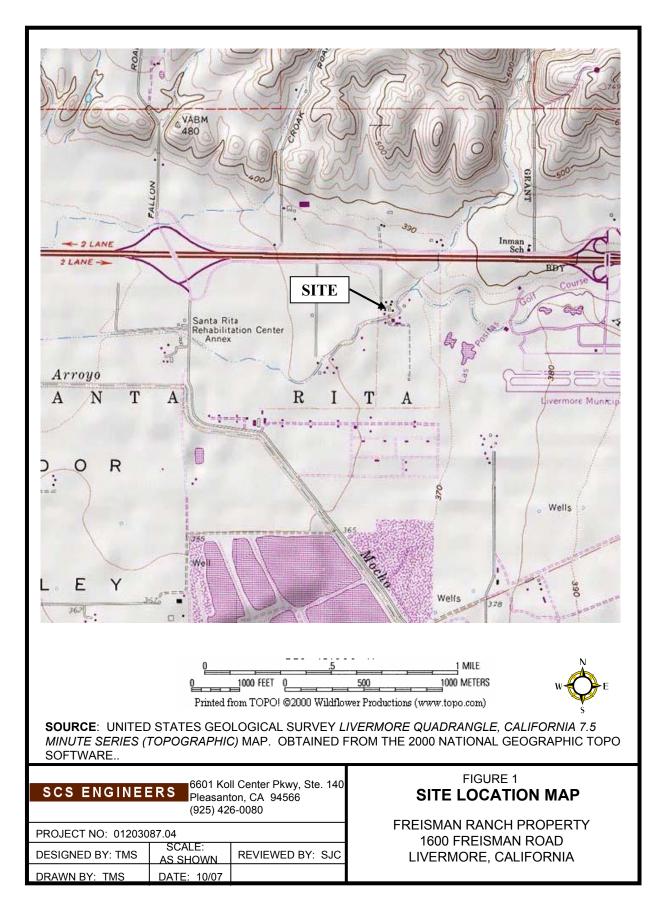
Deeper Groundwater Investigation Summary

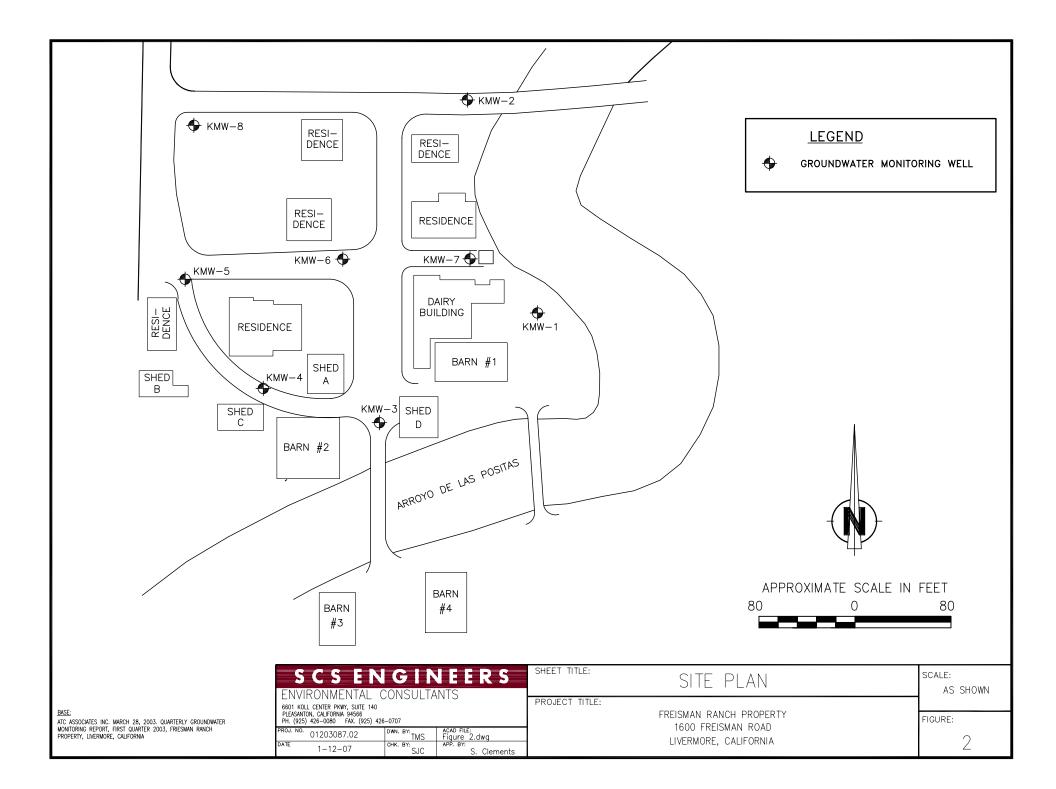
Based on Deeper Groundwater Investigation conducted in August 2007, SCS provides the following summary and conclusions:

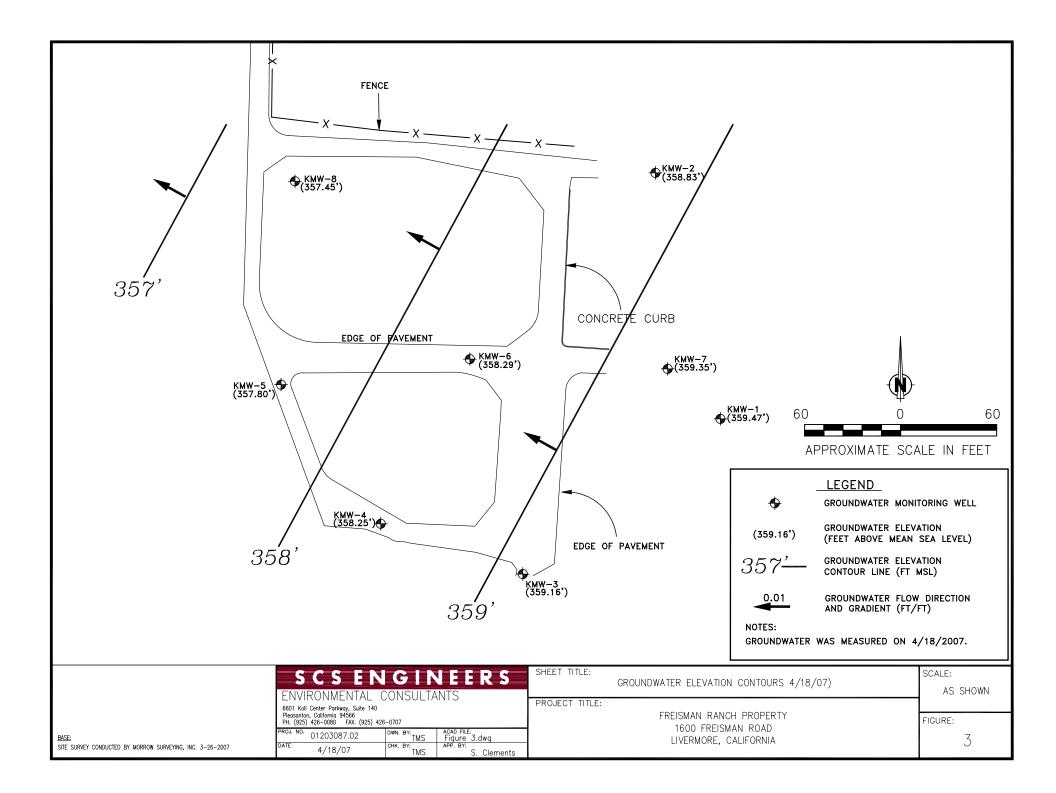
- With the exceptions noted below, COCs were not detected in deeper groundwater samples (51 to 85 feet bgs) collected during this investigation. As previously indicated, the detections of ethylbenzene (0.61 ug/L) and 1,2,4-trimethylbenzene (0.57 μ g/L) in the deeper groundwater sample collected at location *PH-3* may be due cross contamination associated with sampling through impacted soil at a shallower depth (both of these compounds were detected in the soil sample collected at 17 feet bgs at location *PH-3*). COCs detected in shallower soil samples (17 and 19 feet bgs) are generally consistent with past analytical results.
- COCs were not detected in deeper soil samples (48 to 78 feet bgs) collected during this investigation. COCs detected in shallower soil samples (17 and 19 feet bgs) are generally consistent with past analytical results and were collected from within the known plume of impacted groundwater.

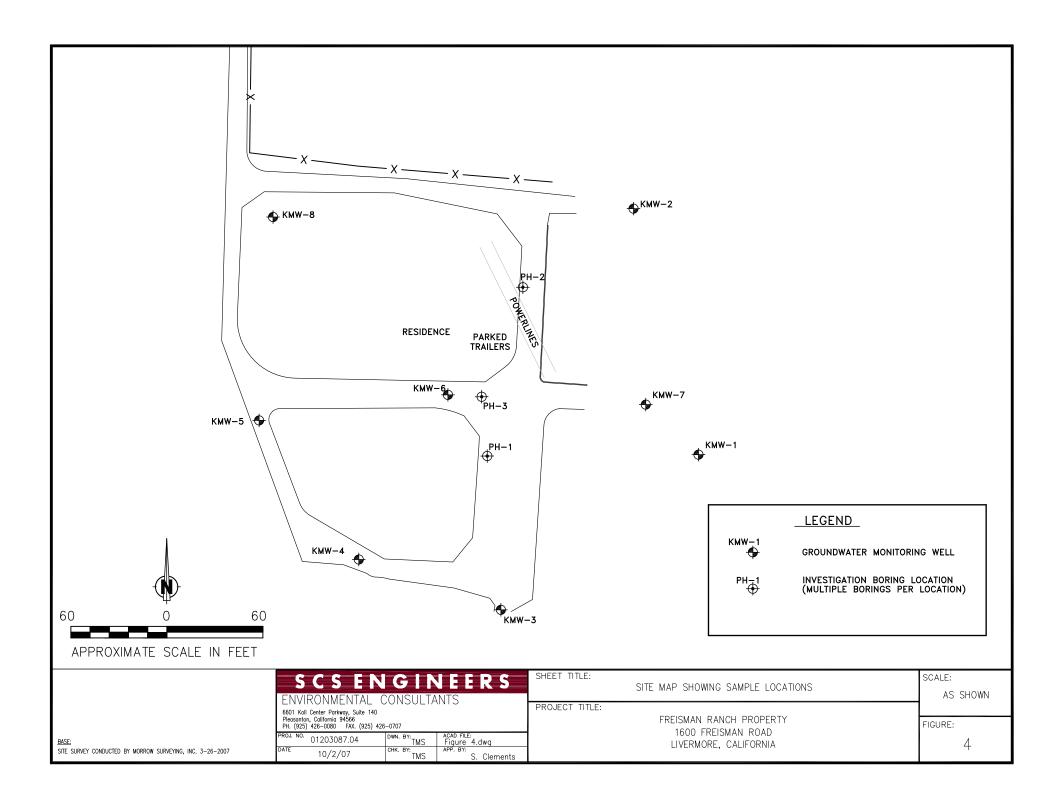
Recommendations

Based on the following multiple lines of evidence, SCS recommends regulatory closure for the Freisman Ranch Property:


- **Source Removal** The apparent main source of petroleum hydrocarbon contamination at the Property was a former heating oil AST, two boilers, and associated underground piping. The heating oil AST was removed many years ago and the boilers, piping, and associated impacted soil were removed by SCS in 2003. In addition, according to Mr. Mike Schofield, the Property caretaker and member of the extended Freisman family, a small (approximately 300 gallon) gasoline UST previously located in the vicinity of the former heating oil AST was removed sometime in the 1970's.
- Lateral Migration of Impacted Groundwater Based on the results of this investigation and previous data, the lateral extent of impacted groundwater beneath the Property appears to be limited to the central dairy portion of the Property (vicinity and south of wells *KMW-6* and *KMW-7*). The lack of detections of COCs in perimeter monitoring wells *KMW-2*, *KMW-3*, *KMW-4*, *KMW-5*, and *KMW-8* suggests that impacted groundwater is not migrating off-site.
- Vertical Migration of Impacted Groundwater Based on the results of this investigation, deeper groundwater beneath the Property does not appear to be significantly impacted.
- Natural Attenuation In general, concentrations of COCs in groundwater beneath the Property have decreased since monitoring began in 1997. This is supported by DO readings obtained during this monitoring even, which suggest that biodegradation is occurring within the plume of impacted groundwater.
- **Vapor Intrusion** VOCs were not detected in soil vapor samples collected in January 2007 at concentrations exceeding residential ESLs (SCS, March 7, 2007). Based on this data, the potential for volatilization of VOCs from impacted groundwater to indoor air at the Property at concentrations of concern appears unlikely.


5 REFERENCES


- ATC Associates, Inc., December 27, 2002. Quarterly Groundwater Monitoring Report, Fourth Quarter 2002, Freisman Ranch Property, Livermore, California.
- ATC Associates, Inc., April 22, 2003(a). Quarterly Groundwater Monitoring Report, First Quarter 2003, Freisman Ranch Property, Livermore, California.
- ATC Associates, Inc., April 22, 2003(b). Workplan for Soil Vapor Survey, Freisman Ranch Property, Livermore, California.
- Bruya, James E., April 8, 1993. Petroleum Hydrocarbons: What Are They? How Much Is Present? Where Do They Go? Workshop Material Prepared For: Hazmacon '93, San Jose, CA.
- California Regional Water Quality Control Board, San Francisco Bay Region (SFBRWQCB), February 2005. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables.
- Consolidated Engineering, March 2, 2005. Limited Sampling Report.
- **Consolidated Engineering, March 2, 2006.** Sampling Results for Limited Sampling Assessment letter.
- H₂OGEOL, February 6, 2006. January 2006 Groundwater Monitoring Report and Summary of Possible Remedial Activities.
- Kleinfelder, Inc., July 8, 1997. Phase I Environmental Site Assessment and Limited Soil and Groundwater Sampling Report, Freisman Road Property, Livermore California.
- Kleinfelder, Inc., October 17, 1997. Remedial Investigation, RBCA Tier 2 Evaluation and Remedial Action Plan, Freisman Ranch Property, Livermore, California.
- Kleinfelder, Inc., February 17, 1999. Well Installation and Quarterly Groundwater Monitoring Report, Freisman Ranch Property, Livermore, California.
- **Oakland Public Works Agency, January 1, 2000.** Oakland Urban Land Redevelopment Program: Guidance Document. (City of Oakland, Survey of Background Metal Concentrations)
- SCS Engineers, July 28, 2003. Quarterly Groundwater Monitoring Report, Second Quarter 2003. Freisman Ranch Property, Livermore, California.
- SCS Engineers, November 21, 2003. Groundwater Monitoring, Soil Vapor Survey, and Source Removal Report, Freisman Ranch Property, 1660 Freisman Road, Livermore, California.
- SCS Engineers, December 17, 2003. Quarterly Groundwater Monitoring Report, Fourth Quarter 2003. Freisman Ranch Property, Livermore, California.


- SCS Engineers, May 14, 2004. General Site Cleanup and Above-Ground Storage Tank Removal, Freisman Ranch Property, Livermore, California.
- SCS Engineers, October 19, 2006. Revised Response to Comments/Workplan, Freisman Ranch Property, 1600 Freisman Road, Livermore, California.
- SCS Engineers, March 7, 2007. Additional Site Investigation Report, Freisman Ranch Property, 1600 Freisman Road, Livermore, California.
- SCS Engineers, April 17, 2007. Workplan Limited Soil Removal/Disposal, , Freisman Ranch Property, 1600 Freisman Road, Livermore, California.
- SCS Engineers, June 6, 2007. Workplan for Additional Groundwater Investigation, Freisman Ranch Property, 1600 Freisman Road, Livermore, California.
- SCS Engineers, October 5, 2007. Limited Soil Removal/Disposal Report, Freisman Ranch Property, 1600 Freisman Road, Livermore, California.

FIGURES

TABLES

Well	Sampling Date	Depth to Water (From T.O.C)	T.O.C. Elevation (USGS Datum)	Groundwater Elevation (USGS Datum)
		(feet)	(ft. above MSL)	(ft. above MSL)
	09/08/97	12.82		357.30
	12/28/98	12.72		357.40
	01/12/99	12.97		357.15
	03/25/99	11.99		358.13
	06/21/99	NM		NC
	09/16/99	NM		NC
	10/16/02	14.27		355.85
KMW-1	01/17/03	11.67	372.53	358.45
	04/15/03	11.08		359.04
	07/21/03	13.23		359.30
	10/30/03	13.85		358.68
	01/12/06	11.47		361.06
	01/21/06	11.67		360.86
	01/09/07	13.18		359.35
	04/18/07	13.06		359.47
	09/08/97	14.28		356.44
	12/28/98	14.08		356.64
	01/12/99	14.32		356.40
	03/25/99	13.19		357.53
	06/21/99	NM		NC
	09/16/99	NM		NC
	10/16/02	*		*
KMW-2	01/17/03	12.77	373.18	357.95
	04/15/03	12.73		357.99
	07/21/03	13.64		359.54
	10/30/03	Dry		Dry
F	01/12/06	12.72	1	360.46
	01/21/06	12.80		360.38
F	01/09/07	14.44	1	358.74
	04/18/07	14.35		358.83

Well	Sampling Date	Depth to Water (From T.O.C)	T.O.C. Elevation (USGS Datum)	Groundwater Elevation (USGS Datum)
		(feet)	(ft. above MSL)	(ft. above MSL)
	09/08/97	12.34		356.76
	12/28/98	12.39		356.71
	01/12/99	15.13		353.97
	03/25/99	11.59		357.51
	06/21/99	NM		NC
	09/16/99	NM		NC
KMW-3	10/16/02	13.69	371.66	355.41
NIVI VV-3	01/17/03	10.85	- 371.00	345.20
	04/15/03	10.16		361.50
	07/21/03	12.59		359.07
	10/30/03	13.19		358.47
	01/12/06	10.44		361.22
	01/09/07	12.63		359.03
	04/18/07	12.50		359.16
	09/08/97	13.76		356.04
	12/28/98	13.76	_	356.04
	01/12/99	14.40	_	355.40
	03/25/99	12.89		356.91
	06/21/99	NM		NC
	09/16/99	NM		NC
	10/16/02	15.92	272.27	353.88
KMW-4	01/17/03	12.17	- 372.37	357.63
	04/15/03	11.90		360.47
	07/21/03	14.55		357.82
	10/30/03	15.40		356.97
	01/12/06	11.80		360.57
	01/09/07	14.20		358.17
	04/18/07	14.12		358.25

Well	Sampling Date	Depth to Water (From T.O.C)	T.O.C. Elevation (USGS Datum)	Groundwater Elevation (USGS Datum)
		(feet)	(ft. above MSL)	(ft. above MSL)
	09/08/97	14.24		355.28
-	12/28/98	14.17	-	355.35
-	01/12/99	15.32	-	354.20
	03/25/99	13.27		356.25
	06/21/99	NM		NC
	09/16/99	NM		NC
KMW-5	10/16/02	16.45	372.40	353.07
	01/17/03	12.60	372.40	356.92
	04/15/03	12.76		359.64
	07/21/03	15.08		357.32
	10/30/03	16.02		356.38
	01/12/06	12.30		360.10
	01/09/07	14.67		357.73
	04/18/07	14.60		357.80
	09/08/97	14.28		355.80
	12/28/98	14.16	-	355.92
	01/12/99	14.47		355.61
	03/25/99	13.22		356.86
	06/21/99	14.56		355.52
	09/16/99	14.29		355.79
-	10/16/02	16.27	-	353.81
KMW-6	01/17/03	12.54	372.76	357.54
	04/15/03	12.56		360.20
	07/21/03	14.82		357.94
	10/30/03	15.85		356.91
	01/12/06	12.41	1	360.35
	01/21/06	12.90		359.86
	01/09/07	14.55	1	358.21
	04/18/07	14.47		358.29

Well	Sampling Date	Depth to Water (From T.O.C)	T.O.C. Elevation (USGS Datum)	Groundwater Elevation (USGS Datum)
		(feet)	(ft. above MSL)	(ft. above MSL)
	12/28/98	12.91		357.13
	01/12/99	13.15	-	356.89
	03/25/99	12.12		357.92
	06/21/99	12.86		357.18
	09/16/99	13.00		357.04
	10/16/02	14.63	-	355.41
	01/17/03	11.77	270 59	358.27
KMW-7	04/15/03	11.31	372.58	361.27
	07/21/03	13.59		358.99
	10/30/03	14.19		358.39
	01/12/06	11.58		361.00
	01/21/06	11.75		360.83
	01/09/07	13.37	-	359.21
	04/18/07	13.23		359.35
	12/28/98	13.37		355.24
	01/12/99	13.70	-	354.91
	03/25/99	12.48		356.13
	06/21/99	13.30		355.31
	09/16/99	13.57		355.04
	10/16/02	15.85	-	352.76
KMW-8	01/17/03	11.87	371.17	356.74
KIVI W -8	04/15/03	12.25	3/1.17	358.92
	07/21/03	14.31		356.86
	10/30/03	15.23		355.94
	01/12/06	11.55		359.62
_	01/21/06	11.85		359.32
	01/09/07	13.79		357.38
	04/18/07	13.72		357.45

Notes:

NC = Not Calculable

 $T.O.C. = Top \ of \ casing. \ All \ measurements \ in \ feet \ relative \ to \ top \ of \ casing.$

Casing elevations surveyed on 3/26/2007 by Morrow Surveying, Inc.

USGS = United States Geological Survey

All wells have 4" ID casing

MSL = Mean Sea Level

Wells KMW-7 and KMW-8 installed on December 23, 1998

* Well obstructed, no water level measurement taken

				Field Param	eter	
Well	Sample Date	pН	EC	Temperature	Turbidity	DO
		pm	mS/cm	°C	NTUs	mg/L
KMW-1	4/18/07	7.03	1.20	15.3	nm	1.61
KMW-2	4/18/07	7.05	1.40	14.7	13	1.14
K 1 v 1 vv -2	4/19/07	7.01	1.40	15.4	29	**
KMW-3	4/18/07	7.16	1.60	15.8	250	1.26
KMW-4	1W-4 4/18/07		1.50	17.0	nm	1.98
KMW-5	4/18/07	7.04	1.50	17.4	110	1.82
	4/19/07	6.85	1.50	16.7	49	**
KMW-6	4/18/07	6.77	1.90	18.8	nm	0.82
	4/19/07	6.60	1.90	18.0	55	**
KMW-7	4/18/07	6.81	1.50	17.2	nm	0.70
N 1 V1 VV - /	4/19/07	6.76	1.50	16.5	23	**
KMW-8	4/18/07	7.04	1.70	16.3	0	1.68
MIVI VV - O	4/19/07	6.90	1.70	15.4	38	**

Table 2Summary of Groundwater Field ParametersFreisman Ranch Property1600 Freisman Road, Livermore, California

Notes:

mS/cm = milliSiemens per centimeter

ORP = Oxidation Reduction Potential

NTU = Nephelometric Turbidity Units

mV = millivolts

mg/L = milligrams per Liter

nm = not measured due to instrument malfunction (visually very clear)

DO = Dissolved Oxygen (measured before purging wells (4/18/07) using down hole sensor).

** = not measured

Table 3 Summary of Groundwater Analytical Results - Groundwater Monitoring Wells

Freisman Ranch Property

1600 Freisman Road, Livermore, California

Well	Sample Date	TPH-D	TPH-G	TPH-SS	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE	n-butyl Benzene	Isopropyl Benzene	1,2- DCA	Naphthalene	n-Propyl Benzene	1,2,4- Trimethyl Benzene	Dissolved Lead
									(µg/L)							
	9/8/1997	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	7.8
	12/28/1998 dup	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	5.9
	3/25/1999	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS 10.5	NS	NS	NA	NA	NA	NA	NA	NA	NS
KMW-1	10/16/2002	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
KIVI W - I	1/17/2003	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	4/15/2003	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	7/21/2003	<50	<50	NA	< 0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	10/30/2003	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	<50	<50	NA	<0.5	<0.5	<0.5	<1.0	.5.0	NA	NA	NA	NA	NA	NA	NA 0.99
	1/21/2006 cs	<50 <50	<50 <50	NA <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <0.5	NA <0.5	NA <0.5	NA <0.5	NA <0.5	NA <0.5	NA <0.5	<0.5
	1/9/2007 4/18/2007	<50 <50	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	9/8/1997	<50	<50	<30 NA	<0.5	<0.5	<0.5	<0.5	< 5.0	×0.5 NA	×0.5 NA	<0.5 NA	<0.5 NA	×0.5 NA	×0.5 NA	<0.5 NA
		<50	<50	NA NA	<0.5	<0.5	<0.5	<0.5		NA	NA	NA	NA	NA	NA	<5.0
	12/28/1998 3/25/1999	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0 <5.0	NA	NA	NA	NA	NA	NA	<5.0 NA
	6/21/1999	NS	NS	NA	<0.5 NS	NS	<0.5 NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/16/2002	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
KMW-2	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
100100 2	7/21/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/30/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	1/12/2006 h2o	55	65	NA	<0.5	<0.5	<0.5	<1.0	1.6	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	5.0
	1/9/2007	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4/18/2007	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4/19/2007	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/8/1997	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	<5.0
	3/25/1999	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/16/2002	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
KMW-3	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	7/21/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/30/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	1/12/2006 h2o	<50	<50	NA	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	NA	NA	NA	NA	NA	NA	NA
	1/9/2007	<50	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5
	4/18/2007	<50	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Table 3 Summary of Groundwater Analytical Results - Groundwater Monitoring Wells

Freisman Ranch Property

1600 Freisman Road, Livermore, California

Well	Sample Date	TPH-D	TPH-G	TPH-SS	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE	n-butyl Benzene	Isopropyl Benzene	1,2- DCA	Naphthalene	n-Propyl Benzene	1,2,4- Trimethyl Benzene	Dissolved Lead
									(µg/L)							
	9/8/1997	<50	<50	NA	<0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	7.5
	3/25/1999	<50	<50	NA	<0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/16/2002	<50	<50	NA	<0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
KMW-4	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	7/21/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/30/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	1/12/2006 h2o	<50	<50	NA	<0.5	< 0.5	< 0.5	<1.0	< 0.5	NA	NA	NA	NA	NA	NA	NA
	1/9/2007	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4/18/2007	<50	<50	<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
	9/8/1997	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	9/8/1997 dup	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	8.5
	3/25/1999	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
10.001.5	10/16/2002	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
KMW-5	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	7/21/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/30/2003	NS	NS 89	NA	NS	NS	NS 2	NS	NS 10.5	NA	NA	NA	NA	NA	NA	NS
	1/12/2006 h2o	<50		NA	<0.5	<0.5		<1.0	<0.5	NA	NA	NA 10.5	NA	NA	NA	NA
	1/9/2007 4/18/2007	<50 <50	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	4/18/2007	<50 <50	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
			13,000, a		250		<0.3 560	<0.5 490		<0.5 NA	×0.5 NA		<0.3 140		<0.5 NA	<0.5 NA
	9/8/1997 12/28/1998	3,200, d 1,800, d	13,000, a 3,200, a	NA NA	250	14 3.6	140	490 90	<150 <50	NA	NA	NA NA	140	NA NA	NA	NA 15
	3/26/1999	1,800, d	3,200, a 7,000, a	NA	80 160	5.0	270	200	<100	NA	NA	NA	130	NA	NA	<5.0
	3/26/1999 dup	1,700, d,b	7,000, a 6,700, a	NA	100	6.5	270	200	<100	NA	NA	NA	100	NA	NA	<5.0 NA
	6/21/1999 dup	1,700, d,b 1,500, d,b	0,700, a 3,800, a	NA	170	<0.5	270	160	<100	NA	NA	NA	200	NA	NA	<5.0
	9/16/1999	1,500, u,b 1,900, d	5,000, a 7,100, a	NA	230	9.8	300	210	<120	NA	NA	NA	NA	NA	NA	<5.0
	10/16/2002	1,500, d	4,600, a	NA	100	8.4	190	110	<50	NA	NA	NA	NA	NA	NA	NA
	10/16/2002 dup	1,000, d	4,000, a 5,100, a	NA	110	10	210	110	<50	NA	NA	NA	NA	NA	NA	NA
	1/17/2003	2,100, d	5,700, a	NA	87	4.3	170	100	<25	NA	NA	NA	NA	NA	NA	NA
	1/17/2003 dup	2,100, d 1,900, d	5,700, a 5,800, a	NA	89	6.4	180	100	<25	NA	NA	NA	NA	NA	NA	NA
KMW-6	4/15/2003	1,500, u 110, d	390, a	NA	7.4	0.58	8.5	6.1	<5.0	NA	NA	NA	NA	NA	NA	NA
	4/15/2003 dup	100, d	270, a	NA	4.2	0.51	5.6	3.0	<5.0	NA	NA	NA	NA	NA	NA	NA
	7/21/2003	1,600, d	4,300, a	NA	89	3.0	130	70	<17	NA	NA	NA	NA	NA	NA	NA
	7/21/2003 dup	1,500, d	4,600, a	NA	83	5.2	130	72	<25	NA	NA	NA	NA	NA	NA	NA
	10/30/2003	310, d	700, a	NA	23	1.1	8.0	8.3	<5.0	NA	NA	NA	NA	NA	NA	NA
	10/30/2003 dup	350, d	750, a	NA	24	1.3	8.5	8.8	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	630	2,200	NA	21	33	<2.0	18	<2.0	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	1500, d	4000, a	NA	38	<5.0	77	43	<50	NA	NA	NA	77	NA	NA	2.0
	1/9/2007	53, d	180, a	70	3.1	<0.5	1.9	0.65	< 0.5	0.6	1.1	0.72	3.2	1.8	< 0.5	<0.5
	4/18/2007	<50	86, m	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	0.59	<0.5	<0.5	<0.5
	4/19/2007	1,100, d	2,700, a	890	35	<5.0	52	23	<5.0	21	25	<5.0	110	86	<5.0	<0.5

Table 3 Summary of Groundwater Analytical Results - Groundwater Monitoring Wells

Freisman Ranch Property

1600 Freisman Road, Livermore, California

Well	Sample Date	TPH-D	TPH-G	TPH-SS	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE	n-butyl Benzene	Isopropyl Benzene	1,2- DCA	Naphthalene	n-Propyl Benzene	1,2,4- Trimethyl Benzene	Dissolved Lead
			(µg/L)													
	12/28/1998	1,000, d,h	9,100, a,h	NA	23	17	190	700	<70	NA	NA	NA	110	NA	NA	38
	3/25/1999	1,200 d,b	4,300, a,h	NA	19	16	56	270	<70	NA	NA	NA	23	NA	NA	22
	6/21/1999	1,300, d,b	1,300, a	NA	6.5	< 0.5	21	62	<5.0	NA	NA	NA	27	NA	NA	<5.0
	6/21/1999 dup	1,200, d	2,000, a	NA	6.4	6.7	24	76	<5.0	NA	NA	NA	17	NA	NA	NA
	9/16/1999	1,100, d	950, a	NA	3.3	2	19	33	<10	NA	NA	NA	NA	NA	NA	<10
	10/16/2002	480, d	270, a	NA	1.3	< 0.5	4	15	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/17/2003	610, d	1,100, a	NA	7.8	1.3	24	84	<10	NA	NA	NA	NA	NA	NA	NA
KMW-7	4/15/2003	350, d	880, a	NA	7.1	0.69	4.4	52	<5.0	NA	NA	NA	NA	NA	NA	NA
	7/21/2003	830, n	1,500, e/g, a	NA	2.8	< 0.5	8.3	28	<5.0	NA	NA	NA	NA	NA	NA	NA
	10/30/2003	100, d	150, a	NA	0.54	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	61	230	NA	0.51	< 0.5	< 0.5	2.8	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	320#	530	NA	2.5	< 0.5	8.1	26	< 0.5	NA	NA	NA	6.1	NA	NA	2.9
	1/9/2007	84, d	330, a	110	< 0.5	< 0.5	0.57	3.2	< 0.5	< 0.5	< 0.5	< 0.5	0.72	< 0.5	1.3	< 0.5
	4/18/2007	<50	170, m	96	0.6	< 0.5	< 0.5	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	< 0.5
	4/19/2007	290, d	720, a	490	3.3	< 0.5	12	33	< 0.5	1.8	3.6	< 0.5	11	7.7	32	< 0.5
	12/28/1998	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	12
	3/25/1999	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA
	9/16/2002	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA
	10/16/2002	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/17/2003	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
KMW-8	4/15/2003	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
IXIVI VV-O	7/21/2003	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	10/30/2003	<50	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	52	58	NA	< 0.5	< 0.5	0.71	<1.0	< 0.5	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	<50	<50	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	6.1
	1/9/2007	<50	<50	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5
	4/18/2007	<50	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	4/19/2007	<50	<50	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
TAP Sample	4/15/2003	NA	<50	NA	<0.5	< 0.5	< 0.5	< 0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
1S/1E/2P3 (well)	1/9/2007	<50	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
E	SL	100	100	100	1.0	40	30	20	5	NE	NE	0.5	17	NE	NE	2.5

Notes:

TPH-D Total Petroleum Hydrocarbons as Diesel

TPH-G Total Petroleum Hydrocarbons as Gasoline

TPH-SS Total Petroleum Hydrocarbons as Stoddard Solvent

MTBE Methyl Tertiary-Butyl Ether

μg/L Micrograms per Liter (approx. equal to parts per billion)

<0.5 Not detected at or above the laboratory method reporting limit

a Unmodified or weakly modified gasoline is significant

b Diesel range compounds are significant; no recognizable pattern

TAP Sample collected from the on-site water supply well

h2o Sampling conducted by H2OGEOL

ND Not Detected

1,2-DCA 1,2-Dichloroethane

ESL Environmental Screening Level for groundwater that is a current or potential source of drinking water - San Francisco Bay Regional Water Quality Control Board, Interim Final - February 2005.

Consolidated Engineering also analyzed groundwater samples for semivolatile organic compounds by EPA Method 8270D. See their report for details.

Gasoline range compounds are significant

TPH pattern that does not appear to be derived from gasoline

Kerosene and jet fuel range compounds (possibly stoddard solvent/mineral spirit)

g strongly aged gasoline or diesel range compounds are significant

h Lighter than water immiscible sheen is present

n stoddard solvent/mineral spirit

m No recognizable pattern

NA Not analyzed

d

e

#

NS Not Sampled

cs Sampling conducted by Consolidated Engineering

NE Not Established

Table 4 Summary of Groundwater Sample Analytical Results - CPT Investigation Freisman Ranch Property 1600 Freisman Road, Livermore, California

Boring	Sample Depth	Benzene	n-Butyl benzene	sec-Butyl benzene	1,2-DCA	Ethyl- benzene	Isopropyl- benzene	Naphthalene	n-Propyl- benzene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Xylenes	TPHg	TPHss	TPHd	Dissolved Lead
	(feet)						EPA Metho	d 8260B					EPA	Method 8	015C	E200.8
									μg/L				-			
PH-1	24	5.1	13	6.1	<5.0	36	24	38	63	110	30	23	2,200	1,500	1,000	1.5
111-1	63	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<0.5
PH-2	29	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	2.2
111-2	51	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<0.5
PH-3	23	<0.5	<0.5	<0.5	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<0.5
111-5	85	<0.5	<0.5	<0.5	<0.5	0.61	<0.5	<0.5	<0.5	0.57	<0.5	<0.5	<50	<50	<50	<0.5
E:	SL	1.0	NE	NE	0.5	30	NE	17	NE	NE	NE	20	100	100	100	2.5

Notes:

Samples collected on August 21 through August 23, 2007

 $\mu g/L$ = micrograms per liter (or parts per billion; ppb)

NE = Not Established

TPHg = total petroleum hydrocarbons as gasoline

TPHss = TPH as stoddard solvent

TPHd = TPH as diesel fuel

ESL = Environmental Screening Level for groundwater in deep soil (greater than 3 meters) that is a current or potential source of drinking water - San Francisco Bay Regional Water Quality Control Board, Interim Final - February 2005.

Table 5
Summary of Soil Sample Analytical Results - CPT Investigation
Freisman Ranch Property
1600 Freisman Road, Livermore, California

Boring	Sample Depth	MEK	n-Butyl benzene	sec-Butyl benzene	Ethyl- benzene	Isopropyl- benzene	Naphthalene	n-Propyl benzene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Xylenes	TPHg	TPHss	TPHd	Lead
	(feet)					EPA	Method 8	EPA Method 6010C							
			mg/kg												-
PH-1	19	<4.1	8.0	1.4	4.9	1.8	3.5	7.2	12	12	<1.0	990	420	360	8.1
1 11-1	57	< 0.02	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	<1.0	<1.0	<1.0	5.9
PH-2	25	< 0.016	< 0.0039	< 0.0039	< 0.0039	< 0.0039	<0.0039	< 0.0039	<0.0039	<0.0039	< 0.0039	<1.0	<1.0	<1.0	6.3
111-2	48	< 0.0017	< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0041	<0.0041	< 0.0041	< 0.0041	<1.0	<1.0	<1.0	5.5
PH-3	17	0.67	0.65	0.12	0.75	0.16	0.30	0.66	2.3	0.87	0.88	120	44	20	7.6
111-5	78	< 0.017	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	<1	<1	<1	7.7
ESL (re	sidential)	3.9	NE	NE	3.3	NE	0.46	NE	NE	NE	2.3	100	100 100		750

Notes:

Samples collected on August 21 through August 23, 2007

mg/kg = milligrams per kilogram (or parts per million; ppm)

NE = Not Established

TPHg = total petroleum hydrocarbons as gasoline

TPHss = TPH as stoddard solvent

TPHd = TPH as diesel fuel

MEK = methyl ethyl ketone

ESL = Environmental Screening Level for deep soil (greater than 3 meters) at sites located above groundwater that is a current or potential source of drinking water - San Francisco Bay Regional Water Quality Control Board, Interim Final - February 2005.

APPENDIX A

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION (4/18/2007)

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01203087.02; Freisman	Date Sampled: 04/18/07
6601 Koll Center Pkwy, Ste 140	Ranch 1600 Freisman Road	Date Received: 04/18/07
Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 04/24/07
	Client P.O.:	Date Completed: 04/24/07

WorkOrder: 0704375

April 24, 2007

Dear Steve:

Enclosed are:

- 1). the results of 10 analyzed samples from your #01203087.02; Freisman Ranch 1600 Freisman Road project,
- 2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

SCS F	ENGINEERS EI	And in case of the second s	and the second se	Contraction of the local division of the loc	OF CUSTOD				ANAL	YSES	REQUES	TED	Τ	LAB US
303 L				Suntainto	PAGE /	OF /			T				T^+	ONLY
	Coll Center Parkway	92	25 426-0080	-	/	/	-	5						
Suite 1 Pleasar	40 nton, CA 94566	FA	X 925 426-070 ww.scsengineers			IME REQUIRED: Nor mo		5						
						-DayImmediate	Other	0	-					
	UMBER: 012030		-			GER: S. Clements		5	iead					
	AME: Freisman			Road	W.O. / S.O. #:			t S	1					
PROJECT L	OCATION: Liver,	nore, c	9	\bigcirc	0.			toT CO	Disselved					
SAMPLER N	IAME AND SIGNATURE	: TE	asison	1 At	×F)			24	Sel					
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCTIONS/COM	MENTS	801	Dis					
	KMW-1	1+20	4-18-07	1 Am L 4 VOAS	Hep			\geq	K	-				
	KMW-2		1				1	\geq	\leq					
	KMW-3							>	\leq					
	KmW-Y							>	$\overline{\langle}$					
	Kmw-5							>	$\langle \rangle$	~				
	Kmw-6							>	<					
	Kmw-7							\geq	<					
	KMW-8							\rightarrow	\mathbf{K}					
	Kmw -7 Dur						Ĩ	\sum	K					
	QCTB		V	V	V			X	R	T	un 8	240	-du	mend
							Ī	10	\square					4/9/0
						50								
					I	E/te								
				V	H D		CONTAIN PRESERV	ERS	4					0
IOTES:					P		METALS	OTHER	AB	SA	MPLE CO	NDITION	UPON R	ECEIPT:
IOTES:					P.		and the second se	OTHER	AB	SA	MPLE CO	NDITION	UPON R	ECEIP
ELINQUISHED B	DATE DATE	18/07	RECEIVED BY: Sau R.		DATE: 4/18/07	Sau R.	DATE:	alt	98	IVED BY:	Jali	\$	DATE:	1810
OMPANY:	S TIME		Enviro-Te	ila	TIME: 1622	ENVIVO-Tech	TIME:	61	COMF	ANY	/	/	TIME:	951

McCampbell Analytical, Inc.

	J	Ū,
6	D	ł
1	-4	2
	1	-

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262					Work	Order:	07043	375	C	lientII): SCS	SD				
				EDF	Ľ	Excel	[Fax	Ŀ	🖌 Email		Har	dCopy	🗌 Thi	irdParty		
Report to:							Bill t						Re	queste	d TAT:	5 (days
Steve Clements SCS Engineers 6601 Koll Center	r Dkuny Sto 140	Email: TEL: ProjectNo:	sclements@s (925) 426-008	-			SC	counts S Engi 01 Koll	neers		Sto 11	2	Da	te Rec	eived	04/18/	2007
Pleasanton, CA		PO:	#01203087.0	z, rieisillali Kali		0		easanto		•	516 140)				04/19/	
									Req	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0704375-001	KMW-1		Water	4/18/2007		В	А	С	С								
0704375-002	KMW-2		Water	4/18/2007		В	А	С	С								
0704375-003	KMW-3		Water	4/18/2007		В	А	С	С								
0704375-004	KMW-4		Water	4/18/2007		В	А	С	С								
0704375-005	KMW-5		Water	4/18/2007		В	А	С	С								
0704375-006	KMW-6		Water	4/18/2007		В	А	С	С								
0704375-007	KMW-7		Water	4/18/2007		В	А	С	С								
0704375-008	KMW-8		Water	4/18/2007		В	А	С	С								
0704375-009	KMW-7 DUP		Water	4/18/2007		В	А	С	С								
0704375-010	QCTB		Water	4/18/2007		В									1		1

Test Legend:

1 8260B_W	2 G-MBTEX_W	3 PBMS_DISS	4 PRDISSOLVED	5
6	7	8	9	10
11	12			

The following SampIDs: 0704375-001A, 0704375-002A, 0704375-003A, 0704375-004A, 0704375-005A, 0704375-006A, 0704375-007A, 0704375-008A, 0704375-009A contain testgroup.

Prepared by: Sheli Cryderman

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

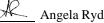
McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	SCS Engineers			Date and	d Time Received:	4/18/2007	8:18:56 PM
Project Name:	#01203087.02; Freisman Ranch 16	00 Fre	eisman Ro	Checklis	st completed and i	reviewed by:	SC
WorkOrder N°:	0704375 Matrix <u>Water</u>			Carrier:	<u>EnviroTech</u>		
	Chair	n of Cu	stody (COC) Informati	ion		
Chain of custody	present?	Yes	\checkmark	No 🗆			
Chain of custody	signed when relinquished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample labels?	Yes		No 🗌			
Sample IDs note	by Client on COC?	Yes		No 🗆			
Date and Time o	collection noted by Client on COC?	Yes		No 🗆			
Sampler's name	noted on COC?	Yes		No 🗆			
	s	ample	Receipt Inf	ormation			
Custody seals in	- tact on shippping container/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good condition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?	Yes		No 🗆			
Sample containe	rs intact?	Yes		No 🗆			
Sufficient sample	e volume for indicated test?	Yes		No 🗹			
	Sample Prese	ervatio	n and Hold 1	Гime (HT) I	Information		
All samples rece	ived within holding time?	Yes		No 🗌			
	Blank temperature	Coole	er Temp:			NA 🗹	
·	ls have zero headspace / no bubbles?	Yes			No VOA vials subm	nitted 🗌	
	necked for correct preservation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<2)?	Yes		No 🗆		N 🔽	

Client contacted:

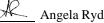
Date contacted:


Contacted by:

Comments:

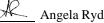
<u> McCampbell A</u>	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA			
"When Ouali	itv Counts"			Telephone	877-252-9262 Fax: 92	25-252-9269		
SCS Engineers				203087.02;	Date Sampled:	04/18/07		
((01 K) 11 ()	Freisman	Ranch	n 1600 F	Freisman Road	Date Received:	04/18/07		
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (Clements	Date Extracted:	04/19/07		
Pleasanton, CA 94566	Client P.	D.:			Date Analyzed	04/19/07		
	Valatila Organi)ет	LCC/MS (Decis 7	-			
	_	-		d GC/MS (Basic 7	larget List)*	W. 1 0 1 07040		
Extraction Method: SW5030B	Ai	nalytical	Method:			Work Order: 07043	/5	
Lab ID					75-001B			
Client ID					W-1			
Matrix				W	ater			
Compound	Concentration *	DF	Reporting Limit	Compor	ınd	Concentration *	DF	Report Lim
Acetone	ND	1.0	10	Acrolein (Propena	1)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorome	thane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T	BA)	ND	1.0	5.
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vin	yl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-ch	loropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze		ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom		ND	1.0	0.5
1,1-Dichloroethane	ND	1.0 1.0	0.5	1,2-Dichloroethan		ND ND	1.0 1.0	0.:
1,1-Dichloroethene	ND	1.0		cis-1,2-Dichloroet				
trans-1,2-Dichloroethene 1,3-Dichloropropane	ND ND	1.0	0.5	1,2-Dichloropropa 2,2-Dichloropropa		ND ND	1.0 1.0	0.5
1.1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropa		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether		ND	1.0	0.
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl et		ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.4
Hexachloroethane	ND	1.0	0.5	2-Hexanone	lie	ND	1.0	0.
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	<u> </u>	ND	1.0	0.
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.:
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.
Toluene	ND	1.0	0.5	1,2,3-Trichlorober		ND	1.0	0.
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.:
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro	opane	ND	1.0	0.
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbe	nzene	ND	1.0	0.
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.
		Surr	ogate Re	ecoveries (%)				
%SS1:	102			%SS2:		98		
%SS3:	106							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

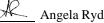
<u>McCampbell A</u>	Analytical, In	<u>c.</u>		Web: www.mccan	Pass Road, Pittsburg, CA	n@mccampbell.com		
"When Oua	litv Counts"			Telephone	: 877-252-9262 Fax: 92	25-252-9269		
SCS Engineers				203087.02;	Date Sampled:	04/18/07		
(CO1 Kall Canter Diana Sta 140	Freisman	Ranch	n 1600 F	Freisman Road	Date Received:	04/18/07		
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (Clements	Date Extracted:	04/19/07		
Pleasanton, CA 94566	Client P.	D.:			Date Analyzed	04/19/07		
	Valatila Organi)ет	LCCME (Desis 7	-			
	_	-		d GC/MS (Basic 7	l arget List)*			
Extraction Method: SW5030B	Ai	nalytical	Method:			Work Order: 07043	/5	
Lab ID					75-002B			
Client ID					IW-2			
Matrix				W	ater			
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Report Lim
Acetone	ND	1.0	10	Acrolein (Propena	1)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl		ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorome	thane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T	BA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vin	yl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	1	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-ch	loropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND	1.0 1.0	0.5	Dibromomethane 1,3-Dichlorobenze		ND ND	1.0 1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom		ND	1.0	0.
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethan		ND	1.0	0.
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroet		ND	1.0	0.
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5
1.1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropt		ND	1.0	0.5
				1			1.0	0.
				1			1.0	0.5
Freon 113	ND	1.0	10	1		ND	1.0	0.
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	ie	ND	1.0	0.:
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	e	ND	1.0	0.:
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	roethane	ND	1.0	0.
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.
Toluene	ND	1.0	0.5			ND	1.0	0.
HexachloroethaneND1.00.52-HexanoneNDIsopropylbenzeneND1.00.54-Isopropyl tolueneNDMethyl-t-butyl ether (MTBE)ND1.00.5Methylene chlorideND4-Methyl-2-pentanone (MIBK)ND1.00.5NaphthaleneNDNitrobenzeneND1.010n-Propyl benzeneNDStyreneND1.00.51,1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1.00.5TetrachloroetheneNDFolueneND1.00.51,2,3-TrichlorobenzeneND1,2,4-TrichlorobenzeneND1.00.51,1,1-TrichloroethaneND			1.0	0.5				
1,1,2-Trichloroethane							1.0	0.
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbe	nzene	ND	1.0	0.
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.
			ogate Re	coveries (%)				
%SS1:	103			%SS2:		99		
%SS3:	107							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

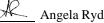
<u>McCampbell A</u>		<u>c.</u>		Web: www.mccan	Pass Road, Pittsburg, CA	n@mccampbell.com		
"When Oual	itv Counts"			Telephone	877-252-9262 Fax: 92	25-252-9269		
SCS Engineers	Client Pr	oject II	D: #012	203087.02;	Date Sampled:	04/18/07		
	Freisman	Ranch	n 1600 F	Freisman Road	Date Received:	04/18/07		
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (Clements	Date Extracted:	04/20/07		
Pleasanton, CA 94566	Client P.				Date Analyzed			
			о т					
	_	-		d GC/MS (Basic 7	arget List)*			
Extraction Method: SW5030B	Aı	nalytical	Method:	SW8260B		Work Order: 07043	75	
Lab ID					75-003B			
Client ID				KM	W-3			
Matrix				W	ater			
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reportin Limit
Acetone	ND	1.0	10	Acrolein (Propena	1)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	<i>.</i>	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T	BA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vin	yl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-ch	oropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze		ND	1.0	0.5
1,4-Dichlorobenzene	ND ND	1.0 1.0	0.5	Dichlorodifluorom		ND	1.0 1.0	0.5
1,1-Dichloroethane 1,1-Dichloroethene	ND	1.0	0.5	1,2-Dichloroethan cis-1,2-Dichloroet		ND ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5
1.1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropr		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether	•	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl et		ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorober	izene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbe	nzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5
	1	Surr	ogate Re	coveries (%)		1		
%SS1:	102			%SS2:		98		
%SS3:	106							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

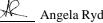
<u>McCampbell A</u>	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA pbell.com E-mail: main			
"When Oual	itv Counts"			Telephone:	877-252-9262 Fax: 92	5-252-9269		
SCS Engineers				203087.02;	Date Sampled:	04/18/07		
6601 Koll Center Pkwy, Ste 140	Freisman	Rancr	1 1600 P	Freisman Road	Date Received:	04/18/07		
	Client C	ontact:	Steve (Clements	Date Extracted:	04/20/07		
Pleasanton, CA 94566	Client P.	O.:			Date Analyzed	04/20/07		
	Volatile Organi	cs by P	P&T and	d GC/MS (Basic T	'arget List)*			
Extraction Method: SW5030B	Aı	nalytical l	Method:	SW8260B		Work Order: 07043	75	
Lab ID				070437	5-004B			
Client ID				KM	W-4			
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compou	ind	Concentration *	DF	Reportin Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TH	BA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Viny	l Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzen		ND	1.0	0.5
1,4-Dichlorobenzene	ND ND	1.0 1.0	0.5	Dichlorodifluorom		ND	1.0 1.0	0.5
1,1-Dichloroethane 1,1-Dichloroethene	ND	1.0	0.5	1,2-Dichloroethane		ND ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluend	e	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber	nzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5
			ogate Re	coveries (%)				
%SS1:	103			%SS2:		99		
%SS3:	110							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

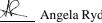
<u>McCampbell A</u>	Analytical, In	<u>c.</u>		Web: www.mccan	Pass Road, Pittsburg, CA	n@mccampbell.com			
"When Oual	litv Counts"			Telephone	877-252-9262 Fax: 92	5-252-9269			
SCS Engineers				203087.02;	Date Sampled:	04/18/07			
((01 K-1) ()	Freisman	Ranch	n 1600 F	Freisman Road	Date Received:	04/18/07			
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (eve Clements Date Extracted: 04/20/07					
Pleasanton, CA 94566	Client P.	D.:			Date Analyzed	04/20/07			
	Valatila Organi)ет	A CC/MS (Desite 7					
	_	-		d GC/MS (Basic T	arget List)*				
Extraction Method: SW5030B	Ai	nalytical	Method:			Work Order: 07043	75		
Lab ID					75-005B				
Client ID					W-5				
Matrix			-	W	ater	1	1	-	
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporti Limi	
Acetone	ND	1.0	10	Acrolein (Propena	1)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T)	BA)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vin	yl Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-ch	ND	1.0	0.5		
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND	1.0 1.0	0.5	Dibromomethane 1,3-Dichlorobenze		ND ND	1.0 1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethan		ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroet		ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5	
1.1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropr		ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether	•	ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl et		ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorober		ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbe	nzene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5	
			ogate Re	ecoveries (%)					
%SS1:	102			%SS2:		98			
%SS3:	109								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

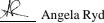
<u>McCampbell A</u>	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA pbell.com E-mail: main						
"When Oual	itv Counts"				877-252-9262 Fax: 92						
SCS Engineers		•		03087.02;	Date Sampled:	04/18/07					
6601 Koll Center Pkwy, Ste 140	Freisman	Ranch	1 1600 F	reisman Road	Date Received:	04/18/07					
	Client Co	ontact:	Steve (Clements	04/20/07						
Pleasanton, CA 94566	Client P.	D.:			Date Analyzed	04/20/07					
	Volatile Organi	cs by P	P&T and	d GC/MS (Basic T	'arget List)*						
Extraction Method: SW5030B	Ai	nalytical l	Method:	SW8260B		Work Order: 07043	75				
Lab ID		0704375-006B									
Client ID		KMW-6									
Matrix				Wa	ater						
Compound	Concentration *	DF	Reporting Limit	Compou	ind	Concentration *	DF	Reportin Limit			
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TH	BA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Viny	l Ether	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND ND	1.0 1.0	0.5	Dibromomethane		ND ND	1.0	0.5			
1,2-Dichlorobenzene		1.0	0.5	1,3-Dichlorobenzer Dichlorodifluorom			1.0 1.0	0.5			
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	1.0	0.5	1,2-Dichloroethane		ND ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroeth		ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluend	e	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		0.59	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor		ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber	nzene	ND	1.0	0.5			
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5			
			ogate Re	coveries (%)							
%SS1:	102			%SS2:		99					
%SS3:	108			1							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

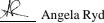
<u>McCampbell A</u>	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA						
"When Ouali	tv Counts"			Telephone:	877-252-9262 Fax: 92	5-252-9269					
SCS Engineers				03087.02;	Date Sampled:	04/18/07					
6601 Koll Center Pkwy, Ste 140	Freisman	Ranci	1 1000 F	reisman Road	04/18/07						
•	Client Co	ontact:	Steve (teve Clements Date Extracted: 04/20/07							
Pleasanton, CA 94566	Client P.	D.:			Date Analyzed	04/20/07					
	Volatile Organi	cs by P	P&T and	d GC/MS (Basic T	arget List)*						
Extraction Method: SW5030B	Ar	nalytical l	Method:	SW8260B		Work Order: 07043	75				
Lab ID		0704375-007B									
Client ID		KMW-7									
Matrix				Wa	ter						
Compound	Concentration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reportin Limit			
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5			
Benzene	0.60	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	nane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Viny	l Ether	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5				
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzen		ND	1.0	0.5			
1,4-Dichlorobenzene	ND ND	1.0 1.0	0.5	Dichlorodifluorome		ND	1.0 1.0	0.5			
1,1-Dichloroethane 1,1-Dichloroethene	ND	1.0	0.5	1,2-Dichloroethane cis-1,2-Dichloroeth		ND ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropar		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropar		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadien		ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone	-	ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	oethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ine	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5				
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop		ND	1.0	0.5			
1,2,4-Trimethylbenzene	1.1	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5			
Vinvl Chloride	ND	1.0	0.5	Xvlenes		1.2	1.0	0.5			
		Surre	ogate Re	coveries (%)		1					
%SS1:		%SS2:		99							
%SS3:	107										

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

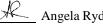
<u>McCampbell A</u>	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA pbell.com E-mail: main						
"When Ouali	tv Counts"			Telephone:	877-252-9262 Fax: 92	25-252-9269					
SCS Engineers		•		03087.02;	Date Sampled:	04/18/07					
6601 Koll Center Pkwy, Ste 140	Freisman	Rancr	1 1600 P	reisman Road	Date Received:	04/18/07					
•	Client C	ontact:	Steve (eve Clements Date Extracted: 04/20/07							
Pleasanton, CA 94566	Client P.	O.:			Date Analyzed	04/20/07					
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic T	'arget List)*						
Extraction Method: SW5030B	Aı	nalytical	Method:	SW8260B		Work Order: 07043	75				
Lab ID				070437	5-008B						
Client ID		KMW-8									
Matrix				Wa	ıter						
Compound	Concentration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reportin Limit			
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TE	BA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Viny	l Ether	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5				
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzer		ND	1.0	0.5			
1,4-Dichlorobenzene	ND ND	1.0 1.0	0.5	Dichlorodifluorome		ND	1.0 1.0	0.5			
1,1-Dichloroethane 1,1-Dichloroethene	ND	1.0	0.5	1,2-Dichloroethane cis-1,2-Dichloroeth		ND ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (•	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadier		ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	9	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	oethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5				
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber	izene	ND	1.0	0.5			
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5			
			ogate Re	coveries (%)							
%SS1:	103			%SS2:		99					
%SS3:	107			1							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell A</u>	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA pbell.com E-mail: mair				
"When Oualit	tv Counts"			Telephone	877-252-9262 Fax: 92	5-252-9269			
SCS Engineers				03087.02;	Date Sampled:	04/18/07			
6601 Koll Center Pkwy, Ste 140	Freisman	Ranch	n 1600 F	reisman Road	Date Received:	04/18/07			
0001 Kon Center I Kwy, Ste 140	Client Co	ontact:	Steve (Clements	Date Extracted:	04/20/07			
Pleasanton, CA 94566	Client P.0	D.:			Date Analyzed	04/20/07			
	Volatile Organi	cs hv P							
Extraction Method: SW5030B	_	-		SW8260B	anger List)	Work Order: 07043	75		
Lab ID					75-009B				
Client ID				0.0.0	-7 DUP				
Matrix					ater				
			Reporting					Reportir	
Compound	Concentration *	DF	Limit	Compoi	ind	Concentration *	DF	Limit	
Acetone	ND	1.0	10	Acrolein (Propena)		ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	ether (TAME)	ND	1.0	0.5	
Benzene	0.57	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T	BA)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		0.61	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	1.5.1	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vin	yl Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-ch	ND	1.0	0.5		
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND	1.0	0.5	Dibromomethane 1,3-Dichlorobenze		ND ND	1.0	0.5	
•		1.0		Dichlorodifluorom					
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	1.0	0.5	1,2-Dichloroethan		ND ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroet		ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropr		ND	1.0	0.5	
trans-1.3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether		ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl et		ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorober	ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro	opane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	1.0	1.0	0.5	1,3,5-Trimethylbe	nzene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes		1.2	1.0	0.5	
		Surre	ogate Re	coveries (%)					
%SS1:	102			%SS2:		99			
%SS3:									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell A</u>		<u>c.</u>		Web: www.mccan	Pass Road, Pittsburg, CA	n@mccampbell.com					
"When Oual	litv Counts"			Telephone	: 877-252-9262 Fax: 92	25-252-9269					
SCS Engineers				203087.02;	Date Sampled:	04/18/07					
	Freismar	n Ranch	n 1600 F	Freisman Road	Date Received: 04/18/07						
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (Clements	Date Extracted:	04/20/07					
Pleasanton, CA 94566	Client P.	0.:			04/20/07						
			ют		-						
	-	•		d GC/MS (Basic 7	larget List)*						
Extraction Method: SW5030B	Ai	nalytical	Method:	SW8260B		Work Order: 07043	75				
Lab ID		0704375-010B									
Client ID		QCTB									
Matrix		1		W	ater	1					
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Report Lim			
Acetone	ND	1.0	10	Acrolein (Propena	1)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	/	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichlorome	thane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T	BA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.:			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vin	ND	1.0	1.0				
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5				
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5				
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-ch	ND	1.0	0.5				
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze		ND	1.0	0.5			
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	1.0 1.0	0.5	Dichlorodifluorom 1,2-Dichloroethan		ND ND	1.0 1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroet		ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1.3-Dichloropr		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether		ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl et		ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.4			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.:			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.4			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5				
Toluene	0.58	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ND	1.0	0.5				
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5				
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbe	nzene	ND	1.0	0.5			
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.			
			ogate Re	coveries (%)							
%SS1:	103			%SS2:		99					
%SS3:	109)									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Campbell Analyti	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
SCS Engineers		Client Project ID:		Date Sampled: 04/	18/07				
6601 Koll Cente	er Pkwy, Ste 140	Freisman Ranch I	600 Freisman Road	Date Received: 04/	18/07				
Pleasanton, CA	94566	Client Contact: S	teve Clements	Date Extracted: 04/	19/07-04/	20/07			
		Client P.O.:		Date Analyzed 04/	19/07-04/	20/07			
	line (C6-C12) Stoddard Sol		-						
Extraction method: S			ods: SW8015Cm		k Order: 0'				
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS			
0704375-001A	KMW-1	W	ND	ND	1	99			
0704375-002A	KMW-2	W	ND	ND	1	97			
0704375-003A	KMW-3	W	ND	ND	1	95			
0704375-004A	KMW-4	W	ND	ND	1	95			
0704375-005A	KMW-5	W	ND	ND	1	97			
0704375-006A	KMW-6	W	86,m	ND	1	103			
0704375-007A	KMW-7	W	130,m	85	1	103			
0704375-008A	KMW-8	W	ND	ND	1	101			
0704375-009A	KMW-7 DUP	W	170,m	96	1	95			
Repo	orting Limit for DF =1;	W	50	50	μ	g/L			
	neans not detected at or ove the reporting limit	S	NA	NA		/Kg			

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

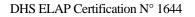
<u>McC</u>	ampbell Analyti	cal, Inc.		534 Willow Pass Road, Pittsburg, Ca www.mccampbell.com E-mail: mai Telephone: 877-252-9262 Fax: 92				
SCS Engineers 6601 Koll Center F		Client Project ID Freisman Ranch		; Date Sampled:	Date Sampled:04/18/07Date Received:04/18/07			
Pleasanton, CA 94	1566	Client Contact: Client P.O.:	Steve Clements	Date Extracted: Date Analyzed	Date Extracted: 04/18/07			
Estantian method. E200		Lead b	y ICP-MS*		10.1275			
Extraction method E200.	Client ID	Matri	x Extraction	Lead	Work Order: 07	% SS		
0704375-001C	KMW-1	W	DISS.	ND	1	N/A		
0704375-002C	KMW-2	w	DISS.	ND	1	N/A		
0704375-003C	KMW-3	W	DISS.	ND	1	N/A		
0704375-004C	KMW-4	W	DISS.	ND	1	N/A		
0704375-005C	KMW-5	w	DISS.	ND	1	N/A		
0704375-006C	KMW-6	w	DISS.	ND	1	N/A		
0704375-007C	KMW-7	W	DISS.	ND	1	N/A		
0704375-008C	KMW-8	W	DISS.	ND	1	N/A		
0704375-009C	KMW-7 DUP	W	DISS.	ND	1	N/A		

Reporting Limit for $DF = 1$;	W	DISS.	0.5	μg/L
ND means not detected at or above the reporting limit	S	TTLC	NA	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.


	Campbell Analyti	cal, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 377-252-9262 Fax: 925-252-92	pbell.com		
SCS Engineers 6601 Koll Center		Client Project ID: Freisman Ranch 16	#01203087.02;	Date Sampled: 04/18/07 Date Received: 04/18/07			
Pleasanton, CA 9	·	Client Contact: St Client P.O.:	eve Clements	Date Extracted: 04/18/07 Date Analyzed 04/19/07-04/20/0			
Extraction method SW3			ctable Hydrocarbons as nethods SW8015C			04375	
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS	
0704375-001A	KMW-1	W	ND		1	99	
0704375-002A	KMW-2	W	ND		1	100	
0704375-003A	KMW-3	W	ND				
0704375-004A	KMW-4	W	ND				
0704375-005A	KMW-5	W	ND				
0704375-006A	KMW-6	W	ND				
0704375-007A	KMW-7	W	ND		1	98	
0704375-008A	KMW-8	W	ND		1	114	
0704375-009A	KMW-7 DUP	W	ND		1	96	

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; 1) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

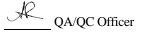
WorkOrder 0704375

EPA Method SW8015C	Extraction SW3510C				BatchID: 27493			Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	118	116	1.63	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	113	115	1.75	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 27493 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704375-001A	04/18/07	04/18/07	04/19/07 8:35 AM	0704375-002A	04/18/07	04/18/07	04/19/07 9:43 AM
0704375-003A	04/18/07	04/18/07	04/19/07 10:41 PM	0704375-004A	04/18/07	04/18/07	04/19/07 3:01 AM
0704375-005A	04/18/07	04/18/07	04/19/07 4:07 AM	0704375-006A	04/18/07	04/18/07	04/20/07 2:07 AM
0704375-007A	04/18/07	04/18/07	04/19/07 11:50 PM	0704375-008A	04/18/07	04/18/07	04/19/07 9:43 AM
0704375-009A	04/18/07	04/18/07	04/20/07 12:58 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

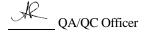
WorkOrder 0704375

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 27	529	Sp	Spiked Sample ID: 0704370-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
, and you	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	109	109	0	97.3	95.6	1.73	70 - 130	30	70 - 130	30
Benzene	ND	10	113	110	2.32	103	101	2.13	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	90.2	97.6	7.83	86.9	87	0.0367	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	105	107	1.97	102	98.6	3.74	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	93.6	98.1	4.78	91.5	88.9	2.88	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	117	119	1.41	103	99.7	2.76	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	85.4	82.9	2.86	82.6	80.5	2.57	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	126	125	0.646	110	109	0.668	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	117	115	1.24	103	101	1.98	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	113	114	1.57	104	103	1.05	70 - 130	30	70 - 130	30
Toluene	ND	10	96.3	98.4	2.16	95.3	92.9	2.59	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	94.8	92.9	2.05	89.6	87.4	2.55	70 - 130	30	70 - 130	30
%SS1:	97	10	97	95	2.62	92	91	1.33	70 - 130	30	70 - 130	30
%SS2:	97	10	100	101	0.918	102	101	0.533	70 - 130	30	70 - 130	30
%SS3:	89	10	113	113	0	108	107	1.06	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 27529 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704375-001B	04/18/07	04/19/07	04/19/07 9:38 PM	0704375-002B	04/18/07	04/19/07	04/19/07 10:23 PM
0704375-003B	04/18/07	04/20/07	04/20/07 12:35 AM	0704375-004B	04/18/07	04/20/07	04/20/07 1:19 AM
0704375-005B	04/18/07	04/20/07	04/20/07 2:03 AM	0704375-006B	04/18/07	04/20/07	04/20/07 2:47 AM
0704375-007B	04/18/07	04/20/07	04/20/07 3:30 AM	0704375-008B	04/18/07	04/20/07	04/20/07 4:14 AM
0704375-009B	04/18/07	04/20/07	04/20/07 4:58 AM	0704375-010B	04/18/07	04/20/07	04/20/07 5:43 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

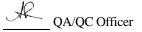
WorkOrder 0704375

EPA Method E200.8 Extraction E200.8					Bat	chID: 27	538	Spiked Sample ID: 0704372-015A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD Acceptance Cr		Criteria (%)	Criteria (%)	
, undry co	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	0.92	10	98.9	99.9	0.921	93.1	100	7.17	75 - 125	20	85 - 115	20
%SS:	102	750	106	107	0.916	93	94	1.44	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 27538 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704375-001C	04/18/07	04/18/07	04/19/07 7:52 AM	0704375-002C	04/18/07	04/18/07	04/19/07 7:57 AM
0704375-003C	04/18/07	04/18/07	04/19/07 8:02 AM	0704375-004C	04/18/07	04/18/07	04/19/07 8:07 AM
0704375-005C	04/18/07	04/18/07	04/19/07 8:13 AM	0704375-006C	04/18/07	04/18/07	04/19/07 8:18 AM
0704375-007C	04/18/07	04/18/07	04/19/07 8:23 AM	0704375-008C	04/18/07	04/18/07	04/19/07 8:28 AM
0704375-009C	04/18/07	04/18/07	04/19/07 8:33 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0704375

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		BatchID: 27539			Sp	Spiked Sample ID: 0704375-001A			
Analyte	Sample Spiked MS		MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	112	128	13.1	100	90.7	10.2	70 - 130	30	70 - 130	30
MTBE	ND	10	111	117	5.23	120	118	1.02	70 - 130	30	70 - 130	30
Benzene	ND	10	108	114	5.28	109	111	1.87	70 - 130	30	70 - 130	30
Toluene	ND	10	123	124	0.767	98.6	99.5	0.918	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	115	119	3.07	106	105	1.15	70 - 130	30	70 - 130	30
Xylenes	ND	30	119	125	5.41	103	103	0	70 - 130	30	70 - 130	30
%SS:	99	10	100	100	0	94	96	1.74	70 - 130	30	70 - 130	30

BATCH 27539 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704375-001A	04/18/07	04/19/07	04/19/07 10:39 PM	0704375-002A	04/18/07	04/20/07	04/20/07 2:41 PM
0704375-003A	04/18/07	04/19/07	04/19/07 11:09 PM	0704375-004A	04/18/07	04/20/07	04/20/07 2:11 PM
0704375-005A	04/18/07	04/20/07	04/20/07 3:10 AM	0704375-006A	04/18/07	04/20/07	04/20/07 4:09 AM
0704375-007A	04/18/07	04/20/07	04/20/07 3:43 PM	0704375-008A	04/18/07	04/20/07	04/20/07 5:40 AM
0704375-009A	04/18/07	04/20/07	04/20/07 4:13 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

APPENDIX B

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION (4/19/2007)

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01203087.02; Freisman	Date Sampled: 04/19/07
6601 Koll Center Pkwy, Ste 140	Ranch, 1600 Freisman Rd.	Date Received: 04/19/07
Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 04/25/07
	Client P.O.:	Date Completed: 04/25/07

WorkOrder: 0704407

April 25, 2007

Dear Steve:

Enclosed are:

- 1). the results of **6** analyzed samples from your **#01203087.02; Freisman Ranch, 1600 Freisman Rd. project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

SCS E	ENGINEERS E	nvironm	ental Cons	ultants	TOTAL NUMBER	OF SAMPLES:			ANALY	SES REQU	JESTED	LAB U ONI
6601 K	Koll Center Parkway	92	5 426-0080		PAGE /	OF /	1					
				7	TURNAROUND T	IME REQUIRED:	n					
Pleasan	40 nton, CA 94566	WV	ww.scsengineers	.com	5-Day3	IME REQUIRED: <i>Worma</i> -DayImmediate	Other 7	3	1 al			
PROJECT N	UMBER: 01203	087,02	/			GER: S. Clements		DG	13			
PROJECT N	AME: Freisman 1	Ranch. 10	00 Freisman	Rd.	W.O. / S.O. #:	o c ancor s	10	2 2				
PROJECT LO	OCATION: Liverma	ove, CA		01	1	24 24		- 68	E l			
	IAME AND SIGNATURE			20			1	20	esolve			
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCTIONS/COM			N			
(+1	KMW-2	1420	4-19-07	I AM L Y VOAS	Hee		2	$\langle X$	X			
(+)	Kmw-8		1	1			X	X	X			
(+)	KMW-5						2	X	X			
\checkmark	KmW-7						X	X				
+	Kmw-6					3	X	Ίx	X			+
V	QUTB		\checkmark	2 VOAS	V			Ť 🗸	\mathbf{Y}	•	+	
				VUMS				+	++	+-+-	++	+
							_	+	+	++	++	
								+	$\left \right $			
ICE/r	4.3%		1 1									
GOOD	CONDITION V SPACE ABSENT	PPROPRIATE	\checkmark					+			+-+-	+
DECHI	ORINATED IN LAB	CONTAINERS RESERVED IN	LAB					+	$\left \right $		+	+
PRESE	RVATION VOAS OAG	METALS OTHE						1				
												-
DTES:										SAMPLE	CONDITION	UPON RECEIPT
	2											
ELINQUISHED BY	DATE 4	10	Envirota	aL TI	DATE: 4-19-07	ENVIRO-TECH		1	RECEIVE	D BY:	£	DATE:
OMBANY:			COMPANY:			COMPANY	TIME!	0/	COMPAN		<u>y</u>	4/19/0
505	Wellgen	.36			TIME: 4,156	Saul	1933	5	V	/		1735

McCampbell Analytical, Inc.

	JUL.
6	NU
6	
	<u></u>

1534 Willow Pass Rd

QCTB

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262					Work	Order	: 07044	407	C	lientII): SCS	D				
				EDF		Excel		Fax		🖌 Email		Hard	Сору	Thir	dParty		
Report to: Steve Clements Email: sclements@scse				scseng.com			Bill t Ac	counts	Payabl	е			Re	questeo	H TAT:	5 c	days
SCS Engineers 6601 Koll Center Pleasanton, CA	=	TEL: ProjectNo: PO:	(925) 426-004 #01203087.0	8 FAX: (925) 2; Freisman Ranc			66	CS Engi 01 Koll easanto	Center	⁻ Pkwy, S 94566	Ste 140)				04/19/2 04/19/2	
									Req	uested ⁻	Tests	(See leg	jend b	elow)			
Sample ID	ClientSampID)	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0704407-001	KMW-2		Water	04/19/07		В	Α	С	С								
0704407-002	KMW-8		Water	04/19/07		В	Α	С	С								
0704407-003	KMW-5		Water	04/19/07		В	Α	С	С								
0704407-004	KMW-7		Water	04/19/07		В	Α	С	С								
0704407-005	KMW-6		Water	04/19/07		В	Α	С	С								

А

04/19/07

Water

Test Legend:

0704407-006

1 8260B_W	2 G-MBTEX_W	3 PBMS_DISS	4 PRDISSOLVED	5
6	7	8	9	10
11	12	7		

The following SampIDs: 0704407-001A, 0704407-002A, 0704407-003A, 0704407-004A, 0704407-005A contain testgroup.

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

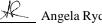
McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	SCS Engineers				Date a	Date and Time Received: 04/19/07 8:20:39 PM				
Project Name:	#01203087.02; Fi	eisman Ranch, 16	600 Fr	eisman Rd	Check	klist completed and re	eviewed by:	Melissa Valles		
WorkOrder N°:	0704407	Matrix <u>Water</u>			Carrie	er: <u>Courier</u>				
		<u>Chair</u>	of Cu	stody (COC) Informa	ation				
Chain of custody	y present?		Yes		No 🗆					
Chain of custody	y signed when relinqui	shed and received?	Yes	\checkmark	No 🗆					
Chain of custody	y agrees with sample	labels?	Yes	\checkmark	No 🗌					
Sample IDs noted	d by Client on COC?		Yes	V	No 🗆					
Date and Time of	f collection noted by Cl	ient on COC?	Yes		No 🗆					
Sampler's name	noted on COC?		Yes		No 🗆					
		s	ample	Receipt Info	ormatior	n				
Custodv seals in	tact on shippping con		Yes		No 🗆	-	NA 🔽			
	er/cooler in good cond		Yes	\checkmark	No 🗆					
	er containers/bottles?		Yes		No 🗆					
Sample containe	ers intact?		Yes	\checkmark	No 🗆					
Sufficient sample	e volume for indicated	test?	Yes		No 🗌					
		Sample Prese	rvatio	and Hold 7	ima (UT) Information				
		Sample Prese	rvatioi		-	<u>) mormation</u>				
All samples rece	ived within holding tim	le?	Yes	\checkmark	No					
Container/Temp	Blank temperature		Coole	er Temp: 4.3	3°C		NA 🗆			
Water - VOA via	lls have zero headspa	ce / no bubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	itted			
Sample labels cl	hecked for correct pre	servation?	Yes		No 🗌					

Client contacted:

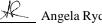
Date contacted:


Contacted by:

Comments:

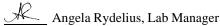
<u>McCampbell</u> A		<u>c.</u>		Web: www.mccam	Pass Road, Pittsburg, CA	n@mccampbell.com			
"When Oua	litv Counts"			Telephone:	877-252-9262 Fax: 92	25-252-9269			
SCS Engineers				03087.02;	Date Sampled: 04/19/07				
6601 Koll Center Pkwy, Ste 140	Freisman	n Ranch	n, 1600 I	Freisman Rd.	Date Received: 04/19/07				
0001 Kuli Celilei FKwy, Sie 140	Client C	ontact:	Steve (Clements	Date Extracted:	04/21/07			
Pleasanton, CA 94566	Client P.	O.:			Date Analyzed:	04/21/07			
	Volatile Organi	es hy F	9.87 m	d GC/MS (Basic T	'arget I ist)*				
Extraction Method: SW5030B	_	-	Method:		ai get List)	Work Order: 070440)7		
Lab ID		iaryticar	inethiou.		07-001B	Work Order. 07044	,,		
Client ID					W-2				
Matrix		1	Demonting	Wa	ater			Donortin	
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reportin Limit	
Acetone	ND	1.0	10	Acrolein (Propenal	/	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	2.4.5	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TI	3A)	ND	1.0	5.0	
n-Butyl benzene tert-Butyl benzene	ND ND	1.0 1.0	0.5	sec-Butyl benzene Carbon Disulfide		ND ND	1.0 1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze	ne	ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom	ethane	ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroetl		ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5	
1,1-Dichloropropene trans-1,3-Dichloropropene	ND	1.0 1.0	0.5	cis-1,3-Dichloropr		ND ND	1.0 1.0	0.5	
Ethylbenzene	ND ND	1.0	0.5	Diisopropyl ether (Ethyl tert-butyl eth		ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone	lic	ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor		ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5	
1,2,4-Trimethylbenzene Vinvl Chloride	ND ND	1.0 1.0	0.5	1,3,5-Trimethylber Xylenes	izene	ND ND	1.0 1.0	0.5	
				coveries (%)			1.0	0.0	
04 881.	104		ogate Ke			07			
%SS1:	104			%SS2:		97			
%SS3: Comments:	114			I					

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

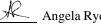
<u>McCampbell A</u>	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA pbell.com E-mail: main					
"When Ouali	tv Counts"			Telephone:	877-252-9262 Fax: 92	25-252-9269				
SCS Engineers				03087.02;	Date Sampled: 04/19/07					
6601 Koll Center Pkwy, Ste 140	Freisman	Ranch	n, 1600 I	Freisman Rd.	Date Received:	ed: 04/19/07				
0001 Koll Celler Fkwy, Sie 140	Client Co	ontact:	Steve (Clements	lements Date Extracted: 04/21/07					
Pleasanton, CA 94566	Client P.0	D.:			Date Analyzed:	04/21/07				
	Volatile Organi	es hv F	P&T and	d GC/MS (Basic T	'arget I ist)*					
Extraction Method: SW5030B	_	-	Method:		aiget List)	Work Order: 070440)7			
Lab ID		laryticar	incuidu.	070440	7 002B	Work Order. 070110	,,			
Client ID					W-8					
Matrix										
			Reporting					Reportin		
Compound	Concentration *	DF	Limit	Compou	ind	Concentration *	DF	Limit		
Acetone	ND	1.0	10	Acrolein (Propenal	,	ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e	ether (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TH	BA)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene Carbon Tetrachloride	ND	1.0	0.5	Carbon Disulfide Chlorobenzene		ND ND	1.0	0.5		
	ND		0.5	Chlorobenzene 2-Chloroethyl Vinyl Ether			1.0	0.5		
Chloroethane	ND ND	1.0	0.5	Chloromethane	/I Etner	ND ND	1.0	1.0		
Chloroform		1.0					1.0	0.5		
2-Chlorotoluene Dibromochloromethane	ND ND	1.0	0.5	4-Chlorotoluene 1,2-Dibromo-3-chl		ND ND	1.0 1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom		ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroeth		ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5		
trans-1.3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluend	e	ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber	nzene	ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
			ogate Re	coveries (%)		1				
%SS1:	104			%SS2:		97				
%SS3:	110									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

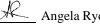
<u>McCampbell A</u>	nalytical, In	<u>c.</u>			ass Road, Pittsburg, CA ell.com E-mail: main				
"When Ouali	itv Counts"			Telephone: 87	77-252-9262 Fax: 92	5-252-9269			
SCS Engineers				203087.02;	Date Sampled: 04/19/07				
	Freisman	Ranch	n, 1600 l	Freisman Rd.	Date Received: 04/19/07				
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (Clements	Date Extracted:	04/21/07			
Pleasanton, CA 94566	Client P.				Date Analyzed:				
,					•	04/21/07			
	0	-		d GC/MS (Basic Ta	rget List)*				
Extraction Method: SW5030B	Aı	nalytical	Method:	SW8260B		Work Order: 070440)7		
Lab ID				0704407-	-003B				
Client ID				KMW	/-5				
Matrix				Wate	er				
Compound	Concentration *	DF	Reporting Limit	Compound	d	Concentration *	DF	Report Limi	
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl eth	ner (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichlorometha	ine	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	A)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.:	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorometh		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroether		ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloroprop Diisopropyl ether (D		ND	1.0	0.5	
trans-1,3-Dichloropropene Ethylbenzene	ND	1.0	0.5			ND	1.0	0.5	
Freon 113	ND ND	1.0 1.0	0.5	Ethyl tert-butyl ether Hexachlorobutadiene		ND ND	1.0 1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.	
	ND	1.0	0.5			ND		0.	
Isopropylbenzene Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	4-Isopropyl toluene Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.4	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.4	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	thune	ND	1.0	0.	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenze	ene	ND	1.0	0.4	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan		ND	1.0	0.4	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa	ine	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenz		ND	1.0	0.:	
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.	
		Surr	ogate Re	coveries (%)					
%SS1:	104			%SS2:		97			
%SS3:	104 %SS2:				71				

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

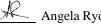
<u>McCampbell A</u>	Analytical, In	<u>c.</u>			Pass Road, Pittsburg, CA					
"When Oual	litv Counts"			Telephone	877-252-9262 Fax: 92	25-252-9269				
SCS Engineers				203087.02;	Date Sampled:	04/19/07				
6601 Koll Center Pkwy, Ste 140	Freisman	Ranch	n, 1600 I	Freisman Rd.	Date Received:	04/19/07				
0001 Kon Center F Kwy, Ste 140	Client Co	ontact:	Steve (Clements	Clements Date Extracted: 04/21/07					
Pleasanton, CA 94566	Client P.0	D.:			Date Analyzed:	04/21/07				
	Volatila Organi	oc by I	ST on	d GC/MS (Basic T						
	_	-			larget List)	W. 1 0 1 07044				
Extraction Method: SW5030B	Analytical Method: SW8260B Work Order: 0704407									
Lab ID					07-004B					
Client ID					W-7					
Matrix		I	- .	W	ater	1				
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reportin Limit		
Acetone	ND	1.0	10	Acrolein (Propena	1)	ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	ether (TAME)	ND	1.0	0.5		
Benzene	3.3	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T)	3A)	ND	1.0	5.0		
n-Butyl benzene	1.8	1.0	0.5	sec-Butyl benzene		1.2	1.0	0.5		
tert-Butyl benzene Carbon Tetrachloride	ND	1.0 1.0	0.5	Carbon Disulfide Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND ND	1.0 1.0	0.5		
Chloroform	ND	1.0	0.5	Chloromethane	yi Ether	ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chi	oropropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze	ne	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom	ethane	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethan	e (1,2-DCA)	ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroet		ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropr	•	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND 12	1.0	0.5	Diisopropyl ether		ND	1.0	0.5		
Ethylbenzene Freon 113	12 ND	1.0 1.0	0.5	Ethyl tert-butyl eth Hexachlorobutadie		ND ND	1.0 1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	3.6	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		11	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		7.7	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorober		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND 22	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5		
1,2,4-Trimethylbenzene Vinvl Chloride	32 ND	1.0 1.0	0.5	1,3,5-Trimethylbe Xylenes	nzene	4.7	1.0 1.0	0.5		
Y HIYI CHIOHUC				coveries (%)			1.0	0.5		
0/ 551.	100		ogate Ke			07				
%SS1:	102			%SS2:		95				
%SS3: Comments:	112									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA				
"When Ouali	tv Counts"			Telephone	: 877-252-9262 Fax: 92	5-252-9269			
SCS Engineers				203087.02;	Date Sampled: 04/19/07				
6601 Koll Center Pkwy, Ste 140	Freisman	Ranch	n, 1600 I	Freisman Rd.	Date Received: 04/19/07				
soor non center rawy, sie rie	Client C	ontact:	Steve (Clements	Date Extracted:	04/21/07			
Pleasanton, CA 94566	Client P.	0.:			Date Analyzed:	04/21/07			
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic]	[arget List)*				
Extraction Method: SW5030B	_	-	Method:		8 /	Work Order: 070440)7		
Lab ID		0704407-005B							
Client ID					W-6				
Matrix					ater				
Compound	Concentration *	DF	Reporting Limit	Compo		Concentration *	DF	Reportin Limit	
Acetone	ND<100	10	10	Acrolein (Propena		ND<50	10	5.0	
Acrylonitrile	ND<100	10	2.0	tert-Amyl methyl		ND<5.0	10	0.5	
Benzene	35	10	0.5	Bromobenzene		ND<5.0	10	0.5	
Bromochloromethane	ND<5.0	10	0.5	Bromodichlorome	thane	ND<5.0	10	0.5	
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5	
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (T	BA)	ND<50	10	5.0	
n-Butyl benzene	21	10	0.5	sec-Butyl benzene		8.0	10	0.5	
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide		ND<5.0	10	0.5	
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene		ND<5.0	10	0.5	
Chloroethane	ND<5.0	10	0.5	2-Chloroethyl Vinyl Ether		ND<10	10	1.0	
Chloroform	ND<5.0	10	0.5	Chloromethane		ND<5.0	10	0.5	
2-Chlorotoluene	ND<5.0	10	0.5	4-Chlorotoluene		ND<5.0	10	0.5	
Dibromochloromethane	ND<5.0	10	0.5	1,2-Dibromo-3-chloropropane		ND<5.0	10	0.5	
1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Dibromomethane		ND<5.0	10	0.5	
1,2-Dichlorobenzene	ND<5.0	10	0.5	1,3-Dichlorobenzene		ND<5.0	10	0.5	
1,4-Dichlorobenzene	ND<5.0	10	0.5	Dichlorodifluorom		ND<5.0	10	0.5	
1,1-Dichloroethane	ND<5.0	10	0.5	1,2-Dichloroethan		ND<5.0	10	0.5	
1,1-Dichloroethene	ND<5.0	10	0.5	cis-1,2-Dichloroet		ND<5.0	10	0.5	
trans-1,2-Dichloroethene	ND<5.0	10	0.5	1,2-Dichloropropa		ND<5.0	10	0.5	
1,3-Dichloropropane	ND<5.0	10	0.5	2,2-Dichloropropa		ND<5.0	10	0.5	
1,1-Dichloropropene	ND<5.0	10	0.5	cis-1,3-Dichloropr		ND<5.0	10	0.5	
trans-1,3-Dichloropropene	ND<5.0	10	0.5	Diisopropyl ether		ND<5.0	10	0.5	
Ethylbenzene	52 ND 100	10	0.5	Ethyl tert-butyl et		ND<5.0	10	0.5	
Freon 113	ND<100	10	10	Hexachlorobutadie	ne	ND<5.0	10	0.5	
Hexachloroethane	ND<5.0	10	0.5	2-Hexanone		ND<5.0	10	0.5	
Isopropylbenzene Methyl-t-butyl ether (MTBE)	25	10 10	0.5	4-Isopropyl toluen Methylene chloride		ND<5.0 ND<5.0	10 10	0.5	
4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5	Naphthalene	9	ND<3.0	10	0.5	
Nitrobenzene	ND<3.0	10	10	n-Propyl benzene		86	10	0.5	
Styrene	ND<100	10	0.5	1,1,1,2-Tetrachlor	oethane	ND<5.0	10	0.5	
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5	
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorober		ND<5.0	10	0.5	
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroeth		ND<5.0	10	0.5	
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene		ND<5.0	10	0.5	
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropro	opane	ND<5.0	10	0.5	
1,2,4-Trimethylbenzene	ND<5.0	10	0.5	1,3,5-Trimethylbe		ND<5.0	10	0.5	
Vinvl Chloride	ND<5.0	10	0.5	Xvlenes		23	10	0.5	
		Surr	ogate Re	ecoveries (%)					
%SS1:	102			%SS2:		99			
%SS3:	116								
Comments:									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell A</u>		<u>c.</u>		Web: www.mccan	Pass Road, Pittsburg, CA	n@mccampbell.com			
"When Oual	itv Counts"			Telephone	: 877-252-9262 Fax: 92	25-252-9269			
SCS Engineers		•		203087.02;	Date Sampled:	04/19/07			
((01 Kall Canton Dimme Sta 140	Freismar	Ranch	n, 1600 I	Freisman Rd.	Date Received: 04/19/07				
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (Clements Date Extracted: 04/23/07					
Pleasanton, CA 94566	Client P.	D.:			Date Analyzed:	04/23/07			
	_	-		d GC/MS (Basic 7	arget List)*				
Extraction Method: SW5030B	Ai	nalytical	Method:			Work Order: 070440	57		
Lab ID)7-006A				
Client ID				QC	СТВ				
Matrix				W	ater				
Compound	Concentration *	DF	Reporting Limit	Compo	ınd	Concentration *	DF	Reporti Limit	
Acetone	ND	1.0	10	Acrolein (Propena	1)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl	/	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichlorome	hane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T	BA)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		0.85	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze		ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethan		ND ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0 1.0		cis-1,2-Dichloroet			1.0	0.5	
trans-1,2-Dichloroethene 1,3-Dichloropropane	ND ND	1.0	0.5	1,2-Dichloropropa 2,2-Dichloropropa		ND ND	1.0 1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropr		ND	1.0	0.5	
trans-1.3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether		ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl et		ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadie		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	-	ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.4	
Toluene	0.52	1.0	0.5	1,2,3-Trichlorober	izene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbe	nzene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5	
		Surr	ogate Re	coveries (%)		•			
%SS1:	101			%SS2:		99			
%SS3:	108								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	CCampbell Analyti	ical, Inc.	Web: www.mcc	ow Pass Road, Pittsburg, CA 945 ampbell.com E-mail: main@mc ne: 877-252-9262 Fax: 925-252	campbell.con	1	
SCS Engineers	3		Client Project ID: #01203087.02; Date Sampled: 04/19/07 Freisman Ranch, 1600 Freisman Rd.				
6601 Koll Cent	ter Pkwy, Ste 140	Freisman Ranch,	1600 Freisman Ku.	Date Received: 04/	19/07		
Pleasanton, CA	A 94566	Client Contact:	Steve Clements	Date Extracted: 04/	20/07-04/	24/07	
		Client P.O.:		Date Analyzed 04/	20/07-04/	24/07	
Gasoline I	Range (C6-C12) Stoddard So SW5030B	-	C12) Volatile Hydrocarl thods: SW8015Cm		ard Solve k Order: 0'		
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS	
0704407-001A	KMW-2	W	ND	ND	1	108	
0704407-002A	KMW-8	W	ND	ND	1	104	
0704407-003A	KMW-5	W	ND	ND	1	95	
0704407-004A	KMW-7	W	720,a	490	1	113	
0704407-005A	KMW-6	W	2700,a	890	3.3	102	
					<u> </u>	<u> </u>	
	porting Limit for DF =1;	W	50	50	με	g/L	
	means not detected at or ove the reporting limit	S	NA	NA	mg	/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

McCa	TAMP Dell Analyti "When Ouality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
SCS Engineers 6601 Koll Center Pk	xwy, Ste 140	Client Project ID: Freisman Ranch, 10						
Pleasanton, CA 945	666	Client Contact: St Client P.O.:	Date Extracted: 04/19/07 Date Analyzed: 04/21/07					
Extraction method: E200.8		Lead by]	ICP-MS* hethods: E200.8			Order: 07	04407	
Lab ID	Client ID	Matrix	Extraction		Lead	DF	% SS	
0704407-001C	KMW-2	W	DISS.		ND	1	N/A	
0704407-002C	KMW-8	W	DISS.		ND	1	N/A	
0704407-003C	KMW-5	W	DISS.		ND	1	N/A	
0704407-004C	KMW-7	W	DISS.		ND	1	N/A	
0704407-005C	KMW-6	W	DISS.		ND	1	N/A	

Reporting Limit for $DF = 1$;	W	DISS.	0.5	μg/L
ND means not detected at or above the reporting limit	S	TTLC	NA	mg/Kg

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

McC:	ampbell Analyti "When Ouality Counts"	ical, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccam 377-252-9262 Fax: 925-252-92	pbell.com	
SCS Engineers 6601 Koll Center P		Client Project ID: Freisman Ranch, 1	#01203087.02;	Date Sampled: 04/19/ Date Received: 04/19/	07	
Pleasanton, CA 94	-	Client Contact: S Client P.O.:	teve Clements	Date Extracted: 04/19/ Date Analyzed 04/19/		0/07
Extraction method: SW35			actable Hydrocarbons as methods: SW8015C	s Diesel* Work Or	der: 070)4407
Lab ID	Client ID	Matrix	TPH(d))	DF	% SS
0704407-001A	KMW-2	w	ND		1	97
0704407-002A	KMW-8	W	ND		1	98
0704407-003A	KMW-5	W	ND		1	97
0704407-004A	KMW-7	W	290,d		1	98
0704407-005A	KMW-6	W	1100,c	l	1	98

Reporting Limit for DF =1;	W	50	µg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

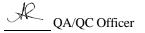
QC Matrix: Water

WorkOrder: 0704407

EPA Method E200.8	Extra	ction E20	0.8		Ba	tchID: 27	562	Sp	iked Sam	ole ID:	0704402-00	1B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, and you	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	ND	10	93.6	92.8	0.844	92.6	91.3	1.41	75 - 125	20	85 - 115	20
%SS:	97	750	95	95	0	92	92	0	70 - 130	20	70 - 130	20
All target compounds in the Met	hod Blank of this	extraction	batch we	re ND les	s than the	method R	l I with th	e following	exceptions:		1	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 27562 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704407-001C	04/19/07	04/19/07	04/21/07 7:56 AM	0704407-002C	04/19/07	04/19/07	04/21/07 8:01 AM
0704407-003C	04/19/07	04/19/07	04/21/07 8:06 AM	0704407-004C	04/19/07	04/19/07	04/21/07 8:11 AM
0704407-005C	04/19/07	04/19/07	04/21/07 8:16 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

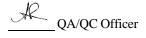
QC Matrix: Water

WorkOrder: 0704407

EPA Method SW8260B	Extra	ction SW	5030B		Ba	chID: 27	569	Sp	iked Sam	ole ID:	0704407-00	1B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	
, and you	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	103	103	0	99.9	102	2.48	70 - 130	30	70 - 130	30
Benzene	ND	10	108	110	2.33	105	107	1.75	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	85.3	90.5	5.88	88.5	90.4	2.11	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	102	104	1.35	101	102	0.692	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	92.7	94.3	1.72	90.8	92.2	1.53	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	112	112	0	107	110	3.27	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	82.4	83.7	1.54	82.1	84	2.30	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	119	121	1.61	114	118	3.56	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	110	111	0.898	106	110	3.20	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	110	110	0	107	110	3.19	70 - 130	30	70 - 130	30
Toluene	ND	10	95.5	96.1	0.600	93.9	94.4	0.455	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	90.5	92	1.70	89.3	90	0.805	70 - 130	30	70 - 130	30
%SS1:	104	10	95	93	2.69	94	95	0.943	70 - 130	30	70 - 130	30
%SS2:	97	10	100	100	0	101	100	0.705	70 - 130	30	70 - 130	30
%SS3:	114	10	111	112	0.376	111	111	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 27569 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704407-001B	04/19/07	04/21/07	04/21/07 12:52 PM	0704407-002B	04/19/07	04/21/07	04/21/07 1:36 PM
0704407-003B	04/19/07	04/21/07	04/21/07 2:20 PM	0704407-004B	04/19/07	04/21/07	04/21/07 3:04 PM
0704407-005B	04/19/07	04/21/07	04/21/07 3:48 PM	0704407-006A	04/19/07	04/23/07	04/23/07 7:11 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

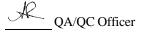
QC Matrix: Water

WorkOrder: 0704407

EPA Method SW8015C	Extra	ction SW	3510C		Bat	tchID: 27	577	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	115	116	0.987	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	113	115	1.62	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 27577 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704407-001A	04/19/07	04/19/07	04/19/07 9:46 PM	0704407-002A	04/19/07	04/19/07	04/19/07 10:54 PM
0704407-003A	04/19/07	04/19/07	04/20/07 12:02 AM	0704407-004A	04/19/07	04/19/07	04/20/07 1:09 AM
0704407-005A	04/19/07	04/19/07	04/20/07 2:17 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0704407

EPA Method SW8021B/8015Cm Extraction SW5030E				BatchID: 27568 Spiked Sample ID: 0704407-001A								1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	95.7	99.8	4.27	97.9	92.9	5.22	70 - 130	30	70 - 130	30
MTBE	ND	10	118	119	0.814	118	117	0.935	70 - 130	30	70 - 130	30
Benzene	ND	10	110	107	2.48	109	106	2.60	70 - 130	30	70 - 130	30
Toluene	ND	10	104	99.2	5.07	100	95.4	5.10	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	111	109	1.92	110	104	6.17	70 - 130	30	70 - 130	30
Xylenes	ND	30	107	107	0	107	92.3	14.4	70 - 130	30	70 - 130	30
%SS:	108	10	95	95	0	97	91	6.06	70 - 130	30	70 - 130	30

BATCH 27568 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704407-001A	04/19/07	04/20/07	04/20/07 1:58 PM	0704407-002A	04/19/07	04/20/07	04/20/07 2:29 PM
0704407-003A	04/19/07	04/20/07	04/20/07 9:18 PM	0704407-004A	04/19/07	04/20/07	04/20/07 9:48 PM
0704407-005A	04/19/07	04/24/07	04/24/07 1:35 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

APPENDIX C

DEEP GROUNDWATER INVESTIGATION DRILLING PERMIT

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728

PERMIT NUMBER WELL NUMBER

GENERAL

1.

2.

3.

APN

A.

C.

D.

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE

FOR OFFICE USE

904-0001-001-10

PERMIT CONDITIONS (Circled Permit Requirements Apply)

27113

LOCATION OF PROJECT 1600 Friesman Rd, Livermore, CA
California Coordinates Sourceft. Accuracy•ft. ft. Accuracy•ft. ft. CCNft. CCEft. ft. ft
CLIENT Name <u>C'midren's</u> Hospital Address <u>5225 Dover Street</u> Phone (510) 428-3360 City <u>Oakland</u> , CA Zip 94609
APPLICANT Name <u>* SCS Engineers (Atta: Ted Sison, REA)</u> Address(dob1 Koll Center PKWY 140 Phone (925) 426-0707 City Prasanton, CP, Zip 94566
City Pleasanton, CP Zip 94566
TYPE OF PROJECTGeotechnical InvestigationWell Construction···Cathodic Protection··Water Supply··Monitoring··Well Destruction··
PROPOSED WELL USE New Domestic • Municipal • Remediation • Industrial • Dewatering •
DRILLING METHOD: Mud Rotary ·· Air Rotary ·· Hollow Stem Auger Cable Tool ·· Direct Push ·· Other Some
DRILLING COMPANY To be determined HEW, BOARTE, or Precision DRILLER'S LICENSE NO. CA LICENSED driller
WELL PROJECTS Drill Hole Diameterin. Maximum Casing Diameterin. Depthft. Surface Seal Depthft. Number
SOIL BORINGS Number of Borings 6 Maximum Hole Diameter 8-10 in. Depth 100 ft.
ESTIMATED STARTING DATE June 28, 2007 ESTIMATED COMPLETION DATE July 31, 2007
I hereby agree to comply with all requirements of this permit and Alameda

County Ordinance No. 73-68

APPLICANT'S Date 6/20/2007 TEJSSON REA NO, 08290 SIGNATURE

ATTACH SITE PLAN OR SKETCH

Date 6/28/07 Approved Wyman Hong

Drillers Report or equivalent for well projects or drilling logs and location sketch for geotechnical projects. Permit is void if project not begun within 90 days of approval

A permit application should be submitted so as to arrive at the

work the original Department of Water Resources Water Well

Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitted

date. WATER SUPPLY WELLS B

- 1. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- Minimum seal depth is 50 feet for municipal and industrial wells 2 or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.
- 3. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements.
- 4. A sample port is required on the discharge pipe near the wellhead.
- GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
 - 1. Minimum surface seal thickness is two inches of cement grout placed by tremie.
 - 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.

GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.

E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.

WELL DESTRUCTION. See attached. G.

SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after the completion of permitted work the well installation report including all soil and water laboratory analysis results.

Revised: April 27, 2005

APPENDIX D

DEEP GROUNDWATER INVESTIGATION CPT REPORT AND LOGS

Cone Penetration Test Data Report

Site: Friesman Ranch Friesman Road Livermore, CA

Prepared for: SCS Eng

Prepared by: Precision Sampling, Inc.

Richmond, CA

Field Work Dates: August 25, 2007

Prepared By: **PRECISION SAMPLING INC.** 1081 Essex Avenue, Richmond, CA 94801 Phone: 510-237-4575 Fax: 510-237-4574

- **1.0 Project Summary**
 - 1.1 Field Equipment and Procedures
 - 1.2 Interpretation
 - 1.21 Soil Classification
 - 1.22 Unit Weight
 - 1.23 Hydrogeology
- 2.0 Digital Piezocone (CPTU) Specifications

Appendix

- Soil Classification Charts
- References
- Formulas and Calculations
- Project Data

1.0 **Project Summary**

Location: Friesman Road	Dates: August 25, 2007
City: Livermore, CA	Rig: CP3
Client: SCS Eng	Contact: Ted

CPT Soundings:	3	Depths: 85.00	
Dissipations:	2	Depths: Var	Approx GWT: 22

1.1 Field Equipment and Procedures

The Cone Penetration Tests were completed by Precision Sampling using a digital cone penetrometer. Borings were completed with Precisions 25-30 Ton CPT Rig. All soundings were conducted in accordance with ASTM standards (D 5778 – 95 (Reapproved 2000)).

The penetration data was collected using the following parameters:

- ➢ Tip Resistance (Qc)
- Sleeve Friction (Fs)
- > Pore Pressure (Ut)

These and other parameters were collected, calculated and printed in real time in the field. All data was also stored in digital format on the field computer. And backed up at our main office.

Baseline readings were collected before and after soundings in order to monitor cone electronics. Baseline data is stored in each log file in the event it is needed. Baseline monitoring assures proper cone operation.

When soil conditions permitted, an expedient Static Pore Pressure Dissipation Test was performed to determine an estimated depth to ground water (GWT). See section 1.22 for further explanation of the Dissipation Test. The estimated GWT was used in post processing to calculate "Effective Overburden" and many other subsequent soil paramters (see Appendix "Formulas and Calculations").

1.2 Interpretation

CPT measurements during cone penetration include cone bearing (q_c) , sleeve friction (fs), and dynamic pore water pressure (u). Using these three measured parameters a number of geotechnical parameters can be calculated based on previous correlation studies. See Formulas and Calculations for further details.

The calculated parameters are available in both graphical and tabular form in the appendix of this report under "Project Data". Draft copies of the graphs were available in real time in the field as reference.

1.21 Soil classification

A general observation of the measured parameters can be loosely used to identify soil types*. The following table is a rudimentary guideline for basic soil type evaluations:

	Sand	<u>Clay</u>
Cone Bearing (q _c)	High	Low
Friction Ratio (f _s /q _s)	Low	High
Pore water pressure (u)	Low	High

*Soil conditions may very regionally and can affect how these parameters respond.

More in-depth soil type correlations have been empirically evaluated over the years. Experts have agreed on two primary methods of classification:

- 1. Classification based on Friction Ratio
- 2. Classification based on the Pore Pressure Parameter (Bq)

Friction ratio is the ratio of Sleeve Friction to Corrected Tip Resistance.

Bq, The Pore Pressure Paramter, is the ratio of the measured pore pressure between the tip and the sleeve and the Corrected Tip resistance normalized to Effective Overburden.

Soil behavior classifications based on either Friction Ratio or Bq plotted against total tip resistance (normalized or not) provide the lithological definitions of CPT Data Outputs.

Unless otherwise specified, the stratigraphies generated from this project's data were classified using the 1986 Friction Ratio Classification. In addition to having the most soil behavior types (twelve), this classification is best suited for general investigations when little other site specific data is available.

All four classification charts are included in the appendix of this report for reference.

The soil classifications are represented graphically on the far right of the log graphs. The resolution of classification zones is limited by the graphing software, so several zones may be combined on the graph and labeled with nomenclature other than the 12 accepted soil types, i.e. Interbedded, Silt Mix, etc. If very thin lenses or zones need to be resolved, the tabular data should be consulted because it generates a soil behavior type classification for approximately every 2cm of data. It is important to bear in mind that the graphical representation of the data is really just a visual aid for preliminary interpretation. Because of their higher resolution levels and more complex parameter analysis, the heart of the data is in the tabular files

1.22 Unit Weight

Soil density or Unit Weight is a critical geotechnical parameter. There have been correlations made between Soil Behavior Type numbers and Unit Weight. Alternately an average value of 120 pcf can be used for preliminary evaluations. The tabular data parameters that are calculated from Unit Weight, such as Overburden, use this average. However, the specific Unit Weights that correlate to the SBT Fr number are included if more precise analysis is desired.

1.23 Hydrogeology

The predominant forces at work in the subsurface are as intimately affected by ground water as they are by mechanical properties of the soil. Many of the useful geotechnical paramaters gleened from CPT data are calculated, at least partially, from dynamic or static pore pressure readings. Additionally, one of CPT's common applications is in the environmental field. A conceptual understanding of groundwater movement is critical to any environmental site investigation.

While established Soil Type Correlations contain useful grain size information, the pore pressure sensor is the primary tool for collecting hydrogeological information. Any measurements of pore pressure are only relevant in context to where the Ground Water Table (GWT) begins. To estimate the depth to GWT, a Static Pore Pressure Dissipation Test must be performed.

The Static Pore Pressure Dissipation Test (hereafter simply "Dissipation Test") is essential to calculating GWT, but how rapidly the test is completed is a function of Hydraulic Conductivity. During penetration the pore pressure sensor measures "dynamic" pore pressure, which varies depending on mechanical properties of the soil. When penetration stops, the disrupted pore space begins to equillibrate back to its "normal" pre-penetration conditions. The equillibrium pore pressure is achieved when all excess dynamic pore pressure has dissipated. This equillibrium pore pressure (Po or Uo) is relative to the head of groundwater above the pore pressure sensor. In fact, Po scales linearly with depth at 2.3 ft/PSI. So if a dissipation test were performed at 28 ft BGS, and the static pore pressure equillibrated to Po=9.5 PSI, then 21.85 (9.5PSI*2.3ft/PSI) feet of hydrostatic head can be assumed to exist above the depth where the test was taken, putting the GWT at 28-21.85=6.15ft. This method of GWT calculation depends on in-situ vertical distribution of hydrostatic pressure. Perched zones and confined aquifers could affect the final outcome and should be considered when dissipation data differs from regional well data.

The estimated GWT is also indicated on the log graphs by a small blue triangle, and the theoretical equillibrium pore pressure is indicated below the GWT with a dotted blue "hydroline". The relationship of the dynamic pore pressure to this hydroline can be used in soil classification (as mentioned in section 1.21), or can be used to identify "productive" zones in terms of environmental water sampling.

The slope of the dissipation curve (or rate of equilization) is relative to the coeffecient of consolidation for the soil. This parameter, in addition to being an important geotechnical parameter, is related to the coeffecient of the soil's permeability. The consequence of this relationship is that the type of soil chosen in which to perform a dissipation test greatly effects the time necessary for the pore pressure to equillibrate. If the primary purpose of the dissipation test is to determine GWT, it is not an effecient use of field time to perform the test in low permeability soils. Some clays can take days to fully equillibrate, so unless the specific consolidation and permeability properties of that particular zone are necessary, it is not advisable to wait. Sands tend to equillibrate very quickly and are typically chosen for rapid dissipation tests.

2.0 Electronic Piezocone (CPTU) Specifications

Cone

- 20-ton digital cone (thermal sprayed tungsten carbide coating)
- Strain gauge load cell measurement
- Outside diameter: 1.6" 1.75"
- Temperature compensated
- Calibrated against a NIST standard

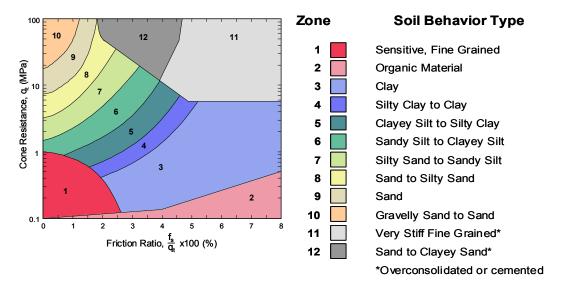
Tip Resistance

- Tip area: $10-15 \text{ cm}^2$
- Rated Range: 33000 lb
- Apical angle: 60°
- Frequency of measurement: 2-4 cm
- Measured data: Force / base area = q_c

Friction

- Surface area: 150 cm^2
- Rated Range: 5700 lb
- Location: behind pore pressure element (U2 position)
- End area ratio: 0.85
- Measured independently of cone tip
- Frequency of measurement: 2-4 cm
- Measured data: Force / surface area = f_s

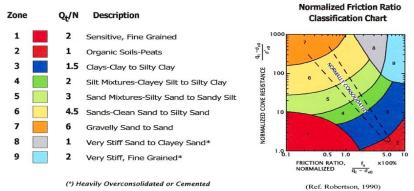
Pore Pressure


- Rated Range: 500 psi
- Location: Behind tip (U₂ position)
- Composition: Polypropylene porous plastic (5mm thickness)
- Saturation liquid: Glycerine Gel
- Saturation method: High vacuum with heat and vibration
- Measured data: U Measured pore pressure (dynamic)
- U_o Equilibrium pore pressure (After Static Dissipation)
- Frequency of measurement: 2-4 cm
- Pressure changes are measured with a diaphragm type electronic pressure

APPENDIX

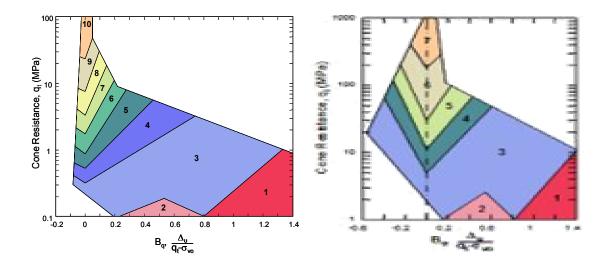
Contents

Soil Classification Charts References Formulas and Calculations Project Data


Soil Classifications Based on Friction Ratio

1986 Corrected Tip Resistance (Non-Normalized)

1990 Normalized Tip Resistance


CPT Soil Classification Legend

(*) Heavily Overconsolidated or Cemented

Coefficient of Permeability (cm/s)

Zone	Description	Permeability
1	Sensitive Fines	10-5
2	Organic Soils-Peat	s 10 ⁻⁵
3	Clays	10-7
4	Silt Mixtures	10-6
5	Sand Mixtures	10-4
6	Sands	10-2
7	Gravelly Sands	10-1
8	Very Stiff Sands	10-5
9	Very Stiff Fines	10-6

1986 (Non-Normalized Tip Resistance)

1990 (Normalized Tip Resistance)

References

Robertson, P.K. and Campanella, R.G., 1989. Guidelines for geotechnical design using the cone penetrometer test and CPT with pore pressure measurement. Hogentogler & Company, Inc., Columbia, Maryland.

Robertson, P.K. and Campanella, R.G., 1990. Guidelines for Use, Interpretation and Application of the CPT and CPTU. UBC, Soil Mechanics Series No. 105, Civil Engineering Department, Vancouver, B.C.

Robertson et al, 1999. An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils. Canadian Geotechnical Journal, v. 36: 369-381.

Lunne, T., Robertson, P.K., and Powell, J.J.M. Cone Penetration Testing in Geotechnical Practice. E & FN Spon, London EC4P 4EE

ASTM 2000. Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils. Annual Book of ASTM Standards, ASTM West Conshohocken, PA.

Frank Syms - Bechtel Corp (Savannah River Site), 2001. F. Syms 04 December 2003

Fomulas and Calculations

$$q_t = q_c + u_2 \times (1 - a)$$

Corrected Tip Stress

Pore Pressure Parameter

$$R_f = \frac{f_s}{q_s} \times 100\%$$

 $\sigma'_{vo} = \sigma_{vo} - u_o$

 $\times h_i$

1.42

 $B_q = \frac{\Delta u}{q_t - \sigma_{y_0}}$

Friction Ratio

Overburden

$$\sigma_{_{vo}} = \sum_{i=1}^n \gamma_i$$

Effective Overburden

Over Consolidation Ratio
$$OCR = 0.33 \times \left(\frac{\Delta u}{\sigma'_{yo}}\right)$$

Prepared By: PRECISION SAMPLING INC. 1081 Essex Avenue, Richmond, CA 94801 Phone: 510-237-4575 Fax: 510-237-4574 °C (%)

$$FC = \left[(3.58 - \log(q_t)^2) + (1.43 + \log(R_f)^2) \right]^{1.765}$$

if FC > 100 or FC < 15
FC is undefined.

Equation used to calculate SPT

Equation:

if (SBT = 1, 5 or 12)	SPTRAT = 2.00
if (SBT = 2, 3 or 11)	SPTRAT = 1.00
if $(SBT = 4)$	SPTRAT = 1.50
if $(SBT = 6)$	SPTRAT = 2.50
if (SBT = 7)	SPTRAT = 3.00
if (SBT = 8)	SPTRAT = 4.00
if (SBT = 9)	SPTRAT = 5.00
if (SBT = 10)	SPTRAT = 6.00
$N_{60} = \frac{q_t}{SPTRAT}$	Where: $N_{60} Cor = N_{60} \times \sqrt{\left(\frac{1.0}{\sigma_{ve}}\right)}$

SBT = Soil Behavior Type (Friction Ratio, Robertson 1986) SPTRAT = SPT Ratio (used in calculation)

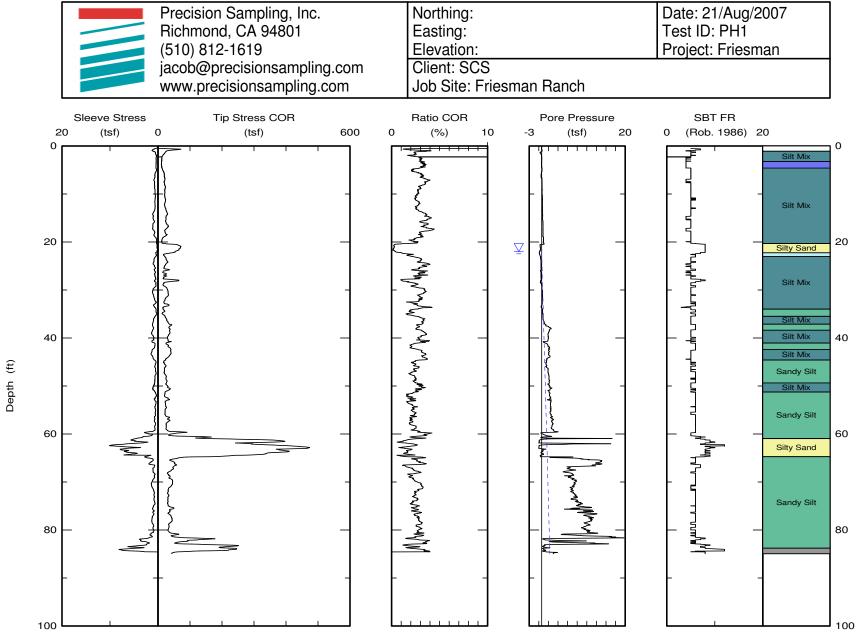
 Q_t = Corrected Tip Stress (tsf)

 σ_{ve} = Overburden (tsf)

Undrained Shear Strength

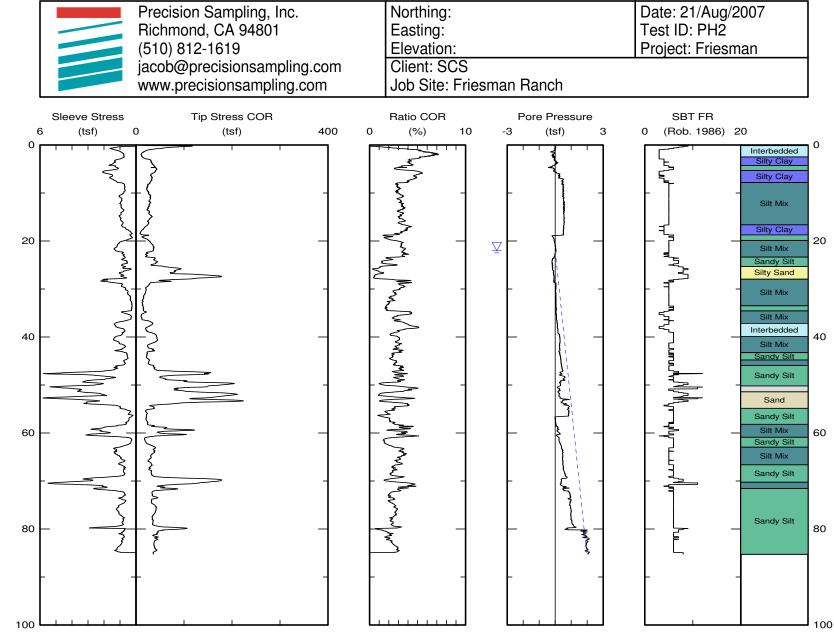
$$S_u = \frac{q_c - \sigma_{vo}}{N_k}$$

where
$$N_k = 15$$


Friction Angle

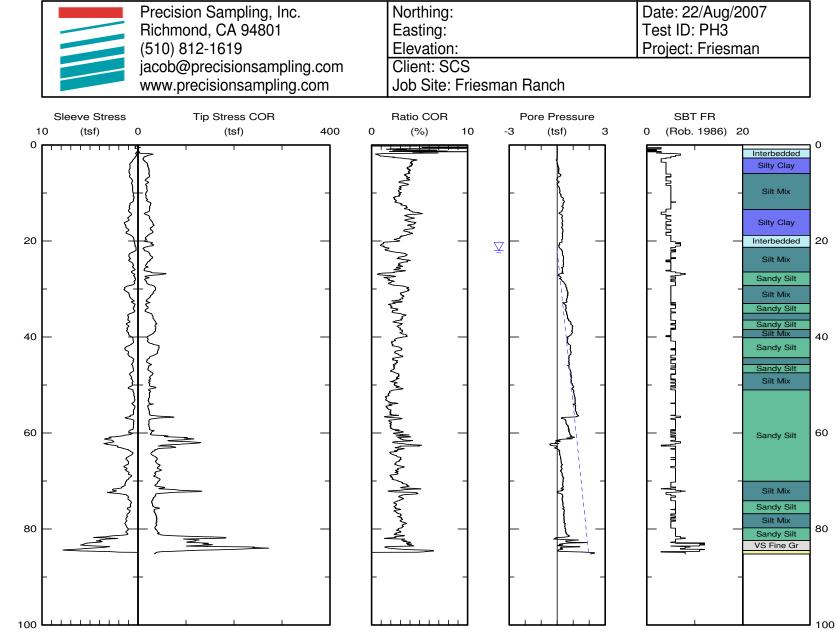
$$\phi = \arctan\left[0.38 \times \log_{10}\left(\frac{q_c}{\sigma_{vo}}\right) + 0.1\right] \times \frac{180}{\pi}$$

Approx. Unit Wt


Estimated Unit Weight

	FF -	
SBT	(lbs/cu ft)	kN/cu m
1	111.4	17.5
2	79.6	12.5
3	111.4	17.5
4	114.6	18.0
5	114.6	18.0
6	114.6	18.0
7	117.8	18.5
8	120.9	19.0
9	124.1	19.5
10	127.3	20.0
11	130.5	20.5
12	120.9	19.0

Maximum depth: 84.94 (ft)


 \Box Estimated Phreatic Surface

Maximum depth: 85.27 (ft)

Depth (ft)

Z Estimated Phreatic Surface

Maximum depth: 85.21 (ft)

Depth (ft)

Z Estimated Phreatic Surface

APPENDIX E

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION (8/21, 22, 23/2007)

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01203087.04; Freisman	Date Sampled: 08/21/07
6601 Koll Center Pkwy, Ste 140	Ranch	Date Received: 08/21/07
Pleasanton, CA 94566	Client Contact: Andy Chan	Date Reported: 08/22/07
r leasanton, CA 94500	Client P.O.:	Date Completed: 08/22/07

WorkOrder: 0708580

August 22, 2007

Dear Andy:

Enclosed are:

- 1). the results of 3 analyzed samples from your #01203087.04; Freisman Ranch project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

				CHAIN	OF CUSTOD	Y RECORD	708	5 00	_	2	The second			
SOS E	NGINEERS E	nvironm	ental Cons	ultants	TOTAL NUMBER	OF SAMPLES: 2	-		AN.	ALYSE	s AFGI	ESTE	C	
6601 K Suite 1	Coll Center Parkway	92 FA	25 426-0080 X 925 426-070 ww.scsengineers	17		OF / IME REQUIRED: 04/		q	101	201			31	
PROJECT N	UMBER: 01203	087.04	1		PROJECT MANA	GER: S. Clements		155	1	2				
PROJECT N	the second s	an Ran			W.O. / S.O. #:			16		2010				
PROJECT L	OCATION: 1600			crime	CA			Hall	8260	1000				
	IAME AND SIGNATUR			Rol				F	20	2				
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE	SPECIAL INSTRUCTIONS/CO		8016	Huel .	12				
	PH-1 GW	HED	8-21-07	Various	4 upas	-TIPH-d w/ subica cre	el Closury	χ	XX	$\langle $				
	PH-2 Crw	K	d'	ł	d	same		X	$\langle \rangle$	$\langle $				
			1.1											
	-													
1														
OTES:	c results mple for metals	to TC : uas r = 21-07	RECEIVED BY:	via en d or f	DATE: 0/21/04	in field. RELINQUISHED BY:	ICE/P GOOD CC HEAD SP. DECHLOI DATE: PRESERV	NDIT ACE A RINAT	ON_BSENT	LAB	APF CON	ROPRI	D IN LAB	
OMPANY: SC	TIM	E:5:39	COMPANY: MA	9	TIME: 5:40pm	COMPANY:	TIME:		CO	MPANY:			TIME	:

McCampbell Analytical, Inc.

Y
-

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	order: 0708580) Client	tID: SCSD		
			EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	
Report to:				В	ill t		R	equested TAT:	: 1 day
Andy Chan	Email:	achan@scseng	ineers.com		Accounts Pag	yable			
SCS Engineers	TEL:	(925) 426-008	FAX: (925)	426-070	SCS Engine	ers			
6601 Koll Center Pkwy, Ste 140	ProjectNo	#01203087.04;	Freisman Ranc	h	6601 Koll Ce	nter Pkwy, Ste 1	40 L	ate Received	08/21/2007
Pleasanton, CA 94566	PO:				Pleasanton,	CA 94566	L	Date Printed:	08/21/2007

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
· · · · · · · · ·			1			-										
0708580-001	PH-1GW	Water	8/21/2007		В	А	С	С								
0708580-002	PH-2GW	Water	8/21/2007		В	А	С	С								

Test Legend:

1 8260B_W	2 G-MBTEX_W	3 PBMS_DISS	4 PRDISSOLVED	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Ana Venegas

24hr rush cc results to Ted Sison via email **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

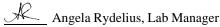
Client Name:	SCS Engineers				Date a	and Time Received:	8/21/2007	6:00:01 PM				
Project Name:	#01203087.04; F	reisman Ranch			Check	list completed and r	eviewed by:	Ana Venegas				
WorkOrder N°:	0708580	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>						
		Chain	of Cu	stody (C	OC) Informa	ition						
Chain of custody	y present?		Yes		No 🗆							
	y signed when relinqu	ished and received?	Yes	\checkmark	No 🗆							
Chain of custody	y agrees with sample	labels?	Yes	✓	No 🗌							
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆							
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗆							
Sampler's name	noted on COC?		Yes	✓	No 🗆							
Sample Receipt Information												
		<u></u>	ampie	<u>Keceipi</u>		<u> </u>	_					
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽					
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗆							
Samples in prop	er containers/bottles?		Yes	✓	No 🗆							
Sample containe	ers intact?		Yes	\checkmark	No 🗆							
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌							
		Sample Prese	rvatio	n and Ho	ld Time (HT) Information						
		-				<u>,</u>						
All samples rece	ived within holding tim	ne?	Yes	\checkmark	No 🗌							
Container/Temp	Blank temperature		Coole	er Temp:	20.2°C		NA 🗆					
Water - VOA via	lls have zero headspa	ace / no bubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	itted 🗆					
Sample labels cl	hecked for correct pre	eservation?	Yes	\checkmark	No 🗌							
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹					

Client contacted:

Date contacted:

Contacted by:

Comments:


McCampbell A		<u>nc.</u>		Web: www.mccam	Pass Road, Pittsburg, C pbell.com E-mail: mai	n@mccampbell.com			
"When Oual					877-252-9262 Fax: 9				
SCS Engineers		•		203087.04;	Date Sampled:	08/21/07			
6601 Koll Center Pkwy, Ste 140	Freisma	an Ranch	l		Date Received:	08/21/07			
0001 Koll Center FKwy, Ste 140	Client C	Contact:	Andy	Chan	Date Extracted:	08/21/07			
Pleasanton, CA 94566	Client P	2.0.:			Date Analyzed	08/21/07			
			0.75		-				
	-	•		d GC/MS (Basic T	arget List)*				
Extraction Method: SW5030B		Analytical N	Aethod:	SW8260B		Work Order: 0708	580		
Lab ID				070858	0-001B				
Client ID				PH-1	IGW				
Matrix				Wa	ter				
Compound	Concentration *	DF	Reporting Limit	Compou	Concentration *	DF	Reportin Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TE	BA)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Viny	l Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzer		ND	1.0	0.5	
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	<u>1.0</u> 1.0	0.5	Dichlorodifluorome		ND ND	<u>1.0</u> 1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroeth		ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa		ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (•	ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadier		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	9	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	oethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber	izene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5	
			gate Re	ecoveries (%)					
%SS1:	10			%SS2:		10	0		
%SS3: 100									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.


McCampbell A	Analytical, Ir	<u>ıc.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA	n@mccampbell.com				
"When Oua	litv Counts"			Telephone: 8	877-252-9262 Fax: 92	25-252-9269				
SCS Engineers				203087.04;	Date Sampled:	08/21/07	08/21/07			
6601 Koll Center Pkwy, Ste 140	Freisma	an Ranch	1		Date Received:	08/21/07				
0001 Koll Center FKwy, Ste 140	Client C	Contact:	Andy	Chan	Date Extracted:	08/21/07				
Pleasanton, CA 94566	Client P	2.0.:			Date Analyzed	08/21/07				
	Volotilo Orgon	iaa her D	P-T and	d GC/MS (Basic Ta						
	_	-			arget List).	W. 1 O 1 0700	500			
Extraction Method: SW5030B		Analytical N	vietnod:			Work Order: 0708	580			
Lab ID				0708580						
Client ID		PH-2GW Water								
Matrix			Reporting	Wat	er	<u> </u>		Reportir		
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane	• >	ND	1.0	0.5		
2-Butanone (MEK) n-Butyl benzene	ND ND	<u>1.0</u> 1.0	2.0	t-Butyl alcohol (TB) sec-Butyl benzene	A)	ND ND	<u>1.0</u> 1.0	5.0 0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane	Build	ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	propropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzen	e	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorome		ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethe		ND	1.0	0.5		
trans-1,2-Dichloroethene 1,3-Dichloropropane	ND	1.0	0.5	1,2-Dichloropropan		ND	1.0	0.5		
1,3-Dichloropropene	ND ND	<u>1.0</u> 1.0	0.5	2,2-Dichloropropan cis-1,3-Dichloroprop		ND ND	<u>1.0</u> 1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (I	1	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe		ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadien		ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone	•	ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ne	ND	1.0	0.5		
1,1,2-Trichloroethane Trichlorofluoromethane	ND ND	1.0	0.5	Trichloroethene 1,2,3-Trichloroprop	200	ND ND	<u>1.0</u> 1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,2,3-Trientoroprop		ND ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes	Lone	ND	1.0	0.5		
				ecoveries (%)			1.0	. 0.0		
%SS1:	10		Bare M	%SS2:		10	2			
%SS3:	10			/0002.		10				
Comments: i	.									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.

	Campbell Analyti "When Ouality Counts"	ical, Inc.	Web: www.mcc	ow Pass Road, Pittsburg, CA 945 ampbell.com E-mail: main@mc ne: 877-252-9262 Fax: 925-252	campbell.con	n
SCS Engineers		Client Project ID: Freisman Ranch	#01203087.04;	Date Sampled: 08/	21/07	
6601 Koll Cent	er Pkwy, Ste 140			Date Received: 08/	21/07	
Pleasanton, CA	A 94566	Client Contact: A	Andy Chan	Date Extracted: 08/	22/07	
		Client P.O.:		Date Analyzed 08/	22/07	
Gasoline R Extraction method: S	Range (C6-C12), Stoddard So	0	· •		l ard Solve k Order: 0	
Lab ID	Client ID	Matrix	hods: SW8021B/8015Cm TPH(g)	TPH(ss)	DF	% SS
0708580-001A	PH-1GW	W	ND,i	ND	1	105
0708580-002A	PH-2GW	W	ND,i	ND	1	105
0708580-003A	QCTB	W	ND	ND	1	105
					1	
	orting Limit for DF =1; means not detected at or	W	50	50	μ	g/L
	ove the reporting limit	S	NA	NA	mg	/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	CCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>		Web: www	v.mccamp	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccan 377-252-9262 Fax: 925-252-92	npbell.com	
SCS Engineer		Client Project II Freisman Rancl		01203087.04;		Date Sampled: 08/21 Date Received: 08/21		
6601 Koll Cer	nter Pkwy, Ste 140							
Pleasanton, C	A 94566	Client Contact:	An	idy Chan		Date Extracted: 08/21	/07	
		Client P.O.:				Date Analyzed 08/21	/07	
		Lead	by I	CP-MS*				
Extraction method				ethods E200.8			order: 07	
Lab ID	Client ID	Mat	rix	Extraction Type		Lead	DF	% SS
0708580-001C	PH-1GW	W	7	DISS.		ND	1	N/A
0708580-002C	PH-2GW	W	7	DISS.		ND	1	N/A
							07 07 07 der: 07 DF 1	

Reporting Limit for DF =1;	W	DISS.	0.5	µg/L
ND means not detected at or above the reporting limit	S	TOTAL^	NA	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

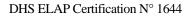
means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

 $TOTAL^{ = acid digestion.$

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL[^] metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.


	CCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	Web: www.mccam	Pass Road, Pittsburg, CA 94565- pbell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	pbell.com	
SCS Engineer	S	Client Project ID Freisman Ranch	#01203087.04;	Date Sampled: 08/21	/07	
6601 Koll Cer	nter Pkwy, Ste 140			Date Received: 08/21/	/07	
Pleasanton, C	A 94566	Client Contact:	Andy Chan	Date Extracted: 08/21/		
		Client P.O.:		Date Analyzed 08/21	/07	
Frederic di un scale e d			Hydrocarbons with Silic	-	1	00500
Extraction method Lab ID	Client ID	Matrix	Il methods SW8015C	Work Or	DF	08580 % SS
Lao ID		Wattix	1111(0		DI	/0 55
0708580-001A	PH-1GW	w	ND,i		1	120
0708580-002A	PH-2GW	W	ND,i		1	108
		<u> </u>				

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.

QC SUMMARY REPORT FOR SW8260B

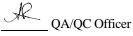
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708580

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 30	048	Sp	Spiked Sample ID: 0708475-001c				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))	
, indyto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	109	106	3.05	104	106	2.81	70 - 130	30	70 - 130	30	
Benzene	ND	10	97.5	101	3.42	96.7	99.1	2.46	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	96.4	96.6	0.251	112	106	5.17	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	10	104	104	0	102	103	1.04	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	117	115	1.15	110	111	1.55	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	103	105	1.33	101	103	2.54	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	10	125	128	2.60	128	129	0.175	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	119	120	0.461	114	116	1.40	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	113	112	0.460	108	111	2.43	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	113	112	1.39	121	126	4.04	70 - 130	30	70 - 130	30	
Toluene	ND	10	105	104	0.897	97	98.2	1.25	70 - 130	30	70 - 130	30	
Trichloroethene	ND	10	96.4	97.3	0.838	94.4	96.7	2.42	70 - 130	30	70 - 130	30	
%SS1:	118	10	97	98	0.927	98	98	0	70 - 130	30	70 - 130	30	
%SS2:	97	10	107	104	2.82	99	99	0	70 - 130	30	70 - 130	30	
%SS3:	94	10	99	99	0	95	96	1.45	70 - 130	30	70 - 130	30	

BATCH 30048 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708580-001B	08/21/07	08/21/07	08/21/07 8:38 PM	0708580-002B	08/21/07	08/21/07	08/21/07 9:26 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

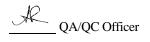
QC Matrix: Water

WorkOrder 0708580

EPA Method SW8021B/8015Cm	EXII	ction SW	3030B	1	Dai	chID: 30	040	əh	ikeu Saliij	JIE ID.	0708475-00			
Analyte	Sample	Sample Spiked MS			MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex) [£]	ND	60	100	92	8.39	105	107	1.37	70 - 130	30	70 - 130	30		
MTBE	ND	10	110	101	8.39	80.1	95.3	17.3	70 - 130	30	70 - 130	30		
Benzene	ND	10	94.9	92.7	2.39	98.9	93.4	5.79	70 - 130	30	70 - 130	30		
Toluene	ND	10	108	106	1.68	113	105	7.37	70 - 130	30	70 - 130	30		
Ethylbenzene	ND	10	105	100	4.21	110	104	6.05	70 - 130	30	70 - 130	30		
Xylenes	ND	30	117	110	5.88	113	113	0	70 - 130	30	70 - 130	30		
%SS:	110	10	96	100	3.86	98	95	3.53	70 - 130	30	70 - 130	30		

BATCH 30046 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708580-001A	08/21/07	08/22/07	08/22/07 2:00 AM	0708580-002A	08/21/07	08/22/07	08/22/07 3:01 AM
0708580-003A	08/21/07	08/22/07	08/22/07 3:32 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

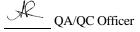
QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708580

EPA Method E200.8	Extra	ction E20	0.8		Bat	chID: 30	081	Sp	Spiked Sample ID: 0708519-001A				
Analyte	Sample Spiked MS MS				D MS-MSD LCS LCSD		LCSD	LCS-LCSD	Acce	eptance	tance Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Lead	0.68	10	102	101	0.834	104	107	2.57	70 - 130	20	80 - 120	20	
%SS:	103	750	103	100	2.76	97	98	1.01	70 - 130	20	70 - 130	20	
%SS: 103 750 103 100 2.76 97 98 1.01 70 - 130 20 70 - 130 2 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													


BATCH 30081 SUMMARY							
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708580-001C	08/21/07	7 08/21/07	08/21/07 8:57 PM	0708580-002C	08/21/07	08/21/07	08/21/07 9:02 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

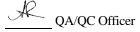
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708580

LCS LCSD Rec. % Rec.	LCS-LCSD % RPD		eptance	Criteria (%)	
Rec. % Rec.	% RPD				
	70 TKI D	MS / MSD	RPD	LCS/LCSD	RPD
124 125	0.108	N/A	N/A	70 - 130	30
118 120	1.64	N/A	N/A	70 - 130	30
118	120	120 1.64		120 1.64 N/A N/A	120 1.64 N/A N/A 70 - 130


			BATCH 30092 SL	<u>JMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708580-001A	08/21/07	08/21/07	08/21/07 10:42 PM	0708580-002A	08/21/07	08/21/07	08/21/07 9:34 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #0123087.04; Freisman Ranch GW Transact Investigat	Date Sampled: 08/22/07
6601 Koll Center Parkway Suite	Kanch Gw Transact investigat	Date Received: 08/22/07
140 Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 08/23/07
	Client P.O.:	Date Completed: 08/23/07

WorkOrder: 0708643

August 23, 2007

Dear Steve:

Enclosed are:

- 1). the results of **6** analyzed samples from your **#0123087.04; Freisman Ranch GW Transact Investigat project,**
- 2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	0	70864			OF CUSTOD	Y RECORD									
SCS E	ENGINEERS E	nvironm	ental Cons	ultants	TOTAL NUMBER	OF SAMPLES:			ANAL	YSE	S REC	UEST	ED		LAB USE ONLY
6601 k Suite 1	Koll Center Parkway	92 FA	25 426-0080 X 925 426-070	7		OF IME REQUIRED	her y		Lead	0	Per T.S.	~			
PROJECT N	IUMBER: 012030	87.04			PROJECT MANA	GER: S. Clements	S.			g	60				
the second se	IAME: Freisman Ray	the second se	Transect In	vestightin	W.O. / S.O. #:		q		Dissolved	2	3				
	OCATION: 1600 Fre						E E	8260	iss	Total	10				
SAMPLER N	AME AND SIGNATURE	Ted s	ISON X	55)			V				33				
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED	SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCTIONS/COMME	INTS	Fill	0109	0100	50				
	PH-3 (rw), 23'	#20	8-22-07	various	4 VOAS W HEP	afsilica get chanop for	d X	X	X						
	SCTB	1		2 VOAS	HCR			X							
	PH-3 GW, 85'	1 t		vorious	4 VOAS W/	ujsilica gel cleanup for	rd y	$\langle \rangle$	X						
	PH-35,17'	soil		2 Encors 1 Jar	-		×	Al	í	X	X				
	PH-35, 78'	1			-		X	1		X	X				
	PH-15, 19'	V	4	+	-		×	4		X	X				
								-				+	1		
								+				+	+	\square	
						ICE IE 1.6V	1					+	+	\square	
						HEAD SPACE ABSE DECHLORINATED H		CO	PRIA NTAIN ESER	ERS					
						PRESERVATION	DASICSC					-	-		
												+			
NOTES: K Plea. GW SAN	se cc results ples for metal	to to	sison @ scs not filte	enginee credor p	rs.com	n field.				S	SAMPL	E COND	DITION	UPON R	ECEIPT:
		E-22-07	RECEIVED BY:		DATE: 8.22.07	RELINQUISHED BY:	DATE:		RECE	IVED B	Y:			DATE:	
COMPANY:	TIME	4:45			1:45 pm	COMPANY:	TIME:		COMP	ANY:				TIME:	

+++

McCampbell Analytical, Inc.

22	SW.
6	JY.
6	-

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92						Work	Order:	0708	643	(ClientID	SCS	Р				
				EDF		Excel	ļ	Fax	E	🗸 Email		Hard	Сору	🗌 Thi	rdParty		
Report to:							Bill t						Re	queste	d TAT:	1	1 day
Steve Clements SCS Engineers 6601 Koll Center Pleasanton, CA	r Parkway Suite 140 94566	Email: TEL: ProjectNo: PO:	(925) 426-00	scsengineers.com 8 FAX: (925) ; Freisman Ranch	426-0		SC 66	eve Cle CS Engi 01 Koll easanto	neers Center		ay Suite	e 140				08/22/ 08/22/	
									Req	uested	Tests (See leg	gend b	elow)			
Sample ID	ClientSampII	כ	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0708643-001	PH-3GW, 23'		Water	8/22/2007			В		Α		С	С					
0708643-002	QCTB		Water	8/22/2007			Α										
0708643-003	PH-3 GW, 85		Water	8/22/2007			В		Α		С	С					
0708643-004	PH-3S,17'		Soil	8/22/2007		В		А		А							
0708643-005	PH-3S, 78'		Soil	8/22/2007		В		Α		А							
0708643-006	PH-1S, 19'		Soil	8/22/2007		В		А		А							

Test Legend:

1	8260B_ENCORE	2	8260B_W	3	G-MBTEX_S	4	4 G-MBTEX_W	5 PB_S
6	PBMS_DISS	7	PRDISSOLVED	8		9	9	10
11		12	2					

The following SampIDs: 001A, 003A, 004A, 005A, 006A contain testgroup.

Prepared by: Chloe Lam

cc to tsison@scsengineers.com **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

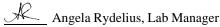
McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	SCS Engineers			Date	and Time Received:	8/22/2007 6:30:26 PM
Project Name:	#0123087.04; Freisman Ranch GW	/ Tran	sact Inve	st Che	cklist completed and	reviewed by: Chloe Lam
WorkOrder N°:	0708643 Matrix <u>Soil/Water</u>			Carr	ier: <u>Client Drop-In</u>	
	Chair	n of Cu	stody (CO	C) Inforn	nation	
Chain of custody		Yes	<u>v</u>	No 🗆		
	v signed when relinquished and received?	Yes		No 🗆		
	agrees with sample labels?	Yes	_	No		
Sample IDs noted	by Client on COC?	Yes	\checkmark	No		
Date and Time of	collection noted by Client on COC?	Yes	\checkmark	No 🗆		
Sampler's name	noted on COC?	Yes	✓	No 🗆		
	s	ample	Receipt In	nformatio	on	
Custody seals in	- tact on shipping container/cooler?	Yes		No 🗆		NA 🔽
				_		
Shipping contain	er/cooler in good condition?	Yes		No 🗌		
Samples in prop	er containers/bottles?	Yes	\checkmark	No 🗆		
Sample containe	ers intact?	Yes	\checkmark	No 🗆		
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗌		
	Sample Prese	rvatio	n and Hold	d Time (H	T) Information	
	ived within holding time?	Yes	V	No 🗌		
	C C					
Container/Temp	Blank temperature	Coole	•	9.6°C		
Water - VOA via	Is have zero headspace / no bubbles?	Yes	\checkmark	No	No VOA vials subm	
Sample labels cl	necked for correct preservation?	Yes	\checkmark	No		
TTLC Metal - pH	acceptable upon receipt (pH<2)?	Yes		No 🗆		NA 🗹

Client contacted:

Date contacted:


Contacted by:

Comments:

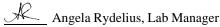
<u>McCampbell</u> A		cal, Ir	<u>ıc.</u>		Web: www.mccamp	Pass Road, Pittsburg, C.	n@mccampbell.com			
	litv Counts"					877-252-9262 Fax: 92	25-252-9269			
SCS Engineers					3087.04;	Date Sampled:	08/22/07			
			an Rancl	h GW T	ransact	Date Received:	08/22/07			
6601 Koll Center Parkway Suite	140	Client (Stova	Clements	Date Extracted:	08/22/07			
	-			Sleve	Jements					
Pleasanton, CA 94566		Client P	2.0.:			Date Analyzed	08/23/07			
Volat	ile Organio	s by P&	T and (GC/MS	(Basic Target List)) [Encore Sampli	ng]*			
Extraction Method: SW5035		-	Analytical l	Method:	SW8260B		Work Order: 0708	643		
Lab ID					0708643	3-004B				
Client ID					070804. PH-33					
Matrix					So					
				Reporting			<u> </u>		Report	
Compound	Concent	ration *	DF	Ĺimit	Compour	nd	Concentration *	DF	Ĺim	
Acetone	ND<		20	0.05	Acrolein (Propenal)		ND<0.81	20	0.0	
Acrylonitrile	ND<		20	0.02	tert-Amyl methyl e	ther (TAME)	ND<0.081	20	0.0	
Benzene	ND<		20	0.005	Bromobenzene	ND<0.081	20	0.0		
Bromochloromethane Bromoform	ND<		<u>20</u> 20	0.005	Bromodichlorometh Bromomethane	lane	ND<0.081 ND<0.081	$\frac{20}{20}$	0.0	
2-Butanone (MEK)		0.67	20	0.003	t-Butyl alcohol (TB	A)	ND<0.81	20	0.0	
n-Butyl benzene		0.65	20	0.005	sec-Butyl benzene		0.12	20	0.0	
tert-Butyl benzene	ND<	0.081	20	0.005	Carbon Disulfide		ND<0.081	20	0.0	
Carbon Tetrachloride	ND<	0.081	20	0.005	Chlorobenzene		ND<0.081	20	0.0	
Chloroethane	ND<	0.081	20	0.005	2-Chloroethyl Viny	l Ether	ND<0.16	20	0.0	
Chloroform	ND<	0.081	20	0.005	Chloromethane		ND<0.081	20	0.00	
2-Chlorotoluene	ND<		20	0.005	4-Chlorotoluene		ND<0.081	20	0.0	
Dibromochloromethane	ND<		20	0.005	1,2-Dibromo-3-chlo	propropane	ND<0.081	20	0.0	
1,2-Dibromoethane (EDB)	ND<		20	0.005	Dibromomethane		ND<0.081	20	0.0	
1,2-Dichlorobenzene	ND<		20 20	0.005	1,3-Dichlorobenzen		ND<0.081	20	0.0	
1,4-Dichlorobenzene 1,1-Dichloroethane	ND<		20	0.005	Dichlorodifluorome		ND<0.081 ND<0.081	$\frac{20}{20}$	0.0	
1.1-Dichloroethene	ND<		20	0.005	cis-1,2-Dichloroeth		ND<0.081	20	0.0	
trans-1,2-Dichloroethene	ND<		20	0.005	1,2-Dichloropropan		ND<0.081	20	0.0	
1,3-Dichloropropane	ND<		20	0.005	2,2-Dichloropropan		ND<0.081	20	0.0	
1,1-Dichloropropene	ND<	0.081	20	0.005	cis-1,3-Dichloropro	pene	ND<0.081	20	0.0	
trans-1,3-Dichloropropene	ND<	0.081	20	0.005	Diisopropyl ether (l	DIPE)	ND<0.081	20	0.0	
Ethylbenzene		0.75	20	0.005	Ethyl tert-butyl eth	er (ETBE)	ND<0.081	20	0.0	
Freon 113	ND		20	0.1	Hexachlorobutadien	e	ND<0.081	20	0.0	
Hexachloroethane	ND<		20	0.005	2-Hexanone		ND<0.081	20	0.0	
Isopropylbenzene		0.16	20	0.005	4-Isopropyl toluene		ND<0.081	20	0.0	
Methyl-t-butyl ether (MTBE) 4-Methyl-2-pentanone (MIBK)	ND<		20	0.005	Methylene chloride		ND<0.081	20	0.0	
Nitrobenzene	ND<	<1.6	20 20	0.005	Naphthalene n-Propyl benzene		0.30	20 20	0.0	
Styrene	ND<		20	0.005	1,1,1,2-Tetrachloro	ethane	ND<0.081	20	0.00	
1,1,2,2-Tetrachloroethane	ND<		20	0.005	Tetrachloroethene		ND<0.081	20	0.0	
Toluene	ND<		20	0.005	1,2,3-Trichlorobenz	zene	ND<0.081	20	0.0	
1,2,4-Trichlorobenzene	ND<		20	0.005	1,1,1-Trichloroetha		ND<0.081	20	0.0	
1,1,2-Trichloroethane	ND<	0.081	20	0.005	Trichloroethene		ND<0.081	20	0.0	
Trichlorofluoromethane	ND<		20	0.005	1,2,3-Trichloroprop		ND<0.081	20	0.0	
1,2,4-Trimethylbenzene		2.3	20	0.005	1,3,5-Trimethylben	zene	0.87	20	0.0	
Vinvl Chloride	ND<).081	20	0.005			0.88	20	0.0	
				ogate Re	coveries (%)					
%SS1:		10			%SS2:		92	2		
%SS3:		8	1		1					

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

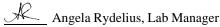
<u>McCampbell A</u>	nalytic	al, Ir	<u>ıc.</u>			Pass Road, Pittsburg, C. bell.com E-mail: mai			
"When Oual	itv Counts"				Telephone: 8	877-252-9262 Fax: 92	25-252-9269		
SCS Engineers					3087.04;	Date Sampled:	08/22/07		
		Freisma	an Ranch	n GW T	ransact	Date Received:	08/22/07		
6601 Koll Center Parkway Suite 1	40			Steve (Clements	Date Extracted:	08/22/07		
Pleasanton, CA 94566		Client P	2.0.:			Date Analyzed	08/23/07		
						, i i i i i i i i i i i i i i i i i i i			
Volati	le Organics	s by P&	and C	GC/MS	(Basic Target List)	Encore Sampli	ng]*		
Extraction Method: SW5035		1	Analytical M	Method:	SW8260B		Work Order: 07080	643	
Lab ID					0708643	3-005B			
Client ID					PH-35	5, 78'			
Matrix					So	il			
Compound	Concentr	ation *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reportin Limit
Acetone	ND<0	.042	1.0	0.05	Acrolein (Propenal)		ND<0.042	1.0	0.05
Acrylonitrile	ND<0		1.0	0.02	tert-Amyl methyl e	ND<0.0042	1.0	0.005	
Benzene	ND<0.		1.0	0.005	Bromobenzene		ND<0.0042	1.0	0.00
Bromochloromethane	ND<0.	0042	1.0	0.005	Bromodichlorometh	ane	ND<0.0042	1.0	0.005
Bromoform	ND<0.	0042	1.0	0.005	Bromomethane		ND<0.0042	1.0	0.00
2-Butanone (MEK)	ND<0	.017	1.0	0.02	t-Butyl alcohol (TB	A)	ND<0.042	1.0	0.05
n-Butyl benzene	ND<0.	0042	1.0	0.005	sec-Butyl benzene	ND<0.0042	1.0	0.00	
tert-Butyl benzene	ND<0.	0042	1.0	0.005	Carbon Disulfide	ND<0.0042	1.0	0.00	
Carbon Tetrachloride	ND<0.	0042	1.0	0.005	Chlorobenzene	ND<0.0042	1.0	0.00	
Chloroethane	ND<0.	0042	1.0	0.005	2-Chloroethyl Viny	l Ether	ND<0.0084	1.0	0.01
Chloroform	ND<0.	0042	1.0	0.005	Chloromethane		ND<0.0042	1.0	0.005
2-Chlorotoluene	ND<0.	0042	1.0	0.005	4-Chlorotoluene		ND<0.0042	1.0	0.005
Dibromochloromethane	ND<0.	0042	1.0	0.005	1,2-Dibromo-3-chlo	propropane	ND<0.0042	1.0	0.005
1,2-Dibromoethane (EDB)	ND<0.		1.0	0.005	Dibromomethane		ND<0.0042	1.0	0.005
1,2-Dichlorobenzene	ND<0.		1.0	0.005	1,3-Dichlorobenzen		ND<0.0042	1.0	0.005
1,4-Dichlorobenzene	ND<0.		1.0	0.005	Dichlorodifluorome		ND<0.0042	1.0	0.003
1,1-Dichloroethane	ND<0.		1.0	0.005	1,2-Dichloroethane		ND<0.0042	1.0	0.00
1,1-Dichloroethene	ND<0.		1.0	0.005	cis-1,2-Dichloroeth		ND<0.0042	1.0	0.00
trans-1,2-Dichloroethene	ND<0.		1.0	0.005	1,2-Dichloropropan		ND<0.0042	1.0	0.005
1,3-Dichloropropane	ND<0.		1.0	0.005	2,2-Dichloropropan		ND<0.0042	1.0	0.005
1,1-Dichloropropene	ND<0.		1.0	0.005	cis-1,3-Dichloropro		ND<0.0042	1.0	0.00
trans-1,3-Dichloropropene	ND<0.		1.0	0.005	Diisopropyl ether (l Ethyl tert-butyl eth	,	ND<0.0042	1.0	0.00
Ethylbenzene	ND<0.		1.0	0.005			ND<0.0042	1.0	0.00
Freon 113 Hexachloroethane	ND<0		<u>1.0</u> 1.0	0.1	Hexachlorobutadien 2-Hexanone	e	ND<0.0042 ND<0.0042	<u>1.0</u> 1.0	0.00
Isopropylbenzene Methyl-t-butyl ether (MTBE)	ND<0.		1.0	0.005	4-Isopropyl toluene Methylene chloride		ND<0.0042 ND<0.0042	<u>1.0</u> 1.0	0.00
4-Methyl-2-pentanone (MIBK)	ND<0.		1.0	0.005	Naphthalene		ND<0.0042	1.0	0.00
Nitrobenzene	ND<0		1.0	0.005	n-Propyl benzene		ND<0.0042	1.0	0.00
Styrene	ND<0.		1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND<0.0042	1.0	0.00
1,1,2,2-Tetrachloroethane	ND<0.		1.0	0.005	Tetrachloroethene	- muno	ND<0.0042	1.0	0.00
Toluene	ND<0.		1.0	0.005	1,2,3-Trichlorobenz	ene	ND<0.0042	1.0	0.005
1,2,4-Trichlorobenzene	ND<0.		1.0	0.005	1,1,1-Trichloroetha		ND<0.0042	1.0	0.005
1,1,2-Trichloroethane	ND<0.		1.0	0.005	Trichloroethene		ND<0.0042	1.0	0.00
Trichlorofluoromethane	ND<0.		1.0	0.005	1,2,3-Trichloroprop	ane	ND<0.0042	1.0	0.00
1,2,4-Trimethylbenzene	ND<0.		1.0	0.005	1,3,5-Trimethylben		ND<0.0042	1.0	0.00
Vinvl Chloride	ND<0.	0042	1.0	0.005	Xvlenes		ND<0.0042	1.0	0.00
			Surro	ogate Re	coveries (%)				
%SS1:		8			%SS2:		95	5	
%\$\$\$3:		8							
Comments: k									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

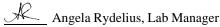
McCampbell A		<u>nc.</u>		Web: www.mccampt	ass Road, Pittsburg, C. pell.com E-mail: mai	n@mccampbell.com		
	litv Counts"			Telephone: 8'	77-252-9262 Fax: 92	25-252-9269		
SCS Engineers				23087.04;	Date Sampled:	08/22/07		
		an Rancl	h GW T	ransact	Date Received:	08/22/07		
6601 Koll Center Parkway Suite	140	Contact:	Steve (Clements	Date Extracted:	08/22/07		
Pleasanton, CA 94566			Steve		Date Analyzed			
	Client	F.U			Date Analyzeu	08/23/07		
Volat	ile Organics by P&	&T and (GC/MS	(Basic Target List)	[Encore Sampli	ng]*		
Extraction Method: SW5035		Analytical l	Method:	SW8260B		Work Order: 0708	643	
Lab ID				0708643	-006B			
Client ID				PH-1S	, 19'			
Matrix				Soi	1			
Compound	Concentration *	DF	Reporting Limit	Compoun	d	Concentration *	DF	Report
Acetone	ND<10	200	0.05	Acrolein (Propenal)	_	ND<10	200	0.0
Acrylonitrile	ND<10	200	0.03	tert-Amyl methyl eth	her (TAME)	ND<10 ND<1.0	200	0.00
Benzene	ND<1.0	200	0.005	Bromobenzene	ND<1.0	200	0.00	
Bromochloromethane	ND<1.0	200	0.005	Bromodichlorometha	ane	ND<1.0	200	0.0
Bromoform	ND<1.0	200	0.005	Bromomethane		ND<1.0	200	0.0
2-Butanone (MEK)	ND<4.1	200	0.02	t-Butyl alcohol (TBA	A)	ND<10	200	0.0
n-Butyl benzene	8.0	200	0.005	sec-Butyl benzene		1.4	200	0.0
tert-Butyl benzene	ND<1.0	200	0.005			ND<1.0	200	0.0
Carbon Tetrachloride	ND<1.0	200	0.005	Chlorobenzene		ND<1.0	200	0.0
Chloroethane	ND<1.0	200	0.005	2-Chloroethyl Vinyl	Ether	ND<2.0	200	0.0
Chloroform	ND<1.0	200	0.005	Chloromethane		ND<1.0	200	0.00
2-Chlorotoluene	ND<1.0	200	0.005	4-Chlorotoluene		ND<1.0	200	0.00
Dibromochloromethane	ND<1.0	200	0.005	1,2-Dibromo-3-chlor	ropropane	ND<1.0	200	0.0
1,2-Dibromoethane (EDB)	ND<1.0	200	0.005	Dibromomethane		ND<1.0	200	0.0
1,2-Dichlorobenzene	ND<1.0	200	0.005	1,3-Dichlorobenzene		ND<1.0	200	0.0
1,4-Dichlorobenzene	ND<1.0	200	0.005	Dichlorodifluoromet		ND<1.0	200	0.0
1,1-Dichloroethane	ND<1.0	200	0.005	1,2-Dichloroethane (ND<1.0	200	0.0
1,1-Dichloroethene	ND<1.0	200	0.005	cis-1,2-Dichloroethe		ND<1.0	200	0.0
trans-1,2-Dichloroethene	ND<1.0	200	0.005	1,2-Dichloropropane		ND<1.0	200	0.0
1,3-Dichloropropane	ND<1.0	200	0.005	2,2-Dichloropropane		ND<1.0	200	0.0
1,1-Dichloropropene	ND<1.0	200	0.005	cis-1,3-Dichloroprop		ND<1.0	200	0.0
trans-1,3-Dichloropropene	ND<1.0	200	0.005	Diisopropyl ether (D		ND<1.0	200	0.0
Ethylbenzene Freon 113	4.9 ND<20	200	0.005	Ethyl tert-butyl ethe Hexachlorobutadiene		ND<1.0 ND<1.0	<u>200</u> 200	0.0
Hexachloroethane	ND<20	200	0.005	2-Hexanone		ND<1.0	200	0.0
	1.8	200	0.005			ND<1.0	200	0.0
Isopropylbenzene Methyl-t-butyl ether (MTBE)	ND<1.0	200	0.005	4-Isopropyl toluene Methylene chloride		ND<1.0	200	0.0
4-Methyl-2-pentanone (MIBK)	ND<1.0	200	0.005	Naphthalene		3.5	200	0.0
Nitrobenzene	ND<20	200	0.005	n-Propyl benzene		7.2	200	0.0
Styrene	ND<1.0	200	0.005	1,1,1,2-Tetrachloroe	thane	ND<1.0	200	0.0
1.1.2.2-Tetrachloroethane	ND<1.0	200	0.005	Tetrachloroethene		ND<1.0	200	0.0
Toluene	ND<1.0	200	0.005			ND<1.0	200	0.0
1,2,4-Trichlorobenzene	ND<1.0	200	0.005	1,1,1-Trichloroethar		ND<1.0	200	0.0
1,1,2-Trichloroethane	ND<1.0	200	0.005	Trichloroethene		ND<1.0	200	0.0
Trichlorofluoromethane	ND<1.0	200	0.005	1,2,3-Trichloropropa	ane	ND<1.0	200	0.0
1,2,4-Trimethylbenzene	12	200	0.005	1,3,5-Trimethylbenz	ene	12	200	0.0
Vinvl Chloride	ND<1.0	200	0.005	Xvlenes		ND<1.0	200	0.0
		Surr	ogate Re	ecoveries (%)				
%SS1:	8	36		%SS2:		94	4	
%SS3:		34				, i i i i i i i i i i i i i i i i i i i		

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

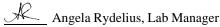
McCampbell A	Analytical, Ir	<u>ıc.</u>			Pass Road, Pittsburg, C. bell.com E-mail: mai				
"When Oua	litv Counts"			Telephone: 8	77-252-9262 Fax: 92	25-252-9269			
SCS Engineers				23087.04;	Date Sampled:	08/22/07			
6601 Koll Center Parkway Suite		an Rancl	h GW I	ransact	Date Received:	08/22/07			
	Client C	Contact:	Steve (Clements	Date Extracted:	08/22/07			
Pleasanton, CA 94566	Client P	2.0.:			Date Analyzed	08/22/07			
	Volatile Organ	nics by F	P&T and	d GC/MS (Basic Ta	arget List)*				
Extraction Method: SW5030B	_	Analytical 1			inger Elist)	Work Order: 0708	643		
Lab ID				0708643	-001B				
Client ID				PH-3G					
Matrix				Wat					
			Reporting			a		Reportin	
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.5	
Benzene Bromochloromethane	ND ND	<u>1.0</u> 1.0	0.5	Bromobenzene Bromodichlorometh	000	ND ND	<u>1.0</u> 1.0	0.5	
Bromoform	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB)	A)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzen	e	ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorome		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane		0.50	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethe		ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropan		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropan		ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (I		ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe		ND	1.0	0.5	
Freon 113	ND	<u>1.0</u> 1.0	10	Hexachlorobutadiene	e	ND	1.0	0.5	
Hexachloroethane	ND		0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene Methyl-t-butyl ether (MTBE)	ND ND	1.0	0.5	4-Isopropyl toluene Methylene chloride		ND ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha		ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	ane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5	
		Surr	ogate Re	ecoveries (%)		-			
%SS1:	10			%SS2:		10	3		
%SS3:	10	2							
Comments:									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A	nalytical, Ir	<u>ıc.</u>		1534 Willow Pass Web: www.mccampbel	s Road, Pittsburg, Ca Il.com E-mail: mai					
"When Ouality	v Counts"			Telephone: 877	-252-9262 Fax: 92	25-252-9269				
SCS Engineers		roject II an Rancl		ransaat	Date Sampled:	08/22/07				
6601 Koll Center Parkway Suite 14			IGW I	Iansact I	Date Received:					
5		Contact:	Steve (Clements I	Date Extracted: 08/22/07					
Pleasanton, CA 94566	Client P	2.0.:		1	Date Analyzed	08/22/07				
	Volatile Organ	nics by P	&T and	d GC/MS (Basic Tar	get List)*					
Extraction Method: SW5030B	_	Analytical I				Work Order: 0708	643			
Lab ID				0708643-0	02A					
Client ID				QCTB						
Matrix				Water						
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ethe	er (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromethan	e	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl E	ther	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloro	propane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorometha		ND	1.0	0.5		
1,1-Dichloroethane 1,1-Dichloroethene	ND ND	<u>1.0</u> 1.0	0.5	1,2-Dichloroethane (1) cis-1,2-Dichloroethene		ND ND	<u>1.0</u> 1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	3	ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5		
1.1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloroproper	ne	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DI		ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether		ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene	(EIDE)	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroeth	nane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzen		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropan		ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzer	ne	ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
		Surre	ogate Re	coveries (%)						
%SS1: %SS3:	10			%SS2:		10	5			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u> </u>	Analytical, In	<u>nc.</u>			ass Road, Pittsburg, CA cell.com E-mail: mai				
"When Oua	litv Counts"			Telephone: 8	77-252-9262 Fax: 92	25-252-9269			
SCS Engineers				3087.04;	Date Sampled:	08/22/07			
6601 Koll Center Parkway Suite 1		an Rancl	n GW I	ransact	Date Received:	08/22/07			
ooor Ron Conter Funkway Buile F	Client (Contact:	Steve (ve Clements Date Extracted: 08/22/07					
Pleasanton, CA 94566	Client F	2.0.:			Date Analyzed	08/22/07			
	Volatile Organ	nics by P	P&T and	d GC/MS (Basic Ta	rget List)*				
Extraction Method: SW5030B	_	Analytical 1			- geo	Work Order: 0708	643		
Lab ID				0708643	-003B				
Client ID				PH-3 GV	V, 8S'				
Matrix				Wat					
Compound	Concentration *	DF	Reporting Limit	Compoun	d	Concentration *	DF	Reportin Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	A)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromet		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethe		ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloroprop		ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (E		ND	1.0	0.5	
Ethylbenzene	0.61	1.0	0.5	Ethyl tert-butyl ethe	<i>(</i>	ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride Naphthalene		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5			ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene 1,1,1,2-Tetrachloroe	thono	ND	1.0	0.5	
Styrene	ND	1.0	0.5		etnane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane Toluene	ND ND	<u>1.0</u> 1.0	0.5	Tetrachloroethene	ene	ND ND	<u>1.0</u> 1.0	0.5	
1.2.4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha		ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	10	ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	ane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	0.57	1.0	0.5	1,3,5-Trimethylbenz		ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5	
				coveries (%)				. 0.0	
%SS1:	10		Butt Rt	%SS2:		10	0		
%SS1: %SS3:	10			% 33 2.		10	U		
/V.J.J.J.	9	/							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Campbell Analyti "When Ouality Counts"	ical, Inc.	Web: www.mcca	w Pass Road, Pittsburg, CA 9450 mpbell.com E-mail: main@mce e: 877-252-9262 Fax: 925-252	campbell.con	ı
SCS Engineers	3	Client Project ID:		1	22/07	
6601 Koll Cent	ter Parkway Suite 140	Freisman Ranch C	GW Transact Investiga	Date Received: 08/	22/07	
Pleasanton, CA	4 94566	Client Contact: S	teve Clements	Date Extracted: 08/	22/07-08/	23/07
		Client P.O.:		Date Analyzed 08/	23/07	
	e (C6-C12) & Stoddard Solv	-	-			
Extraction method:			ods: SW8015Cm		k Order: 0'	
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS
0708643-001A	PH-3GW, 23'	W	ND	ND	1	101
0708643-003A	PH-3 GW, 8S'	W	ND	ND	1	100
0708643-004A	PH-3S,17'	S	120,b,m	44	20	108
0708643-005A	PH-3S, 78'	S	ND	ND	1	78
0708643-006A	PH-1S, 19'	S	990,b,m	420		92
Rep	porting Limit for DF =1;	W	50	50	μ	g/L
	means not detected at or ove the reporting limit	S	1.0	1.0		/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

CS Engineers CLient Project ID			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
					Date Sampled: 08/22	2/07			
kway Suite 140	Freisman	Ranch G	W Transact Inve	stigat	Date Received:08/22/07Date Extracted:08/22/07				
56	Client Co	ntact: Ste	eve Clements						
	Client P.O).:		Date Analyzed: 08/23	3/07				
			1 1		Lead	1	08643 % SS		
PH-3S,17'		S	TOTAL^		7.6	1	109		
PH-3S, 78'		S	TOTAL^		7.7	1	104		
PH-1S, 19'		S	TOTAL^	8.1		1	102		
							ļ		
							<u> </u>		
							 		
							<u> </u>		
							<u> </u>		
							<u> </u>		
							<u> </u>		
							<u> </u>		
	"When Ouality Counts" "kway Suite 140 56 B Client ID PH-3S,17' PH-3S, 78'	"When Ouality Counts" Client Progression Kway Suite 140 56 Client Co Client P.O B Client ID PH-3S, 17' PH-3S, 78'	"When Ouality Counts" Client Project ID: # Freisman Ranch G 56 Client Contact: State Client Project ID: # Freisman Ranch G 56 Client Contact: State Client P.O.: B Analytical m Client ID Matrix PH-3S, 17' S PH-3S, 78'	Import Analytical, me. Web: www Tel "When Oualitv Counts" Client Project ID: #0123087.04; Freisman Ranch GW Transact Inve. 66 Client Contact: Steve Clements 66 Client P.O.: Lead by ICP* B Analytical methods: 6010C Client ID Matrix PH-3S, 78' S	Web: www.mccamp ''When Oualitv Counts'' "When Oualitv Counts'' Client Project ID: #0123087.04; Freisman Ranch GW Transact Investigat ''Strain Contact: Steve Clements Client Contact: Steve Clements Client P.O.: Client P.O.: B Analytical methods: Client ID Matrix PH-3S, 17' S TOTAL^	Import Analytical, Inc. "When Ouality Counts" Web: www.mccampbell.com E-mail: main@mccan "When Ouality Counts" Client Project ID: #0123087.04; Freisman Ranch GW Transact Investigat Date Sampled: 08/22 bit Client Project ID: #0123087.04; Freisman Ranch GW Transact Investigat Date Received: 08/22 Client Contact: Steve Clements Date Extracted: 08/22 Client P.O.: Date Analyzed: 08/22 Lead by ICP* B Analytical methods: 6010C Work of Client ID Matrix Extraction Type Lead PH-3S, 17' S TOTAL^ 7.6 PH-3S, 78' S TOTAL^ 7.7	Web: WWW.MCCAIL, THC. Web: WWW.MCCAIDELLOW Telephone: 877-252-9262 Fax: 925-252-9269"When Ouality Counts"Client Project ID: #0123087.04; Freisman Ranch GW Transact InvestigatDate Sampled: $08/22/07$ 66Client Contact: Steve ClementsDate Extracted: $08/22/07$ 66Client P.O.:Date Analyzed: $08/22/07$ Lead by ICP*BAnalytical methods: $6010C$ Work Order: $07/252$ Or Kork Order: $07/252$ 67MatrixExtraction TypeLeadDMatrixExtraction TypeLeadDFPH-3S, 78'STOTAL^7.61PH-3S, 78'STOTAL^7.71		

Reporting Limit for DF =1;	W	TOTAL^	NA	µg/L
ND means not detected at or	S	TOTAL^	5.0	mg/Kg
above the reporting limit				88

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in $\mu g/kg$, wipe samples in $\mu g/kg$, filter samples in $\mu g/kg$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

 $TOTAL^{ } = acid digestion.$

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL[^] metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

	CS Engineers			Web: www	v.mccamp	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccan 877-252-9262 Fax: 925-252-92	pbell.com		
SCS Engineer	8			0123087.04; W Transact Inve	stigat	Date Sampled: 08/22			
6601 Koll Cer	nter Parkway Suite 140					Date Received: 08/22/07			
Pleasanton, C.	A 94566	Client Con	tact: Ste	eve Clements		Date Extracted: 08/22/07			
,		Client P.O.	:		Date Analyzed: 08/22/07				
]	Lead by I	CP-MS*					
Extraction method:	E200.8	A	nalytical me	ethods: E200.8		Work C	order: 070)8643	
Lab ID	Client ID		Matrix	Extraction Type		Lead	DF	% SS	
0708643-001C	PH-3GW, 23'		W	DISS.		ND	1	N/A	
0708643-003C	PH-3 GW, 8S'		W	DISS.		ND	1	N/A	

Reporting Limit for DF =1;	W	DISS.	0.5	µg/L
ND means not detected at or above the reporting limit	S	TOTAL^	NA	mg/Kg

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in $\mu g/kg$, wipe samples in $\mu g/kg$, filter samples in $\mu g/kg$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

 $TOTAL^{+} = acid digestion.$

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL[^] metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

	ampbell Analy "When Ouality Counts		Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	pbell.com	
SCS Engineers		Client Project ID: Freisman Ranch	#0123087.04; GW Transact Investigat	Date Sampled: 08/22/ Date Received: 08/22/		
6601 Koll Center P Pleasanton, CA 94:	-	Client Contact: S	Steve Clements	Date Extracted: 08/22/		
Fleasanton, CA 94.	500	Client P.O.:		Date Analyzed 08/23/07		
Extraction method: SW35:		-	actable Hydrocarbons as methods: SW8015C	5 Diesel* Work Or	der: 070)8643
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS
0708643-004A	PH-3S,17'	S	20,d,g	1	116	
0708643-005A	PH-3S, 78'	S	ND	1	109	
0708643-006A	0708643-006A PH-1S, 19'		360,d		1	99

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

DHS ELAP Certification Nº 1644

	cCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-920	pbell.com	
SCS Engineer	8	Client Project ID:		Date Sampled: 08/22/	07	
6601 Koll Cer	nter Parkway Suite 140	Freisman Kanch	GW Transact Investigat	Date Received: 08/22/	07	
Pleasanton, C	A 94566	Client Contact: S	steve Clements	Date Extracted: 08/22/	07	
		Client P.O.:		Date Analyzed 08/23/	07	
Frederic di un contro di			Iydrocarbons with Silica	a Gel Clean-Up* Work Or	1 07()8643
Extraction method: Lab ID	Client ID	Matrix	methods: SW8015C TPH(d)		DF	% SS
0708643-001A	PH-3GW, 23'	W	ND	1	120	
0708643-003A	PH-3 GW, 8S'	w	ND		1	120

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

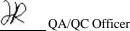
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0708643

EPA Method SW8260B	Extra	ction SW	5035		Bat	tchID: 30	170	Sp	piked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, analy to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	N/A	0.050	N/A	N/A	N/A	93.9	93	0.962	N/A	N/A	70 - 130	30
Benzene	N/A	0.050	N/A	N/A	N/A	97.3	95.6	1.84	N/A	N/A	70 - 130	30
t-Butyl alcohol (TBA)	N/A	0.25	N/A	N/A	N/A	99.9	102	2.55	N/A	N/A	70 - 130	30
Chlorobenzene	N/A	0.050	N/A	N/A	N/A	102	101	1.70	N/A	N/A	70 - 130	30
1,2-Dibromoethane (EDB)	N/A	0.050	N/A	N/A	N/A	105	105	0	N/A	N/A	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	N/A	0.050	N/A	N/A	N/A	101	98.6	2.27	N/A	N/A	70 - 130	30
1,1-Dichloroethene	N/A	0.050	N/A	N/A	N/A	127	128	1.05	N/A	N/A	70 - 130	30
Diisopropyl ether (DIPE)	N/A	0.050	N/A	N/A	N/A	109	107	1.95	N/A	N/A	70 - 130	30
Ethyl tert-butyl ether (ETBE)	N/A	0.050	N/A	N/A	N/A	100	97.5	2.73	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	0.050	N/A	N/A	N/A	96	97.1	1.10	N/A	N/A	70 - 130	30
Toluene	N/A	0.050	N/A	N/A	N/A	92.9	90.5	2.60	N/A	N/A	70 - 130	30
Trichloroethene	N/A	0.050	N/A	N/A	N/A	93.9	92.1	1.87	N/A	N/A	70 - 130	30
%SS1:	N/A	0.050	N/A	N/A	N/A	103	100	2.92	N/A	N/A	70 - 130	30
%SS2:	N/A	0.050	N/A	N/A	N/A	97	96	1.65	N/A	N/A	70 - 130	30
%SS3:	N/A	0.050	N/A	N/A	N/A	97	96	1.30	N/A	N/A	70 - 130	30

BATCH 30170 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708643-004B	08/22/07	08/22/07	08/23/07 9:15 AM	0708643-005B	08/22/07	08/22/07	08/23/07 7:43 AM
0708643-006B	08/22/07	08/22/07	08/23/07 8:27 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

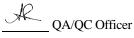
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708643

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 30	132	Sp	piked Sample ID: 0708582-010A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, individ	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	102	104	2.26	94.4	90.9	3.80	70 - 130	30	70 - 130	30
Benzene	ND	10	99.7	99.3	0.391	93.1	89.9	3.58	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	102	102	0	100	104	3.65	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	108	5.95	99.5	95.8	3.73	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	112	120	6.69	110	108	1.89	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	107	105	1.93	101	96.6	4.88	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	126	121	4.17	124	125	1.04	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	115	118	3.05	107	104	2.32	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	108	111	2.85	99.2	96.5	2.66	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	111	113	2.07	102	98.5	2.96	70 - 130	30	70 - 130	30
Toluene	ND	10	98.3	104	6.13	92.5	91.5	1.03	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	97	97.5	0.549	92.1	87.3	5.36	70 - 130	30	70 - 130	30
%SS1:	104	10	103	97	5.16	101	101	0	70 - 130	30	70 - 130	30
%SS2:	99	10	103	104	1.04	99	101	2.91	70 - 130	30	70 - 130	30
%SS3:	98	10	101	102	1.20	99	100	0.492	70 - 130	30	70 - 130	30

BATCH 30132 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708643-001B	08/22/07	08/22/07	08/22/07 8:58 PM	0708643-002A	08/22/07	08/22/07	08/22/07 9:51 PM
0708643-003B	08/22/07	08/22/07	08/22/07 10:45 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

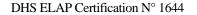
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0708643

(%)
(,-)
SD RPI
30 30
30 30
3


BATCH 30136 SUMMARY Sample ID **Date Sampled** Date Extracted Date Analyzed Sample ID Date Sampled Date Extracted Date Analyzed 0708643-004A 08/22/07 08/22/07 08/23/07 3:32 AM 0708643-005A 08/22/07 08/22/07 08/23/07 2:24 AM 0708643-006A 08/22/07 08/23/07 1:15 AM 08/22/07

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

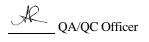
QC Matrix: Soil

WorkOrder 0708643

EPA Method SW8021B/8015Cm	EPA Method SW8021B/8015Cm Extraction SW5030B						BatchID: 30166 Spiked Sample ID: 070863					
Analyte	Sample Spiked MS			MSD MS-MSD LCS LCSD			LCS-LCSD	Acc	eptance	Criteria (%)		
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	0.60	99.5	98.4	1.10	97.8	99.8	2.05	70 - 130	30	70 - 130	30
MTBE	ND	0.10	100	104	3.44	109	111	1.56	70 - 130	30	70 - 130	30
Benzene	ND	0.10	90.6	90.4	0.264	89.7	96.4	7.19	70 - 130	30	70 - 130	30
Toluene	ND	0.10	79	79.4	0.514	82.2	87.2	5.87	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	92.7	92.7	0	92.8	98.5	5.95	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	91.3	90.7	0.733	91.7	96.7	5.31	70 - 130	30	70 - 130	30
%SS:	85	0.10	86	95	9.91	95	96	0.924	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 30166 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708643-004A	08/22/07	08/22/07	08/23/07 11:20 AM	0708643-005A	08/22/07	08/22/07	08/23/07 8:13 AM
0708643-006A	08/22/07	08/22/07	08/23/07 11:51 AM				·


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

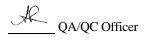
QC Matrix: Water

WorkOrder 0708643

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	tchID: 30	046	Sp	Spiked Sample ID: 0708475-001A			
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	100	92	8.39	105	107	1.37	70 - 130	30	70 - 130	30
MTBE	ND	10	110	101	8.39	80.1	95.3	17.3	70 - 130	30	70 - 130	30
Benzene	ND	10	94.9	92.7	2.39	98.9	93.4	5.79	70 - 130	30	70 - 130	30
Toluene	ND	10	108	106	1.68	113	105	7.37	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	105	100	4.21	110	104	6.05	70 - 130	30	70 - 130	30
Xylenes	ND	30	117	110	5.88	113	113	0	70 - 130	30	70 - 130	30
%SS:	110	10	96	100	3.86	98	95	3.53	70 - 130	30	70 - 130	30
	110	10	96	100	3.86	98	95	3.53	70 - 130	30		

BATCH 30046 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708643-001A	08/22/07	08/23/07	08/23/07 3:05 PM	0708643-003A	08/22/07	08/23/07	08/23/07 3:37 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR 6010C

W.O. Sample Ma	W.O. Sample Matrix: Soil QC Matrix: Soil									WorkOrder: 0708643				
EPA Method 6010C Extraction SW3050B							В	atchID: 3	0107	Spiked Sample ID 0708553-007A				
Analyte	Sample	Spiked	MS MSD MS-MSD Spiked LCS					LCS LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Lead	5.3	50	97.4	96.4	0.977	10	86.8	91.2	4.83	70 - 130	20	80 - 120	20	
%SS:	109	250	107	108	0.744	250	103	105	1.15	70 - 130	20	70 - 130	20	
All target compou NONE	All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 30107 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708643-004A	08/22/0	7 08/22/07	08/23/07 2:12 PM	0708643-005A	08/22/07	7 08/22/07	08/23/07 2:15 PM
0708643-006A	08/22/0	7 08/22/07	08/23/07 2:17 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

____QA/QC Officer

"When Ouality Counts"

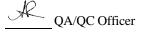
QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0708643

EPA Method E200.8		Bat	tchID: 30	081	Sp	Spiked Sample ID: 0708519-001A							
Analyte	Sample Spiked MS M			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)			
, many to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Lead	0.68	10	102	101	0.834	104	107	2.57	70 - 130	20	80 - 120	20	
%SS:	103	750	103	100	2.76	97	98	1.01	70 - 130	20	70 - 130	20	
%SS: All target compounds in the Method B NONE										20	70 - 130		


			BATCH 30081 SL	JMMARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708643-001C	08/22/07	08/22/07	08/22/07 8:44 PM	0708643-003C	08/22/07	08/22/07	08/22/07 8:49 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

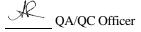
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708643

EPA Method SW8015C	Extra	ction SW	3510C/3	630C	Bat	chID: 30	092	Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(d)	N/A	1000	N/A	N/A	N/A	124	125	0.108	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	118	120	1.64	N/A	N/A	70 - 130	30	
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	CL with th	e following	exceptions:				


			<u>BATCH 30092 SL</u>	<u>JMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708643-001A	08/22/07	08/22/07	08/23/07 1:15 AM	0708643-003A	08/22/07	08/22/07	08/23/07 2:24 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01202087.04; Freisman	Date Sampled: 08/23/07
6601 Koll Center Pkwy, Ste 140	Ranch C+W Investigation	Date Received: 08/23/07
Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 08/24/07
	Client P.O.:	Date Completed: 08/24/07

WorkOrder: 0708672

August 24, 2007

Dear Steve:

Enclosed are:

- 1). the results of **6** analyzed samples from your **#01202087.04; Freisman Ranch C+W Investigation project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

SCS E	070867 ENGINEERS Er	vironm	ental Cons	ultants	TOTAL NUMBER	OF SAMPLES:	6.		A	NAL	YSE		JESTEL			LAB USI
6601 k Suite 1	Koll Center Parkway	92 FA	25 426-0080 X 925 426-070)7		OF IME REQUIRED: -DayImmediat	e	- q .		Lead 20.	1					ONET
OJECT N	UMBER: 012030	87.04			PROJECT MANA	GER: S. Cleme	ints	- 55		P	Each	60				
OJECT N	IAME: Freisman	Ranch	Gw Inve	stigation	W.O. / S.O. #:			4-9	00	Dissolved	9	82				
	OCATION: 1600 F		the second se	more, CA	1		*	10L	8260	2510	Total	2				
MPLER N	AME AND SIGNATURE	the second s	and the second se	ed		413-5813		5	7	2	0	33				
. NUMBER	SAMPLE DESIGNATION	SAMPLE	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCT	IONS/COMMENTS	as	15	\$	B	50				
	PH-15,57'	soul	8-23-07	2 ENCORES 1 Jar	-			X		ni .	×	×				
	PH-25, 25'		1	1	_		•	X			×	X				
	8H-25,48"	1			-		4	×			×	×				
+5	PH-26W, 29'	1+20		various	4 VOAS 64 Itcl	Silica Gel Clean	pford	X	×	X						
+	PH-16W, 241	1		1	V	Ý		X	X	X				\square		
~	QCTB	-	1	1 V	2 VOAS N/ HEP				×					\square		
					1. ce				×							
									4						+	
													+	\vdash	-	
								-					+	\vdash	+	
													+	\vdash		
								-		_			+	\vdash	+	
		ICE/	.4.0		- /			-				-	+	\vdash	+	
		GOO HEA	D CONDITION D SPACE ABSENT		PRIATE	(-	+	\vdash		
			HLORINATED IN L		S OTHER							_	+	\vdash	-	
TES:												AMPLE	CONDIT		PON RE	ECEIPT
Gron	Please cc re- ndugter sample	sults t	e tsison	e scs	engineers Giltered or	preserved	in field	1.				ANNI CE	001011		ONTIC	
IQUISHED B	the second se	0 0	RECEIVED BY	_	B/22/01	RELINQUISHED BY:	DATE:		_	RECE	IVED B	Y:	-	Ľ	DATE:	
PANY: SC	TIME:	1:30	COMPANY: MA1	100	TIME	COMPANY:	TIME:	-	_	COMP	ANY				TIME:	

McCampbell Analytical, Inc.

22	SW.
6	JY.
6	-
	1

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	Pittsburg, CA 94565-1701 (925) 252-9262					WorkOrder: 0708672 Client							ID: SCSD						
				EDF	Ľ	Excel		Fax	[🗸 Email		Harc	lCopy	Thi	rdParty				
Report to: Steve Clements		Email:	sclements@s	scseng.com			Bill t Ac	counts	Payabl	e			Re	queste	d TAT:	1	day		
SCS Engineers 6601 Koll Center Pleasanton, CA	r Pkwy, Ste 140	TEL: ProjectNo: PO:	(925) 426-008 #01202087.0	3 FAX: (925) 4; Freisman Ranc			66	CS Engi 601 Koll easantc	Center	•	Ste 14	0		te Rec te Prin					
									Req	uested	Tests	(See le	gend b	elow)					
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12		
0708672-001	PH-1S,57'		Soil	08/23/07		В		А		А						1			
0708672-002	PH-2S,25'		Soil	08/23/07		В		А		А									
0708672-003	PH-2S,48'		Soil	08/23/07		В		А		А									
0708672-004	PH-2GW,29'		Water	08/23/07			В		Α		С	С							
0708672-005	PH-1GW,24'		Water	08/23/07			В		А		С	С							
0708672-006	QCTB		Water	08/23/07			Α												

Test Legend:

1	8260B_ENCORE	2	8260B_W]	3	G-MBTEX_S	4	G-MBTEX_W	5	PB_S
6	PBMS_DISS	7	PRDISSOLVED]	8		9		10)
11		12								

The following SampIDs: 001A, 002A, 003A, 004A, 005A contain testgroup.

Prepared by: Maria Venegas

24hr Rush **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	SCS Engineers				Date a	and Time Received:	08/23/07 5	:07:28 PM
Project Name:	#01202087.04; Frei	sman Ranch C+	W Inv	estigatio	n Check	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	0708672	Matrix <u>Soil/Water</u>			Carrie	er: <u>Client Drop-In</u>		
		Chain	of Cu	stody (CO	C) Informa	ation		
Chain of custody	/ present?		Yes		No 🗆			
Chain of custody	· / signed when relinquish	ed and received?	Yes	\checkmark	No 🗆			
-	agrees with sample lab		Yes	V	No 🗌			
	d by Client on COC?		Yes		No 🗆			
	f collection noted by Clier	nt on COC?	Yes		No 🗆			
Sampler's name	·		Yes		No 🗆			
Campier 5 hame			100					
		<u>S</u>	ample	Receipt In	formatior	<u>1</u>		
Custody seals in	tact on shipping contain	er/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good condition	on?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated te	st?	Yes	\checkmark	No 🗌			
		Comple Dress			Time /UT	') Information		
		Sample Prese	vation		-	<u>) information</u>		
All samples rece	ived within holding time?	,	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp: 4	.0°C		NA 🗆	
Water - VOA via	ls have zero headspace	/ no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels cl	necked for correct prese	rvation?	Yes	✓	No			
TTLC Metal - pH	acceptable upon receipt	(pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

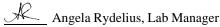
Date contacted:

Contacted by:

Comments:

<u>McCampbell A</u>	nalytical, I	nc.			ass Road, Pittsburg, C. bell.com E-mail: mai			
"When Oual	itv Counts"			Telephone: 8	77-252-9262 Fax: 92	25-252-9269		
SCS Engineers				.02087.04;	Date Sampled:	08/23/07		
	Freism	an Ranch	n C+W	Investigation	Date Received:	08/23/07		
6601 Koll Center Pkwy, Ste 140	Client	Contact:	Steve (Clements	Date Extracted:	08/23/07		
Pleasanton, CA 94566	Client				Date Analyzed:			
					•			
Volati	le Organics by P&	&T and (GC/MS	(Basic Target List)	[Encore Sampli	ng]*		
Extraction Method: SW5035		Analytical M	Method:	SW8260B		Work Order: 07086	572	
Lab ID				0708672	-001B			
Client ID				PH-1S	5,57'			
Matrix				Soi	1			
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Report Lim
Acetone	ND<0.051	1.0	0.05	Acrolein (Propenal)		ND<0.051	1.0	0.0
Acrylonitrile	ND<0.051	1.0	0.03	tert-Amyl methyl et	her (TAME)	ND<0.0051	1.0	0.00
Benzene	ND<0.0051	1.0	0.005	Bromobenzene	/	ND<0.0051	1.0	0.0
Bromochloromethane	ND<0.0051	1.0	0.005	Bromodichlorometh	ane	ND<0.0051	1.0	0.0
Bromoform	ND<0.0051	1.0	0.005	Bromomethane		ND<0.0051	1.0	0.0
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB)	4)	ND<0.051	1.0	0.0
n-Butyl benzene	ND<0.0051	1.0	0.005	sec-Butyl benzene		ND<0.0051	1.0	0.0
tert-Butyl benzene	ND<0.0051	1.0	0.005	Carbon Disulfide		ND<0.0051	1.0	0.0
Carbon Tetrachloride	ND<0.0051	1.0	0.005	Chlorobenzene		ND<0.0051	1.0	0.0
Chloroethane	ND<0.0051	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.0
Chloroform	ND<0.0051	1.0	0.005	Chloromethane		ND<0.0051	1.0	0.0
2-Chlorotoluene	ND<0.0051	1.0	0.005	4-Chlorotoluene		ND<0.0051	1.0	0.0
Dibromochloromethane	ND<0.0051	1.0	0.005	1,2-Dibromo-3-chlo	ropropane	ND<0.0051	1.0	0.0
1,2-Dibromoethane (EDB)	ND<0.0051	1.0	0.005	Dibromomethane		ND<0.0051	1.0	0.0
1,2-Dichlorobenzene	ND<0.0051	1.0	0.005	1,3-Dichlorobenzene		ND<0.0051	1.0	0.0
1,4-Dichlorobenzene	ND<0.0051	1.0	0.005	Dichlorodifluoromet		ND<0.0051	1.0	0.0
1,1-Dichloroethane	ND<0.0051	1.0	0.005	1,2-Dichloroethane		ND<0.0051	1.0	0.0
1,1-Dichloroethene	ND<0.0051	1.0	0.005	cis-1,2-Dichloroethe		ND<0.0051	1.0	0.0
trans-1,2-Dichloroethene	ND<0.0051	1.0 1.0	0.005	1,2-Dichloropropane		ND<0.0051	1.0	0.0
1,3-Dichloropropane 1,1-Dichloropropene	ND<0.0051	1.0	0.005	2,2-Dichloropropane		ND<0.0051	1.0	0.0
trans-1.3-Dichloropropene	ND<0.0051 ND<0.0051	1.0	0.005	cis-1,3-Dichloroprop Diisopropyl ether (I		ND<0.0051 ND<0.0051	<u>1.0</u> 1.0	0.0
Ethylbenzene	ND<0.0051	1.0	0.005	Ethyl tert-butyl ethe		ND<0.0051	1.0	0.0
Freon 113	ND<0.0051	1.0	0.005	Hexachlorobutadiene		ND<0.0051	1.0	0.0
Hexachloroethane	ND<0.0051	1.0	0.005	2-Hexanone		ND<0.0051	1.0	0.0
Isopropylbenzene	ND<0.0051	1.0	0.005	4-Isopropyl toluene		ND<0.0051	1.0	0.0
Methyl-t-butyl ether (MTBE)	ND<0.0051	1.0	0.005	Methylene chloride		ND<0.0051	1.0	0.0
4-Methyl-2-pentanone (MIBK)	ND<0.0051	1.0	0.005	Naphthalene		ND<0.0051	1.0	0.0
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND<0.0051	1.0	0.0
Styrene	ND<0.0051	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND<0.0051	1.0	0.0
1,1,2,2-Tetrachloroethane						ND<0.0051	1.0	0.0
Toluene	ND<0.0051	1.0	0.005	1,2,3-Trichlorobenz	ene	ND<0.0051	1.0	0.0
1,2,4-Trichlorobenzene	ND<0.0051	1.0	0.005	1,1,1-Trichloroetha	ne	ND<0.0051	1.0	0.0
1,1,2-Trichloroethane	ND<0.0051	1.0	0.005	Trichloroethene		ND<0.0051	1.0	0.0
Trichlorofluoromethane	ND<0.0051	1.0	0.005	1,2,3-Trichloroprop	ane	ND<0.0051	1.0	0.0
1,2,4-Trimethylbenzene	ND<0.0051	1.0	0.005	1,3,5-Trimethylbenz	zene	ND<0.0051	1.0	0.0
Vinvl Chloride	ND<0.0051	1.0	0.005			ND<0.0051	1.0	0.0
	-	Surro	ogate Re	coveries (%)		1		
%SS1:	1	03		%SS2:		93	3	
%SS3:		8						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell</u> A	Analyti	cal, Ir	<u>nc.</u>			Pass Road, Pittsburg, C. obell.com E-mail: mai					
"When Oua	litv Counts"					877-252-9262 Fax: 92					
SCS Engineers					202087.04;	Date Sampled:	08/23/07				
6601 Koll Center Pkwy, Ste 140		Freisma	n Ranch	n C+W	Investigation	Date Received:	08/23/07				
ooor Kon Center I Kwy, Sie 140		Client C	Contact:	Steve (Clements	Date Extracted:	ted: 08/23/07				
Pleasanton, CA 94566		Client P	.0.:			Date Analyzed:	08/23/07				
Volati	ile Organi	cs by P&	T and G	C/MS	(Basic Target List)) (Encore Sampli	ng]*				
Extraction Method: SW5035		•	Analytical N			F	Work Order: 07086	572			
Lab ID					0708672	2-002B					
Client ID					PH-25	5.25'					
Matrix					So						
Compound	Concer	tration *	DF	Reporting Limit	Compour		Concentration *	DF	Reporting		
Acetone		(0.039	1.0	0.05	Acrolein (Propenal)		ND<0.039	1.0	Limit		
Acrylonitrile		0.039	1.0	0.05	tert-Amyl methyl e		ND<0.0039	1.0	0.005		
Benzene		0.0039	1.0	0.005	Bromobenzene		ND<0.0039	1.0	0.005		
Bromochloromethane		0.0039	1.0	0.005	Bromodichlorometh	ane	ND<0.0039	1.0	0.005		
Bromoform		0.0039	1.0	0.005	Bromomethane		ND<0.0039	1.0	0.005		
2-Butanone (MEK)	ND<	0.016	1.0	0.02	t-Butyl alcohol (TB	A)	ND<0.039	1.0	0.05		
n-Butyl benzene		0.0039	1.0	0.005	sec-Butyl benzene		ND<0.0039	1.0	0.005		
tert-Butyl benzene	ND<	0.0039	1.0	0.005	Carbon Disulfide		ND<0.0039	1.0	0.005		
Carbon Tetrachloride	ND<	0.0039	1.0	0.005	Chlorobenzene		ND<0.0039	1.0	0.005		
Chloroethane	ND<	0.0039	1.0	0.005	2-Chloroethyl Viny	l Ether	ND<0.0079	1.0	0.01		
Chloroform	ND<	0.0039	1.0	0.005	Chloromethane		ND<0.0039	1.0	0.005		
2-Chlorotoluene	ND<	0.0039	1.0	0.005	4-Chlorotoluene		ND<0.0039	1.0	0.005		
Dibromochloromethane	ND<	0.0039	1.0	0.005	1,2-Dibromo-3-chlo	propropane	ND<0.0039	1.0	0.005		
1,2-Dibromoethane (EDB)		0.0039	1.0	0.005	Dibromomethane		ND<0.0039	1.0	0.005		
1,2-Dichlorobenzene		0.0039	1.0	0.005	1,3-Dichlorobenzen		ND<0.0039	1.0	0.005		
1,4-Dichlorobenzene		0.0039	1.0	0.005	Dichlorodifluorome		ND<0.0039	1.0	0.005		
1,1-Dichloroethane		0.0039	1.0	0.005	1,2-Dichloroethane		ND<0.0039	1.0	0.005		
1,1-Dichloroethene		0.0039	1.0	0.005	cis-1,2-Dichloroeth		ND<0.0039	1.0	0.005		
trans-1,2-Dichloroethene		0.0039	1.0	0.005	1,2-Dichloropropan		ND<0.0039	1.0	0.005		
1,3-Dichloropropane		0.0039	1.0	0.005	2,2-Dichloropropan		ND<0.0039	1.0	0.005		
1,1-Dichloropropene		0.0039	1.0	0.005	cis-1,3-Dichloropro		ND<0.0039	1.0	0.005		
trans-1,3-Dichloropropene Ethylbenzene		0.0039 0.0039	<u>1.0</u> 1.0	0.005	Diisopropyl ether (I Ethyl tert-butyl eth		ND<0.0039 ND<0.0039	<u>1.0</u> 1.0	0.005		
Freon 113		0.0039	1.0	0.003	Hexachlorobutadien		ND<0.0039	1.0	0.005		
Hexachloroethane		0.0039	1.0	0.005	2-Hexanone	C	ND<0.0039	1.0	0.005		
Isopropylbenzene		0.0039	1.0		4-Isopropyl toluene		ND<0.0039	1.0	0.005		
Methyl-t-butyl ether (MTBE)		0.0039	1.0	0.005	Methylene chloride		ND<0.0039	1.0	0.005		
4-Methyl-2-pentanone (MIBK)		0.0039	1.0	0.005	Naphthalene		ND<0.0039	1.0	0.005		
Nitrobenzene		(0.079	1.0	0.1	n-Propyl benzene		ND<0.0039	1.0	0.005		
Styrene		0.0039	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND<0.0039	1.0	0.005		
1,1,2,2-Tetrachloroethane		0.0039	1.0	0.005	Tetrachloroethene		ND<0.0039	1.0	0.005		
Toluene		0.0039	1.0	0.005	1,2,3-Trichlorobenz	ene	ND<0.0039	1.0	0.005		
1,2,4-Trichlorobenzene		0.0039	1.0	0.005	1,1,1-Trichloroetha		ND<0.0039	1.0	0.005		
1,1,2-Trichloroethane	ND<	0.0039	1.0	0.005	Trichloroethene		ND<0.0039	1.0	0.005		
Trichlorofluoromethane		0.0039	1.0	0.005	1,2,3-Trichloroprop	bane	ND<0.0039	1.0	0.005		
1,2,4-Trimethylbenzene		0.0039	1.0	0.005	1,3,5-Trimethylben	zene	ND<0.0039	1.0	0.005		
Vinvl Chloride	ND<	0.0039	1.0	0.005			ND<0.0039	1.0	0.005		
			Surro	gate Re	coveries (%)						
%SS1:		10	2		%SS2:		94	1			
%SS3:		87	7								
Comments: k											
		-									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

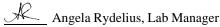
<u>McCampbell An</u>	nalytical, I	nc.			Pass Road, Pittsburg, Ca bell.com E-mail: mai			
"When Ouality	Counts"			•	377-252-9262 Fax: 92	•		
SCS Engineers				02087.04;	Date Sampled:	08/23/07		
6601 Koll Center Pkwy, Ste 140	Freisn	nan Ranch	n C+W	Investigation	Date Received:	08/23/07		
0001 Koll Center FKwy, Ste 140	Client	Contact:	Steve (Clements	Date Extracted:	08/23/07		
Pleasanton, CA 94566	Client	P.O.:			Date Analyzed:	08/23/07		
Volatile	Organics by P	&T and (C/MS	(Basic Target List)	Fincore Sampli	na]*		
Extraction Method: SW5035	Organics by I	Analytical N		-		Work Order: 07086	572	
Lab ID		1 mary ticur 1	nethou.	0708672	003B	Work Order. 07000	512	
Client ID				PH-25				
Matrix				So				
		1	Reporting					Reporting
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND<0.041	1.0	0.05	Acrolein (Propenal)		ND<0.041	1.0	0.05
Acrylonitrile	ND<0.017	1.0	0.02	tert-Amyl methyl e	ther (TAME)	ND<0.0041	1.0	0.005
Benzene	ND<0.0041	1.0	0.005	Bromobenzene		ND<0.0041	1.0	0.005
Bromochloromethane Bromoform	ND<0.0041 ND<0.0041	1.0	0.005	Bromodichlorometh Bromomethane	ane	ND<0.0041 ND<0.0041	<u>1.0</u> 1.0	0.005
2-Butanone (MEK)	ND<0.017	1.0	0.003	t-Butyl alcohol (TB	A)	ND<0.041	1.0	0.003
n-Butyl benzene	ND<0.0041	1.0	0.002	sec-Butyl benzene	A)	ND<0.0041	1.0	0.005
tert-Butyl benzene	ND<0.0041	1.0	0.005	Carbon Disulfide		ND<0.0041	1.0	0.005
Carbon Tetrachloride	ND<0.0041	1.0	0.005	Chlorobenzene		ND<0.0041	1.0	0.005
Chloroethane	ND<0.0041	1.0	0.005	2-Chloroethyl Viny	Ether	ND<0.0083	1.0	0.01
Chloroform	ND<0.0041	1.0	0.005	Chloromethane		ND<0.0041	1.0	0.005
2-Chlorotoluene	ND<0.0041	1.0	0.005	4-Chlorotoluene		ND<0.0041	1.0	0.005
Dibromochloromethane	ND<0.0041	1.0	0.005	1,2-Dibromo-3-chlo	ropropane	ND<0.0041	1.0	0.005
1,2-Dibromoethane (EDB)	ND<0.0041	1.0	0.005	Dibromomethane		ND<0.0041	1.0	0.005
1,2-Dichlorobenzene	ND<0.0041	1.0	0.005	1,3-Dichlorobenzen		ND<0.0041	1.0	0.005
1,4-Dichlorobenzene	ND<0.0041	1.0	0.005	Dichlorodifluorome		ND<0.0041	1.0	0.005
1,1-Dichloroethane 1,1-Dichloroethene	ND<0.0041 ND<0.0041	1.0	0.005	1,2-Dichloroethane cis-1,2-Dichloroeth		ND<0.0041 ND<0.0041	<u>1.0</u> 1.0	0.005
trans-1,2-Dichloroethene	ND<0.0041	1.0	0.005	1,2-Dichloropropan		ND<0.0041	1.0	0.005
1,3-Dichloropropane	ND<0.0041	1.0	0.005	2,2-Dichloropropan		ND<0.0041	1.0	0.005
1,1-Dichloropropene	ND<0.0041	1.0	0.005	cis-1,3-Dichloropro		ND<0.0041	1.0	0.005
trans-1,3-Dichloropropene	ND<0.0041	1.0	0.005	Diisopropyl ether (I		ND<0.0041	1.0	0.005
Ethylbenzene	ND<0.0041	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND<0.0041	1.0	0.005
Freon 113	ND<0.083	1.0	0.1	Hexachlorobutadien	e	ND<0.0041	1.0	0.005
Hexachloroethane	ND<0.0041	1.0	0.005	2-Hexanone		ND<0.0041	1.0	0.005
Isopropylbenzene	ND<0.0041	1.0	0.005	4-Isopropyl toluene		ND<0.0041	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND<0.0041	1.0	0.005	Methylene chloride		ND<0.0041	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND<0.0041	1.0	0.005	Naphthalene		ND<0.0041	1.0	0.005
Nitrobenzene	ND<0.083	1.0	0.1	n-Propyl benzene	.1	ND<0.0041	1.0	0.005
Styrene	ND<0.0041	1.0	0.005	1,1,1,2-Tetrachloro	etnane	ND<0.0041	1.0	0.005
1,1,2,2-Tetrachloroethane Toluene	ND<0.0041 ND<0.0041	1.0	0.005	Tetrachloroethene 1,2,3-Trichlorobenz	ene	ND<0.0041 ND<0.0041	<u>1.0</u> 1.0	0.005
1,2,4-Trichlorobenzene	ND<0.0041	1.0	0.005	1,1,1-Trichloroetha		ND<0.0041	1.0	0.005
1,1,2-Trichloroethane	ND<0.0041	1.0	0.005	Trichloroethene		ND<0.0041	1.0	0.005
Trichlorofluoromethane	ND<0.0041	1.0	0.005	1,2,3-Trichloroprop	ane	ND<0.0041	1.0	0.005
1,2,4-Trimethylbenzene	ND<0.0041	1.0	0.005	1,3,5-Trimethylben		ND<0.0041	1.0	0.005
Vinvl Chloride	ND<0.0041	1.0	0.005	Xvlenes		ND<0.0041	1.0	0.005
		Surro	ogate Re	coveries (%)				
%SS1:		03		%SS2:		92	2	
%SS3:		88						
Comments: k								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A	nalytical, Ir	<u>ıc.</u>		Web: www.mccamp	Pass Road, Pittsburg, C. bbell.com E-mail: mai	n@mccampbell.com		
"When Ouali	tv Counts"			Telephone: 8	877-252-9262 Fax: 92	25-252-9269		
SCS Engineers				202087.04;	Date Sampled:	08/23/07		
6601 Koll Center Pkwy, Ste 140	Freisma	an Ranch	C+W	Investigation	Date Received:	08/23/07		
	Client C	Contact:	Steve (Clements	Date Extracted:	08/24/07		
Pleasanton, CA 94566	Client P	2.0.:			Date Analyzed:	08/24/07		
	Volatile Organ	nics by Po	&T an	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	0	• Analytical M			8 /	Work Order: 07086	572	
Lab ID				0708672	2-004B			
Client ID				PH-2G	W,29'			
Matrix				Wa				
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reportin Limit
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0 1.0	0.5	2-Chloroethyl Viny	l Ether	ND ND	1.0	1.0
Chloroform	ND	1.0		Chloromethane			1.0	0.5
2-Chlorotoluene Dibromochloromethane	ND ND	1.0	0.5	4-Chlorotoluene 1,2-Dibromo-3-chlo	ropropage	ND ND	<u>1.0</u> 1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	nopropane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzen	e	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorome		ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroeth	ene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropan	e	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropan	e	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (l		ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadien	e	ND	1.0	0.5
Hexachloroethane Isopropylbenzene	ND ND	1.0 1.0	0.5	2-Hexanone 4-Isopropyl toluene		ND ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	zene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ne	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop		ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5
			gate Re	ecoveries (%)		1		
%SS1:	10			%SS2:		95	5	
%SS3:	90	6		1				

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell A</u>	Analytical, Ir	<u>1C.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com							
"When Oual	litv Counts"			Telephone	877-252-9262 Fax: 9	25-252-9269					
SCS Engineers		Client Project ID: #01202087.04;			Date Sampled: 08/23/07						
6601 Koll Center Pkwy, Ste 140	Freisma	Freisman Ranch C+W Investigation				Date Received: 08/23/07					
oool Kon Center Fkwy, Ste 140		Contact:	Steve (Clements	Date Extracted: 08/23/07						
Pleasanton, CA 94566	Client P	2.0.:			Date Analyzed	: 08/23/07					
	Volatile Organ	nics hv F	P&T and	d GC/MS (Basic T	[arget List)*						
Extraction Method: SW5030B	_	-	Method:		anger List)	Work Order: 0708	572				
Lab ID					72-005B						
Client ID		0708672-005B									
		PH-1GW,24'									
Matrix		Water									
Compound	Concentration *	DF	Limit	Compor	und	Concentration *	DF	Reportin Limit			
Acetone	ND<100	10	10	Acrolein (Propena		ND<50	10	5.0			
Acrylonitrile	ND<20	10	2.0	tert-Amyl methyl	ether (TAME)	ND<5.0	10	0.5			
Benzene	5.1	10	0.5	Bromobenzene		ND<5.0	10	0.5			
Bromochloromethane	ND<5.0	10	0.5	Bromodichloromet	thane	ND<5.0	10	0.5			
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5			
2-Butanone (MEK) n-Butyl benzene	ND<20 13	<u>10</u> 10	2.0	t-Butyl alcohol (TBA)		ND<50 6.1	<u>10</u> 10	5.0 0.5			
tert-Butyl benzene	ND<5.0	10	0.5	sec-Butyl benzene Carbon Disulfide		0.1 ND<5.0	10	0.5			
Carbon Tetrachloride	ND<5.0	10	0.5	Carbon Disulfide Chlorobenzene		ND<5.0	10	0.5			
Chloroethane	ND<5.0	10	0.5	2-Chloroethyl Vinyl Ether		ND<10	10	1.0			
Chloroform	ND<5.0	10	0.5	Chloromethane		ND<5.0	10	0.5			
2-Chlorotoluene	ND<5.0	10	0.5	4-Chlorotoluene		ND<5.0	10	0.5			
Dibromochloromethane	ND<5.0	10	0.5	1,2-Dibromo-3-chloropropane		ND<5.0	10	0.5			
1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Dibromomethane		ND<5.0	10	0.5			
1,2-Dichlorobenzene	ND<5.0	10	0.5	1,3-Dichlorobenzene		ND<5.0	10	0.5			
1,4-Dichlorobenzene	ND<5.0	10	0.5	Dichlorodifluoromethane		ND<5.0	10	0.5			
1,1-Dichloroethane	ND<5.0	10	0.5	1,2-Dichloroethane (1,2-DCA)		ND<5.0	10	0.5			
1,1-Dichloroethene	ND<5.0	10	0.5	cis-1,2-Dichloroethene		ND<5.0	10	0.5			
trans-1,2-Dichloroethene	ND<5.0	10	0.5	1,2-Dichloropropane		ND<5.0	10	0.5			
1,3-Dichloropropane	ND<5.0 ND<5.0	<u>10</u> 10	0.5	2,2-Dichloropropane		ND<5.0	10 10	0.5			
1,1-Dichloropropene trans-1,3-Dichloropropene	ND<5.0	10	0.5	cis-1,3-Dichloropropene Diisopropyl ether (DIPE)		ND<5.0 ND<5.0	10	0.5			
Ethylbenzene	36	10	0.5	Ethyl tert-butyl ether (ETBE)		ND<5.0	10	0.5			
Freon 113	ND<100	10	10	Hexachlorobutadie		ND<5.0	10	0.5			
Hexachloroethane	ND<5.0	10	0.5	2-Hexanone		ND<5.0	10	0.5			
Isopropylbenzene	24	10	0.5	4-Isopropyl toluene		ND<5.0	10	0.5			
Methyl-t-butyl ether (MTBE)	ND<5.0	10	0.5	Methylene chloride		ND<5.0	10	0.5			
4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5	Naphthalene		38	10	0.5			
Nitrobenzene	ND<100	10	10	n-Propyl benzene		63	10	0.5			
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroethane		ND<5.0	10	0.5			
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5			
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenzene		ND<5.0	10	0.5			
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethane		ND<5.0	10	0.5			
1,1,2-Trichloroethane Trichlorofluoromethane	ND<5.0 ND<5.0	<u>10</u> 10	0.5	Trichloroethene		ND<5.0 ND<5.0	10 10	0.5			
1,2,4-Trimethylbenzene	ND<5.0 110	10	0.5	1,2,3-Trichloropropane 1,3,5-Trimethylbenzene		ND<5.0 30	10	0.5			
Vinvl Chloride	ND<5.0	10	0.5	Xvlenes		23	10	0.5			
				ecoveries (%)		<u>. 22</u>	. V				
%SS1:	%SS2:		10	1							
%SS3:	101			/0002.		10					
Comments:											

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com									
"When Oua	litv Counts"			Telephone:	877-252-9262 Fax: 92	25-252-9269					
SCS Engineers		Client Project ID: #01202087.04;			Date Sampled: 08/23/07						
6601 Koll Center Pkwy, Ste 140		eisman Ranch	C+W	Investigation	Date Received: 08/23/07						
		ent Contact:	Steve (Clements	Date Extracted: 08/24/07						
Pleasanton, CA 94566		ent P.O.:			Date Analyzed:	08/24/07					
	Volatile O	rganics by P	&T an	d GC/MS (Basic T	'arget List)*						
Extraction Method: SW5030B	, onume o	Analytical N			urger Eist)	Work Order: 0708	672				
Lab ID					2-0064						
Client ID		0708672-006A									
Matrix		QCTB Woter									
Iviati 1x		Water									
Compound	Concentration	on * DF	Limit	Compou	nd	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	10	Acrolein (Propenal		ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl e	ether (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK) n-Butyl benzene	ND	1.0	2.0 0.5	t-Butyl alcohol (TBA)		ND ND	<u>1.0</u> 1.0	5.0			
	ND	1.0	0.5	sec-Butyl benzene		ND ND		0.5			
tert-Butyl benzene Carbon Tetrachloride	ND ND	1.0	0.5	Carbon Disulfide Chlorobenzene		ND	<u>1.0</u> 1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)		ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)		ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadier	ne	ND	1.0	0.5			
Hexachloroethane	ND ND	1.0	0.5	2-Hexanone		ND ND	1.0	0.5			
Isopropylbenzene Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	4-Isopropyl toluene Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5			
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5			ND	1.0	0.5			
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5			
		Surro	gate Re	ecoveries (%)							
%SS1:	103			%SS2:	91						
%SS3:		91									
Comments:											

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCa</u>	mpbell Analyti "When Ouality Counts"	cal, Inc.		Web: www.mccamp	bell.com	Pittsburg, CA 94565-1701 E-mail: main@mccampbell.com 262 Fax: 925-252-9269			
6601 Koll Center Pkwy, Ste 140 Pleasanton, CA 94566			Client Project ID: #01202087.04;			Date Sampled: 08/23/07			
		Freisman Ranch C+W Investigation Client Contact: Steve Clements Client P.O.:			Date Received: 08/23/07				
					Date Extracted:08/23/07Date Analyzed:08/24/07				
									Gasoline Range
Lab ID	Client ID	Matri		TPH(g)		TPH(ss)	DF	% SS	
0708672-001A	PH-1S,57'	S		ND		ND	1	89	
0708672-002A	PH-2S,25'	S		ND		ND	1	85	
0708672-003A PH-2S,48'		S		ND		ND	1	83	
Repor	ting Limit for DF =1;	W		NA		NA	N	A	
ND means not detected at or above the reporting limit				1.0 1.0			mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

Car McCar	mpbell Analyti "When Ouality Counts"	cal, Inc.		Web: www.mccampl	bell.com	Pittsburg, CA 94565-1701 E-mail: main@mccampbell.com 262 Fax: 925-252-9269				
6601 Koll Center Pkwy, Ste 140 Pleasanton, CA 94566			Client Project ID: #01202087.04;			Date Sampled: 08/23/07				
		Freisman Ranch C+W Investigation			Date Received: 08/23/07					
		Client Contact: Steve Clements				Date Extracted: 08/24/07				
		Client P.O.:			Date Analyzed: 08/24/07					
Gasoline Range Extraction method SW5030E		. .		2) Volatile Hydroc SW8015Cm	carbons	as Gasoline and Stoddard Work Order:	Solven 0708672			
Lab ID	Client ID	Matri	ix	TPH(g)		TPH(ss)	DF	% SS		
0708672-004A	PH-2GW,29'	w		ND,i		ND	1	98		
0708672-005A	PH-1GW,24'	W		2200,a,m		1500	1	101		
Reporting Limit for DF =1; ND means not detected at or above the reporting limit		W		50		50	με	g/L		
		ting limit S		NA		NA	Ν	A		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

<u> </u>	mpbell Analyti "When Ouality Counts"	cal, Inc	2.	Web: www		d, Pittsburg, CA 945 E-mail: main@mc 9262 Fax: 925-252	campbell.com	
SCS Engineers				: #01202087.04; Date Sampled: 08/23/0			23/07	
6601 Koll Center Pk	wy, Ste 140	Freisman	Ranch C-	W Investigation	Received: 08/	23/07		
Pleasanton CA 945	Pleasanton, CA 94566				Date	Extracted: 08/	23/07	
Theasanton, CA 943	00	Client P.O).:		Date	Analyzed: 08/	24/07	
			Lead by		·			
Extraction method: SW3050			ethods: 6010C			k Order: 07	1	
Lab ID	Client ID		Matrix	Extraction Type		Lead	DF	% SS
0708672-001A	PH-18,57'		S	TOTAL^		5.9	1	105
0708672-002A	PH-2S,25'		S	TOTAL^		6.3	1	106
0708672-003A	PH-2S,48'		S	TOTAL^		5.5	1	104
								<u> </u>

Reporting Limit for $DF = 1$;	W	TOTAL^	NA	µg/L
ND means not detected at or above the reporting limit	S	TOTAL^	5.0	mg/Kg

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in $\mu g/kg$, wipe samples in $\mu g/kg$, filter samples in $\mu g/kg$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

 $TOTAL^{ } = acid digestion.$

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL[^] metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

	cCampbell Analyti	cal, Inc.	<u>-</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
SCS Engineer	S	Client Project ID: #01202087.04; Freisman Ranch C+W Investigation				Date Sampled: 08/23/07 Date Received: 08/23/07				
	iter Pkwy, Ste 140	Client Con	ntact: Ste	eve Clements	Date Extracted: 0					
Pleasanton, C.	A 94566	Client P.O.	.:			Date Analyzed 0	08/23/0)7		
Extraction method	E200.8		Lead by I	CP-MS* ethods E200.8		N.	Jork Ord	ler: 07(18672	
Lab ID	Client ID			Extraction Type		Lead		DF	% SS	
0708672-004C	PH-2GW,29'		W	DISS.		2.2		1	N/A	
0708672-005C	PH-1GW,24'		W	DISS.		1.5		1	N/A	

Reporting Limit for DF =1;	W	DISS.	0.5	µg/L
ND means not detected at or above the reporting limit	S	TOTAL^	NA	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

 $TOTAL^{*} = acid digestion.$

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL[^] metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

	ampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
SCS Engineers		Client Project ID: Freisman Ranch C		Date Sampled: 08/23/	/07		
6601 Koll Center I	Pkwy, Ste 140	Freisman Kanch C	+w investigation	/07			
Pleasanton, CA 94	4566	Client Contact: St	eve Clements	Date Extracted: 08/23/	07		
		Client P.O.:		Date Analyzed 08/23/	/07		
			ctable Hydrocarbons as				
Extraction method SW3			nethods SW8015C	Work Or		08672	
Lab ID	Client ID	Matrix	TPH(d))	DF	% SS	
0708672-001A	PH-1S,57'	S	ND		1	106	
0708672-002A	PH-28,25'	S	ND		1	103	
0708672-003A	PH-2S,48'	S	ND		1	106	

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

	CCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- obell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	pbell.com	
SCS Engineer	8	Client Project ID:		Date Sampled: 08/23/	/07	
6601 Koll Cer	nter Pkwy, Ste 140	Freisman Ranch C	C+W Investigation	/07		
Pleasanton, C.	A 94566	Client Contact: S	teve Clements	Date Extracted: 08/23/	07	
		Client P.O.:		Date Analyzed 08/24/	/07	
			ydrocarbons with Silic	-		
Extraction method			methods SW8015C	Work Or		08672
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0708672-004A	PH-2GW,29'	w	ND,i		1	94
0708672-005A	PH-1GW,24'	W	1000,0	1	1	116

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.

DHS ELAP Certification Nº 1644

QC SUMMARY REPORT FOR SW8260B

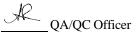
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0708672

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 30	132	Sp	iked Sam	ole ID:	0708582-01	0A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, indyto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	102	104	2.26	94.4	90.9	3.80	70 - 130	30	70 - 130	30
Benzene	ND	10	99.7	99.3	0.391	93.1	89.9	3.58	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	102	102	0	100	104	3.65	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	108	5.95	99.5	95.8	3.73	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	112	120	6.69	110	108	1.89	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	107	105	1.93	101	96.6	4.88	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	126	121	4.17	124	125	1.04	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	115	118	3.05	107	104	2.32	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	108	111	2.85	99.2	96.5	2.66	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	111	113	2.07	102	98.5	2.96	70 - 130	30	70 - 130	30
Toluene	ND	10	98.3	104	6.13	92.5	91.5	1.03	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	97	97.5	0.549	92.1	87.3	5.36	70 - 130	30	70 - 130	30
%SS1:	103	10	103	97	5.16	101	101	0	70 - 130	30	70 - 130	30
%SS2:	101	10	103	104	1.04	99	101	2.91	70 - 130	30	70 - 130	30
%SS3:	99	10	101	102	1.20	99	100	0.492	70 - 130	30	70 - 130	30

BATCH 30132 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-004B	08/23/07	08/24/07	08/24/07 12:18 AM	0708672-005B	08/23/07	08/23/07	08/23/07 8:50 PM
0708672-006A	08/23/07	08/24/07	08/24/07 8:51 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8260B

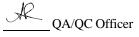
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0708672

EPA Method SW8260B	Extra	ction SW	5035		Ba	tchID: 30	170	Sp	iked Samp	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	N/A	0.050	N/A	N/A	N/A	93.9	93	0.962	N/A	N/A	70 - 130	30
Benzene	N/A	0.050	N/A	N/A	N/A	97.3	95.6	1.84	N/A	N/A	70 - 130	30
t-Butyl alcohol (TBA)	N/A	0.25	N/A	N/A	N/A	99.9	102	2.55	N/A	N/A	70 - 130	30
Chlorobenzene	N/A	0.050	N/A	N/A	N/A	102	101	1.70	N/A	N/A	70 - 130	30
1,2-Dibromoethane (EDB)	N/A	0.050	N/A	N/A	N/A	105	105	0	N/A	N/A	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	N/A	0.050	N/A	N/A	N/A	101	98.6	2.27	N/A	N/A	70 - 130	30
1,1-Dichloroethene	N/A	0.050	N/A	N/A	N/A	127	128	1.05	N/A	N/A	70 - 130	30
Diisopropyl ether (DIPE)	N/A	0.050	N/A	N/A	N/A	109	107	1.95	N/A	N/A	70 - 130	30
Ethyl tert-butyl ether (ETBE)	N/A	0.050	N/A	N/A	N/A	100	97.5	2.73	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	0.050	N/A	N/A	N/A	96	97.1	1.10	N/A	N/A	70 - 130	30
Toluene	N/A	0.050	N/A	N/A	N/A	92.9	90.5	2.60	N/A	N/A	70 - 130	30
Trichloroethene	N/A	0.050	N/A	N/A	N/A	93.9	92.1	1.87	N/A	N/A	70 - 130	30
%SS1:	N/A	0.050	N/A	N/A	N/A	103	100	2.92	N/A	N/A	70 - 130	30
%SS2:	N/A	0.050	N/A	N/A	N/A	97	96	1.65	N/A	N/A	70 - 130	30
%SS3:	N/A	0.050	N/A	N/A	N/A	97	96	1.30	N/A	N/A	70 - 130	30

BATCH 30170 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-001B	08/23/07	08/23/07	08/23/07 8:30 PM	0708672-002B	08/23/07	08/23/07	08/23/07 7:39 PM
0708672-003B	08/23/07	08/23/07	08/23/07 9:23 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

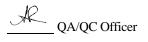
QC Matrix: Soil

WorkOrder 0708672

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	tchID: 30	033	Sp	iked Sam	d Sample ID: 0708553-005A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	94.1	88.6	6.02	95.6	109	12.7	70 - 130	30	70 - 130	30
MTBE	ND	0.10	105	107	1.79	111	118	6.11	70 - 130	30	70 - 130	30
Benzene	ND	0.10	97.3	96.1	1.30	99.5	102	2.72	70 - 130	30	70 - 130	30
Toluene	ND	0.10	83.7	84.4	0.750	87.3	92.4	5.64	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	96.2	97.5	1.33	97.3	97.9	0.685	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	90	91	1.10	91	90.7	0.367	70 - 130	30	70 - 130	30
%SS:	83	0.10	100	99	0.893	99	100	0.457	70 - 130	30	70 - 130	30
All target compounds in the Method F NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 30033 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-001A	08/23/07	08/23/07	08/24/07 2:42 AM	0708672-002A	08/23/07	08/23/07	08/24/07 3:12 AM
0708672-003A	08/23/07	08/23/07	08/24/07 10:46 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708672

EPA Method SW8015C	Extra	ction SW	3510C/3	630C	Bat	chID: 30	191	Sp	iked Samp	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and jud	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	116	117	1.11	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	102	104	2.15	N/A	N/A	70 - 130	30

			<u>BATCH 30191 SL</u>	JIVIIVIARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-004A	08/23/07	08/23/07	08/24/07 8:06 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701Web: www.mccampbell.comE-mail: main@mccampbell.comTelephone: 877-252-9262Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

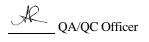
QC Matrix: Water

WorkOrder 0708672

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 30	189	Sp	iked Sam	ole ID:	0708673-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	84.6	84	0.750	86.7	87	0.284	70 - 130	30	70 - 130	30
MTBE	ND	10	82.2	99.6	19.1	73.7	83.9	12.9	70 - 130	30	70 - 130	30
Benzene	ND	10	83.9	91.9	9.10	84.9	82.7	2.68	70 - 130	30	70 - 130	30
Toluene	ND	10	78.1	84.6	7.97	85.9	83.5	2.78	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	86.9	93.2	6.96	91.4	87.1	4.90	70 - 130	30	70 - 130	30
Xylenes	ND	30	86.7	90.3	4.14	100	95.3	4.78	70 - 130	30	70 - 130	30
%SS:	100	10	100	104	3.78	93	92	1.42	70 - 130	30	70 - 130	30
All target compounds in the Method E											70 100	

BATCH 30189 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-004A	08/23/07	7 08/24/07	08/24/07 8:15 AM	0708672-005A	08/23/07	08/24/07	08/24/07 8:45 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR 6010C

W.O. Sample Ma	trix: Soil				QC Ma	atrix: Soil				WorkOrder: 0708672				
EPA Method 60	010C			Extraction	on SW3050)B	В	atchID: 3	0107	Spiked Sa	ample	ID 0708553	-007A	
Analyte	Sample	Spiked	d MS MSD MS-MSD Spiked LCS					LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%)	
, individ	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Lead	5.3	50	97.4	96.4	0.977	10	86.8	91.2	4.83	70 - 130	20	80 - 120	20	
%SS:	109	250	107	108	0.744	250	103	105	1.15	70 - 130	20	70 - 130	20	
All target compou NONE	nds in the M	ethod Bla	ank of this	s extractio	on batch wer	e ND less	than the r	nethod RL	with the fol	lowing exce	ptions:			

BATCH 30107 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-001A	08/23/0	7 08/23/07)8	3/24/07 10:58 AM	0708672-002A	08/23/0	7 08/23/07)	8/24/07 11:00 AM
0708672-003A	08/23/0	7 08/23/07)8	3/24/07 11:02 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

____QA/QC Officer

QC SUMMARY REPORT FOR E200.8

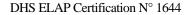
W.O. Sample Matrix: Water

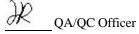
QC Matrix: Water

WorkOrder: 0708672

	od E200.8 Extraction E200.8					BatchID: 30190				piked Sample ID: 0708687-001B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
/ undry to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Lead	ND	10	114	114	0	112	110	1.44	70 - 130	20	80 - 120	20	

BATCH 30190 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-004C	08/23/07	08/23/07	08/23/07 11:26 PM	0708672-005C	08/23/07	08/23/07	08/23/07 11:31 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

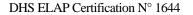
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0708672

EPA Method SW8015C	Extra	ction SW	3550C		BatchID: 30136				Spiked Sample ID: 0708493-009A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, and j to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(d)	22	20	NR	NR	NR	120	120	0	70 - 130	30	70 - 130	30	
%SS:	92	50	91	92	0.707	98	98	0	70 - 130	30	70 - 130	30	


			BATCH 30136 SI	<u>JMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708672-001A	08/23/07	08/23/07	08/23/07 7:34 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QA/QC Officer

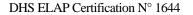
QC SUMMARY REPORT FOR SW8015C

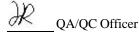
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0708672

Spiked	MS	MSD	MS-MSD	1.00						
				LCS LCSD		LCS-LCSD Acceptance Criteria (Criteria (%)	
mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
20	N/A	N/A	N/A	109	107	1.77	N/A	N/A	70 - 130	30
50	N/A	N/A	N/A	90	90	0	N/A	N/A	70 - 130	30
2	50	50 N/A	50 N/A N/A	50 N/A N/A N/A	50 N/A N/A N/A 90	50 N/A N/A N/A 90 90	50 N/A N/A N/A 90 90 0		50 N/A N/A N/A 90 90 0 N/A N/A	50 N/A N/A N/A 90 90 0 N/A N/A 70 - 130


BATCH 30187 SUMMARY										
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0708672-002A	08/23/07	7 08/23/07	08/23/07 8:43 PM	0708672-003A	08/23/07	7 08/23/07	08/23/07 9:52 PM			


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

